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Series Preface for Modern Acoustics and Signal Processing

In the popular mind, the term “acoustics” refers to the properties of a room or other
environment—the acoustics of a room are good or the acoustics are bad. But as
understood in the professional acoustical societies of the world, such as the highly
influential Acoustical Society of America, the concept of acoustics is much broader.
Of course, it is concerned with the acoustical properties of concert halls, classrooms,
offices, and factories—a topic generally known as architectural acoustics, but it also
is concerned with vibrations and waves too high or too low to be audible.
Acousticians employ ultrasound in probing the properties of materials, or in medicine
for imaging, diagnosis, therapy, and surgery. Acoustics includes infrasound—the
wind driven motions of skyscrapers, the vibrations of the earth, and the macroscopic
dynamics of the sun.

Acoustics studies the interaction of waves with structures, from the detection of
submarines in the sea to the buffeting of spacecraft. The scope of acoustics ranges
from the electronic recording of rock and roll and the control of noise in our
environments to the inhomogeneous distribution of matter in the cosmos.

Acoustics extends to the production and reception of speech and to the songs of
humans and animals. It is in music, from the generation of sounds by musical
instruments to the emotional response of listeners. Along this path, acoustics
encounters the complex processing in the auditory nervous system, its anatomy,
genetics, and physiology—perception and behavior of living things.

Acoustics is a practical science, and modern acoustics is so tightly coupled to digital
signal processing that the two fields have become inseparable. Signal processing is not
only an indispensable tool for synthesis and analysis, it informs many of our most
fundamental models for how acoustical communication systems work.

Given the importance of acoustics to modern science, industry, and human
welfare Springer presents this series of scientific literature, entitled Modern
Acoustics and Signal Processing. This series of monographs and reference books is
intended to cover all areas of today’s acoustics as an interdisciplinary field. We
expect that scientists, engineers, and graduate students will find the books in this
series useful in their research, teaching and studies.

William M. Hartmann
Series Editor-in-Chief

More information about this series at http://www.springer.com/series/3754
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Preface

The aim of this book is to explain and present naturally in a didactic manner the
principles and methods of signal analysis. It is intended both for students who have
no prior knowledge of the topic as well as for those who, having received intro-
ductory training, have only retained a disheartening ensemble of mathematical
formulas with little or no appreciation for their underlying scientific basis. The goal
of the author is to lay the foundations and to develop logically and progressively the
mathematical tools in order to associate knowledge, intuition, and understanding.
By focusing at every stage of the presentation on the essential aspects, it is then
easy to make progress in the establishment of the theory and to build upon those
fundamentals to simply expose and derive the most current techniques of signal
processing.

A prerequisite is a first-year multivariable calculus course at the university level
with the basic concepts used to solve differential equations, perform integration, and
solve problems in linear algebra.

Students will come away from the book equipped with the handling of Dirac
distribution, integration in the complex plane, applications of linear algebra, and the
opportunity to link the abstraction of mathematical formulas with practical appli-
cations, to conceive and perform the fundamental operations in deterministic and
random signal processing.

The notions and techniques exposed in this book are essential in different
engineering fields: telecommunications, teledetection, acoustics, imaging, nonde-
structive evaluation, and defence.

Such techniques are used in:

Spectral analysis

Design of analog and digital filters

Amplitude and phase modulations in telecommunications
Voice recognition and speech synthesis

Sonar and radar ranging

Signal detection in the presence of noise

Echo cancelation on transmission lines

vii
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Noise cancelation, reduction

Data compression by parametric modeling

Data compression by multi-resolution

Seismic exploration

Noise source identification

Noise reduction

Control of antimissile systems (Only first concepts are given here)
Detection of first signs of mechanical failure

Sound analysis, musical instruments, music synthesis

Audio noise reduction

Selected problems, many of them with worked solutions, at the end of each chapter
support the content with examples.

To enable the transition to applications, an overview of the MATLAB pro-
gramming language is given in Appendix 3 along with an example program. As
they work through the book, students are strongly recommended to write programs
to derive the results presented in the text. They will discover with wonder how the
treatments whose notions they had spent several hours, maybe even days, to master,
can be performed in a few tens of a second using preprogrammed functions
embedded in the language. Browsing through the information given by the help
command within MATLAB is a fascinating journey in the signal processing
territory.

The first part of the book primarily discusses continuous-time systems and
signals because they provide intuitive access to basic concepts. The nature of a
signal is inseparable from that of the systems that create or receive it. We first show
in Chap. 1 that, for the linear and time-invariant (LTI) systems that are often
encountered in physics, the exponential signals e* have a remarkable property: The
action of LTI systems on these signals leaves their shape unchanged. Only the
amplitude and the temporal location of these signals are affected. The action of an
LTI system comes down to the multiplication of the input signals e* by a function,
called the transfer function, which depends only on the complex parameter s. This
situation is encountered for filtering harmonic signals ¢’ (monochromatic), which
are a special form of exponential signals. The rule is simple: The frequency of the
output signal of the LTI system is the same as the frequency of the input signal.

Using the case of R, L, C electrical circuits, a thorough analysis of the first- and
second-order systems is given in Chap. 2. It is shown that their properties are
completely conditioned by the position of the poles and zeros of their transfer
functions in the complex plane. These two filters are the building blocks of the vast
majority of filters.

In Chap. 3 on Fourier series, we find the first superposition of elementary
signals, i.e., the sum of an exponential at a base frequency and the exponentials
whose frequencies are multiples of the base frequency. This type of periodic sum
signals is encountered particularly in music. We derive and discuss the rule of
decomposition and reconstruction of these signals on the basis of harmonic func-
tions. The theoretical aspects are deepened by the introduction of the concept of
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Hilbert space. We define Hermitian operators in this space. We show that the
eigenvalues of these operators are real and that the eigenvectors related to two

non-equal eigenvalues are orthogonal. We show that the eigenvectors of the

operator i % have the form ¢ and may constitute a basis of the Hilbert space L?

of periodic functions of period 7;. We also encounter the first example of optimal
decomposition of a signal by a finite sum of functions. In that case, we show with
an example the appearance of the Gibbs phenomenon on the reconstructed signal.
In the last part of the chapter, we show the decisive advantage provided by Fourier
analysis to characterize the physical properties of a signal.

The Dirac distribution plays an essential role in signal analysis. We define it in
Chap. 4 as the infinite sum of monochromatic functions. This definition is best
suited to signal theory because it leads naturally to the relationship between the
impulse response of a system and its frequency response by Fourier transformation.
This transformation is the cornerstone of signal analysis. It decomposes any signal
into its monochromatic components as Newton’s prism splits light. We simply
deduce the response of a system to a signal of any shape.

The theoretical and practical aspects of Fourier transform of analog signals are
developed in Chaps. 5-7. Chapter 5 introduces Fourier transform and its close
relationship with the LTI systems. It is natural to decompose any signal in a series
of harmonic components, to compute the action of the system on each component,
and then reconstruct the results of those actions to recover the signal at the output
of the system.

The discussion here emphasizes the essential nature of the Fourier integral, a key
insight for students and practitioners: The projection of a function on sine functions.
Simply put, it measures the proximity of this function with a sine wave according to
the frequency of that sinusoid. This understanding then allows us to anticipate the
effect of further treatments with a qualitative assessment of the situation.

Chapters 6 and 7 provide a range of detailed formulas and worked examples. It is
strongly recommended that the reader work through these examples as an exercise.
The ease of calculation that he will thereby acquire will be useful in a range of
areas, from causal or analytical signals to modulations and time—frequency analysis,
for example.

Chapter 8 is dedicated to the calculation of the impulse response of first- and
second-order systems. The integration techniques in the complex plane used in
these calculations are detailed in Appendix 1. We show that the causality of the
system depends upon the position of the poles of its transfer function in the
complex plane.

We explore in Chap. 9 the relationship between the two-sided Laplace transform
and the Fourier transform. Attention is given to the domain of definition of the
transfer function of a system and the consequence on stability and causality of that
system. This property is an educational, striking example of the correspondence of a
mathematical expression with a physical property.

Three main types of analog filters, Butterworth, Chebyshev and Bessel, are
studied in Chap. 10. Their chief characteristics are given using the results of Chap. 2.
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We explain qualitatively the differences in the properties of these three different
classes of filters by the relative positions of the poles of their transfer functions in the
Laplace plane. The study of these properties based on simple geometric arguments
allows a general comprehension of the behavior filters. It is found in a slightly
different form in the study of digital filters carried out in Chaps. 14 and 15 in the
second part of the book.

In Chap. 11 we study the properties of causal and analytic signals. We
demonstrate the formula giving the Fourier transform of the Heaviside function and
prove the link by the Hilbert transform between the real part and the imaginary part
of a signal in a domain when it is zero for negative values of the variable in the
conjugate domain. Causal signals are the natural output of physical systems. In
consequence, signal processing deals mainly with causal signals. Analytic signals
have zero values at negative frequencies. They are a mathematical trick to allow an
easy treatment of signal modulations.

While Fourier analysis is unrivaled to analyze the properties of linear systems
and stationary signals, it is insufficient to account in an intelligible manner for the
variation of signal properties over time. This is the case when dealing with the
localization of echoes in radar or in seismic analysis. We are led to use a short-time
Fourier transform and, more generally, to use the methods for time—frequency
analysis developed in Chap. 12. A representation of the signals on alternative basis
functions localized in time, as in continuous wavelet decomposition and in analysis
with filter banks, is developed in this chapter.

Nowadays, signal recording and treatments are mainly digital. For this reason,
the second part of the book is devoted to the presentation of digital processing
methods. Claude Shannon has proven that we could sample a signal at each tick of a
clock without loss of information. One can perfectly reconstruct the signal value at
any time from the recorded samples if certain conditions are met. Of course, a
condition on the frequency of the clock must be respected: The faster the signal
variations are, the more frequent the samples will need to be in order to properly
describe these variations, i.e., the greater the clock frequency must be. These
notions are presented simply in Chap. 13 by qualitative arguments.

It is thus possible to sample a signal, process it digitally, and reconstruct the
resulting processed analog signal, if desired. The prevalence of digital processing
today is due to advances in electronics and computer technology, and to the
algorithm of fast Fourier transform of Cooley and Tukey which has revolutionized
signal processing. Because of this algorithm, it became possible to perform Fourier
analysis in real time. It quickly became apparent to users that digital treatments
were much more flexible and that they also allow treatment inapplicable in analog.
In this second part, in parallel to the presentation of the analog processing, we
define the numerical Fourier transform and the z-transform which is analogous to
the Laplace transform for time-continuous signals. The eigenfunction z" of digital
LTI systems plays a role similar to the function e* for analog systems developed in
Chaps. 14 and 15. We define the digital moving average filters (MA).
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Chapter 16 presents the Fourier transform of digital signals. The Shannon
aliasing theorem and Shannon—Whittaker sampling theorem are demonstrated.
Specific numerical transforms are discussed: the discrete Fourier transform and its
use as the algorithm of fast Fourier transform (FFT). Fourier transform of
time-limited signals is detailed, and the advantage of apodization windows is
highlighted.

We find in Chap. 17 the properties of Autoregressive filters and ARMA filters.
The pros and cons of these filters are compared to those of the MA filters
encountered in Chap. 14.

Chapter 18 deals with minimum-phase filters and inverse filtering. The decisive
advantage of numerical methods is also reflected in the calculation of inverse filters
and in the treatment of nonstationary signals. The deconvolution techniques of a
signal used in particular for the seismic signals are discussed.

We use the Haar transform as a first step for the description of nonstationary
signals processing in Chap. 19. It allows a simple access to the concepts of filter
banks and mirror filters. The Le Gall Tabatabai 5-3 filter used in the JPEG-2000
image compression standard is used to illustrate multiresolution methods. It
becomes possible to decompose a signal using a simple filtering operation and
return exactly to the signal using a second filter. The discrete wavelet transform is
discussed using the example of the Daubechies wavelets. Their use is widespread
today in signal processing and data compression of sound signals and images. The
analogy between the filter bank processing and multiresolution analysis is
emphasized.

Chapter 20 treats the parametric modeling of a signal as given by the impulse
response of a digital system. The limits of Padé modeling are explained and the
advantages of Prony’s method are given. Prony’s sytem of equations allows, for
example, the modeling of a voice signal. It is called Linear Prediction Coding
(LPC) in speech analysis. The chapter ends with the important concept of adaptive
filters proposed by Widrow, which is a tracking algorithm in the least square sense
that is able to subtract a spurious signal from the signal of interest. It provides an
efficient noise canceler technique.

The third part of the book is devoted to the presentation of the properties of
random signals and their treatments. After a refresher in the essential concepts of
statistics on a single random variable and the normal law, Chap. 21 proceeds to an
in-depth discussion of the statistics of two random variables.

The treatment of multiple r.v. is found in Chap. 22. The chi-square law used
widely in statistics is presented and its use for the test of hypothesis of a probability
law is illustrated by the example of testing the central limit theorem. The linear
regression of a collection of data is studied by a simple method and by the use of
results of linear algebra. We expose the Tikhonov regularization method which
greatly improves the results when dealing with noisy data and ill-conditioned
matrices. The maximum likelihood method of parameter estimation is discussed in
several examples.
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In Chap. 23 the correlation of two r.v., the correlation and covariance matrices,
are defined. We show the optimality of Karhunen—Loeve, principal components
development, of a collection of random variables on a deterministic functions basis.

Chapter 24 is dedicated to the analysis of wide sense stationary signals (wss).
We study the properties of their correlation functions, coherence, and power
spectral densities. Filtering of random, digital, and analog signals is described. We
study the role of filtering to improve the signal-to-noise ratio.

Spectral analysis of a random signal is often confronted with the fact that only
one record of the signal is available which cannot claim to represent the statistical
properties of the signal. However, when a signal is ergodic, it is possible to estimate
the spectral properties from a single record using regularization methods. Different
estimators of the autocorrelation function, the power spectral density, and methods
to reduce the variance of these estimators are studied in Chap. 25.

Chapter 26 is dedicated to the parametric estimation of random signals. The
Yule-Walker equations which enable the modeling of a regular process by an
ARMA filter are established. Modeling a finite number of data is studied. The
methods of extraction of significant components of Capon and Pisarenko are
described.

Chapter 27, the final chapter in the book, develops the application of stochastic
orthogonality on estimation and optimal filtering of random signals. The concepts
have been established by Wiener. We present several Wiener filters for estimation
and prediction using FIR, causal, and noncausal filters. In 1960 R. Kalman pro-
posed a recursive algorithm for noise reduction and state system estimation. Its
reach is beyond that of Wiener’s filter as it is able to deal with nonstationary
signals. It has the advantage of being highly computationally efficient which brings
the possibility to make real-time estimations. We discuss its principle and provide a
simple example of application.

Three appendices are included at the end of the book. The first two contain
essential mathematical concepts. Appendix 1 is dedicated to integration in the
complex plane and the residue theorem, which are used in the Fourier, Laplace, and
z-transforms calculations.

Appendix 2 contains a review of matrices and linear algebra. The concepts
discussed in this appendix are essential to the understanding of current digital
processing methods.

Appendix 3 is devoted to the description of the MATLAB software and its use in
signal analysis programming.

This book is translated, expanded, and updated from a book published in 2012 in
French. I took the opportunity, while doing the translation in English, to bring
improvements to the initial text and develop some aspects which seemed missing.
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Chapter 1
Notions on Systems

In this chapter, we present the general properties of linear systems found in the
physical world, particularly linear systems with time independent properties (LTI
systems). After defining the concepts of eigenfunctions and eigenvalues of an
operator, we show that the operator associated with a LTI system commutes with
the time translation operator. We show that, as a consequence, the complex
exponential functions of time are eigenfunctions of LTI systems. Thus, we attain
the remarkable property that if the input signal of these systems is monochromatic,
the signal at the output is also monochromatic and has the same frequency. We
arrive in this way at the fundamental notions of transfer and frequency response
functions of a system.

We define a system as a device producing a signal y(¢) (generally a physical
quantity that can be transformed into an electrical signal) in response to an input
signal x(¢). The system can be described mathematically by an operator O acting on
the function x(7) to provide the output function y(z):

System

13
x (@ y@®

1.1 Linear Systems

Let x1(¢) and x,(¢) be any two signals. System output signals corresponding to the
inputs x; () and x, () denote, respectively, y;(z) and y,(#). The system is linear if,
given any two constants a; and ay, to the input linear a;x; (¢) + axx,(¢), it makes the
corresponding linear combination of the signals y;(¢) and y,(¢) with the same
coefficients a; and ay: a1y, (¢) + axy2(¢).

© Springer International Publishing Switzerland 2016 1
F. Cohen Tenoudji, Analog and Digital Signal Analysis,
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a50+ ay%0) Q-+ a0

alyl(t)+a2y2(t) = O(QIXI (l‘)—F(lz)Cz(l‘)). (12)

In particular, it appears that if the system is linear, the doubling of the input
signal results in a doubling of the output signal. The nonlinearity threshold of an
operational amplifier is visible on an oscilloscope by the clipping of large values of
the signal when the amplitude of the input signal is strongly increased.

1.2 Stationary Systems

A system is said to be stationary if its properties are invariant in time. Let y(¢) be the
output corresponding to any given signal x(¢). A stationary system will respond the
delayed output y(z — 1) to the delayed input x(¢ — 7).

In symbolic form we write: If y(r) = O(x(¢)), then

y(t—1) = O0(x(t — 1)). (1.3)

By definition, the translational operator in time 7, performs the translation in
time of a function f(z) of an amount t:

T f(t) =g(t) =f(t =1). (1.4)

The left side of the relationship (1.3) can be read as follows:
¥t =1) = Tey(t) = T:0(x(2)).

A system is said to be stationary if its properties are invariant in time. Let y(¢) be
the output corresponding to any given signal x(7). A stationary system will respond
the delayed exit y(r — 1) to the delayed input x(7 — 7).

While the right side of this relationship can be read as follows:
Ox(t = 1)) = O(Tex(1)).

In other words, we can rewrite (1.3) in the form:

T.0x(t) = OT.x(1). (1.5)

It is said that the two operators commute.
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1.3 Continuous Systems

Let x,(7) be a sequence of input signals, and x(7) the limit of this sequence when
n tends to infinity. We note y, () and y(z), respectively, the system responses to the
signals x, () and to its limit x(7). The system is continuous if

(1) = lim y,(1). (1.6)

n—oo

1.4 Linear Time Invariant Systems (LTI)

Simple physical systems generally have the property of being linear, time invariant,
and continuous. Only these systems are studied later in this course.

1.4.1 Eigenfunctions of LTI Systems

A function f(¢) is said to be an eigenfunction of an operator O if the result of the
action of the system on the function f(¢) is a function proportional to f(¢):

O(£(1)) = i (1), (1.7)

where /4 is a complex constant called the eigenvalue corresponding to the eigen-
function f(z).

Role of the Exponential Function e*
The purpose of this section is to show that the functions of time with exponential
form e are eigenfunctions of linear, time invariant operators.

The operator T, defined above performs translation in time of a function f(¢) by
an amount T:

T f(t) = g(t) =f(t = 7). (1.8)

When 1 is positive, the shift is toward greater values, to the right. In this case, the
value of the function g(7) at the time 7 is the value that the function f(¢) had at the
previous time ¢ — 1.

There is a relationship between the translation operator 7; and the derivative

operator %:
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It is assumed in what follows that the function f(7) and its derivatives are
sufficiently regular. Taylor development of f(z — 1) is then:

d 2d2 3d3 1" d"
A Y ( )TJJF... (1.9)
d 2dP 64d? n!  de

ft=1) =)

One can formally write the translation operator as follows:

. d #2¢ 2
To—e o], 8 TG 1.10
¢ @t 247 6an (1.10)

Indeed:

A e AR ST

Tof (1) = e Sf (1) = f (1) — " T2dr 6 dr

The Taylor formula giving the value of a function in the neighborhood of a point

is recognized.

It is further noted that the operator 7, commutes with the derivative %

Indeed,

d . N v A L ¥
Qoo = 8L 087 _©wdf 1.12
@t =IOt T T T (1.12)
and also:
. d ) d2f ,52 d3f T3 d4f
adon iy A Tdy 1.1
e ddtf(t) f@ s +t5 P 6ar + (1.13)

This proves the commutativity of the two operators:

d d
~Tf =T.—f. 1.14
g =T/ (1.14)

The operator % plays a fundamental role in the description of the evolution of

physical systems with time (e.g., in differential equations with constant coefficients
encountered in electricity).

It remains to show that T, and % have the same system of eigenfunctions. Noting

0, = % and O, = T,, we have formally:

0,0, = 0,0;. (1.15)
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Let f| be an eigenfunction of O; with the eigenvalue 4;. Assuming also that the
operators are linear, we have

0102f1 = 0,0,f1 = O21f1 = 410f1. (1.16)

So it appears that O,f; is also an eigenfunction of O; with the same eigenvalue
A1 as fi. We necessarily have proportionality between O,f; and f; as they represent
eigenvectors with the same eigenvalue. Then we see that, due to the commutativity
of the operators, f; is also an eigenfunction of O,. This result is of general

application.

In the present case, we look first an eigenfunction f; of the operator % That

function must be a solution of the differential equation:

d
i = (1.17)

This equation is a first-order differential equation with one constant coefficient.
Its general solution is

fi(t) = Ae”. (1.18)

We see that the eigenfunctions of the operator % have the form e*, where s is any

complex constant. We note that
—e' = se”. (1.19)

We can check to complete that the exponential are eigenfunctions of the
translation operator in time:

Let fi (1) = e¥, then, T.e" = e’"9 = Ce". The eigenvalue is: 2} = C = e™*".

In summary, the eigenfunctions of the translation operator are exponential
functions of time.

We note the following property, valid for any LTI system:

Let O be the system operator. To say that the operator O is translational
invariant in time comes to write the commutation relation of the system
operator with the translation operator OT, = T,0. The eigenfunctions of
O will be to search through the eigenfunctions of 77, i.e., among the functions
of the form e".

Thus

o(e") = Je”. (1.20)
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The major role to be played by the functions f(r) = e* for physical LTI systems
appears here. As is made clear in the following, in electronics and signal processing,
the eigenvalue A of the system operator is denoted H(s) as it is a function of s in the
general case.

1.4.2 Transfer Function and Frequency Response

As shown above, when a signal of the form x(¢) = e* is presented as input of a
linear, time invariant system, the output signal will have the form

y(t) = H(s)e". (1.21)

The operator’s complex eigenvalue H(s) is called transfer (system) function of
the system. It is also known as the transmittance of the filter.

x(ty=e* YO =Hs)e™
—>—— System | ——>——

In case where x(7) = ¢/’ that is to say that s is pure imaginary, the signal x(¢) is
a monochromatic signal (also called harmonic signal) with pulsation @ written in
complex notation following Euler’s formula

x(1) = & = cos wt + sin wt. (1.22)

Note that we use j = v/—1 to represent the imaginary part instead than i. This
notation is common in electricity and in signal analysis to avoid confusion with the
current i flowing within a circuit.

At the filter output, we have:

y(t) = H(jw)e". (1.23)

It should be noted that the filter output signal y(¢) is also monochromatic with
the same angular frequency as the input signal to the filter.

H(jw) is named the frequency response. The common use in electronics and in
signal analysis is to write H(w) instead of H(jw). One should be careful to avoid
the difficulties caused by this change of notation.

In summary, when the input signal is monochromatic, the output signal of a
linear, time invariant filter is monochromatic and has the same frequency as the
input signal. Practically, if a filter is used in a nonlinear regime, as is the case of an
operational amplifier whose output saturates for large values of the input signal, the
output is no longer harmonic. Even when the input signal is monochromatic, one
sees new frequencies in the output, generally multiples of the fundamental
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frequency of the input signal. In the example of an operational amplifier in satu-
ration, when the input signal is sinusoidal, its development in the Fourier series has
only one coefficient. It corresponds to the frequency of the sine. The output signal
has a shape close to a periodic rectangular signal. As will be detailed in Chap. 3, its
development into a Fourier series have an infinite number of coefficients for the
frequencies corresponding to odd multiples of the fundamental frequency.

Note: A linear combination of two eigenfunctions is usually not an eigenfunc-
tion. Indeed, let f;(¢) and f>(¢) be two eigenfunctions of the operator with different
eigenvalues:

O(fi(1)) = Mifi(t) and O(f(1)) = fa(1).

Then

O(aifi(1) + aofo(1)) = arfi(t) + ax/ofo(t) # Alaifi (1) + acfo(1)) if 71 # a.
(1.24)

Thus, while e/’ and e 7 are eigenfunctions of a system (e.g., an RC filter as an
electric circuit) cos wt = w is not one in the general case.

We thus clearly see the benefits of using the complex exponential rather than
trigonometric sine and cosine functions in calculations.

It should be emphasized here that the physical signals are real as is cos ot and
not as the type of the complex exponential e/ or e . Besides, how can we
imagine a negative frequency —w for a signal? Our answer is that negative fre-
quencies are a mathematical fiction introduced to make calculations easier. We will
generally proceed as this in the calculations: we perform calculations with complex
exponential then, at the end, we return to real signals by extracting the real parts of

the results.

1.5 Linear Differential Equations with Constant
Coefficients

Many physical systems, electrical (described by generalized Ohm’s law) or
mechanical (fundamental relation of dynamics) satisfy the following general
equation:

d™y(t dm—l t dm—2 ¢
0, 0 0

drm drm—1 |
d—
il + o+ bx(1) (1.25)

+ ot any(t)

d"x(z)
=b b
O dr o dr—!
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The coefficients of this equation ay,ay.. . .,a, and byby,b; ..., b, are constant.
They contain the characteristics of the system which does not evolve with time. It
only appears in this equation invariable linear combinations in the time of the input
and output functions x(¢) and y(¢) and their derivatives. As before, the study of such
a LTI system relies on its transfer function H(s), that is to say, it relies on the
response of the system y(¢) = H(s)e" to the input x(z) = e*.

The derivative of order r of x(¢) that appears in the (1.25) in this case is

d"x(z)
dr

=s'e". (1.26)

Similarly, the derivative of order m of y(¢) is

d”y(r)
dr

= s"H(s)e". (1.27)

After replacing in Eq. (1.25) and simplification by e*, we obtain the following
expression for the system transfer function H(s):

Hs) bos" +b1s" '+ - +b,
s) = .
"+ ais" apst 2+ - -y,

(1.28)

As will be detailed in Chap. 2, the system properties are fully contained in the
properties of the function H(s) conditioned by the positions of the roots of its
numerator (zeros of the transfer function) and the denominator (poles of the transfer
function).

1.6 Linearity of Physical Systems

In the last paragraph, we discuss the case of linear and nonlinear systems. Generally
a signal amplifier is expected to be linear, that is to say, satisfies the property given
by the formula (1.2). A special case of this approach is that if the input signal is
multiplied by a factor 2 (or 10, or any number) linearity causes the output signal to
be also multiplied by 2 (or 10, or the same any number).

For example, is a circuit consisting of an operational amplifier of gain 50 linear?
If the amplitude of the input signal is multiplied by 10, will the output signal also be
multiplied by 10? Yes, as long as the amplitude of the output signal does not reach
the power supply voltage of the op amp (£12 V for example). Beyond that
threshold the output signal is saturated to £12'V.

This operational amplifier circuit will therefore be considered as linear, as long
as the output signal does not exceed +12 'V, for example in the case of a 50 gain, as
long as the input signal does not reach :I:% =240mV.
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Generally, the nonlinearities of a system occur when the amplitude of the system
input signal is important. Two physical examples of nonlinearities are the audio
amplifier used with a strong input signal (a saturated guitar amplifier, prized by
some rock groups is an extreme example) or a high intensity laser light passing
through a transparent medium.

As will be discussed in Chap. 3 on the Fourier series, the nonlinearities are
accompanied by generation of double, triple the fundamental frequency compo-
nents, or more (these components are called harmonics of the fundamental fre-
quency). The possibility of generating high frequencies by the harmonic is used in
many applications’ design in physics.

It will be specified on an example in Chap. 3, how the analysis of harmonics in
the output signal of a system can be used to study the physical mechanism
responsible for the nonlinearity of the system.

Summary

We have proved in this chapter that linear, time invariant systems operators, have
eigenfunctions of the form of exponential functions. This has been shown to be the
result of the commutativity of these operators with the time translation operator. We
have explained the concepts of transfer and frequency response functions and
demonstrated the fundamental property that the frequency of a monochromatic
signal remains unchanged at the throughput of these systems. The next chapter will
verify these concepts in the canonical examples of first and second-order systems,
which are the cornerstone of electronic filter systems.

Exercises

I. Consider the system defined by the differential equation y(¢) = by % +Dix(2).

Show that this system operator noted O is linear, time invariant.

Solution:

Linearity: We note y, () = O(x1(¢)) and y2(¢) = O(x2(t)). Let x(z) = c1x1(¢) +
c2x2(t) be a linear combination with any coefficients of the input functions.

Calculation of the output function y(¢) = O(x(z)).

J0) = b d(cix; (t)dt () | by (e (1) + exea(s),
y(l‘) = by dCl:; (t) + by dcz();(t) +bic1x; (l) + b]CzXz(l‘) = C1)] (l‘) + Czyz(t).

The latter relation corresponds to the definition of the system O linearity.
Translation invariance in time: Given y(¢) = O(x(¢)). What is O(x(t — 1))?

O(x(t — 1)) = bo dxg;ﬂ +bix(t — 1) = bo dg;” +byx(?) (with £ =1 — 7).
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written y(¢ — t) = by
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We recognize in the right-hand side by dfi(;,) +b1x(7) = y(¢'), which may be

dx(1—1)

7 +b1x(t — 1) which corresponds to the definition of the

stationarity of the system O.

IL

III.

Let the system defined by the equation: y(¢) = bx*(). Is this system linear?
Time invariant?

Solution:

Linearity: We note y;(f) = O(xi(¢)) and y,(t) = O(x2(r)). Let x(r) =
c1x1(t) + caxy(¢) be a linear combination with any coefficients of the input
variables.

Calculation of the output signal:

y(t) = b(crxi (1) + caxa (1)) = b(cixi (1) + x5 (1) + 2c1x1 (1) caxa (1))
(1) = yi (1) + 3ya (1) + 2bcicaxy (Dx2 (1) # cayi (1) + caya (1)

In the general case, the system is not linear.

Translation invariance over time: The system is not translation invariant in time.
This result stems from the fact that the multiplier of the input signal is a function
of time.

Translational invariance in time: We have y(r) = O(x(r)). O(x(t — 1)) =
bx*(t — 7).

We recognize y(t — 7) in the right hand side. The system is time invariant.

Is the system defined by the equation: y(f) = coss x(¢) linear? Is it time
invariant?

Solution:

Linearity: We study the system operation on a linear combination: let
x(t) = c1x1(t) + coxa(2).

y(£) = cost(cixi(t) + coxa(t)) = c1 costxi(t) + cacos txp (1) = 1y (2) + caya ().
The system is linear.

Translation invariance in time: O(x(t — 1)) = cos? x(t — 7).

It is different from y(z — t) = cos(¢ — 7)x(¢ — 7). The system is not translation
invariant in time.

This result ensues from the fact that the multiplier of the input signal is a
function of time.



Chapter 2
First and Second Order Systems

In this chapter, the properties of the transfer function and frequency response of first
and second order systems are studied on some examples from electrical circuit laws.
We show that their properties are governed by the poles (i.e., the zeros of the
denominator) of the transfer function which is a rational fraction. A geometric
argument based on the location of the poles of the transfer function in the complex
plane allows a qualitative interpretation of the behavior of the frequency response
with varying frequency. This geometric interpretation is easily generalized to sit-
uations with any number of zeros and poles. It proves useful for the understanding
of the general behavior of filters. The study begins here with the simplest system,
the first order system. Then the second order circuit system is presented thoroughly.
The logarithmic Bode representation of the frequency gain is introduced and its
advantages demonstrated. The quality factor Q of a resonant circuit is defined.

2.1 First Order System. R, C Circuit

Consider the electrical circuit consisting of a resistor and a capacitor in series
(Fig. 2.1). The circuit is powered by an internal resistance-free generator of elec-
tromotive force e(f). The charge on one plate of the capacitor is written g, and the

_ a0

voltage across the capacitor noted v(z) = %=

The generalized Ohm law writes:

dg  q

With a system point of view, we write e(f) as the input variable and v(¢) as the
output variable.

© Springer International Publishing Switzerland 2016 11
F. Cohen Tenoudji, Analog and Digital Signal Analysis,
Modern Acoustics and Signal Processing, DOI 10.1007/978-3-319-42382-1_2
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Fig. 2.1 First order system; T]
R, C circuit _ l
e(t) 4 4y
2.1.1 Transfer Function
The Eq. (2.1) can be written in the form of an operator acting on g:
d 1
R— 4+ = |qg =e(1). 22
(Rg+ ¢ )a=eto 22)

This system is linear and time invariant. According to the fundamental result
shown in Chap. 1, when e(7) has the form e, the charge ¢(¢) on a plate of the
capacitor and the voltage v(#) across it will have the same exponential form. This
can be checked:

Posing e(t) = ¢ and looking for ¢() in the form: g(¢) = Be".

Replacing its expression in Eq. (2.2) we have:

d B
RBae” + Ee” =e". (2.3)

By simplifying by e*, we see that the proposed solution is valid if the following
relationship is satisfied:

(Rs+ é)B =1. (2.4)

or

1 C
(Rs+ &) RCs+1°

(2.5)

The voltage across the capacitor (system output variable) is given by:

q 1 st st
4_ — H(s)e". 2.
C RCs+1° (s)e (2:6)

v(t) =

We notice that e is eigenfunction of the system and that H(s) is its transfer
function. The circuit transfer function H(s) is thus written


http://dx.doi.org/10.1007/978-3-319-42382-1_1
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Fig. 2.2 Pole of the transfer

Jjo'l
function in the s plane

0" RC

1

H(s) = oy (2.7)

H(s) is a rational fraction with a simple pole (a simple zero of the denominator)
in (See Fig. 2.2)

1
=——. 2.8
0=~ %c (2.8)
We can equivalently write H(s) as
—50
H(s) = . 2.9
(5)=—— " (2.9)

The presence of a single simple pole is the reason for the first-order system name
applying to this circuit.

2.1.2 Frequency Response

The frequency response is a particular case of the transfer function. In the function
H(s), the variable s is a complex number that will be written in the form:
s = 0 +jw. s belongs to the complex plane. With reference to the Laplace trans-
formation detailed in Chap. 9, the s plane is also called Laplace plane. This plane is
identified by the real axis ¢ and the imaginary axis jw.

_; at jot
O e S (2.10)

If ¢ = 0, that is, for a monochromatic input signal e(¢) = el

1

=— & = H(w)d 2.11
1 +jRCw () (2.11)

v(t)


http://dx.doi.org/10.1007/978-3-319-42382-1_9
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The frequency response is:

1

H(w) = T7iRCo (2.12)

The angular frequency o is related to the frequency f by the relationship
w = 27f.

We see, of course, that e/’ is also eigenfunction of the system. The frequency
response H(w) (also called complex gain of the filter) is the transfer function H
(s) evaluated on the imaginary axis ¢ = 0.

By showing the modulus |H(w)| and the argument ¢ of the frequency response,
we write:

v(1) = H(0)™ = |H(w)|e?e" (2.13)

Therefore, while the modulus of the input signal e is 1, the output signal
modulus is |H (®)|. It appears that the modulus of the frequency response is the gain
in amplitude of the signal passing through the filter. The phase shift ¢ of the output
signal relative to the input signal is the argument of the complex gain H(w). The
magnitude and phase are functions of ® in the general case.

Note: For convenience, the function H(w) is called frequency response, although
this function is expressed as a function of the angular frequency w and not of the
frequency f.

For the variation of the gain as a function of the frequency f, we replace w by 2nf
in the expression of H(w).

As noted above, the function e/’ is the system eigenfunction but the function
cos wt = w, linear combination of two eigenfunctions, is not. The system
response for a cosine input is searched as follows:

If the electromotive force ¢/ has the form e(f) = cos wt, due to the linearity of
the system, we can write the answer in the form:

v(t) = = (H(w)e” + H(—w)e ) (2.14)

N | —

11 1 ‘ VR
t — - e](U[ - —_](JJ[ — _ - e](l)l C. 2. 15
Vo) 2<1+jRCw "1 5RCo® ) 2<1+jRCcu )“C (2.15)

c.c. is written to describe a complex conjugate of the previous term within the
equation. The sum of a complex number and of its complex conjugate is equal to
twice its real part, the following applies:

. 1 jort
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The notation Re() means that we must take the real part of the complex
expression. It comes:

1 - jRCw .
V(f) = %e{ (m) (COS wt +J Sin Cl)l)}
1

= W(COS U)t+RC(l) Sin (,Ot). (217)
w

We can rewrite this result in the form:

(7) ! ( ! cos wt + RCo sin cot) (2.18)
V(1) = —_— , .
V1I+RC?20? \V1+ R2C202? V1+R2C20?
or in another form:
(1) ! cos(wt + @) (2.19)
V(i) = —— , .
V1+R2C2? ¢
with
1 —RC
coSpp =————— and sing = 7(”, (2.20)
V1+R2C200? V1+R2C20?

and then tan p = —RCw.

Behavior of the solution at low and high frequencies

At low frequencies, that is to say, when RCw < 1, we see on the solution (2.19)
that v(¢) = cos wt. The output signal is in phase with the input signal and has equal
amplitude.

Athigh frequency, when RCw > 1, the solution (2.19) becomes: v(#) =2 ﬁ sin wt.

The output signal is in quadrature with the input signal with a phase shift

& — 7 and its amplitude decreases with frequency as (71]

Note: Conciseness of the results when expressed in the form of complex
exponentials will be compared to the heaviness from those expressed in sine and

cosine.

2.1.3 Graphic Representation of the Frequency Response

Since H(w) = 1+le > the modulus is:

1
H Ol = e (2:21)
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and phase
@ = —Arg(RCw) (2.22)

In Fig. 2.3, are represented the modulus and phase of H(w).
For the value o, of @ such that RCw, = 1, the value of the gain modulus is %

Using its value in decibels: Hgg = 201log,,(|H(w.)|) = 201og,, (%) = —3dB.

_we 1

Frequency f. = 5t = 5 is called the —3 dB cutoff frequency.

It is seen in Fig. 2.3b that the phase variation range goes from § to — 7.

Bode representation

Scale in decibels

In the Bode representation the magnitudes logarithm are represented. As mentioned
above, the decibel value of a quantity A is Agg = 201log;; A. This unit of measure
was introduced by G. Bell to describe the acoustic sensitivity of the human ear
(hence the name of this unit). The sensitivity of the ear is logarithmic: if the
intensity of a sound is multiplied by 10, the ear feels a multiplication by 2. If the
intensity is multiplied by 100, the ear feels a multiplication by 4. This physiological
property allows the ear to hear correctly loud sounds, but remain sensitive to very
low sounds. Moreover, as will be discussed in Chap. 3, the note of a musical
instrument is accompanied by the presence of harmonics whose frequencies are
multiples of the fundamental frequency. The amplitudes of these harmonics are
specific to each instrument. They can be several tens of times lower than that of the
fundamental component. As the ear analyzes the sounds from frequency, its log-
arithmic sensitivity somehow enhances the amplitude of low harmonics. This
allows it to be physiologically sensitive to harmonics, so to the musicality of the
instrument. It is important to remember that the representation in logarithm rein-
forces the low values of a variable relatively to strong values. This property is
exploited in the Bode representation with which we may monitor small changes of

a b
@ , ‘ (b)
: i : : b
? 0_6 _'" 1 ,-‘_—\-..\_ 0.5 ".'
L~ (=1 0
o oggf \51.0_5
oy | Seoe
02 NN SO O |
0 —~——t H i = 2 : : i
20RC  -10/RC 0 10/RC  20/RC 20RC  -10/RC 0 10/RC  20/RC
@ (radis) @ (radfs)

Fig. 2.3 Frequency response of R C circuit. a Modulus. b Phase
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Fig. 2.4 Log-log plot of
gain magnitude (first order
system)

logy,(|H (@)))

el i i
-40 -30 -20 -10 0O 10 20 30 40
log, (RCw)

the variable values, whereas in linear representation, they would have been unde-
tectable. This representation has better dynamics. This explains why the gain of the
filters is most often plotted in dB.

Another quality of the logarithmic representation is that a variation with fre-
quency in power law appears as a straight line whose slope gives the value of the
power law coefficient.

By definition, the decibel value of the frequency response is equal to 20 times
the base 10 logarithm of the frequency response modulus.

Han = 20 log o(|H(w)]). (2.23)

Assuming that at high frequencies, the system has an asymptotic behavior of the
form |H(w)| ~ ", then Hyg = 20log,, w" = n20log,,w. In a logarithmic rep-
resentation Hgg = f(201log,, w), the variation is linear.

Figure 2.4 shows the gain in dB of the first order filter. Note the linear
asymptotic behavior of the high-frequency curve. The asymptote passes through the
point (0, 0), that is to say, for the x-axis value w = %. The slope of the line is —1,
reflecting the asymptotic gain as L (Fig. 2.4). |[H(w)| decreases by 20 decibels per
decade (a decade corresponds to a multiplication of the frequency by a factor of 10).
This decrease is also —6 dB per octave (the octave is defined in music as the
interval between two notes when the frequency of a note is twice that of the other.
For example, the frequency of the note C is multiplied by 2 when going on a piano
keyboard from a C to a C immediately above).

2.1.4 Geometric Interpretation of the Variation
of the Frequency Response

It has been shown above that the transfer function is: H(s) = =%, with sp = — A

The frequency response is:
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—50
H(o) == (2.24)

In the complex plane s = ¢ + jow. The point of the plane corresponding to the
real pole sy = — % is noted on Fig. 2.5. The point M is the point jo representative
of the monochromatic signal to the frequency w. The complex number in the
denominator of H(w) can be associated to the vector PM. The modulus of H(w) is
inversely proportional to the length PM of that vector:

|—So| 1 1

Hio)| =0 = o
PM  RCPM

(2.25)

1
R2C?

We find the variation in function of the frequency of the modulus of H(w)
according to the variation in length of the segment PM when the point M scans the
vertical axis ¢ = 0 from —joo (frequency —o0) to +joo (frequency + o0).

For very high negative frequencies the segment PM is very large, and its inverse
is very small. Thus |H(w)| is very small. When the frequency decreases in absolute
value to the zero frequency, the segment PM decreases, and |H(w)| increases.

The segment PM is minimal for & = 0 and its inverse |H(w)| is maximal. The
gain will decrease continuously when w increases from zero, the segment PM
continuously growing. As shown on Fig. 2.6. Since the phase of the output signals
is equal to the argument of H(w),

Using the Pythagorean theorem we write PM = /w? +

9(0) = Arg(H(w)) = Arg(—s) — Arg(jo — s0).

so being real and negative, we have ¢(w) = —Arg(jo — o).

The argument of jo — s¢ is equal to the angle formed by the vector PM with the
horizontal axis. When the frequency is largely negative this angle is close to — 7, the
phase of H(w) (the opposite to that angle) is then close to 7. The change of phase
with frequency is shown Fig. 2.6.

N .
Fig. 2.5 Vector PM situation 4 jo
for a given frequency
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T { S—

1 | - : Y H NS S S A SN N B
-20/RC  -10/RC 0 10/RC  20/RC 20/RC  -10/RC 0 10/RC 20/RC
@ (radis) @ (radfs)

Fig. 2.6 Frequency response of R C circuit after geometric interpretation. a Modulus. b Phase

Fig. 2.7 R C Circuit with c| |
output taken at resistor | ]
terminals

e(t) pte)

2.1.5 R, C Circuit with Output on the Resistor Terminals

This system is a second example of a first order system. The circuit is identical to
that of Sect. 1.1 but the output voltage is taken at the terminals of the resistor (Fig.
2.7). We have the following diagram:
The calculation of the charge across the capacitor is the same as in Sect. 2.1.1.
When e(7) = e we have again:

C 1
t) = ———c¢". 2.26
90 = res+1 (226)
dg RCs
t)=R—=———¢" = H(s)e". 2.27
V=R = Res41® T HOE (227)
The transfer function is in this case:
RC RC
H(s) = o= g = (2.28)
RCs+1 s—S8) S—S
The transfer function has a zero in s = 0 and a pole in sy = —Rl—c.
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Geometric interpretation of the variation of gain with frequency:
We have:
jo
H(w) = . 2.29
() =2 (229)

As can be seen in Fig. 2.5, the gain modulus is equal to the ratio of two
segments:

oM

H()| =5

(2.30)

As o varies, the point M scans upward the axis ¢ = 0.

When |w| is very large, the lengths of the segments OM and PM are very slightly
different, the gain is close to 1. When w is close to zero, the numerator becomes
small while the denominator remains finite. The gain in amplitude |H(w)| is close to
Zero.

The phase is the argument of the numerator of H(w) minus the argument of its
denominator:

p(w) = Arg(jo) — Arg(jo — o). (2.31)

Arg(jw) equals —% when @ < 0 and equals 5 if « > 0 (there is a 7 jump when
passes through zero). As seen above, —Arg(jw — sp) varies from  to —7 when
varies from —00 to +00. The variations of the gain and phase with @ are shown in

Fig. 2.8.

(a) First order system with zero: RC=1 (b) First order system with zero: RC=1
0 ' : = T 2 T H T T

Gain (dB)

8 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 & 3
@ (radfs) @ (radfs)

Fig. 2.8 Frequency gain for second R C circuit. a Modulus. b Phase
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2.2 Second Order System. R, L, C Series Circuit

The emf e(?) is applied to the terminals of a circuit composed of an inductor L, a

resistor R and a capacitor C in series (Fig. 2.9). As above, the electric charge on a

plate of the capacitor is denoted by ¢, and v(¢) is the voltage across the capacitor.
Generalized Ohm’s law takes the form:

d’¢  dg  q
L=—2 R 9 ). 2.32
dr? + dr + C e(?) ( )

2.2.1 Transfer Function

This system is linear, invariant by translation in time. The circuit transfer function H
(s) is obtained by taking e(f) = e" for excitation and seeking ¢(f) of the form
q(t) = Be™:
LBd—2€5’ +RBie“ + Ee“ =e” (2.33)
dr? dr C ’ '

That is to solve the equation

Ls2+Rs+l B=1. 2.34
C

. . _ l _ C
It is necessary to have the equality B = j—p— 1= P TRG T

The voltage across the capacitor is given by:

Q(t) 1 st st
=T T e e 1S e (2.35)

The system transfer function is therefore:

1
 LCs2+RCs+1°

Fig. 2.9 Second order [T& 1
circuit; R L C in series R a 5 53

H(s) (2.36)
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The transfer function is again a rational fraction which must initially determine
the poles. The denominator is a polynomial in s. A general property of polynomials
with complex coefficients is that they always have roots. These roots belong to the
field of complex numbers. In addition, another property of polynomials is that when
all the coefficients of the various powers of the variable s are real, the roots are
either real or come in complex conjugate pairs.

Search of the Poles of the Transfer Function
The polynomial being of second degree, he always has two roots which will be
distinct or multiple. For this reason, this circuit is called a second order filter.

The transfer function has the general form:

His) = LCs? +1RCS 1 % (s — sl)l(s —5) (237)
Analysis of the roots of the quadratic polynomial LCs*> 4+ RCs + 1:
The discriminant of the polynomial is:
A =RC*—4LC. (2.38)
The roots of the polynomial are noted s; and s,.
o IfA>0, 5,= —RCEVRCGE-4lC R R (2.39)

2LC 2L 412 LC

The two roots are real.

R
. IfFA=0,51=5=— 3L the polynomial has a double real root. (2.40)

R /1 R?
° IfA<O, 510 = — L +j Ic a2 the two roots are complex conjugate:

(2.41)
Writing

1 R?

2K 2.42
LC 4L (242)

Wy =
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we have:

R .
S12 = —Zing (243)

2.2.2 Second Order System Frequency Response

The poles of the transfer function will condition the frequency response of the
system H(w), response to a monochromatic input signal of the form e,
Simply replacing s by jw in the expression of H(s), we have

1 1 1

H(w) = =— .
(@) —LCw?+jRCow+1 LC (joo — s1)(joo — 52)

(2.44)

Note that H(0) = 1. Calculation programs like Matlab easily enable graphical
representation of the modulus and phase of H(w).

2.2.3 Geometric Interpretation of the Variation
of the Frequency Response

It is interesting to further develop a geometric argument to interpret the variation of
the frequency response. Its modulus is:

1 1
LC |jo — s1||jo — 52|

|H (o) (2.45)

Having placed the poles s; (point P;) and s, (point P;) in the complex plane
(a,jw), we see that the modulus of H(w) is inversely proportional to the lengths of
segments joining point M (representing jo) to the points P, and P;.

1 1

H(0)| = =35
LC MP,MP;

(2.46)

The phase is given by the sum of the angles made by the vectors P{M and P,M
with the x-axis:

p(w) = Arg(H(w)) = —Arg(jo — s1) — Arg(jo — s7). (2.47)

One can thus deduce qualitatively the following variations of gain and phase:

e If A >0, poles s; and s, lie on the real axis w = 0 (Fig. 2.10).
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(@) jo (b) (0]
1

Qv

B _R B 0
L

Segments EM and ]32M . Modulus of frequency response.

Fig. 2.10 Geometric interpretation in case of two real poles. a Poles situation. b Gain modulus

Fig. 2.11 Phase variation p(w)
given by geometric 74
interpretation
0 (0]
_}r -

We see in Fig. 2.10 that the maximum gain value is obtained for zero frequency,
value of o for which the segments P;M and P,M are minimal. The gain decreases
as & when |w| — oo, each of the two segments PiM and P,M growing like |o).
The circuit behaves as a low pass filter.

When o is largely negative, angles of the two vectors Pl—M and PZ_M with the
horizontal are each approximately —7; phase will be 7.

When o increases, M scans vertically the axis ¢ = 0 and angles vary from — 7 to
% (Fig. 2.11). They will be 0 for @ = 0, the phase will be zero. Then as the angles

increase toward 7 the phase tends toward —.

e If A =0, both poles are merged on the real axis (Fig. 2.12). The discussion is
similar to the previous case and the system still has a low-pass filter behavior
(Fig. 2.13).

e If A <0, the two poles are complex conjugates. We note H; and H, the pro-
jections of P; and P, on the axis jo (Fig. 2.14). For large negative values of w,
we have the same behavior as before, the segments P{M and P,M are large and
the modulus |H(w)| very small, and the phase tends toward = (Figs. 2.14, 2.15
and 2.16).
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M
P, N
R 0 o
2L
Fig. 2.12 Two poles merged on real axis
(a) H [(o 1
~1
@2
0 @
Modulus
(b) go[(a] T
0 @
-7
Phase
Fig. 2.13 Frequency gain in case of a double real pole. a Magnitude. b Phase
Fig. 2.14 Vectors P{M and 4 jo
P, M situation for a given
frequency .
R << !Z f Hl on
/ 3
R 0 o
2L

H, —jw,
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o~

Fig. 2.15 Gain magnitudes N ‘H (a))‘
for different damping
situations

Q)]

(2)

. ~>
-, 0 o 0, o
Fig. 2.16 Gain phases for Cf[“’) A
different damping situations 4 n
&
+ - -
cEb o Wy
~ 11 _

e When o increases, a first maximum of |H(w)| will occur when the product of
the lengths of the segments PiM and P,M will reach a minimum. This will
occur to a first intermediate position of M between H, and O.

The more points P; and P, will be close to the imaginary axis, that is to say, the
R

more 5 will be small compared to @y, the more segments P1M and P,M can
become smaller and |H(w)| can become great. The resonance pulsation , for
which |H(w)| is maximal will be closer to @y when the points P; and P, are close
to the imaginary axis.

1 1 1
i ~ 15 _ ) 2.48
| (w)|max | ((,1)())| LCH{P,HP> ( )

The quantity % characterizes the damping of the circuit. Curves 1, 2 and 3 in
Fig. 2.15 show the trend of the gain when the damping is increasing (with respect to
o). Thus, it is to remember that as the pole is closer to the vertical axis, the
resonance is sharper and the resonance frequency nearer to .

Regarding the phase, it is found that when the pole is close to the vertical axis,
the angle of the vector W/I with horizontal changes abruptly from a value close to
— 7 to a value close to 5 when w passes through resonance (Fig. 2.16). In the case of
strong resonance, phase starts from 7 and varies from 7 to 0 when o passes the
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value —m, where the phase passes to —7. In the case of a damped system (pole
farther from the vertical axis) angles vary more gradually.

It may be noted to put an end to this discussion that, as before, the gain decreases
as # when |w| — oo, both segments P;1M and P,M in the denominator of the
frequency response increasing as ||.

On the following graphs showing the magnitude (Fig. 2.17) and phase
(Fig. 2.18) of the gain, in the case where L = 0.1, C = 0.1 and where R was varied
by taking the values 0.1, 0.3, 0.5, 0.7, 0.9.

The module is shown in linear scale:

% represents roughly the half width of the modulus of H(w).

Phase varies from 7 to —.

The resonance frequency w, which is the abscissa of the maximum of the
frequency response modulus, is analytically determined by annulling the derivative

12 T ! T T T T T

(o)

@ (radfs)

Fig. 2.17 Numerical simulations: gain magnitudes for different damping

Fig. 2.18 Numerical simulations: gain phases for different damping
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of |H(w)|. The denominator of the frequency responsemodule includes the sum of
squares of the real and the imaginary parts:

1
el = \/(1 — LCa?)* + R2C?? (2.49)

The resonant frequency w, is the frequency for which w =0.

This amounts to calculating the solutions of the equation canceling the derivative
of the denominator. It comes:

1 R?

— . 2.
LC 212 (2:50)

W, =

There are two solutions with opposite signs. Only the positive frequency is
significant for real signals. It can be seen on the positive root that as the resistance
R increases it causes the decrease of the resonant frequency, as it was anticipated
qualitatively.

To calculate the filter gain at the resonance, this root is reported in the gain
expression. It comes:

1 1
H ()| = 2 = RCon
(1-LCw?)" +RC?? ®o

(2.51)

Where wg is given by (2.42). This result is remarkable for its simplicity.

2.2.4 Bode Representation of the Gain

Figure 2.19 shows the variation of 20 log,(|H(w)]|) :f(20 log,, :70) for the fol-

lowing values of the system parameters: R=1Q, L=10"*H, C= 10 °F.

This gives the resonant frequency w, = 9.975 x 10*rad/s. The gain for the
resonance frequency is approximately equal to 20 dB. The theoretical gain in
decibels for the resonance frequency is calculated from the formula (2.51). It is

1
2010g,0/H ()] = 2010g,0 e = 20.01 dB. (2.52)

The system resonant frequency w, = 9.975 x 10* rad/s is slightly lower than the
frequency wo = 9.9875 x 10*rad/s, imaginary part of the positive pole frequency.
Resonance is sharp.
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Fig. 2.19 Log-log plot of 40 T T T T
gain magnitude (second order i i i i
system)

‘H (w)lin dB

b (R R
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Note the linear behavior of the curve at high frequencies. As seen in Fig. 2.19, at
high frequencies |H(w)| decreases of 40 decibels per decade (when the frequency is
multiplied by 10), as characteristic of the decay in % This decrease corresponds
to —12 dB per octave (when the frequency is multiplied by 2).

The asymptotic line to the high frequency curve (dotted line in Fig. 2.19) passes
through the point (0, 0), that is to say, for the abscissa value w = w,. Please note
that this is only true in the case of sharp resonance that is specified in the following
paragraph.

2.3 Case of Sharp Resonance

We have seen that in the case of a sharp resonance, the resonance frequency which
corresponds to the maximum of |H(w)| is near wy. We can use in this case an
approximate expression of |[H(w)| in the vicinity of the resonance. Geometrically,
when o is near wy, we allocate all of the variation of the modulus |H(w)]| to the
variation of the segment MP;. In the scheme of this approximation, the gain is
maximum when M is in Hy:

1 1 1
H ~|H =— . 2.53
H(0) ey H (@0)] = s o (2.53)
We have approximately H; P, = H,H,, then:
H(0) o H(@0)] = (2.54)
w >~ (0] = — . .
max O LCH P\ H\H,

Under this approximation of sharp resonance, as H|P; = % and H H, = 2wy,
we have
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then:
=0y ——=——. (2.55)

Bandwidth at —3 dB of the resonator
Noting M, the point on the imaginary axis as H{M; = HP| and w; the cor-
responding angular frequency, we have

H ()| 1 1 1 1 1
)| =——— ~
LCM,P M P, LC H,P
11 1£2 \/(M1H1)2+(H1P1)2 12 256
1 1 1 (2.56)
LC /2(H1P1)2H1H2
Therefore
H ()| = —=|H(w)] (257)
1 _\/§ max* .
Expressing this ratio in decibels:
1
H(w1)|gg = 201ogo|H (w1)| = 2010g,o|H(®)|,x + 2010810 —,
|H(01)]4p 10lH (1) 10lH ()] 0775 (2.58)

|H(w1)|dB = |H(w)|max(dB)_3 dB.

At point M, (pulsation w;) symmetrical of M; with respect to Hj, the attenuation
is also 3 dB relatively to the maximum gain of the filter. Bandwidth at =3 dB is
then as follows:

R
ACUZ(L)z—O)l =2H1P1 Zz

2.4 Quality Factor Q

We name Quality factor Q the ratio

Wo

2= 40

(2.59)

The sharper the resonance, the smaller Aw and the higher Q.
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In this case:

1 R? LC 47

Since the damping is small, the second term in the root can be neglected when
compared to the first term. Then

1L L1
0 = /EI_QZ \/;E (2.61)

Or, writing approximately

L
LC? =1, Q= %. (2.62)

It is noted that, in the case of sharp resonance, the value of Q is equal to the
maximum gain at resonance. Indeed, it has been seen that |H(w,)| = #«m' As in the
case of sharp resonance, the relationship LCw% =1 is approximately satisfied, it
finally comes |H(w,)| =22 =
ceding paragraph (Eq. (2.55)).

Decrease over time in the amplitude of the eigenfunctions corresponding to
the values of the poles

The eigenfunctions of the resonant system for values of s equal to those of the
poles have the form

0, as it had been shown geometrically in the pre-

R R

sipf e_itij“’(lt _ e—iteij(uot (263)

€

The amplitude of these functions varies with time as e Ina pseudoperiod

Ty = (2773, this amplitude will vary by a factor

e T — o 7T — o7, (2.64)
When the Q-factor is great compared to 1, we can perform a limited expansion of
the exponential and write: e ¢ 2 | -5+

In a pseudoperiod, the amplitudes of functions e’ and e*' decrease by a factor

g. It will be shown in the following that the following linear combination of these

functions e*'?’ is the response of second order system in a very short pulse (Dirac
pulse). This impulse response has the form:

hf) = ———— (e — ) U(r). (2.65)
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In practice, in the case of complex conjugate poles, one measures the Q-factor
from the decay of A(f) during the pseudoperiod Ty.

Summary

The important first and second order electrical R, L, C circuit systems were studied
in this chapter. The position of the poles of the transfer functions was used for
qualitatively explaining the variation in frequency of the module and phase
responses. This interpretation is fundamental in understanding the behavior of these
filters and provides a generalized view of the frequency response of electronic
systems. The Bode representation has been presented. The concept of quality factor
used to characterize the properties of many physical systems was introduced.

Exercises

I. Consider the circuit composed of the series arrangement of a resistor
R=100 Q, an inductor coil value L =0.01 H, and a capacitance
C = 10"'° F. Note e(t) the voltage across the assembly and v(f) the voltage
across the capacitor.

1. Itis assumed that the emf e(7) has the form e(¢) = e where s is a complex
number capacitor (s = g+ jw).

(a) Give the expression of the voltage v(¢).

(b) Give the expression of the filter transfer function. What are the poles of
this transfer function? Represent the position of the poles.

(c) Give the expression of the filter’s frequency response. By a geometric
argument based on the position of the poles, give the aspect of the
variation of gain with frequency module.

2. Note that the transfer function can be written as a product of two terms of
the first order H(s) = H;(s)H(s). From the variation of |H;(w)| with @,
give the —3dB bandwidth of the first filter. By noticing that |Hz(w)
remains approximately constant in the vicinity of the resonance, give the
bandwidth at =3 dB of |H(w)|.

II. Consider again the circuit including the elements R, L and C placed in series
with the output at the resistor terminals this time. Show that the transfer
function is in this case:

RCs

H(s) = — =%
R TR T

Locate the zeros of H(s) in the complex plane. Show that the circuit does not
allow the continuous to pass (the frequency response is zero at zero fre-
quency). Can this system keep a resonator character? Show that the resonance

frequency is equal to wgy = 4 /i whatever damping. Explain qualitatively that

the presence of the zero of the transfer function pushes the positive resonance
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Fig. 2.20 Gain magnitude (a); with zoom in (b)

III.

A)

(B)

frequency toward higher frequencies, frequency as the negative pole frequency
tends to decrease.

Which is the gain of the resonance filter? Show that the gain decreases at high
frequencies.

Qualitatively, observe that the presence of the zero of the transfer function at
o = 0 pushes the positive resonance frequency toward higher frequencies,
while the negative pole tends to decrease that frequency. What is the filter gain
at resonance? Show that the gain decreases as % at high frequencies.

Create a circuit of the second order by arranging an inductor L, a resistor R and
a capacitor C in series. The input signal is feeding the ensemble and the output
signal is taken across the capacitance.

The modulus of this filter frequency response is given by Fig. 2.20:

1. What is the value of the quality Q-factor of the circuit?

2. (a) Making the approximation of a sharp resonance, taking R = 4.7 Q,
evaluate L and C knowing that the resonant frequency is precisely
6.1389 10° Hz.

(b) Place the poles of the filter transfer function in the Laplace plane.

The impulse response of that filter is given in Fig. 2.21.
Evaluate from these curves L and C the quality factor of the circuit, still taking
R=47Q.

Solution:

(A)

In the graph of the frequency response we can estimate its maximum ampli-
tude at about 46. In the course, it has been shown that the maximum amplitude
is equal to the Q-factor. So we evaluate Q = 46.
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Fig. 2.21 Impulse response (a); with zoom in (b)

(B)

Second method for determining Q: Q = Aw = Af (Af is the bandwidth at

—3 dB). The amplitude at —3 dB is estimated to f/6- =325.
On the graph of the frequency response the resonance frequency is seen to be
fo=6.14 x 10°Hz. The frequencies for which the frequency response is
attenuated by —3 dB are 6.21 x 10° Hz and 6.075 x 10° Hz, and It can be

inferred that Q = % = 45.5, which value must be equal to the value

given by the first method, the difference being due to uncertainties determi-
nations on the graph. Since Q = 45.5 = @ , the resonance frequency in this
case of sharp resonance is given by: LCw0 = 1. It comes L = 5.510° H and
C=12x10°F

Determination from the impulse response: we measure graphically the pseu-

doperiod Ty of the signal and we deduce wy = 2" In a pseudoperiod, the

amplitude varies by the factor e 2. We deduce Q from it. We then calculate the
constants L. and C of the circuit knowing R = 4.7 Q.



Chapter 3
Fourier Series

Fourier series have played an important role in the understanding and the devel-
opment of signal analysis. The original interest was for music and the fact that the
notes of many instruments are composed of frequencies which are multiples of a
fundamental frequency. These tones are called harmonics as their combination is
harmonious, pleasant to ear.

In the previous two chapters, we have highlighted the fundamental role played by
exponential functions e* and particularly by the exponential e/’ representing peri-
odic, monochromatic signals. In this chapter, we study the decomposition-
reconstruction of periodic signals in Fourier series. We study with a graphic exam-
ple the idea behind the calculation of a coefficient which is the signal multiplication
by a sine function followed by integration in time. We study the effect of limitation of
the number of terms of the series on the signal reconstruction (Gibbs phenomenon)
and the optimal coefficients of the reconstructing series. Hilbert spaces, which gen-

eralize these concepts, are introduced. We show that the functions e/ are the

eigenfunctions of the Hermitian operator i % and can be used as an orthogonal basis

of development of periodic functions. At the end of the chapter, we illustrate the fact
that frequency analysis and displays in logarithmic scale are favorable in the analysis
of sounds and the nonlinearity of a system.

An example of a monochromatic signal is the sound generated by a tuning fork.
Each note of the musical scale corresponds to a frequency well determined, for
example,. A, corresponds to the frequency 440 Hz. The sound of a tuning fork
which mainly consists of a sine wave is musically poor. A property common to all
musical instruments is that the fundamental note is accompanied by harmonic
frequencies, that is to say, by sound components whose frequencies are multiples of
the fundamental frequency.
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For example, for a vibrating string under tension, fixed at its ends as is the case
for a guitar or a piano, the natural frequencies of vibration of the string are given by
the expression:

(3.1)

where n is a positive integer, and ¢ is the speed of the vibration along the string
length. The speed is given by

c=y/—- (3.2)

with T the tension and p the mass per unit length of the string.

The excitation of the string by hitting or rubbing generates, in proportions that
depend upon the instrument and the excitation mode, the fundamental frequency
J1 =% and its harmonics. It is its richness in harmonics which partially gives its
specificity, timbre, to the note created by a musical instrument.

Similarly, in the spoken language, the vowels are compound sounds. They are
the addition of signals whose frequencies are integer multiples of a fundamental
frequency fi = 5> (this frequency is called the pitch). Physically, the sound gen-
eration of a vowel is explained as follows: The air comes out of the lungs in a
continuous flow. The vocal cords (sorts of membranes located in the pharynx)
periodically seal off the air. A pressure sensor placed downstream of the cords
would measure a sequence of pulses in air pressure. The fundamental frequency of
these pulses, the pitch, is about 100 Hz for men and approximately 200 Hz for
women. These very short repetitive pulses—in an ideal mathematical modeling, we
would speak of a Dirac comb which will be defined later in this course—are very
rich in harmonics (with existence of harmonics up to the ranks 40 or 50). The sound
of one vowel differs from that of another vowel by the relative importance of the
different harmonics. The dimensions of sound resonators that are the larynx, nasal
cavity and mouth determine the importance of these harmonics.

Mathematically, that composition of harmonic sounds can be noted as a sum of
exponentials by the formula:

ft) = ZO:O @M. (3.3)

n=—0o0

This composition is called a Fourier series. The development of a function in a
Fourier series and the calculation of coefficients of the series are detailed in the next
paragraph.
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3.1 Decomposition of a Periodic Function in Fourier
Series

Let f{(r) be a real or complex periodic function of time with period 7). Its Fourier
analysis is based on a sequence of functions ¢, (z), periodicals, with period —l, of

n
exponential or sinusoidal shapes:

i L 2n
@, (1) = "V where nis an integer and w; = o
1

(3.4)
The choice of these functions is dictated by the fact that they are eigenfunctions
of most physical systems and that any two functions ¢, (¢) and ¢,,(t) are orthogonal
when m # n; that is to say that their scalar product is zero. The scalar product of
these two functions is defined by
T T,

(nlt). omlD)) = ~ / 0u (097, (1)1 = / domoig (35)

T, T,
0 0

In the integral appears the complex conjugate ¢ (¢) of the second term ¢,,(r)
contained in the bracket in the left-hand side. By performing the integration we
verify that:

0 if n#m

ooy =[] 1 17 3.6

Thus, the functions ¢,(7) and ¢,,(z) are orthogonal if m # n.

We also write the last result in the condensed form (¢, (t), ¢,,(t)) = 6(m — n),
where d(m — n) is the Kronecker symbol, equal to 0 if n # m and to 1 if n = m.
Thus, the functions ¢,,(f) are orthonormal.

The Fourier coefficients ¢, of the function f(f) are defined as the projections
based of f{r) on functions ¢, (). That is to say, they are given by the scalar product

(@), 0,0) =7 [ Fwi0a = / Z e (00} (1)t
0

1 Ix Tl 1 + o0
=2 > o | eu(De)(dr = T > ewdn—n)=c,
1 n'=—00 0 1 =00
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Note that the integration interval extends over a signal period. It is easily shown
that the coefficient ¢,, does not depend on the start time of the integration interval,
but on the width of this interval only.

The fundamental theorem on Fourier series states that for a function f{r) con-
tinuous and continuous derivative except for a finite number of points in a period,
the infinite sum 37> ¢,0,() converges to half the sum of the limits to the left
and right values of the function abscissa :

+ 00

> cupult) =5 (-4 0) +£(~0)) (38)

n=—00
If the function f{(r) is continuous at time ¢, we will have:

+ 00

S aal) =£(0) (39)

n=-—o00
The expression in the development of exponential functions is then:

+ 00

=3 cemr.

n=—00

The ensemble of periodic functions f{¢) of period T} is a vector space. Indeed this
set satisfies the following conditions of definition of a vector space: The scalar
multiplication (by a complex or real) of a function of the space (periodic function of
period T}) also belongs to the space (it is also periodic with period 7). Furthermore,
linear combinations of any two functions of the space belong to it (any linear
combination of periodic functions of period T is also periodic with period T}).

Since any function f{¥) of this space can be generated by a linear combination of
functions &', we say that the infinite set of functions &'’ is a basis of the vector
space of periodic functions of time with period 7} = 5}—’1‘ The relations (3.6) show

that this basis is orthonormal.

Development in the Particular Case of a Real Function
Since f{7) is assumed real, then f(z) = f*(¢). In the development of f{r) we have then:

+ 00 ) + 00 .,
FO) =" e =f)= Y ce (3.10)
n=—0oo n'=—oo
By comparing the two sums, posing n’ = —n, we get
+ o0 + o0

D et =3 e (3.11)

n=—00 n=—00
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We have then for all n:

¢, =¢p, OF c_p=c,Vn. (3.12)
So, Fourier coefficients of terms of the series for negative frequencies are the
complex conjugates of the coefficients of the terms for symmetric positive

frequencies.

Discussion of the Complex Character of Coefficients c,,
It is seen that the coefficients ¢, are complex in the general case, by expanding the
exponential in the integral (3.7),

T, T, Ty
1 : 1 j
== [ f(Oe " dt = — [ f(¢) cosnwtdt — e f(t)sinnwzde.  (3.13)
T T, T,
0 0 0

As we can shift both boundaries of the integration interval without changing the
value of the integral, we also have:

n 7
21 2

) .
e = / f(t)cosnwltdt—% / £(f) sinney £ dr. (3.14)
1 1
_n _n

2

Some interesting special cases are discussed in the following.
In the case where the function f(t) is real, from (3.14) we can write: ¢, =
a, — jb, with a, and b, real and given by

n n
21 2
1 1
an:T/f(t)cosnw]tdt and bn:F/f(t)sinnwltdt. (3.13)
1,ﬁ l,ﬂ
2 2
Then:
+00 ) +oo
@6 =" (an—jba)e"™ = " (an — jby)(cosnant +j sinnwir).  (3.16)
n=—00 n=—0o0

As f(?) is real, taking the real part of the right side of (3.16) we have:

+ 00 +oo
f() = Z a, cos nmwit + Z b, sin nmt, (3.17)

sum of two series with a,, and b, real coefficients given by (3.15).
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The index n in the previous sums varies from minus infinity to plus infinity. Due
to parity of cosine and sine functions contained in Eq. (3.15), we see that we have:
a_, = a, and b_, = —b,. One can reduce the summations interval to positive or
zero values of n and write the relation (3.17) in the form:

+ oo + 00
f() :a0+22ancosnw1t+22b,1 sinnw;t. (3.18)

n=1 n=1

Note the appearance of the factor of 2 resulting from the combination of positive
and negative frequencies e/’ and e/’ exponential. The coefficient 2 could be
removed in (3.18). By changing the notation, this equation becomes:

A + 00 + 00
f() = 70 + 2 A, cosnw;t + ;Bn sinnwt, (3.19)
with
o o
2 21 2 2
A, = T / f(t)cosnwtdt and B, = T / Sf(t) sinnw;zde. (3.20)
1 1

If the function f{¢) is real and even, we have in addition b,, = 0, because it is the
integral of an even function on a symmetrical interval around ¢ = 0. Similarly, if the
function f{(¢) is real and odd, we will have a, = 0, since the integral of an odd
function over a symmetric interval around ¢ = 0 is zero.

To conclude this discussion, the focus is on the development of Fourier of the
function f () = cos(w;z+ ¢). By expanding the cosine:

f(t) = coswyt cos @ — sin wt sin ¢ = 2a; cos wt + 2b; sin w1,

with 2a; = cos ¢ and 2b; = — sin ¢.

The signal phase determines the distribution of the power of the signal (the
magnitude of the signal; Power will be precisely defined in the next paragraph)
between the real and the imaginary part of the Fourier coefficient c;. If the phase is
zero, the power is carried by the real part a; of the Fourier coefficient. If the phase is

I
> the power is carried by the imaginary part b, of the Fourier coefficient.

Illustration on an Example of the Calculation of the Fourier Coefficients

It is interesting here to illustrate how the dot product of f{#) of period T with the
base functions cosnm;z and sinnw;t allows these functions to analyze the signal
shape. In this example, the function f{¢) is a square wave, even, with zero mean and
period T. On Fig. 3.1a Top) are shown f{¢) as well as the function cos wz. It is seen
that the cosine follows the slow variations of the function. In Fig. 3.1b (Top) is the
product f(z) cos ;¢ represented over one period. It is noted that this product is
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always positive. Its integral over the period will have a relatively large positive
value.

On Fig. 3.1a (Middle) the function f(r) and cos2w;¢. On Fig. 3.1b (Middle) is
the product f(7) cos 2w, f over one period. We see that this product oscillates around
zero. Its integral will be small. In fact, the integral will be zero because the negative
oscillations compensate exactly in this case the positive oscillations. In conse-
quence, the Fourier coefficient of harmonic 2 will be zero. On Fig. 3.1a (Bottom)



42 3 Fourier Series

are shown f{¢) as well as the function cos 3w;¢. On Fig. 3.1b (Bottom) is the product
f(¢) cos 3wt over one period. It varies a lot around zero. The integral will be small.
In fact, the integral will be negative because the negative part of the oscillations
outweighs the positive ones.

Thus, the Fourier coefficient of harmonic 3 will be negative. We could do the
same for higher orders n. For functions of the form sin nw, ¢, the Fourier coefficients
are all zero since they result from the integral of the product of an even by an odd
function. The principle of Fourier analysis which is the integration of the product of
the function to be analyzed by the trigonometric analysis functions is well under-
stood in this example.

The exact calculation of the Fourier coefficients of a square signal will be made
by means of an exercise later in this chapter.

3.2 Parseval’s Theorem for Fourier Series

The power P(¢) of a complex signal f(t) is defined as follows:

P(1) =f()f" (1), (3.21)

with f'(7) the complex conjugate of (7).

This definition is consistent with that of the power in an electrical circuit element
which is equal to P(z) = v(¢)i*(¢), where v(¢) is the potential difference across the
element and i(z) is the current through that element. In signal analysis, f{z) plays
both the role of voltage and current. One can say that f(r) appears as the voltage
across an element with impedance 1 Q.

In the case of a real signal we obviously have

P(1) = f*(1). (3.22)

The power depends on time; we will speak of P(f) as an instantaneous power.
The signal energy is the integral of the power on the time axis:

E:‘/PMM:E/f@F@m (3.23)

When the signal f{¥) is periodic of period T}, the energy is infinite. For this type of
signals, the focus is on the average signal power P, over one period. It is defined by:

P, = Til/f*(z)f(t)dz. (3.24)
0
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Replacing the functions by their Fourier developments, and setting

@, (t) = "1, with w; = 2%, we write

2n
T b
T,
Z ot Z Cu 1 (3.25)
n=-—00 n'=—o0
Assuming that the mathematical conditions for reversing the order of the sum-

mations are verified, and using the fact that the functions ¢, () are orthonormal
over one period, we write:

1 +OO
Pm - c nCn’ / (Pn q)n

nffoon’szo 0 (326)
+00 400 +oo Ix
= Z Z cieyd(n—n') = Z crey = Z leal?
n=—00n'=—00 n=—o0 n=-—00

Thus we have the following relationship, which is the expression of the
Parseval’s theorem for Fourier series

+ o0
Py = /f Z ‘Cn‘z' (327)

This result tells that the average power of the signal over a period is the infinite
sum of the squared moduli of the coefficients of the Fourier series. It is interesting to
note in this formula that the quantities |c,,|2 have the dimensionality of a power.

The squared modulus |c,l|2 is the contribution to the average power of the
harmonic signal €' of order n.

Example of Decomposition of a Periodic Signal

Let f(r) be the square periodical signal (Fig. 3.2), of period T;, formed by the
repetition of the pattern IT7(z), which is a symmetrical rectangular window of width
T, equal to 1 for |f|< L and 0 zero elsewhere:

1 for |t] < %

0 elsewhere (3.28)

M) - |

We may write:

l‘) = io HT(I—nTl). (329)

n=—00
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Fig. 3.2 Square periodic signal

It is necessary that 7 <T; in order that f{f) is not always equal to 1.

Calculation of the coefficients of the development of f{(¢): the function f{7) is
periodic, the integration being performed over a period, we may shift for conve-
nience the boundaries in the integral appearing in (3.7), the interval being still equal

to Tl-
Thus:
| T, | T_zl
en=m [ f(e ™At = — [ f(r)e"dr. (3.30)
T] Tl |
0 _n
In this interval, f(z) = I7(z). Since I7(¢) is zero outside the interval {—Z1,1
and is 1 within the interval, we can write
n n T
1 1] 1
L= — ¢ —jnwltdt _ (¢ —jnwltdt — _jnwltd[. 331
o=g [ swera =g [ mmera = [ 331
By performing the integration:
1 e~inns _ginons 1 2sin(nw, L
oy = LT 1 Dsin(nn 3) (3.32)
T] —Jnwi T1 nmi

This result holds for n # 0, the denominator in Eq. (3.32) having to be different

from O for the integration in this form to be possible.
For the case n = 0, integration (3.31) is carried out directly. In this case

I I

2 2
1 T
=— [ eldr=— [ drt=— (3.33)
T T T
T

€o
2 2
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Since w7 = 2n the relationship (3.32) may be simplified, and we have
1 T
n = —Si — . 3.34
¢p = ——sin (nw 1 2) (3.34)

. . . . _
It is noted that the coefficients decrease as —. This type of decay is characteristic
n
of the discontinuous nature of the function f{r). As discussed later in this course, this
decrease is considered slow.
Special case: If T = % the signal is symmetrical. The coefficients for n # 0

become:
1 T 1 2n T 1
Cp = nnsin(nwl 41) = %Sin (}173:4.1) = %Sln<ng) (335)

Expressing these results for different values of n, we get for the first terms:

1 1 1
Co=75,61="_,0= 0,c3 = 3= 0,cs =5
The function being even, the development of the Fourier series limited to pos-
itive values of n is f(t) = ap +2>.,"% a, cos nw 1.
For the first terms we have:

1 2 2 2
flo) = 3 + —Cos 1t — = oS 3w+ 5,508 Swit. .. (3.36)

Except for n = 0 the coefficients of even orders are zero. The odd-order coef-

. 1 . . ..
ficients decrease as — Only odd harmonics are present in the decomposition.
n

Note: The preceding square wave was positive or zero. One often uses in
electronics a bipolar signal (symmetrically positive and negative). The Fourier
coefficients of this signal are the same as above, except that the coefficient ¢y is zero
in this case.

The coefficient ¢, given by the integral ¢y = Til fOT ' f(¢)dt, represents the average
value of the signal over one period.

3.3 Sum of a Finite Number of Exponentials

Optimal Development Coefficients of a Function

A problem may arise in practice when one is able only to use a finite number N of
terms in the series (for example, in a numerical calculation). In this case, we seek to
approach the better possible the function f(f) by a linear combination of a finite
number of basis functions (exponentials in the case of Fourier series). In the general
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case, we cannot hope to find the exact value of f{(r) for all time. We will have an

estimate of f(r). This estimator is noted f (¢) by placing a cap on the function to be
estimated. Its form is:

F0) = do) (3.37)

The following question arises: How to choose the coefficients ¢/, so that the error
in estimating f{f) is as small as possible? In other words how can we estimate
optimally f(r)? Let us write the estimation error as:

e(t) = £(1) = 1 0). (3.38)

We want f(z) to represent at best /{), so that the “distance” between £ (7) and f (1)
should be the smallest possible. This distance is calculated from the scalar product
{e(t), e(t)), the quadratic error ¢ which is defined by:

e = (et),e(r)) = (f(t) —F(0).£ (1) = F(0)). (3.39)

The error is searched to be minimal. That error is then called the standard error.
/¢ is the distance between f{¢) and its estimator.

The coefficients ¢/, that minimize the quadratic error are determined by the con-

/%

dition that the partial derivatives of ¢ with respect to the coefficients c¢* are zero

n

I3

—=0. 3.40
= (340)
The squared norm of the error is:
| Ty 2
lelP=o = [ [ canto) ~10)| . (341
n=1

0

The optimal coefficients will be obtained by canceling the following partial
derivatives:

T,

o _ [, Oe _i/
acr —\“acr/ T T

0

(f(r) =S c:,,q)n/(r)) PN =0.  (342)
n'=1

Note that this equation can be written in the form of the cancelation of the scalar
product
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(e, 0, (1)) = 0. (3.43)

In other words, the minimum error vector is orthogonal to the base vectors ¢, ().
Since

T,
| N
= ( cl qon/(t)> @i(t)dt =, 0(n' —n) = ¢}, (3.44)
1 =1
and
1y
5 [ 0o = (3.45)
1
0

we have the result:

¢ = c (3.46)

This is an important result. When the function f{f) is approached by a linear
combination of basis functions ¢, (¢) limited to a finite number of terms, the
coefficients of the combination that minimize the quadratic error are the coefficients
of the Fourier series of f{¢).

Important note: In the preceding derivation, it was assumed that the derivatives
with respect to ¢j, and over ¢, are independent. This may seem surprising, as ¢}, and
¢ are complex conjugates. The underlying reason is that ¢/, and ¢, are complex
numbers composed of two independent real numbers. The derivation with respect to
¢ hides formally derivation versus these two numbers. It could be shown that in the
final result of the cancelation of the derivative calculations with respect to the real
numbers, we get the same results by considering formally ¢/* as independent of ¢/,.

Geometric interpretation: f{r) can be considered as a vector belonging to an
infinite dimensional space spanned by the infinitely many basis vectors ¢, (¢) (space
of all linear combinations of the functions ¢, (¢)). A finite number N of basis vectors
generates a hyperplane ITy in that space. The vector f(f) is out of this plane in the
general case. The estimator f () which consists of a linear combination of vectors
which belong to this hyperplane ITy will necessarily be in Iy (Fig. 3.3).

Fig. 3.3 Vector f{(¢) and its
estimator f(z) f)
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According (3.43) we have
elo, = e Lf(1) (3.47)

Thus, the error vector has to be perpendicular to the estimator. The optimal

estimator f (#) is the projection of f{r) onto the space Iy generated by the N base
vectors @, (1).

3.4 Hilbert Spaces

The properties described above are within the scope of the general properties of
Hilbert spaces. A Hilbert space is a vector space with a scalar product and provided
with some additional properties.

Properties that define a Hilbert space:

The sum of two elements of the set is an element of the set.
The multiplication of an element of the set by a scalar belongs to the set.
e Definition of a scalar product:

— The inner product of two elements of the set is a scalar.

— A norm is defined from the scalar product. It is used for defining a distance
between two elements of the set.

— A Cauchy sequence of elements of the set converges.

— The limit of a sequence of elements of the set belongs to the set. It is unique.
We say that the space is complete.

Important properties of a Hilbert space:

e A subset composed of elements of the space generates a Hilbert space H;, subset
of H.

e One element of H is written as a linear combination of an element of H; and an
element of its complement in H noted H,.

e The subspaces H, and H, are orthogonal.

For example, the ensemble of even functions and that of odd functions, periodic
with period T, and summable over a period form two orthogonal Hilbert subspaces
of the ensemble of all periodic functions of time with period 7.

We could separate the space into other orthogonal subspaces, such as separating
the space generated by the N primary functions of the base and the one generated by
the functions of the complementary set.

Theoretical Aspects of Exponential Fourier Series Expansion

Consider the set of periodic functions of period T integrable over a period. Let
W, (¢) and W, (¢) be any two functions belonging to that set. Following definition
(3.5) their scalar product is given by:
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T,
1

(W1 (1), o (0)) :71/ Y (1) (2)de. (3.48)
0

With this scalar product, the set is a Hilbert space.

Definition of a Self-Adjoint Operator:
Let O be an operator operating on the functions of this space. The adjoint operator

Of of 0 is defined by:

(01, (1), v2(0) ) = (1 (1), OU (). (3.49)
An operator O is said self-adjoint (or Hermitian) if it is such that:
of =0 (3.50)
We have therefore in this case.
(O (1), 12 (1)) = (1 (1), O (1) (3:51)

The operator O = i% plays an important role in the context of Fourier series

development of periodic functions with period 7. Let us show that it is Hermitian.
Following the definition (3.49) and the relationship (3.48), we have:

<0T¢l(t),¢2(t)> :Til/T V(1) (i%lﬁQ(t)>*dt. (3.52)

We integrate by parts:

T,

(Ni0:0) =~ im0l + [ igmouow 65y
0

The first term of the second member is zero, since the functions are periodic. It
comes:

(') = [ gm0 (3.59

0

We see that OT = 0. The operator i% is Hermitian.
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Eigenvalues and eigenfunctions of a Hermitian operator
The eigenvalues are real

Let ¢(¢) be an eigenfunction of a Hermitian operator O such that O@(t) = A¢(z),
a priori the eigenvalue /4 is complex.

We use the fact that O is Hermitian to write [see (3.51)]:

(00(t), @(1)) = (p(1), 09(t)). (3.55)
Since
(00(1), 0(1)) = (2o(1), 0(1)) = (1), (1)),
and
(@(1), 00(1)) = (p(1), 20p(1)) = 2" (@ (1), (1)),
then:

A= (3.56)

We have demonstrated that the eigenvalues of a Hermitian operator are real.

The Eigenfunctions Relative to Nonequal Eigenvalues Are Orthogonal
To prove this property, we use ¢,(¢) and ¢,(¢) being any 2 eigenvectors of a
Hermitian operator O.

We can write: (0@, (1), 92(1)) = 41(¢1 (1), 92(1))-

Similarly: (@, (1), 00, (1)) = 23(@1 (1), @2 (1))

Since the eigenvalues are real we have 15 = 4.

Taking in account the Hermiticity relationship (3.51), we must have

A @1(2), 92(1)) = (@1 (1), 92(1)) = 221 (1), 02 (1))

If A1 and 4, are different, in order that the above equation could be satisfied, it is
necessary that

(@1(2), (1)) = 0. (3.57)

We see that the eigenfunctions related to two different eigenvalues are
orthogonal.

We apply now these results of a general scope to Fourier series development.
First, we determine the eigenfunctions of the Hermitian operator O = id:

dr
O¢(t) = Ap(t) [with 4 real according to the property (3.56)],
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do(t
420 _ o):0() = cet
dr
or equivalently:
¢(t) = Ce with o real and C any constant. (3.58)

The argument in the exponential must be imaginary.
We have shown in Chap. 1 that the eigenfunctions of the operator %, and by

consequence, the eigenfunctions of LTI systems, were the functions Ce”" with the

eigenvalues p which may be any complex number. The operator % is

non-Hermitian.

However, we may verify that the eigenfunctions of i %, which are Cel”, are also

eigenfunctions of % In conclusion, among the eigenfunctions of %, the eigen-

functions Ce'’ of i% may be chosen to form an orthogonal basis for a development

of a periodic function. This is the principle of the Fourier series development of a
function.

In Chap. 5 on Fourier transform, an other scalar product will be used for the
development of square-integrable, nonperiodic functions, in the L, Hilbert space.

Remark: The above development on Hermitian operators derives from quantum
mechanics where they have been used for many decades. The consideration of
non-Hermitian operators in quantum mechanics is fairly recent. This subject is
nowadays an active field of research.

3.5 Gibbs Phenomenon

This very important phenomenon in practice occurs when the order of the sum of
exponentials is limited to a finite number N, that is to say, when limiting superiorly
the harmonics frequency. This is the case when a signal passes through an amplifier
with band limited to low frequencies. This phenomenon is observed, for example,
on the screen of a 30 MHz bandwidth oscilloscope when viewing the square signal
from a low frequency signal generator. In the case where the initial time function
has a discontinuity (which is the case of the square wave), the limited bandwidth of
the oscilloscope reduces the high-frequency content and gives a representation of
the signal using a limited sum of exponentials. The visualized signal has an
oscillation at the location of the discontinuity. One of the remarkable aspects of this
phenomenon is that as great as is the maximum order N, the oscillations are always
present and keep the same amplitude. Only the frequency of the oscillations
increases with N. This phenomenon is quantitatively studied in the chapter on the
applications of the Fourier transform.
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Fig. 3.4 Gibbs phenomenon for different sum number limitations

A numerical simulation is performed on the square signal studied in the previous
example (3.29). In Fig. 3.4a (Top), the periodic square signal is shown as well as
the partial sum % + %cos wit. In Fig. 3.4b (Top) is the sum limited to the first
harmonic of odd row. On Fig. 3.4a (Bottom) is the sum of harmonics f;—5f;. The
square wave aspect is beginning to appear. In Fig. 3.4b (Bottom) has harmonics

from fi—13f.

We can see an over-oscillation at the discontinuities of the function that
expresses the Gibbs phenomenon. This phenomenon will continue to exist for
arbitrarily large values of the highest frequency kept.
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Gibbs phenomenon reflects both the prodigious nature of the development of a
function as a sum of exponentials but also the default of this development: It is
possible theoretically to obtain a constant value for f{¥) in an interval (the oscillation
of functions e’ cancel by interference in performing the summation) yet the sum
should include an infinite number of terms. When seeking to represent the function
f(H) with a finite number of coefficients, this reconstitution presents spurious
oscillations. This problem is encountered in compressing information in digital
encoding (audio or video for example). Other compression techniques such as the
decomposition of a signal on a wavelet basis do not have this drawback. This
decomposition will be discussed in Chap. 12.

3.6 Nonlinearity of a System and Harmonic Generation

In the following example, we show using a numerical simulation that Fourier
analysis provides information about a signal in the Fourier domain that a temporal
analysis cannot detect. In particular, it can reveal the nonlinear character, even
small, of a system.

Assume that a sine wave x(¢) = sin(2nfi7) drives an amplifier whose gain is
noted G. The amplifier is assumed to have a slight nonlinearity such that instead of
having an output signal

¥(t) = Gy sin(27fi1), (3.59)
where G is a constant. The output signal of the system is:
y(t) = Gy sin(2nfit) — sgn(sin(2nfi 1)) sin? (27fi1). (3.60)

The sign function sgn(x) equals 1 if its argument x is positive, and —1 if its
argument is negative. o is the nonlinearity factor, smaller than 1.

The defect of this amplifier is that its gain decreases as the magnitude of the
signal increases according to Eq. (3.60).

In the numerical application which follows, we take Gy = 1. The signal fre-
quency is chosen equal to fj = 82 Hz. A representation versus frequency in decibels
is used to highlight the very low amplitudes (-150 dB corresponds to an amplitude
of 3.2 X 107%, value extremely low). The value of the first Fourier coefficient
corresponding to the fundamental frequency of 82 Hz is 1, which corresponds to a
value equal to O dB. First, we represent in Fig. 3.5 the ideal case of an amplifier
without nonlinearity for which « = 0. Obviously there is just a single spectral line.

In the case of weak nonlinearity with oo = 0.001, as shown in Fig. 3.6, we are
unable to detect the manifestation of this nonlinearity on the shape of the time
signal (Fig. 3.6a). As far as we can judge, the signal maximum is always 1 and the
sinusoidal shape seems unchanged. On the other hand, one sees in the Fourier
domain additional lines whose amplitudes are given by the nonzero coefficients for
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Fig. 3.6 Signal a and its Fourier magnitude b when a = 0.001

odd multiple harmonic frequencies of 82 Hz (Fig. 3.6b). Here we see the interest of
the Fourier analysis. And thanks to the representation in decibels (logarithmic
representation), low values are less crushed by the dynamics that in linear scale and
can be seen in the figure up to the 19th harmonic. The harmonic 3 is located
approximately 75 dB below the fundamental. This corresponds to a ratio of 1.8 X
10~ in linear scale, which is very little. One says that the harmonic distortion is
—75 dB for the harmonic 3.

Very low harmonic distortion (~—50 dB) is present in the audio amplifiers of
high fidelity. Such a quality is sought after by musicians. It was noted above that the
ear analyzes the signals in the Fourier domain and has a logarithmic sensitivity,
which enables it to detect very weak signals mixed with strong signals, e.g.,
unwanted harmonics.



3.6 Nonlinearity of a System and Harmonic Generation 55
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Fig. 3.7 Signal a and its Fourier magnitude b when a = 0.45

The case of a very strong nonlinearity o = 0.45 is discussed finally. This time
the nonlinearity is also very apparent in the time domain (Fig. 3.7a). Signal peaks
have weakened. In extreme cases, the signal begins to approximate a square wave.
The harmonic Fourier coefficient ¢3 of harmonic 3 is =20 dB about the fundamental
c1, a factor of 10 in amplitude (Fig. 3.7b).

We see how the Fourier domain allows quantifying the harmonic content. This
analysis is particularly important in audio applications. We will detail later in this
course how to record and process a signal to make a correct analysis of nonlinearities.

In a second example, the nonlinearity is assumed cubic, that is to say, that the
output signal is given by:

y(t) = Gy sin(2nfit) — asin® (27fi1). (3.61)

If « =0.01 the time and frequency representations of the output signal are
plotted in Fig. 3.8. Again, the analysis in the time domain does not provide a tool to

(a) ; Sinus + cubic non linearity: ¢¢=0.01 (b) Cubic non linearity: &= 0.01
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Fig. 3.8 Signal a and its Fourier magnitude b in case of a cubic nonlinearity
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detect the nonlinearity. However, the Fourier domain is again very rich in infor-
mation. We can be see on Fig. 3.8b that for such nonlinearity, only two Fourier
coefficients, ¢; and c5 are different from zero for the output signal, in contrast to
what was observed for the quadratic nonlinearity of the previous example.

It appears from this example that the analysis of the amplitude of the harmonics
of a signal is a valuable means of investigation of the physical system which creates
this signal.

Total Harmonic Distortion of a Signal
This rate measures the ratio of the total power of higher order than 1 harmonics to
the power of the fundamental component. We have therefore:

|Cn|2
THD = . 3.62
In| > 1 jer® (362
It can also be written by (3.19):
THD = (3.63)

Assuming that the amplitude of the second harmonic relative to the fundamental
is 1 %, and that of the rank 3 amplitude is 1.5 %, the THD will be:

THD = v/0.012 4+ 0.0152 = 0.018 = 1.8%, or in decibels —34.9 dB.
For high fidelity music, it is accepted that the THD of an amplifier should be
smaller than 1 % (—40 dB).

Summary

This chapter has been dedicated to the study of complex periodic time signals. We
have shown that theses signals can be expressed as a sum of harmonic signals
whose frequencies are multiples of a fundamental frequency. The expansion
coefficients are calculated by an integral which represents the projection of the
signal on the basis of these harmonic functions. We qualitatively explain the
magnitude of a projection on a given function. Parseval theorem on Fourier series
expresses the power of a signal to be the sum of the squared moduli of the coef-
ficients. We have shown that the coefficients of the optimal approximation of any
signal as a linear combination of a limited number of basis functions are the Fourier
series coefficients. A geometric interpretation of this behavior in Hilbert spaces has

been given. We have shown that the functions e/’ are the eigenfunctions of the

Hermitian operator i% and can be used as an orthogonal basis of development of

periodic functions. The first manifestation of the Gibbs phenomenon is observed on
the limited series. It has been shown on an example how the study of the amplitude
of the Fourier coefficients can be used to study the nonlinearity of a system that may
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Fig. 3.9 Sawtooth signal

not be apparent in the time domain. The advantages of a logarithmic representation
(dB) are shown to evaluate nonlinearity.

Exercise
Calculate the Fourier expansion of the sawtooth signal of the following form

1
(Fig. 3.9). Show that the Fourier coefficients decrease with n like —. This decrease
n

.1 . . . .
in — of the coefficients will be interpreted later in the course as a feature of the
n

Fourier expansion of continuous functions whose derivatives are discontinuous.



Chapter 4
The Dirac Distribution

We introduce in this chapter the concept of Dirac distribution. It is conceived as an
infinitely brief pulse occurring at time zero. The Dirac distribution is a very
powerful mathematical tool in signal analysis, especially in the Fourier transform.
We demonstrate here the first golden formula of signal analysis:

/ edw = 21(t)

We give simple examples illustrating the rules of its use.

The response of a LTI system to a monochromatic signal input has been studied in
Chaps. 1 and 2. In Chap. 3, it was shown that a periodic signal of period T can be
considered as the sum of monochromatic signals whose frequencies are multiples of
a fundamental frequency f; = Til To go further, we must focus our attention on
nonperiodic signals. They represent the general case and are richer in information
than a simple monochromatic signal. The study of the response of LTI systems to
signals of any form begins here by calculating the response of these systems to a
special signal x(7) resulting from the summation of infinite monochromatic signals
with the same amplitude (here unit amplitude) for all frequencies:

o0

/ &dw = 218(r) (4.1)

—00

This particular signal, simple in its construction, is very interesting for the
entirety of this course. However, it has no representation in the form of a function.
The mathematical difficulty encountered to obtain the signal in the time domain as
defined by the previous integral is that the integral does not converge.
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This chapter is devoted to the study of this important problem in signal analysis.
It leads to the notion of the Dirac distribution, which is an extremely effective tool
in calculations. We present in the following the notions of convolution product and
of integral and derivatives of the Dirac distribution.

4.1 Infinite Sum of Exponentials. Cauchy Principal Value

Let us study the properties of the integral (4.1):

+ oo

/ ¢ dw. (4.2)

—00

Within the meaning of conventional integration of a function, this integral does
not converge. Indeed, the convergence of this improper integral requires that the
following limit exists

A . .
) . ) e_]tA _ e]tB
lim [ &“”dw = lim ———.
4o i L

B

(4.3)

However, this limit does not exist since both exponentials appearing in the right
hand side oscillate indefinitely when A and B tend to infinity, and therefore do not
tend to a limit independently of each other. Thus, the integral in (4.1) does not
converge.

One is led to focus on another summation of monochromatic signals corre-
sponding to the Cauchy principal value of the integral. It is defined as

[e's) A
4% / e”'dew = Jim e dw (4.4)
—00 —A

We now note the symmetry of the limits of integration. If the limit exists in the
definition (4.4), the Cauchy principal value of the integral exists.

In the general case, when the integral of a function exists, the Cauchy principal
value of that integral exists. But the converse is not true: the Cauchy principal value
can exist without the convergence of the integral.



4.1 Infinite Sum of Exponentials. Cauchy Principal Value 61

Fig. 4.1 Function 2sin4! “"A’ as a ~ sin Aty

function of time t
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However, in the case studied here, even in the sense of the Cauchy principal
value, there is no convergence. Indeed,

00 A
) ) eth_ —jtA 2 sin Af
PV / ddo = lim [ &”dw= lim — = lim 2202 (4.5)
—00 A—00 Jt A—00 t
—00 —A

This last expression does not tend either to a finite limit V¢ as A — oo because
the sine oscillates indefinitely between —1 and +1. However, we can see that the
function oscillates more rapidly when A is great. The first zero of the function is
obtained for £y = Z. This value tends to zero as A — oo. The limit value at r = 0 of
the function M is 2A. It tends to infinity with A. So, when A is large, the graph of
the function M (Fig. 4.1) shows a very pronounced maximum for # = 0 and
oscillations for # # 0 whose amplitude decreases more quickly as A is greater.

4.2 Dirichlet Integral

However, when integrated over ¢ the product of the function ZS”‘A’, whose oscil-

lations are fast when A is large, by any function ¢(¢) with sufficiently slow vari-
ation, gives an approximately zero contribution to the integral for any value 7 # 0.
Let us see this in more detail:

The integral of the product of a function ¢(z) by
integral.

Zndl g called a Dirichlet
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Let ¢(¢) be a continuous function at # = 0. The following relation holds:

+ o0 .
[Jim 2 7{0 (1) 24 = 27¢p(0). (4.6)

Proof The function ¢(¢) is assumed to be sufficiently regular, continuous and
differentiable at many orders. The study focuses firstly on the integral

b
/MsinAtdt (with a<0<b). (4.7)

a

. . —o0(0) - . .
By assumption, the function 2 £ © js continuous and has a continuous
derivative around 0.

We note f(t) = w(t):w(o) and calculate the integral (4.7) by parts:

/f 1) sinArdr = ——[f()cosAt /f 1) cos Ards. (4.8)

We note M a common upper bound to f{z) and f() in the finite interval [a, b].

M(b—a)
A

The modulus of the integral is less than % + which tends to zero when

A — o0. Therefore it tends zero. Thus:

A—00

lim / £(#) sin Arde = Jim / MSiﬂAtdt:O. (4.9)

This result can be rewritten as:

b b

t in At
lim / @mma:: 9(0) Jim / Smt dr. (4.10)

A—00 —00
a a

We could have anticipated this result with a qualitative reasoning: As shown in
Fig. 4.2, the function ¢(¢) assumed continuous and regular in # = 0 can be considered
constant and equal to ¢(0) in the vicinity of # = 0 (neighborhood smaller as A is
greater). Only in this neighborhood, the function 254! is significantly different from 0.
This explains qualitatively the factorization of (p(O) in the second member of (4.10).
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Fig. 4.2 Functions @ 2sin At
and ¢(7) 1oy

£
o(d) o)

To demonstrate formula (4.6), it remains to be shown that

in At
lim / Smt dt = . (4.11)

We note At = x;Adr = dxand A > 0,
We are led to evaluate the quasi-integral:

+ 00
I=PV / Y g (4.12)
X
—00

The function % which appears many times in signal analysis is called sin c (for
cardinal sine). Then, one notes sinc(x) = %2,

This integral has a singularity in x = 0. Summation will only be possible if the
singularity is approached symmetrically around 0. This justifies the use of % circle
of radius ¢ in the following calculation. The Cauchy Principal value has to be taken

both for x = 0 and at infinite.

The integration is performed in the complex plane. The auxiliary function % is
introduced, based on the complex variable z = x + jy. The principles of integration
of a complex function are detailed in Appendix Al.

The function % is integrated on the closed contour (see Fig. 4.3) within which it
is holomorphic (continuously differentiable).

Cauchy’s theorem states that the path integral of a function on a closed contour
within which the function is holomorphic is zero. In this case:
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Fig. 4.3 Integration contour C

/—dx+/—dz+/R§dx+ —dz— 13)
(1) (3)

The integral (2) is carried clockwise along a semicircle o of radius ¢, to avoid the
singularity of the function % at z = 0. The integral (4) is carried along a semicircle
C of radius R.

The sum I [formula (4.12)] is obtained from the summation of integrals (1) and
(3) with the limits ¢ — 0 and R — oo.

Firstly, one gets

+o0 . + oo . + oo
/ idx: / cosx—|—]smxdx:j / qudx. (4.14)
X X X

COS X

Indeed, since the function is odd, its integration on a symmetric interval is

Zero.:
+ 00
/ O =0. (4.15)
X
Therefore:
+ o0 1 + 00 o
= / MY v =ZIm / ¢ dx

by j X

o - (4.16)



4.2 Dirichlet Integral 65

sin x 1. Rox
1= —dx=-lim——{(1)+ (3 4.17
[ im0+ (3)) (@17)

+ 00
sin x 1 R—00
I:PV/ —dx=—-lim——={(2)+ (4 4.18
[ e @) (4.18)

The integrals /a and /c are evaluated at the limits ¢ — 0 and R — oo.
@ @&

The integral (4) on C is zero when R — oo, because the function % appearing in
the integral tends to zero, which allows the application of Jordan Lemma 3 (see
Appendix 1).

Calculation of integral (2)

eiz
/—dz : (4.19)
Z

The integral over the semi-circle can be set using the angle 0 between the radius
locating the point on the semi-circle and the horizontal.

We can note z = ¢el’ and express the differential element dz on the circle of
constant radius ¢. The integral over o becomes:

0

: 0 . i0

e e’ "

/ ~dz= / gejegeﬂjde: j / e’ do, (4.20)
Z

s

where, as ¢ is very small, eitd” o @0 —
Thus

0 0
j/ei“’”’degj/de: —ir. (4.21)
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Inserting this result in (4.18), we obtain:

4 The Dirac Distribution

(4.22)

+ ; s .
(Note that we have also fo *© dy = Z,as ¥ is an even function).

X

Finally,
+ 00 A
R t
Jim 2 / o(t) 2241 = 2700(0).

Thus, returning to the notation of Eq. (4.5):

oo 0

PV/ /(p(t)ejw'dwdt: 27 (0).

Symbolically we write:

where it was noted:

PV / & dw = 21d(1).

(4.23)

(4.24)

(4.25)

(4.26)

This equation is often written (incorrectly as the main concept of principal value

is omitted) in the form:

[ &dw = 27(2).

—00

The formula (4.26) is very important. We could call it the

(4.27)

golden formula for the

calculations in signal processing because it can make easy calculations that would

be very difficult without its use.

By a simple change of variable in (4.27), we see that we also have:

[ e dw = 27d(t).

e
oo
Similarly, exchanging roles of » and ¢ we can write: |’

X eHords = 218(w).

0 ©
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4.3 Dirac Distribution

4.3.1 Definition

Sometimes, Eq. (4.25) is written as:

[ st = o0) = 0.0 (4.28)

We have noted symbolically

+ 00
PV [ e“dw =2mrd(1) (4.29)

—00

These last two equations define the Dirac distribution (¢). Sometimes one
speaks of Dirac function. This is incorrect. Indeed, d(¢) has meaning only within an
integral (4.28).

To avoid too much abstraction in the calculations, we write 6(¢) out of an
integral and visualize it (incorrectly) as a function of time with an arrow tending to
infinity at # = 0 and with a zero value elsewhere. However, one should be aware of
errors that could come from this oversimplification. In case of doubt about the
behavior of d(#) in a calculation, one should always return to the full writing (4.28).

We can find qualitatively this result by a numerical simulation:

Since el = cos wt + jsin wt, the integration of the exponential consists in two
separate integrals of cosine and sine functions of different frequencies.

If one represents graphically some cosine (Fig. 4.4), it is seen that, whatever the
frequency, their common value at + =0 is 1. While for # # 0 the cosine have

Fig. 4.4 Graph of ten cosine Graph of 10 cosine at several frequencies
functions with different 1
frequencies 08 H

06
04
0.2

02
04 :
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-100 -50 0 50 100




68 4 The Dirac Distribution

various values depending on their frequency. It is clear that if we do the sum of all
the cosine, for # # 0 the amount will be blurred by interference and we obtain 0. It
is only at # = O that all cosine being equal to 1, the sum of the infinite number of
terms will be infinite.

The sum of 5000 cosine with frequencies selected using a random number
generator is shown in Fig. 4.5 we find the maximum amplitude value in t = O to be
5000 (each cosine is 1 at this point) and the general shape of a sinc function. It is
understandable that if the number of cosines of different frequencies is infinitely
large, the limit of this sum will be a Dirac distribution.

For the sum of imaginary terms in (4.27), we have the same phenomenon of
cancellation for ¢ # 0, but as all the sine functions are zero at ¢t = 0, their sum will
be zero also.

In summary, the infinite sum of exponentials will be real, infinite at t = 0 and
will be zero elsewhere.

We must not forget that no time function can meet this definition. One talks of a
distribution. The amount found is meaningful only within an integral as defined in
Eq. (4.28).

Another view possible of the Dirac distribution is that of a rectangular pulse
centered at t = 0 (Fig. 4.6). As it is not possible to define a function infinitely short,
the Dirac distribution is defined by a passage to the limit of a rectangular pulse
I17(¢) starting at time # = —Z, with width T and height 1/T. The area under the
graph is 1, regardless of 7.

Again, 6(¢) cannot be considered as a function, since it is zero everywhere and
infinite at r = 0, a behavior inconsistent with the definition of a function. In Fig. 4.7
we represent the Dirac distribution with the convention accepted by physicists to fix
the imagination.

Fig. 4.5 Sum of 5000 cosine Sum of 5000 cosine with different frequencies
functions with random 6000 T T T
frequencies ! : :
1 T EEEEREREEEE -
4000 }
3000
2
B L1 -
L1 s S e -

-2000 | i i i
-100 =50 0 50 100
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Fig. 4.6 Rectangular pulse f i
with area 1 —

T

TT t
2z
Fig. 4.7 Conventional 0 A
representation of Dirac
distribution
0 %

The Dirac distribution can be seen as the limit of different functions dependent
upon a parameter when this parameter tends to zero (or infinite, depending on the
function definition).

In particular, one shows that one may use a Gaussian function whose spread
tends towards zero:

1 2
o) = lim—=e" 2. 4.30
() =lim——e (4.30)
We also have the following possible definition:
1 .2
o(t) = lim—=¢'2. (4.31)
c—=0Cy/JTT

2
f) = - \}j_ﬂe’? appears as a linearly frequency modulated signal.

4.3.2 Properties of the Dirac Distribution

Rigorous definition of the distribution J(¢) is given by its action on a function inside
an integral. If the function f{¢) is continuous in ¢ = 0, the following equation for-
mally defines 6(7):

/ F(1)3(1)dr = £(0). (4.32)
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Special case:
In the case where f(z) = 1, the formula (4.32) becomes:

/ o(r)dr = 1. (4.33)

Note:
In formula (4.29), the result remains unchanged if w is replaced by —w in the
integral. We will have therefore:

+ 00
PV / e dw = 218(z). (4.34)
Similarly, there will be a similar formula integrating over ¢ instead of w:

+ 00
PV / e dt = 218 (w). (4.35)

—00

4.3.3 Definition of the Convolution Product

The convolution product of two functions f{(f) and g(¥), is defined by the following
integral:

y() = [ f{)sg(t—1)dr (4.36)

By the change of variables ¢’ = t—¢', we also have:

+ 00

) = — / Fle— )g(i")dt" = / fle—Dg()dd,  (437)

—00

¢ was replaced by ¢’ in the last member of the equation.
The symmetry of the formulas (4.36) and (4.37) is noted.
The convolution integral is conventionally written by the following notation:

y(1) = f(1)©g (). (4.38)

Properties: The convolution product is commutative, associative and distribu-
tive. These results come from the properties of integration.



4.3 Dirac Distribution 71

Convolution of a function with the Dirac distribution:
This convolution is written:

+ oo

1@ = [ f-0sw = 1) (4.39)

—0o0

We applied the formula (4.28) defining the Dirac distribution to get the result
S0).

This result shows that the convolution of a function f{f) with 6(z) gives back f(z).
It is said that 6(¢) is the neutral element of the convolution product.

Translation property of the convolution of a function with o(r — #y):

The convolution of a function f{r) with d(r — #y) leads to the translation of this
function:

f(t)®5(t—t0):/f(t—t’)é(t’—to)dz’:/f(t—t”—to)é(t”)dt”
— 1l 1), h (4.40)

This last result is significant to remember:

F()25(t = 10) = f(1—10)- (4.41)

Scale change in the Dirac distribution:
Let the function f{(r) be continuous at ¢t = 0 and a a real number different from
zero. We have the following property:

1
/ F()8(ar)ds = 7 (0), (4.42)
Indeed, by first treating the case a > 0:
+ 00 | + 00 1
/ £ (ar)dr = / £(%)o0)dx = —£(0)
We have noted at = x.
In the case, where a <0:
+ 00 | —00 | + 00 |
X X
[ swstanai= [ r(Eotar=—2 [ 1(Z)ar=-1r0)
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Again, we have noted at = x. Note the sign change caused by the change in the
integral boundaries in x. Since a <0, x = co when t = —oo and x = —o0 if t = ©

The formula (4.42) assembles the two cases.

Similarly it can be shown that:

/f (at — 1,)dt = |a| ( ) (4.43)

4.3.4 Primitive of the Dirac Distribution. Heaviside
Function

As seen in formula (4.33), f TS t)dt = 1. The argument exposed now lacks of
mathematical rigor, but it leads to a result readily understandable and usable by a
physicist.

The Dirac distribution being essentially localized in ¢ = 0, the value of an
integral of o(r) will be different depending on whether the integration domain
contains the point + = 0 or not. Thus we can write:

/5(t)dt:0ift<0and /5(:)d;:11f; > 0. (4.44)

Thus we see that the integral of the Dirac distribution is the Heaviside function
U(t) (Fig. 4.8).

This function is zero for negative times and is equal to 1 for positive times. Its
value at r = 0 is not important in the calculations. Some authors take O, others 1,
others %, for the value at the origin.

Conversely we have:

e — sy (4.45)

Fig. 4.8 Heaviside function b36))
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4.3.5 Derivatives of the Dirac Distribution
The first derivative is denoted:
§(t) =—L (4.46)

Since 0(¢) is a distribution, its derivation presents a problem. To give meaning to
(1), its action on a function f(?) is evaluated through integration:

/ S (6)f (1)de (4.47)

By integrating by parts: [~ &' (1)f (1)dt = [5(0)f (1)] =, — [ 0(2)f' (¢)de.
In the case where the function f(f) vanishes at infinity, the integrated term
vanishes and we get:

/5’(t)f(t)dt:—/ S(t)f'(¢r)dt = —£(0). (4.48)

Thus &'(¢) is characterized in that its integration with a function f(z) gives the
value of that function at + = 0 with a reversed sign.

It was assumed that the derivative of the function f(¥) is continuous at ¢t = 0.

Similarly, it is shown that if the function f{#) (with a bounded support) is suf-
ficiently regular in t = 0, we have:

o

/ " (Hf (1)dt =f"(0). (4.49)

—00

More generally, noting 6" (¢) the nth derivative of the Dirac distribution, if the
function f{¢) is sufficiently regular at + = 0, one has:

/ 3" (0)f (1)de =(—1)"f* (0) (4.50)

Summary

We have defined in this chapter the Dirac distribution d(¢) which plays a key role in
the mathematics of signal analysis. The Dirichlet integral, which leads us here to the
definition of the Cauchy’s principal value was introduced for that purpose. Its
evaluation was performed in the complex plane. We found the formula
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75 e5'dw = 27d(t) which plays a very important role in calculations and which
could be called the golden formula in signal analysis. The use of the Dirac distri-
bution in calculations was exposed. Its primitive integral (the Heaviside function)
and its derivatives were defined.

Exercises

I. Represent graphically the distributions 6(f — 5) and o(¢ + 5)QU(¢).
Answer: 6(1+5)QU(1) = U(t+5).

Ui+35)1
(=5
1
0 l 5 t =] ] t
II. Show that we have:

+ 00 + o0 + 00
/ sin5¢5(¢)dt = 0 / sin 5¢6(¢ +2)dt = sin(—10) / cos5(t+2)0(r+2)dt = 1.

+ 00 |

/ cos5(1+2)0(2t +4)dr = >

III. Calculate the following derivatives: %U (¢) cos(wot); % U(¢) sin(wot).

Solution:

%U(I) cos(wot) = dUd—Et)cos(wgt) — U(r)wy sin(wor)

= 0(t) cos(wot) — U(t)wg sin(wot).

Otherwise, as 6(z) cos(wgt) = d(1),

+ oo + oo

/ (1) cos(wot)f (£)dr = cos(0)f(0) = f(0) and / o(n)f (r)de =£(0).

—00 —00
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Finally:

%U(t) cos(wot) = (1) — U(t)wp sin(wot).

Similarly:

%U(t) sin(wot) = () sin(wot) + U(t)wg cos(wot) = U(t)wg cos(wot),

because

+ oo

/ o(¢) sin(wot )f (¢)dr = sin(0)f(0) = 0.

—00

75



Chapter 5
Fourier Transform

In the previous chapter the Dirac distribution has been introduced as a sum of
exponentials e/ with all possible frequencies and amplitude as one. Equation (4.35)
can be rewritten as =PV [ & dw = §(t). Using this formula as a start, we
introduce naturally the notion of impulse response of an LTI system. The impulse
response appears to be the inverse Fourier transform of the frequency response of the
system. This leads to the general definition of the inverse and direct Fourier trans-
forms. We examine in this chapter the first main results given by Fourier transfor-
mation. The Parseval-Plancherel energy theorem is demonstrated. The important
Poisson’s summation formula which may be called the second golden formula in
signal analysis is given as

o0 o0
3 e S (o)
n=—oo TO n=—oo TO

Finally, in this chapter, we present the elements of the two-dimensional Fourier
transform.

5.1 Impulse Response of an LTI System

The impulse response of a system is defined as the system response to the input
signal 6(¢), when the system has not been prepared in advance. For instance, in the
case of a first-order electrical system met in Chap. 2, non-preparation consists in the
fact that the capacitor is not charged when the emf ¢(¢) is applied to the circuit.

In the following, the system is assumed to be linear time invariant (LTI). It is
now shown that the impulse response which will be denoted as A(z) is connected to
the frequency response of the system H(w) by integration. The reasoning is
strengthened by the use of diagrams.
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In Chap. 1 it has been shown that the LTI system response to an input is
H(jw)e!™. It was also said that the function H(jw) was often H(w) noted in signal
analysis.

_r{r\- =gl y(t)=H(w)e™
%’P_ System _)—

The system is linear, by hypothesis; its response to a sum of exponentials
(represented here by integration in the sense of principal value) is the sum of each
individual response according to the following scheme:

pv| e *de pyi H(we/do
—_—— System | —S -

If, moreover, the input signal is divided by 2x, due to its linearity, the system
response is also divided by 27n. The Dirac distribution may be recognized in the
input signal. By convention, the system output is noted as A(7).

o o T, 2
Sltj-gPrisetde B AR do

To summarize, we note that if the input signal is

+ 00
1 .
o(t) =—PV el”'d 5.1
0= 5PV [ o, (51)
the output will be
:—PV / H(w)e dw. (5.2)

The Cauchy principal value of the integral (5.2) defines the inverse Fourier
transform. It is said that the impulse response of an LTI system is the inverse
Fourier transform of the frequency response.

The principal value notation PV is often overlooked because it can embarrass
students unfamiliar with this concept. This notation is omitted in the following
while keeping in mind that the convergence of the PV is less restrictive than that of
the improper integral. However, in practical calculations, we will have the right to
let the boundaries go symmetrically to infinity in the evaluation of Eq. (5.2).
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Note that, according to the above definition of the impulse response, it exists
only if the sum (5.2) converges (in Cauchy’s sense). In particular, it is necessary for
the function H(w) to be bounded for all . Accordingly, the transfer function H(p)
of the system should not have a pole on the imaginary axis (axis jmw). It is also
necessary that the modulus of the function H(w) decreases quickly enough when
|| — oo in order for integration to be possible.

5.2 Fourier Transform of a Signal

5.2.1 Direct Fourier Transform

In the previous section, the concept of inverse Fourier transform was encountered
before the concept of direct Fourier transform. The reason is that the concept of
superposition of exponential basis of formulas (5.1) and (5.2) appears to be fun-
damental in the understanding of the Fourier transform.

The Fourier transform X(w) of a signal x(¢) is defined by the expression

+ 00

X(w) = / x(f)e s, (5.3)

—00

The existence of X(w) is dependent on the integral convergence.

We see for example that it is necessary for the function to decrease rapidly
enough at infinity so that the integral converges. A set of functions that play an
important role is the set of square-summable (integrable)functions. This set gen-
erates a Hilbert space L,.

In contrast, a periodic function, a sine example, does not decrease at infinity and
will not have a Fourier transform in the sense of ordinary convergence of an
integral. However, as noted above in the discussion of the Dirac distribution, it is
possible to give a meaning to certain non-convergent summations. The sine func-
tion has a Fourier transform in the sense of distributions.

It is conventional to use lowercase to write functions in the time domain (for
example x(7)) and to write the first letter in capital in the Fourier domain (example
X(w)). It is recommended to follow this convention that allows better tracking
during calculations on these functions. Scoring with a capital the first letter of the
Heaviside function U(¢) is a rare case where the convention is not respected.

5.2.2 Inverse Fourier Transform

Having defined in the preceding paragraph the Fourier transform X (w) of a function
x(t), it is now shown that it is possible to calculate x(¢), knowing X (w).
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Let X(w) be the Fourier transform of x(z), using the integration variable # for
demonstration purposes, we write

+ oo
X(w) = / X )e i df. (5.4)
Consider the integral
A A 4+
/ X(w)e”do = / / x(1)ee I dewd?. (5.5)
—A —A —©

We assume now without justification that the order of integration does not
matter. Reversing the order of summations, however, requires that restrictive
conditions on the convergence of the integrals are verified (the discussion of these
conditions is beyond the scope of this book). These conditions are generally met in
problems in signal analysis. In the following, the order of the summations will be
systematically switched when necessary.

As demonstrated in Sect. 5.4,

A
lim [ &“Cdw = 216(r — 7). (5.6)

A—o00
—A

By taking the limit of Eq. (5.5) when A — oo,
A + 00
lim [ X(w)e”do = / x(£)6(t — ¢)2ndt’ = 2nx(t). (5.7)

A—o0
—A —00

We use equation

The relationship (5.7) is written as

A
2nAlm / X(w)e”do. (5.9)
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Noting PV the Cauchy principal value of the integral, we have finally

+ 00
x(t):%PV / X(w)e” do. (5.10)

This formula is that of the inverse Fourier transform, which calculates x(¢) from
X(w).

As stated previously, the convergence condition of the principal value is less
restrictive than that of the integral (improper). Indeed, it is necessary to have
convergence when the limits are reached independently when the variable goes to
—oo and + oo in order that the integral can exist. In the summation leading to the
Cauchy principal value, the two bounds —A and + A tend symmetrically to infinity.
In that case, there may be a compensation phenomenon between contributions at
infinity due to the symmetry of the bounds causing a finite limit of the sum.

As already mentioned, in practice one often omits PV in giving the formula and
write symmetrically the pair of Fourier direct and inverse transforms:

Direct Fourier Transform:

+ oo
X(w) = / x(t)e 3¥dr. (5.11)
—00
Inverse Fourier Transform:
1 + oo
x(t) = o / X(w)e”dw. (5.12)

As it appears in the inverse transformation formula, a signal x(z) which has a
Fourier transform can be considered as a sum of exponentials e’ weighted by the
factor X(w). All frequencies are involved in the construction of x(z).

Thus, even a non-periodic function of time appears as a sum of periodic func-
tions (the exponential e/, This result may seem surprising. On the other hand,
how the sum of periodic functions which do not vanish at infinity could represent a
non-periodic function x(¢) that could be null at infinite?

However, this is possible. Just think of the phenomenon of destructive inter-
ference encountered in optics, in which the sum of light vibrations can lead to dark
areas on a screen.

The acceptance of the concept that Fourier developed in his famous paper on the
propagation of heat proved difficult. The community of mathematicians was divided
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at that time on that acceptance. The Fourier transform is now one of the pillars of
the modeling of physical phenomena.

Mathematically, we can consider the Fourier transform as the development of
the function x(¢) on the infinite, continuous basis of exponential e/’ with all pos-
sible frequencies. The function X(w) is the coefficient of the development of x(z)
relative to the basis function e/, It can be written as a scalar product:

+ 00

X(w) = / x(H)e 1dt = (x(1),e”").

—00

Since the scalar product (e, &) = [* el(©=)ds = 2718(w — o) is zero for
o # o', we say that these functions are orthogonal. The passage to the limit o' —
o acts as the normalization condition. The reader is encouraged to refer to the
discussion of Hilbert spaces in Chap. 3 to have a general perspective of the problem
addressed.

5.3 Properties of Fourier Transform

5.3.1 Symmetry Properties of the Fourier Transform
of a Real Signal

Let x(7) be a real signal and X(®) = Xre(®) + jXm(w) its Fourier transform:

+ 00 + o0 + 0o
Xre(®) + jXm(w) = / x(t)e 3 ds = / x(7) cos wt dr — j / x(¢) sin wt dt.

(5.13)

Identifying the real and imaginary parts of the two members of the equation, and
as x(7) is real, it becomes

+ 00

Xre(w) = / x(1) cos wt dt, (5.14)

—00

and

Xim (@) = — / x(¢) sin wi dt. (5.15)
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Since cos wt and sin wt are, respectively, even and odd functions of w, we have

+ 00
Xre(®) = / x(r) cos wrdr  even function of w

—00
and

+ 00
Xim(@) = — / x(¢) sinwtdt  odd function of w
—00

Similarly, again using parities of cos wt and sin wt functions, it is seen that the
modulus |X(w)| is even and the phase ¢(w) odd. The modulus is given by

X ()] = \/XRe(@) + X3, ()
+ 00 2 + 00 2
= / x(t)coswrdr| + / x(t)sinwedr | . (5.16)

|X(w)| is an even function because the squaring cancels the change of sign of
sin wt.
The phase

(@) = Arg(XIm(w)> _Ar — [ x(t) sin ot dt (5.17)

Xre(®) [£2x(r)coswrdr
is an odd function of w since the sign of sin w¢ changes and that of cos wt stays the
same in the change o to —o.

Special cases:

If the signal x(¢) is real and even, the imaginary part of its Fourier transform is
zero, as can be seen from Eq. (5.15) which becomes the integral of an odd function.
Similarly, if x() is real and odd, the real part of its Fourier transform is zero as
shown by Eq.(5.14).

5.3.2 Time-Delay Property of the Fourier Transform

Let f(7) = x(t — ) be the function x(¢) delayed by 7. Its Fourier transform is
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+ 00 + oo

F(w) = / x(t — to)e 1dr = / x(f)e T gy

—00 —00
We have written 7' = (t — 19).

+ 00
F(w) = e / x({)e Al = e X (w). (5.18)

—00

The Fourier transform of the delayed function is equal to the Fourier transform
of the original function multiplied by the phase factor e . This result is
important. It plays a large role in signal analysis calculations.

5.4 Power and Energy of a Signal; Parseval-Plancherel
Theorem

The power (instantaneous) P(¢) of a complex, certain signal x(z) is defined as

P(f) = x(t)x* (1) = |x(t) > (5.19)

P(1) = x(¢). (5.20)

The energy E of a signal is the integral of the power for time varying from —oo
to + oo. In the case of a real signal, the energy is given by

E= / X2 (t)de. (5.21)

The energy of a complex signal will be

+ 00

E= / x(r)[*dz. (5.22)

—00

Parseval-Plancherel theorem states how the energy can be calculated in the time
domain or in the frequency domain. It is written here in the general case of a
complex signal as



5.4 Power and Energy of a Signal; Parseval-Plancherel Theorem 85

+ 00 + 00

E= / \x(t)|2dt:% / 1X () Pdo. (5.23)
Indeed,
/ ()Pt = / () (1)db. (5.24)

Since we can write x(t) = 5= PV [ "> X(w)el”'dw, and

+00 * +o00
1 . 1 )
() =o | PV / N e / X (@)e dw.  (5.25)

Using @' as the variable of integration in one of the two integrals, we may write

+ oo + 00

x(t)fdt=— [ PV [ PV o) e 1 dwdaw'dt
( 2

We first evaluate the integral with respect to time in the second member.
Since PV f_t;c el@=)dr = 2nd(w — '), it appears necessary to evaluate the

principal value of the integral in the left side.
We have

/ ()Pt = —pv/ Pv/ X (@)X (6)5(0 — o Jdades

After integration on «’, we finally have

+ 0o + 0o + 00
1 1
PV / |x(t)\2dt:2—PV / X(@)X"(w)do = PV / 1X(w)]*dw, (5.26)
Y Y[

which is the expression of the Parseval theorem expressed by Eq. (5.23).
In practice, x(7) is often a real function of time. Parseval’s theorem in this case
takes the following form:

+ 00 + o0

E=PV / x(1)*dr :%PV / 1X(w)[*de. (5.27)

—00 —00
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The quantity |X(w) |2 appears as the spectral energy density. In practice, we note
that we can calculate the energy of a signal by integration in the time domain or in
the frequency domain. The notation PV is generally omitted in writing the theorem.

5.5 Deriving a Signal and Fourier Transform

In the following the FT X,;(w) of the derivative of a signal x(¢) is inferred from the
FT X(w) of that signal:

+ 00

_ dx(t) —jot
Xi(w) = / T dr.
—00
We integrate by parts: X,(w) = [x(r)e 3] iooc +jow ffosc x(t)e 1 dt.
When the function x(#) vanishes at infinity, as is the case for a finite energy
signal (this is not the case of a sine or cosine who oscillate indefinitely between —1
and + 1), the first term cancels out, and we have

+ 00

Xu(0) = jo / (e dr = joX (o). (5.28)

—00

Generalizing, and in the case where the derivatives of x(z) are continuous up to
order n — 1 and tend to zero as ¢ tends to infinity, we get

d"x(t) 7 ,. .,
i —(jo)"X (o). (5.29)

Conversely, in the (very unlikely) case where primitives (antiderivatives) of x(¢)
of order n are zero for t — oo, knowing the FT X(w) of the signal x(¢), we can
deduce the FT of its primitives as

(Primitive of order n of x(z)) = @X(w) (5.30)

We note that if the function x(¢) does not vanish for + — oo the above formula is
not applicable.
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5.6 Fourier Transform of Dirac Distribution
and of Trigonometric Functions
Fourier transform of 6(¢):

—+ 00
F(6(1) = / 5(1) e s — 50 — 1.

—00

Fourier transform of 1:

Since PV [ e 1'dr = 218(w), the Fourier transform of 1 is 278 (c).

87

(5.31)

Once again, only the PV of integrals appears, and strictly speaking, the constant

function f(z) = 1 has no FT if the definition (5.11) is adopted.

Henceforth, we will often omit to include PV in the formulas on the Fourier

transform to not overload the notation.
Fourier Transforms of coswyt and sinwyt:

By definition, the transform of cos wyt is

+ 00 + 00 oot oot

. Qoo 4 g—joor\
/ cos(wot)edr = / <2 e 1dr.
—0o0 —00

By the sum of two integrals, we have

+ 00

(5.32)

+ o0
1 . 1 )
E / C_J({“er”)tdt—‘r 5 / e—_](w—wo)tdt _ 7'(5(60— 600)—1—7'5(3((1)4-600). (5.33)

—00

So
F(cos wot) = nd(w — wp) + nd(w + wyp).
Similarly, we have

F(sinwot) = —j (m6(w — wg) — mé(w + wy)).

(5.34)

(5.35)

In Fig. 5.1 we see the real part of F(cos wt), and the imaginary part is zero.
The imaginary part of F(sin wo?) is shown in Fig. 5.2. The real part is zero.
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Fig. 5.1 Fourier transform of Fleosayt)
cos wot 70 (0+ W) 78 (-
—@, Ol @ [0
Fig. 5.2 Fourier transform of Im(T(sineat))
sin wot o (@+a)
-, 0| w, %]

Fourier Transform of a Dirac comb

A Dirac comb is a periodic sequence of Dirac impulses (Fig. 5.3). The period of
these pulses is noted Ty:

r, (t) = i S(t-nT,). (5.36)

N=—co0

Calculation of the Fourier transform of this comb:

o oo

Fllls, (=] 3 8(=nt)ea= 3, [ o(t=nT)e ™ ar= Y ™. (537)

~® p=—co N=—c0 = n=—co

It was assumed that the conditions for interchanging the order of summations
were met. This sum appears as the Fourier series of a periodic function of @ with
period ZT—’J, because each exponential is periodic in w. The result of this summation is
noted Y(w). As shown in Eq. (5.31), the coefficients of its Fourier series are all
equal to 1.

Fig. 5.3 Dirac comb | )

§5

\f
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According to the general properties of Fourier series, they can be deduced from
Y(w) by the following formula:

his

Tp

T .
= ﬁ Y(w)e™ T dow. (5.38)

Ty

c, =1

We see qualitatively that the only way to get 1 regardless of n, i.e., regardless of
the speed of variation with @ of the exponential functions, is that Y (w) is zero for
all frequencies except for @ = 0. Y(w) cannot be a function because it is too
irregular. It is the Dirac distribution d(w) (within a multiplicative coefficient).

Between — Tlu and Tlu, we must have
o,

Y(w) = 7

(). (5.39)

Finally, as Y(w) is periodic, we have the following:

Poisson summation formula
= - 21 & on
—jonTy _ =7 _
n;w e b= T n;w 0 (a) n To) . (5.40)

In conclusion, it is seen that the Fourier transform of the Dirac comb with
period Tj is a Dirac comb with period %:

Tl (1) =27”<LU 2nim, (@) (5.41)

0

As will be seen in Chap. 6, the Poisson formula plays an important role in the
calculations of the Fourier transform of periodic signals.

5.7 Two-Dimensional Fourier Transform

Let x(t1,1;) be a function of two variables. Its two-dimensional FT is defined by

+o00 400

X((U] R (}Jz) = / / x(ll s 12)67j011[1eijwztzdlldlz. (542)

—00 —00
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It may be shown as above (formula 5.12) that the inversion formula is

+o00 +00
1 ) )
x(tl, t2) = E / / X(wh O)Q)GJ("I[I ej‘"zlzdwldwg. (543)

The principal value notations of these integrals have been omitted.

This transformation is widely used in the field of treatment of 2D images. In this
case, the time variables ¢, #, are replaced by space variables x;,x,. The conjugate
variables are noted as ki, k, and are called spatial frequencies. One has, therefore,

+o0 +00

F(kl 5 kz) = / / f(x1 ,xz)efjk'x'efjkmdxldxg (544)
and
1 +00  +00
flxi,x) = o / / F(ky, ky)e* ™1 e*2v dk, dk,. (5.45)
m
Using of a vector notation and writing X = jccl and k = il , we also have
2 2
+o0 400
F(kl , kz) = / / f(xl ,xz)efjk'j‘dxldxz (546)
and
1 +o00 +o00
f(xl,xz) = H / / F(kl,]Q)ejk'zdkldkz. (547)

These formulas can be written in polar coordinates r, 0, and k, ¢ with

xy =rcosB;x, =rsinf and dx;dx, = rdrdf.

. (5.48)
ki =kcos¢p;ky =ksing and dkidk, = kdkdp.

+o00 2m

F(ki, ky) = / / f(r, 0)ehireosle=ikorsindyq,.q() (5.49)
0 0
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and

+o00 2m

1
/ /F k ¢ e]krcosgb(,os@e]krsm(bsm@kdkdqs (550)
0 0

“ i

f(r,0)=

Special case:

If the function f(r, 0) depends only on r, the formula (5.49) becomes

+ oo 2n
F(kl,kz): / f(r)rdr/e*jerOS(bCOSOe*jkrSind’Sinodg, (551)
0 0
or
+ 00 2n
F(ki, ky) = / f(r)rdr / e kreos(9=0)qg,
0 0

The following important mathematical result is now used:
/ ereosfd) = 2mgy (kr), (5.52)

where Jy(x) is the first kind Bessel function of order 0.

The integration on 0 being performed over the period of the cosine function, the
integral no longer depends upon ¢.

We then have F(ki, ky) = 27 [,° f(r)Jo(kr)rdr.

It is noted that the result depends only upon k = /A7 + 3.
We have
F(k) =2 / f(r)Jo(kr)rdr. (5.53)

0

Conversely, the formula (5.50) becomes

+ 00
1
= — F J k kdk. 5.54
2n/ o(kr) (5.54)
0
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We say that the functions g(r) =2nf(r) and F(k) are Hankel transforms
(Fourier—Bessel transforms) of each other.
More generally, the Hankel transform of order n(n > — %) of a function f(r) is

oo

F,(k) = /f(r)J,,(kr)rdr. Inversely f(r) / F,(k)J,(kr)rdr. (5.55)
0

0

Ju(x) is the first kind Bessel function of order n.
Let us recall the orthogonality property of Bessel functions:

/Jn W(K'r rdrféé(kfk/), (5.56)
0

with k, k' > 0.
Parseval-Plancherel theorem:

oo o0
/ r)rdr = / F, (k) G,y (k) kdk. (5.57)
0 0

Summary
Using the definition of the Dirac distribution, we have been able to show that the
impulse response of an LTI system is the inverse Fourier transform of its frequency
response. The direct and Fourier transform formulas result naturally. The important
property of the phase factor induced by a time delay of a signal is given. The
Parseval-Plancherel theorem is demonstrated. First important results were obtained:
the Fourier transforms of a Dirac distribution, trigonometric functions, and a Dirac
comb. The second golden rule of signal analysis, the Poisson’s summation formula,
was established. We have given elements of the two-dimensional Fourier transform.
Next chapter will study the use of Fourier transform in analyzing linear, sta-
tionary systems.

Exercises

1. Recall the value of the FT of function h(t) = L-e % U(t). Give the FT of % by a
direct calculation and by using Eq. (5.29).

2. Use the orthogonality property of Bessel functions given in Eq.(5.56) to verify
the coherence of the two-dimensional transform pair given in Egs. (5.53) and
(5.54).

3. Using the integration property [ Jo(x)xdx = xJ;(x), find the 2D Fourier trans-
form of a circular disk (Result known as Airy pattern in optics).



Chapter 6
Fourier Transform and LTI Filter Systems

In the previous chapter, the Fourier transform and its inverse have been introduced
in a natural way by studying the response of an LTI system using a sum of complex
exponentials & of equal amplitude. The response of an LTI system to any form of
input signal is studied in this chapter. We demonstrate the relationships in the time
and frequency domains between the input and output signals. A convolution in the
time domain corresponds to a product in the frequency domain. We give the
expression of the Fourier transform of the product of two functions. The formula of
the FT of a periodic function establishes a bridge between Fourier series and
Fourier transform. The deterministic correlation function is defined. The important
application of measuring the delay between an impulsive signal and its replica is
detailed. We give as an example the use in radar and sonar of a chirp signal. The
spreads of a signal in time and frequency domains are defined. The Heisenberg—
Gabor inequality is demonstrated. This inequality becomes equality in the case of a
Gaussian signal. The chapter concludes with a discussion of the impossibility for a
signal to have infinite supports simultaneously in time and frequency domains.

6.1 Response of a LTI System to Any Form
of Input Signal

The reasoning is illustrated by a series of diagrams.
By definition of the frequency response of a system to an input of the signal with
form e, the output signal will be written as H(w) e/":

. ot
el H (@Jej

—— System | —>
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If the input signal e’ is multiplied by an amplitude X(w), the system being
linear, the output will also be multiplied by X (w):

X(@)ei™ X(o)H(@)e/™
— = ! System |}—

The input signals are superimposed by an integration over . The system lin-
earity leads to an integration of individual response outputs:

jw X(@)e™do J'i X (0)H (w)e/*da
~ o | System |3

To complete, dividing by 27, it shows the inverse Fourier transform of X(w).
Linearity results in the output division by the same factor 27:

*(0)=o [ X (@)e™do r— Y()=5= " X (0)H(w)edo
_— _}—

In summary, an input signal is given by

+ o0

X(0) = 5 / X ()™ doo. 6.1)

—00

The system will provide the output signal y(¢) whose form is

y(t):%/ H(w)X(w)e/ do. (6.2)

Denoting Y (w) the Fourier transform of y(z), it is seen that we have the fol-
lowing property:

Y(w) = H(w)X(w). (6.3)

Thus, the Fourier transform of the output signal of an LTI filter is the product
of the Fourier transform of the input signal by the filter frequency response.
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6.2 Temporal Relastionship Between the Input
and Output Signals of an LTI Filter

One starts from Eq. (6.2): y(1) = 2 [ > H(w)X (w)e”do.

In this expression, we use X(w) = [ x(¢)e7*df in the integral giving y(7),
and then swaps the order of integration (assuming that the conditions for the
validity of the permutation in integrations are met):

1 + 00 + 00 . )
y(f) / H(w) / x(£)e 1 df'e” dw

"2z

e (64
= 7)di' — H(w)e"dw.
| st s [ )
The integral on  gives h(t — ). We thus have
+ o0
y(1) :/ x(¢)h(t —1)dr. (6.5)

One recognizes a convolution integral that we will note symbolically as

¥(1) = x(t) © h(z). (6.6)

It is noteworthy that the output signal of an LTI system (not prepared) is the
convolution of the input signal with the system impulse response.

Note The convolution product of x(¢) and k(z) does not provide a complete solution
to the problem in the case where the system is “prepared” by initial conditions. In the
case of the first-order system found in Chap. 2, this preparation corresponds, for
example, to an electric charge placed on the capacitor plates prior to application of
the input signal. In this case, the general solution comprises additional terms.

Physical systems are generally damped; these additional terms disappear in the
long run where only the term x(¢) ® h(z) is likely to remain. We will call the first
term as transient, the term resulting from the convolution representing the sta-
tionary solution.

Direct proof of formula (6.6).
Using the property of the Dirac distribution, we write
x(r) = / x(7)o(r — 1)dr. (6.7)

—00
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The output result of the action of the system operator O on the input signal is

+ oo

(1) = O(x(1)) = 0 / X(x) 8(t — 7y de . (6.8)

—00

Due to the linearity, we can swap the integral operator and the system
operator O:

(1) = / X(x) 0(3(t — 7)) de. (6.9)

Note that the operator O did not act on x(t) which is considered as the weight
assigned to the Dirac pulse 6(r — 7) which is a function of time 7.
By definition of /(z), we have

h(t) = 0(0(r)). (6.10)
Since the system is time invariant we have
O(o(t — 1)) = h(t — 7). (6.11)
It now comes using the system linearity property:

+ 00

W(e) = / *(2) h(t — 7) de = x(t) @ h(2). (6.12)

—00

In summary, it has been shown that the Fourier transform of the convolution of
two functions is the simple product of the Fourier transforms of these two functions:

(1) = x(t) ® h(r) is transformed into ¥ (w) = X(w)H(w).|

6.3 Fourier Transform and Convolution in Physics

Many physical systems have the LTI property. The propagation of an electrical
signal, light or sound, in a medium can be interpreted as the passage of a signal in a
filter, most often LTI. As has been shown, after passing through the filter, the signal
is the convolution of the input signal by the impulse response of the filter. Some
convolution products are calculated in Chap. 7, and we will find that even in the
simplest case, the calculation is thorny. In contrast, in the frequency domain, the
Fourier transform of the output signal is simply the product of the input signal
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Fourier transform by the system frequency response. Thus, most often in Physics,
system analysis will be performed for a monochromatic input signal in the system.
The response to any signal is obtained by inverse Fourier transform of the product
of the monochromatic output function (frequency response) with the Fourier
transform of the input signal.

6.4 Fourier Transform of the Product of Two Functions

The formula now demonstrated conveys great interest in practice.
Consider the product of two functions

g(t) = x()f (2). (6.13)
Calculation of its Fourier transform:

+ oo

Glw) = / (O (e dr. (6.14)

Expressing f(¢) from its inverse FT,
+ o0
1 + o0 ., )
G(w) / x(t)/ F(o')e e dodt. (6.15)

21 ~
—00

By interchanging the order of integration,

| +oo + o0 1 + 00
G(w):%/ F(o')do' / x(t)e’f(w"‘”’dt:%/ F(o)X(w — o) do.

(6.16)
A convolution integral is recognized as calculated in the Fourier domain.

Thus, the Fourier transform of a simple product of two functions of time is the
convolution of the Fourier transforms of the two functions divided by 2n:

g(t) = x(2)f (¢) is transformed in G(w) = %X(a)) ® F(w). (6.17)
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6.5 Fourier Transform of a Periodic Function

The development of a periodic function in Fourier series was studied in Chap. 3.
+ o0 .
The periodic function f(¢) of period 7 is written in the form f(r) = > c¢,e"*".

n=—00

The Fourier coefficients are given by integrals over one period:

T .
¢n =7 [ f(t)e " dr.
0

We seek here the relationship between the Fourier transform of f(¢) and the
coefficients of its Fourier series expansion. We denote f;(¢) the function equal to
f(¢) over a period and zero elsewhere. The function f(¢) appears as the infinite sum
of the function fy(#) and its translated of all the multiples of the period T;:

flo) = ZOO Jo(t —nTy). (6.18)

n=—0o0

Using the property that the translated of a function can be written as a convo-
lution fy(r — nTy) = fo(t) ® 6(t — nT), we can rewrite Eq. (6.18) in the following
form:

+ o0
@) = Z fo(t) @ 6(t — nTy), (6.19)
or using the distributive property of convolution:
+ o0
f6)y=fo(y@ Y 8t —nTy). (6.20)
n=—oo

Calculation of the FT of f(z): The FT of this convolution is equal to the products
of FTs.
We can write

T + oo + o0
F(0) = Fo(w) / > ot —nTy)e ”dr = Fo(w) > e (6.21)

with

+ oo T
Fo(w) = / e ar = [ e ivar (6.22)
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Using the Poisson summation formula (see Chap. 5), we get

F(w) = Fy(w) Zx o(w — nwy), (6.23)
and we can write
F(w) = ZD:C Fo(nwy)o(w — nwy). (6.24)

The spectrum of F(w) is a line spectrum, a Dirac comb. The weights associated
with each Dirac distribution are the values of the function at theirs abscissa:

T,
Fo(nwy) = / folH)edr = ¢, (6.25)
0
It was recognized in Fy(nw;) the coefficients ¢, of the Fourier series of f(z).

The results of this section are important since they provide a bridge between
Fourier series and Fourier transform developments of a periodic function.

6.6 Deterministic Correlation Functions

The deterministic cross-correlation function of two signals x(¢) and y(z) is defined
by the integral

+ o0
ro (1) = / x(t+ )y (F)dt. (6.26)
Its Fourier transform is
+ 00 + o0 + 00
Ry(w) = ro(t)e 3" de = / ¥y (1) / x(t 4 1)e 7 duds,
+ oo + 00 (627)
Rol) = [ y0) [ X@eat=x(@) @)

The deterministic autocorrelation function of a signal x(¢) is defined by the
integral
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c(t) = / x(r47)x" (r)dr. (6.28)

For a real signal this operation is equivalent to multiplying the signal by its
translated version of the parameter value —r.

We can reveal a convolution product by the change of variable ¥ = —r. We have
+ 00
o(x) = / (= )x(z — £)df = x*(—1) ® (). (6.29)

We note that in the case where the function x(¢) is real, the correlation ¢() is
equal to the convolution of x(r) with its reversed in time x(—7).
The Fourier transform of the autocorrelation function is denoted C(w) as

+ o0

Clw) = / c(t)e " dr. (6.30)

—00
Taking the FT of the convolution yields
C(0) = X(0)F(x' (<1)) = X(@)X*(0) = [X(0)]". (6.31)

One would deduce directly this result from the relationship (6.27).

Referring to the Parseval theorem on energy, |X(w)|* is called the spectral
energy density of the signal.

By extension R,,(w) = X(w)Y*(w) is called the spectral energy density of
interaction of the two signals x(¢) and y(z). In the case where the function x(z) is
real, we have

c(t) = / x(6)x(¢ + 7)dr. (6.32)

When x() is real, its FT verifies the relationship X*(®) = X(—w). We will also
have in this case:

Clw) = X(0)X(—o). (6.33)

Localization of the maximum of the autocorrelation function of a real signal
The following inequality is verified:

le(7)| < ¢(0). (6.34)
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This property is demonstrated in the following in the case of a real signal x(z).
For any real parameter A, the next integral of the squared quantity is always positive
or null:

/ (x(t 4 7) + 2x(1))? dt > 0. (6.35)

Developing the square within the integral:

/ (@1 + 1)+ 22x(1) (1 + 1) + 22x(1)) di 2 0,

—00

or
¢(0) +27c(7) + 22¢(0) > 0. (6.36)

The left inequality member is a quadratic polynomial in 4. To be always positive
or zero it is necessary that, ¢(0) being positive, it has no root. That is to say, its
discriminant must be negative or zero. Thus, the polynomial coefficients must
verify the following condition: ¢*(7) — ¢*(0) <0, and because c(0) is always
positive or zero: |¢(1)] <¢(0). Q.E.D.

We notice that the maximum of the autocorrelation function modulus is located
in T = 0. This property is widely used in signal analysis, such as in radar or sonar,
to calculate the delay of a replica of a signal relative to the signal transmitted to
probe the environment. Indeed noting y(z) the echo signal delayed by b, y(7) =
Ax(t — b) (b is the replica delay).

i(7) = / () y(t+7)dr = A / A)xi—brod.  (6.37)

The cross-correlation function i(7) will have its maximum for —b 4+ 1 = 0, so for
T=0>.

In the following simulation a chirp function was chosen, which has the
remarkable property of having an autocorrelation function very localized in time. It
is shown how one can determine the delay of the second signal, delayed by 400 ps
by pointing to the maximum of the cross-correlation function (Fig. 6.1).

Due to the continuous variation of the frequency, for a slight time lag, the
function oscillations of different frequencies are multiplied, which leads to cance-
lation of the integral of their product. The cross-correlation is very localized in time
and the delay easily measured (see Exercise VI). This property is the reason of the
wide use of chirp signals in radar.
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Fig. 6.1 a Chirp function; b Delayed chirp; ¢ Cross-correlation

6.7 Signal Spreads. Heisenberg—Gabor Uncertainty
Relationship

To measure the spreads in time ¢, and frequency o, of a signal, the following
definitions of these quantities are used:

17 1
7= / Al =5 [ olF@) do.  (638)

—00

where E is the signal energy: E = [~ IF(2) | de.

The decay at infinity of functions |f(r)|* and |F ()| are assumed fast enough to
ensure the convergence of integrals. According to Parseval’s theorem (see Chap. 5),

o0

_ / o) dr =5 / IF(0)] do. (6.39)

—00
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Care is taken to choose the origins of time and frequency, such that

/zv@szo and /nmﬂdewzo (6.40)
We show now that if the condition
Vif(t) — 0, (6.41)
is verified when || — oo, then
00y > > (6.42)
with equality occurring only when
£(1) = Ae™™ . (6.43)
For ease of demonstration, it is assumed that function f(z) is real.
According to Schwarz inequality, we can write
/ oy d / Afrde / (6.44)

Integrating by parts the first member and using the assumption (6.41) and taking
E =1 to facilitate writing,

/tffdt /th];—tfz

—00

_7/ frdr = (6.45)

According to the properties of the Fourier transform of the function f(¢) which is
assumed regular,

_ % /_ } ?|F (o) do, (6.46)

since FT of ?1 is in this case joF (o).
By transferring these results in the inequality (6.44) we have the inequality

[o.¢] oo

% / f> dro— / ?|F(0))* do, (6.47)

—00 —0o0
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trw?
The Schwarz inequality becomes an equality if the two terms in the integral

) i < 6202, which demonstrates Eq. (6.42).

(6.44) are proportional, that is to say if d—’; = ktf, as can be seen by solving this

differential equation, if

F(1) = AekT = Ae ", (6.48)

(with o > 0 to make integration of f(¢) possible).

Thus, the Gaussian function has the property to have a product of spreads in time
and frequency minimum. This property has been recognized by Gabor. It proposes
the use of this function limited to its central part as a sliding multiplicative window
for the calculation of the spectrogram (see definition in Chap. 12).

The inequality ¢,0,, > % implies that we cannot arbitrarily make the spread of a
signal small in the time domain or in the frequency domain without an expansion in
the conjugate domain. This inequality is identical to the Heisenberg uncertainty
relation encountered in quantum mechanics. It is known in the field of signal
analysis as the Heisenberg—Gabor inequality. Using the time and frequency vari-
ables, this inequality takes the form

1
005 > yp. (6.49)

or, noting, respectively, T and B the spreads of the signal in the time and frequency
domains,

1
BT > . (6.50)

Impossibility for a signal to have simultaneously finite time and frequency
supports

The above inequality does not inform about the possibility that a signal has limited
supports both in time and frequency. We now show that it is impossible to have a
limited time support width 7 when the frequency support is limited to a band B.

Inversion Fourier formula would be written otherwise as

+4
1 - T
)= [ X(w)d”dw=0 wh 1> =. 6.51
K0 =55 [ X(@e"do=0 when 1> 7 (651)
¥
If x(z) was zero outside support [— g , g , it would be the same for its derivatives,

and its nth derivative could be written as


http://dx.doi.org/10.1007/978-3-319-42382-1_12
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l\)\ac

T
wt . -
dt” 27r/ (jo)"'X(w)e” dw =0  when [f| > 5 (6.52)

Taking any time s within the range [— g , 2] using the inversion of the Fourier
formula, we can write

2

1 .

x(s) = oy X(w)e™ dw
-4

We can also write

2

1 o
Ks) =5 [ X e do, (6.53)

)

We can replace in the integral the exponential by its development in Taylor
series:

- Z [’w (s = 1) (6.54)

n=—0o0

Substituting this expression for the exponential in Eq. (6.53),

x(s) = / _Z []w ej“” do
E » (6.55)
:% > w / X () (jo)" s do

.
The last integral is null by hypothesis, according to Eq. (6.52). This logically
leads to x(s) =0, for any s in the range [—Z,Z], which is contrary to the
hypothesis.
We thus arrive at the result that the condition (6.51) is impossible to achieve for
a band-limited signal. A signal may not have both a limited frequency bandwidth
and be limited in time to a finite length interval.
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Summary
We have demonstrated the relationships in the time and frequency domains between
the input and output signals of an LTI system (convolution in the time domain,
product in frequency domain). We showed that the Fourier transform of the product
of two functions is the convolution of their FT divided by 2n. The use of distri-
butions allows considering Fourier series as a special case of Fourier transform. We
have defined and discussed the properties of the deterministic correlation function
which is of uttermost importance for the comparison of two signals. We have
shown the interest of using a sweeping frequency signal (chirp) for target local-
ization by correlation radar. The spreads of a signal in time and frequency domains
have been defined and the Heisenberg—Gabor inequality demonstrated. The
advantage brought by a Gaussian signal has been shown. The chapter concludes by
exposing the impossibility for a signal to have infinite supports, simultaneously in
time and frequency domains.

In the next chapter, several Fourier transforms of useful functions and convo-
lution calculations are given.

Exercises

I. la. Calculate the Fourier transform of the function f(#) = sin wyt.

1b. Note I17(¢) the rectangular window centered at the origin with width 27
I7(r) =1 if |f|<T and O elsewhere. Calculate its Fourier transform.
Specify the zeros of this function.

2a. Let the function g(¢) = f(¢)I17(¢) Deduct from Question 1 the Fourier
transform of g(#) (a convolution calculation).

2b. It is assumed that the half width T of the rectangular window is exactly
three times the period Ty of (7). Show that the function g(¢) is con-
tinuous. What can be expected on the decay of the high frequency
spectrum of g(7)?

3. By a drawing show how the superposition of the two sincs in the fre-

quency domain results in a partial compensation of the lobes at high
frequencies.

II. An electronic multiplier circuit provides the product y(#) of a function x(7)

with a Dirac comb p(¢) = 5. o(r —nT).

1. Calculate the Fourier transform Y () of y(¢) = x(¢)p(¢).

2. Ttis assumed that the spectrum of x(z) is limited to an interval {—f;,,f }-
Give the frequency response of a filter that retrieves x(¢) from y(¢).

II. Spectrum analyzer.

1. Let the function f(#) = cos wyt. Calculate its Fourier transform F(w).
2. Let the rectangular window TI(7) = 1 for 0 <z <T, and equal to O elsewhere.
Calculate the Fourier transform W(w) of the function TI(z).
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ig. 6. i h
Fig. 6.2 Bartlett window B( f)

T

-+

3. It is assumed that T = 107, where Ty = Z)—Z Represent F(w) and W(w) func-

tions moduli.
4. A spectrum analyzer calculates the FT of a signal f(¢) multiplied by the rect-
angular window I1(r). We note g(¢) the product. g(r) = f(¢)I1(z).

a. Calculate its FT G(w).

b. Show that this function is the sum of two functions, and represent their
respective moduli.

c. Explain why G(w) will be an estimate of F(w) which improves as the width
T of the window is larger compared with the period T, of the cosine.

5. Bartlett window B(z) is defined as the triangular window shown in Fig. 6.2.

Assuming that this function B(¢) is given by B(r) = I1(¢) ® I1(z), calculate its

6. Justify the interest, when performing the spectral analysis, to multiply the
function f(¢) = cos wyt by the Bartlett window rather than by the rectangular
window to estimate the spectral amplitude.

IV. Lock-in amplifier.

1. Let the function x((#) = cos wot. Calculate its Fourier transform X, (w). Graph

this FT.

. Let the signal x,(f) = x3(#). Calculate the FT X»(w) of x,(¢) using the fact that
x2(t) is the product of x((z) by itself and the theorem giving the FT of a product
of two functions. Graph X, (w).

. Why can we say that [* x,(r) df = X,(0)?

. Evaluate the energy E of the signal xo(¢) in the time domain: E = [~ _x3(r)ds
and in the frequency domain (in the latter case, rely on Question 3. One can
discuss starting from the graph of X;(w)).

. Let f(¢) = Ap cos(wot + @) + Aj cos(w 1+ @) be a signal where Ay and A
are two positive real constants. Calculate the FT F(w).

6. Represent individually the FT of each component in F(w). Qualitatively infer

the shape of the spectrum F(w).
7. Consider the rectangular window I1(z) = 1 for 7% <t< g and O elsewhere.

[\

B~ W

W
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Calculate the Fourier transform W(w) of the function TI(7).
Calculate the Fourier transform G(w) of the function g(7) = II(¢) cos(wat + @,).
Represent this FT.

. A lock-in amplifier is an apparatus which, to assess the magnitude of a

monochromatic component in a signal f(¢), performs electronically the fol-
lowing operation (product and integration): M = [~ _f(r)g(t)ds, where the
function g(¢) is given in the previous question.

The following questions help to understand the operation if the function f(¢) has

the form given in Question 5.

a.

b.

Calculate the FT of the product f(#)g (7). Graphically explain the composition of
the spectrum.

Building on Question 3, give the conditions upon w; and ¢, for M to be great.
Show that if w; > wy we can evaluate Ay or Aj.
Solution:
. X(®) = n(6(w — wo) + 6(w + wyg)) refer to the drawing in the course.
Xa(®) = 5-X() © X(0) = 5 7(5(0 — @0) + 50+ 00)) & (30 — 00) + (e + )
Xa(®) = 7 (3(e = 200) +25(e) + (0 +20))

. Since X (w) = [%_x(t)e7dt, for @ = 0 we have X,(0) = [~ x,(r)ds
. Since the signal is periodic, its energy is infinite and the integral of the square

will not converge. In the frequency domain, the energy is X>(0) and is infinite
due to the term 7o(w) which is infinite in @ = 0.

F(w) =Aon(d(w — wp) — d(w+ wg)) cos @y — Agrj(d(w — wo) + 6(w + wp)) sin @
+A17(d(® — w1) +0(w~+ wy)) cos p; — Ami(d(w — ) — (@ + wy)) sin ;.

. The real and imaginary parts of F(w) are each constituted of two Dirac

distributions.

- W(w)=Tsine(Z); Glw)=2LTsinc(Z)®@ (a(8(w — w2) — 5w+ ws))

cos @y — mj(0(w — w2) + 0(w + ) sin @,).

Convolutions with Dirac distributions result in translations of the sinc function.

. a. The FT is 3-F(w) ® G(w). We have translations of the sinc function.

b. M is also the value of FT in the previous question in w = 0. There must be a
translated sinc with a maximum in w = 0. We must have w, = w; or
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wy = wy. If the angular frequencies w; and wy are very different, the sinc
functions are widely spaced and overlapping is negligible. We can then
determine Aq (or A;). Phase ¢, is set to be equal to the phase ¢, (or ¢,), to
get M to be maximum. Therefore, we can measure the magnitude and phase
of each component 1 or 2 by choosing the frequency w;, and phase @,.

V. Consider the Bartlett window A7 (7), shown in the following figure:

Mg (t)

Using the results of the course, answer the following questions:

1. Calculate the energy of the signal A,r(¢) by integration in the time domain, and
by integration in the frequency domain. Recall the general theorem giving the
equality of these calculation results.

2. Calculate the spreads of this signal in the time and frequency domains. Verify
that their product satisfies the inequality Heisenberg—Gabor.

0 sln X 0 sin x w. [ sm X
Reminder: [~ de=m [0 S0 Xde =12 7 dx =
Solution:

1. The energy of this real signal is defined by E = f A2 ) dr. After integration,
E=3T?. By Parseval-Plancherel theorem, the energy is also E =
L[ A(o)do
A(w) is given by A(w) = T?sinc?(%L).

Then E=4+[" (T2 sin ¢ (“’ZT)) dco =L [“sinct () do = 2L

2.0 l Ef t2A2 {_0 ’ O-(l) 27‘[E f (,02|A( )|2d(l) - % .

010, = \/% > 5. The Heisenberg—Gabor inequality is verified.

VI. A complex chirp is expressed as x() = el(en(r+ar)) wp and a are two real
constants.

1. Calculate its autocorrelation function.
2. In practice the integration interval is necessarily limited to [-T,T].
Calculate the autocorrelation of the time limited signal.

Solution:

L ro(t) = [0 x(t+1)x*(r)dr.
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e ¢}

I‘m(’f) _ / ej(wo(l+T+a(t+r)2))e—j(wg(t+ar2)) dr = / ej((»g(r+2atr+afz)) dr

—00

ree(t) = el®oteiooat 70, et dp = el 2 15(2moat), or rg(t) = 2md

(2mpar).
This result shows the efficiency of the use of a chirp in radar target localization.
2. By assumption, in practice, the signal is limited to [0, T]. Its autocorrelation is

T T
rxx(f) _ / ej(wg(t-&-r+a(t+1)2)>e—j(w0(t+atz)) dr — / é((l)[)(’(-‘rzal’f-l-a’[z)) dr.
-T -T
) ) , T . . ejZ(uUaTr _ e—ijOaTr
Vxx(‘f) — lmotgionat’ / el2moart g, e]wgre]wgarz
T 2jmpat
re(t) = eielonar’ sin(2woaT't)
w woart
in(2woaT
(o)) = [FR229TD| o in e 2e0aT ).
wodt

1/2 the width of the correlation peak is obtained by #3+ sinx — (), therefore for xo = 7.
It comes 79 = 2w — The width tends to zero for large T,wo,a



Chapter 7
Fourier Transforms and Convolution
Calculations

This third chapter on Fourier transforms deals with the application on practical
cases of the theorems on Fourier transform and convolution established in previous
chapters. The Fourier transform of common windows used in signal analysis are
evaluated. Successively rectangular (also called boxcar), triangular (Bartlett),
Hanning, and Gaussian are considered. We use the notions on complex integration
given in Appendix 1 to calculate the Fourier transform of Gaussian functions We
show on practical examples that for smooth, time-limited signals, the decrease of
the Fourier transform at infinity is related to the continuity properties of the signal at
its boundaries in the time domain. The smoother the junction is in the time domain,
the faster the amplitude of the Fourier transform decreases at infinite frequencies.
Examples of calculations of convolution are detailed at the end of this chapter to
help diminish the risks of errors often made. The chapter ends with a table of
Fourier transforms of common functions.

7.1 Fourier Transformation of Common Fonctions

7.1.1 Fourier Transform of a Rectangular Window

Note IT7(¢) the even function, equal to 1 for || < £ and 0 elsewhere (Fig. 7.1):

T
L Jij<3

Mz (r) = 0 elsewhere’

(7.1)

This function is symmetrical around ¢ = 0, with width T. Let us calculate its
Fourier transform

© Springer International Publishing Switzerland 2016 111
F. Cohen Tenoudji, Analog and Digital Signal Analysis,
Modern Acoustics and Signal Processing, DOI 10.1007/978-3-319-42382-1_7
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Fig. 7.1 Rectangular g
window ]‘lr(t)
1
=z G P 3
2 2
) 7](02 e](oz
W, (o) = / Ty (f)e dr = / e =" "% " (79
’r
2
)
2sin2l 27 sin2l sin 2T oT
2 2 _ 2 _
Wy(w) = o e 1 T o Tsmc<7>. (7.3)

We used the classic notation % = sinc(x) that defines the cardinal sine function.

The shape of the Fourier transform is given in Fig. 7.2. The amplitude of the
main maximum is evaluated by taking the limit for @ — 0 of W,(®). As smﬂ 1s
equivalent to % for small values of w, we have W,(0) = T.

We now WlSh to estimate the value of the second extremum (negative here). We
seek an extremum of a function of the form F(x) = TS,

The abscissa of the function extrema is obtained by cancelation of its derivative
with respect to x

Fig. 7.2 Fourier transform of

a rectangular window W, (@)
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d /sinx XCosx — sinx
(=) === """ _\. 7.4
dx( X ) X2 (7:4)

This derivative is equal to zero for values of x such that tgx = x. The tran-
scendental equation is solved numerically or graphically. The first solution after
x =0 1S xpaxz = 4.4934.

The relative amplitude of the second extremum with respect to the main lobe is
given by

[W (Xmax2)| sin4.4934

The abscissa of the following secondary extremum is x = 7.7252. Its relative
magnitude is 0.1284, or in decibels, —17.83dB. We also note that except for the
first solutions, the solutions x; are close to the values %“ with & odd. When
approaching the value of the first secondary extremum by the function’s value
—17.9dB for the abscissa x = 37” = 4.7124 making the numerator maximum, the
error on the evaluation of this extremum is below 0.1 dB.

It will be noted to complete that the high frequency envelope decay of function
W,(®) is as % This decrease with w is slow (6 dB per octave). This slow decrease

reflects the discontinuous nature of the function Iy (7).

7.1.2 Fourier Transform of a Triangular Window

The convolution of the rectangular window IT7(z) with itself is a triangular window
Aor(r) with width 27. It is called the Bartlett window in signal analysis (Fig. 7.3).

Azr(l) = HT(I) ® HT(I). (76)

The theorem of the Fourier transform of the convolution of two functions states
that the Fourier transform of the convolution product is equal to the product of the
functions Fourier transforms. The FT of the function A,7(#) will then be the square
of the FT of I17(¢) seen in Fig. 7.4

Wi(w) = W () = T?sin ¢? <%T> (7.7)

Fig. 7.3 Bartlett window ﬁ;’r l:l:l 3
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Fig. 7.4 Fourier transform of W, (@)
Bartlett window '

4z 2 02 ax
T T

Note in the figure the decay as wiz of the function’s envelope. This rate of decay is
faster than that of the rectangular window. It is due to the fact that the function
A7 (1) is continuous but its derivative is discontinuous (in 0 and 2T).

7.1.3 Fourier Transform of Hanning Window

This window is defined by (see Fig. 7.5).

wi(f) =0.5+0.5cos 2 for|f| <L (7.8)
wy(1) =0 elsewhere '
Note that the function and its derivative are continuous (horizontal tangent) in
7| = g The decay at infinity of the FT will necessarily be faster than the previous
two windows.
Calculation of FT of wg(¢)

Wy(w) =05 [ edi+0.25 [ @ dr4+0.25 [ e @tdy  (7.9)

|

N \N"‘:
|

N \NH
|

I~ \N‘\,

Fig. 7.5 Hanning window wy(t)
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Wy (@) &

Fig. 7.6 Fourier transform resulting from a summation

in2l sin(w, — o)L
2 e 2
of T +0.25T

2 2

sin(w + w,) £
W. (7.10)
e)3

Wi (w) = 0.5T o —a)

(We wrote o, = 27”). This Fourier transform is the sum of three cardinal sine
(Fig. 7.6). The first is centered at o = 0. It is represented by the fine line in the
figure, the other two are respectively centered in + w, and —m, with half-relative
amplitude. The function Wy () is shown in bold lines.

As seen in the figure, the central lobe of this sum is twice as wide as that of the
function % We also see that the compensation of side lobes leads to lower values
of the oscillations amplitudes of function Wy(w) and therefore a more rapid
decrease with @ than in the case of the FT of the rectangular window. The first
secondary extremum of Wy (w) is —32.3dB below that of main lobe.

This result is to be compared with that of the FT of the rectangular window. For
the frequency of this extremum, the maximum amplitude of the second secondary
lobe of the rectangular window of the FT is only —17.833 dB below the main lobe.
This shows that the oscillations of the Hann window FT decrease much faster than
those of the FT of the rectangular window. This is because the Hann window
function is continuous and its derivative is continuous.

7.1.4 Fourier Transform of a Gaussian Function

Gaussian functions are widely used in the field of signal analysis and in statistics.
Before calculating the Fourier transform of a Gaussian, the properties of the inte-
grals of Gaussian functions are described.

Integration of Gaussian functions
A Gaussian function is a function of the form

f(x) = e with o > Oreal. (7.11)
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(a) - (b) —t
f(x)=e™ f(x)=le

Al : a=1 | ’ a=0,1
08 08
06 06
04 04
02} 1 02

10 5 0 5 x10  -10 5 0 5 X 10

Fig. 7.7 Gaussian functions for parameter values: a « =1 and b o = 0.1

The parameter a controls the Gaussian decay with x, and by consequence, the
width of the bell curve. In Fig. 7.7a, we have « = 1 and in 7.7b o = 0.1.
The general methodology for calculating the Gauss integrals is now described.
One first calculates the integral
+ 00

1(0) = / e ™ dxwitho > Oreal. (7.12)
The calculation of this integral is not straightforward. Various techniques may be

used. The method given here is through the calculation of the squared integral in
order to perform the integration in polar coordinates

+00 +00 oo 2m
P(a) = / / e )dxdy = / / e rdrdo.

—00 oo—oo 0 0 (713)
() :2n/e_“’2rdr

0
We note 2 = u; du = 2rdr
Y Y
Po) = Ty = — = e’ =—. 7.14
) = [ emau=-Tlep=T (7.14)
0

(o) = g (7.15)
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In the calculation of the moments of the Gaussian distribution, it is interesting to
use the derivatives of I(a)

dil(:c) _ ]DC Loy — \/;<_ %) ot (7.16)

Thus we see that

+ 00 1
/ ey = /o%. (7.17)

Similarly taking twice the derivative relatively to a

+ 00

d’1 3
2= / xe ™ dx = \/Ezar%. (7.18)

—00

It is thus seen that by successive differentiations we can calculate all integrals
containing even powers, that is, calculate the various moments of the Gaussian
distribution. The odd moments are zero, as the integrand is odd on the interval —oo,
-+ oo.

Calculation of the Fourier transform of e~

+ 00
1(k) = / e e M dx with & > Oreal. (7.19)

—00

To calculate (k) the function f(z) = e is integrated in the complex plane on
a positively oriented contour C, consisting of line L;, segment of x axis limited by
—R and R, of the vertical segment L, with abscissa R limited by y = 0 and y = a, of
the horizontal segment L3 with ordinate y = a limited by R and —R, and the vertical
segment L, with abscissa —R (Fig. 7.8)

Fig. 7.8 Integration contour

A=
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The function f(z) is holomorphic inside contour C. The integral over this con-
tour is zero according to Cauchy theorem.

9§ e ¥ dz = / e dz+ / e dz 4 / e dz 4 / e dz=0. (7.20)
¢ L Ly L Ly

In the first integral on L, we have y = 0. So

R
/ e dz = / e " dx. (7.21)
L —R

As shown above, when R — oo this integral tends to \/g
In the integral over Lo, |, L e dz = /; II;H“ e~ dz. With dz = idy.

We will show that this integral tends to zero as R — co. The modulus of the
integral is less than or equal to the integral of the modulus. We have the inequalities

a
/e_“zzdz < / ’e_“z2 |dz] 2/’6_“(R+iY)2
L 0

dy = / e (B)dy.  (7.22)

Lz 0
So,
a a a
a2 (B2 _\2 2 _aR2 2 P2 2 . p?
/eazdzg/ea(R y)dygefxa/eothy:exaeaR/dy:aeaaeacR'
L, 0 0 0

(7.23)
The last quantity tends to zero when R — oo (a is finite), it follows that
/ e %’dz — Owhen R — <.
Ly
It will be the same for the integral over Ls. So we have
/ e Cdz=— / e dz. (7.24)
L3 Ll

We can therefore write this last equality in the form
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+00 +00
/ e—oz(x+ia)2dx — / e~ dx — E (7.25)
o
Expanding the square contained in the left-hand side
+00 +oo
/ efwc272iaax+aa2dx — eacaz / e*w‘ze*ﬁaw‘dx = \/E (726)
o

It is recognized in the last integral the sought Fourier transform. Noting k = 2a«
we can write

+ 0o + o0
/ efaxzefﬁawcdx _ / e*fmze*ikxdx — 37““2 \/E — eﬁ\/i_ (727)
o o
Finally
+ 0o
e e kidy = e, [T, (7.28)
o

It is thus seen that the Fourier transform of a Gaussian is a Gaussian.
Returning to the conjugate variables 7 and o used in signal analysis, we will have
the formula for the Fourier transform of the function e=*":

+ o0

/ efoctzefjwtdt _ e%\/§. (729)

—00

It will be accepted here that this result remains valid if a is complex, provided
that Re(a) > 0.

Finally, we seek to determine the transform of a Gaussian whose maximum
amplitude occurs at abscissa 7

2

floy=e,

This function is translated by a quantity  from the function e, Using the
time-delay property connecting the FT of a translated function to that of the
non-translated one by the multiplication by a phase factor depending on the
function, we will have
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The FT of f(¢) = e=7)" i expressed as

[0}

F(w) = e e

<13

(7.30)

7.2 Behavior at Infinity of the Fourier Amplitude
of a Signal

It has been previously found that the amplitude of the FT of a rectangular function
was decreasing as % when @ — oo and that of a triangular function decreases as (#
The more regular the function is in the time domain (continuous and differentiable
at order n), the more its decrease at infinity is fast.

Time property Decay in frequency at infinity

Function with a discontinuity L

Continuous function, discontinuous derivative (u%

Discontinuity in the nth derivative —r
«

Smoothing performed by a
convolution product
The convolution products are functions obtained by integration. In general, the
integration provides a function more regular than the one integrated. For example,
integration of a function with a finite discontinuity gives a function continuous at
the discontinuity. The integral of a function with an angular point will be rounded at
this point. Convolution generally operates a smoothing akin to a low-pass filtering.
This property will be found in the following section, the analysis being made in the
frequency domain.

Another interesting property that will be seen in Example 7.2, Sect. 7.3 is that
the support of the convolution product is equal to the sum of the supports of the two
functions in the product.

7.3 Limitation in Time or Frequency of a Signal

7.3.1 Fourier Transform of a Time-Limited Cosine

Calculating the Fourier transform of a cosine with angular frequency wg limited in

time by a rectangular window to the interval {—2,2} (Fig. 7.9)
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Fig. 7.9 Time limited cosine

y(#) = Iz (z) cos wyt. (7.31)

The FT of a two functions product is equal to the convolution of FTs divided by
27. (See formula (6.17)). It follows from the previous results that
1 sin4t

ol
2n 5

® (mé(w — wo) + 7 d(w+ wy)). (7.32)

The convolution of a function with 6(w £ @) resulting in its translation, we
have

T {sin(w —w) L sin(w+ wy) %} (7.33)

MO =3 o—a0l T (@rm)]

Note that the FT of a time-limited cosine is given directly by the FT of the
rectangular window limiting the cosine function (sinc function). The frequency wg
of the cosine, in turn, acts on the position of the sinc function on the @ axis.

The time limitation results in a spreading of the FT on the entire frequency axis
(Fig. 7.10).

The temporal discontinuity caused by the rectangular window boundaries pro-
duces a spreading of the spectrum decreasing as % We note from the figure that the
spreading of the sinc centered in —wq (shown in thin line) is superimposed on the

Fig. 7.10 Two constituents of the sum in FT
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one centered in wy. It follows that the maximum of the positive frequencies is not
located exactly in wy, causing an error when trying to measure an unknown fre-
quency wg. To reduce this effect we will take care in practice to satisfy the con-
dition 7 > T, which implies that wy > 27” The peaks are relatively far from each
other, relatively to the period of oscillation in the frequency domain.

7.3.2 Practical Interest of Multiplying a Signal by a Time
Window Before Calculating a Spectrum

In practice, when we want to compute the Fourier transform of a physical signal a
spectrum analyzer is used or the calculation is done numerically. The operation can
be done only on a time signal limited by the temporal analysis window, because one
cannot wait forever to get the result.

Thus, looking to the analysis of a sinusoidal signal at the output of an amplifier
for example, the actual analysis is performed on a time signal limited by a rect-
angular window (or another window if a numerical calculation is carried out).
A sinc function which spreads the frequency information on the whole frequency
axis is obtained.

In case a different frequency small signal is superimposed on a large signal, the
spectral component of the small signal is embedded in the oscillations of the sinc of
the large signal. It may happen that this small spectral component is not observable.
However, if the data is multiplied by a Hann window (for example), the oscillations
of the spectrum of the main signal decreases much more rapidly with frequency and
thus a small spectral component is less likely to be embedded in the oscillations of
large signal and can be more easily observable. Hann window is an example of an
apodization window. This operation of multiplication of a signal by a window is
particularly easy to make in numerical signal processing where they are commonly
used.

7.3.3 Frequency Limitation; Gibbs Phenomenon

Gibbs phenomenon is the occurrence of oscillations on a function of time when the
width of its spectrum is forced to be limited (this is the case for a rectangular signal
crossing a low-pass filter with steep edges, for example).
The FT of Il7(7) is
sin 4l
T

W, (o) = (7.34)
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Assume now that we limit the spectrum to low frequencies, for example by
passing through an ideal low-pass filter with frequency response H(w) = I, (w),
I, (w) =1 for|w|<wy
Iy, (w) =0 elsewhere
The limited spectrum at low frequencies is

where wy, is the maximum frequency

Wir(w) = W(w)H(w). (7.35)
Its inverse FT is
wir(t) = I1,.(2) ® h(r). (7.36)
h(t) is given by
s oyt jomt :
! / H(o e]“”dco_— / oty — L &M =M Lsinoyt.
" 2n jt Tt
00 —wy
(7.37)

SO

1 sin wpt
wpr (1) = (1) @ — [M

(7.38)

Assume now that wyT > > 1, i.e., that the oscillations of M are rapid

compared to the duration of the rectangular signal. For ¢ close to 0, the convolution
integral includes the oscillations of the function 32 sneul on both sides of the maximum

and therefore we have approx1mately wer(t) = [° OOOO }I“"“’M’dt =1 sitxgy = 1.

In contrast, when ¢ is close t0 , the integration is done only on a part of the
oscillations of the %"M’ functlon. Compensation between the oscillations is no
longer total and in the result of the convolution integral it appears values that hover
around 1. The maximum amplitude of the oscillation comes for ¢ = 5 — -, when

wp’

the central peak is completely included in the integral. As seen on the graph, the
maximum value is - f s“”‘dx = 1.0895 (value calculated numerically).

In conclusion, when wMT > 1 and when the function spectrum is limited to low
frequencies, after return to the time domain, oscillations occur in the vicinity of the
discontinuity. The amplitude of these oscillations is independent of the width of the
frequency band kept. They persist even if the width of the frequency band kept is
high.

The Gibbs phenomenon appears in (Fig. 7.11). The oscillation of the reconsti-
tuted signal after limitation to the low frequencies of the spectrum of the signal
IT;(¢) appears in the vicinity of the discontinuity of the function at %
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Fig. 7.11 Gibbs phenomenon at function discontinuity

Note: We have studied the manifestation of the Gibbs phenomenon in the time
domain. Given the symmetry of the direct and inverse FT formulas, the phenomenon
is of course also present in the frequency domain. One example is the FT of the
rectangular window, discontinuous function in time. It is a sinc oscillating function.

7.4 Convolution Calculations

7.4.1 Response of a First Order System to Different Input
Signals

The impulse response of the first order RC system in Chap. 2 is h(f) = A-e 7 U(r).

1. We now seek to evaluate the system response to an input signal of the form
e(t) = x(t) = U(t) cos wot. We look for y(t) = ffoooo x(t)h(t — 7)dr. Using the
decomposition cos ot = 1 (el 4 e7) | we can write

y(t) = %h(t) ® U(t)e™ +c.c. (7.39)

Calculating the first integral
1 L
I = Eh(t) ® U(r)el™" = SRC / U(t)e 7 U(t — 1)l dr.
Since the function U(t) is zero for <0 and 1 for t > 0 we have

+ 0o

1

T 2RC
0

I e 7 U(r — 1) e (dr, (7.40)

The above integral is zero for # < 0 because in this case, U(t — 1) is zero in (7.40).
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What is its value for # > 0 ? The upper limit of the integral is # because beyond

this value of 7, U(t — 1) vanishes.

t t

1 . 1 . )
hzﬁ%/ewwWﬂm:5%&W/awﬁ@%u
0 0 (7.41)

11 . :
[ e (O _ ).
! 2QRCw0+1)( e ™)

By adding the complex conjugate integral, we get

1 . 1

)= ——————¢€ rRU(t —_—
y() O+m@%+1

- F 1+ RCwq sin wot)U(t).
chzw%+le (cos ot +RCay sin wot) U(t)

(7.42)

The output signal of the filter is composed of two terms

The first term is a transient term which becomes very small when time exceeds a
few RC.

The second term is the stationary term already found in Chap. 2, where the
response of the first-order system to the input signal cos wt was calculated, this
signal existing since time minus infinity.

Thus after times exceeding few RC, the output signal reaches its steady state,

where everything happens as if the input signal filter had been present from very
remote times.

2.

In this other example (Fig. 7.12), the determination of the system response is
performed as a convolution in the presence of the initial condition in the
first-order system RC. It is assumed that at time ¢ = 0, the capacitor is charged
with the charge ¢q.

When the switch is opened, the potential of the point A relative to ground is %.
dg

Ohm’s law is written R:3! + & =%, with no current flowing in the resistor.

When the switch is closed, the potential of point A drops instantaneously to 0;

we have

R—+2=0. (7.43)

We can gather these two equations in the form

dg g9 qo
Ry +e=gUn. (7.44)
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Fig. 7.12 R C circuit R
La —_Eo
= v(f)
Fig. 7.13 a Time reversed of (a) U(-t) (b) k()
U(1). b Impulse response h(t) ' 1
- | 1/RC
0 t "0 t

Everything happens as if the system was attacked by the electromotive force
e(t) =% U(—t). The output of the system is determined by the relationship

+ 00

w0 = [ Mot = e U@ @ LU (145)

—00

It is seen that the function y(¢) is obtained by integrating the product of two
functions of 7: the function /(7) and the function e(z — 7) obtained by reversing in
time the function e(t) (to obtain the function e(—1)) then translation by ¢. The
graphic resolution that is used in the following calculation avoids calculation errors
often committed in the evaluation of convolution products. First we represent the
functions to be convoluted (Fig. 7.13)

In (Fig. 7.14) are shown the case <0, the functions contained in the convo-
lution integral of the variable of integration 7 and their product. Care is taken in
representing the functions one above the other to make things simple and minimize
errors of reasoning.

When <0

1 . (1 too
y(t) = —Cq—co / eFede = - B[] = % (7.46)
0

For the case ¢ > 0, the functions and their product are (Fig. 7.15)
For ¢ > 0, we have
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Fig. 7.14 Two functions to h(z)
multiply (top). Their product 1/RC
(bottom)
0 T
e (r - r]

[

e(r—:)h(r) 3

1/RC
0 T
Fig. 7.15 Two functions to fi(r]
multiply (top). Their product )
(bottom) 1/RC
0 T
e(t-r)
1 L
0 ¢ T
e{r—rjh[r)
1/RC}
N
t T
1 + oo
q0 _x qor _zq+o00 {qo _t
1) =—— e rdr = —— |e & =—¢ k¢ 7.47
W) = pec T C [e77e], c (7.47)

t

In summary, the output signal will have the form (Fig. 7.16)
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Fig. 7.16 Output signal ¥(t)
4,/ C

We find back with the convolution calculation the capacitor discharge law that
occurs at the grounding of the circuit input.

7.4.2 Examples of Calculations of Convolution

Example 1 Let the functions x(#) and k() given by
x(t) =U(t) — U(t —2) and h(t) = e U(1).

(U(¢) Is the Heaviside function and a a real positive number). x(7) is a rectan-
gular window equal to 1 between O and 2.

The convolution has the form y(z) = fjoooo (U(z) — U(t — 2))e “=9U(t — 1)dr.
The formal calculation of this integral involves a comprehensive analysis of
functions supports. Again it is recommended that the complete graphical processing

described now should be used. First of all, the functions to integrate are (Fig. 7.17)

We look for y(7) = ffoooo x(t)h(t — 7)dt. We represent graphically the functions
x(t) = U(tr) — U(t —2), h(t — 7) = e " U(t — 1) and their product.

The function A(t — 1) = e *("IU(t — 1) is the reversed in time of h(t) =
e “*U(1) translated by 1.

Figure 7.18 gives the graph of the time reversed i(—1) = e U(—1)

For the translation of the function by ¢, three cases are met

For t <0 (Fig. 7.19)

It is noted that for 7 <0, x(t) = 0. The product of the two functions is zero.

Fig. 7.17 Two functions to x() h(t)
convolve
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Fig. 7.18 Time reversed of
h(z)

Fig. 7.19 Two functions to
multiply (top); Their product
(bottom)

Fig. 7.20 Two functions to
multiply (top); Their product
(bottom)

129

h(-7)
1
0 T
x(7)
1
0 2 T
h(t—1)1
11
t ;0 T
x(T)h(t—1)
0 T
x(7)]
1
0 2 T
h(t—-1)
1
| _
0t T
X(Dh(t -1
0t T
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Fig. 7.21 Two functions to x(1)
multiply (top); Their product
(bottom) 1

0 2 T

h(t—1)
1
0 2 T
x(T)h(t-7)x1
_—r/
0 2 17

For © > 0, h(t — 1) is zero and the product of two functions is still zero. The
integral of the product is then zero. So y(z) = 0 for <0.

For 0 <z <2 (Fig. 7.20)

For t <0, the product of the two functions is again zero since x(t) = 0.

In the interval 0 <t <2, the product of the two functions is not null when
0<t<t. For t <t the product is again zero.

Therefore y(r) = [;e~"dr =e~ [je“dr = ’m%% =11 —e).

For 2 <1t (Flg. 7.21)

For 7 <0, the product of the two functions is still zero since x(t) = 0.

In the interval 0 <7 <2 the product of the two functions is different from O.

When 2 <1, the product becomes zero again.

Then y(¢ f2 —ali=1)dr =~ foz edt = e’“’%‘g =lemai(e2 — 1)
0 if <0

In summary y(¢) = | (1 — e””)/a if 0<r<2
e e —1)/a if 2<t

The reader will verify that the function y(¢) is continuous at the boundaries of the
interval {0,2}.

Example 2 Let x(¢) be the rectangular window given by x(¢t) = U(r) — U(t — T).

We look to assess the auto convolution y(z) = x(7) ® x(7).

First we represent in Fig. 7.22 the functions x(z) and x(—1):

We now have four cases values depending on the possible values of ¢
If <0 (Fig. 7.23)
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Fig. 7.22 Function x(t) and x(7) x(-7)
its time reversed 1 1
0 T ¢ -T 0 T
Fig. 7.23 Two functions to x(7)
multiply (top); Their product 1
(bottom)
T 7
x(t-1)
1
Y
t-T 1 T
x()x(f-7)
0 T
Fig. 7.24 Two functions to x(;—)
multiply (top); Their product 1
(bottom)
0 T
x(t-7)
}
3
i—T 0 ¢ T
x(z)x(t-7)
1
t-T 0 ¢ T

The product of x(t) and x(z — 1) is zero Vz then y(¢) = 0.

If 0<7<T (Fig. 7.24)

The product of x(t) and x(¢ — 7) is zero for T<0 and for t > ¢. It is equal to 1
whenever 0<t<t. Thus y(t) = [jdt =1.

If T<r<2T (Fig. 7.25)
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Fig. 7.25 Two functions to x(;—)
multiply (top); Their product 1
(bottom)

T T
x(t-1)
0¢-T T
x(7)x(t-7)
1L
0 T tr
Fig. 7.26 Two functions to x(7)
multiply (top); Their product 1
(bottom)
0 T 1'x
x(t-71)
1k
0 t-T i 7
x(7)x(t-7)
il
0 r‘

The product of x(t) and x(r — 1) is zero for t<¢ and for t > T. It is 1 for
r<t<T.

T
y(t) = / dr =2T—-t.
t

-T

If 2T <t (Fig. 7.26)
The product of x(t) and x(z — 7) is always zero and whatever z; y() =0

0 if t<0
t if 0<t<T
Insummary y() = | o e 707
0 if 2T<t

The function y(¢) is triangular with a base 27T (Fig. 7.27).
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Fig. 7.27 Triangular window j[rj -

It can be seen in the preceding examples that the convolution of two causal
functions is causal and that the autoconvolution of a rectangular window function is
triangular.

Summary

We have applied theorems on Fourier transform and convolution for the calcula-
tions of Fourier transforms of common windows met in signal analysis.
Rectangular, triangular, Hanning, Gaussian, are considered. Calculations of Fourier
transforms were carried out in detail and give a good example of the use of inte-
gration of complex functions. We have related the decrease of the magnitude of
Fourier transform of a window at infinite frequencies to the smoothness of its
junction to zero at the edges of the window. Several examples of convolution were
given. The chapter ends with a table of Fourier transforms of common functions.

Exercises

I. Gibbs phenomenon. Let the input signal in a filter be a rectangular pulse x(r)
equal to 1 between —t/2 and /2 and null elsewhere. The filter is an ideal
lowpass with H(w) = Ke 1 when —w. < < w,, and null elsewhere.

1. Give X(w) and Y(w) the Fourier transforms of the input and output signals
x(t) and y(z).

2. Show that y(¢) is the difference of two sine integral functions Si(u), where
Si(u) = [y S22 dx.

3. Use a Matlab simulation to obtain the results for y(¢) in Fig. 7.28 in the
cases K=1,t1=2, 1ty =2, o, = 10, o, = 20.

Solution

1. X(w) = tsinc(4); Y(w) = Krsinc(%)e 30 for —w.<w<w, and null

elsewhere.
2. y(t) =82 [ sinc(wt/2)el ) da = K= [ Sin(f)‘:/féz) cos w(t — ty)dw. (The
integral of the odd function Sl"(f::/féz) sin w(z — fo) over a symmetric interval is

Zero).
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1.5

1 f:&/ ot
Z 05
> 1
O P Wy '}

0 3 2 4 0 1 2 3 4 5

)
)

Fig. 7.28 Gibbs phenomenon after low-pass filtering

[on

W) = X2 / sino(t — o +7/2) _sino(t —10 —1/2) |
2n wt/2 wt/2
w(t—tg +1/2) we(t—to—1/2)
W(e) = 5 / sinxdx _ 5 sinxdx.
T X m X
0 0

K . .
y(1) = ;{Sl(wc(t —to+1/2)) — Si(w.(t — 10 — 7/2))}.
3. o, = 10 plain line; w, = 20 dashed line.
2
II. Consider the function f(f) = e 22 (Gaussian signal), where ¢ is a constant

having the dimension of a time. Referring to the definitions in Chap. 6, show
that the squares of spreads in time and frequency of this function are

0 00
1 2 o’ 1 2 1
O'?ZE / tzlf(t)‘ dtzfetaz):ﬁ a)2|F(a))| dw:m
—o0 —00

Show that the Heisenberg-Gabor relation for Gaussian signals is verified.

2
II. Consider the function ¥(z) = e aeion! (complex Morlet wavelet), where g
and o are constants. Calculate its Fourier transform ¥(w).
Solution: The FT of the product of functions is given by the convolution of their
FT.
We have

]-'(e’%) — V2, F (") = 21(w — ).

Thus

l ([2(1.)2 0_2 — ) )2
Y(w) =— (e’Tv 2n0? ® 216 (w — cuo)) = V2no2e” s .
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The Heisenberg-Gabor relation follows naturally.
IV. Consider the function A(r) = 1 for 0 <z <2 and zero elsewhere.
Let x(1) =0(t—3)+e % (U(t) — U(t — 5)). Calculate the convolution

y(t) = x(1) ® h(z).

IV. In the table of Fourier transforms at the end of this chapter, we see that the FT

of

e~ cos(wot)U(2) is

and the FT of e~ sin(wot)U(t) is 2

—
(a+jo)” +of

Comment on the asymptotic behavior of these two FT at high frequencies
deriving on the discontinuities of these functions in the time domain.

Table of Fourier transforms

Time Frequency

o(r) 1

1 2nd(w)

f() F(w)

flt—1) F(w)e i

f(1) ®g(r) F0)G(w)

f()g(t) L F(w) ® G(w)

e/t 2nd(w — )

cos(wot) (0(w — wp) + d(w+ wp))
sin(wot) —jn(d(w — wo) — (w + wp))
Ty (1) = o< ? T sinc(<L)

0 elsewhere

Aor(t) = Tp(1) @ Ty (2)

T%sinc* (%)

a>0 e“U()

1

a+ jo
e My(r) T

Re(o) >0 e

w2

e 4u

NS

Pseudo function Pf (1)

—jnsgn(w) (see chap. 9)

3000 + 4:PF(}) Viw)
ur) mé(w) + LPF(L)
sgn(7) PPF()
e cos(wot)U(t) (F’%
a-+jo (o

e~ sin(wor)U(r)

o
PRV
(a+jo)” + o

Re(v) > — 1 1°U(r)

(o) ' T+1)

1U(t)

(o) VA

Re(v) > — 1 1°e"U(1)

(jo —a) "' T +1)

(continued)
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(continued)

Time Frequency

f(t—10) F(w)e i

f(1) ©g(r) F(0)G(w)

f(1)g(r) LF(0) ® G(w)

fe)e™ F(w — )

T17(¢) cos wot sin(w—wo)? | sin(o+ wg)}
T() 0 g{ (w—wg;)% + (w+wo;)g }
> 6(t —nTy) £ 5 o(w-n¥)

3 () jo

5" (5) (joo)"




Chapter 8
Impulse Response of LTI Systems

It was shown in Chap. 5 that the impulse response of a LTI system is the inverse
Fourier transform of the frequency response. It is given by the integral

:—PV/ H(w)e” do. (8.1)

The immediately apparent difficulty in the calculation of /(¢) is that the function
H(w) is in the general case a complex function of w. The integral cannot generally
be evaluated simply by the methods of integration of real functions. The integration
is then performed in the complex plane by integration over a closed contour. The
principles of the analysis and integration of a complex function are presented in
Appendix Al. We use as examples the calculations of the impulse responses of
first- and second-order systems.

It appears the important result that the causality of a stable physical system is
implied by the position of the poles of the transfer function in the half complex
plane with negative real parts.

The complex variable s encountered in the definition of transfer functions H (s)
was written as s = ¢ + jo. As H(w) = H(s)|,_,. relationship (8.1) becomes

+ joo

h(t ——PV H(s)e"d 8.2
27j / 5 (8.2)

—joo

The integral is evaluated on the vertical axis on which ¢ = jw. Since one has to
calculate the principal value of an integral, we can make the boundaries tend
symmetrically to infinity. The residue method is generally used to calculate the
integral.
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To begin this chapter, the impulse response %(7) is calculated for simple
examples to highlight the causal relationship between the stability of a system and
the situation of the poles of the system transfer function in the complex plane.

8.1 Impulse Response of a First-Order Filter

We have seen that the frequency response of the RC circuit was

1

H(w) = 11 jRCo (8.3)

The impulse response k(t) is given by the inverse Fourier transformation (as dis-
cussed above, the principal value notation will be no longer mentioned hereinafter)

1 1 .
h(t) =— —“'d 8.4
(®) Zn/ 1 +jRCo- 7 (8.4)
—00
or, according to (8.2)
+joo
h(t) = — / Lo (8.5)
= —_— ) .
2mj 1+RCs
—joo

The integral is calculated by the residue method. For this, first of all we define a
closed contour I which is composed of the vertical axis and a half great circle C in
the left or half planes with radius tending toward infinity.

According to the residue theorem (see Appendix Al), the integral over a closed
contour of H(s)e” is equal to the sum of the residues (labeled Res;) inside the
contour I’

+joo
/ H(s)e"ds + / H(s)e"ds = 2mj )  Res;. (8.6)
—joo C i

For the first-order filter
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This function has a simple pole at 5o where

1
o= ——.
°” "RC

One must distinguish two cases

e Ift > 0, we can apply Jordan’s lemma on C (see Appendix 1) if the exponential
modulus of e” is bounded. For this to be so, in the case where ¢ is positive, it is
necessary that o, the real part of s, is negative. Thus we close the contour of the
half circle to the left (Fig. 8.1). According to Jordan’s lemma, the integral tends
to be zero as R— oo.

/H(s)e‘”ds =0. (8.9)
c

The contour encompasses the simple pole sy. There is a residue of the integral
for this contour called Bromwich contour then

+ joo
/ H(s)e"ds = 2mj(Res),_, = 2mj lim_~ ;, (s — s0)H(s)e" = —2mjsoe™’
—joo

(8.10)

Finally if r > 0

h(1) = —spe™' = ——e . (8.11)

€

Fig. 8.1 Integration A
Bromwich contour for the t > O

case t >0

)
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Fig. 8.2 Integration t<0 jw
Bromwich contour for the R
case <0
SO N S
T o o~
RC
-R

e Case t <0: To apply Jordan’s lemma on C it is necessary for ¢ to be positive, so
that the exponential e* remains bounded when s follows the half circle. We
therefore close the contour by the half circle on the vertical axis right (Fig. 8.2)
and the integral tends to zero when R— oco. The contour surrounds no pole;
there is no residue.

So, according to Cauchy theorem
+joo
H(s)e"ds + /H(s)e”ds =0. (8.12)

—joo C

As the integral over the semicircle [ H(s)e"ds = 0 vanishes, by the application of
Jordan’s lemma, we get

+joo
H(s)e"ds = 0, (8.13)

or, for r <0,

h(f) = 0. (8.14)

In summary, for any value of # we have

h(t) = iefﬁcu(t), (8.15)

where U(t) is the Heaviside function, equal to zero for t <0 and to 1 for + >0
(Fig. 8.3).
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Fig. 8.3 Impulse response -

RC

1y
) ok Ulr)

~

To complete, we now check as an exercise, that the solution A(f) is correct by
referring the previous result in the original differential equation and using the
properties of the derivative of a discontinuous function.

The initial equation resulting from Ohm’s law is

dg(r) 4
R——+ ==0(t 8.16
D=0, (8.16)
with
q() _ 1 .
h(t) = —* = ——=e ®U(t). 8.17
() =212 = e u() (8.17)
The electric charge is
e
q(t) = z© reU(1). (8.18)
Its derivative is
d 1 ; |
% = —We’RU(t) + Ee’ﬁé(t). (8.19)

The second term of the second member e 7ed(¢) is equal to 15(¢) as the expo-
nential is 1 for t = 0.

Indeed, by acting the distribution function e #4(r) on a probe function ¢(t) in
an integral

/ %eﬁa(t)q)(t)dt = %(p(O). (8.20)
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The result is the same as for the distribution +6(r)

/’%Mgﬂgmziwmy (8.21)
So
Q%Q:_ézg#wo+%aa (8.22)

We replace this derivative in the differential Eq. (8.16) and e(f) = 6(¢) is found
back in the second member
dgq(t)  q I . I . .
R—+ ==—— Ut)+0(t) + — U(t) = o(2). 8.23
T2 44— e UM +0(0) + poe ®UW = o). (8:23)
To complete this study of the first-order system we check now that H(w) =

TTjrco is the Fourier transform of h(r) = e wU(1).

+ 00 1 ' 1 + oo L 1 e*(%Jrjw)l‘ + 0o
/ — e R U(1)e dr = — / e (retio)igy — — — ,
RC RC RC —(ﬁ +jw)
—00 0 0
(8.24)
and then,
1 1 1

Hw)=— = . 8.25
(@) RC(%—kjw) 1+ jwRC (8:25)

8.2 Impulse Response of a Second Order Filter

Recall that the impulse response of a LTI filter is given by
h(t) = 5= [ 27 H(s) e"ds.

With here

1 1 1

Hs) = LCs+RCs+1 LC (s —s1)(s —52)° (8.26)
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Case where the roots the roots s; and s, are different
We can develop the rational fraction into simple elements.We write

1 A B
(5*51)(S*sz):(s—sl) + (s—5) (8.27)

We search A and B identifying the terms resulting from using the same
denominator.

A(S752)+B(stl)_ 1
(s—s1)(s—s2)  (s—s1)(s—s)’ (8.28)

yet (A+ B)s — As, — Bs; = 1. This relationship should be verified for any s. It
comes B = —A and —As, +As; = 1.
Then A = —— and B= — ——,and

(s1—52) (s1—52)

1 1 1
H(s) _R((sl —s2)(s —s1) B (51 —sz)(sfsz))' (8.29)

We meet a situation of two first-order systems in parallel. The impulse response is
obtained from the result for the impulse response of the first-order filter.

1 1 sit ot

The poles s; and s, are the roots of the polynomial LCs*> +RCs+ 1 = 0 in the
denominator. These roots depend on the value of the discriminant of the polynomial
A =R*C* —4LC.

e IfA>0,

R 4

S1 — 8 = E—E (831)

The impulse response will be in this case

W)=t e <e\/ e 4’2—22‘#’) uls). (8.32)
VRC? —4LC

This impulse response is constituted by the difference between two decreasing
exponential.
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(a) Ak (b) *{e)
300 300
250 250
200 200
150 150
100 100
50 50
% 5 10 ms % 5 10 ms

Fig. 8.4 a Functions appearing in (8.32); b Impulse response

Figure 8.4a shows the two functions appearing in (8.32). h(¢) shown in Fig. 8.4b
is their difference. (R =40Q, L=10"2H, C = 107 F.).

e IfA<O

4 R
SL=S2=J\ T 1 (8.33)

1 R : 1R : 1R
W)= — e (ev et eV re‘m’) U (8.34)

RLCy 7 — &

Finally
ht) = Lo A SO0 1y (8.35)
LC (Oh) ’ '
with
I R’
Y . 8.36
P =N\Lcar (8:36)

The impulse response is shown in Fig. 8.5 for the values R =5Q, L =102 H,
C=10"*F.
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Fig. 8.5 Impulse response in h (;)
a case where A<0 1000
500

o\
-0.01 i \/alﬂ’ 0.022(sec)

=]

Case where the roots s; and s, are equal
This is the case if the discriminant A = 0. The denominator has a real double root

S1 =85 = 751. (837)
The transfer function is
1 1
H(s) =————. 8.38
O =ie5sy (8.38)

To calculate A(z) in this case one must calculate the residue at double pole s;.

Reminder of the residue theorem: Let the function F(s) with a pole of order n in
s=a

The residue from the integration of F(s) along a closed contour surrounding the
pole is

1 dm= 1

ReSins=a = G~ D)1ds 1

[(s = @)"F(s)];—q- (8.39)

In the present case Resj, 5, = % (s — sl)zH(s)e”} =1ic [di e”} -
Therefore Resiys—s, = %tesl’.

In this last case the impulse response is

h(f) = %xaﬁw(z) (8.40)

The impulse response is shown for this critical damping in Fig. 8.6 for values
R=120Q,

L=10"2H, C=10"*F.
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Fig. 8.6 Impulse response in h(@) 4
the case of critical damping 4000
3000
2000
1000

002 0 002 004 006 z(sec)

To complete this study, we check in one case that the function h(r) is the
solution of the differential equation of the second-order filter where the second
member is e(r) = 6(r)

_R

We choose the case where /(r) has the expression A(t) = 7= ZL’Si‘:T‘;’O’ U(1)

dh(r) d [ 1 _g,sinwgt 1 g, sinwot
T T (e OO gy e X0 s 8.41
d dt(LCe C e )V e o0 (84D

The second term vanishes since the function multiplying 6(¢) is zero for ¢ = 0.

dh(t R &, SI t 1 R
dh() _ _( e ! m) U(r) + (Eeﬂ’ cos w0t> U(t). (8.42)

dt 212C o

Also

dh(r) R? g, sinwot R & R _g sinwot) .
- i U(e) - it 1) U - A ML) 5
e <4L3ce oo ) VO~ (g ¥ eos ot | U = (gaee ™ =5 = ) 0

— (2L2C67£t cos wgt) U(r) — (woée’ﬁt sin wot) Ur)+ (iffﬁf cos wol) o).
(8.43)
Simplifying
dzh(t) ( R? R; sin CO()[) ( R R
— e U(t) — | 5=e 2 cosmpt |U(t)
2 3 2
dr 413C o L*C (8.44)

1 & 1
- (a)o Ic e ' sin w0t> Ur)+ Ic o(1).
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Now we verify that chf +RCYE 4 h(r) = 8(r)

R & , sin wot
—e 2L ——
4L2 (ON))

) Ur) — <§ e cos w0t> U(t) — (woe_%’ sin wot) U(t)+0(1)

R, sinmot R & 1 &, sinwot
2OV U () + (=e o U@+ (—e 2 Z—U(s
<2L2e oy ) U F e M eos et JUW + | fre =2 JULD)

_ &, Sin wpt R2 ) 1
—e 2 — Ut —— — — o(t) = o(1). 8.45
. 2
we have written wf = 7= — £,

This calculation proves that the impulse response satisfies generalized Ohm’s
law when the second member is e(t) = ().

Example We search the impulse response of the current for the electric circuit RC

of the first order.

Ohm’s law is written with variable g()

eI RO 8.46
D2 e (8.46)
Using the current in the circuit as a variable, Ohm’s law is
+ & [i(r)dr = e(z
Calculatron of the current transfer function: We note e(t ) e”
We are looking for i(¢) in the form i(r) = Ae". Then [ i(t)dr = 1Ae".
Using this expression in Ohm’s law RAe" + L-Ae" = es’.
. . . . . 1 _ _ YC
This equation is verified for all ¢ if A(R + a) =1, or when A = T@ T3 RG
So, the current transfer function is
sC
H(s)=A= . 8.47
) 1+ RCs (8.47)
This function has a zero in s = 0 and a pole 5o = — %. H(s) is decomposed into
simple elements as: H(s) = D + % = DF(;)(;E(S) = D“ﬁ’iCI;)CrE( 3 = T
By identifying the coefficients of the powers of s it comes D = 113 and E = %.
Then
1 1
HS)=————. 8.48
() = R~ RRC D) (8:48)

Calculating k() by integration given in (8.2) h(z) = 2}1} i j.ooo (%

st
RCv+ 1) ds.
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On the integration vertical axis we have s = jw, then

00 Jjoo
11 . 1 1 1
h(t) =—=—— dw — — — S1d 8.49
®) R27r/ “" 25 ) RRCs+1° & (8.49)
—00 —joo

Using a result of first-order filter, we finally get

1 1 .
h(t) = =06(t) — m5=e *U(1). 8.50
(1) = 50(t) — e FU() (8.50)
The reader will verify as an exercise that this result maybe found by a time
derivation of the impulse response in tension across the capacitor.

Summary
We have carried out in this chapter the calculation of the impulse responses of two
important circuit cases in electricity. They are calculated by performing the inverse
transform calculations of the response function H(w) by integration in the complex
plane on a closed contour and using the residue theorem. We have shown that the
causality of a stable physical system is implied by the position of the poles of the
transfer function in the half complex plane with negative real parts.

Next chapter on Laplace transform generalizes these results and studies on
examples the properties of causality and stability.

Exercise
This exercise comes as a following of Exercise 1, Chap. 2.

(a) Give the expression for calculating the impulse response A(z) from the fre-
quency response function H(w).

(b) By integration in the complex plane, calculate k(7). Justify the causal nature of
this function. Give the graph of A(z).
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Chapter 9
Laplace Transform

The direct and inverse Laplace transforms are defined in this chapter. As specified
in formulas 9.1-9.4 of this chapter, the Fourier transformation appears as a special
case of the Laplace transform for s = jw. In Chap. 2 we used the transfer function
properties defined in the (o,jw) plane to explain the variations of the frequency
response of a system which is a function of the single variable w. The inversion
formula for the Fourier transform recalled here (9.2) shows that the function F(s) is
the two-sided Laplace transform (integration from —oo to + o0) of the function
f(¢#). Laplace transform has played a very important role in electrical engineering in
the study of electronic systems responses, causal by essence. It was oriented pri-
marily for the treatment of causal signals, zero for negative time. Historically the
one-sided form of the Laplace transform was used. The transfer function of an
electrical circuit, written in the form of a rational fraction was decomposed into
simple elements. For canonical form of input signals, it was possible to calculate the
output signal in the Laplace domain as products of simpler functions. Simple rules
treated the boundary conditions at time # = 0.

With the use of distributions which allow generalizing all functions, the Fourier
transform calculations and the development of digital computation, the Laplace
transform is less dominant today, especially in theoretical calculations. An
important goal of this chapter is to provide an understanding of the domain of
definition of the Laplace transform and its association with causality and stability of
a system.

The special case of a marginally stable system is also discussed.

9.1 Direct and Inverse Transforms

It has been shown in chapter 8 that calculation of an inverse Fourier transform of
the general form

© Springer International Publishing Switzerland 2016 149
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+ o0

f(t):—nPV / F(w)e™dw (9.1)

—00

had been performed in the complex plane using the integral

+joo
f(t)zzianV/ F(s)e"ds. (9.2)
—joo

The function F(s) is the two-sided Laplace transform of the function f(z), given by
the integral

F(s) = / f) e, (9.3)

where s is any complex number.

By posing s = ¢+ jw as was done previously, we see that in the case where
o = 0, the value of the Laplace transform on the vertical axis where ¢ = 0 is given
by

F(s)l, 0= / Fl6)edr 9.4)

We recognize the right side as the Fourier transform of the function f (7).

Thus, the Fourier transform F(w) of a function appears to be a special case of the
two-sided Laplace transform of that function. The term two-sided means that, both
boundaries in the time integral tend to infinity. In the one-sided Laplace transform,
the lower boundary of the integral is # = 0. In reason of its proximity to the Fourier
transform, the two-sided Laplace transform is preferred in this course.

In summary, the two-sided Laplace transform is

Direct transform :  F(s) = / f(r)e™"dr. (9.5)
—00
1 +joo
Inverse transform :  f(z) = 2—n.PV / f(r)e™"ds. (9.6)
J
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Of the foregoing, it is seen that the transfer function of an LTI system is the
Laplace transform of its impulse response.

While the Fourier transform is defined on the s = jw axis, the Laplace transform
is defined in the plane s. This is a two-dimensional function as the FT is
one-dimensional. By the fact it contains much more information on the function
f(2). In particular, the function F(s) reveals the crucial importance played by its
poles and zeros.

The integral (9.5) defining the Laplace transform converges only for certain
values of s. The function F(s) is not defined in some parts of the complex s plane.

9.1.1 Study of Convergence with an Example

Let the function

f)=e™U(r), (9.7)

where o is a real number for any sign and U(z) is the Heaviside function.
Then:

® L e—(s+) | -
= [ e ¥e™dt = , 9.8
/ (s+oc) (98)

with s = ¢ + jow. The exponential in the numerator tends to a finite limit when
 tends to infinity only if the exponential modulus |e™ (o +jo+ o)t |=le” (e +a) | tends
to zero as ¢ tends to infinity. It is necessary that o 4+ o« > 0, equivalently

6> —a. (9.9)

In this case the Laplace transform is

F(s) = . (9.10)

Since the condition ¢ > — « must be verified to ensure convergence, the function
F(s) is defined only in the half s plane, to the right of the vertical ¢ = —a.

It is interesting to detail the study of the convergence which depends upon the
sign of o

o If o > 0 (Fig. 9.1),
f(r) = e ™U(z) is a decreasing function of 7 tending to zero as ¢ tends to infinity.
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Fig. 9.1 f(7) in the case f(t) =e- ¢t UR) ft)
o>0
ol t

Fig. 9.2 Domain of 1 jw
definition of F(s) when o > 0 F(s)= — F7s
S+a
1
A ¢ /
4 .
-0 // a
b
A7 77
Fig. 9.3 f(¢) in the case <0 ft) = e %t U®) f(t)
a<(
1
0l t
Fig. 9.4 Domain of 1 njw
definition of F(s) when o <0 F(s)= — //
S+a Ve
#
| B
= o
g
A
The vertical line ¢ = —a lies in the part of the complex plane where the real part
of s is negative (Fig. 9.2).
In particular, F(s) exists for s = joo. F(w) = F(s)|,_;,,= [ o f(t) e 1”dr.

We see that in this case the Fourier transform of the function f(¢) is defined.
o If 0<0, f(t) =e “U(r) is an increasing function of ¢ tending to infinity as
t tends to infinity (Fig. 9.3).

The vertical line ¢ = —o belongs to the right of the imaginary axis ¢ = 0. F(s)
is defined on the right of the vertical (Fig. 9.4). The Fourier transform of this signal
does not exist. A system that would have this exponentially increasing impulse
response is described as unstable.
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Fig. 9.5 f(r) =% when ft) = eIt ug ft)
o>0
[v A= || 1

0l t

Fig. 9.6 Domain of 2L
definition of F(s) when o > 0 F(s)=

e.

DORONN

DNl N\ N\

9.1.2 Another Example

Calculate the Laplace transform of f(¢) =~ assuming o is real positive (Fig. 9.5).

00 0 00
F(s) = / e e dr = / e "dr + / e e "dt (9.11)
—00 —00 0

The first integral converges for ¢ <a. The second converges when ¢ > — «. Then

1 n I 20
s—a  s+o o2—s2

(9.12)

F () will be defined for all s belonging to the vertical strip bounded by the two lines
—o and + o (Fig. 9.6).The imaginary axis ¢ = 0 belonging to this area of con-
vergence, the Fourier transform of f(¢) exists.

9.2 Stability of a System and Laplace Transform

As seen in the case of the first and second-order systems, impulse response decays
exponentially in time. This is the usual case for physical systems.

The domain of definition in the Laplace plane of transfer function H(s) of causal
systems is a half plane on the right of a vertical line. When causal systems are
damped, this vertical is located in the part of the plane where g <0.
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This shows that for these systems, the frequency response H(w) cannot be
infinite for any value of the angular frequency w. This ensures that for any input
signal in the form €' in the system, the output signal H(w) ¢’ has finite
amplitude. It is said that such a system is stable. It can be shown that

A necessary and sufficient condition for a LTI system to be stable is that its
impulse response h(z) is such that [ |h(z)| df <oo.

It follows from the foregoing that the poles of the transfer function of a
causal and stable system have a strictly negative real part.

9.2.1 Marginal Stability

A special case of stability is encountered when the singularity of the transfer
function of a system lies on the imaginary axis. This is the case when the frequency
response is

H(w) :m. (9.13)

Let us determine its impulse response. It is given by

+ 00

1 1 )
h(t) = —PV / H(w)e”dw = —PV / — _ddo.
2n Jlw — wy)
We note o — wg = Q, then dw = dQ. It comes
AR A
h(f) =—PV [ —e@+t@)gQ = —py / — el @®)gQ. 9.14
(x) 2n / JjQ 2n JjQ ( )

We look for a causal filter. We determine %(#) using the artifice of adding a constant
o > 0 to the denominator and make o tend toward 0. Noting s = jQ, we have

1 +joo
h(t) = & lim,_o | — PV
(1) im0 | 5 /

eds | . (9.15)
a+s
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Using results (9.10) and (9.7), we have
h(r) = & lim,_o(e™™ U(r)) = & U(z). (9.16)

The amplitude of () does not blow out to infinity for large 7, nor decreases to 0.
The filter is said marginally stable.

9.2.2 Minimum-Phase Filter

A minimum-phase filter is defined as a causal and stable filter whose inverse is
causal and stable. It follows from this definition that the poles and zeros of this filter
lie on the left of the imaginary axis in the Laplace plane.

We admit here the following property: from all filters with the same modulus of
the frequency response, the minimum-phase filter is the one whose impulse
response is the earliest. (This property is linked to the evolution of phase with
frequency of this filter).

9.3 Applications of Laplace Transform

Many physical, electrical systems (generalized Ohm’s law) or mechanical (funda-
mental laws of dynamics) satisfy the following general equation:

dy(r) | d" () | d"()

et any(t
10 g 0 G e
d"x(t d ' x(t
= by & + by = + ...+ bx(1). (9.17)

Note that in this type of equation, the functions and their derivatives appear only
with a power 1. If it is not the case, the differential equation is not linear and the
following development does not apply.

As seen in Chaps. 1 and 2, in this equation where appears only linear combi-
nations of derivatives of input and output functions x(¢) and y(¢), the study of the
system relies on its transfer function, i.e., on the system response y(¢):

y(t) = H(s)e” (9.18)
to the input x(z) of the form

x(t) = €. (9.19)


http://dx.doi.org/10.1007/978-3-319-42382-1_1
http://dx.doi.org/10.1007/978-3-319-42382-1_2
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The r order derivative of x(z) that appears in the Eq. (9.17) is in this case

d"x(z)
dr

=s"e". (9.20)

Similarly, the m order derivative of y(¢) is

d"y(1)
dr

= s"H(s)e". (9.21)

After substituting in Eq. (9.17) and by simplifying by e, we obtain the following
expression for the transfer function H(s) of the system

b b kb,
- Sm_i_alsmfl +a2sm72—|—.....+am.

H(s) (9.22)

We obtain the impulse response of the system in developing H(s) in simple ele-
ments and use of the following rule, which is a direct result of the calculation by
residues as was used in Chap. 8

n!

5 TL
For example, if n = 0,
sit e 1
U (1) < . (9.24)
ifn=1,
sit TL 1
1" U(t) < T (9.25)
Example Consider the transfer function of a causal system of the form
1
H(s) = 1P (9.26)
Decomposed into simple elements, H(s) is written
1 1 1
H(s)=————— . (9.27)
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The filter impulse response is then

h(t) = (1 —te" —e ) U(1). (9.28)

We note the following important results The domain of definition of the
transfer function of a causal system is the half plane s on the right side of the
singularity whose real part is the highest.

We recall that a physical system (causal) is stable if all the poles of its
transfer function have a negative real part.

A stable physical system (causal) has a frequency response.

9.3.1 Response of a System to Any Input Signal

We know that the response of an LTI system with impulse response A(¢) to an input
signal x(¢) is y(¢) = x(¢) ® h(¢). For causal signals and systems (to ensure the
convergence of time integrals) or decreasing fast enough at infinity, it is possible to
write y(s) = x(s) H(s).

To obtain the time response y(7), we will seek the images of time functions x(z)
and h(t), carry out their product to have y(s), and then go back into the time domain
to obtain y(z).

Summary

After giving the formulas of the two-sided Laplace transform, we studied on
examples the convergence of the integral giving the transform, and determined the
domain of definition of the Laplace transform function in the complex s plane.
Marginally stable systems have been discussed. We have shown that the differential
equations with constant coefficients encountered in electronic circuits Ohm’s law
take the form of a rational function in the Laplace domain. Formulas for the
transition from time domain to Laplace plane are given in a table at the end of the
chapter.

Exercise
Consider the marginally stable filter whose frequency response function is given by
(9.13).

Let the input signal of this filter be x(f) = e/’U(¢). Show that the output is

y(t) = 1™ U(r).
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Solution: A first manner is to use results (9.24) and (9.25).
A second manner is to calculate directly the convolution y(7) = x(¢) ® h(z) =

Y1) @ M U(1). y(t) = [ d0TU()d* I U(r — 1)dx.

y(t) = e [ U(r)U(t — t)dr = 1! U(t). This result will be used in a further

chapter when the Goertzel filter algorithm is detailed.

Tableof Laplace transforms

Function in time

Laplace transform

o(r) 1

U() 5

tU (1) Yiz

mU(t) 2

a>0; e“U() =

e~ "U(1) W

re ) L

cos(wor) U (1) m

sin(wot) U(t) Szf‘:—(’w(zj
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Chapter 10
Analog Filters

Analog filters play an important role in signal processing. We deal here with some
important, common cases. The analysis will be limited to the case of low-pass
filters. We consider first, three classical all-poles filters: Butterworth, Chebyshev,
and Bessel. We discuss their performances with regard to the situation of the poles
of their transfer functions in the Laplace plane. It appears that the Butterworth filter
has the flattest frequency response in the passband. The Chebyshev filter has the
shortest transition region between the passband and the attenuated band. The Bessel
filter will be used when minimum deformation of the signal through the filter is
searched for. The band-pass or high-pass filters are deduced by moving the poles of
the transfer function of the low-pass filters in the Laplace plane. The chapter ends
with a comparison of the frequency responses of filters from each class.

10.1 Delay of a Signal Crossing a Low-Pass Filter

This paragraph is intended to define the delay of a signal passing through a filter.
The reasoning is based on the frequency behavior of low-pass filters near zero
frequency.

Consider a low-pass filter with frequency response H(w). First of all we seek the
approximate shape of the frequency response of the filter in the low-frequency limit.
We perform a Taylor expansion of H(w) in the vicinity of the zero frequency.

The module |H(w)| is an even function. Its value approximated at zero order is

H(w)| = H(0). (10.1)
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The argument of H(w) (phase shift taken by the signal e/’ when crossing the
filter) developed to order 1 is written as

0(0) = ¢(0) +a)—z. (10.2)

As ¢(w) is an odd function, continuous in w = 0, it is zero at » = 0. Therefore
in the vicinity of the zero frequency

p(w) = wj—z (10.3)

% has the dimensions of a time. We have seen in the examples of filters of the

first and second order that in the vicinity of @ = 0, the phase is a decreasing
function of w.
This leads us to write

de
@ 10.4
dol, " (10.4)

where T represents a positive time.

As will be explained in a following chapter, this delay is that taken by the
envelope of a signal formed by the superposition of harmonic signals in a frequency
band when crossing a band-pass filter. It is called the group delay. The phase delay
will also be defined and calculated from the phase shift taken by an exponential
monochromatic signal. In general, phase and group delays are functions of
frequency.

Group delay : t,(w) = 4 (10.3)
Phase delay : 7,(w) = 7%@). (10.6)

Using relations from (10.1) to (10.4), it is thus possible to write in the vicinity of
the zero frequency

H(w) = H(0)e " (10.7)

Filtering of a Low-Frequency Signal

Now we study the effect of the previous filter on a signal x(¢) presented to its input.
It is assumed now that the spectral range of x(¢) does not extend beyond the area of
validity of the LF approximation detailed above (x(¢) is a signal with very low
frequency). In that case one may use the approximation
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H(w) = H(0)e ", (10.8)

The output signal y(¢) is then

+ oo + 00

1 wt i jot
=5 / Y(w)e dwf27r / X(w)H(w)e”dw
1 e -
~ __ —jort jot
= / X(w)H(0)e 1" dw. (10.9)
And so
| + o0
() = H(0) - / X()e”de = H(O)x(t — 7). (10.10)
In summary
y(r) =2 H(0)x(t — 7). (10.11)

The filter output signal appears (within a multiplicative constant) identical to the
delayed input signal by 7.

We treat as exercises at the end of this chapter some cases of distortions
appearing when the filter frequency response departs slightly from (10.8).

10.2 Butterworth Filters

A low-pass Butterworth filter is defined from the square modulus of its frequency
response

A(w) = H(o)H* (0) = (10.12)

1+ ()"

o is the normalized frequency ;. n is an integer which defines the filter’s order.

Figure 10.1 shows an example of the gain modulus G(w) = \/A(w) when
n==~6

It is noted that the gain is flat at low frequency, equal to \/— at w =1 (this
corresponds to —3 dB attenuation at the cut-off frequency) and that the transition
from passing to attenuating bands is quite gradual. The bigger n is the flatter and
will gain when |w|<1.
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Fig. 10.1 Gain magnitude of Frequency response modulus (n=6)
a Butterworth filter when 1 T - . r -
n==6
08|
Q 06 ......................... TP A——— P -
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0.4F-------- S—— 1 —— N — 4
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-3 0
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It is assumed that the coefficients of the various powers of s appearing in the
transfer function are real, which implies that the poles are real or come in pairs of
complex conjugates (arithmetic theorem).

We note H(w) the frequency response of the filter that we look for. Let us detail
the simple cases where n = 1 and 2.

If n =1, A(w) = H(w)H*(») = 11 H(s) has one pole s.

. 1 1 1
H(w)H" (w) = - - N - ¥
Jo — 81 —jw — ] w +]w(s1 —sl)—i—sls1

We necessarily have s; —s] =0 and s;s7 = 1. It results that s; is real and

s1 = —1, as the causality of the filter requires a pole with a negative real part.
Ifn=2
Alw) = H(@)H'(0) = (10.13)
o) =H(w W) = .
1+ ot
S I
H(s) has two poles s; and 5. H(s) = =
1 1 1
H(w) =- - = > .
Jjo —sijo—s; —w?—jo(s;+s2)+s152

To satisfy the canonical form of a second-order filter seen in Chap. 2, it is
necessary that s, = s7 and that s;s, is real. In addition to meet the form (10.13) it is
necessary that s;s, = 1.
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To ensure causality it is necessary that Re (s;) = Re(sz2) <0. It becomes

V2 V2 V2 V2

S1l=——7+j—75 S=——F7—j—=.

2
Let us study now the general cases
e Ifnis even
A(s) will have the form

1

Let us search first the poles of A(s). The roots of the denominator (roots of —1)
are determined by solving the equation

s = —1. (10.15)
We search solutions in the form
s=él (10.16)
It becomes

9k=(2k+1)21 with k=0,1,2,...,2n— L. (10.17)
n

It is noted that there are 2n roots on the unit circle. Poles of A(s) come in groups
of 4 (Fig. 10.2).

To satisfy the causality condition, the poles of the H(s) are selected as the poles
of A(s) with negative real values.

e Ifnis odd
A(s) will have the form

1
A(s) = [

The poles of A(s) are determined by solving the equation s*" = 1.

We search solutions in the form s=e&’. It becomes 0, = "n—” with
k=0,1,2,...,2n — 1. At least two real poles will exist (Fig. 10.3).

Compared to other filters, Butterworth filters have the property that among all
filters their frequency response curve is the flattest at zero frequency. On the
other hand, the transition zone from passing to attenuating will be less steep than for
a Chebyshev filter of the same order.
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Fig. 10.2 Symmetry of A(s) Jjo Tt
poles (n even)
9% XS,
W
i
0 o)
- Six X Sy
Fig. 10.3 Symmetry of A(s) j U
poles (n odd)
~ 9% XSy
= 51 1.5'1 N
Fy ’ I
0 c
-Six XS5

Exercise
Determining a third-order Butterworth low-pass filter with a —3 dB cut-off fre-
quency f, = 1 MHz . We pose . = 2nf. = 21 x 10° rad/s.

We have

[ |
6_6 00"
wl—s s6—w?

Since A(w) = A(s)]

s—jo» it becomes A(s) =
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All six poles of A(s) are located on a circle of radius @,
s = 0% with 6 = kg and k=0,1,2,...,5.

To build the transfer function H(s) of the system assumed causal, we select poles
whose real parts are negative

2 1 3 ~
= wcelz—T = wc(—i +j§)’ 53 = " = —w. and

S*wej%*w flf'ﬁ
4 — We — We ) ]2 .

Note that the poles s, and s4 are complex conjugates.

? W, ?

1) = -0 G- s —sp) )

H(s) is taken in the form of the product of a first-order and of a second-order
transfer functions (in cascade).
The impulse response of the first-order system is

hi(t) = o™ U(1).
That of the second-order filter is

hy(t) = o? ﬁ (e —e"U(1).

The product of the transfer functions corresponds to a convolution product of the
impulse responses in the time domain. The frequency response is

h(t) = hy (1) @ ha(2).

It is necessary to calculate convolutions of the type s(7) = e U(r) ® e U(r).
Each convolution being causal, we get for example for # > 0:

t t

o0
s(t) = / e IU(1 — 1) U(r)dt = /e“(”f)emdr = e‘”’/e(”’“)rdr
—00 0 0

(‘_—‘,)1: t
— eSgte T |0 — 1 (eszt _ esﬂ).
(s2—s3) (52— 3)
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Therefore

h(t) = . (( 1 (e — ex3r) _ # (ex4t _ exﬁ)) U(r).

(52— 54) \(s2 — 53) (84 — 53)

We can verify that this impulse response is real.
The frequency response is

2
c

- (jo + o) (—0? +joo, + ©?)

W, w

H(w)

For the first order, we use a RC circuit, RC = U% =1.59 x 1077 s, with for
example R = 10°Q, C = 1.59 x 107'°F. For the second order, we use a series

RLC filter

1
LC=— =253 x 10714,
wc

RC = i =1.59 x 10775, for example R=10°Q, C =1.59 x 107'°F, L =

,

1.59 x 107*H.

10.3 Chebyshev Filters

Type 1 Chebyshev filter that is studied here shows an oscillation of the gain in the
passband and has none in the stop band. It is defined from the square modulus of
the frequency response

1

A(w) =H(w)H"(w) = TTa(0)

(10.18)

¢ is a parameter related to the oscillation in the passband, T,(x) is a Chebyshev
polynomial defined by

| cos (nArccos(x)) if [x| <1
Tulx) = cosh (nArccosh(x)) if x| > 1° (10.19)
T?(x) oscillates between 0 and 1 when |x| < 1. A(w) oscillates between 1 and
Tz in that interval.
We note that the Chebyshev filter has the distinctive feature of having a gain
with a constant amplitude oscillation in passband.
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It will be assumed here that the poles of the transmittance (transfer function) are
simple and given by

ox = —sinhasin (2]‘2; 1n>, (10.20)

and
i = coshacos (21{2; ! n), (10.21)

with
a= %Arcsinh (%) and k=12...,n (10.22)

The poles are located on an ellipse (Chebyshev ellipse) such that

2 2
Ok Wi
—r 4+ 5 =, 10.23

sinh’a  cosh?a ( )

Numerical Application
If n =6 and ¢ = 0.2, it becomes cosha = 1.0752 and sinha = 0.395.
The equation of the ellipse is

x2 2
— + Y =1
0.156  1.156

The ellipse is elongated along the axis y. The length of the semi-major axis is
1.075. That of half the minor axis is 0.395 (Fig. 10.4). The poles of the transmit-
tance are closer to the vertical axis than in the case of the Butterworth filter to which
the poles are located on a circle.

This is this proximity to the vertical axis which causes oscillations on the gain in
the passband of the Chebysheyv filter that are not observed for the Butterworth filter
(Fig. 10.5). It is also this proximity that ensures the rapid transition of the pass-band
to the stopband of the transmittance of the Chebyshev filter.

By various numerical tests, we find that for a given order n, the oscillation in the
passband in the case ¢ = 0.1 is less pronounced than for ¢ = 0.5, as seen above on
the properties of A(w) (the poles are furthest from the vertical axis), which is an
advantage. But the disadvantage is that the passband—stopband transition is
slower.
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Fig. 10.4 Transmittance 15
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Fig. 10.5 Frequency gain of 7
a Chebyshev filter; n = 6;

e=02

10.4 Bessel Filters

The disadvantage of both previous filters types, especially the Chebyshev filter, is
that the group delay of a component signal spectrum depends on the mean fre-
quency of the signal. This may result in a distortion of the signal or variable delay
of a pulse with frequency in the filter. In the design of the Bessel filter, the
steadiness of the group delay is preferred giving less importance to the filter
selectivity. The idea beneath the reasoning of construction of this filter is the
following. A filter with the transfer function H(s) = e, and thus the frequency
response H(w) = e 7, introduce phase and group delays T, = 7, = T independent
of frequency.
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To simplify the analysis it is noted in the following calculation st =s. We

cannot find an exact expression of H(s) above in the form of a rational fraction. The
series expansion of e =& = ﬁ limited to any order gives insufficient
s 7

results when s is not very small. We choose the following approximation method;
we write

1
= 10.24
¢ cosh s + sinh s ( )

The development of coth s in continuous fraction is used

1 1
COthS:—+ﬁ.
N ;+%+%+IL

(10.25)

Limiting the development to order n, an approximate expression of coth s is
obtained.
At order 3 we get

1 1 652+ 15 coshs
th s 2 — = o . 10.26
cot s s+%+é s34+ 15s ~ sinhs ( )
We identify the numerators and denominators, and we take
coshs =2 65 +15; sinhs = s° + 15s. (10.27)
These expressions are replaced in the expression of H(s).
At order 3
H(s) ! =] ! (10.28)
S) = = . .
chs +shs s34+ 6524+ 155+ 15

The polynomial in the denominator is a third-order Bessel polynomial.
Limiting the development to first orders, we obtain the following polynomials:

P=s+1

Py =s*+35+3.

Py = 5+ 657 + 155+ 15.

Py = s* +10s° +455% + 1055+ 105.

Ps = 5% 4 155" + 1055° + 4205 4 9455 + 945.

P = 5% +215° +210s* + 1260s° + 47255% + 10,3955 + 10, 395.

P; =57 +285° +378s° +3150s* + 17, 325s> + 62, 370s* + 135, 1355 + 135135.

Py = 5% +365" + 630s° +6930s° + 51,975s* + 270, 2705 + 945, 94552 + 2,027, 0255 + 2,027, 025.
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We obtain the higher order polynomials by recurrence

P, = (2n—1)Py i +5*Pys. (10.29)

10.5 Comparison of the Different Filters Responses

We choose to do the comparison for eighth order filters. The different behavior of
frequency responses is explained by the respective positions of poles which are
shown in Fig. 10.6. The poles of the Chebyshev filter (represented by x signs) are
close to the imaginary axis. This explains the undulations of the gain that is sen-
sitive to resonance represented by each pole. In the case of Chebyshev filter, the

angle between the vector ]\71171) joining the point M on the ordinate axis jo to the
highest pole on the figure varies greatly when M passes the ordinate of this pole.
This causes a rapid phase change and therefore an important group delay at the edge
of the passband. Conversely, the highest frequency Bessel filter pole is relatively
distant from the imaginary axis, inducing a slow variation of the phase. The pole
with highest frequency of the Butterworth filter is at an intermediate distance from
the imaginary axis compared to the two other filter types discussed here inducing an
intermediate behavior.

Figure 10.7 shows the modules, phases, and group delays of the three types of
filters studied here.

Fig. 10.6 Positions of the 1.5 T T T T T
poles for the three 8th order : : : ¢ Buttenwiorth ©
filters : i b : Bessel -
1 SRRLEtt CRRTRRRPRE *G‘:‘.‘Ehe'ovshev -3¢
: o x i - :
S T A
s H =
1
0 T T EET T, , .........................................
g & i
+ :
05 | S -
+ i
O *
=g prreeeeeeeieeeneaaaes E*;"'c'_‘ ................................
‘1.5 i H H i i
15 -1 05 0 05 1 1.5
g,
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Fig. 10.7 Comparison of filter responses: Gains (top); Phases (middle); Group delays (bottom)
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The Bessel filter gain modulus is a bell curve. This filter is poorly selective. The
regular variation of the phase induces a constant group delay in the passband (main
advantage of the filter).

The gain of the Butterworth filter is flat in the passband (main advantage of the
filter), but the variation in the transition band is not very quick (compared to that of
Chebyshev filter shown at the bottom of the figure). The pronounced variation of
the phase in the vicinities of |x = 1| induces a maximum group delay in these
neighborhoods (remember that the group delay is given by the derivative of the
phase with respect to ).

The gain of the Chebyshev filter has oscillations (barely visible in the figure) in
the pass bandwidth. The transition, passband to stopband, is very pronounced (main
advantage of this filter). The strong variation of the phase in the vicinities of |x = 1]
induces a very important group delay in these regions. The oscillations of the group
delay are apparent. They are caused by the rippling of the phase for each frequency
close to the imaginary part of a pole.

Summary

In this chapter we have studied three classes of analog filters which play an
important role in signal processing. Their transfer functions have rational fractions
forms. We showed that their filtering properties are explained by the localization of
the poles of the transfer functions in the Laplace plane. It appears that the
Butterworth filter has the flattest frequency response in the passband. The
Chebyshev filter has the shortest transition region between the passband and the
attenuated band. The Bessel filter will be used when minimum deformation of the
signal through the filter is searched for. Amplitude and phase distortions of signals
are briefly discussed in the exercises section.

Exercises

I. A Butterworth filter is defined by the square modulus of its frequency
response

Aoy

.
1+ (2)

1. Determine the poles of the fraction A(s) and give the expression of the
realizable filter frequency response H(w) with A(w) being its square
modulus. What is the filter’s order?

2. Draw the graph of the filter gain according to frequency. What are in

decibel the gains of the filter at the cut-off frequency f. ? at 2f, ?

What is the impulse response of this filter?

4. Remind the comparative advantages of Butterworth and Chebyshev fil-
ters. (Base the discussion on the pole positions in the Laplace plane).

et
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II. Chebyshev filter: The square modulus of the frequency response of type 1

II.

Iv.

Chebyshev filter is given by A(w) = H(w)H*(w) = #ﬁ(w)
parameter and 7,,(x) is a Chebyshev polynomial, oscillating between 0 and 1
when |x| <1. Assume that n =12 and ¢ =0.25. We use Arcsinh(!) =
2.0947.

¢ is a

1. Show that the poles of A(s) are located on an ellipse which we determine
as the main axes.

2. It is desired that the filter is physically realizable, i.e., causal. How to
make the selection of A(s) poles to build the transfer function H(s) ?
Give the expression of H(s), then that of H(w). Specify the nature of the
filter.

3. Draw the shape of the square modulus of the gain A(w) based on the
properties of T, (x). Give an approximate value of the angular frequencies
for which A(w) has relative maxima.

Bessel filter: The transfer function of a third-order Bessel filter has the form

1
S 6s2+ 155+ 15"

H(s)

The poles of H(s) are s = —1.8389+;1.7544; s = —2.3222; 53 =
—1.8389 — j1.7544.
The function H(s) is defined for Re(s) > —1.8389.

1. Can we say that the filter is causal?
Why can it be said that this filter has a frequency response? Give this
frequency response.

2. This filter can result from cascading of two filters with real impulse
responses. Give the transfer functions of these filters.

3. Derive the impulse response of the filter of order 3.
Represent graphically the variations of the modulus and phase of the
filter’s frequency response.

The squared modulus of the frequency response of an analog filter is denoted
A(w)

1. Knowing that A(s) is a rational function whose 12 poles are

—0.04 £ j, —0.025 & 1.02j, —0.025 + 0.98],0.04 + j,
0.025 + 1.02,0.025 + 0.98;,

locate these poles in the Laplace plane.
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V.

VL

10 Analog Filters

Based on a geometric argument, give the appearance of the
frequency-gain modulus and specify the nature of the filter.

2. Build the frequency response of the physically realizable filter. Indicate
the principle of the practical realization of this filter.

Amplitude response distortion.

The frequency response of an ideal low-pass filter is H(w) = Ke 1“0, We
consider a filter with gain amplitude varying slightly in the band-pass.
|H(w)| = K(1+acos(wt/2)) for —2& <m < 2% and 0 elsewhere. a is sup-
posed to be small. Evaluate the filter output y( ) for an input x(7).

Solution

Y(w) = H(®) X(w) = Ke (1 +acos(wt/2)) X().
Y(0) = Ke 0 X (w) + K e 30 gej“”/z X(w) + K eI ge*j“”/z X(w).

Using the time-delay property

¥(1) = Kx(t = 10) + K5 x(t — t0+7/2) + K 3x(t 1o — 7/2).
y(t) = yo(t) + §yo(t+1/2) + §y0(t — 7/2). The output signal is composed
of the output in the absence of distortion and of two small echoes sur-
rounding the main component.
First-order phase distortion.
The frequency response of a non ideal low -pass filter is supposed to be
H(w) = K e i(@o=bsinot/2) for 20 ) < 2 and () elsewhere. b is supposed
to be small. Evaluate the filter output y(1) for an input x(z).
Solution

Y(0) = H(w) X(0) = K e (@07bsine/2) x(q).

We use the following development of the periodic exponential in first kind
Bessel functions

ejbsinwr/ZZ i Jn(b)ejnwr/Z.

Ju(x) is given by the polynomial expansion

0 2n+2k
B ST el

— kl(n+k)!
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For small x, limiting the development at first order we may write

Jl(—x)%—g,Jo(x)gl,Jl(x)% Jo(x) =0 for n> 1.

X
2 )
Then

. b . b .
H(w) = Ke 0 (1 + Ee'“”/z —~ Eewﬂ).

y(t) = yo(t) + 5yo(t+1/2) — Syo(r — ©/2). In the output signal, two echoes
with opposite amplitude surround the main signal component.



Chapter 11
Causal Signals—Analytic Signals

It was shown in Chap. 8 that the impulse response of a physical system is zero for
negative time. This follows from the principle of causality: the output of the filter
cannot precede the signal that created it, in this case, the Dirac distribution which is
zero for negative time. The effect cannot precede the cause. The physical system,
which satisfies the principle of causality, is said to be causal. By extension, the
impulse response is said to be causal. More generally, we will call causal any
function that is null for negative time. The general properties of these functions are
discussed here starting from the properties of the Fourier transform of the Heaviside
function. In the first paragraph, the Fourier transform of the pseudo-function 1/¢ is
carried out, by integration in the complex plane, as a preliminary calculation that
leads to the FT of the Heaviside function. We then show that the real and imaginary
parts of the Fourier transform of a causal system are related by integration rela-
tionship formulas called the Hilbert transform. Analytic signals are defined as
having a zero FT at negative frequencies. This notion brings an efficient tool to
study several signal modulations and band-pass filtering.

11.1 Fourier Transform of the Pseudo-Function %

We desire to calculate the Fourier transform of the function % defined by the integral

+ 00

1 .
/ e (11.1)

—00

This integral does not converge because of the singularity in # = O of the inte-
grand and its behavior at infinity. Strictly speaking, the function % has no Fourier
transform.
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We can only define the Cauchy principal value of the integral as

+ 0o —& R

I=PV / Leiorgs — lim / leﬂ'wfdt+ / L emiorg,\ (11.2)
t £— t t
—00 R 2R €

Then we say that [ is the Fourier transform of the pseudo-function Pf (})

The principal value has an interest since it allows calculating the Fourier
transform of the Heaviside function, as seen in the following.

Integration is used in the complex plane on the closed contour I' compound of
the real axis and the two semicircles of radii ¢ and R (Fig. 11.1)

The function being holomorph inside the contour I', the integral over this

contour is zero (Cauchy theorem)

I . R .
_fR Leiondy 4 {%dm— Sf%eﬂ‘“xdx+ g%dz =0.

(11.3)
(1) ) (3) 4)
According to the definition of / we have
I:lirr&{(l)—l—(ﬁ%)}. (11.4)

limg_. . (4) will be zero only if the exponential modulus appearing in the integral
can be bounded (Jordan’s lemma). This modulus is

’e,jwz| _ ‘e—ju)(x+jy)‘ — e — gWRsin0 (11.5)

We see that this modulus is bounded if the condition wy <0 is satisfied.
If w <0, the I contour is closed by the upper semicircle, so on C, one has wy <0.
We have on the semicircle C
e—jwz
/ dz =0. (11.6)

A 4

Fig. 11.1 Integration

contour I" /
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Calculation of integral (2) fe—zjm: dz

The integral over the semicircle can be set by the angle 6 between the radius
locating the point on the semicircle and the horizontal.
We can write z = ¢el’, and on the circle dz = ¢el’jdo,

i0

e]zw (Obe 0 i0
/—dz—/ e’ sdé):j/e]’g do, (11.7)

s

where, as ¢ is small,

0 0
j/ej‘“md(? %j/dB: —jm. (11.8)
On the small semicircle
—joz
lim(2) = /e dz = —jm, (11.9)
e—0 Z
then
+ 0o 1
I=PV / ;e_j‘“’dt =jr if w<0. (11.10)
—00

If o > 0, we seek to have wy <0 in the integral over C. We close the contour
from below to have y <0. Note that the small semicircle is browsed in the opposite
direction of the previous case,

e—jwz
/ dz = jm. (11.11)
Z

o
It results

+ 00
1 .
I:PV/ ;e’l‘*”dt:—jn if > 0. (11.12)

—00
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In summary

+ 00
1 .
I=PV/ ;e‘l“”dt:—jnsgn(w). (11.13)

—00

With the sign function of @ with the values

-1 ifw<0
sgn(w)—‘ 1 w0 (11.14)
We have found that £ Pf (1) has the Fourier transform sgn ().
Now we deduce from the previous result the function whose Fourier transform is
U(w) Heaviside function in the frequency domain . First we see that

U(w) == (1+sgn(w)). (11.15)

N —

Since ffoooo d(t)e7*"dt = 1, it can be said that 1 is the Fourier transform of J(z).

Therefore 1 is the Fourier transform of 14(z).

Finally : %5(1) + ZJ—nPf G) has the FTU (o). (11.16)

Similarly, we calculate the Fourier Transform of the Heaviside function of time
U(t). We can write

+ 00
1 .
PV/ aej“”dw:jnsgn(t). (11.17)

—00

The sign change in the exponential induced the change of sign in the second
member.
Therefore

+ o0
1 1. j
—PV —e”dw == t). 11.18
2PV [ o =Lsen (o (11.18)

—00

Thus, the inverse FT of Pf(1) is %sgn(t).
So FT of sgn(¢) is jg.Pf( ).

1
w



11.1 Fourier Transform of the Pseudo-Function f 181
As

U(t) == (1 +sgn(1)), (11.19)

N =

its Fourier transform is § (27‘C o(w) + %Pf (i)) Finally

y(pyLourer transt - s ) + %Pf( ). (11.20)

1
w

11.2 Fourier Transform of a Causal Signal; Hilbert
Transform

Let x(¢) be a causal signal, i.e. a signal x(¢) null for 7 <O0.
We can write

x(r) =x(r) U(r) (where U(z) is the Heaviside function). (11.21)

What are the properties of the Fourier transform of x(#)?
We recall the formula for the Fourier transform of a product of two functions

+ 00 + 00
A 1 1
—jot 3, — / — o f—
/ X(0) Ul)e 't = / X() V(o — of)dof = 5_X(0) @ V(o),
(11.22)
where FT of U(t) was noted V(w).
1 1
V(w) =ndé(w)+ -Pf|— . (11.23)
J W
Taking the Fourier transforms of both sides of the Eq. (11.21),
1
X(w) = %X(w) ® V(). (11.24)

We note X(w) = A(w) +jB(w).
It becomes

4(0)+8(0) = - () +is@) o (ro@)+mr (1)) (129
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As d(w) is the neutral element of the convolution, it becomes

%‘(w)+ ! Blo) = A(w) @%ﬂjpf(é) +B(o) ®%Pf<%). (11.26)

Equating the real and imaginary parts of the two members, we obtain the rela-
tionship between the real and the imaginary part of the FT of a causal signal

A(w) Z%B(w) ®Pf(é> or Alw) = %PV / B(w’)w _l w/dw’. (11.27)
B() =~ 1A@) @ H() ad Blo) =~ PV [ W) do.
(11.28)

It is thus seen that the real and imaginary parts of the Fourier transform of a
causal signal are not independent. The integral in the second member of Eq. (11.27)
is called a Hilbert integral. It is said that the real and imaginary parts A(w) and B(w)
are Hilbert transforms of each other.

A physical system is always causal. The impulse response of a linear physical
system is in consequence a causal function. The real and imaginary parts of the
frequency response of these systems are related by the relationship demonstrated
above. These relations are known in electromagnetism as the Kramers-Kronig
relations, connecting the real and imaginary parts of the dielectric constant of a
propagation medium that acts as a linear filter.

Relationship between the modulus and phase of the frequency response of a
minimum phase filter

A minimum phase filter is such that all the poles and zeros of its transfer function
H(s) are located left of the imaginary axis.

The filter frequency response is noted H(®). Using the magnitude and phase of
H(w)

H(w) = |H(w)|ei?®). Taking the logarithm: log H(w) = log|H ()| +jo(w).

All poles and zeros of H(s) being to the left of the imaginary axis, the function
log|H (s)| remains finite for Re(s) > 0, which means that log H(s) has all its zeros and
poles to the left of the imaginary axis. Then, this function is the Laplace transform of a
causal function. This property leads, as has been shown previously, that the real and
imaginary parts of log H(w) are Hilbert transforms of each other. So we can write

1 [ loglH(e
o(w) = —~PV / de’. (11.29)
T w —
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This formula is very appealing because it implies that if we measure the
amplitude versus the frequency of a phenomenon, we can deduce the phase vari-
ation law. However, this relationship is rarely used in practice because we must be
able to experimentally measure the amplitude across the whole frequency axis, from
minus infinity to plus infinity, which is rarely possible in practice.

However, this formula allows the evaluation of asymptotic behaviors of the
module or phase in some cases.

Application example
What is the causal signal whose Fourier transform real part is a rectangular
function?

We denote IT,o(w) this function equal to 1 for |w|<Q and zero elsewhere
(Fig. 11.2)

A(w) = Tho(w). (11.30)
+Q
B(w) :—EPV/ w_lw,dw’. (11.31)
-Q
The result is (Fig. 11.3)
B(w) = %Log‘i—;g‘. (11.32)

The demonstration is instructive. For example, we study the case where the
singularity is within the interval of integration

—Q<w<Q.
Then
+Q w—¢ Q
do’ . do’ do’
PV = lim +
w—0o =0 o— o w—o (11.33)
o) -Q w+e
(1) (2)
Fig. 11.2 Rectangular nzg (&

window in frequency domain
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Fig. 11.3 Imaginary part B(w) of analytic signal

Note that the principal value was used by taking ¢ common to lower and
upper bounds.

In the first integral ® — o’ > 0; we set X = 0 — o'; dX = —dw'.
& X (0+QdX Q
w—+
1) v | G-t (11.34)
o+Q g

Note that when ¢ — 0 this term tends to infinity.
In the second integral v — @' <0; we set X = o’ — w; dX = dw'.

Q- X 0
—

)= [ ——==-L
@)= [ -5 =L

(11.35)

Again, this expression tends to infinity when ¢ — 0, but the sum of (1) and (2) is
limited.
There is compensation between the two diverging values

o—+Q
Q-

(1)+(2) = Log (11.36)
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Thus

B() lL w+Q lLo Q—-ow
w) = ——LO0 = — _
i gQ—w i3 ga)—i—Q

(11.37)

One could look at the other cases for the situation of @ to find the complete
formula (11.32) which contains absolute values.
Determination of x(r)

X(0) = A(w) +8(0) = Alw) & [3(0) - Lpr (1) (11.38)

w

X(w) = A(w) ®% [n5(w) + %Pf@)] =A(w) ® %J—"(U(r)) (11.39)

Noting a(z) the inverse FT of A(w),

X(w) = %f(a(l)) ®FU®) or X(o)=2F(a(t) U1)).

and finally
x(t) = 2a(t)U(1) (11.40)
It remains to calculate a(r)
; 1 e‘th jQu 1
1 : —e
1) =— ¢d"dw = —————— = —sin Y 11.41
a(?) 2n / " Jjt a ( )
-Q
we deduce the signal
2
x(t) : x(t) = —IU(I) sin(Qt). (11.42)
T

11.3 Paley-Wiener Theorem

This theorem states a necessary and sufficient condition for causality of a signal
from the modulus of its Fourier transform. Suffice it to state

Theorem A necessary and sufficient condition for x(t) be causal is that the fol-
lowing integral converges.
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+ oo

Log|X
/ %dw < . (11.43)

—00

An immediate application is that no physically realizable filters (i.e., causal) can
have a transfer function with a modulus equal to zero over a whole frequency
interval. This is an important result in signal analysis.

The Paley-Wiener integral can admit singularities at isolated points
(|[Log(0)| = o0) but not on a whole segment.

We can deduce that we cannot find a physical filter that completely eliminates a
frequency band. A low-pass filter with the rectangular response Io(w) = 1 for
—Q<w<Q and zero elsewhere, cannot be physically realized.

11.4 Analytic Signal

This is by definition a signal whose spectral amplitude is zero for negative fre-
quencies. We can then write

X(w) = X(0) Ulw) (11.44)

x(t) = x(t) ® F 1 (U(w)). (11.45)
x(t) = x(1) ® Ga(t) + %Pf (%) ) : (11.46)

x(t) is necessarily complex. We note
x(2) = x1(2) +jxp (7). (11.47)

It becomes

1 (f) +jalt) = %xl (1) + j%xz(t) + () 40) ® 2inpf C) . (11.48)

(1) + () = %xl (1) ® Pf C) - %xz(l‘) % Pf C) . (11.49)
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By identifying the real and imaginary parts of two members

() = —%xz(t) ®Pf<%> (11.50)
XQ(I):%xl(l)(@Pf(%). (1151)

Concept of instantaneous frequency of a signal
Let x;(¢) a real signal and x(¢) the analytic signal associated with x;(z).

We call instantaneous frequency of the signal x; (f) the quantity

1d

fo= E&Arg(x(t)).
Important properties
1 X(w) = Fx (1) +jx(1)), (11.52)
X(w) =F(x1(t))+jf<%x1(t) ®Pf(—>) (11.53)
X(w)=F (x1 (e (5(r) + %Pf G))) or X(w) =2X(0) U(w)

(11.54)

So X(w) is obtained by taking twice the spectrum of x;(¢) for positive
frequencies.
2. The analytic signal can be rewritten

x(2) = x1(2) + jxo(2).
Its FT is written
X(w) = X1 (o) +jX2(w) = 2X;(w) U(w). (11.55)

So we must have for negative frequencies X;(w) +jX>(w) = 0,
)

X (w) =jX(w) if w<O. (11.56)
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For positive frequencies

X1(0) +jXa(w) = 2X1(w),

SO
Xa(w) = —jXi(w) if o> 0. (11.57)
In summary
X5 (w) = —jsgn (w)X; (). (11.58)
Application
We calculate the analytic signal whose real part is x; () = cos wot (See Fig. 11.4).
+ 00 | + o0 1 + 00
X (w) = / cos(wot)e " dt = 5 / e @m0l gr 4 3 / e@rot gy,
(11.59)
Xi(w) = nd(w — wo) + 1o+ wy). (11.60)
The analytic signal is then, according to (11.54) (Fig. 11.5)
X(w) =2n0(w — wy). (11.61)
Fig. 11.4 Real part X;(w) of , g (@
analytic signal 7 & wr &) ' x.k?‘!t@' )
- 0 & &
Fig. 11.5 Analytic (& M
signal X (o) 22K - &)
1] & o~
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Taking the inverse FT, the analytic signal in the time domain is
x(1) = el (11.62)
x1(t) is the real part of x(r)
x1(f) = cos wot, (11.63)
x2(#) is the imaginary part of x(z)
x(2) = sin wot. (11.64)

The signal x,(¢) is in phase quadrature with x; ().

Exercise
Check that the FTs of x| (¢) = cos wgt and of x,(¢) = sin wt satisfy the relation-
ships (11.50) and (11.51).

Note

/X3 (1) +x3() = 1. (11.65)

The analytic signal modulus is constant and gives the amplitude of the cosine.

Since
@)\ _
Arg (xl(t)> = wot, (11.66)

the analytic signal argument is used to calculate the instantaneous phase.
By a derivative with respect to time we obtain the instantaneous frequency

d X2 (1)
=—Arg| —= 11.67
Do =g e (xl (z))’ (11.67)
which is also in this case
1 x2(1)
=-Arg| —+% ). 11.68
on= e (25) (1168

Signal with slowly varying frequency Let the signal whose frequency varies with
time

x1(t) = cos(wy(2) 1). (11.69)
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If the angular frequency slowly changes over time, we may write

x(1) = el ", (11.70)
whereas previously
1 x2(1)
1) =—-Arg| —= . 11.71
on(t) = 1 Are(20) (11.71)

It is thus possible to follow the evolution of the signal frequency with time.

11.4.1 Instantaneous Frequency of a Chirp

Consider the signal

x1(f) = cos (w0t+ §t2> . (11.72)

The associated analytic signal is
x(t) = el(@0r+5), (11.73)

_ B,
Arg(x(t)) = | wot + 50 ) (11.74)
The instantaneous frequency is
1

f() (w0 + ). (11.75)

T 2n

In this chirp signal, the frequency increases linearly with time.

In Fig. 11.6 are shown the real and imaginary parts of the analytic signal of a
chirp used in practice. The third figure shows the spectral amplitude and the fourth
shows the instantaneous frequency of the signal calculated using formula (11.67).

11.4.2 Double-Sideband (DSB) Signal Modulation

Consider the signal x; (¢) resulting from the product of an amplitude a(¢) by a carrier
signal
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Chirp
1 T
os kLI
06 fr-H-4-H-
04 |
0.2 SN
0zl ’ I
0.4 H{-tF ikl
0.6 st - H-HEH A
s LT l'

2t

Imaginary part of the analytic signal

Signal amplitude (A.U))
Q
ot Sttt o

Signal amplitude (A.U.)

time (s)

Fourier transform of chirp

Spectral amplitude (A.U.)
Frequency (Hz)
w 5 [4,]

— i i j
1 15 2 25 1 15 2
Frequency (Hz) x10° time (s) x10°

Fig. 11.6 Left column Top Chirp; Bottom Its Fourier transform; Right column 7op Imaginary
part of analytic signal; Botfom Instantaneous frequency

coswot : x1(t) = a(t) cos wot. (11.76)

We assume that the variation with time of a(f) is slow compared to that of
cos wpt. More precisely, it is assumed that the maximum frequency o present in the
spectrum of a(z) is less than §*: ¢ < 4. The spectrum of a(t) shown on Fig. 11.7
represents this condition

Fig. 11.7 Frequency Al &
limitation of spectrum A(w)
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The Fourier transform formula for a product of two functions of time is used to
calculate X (w):

X () :%A(w) & [13(0> — o) + 13 + )], (11.77)
therefore (see Fig. 11.8)
X1 (w) :%A(a)—wo)—k %A(w—l—wo). (11.78)

We seek to determine the analytic signal of which x;(¢) is the real part. As the
maximum frequency in A(w) is less than 52, the function A(w — @) is zero for
negative frequencies and the function A(w + @) is zero for positive frequencies
(see Fig. 11.8). In this case, the analytic signal is (Fig. 11.9)

X(w) = A(w — wp). (11.79)
In the time domain, the analytic signal is
x(1) = a(r) &' (11.80)
By expanding the exponential we have

x(t) = a(t) (cos wopt +j sin wot). (11.81)

Fig. 11.8 Real part X; (w) of
analytic signal (2
1
EA(‘?”* &) 1
EA(@*‘ &)
- o 0 & &
Fig. 11.9 Analytic signal
X(w) in DSB modulation (9
Al @ &)
kg 0 4 @
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So:
x1(t) = a(t)coswot and  x,(t) = a(t) sin wot. (11.82)

It follows that one can obtain the modulus of the modulation signal

la(r)| = /%3 (1) + x3(1); (11.83)

The absolute value of the envelope is obtained by taking the modulus of the
analytic signal. The pulsation of the carrier is obtained by

e(2) o o= Sae(29). sy

Remark We will see in the exercises on amplitude modulation at the end of this
chapter that it is possible to retrieve the modulation function and not only its
magnitude by adding a constant to the modulation function.

11.4.3 Single-Sideband Signal Modulation (SSB)

We return to the previous example of amplitude modulation. Let a(z) a real signal
whose spectrum is limited to the low frequencies. A(w) = 0 for |w| > wy. Let x;(7)
be the signal x;(7) = a(t) cos wot. As noted above, we have (Fig. 11.10)

X1 (w) :%A(a)—wo)—i— %A((u—i—wo). (11.85)

The analytic signal is (Fig. 11.11):

X(w) =2X(0)U(w) = A(w — wyp). (11.86)

Fig. 11.10 Amplitude X (w)
modulated spectrum X (o)
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Fig. 11.11 Analytic Y ( m)

amplitude modulated )

spectrum X () A 0—a, |
—a, 0 @, @

x(1) = x1(t) +jxa (1) = a(t)el™, (11.87)
x2(t) = a(t) sin wot.

a(t) being real, it has the property

It follows that |X(w)| is symmetrical with respect to .

It is seen that the positive frequency spectrum contains all the information on
a(t).

Let us note (see Fig. 11.12)

Z(w) = 2A(0)U(w). (11.88)
z(t) = a(t) +ja(t), where a(r) is the Hilbert transform of a().
One can choose to limit the size of the frequency band during transmission, by

transmitting only the signal s(7) which is determined by the following relationships
(Fig. 11.13):

ZS((D) = Z(U) — wo).

Fig. 11.12 Single side band Z(Ct)) A
analytic Z(w)
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Fig. 11.13 Single side band 7 (w)
modulated spectrum Zg(w) ’
\
-, 0 @, 1)
We have
25(1) = 2()e™ = (alt) +jal(r)e. (11.89)

s(t), the real part of zg(z), is written using the assumption that a(z) is real
s(t) = a(t) cos wot — a(r) sin wyt. (11.90)

In reception, we can recover a(t) from s(z). Indeed multiplying s(¢) by 2 cos wyf,
we get

25(t) cos wot = 2a(t) cos® wot — 2a(t) cos wot sin wot (11.91)
= a(t) + a(t) cos 2wt — a(t) sin 2wyt. '

By low-pass filtering, it is possible to recover a(z) at reception.

A delicate problem encountered in practice is that one does not always know a
priori the frequency g used in the generation of the signal by modulation. It may
be necessary to ‘find’ it at the reception. Furthermore a shift in frequency between
the transmission and reception is accompanied by a distortion of the received signal
(in SSB radio transmission, deformation of the voice is known as ‘Donald Duck
voice’).

11.4.4 Band-pass Filtering of Amplitude Modulated Signal

Let f(z) be a real signal as input to a system with the real impulse response % (7). The
output g(¢) of the system is given by g(r) = f(t) ® h(z).
The different analytic signals in frequency domain are noted Z;(w), with

Zs(w) =2U(w)F(w);  Zy(w) = 2U(w)H(w);

Zy() = 2U(0)G(w). (11.92)
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As G(w) = H(w)F(w), we may write:

1
Z(0) = Zp(w)F(w) = Z(w)H(w) = EZh(w)Zf(a)). (11.93)
Noting z,(t), z¢(¢r) and z,(z), the temporal analytic signals corresponding
respectively to the signals g(7),f(¢), and h(t), we have the relations

1
ze(t) = z(1) @ f (1) = zr (1) @ h(t) = Ezh(t) ® z¢(1). (11.94)
Thus g(#) can be obtained by one of the preceding convolutions.
For example, we see that if f(¢) is given by f(¢) = a(t) cos wot and since h(z) is
real, the filter output will be

g(t) = Re(a(t)e"™") @ h(r). (11.95)

It is assumed that the filter with impulse response h(r) is band-pass, with fre-
quency response H(w), with modulus |H(w)| and phase ¢(w). An example of
modulus and phase for H(w) is given in Fig. 11.14

We build the corresponding low-pass filter H,(w) defined by (Fig. 11.15):

Hy(0) = Zy(o + wo)e 7, where ¢y = (o). (11.96)

It is assumed in the following that H(w) is a symmetric filter in the sense that
Hy(—w) = H};(w). In this case, we remark that

Zh(w) = Hb(a) - CU())CWU, (1197)

and therefore z,(¢) = hy(¢)el @'+ %), where hy(f) is the impulse response of the
low-pass filter. As 7, (¢) is real, we have, taking the real part of z,(¢):

h(t) = hy(2) cos(wot + @q). (11.98)
Fig. 11.14 Band-pass filter
response H(w) ‘H (w)‘
-, 0 , P
7
~a, 0 o, o
|, Ty
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Fig. 11.15 Low-pass filter ‘ H
response Hp,(w)

We now assume that the system input is the modulated signal f(¢) given by

F(2) = a(z) cos wot.

Then
Zs(0) = A(w — wg),  Zn(w) = Hy(w — wg)e?.

We have

1

Zy(w) = 5 Zn(0)Zs(w) = 5 A(w — wo)Hp(w — o)™
1 .
— sz(w _ 0)0)’1%
and therefore
1 .
g(t) = ERe(gb(t)el<wof+<ﬂ<>>). (11.99)

We have written g,(¢) = a(t) ® hy (7).

The response of the system is a modulated signal whose envelope is the response
of the LF equivalent system filtering the envelope a(t) of the input signal (within a
%4 factor).

11.5 Phase and Group Time Delays

General property

We consider a low-pass filter and we assume that the spectrum of the input signal is
limited to very low frequencies. To estimate the filter response to such a signal, the
gain amplitude can be approximated by a constant and the phase by a linear law
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|H(w)| =2 H(0) and o¢(w)=-or.

We then see that the system acts as a pure time shift filter.
In the case of the low-pass filter Hj,(w), the output is written in these conditions

gr(t) = Hp(0)a(r — 7).

In the case of a frequency response of the filter H(w) operating in a frequency
band around wg, we write

ty(wo) = —— and 1,(wg) = _#®) (11.100)

wW=w w W=

It is now shown that ¢, is the delay of the signal envelope (group delay) and ¢, is
the delay of one of the spectral components constituting the group (phase delay).

The phase introduced by the equivalent low-pass filter H,(w) described above
has the form

Pp(0) = @(w+wy) — @o(w).
We have

/

?5(0) = ¢'(w0) = —t;.

The derivative of the phase of the envelope has the value —z,.
Furthermore

Hb(O) = Zh(wo)e_j‘f’“.
The response of the equivalent low-pass filter has the form

v(1) =2 2|H(wg)|a(t — t,); it is real by hypothesis.
Since we have

(1) = 2 Re (g (1)),
it follows
g(t) = |H(wo)|a(t — ty)cos(wot + @), (11.101)
and therefore:

(1) = |H(wo)|a(t — 1) cos wy (1 — 1,).
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The output signal consists of the envelope delayed by the group delay t,,
modulating a cosine shifted in phase by ¢y = —wot,. t, is the phase delay intro-
duced by the filter.

11.6 Decomposition of a Voice Signal by a Filter Bank

The following example is an illustration of the modulation techniques used in the
processing of voice signals. As explained above, the ear is sensitive only to the
frequency content of an audible signal. A series of treatments in the frequency
domain is acceptable if it renders the original spectrum, even without respect to the
temporal shape of the signals. This is what allows the use of filter banks in speech
processing. Nowadays, recording and transmission of voice signals are mainly
digital. These actions are preceded by the conversion of analog signals into digital
signals in a first step. This is detailed in the second part of the book devoted to
digital signals. It is shown that the quality of the conversion depends on the number
of quantization of the analog/digital converter levels. The greater the number of
levels, the higher is the quality of the coding. But this accuracy requires a high
number of quantization bits. In many applications, it is desired that the coding is
done economically by reducing the number of bits while maintaining a sufficient
quality during playback.

This is the case when the information transfer is limited by the throughput of the
transmission channel. One is then led to divide the audio signal frequency band into
subbands, to digitize, encode, and process signals contained in each of the sub-
bands, and to reconstruct the audio signal at the end of the processing chain.
A typical example is the following treatment:

Let us note s(¢) an original voice signal. The frequency band characteristic of the
signal is divided into subbands by a filter bank (4 in Fig. 11.16).

We denote s, (7) the result of filtering of the original signal by the nth band-pass
filter in {f;,f, + B,} whose impulse response is noted /,(¢).

We thus have

sn(t) = hu(1) @ s(1). (11.102)

Fig. 11.16 Example of filter S(H
bank

= | fifs /+ /o fi*B.S
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Fig. 11.17 a nth filter (a) R (f) \
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To bring this signal in the baseband it is multiplied by cos w,t. We note r,(¢) this
product

r”(l) = Sn(t> COS Wpt.

Figure 11.17 shows for the band {f2,/> + B, }, in a) the spectrum of r,(¢), in b)
and that of cos w,f and in c) that of their product. A low-pass filtering allows to
keep only the central portion of the spectrum {—B,,B;}. The signal from the
low-pass filter is converted digitally.

It has been shown that the quantization noise was less impeding in this subband
coding, and that one could use converters with a reduced number of bits. One gains
in volume of information and in transfer speed. The signal is transmitted in digital
form.
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Results are presented in Fig. 11.18. At signal reception, each component in the
baseband (spectrum Fig. 11.18a) for the subband 2 in the figure), is multiplied by
cos wyut (spectrum given in Fig. 11.18b). Pass-band filtering finally returns the
subband (Fig. 11.18c). The final signal is reconstructed by adding the components
of the different bands.

Summary

We have studied in this chapter the properties of causal functions which are null for
negative time and analytic functions which are null for negative frequency. The
general properties of these functions have been derived from the properties of the
Fourier transform of the Heaviside function. That Fourier transform has been
evaluated from the FT of the pseudo-function 1/z. The real and imaginary parts of
the FT of a causal system have been shown to be related by integration relationship
formulas called the Hilbert transform. The properties of analytic signals have been
used to study several types of signal modulations and band-pass filtering. The group
and phase delays of the output signals of band-pass filters have been introduced.
Frequency modulation is met in an exercise.

Exercises

I. Amplitude modulation.
A signal fi(#) comprises a carrier with angular frequency @y modulated in
amplitude by the signal 1 + cos Q#;f1(r) = (1 + cos Qr) cos wot.

1. Represent the appearance of fi(f) when Q < wy.

2. What is the spectrum (representation in the Fourier domain) of the signal
/1(2)? Graph the spectrum assuming that Q < . Give the bandwidth of the
signal fi(z).

3. What is the analytic signal z(¢) whose fi(¢) is the real part? Calculate the
modulus of z(¢). Compare this result graphically with the representation of
question 1.

II. Amplitude modulation.
Consider the signal f () = (1 + a(z)) cos wot. It is assumed that a(f) is a slowly
varying function with magnitude less than 1 and whose spectrum A(w) is
limited to the interval {—®max, Omax } With 20max < @g.

1. Draw the shape of the function f(z).

2. Give the expression of F(w), the Fourier transform of f(z). Represent the
shape of the spectrum F(w).

3. Calculate the analytic signal z;(¢) associated with f(z).

4. To demodulate the signal f () we multiply it by cos wpz. We note g(¢) this
product.
What is the Fourier Transform of g(7)? How to retrieve a(¢) by filtering?
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Solution

1. To draw f(¢) we choose as an example: a(r) = 0.4 cos w;¢, with f| = 5 kHz
and fy = 127 kHz. Shape of f()

Amplitude modulation

=0 11 o 1 e 1
" [ g
SR
11 1

25 2 15 -1 05 0 05 1 15 2 25
time (s) x 10

2. F(w) = 3 (2n6(w) +A(w)) @ n(d(w — wo) 4 6(w + wy)).

To illustrate this we take a spectrum of A(w) of the form

M(&

- & 1] af P

F(w) = n(d(w — wo) + 0w+ wg)) + %(A(a) — o) +A(w + wy)).

Appearance of the spectrum F(w):

—wy 0 | Wy w

3. Zf(co) = 27‘55(0) — COQ) +A(w — CL)O)7 Zf(f) = (1 +Cl<l‘))ejm°t,
4. G(w) = £ F(w) @ n(d(w — wp) + 6(w+ wg)) = 5 (F(w — wo) + F(w+ w)).
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III.

8w+ 2wy G (w) &(w) Hw-2wy)

.2 Wy 0 ‘ 2w, w

A low-pass filtering will extract 1+ a(z). a(t) is extracted by filtering off the
DC component. Note that this method only applies if a(f) has no DC com-
ponent, as in the case shown in figure representing A(w). Speech or music
signals have this property.

Frequency modulation:

This exercise exposes the principle of phase modulation of a carrier with fre-
quency g by the signal Ay sin Q¢. We assume that the angular frequency of the
modulation signal verifies Q < . A is the modulation index.

We note f>() this phase modulated signal:

f(t) = cos(wpt + A sin Qr).

We accept here that the periodic function el " has a development in Fourier

series of the form es"¥ = 3 ] (A)e ¥, where the functions J,(A) are the

n=—o00
Fourier series coefficients. They are the Bessel functions of the first kind of
order n having the following properties:

a. J, functions are damped oscillating functions like sine or cosine with a fairly
low damping (J,(A) behaves as —= for A large).

b. J,(—=A) = (=1)"1,(A) = J_,(A),

c. J,(A) becomes small for n > A.

Refer to the following table for some numerical values of J,(z).

1. Give the spectral representation of the signal f>(7).

2. Numerical application (Broadcasting radio in FM band 87.5-108 MHz):
The frequency of the highest audio signal for radio transmission in the FM
band is f = 15 kHz. A second baseband is used to encode stereo signals
from f = 26 kHz to f = 53 kHz. A 3 kHz band is used around f = 50 kHz
to code various information. The congestion standard in FM band is that the
frequency excursion granted to an FM station must not exceed £75 kHz. It
is assumed in this example that the carrier frequency is fy = 100 MHz and
that the maximum frequency of the signal to be transmitted is 75 kHz.
Based on the following table of Bessel functions, what is the maximum
modulation index A if the tolerance for the amplitude of the spurious lines is
one percent maximum of the amplitude of the main frequency line?
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A Jo(A) Ji(A) Jo(A) J5(A) J4(A)

0 1.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.9975 0.0499 0.0012 0.0000 0.0000
0.2 0.9900 0.0995 0.0050 0.0002 0.0000
0.3 0.9776 0.1483 0.0112 0.0006 0.0000
0.4 0.9604 0.1960 0.0197 0.0013 0.0001
0.5 0.9385 0.2423 0.0306 0.0026 0.0002
0.6 0.9120 0.2867 0.0437 0.0044 0.0003
0.7 0.8812 0.3290 0.0588 0.0069 0.0006
0.8 0.8463 0.3688 0.0758 0.0102 0.0010
0.9 0.8075 0.4059 0.0946 0.0144 0.0016
1 0.7652 0.4401 0.1149 0.0196 0.0025
1.1 0.7196 0.4709 0.1366 0.0257 0.0036
1.2 0.6711 0.4983 0.1593 0.0329 0.0050
1.3 0.6201 0.5220 0.1830 0.0411 0.0068
1.4 0.5669 0.5419 0.2074 0.0505 0.0091
1.5 0.5118 0.5579 0.2321 0.0610 0.0118
1.6 0.4554 0.5699 0.2570 0.0725 0.0150

Solution

f2<l) = 1 (ej((uot+A sin Qr) + e—j(a)ol+Asin Qt)) .
2

First we consider the exponential —ei(@of A sin Q) — giootgid sin &

i J, (A)ej(wo +nQ)t'

The spectrum of f;(¢) which is a periodic function is a line spectrum. The
amplitude of these lines are J,(A). It is noted that, since
J_n(A) = (—1)"J4(A), the spectrum modulus is symmetrical about the
center frequency wg. If the modulation index A is small, the property
c. causes the number of lines around the carrier frequency to be low.

It is assumed that significant amplitudes lines are limited to two side lines.
We can write

ej(wnt+Asith) — JO(A)ejw°’+J1 (A)ej(mn +Q)r+J,1(A)ej(w”79)r+J2(A)ei(w°+29)’ +172(A)ej(v)0729)t
= e (Jo(A) +j2J1 (A) sin Qt + 2J5(A) cos 2Qx).
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Therefore

(1) = = (" (Jo(A) +j2J1(A) sin Qt + 2J5(A) cos 2Q1) )

1
2
+ = (e (Jo(A) — j2J1 (A) sin Qf + 2J5(A) cos 2Q)).

N —

fa(t) = Jo(A) cos wot — 2J,(A) sin wot sin Q + 2.J5(A) cos wot cos 20t

In the above expression of f>(¢), the spectrum is limited to the main line at
frequency @y, to two lines at wy £ Q and two lines at wy £ 2Q.

In the numerical example, these lines correspond to the frequency of the
carrier at fp = 100 MHz and to frequencies f; _; = 100 MHz £ 75 kHz and
Jf2.-o = 100 MHz + 150 kHz.

2. The frequencies of the second sidebands exceed the recommended fre-
quency deviation. By limiting the modulation index to A = 0.2 the ampli-
tude of the second sidebands remains limited to 1 % of the amplitude of the
main frequency.

In practice, the frequency difference between two FM radio stations is at
minimum 400 kHz. This allows an excursion of £200 kHz, avoiding the
embarrassment of overlapping second sidebands. Maintaining a low index
of modulation, one can in principle transmit modulation signals whose
frequency can reach 200 kHz.

Finally, notice that the first sideband is in quadrature (5 phase shift) with the
carrier, unlike what happens with the amplitude modulation where the phase
difference is zero.



Chapter 12
Time-Frequency Analysis

Fourier analysis is not relevant to describe a signal when some of its properties
change over time. This is the case, for example, for the chirp signal that we studied
previously whose instantaneous frequency varies with time. Acoustically, the ear
perceives for this type of signal an increase (or decrease) in the tone, while a simple
Fourier transform of the signal does not provide easily interpretable information on
the evolution of the “apparent frequency” of the signal over time. Although the
frequency concept has been defined for a periodic signal, we continue to talk of
frequency for this kind of signal. For example, for a chirp, we say that the frequency
increases (or decreases) with time. The term frequency being inaccurate we rather
speak of instantaneous frequency.

Simple Fourier analysis is unable to provide easily usable variables that are
capable of describing the evolution with time of these signals’ characteristics. These
signals are called nonstationary and their analysis is called time—frequency analysis.
Advances in the analysis of these signals have been important in recent years and
allowed, among other things, to arrive at treatment techniques such as signal
compression (MP3 audio, or JPEG video), signal detection in noisy environment, or
restoring old recordings on 78 rpm discs.

This chapter reviews various methods for analyzing nonstationary signals.
Multiplication of the signal by a sliding window leads to short-time Fourier analysis
and spectrogram. In the Wigner—Ville distribution, the time reversed signal plays
the role of a sliding window analyzer. The inconvenience of the preceding methods
is that the width of the window of analysis is kept fixed. The analysis cannot be
optimal both for a fast varying part and a slowly varying part of one signal. The
continuous wavelet transform (CWT) principle is to explore the signal with a
window whose width takes successively all possible values. We explain the theo-
retical basis of this method. Several wavelets are presented: Morlet, Mexican hat
and Shannon wavelets. Later in this book, after developing the rules for calculations
on digital signals, Chap. 19 is a continuation of this chapter for digital signals.
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12.1 Short-Time Fourier Transform (STFT)
and Spectrogram

Let x(¢) be a signal and w(#) a time window. The following quantity is called the
short-time Fourier transform (STFT) or sliding Fourier transform:

STFT(t, w) = / x(s)w* (s — 1)e Ids. (12.1)

—00

This quantity is interpreted as follows: Within the integral, the time signal x(s) is
multiplied by the sliding window w(s — #) (by its complex conjugate in the general
case of complex signals) whose role is the selection of some part of the signal in a
neighborhood of the instant 7, then the Fourier transform of the product is calcu-
lated. w(s) is a window centered at time s = 0 whose width is empirically chosen to
discriminate as well as possible the evolutions of the signal on the time axis.
Commonly used windows are Hanning or Gaussian (also called Gabor window).

The STFT is also called Gabor transform.

Spectrogram
The following quantity is called Spectrogram

+ 00 2

S(t,w) = / x(s)w* (s — 1)e I*ds| . (12.2)

—00

It is the squared modulus of the STFT.
It is shown in the following that we also have the relationship

2

S(t, ) = (2—;)2 700 X(0 )W (0 — w)ed”'de| . (12.3)

—00

To demonstrate this result, we first calculate the Gabor transform that we note as
I for convenience

+ oo
1= [ xows—neas (12.4)
x(s) and w*(s — t) are then expressed from their Fourier transform within 7
1 oo 1 + o0
x(s) = o / X(w’)ej“"sda)’ and w'(s—1) = - / w* (w//)e—ja;//(s—t)dw//
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+00 400 +00

1 2 . e foe
] = (%) / / / X(w')e]“’ Sdaw W* (wu)e—yu (s—t)dw//e—yusd& (12'5)

We flip the order of integration to start by integrating upon s

N e
1= () [ [ e naare [ o g
1 +00 + 00
122_/ / X(o )W (@")e”"5(0 — 0" — w)do/de”.
Y

We then integrate upon ” for example

+ 00

1 .
I=5- / X(0 )W (0 — )@ de. (12.7)
Y
1 2 + oo - 2
S(t,w) = II' = (2—> / X( YW (o' — w)e@=dw| . (12.8)
Y

The term e " disappears in the modulus computation,

+ oo 2

S(t,w) = (%)2 / X(0)W* (0 — w)e”'dey| , QE.D. (12.9)

It can be interpreted as follows: Let us first imagine that the spectrum W(w) of
the window lies predominantly in a neighborhood of zero frequency (spectrum of a
low-pass filter). The bandwidth W(w) is assumed to be small compared with that of
X(w).

As shown in Eq. (12.9), S(z, ) is obtained by the multiplication of the signal
spectrum X(w') by the spectrum of the window W(w') translated in frequency
followed by an inverse FT. This is looking at time #, the contribution to the signal of
the frequency band selected by W* (o' — ).

In practice, a spectrogram is obtained by tracking over time the changes in the
outputs of a filter bank. This analysis was common when signals treatments were
only made by analog ways.
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A weakness of the concept expressed in formula (12.3) is that the bandwidth of
the translated filter W(w' — w) is the same for all frequency ranges. If this width
may be sufficient to adequately assess the spectral amplitude in a certain frequency
band, it may be quite inadequate to assess the spectral amplitude of the signal when
the frequency lies in other bands.

One could imagine for overcoming this drawback to use a filter bank having the
same Q-factor rather than same spectral width.

One can also express this idea in the time domain by saying that if a large time
window is used to assess correctly the amplitude at low frequencies (to have a good
resolution at low frequencies given the Heisenberg—Gabor uncertainty principle),
this width is too large to account for rapid changes in high frequencies from one
moment to the other within the time window. Rather, we would like a shorter time
window to analyze the high frequencies. We are led to the concept of multiscale
analysis.

Since the rise of digital computers where the possibilities of computing in the
time domain are more important, the spectrogram analysis in the frequency domain
has been supplanted by the calculation in the time domain.

Example of Spectrogram
Consider the following signal composed of a linearly increasing frequency chirp, to
which is added a small sinusoidal component

x(t) = sin <w0t+ §t2> +0.3sin(2xfi1),
with g = 2 x 10%rad/s; f = 6 x 10%; f; = 1.6 x 10° Hz.

Figure 12.1 shows the signal x(¢) (a) and the magnitude |X(f)| of its Fourier
transform (b)
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Fig. 12.1 Chirp signal and its FT: a Signal x(¢); b Its FT [X(f)]
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Fig. 12.2 a Spectrogram of x(z) with rect. window; b Spectrogram of x(¢) with Gabor window

While the increase of the signal frequency is apparent on the temporal shape, the
spectral amplitude shown in Fig. 12.1b bears no indication of the evolution in
frequency.

Figure 12.2 represents in pseudo-3D two spectrograms calculated with windows
of different shapes.

The spectrogram on the left is calculated by taking the FT after a multiplication
by a rectangular moving window with a 100 pus width. The second one is obtained
using a Gabor window (Gaussian window) with spread g; = 31.6 ps.
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The horizontal axis from left to right is the time axis, the second horizontal axis
is the frequency axis.

The permanent nature of the sine with frequency f; = 1.6 x 10° Hz and the
linear increase over time of the chirp are clearly visible on both spectrograms.

The peak occurs when the frequency of the chirp lies in the vicinity of the
sinusoid frequency.

The smoother shape of the spectrogram given by the Gabor window is due to the
apodization effect of a Gaussian window.

12.2 Wigner-Ville Distribution

The Wigner—Ville distribution of a signal is defined by the relation

+ 00

W, ) = / x(tJr%)x*(t—%)e*j“”dr. (12.10)

—00

Note that in the terms appearing in the product, the time t integration variable
appears with a plus sign in a term and with a minus sign in the second. The minus
sign is characteristic of a time reversal of the signal (as is the case in a convolution).

If we compare this definition with that of the spectrogram, we note that in the
integral, the time reversed signal plays the role of a sliding window analyzer. The
parts with slow variations will select the parts with slow changes and fast changing
parts select the parts with rapid changes, this property acts as a kind of window in
the time domain that is appropriate to local variations of the signal.

The dimension of W(#, w) is that of an energy, dependant on 7 and ®. The goal of
this distribution is to give the energy of the signal at the frequency w at a given time ¢.

Properties
+ 00
/ W(t, w)dt = [X (). (12.11)

Indeed, let us first write the expressions of the Fourier transforms of the time
functions appearing in the right side

+ 00 + o0 + 00
1\2 A e (o
W(t,w) = <%> / e 1%dr / X(w')e” (+3) doy / X*(w")e™ () do”

(12.12)
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We integrate this expression on ¢

+00 \2 400 400 + 00 +00
/ W(t, w)dr = (ﬂ) / dt/ e’j‘“df/ X(w’)ei‘”’(”%)dw’/ X*(w”)e’j"’”("%)dw”.
(12.13)
Switching the order of integrations, we first integrate over ¢
+ 00 | 5 to© +0o +00 +o0
/ W(t, w)dt= (ﬂ) /e‘j“”d‘r/ X(w/)ej%dw// X*((u”)ej%d(u”/ el@="rgy
7‘+oc | +067 +007 +oc7 )
/ W(t,w)dt:E/ e’j””dr/ X(w’)é%dw’/ X* (") T (0 — 0")do".
We then integrate upon o”
+ o0 | + 00 + 00
/ W(t,a))dtzz—/ e‘j"”dt/ X (o) X* () do.
T
We first do the integration on t©
+ 00 | +00 +00
/ W(t,w)dtzz—/ X(w’)X*(w’)dw’/ e I@=)rqq,
T
—00 —00 —00
+ o0 + 00
/ W(t, w)dr = / X)X (@)8(0 — o)do = [X(@)F.  (12.14)
Finally we obtain the relation (12.11)
+ 00
/W(t,a))dt:|X(w)|2 (12.15)
Similarly we have
1 + 00
2—/ W(t, w)do = |x()]*. (12.16)
T
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Indeed
+ 00 +00 +o00
T .
— [ R R P (04
2n/ W(t, w)dw n/ /x<t+2)x (l )e drde.  (12.17)

Integrating firstly over o,

+ oo + o0 + 00
1 1 T T .
- - Y L - —jot
277:/ W(t,w)dw 2n/ x(t-i—z)x (t 2)dt/ e 1”"dw
—00 —00 —00
1 . (12.18)
T\ , T
:%/ X<t+ E)X (t 2)(1’[27175(1')
Finally
1 + oo
2—/ W(t,w)da):x(t)x*(t):|x(t)|2. (12.19)
T
—00

We now show that the Wigner—Ville distribution of x() can be expressed in the
Fourier domain by the following expression:

+ o0

/ /
W(t,w) = / X<a)+ C;)X* (w — az)) “"da’. (12.20)

To do it, the following inverse FT terms are replaced in the definition (12.10)

+ 00 +
AN 1 / ‘u/(r+§) / *( T) _ 1 x(on —jm”(r—%) 1
x(H— 2) =5 / X(w') e do’ and x*(¢ 5) = X" (0")e do”.

—00 —00

N2 +o0 +oc
W(t, ) = (ﬂ) / X((u/)ei“’”d(u’/ X*(w")e’j“’”’dw”/ (g +r-o)gr
—o0

After integration on T we get

+ 00 + 00 , "
w

1 .y s
W(t,w) = I / X(w")e”'do / X (") e 1”76 <7 + % - a)> do”.

—00 —00

+

(o @]

X(0') e X (20 — ') e 1?2~ dgy .

—

After integration on ” W(t,w) =1
n

3
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Now the following change of variables is made: o' = w — ‘%—”; do/ = — %
It becomes
1 T w// w// .
Wito)=— [ Xlo-—)X* — e " de”
(t, ) 2n/ <w 2) <w—|—2>e ",
which becomes after the last change of variables o’ = —@”

+ 00
1 / / .,
Wit,) = o / X(w+ %)X (co - %) ¢”"dey’ Q.E.D. (12.21)

The interest of this formula appears in the following examples.

Example 1 Calculus of the Wigner—Ville distribution of a signal whose frequency
varies linearly over time

x(f) = el™el. (12.22)

X(H %) — oo(r+9)ga(t+1)’, x(t - %) — (-9 gJa(-)",

v (1= 3) =il Dei-9’
2

After calculation we get x(z+ $)x*(r — £) = el®0rear,

+ 00 + oo
W(l‘, CO) = / ejworeratre—jwrdT — / ej(w(,+2ut—(u)rd_c_
W(t, ) = 21 8(wp + 2at — ). (12.23)

W(t, w) is zero unless the condition w = wq + 2ar is satisfied.
The distribution W(z, ®) is shown in Fig. 12.3 in the plane (¢, w)

Fig. 12.3 Wigner—Ville @

distribution of x(z)
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Example 2 Calculation of Wigner—Ville distribution for a signal whose frequency
varies linearly with time and amplitude is modulated by a Gaussian shape

() . .
xX(t) = e 37 el (12.24)

2
x(143) = oL (e gilr+ 9,

(50)’
=519 2
x* (l — %) =e e e’J“"’( )e*J“( =)

It becomes x (7 + 3)x*(t —5) = efaiz((”"’)z*%) w0t e2iart

1 e -
Wit ) = F(x(r+3)x (1=3) ) =070 ZF(e7i) @ F(@7er).

o _ 2
As e P has the FT \/%e_Tn, e 4’ has the FT v/ ndgle= @’
We then have

(l (,O) _ 20\/—.6 ”2 (—10)? 0'2((0—(1)0—2611)2. (1225)
For a given ¢, the maximum of the distribution is such that OW(’ ®) 0, then for

o = wp + 2at. (12.26)

We expect to see in the time—frequency plane a track similar to that of Fig. 12.3.
The maximum of the distribution in the time—frequency plane will occur at the point

where the two partial derivatives are zero, for ()Wr)(“”) =0 and for ()Wr(ft ) — 0. The
first derivative has already been performed. To make zero the derivative with
respect to time, we do the change of variables u =t — 7. The factor in the expo-

nential is written as
glu) = -5 az(w — wo — 2au — 2at0)2.
o

2 +2a0(w — 0 — 2au — 2at) = 0,

Just impose dé(u) =

This gives
c*a(w — wy — 2aty)
1+ 2ad%6*

t—1ty = (12.27)
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Fig. 12.4 a) chirp with a Gaussian envelope b) Wigner—Ville distribution of x(7)

Conditions (12.26) and (12.27) impose that the maximum of the distribution is
reached for ¢ = 1.

We present in the following results of a numerical simulation which has been
taken for tp = 4; 0 = 4, wg = 5.5; and a = 0.5.

We recognize the Gaussian envelope of the signal on Fig. 12.4a. Figure 12.4b
shows the linear track in the time—frequency plane of the higher amplitudes of the
function. We numerically verify that the maximum of the function occurs for
t=1ty=4.

It must be emphasised finally that for signals consisting of a superposition of
signals, terms resulting from interference between the signals appear in the Wigner—
Ville distribution. This results in difficulties in the interpretation of images for the
detection of characteristics of the component signals. The wavelet analysis
described in the following partially overcomes this problem.

12.3 Continuous Wavelet Transform

12.3.1 Examples of Wavelets

The aim of CWT is to decompose signals on a basis of functions providing good
localization both in time and frequency domains. By assumption, the signal x(¢) to
be decomposed are square-integrable (€ L?). The wavelet (¢) considered here is a
continuous function in the time domain with a continuous FT. It should be also such
that
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/ Y(t)dr = 0. (12.28)

This last condition is called the eligibility requirement for the function ¥/(#) to be
a wavelet. We note ¥(w) the FT of /(7).
The relationship (12.28) entails

¥(0) = 0. (12.29)

The norm of the wavelet is assumed to be equal to 1

/ WOw (de) = 1. (12.30)

In principle, a wavelet is localized around the origin with a narrow temporal
spread.
A first example of wavelet is the “Mexican hat.” It is the second derivative of the

2 2
Gaussian function f(z) :ﬁefﬁ with the sign changed: (1) = \/2%5636 272

(1-2).
The condition of eligibility is verified. It is represented in Fig. 12.5 for ¢ = 0.1.
A second example is the Morlet wavelet which is a monochromatic signal with

frequency o modulated in amplitude by a Gaussian function (z) = e 27l
Its FT is (see Chap. 7):

Fig. 12.5 Mexican hat 400

300 +

200 f

100 f

-100 ¢

_200 L i L
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Fig. 12.6 a Morlet wavelet; b Spectral amplitude of Morlet wavelet

C’z =) 2
Y(w) = V2na2e” o) .

The Gaussian shape of the envelope ensures the minimum of the product of time
and frequency spreads (see Chap. 6). The eligibility condition is not satisfied by this
function since ¥(0) # 0, however, if wy > % the frequency peak of the Gaussian
that is located in the vicinity of @y is sufficiently far from the origin, and the decay
controlled by % sufficient so that W(0) ~ 0. Figure 12.6 shows the real part of the
Morlet wavelet and its spectral amplitude when wy = 1 and ¢ = 5. We see that
W(0) is almost equal to zero (¥(0) = 1.37 x 107%).

12.3.2 Decomposition and Reconstruction of a Signal

with Wavelets
A wavelet basis consists of functions normalized to 1 (1) = ﬁ ¥(=2). These
functions are obtained from the mother wavelet ¥/(¢) by an expansion with the scale

factor a (real > 0) and a time translation b € R.
By definition, the wavelet transform of x() is

1 r ft—D
Xi(a,b) = <x(1),Y,,(t) > \/E_ZO x(t) ( )dt. (12.31)

a

This operation is referred as a time-scale analysis.
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The above integral is the value of the correlation function between the functions
x(t) and W, () for a couple (a,b). We have already seen that a correlation is a
convolution in which one function was reversed in time, So we can write

X.(a,b) = x(b) @, (b), (12.32)

where the time reversal of i, ,(b) was noted l}fl,b (D).

In interpreting the previous convolution as a filtering, one can say that X, (a, b) is
the result of filtering x(¢) by a filter whose impulse response is an expanded version
(if a > 0) or contracted (if a <0) of the wavelet, reversed in time. Since the wavelet
is such that the FT is such that ¥(0) = 0, the filter appears as a band-pass filter. The
bandwidth of the filter is determined by the scale factor a.

In this transformation, |X,(a, b)|2 appears as a cross power spectral density.

We will show in the following that in the case where the wavelet (7) is real, the
function x(¢) can be found back from its transform defined in (12.31) by the
following relationship:

1 T 1 t—>b
= — —Xx b —— |dbd 12.33
Cw/ / aXx(a, lﬂ( , ) a ( )
0 —x

where

L[ ()
== dw. 12.34
= | o (12.34)

—00

Cy is finite. This follows from condition (12.29) resulting in that the singularity in
o = 0, caused by the term ‘ J in the integral, is compensated by the zero of the

numerator at this point.

Relation (12.33) also appears as a convolution product. X,(a,b), being itself
given by a convolution, this relationship is then a double convolution.

The demonstration of the important result expressed by formula (12.33) is done
here in the Fourier domain. It consists in showing that the FT of the two members
of this relationship are equal. The FT of a convolution being equal to the product of
FT, the demonstration can be written formally. It is preferred here to perform the
calculation step by step in order to show how the technical difficulty presented by
the presence of the scale factor a in the functions can be treated. The Fourier

transform of llzb(t) is calculated

o o]

[ diaeima = [ g neiva= [ 0ema =) 1239

—00 —00
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IIIa,b(a)) = / lﬁa,b(t)eijwldl‘ = % / (ﬁ(t :l b) e’j“”dt.

Writing % = the previous integral becomes

lPab l// 7_](1) at’ +b) adt _ e —jwb lp 7](/)(1[ dl
\/—

= \/_e J“’b‘I’(acu) (12.36)
Thus, the FT of y/} () is \/ae””¥" (aw) because a and b are real.
We now show that the FT of the two members of Eq. (12.33) are equal, which

necessarily causes the equality of these two terms. We first calculate the FT of the
integral on b appearing in the right side. We set

1 1 t—>b\ _,
—jot
I = / / aixx(a,b)—\/alp( P )e dbdr. (12.37)

We write =2 = u; t = au+ b; dr = adu.

[ r 1 1 —jwau ,—jwb
Il = / / ;Xx(a,b)%lp(u)e Joate=I%dpadu.
I = [ lix,(a b)e I /oo ¥ (u) e 7 dbdu
! Cl\/a e '

I = ¥(aw) / - \1[ (a,b)e " db.

—00

X,(a,b) is replaced by the expression (12.31) which defines it

1 oo o0
I = ¥(aw) 2/)( /w( >J°"bdbdz
a

The following integral on b is calculated

o0

L= / zﬁ*(ll;b>ej‘“bdb. (12.38)

—00
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We write ”f” =u; b="¢—au; db = —adu.
L= / W (w)e 1 " qdy = ae I W (aw). (12.39)
Then

1 o0
X() = X (o) / L\ (o) Pda.
Cy
0
We write aw = u; da:%.
17 11 (PP
1= f|‘P(u)|2du:—f/| W g =1,
Cy) w2 )

from the definition of Cy in (12.34), and as Y (?) is real by assumption, the modulus
of its FT is even.

It follows from the foregoing that the relationship (12.33) which expresses the
reconstruction of x(¢) from its wavelet transform is demonstrated.

It is interesting to note that the convolution playing an essential role in the
formulas of direct and inverse wavelet transforms, the calculations become simple
products in the Fourier domain. Numerical calculations are carried out quickly and
easily by using the fast Fourier transform which will be described later in this book
in Chap. 16.

Finally, we note that in the continuous wavelet analysis, the parameters ¢ and
b vary within a continuum. In other words, to recover the function x(¢), it is
necessary to use an infinite number of basis functions. We will see in Chap. 25 that
it is possible to define a basis for the development of functions in L?> made of
wavelets limited in time. It will be technically necessary in that context to define a
second function, the scaling function, which will be noted ¢(z).

Figure 12.7 shows on the top a signal composed of two pulses with different
spreads. On the figure below is shown its decomposition on Morlet wavelets basis
calculated with MATLAB.
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Fig. 12.7 Signal to analyze (fop); Magnitude of decomposition coefficients |Xa,b| (bottom)

Figure 12.8 shows on the top a signal composed of a sinusoid of fixed frequency
mixed with a chirp of increasing frequency to which is superimposed a random
signal. Below, the decomposition upon a Morlet wavelet basis clearly shows the
three components of the signal.
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Fig. 12.8 Signal to analyze (fop); Magnitude of decomposition coefficients |Xa,b| (bottom)
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12.3.3 Shannon Wavelet

We saw above in the example of the Morlet wavelet that a wavelet operates a
band-pass filtering of the signal to be analyzed. The envelope of the frequency
response is Gaussian in that case. We can try to have a more effective frequency
selection by using rectangular windows in the frequency domain. The decompo-
sition of the signal corresponds to a subband coding of the signal. The construction
of this wavelet first passes by the recognition that we can build an ideal band-pass
filter by the linear combination of sinc functions in the time domain. We first
demonstrate that these functions may form an orthogonal basis for developing
functions in the time domain.

Shannon—Whittaker sampling theorem: This theorem proved later in Chap. 26

stipulates that a function f(z) whose spectrum is bounded on the interval {— % ,%}
can be reconstructed from its sampled values with a step 7.
X sin(Z (1 — nT))
t) = T)—I— 12.40
10 = Y SN S (12:40)

To make things easy, without loss of generality, we consider the particular case
Where T = 1. Let the space of functions whose spectrum is bounded on the interval
{ 75 2} be noted V. The formula (12.40) becomes

Zf ysin(r(t = m)). (12.41)

W n(t — n)

Let us write O(¢) = M The functions (¢t — n) = % with ne Z form

an orthonormal basis in Vo. The function ©(¢) is the scaling function ¢(7) asso-
ciated with the Shannon wavelet from which the wavelet functions are built.
Let us now demonstrate the orthonormality of functions ®(¢ — n) in the Fourier

domain. We first calculate P(w f O(1)O(t — n)e 1”dt, then take the value of

P(w) in w = 0. The function P( ), Founer transform of the product of the func-
tions ®O(f) and O(r —n) is given by the convolution product of their Fourier

transforms
P(w) = i [J-' (smgt)) ®F <7Sinég(t__n;1 ))ﬂ . (12.42)

sm(m)

It is now recognized that is the inverse FT of a rectangular window in the

frequency domain, with value 1 in the interval {—n, 7} and zero elsewhere (check
that)
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in(mt
f(—sm(” )> — Ty (). (12.43)
Tt '
Applying the shifting theorem, we get

]__(Sin(n(t —n))

(i —n) ) =My (@)e ™. (12.44)

+ oo L
Then P(w) =5 [ Tl (0 — o )y (0)e " do.
—o0

+ 00
1 P 1 P
P(w)|,—= o / O (=0 )y (@)™ do’ = > / e " da),

()],y_o= / OO —n)dt =0 if n+0, (12.45)

and

)] ,_0= / @’(r)=1 if n=0. (12.46)

sm

Note We have just shown that f SO0 g = 1. With a simple change of variable

+oo
the value of the following classic integral is obtained [ (%)zdx =T.

The mother Shannon wavelet is defined as the difference of two sincs

sin(2nr) — sin(nt)
it '

V(1) = 2sinc(2nt) — sinc(nt) = (12.47)

Figure 12.9 shows, in the time interval {—10, 10}, the two sincs contained in the
definition (12.47), the mother Shannon wavelet, and below, their FT calculated
numerically. The oscillations on the spectra are numerical artifacts. The Shannon
wavelet acts as an ideal band-pass filter. As can be seen, the price to pay to have a
very selective filtering is that the support of the wavelet is not compact.

We see in this example the band-pass character of the wavelet. The frequency
bands of the wavelets derived from the mother wavelet by the scale factor a will
scan the frequency axis and allow the analysis of a signal in different frequency
bands.
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Fig. 12.9 Sincs functions and their spectra (left); Shannon wavelet and its spectrum (right)

Summary

This chapter is the presentation of methods developed to overcome the insufficiency
of the Fourier transformation to describe signals whose properties vary in time. The
sliding Fourier transform and its square modulus, the spectrogram, consist in
multiplying the function by a sliding window before taking the FT for analyzing the
signal locally. The window is moved successively along the whole time axis. The
Wigner—Ville distribution is a related method where the signal itself is used as the
analyzing function. These methods are however limited by the fact that the width of
the analysis windows is fixed. The CWT allows the use of a window with variable
width. It meets in an optimal way the detection of portions of the signal where the
variation is fast as well as those where the signal varies slowly. The decomposition—
reconstruction formulas of a signal on a wavelets basis have been demonstrated in
the chapter. We will find in Chap. 19 the extension of wavelet analysis to digital
signals.


http://dx.doi.org/10.1007/978-3-319-42382-1_19

Chapter 13
Notions on Digital Signals

Digital signals are sequences of numbers. The index in the sequence acts as the
time. We say that time is discrete (or discontinuous). Digital signals may be purely
synthetic (calculated algorithmically) or result from the conversion of analog sig-
nals by Analog/Digital converters (abbreviated ADC). Digital signals have nowa-
days become prominent, driven by continuing advances in microelectronics
(Moore’s Law, which has been verified for over thirty years, states that the ability to
integrate electronic circuits doubles every 18 months).

Digital signals possess several advantages compared to analog signals: First,
their treatment is more flexible. Processes on digital signals can be achieved that are
impossible for analog signals. For example, one can easily change the parameters in
a rule of calculation to improve filtering.

Second, the signal-to-noise ratio of digital signals can be large. For example, it
can be maintained intact during propagation on a transmission channel unlike the
situation for an analog signal that is always negatively affected during propagation.
Indeed, the use of error-correcting codes allows finding back exactly the original
digital signal at the output of the transmission channel.

In this chapter, we first give some idea of the analog to digital signal conversion
and the error committed during this operation conditioned by the limited resolution
of the converter. We show with a simple example the necessity of using a sampling
frequency of the analog signal that is sufficiently high so that rapid variations of a
signal can be correctly rendered in the digital signal. We also show with the simple
example of digitizing a sine function how a frequency component higher than the
sampling frequency can have the same digital image as a low-frequency signal
caused by a stroboscopic effect (aliasing). These facts will be demonstrated
mathematically in Chap. 19. We give at the end of this chapter, the expression of
simple digital signals. We emphasize the fact that they appear as weighted
sequences of Kronecker unit pulses.
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13.1 Analog to Digital Conversion

An Analog to Digital Converter (ADC) has two main characteristics:

— Its sampling frequency f, which is the number of conversions per second.

— Its resolution (given by the number of possible levels at the converter output).
While the values of the signal to be sampled are real numbers, their coding by
the converter is in integer values.

The conversion operation requires the comparison of the value of the signal to
different reference levels values. It requires a certain time which generally increases
with the number of levels of comparison. It is conditioned by the speed of electronic
circuits that are used. Increasing the accuracy of the conversion may require a
change of technology and the decrease of the sampling frequency.

The quantization levels of a converter are generally uniformly distributed.
However in some cases levels are used spaced by a logarithmic law. This is the case
for some telephone connections (A law or u law). Low levels are relatively close
together allowing good rendering of small signals while high levels may still be
digitized (approximately). This brings a good dynamic to the digitized signal.

The number of levels of a converter is generally a power of two: 2M.

— For 8-bit converters, M = 8; There are 28 = 256 levels.
— For 12-bit converters, M = 12; There are 2'? = 4096 levels.

Several techniques are used to improve performance of conversion operations.
They are based on the statistical properties of the signal to be sampled. It is rare to
see the signal vary greatly from one sample to the next. The expected variation is
small compared with the difference between the extreme values of the signal. Thus,
a first method is to digitize the difference between the value of a sample and that of
the previous sample whose value has been stored. Thus the amplitude range to be
scanned is not required to cover the whole range of signal values. This principle can
be extended to the use of values of several previous samples: One can make a
prediction of the expected value for a sample from these earlier samples. The
difference between the expected value and the true value is digitized (predictive
coding). These converters are called Delta-Sigma (Sigma evokes the notion of sum
and Delta the difference between the expected value and the value found). It has
been shown that it is effective for the speech signals to decompose the signal by a
bank of filters, to do a predictive coding conversion of each filtered component then
digitally reconstruct the signal. A good reproduction of the signal is attained, even if
the number of bits of the converter may seem insufficient a priori.

Scanning audible signals: The frequency of audible signals is less than 20 kHz.
Today audible signals converters are used whose sampling frequencies range from
40 to 80 kHz (44.1 kHz in a digital compact disc). The sound is recorded digitally on
a compact disc. When reading the record is processed and converted into an analog
signal for listening (by a Digital to Analog Converter DAC). The ear is very sensitive
to imperfections of the reproduced sound, so the precision of the converters must be
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high to get a good record: at least 16 bits or better, 24 bits to satisfy the ears of a
musician in the case of a converter that does not use predictive coding.

The number of bits of a converter decreases as the frequency of the converter
increases. Currently there are 16-bit digitizers to about 360 MHz. For 12-bit digi-
tizers the sampling frequency rises to 3.5 GHz. Above this frequency, there are
8-bit digitizers (flash converters) up to frequencies of the order of 40 Gigahertz.

Example of accuracy of a converter
Take an 8-bit converter (256 levels) for sampling a bipolar signal in a =1 V range.
We have the following correspondence between the levels and voltage:

Level Voltage

0 — 1V

128 — ov

255 - 1 V-7.81 mV

Giving a precision Flg = 7.81 mV per bit.

The maximum error of the converter is 3.9 mV, that is to say half the least
significant bit % LSB.

The minimum relative error is

error 0.5 _ 1 1

signalmax 128 256 oM’

with a correspondence in decibels: 20 log,, ﬁ = —48.16dB.
For 8-bit converted signals, the signal-to-noise ratio will not exceed 45 dB.
For a 16-bit converter we will have: ——SOL_— — 1 — __L_ — 963 dB. This

signalmax ~— 2'® — 65536
is much better than for the 8-bit converter.

The presence of converter quantization levels therefore causes that the numerical
values do not correspond exactly to the analog values. This error is equivalent to the
superposition of a numerical error signal which fluctuates rapidly from one sample
to another. The result is the emergence of broadband noise which is greater when
the resolution of the converter is lower.

Experimentally, one can reduce the quantization error in two situations

1. If the sampling frequency of the analog—digital converter is high, much higher
than the maximum frequency present in the signal to be digitized. This is the case,
for example, when the signal supplied by a sensor has a maximum frequency of
5 MHz and the converter has a sampling frequency of 125 MHz. It is understood
that since the signal varies relatively slowly, successive samples will land often on
the same level of quantization. By smoothing the digital signal by a moving
average digital filter, one softens the signal by creating signal values between the
quantization levels. This operation is performed without unduly affecting the
signal spectrum. This method brings about 2 quantization bits in the example.
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2. Another method is possible in the case where the signal to be measured is
certain, repetitive, with random noise superimposed on it. This situation is met
in ultrasound echography for example where one can send the same impulsion
repeatedly toward the target (the target must be fixed to make the method
workable). Electronic noise present in the signal is usually sufficient to make the
technique possible. The sum of several digitized signals is made using a com-
puter. While the deterministic signal is affected by the same quantization error
for each signal, the noise shifts randomly the noisy signal to different quanti-
zation levels, and so, at a given time, successive digitized signals will not land to
the same level. Summing successive digitized signals, operates a statistical
average of these values. Thus the average may have an intermediate value
between two initial quantization levels. By averaging N = 1024 signals, we can

expect to benefit from /N = /1024 = 32 intermediate levels.

Of course, the noise must meet certain conditions; it should not be too low; its
standard deviation should be at least of the order of 2-3 times the quantization
interval. It should not be too large either to avoid that the value of the averaged
signal would be far from that of the non-noisy signal. In this example, one can gain
3—4 quantization bits.

If natural electronic noise is too low, it is perfectly possible to consider adding an
additional synthetic noise in order to make the operation possible.

In the rest of this course, we will not take into account the quantization error.

Notation of a digital signal f, is the sampling frequency, the sampling step 7 = fl

The analog—digital conversion establishes the correspondence: f(¢) — f(nT).

We write f(¢) — f(nT) = f[nT] = f[n].

Note that for a digital signal, the time variable »n is discrete. We note the time
function f[n] using square brackets around n, as the arrays in conventional pro-
gramming languages such as assembly or C are noted.

13.2 Criterion for a Good Sampling in Time Domain

To achieve an acceptable sampling, it is necessary that the variations of the signal to
be sampled are not too rapid between two sampling instants. More precisely:

Shannon Theorem For the sampling of a signal to be correct in a spectral point
of view, it is necessary that the spectral amplitude of the signal to be sampled are
restricted to the frequency domain —% ,%

If the Shannon condition is not met, aliasing phenomenon occurs.

Figure 13.1 shows qualitatively an example of digitalization of two signals with
different frequency contents. On top, the samples follow well the variations of a
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correctly sampled at f,
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Fig. 13.1 Two sampled signals: correctly (fop); incorrectly (bottom)

slowly varying signal. Using the same sample frequency, we see that the higher
frequency signal is not sampled accurately. Some fast variations are not apparent on
the samples.

This theorem will be proved in Chap. 16. It is preferred here to illustrate this
condition on the simple example of a sinusoidal signal and bring up the problem
caused by insufficient sampling frequency:

Let f(z) the signal to digitize

f(#) = sin wpt = sin 27tfyt (13.1)
At times nT we have:
f(nT) = sin2nfynT (13.2)

The digital signal will be

fln] = sin2nfynT (13.3)
Since
T :%e, fln] = sinan;(:n (13.4)

Let f>(r) = sin2nfjt the analog signal whose frequency exceeds the sampling
frequency by the value fy: fj = f, + fo.
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N . Je Jo
foln] =sin2n>n = sin| 2n=n+2n—n
Je Je Jfe
= sin (ZR')&n + 27m) = sin 2n@n
Je f

e e

(13.5)

It is seen that the analog signals with frequencies fy and f; = f, +fo have the
same numerical representation.
Similarly, if f = f. — fo.

f2[n] = sin 271“]%/11 =sin <2n%n - 277:“;—2n> = —sin 2n'f]i(:n (13.6)

The above two examples illustrate the aliasing.

This phenomenon is identical to the stroboscopic effect, well known in optics. In
movies, where the pictures are presented with a time step of 7 = 1/24 s, we may see
the wheels of a vehicle or the blades of a helicopter rotate very slowly or sometimes
even backwards.

13.3 Simple Digital Signals

The basic digital signal is the unit pulse 6[n] (Kronecker function) defined by
(Fig. 13.2):

0 ifn0

%ﬂh ifn=0

(13.7)

For digital signals, this function plays the role of the Dirac distribution for
continuous-time signals. We should not confuse this digital signal which is 1 at the
origin with the Dirac distribution which is infinite at the origin.

Definition of the step function (Fig. 13.3):

0 forn<O

1 forn>0" (13.8)

mﬂ:‘

Fig. 13.2 Kronecker unit r.?‘[n]
pulse d[n]
1
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Fig. 13.3 Step function U|n] v [n]

This function plays for digital signals the role of the Heaviside function for
continuous-time signals.

Translation of the unit pulse
Translation to the right by one step

|0 forn#1
on—1] = ‘ 1 forn—1 (13.9)
Translation by m steps
5[n—m]=‘0 for . 7 m (13.10)

1 forn=m

The translation is to the right as m positive, as is the case in Fig. 13.4:

Note Any numerical function can be considered as a linear combination of
Kronecker pulses d[n — m]. So the step function can be written:

U[n]:ié[nfm]. (13.11)

m=0

We will use in the sequel the following entry representing any function f[n] as a
linear combination of Kronecker functions

=3 Fimln— (13.12)

m=—0oQ

In this sum, factors f[m] act as weights affecting each Kronecker pulse.

Fig. 13.4 Unit pulse
translated by m
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Summary

This chapter was an introduction to digital signals. We have detailed the two major
characteristics of an analog to digital converter: the resolution of the quantization
which depends on the number of levels of the converter evaluated in number of bits
and the sampling frequency. On simple examples, we have shown that insufficient
sampling frequency did not allow accounting for the rapid changes of the analog
signal and we highlighted the problem of aliasing occurring in that case. We give
the expression of simple digital signals and emphasize the fact that a digital signal
appears as a succession of weighted unit Kronecker pulses.

Exercises
A digital rectangular window is a function with a constant value in a given time
interval and zero elsewhere. Show that the function Il[n] = U[n] — U[n — 8] is a

7
rectangular window. Represent this function. We can write I1[n] = > d[n — m].
m=0

Solution:

I. The function Uln] is zero for negative times and is 1 for positive times. The
function Uln — 8] will be 1 starting at n = 8. Their difference will cancel for
n>17.

II. Graph the function f[n] = (—1)"Uln].

Answer:




Chapter 14
Discrete Systems—Moving Average
Systems

This first chapter on discrete systems is intended to show that simple rules of sums
or differences in calculations on sequences of numbers can act as digital filters on
these numbers, smoothing or enhancing certain spectral components of these sig-
nals. The digital filters have the decisive advantage of being easy to implement in a
signal processing chain, easily modifiable, and able to vary over time to adapt to the
evolutions of the signals to be processed (adaptive filtering, Kalman filtering).

This chapter is a mirror image of Chaps. 1 and 2 of this book that were dealing
with analog signals. Drawing on an example of a smoothing filter (Moving
Average, MA), the concepts of digital filter and linear time-invariant system are
defined. We show that the function z” is an eigenfunction of a time-invariant digital
system as was the exponential e for analog systems. The impulse response, the
transfer function and the frequency response are defined. The z-plane plays the role
played by the Laplace plane for analog systems. A discrete convolution of the input
signal by the impulse response provides the output signal. We study some examples
of moving average filters and show how we can interpret geometrically the varia-
tion of the system’s frequency response. The frequency response of a discrete
system is inherently periodic in frequency. The advantages of the Moving Average
filters are that they have a finite impulse response length. We see also that it is
possible to create filters with zero phase shifts. A disadvantage of MA filters is that
they are not very selective.

A discrete system associates to a sequence f[n] considered as an input, another
sequence g[n| considered to be the output of the system.

[7]

™ system) ™"

Systems are commonly called filters.
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An example of system is
gl =5 (7l = 1]+l + £l — 1]). (14.1)

This last system operates a smoothing of the signal f[n]. It provides a moving
average of f[n].

14.1 Linear, Time-Invariant Systems (LTI)

The properties that define a LTI system are

Linearity:
Let two arbitrary functions f;[n] and f>[n] enter the system:
Namely,

I rSystem) % and 2% System] 2. (14.2)

The system is linear if for any two constants a; and a,, then

arfiln] + axps[n] @' aig1[n] +axg2[n] (14_3)
Time invariance:
Let

M System ﬂ (14.4)

The system is translational invariant in time (we say also stationary) if its
response to the delayed input is identical to the delayed initial response. That is to
say, if and only if (iff)

MM (14.5)

14.2 Properties of LTI Systems

We call impulse response k[n] the output function of the non-preprepared system
for an input J[n], pulse with unit amplitude at time n = 0.

) s ystem) (14.6)
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Calculation of the output g[n] when the input signal f[n] has an arbitrary
shape

It has been pointed out above that the function f[n] can be regarded as a sequence of
Kronecker functions o[n] shifted

fln] = f flm] é[n — m]. (14.7)

m=—oQ

One can therefore consider that pulses f[m] d[n — m] localized in n = m suc-
cessively enter the filter.

At the output of the LTI system, we will have, because of its properties of
linearity and time invariance, the sum of the responses i[n — m] to each of the
pulses d[n — m]| that comprise the input signal.

We can then write

+ o0
glnl = > flmlhln—m). (14.8)
It can be shown by a simple change of variables that we also have
+ o0
glnl = > fln—m|hjm). (14.9)

We say that the system output is the convolution (discrete) of the input signal
with the impulse response. Symbolically

gln] = f[n] ® hln]. (14.10)

It is easily shown that the convolution product is associative and distributive.
As an exercise, one will verify that the convolution of two causal signals is
causal.

14.3 Notion of Transfer Function

Let z be an arbitrary complex number. The functions z" are eigenfunctions of the
operator describing the LTI filter. This means that there is a function H(z) such that

=7"H(z)

S Sh=2HE) (14.11)
Indeed, if f[n] = 7", according to (14.8) we have g[n] = 3" 7" hjn — m).
Let n — m = k. We have gn] = >_,-*__ 7" *h[k], or also
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gln) =2 > hlklz™. (14.12)

k=—00

The sum of the series appearing in the above equation is a function of z only
which will be noted H(z). This function is called the system transfer function.
It is given by

H(z) = ic hlk]z*. (14.13)
k=—00
We then have
gl =H@)Z" if fln] =" (14.14)

More generally, the z transform F(z) of an arbitrary function f[n], is defined by
the relationship

Fa)=Y_ z"f[n]. (14.15)

We can see from that the filter transfer function is the z transform of its impulse
response.

Theorem Consider a discrete LTI system. The z transform, G(z) of the
system output signal is the product of the z transform of the input signal F(z)
by the system transfer function H(z): G(z) = H(z)F(z).

+0oo

11 gll="Y" hln—mlf[m]

Indeed —[System| LES
The 7 transform of g[n] is given by G(z) = >.."° g[n]z™"

+00 400 too 400

Gl)= > Y hln—mlflmlz™ =Y > hlplflmlz"z".
n=—00 Mm=——0o0 pP=—00 m=—00
Wenotedn —m=p. 77" =z"77".
The variables are separated, we can write
+ o0 + 0o
G@)= Y hple? Y e " =HE@FE).  (14.16)

p=—00 m=—00
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Case where functions f[n] and %[n] have limited lengths N; and N,

This is a case often encountered in practice. It can be reduced by simply changing
the time origin to the case of two causal signals. The convolution product of two
causal signals is causal. The sum of the durations N; and N, of f[n] and h[n| signals
is a high bound to the signal duration of g[n]. The z transform of g[n] may be written
in this case

Glz)= > gllz" = lzzg[n] "= lzzz*" > flmhn—m].  (14.17)
n=—o00 n=0 n=0 m=0

The form of G(z) is that of a polynomial in z~!. The coefficients of the poly-
nomial are terms of the convolution product of f'[n] and h[n|. The first coefficients of
the polynomial are

F10]A[0]; f[O]A[1] +f(1]A[0]; F[O]A[2] +f[1]A[1] +f[2]R[0); etc

The terms of the convolution product are obtained by the multiplication of the
two polynomials in z7!.

MATLAB uses this calculation method when calling the function conv(f, h).

14.4 Frequency Response of a LTI System

Consider the monochromatic input signal f[n] = e"T. The digital signal obtained
by sampling the analog signal f() = e’ is recognized.

This signal has the form f[n] = 7%, with z = &/*T.

According to (14.14) we necessarily have

gln] = " TH(e"T). (14.18)

ejonT H er)T)e/iwnT

" System) "

It is noted that the output signal is also monochromatic. It has the same angular
frequency as the input signal. H(e/*7) is the frequency response of the filter (also
known as complex gain). It is the system transfer function evaluated on the unit
circle.

+ o0
H(e”") = > hlnJe " (14.19)

The system frequency response is the Fourier transform (in the sense of oper-
ations on digital signals) of the impulse response.
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Important property The frequency response H(el”T) of a discrete filter is a
periodic function of @, with period w, = 27” Indeed all the exponential e 3T
contained in the sum are periodic functions of w. Their periods are sub-
multiples of w,. The period of the series sum is the greatest period, w,,

appearing in the sum.

14.5 Moving Average (MA) Filters

These are filters whose impulse response is time-limited. They are also referred as
finite impulse response (FIR) filters.

This impulse response is often written in the form i[n] = > 72 b[k] 6[n — k], or
hln] = Y712, bk d[n — k], with n; and n, both integers.

The general equation relating the input and output signals of these filters has the
form

gln] = 22: byf [ — m]. (14.20)

m=n

To understand on an example the behavior of these filters, we return to the
system previously met

1
gln] =3 [fln = 1 +fln] +f[n +1]). (14.21)
Calculating the impulse response h[n] (Fig. 14.1):

hin] = = (0[n — 1]+ d[n] + o[n+ 1]). (14.22)

1
3

It is observed on Fig. 14.1 that the impulse response of this filter is limited to 3
points. It is not causal, since it is not zero for n <0.

Fig. 14.1 Impulse response h[n]

W=
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The transfer function of this filter function is given by

Hiz) =5 (' +2+2") = %z“ (P+z+1) = %z_l(z —2)(z—z). (14.23)

A z polynomial has always roots in the complex set C. The number of roots is
necessarily equal to the degree of the polynomial. In the present case, the two roots
are complex conjugate because the polynomial coefficients are real.

Except for the z = 0 pole (which could be eliminated by translating the impulse
response by one step to the right), the notable points are the zeros z and z;. This
filter belongs to the moving average filters class (MA). These filters are also called
all-zero filters.

Calculation of H(z) zeros: The polynomial P(z) = z> +z+ 1 has two roots

., bEVA 1 ,ﬁ_eijz%

20,%0 = —

2 2797

14.6 Geometric Interpretation of Gain Variation
with Frequency

Geometrically, the representative point M of the complex number z = e/’ lies on
the circle of radius 1 (Fig. 14.2 a). Its position on the circle depends on the angular
frequency w. The frequency response module is 1/3 times the product of the length

(a) Im (z) ] (b)
M
-1f wT A -1
. ) Re(z)

Fig. 14.2 a Representative point of a monochromatic signal; b segments controlling the gain



242 14 Discrete Systems—Moving Average Systems

of two segments joining the point M to the two points Zy and Z which correspond
to the polynomial zeros (Fig. 14.2 b). The frequency response is

. | . .
H(T) = 270 (@7 — 29)( = ). (14.24)
Its modulus is [H(e*T)| =1 |(eT — z0) || (T — 25)|.

1 !
=3 M2y - M2, (14.25)

|H(ijT)| _ % |(eij o ZO)H(ejmT o ZS)

When the frequency varies, the point M scans the unit circle. When this point
approaches the point Z; (when wT approaches 23—") the length of segment MZ,
decreases and becomes zero for M at point Zy (for woT = %“, or my = 27”% = % .
The gain will increase again when M scans the arc Zy Z;, and cancels again for M in
Z;. Thus one qualitatively explains the shape of the gain module function of w
shown in Fig. 14.3.

We could have directly calculated the frequency response H(elT) as the FT of
the impulse response

) . 1
(eﬂwT +1 +e|wT) = (1 +2cos Q)T) (1426)

H(e]wT) _ _ g

W —

Figure 14.3 shows that the filter gain is important at low frequencies. Although

the gain is a periodic function and finds maximum values at frequencies multiple of

27”, we still speak of a low-pass filter for the following reason. It is important to

understand that the neighborhoods of w, = n27“ are also low frequency neighbor-

hoods. Indeed a monochromatic signal of the form e”“” at these frequencies will
have the form e"77 = e/2™ — 1 which is the epitome of a continuous signal.

In contrast, the frequency zone around @ = wy = 7 is a high frequency area as
the monochromatic signal with the form e’ will have the form &7’ = ei™ =
(—1)" for = wy = %, which signal changes sign at each instant being an example

of a signal of high frequency.

Fig. 14.3 Gain magnitude .
g gnitu ‘ H(eoT
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In conclusion, since the frequency response is a periodic function, we may
restrict its analysis to a period, in the interval {— 7 ,%} = {— 3,5 1. whose center
being the low-frequency area, the vicinity of the edges being the high frequency

area.

Example The above filter is not very selective. For a low-pass filter more selective,
you can add two zeros located in the high-frequency area.

For Z;, o, T = %271: (this corresponds to a 150° angle of 150° of OM with the
horizontal axis). The second zero is chosen to be the complex conjugate of the

previous to ensure the impulse response to be real. For Zj, o|T = — 15—2271.
H(z) will have the form
H(z) = (z - ejoﬂ) (z — eﬂ%”) (z - eiz"%) (z — e’jz’%). (14.27)

In polynomial form

H(z) = (z—20)(z—z5)(z —z1)(z — 2)

= (@ —22+2) + DE —2(a+z) +1), (14.28)

H(z) = (2% — 2z cos woT + 1)(z* — 2z cos o, T+ 1), (14.29)

wo and w; being the angular frequencies of the zeros zp and z; of the
polynomial.
Because cos (150°) = —0.866, we get

H(z) = (Z+z+ 1) +1.732z+1). (14.30)
By developing (14.30)
H(z) = 24 +2.7328 + 37322 + 2,732z + 1. (14.31)

If one wishes to impose a gain 1 at zero frequency (z = 1), it should be nor-
malized by the factor

H(1) = 1+42.73243.7324+2.732 + 1 = 11.196. (14.32)

As shown in Fig. 14.4, the gain modulus that is given by the expression
|H(T)| = MZ - MZ{) - MZ, - MZ; will be greater at lower frequencies (when the
point M is in the right half plane) than at high frequencies (when the point M is
located in the half plane to the left). The contrast passband stopband is more
important in this case than in the first example because of the greater number of
zeros in the left half plane.
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Fig. 14.4 Segments Im (2)
controlling the gain

At Nyquist frequency: wyT = m and z = —1.
H(—1)=1+42.732+3.732 — 27324+ 1 = 0.268. (14.33)

The attenuation at Nyquist frequency in decibels is 20 log, % = —32.4dB.
Impulse response of this filter

hn) = 8[n+4] +2.7328[n+ 3] +3.7328[n+ 2] + 2.7328[n + 1] + [n]. (14.34)

This filter is anti-causal. His transfer function has only positive powers of z.
We could have made the impulse response to be even by multiplying H(z) by
z~2, which amounts to shifting the time signal two steps to the right

H(2) =7 2 +27322...) =22 +2.7322+3.732 427327 4272, (14.35)

W[n] = d[n+2]42.7326[n+ 1]+ 3.732 6[n] +2.732 6[n — 1] + 6[n — 2].
(14.36)

Therefore

g'n] =fln—2]+2.732f[n — 1] +3.732f[n] + 2.732f [n + 1] + fln +2]. (14.37)

14.7 Properties of Moving Average (MA) Filters,
also Called Finite Impulse Response (FIR)

Generally, a filter whose transfer function is a polynomial is called moving average
(MA) filter. This function has the general form

n=np
H(z) = Z bln] z7"; n; and n, being two finite integers. (14.38)

n=n;



14.7 Properties of Moving Average (MA) Filters ... 245

Notable points of H(z) are zeros of the polynomial. This function has no poles
(except pole in z = 0 that can be removed by a time lag). For this reason this type of
filter is also called all-zero filter.

The impulse response is limited to N = n, — n; + 1 points. We write

m=np

h[n] = Z blm] o[n — m]. (14.39)

m=n,

This time limitation justifies the name of finite response filter (FIR) for this type
of filter.

The temporal limitation of the FIR brings benefits because the calculations are
shorter.

The numerical calculation of the output signal at any instant n, can be carried out
completely without the need to truncate the impulse response. In electronic circuits
DSP signal processors (Digital Signal Processor), one can find a wired calculation
circuit performing convolution and get the result in near-real time (with a time lag
often not prohibitive).

These filters also have the advantage of allowing the realization of linear phase
filters. In this case, the group and phase time delays are equal and do not depend
upon frequency.

The latter property allows preserving the shape of the signal after passing
through the filter.

In ultrasound echography for example, it brings an advantage for the discrimi-
nation of two close targets.

This type of filter has the major disadvantage of the slowness of the transition
passband to block-band. We will use auto regressive (AR) filters which will be
defined later if one wants to achieve a filter with a rapid transition from the fre-
quency response between the passband and the attenuated band.

Linear phase filter
Let use consider a FIR filter whose impulse response is even.

hn] = ...+ a@dn+2]+adn+ 1]+ apdn] +a;dn — 1|+ adn — 2]+ .. ..
(14.40)

The frequency response is
H(T) :2(612—0 —|—alcosa)T—|—a20052wT—|—...). (14.41)

The frequency response is real. The phase shift is always zero or 7 (this when the
frequency response is negative).

By delaying the impulse response, for example to produce a causal filter, the
phase shift is linear. Indeed if 4'[n] = h[n — m], H'(e)°T) = e "*T H(el*T),

The phase shift ¢ = —mwT varies linearly with .



246 14 Discrete Systems—Moving Average Systems

This operation is only possible with a finite impulse response filter. Causality
generally required to an IIR filter prohibits most often the parity of the impulse
response. In that case, the technique explained can be used in the following when a
zero phase shift filter is desired.

Performing a zero phase filtering
We show now that it is possible to realize easily a zero phase filter using two
consecutive filtering through the same filter and two time reversals. The supposedly
real signal of limited duration is noted f[n]. The impulse response of the MA filter
used is noted %[n] and supposed to be real.
A first filtering of the signal f[n] is performed in the filter. The output signal is
g[n] = f[n] ® hln]. This signal being the convolution of two real signals is real.
In the Fourier domain the following relation holds G(eT) = F(e/T)H (elT).
Since g[n] is real, FT of this signal reversed in time g[—n] Iis
G* (e|wT) = F* (eij)H* (ej(uT).
We denote x[n| the result obtained by filtering g[—n] with the same filter

x[n] = g[=n] @ hln]
In the Fourier domain we have the relationship
X(eij) — F* (Cij)H* (ej(uT)H(eij) — F* (erT) ‘H(ej(:)T) ‘2'
If we time reverse x[n]| and note y[n] = x[—n], we have in the Fourier domain
Y(T) = F(&°T)|H(T)|". (14.42)
The output signal phase after this double filtering is identical to that of the input
signal. The gain of the equivalent filter is |H (elT) ‘2.
In MATLAB the filtfilt() function realizes this double filtering.
On this example, we can see the flexibility of numerical filtering operations on

an operation impossible to perform (or at least very difficult) in analog signal
processing.

14.8 Other Examples of All-Zero Filters (MA)

Low-Pass Filter: The moving average filter considered above, with impulse
response given by (14.22), causes only an attenuation of 9.54 dB to a signal with
the Nyquist frequency, relatively to continuous signal. At this frequency, a cosine
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signal changes sign at each value of n. (Quick change, so a high frequency character
of this type of signal).

You may prefer a smoothing of the form described now which completely
alleviates (obliterates) the Nyquist frequency component. The impulse response of
this filter is

hn] :%5[n+1]+5[n]+%5[n— 1]. (14.43)
Its frequency response is

i 1. 1 .
H("T) = Eel”T +1+ Ee—JwT =1+cosT. (14.44)
The shape of the gain with frequency is given in Fig. 14.5

The transfer function is

(z+1)% (14.45)

This function has a double root, in z = —1, or z = &/” (Fig. 14.6).

The zero of H(z) in z = —1 makes it possible to completely attenuate the signal
at the Nyquist frequency. We see from this example that the filter design is built by
reasoning in terms of properties in the z plane. Since it was desired to eliminate the

Nyquist frequency at the filter crossing, a zero of H(z) was placed in z = —1.
Fig. 14.5 Gain magnitude ‘ H(e ij)‘
2

ISR 4

NN

Fig. 14.6 Pole and zero Im (z) 1
locations ——T=

0 IRe(’z)
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High-pass filter blocking the dc component

The following filter is often used to simulate deriving a digital signal as is done in
analog processing. A zero (unique) is placed in z = 1 to obtain H(e*7),_, = 0.
The transfer function is

H(z) =z—1. (14.46)

A causal filter is preferred made by translating the impulse response by one time
step. This amounts to multiply the transfer function by z7!: H(z) =1—z7L.
(H(1) = 0 is verified).

The impulse response is

h[n] = d[n] — d[n — 1]. (14.47)

gln] =fln] = fln —1]. (14.48)
The frequency response is
H(T) =1 —e7". (14.49)

We can rewrite this function in the following form
joT —JOT ¢ JoT _ —jeT A
H(@*") =e 2 (e2) —e™2')=e™ 2]s1n77 (14.50)

having a modulus: [H(&/T)| = 2|sin<L|.
We would have found qualitatively the shape of the variation of gain with
frequency using geometric reasoning based on that |H (ej“’T)| = |1 — e 1°T|. This

module is equal to the segment AM length, which increases when M moves away
from the point A corresponding to zero frequency and reaches the maximum of 2
for w = % (Fig. 14.7 a, b).

rd

@  in (b) |He |

y Re(z)

SN
S\f

r
T

NN

Fig. 14.7 a Segment AM controlling the gain; b gain magnitude



14.8  Other Examples of All-Zero Filters (MA) 249

Low-frequency behavior: We are interested in the development of H(e/*”) near
® =0 (For o < 7).

H(eij) —1—edoT ~1_ (1 —jG)T) =joT (14.51)

The frequency response is proportional to jw. At low frequencies, this discrete
filter has the same frequency response as the analog derivative filter (within a
T constant factor).

Note: The frequency response of the analog derivative filter is given by
%ej“” = jwe, giving H,(w) = jo.

We note that the temporal filter equation g[n] = 4 (f[n] — f[n — 1]) is a numer-
ical approximation of the analog derivative filter.

The simulation is not as good for the digital signals of high frequency as the
analog differentiator gain is 7 at Nyquist frequency when it is only 2 for the discrete
filter.

In the following, another simulation of the derivation will be presented. The
frequency response will be preserved, but at the cost of a less simple, and infinite
duration, impulse response, thus less able to convolution calculation with DSP
processors.

Summary

This chapter was the first treating discrete systems in this course. We have defined
the concept of digital filters by using the example of a moving average filter. We
have shown that for LTI systems, the function z” is an eigenfunction of the system
as was the exponential e* for analog filters. The impulse response, the transfer
function, and the frequency response have been defined. The z-plane plays the role
played by Laplace s-plane for analog systems. We showed that the frequency
response of a digital filter is periodic in frequency and made a parallel with the
development in Fourier series studied in Chap. 3. We studied some examples of
moving average filters and showed how we can interpret geometrically the variation
of the frequency response function. The location of the zeros of the transfer function
was shown to condition the frequency response.

Exercises

I. A filter has a single zero z; = 1 and a second single zero z; = —1. Give the
expression of the transfer function of a filter having these zeros. Give its
impulse and frequency responses, using a geometric argument to explain the
variation of gain with frequency. Assuming a F, = 10° Hz sampling frequency,
what is the filter gain at frequency f = 250 kHz?

Solution: We simply take H(z) = (z — 1)(z+1) =% — 1.

The impulse response is h[n] = d[n+ 2] — o[n].

The frequency response is: H(e*T) =e?*T — 1 =T (T — ei0T) =
elT2jsin wT.
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We see on the figure in the z-plane that the gain modulus G = MA MB is zero
for o = 0 and wT = 7. It is maximum for T = 7, then for f = % = 250kHz,

that is to say when the point M comes in P. The gain module is then
G=PAPB=2.

Im(z)
h[n] A pdl
1 -
_H/
& 0
- oo Re(z2)
-2 0 n
@
H(e/T)
2
= 0 F.4 2r @
T T T

We would have found the gain analytically by writing: G = ‘H (ei‘“T)‘ =
2|sinwT|. This last function cancels in @ =0 and @ =%, and reaches its
maximum for @ = 7%.
A filter transfer function is H(z) =z ® + 1. What are the properties of this
filter?

Solution: The zeros of the transfer function are the solutions of the equation
78 = —1, or also z* = —1. Written in trigonometric form: p3ei8! = ei(7+247)
The solutions p,ei% are such that p, = 1 and 0; = & +k(with (k=0,1,...7).

The impulse response is h[n] = d[n] + d[n — 8].
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The frequency response is: H (/") = e ™38¢T 4 1. The frequency gain looks as

follows:
o) ¢
2
NVVNVVVVVVVV
0 7 27
T T



Chapter 15
Z-Transform

The z-transform plays for digital signals the role of the Laplace transform for analog
signals. The circumference of the zero centered circle of radius 1 in the z-plane
plays the role of the imaginary axis of frequencies in the Laplace plane. In this
chapter, after having defined the z-transform and the Fourier transform of a
numerical sequence, we specify the domain of convergence of the power series, that
is to say, the domain of definition of the z-transform. It is shown that the domain of
convergence of a causal sequence is the exterior of a disc centered at the origin with
radius R; (conversely the interior for an anticausal sequence). In the case of a causal
sequence, the Fourier transform exists if R} < 1. Using the properties of integration
on a closed contour and the residue theorem in the complex plane, we demonstrate
the inversion formula of the z-transform that allows the determination of the ele-
ments of a sequence provided one knows the z-transform. We show that the z-
transform of a product of two series is given by a convolution formula in the
frequency domain. Various properties of the z-transform are given in a table. Two
interesting exercises on the z-transform of a time reversed function are given at the
end of the chapter.

15.1 Definition

The z-transform of a sequence f[n] is defined by the relation

+ o0
F@)= Y flnlc ™" (15.1)

n=—00

This transformation is referred to as two sided since the boundaries of the sum
extend to infinity on both sides.

© Springer International Publishing Switzerland 2016 253
F. Cohen Tenoudji, Analog and Digital Signal Analysis,
Modern Acoustics and Signal Processing, DOI 10.1007/978-3-319-42382-1_15



254 15 Z-Transform

The Fourier transform of the digital signal is defined by
F(eT) = > flale . (15.2)

It is the z-transform calculated for z = e/ which belongs to the unit circle.
The function F(z) appears as the sum of a power series in z. The values f[n] act
as the sequence of coefficients. F(z) is a Laurent series.

F(z) = ... +f[-212 +f[-1z" + 0] +f 1]z +f[2z 2 + ... (15.3)

if the sequence f[n] is anticausal

if the sequence f[n] is causal

For a given sequence f[n], the convergence of the series, which implies the
existence of F(z), will be ensured only if z belongs to certain domains of the
complex plane (for |z| “sufficiently large” and/or |z| “small enough”).

More specifically
The convergence domain of a Laurent series is the intersection D of two discs
centered at z = 0 with radii R, and R;; R; <|z| <R, (Fig. 15.1).

Possibly, for a given sequence f[n], one can have Ry = 0 and R, = oc.
For example, for a causal sequence, we have

F(z) =f0] +f[1z " +f 2z 2 +.... (15.4)

It is clear that for |z| large enough, the series giving F(z) converges as long as
fIn] does not increase with n faster that |z"|. The domain of convergence D is the
outside of a disc with radius R;. This domain |z| > R; is hatched in Fig. 15.2.

The distance from the origin z = 0 of the singularity of F(z) the farthest from the
origin is the series convergence radius. It follows that the circle with radius R; does
not belong to the convergence domain.

The causal function f[n] will have a FT or not depending whether or not
R; <1. In other words, FT exists if the circle z =1 belongs to the convergence
domain.

Fig. 15.1 Convergence
domain D in the general case
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Fig. 15.2 Convergence

e i
domain D of a causal %

sequence

R

VA7
Yrir/lY

Example
The step function Uln] has a z-transform for |z| > 1 but no Fourier transform.
Indeed its z-transform is

V(z) = iz‘”. (15.5)

n=0

V(z) is the sum of a geometric series with common ratio z~!

lz| > 1.

which converges if

00 1 z
=Y = = if o > 1. 15.6
V(2) n:OZ =i |z| > (15.6)

However, since the value z =1 is a pole of V(z), the convergence radius is
R =1

Thus U[n] has no FT.

For an anticausal sequence, the z-transform has the form

F(z) = .. f[-2]2 +f[-1)Z". (15.7)

This series converges for |z| <R, if the function is not growing too fast when
n tends towards minus infinity. The area of convergence is the hatched disc in
Fig. 15.3.

An anticausal function f[n] has a FT if R, > 1.

Fig. 15.3 Convergence
domain D of an anticausal
sequence
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15.2 Inversion of z-Transform

The objective here is calculating f[n] from its z-transform.
Beforehand, we prove the following result on integration of 7" in the complex
plane on a circle centered at the origin:

?{ Z'dz =

C

0 ifn#—1

2nj ifn=—-1" (15.8)

The trigonometric form of z is used for this z = pel’. Then z* = p”el’.
On the integrating circle centered in z = 0, we have dz = pe’jd0 (Fig. 15.4).

2n 2n
%anZz/pnejnepeiedeijn+l/ei(n+1)9d0.
0 0
Ifn+#—1
ej(n+1)9]2“
I=j ”“[70:0. 159
ip ) (15.9)
Ifn=-1
2n 2n
1=jp°/e0d9=j/d0:2nj. (15.10)
0 0

We can calculate the values of f[n] from integrals including F(z).
We now show by way of example how f[1] is obtained by the integration of F(z)
on a closed contour located in its domain of definition D and surrounding the origin.

¢
x/

Fig. 15.4 Integration contour
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Assume that the conditions of term by term integration of the series are met

?{F(z)dz = ...?{f[—l}zdw ?{f[O]zOder %f[l]z’lder... (15.11)
C C C

ceD

By using the property demonstrated above, these integrals are zero except those
where the term z~! appears. We have therefore

?{ F(z)dz = 2mjf[1]. (15.12)

CceD

Likewise, after multiplication by z inside the integral

?{ F(z)dz = ... 7{ =122z + 94 fl0]z"dz + 7§ fl1)2%dz + 9§ f2lz 'z + ...
ceD _ an;[z] C C C

These results may be extended to the general case. For any n we have

1

f[n]:Tnj

51{ " F(z)dz. (15.13)

ceD

Important note
The integration circle, centered at the origin, is obviously taken in the domain of
definition of the function F(z), otherwise the operation is meaningless.

In practice, the residue theorem can be used for integration of F(z) z'~! using the
residues at its poles included in the integration contour
fln] = Z Residues;. (15.14)
i

This development is valid when F(z) is a rational fraction of z. This is usually
the case in digital signal analysis.

We recall here the formula given in Appendix 1 which calculates a residue.

Let the function f(z) having a pole of order n in z = a,

1 n—oo

Residue|in =a— mdznﬁ

[(z —a)"f(@)],—,- (15.15)

In particular, if the circle |z] =1 is located at the area of convergence, the
Fourier transform does exist and the inversion formula takes a particular form on
circle z = 1:
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We note z = e/7; dz = ¢l*T jTdw.

1 . . . T . .
_ (n—1)oT T\ T _ T\ jnoT
fln] 2 e F(eNiTe" dw = — [ F(e“T)e" do,  (15.16)

o \
=g

o \
Sy

or

W,

fln] :wi/ F(&°T) "™ Tdw. (15.17)
0

One would have found this formula considering that F(el“T) is a periodic

function of @ with period w, = 27” The values of the function f[n] appear to be the

coefficients of the Fourier series expansion of this periodic function.

15.3 z-Transform of the Product of Two Functions

Consider the function
yln] = flnlgln]. (15.18)
We look to express the z-transform of y[n] from those of f[n] and g[n].
+o00
Y(@) =Y flalglnlz™.

In the sum, we express f[n] from its z-transform F(z). The definition domain of
F(2) is noted Dy. Y(2) = sy, 7 F()dE 0,0 glnle 2"

27
1 [ SN = 2\ "
Y(z) =— Z7F(Z)d7 E gl =) .
27j e z
CeDy

Noting D the intersection of definition domains of F(z) and G(z),

Y(z) = QLnJ %F(Z')G(ﬁ)z’_ldz’ (15.19)
Cep
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15.4 Properties of the z-Transform

Some important properties are summarized in the following table. Readers are
invited to make their demonstrations as an exercise.

Table of z-transforms

Sequence Transform
d[n] 1
oln — m] "
Uln] ysilz] > 1
K"Uln] “xsilzl > |K|
I F2
Delay by m steps fln—m] Z"F(z)
Conjugate £ F*(z")
(=1)"fIn] F(=2)
Time reversal
« infinite signal duration fl—n] F(z7h
« finite N signal duration fl-n] 7 NF(z)
Convolution fln] ® gln] F(2)G(2)
Multiplication by n nfn] _Z%
f[n] is symmetric conjugate fln] =f*[—n] F(z) = F* <z%>

15.5 Applications

A filter can be designed by selecting a priori its transfer function or frequency
response. The impulse response of this filter is then obtained by the inversion
formula.

As an example, we present the study of the digital equivalent of the analog
derivative filter with conservation of the shape of the frequency response: The
frequency response of the analog derivative filter is H,(w) = jo. In the interval
— % <w< 3 the frequency response of the digital filter is selected to be
H(&") = joT. As H(e”T) is necessarily periodic with period w, = 2%, the fre-
quency response over the entire frequency axis is obtained by repeating this pattern
with a period w, (Fig. 15.5). The response of the analog filter is multiplied by T for
obtaining a frequency response of the digital filter with the same dimension as the
time signal, as it should be.
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Fig. 15.5 Discrete
differentiator frequency
response

e we

2
1 ; iT :
hln] = — / joTe"Tdw = Ll / e do. (15.20)
W, We

Qe 7(;

2

The integration is done by parts: We note

jnoT

o =u; du = do; "Tdw = dv; v = — (if n £ 0).
T

we
@ 2
2

iT ejan ejan
wn) =128 12 —/. do
W, T e jnT

iT %ejn%”T + %e—jn%T einoT =
W, jnT —n?T?

O
2

1 T e inzer 1 b
hln] = cos nm+ o’ T? (el”z —e ); h[n] = cos nm+ wenZTZJ SiTn nm

The second term of the right side is always zero when n # 0.
Finally h[n] = Lcos nr if n # 0;

n

For n = 0 the calculation is resumed at the beginning (Fig. 15.6):
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Fig. 15.6 Discrete h[n]
differentiator impulse
response 1
t [ : T L I
l 0 i 2 ¢ n
In summary
1
hln] = (—1)" = when n # 0 and h[n] = 0 for n = 0. (15.21)
n

We verify that /[n] is an odd function which gives a purely imaginary frequency
response. We find again the slow decay of h[n] as % This function can be considered
to consist of Fourier series expansion coefficients of a periodic function in fre-
quency having discontinuities (finite step in 3¢ in the first period).

Summary

This chapter provides the main properties of the z-transform: Convergence condi-
tions of the z-power series and definition domains of z-transform, existing condi-
tions of the FT. We demonstrated the z-transform and Fourier transform inversion
formulas and made the connection with the formula giving the coefficients of the
Fourier series encountered in Chap. 3. The main properties of the z-transform are
given. Two exercises on time reversal of functions whose results will be used in
following chapters are given at the end of the chapter.

Exercises

L. Calculate the z-transform of the signal f[n] = (—1)" for n>0, and zero for

n <0, specifying its definition domain. (Answer: F(z) = 1= with [z| > 1).

II. Denoting F(z) the z-transform of f[n|, connect the z-transform and Fourier
transforms of g[n] = (—1)"f[n] and f[n].
[Answer: G(z) = F(—z); G(@*T) = F(—el“T) = F(el®T+™)].

II. Let f[n] the function defined on the support {0, N}. Its time reverse is noted
hin].
L[in]k the z-transforms of f[n] and h[n] as well as their Fourier transforms.
Show that a zero zo of the z-transform of f[n] leads to a zero % of its time
reversed z-transform.

Solution: F(z) = ZLO fln)z™" H(z) = ZLV:O fIN —n]z7"
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By a change of variable p = N — n, it comes

N N 1
Hz) =) flplz ¥ =) flpld =< "F <E)
p=0

p=0

H(eij) — e—ijTF(e—ij); H(eij) — e—ijTF*(ej(uT) if f[n] is a real
function.

If F(z) = (z—z), then H(z) =z (% - Zo) = —707 > (z - %)

The function f[n] is defined on the support {O,N}. Let the function
gln] = (—1)"f[n], where f[n] is the time reversed of f[n]. Link the z-trans-
forms of f[n] and g[n] as well as their Fourier transforms.

Solution:  G(2) = 32, (=1)'fIN = n <™ = 3o flp)(=D)" eV 7 =
Z*N(—I)NF(—%).

G(eij) — C_ijT(—I)NF*(ej((UT+n)).

Note F(z) the z-transform of f[n]. What is the function of which

3(F(z) + F(—z)) is the z-transform?

Answer The function searched for is half the sum of the respective inverse z-

transforms.  According to the result of exercise 2, it is:
fln] if neven

%(f[n] + (=D = 0 ifrnodd’



Chapter 16
Fourier Transform of Digital Signals

This chapter presents the main properties of the Fourier transformation of digital
signals. Having given the definition of the Fourier transform of a digital signal, we
explain the Poisson summation formula which is the essential formula for Fourier
analysis of periodic signals. Then, we demonstrate the Shannon theorem which sets
the conditions for which sampling takes place without loss of information. We then
show the Whittaker—Shannon theorem proving that an analog signal can be
reconstructed from its samples if the sampling was done respecting the Shannon
condition. We also demonstrate the Parseval energy theorem for sampled signals.
Since computer analysis is necessarily performed on finite-length signals, it is
interesting to look into the situation where initially infinite-length signals have their
support truncated by the multiplication by a finite duration window keeping only
the samples lying within a time interval, a rectangular window. After calculating the
Fourier transform of a digital rectangular window, we are interested in the FT of a
time-limited sine function. It is found that the abrupt truncation effected by the
rectangular window causes oscillations in the spectrum (manifestation of the Gibbs
phenomenon) which will spread in the spectral domain. We are led to consider
more gradual selecting windows which greatly reduce the oscillation amplitudes
(hence the name apodization window which they are given: from Latin, removing
the foot). We show an example of how the multiplication of a finite duration signal
with a Hanning window can be used to distinguish a small spectral component in a
spectrum dominated by a frequency component of great amplitude.

Basically, a computer is only able to calculate a spectrum for a finite number of
frequencies. By selecting these frequencies as uniformly distributed, it is possible to
reduce the inverse Fourier transform operation involving an integral to a discrete
summation. This comes at the price of a periodization in the time domain. For a
signal with finite time duration N, a periodization with a period greater than N allows
an exact recovery of the original time signal without superimposition. This operation
wherein the direct and inverse Fourier transforms are discrete is called discrete
Fourier transform. Cooley and Tukey have shown that by choosing the number of
points of this transform to be a power of 2, it is possible to perform the calculation
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much faster by dichotomy. This calculation algorithm is known as the Fast Fourier
Transform (FFT). It has revolutionized signal analysis techniques and allows using
signal processor hardware specifically designated to perform spectrum calculations
in near real time. We explain its principle in this chapter. The chapter ends with the
presentation of the interpolation of a signal by adding zeros in the conjugate domain;
it is followed by showing artifacts of Fourier analysis with a computer.

The Fourier transform F(e/”) of a numerical signal f[n] resulting from the
sampling of an analog signal at the frequency f, = % is defined by

+ 00

F(eT) = > flnje . (16.1)

n=-—00

For this transform may exist, the series must converge. It is necessary that the
function f[n] decreases sufficiently rapidly at infinity. The function F(e/T) is
periodic with period ®, = 2nf, = 2% The function f[n] is found back by the
inversion formula demonstrated in Chap. 15:

fln] L / F (") e do. (16.2)

We
0

Shannon’s theorem expresses the relationship between the Fourier transform of a
function f[n] obtained by digitizing an analog function f(¢) and the Fourier trans-
form of this analog function. This relationship is based on the Poisson summation
formula reviewed in the following section.

16.1 Poisson’s Summation Formula

We want to evaluate the following sum:

Y(e) = f 9T, (16.3)

n=-—00

It is a Fourier series of the variable Q. The function thus developed must be
periodic in Q of period 27” = w,. The Fourier coefficients are all equal to 1. The
integrals must all give 1 for every n:

@
2

1 ) .
— [ Y(®)e ™TdQ =1 vn (16.4)
We

%
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Intuitively, we understand that the function ¥ (¢/*) must have a very particular

form, since the result of the integration of its multiplication by functions e 7?7 with
oscillations varying with n has always the same result. We conclude that this
function cannot be defined other than in Q = 0. It follows that we necessarily have
Y(e97) = 0,6(Q) in the interval {—%,%}. It is a Dirac distribution localized in
Q=0.

Y (¢! being a periodic function with period ,, and as the Dirac distributions
do not overlap, we have on the entire frequency axis

Y(@) = w, Z Q- lw,). (16.5)

l=—00

Then we get the Poisson summation formula:

2n
inQT __ _
E e = o, E 0(Q — lw,) with o, = T (16.6)

n=—o0o l=—0

This formula is fundamental to the study of periodic signals and sampled signals.

16.2 Shannon Aliasing Theorem

Let f(¢) be a function of the continuous-time (analog signal). Its Fourier transform
is given by
+ 00
Fu(w) = / f(r)e dr. (16.7)

—00

We sample f(¢) to create the sequence f[n]: f[n] = f(nT).
The Fourier transform of the numerical signal is defined as

e]()T Z f —anT. (168)

n=-—0o0

The Fourier transform of the analog function f(¢) is noted as F,(w). The sam-
pled values of f(7) can be calculated by the inverse Fourier transform of the
function F,(w):

+ 00

f[n]Zf(nT)=2L / Fo(o)e”" doo'. (16.9)

—00
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By replacing these expressions of f[n] from integrals in the discrete sum, the
numerical Fourier transform can be rewritten as

+ 00
. 1 & . .
F(e’“’T):E > / F (o) e 1" dg), (16.10)

By swapping the order of summations, we have

+ 00
F(ej‘”T):i/ Fy(o)da Z el =on (16.11)
s n=—o0

After applying the Poisson summation formula:

+ 00
PlenT) =2 / o')do I_Zoca o — o —lo,). (16.12)
—00
We integrate over o’ and get
F(eT) = Z Fu(0+l1o,). (16.13)
Z——oo

It appears that F' (ei”’T) is the sum of the analog Fourier transform and all its
translations by a multiple of the sampling angular frequency .. This is the formula
that describes the folding of spectra.

We note the general property that the sampling of a function in a domain (here
the time domain) is accompanied by a periodization in the conjugate domain (in this
case, the Fourier domain).

2 Cases Are Possible

(a) The support of F,(w) is greater than «,. There will be overlap. In the case of
Fig. 16.1, the support of F,(w) is limited to the interval {—o,0} and the
inequality @, <20 holds.

The information on F,(®) is lost in the summation.

(b) If the support of F,(w) is limited to interval {—o, ¢} and w, > 20, translated

spectra do not overlap as shown in Fig. 16.2.

In this case of nonoverlapping, the information on F,(®) is not degraded by the
summation. Between — % and %, the numerical signal spectrum is identical (within

the factor 7T) to the analog spectrum.
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Fig. 16.1 Case of aliased T
spectra overlapping Fy(@) TF;e )
o - % 0 @Y o @ w
) 7
Fig. 16.2 Nonoverlapping F (@ .
when Nyquist criterion is @) TF(e/ wT)
verified \L / /\
—O 0 o O w, ©

Shannon Condition

Thus, if the function F,(w) has a bounded support to 2¢ and the sampling fre-
quency is such that w, > 2¢ the folding will not result in the superimposition of the
motif F,(w) and its translated.

In this case F (/") and F,(w) will be identical in the first period of the Fourier
transform of the numerical function.

This condition called Shannon condition requires that for a correct sampling of
a signal (that is to say, so that the spectrum of the numerical signal represents
exactly the one of the analog signal), it is necessary that the sampling frequency is
greater than twice the maximum frequency present in the spectrum.

16.3 Sampling Theorem of Shannon—Whittaker

Let f(¢) be a continuous time function with Fourier transform F,(w)

f(t)Fourze) / f e ]wtdt (1614)

We seek a relationship between f(z) and its sampled values f(nT) used to define
F (ei‘”T). If the function F,(w) has a bound and that the Shannon condition @, > 20
is met holds, we can write

we

+ 00

—_ wt — wt _L/ ot
f(t)72n/ F,(w)e™dw / )edw 7 F(w)e”dw,

—00 e
2
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or using equality between F,(w) and TF (ej“’T) valid in the interval {— %, 7} and
given by (16.13):
- =
f(0) =5 / F(eT) e”do. (16.15)
T
-
Remember that F(eT) =3 "%  f(nT)eT. Copying this expression in
(16.15), we write
/ gty (16.16)
The integration on w gives
Soli-nT) g elw{(t nT) _ =% (t-nT) ZSin(“" (t —nT)) o1
= . (16.17)
j(t—nT) t—nT
We multiply both terms of the fraction by %
1w, sin 3¢ 2 (t —nT)
f) = 2;;00]? (nT) (= nt) (16.18)
+ 00
f) =" f(nT)sin c( : (t—nT)) (16.19)
n=—0o0

This results known as Shannon—Whittaker sampling theorem states that from
samples f (nT) taken at times nT, one can find back the value of function f (¢) for all 7.

The information is not lost in the sampling operation. The cardinal sine functions
act as interpolation functions.

It is interesting to analyze an example of the recovery of the function f(¢) from
its samples f[nT]. In this example, assume that the Shannon condition is met and
that the values of f(nT) are nonzero only between t = —T and t = 77"

f(nT)=10.8; 1; 1.2; 1.6; 1.9; 2.2; 1.5; 0.7. For n = —1,0, 1...,6 (Fig. 16.3).

Note that each sinc has its zeros for time values equal to n7. The sum signal
f(#), in bold in Fig. 16.3, passes by all the sampled values f[nT]. The residual
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Fig. 16.3 Reconstruction of a function from its samples

oscillation that appears on f () in this simulation is a manifestation of the Gibbs
phenomenon: a limited frequency band signal often exhibits oscillations localized
near the areas of rapid variation of the time signal.

16.4 Application of Poisson’s Summation Formula:
Fourier Transform of a Sine

Let f[n] = sin(nw,T). Its Fourier transform is written as
. +oo . 1 + 00 ) ) )
F(euuT) _ Z Sin(non)eﬂan _ 2_ Z (e]mu[,T _ efjnwl,T)efjan. (1620)

n=—00 d n=—00

F(el“T) consists of two sums of exponential products which are calculated using
the Poisson’s summation formula:

+ 00 ) + 00
Z e]n(w,,fw)T = w, Z 5((0 —w, — nwe). (1621)

Therefore,

Py = 12 ( S 00— 0, - n) - S0+ o, - w>) (1622

n=—0oo
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Fig. 16.4 Two Dirac combs f joT
in the FT of a sine function Im(F(e ’ ))

J — & 0‘ l@o@,/z wel ®

The spectrum of a digitized sine is thus constituted by two Dirac combs of period
.. (See Fig. 16.4).

The analysis of numerical signals is done in practice necessarily upon
time-limited signals. Although we can theoretically calculate the Fourier transform
of the sine function over the whole axis, arrays in computer calculation have
necessarily finite length. Accordingly, numerical computation is only able to pro-
vide the Fourier transform of the sine function limited to a finite time interval.

16.5 Fourier Transform of a Product of Functions of Time

The multiplication of two signals in the time domain corresponds to their convo-
lution in the frequency domain.
Note y[n], the product of functions f[n] and win]:

ylnl = fln]win]. (16.23)

+ o0 - + o0 1 T r -
—jnoT __ - o' jo'nT ,—jnew !
Z Flnlwlnle Z Il w/ W(e’ )e’ eTde! . (16.24)
n=—00 n=—oo 0
By swapping the orders of the integral and of summation:

We

. —jnoT 1 jo'T ’ — —j(w—a')nT
n;oof[n]w[n]e :w—L/ W(el )dco n;oof[n]e . (16.25)

0

Finally,

,

Y (e7) :wL / W () F (el do (16.26)

0
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This is a “convolution integral” in the frequency domain specific to the case of
numerical signals.

We note that the Fourier transform of a product of two numerical signals is
obtained from the “circular convolution” Fourier transforms of the two functions.
The integration takes place over a period in the Fourier domain.

16.6 Parseval’s Theorem

The energy E of a numerical signal is defined by
+ o0
E= Y|l (16.27)

Parseval theorem states that energy can also be calculated in the frequency
domain. To demonstrate this, we treat the general case of a complex signal f[n]. To
use the result of the preceding paragraph, we write

yln] = fnlf*[n]. (16.28)

Its Fourier transform is

We

+ o0
Z y e —jnoT _ Z fnlf —anT 1 /F(ejw’T)F* (ej(a)—w’)T)dw/.
W,

n=—00 n=—0o0

0
(16.29)
Taking @ = 0 in the above relation, we get
E= 3 sl — 78F(ej°"/T)F*( BT dof = / (&) [Fawr
= n nl=— e o = — .
n=-—o00 We We
0 0
(16.30)

The latter relationship is the expression of the Parseval theorem for numerical
signals:

> il = [ [FEen) o (16.31)
n=—00 e 3

If the signal f[n] is real, Parseval theorem takes the form
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W,

Z £2[n] / |F (&) Pdo. (16.32)

n=—0o0

16.7 Fourier Transform of a Rectangular Window

Let the function w,[n] be equal to 1 between 0 and N — 1 and zero elsewhere. Its
Fourier transform is written as

_ a—joNT —jol¥L o5 oT
—jonT _ 1—e e sinN % (16.33)
€ ol 7@ ol * .
—e™J i) SIHT

e]wT

At zero frequency W,(w = 0) = N. The first part of W, (ej”T) is a phase term
with modulus 1. In mathematics, the function > ]Y,T is called a Dirichlet function. In

optics, it is called the grating function, because 1t is related to the amplitude of the
diffracted wave by an optical grating. The maximum of the function is in @ = 0,
where the resolution of the indeterminate form gives the value N. The zeros of the
Dirichlet function occur for frequencies such that sin N 4~ “’T = 0, thus for N %4~ T'— kn
with k integer, giving w; = k5¢. There will be N zeros 1n the interval {0, we}.

This function is represented in linear scale on the left and in decibels on right in
Fig. 16.5 in the case N = 21. It is verified that, except for the first peak, the zeros of
the function are regularly distributed.
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= sl S
= | =
E a 40 L
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Fig. 16.5 Dirichlet function; a In linear scale; b In decibels
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Fig. 16.6 FT of a rectangular 0
window for N = 1000
-10
-20

Dirichlet in dB

@ (rad/s)

We now evaluate the amplitude the first secondary maximum when N is great.
The oscillation of the sine in numerator is fast and thus the first zeros of the
numerator are obtained for small values of the factor % So under these conditions

we can use the following approximation sin %l =~ @7 in the denominator. The first

2 =2
secondary maximum is obtained for sin N “%T = —1, that is to say for N “%T = 37”
So
- 2 2N
W, ()|~ = =", 16.34
W) = o = 5 (16:34)

. . . . W,
The relative amplitude of the first secondary maximum is l\“"%:%
T lmaxi

Expressed in 2010g10% = —13.46dB, as seen on Fig. 16.5b. This lobe has a
significant relative importance.

The Dirichlet function plays for numerical signals a role similar to the sinc
function for analog signals. As seen in Fig. 16.6, the height of the peaks of
oscillations of the function slowly decreases with frequency. It is still about —60 dB
at the Nyquist frequency in the case N = 1000.

16.8 Fourier Transform of a Sine Function Limited
in Time

We want to calculate the Fourier transform of a sine limited in time. This limitation
problem occurs generally when attempting to calculate numerically a Fourier
transform, the signals then having of necessity a finite duration. Assume the signal
length limited to N points.
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Let us calculate
Y () = Z sin(nw,T)e T, (16.35)

To bring out a Fourier transform which requires a summation from minus
infinity to plus infinity on summation index n, we multiply sin(nw,T) by the
1 fromOtoN —1

0 clsewhere This allows extending the

rectangular window w,[n] equal to

bounds of the summation to infinity. Y(ei“’T) remains unchanged:

+ 00
Y (") = Z w[n]sin(nw, T)e "7, (16.36)

n=—00

It appears the Fourier transform of a simple product whose result is the con-
volution of the Fourier transforms of these functions. As shown above, the Fourier
transform of the rectangular window is

: T
. i or SINN G-
Wr<e]wT) —e J(N+1)4E —.
sin 2L
2

(16.37)

In computing the ¥ (¢/*7), the Fourier transform of the sine being a Dirac comb,
one will have to calculate convolution integrals of the form

N(w—a')T
sin
I:—we/ 5 —0)) —ji(N+1)(w—o )Tizdw/. (1638>
sin (=)
2
. N(wfw/;)T
[ = g iV +D(0-0,)] sin =252
i (00T
SlIlT

The zeros of this function noted w; are given by

N(@)T = In.

So

2n 1 2n 1
(wl—wo)—?ﬁ, or: w = w,+ TN (16.39)

Thus, in the Fourier transform of a sine limited in time, the Dirichlet functions
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Fig. 16.7 Discrete FT of a Im [ F( 5 jo}'))
sine at frequency g
\ ﬂ
u;\l sl ally, il v"} v PP PP
L U = 0‘ al2 " & ®
sin N((u—nazJ(,—mO)T

(16.40)

(0—nw,—w,)T
2

sin
replace the Dirac distributions which appear in the FT of a continuous time sine.
These functions are decreasing slowly as «w moves away from an angular frequency
now, — . (See Fig. 16.7).

This results in a spreading on the whole frequency axis of the Fourier transform
of this truncated sine. This is particularly troublesome when attempting to identify
small spectral components in a spectrum.

It is for this reason that a time-limited signal is often multiplied by a time
window of a different shape whose Fourier transform spreading extends over a
smaller interval of frequency. These windows are called apodization windows.

16.9 Apodization Windows

The general property of these windows is that the more the function is regular in the
time domain (continuity of the function and its first derivatives at the edges of the
window), the less the frequency spreading will be high.

For example, the Hann window which in its analog form is a continuous function
and whose derivative is continuous, has a frequency spectrum more compact than
that of the rectangular window having a discontinuity at its boundaries.

Hamming windows:

2
wH[n]:oH-(l—oc)cos%, (16.41)

where —(NT’I) <n< NT’I and O<a<1.

A special case of this window is the von Hann window (Hanning window) when
a=0.5.

The advantage thereof is that the window function is connected continuously
with zero values outside the central range.

The main lobe of the Fourier transform of this window is twice wider than that of
the rectangular window, but the first side lobe has a much smaller amplitude
(—=31.4 dB instead of —13.6 dB).
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Fig. 16.8 FT transforms of two windows; a Hanning; b Rectangular

One can wonder about the interest of a Hamming window in case o # 0.5.
Indeed, in this case, the function is discontinuous at its edges, resulting in frequency
spreading. The lobes of the Fourier transform in this window are less regular. One
can take advantage of this irregularity, by a proper choice of o value, to lower the
amplitude of a lobe to permit detection of a small signal at the frequency of the
lobe.

Figure 16.8 shows on the same scale the moduli of the FT of a Hanning window
(Fig. 16.8a) and a rectangular window (Fig. 16.8b) in the case N = 21.

Note the relatively rapid decay of the oscillations of the Hanning window. This
rapid decrease is accompanied by an expansion by a factor of 2 of the main peak.
The Hanning window is an example of the apodization windows which aims to
reduce the amplitude of the oscillations peaks around the main peak.

Tukey window:

This window is also called edge cosine window. Its temporal form is a constant
central plateau connected by half cosine cycles to zero at both ends. The decay of
the oscillations in the Fourier domain is less rapid than that of the Hanning window
but the signal energy is larger, which may be advantageous in the analysis of signals
in the presence of random noise.

Blackman window:

wln] = ag — a; cos (%) + ap cos (=) with ag =15% ay =4; a; =%

Typically for this window, « = 0.16.

Kaiser window:

This window is considered excellent. The amplitude of the oscillation in fre-
quency decreases more rapidly than the oscillation of the Hanning window.
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% </>’ - [m)
. (16.42)

Ih(B)

Iy is the modified Bessel function of zero order. f§ is a parameter varying in
practice between 2 and 30. The greater is this parameter, the greater selection is
effective. This window can give a —60 dB second lobe.

Practical calculation:

wn] =

0 k 2
L) =1+ [(xg) ] . (16.43)

k=1

The summation can be limited to the first 5 terms for x = 0.5 and to 25 for
x = 19.0.

In Matlab, the kaiser () function provides the numerical values of this
window.

The rectangular window is the best for detecting a signal in noise. The width of
the central lobe of the Fourier transform of the Blackman window is 1.9 that of
Hanning 1.28.

The first Blackman secondary lobe is 7.4 dB below that of the Hanning window.

Energy ratios:

Hanning energy
101 —— | =0.9dB;
810 (Blackman energy

Hanning energy \ _ 0.375 = —4.26dB
Rectangular energy . . .

The following example illustrates the advantage of multiplying a signal by an
apodization window. It is assumed that the signal f[n] is limited to N = 2048 points
and is composed by the sum of two sines with frequencies fy and f;. We assume that
the amplitude of the sine with frequency f; is relatively much lower (107°) than the
first.

fln] = sin(2nfynT) + esin(2nfinT) with ¢ = 1073, fy = £,/50, and f; = 3.5f;.

It is impossible to detect the presence of the small signal on the time display of
the signal (Fig. 16.9a). Its Fourier transform is shown in Fig. 16.9b. The oscilla-
tions of the Fourier transform are not apparent because the number of points N of
the FFT is the same as the length of the signal (this fact will be discussed in the
following section on FFT). This frequency curve does not detect the presence of
small signal, due to the spreading of the spectrum of the main sinus. This spreading
is caused by the rectangular window effect due to the intrinsic limitation of the
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Fig. 16.9 Analysis of the sum of two sine functions (rectangular window); a In time domain; b In
Fourier domain
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Fig. 16.10 Analysis of the sum of two sine functions (Hanning window); a In time domain; b In
Fourier domain

signal length to 2048 points. This spreading completely invades the small sine
spectrum area.

The result of the multiplication of the signal f[n] by a Hanning window is shown
below on the left. Its spectrum in decibels on his right shows clearly the component
at frequency f;. We further note the relative height of —100 dB between the peaks
that can be evaluated in Fig. 16.10 corresponding to & = 1075,
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In summary, brutal truncation of the signal caused to the edges of the rectangular
window has resulted in the frequency spreading. The gradual shift toward zero
provided by the multiplication by the apodization window reduces spreading and
allows detection of the presence of a small harmonic component and measurement
of its amplitude. We see here again the interest of the logarithmic representation
(dB) for the detection of small harmonic components.

16.10 Discrete Fourier Transform (DFT)

The Fourier transform of the numerical signal f[n] is given by

n=+ oo

e]mT _ Z f —]n(l)T. (1644)

n=—0o0

The inversion formula giving f[n] is an integral over a period of the Fourier
transform:

fln] =— / F(e)e" do. (16.45)
0

We place ourselves in the context of a numerical calculation of the integral
where a discrete sum is used as an approximation of the integral. The result of this
sum is only an approximation of f[n] and is denoted differently, f, [n].

2

foln] = wi F(eT) e Aoy (16.46)
€k

Il
o

The interval {0, w, } has been divided into N intervals with width Aw = ¢. The
samples of the function F (ej“T) at N points were noted F (ej”kT), with angular
frequencies

o = k2 andk=0,1,2,... N —1. (16.47)
N

We also note F[k] these samples that are naturally given by:

7nw s W,
Flk] = F(&7T) = Z flnle T with wy = kﬁe. (16.48)

n=—00
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It becomes
e]n(z)AT e]”kmtT ejan since CUg =2m.
Therefore,
s "
N k=0

It is to be noted that because the exponential are periodic functions, f,[n] is also a
periodic function of n, with period N while f[n] was not a priori. This explains the
subscript p used to note that function.

Now we establish the relationship between f;, [n] and fn].

We replace F[k] = F (7)) = Z fln ]e’jzn# in the expression giving f, [n].

It comes after swapping the order of summation:

1 + 00 N—1 2n(" n>k
hln =~ WIADICE (16.50)
n'=—o0 k=0

It is recognized in the sum on k the sum of a geometric series.

N-1 _ a—j2a(n—n')
2 / 1 Jem
§=Y e 0 :# (16.51)
k=0 —ew

The numerator of this fraction is always zero since n and n’ are integers.

The sum § will be zero unless the denominator is zero too. This is the case when
(n—n") =IN.

In this case the sum is reassessed § = ZN ‘1=

It becomes then

= io fln+IN]. (16.52)

I=—00

We see that f,,[n] is the sum of f[n] and of all its translated by quantities IN. There
is a temporal aliasing of function f[n]. f,[n] is a periodic function of period
N. Sampling of the Fourier transform results in the time domain in a periodization
of the signal and aliasing.
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16.10.1 Important Special Case: The DFT of a Bounded
Support Function

In the case where f[n] is a function with support superiorly bounded to N points,
there will be identity between f[n] and f,[n] on the support of f[n]. In this case, we
can write a pair of transforms:

Flk] = NZOI fln] e 7% (16.53)
fln] = }va Flk]e"¥". (16.54)
k=0

These two relationships define the Discrete Fourier Transform (DFT).

It is this transform which is numerically calculated by the Fast Fourier
Transform algorithm (FFT) originally developed by Cooley and Tukey. In practice,
the range of variation of the index k in the frequency domain is {O,N — 1}

matching the frequency interval {0, (N — 1)2}.

16.11 Fast Fourier Transform Algorithm (FFT)

FFT algorithms have allowed gaining a major factor in the calculation times of the
discrete Fourier transform (a factor of 100 for signals with thousand points). This
time saving made possible the real-time spectral analysis of signals. This contri-
bution was decisive in the signal analysis by computer.

This very famous algorithm was proposed by Cooley and Tukey (1965). It is
based on successive subdivisions of data to be analyzed in packages of two by
decimation. It assumes that the number N of data is a power of 2: N = 2M.

We now show how this time saving is possible in the calculation of the formula
(16.53).

It is therefore assumed in the following that N is even. We set

2n

Wy = e v, (16.55)
Equation (16.53) is
N-1
Flk) =" fln]Wyt. (16.56)
n=0

We verify from (16.55) that
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W tmNEEING _ yrk for all m, [ integers. (16.57)

It is noted that the factor Wi is periodic in k with period N, leading to a periodic
F[k] with the same period. So we need to just evaluate F[k] in N points.

To estimate the gain in computing time provided by the FFT, we will assess the
number of operations required to calculate the function F[k]. For each of the
N values of k, if one uses the formula (16.56), N> complex multiplication of the
function values f[n] should be performed with the factors Wi. We will calculate N?
values of WK/k if we take N time as well as frequency points. For N = 1000, we
must know 10° the values of W2 which is considerable. The computing of a term is
important Wi because it is constituted by calculations of sine and cosine values
that are relatively long. While these values can be set in advance in a table, one
should always perform N? complex multiplications followed by N summations.
When N is large, we can estimate to about N the number of required operations.

Now we examine the principle of the Cooley Tukey FFT who managed to avoid
N? operations to bring their total to approximately N log, N. The algorithm pro-
ceeds by a decimation in the time domain. To expose its principle, we choose an
even number N of points. The sum (16.56) is separated into a sum of two terms
discriminating values of the function of even and odd ranks:

Nj2-1 Nj2—1
Fl =" W™+ > flan+ 1wt (16.58)
n=0 n=0
Note that
W2=e TR = W =W, (16.59)

Noting fi[n] = f[2n] and f>[n] = f[2n+ 1], we can write

N/2-1 N/2-1
Flk) = )" Al Wi, +Wh Y Al Wi, (16.60)
n=0 n=0
or
Flk| = F\[k] + WA F, K], (16.61)

where F[k] and F;[k] appear as DFT calculated in N /2 points.

As we now show, the advantage of this decomposition is that one only needs to
calculate half of F[k] values, those on the interval 0 <k < %— 1. We can deduce
Flk] for % < k<N — 1 from these first values.

Indeed, for values of k higher than N/2, we write X' = k+ 5, 0<k< 5 —1.
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We have
FIK] = Fi[K]+ Wy F2[K'], (16.62)
N/2—-1 kN N/2—1 ik a2
7 v 21 NIk
E Alnle ™ ;:O filn)e 7

N/2—l

=3 e
n=0

Therefore, Fy[k'] = F[k]. Similarly, we have
By [K'] = Fylk]. (16.63)

The factor W,’f,’ in the second term remains to be considered:
k+N/2 —2k+N/2) _ . —iZk —_] N/2 2 :
WN— = ¢ IWKEN/2) — o ifkeIFIN/2) — i = -Wy.

We can summarize these results as follows:

N
2

_ Fl [k] + Wsz [k} for
1= { Filk— %]N— WENPE k=Y for (16.64)

<
> <

k
k

(814
IA \/\
2

To fix ideas, we consider the case N = 8:
We have F[0] = Fy[0] + W™CF,[0]; F[1] = Fi[1]+ W5 Ry [1];

F2] = Fi[2] + Wy F2[2) F[3] = Fi[3] + Wy R3]
We deduce F[4] = F1[0] — WS OF[0); F[5] = Fi[1] — W& R [1);
Fl6] = Fi[2] = Wy Fa2]; F[7) = F1[3] = Wy F»[3].

As an example, we see that between the calculations of F[0] and F[4], only the
sign preceding W/{,ZO has changed. We saved in the operation about 50 % of the
computing time.

Decimation by a factor of 2 can be repeated several times (That is the reason
why an initial number N to be a power of 2 is chosen) and lead to calculations
involving only grouping two terms of the function f[n]. The calculation time
decreases by about 50 % each time.

It may be shown that while the initial calculation required about N? operations,
the number of operations required by Cooley Tukey algorithm is N log, N.

For N = 1024, the gain in calculation time is a factor of about 100.
For N = 4048, the gain is about 300.
For N = 16,384, the gain is about 1000.



284 16 Fourier Transform of Digital Signals

16.12 Matrix Form of DFT

N-1
According to (16.53), the DFT of f[n] is written as F[k] = > f[n] Wi, where
n=0

Wy = e ¥ and 0 <k<N — 1. A matrix form can be used:

F[0] 1 1 1 e 1 fl0]

F[1] 1 Wy wy . Wyt fl1]

Fol (=1 w2 wi . owi 12l
FIN — 1] oyt w0 N 1

(16.65)

The Fourier matrix has remarkable properties. Its column vectors are orthogonal
two by two. Conversely, we have

f10] 1 1 1 1 F[0]
1 W Wy Wt F[1]
e =gl oWy wib L w F[2]
i Shin e
f[N _ 1] 1 WN(N 1) WN (N-1) WN(N 1) F[N _ 1]
(16.66)

Except for the factor 1/N, the inverse matrix of the linear transformation is the
conjugate of the original matrix.
This matrix form of DFT is used in many calculations.

16.13 Signal Interpolation by Zero Padding

Nowadays, Fourier analysis is performed mainly on digitized signals using the
discrete Fourier (16.53) and (16.54)). The calculations are carried out using FFT
algorithms. By construction, the DFT provides the value of the Fourier transform of
the signal F(e”) in a finite number of points. It is assumed that the signal is
sampled in accordance with Shannon’s condition and that its length is finite and

N_l 12mn .
equal to points N. As shown above, the DFT F[k] = 3 fln]e #¥ provides the
n=0

value of the signal’s FT at N frequency points oy = k3¢ with k € {O,N — 1}.
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It is shown below that the use of the DFT with addition of zeros (zero padding)
is used to interpolate the signals in frequency or time.

Frequency interpolation: Assume that we add zeros N to the sequence f[n| and
2N-1 -
that we calculate the DFT on 2N points: F'[k] = > fln]e 7.
n=0

For even values of k, we note k = 2k’, and we have:

2N—1 N—1
F2K) =Y flne ™55 =3 flnje 75, (16.67)
n=0 n=0

The upper boundary of the sum has been reduced to N — 1 because the function
fn] is zero by hypothesis beyond this value. It is seen that for even values of k we
find back the DFT values at N points. For odd values of k, one obtains new values
of the Fourier transform F (ej‘”r) of the signal f[n]. This is equivalent to an inter-
polation of the values given by the DFT on N points. Obviously, this operation can
be conducted by filling the signal with a greater number of zeros so as to reach a
desired frequency resolution.

Interpolation in time: Equivalently, one can interpolate in time. This has
practical value when the sampling frequency is limited to a given value, but one

desires to know closer values in time of the underlying analog signal . It is known
2mnk

that the DFT inversion formula is f[n] = L 3737 F[k]e"#
The function F[k] being periodic, with period N we can also write

fln] = Flk]e™". (16.68)

Let us complete the function F[k] with zeros up to the boundaries —N and
N. This function is noted as F'[k]. Now we compute the inverse DFT on 2N points
of F'[k] by noting:

1 = -—
flnl =5 " Flkes. (16.69)

k=—N

For even values of n we note n = 2n’. We have

1 Nt 2m2n'k 1 Nt 2k
fan) =23 FReES = — 3 Flke™. (16.70)
2Nk:—N 2Nk:7N

Since the function F'[k] is zero outside the interval {—% ¥}, we have
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f'[2n"] =N F'lk]e™~ = =f[n]. (16.71)
k

We find for even values of the index n (within a factor of 2), the value of the
function f[n]. For odd values of the index, interpolated values between two even
values are obtained.

Note: In the above calculations negative indexes were used to facilitate the
demonstration. However, the indexes of the functions used in the numerical cal-
culations are positive or zero. As shown in the preceding figures, these indexes
correspond to the frequency interval {0, w,}. In the Fourier domain, adding zeros
must be made in the central zone around %.

The interest of interpolation in the time domain appears in the following
application: The standard sample rate for audio CDs is 44.1 kHz. According to the
sampling theorem, it is possible in principle to reconstruct the audio signal () from
the values f[n] = f(nT) recorded on the CD, using the formula (16.19).

The difficulty is that it is impossible to electronically realize the sinc functions
that appear in this formula.

The expedient to keep constant the value of the function during the time interval
between samples (f(¢) is then approximated by a stairs function) is not acceptable
from a point of view of the quality of the audio output (the ear is very sensitive to
discontinuities at the edges of the intervals).

Even after a low-pass filtering of this step function, the audio quality of the
reconstructed signal is insufficient. It is preferable to interpolate the signal
numerically in time in a first step as previously described, so as to have samples
closest in time, so as to create a step function with narrower steps before smoothing
this function by low-pass filtering.

16.14 Artifacts of the Fourier Transform on a Computer

Almost anybody who has calculated and displayed the FFT of a sine function with a
computer for the first time has been surprised that instead of observing a single
frequency line, he observes a series of lines closely packed around the expected
frequency. The phenomenon is normal and can be explained by the following:

The FFT algorithm generally used to calculate the Fourier transform samples the
frequency range in N points evenly distributed in the frequency interval 0 < w,.
The frequency step is G = 27“# When calculating by a computer the Fourier
transform of a sine function limited to N points, we have shown that it appeared in
the frequency domain a Dirichlet function resulting from the FT of the rectangular
window.
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The step in the spectrum calculated by the method of Cooley and Tukey cal-
culated in N points corresponds exactly to the interval between two zeros of the FT
of the window function.

Two situations may occur in practice:

(@ If o, falls somewhere between two values o =k3E% and wryg =

(k+1) 27’% the maximum spectrum DFT value does not reach & and the other
values fall somewhere on the secondary peaks of the Fourier transform, as
shown in Fig. 16.11.

(b) If the sine frequency w, falls exactly on a frequency w; = k2L

Ty a peak is then

obtained in w,, but the zeros of the function sir1M fall on the other

multiples of 27“,%, And give 0 (Fig. 16.12). There is therefore a single peak in
w, (with height % due to the factor % that appears in the exponential devel-

opment of the sine).
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Summary

This chapter gives the main properties of the Fourier transformation of digital
signals. After having given the Poisson summation formula, we demonstrated the
Shannon sampling theorem and the theorem of Shannon—Whittaker proving that an
analog signal can be reconstructed from its samples if the sampling was done
respecting the Shannon condition. For the treatment of limited duration signals,
which are inherently multiplied by a rectangular window, we have calculated the
Fourier transform of a rectangular window and showed that the multiplication of a
time-limited signal by an apodization window allows a better quality of spectral
analysis. We have defined the discrete Fourier transform and studied the FFT
algorithm of Cooley and Tukey, operating on signals whose length is a power of 2,
which can calculate spectra very rapidly. The chapter was completed by the
interpolation method by zero padding and the peculiarities of the sampled spectra
obtained by numerical calculations.

Exercises

I. Denote the causal Hanning window:

1(1 — cos2®)  f =0,1,...,N—1
waln] = {(2)( i) o :lsewhere '

Show that its Fourier transform is

Wit (67 = Tyt (1 sin(NwT/2)  1sin(N(oT — ¢y)/2)  lsin(N(oT + qbo)/Z))7

2 sin(wT/2) ' 4 sin((wT — ¢g)/2) = 4 sin((wT + ¢y)/2)

with ¢ = 2.
II. A function f(¢) has a spectrum F,(w) limited to the interval {—wy, wo}. It is
sampled at frequency w, = 2wy, in accordance with Shannon’s condition. We
denote F(e”T) the Fourier transform of the sampled function f[n]. Show that

if the function f(¢) is sampled at frequency %, aliasing occurs, and that its

Fourier transform in the range {—%,%} is given by F(*7) =

% (Fa (e](“”LT)T) +F, (ej‘”T) +F, (e'(“FT)T)), or
Fa(@T) = (F(el3)7) 4 p(eT) + F(l2)T)).

III. Quadrature mirror filters:
A numerical filter is defined by its temporal equation:

goln] = fln] +fln = 1].
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1. Compute the impulse response hg|n] of this filter; its transfer function. Place the
remarkable points of this function in the z-plane. Calculate the frequency
response Hy (ei‘”T). Graph the frequency gain. What is the character of this
filter?

A second filter is defined as follows: Its gain is mirror of the previous filter with

respect to the angular frequency %. We have thus ‘H 1 (ei‘“T) | = ’HO (ej<‘”T’")) ‘

Make a drawing to give the aspect of ’H 1 (ej”’T) ’ Conclude that we can deduce
the remarkable points of this filter from those of the first filter by symmetry.
Calculate the transfer function, the frequency response H (ej”T) and the impulse
response Ay [n] of this filter.

2. Prove the relationship |H0 (ej‘“T) ‘2 + ‘Hl (ei“’T) ‘2: Cte.

3. The scalar product of two signals is defined by (si[n],s2[n]) = > si[n]s2[n].

n=—oo

Show that hg[n] and h[n] are orthogonal by a calculation in the time domain.
Find again the orthogonality by a calculation in the frequency domain.

1 if0<n<10

4. Let the signal f[n] = 0  elsewhere

. Calculate the outputs go[n] and g, [n] of

the previous filters. Can we say that one of the two responses gives the slow part
of the input and the other the details?



Chapter 17

Autoregressive Systems (AR)—ARMA
Systems

We studied in Chap. 14 the digital Moving Average LTI systems. It was clear that
those filters are simple to implement because their impulse response is finite. They
allow one to filter out totally some chosen frequency components; however, they
have the disadvantage of having a frequency response that varies slowly. That
makes them not very selective and unsuitable for making band-pass filters. The
autoregressive filters presented in this chapter do not have these disadvantages.
They are digital equivalents of the analog filters presented in Chap. 10. They can be
higly selective but their disadvantage is that their impulse response has an infinite
length. This chapter begins with the presentation of the AR filters of the first and
second order. We determine their impulse responses, study their stability, and
calculate their transfer functions and their domain of definition in the z-plane. As
before, the geometric interpretation of the frequency gain provides a thorough
understanding of the filter’s mode of operation and gives way to generalization
toward ARMA filters (Autoregressive-Moving Average) of which several exam-
ples are studied. It is interesting to be able to use the many accumulated results in
the literature on analog filters; various methods of passing from an analog filter to
its digital equivalent are presented, but, in essence, the equivalence cannot be
performed perfectly. We study the pros and cons of commonly used methods.

In the autoregressive type of filter, the time equation giving the value of the
output signal g[n] at time n contains terms representing the value of the output
signal at earlier moments g[n — 1], g[n — 2], ..., g[n — k]. They are also referred as
systems with feedback. The general form of the equation of a time autoregressive
systems is:

4
gln] = —Zakg[n—k]—l—bof[n]. (17.1)
k=1
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17.1 Autoregressive First-Order System

This system is recursive and defined by the time equation:
g[n] = Kg[n — 1] +f[n}, (17.2)

where K is a complex or real constant. This temporal equation alone does not define
a system but two. An additional hypothesis is necessary to define a system: the
causal or noncausal hypothesis.

17.1.1 Case of a Causal System

We now show that the hypothesis A[—1] = 0 is sufficient to ensure the causality of
the filter.

In what follows, we calculate the impulse response by induction.

Let the input signal be f[n] = d[n]. In determining the impulse response, we
consider separately the cases of negative and positive or zero times:

n>0 n<0
h[0] = Kh[—1]+1 =1, h[—1] = 0byassumption
h[l] :Kv h[—z] :0,
Therefore,
h[n] = K"U[n]. (17.3)

This function is called causal because its values are zero for negative time.

In the following, for ease of presentation, the constant K is assumed real. The
results are easily generalized to the complex case.

Figure 17.1 shows that the impulse response is decreasing if |K|< 1, increasing
|K| > 1, and alternate if K <0.

For |K| > 1 the impulse response increases indefinitely in absolute terms,
reflecting the instability of the system, since a finite input f[n] = d[n] causes an
output going to infinity.

Transfer function of first-order system

As seen before, this function is the z-transform of the impulse response:

+ oo 00

H(z)= Y K'z"U@ =) K'z" (17.4)

n=—o0o n=0
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Fig. 17.1 Impulse response for the causal first-order system for different values of parameter K

It is the sum of a geometric series of common ratio Kz~!.

It converges if the magnitude of the common ratio is less than 1 so }Kz’l | <1, or
|K| < |z|. It becomes

1 Z

H(z) = = .
(2) 1-Kz! z-K

(17.5)

This function has a singularity (a simple pole) in z = K.

We denote D the convergence domain of the series which will be the domain of
definition of H(z). It is the locus of points such that |z| > |K|. D is the outer area of
a disc centered at the origin with radius |K| (Fig. 17.2).

Za

Fig. 17.2 Definition domain
D of a causal first-order
system
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Fig. 17.3 Unit circle and Im(z2) 1

= . .
vector PM governing the gain

wT A
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Note that if |K| > 1 the FT does not exist, because the circle |z| = 1 is not in the
convergence domain. In this case, the system is not stable. As shown above, the
impulse response increases indefinitely in absolute value.

If |K| <1 the FT exists and is expressed by

HET) =——. (17.6)

Gain magnitude variation with frequency
Geometrically, we have (See Fig. 17.3)

. 1 1
HET)| = ——=—. 17.7
| ( )| |6J(”T—K| PM ( )
For w =0, |H(1)| = ! For oT = n,|H(—1)| = ! (17.8)

The aspect of the gain magnitude is conditioned by the length of segment PM
which connects the point M representative of the monochromatic signal e"7 to the
pole P with abscissa K on the real axis.

To illustrate the behavior of the gain with frequency, we take the case K > 0 as
an example. When o = 0 the point M lies in A, the segment PM has alength 1 — K,
which is its minimum value. Its inverse ﬁ is maximum with value ﬁ The
maximum gain is in o = 0. When o increases from 0O, the segment PM length
increases, the gain decreases to the minimum value ﬁ obtained for @ = %. For
K > 0 we have therefore a low-pass filter.

Similarly, it is seen that in the case K <0 the filter is high pass.

In Fig. 17.4 the frequency response of the magnitude’s low-pass filter is on
the left, on the right is the gain of the high-pass filter. The abscissa w7 ranges from
0 to 2m.
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Fig. 17.4 Gain magnitude with positive (leff) and negative (right) values of parameter K

17.1.2 Analysis of the Anticausal System

The hypothesis A[1] = 0 is sufficient to define it. It becomes

forn>0 for n<0
h[l] =0 = Kh[0] +0 h[—1] = Kh[-2] = h[-2] = K
h[0] = Kh[-1]+1=0= h[-1] = —K !
= h[0]=0
h2) = Kn[1]+0=0
hn] =0 h[n] = —K".

In summary,

hln) = —K"U[-n —1]. (17.9)

Calculation of the anticausal filter transfer function H(z)

+ oo —1
H@) =— Y "K"U[-n—1]=- Y K'z" (17.10)
We write m = —n — 1,

H(z) = —il{"”‘lz’”“ - —éi (%)m (17.11)
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Fig. 17.5 Definition domain
D of an anticausal first-order
system

This geometric series converges if |z| <|K], it becomes

z 1 Z Z
H(7) = —= = — = . 17.12
&= k12~ k=2 -k (17.12)

The domain of definition of H(z) is within the disc of radius |K| (Fig. 17.5).

Note that if |K| > 1 the system possesses a frequency response.

It is noted that the expression of the transfer function of the anticausal filter
(17.12) is the same as that of the causal filter (17.5). What differentiates the two
transfer functions is their domain of definition in the z-plane. We see that it is
essential to specify the domain of definition of a system transfer function.

An instructive exercise is to recalculate the impulse response from the transfer
function. The calculation will be done by the residues method, taking the inte-
grating circle radius of radius R surrounding the origin included in each case within
the definition domain: |K| <R is taken to find the impulse response of the causal
filter and R <|K]| for the case of the anticausal filter.

Exercise
Calculation of the output of the causal filter of first order when the input signal is
the step function f[n] = Uln|

The system output is given by

+ o0 n
glh = Z K"Um|Un —m] = ZK’” ifn>0, (17.13)
m=—o0 m=0

forn=0: gloj=1
1. _1-k2_ (1-K)(1+K) _
forn=1: g[1] = 117’%: L 1+K
foranyothern : g[n] =155
gn) =K UK (L g K = 14K+ - K
We have therefore
gl = (1+K+ - +K") U] (17.14)

We see directly that g[n] has no FT since this function increases indefinitely with n.
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Exercise
Repeat this calculation using the z-transform and residue theorem.

Show in first time that G(z) = H(z) V(z) = (=== == then show in the case
|K| <1 that the definition domain of G(z) is the exterior of the disc with radius 1
(that is, the intersection of definition domains of H(z) and V(z)). Then calculate the
first terms of function g[n] after showing that this function is causal.

17.2 Autoregressive System (Recursive) of Second Order

This system is defined by the time equation:
gln) = aigln — 1]+ axgln — 2] +f1n], (17.15)

where a; and a, are two complex constants in the general case. As in the case of
first-order system, a hypothesis about the possible causality of the system is nec-
essary to fully define the system.

17.2.1 Calculation of the System Transfer Function H(z)

As the calculation of the impulse response of this filter is more difficult than in the
case of first-order AR system, we rather study the filter properties by addressing the
problem by calculating first the transfer function. The system is linear, time
invariant. Then, by definition of the transfer function, when the input is of the form
fln] = 7", the output takes the form g[n] = H(z)7".

L)_HLZ)L)

Using the translation property g[n — m] = H(z)z" ™ and replacing it in temporal
equation we get H(z)7" — a1H(z)z '7" — axH(z)z %" = 7", or simplifying by 7

1 7

H(z) 1 2

= = ) 17.16
l—aiz' —amz? Z2—-—aiz—a ( )
Assume now that the system is causal. This assumption leads, as was shown in

the previous chapter, that the definition domain of H(z) is the outside of a disc

centered at the origin and whose radius is the distance between the coordinate origin

and the furthest singularity from the origin. We are led to identify the poles of H(z).

The second-degree polynomial at denominator always has two roots in C.



298 17  Autoregressive Systems (AR)—ARMA Systems

For simplicity, we will restrict here the study to the case where both coefficients
a; and a, are real (as will appear below, this ensures that the impulse response is
real), then the roots are either real or complex conjugate.

The full discussion of the nature of the roots depending on the value of the
discriminant of the second-degree polynomial is not done here. Is treated in the
following only the most common case in practice where both roots are complex
conjugate. We can write in this case

H(z) = — (17.17)

or also

H(z) = . (17.18)
22— Z(zp + z,,) +2p2;

By identifying the coefficients of the powers of z one must have
a =2z +2z; @G =%z, (17.19)

P

We note z, = releeT (w,T is the argument of a pole).
We have therefore

3 +z, =2rcosw,T; 27, = . (17.20)
Finally,
a; =2rcosw,T and a; = - (17.21)
Thus,
H(z) = < (17.22)

- 22— 2zrcosw, T+ 12

If the frequency response exists, it is written as

2joT

H(e"T) = ° (17.23)

edeT — 2eiTrcos w,T + 12’
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Using the formula (17.17) in the case z = re/*”, the magnitude of the frequency
response is given by

1

T |
’H(eJ‘” )‘ T (@ — reenT) (el — eI T )|

(17.24)

We see that for the frequency response to exist, it is first necessary that the poles
are not located on the unit circle. Moreover, the unit circle must belong to the
definition domain of function H(z).

In the following discussion, the filter is supposed causal and the frequency
response defined, which requires that the poles’ magnitudes are necessarily less
than 1 (r<1).

17.2.2 Geometric Interpretation of Variation of Frequency
Gain Magnitude

According to (17.24), we can write

joT 1
|H ()| = PP (17.25)

Figure 17.6 shows the pole situation and the position of M on the unit circle for a
given frequency.

The gain magnitude is the inverse of the product of the lengths of the segments
MP and MP' connecting the point M to each of the poles. The gain will be great if
one of the segments MP or MP' becomes small. There will be resonance when
M approaches a pole (e.g., MP decreases when w — ),).

The sharpness of the resonance depends on the proximity of the pole and the
circle radius of radius 1. If the pole is close to the circle, the resonance will be
sharp, the amplitude at the resonance high, and the resonant frequency will be close
to the frequency of the pole.

Fig. 17.6 Pole situation and

— —
vectors PM and P'M
controlling the frequency gain
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As shown in Fig. 17.7, the more distant the pole from the circle of radius 1, the
less pronounced is the maximum, and the resonance frequency moves to lower
frequencies. This shift toward the low frequencies is due to the growing influence of
the second pole on the resonance of the first pole.

If the pole is near the circle, i.e., if r is close to 1, the resonance is sharp. It
manifests for w,T = xw,T. It is assumed in the following that we are in this
situation.

For M close to P: MP =~ ~/HM? + PH2; PH = 1 — r, so HM =~ HM —= (wp — )T
(see Fig. 17.8).
In the above relationship, the length of the segment HM was assimilated to the

length of the arc HM. As seen in Fig. 17.8, one can write MP' = PP' = 2rsin w,T.

Fig. 17.7 Gain of a
second-order AR filter for

several pole magnitudes 7
6
5 5
K
4t
= 3
2
0 1 2 3 4 5 6 7
ol (rad)
Fig. 17.8 Geometric —
situation in the case of sharp
resonance H
B M
=
al
w,T
o A
Py
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In the vicinity of the resonance frequency in the case of a sharp resonance, the
expression of the gain takes the form

. 1 1
|H(eT)| = o T (17.26)
\/(wp B w)2T2 F(1— r)2 rsin wy,
At resonance, for m, = w), the gain is maximum. It is given by
joT 1
|H|Max: |H(e] ) = (1727)

@=op (1 — r)2rsinw,T

Calculation of the -3 bB bandwidth in the case of a sharp resonance
For two angular frequencies w; and w,, the two terms under the square root in
(17.26) are equal:

[(0p — @12)T| = (1= 7). (17.28)

Then,

1 _ |H|Max.
\/2(1 = r)*2rsinw,T V2

We choose w; <m),. Equation (17.28) is writen as (w,, — wl)T =1-—r, or
— _1=r
W) = Wy T *

For the other angular frequency w, > w,, we have w, = w, + %
The —3 dB bandwidth is then

|H (T | = (17.29)

Aw:wz—(m:Z(l;r):%(1—r):—(l—r). (17.30)

N.A.if r = 0.999, we get Aw = 21077
Returning to frequency variable f = 72, the —3 dB bandwidth is

Af:%(l — ) (17.31)

We also see that the sampling frequency being given, one can determine the pole
magnitude r to achieve the desired —3 dB bandwidth.

N.A. Let f, = 20 kHz. If one looks for a resonance frequency of f, = 1.2 kHz
and a bandwidth Af = 300 Hz, we will take f, = f, = 1.2 kHz (hypothesis of sharp

resonance that is justified a posteriori) and r = 1 — n% = 0.9529. Then,
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w,T = 2nf, T = 27{7” =0.3717.

We deduce the coefficients a; and ay: a; = 2rcosw,T =2 x 0.9529x

c0s0.377 = 1.772;
a = —r* = —0.9529% = —0.908.

The time equation of this filter is as follows: g[n] =1.772g[n — 1]—

0.908g[n — 2] +fIn].

17.2.3 Impulse Response of Second-Order System

It is assumed here that the filter is causal. We start from the expression of the

transfer function given in (17.17).
After dividing the numerator and denominator by 7>, we write
1
HZ) =F7—~7—0~- (17.32)
Rl
4 Z
Since the filter is causal, the domain of definition D is the exterior of the disk of
radius r = ‘zp|, as was justified in the chapter on the z-transform. The division z?
was permitted because the point z = 0 does not belong to the domain of definition

of H(z).
We recognize in H(z) a product of first-order system transfer functions:

H\(z) = 1 i% and H,(z) = | _lz_,, (17.33)
< z
We have therefore in the time domain a convolution:
h[n] = hi[n] @ hy[n]. (17.34)
Assuming causal first-order systems,
hi[n] = ZpU[n] and  haln] = Z'U[n],
(17.35)

+ o0

hin) = " ZUm]z " Uln — m].

m=—0o0

h[n] will be causal: h[n] = > Zizy" ™ U|n].
m=0
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Fig. 17.9 Second AR wal= 0 8
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It is wise to use the trigonometric form: zp = re/»",

h[l’l] _ U[n] Z rmejwmernfmefj(up(nfm)T

m=0

= Ulnl#" —jo,nT - 2jwpmT __ U n —jwpnT1 — ej2wp(n+l)T
= Uln]r"e r;e = Uln]r'e e
Finally,
i nr
pp] = p S DT ) (17.36)

sinw,T

Figure 17.9 shows an example of the impulse response of a resonant

second-order filter.

17.2.4 Functional Diagrams of the Digital System of Second
Order

The output signal is given by the relation

gln] = aigln — 1] + axgln — 2] +£[n]. (17.37)

1. Basic chart: (Fig. 17.10).
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Fig. 17.10 Basic

representation I [’i] /i‘\. g [”]

2. Representation by two first-order systems in cascade:

We have

G(z) =H(E@)F(z) = ———

Rrre— F(z) = H(2)H2(2)F (2). (17.38)

The filter can be realized by two filters of the first-order connected in cascade
(Fig. 17.11).
Their time equations are written as

sln] = zpsin — 1] +f[nl,

. (17.39)
gl = zpgln — 1]+ s[n].
3. Realization by two first-order systems in parallel:
2
Hz) =7—————F. 17.40
U A (1740
H(z) is decomposed into a sum of two simple elements (Fig. 17.12).
Fig. 17.11 Representation
by cascade of two first-order A [n] @ : [n] /E\ = - [n]
systems i [+
Fig. 17.12 Representation f A
by two first-order systems in L) ff\ b
parallel + + e[~
Z/) +
AL N N
7 Y%
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Az Bz AZ? — Azgh + B2 — Bzz
H(z) = b= P a5
Z2—zp ZI—2Zp D
* Az
S A+B=1; Agp+Bp=0=B=-—"L. (17.41)
P
* 1 *
A<1_Z_P>:1; A= *:Z—P*; B = *ZP )
zp 7;: P — 2p p—2zp

17.3 ARMA Filters

Generally, an ARMA filter (Autoregressive-Moving Average) is defined by the
time equation:

gln]+ iakg[n—k] = ibkf[n—k]. (17.42)

k=0

Its transfer function has the form

q
1 —zz!
H(Z) _ b0+b1Z71 +b2Z72+ +bqZ7q —p kl;[]( ¢ ) (17 43)
l+aiz - +apz? O]E[(l—pkz—‘). '

k

Il
—

This is a rational fraction of polynomial functions in z.

By a choice of the position of zeros and poles of this polynomial in the complex
plane, we can get the desired frequency response or approaching it closely.
Optimization techniques for locating these remarkable points to approach the
desired result have been developed.

In the design of ARMA filters, we also use the body of knowledge on analog
filters for getting digital filters with similar properties using passing techniques from
analog to digital, examples of which are presented below.

Example of an ARMA filter

Rejection filter (also called notch filter): The objective in the design of this type of
filter is to obtain a frequency response as flat as possible, except in a narrow
frequency band where the gain cancels at its center. The shape of the frequency
response is that of a plank of wood in which we sawed a notch.

Principle: Place a zero of the transfer function on the unit circle to cancel the
gain at frequency f; and also place a pole near the zero with the same argument
(Fig. 17.13).
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Fig. 17.13 Case of vicinity Im(2) T A
of pole and zero o
D
¥ F
Brad
'I\ 0 /f Re(z)
—]
H(z) = EZ - ZO; withzo = &7z, =" and re 1. (17.44)
Z— Zp

Using a geometric interpretation it is found that the frequency gain magnitude is
given by the ratio of segments joining the point M representative of a monochro-
matic signal with frequency w to the zero Zy and the pole Z, of the transfer
function:

 MZ,

’H(eij” - MZP '

(17.45)

This magnitude is nearly 1 for frequencies far from wy, as the distances of the
point M to the neighboring points Zy and Z, are close. However, the gain is zero for
o = wy since the segment MZ; length is zero.

To obtain a real impulse response, it is necessary that the coefficients appearing
in the expression of the transfer function are real, this is not the case in (17.44) for
all frequencies.

This leads us to add complex conjugates of zero and pole in (17.46).

Thus, among the coefficients of the polynomials appear the sum and the product
of complex conjugate numbers that are real quantities. The filter transfer function is
then

(z—20)(z— )
(z—2) (z — z;;) .

In the following example, it was taken f, = 20 kHz, fy = 2 kHz and r = 0.98.

Meanwhile in the interval —% ,% , the shape of the frequency response mod-
ulus is given in Fig. 17.14.

The reader is invited to explain, using a geometric argument, why in this
example, the gain value at plateau is about 1.02 rather than 1.

This type of filter is used when we want to eliminate a parasitic frequency signal
which sometimes overlaps with the signal (frequency of 60 Hz, for example, in

highly amplified signals as is the case for electrocardiograms).

H(z) = (17.46)
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Fig. 17.14 Frequency 14
response of a notch filter
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Comb filter
It is a rejection filter for removing a fundamental frequency and its harmonics. We
reproduce regularly along the unit circle the zero—pole configuration encountered in
the previous example. To do this, the filter transfer function is

l—zM M-1
S 1—AzM M

H(z) A is a real positive number close to 1. (17.47)

The zeros of H(z) are zo =el. Its poles are z; = ¥/Ael#, with
k=0,1,2,...,.M — 1.

For a causal and stable filter, A <1 is chosen and for definition domain of H(z),
the exterior of the circle of radius {/A. Note that zeros ok = et and poles zpr =
YWAel have same argument.

The frequency response is written as H (617) = %.

N.A. If M = 10 and A = 0.9, poles’ magnitude is r = 0.9895, a value very close
to 1. We take 7 = 1. Figure 17.15 shows the remarkable points location (left) and
the representation of the filter frequency gain magnitude (right).

Because of the shape of its gain, the filter is called comb filter.

The maximum gain is 1.053. The width of the notch depends on r, as shown

below. The gain will be approximately % (-3 dB) if IZ,—% = \/Li

1 ZM,
—F—=ZM, =PZ=1-r.

V2 \JZMF PV
Then (w; — wo)T ~ 1 —r..

Thus, the —3 dB bandwidth is given by Aw = w; — @ = 2“—7).
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Fig. 17.15 Comb filter (M = 10); Pole—zeros situation (left); Frequency response (right)

As r = YA =0.9895, Aw = 0.021 if T = 1. The closer to 1 is r, the narrower
will be the width of the rejected band.

From Eq. (17.47), we deduce that the time equation of the comb filter is as
follows:

gl = Agln — M) +f[n] — fln — M). (17.48)

Goertzel algorithm

This algorithm provides a numerical efficient way of evaluating a spectral compo-
nent at a chosen frequency wy. It is based on the property that the Fourier transform
for a given frequency wy of a digital signal limited in time to N points may be written
as the output of a first-order AR system. Let us start with the expression of the DFT
of a causal signal f[n], assuming that T = 1. According to (16.53),

:2mnk

FIg =Y fln]e 7% (17.49)
n=0

We note W& = e 7% The last equation becomes

N—1 N—1
FI ="l wir =" i wyt ), (17.50)
n=0 n=0

. _ 2nNk . .
since Wy = e = 1, k being an integer.

F k] appears to be the convolution of f[n] and Wy"*U[n] evaluated at n = N. The
step function has been introduced to impose F[k] = 0 for N <0.
In conclusion F[k] is the output of a filter with an input f[n]. The transfer

function H(z) of this filter is the z-transform of Wy™U[n]. H(z) =

o0 (o)
S Wy Un)z™" =Y Wiz~ The sum of this geometric series is
—00 0
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1 1
= = . 17.51
1— W]\?kZ_l 1 — e,j%z_l ( )

H(z)

The filter is a first-order AR with a pole on the unit circle. Extending this result
for any frequency g, we write

1

The situation of the pole is analog to that met in Chap. 10 for a system mar-
ginally stable with a pole on the imaginary axis. The magnitude of the impulse
response should increase as n, the time variable.

The advantage of this result is that when we need to calculate a spectral com-
ponent amplitude at one (or a small number of frequencies) the numerical calculus
is faster and much simpler to implement in hardware than a FFT.

A refinement is provided by the following algorithm which avoids the complex
calculation implied by (17.52) and in consequence is faster.

It consists of a cascade of a second-order AR filter with its complex conjugate
poles z,,, on the unit circle at frequency .

1

- - . 17.53
(1 _ Zflejon)(l _ Z*leﬂon) ( )

H\(z) =

This filter is followed by a single-zero MA filter. The zero is located at one pole
of the first filter to cancel out the effect of that pole:

Hy(z) = 1 —z el (17.55)
The transfer function of the cascade is

1

H(z) = Hi(2)Ha(z) = = Teaty"

(17.56)

Let us look at the problem in the time domain. We note f[n] the input signal and
w(n] the output of the first filter according to the time equation:

win] = 2 cos(woT)wn — 1] — w[n — 2] + f[n]. (17.57)

w(n] is the input of the second filter whose output is y[n|. We have
y[n] = wln] — win — 1]el*? (17.58)
The calculation is faster that the one resulting from (17.52) since (17.56) is a

calculation with real numbers and (17.57) is a complex equation which is per-
formed only once, for n = N.
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Example An example of application is the recognition in a noisy environment of
frequencies used in the Dual-Tone Multi-Frequency signaling (DTMF) when
punching a key in a touch key telephone.

The touch 1 generates fy = 697 Hz and fj = 1209 Hz.

The touch 4 generates fi = 770 Hz and f{ = 1209 Hz.

Let us see on a simulation with Matlab in Fig. 17.16, how the discrimination
between touch 1 and touch 4 is possible with the Goelter algorithm.

The sampling frequency is F, = 10 kHz; signals at fy = 697 Hz and f; = 770 Hz
with amplitude 1; zero mean Gaussian noise with standard deviation is added to the
signals. For the plot, the output of the filter has been divided by the index n in the
sequence. The selection frequency of the filter is fy = 697 Hz.

Itis clear on 17.16 that after 100 ms (time inferior to the pressured key time) touch
1 with its frequency fy = 697 Hz is recognized by the value 1 of the output amplitude.

17.4 Transition from an Analog Filter to a Digital Filter

Several techniques are used to design digital filters with properties close to those of
analog filters that are known for a long time. In the general case, no method is
perfect in the sense that none provides simultaneous equal frequency responses and
impulse responses of digital and analog filters.

17.4.1 Correspondence by the Bilinear Transformation

This first mapping rule, widely used, is obtained by a bilinear transformation in the
complex plane allowing the passage of the transfer function H,(s) of the analog
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filter to that of the digital filter H(z). s is the Laplace variable s = ¢ + jw. The
bilinear transformation is

21—z
S_Tl+z—‘ . (17.62)

T is the sampling interval. The factor ensures % that s has the dimension of the
inverse of a time.

Discussion of this transformation: This mapping transforms the imaginary axis
Jjo of the Laplace plane in the unit circle of the z-plane. s = 0 (analog frequency
zero) corresponds to the point z = 1 (digital zero frequency). s = joo corresponds
z = —1 (Nyquist frequency, the highest discrete frequency).

The imaginary axis in the Laplace plane (vertical axis of angular frequencies for
which s = jw) is transformed in the unit circle in digital, as can be seen by
expressing z as a function of s from (17.62):

14 3L
z= +3T. (17.63)
=5

If s = jo (s is on the imaginary axis, representative monochromatic signals), we
see that z is the ratio of a complex number and its conjugate complex. This complex

number is noted here in its trigonometric form pe’:

14jef jo . .
.= J. 2 _PC 20 _ e with ¢ =20. (17.64)

Thus, for all points of the pure imaginary axis s = jo in the Laplace plane we
have |z| = 1, which reflects the transformation of the imaginary axis for s into the
circle of radius 1 for z.

Then,

ol oT

T
tanl = - = - = Arg(z) =20 = 2arctanw7. (17.65)
1

Conversely, transformation of unit circle in the imaginary axis will be written as
s =jw = j%tan 0= j%tan 2, where ¢ is the argument of z.
Example of the digital filter corresponding to a first-order analog filter:

The analog filter transfer function has the form

Hy(s) = :

S*Sl.

(17.66)

Using the relation (17.62), that of the digital filter is then
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1 _TE+D(+1)
;(17:1)7;(1*Zf‘>_4 z2—2 '
T \1+z1 T \1+z!

We see in particular that the transmittance of the analog filter decreases to zero
as the frequency approaches infinity, making the filter a low-pass filter. The transfer
function of the corresponding digital filter has a zero at the Nyquist frequency
(z = —1), the highest frequency of the digital signal. This frequency corresponds to
o = oo for the analog filter. The digital filter is also low pass.

N.A. Fig. 17.17 shows the frequency responses of a causal first-order analog
filter and that of the digital filter obtained by bilinear transformation. We took
s1 = —10+,;100 and T = 10~3. The pole s; was chosen close to the imaginary axis
S0 as to ensure a sizable dynamic peak for a limited interval of w. T was chosen to
be relatively small to obtain a location of the pole z; in the first quadrant, in the low
frequency area, so that the peak occurs at low frequency, far from the Nyquist
frequency. It is observed that at high frequencies the digital gain falls below the
analog gain due to the zero of the digital transfer function for

% = % = 3141.6 rad/s.

H(z) = (17.67)

17.4.2 Correspondence by Impulse Response Sampling

The digital filter impulse response is selected as a sampling of the frequency
response of the analog filter h[n] = h,(nT). As seen earlier on the properties when
sampling, the digital filter frequency response is given by the infinite sum of analog
responses translated by multiple of o,:

Fig. 17.17 Frequency 0 I - : '. T I T
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H(eT) = Z Hy (o0 — now)) (17.68)

}17730

Again we take for example, the first-order analog filter met before. The impulse

response of the analog filter is A, (1) = — iesl’ U(r), which is complex in this digital
implementation since p; = —104-;100 is complex. The filter gain is shown in
Fig. 17.18.

At high frequencies, the value of the digital gain rises above that of the analog
gain due to the summation operation of the translated spectra.

17.4.3 Correspondence by Frequency Response Sampling

The principle of this technique is to sample the frequency response of the analog
filter and assign these values H,(w;) (within the factor 1/T) to the frequency
response H (/") of the digital filter. As essentially the function H(e7T) is
periodic, the operation is realistic only if the support of H,(w) is bounded or if the
“forgotten” values are negligible. Digitally, the frequency domain is a continuum. It
is necessary to evaluate the frequency response between two sampled values. The
technique is based on the discrete Fourier transform. At first the digital impulse
response is calculated by the inverse discrete Fourier transform of H (ei“’kT). This
function has necessarily a finite duration since one cannot indefinitely extend the
computations time. Moreover, we seek to minimize the inevitable folding error

Fig. 17.18 Frequency
responses of analog and
digital filters (impulse
response sampling)

|H| indB

-2000 -1000 0 1000 2000
w (rad/s)
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(here in the time domain) accompanying the discretization (here in the frequency
domain) by taking a sufficiently tight sampling of the frequency response.

Once the digital impulse response is calculated, we can evaluate the frequency
response for any frequency using the Fourier transform. The overall process pro-
vides a frequency response on a continuum which passes through the sampled
points.

Example of building an ideal low-pass filter without phase:

By hypothesis, H,(w) = 1 for || <€Q and is zero elsewhere. This function is
sampled and we take H (¢/*7) = 1 for |w| <Q. The interval width is divided into
intervals. To highlight the effects, the number of points used here is low N = 16.
We take H (ej“’kT) = 1 for integer values of k: k € [—3,3] and O elsewhere.

h[n] is constructed by inverse discrete Fourier transformation on N points. The
obtained impulse response is limited to N points. In Fig. 17.19 the continuous line
represents the frequency response of the low-pass filter and 16 samples of the
function.

3 . nk
The impulse response with N = 16 points is given by h[n] = 11—6 > ei2mis,
=3

It is noted that A[n] is an even function of 7.

h[0] = 0.4375, h[1] = 0.3142, k2] = 0.0625, h[3] = —0.0965, h[4] = —0.0625,
h[5] = 0.0417, h[6] = 0.0625, h[7] = —0.0124, A[8] = —0.0625.

Using these values of h[n], we can calculate H (ej‘”T) Vo by Fourier transfor-
mation. We can obtain a sampling of this Fourier transform by performing the FFT
calculation on any number of points M taken between 0 and f,. Note that M can be
taken large compared to the original number N that was used to limit the duration of
the impulse response of the FIR filter to be N.

We may take M = 512,1024,2048, etc.

8
) . k
H(e]ka) — E h[l’l} e—JkaT with W = — W,. (1769)

n=-—8

Figure 17.20 shows different frequency responses in the interval {0, w,}.
f. = 1Hz.

Note that the function H (ej‘“T) passes through the sampled values and its
oscillations in the vicinities of the function H,(w) transitions are due to the Gibbs

Fig. 17.19 Sampling of a H(efw.i?') N
frequency response
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phenomenon in frequency. By sampling the analog frequency response more
tightly, we get a closer match of the original function, without nevertheless
removing oscillations caused by the discontinuities of the function H,(w).

Warning: We cannot ensure in the above example an even function A[n] with an
even N = 16 number. In this case, it is necessary not to use a sample at the end of
the interval to ensure the periodicity of the inverse DFT on 16 points. It then
introduces a phase which is absent in the analog filter.

Summary

The autoregressive filters presented in this chapter are digital equivalents of the
analog filters met in Chap. 10. Their advantage is their high selectivity they allow.
Yet, their disadvantage is that their impulse response has an infinite length,
implying that, in principle, we should wait a time infinite to get the result of the
convolution of an input signal with the impulse response. This chapter began with
the presentation of the first and second-order AR filters. We have determined their
impulse responses, the conditions of stability, their transfer functions, and the
definition domain of these functions in the z-plane. As usual, the geometric inter-
pretation of the frequency gain has provided a thorough understanding of the
operation of the filter and generalization to interpret the ARMA filters
(Autoregressive—-Moving Average) of which several examples have been studied.
To use the many accumulated results in the literature on analog filters, various
methods of passing from an analog filter to its digital equivalent have been exposed.
In essence, the transition cannot be done accurately. We study the pluses and
minuses of commonly used methods.
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Exercises

I. It is assumed that the signals are sampled at frequency f, = 50 MHz.
A digital filter is defined by the position of the two poles of its transfer function:

V2

2
po = 0.97§(1 +i) and p;= 0.977(1 — 1)

1. Give the expressions of the filter transfer function H(z) and frequency
response H(elT).

2. Give the aspect of this frequency response magnitude justifying it by the
situation of poles of H(z).

3. What is the resonance frequency for a real input signal? Assuming that the
resonance is sharp, give the —3 dB bandwidth.

4. Give the impulse response of the filter.

II. Consider the filter defined by its difference equation:

glnl = 1/4(fIn — 1]+ 2f [n] +f[n + 1))

1. What is the frequency response of this filter? Represent the gain versus fre-
quency. What is the nature of the filter? Give its -3 dB bandwidth.

2. What is the impulse response? Write the difference equation of a causal filter
having the same gain (in magnitude) than the last. Compare its frequency
response to that of the previous filter.

3. Calculate an all-zeros filter whose four zeros are on the unit circle in £27/3 and
+(2n/3+7/6).

Give the aspect of the frequency response. Can we speak of a low-pass filter?
Give attenuation at Nyquist frequency.

Give its impulse response assuming causality with nonzero response time at
n=0.

III. Fourier analysis of a digital signal:
Let the digital sinusoidal signal be so[n] = sin(2nfynT) (with fy = 2kHz and
f. = 20kHz).

1. Calculate the Fourier transform Sy(e/“T) of this signal. Represent this function.
2. We assume that only a portion y[n] of the sine limited to N = 2048 points is
available (from O to N — 1).
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a. Write y[n] in the form of the product of the sine function and a rectangular
window.

b. Deduce the FT Y (e/“T) as a convolution. Qualitatively represent the modulus of
Y(e/“T). Taking as reference the modulus at fy = 2kHz give an upper bound to
the modulus at 4 kHz.

c. Do we distinguish in the module’s representation the presence of a second
sinusoidal signal at frequency 4 kHz and amplitude ¢ = 10~ superimposed to
the previous signal (s[n] = so[n] + &s;[n])?

3. To improve the detectability of a small signal superimposed on the first, the
signal s[n] is multiplied by a Hanning window wy [n] consisting of one cycle of a
sine signal equal to 0 inn=0and n =N — 1.

a. Give the expression of wy[n] and calculate its Fourier transform Wy (e/7).
Represent approximately the latter function modulus.

b. Explain the reason for the increased detectability of the low spectral component
when the signal s[n] = so[n] + &s1[n] is multiplied by the Hanning window.
Perform numerical evaluation.

IV. Digital Filtering: The transfer function of a digital filter is

__ (eh-e)
H(z) = (:—0.9963) (:—0.99¢ %)’
f. = 20kHz, give the aspect of the frequency gain. Give the impulse response of
this filter.

Knowing that the sampling frequency is

Note Assume that digital signals come from sampling at 20 kHz.

V. A digital signal x[n] consists of an infinite succession of Kronecker pulses
whose repetition frequency fp is 100 Hz.
A.

1. Give the expression of the signal x[n] and represent graphically this signal.
2. What is the Fourier transform of this signal? Represent this FT.

B. The signal x[n] is used as input to a first-order causal system with the parameter
K.

3. Give the expression of the output signal y[n].

4. On what condition upon K the system response to a Kronecker pulse does
not exceed, at the entrance to the next excitement, 5 % of its initial value?
Represent approximately the output signal in the case where K has the limit
value (take three significant figures for K).

5. Give the expression of FT of the output signal. Represent this FT.

C. The signal x[n] is now the input of a second-order system. One pole is noted
z, = reé/T. Assume that the resonance is sharp.
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6. Remind the expression of the impulse response of the second-order system.
How to choose r to be in the limiting case of the Question B4 (r = rs5¢,)?

7. Demonstrate the expression of the second-order system frequency response
valid in the vicinity of the resonance frequency (strong). Demonstrate
formula giving the —3 dB bandwidth.

8. Place the poles in the complex plane in the case where the resonance
frequency is, in succession, 600 Hz, 1000 Hz, and 2400 Hz, and r = rsy.
Calculate the —3 dB bandwidth.

9. The three systems of the previous question are placed in parallel, with the
input signal x[n] defined in A. It is desired that the spectral amplitudes of
the output signal are such that the frequency components at 600 Hz and
1000 Hz have the same amplitude, with a —20 dB relative amplitude to that
at 2400 Hz. Show that it is necessary to precede the filter by amplifiers
whose gains are independent of frequency to readjust the output amplitudes
to desired levels.

10. Give the expression of the output signal as a combination of convolutions.
11. The excitation signal has not an infinite duration but lasts 1/4 s. Describe in
time and frequency the effect of this limitation.

NOTE: The problem models the digital synthesis of the vowel a (Attention a en
anglais ne sonne pas come le a frangais). The three frequencies are the first three
formants of a. The excitation Kronecker pulses are provided by the vocal cords
which interrupt the output of air from the lungs in the form of very short pulses.
This air enters the resonant cavities, larynx, mouth, whose adjustments provide the
desired formants. The first two formants of the vowel i are approximately 200 and
2400 Hz. The frequency of such pulses for a female voice (of the order of 200 Hz)
is twice that for a male voice.

VI It is assumed that the digital signals originate from sampling with 10 kHz
frequency.

Consider the digital filter defined by the equation: g[n] = f[n] — 1.99858f
[n—1]+fn—2].

1. Determine the transfer function H(z) of this filter. Show that it has two zeros on
the unit circle. Represent the position of the zeros in the z-plane.

2. Conclude by a geometric argument the aspect of its frequency response after
calculating the gain at zero frequency and 5 kHz.
Can you use this filter to remove 60 Hz AC noise? Justify.

3. Give the impulse response of this filter.

VII. Let the digital filter defined by the temporal equation be
N—-1
=
yinl=% > x[n+I], with N odd.

-5
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1.

What is the impulse response of the filter? Represent it when N = 9.

2. Determine in this case the filter transfer function H(z). Locate its zeros in the

complex plane. From the position of these zeros, predict the shape of the filter
frequency gain magnitude.

. Give the expression of the frequency response H(el”T) (T is the sampling

interval).

Why could we predict that this function was real?
What are the signal frequencies blocked by the filter in the case where the

sampling frequency is f, = 1 MHz. Accurately represent the frequency response.

VIII. Let the causal digital filter defined by the equation be

y[n] = 1.98 cos (g)ﬂn — 1] — 0.99%y[n — 2] 4 x[n] +x[n — 1].

. Calculate the system transfer function H(z). Represent its remarkable points in

the complex plane.

. Show that the filter results from the cascade of two filters: a MA filter (Filter 1,

Hi(z)) and an AR filter (Filter 2, H,(z)). Give the functions H;(z) and H,(z) as
well as their remarkable points. Discuss the problem in terms of stability and
causality.

. Calculate the frequency response of the MA filter and specify the nature of this

filter. Represent its gain. Give the impulse response 4 [n] of this filter.

What is the response of the filter to the input x[n] = U[n] — Uln — 4]?
Specify the character of the AR filter and give the appearance of its gain with
frequency.

Making the approximation valid if the pole is near the unit circle, give an
approximate value of its resonant frequency and its bandwidth (in Hertz).
Give the impulse response s, [n] of this filter and its aspect as a function of n.

. Deduct from the above questions, the impulse response of the complete filter.

IX. Let the digital filter defined by the temporal equation be g[n] =

rgln — 1]+ f[n] — f[n — 1] with r = 0.99. The filter is supposed causal.

. What is the transfer function of this filter? Place its notable points in the

complex plane.

. Give qualitatively using a geometric argument the shape of the frequency

response (magnitude and phase) by specifying the values for frequencies f = 0,
Jo =5kHz, and fy = 10kHz. Compare the effects of this filter to those of the
filter in question 1.

. What is the impulse response of the filter?



320 17  Autoregressive Systems (AR)—ARMA Systems

X. Let the digital filter defined by the following time equation be
glnl = =fln] = fln = 1] +fIn = 2] +f[n - 3].

1. Give the impulse response A[n] of the filter and represent this function. Is the
filter causal?

2. Calculate the system transfer function H(z). Having noticed that z = 1 is a root
of H(z) = 0 determine the remarkable points of H(z) and represent them in the
z-plane.

3. Deduct from the position of these notable points of H(z), the shape of the
frequency response modulus H(e/T). What are the frequencies of the signals
blocked by the filter? Calculate the expressions of the frequency response
H(e’T) and of its modulus.

4. The input signal is now fy[n] which is the time reversal of h[n]: fo[n] = h[—n].
Calculate the filter output signal go[n]. What is the Fourier transform of this
signal?



Chapter 18
Minimum-Phase Systems—Deconvolution

In this chapter we introduce the notion of the minimum-phase system. We show
with simple examples for two causal FIR systems having the same amplitude of the
frequency gain, that a filter whose zeros are located within the unit circle will have a
lower variation of phase with frequency. It follows that the impulse response of this
filter is earlier. Since a minimum-phase causal filter has its zeros inside the unit
circle, its inverse will be causal with its poles inside the unit circle, resulting in its
stability. Deconvolving a signal is thus possible, that is to say, finding back the
input signal of a filter by filtering the output signal of that filter. Then, we present
the general problem of deconvolution with its frequency and time aspects.
Deconvolution by the complex cepstrum method is introduced. It is illustrated with
an example inspired from seismic measurements.

18.1 Minimum-Phase Systems
18.1.1 Notion of Minimum-Phase System

We begin this study by discussion of the phase shift generated by a very simple
filter: an FIR for which the transfer function is limited to two terms:

H(z) =bo+by 7" (18.1)

This function is defined in the whole complex plane except at the point z = 0.
We deduce that the filter is causal. It is stable, as the unit circle is within the domain
of definition of H(z).

The time equation of this filter is

glnl = bofln] + b1 fln = 1]. (18.2)
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Its impulse response is

hln] = by 6[n] + by o[n — 1]. (18.3)

It consists of a pulse in time n = 0 followed by a second pulse at time n = 1.The
zero of the transfer function is zp = — %. The relation (18.1) can be rewritten as

H(z) = by(1 —227"). (18.4)

For a reason which will appear later, we are interested in a filter whose transfer
function H,(z) results by multiplying H(z) by the following term:

—1 _ _* 1=(1/ -1
2 Zo1 = (-2) (1/25)z '

18.5
1 —z02" 0/ 1 —z9z7! ( )

For H;(z), this term compensates the zero zo and adds the zero 1/zj, whose
modulus is the inverse of zp modulus and with the same argument.

1 * —1
Z  — I _ « ¥ Z
01 = b()(Z I Z()) = _b() ) <1 — Z_*> . (186)

H(z) = bo(l — Zoz_l) T_z2 1
0

The moduli of frequency responses of the two filters |H (¢/7)| and |H, (¢T)|

are equal because the multiplier term modulus evaluated on the unit circle is 1:

1— Z;«)eij
1 — 20 e—joT

—joT _ *
£ T
1 — 20 e—joT

_ ’ efj(uT‘

=1 (18.7)

In the last fraction appeared the modulus of the ratio of a complex number and of
its conjugate complex which is 1.

We can also say that the filter whose transfer function is the ratio given in (18.5)
is an all-pass filter because the frequency response modulus is 1 at all frequencies.

Of course, the phase shifts generated by the two filters H(z) and H,(z) are
different.

The transfer function of the second filter is

-1 *
Hi(z) = —bozg<1 - ZZ—> withz = — L. (18.8)
0

It is easier to continue the discussion with real coefficients by and b; which
ensure a real impulse response.
1 by

Since z9 = — % the zero of H(z), List=1=—-%2
0 0

Hi(2) = by (1 n %z”) — by +byz". Hence hy[n] = by 3[n] +bo d[n — 1].

The H,(z) filter impulse response is the time reverse of that of the original filter.
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The zo position in the complex plane with respect to the unit circle depends on
the value of the ratio 2—:).

Assuming |bg| > |by|, then |z9| < 1. The zero of H(z) lies within the unit circle
while that of H,(z) is located outside this circle.

The effect of these zeros position on the phase of the frequency responses is now
studied in an example.

By choosing by = 1 and b; = 0.5, zgp = —0.5, the impulse response A[n] and the
7o position obtained are shown in Fig. 18.1a, b.

The impulse response % [n] and the zero position of the filter H;(z) are shown in
Fig. 18.2a, b.

The gain magnitude is shown in Fig. 18.3a, equal for both filters (by con-
struction) and in Fig. 18.3b the respective phases of frequency responses are
plotted. It is noted that the two phases are negative for positive frequencies, as is the
case for causal filters, and that the phase shift created by the second filter is always
more negative than that of the first.
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Fig. 18.1 a Impulse response; b zero of transfer function
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Fig. 18.2 a Impulse response; b zero of transfer function



324 18 Minimum-Phase Systems—Deconvolution

(a) 15|

—

o

~—
(@]

— Filter H
— Filter H;

|He'®T)|

@ (radians)
W

0.5 :
0 1 2 3 4 5 6 0 1 2 3 4 5 6

w (rad/s) w (rad/s)

Fig. 18.3 a Gain of both filters; b Phases

By comparison it is said that the first filter is minimum phase.

We now show geometrically why this difference in phase variation is due to the
fact that the zero of the transfer function is inside the unit circle for the first filter
and is outside for the second filter.

The first filter frequency response is

H(e”") = bo+bye . (18.9)

We are still in the case by > b;. The argument of H (ei“’T) is equal to the angle
made by the vector sum of the vector by and the vector b;e 3T with the real axis.
When oT varies from 0 to 27, the point M circulates counterclockwise on the unit
circle, and the end of the vector sum sweeps the circle centered at by with radius b,
as shown in bold in Fig. 18.4a. It is noted that in the case of the left figure the phase
will be contained in an interval within the range {— 2.3

The frequency response of the second filter is

Hy(°T) = by +bye 7. (18.10)

The end of the vector sum travels in a circle centered in b; and radius by
(Fig. 18.4b). As by > b, this circle surrounds the origin, leading the phase decrease
from O down to —2r.

In summary, we have shown on an example the general property that a filter
whose zero lies inside the unit circle is causal, stable, and minimum phase. One
whose zero is outside the unit circle is causal, stable but is not minimum phase.

For these filters with one zero, the impulse response is limited to two elements. If
the magnitude of the first term of the response exceeds that of the second, the filter
is minimum phase. Qualitatively we could say that energy comes faster (since the
first term is the largest) from the minimum-phase filter (mpf).

The importance of the concept of minimum-phase causal filter is that this filter
has a causal and stable inverse filter, that is to say that there is a causal and stable

filter whose transfer function denoted here Hj,,(z) is such that Hi,,(z) = %
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(a)

el

[
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e

(b)

Fig. 184 a H(c") = by +bie™ 7, b H, () = by + boe 3T

If |bo| > |b1], as has been seen above, the zero of the filter transfer function
H(z) = bo(1 —z9z~') is inside the wunit circle. For its inverse filter
Hinw(z) = m the zero turned into a pole. As this pole is within the unit
circle, the causal filter is stable. It is a first-order autoregressive system whose
impulse response is

Biny 1] :bi()(_i_;) Uln]. (18.11)

If the filter and its inverse are placed in cascade, the overall transfer function is
H(z)Hin(2) = 1, (18.12)
resulting in the time domain
i) © hiny ] = S]] (18.13)
By applying the inverse filter to the signal consisting of the impulse response,
the impulse unit is obtained.

This principle is often used, particularly in the analysis of seismic signals, and it
is then called deconvolution. This technique will be detailed hereinafter.
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18.1.2 Properties of Minimum-Phase Systems

This analysis was developed on a filter with a single zero to clearly show the
properties that will now be generalized. First, it is easily seen that the product of
two minimum-phase transfer functions is minimum phase.

More generally, a minimum-phase polynomial is a polynomial in which all zeros
are located within the unit circle. A minimum-phase system is a linear,

time-invariant system over time, causal, whose transfer function is a rational
function:H(z) = % where A(z) and B(z) are minimum-phase polynomials.
Thus the poles and zeros of H(z) are contained in the unit circle. As a result, the

inverse of such a system whose transfer function is Hi,,(z) = is also a

1
H(z)
minimum-phase system (the poles and zeros are exchanged by the inversion).

A non-minimum phase system whose poles and zeros are not located on the unit
circle can give passage to a minimum-phase system having an equal frequency
response modulus by moving the poles and zeros lying outside the unit circle within
this circle. Thus by multiplying the transfer function by terms of the type in (18.5),
the modulus of the frequency response is unchanged.

We note h[n| and Amin[n] the impulse responses of two filters having the same
frequency response magnitude ’H (e/T)|, the second corresponding to the
minimum-phase filter. It is shown mathematically that energy emerges faster from
mpf. Thus, we have whatever n:

En: [hlk]|* < Z | imin K] . (18.14)
k=0 k=0

The response of the mpf is earlier.

In the following example, we consider two FIRs having same frequency
response. The zeros of the minimum-phase filter are shown in Fig. 18.5a. All zeros
are inside the unit circle. In Fig. 18.5b, two conjugate complex zeros of the mpf
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Fig. 18.5 Poles location of two filters with same gain. a Mpf; b Not mpf
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Fig. 18.6 Impulse responses of two filters with same gain. a Mpf; b Not mpf

have been displaced outside of the unit circle using the transformation rule of a zero
Zo in a zero 1/z§.

Figure 18.6 shows the two impulse responses (mpf in a) with their values at
every moment written above the graph. We can verify that at every moment n, the
property (18.14) is verified.

Zeros of the minimum-phase filter:

zp = 0.9%(cos(pi/4.2) +1" sin(pi/4.2)); g = 0.9"(cos(pi/4.2) — i"sin(pi/4.2));
z; = 0.8"(cos(pi/2.8) + i*sin(pi/2.8));z] = 0.8"(cos(pi/2.8) —i"sin(pi/2.8));

Zeros of the second filter:

zp = 0.9%(cos(pi/4.2) +1i" sin(pi/4.2)); z; = 0.9"(cos(pi/4.2) — i" sin(pi/4.2));
z; = 1.12%(cos(pi/2.8) + i*sin(pi/2.8));z] = 1.12"(cos(pi/2.8) — i"sin(pi/2.8));

18.2 Deconvolution

18.2.1 Interest of Deconvolution

When a signal reaches the observer, it has a history. It propagated over a com-
munication medium and has undergone transformations. In general, during this
process, noise is added on the original signal. It is often important to search to
recover the original signal existing before these deformations. This research is an
inverse problem: knowing the distortion of the transmission system properties, how,
from the final distorted signal, can we find back the original signal? There are many
situations in the case of the analysis of sounds. For example, can we find back the
musical quality of orchestras that were recorded a century ago with imperfect
recording means? Can we remove the creaking old recordings on disk phonograph?
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This issue has generated a great deal of research. Numerous results have been
obtained, either with linear techniques, or with nonlinear processes. The digital
signal processing made possible unachievable results by analog processing.

As part of LTI systems study developed in this work, this objective is a de-
convolution. In digital, the problem is expressed as follows: the received signal y[n]
resulting from the filtering of a signal x[n] by an LTI filter with impulse response
h[n]. We have

¥ln) = x{n] © hin].

The question that arises is how to operate inverse filtering, that is to say find
back the signal x[n] from the measured signal y[n]?.

This problem is illustrated by the following diagram:

x[#] . . y[n] = x[#] © &[] x[n]
———— Direct filter 3 Inverse filter ————

By modeling of physical problem, sometimes it is possible to have a good
approximation of h[n|. How to retrieve x[n] related to y[n] by the convolution

y[r] = Z x[m)h[n — m. (18.15)

18.2.2 Deconvolution Techniques

Deconvolution by complex spectral amplitudes division
Convolution (18.15) becomes a simple product in the frequency domain:

i i i . i Y ei(v)T io i0 .
Y(e“T) = X(& T)H(eJ 7). Since X(eT)= H((ei'“7>) = Y(eT)H;,, (¢”T), with
mv(e]wT)

@QT) we can write

e]wT
(Ue H e]wT

" Tdw. (18.16)

In the frequency domain, the deconvolution is illustrated by the scheme

Thus, by taking the ratio of the FT of the received signal y[n] and that of the
impulse response h[n] the previously measured or otherwise determined, it is in
principle possible to get x[n] by an inverse Fourier transform.

Very attractive in principle, this technique is rarely used in practice for the
following reasons: noise, however small, in signal y[n] has spectral components in
frequency ranges in which the size of H(e/”) which is in the denominator is low or
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even zero. Division by zero of these non-zero values of Y(e/7) because of the
noise will give some very important values to the ratio. These values lead to an
aberrant result of the estimation of x[n].

We may in some cases use empirical methods which give fairly good results.
Having found for example that a transmission channel weakens the high frequen-
cies, we may enhance the high frequencies in reception to find satisfactory spectral
amplitude. This spectrum recovery technique is widely used in analog or digital
processing in restoring sound signals recorded a century ago.

When it is possible to calculate the impulse response %y [12] of an inverse filter,
the original signal x[n] can be obtained by convolving the signal y[n] therewith:

¥[1] @ hiny[n] = x[n] ® hln] & hiyy[n] = x[n).

Since by definition A[n] ® hiny[n] = d[n].

Inverse filtering deconvolution
When it is possible to calculate the impulse response A,y [1] of an inverse filter, the
original signal x[n] can be obtained by convolving the signal y[n] therewith:

Y[n] @ hiny[n] = x[n] @ hln] & hiny 2] = x{[n],

Since by definition A[n] ® hiny[n] = dn].

We saw earlier that a minimum-phase causal filter has a causal and stable
inverse. It is then possible in that case to determine numerically #;yy[n]. This
operation is illustrated in the following example. Figure 18.7a shows a FIR wavelet
with 21 coefficients which can be considered as the impulse response of a
minimum-phase filter as the all zeros of the filter transfer function are inside the unit

20
circle (Fig. 18.7b): hln] = )" b,,0[n — m].
m=0

m=0
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Fig. 18.7 FIR wavelet: a Wavelet; b zeros situation
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The transfer function of the causal inverse filter is calculated by converting the
zeros into poles. In principle, one can compute the impulse response Ainy[n] of the
inverse filter analytically. This function has an infinite duration since the inverse
filter is AR. In practice, we proceed by numerically inverse DFT a sampling of
function Hiyy (¢/*") on a number of points N. The resulting hyiny[n] is limited to
N points. It imperfectly represents the impulse response i,y [n]. If the number of
points N is sufficiently large, the temporal aliasing will be low, and the function
obtained will be close enough to the real response i,y [n] of the inverse filter. In
Fig. 18.8a we see the calculated function /iy [n] using an inverse FFT on N = 64
points of the initial wavelet and in Fig. 18.8b the result of the convolution
h[n] ® hyiny[n]. On the convolution product we recover the value 1 of the function
d[n] in n =0, but a small parasitic signal appeared beyond n = 63 due to the
limiting of /iy [n] support to N = 64 points.

The case of a wavelet, which is the impulse response of a non-mpf filter having
same frequency response module as above is now presented. The wavelet (not mpf)
is shown in Fig. 18.9a. The impulse response of the causal inverse filter, evaluated
on 64 points, is shown in Fig. 18.9b. We can see from the figure that this inverse
causal filter is unstable. The deconvolution is impossible.

Deconvolution by the complex Cepstrum method

The deconvolution technique by applying the inverse filter developed in the pre-
ceding paragraph assumes that we a priori know the wavelet present in the com-
posite signal. In this case, this method is very effective to pinpoint the arrival time
and amplitude of the wavelet. It is able to separate the arrival times of two replicas
of the wavelet very near even if they overlap within the composite signal.
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Fig. 18.8 a Causal filter inverse response; b Deconvolution result
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Fig. 18.9 a Non-mpf filter wavelet; b impulse response

In practice, however, the wavelet constituting a signal is generally not known a
priori. This is the case, for example, in the processing of seismic signals, where
even if the temporal shape of the excitation signal from an explosion generating a
disturbance in the ground is known, the signal received by a remote sensor results in
filtering the original signal by the propagation medium which arrives completely
deformed.

The deconvolution method by the complex cepstrum does not require a priori
knowledge of wavelet buried in the composite signal. The name of this technique
comes from a pun based on the inversion of the word spectrum.

Consider a signal x[n]. Its z-transform (its complex spectrum) is noted X(z). The
time function called complex cepstrum x[n] is defined by

x[n] = 2% 9{(: log(X(2))7" 'dz. (18.17)

The first reason for the use of the logarithm is that the logarithm of a product is
equal to the sum of the logarithms of the members of that product. It is worth noting
here the notion of logarithm of a complex number. By showing the modules and
arguments of X(z), X(z) = |X(z)|e4"¢*(@), one can write

log(X (2)) = log(|X(2)]) +jArg(X(2)). (18.18)

Now it is assumed that x[n] is the convolution of two functions f[n] and g[n]:

x[n] = f[n] ® g[n]. It follows that X(z) = F(z)G(z), product of z-transforms of f[n]
and g[n]. Then
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log(X(z)) = log(F(z)) + log(G(z)). (18.19)

It then comes, due to the linearity of the z-transform, X[n] = f[n] + g[n].
Complex cepstrum of x[n] is the sum of the complex cepstra of f[n] and g[n].

If we can make a separation in the time domain of functions f[n] and g[n], the
deconvolution is successful. We can get back f[n] by first taking log(F(z)), the
logarithm of f[n]’s z-transform. Then, by taking the exponential of this result, we
get F(z) and finally eventually performing the inverse z-transform we obtain f|n].

An example of a typical deconvolution in a seismic situation is now presented. It
is assumed that the signal consists of a wavelet f[n] and a replica (echo by a
subterranean layer, for example) located at a later time g[n] = af[n — ng).

We assume that |a| < 1, which is natural for the case of an echo.So,

x[n] = fln] +afln — no). (18.20)
We can rewrite it as
x[n] = f[n] + afln] @ d[n — no| = f[n] @ (6[n] +ad[n — ny)).
Taking z = &7, we can write

X (&) = F("")FT(6[n] +adln — no]),
X(ej”T) — F(eij) (1 _~_ae—jn0wT). (18-21)
log(X (7)) = log(F (&) + log (1 +ae™™eT). (18.22)

Since it has been assumed that |a|<1, one can use the development of
log(1 +u) in the vicinity of u = 0 and write

log(1+ae ") ~ ge 0T 4 gPe el 4 (18.23)

The inverse FT of this infinite sum is

gln] = adn — no) +a*d[n — 2ne) + . . .,
therefore

x[n] = fln] + g[n] = fln] + a d[n — no] +a*d[n — 2ng] + . . .. (18.24)
The cepstrum of x[n] is composed of the sum of the cepstrum of the wavelet fn]
and a series of 0 functions located at the instants kng. It is then possible to identify
first the delay ng of the replica with a study of the periodicity of these peaks. It is

also possible to remove these peaks from x[n], e.g., by interpolating the values in
kny by the average of the values on the left and right of the abscissa. A good
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evaluation is then obtained for f [n]. It remains only to take its FT log (F (ei“’T)),
then perform the exponential of this function, and finally take the inverse FT for
obtaining the wavelet f[n].

A numerical simulation is presented in the following example. To create the
composite signal x[n], the wavelet f[n] is the impulse response of a second-order
filter h[n] = a; hn — 1] + a hjn — 2] + 6[n] with a; = 1.65 and a, = —0.8. The
time of arrival of the replica is ng = 10. Its relative amplitude is @ = —0.7. The sum
of these two signals is performed: x[n| = f[n] + af[n — no], which is represented in
Fig. 18.10a. Figure 18.10b shows the cepstrum x[n]. Note the peaks with period-
icity 10. This allows finding the delay ny = 10 of the replica.

We remove the peaks by replacing the value of X[n] in these points with the
average of the adjacent point values. We then have a good assessment of the
cepstrum of the wavelet f [n] (Fig. 18.9a). The wavelet is derived in accordance with
the end of the algorithm described above. The calculation result is shown in
Fig. 18.11b. It overlaps very well with the original wavelet. Deconvolution suc-
ceeded in this case.

By subtracting x[n] of the wavelet reconstructed, that is to say by calculating
x[n] — f[n], one can calculate the replica. It superimposes very well to the function
af [n — no), as shown in Fig. 18.12.
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Summary

In this chapter we have first introduced the notion of minimum-phase system. We
have shown with simple examples of two causal FIR systems having the same
amplitude of the frequency gain, where filter whose zeros are located within the unit
circle will have a lower variation of phase with frequency. It follows that the
impulse response of this filter is earlier. Since a minimum-phase causal filter has its
zeros inside the unit circle, its inverse is causal with its poles inside the unit circle
and then causal. Deconvolving a signal is possible in some cases by finding back
the input signal of a filter by filtering the output signal of that filter. We have
presented the general problem of deconvolution with its frequency and time aspects.
Deconvolution by the complex cepstrum method has been introduced. It was
illustrated by an example inspired from seismic measurements.



Chapter 19
Wavelets; Multiresolution Analysis

This chapter follows Chap. 12 on time-frequency analysis. It has been shown how
decomposition on a wavelet basis allows highlighting effectively changes with time
of the properties of a signal. Signal processing is mainly done digitally today;
wavelet bases with compact support have been searched which could be used by
simple filtering operations. These bases must also allow reconstructing the signal
accurately and easily from the decomposition coefficients. This treatment, which is
called multi-resolution analysis, is remarkably effective in data compression,
especially for image processing.

To begin this chapter, we return to the general problem. The amount of infor-
mation exchanged and stored digitally today is enormous. To make these operations
possible with transmission channels with physically intrinsic limited throughput
and storage capacity, compression techniques that allow information made
acceptable for audio or video were sought. Along with the steady increase in the
speed of electronic components, intensive research has been conducted to develop
new coding algorithms for data compression. A striking example of the results of
this research is found when consulting an aerial view of a location on Internet. First
appears the globe with few details. One may rotate the view to center approximately
on the desired location, and then ask for magnification. The first image is blurred
without much detail. This leaves the user some time to adjust the centering of the
map on his place of interest. It would be very inefficient to convey all the details of
a map (operation that takes a long time) for a card that is not properly centered. The
operation continues with increasing magnifications. This shows the efficiency
during the transmission of an image to transmit firstly a view without the details,
and then transmit the detailed information when needed.

It is known that the details of a signal are contained in the high frequencies. Hence
the idea to separate information contained in high and low frequencies. This is the
principle of the use of filter banks. The progress of the analysis of these filter banks
led to multiresolution analysis. It allows numerical separation of frequency bands
recursively while still allowing the ability to reconstruct the signal without loss of
information in a second step. The presentation of these concepts in this chapter
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begins with the principles of the dyadic decomposition-reconstruction of a signal.
The initial Haar Transform mathematical developments are given as an example.
Their understanding makes it easier to address the concepts of multi-resolution
analysis. The space devoted to this problem being limited in this book, readers are
invited to deepen the concepts briefly described here with the many books dedicated
to wavelet analysis, especially the books of S. Mallat and 1. Daubechies.

There is a relationship between filter banks and wavelets that we are aiming to
put in evidence here.

19.1 Dyadic Decomposition-Reconstruction of a Digital
Signal; Two Channels Filter Bank

Dyadic decomposition now exposed allows by a simple linear filtering operation the
decomposition of a digital signal into two components. One component contains the
low frequencies and the other the high frequencies. It is possible under certain
conditions using a second filtering operation on the two components to fully
recover the original signal.

The question raises: A signal x[n] is filtered by a filter with impulse response
ho[n]. One sample over 2 of the output signal is set to zero (this operation is
symbolized in the graph below by the symbol decimation by 2 and then re
extension by 2). The result is filtered by the filter with impulse response gg[n]. On a
parallel branch the same operation is made with filters with impulse responses 4, [n]
and g;[n]. The output signals are added (see Fig. 19.1).

We denote yy[n] the signal at the output of the first filter in the upper branch of
the graph. Its z-transform is: Yy(z) = X(z)Ho(z). We note jy[n] the signal resulting
from zeroing a sample over 2 of yo[n] and ¥(z) its z-transform.

Yo(z) is related to Yy(z) by the relationship:

Yo(Z) = (Yo(Z)+Y0(—Z)). (191)

1
2
Indeed, the development of ¥(z) is:

Yo(z) = ... +y0[—2]2* +yo[—1]z" +¥0[0] + yo[l]z "yo[2]z 2 +. ..

Fig. 19.1 Two channels filter bank decomposition-reconstruction
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We have: Yo(~z) = ... +yo[~2]z* — yo[=1]z" +y0[0] — yo[L]z™" +yo[2]z 2 +...

Then 1 (Yo(z) + Yo(—2)) = ... +yo[—2]22 +yo[0] + yo[2]z 2 +. . ..

We recognize the z-transform of the series yo[n] in which all the terms of even
ranks were canceled.

We note Yy(z) and Y (z) respectively the z-transform of Jo[n] and ¥;[n]. The
z-transform of the output signal is:

F(z) = Go(2)Yo(z) + G1(2)¥1(2). (19.2)

Using the relation (19.1):
F(z) = $Go(z)(Yo(2) + Yo(—2)) + 3G1(2) (Y1(z) + Y1 (—z)). Or,

F(z) = %Go (2)(Ho(2)X (z) + Ho(—2)X(—2)) + %Gl (2)(H1(2)X(2) + Hi(=2)X(~2))

Thus:

(Ho(2)Go(2) + Hi()Gr (&)X (2) + 5 (Ho(—2)Go(2) + Hi (~2)Gr ()X (~2).
(19.3)

F(z) =

N —

We want now F(z) to be a filtering of X(z) without aliasing. It is then necessary
that the factor of X(—z) is zero in (19.3). Thus, we necessarily have:

Hy(—2)Go(z) + Hi(—2)G1(z) = 0. (19.4)
Then:

F(z) = 5 (Ho(2)Go(z) + H1(2)G1(2))X (2)- (19.5)

N =

The condition (19.4) may be verified by different functions combinations.

A particularly interesting case is met when the filters are such that the output F
(z) is equal to a delayed version of X(z). In other words we are looking for a
combination of filters that will allow a reconstruction of the signal x[n] after its
decomposition in two components for compression purpose, for example.

We seek these 4 filters Hy(z), Hi(z), Go(z) and G;(z) as causal.

Because of their causality, the filters necessarily generate a delay for the output
signal. If we note m > O the delay of x [n] by the crossing through the filter, we will
have:

F(z) =X(z)z ™. (19.6)
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A possible configuration is:
Go(z) = Z*Hi(—z) and G, (z) = —Z"Ho(—2). (19.7)
Another possibility is given by a change in sign:
Go(z) = —Z"H (—z) and G, (z) = Z*Hy(—=2), (19.8)

where k may be any integer.
In the case (19.7),

F(2) = 5 2 (Ho(JHi (~2) — Hi (2)Ho(~2))X(2). (19.9)

Let us write P(z) = Ho(z)H,(—z). Taking (19.4), in account, relation (19.3) is
written:

1
F(z) =3 (P(z) = P(=2))X(2).
In this case we should have
P(z) — P(—z) =2andk = —m. (19.10)

This equation appears as a sufficient condition for the quadruplet of filters allows
the decomposition- reconstruction of the signal without loss of information.
In the case (19.8) with again P(z) = Hy(z)H1(—2z) we get

P(z) — P(—z) = —2. (19.11)

The following two paragraphs are simple examples of this decomposition. We
will expose their limitations. Wavelet decomposition allows the determination of
more efficient decompositions.

Haar transform
The decomposition by the Haar transform is a first example of the previous results.

The Haar transform of a pair of variable (i') in a pair (i 1) is defined
2 2

as: (yl ) = T(x1 ), wherein the matrix 7 is:
» X2

T:%(i _11> (19.12)
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Inversely we have:

xzandyz = (1913)

1 1 1 1
=—Xx1+ —= —=X] — —F=X2.
RV A N
The matrix 7 shown in (19.12) is symmetric. Its determinant has an absolute

value of 1 and its column vectors are orthogonal. It follows that its inverse equals its
transpose:

1 1 1
-1 _ 4T _
T' =T __\/§<1 _1>. (19.14)
Therefore
1 + ! and ! ! (19.15)
X =—= — Xy =—=YyV] — —=W2. .
1 ﬁyl ﬂyz 2 ﬁyl \/zyz

We can apply this transformation in signal processing. Consider a sequence of
values which constitutes a signal x[n]. Based on this transform, two data sequences
yo[n] and y;[n] may be created by:

1 1 1 1
yoln] = Ex[n — 1]+ 7§x Ex[n —1] - Ex[n] (19.16)

In practice, the signal x[n] is causal. yo[n] and y; [n] are the output signals of two
causal MA filters. The function yg[n] represents a smoothed version of the signal x
[n] and y[n] is the derivation (numerical) of that signal. The respective impulse
responses of these filters are:

[n] and y;[n] =

holn] = %(5[11 — 1]+ 6[n]) and iy [n] = %(5[11 — 1] — o[n]). (19.17)
Their transfer functions are:
Hy(z) :L(Z71+1)andH1(z) :L(zfl —-1). (19.18)
V2 V2
The first filter is low-pass as its transfer function has a zero at z = —1. The

second has a transmittance zero at z = 1, which makes it a high-pass filter.
We take T = 1 without loss of generality. The frequency responses are:

Hy(e”) = % (e +1)and H,(e) = —= (e71” — 1). (19.19)

Sl-
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Reconstruction of the signal from its components
We use the notations x; = x[n — 1] and x, = x[n] with y; = yo[n] and y, = y[n] in
(19.15).

Relations (19.16) imply that to each signal value x[n] correspond two values
yo[n] and y [n] that both contain information on the signal x[n] at the instants n and
n—1. Thus, according to the Eq. (19.15), we have:

x[n— 1] =—=yo[n] + —=x11n], Vn, (19.20)

Sl

1
V2
and

1 1
x[n] = %yo[n} —7§y1 [n], Vn. (19.21)

If we keep only one value among 2 of yo[n] and y[n] (decimation by 2 or, in
other words, sub-sampling by 2), we can still go back to the function x[xr] by an
inverse transformation using the matrix given in (19.14). There is no loss of
information.

Since we used one value over 2 of y;[n] and y;[n], one can define the functions
Yo[n] and ¥, [n] such that $9[n] = yo[n] and 3 [n] = y;[n] for even values of n and are
zero for odd values.

It is then possible to reconstruct the signal x[n] from the signals yo[n] and y;[n]
writing for any n:

xln] = %@o['ﬂr 1]+ Soln]) + %@1 n+ 1 =), Vn. (19.22)
x[n] = goln] @ Jo[n] + g1[n] @ $1[n] or X(z2) = Go(2)Yo(2) + G1(2) Y1 (2),
with
goln] = %(5[% 1]+ 8[n]) and gy [n] = %(5[% 1] - o).
With
Golz) = %w 1) and Gy (z) = iz(z ~1). (19.23)

Using (19.18), we may write:

Go(z) = —zH,(—z) and G| (z) = zHy(—2).
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We find that:
Go(z)Ho(z) + G1(2)H1(z) = —zH(—2)Ho(z) + zHo(—2)Hi(z) = =2z, (19.24)

which is consistent with (19.10),
and

Go(Z)Ho(—Z) + G, (Z)Hl (—z) =0. (19.25)

The last expression (19.25) is the relation (19.4).

Filters with transfer functions Hy(z) and H;(z) appear as decomposition filters
(analysis filter bank) signal. Filters with transfer functions Gy(z) and G;(z) are
reconstruction filters (synthesis filters) of this signal.

Note The decomposition filters of the Haar transform Hy(e/”) and H, (¢/’) have an
interesting property. We note on (19.19) that H; (e!”) = —Hy (e * ™). Thus:

’H1<ejw)| _ ‘HO (ei((u+n)) ‘
The following relationship stands:
Ho(@ ) 111 (e) = () + [aio () =2 (19.26)

The gains amplitudes are represented in Fig. 19.2 in the case 0 < w < w. These
moduli are symmetrical with respect to w = 7. These filters are called quadrature
mirror filters.

This filter bank is simple and works very well. However, we note that the filters
are not very selective, so it is not very effective in the separation of HF and LF.
After passing through the LF filter, there are too much HFs remaining and vice
versa in the HF filter. We are led to search for other, more efficient, filters.

Fig. 19.2 Spectral
amplitudes of Haar filters for
{0<w<n}

[Hol and [Hql
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Daubechies wavelets are designed to solve this problem. They are detailed in
Sect. 19.3 of this chapter.

LeGall-Tabatabai filter bank 5-3

We take as a second example the LeGall-Tabatabai filter bank 5-3 (It is used for
image compression and is part of the JPEG2000 image coding standard). By
assumption, the filters are linear-phase FIR, that is to say, their impulse responses
do have a center of symmetry.

The role of high-pass filter is assigned to H;(e/T). In the example discussed
here, its impulse response is limited to three values. The high-pass property is
achieved when H;(z) has a double zero in z = 1. This is the case for the causal filter
with transfer function:

H(z) = izfz(z —1)? = (19.27)

By hypothesis, (as the impulse response is limited to 5 elements), Hy(z) has the
form:

Ho(z) =ar +arz ' +apz > +arz” +az ™. (19.28)

One notices the symmetry of the coefficients which ensures linear phase shifts by
the filters.

a a a a a a a a a
P(z) = Ho(2)H(—2) = = + (—1 + —2)[1 + (—0 + =+ —Z)z*2+ (—1 + 2+ —l>z’3

4 4 2 4 "2 "4 4 "2 "4
@ 4@ By 4 (A DY 5 D o6
+<4+2+4>Z +(4+2>z +4z.
(19.29)
ay a) ay 1 ap a) ay ) ap ap a) 3
P(= ___(_ _) <_ 2 _) _(_ 2 _> ‘
(=2) 4 4 T 2)° 4 T2 T g)t 4 T2 )t
ao ap ax\ 4 _ (al a2) _5 a ¢
+(—4+—2+—4)z 2 t7) T

PR =P(=2) = (5 +a) ' + (5 +a+ F) 7+ (F +a) . (19:30)

The center of symmetry of the output signal is located in m = 3. To satisfy the
condition we must have: P(z) — P(—z) = 2z7°.

It is therefore necessary that: 9 +a, = 0, thus: a; = — %

Also it is necessary that ap +a; = 2.

If we take ag = %, then a; = % and a, = —i.

Finally: hg = (—1,1,3,4,—1) (low-pass) and h; = (},—1,1) (high-pass).

These two expressions are the impulse responses of the analysis filters.
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Spectra of decomposition filters

(a) P 8y (b) "
2
0.8
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Spectra of recomposition filters
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Fig. 19.3 Spectral amplitudes of LeGall-Tabatabai filters; Top, decomposition a Low pass;
b High pass; Bottom, reconstruction ¢ Low pass; d High pass

The impulse responses of the synthesis filters are deduced from relationships
19.7).

111 11 311
g0 = (Z’E’Z) (low-pass) and g; = (Z’E’__’_’_> (high-pass).

The frequency responses of the LeGall-Tabatabai 5-3 filters are shown in
Fig. 19.3.

In the previous example the filters were calculated through the determination of
the coefficients of z ' polynomials. This determination is made empirically, with no
overall strategy for filtering. The discrete wavelet analysis which is developed in the
next section provides a theoretical framework for the research of analysis filters and
provides a more fruitful approach to the problem. We will find that the results of
this research result as does the previous method, in the determination of the
coefficients of FIR type filters.
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As is shown in the following, relations (19.24) and (19.25) are also encountered in
the decomposition of a signal on a basis of compactly supported wavelets
(Daubechies wavelets, for example). It will be seen that the functions hg[n] and & [n]
encountered in (19.17) are used for construction of the scaling function and the
Daubechies wavelet with two coefficients Db2 which is identical to the Haar wavelet.

19.2 Multiresolution Wavelet Analysis

Haar functions basis

In this presentation, the Haar wavelet is used to address simply the principles of
discrete wavelet analysis. Although in practice the signal processing are done by
numerical calculations, the functions under study are functions of continuous time
t. The analysis of the properties of these treatments being done in the frequency
domain, a difficulty which is encountered in the following lies in the coexistence of
analog and digital Fourier transforms in the calculations.

Let us first define the scaling function ¢(7) on the interval [0, 1] over which it is
equal to 1 (Fig. 19.4):

1 fortel0,1]

¢(r) = 0 elsewhere (19.31)

The time axis ¢ is divided into contiguous intervals with widths equal to 1. The
functions ¢ (¢ — k) will be equal to 1 in the intervals [k, k + 1], Vk € Z. A piecewise
function fy(#) constant in each of the intervals [k, k + 1] can be written as a linear
combination of the functions ¢(z — k):

o0

HO) =D apt—k). (19.32)

k=—00

We denote V, the space generated by the set of functions ¢ (7 — k).

Example Let a function fy(7) equal to 3 in the interval [0, 1] and to —2 in the
interval [4, 5] and zero elsewhere. We get by identification in (19.32) agp = 3 et

ay = —2. Other expansion coefficients are zero.
Fig. 19.4 Haar scaling ¢j( ;)
function ¢(r) 1
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A more general method for determining the coefficients uses a scalar product.
Here, the dot product of two real functions f(¢) and g(¢) is defined by:

<f(),g(t) > = /f(t)g(t)dt. (19.33)

The norm of f(z) is: [|f]| = v/ <f () =/ [ f2(r)de.

The functions f(¢) and g(z) must be square integrable (f(r) € L?).

It is readily apparent that since the intersection of the functions supports ¢(t) and
$(t — k) is zero for k # 0, we have < (1), p(t —k) > = [*_ Pp(t)p(t — k)dr =0
for k #£ 0.

The functions ¢(z — k) form an orthogonal basis of the space Vj. The elements
of this basis are normalized to 1 as

bt —k)|P= <$(t— k), p(t —k) > = / P(r—kydr=1.  (19.34)

The expansion coefficients a; in the development (19.32) can be determined as
being the projections of the function fy(#) on the functions of the basis:

<fo(t), ¢ / D awvd(t —K)p(t — k)dt = ay (19.35)
k'=—00
By this method we find again in the previous example ay = 3 and a4 = —2.

One can increase the resolution in the analysis of piecewise constant functions
along the time axis by dividing by 2 the width of each interval. We are led to use for
the representation the functions ¢(27) and ¢(2¢ — 1) which are compressed ver-
sions of ¢(7) on the r-axis. The function ¢ (27 — 1) is a delayed version of function
$(2t) by the delay r = 1 (Fig. 19.5).

It is easily seen that we have ¢(r) = cop(2t) +c1¢(2t — 1), with ¢o = 1 and
c1 = 1.

Fig. 19.5 Haz(lr ;caling (a) (b)
functions a ¢(21); (2 ¢ 2t-1) A
b are D 9( )1 9 }l
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The functions ¢ (27 — k) generate the space V; of piecewise constant functions
on intervals of width % They form an orthogonal basis. It appears that a function
belonging to the space V|, also belongs to V;. We therefore have Vy C V.

We then notice that the function ¢(¢) is normalized to 1, but ¢(2¢) is not, as
I ¢ (21)dt = 3. To overcome this drawback, the orthonormal functions ¢ (z) are
defined:

bi(t) = 212271 — k). (19.36)

In the case of a 2 compression factor, j is 1. It comes ¢y, () = 2'/2¢(2¢ — k).

Example The development of the function fi(¢) € V| equal to —1 in the interval

[O,%] and 3 in the interval ]%, l] takes the form:

o0

) =" api(t) = aodiot) + ardyy (1) = aoV2(21) + a1 V2p(2t — 1),

k=—00

The coefficients ag and a; of the development of fi(¢) are determined by pro-
jecting that function on the functions of the basis. We have:

1
<fi(t), pio(t) > = \/E/f1(t)(;’>(2t)dt =" =q,.
0

Similarly, a; = <fi(t), ,,(t) > = <fi(t),V/2¢(2t — 1) > . This leads to
a) = ﬁ

Again, dividing by 2 the support of the basis functions, one can represent
functions having 4 possibly different successive values in the range [0, 1]. A new
basis of the space V, of all these functions is built on the contracted functions by a
factor of 4 of the scaling function ¢ (). It consists of functions:

Pao(t) = 2¢p(41), by (1) = 2p(41 — 1), (1) = 2¢(41 — 2) and ¢y5(1)
=25 (41 - 3).

Approximation of any function

We now consider a function f(¢), a priori non-constant piecewise, square integrable:
[0 (n)Pde < oo, (f(r) € L?). Assume that each interval [k, k + 1] is divided into
2’ contiguous equal intervals. We note a; the orthogonal projection of f{(r) on the
function 2//2¢)(2/¢ — k) which is equal to 2/ on the interval [£ £51].
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Fig. 19.6 Haar wavelet /(¢) w(t)

The sum f;(1) = 2//? ,%C o arp(2/t — k) is an approximation with the resolution
277 of the function f{r). The approximation will be better as the width of the interval
27 is smaller.

The mechanism by successive divisions by 2 of the intervals where the function
is constant is clear. The production of bases of orthogonal functions is easy, but
these bases, built solely on compressions of function ¢(¢), do not have much
interest. Indeed, the knowledge of all the coefficients (2 coefficients in the example
above) is required to estimate the function, even for a rough estimate.

An additional function v(7) is introduced, the Haar wavelet, which will be used
to build more efficient orthogonal bases. The Haar mother wavelet is defined as
(Fig. 19.6):

V() = 1_1 igi ; E ][(1): };ﬂ and O elsewhere. (19.37)

It is a wavelet as its integral is zero; that it is condensed in a restricted time.
Furthermore its support is compact.

To consider a basis using this wavelet, let us return to the space V; of functions
constant on intervals of widths % An alternative basis for this space is constituted by
the two functions ¢(¢) and (). These functions are orthogonal and normalized to
1, as can easily be verified.

We now want the development on this basis of the function f; (#) met above, with
value —1 in the interval [0,%] and equals 3 in the interval ]%, ]

Writing fi (1) = aop(t) + boy(), we have:

00 1 1
<h@.00> = [ A0Od0dr= [H@é0d=a [ $0)p0d = an
—00 0 0
1 1/2 1
This scalar productis <fi(1), ¢(t) > = [ fi())p(t)dt = — [ ¢(r)dt+3 [ ¢(r)dt =1,
[rosa=[renas |

thus ap = 1 and by = flfl (OyY(r)dr = —1 1j/’znp(t)dt4—3 jl’ Y(t)dr = =2
0 0

1/2
Thus £i(1) = (1) — 20(1).
The function ¢ () is constant in the interval [0, 1], the projection of f; (¢) on ¢(r)
provides the average value of this function on the interval. The positive value
ap = 1 reflects the fact that the function is more often positive than negative in this
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Fig. 19.7 Haar functions; (a) (b)

ay(2); by(2r—1) w(21)A w(2t-1)
1

interval. The fact that by = —2 <0 informs us that either f; (¢) is highly negative in
the interval [O, ﬂ , or greatly positive in the range ]%, 1}. In summary, ¢(¢) gives an
average value and (7) an unbalance.

Functions ¢ (¢ — k) span the space V. Functions /(r — k) generate a space Wy
orthogonal noted V,. The union of these spaces is the space V;. Thus
Vi=Vo W,.

We now subdivide each interval of width 1 into 4 equal intervals, the function
/>(2) belongs to the space noted V,. One is led to seek a compound basis using
functions ¢ (7 — k) and several versions contracted or not of y(r — k).

To make the mechanism readily apparent, we focus on the sub space of V, of
functions null outside the interval [0, 1]. An orthonormal basis of this sub space is
made of ¢ (), W(z), v2y(2¢) and /2 (2t — 1). These last two functions are shown
in Fig. 19.7.

By noting W; the space generated by the two functions \/51/1(21‘) and
\/El//(Zt — 1), one has V, = V; @ W; or equivalently V, = V, & W, & W;.

Example Consider a piecewise constant function f3(r) defined upon the interval [0,
1]. This interval is divided into 2% = § intervals (j = 3). This function equals 6
within the interval [O, %] and —2 in the interval [% , %]. We look for the development
of this function on the basis consisting of the 8 orthogonal functions (the verifi-
cation of orthogonality is left to the reader):

d)(t)? l//(t)7 l//(Zt)v l//(Zt - 1)7 w(4t)7 !//(4t - 1)7 '70(4t - 2)? lﬁ(4t - 3)

The transition to a vector notation is useful. Each component of a vector is equal
to the value of the function in the successive intervals. Thus it is written:

SO O

Ao == "

S OO
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These column vectors taking up much space in the written page we prefer to use the
following writing of a transposed row vector:5=(6 0 0 0 -2 0 0 O)T.
In the calculations, the scalar product of f3(¢) with the functions of a basis, for
example (1), <f3(1), ¥ (1) > = fo S0 (r)de, is replaced by the scalar product of

the vector f; with the vector = (1 1 1 1 -1 —1 —1 —1)" after
normalization to 1:

It comes:

1

<A@ >=(6 0 0 0 -2 0 0 0>W§

(1 1 11 -1 -1 -1 -1)'=2v2

The different standard basis vectors will be noted vy:

1

w=¢,=—=(1 1 1 1 1 1 1 1) = 111 -1 -1 -1 —1),
1 ¢r 2\/5( ),2 l/// 2\/—( )
1
=yu=5(1 1 -1 =100 0 O)T,W:wz,,lzz(o 0001 1 —1 —1),
1 1
v5=¢4,=ﬁ(1 -10 00 00 O)T,v6=¢4,,1=7§(0 01 =100 0 0),
1 T 1 T
V=Y =—=(0 0 0 0 1 —1 0 0)',vg=y, 3=—(0 0 0 0 0 0 1 —1)".
V2 V2

The expansion coefficients of f3(z) are: a; = {\/_ 2\/_ 2,3, —1, 3\/5, 0, —\/E,O}.
These coefficients are the numerical wavelet transform of the original function.
We verify that:

8
= awi(1). (19.38)
k=1

It is interesting to observe graphically the results of an approximation of f3(z)
consisting of a sum of terms reduced to a number lower than 8. First of all we show
in Fig. 19.8 the perfect reconstruction of f3(¢) obtained by the sum (19.38).

Figure 19.9 shows an approximation f3, () with the sum limited to its first 4
coefficients. We find that we have lost in resolution (in optics, it would be said that
the image is blurred) but both pulses at 0 and % are fairly well localized:

Comparison with a limitation in the Fourier domain

We want to test here the reconstruction of the signal when using only a part of the
expansion coefficients of the discrete Fourier transform. The inversion of the DFT
formula is denoted here in matrix form. It is:
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Of course, the reconstruction is perfect when all 8 Fourier coefficients are used in
the inverse DFT. Reconstitution is then tested when we keep only 5 coefficients
corresponding to the lower frequencies by imposing F[3] = F[4] = F[5] = 0. The
result is reproduced in Fig. 19.10:

We see the resulting oscillation of the Gibbs phenomenon on all 7 axis.
Reconstruction is not as good as when using the wavelets.

The Haar functions ¢(¢) are discontinuous; they are ill-suited to serve as a basis
for approximations for smooth functions since reconstructions will necessarily
present discontinuities. Many compressed wavelets would be necessary to reduce
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Fig. 19.10 Reconstruction [ —
with a Fourier sum limited to 3l
low frequencies
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the effect of these discontinuities and achieve sufficient approximation. One is led to
seek other bases wavelets functions, continuous with compact support. Mallat and
Daubechies established the theoretical framework for determining that type of
wavelets. They calculated wavelets adapted to dyadic multiresolution (successive
divisions of the support by a factor of 2).

19.3 Daubechies Wavelets

Definition of the scaling function ¢(z)
The search for these wavelets begins by determining a scaling function with the
following properties:

The scaling function ¢ (¢) must be real, causal, with a compact support (¢(z) is
zero outside a closed interval [0, N] of the variable 7). The upper bound N of this
interval is a positive integer. In practice, this integer will be small (less than a few
dozens). Its value will depend upon the desired level of resolution of the analysis.
A continuous function ¢(z) on the entire time axis is sought, that implies that at
both ends of its support,

$(0) = ¢(N) = 0. (19.39)

In the literature on wavelets, the scaling function is called the “father” function.
The desired scaling function ¢(f) is normalized by hypothesis. It must verify:

/ $*(t)dr = 1. (19.40)
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We impose to the function ¢(z) and to its translated by an integer m to be
orthonormal:

+ oo

<), p(t—m) > = / d(1)p(r —m)dt = 6[m] withm € Z. (19.41)

—00

The key point of multiresolution analysis is that ¢(¢) has to be obtained by a
linear combination of its compressed versions by a factor of 2 and translated by
integer values:

N
$(t) =D cxdp(2t — k) withk € N. (19.42)
k=0

It appears that the upper limit N of the sum index has the value of the right
boundary of the support of ¢(¢).

The desired function ¢(¢) should be such that its compressed versions by a factor
of 2 and translated by an integer k are orthogonal:

($(21), p(2t — k)) = / (21 p(2t —k)dt =0 if k #£0. (19.43)

For Vk € Z, the following property is verified:

162t — K= ({21 — &), (21 — k) = / 92— K)di
‘°°+OO (19.44)

|
N —
<=
(3]
—
~<
=
=
Il
N =

Given (19.42) the constraint (19.43) implies a relation between the coefficients cy.
Indeed:

/ S0 (1 — m)dr = / S b — 1S w2 — 2m — K.
s k=0 =0

The integrals of the various products are zero unless k' = k — 2m. Then:

o0

[ o019t~ mar -

—00

N

Z CkCrk—2m = 5[7)’1] .

k=0

N —



19.3 Daubechies Wavelets 355

The following relation between the coefficients must be verified:

N
Z CkCi—om = 20[m]. (19.45)
k=0

N
In particular, when m = 0, Y ¢7 = 2.
k=0
Definition of the wavelet y/(¢)
The wavelet is defined as:

EN: —Dfen_xp(2t — k) (19.46)

k=0

The coefficients cy—; are those of the development of ¢(¢) but taken in reverse
order, starting with the end. The following will justify this choice for the coeffi-
cients of the development.

In the literature on wavelets, the function () is called “mother” wavelet.

By assumption, the wavelet y/(¢) is orthogonal to the scale function:

/ D)y (1)dt = 0. (19.47)

—00

This implies an other relationship between the coefficients c¢;. Replacing the
functions in the last integral by their developments, it comes:

< N

/ > ap(2t — k) ZN: (1 ey (2t — K)dr = 0. (19.48)
k=0

k'=0

Due to the orthogonality of the functions ¢ (27 — k') and relation (19.43), we
have:

—

N N
EZ (—=1) ey« = Oand finally > (—1)*cien—4 = 0. (19.49)
k=0 k=0

For this cancellation to occur, it is necessary that the number of coefficients be
even to avoid a central coefficient to be zero. That is to say that N must be odd. This
is assumed in the following discussion.

For the Haar wavelet, which is within the scope of Daubechies wavelets (it is
sometimes called Db2), although it is not continuous, we have N =1, ¢y = 1,
cp = 1.
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A new constraint on the value of the coefficients ¢, is provided by an other
requirement imposed on the wavelet /(). We require that its integral is zero (see
Chap. 12):

/ Y(r)dr =0, (19.50)
then,
N (o @]
Z (—1) e / ¢ (2t — k)dr = 0.
k=0 Ea

By a simple change of variables we see that [ ¢(2r —k)dr =3 [ ¢(y)dy = Cte

It follows that the following relation between the coefficients must be satisfied:

N
(=) ex_r = 0. (19.51)
k=0

This is a third connection between the coefficients c;.
For the wavelet Db4 (N = 3) relation (19.51) writes ¢c3 — ¢y +¢; — ¢ = 0.

Properties in the Fourier domain
The standard notation in the literature on wavelets for the FT of the scaling function

$(1) is used: P(w) = T ¢(t)e ¥ dt.

It follows that the FT of ¢(2¢) can be written:

Fige) = [ seiea— [ smei=34(5). (1952

By a simple change of variable, the shift theorem is expressed:

0
(k) 1

Fg@r-0) = [ oo ay =1 p(5)e

—00

By calculating the FT of the two members of the relationship (19.42), we have:
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bor= [ et nera=3i(5) St = r()0(3)

k=0 k=0
00

where we write

1 Y ,
P(o) =5 > ek, (19.54)
k=0

P(®) is the Fourier transform of the function formed by the sequence of the
coefficients c¢;.

Note A difficulty using this notation appears here: P(w) which is the Fourier

transform of a numerical function will be noted in the same way than (Eﬁ(a)) which is
the Fourier transform of an analog function. Consistency with the rest of the book
would ask that the notation P(el”) is used rather than P(w) but the literature on
wavelet has adopted P(w). In the calculations, we must be careful to the difference
in nature of P() and ¢(w). The lack of hat in P(w) recalls the difference. By abuse
of notation, we write in a simplified manner:

P()],—o= P(e)],,_y= P(0).

w:Oz
Based on the results of the Fourier transform of digital functions, we know that
the function P(w) is periodic, with period 2z. Imposing @ = 0 in the relationship

(19.53), it comes,
$(0) = P(0)¢(0) which imposes P(0) = 1. (19.55)

Thus using (19.54) with w = 0, we see that the expansion coefficients ¢; must
verify the sum rule:

> e =2pP(0) =2. (19.56)

Iterating relation (19.53), we may write: (}5(0)) = P(%)P(%)(Z)(‘Z”)
Generalizing, we have:

o) =[17(5)4(5)- (19.57)

If ¢(w) is continuous at w = 0, then jlim a)(%) = $(0).
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It comes:p(w) = [[ P(2)$(0). In the following we show that ¢(0) = 1.
=1

Therefore

b)) = P(%). (19.58)

o0
J=1

It is interesting to note here that the Fourier transform of the scale function is
given by the Fourier transform of the sequence of coefficients c;. It is useful for the
following discussion to define the function P(z), half of the z-transform of the
sequence of coefficients c¢;:

1 N
P(z) = EZ az k. (19.59)
k=0

We have the property P(n) = P(2)|,_,= 0. Indeed, according to (19.51) we
have:
P()—IEN: eﬂ'ﬂk—li( e, =0 (19.60)
7I—2k:0Ck —2k:0 Cr = L. .

Thus, the function P(z) defined in (19.59) has a zero in the z plane at z = —1.

It is seen from Eq. (19.53) that this zero of P(w) at » = 7 leads to a zero ¢(w)
for v = 2.
Because it is periodic function of w, P(w) has zeros at 3w, 57, . . . which implies

that ¢(w) has zeros at 67, 107, . . ..
Writing @ = 47 in (19.53), we have ¢(4n) = P(2n)¢(21) = 2¢(2n) = 0 from
the foregoing. A generalization can be deduced:

$(21m) = Oforl # 0. (19.61)

These properties are apparent in Fig. 19.11 which shows the variations of |P(w)|
and of ’&5((»)’ with o (the first function represented over a period) for Db4. |P(w)|
was calculated from the FFT of coefficients c¢; whose values will be determined in
the following. The function ‘(}b(w)’ was calculated in an approximate way from the

relationship (19.58), limiting the product to the first 6 terms.
The scalar product (19.41) appears as a correlation function that depends on the

discrete variable m. It is noted C [m]. Noting ¢(¢) the time reversal of ¢ (z), we write:

Clm] = / (1) p(m — 1)dr. (19.62)
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In the previous integral we recognize the value of the convolution product of

¢(1) and $(r) evaluated at t = m. C[m] appears as a sampling of the correlation
function C(¢) for integer values m of time .

The FT of C(r) is C() = d()d() = ()" (w) = ‘&(w)‘

According to the Shannon aliasing theorem, the discrete FT of C[m] is the

2

infinite sum " C(w + [27). This sum is 1 since the numerical FT of C[m] = d[m]
[=—00
is 1. Thus, we arrive at the important result

o0

2

I=—00

&S(w+lzn)‘2 ~ 1. (19.63)

In particular, if we make w = 0 in the previous equation, we have

o0

>

I=—00

&(lZﬂ)‘z =1 (19.64)

The scaling function is assumed to have a compact support. It follows that from
the time-frequency uncertainty relation, its spectrum necessarily extends to infinity.
The relation (19.64) states that the sum of the values of the squared modulus of the
FT of ¢(¢) at abscissas corresponding to all multiples of 27 equals 1.
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~ 2 o
Given (19.61), it follows that (Z)(O)‘ = 1. Then ¢(0) = £1. By convention

the + sign is chosen. So we have: $(0) = J7. ¢(1)dt = 1. We note that this is only
a constraint of a scale factor on ¢(z).

Fourier transform of the wavelet (7)

To complete the definition of Daubechies wavelet Db4 which has 4 non-zero
coefficients, one last condition is imposed on the wavelet y(z). His first moment in t
must be zero, which will allow a better analysis of very regular functions:

/ w(1)de = 0. (19.65)

We now show that this condition leads to the following relationship:

N

> (=1)'key-« = 0. (19.66)

k=0

The proof is performed in the Fourier domain.
One notes:

oo

Y(w) = / Y (r)e s, (19.67)

—00

We first remark that condition (19.50) implies fp(o) =0.

. 00
Differentiating (19.67) under the integral sign: ‘IIZEZ’> =—j [ Y(r)edrAs a

result

(o)

dw

=y (0) = / ny(r)dt = 0. (19.68)

Since (0) = 0 and /(0) = 0, taking the Taylor expansion of the function
() in the vicinity of » = 0, we see that i () varies as ? if in the neighborhood
of =0 y"(0) # 0.

To continue the proof, analogously to the relationship (19.53), it is shown that:

(o) = G(%)rb(%) (19.69)
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where G(w) is the discrete transform of the sequence of coefficients in (19.46):

1 & ,
G(w) =5 S (=D eyge I, (19.70)
=0
The relation (19.60) implies that
G(0) = 0. (19.71)
We derive the product (19.69): ¥/ () = G (2)$(2) +G(2) ¢ (2). We evaluate

itat o = 0.9/ (0) = G (0)$(0) + G(0)¢ (0) = G (0) (We used Eq. (19.71) and the
fact that ¢(0) = 1).
Using the relation (19.68), we get

G (0) = 0. (19.72)
. N ) , . N k
Since G'(v) = —Ji Dfken_e %, it comes G (0) f%kzo (=1)ken—ix =0,
and finally
N
> (=Dfkey—i = 0. (19.73)
k=0

The fourth condition on the coefficients makes the ensemble of conditions
sufficient to allow the determination of the coefficients of the wavelet Db4
Daubechies, for which ¢(¢) is defined on the interval # € [0, 3] and is continuous at
its boundaries ¢(0) = ¢(3) = 0.

These coefficients are: ¢o = i (1 + \/g);cl = i (3 + ﬁ);cz = i (3 — \/5),
e =1 (1~ V),

The reader can verify that these values of the coefficients satisfy the relations
previously encountered. This will allow him to review all of these conditions. In the
following we give a preferred method for determining the value of these
coefficients.

Mallat, Meyer theorem
0 ~ 2
It has been shown previously (19.63) that > |¢(w+ lZn)‘ =1.

I=—00
Reporting in this relation ¢(w) as written in (19.53): ¢(w) = P(%)
have:

l_i_c;c ‘P<% +ln) ﬁ‘%(g —l—ln) ‘2 -1
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or, as o is arbitrary,

i |p(w+ln)|2]§s(w+zn)]2 ~1.

I=—00

We separate the terms of even and odd ranks. We use the fact that P(w) is
periodic with period 2%. P(w + 2nm) = P(w); P(w+ (2n+ 1)) = P(w + 7).
00 . 2 S “ 2
So we have [P@)* Y. [d(o+20m)| +IP@+m)P > b0+ @n+ D) =1.
The two sums being equal to 1 in the previous equation according to (19.63), we
have finally:

|P(0)]* + |P(w+ 1))*= 1. (19.74)

Figure 19.12 shows |P(w)|*, |P(w+m)|*, and their sum, equal to 1 for Db4
Daubechies wavelet.

From the results of Chap. 15, we know that the numerical Fourier transform
G(m) of the wavelet coefficients is related to that of the coefficients of the devel-
opment of ¢(z) by

G(w) = e N (=1)"P* (w0 + 7). (19.75)

Then |G(w)| = |P(w + )|
Relation (19.74) also takes the form

IP(0))* +|G(w))*= 1. (19.76)
From these results we may say that the digital filters consisting of the coefficients

of the expansion of the scaling function and those developing the wavelet upon the
functions ¢(2¢ — k) are mirror filters.

Fig. 19.12 Spectral
amplitudes |P(w)| and

2 < |
[P(w+m)|” for {0<w<2n} a)+7r]‘
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The first filter of frequency response P(w) is low-pass, the second with fre-
quency response G(w) is high-pass.
The following property is verified:
P(w)G*(w) +P(ow+n)G*(w+m) = 0. (19.77)

Indeed, according to (19.75):

P(0)G*(w) = P(w)ejN”(—l)NP(ern). (19.78)
and
P(w+71)G* (0w + 1) = P(w+ 1)@ 9 (=1)"P(w). (19.79)
These last two relationships lead (19.77) since eN@+7) — _aiNo a5 N is odd.
We have also:
P(o)P*(w+7)+G(w)G* (w+n) =0, (19.80)

because P(w)P*(w + 1) +e N (—=1)VP* (0 + n)eN @+ 7 (—1)"P(w) = 0.
The wavelet is such that

J(20) = G()$(w) (19.81)
[according to (19.69)].

For Db4, the variation of G(w) as »? around » = 0 corresponds to a variation of
P(w) as (o — )* around o = 7.

Equivalently, we can say that the function P(z) has a double zero at z = —1. For
Db6, we require 1}”(0) = 0. The first term of its Taylor expansion around @ = 0 is
in 3, the second moment is zero: J fooo 2y (t)dt = 0. Then P(z) has a triple zero at
z = —1. We see that the number of zeros of P(z) at z = —1 increase with the order of
a Daubechies wavelet (See Byrne in Signal Processing—A mathematical approach,

Peters Ltd Ed.).

Returning to Db4, we now express the consequence of the double zero of
P (z) en z = —1. P (2) has necessarily the form P(z) = (z+1)’0(z).

In Fig. 19.13 we see the double zero in z = —1 and one zero in z = 0.2679 for
the function P(z) of Db4.

Posing z = e/, we have P(w) = (¢ + 1)?Q(w).
The development of (&) 4 1) is:

(e + 1)2: ed? 261”41 = e (e +2 +e71?) = 2e!”(1+ cosw)

. o)
= 4e)” cos —
cos >,
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Thus:
P(w)[*= 160052%|Q(w)|2.

In the case where |P(w)|*= cos> ¢, (which is the case of Db2 and not of Db4),
we have

Plo 4 1) P= cos2 (2T _ o @
|P( )l :
2 2
and of course, we have:
|P()* + |P(w + )= 0032% + sin2% =1 (19.82)

Daubechies Db4 wavelet
For the construction of Daubechies wavelets, we can use the following method,
which is preferred. It consists in raising both sides of the above equation to an odd
power N = 2n—1 with n a positive integer. If n = 2, then N = 3, we get Daubechies
Db4.

(0052 g+ sin? %)3: 1. The development of this expression shows the binomial
coefficients Clli,.

3
(cos2 % + sin? %) = cos® % + 3 cos? % sin® % + 3 cos? %Sin4 % + sin® % .

2 . .
|P(w)|*= cos®2 + 3 cos* 2sin® ¢ = cos* % (cos? 2 + 3 sin”2) may be taken.



19.3 Daubechies Wavelets 365

We still verify (19.74) as the second part of the binomial expansion is equal to
|P(w+ 7)|>. We must have P(o) = cos®2 (cos 2 +v/3 sin 2)el’(),
Taking ¢i’(“) = e=%, a polynomial is obtained:

1 i i ‘
P(w) = 3 (Co N NI +C3eﬂ3‘”),
The coefficients of all other powers of e=I? are zero.
Indeed:
e +e B o
COS% — %;COSZ% _ Z (ej“’ +67Jw—|—2)'
L (o | e et oo\
P = — e](U —jo 2 e>Te = . 3 e —e 7]35
(0) =4 (e + )( 5— +iV3 5 )e ,
1, . , ' '
Plo) = L (@ +e ¥ +2) (e7(14V3) +e 7 (1- V).

The 4 coefficients c; of Db4 are determined by identification:

C0:%<1+\/§);C1 :%(3+\/§);62:%(3—\/§);C3:;1<1—\/§)-

The problem of using the wavelet Db4 is resolved at this stage. This may seem
surprising as we do not know yet neither the scaling function ¢(¢) nor the wavelet
().

Firstly we recall that the support of the function ¢(¢) is the interval [0, 3] for
Db4.

For Db4, N = 3, which implies that the support of the function ¢(z) has a width
3. Arbitrarily the left boundary of the support of ¢(7) is placed at x = 0.

The rapid decrease at infinity of q?ﬁ(w) accompanies the fact that the multiple zero

of P(w) in = 7 affects the decay of ¢(w). This is a consequence of the relation
(19.58).

From the decay properties at infinity of FT function encountered in Chap. 7, it
follows that the function does not present discontinuities across the support for
Db4. It entrains that to allow continuity at the support boundaries for Db4, it is
necessary that

$(0) = ¢(3) = 0. (19.83)

In the following the Db4 wavelet is taken as an example to demonstrate the
calculation of ¢(z) for any rational abscissa. We show that we can calculate the
values of ¢(1) and ¢(2) from the coefficients ¢ to ¢; and then we can deduce the
values at other points by iteration.
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3

Since ¢(7) = > crp(2t — k), and taking in account (19.83) we can write:
k=0

3
= ch¢(2 — k) = Cod)(z) +Cl¢(l)'
k=0

We also have:

3
=Y add —k) = c2(2) +c30p(1).
k=0

These two equations can be grouped in the form of a linear system:
¢(1)> <Cl Co)<¢(1))
= . 19.84
() = (0 &) (50 1959

(f)(l) > . . < C1
appears to be an eigenvector of the matrix
<¢<2> PP s &

value A = 1. The numerical calculation of the coefficient matrix in (19.84) shows
that it actually has the eigenvalue 4 =1 with the corresponding eigenvector

c .
0) for the eigen-
2

<£8;> = a<—()69§55898)’ where a is any constant. As may be verified on the

final values of the function ¢(7), we must have a=+/2 to finally get

P gt s (48) 2 9252,) - (100 )

Having determined ¢(1) and ¢(2), we can deduce the values of ¢(¢) for the
half-integer abscissa by the recurrence relation. For example:

3
= ad(l —k) = cop(1) +c1(0) = cop(1) = 0.9330.
k=0

Likewise:

ch¢ (3 —k) = cop(3) +c1¢(2) + c29(1) +c3¢(0)
—C|¢( )—|—02(f)( )—00012

Continuing the process ¢(0.25), ¢(0.75) can be determined, and so on.

Note that we have access to the values of the scaling function ¢(¢) for values of
t located in a grid with as fine resolution as desired, but we do not know yet this
function.
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Fig. 19.14 Daubechies Db4 (N = 3); a Scaling function ¢(¢); b Wavelet ()

Figures 19.14 and 19.15 show the scaling function and the Daubechies wavelet
for two values of the number N of coefficients.

Remember that if N = 1 you have Db2 which is identical to the Haar wavelet
defined between O and 1:

1
—1.

$(0) = 0;$(0.5) = 1;¢(1)
¥(0) = 0;9(0.5) = 1;y(1)

Scaling function and wavelet Daubechies wavelet Db32 (N = 3): (Fig. 19.14)
Scaling function and wavelet Daubechies wavelet Db32 (N = 31): (Fig. 19.15)

Decomposition and reconstruction of a function on a wavelet basis:
A function of the set V|) can be decomposed as follows:

£ =S aplt—k) = Zbqu(%—k) + delp(é—k). (19.85)
k k k

Taking the FT of both sides of the previous equation and proceeding analo-
gously to the demonstration of the (19.53), we obtain the following relationship in
the Fourier domain:

f(®) = a(w)p(w) = 2b(2w)H(2w) + 2d(2w)(2w). (19.86)

t t

Fig. 19.15 Daubechies Db32 (N = 31); a Scaling function ¢(r); b Wavelet (r)
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The Fourier transforms of the sequences of the coefficients a;, b; and d; are

noted a(w), b(w) and d(w).
As ¢(20) = P(w)d(w) according to (19.53), it follows by using (19.81):

a(@)p(0) = 2b(20)P(0)d(w) +2d(20)G(w)d(w),
Then:
a(w) = 2b2w)P(w) +2d(2w)G(w). (19.87)

We check now that we have:

‘b(Zco) =1 (a(w)P*(w) +a(w + )P (w+m)),

(19.88)

and

‘d(Zw) :%(a(a})G*(w)—|—a(w+n)G*(a)—|—n)).‘ (19.89)

To do this we replace in (19.87) b(2w) and d(2w) given by the above
expressions:

a(w) = a(w)P*(w)P(w) +a(w + )P (0 + 1) P(w)
+a(w)G" (0)G(w) +a(w+m)G (0 + 1) G(w).

a(w) = a(w)(P*(w)P(w) + G (w)G(w))
+a(ow+n)(P(w)P (0 + 1)+ G(0)G* (w0 +7)).

This relationship verified V o validates relationships (19.88) and (19.89), taking
into account the relationships (19.76) and (19.80).

In summary, formula (19.88) will be used to calculate the blurred version.

The formula (19.89) will be used to calculate signal details. The formula (19.87)
will be used to reconstruct the signal from its two components.

Finally, we show how one can calculate the coefficients of the filters with
frequency responses b(w) and d(w).

We note F »(ci) the numerical Fourier transform of the sequence of coefficients
Ck-

3 3 A
For Db4, we have: P(z) =13 iz, P(w) =13 creF = L F ()
k=0 k=0

I~ o |
P (w) = EZ e = Fi(cx)
k=0
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—_

3

k o

We also have: P(w+ ) E cre i@k _EE cke’J“’k:EfN((—l)kck).
=

and P*(w+m) =3 F5((—1 )ck).
Then

b(20) = 5 (Falall) 3 Filcll) + Fic (-1 alk]) 375 ((-1'el) ).

We recognize in the first term the FT of the cross-correlation function of
a [k] and c [k].

The second term is the FT of the cross-correlation function of (—1)*a[k] and
(= 1) clk].
To clarify, we apply this formula to Db4. It provides in the time domain:

bm - %(“V‘] ® (e30[k+ 3] + c20[k + 2] + c10[k + 1] + cod[K]))

+ 1 (C0falk) @ (—esdlk 3] +eadll +2) — erdlk+ 1) +codlk)).

Note the reverse in the time domain to move from correlation to convolution.
For even values of k, we get:

b E] = alk] ® % (c30[k + 3]+ c20[k + 2] + c10[k + 1] + cod[k]). (19.90)

For odd values of k,
b|=| =0. 19.91
H (1991
We can write these relations in the form:
blk] = alk] @ hoplk], (19.92)
With
1
hoplk] = 3 (c30[k+ 3]+ c20[k +2] + c10[k+ 1] 4+ cod[k]) forkeven.  (19.93)
and b[k] = 0 for odd values of k.
hoplk] is the impulse response of a low-pass non-causal filter. In practice, a

causal filter created by a delay of three steps of this impulse response is used. We
will write then:

(c30[K] + c20[k — 1] + 18]k — 2] + codlk — 3]). (19.94)

l\.)lH

hop[k] =



370 19  Wavelets; Multiresolution Analysis

We now look for the impulse response of the second decomposition filter given
by the relation (19.89). The FT G(w) is given by (19.70). For Db4, we have:

k=0
Then
3
G* (o) :%Z (—1) s gl = Z Fr((—1)'&)
k=0
3 3
Glo+m) = %Z (—1) ez e i@tk = %ch—ke WOk — = F pr (@)
k=0 k=0

G (w+m) =5 F\(cx)

1 1 * k~ k 1 ~
a20) = 5 (Ftali) 375 (1) + F (1)) 3 7))

d[k] :%(a[k] ® (c30[k] — 20k + 1] + 18k +2] — codk +3]))

+ (-1 alk] @ (es308] +eadll+ 1]+ erfk-+2] +eodle +3)) )

For even values of k, we get:

d E] = alk] ® % (c30k] — c2 0k + 1] +¢1 0k +2] — co Ok + 3]).
For odd values of k, d[k] = 0.

We can write this relationship as: d[k] = a[k] ® hip[k],with hiplk] =
3 (—codlk+3]+c1 [k +2] — c2 6k + 1] 4¢3 [k]) for k even.

and always d[k] = 0 for odd values of k.

hip[k] is the impulse response of a non-causal high-pass filter. In practice, using
a causal filter created with a delay of three steps of this impulse response. We then
write:

hip[k] = %(—coé[k] +c1 8k — 1] — ¢ 0[k — 2] + ¢3 Sk — 3]). (19.95)

The filters reconstructing the signal from its LF and HF components have
respective frequency responses P(w) and G(w), as the relationship (19.87) states.



19.3 Daubechies Wavelets 371

Within a factor of 2, Decomposition and reconstruction filters satisfy relations
(19.24) and (19.25).

This factor 2 is not important since it reflects a simple multiplication of the filters
gains by a constant. We have here:

P(z)Ho(z) + G(2)Hi(z) = 1, (19.96)

and

P(z)Ho(—z) + G(2)H (—z) = 0. (19.97)
From the decomposition P(w) and G(w) we get the reconstruction filters:
hor[k] = codk] + c10[k — 1] + c20[k — 2] + c30[k — 3].
hig[k] = c30[k] — c28[k — 1] +¢1 8[k — 2] — cod[k — 3].

We note the dissymmetry by the factor 2 between the decomposition and
reconstruction filters responses. Matlab uses symmetric formulas imposing a
common multiplying factor /2 to all impulse responses.

The impulse responses of the different filters given by Matlab for Db4 (Db4 is
called db2 by Matlab) appear in Fig. 19.16:

Finally, the frequency responses of the analysis filters (decomposition) are given
in Fig. 19.17:

(a) ’ LOD (b) i HI D
E 05 g .3.05
&)
£ f £ 4
q |
-05 0.5¢
0 1 2 3 0 1 2 3
(c) : LOR (d) 1 HIR
=y
|
- 05¢ o 0.5
et L4
© 0 (r “— 0
T4
g \|_/ l
05 -0.5
0 1 2 3 0 1 2 3

Fig. 19.16 Daubechies Db4 impulse responses; Top decomposition a Low pass; b High pass;
Bottom reconstruction ¢ Low pass; d High pass
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(@ _ LoD=HO  (b) HID =HI
1 1
05 0.5
% 2 4 6 % 2 4 e
© @

Fig. 19.17 Daubechies Db4 spectral amplitudes of decomposition filters; a Low pass; b High
pass

'_'[ H(z) 21 =
o —— A e ——

Fig. 19.18 Dyadic decomposition scheme

We encounter again the major role played by these relations in the dyadic
multiresolution analysis.

The decomposition of a signal may proceed recursively: In the first step the
blurred component is extracted (the approximation) of the signal [by filtering LF
represented by Hy(z) whose impulse response is given by (19.94)] and the com-
ponent containing details [given by the HF filter represented by H;(z)]. The oper-
ation is repeated and the blurred part is again decomposed in LF and HF
components, etc., in a tree structure.

This multiresolution analysis can be represented by the diagram in Fig. 19.18:

The reconstruction is also recursive, starting from right to left, up into the tree
structure, which is to render more and more details of the signal.

Summary

This chapter was dedicated to the analysis of a signal with multi-resolution. The
dyadic decomposition-reconstruction scheme allows the separation of the frequency
components in low frequencies (the shape) and high frequencies (the details) by two
filters. The reconstruction may be performed with the use of the two associated
filters. The decomposition may be performed recursively and, at any step, the signal
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may be reconstructed exactly. After having exposed the principle of the dyadic
decomposition, we have detailed the Haar transform and the LeGall-Tabatabai
decomposition. Haar wavelet has been introduced but it is ill-suited to serve as a
basis for approximations of smooth functions since reconstructions will necessarily
present discontinuities. Mallat and Daubechies have established the theory and
created wavelets which can be generated with the use of a small number of coef-
ficients, that can be continuous with continuous derivatives up to a chosen order,
and which allow the dyadic scheme. At a given order of continuity corresponds a
Daubechies wavelet and the 2 decomposition-reconstruction filter pairs.

Exercises

L. Let the signal x[n] = Uln] — U[n — 10]. Show using a picture that this signal is
a digital rectangular window. This signal is filtered by two filters in parallel
with transfer functions: Ho(z) = (z7' +1) and H;(z) = (z7' — 1). Calculate
the two output signals yo[n] and y;[n]. Show that the first filter provides a
smoothing (a blurring) of the input signal and that the second detects transi-
tions at the edge of the function x[n] (in a two-dimensional filtering one would
speak of contour detection in an image). Compare this result to the Haar
transform encountered above.

II. Calculate numerically using Matlab the functions P(w) and G(w) for the
Daubechies wavelet Db4 from the FFT of coefficients c;. Derive approximate

values of functions dAb(w) and lﬁ(w) from relations (19.58) and (19.69).

We will have limited the infinite products to the first six terms. Deduct by the
inverse Fourier transform (ifft()function), the scaling functions and the wavelet
Db4. Compare the results to those presented in the figures of these functions given
in this chapter.



Chapter 20
Parametric Estimate—Modeling
of Deterministic Signals—Linear
Prediction

In this chapter our goal is the modeling of a digital signal in the time domain, i.e.
we want to find a finite number of coefficients as small as possible, which allows the
possibility to reconstruct exactly or approximately the signal with the use of these
coefficients. We focus to model the signal as the impulse response of a LTI ARMA
system. We only model causal signals.

In the general case, a finite number of coefficients do not allow to estimate a
signal without making an error. The principle of the method is to minimize the error
in the least squares sense. In the first section we show, using the frequency domain
to demonstrate that property, that the equations derived from the least squares
method are nonlinear, difficult, or impossible to solve. So we need to look at other
methods necessarily less efficient in principle. We first study the Padé representa-
tion of the signal, which is accurate on a number of points equal to the number of
coefficients chosen for the model, but whose estimate of the signal outside this
range is very poor. The search for the coefficients reduces to solving a linear system
of equations whose solutions are sought by matrix methods. One is led to release
the accuracy constraints on the first points of the signal and seek to minimize the
error on larger parts of the time axis. This is the principle of Prony’s method and its
improvement by the method of Shanks. All-pole modeling (AR) detailed then gives
very good results in speech synthesis [it is known under the name LPC (Linear
Predictive Coding)]. Techniques called correlation and covariance methods are
used for time-limited signals.'

The preceding methods are useless in the cases where the properties of the
systems involved in the signal production vary with time. Adaptive filtering has
been developed for nonstationary signals analysis. The filter coefficients are reas-
sessed as the signal evolves in time. This type of filtering is studied at the end of this
chapter.

'To go further the reader is invited to refer to the excellent books of C.W. Therrien and M.H.
Hayes listed in the bibliography at the end of this book.

© Springer International Publishing Switzerland 2016 375
F. Cohen Tenoudji, Analog and Digital Signal Analysis,
Modern Acoustics and Signal Processing, DOI 10.1007/978-3-319-42382-1_20
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20.1 Least Square Method

Consider a digital deterministic signal x[n]. We desire to model this signal using a
limited number of parameters, either to compress the information, or to interpolate
and find absent data or to predict future values, yet unknown, of the signal. These
techniques are widely used, like in speech processing or telecommunications, for
example.

The estimator of the signal is noted k[n] and the error e[n]:

eln] = x[n] — x[n]. (20.1)

We assume hereinafter that the signal x[n] is zero for negative time n <0. It is the
same for the estimator X[n].

The choice of the estimator parameters is here performed by seeking to minimize
the squared error over the whole time axis:

=S Jelnl = S Iefn] il (202)

The moduli express here the general treatment of complex signals.
Using the signals z transform, we get from (20.1):

E(z) = X(z) — X(z). (20.3)

We focus here on the choice often used where the estimator X (z) is sought in the
form of a rational function (This technique is known as Linear Prediction Coding,
LPC):

B Y b ket
X =40 TS et (204)

We look for a causal estimator x[n] (as is x[n]) and stable. The definition domain
of X(z) therefore includes the unit circle. Thus, the Fourier transforms X (el®”) and

X(e®T) must exist.
We show now that the least squares method leads to the resolution, difficult, of
nonlinear equations. Using Parseval theorem for the energy of the error we write:

(OB We

&= i le[n]|* = wi / |E(@T)[do = wi / X(°T) — X(T)Pdwr. (20.5)
0 0

n=0
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The error is minimum when the partial derivatives of ¢ with respect to the
unknown parameters are zero:

Oe
——=0 for k=1,2,... 20.6
and
Oe
=0 for k=0,1,2,..., ¢ 20.6b
ab:; [k} or ) ) ) Y q ( )
Using the fact that a;[k] and @, [k] can be considered as independent variables,
we have:
e
Oe

W[k] _ wie 861?[]{] [(X*(e]wT) . X*(e]wT)) (X(e]wT) 7X(ein))]dw
0

P
e
_ _ X* ej(uT X eij _ )A( eij d
o |~ g DT X&) o (207
0
[0 . :
) oT B (elT .
= wi X(e]wT) - iq ESU)T§> q( ) 2 e]kwTd(,U.
‘% A (ayeem))
Similarly:
8 | e 8 ) B joT B* (e/‘mT)
& — _ X(e;wT)_ q(e ) q em
bk o) o A,(e7)) A (@)
i N (20.8)
1 X B (ej(l) ) e] w
= —— X(&°T) — L= . .
o (xen) ) e
We see that the equations %ﬁm =0 and %ﬂ[k] = 0 are nonlinear. Their resolution

is difficult in general. For this reason, the least squares method is rarely used in this
context and other approximations are preferred.
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20.2 Padé Representation

The method consists to equal x[r] and X[n] on a given time interval and taking X (z)
in the form (20.4). Let us detail it:

CUBE) Y b ke
X =40 TS Wt (209)

The method operates in the time domain. Putting in the time domain we have:
P q
ifn]+ > ap[k i — k] = bylk] 8[n — . (20.10)
k=1 k=0
Indeed by multiplying each term of this equation by z7" and summing over n:
o0 )4 o0 q 0
O UERES S DRI ST SR I iE)

n=—00 k=1 n=-—o00 k=0 n=-—o00

which has the form:
Ap(2)X(2) = By(2). (20.11)

It is recognized in the temporal Eq. (20.10), the equation of an ARMA filter, [n]
appearing as the impulse response of this filter.
The first terms will be given by:

x[0] = by[0],

x[1] 4 ap [1]3[0] = bg[1],

x[2] + ap [11x[1] +a, [2]3[0] = by [2],

x[3] + a,[1]x[2] + @, [2]x]1] + 4, [3]3[0] = b,[3],

As mentioned above, the method consists in giving to the estimator X[n] the
signal x[n] values for some values of n. Since we limit the orders of functions A, (z)
and B,(z) respectively to p and g, the equality of x[n] and x[n] can only be imposed
on a number of points limited to p + g 4 1. The moments are chosen in the interval
{0,p +¢}. In this interval we must have:

P
bynl; n=0,1,...,
xfn]+ ) aplklx[n — k] = {0‘_1[ ) n— gt -~-qq+p' (20.12)
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This equation will allow to determine the parameters a,[k| and b,|[k].
We can write this equation in matrix form:

[ x[0] 0 0 [ b,[0] T
x[1] x[0] 0 byl1]
x[2] x(1] 0 1 by[2]

: ap(1]
Ao wg-1 o wa—pl || %R =] b

g +1] xlg) o Ag=p 1l | o) 0

g+l xgtp-1 .. xig | Lo

(20.13)

The resolution of this linear system is carried out in two stages. First we solve
the system consisting of the second part of the matrices in which the coefficients
by[k] are not involved:

x[g+1] x[q] .o Xlg—p+1] apl[l] 0
x[q —|— 2] x[qti- 1] ... X[g —’p—|— 2] ol | _ 0 . (20.14)
dosr) slgtp=1 . wg ]| ] Lo
This system can be rewritten as:
x[g+1] x[q] xlg=11 ... xlg—p+1]] [a[l] 0
x[g+2] . x[g +1] x[q] oo xXlg—p+2]| | a2 o
x[g +p] xlg+p—1] xlg+p-2] ... x[q] a,[p] 0
(20.15)
or:
x[q] xg—=1 ... xlg—p+1]] [apll] x[qg+1]
x[q + 1] x[q] o Xg—p+2]| | @Rl | xlg+2]
Ma+p—1] xla+p-2 ... g arlp) xlq -+ )
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We can write this system in a more condensed way:

X,a, = —x,.1, (20.17)
with
a, = [a,[1],4,[2), . . a[pl]", (20.18)
X1 = [Klg+1), x[g+2],....xlg +p])",
and
x[q] xlg=1] ... xlg—p+1]
_ x[q.—I— 1] x[.q] o xlg— P 2] 2019
fg+p—1] xlg+p—-2 ...  alg

X, is a Toeplitz matrix (matrix of which all elements along a parallel to the main
diagonal are equal) unsymmetrical.
Depending on the properties of the matrix X, three cases may be met:

1. The matrix X, is non-singular. It thus has an inverse matrix and Eq. (20.16) can

be solved by multiplying on the left by the inverse: a, = —X;lx,ﬁ 1-

2. The matrix X, is singular. If there is a vector a,, that solves the system (20.16),
this solution is not unique. As X, is singular, the homogeneous system X,z = 0
has nonzero solutions. In this case the vector a, = a, +z is also a solution of
(20.16).

The solution which gives the vector having a reduced number of nonzero terms
aplk] is often chosen.

3. The matrix X, is singular and no solution a, of the system (20.16) exists. This
system has a second member as a[0] = 1 is assumed. This assumption is erro-
neous. One must seek the solution a, of the system X, a, = 0.

Having determined the series of coefficients a,,, in a second step, the coefficients
of the vector b, are determined. To this we transfer these coefficients a, in the
upper part of the matrix Eq. (20.13) which is written:

o) 0 ... 0 1 by[0]
x[l] x[O} . 0 ap[l] bq[l]
X2 1] 0 | @2 | 2 | Bgl2] (20.20)

sa da-1 ... sda—pl] lalpl]  bld
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This equation can also be written as a recurrence equation whose resolution is
immediate:

x[n] + iap[k] x[n— k| =byn] for n=0,1...,q. (20.21)
=1

20.2.1 Padé Approximation

So far, we found the equations for finding the coefficients multiplying the data
values x[n — k] to satisfy the recurrence Eq. (20.21) on the p + g+ 1 first points. It
is not an approximation but the resolution of a system of equation.

On the other hand, this system of equations is found to be the same as the one
found in mathematics when it is desired to represent a function f(x) of a continuous
variable x by a rational fraction of polynomials by imposing that its first p + g+ 1
derivatives have the same values in x = O than those of the function f(x). This
method can be qualified as an improved Taylor expansion to order p + g + 1 of the
function f(x) in the vicinity of x = 0. In this context the method is called the Padé
approximation. It is known in numerical analysis that the Taylor expansion is good
in the vicinity of the origin but strongly deviates from the function f(x) when one
moves away from the origin. The same phenomenon will be observed in the
framework of digital signals when attempting to use the Padé development for
values of n outside of the initial interval.

This fact leads us to rule out the Padé representation when searching an estimator
of the signal x|n].

20.2.2 All-pole Modeling

In the case where one seeks an all-pole modeling of the signal in the frame of the
Padé representation, X(z) is sought in the form:

N b[0]
X(z) = . 20.22
T S e 2022)
The system giving a, is written in this case:
x[0] 0 ... 0 ap[1] x[1]
x[1] x[0] ... 0 ap(2] x[2]

=— .| (20.23)
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The latter matrix is triangular, the solution is obtained by simply solving the
iteration:

1
aylk] = *m

x[k] + kia,, [[)x[k — l]] , (20.24)
=1

and b[0] = x[0].

20.2.3 Examples

Example 1
We look to model a signal whose first values are:

x=1[2, —0.1, 081, 0729, 06561, ..., ...].

We place ourselves in a case where we look for a model with p =2, g = 1.
Equation (20.13) has the form:

x[0] 0 0 bg|0]
1] 0] 0 1 by[1]

RN — ap[l] = | ——=—. (2025)
x[2] x[1] x[0] ay[2] 0
x[3] x[2] x[1] 0

L[
Here:

| al

0.81 0.1 2
0.729 081 —0.1

N =
|
—
o O
[E—

or, using the form (20.23) to solve:

0wt —ou | o | = Lo
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Using Matlab we get:
ap[1] = —0.9559 and a,[2] = —0.4528.
We then deduce the coefficients b,[0] and b,[1]:

1
{(2)1 g 8} ~0.9559 :{Z‘f[o]}
' —0.4528

We find using Matlab: b,[0] = 2.000 and b,[1] = —2.0118.
The elements of x[n| are recalculated to analyze the result and verify the absence
of miscalculation:

x[0] =2,

x[1] = by[1] — a,[1]x[0] = —2.0118 — (—0.9559) * 2 = —0.1,

2] = —a,[1x]1] — a,[2)x[0] = 0.9559 * (—0.1) +0.4528 % 2 = 0.81,

x[3] = —a,[1x[2] — a,[2]x[1] = 0.9559 % 0.81 +0.4528  (—0.1) = 0.729,
i[4] = —a,[1A[3] — ap[2]x]2] = 0.9559 x 0.729 +0.4528 + 0.81 = 1.036,

Note that the values for n = 0, 1, 2, 3, are found exactly.

This is the principle of Padé approximation. However, the estimated value of
x[4] is 1.036 while the exact value was 0.6561.

It appears that the Padé approximation does not ensure that the error is controlled
outside of the interval used for the estimate. If orders p and g used are not good, the
errors can become important outside the interval {0,p +g}. It is this feature that
limits the interest of the Padé approximation.

We retry now the approximation in the previous example with another order for
the model. Taking p = g = 1 Eq. (20.13) now takes the form:

x[0] 0 by[0]
1] «[0] L .
[ am] T |-

x[2] x[1] 0
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Example 2
x=1[2, 0.8, 0.72, 0.648, 0.5832, ...., ....]

We look for amodel withp = 2 and g = 1. Equation (20.13) has the form (20.25).
First of all, we solve the system: (20.26).

072 08 2 wll] | = 0
0.648 0.72 0.8 a” o)’
or, using the form (20.23), to solve the system:
0.8 2 a(l]| _ | 072
072 08| |ay2]|  [0.648]|

Using Matlab, we find: a,[1] = —0.9 and a,[2] = 0. We then derive the coef-
ficients b,[0] and b,[1] of the system:

1
2 00
{0.8 2 0} —09 {

We find: ,[0] = 2.00 and b,[1] = —1.
To finish we recalculate the elements of x[n]:

Here:

x[0] =2,

x[1] = by[1] — a,[1]x[0] = —=14+0.9%2 = 0.8,

x[2] = —ap[1]x[1] — a,[2]x[0] = 0.9 % 0.8 4+ 0 = 0.72,
x[3] = —ap[1]x[2] — a,[2]x[1] = 0.9 % 0.72 = 0.648,
i[4] = —a,[1]x[3] = 0.9  0.648 = 0.5832,

Again, we still find the exact values of x[n] for n =0, 1, 2, 3 =p+q as it is
expected.

But now the estimated value [4] is 0.5832, the same as that of the signal (the
index n = 4 is yet outside the range {0,3} that was used for the estimate). In this
case, we found exactly the impulse response of the filter that was in the underlying
signal x[n].

Its transfer function is:

H(Z) = Hl(Z)Hz(Z) = (2 —Z_l) (ﬁ)

The impulse response h[n] of this filter is the convolution of the two impulse
responses hy[n] = 26[n] — d[n — 1] and hy[n] = (0.9)"Uln — 1].
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20.3 Prony’s Approximation Method. Shanks Method

The limits of the Padé representation as an approximation method have been
demonstrated using examples. The problem encountered is due to the fact that by
completely canceling the error in a limited time interval, we allow this error to be
important outside this range.

20.3.1 Prony’s Method

The Prony’s method distributes the error over the entire time axis by releasing the
constraint in the interval {0, p 4 g}. We are still looking for modeling x[n] using an
ARMA filter ().

Having discussed above the aspect of the estimator as may be interpreted as an
impulse response, we note the estimator

X[n] = h[n]. (20.27)
We write:
eln] = x[n| — h[n). (20.28)
Using z transform, we write:
E(z) =X(z) —H(z) = X(2) - izg . (20.29)

Noting:

We have
E'(z) = X(2)A,(z) — B,(2), (20.30)
or, in the time domain:

¢'[n] = x[n] + x[n] ® ay[n] — by[n] with p > 0. (20.31)
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We write in more detail this equation, using the fact that b, [n] is zero for n > g:

en) = =l o (20.32)
x[n] 4+ - aplk] x[n — kl; n>gq

The Prony’s method is to determine the coefficients a,, such that the square error
is minimum for n > q:

e — i le/[n]|* = ZOO: x[n] + Zap[k]x[n — K| (20.33)

This error is minimum when the partial derivatives of ¢ with respect to

parameters a;[k] are zero: #ﬁk] =0fork=1,2,...p.
o _ i +Za x[n — 1] i x*n—kle'[n] =0
daxlk] 4 P £ '
n=q+1 n=q+1
(20.34)
o¢ e~ e u
8a;[k]: Z x*[n — klx[n] + Z Z xn =10 =0
n=q+1 n=q+1 =
0 (20.35)
or Z x[n Zap Z [n — k]x[n — ]1
n=q+1 n=q+1
=0k=12,...p;1=1,2,...0p
We write:
ralk, ] = Y xn—kxfn—1]. (20.36)
n=q+1

The function ry,[k, {] has the form of a deterministic correlation function of the
signal x[n]. Beware though, r,[k,{] is not the correlation function of x[n] because
the summation upon n does not go from minus infinity to plus infinity (or in the
case of a causal signal from zero to infinity, which is the case for x[n]).
Equations (20.35) are written also:

P
Z [ rulk, ] = —ralk,0; k=1,2,.... p. (20.37)
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This system of equations is called the ensemble of Prony’s normal equations. It
can be written in matrix form:

o, 1] ma1,2] maf1,3] oo e[l P ap[1] (1, 0]
Fal2,1] maf2,2] maf2,3] oo rae[2,P)] ap[2] ex[2, 0]
rxx[371] r)cx[372] rxx[3a3] rxx[37p] . aPB] = — rxx[?),O}
rXXLD7 1] rJﬁXLp72] rmwa:;] rXXvap] a]’[p] ”xx@ao}
(20.38)
These equations can be written in condensed form: Ry @, = —Txy.

The matrix Ry, is square, p X p, and has Hermitian symmetry (two elements
symmetrical with respect to the main diagonal are complex conjugates). ry, is a
column vector.

‘We note:
xlgl  xlg—1] ... x[g—p+1]
xlg+1]  xlgl ... xlg—p+2]
Xo=Ixla+2 alg+1]  Alg-p+3] |- (20.39)
We can write:
R. =XIX,. (20.40)

The error in the least square sense made in this approximation can be assessed:

*

AR I L0 D SRIC S TR SIO| RERS SPACN Y
- i ' [n]x*[n] + €'[n] Zap[k]x[n—k]] .

The second term is zero, since the error is orthogonal to the various components
x*[n — k] as shown in Eq. (20.34).

We have
b5 = i ¢'[n]x"[n] = i x[n]—i—Za,,[k]x[n—k]]x*[n], (20.41)
n=q+1 n=q+1 k=1
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and finally:
P
(20.42)

ers = rucl0,0]+ Y ay[k]ri[0,K].
k=1

The second step in the Prony’s approximation method is to determine the
coefficients b, [k] as is done in the Padé’s method. For this, one uses the coefficients
ap[k] determined by the resolution of (20.38) in Eq. (20.20) of the Padé’s repre-
sentation. At this stage, the only remaining unknowns are the coefficients b, [k]:
=0,1,...,¢q (20.43)

x[n] + Zap[k] xn—k| =by[n]; n

k=1
As seen above, the coefficients b, k] are obtained by iteration.
Another possible writing for the research of coefficients is to write the set of

equations in the form of the augmented Prony’s normal equations.

}

The system (20.37) can be written in the form:
SRR
FM[I,O] | r)ﬁx[lal} rXX[LZ] r)ﬁx[173] rxx[l,p] . 0
(2, 0] | For 2,1 rl2,2] ral2,3] .. Fal2,P] a[1] 0
ral3,0] | raf3,1] ra[3,2] mal3,3] ... re[3,P] P _lo
. { . . | ap2] s
redp, 0 L ralp 1] ralp,2l ralp3l o ralppl| | 0
L aplp] |
(20.44)
or, by introducing the error given by (20.42) in the system of equations:
[r2[0,0]  r[0,1] 1[0, 2] . relOp] T [ 1 ] ¢
rM[laO] Vm[l,l] rxx[laz rm[l,p] aﬂ[l} 0
rxx[za O] rxx[zv 1] rm[Z, 2} rxx[zap] a[’[z} =
_r)avb?ao] rxxbﬁ 1] r,wc[p72} Vxxk%l’]_ ap[p]
(20.45)
This system of equations can be written in condensed form:
(20.46)

Rxxa}, =du,.
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The matrix Ry, is square, (p+ 1) x (p+ 1). a[l, is the vector a,, increased with 1

and u, is the vector u; = [1, 0, 0, ..., 0]". The resolution of the system (20.45)
leads to the determination of the coefficients a,[k].

Note: The Prony’s method thus formulated requires exact knowledge of the
deterministic correlation matrix R,,. To calculate it, we will need to have knowl-
edge of signal values x[n] on the entire time axis, {—oo, + 0co}. The adjustments to
be made to the practical method when one only knows the signal values x[n] on a
finite time interval will be discussed later.

20.3.2 Shanks Method

It differs from the Prony’s method at the evaluation of coefficients b,[k] stage.
Instead of forcing strict equality between the values of the signal x[n] and of its
estimator x[n] in the interval {0, g}, we look for the coefficients b, k] by minimizing
the squared error over the entire time axis (or on a portion of it). Thus, the signal
values x[n] for n > ¢ are included in the processing.

The problem is now reformulated. The error is given by:

eln] = x[n] — x[n], (20.47)
with:
X(z) = H(z) = 28 - Bq(z){Apl(Z)}. (20.48)

The shape of the latter term emphasizes the fact that the filter transfer function
H(z) results from the cascading of two filters with transfer functions A#(Z) and B, (z).
p(Z
The time equation of the impulse response g[n] of the first filter 1/A,(z) has the
form:

xR
£
I
=
&
|
(7
”:Q
=
X
N
|
=

(20.49)
k=1

It is an all-pole filter attacked by a unit pulse d[n]. During the cascade, g[n]
becomes the input signal of the second filter B,(z) whose time equation is:

q

ifn] = bylkgln — K]. (20.50)
k=0

n

S gln x
d 1/A,(z) U@_u
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The estimation error is:
e[n] = x[n| — x[n] = x[n] — qu[k]g[n — k. (20.51)
k=0

We minimize the squared error over the entire time axis:

=S el = S ] — 5P 2052)

n=0 n=0

This error is minimum when the partial derivatives of ¢ with respect to
parameters b, [k] are zero:

Oe
8b*[]_0 for k=0,1,..., g
or
O¢ 8 = [
e
i = | )
0 q
=—Zg*["—k] xln] = bylllgl — 1 p =0,
n=0 1=0
or even:
Z Zg n—klgln — :Zg*[n—k]x[n]; k=0,1,...,q. (20.53)
n=0 n=0

As was done in the Prony’s method, the deterministic correlation function is
defined by:

reglk, ] = g*[n— k| gln — 1. (20.54)
n=0
In addition, we note
[o.¢]
rlkl = g*[n — K] xn]. (20.55)
n=0

Equation (20.53) can be rewritten as:

q
N byl gl ] = rylkl; k=0,1,....q. (20.56)
=0
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The latter relationship is now written in matrix form:

7e[0,0]  7gg[0, 1] 7gg[0,2] ... rge[0, 4] by[0] T+¢[0]
Teg[1,0]  ree[l 1] ree[l,2] ... rgll,q] b,[1] reg[1]
Teg2,0]  Tee[2,1] ree[2,2] ... re[2,4] bgl2] | _ | r[2] (20.57)
rela 0 relal) rela2 . relaal) Lbda]  Lrld

This last equation can be written in simplified form using an induction on the
coefficients rg [k, 1].
Indeed:

relk+1,14+1] = ig*[n — [k+1]gln — [I+1]]

o0

= Zg n—Kgln—1 = gn—Kegh—1+g[-1—kg—1 -1

n=—1 n=0

As k>0and [>0, the filter 1/A,(z) is causal, the second term in the last sum is
zero and we can write:

Foglk + 1,14 1] = rgglk, I]. (20.58)
This same reason leads to write for convenience:
reglk, 1] = rgglk —1].
We can rewrite Eq. (20.56) in the form:

q

D byl reglk =1 = rykl; k=0,1,...,q. (20.59)
=0

This equation is written in matrix form:

reel0] (1] rel2l o rgldl by[0] Fyg[0]
regll]  rggl0] Toel1] o Teld = 1| | bg[1] Figll
reg[2] regll] regl0] e ”;g[q —2] b2] | = | 2
"gg'[CI] Teg [‘1._ 1] 7 [q.— 2l ... rgg.[o] bylq] "xg.[‘ﬂ

(20.60)
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that one can still write in condensed form:
Rgob; = 1. (20.61)

The matrix Ry, is square, (¢ + 1) x (g + 1), which has the Hermitian symmetry.
I'xg 18 a column vector. The squared error is then:

The squared error is minimal when the error is orthogonal to functions g*[n — &].
The last term is zero and we have for the least square error term:

ts = _x'[nleln] = x[nlxln] = > bylk] Y gln —k]x"[n],
n=0 n=0 k=0 n=0
ers = ry[0] — Xq: bylk]r K] (20.62)

k=0

20.4 All-pole Modeling in the Context of the Prony’s
Method

In some situations, the modeling of a signal by an all-pole model is sufficient. This
is the case when the physical signal can be considered as the result of filtering of a
simple signal by a bank of resonators. The modeling of the voice by this method is
very efficient. Modeling by all poles within the Prony’s method is a special case of
this method wherein

byln] = bod[n). (20.63)

The formula giving the error is now:

x[n] + zp: aplk| x[n — k] — bod[n] for n=0
en) = . , (20.64)
x[n]+ > aplk] x[n — k] for n>0
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M~

which incidentally is just ¢'[n] = x[n] + " a,[k] x[n — k] — byd[n] V n.

k=1

The formula (20.36) becomes:

rulk,l] = Zx*[n—k]x[n—l] with k=1,2,...p;1=1,2,...,p.
n=1
(20.65)

Noting that for n = 0 the values of x*[n — k] and x[n — [] are zero because the
signal is causal and k =1,2, ..., p; [ =1, 2, ..., p, we can start the summation
index at n = 0. We can rewrite the last sum:

rolk, I = ix*[n — k] x[n —1]. (20.66)
n=0

One recognizes the deterministic autocorrelation function of the signal x[n]. We
still have to solve the system

re[l, 1] rofl,2] maf1,3] .00 [l p] ap[l] 1, 0]
ral2,1] ral2,2] raf2,3] oo re[2,P] ap[2] Fex[2, 0]
r)cx[3al] r’cx[372] rxx[3a3] rXX[37p] . aP[S] = — rX—‘C[Svo}
rxx[é, 1] rxx[l;zz] rx_x[.py?’] rxx[l;vp] ap’[p] rxx[l;’o]

But this time, we can use the fact that r,,[1, 2] = r[2, 3] = r[3, 4], that implies
that one can go from a double index notation to one with a single index:

Feclk, 1) = r[l — K. (20.68)

The autocorrelation matrix used in that system (20.67) is Hermitian and Toeplitz.
We can rewrite the system in the form:

T [0] Fe[1] e [2] oo malp—1] ap[1] Fec[—1]
Fol—1] Fx[O] Fex[1] oo Tulp —2) ay[2] Fex[—2]
e[ —2] Fec[—1] T [0] oo rap =3 | [ @Bl | = _ | ral-3]

rall=p] rel2=pl reB=p . 0] | Laplp] ral—p)

(20.69)
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In the case of a real signal x[n], the autocorrelation matrix is real, symmetric and
the linear system of equations becomes:

7 [0] 1] iyl coo Talp—1] ap(1] Fec[1]

(1] 7 [0] Fe[1] oo ralp—2) ap(2] Fex[2]

) Fex[1] Fx[0] oo rap =3 | @3] | = | r[3]

ralp =11 rap-2 ralp-3 .l | el ralpl
(20.70)

In the case where the autocorrelation matrix is invertible, we get directly the
coefficients of the AR filter model. The estimator of the signal will then be

For n =0, by = x[0]; forn # 0, x[n] = — zp:ap[k] X[n — k. (20.71)
=1

These formulas give the estimator of the signal x[n] by the all-pole model.

20.5 All-pole Modeling in the Case of a Finite Number
of Data

The all-pole method must be set in the case where the signal x[n] is unknown
outside of the interval {0, N}. The model is called Linear Predictive Coding (LPC).

Two methods known as the autocorrelation method and autocovariance method
names are used.

20.5.1 Autocorrelation Method

As seen above, in the all-pole case the Prony’s method defines the error to minimize
as:

o0

= Z le[n]|* with e[n n| + Z ap[k]x[n — (20.72)

n=0

The autocorrelation method makes the additional assumption that the signal is
zero outside the interval {0, N}.



20.5 All-pole Modeling in the Case of a Finite Number of Data 395

The resolution begins by defining a new signal X[n] by the product of x[n] with a
rectangular window,

X[n] = x[n]wg[n], (20.73)
with
1, n=0,1,...,N
weln] = {0; elsewhere ‘ (20.74)
Correlations are now:
ralk] = % [n — k%]
n=0
N (20.75)
=> xn—kxlnl; k=0,1,2,..p.
n=k
The normal equations become:
P
> aplralk — 1 = —rofk]; k=1,2,..p. (20.76)
=1
The minimum square error is:
P
ers = rwl0] + Zap (k|7 [K]. (20.77)
k=1

We note that there is contradiction between the application of an all-pole model
with a finite number of poles, whose impulse response is of infinite duration (thus
has nonzero values outside the range {0, N}), to model a signal that is zero outside
the data range. This contradiction leads to a low quality of modeling.

20.5.2 Covariance Method

Rather than assigning zero values to the signal outside the range {0,N}, it is
preferable in this method only evaluate the error on the data window. In addition,
for greater generality the signal is not assumed causal. To avoid the transient effect
created by the shutting in n = 0, we begin to take into account the error starting at
index n = p, for which the correlation matrix does not include null values in the
beginning.
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The following squared error is minimized:

N
e=>_lefn]’. (20.78)

n=p

The system of equations to be solved is the same as in the Prony’s method:

rxx[lal] rxx[lvz] [173] rxx[lvp] aP[l] xx[l,O]
rxx[za 1] rxx[27 2] [23 3] ce. rxx[27p] ap[z] rxx[z’ 0}
o351 raf3,2) rxx[3, 3] .. m[3p] | | @3] | = | r«[3,0] ’
rxxb;a 1] Vxx[ﬁ 2] ”m[P, 3] cee rxx[bvp] ap.[p] rxx[ﬁv 0}

(20.79)

but the values of the correlation coefficients are

Zx n—klxn—1. (20.80)

The correlation matrix is no longer symmetric nor Toeplitz.
The minimum square error is:

eLs = r0,0] + Zap 1[0, &]. (20.81)

This method is considered to give better results than the correlation method in
the case of an all-pole filter because it does not require signal zero values as does
the autocorrelation method.

The all-pole modeling gives satisfactory results in the analysis of the voice.
Figure 20.1 shows the spectrum of the French vowel a and the spectrum modeled
by LPC with 32 coefficients as;[k]. The agreement is satisfactory. The coefficients
can be used back to synthesize the vowel a.

20.6 Adaptive Filter

This paragraph is a little apart in this chapter. It outlines a method for modeling a
nonstationary signal by a finite impulse response filter. The filter coefficients are
changed over time so as to adapt to slow changes in the parameters characterizing
the signal. This technique, due to Widrow (1975), provides a very powerful noise
removal algorithm when the useful signal is vitiated by an additive noise. It is, inter
alia, the origin of the noise canceling techniques. An FIR finite impulse response
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French vowel a and the
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filter is used with a record entry for signal near the noise source. The impulse
response of the filter adjusts itself automatically. The output of this filter is used to
reduce unwanted noise from reception.

This method has its origin in the search of a way to remove the echo that appears
on a duplex phone line. To allow the passage of information in both directions on
the same line, a transformer is present at each end of the line. The impedance
mismatch at both ends of the line then causes reflections at these ends. This is
manifested for an interlocutor for an echo of his own voice. This echo is particularly
annoying if it occurs with a delay larger than a few tenths of seconds after emission.
Signal transmission taking place at speeds of the order of the speed of light, the
echo is annoying in the case of long distance propagation (for example
intercontinental).

For this presentation, although the processing is performed digitally, we adopt an
analog signal notation which allows a more intuitive description. Let us consider
the case of the problem of false echo cancelation. The useful signal is noted x(z). At
this signal is superimposed additively a spurious signal z(¢) that is a delayed version
of x(t). Typically, this signal z(¢) is not a simple delayed reproduction of the signal
x(t) but it has undergone unknown transformations that we model by the action of
an unknown filter with impulse response A(z).

We write then: z(¢) = x(¢) ® h(t). z(¢) is the annoying echo that we try to delete
(Fig. 20.2).
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Fig. 20.2 Superposition of a x (1)
signal x(¢) and one echo

X(r)
hir)
Fig. 20.3 Error signal, z(1)
difference of one echo and its
estimation + e(t):z(t)—f(t)
iy )

To eliminate z(r), we seek to create a filter whose impulse response A(z) tends to
estimate the exact impulse response 4(¢). We subtract its response Z(7) from z(z), the
ideal is to achieve a zero subtraction result.

The error signal is noted e(7): e(z) = z(¢) — 2(¢). (see Fig. 20.3).

We chose to model the action of the filters with digital filters with finite impulse
response (FIR) with N elements. The convolutions then take a discrete form:

z2(t) = z[n] = . hlilx[n — i]. (20.82)

Vector Analogy
z(t) can be interpreted as the result of the dot product of two vectors: the vectors
x and h defined by:

x[n] h[0]
x[n—1] h[1]
x= x[n —2] and h = h[2] . (20.83)
A — N +1] BN — 1]

The convolution appears as the inner product of these vectors. Note the time
reversal in x.

We use Sondhi notation (Sondhi and Berkley 1980) to signify the transposition
of a vector.

We can write the spurious signal z as the dot product z = #'x. Similarly z = x.

. . R AN
With these notations, the error e =z — 7 = (h — h) X is a scalar.
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The principle of adaptive estimator filter is to vary h over time to reduce the
error. We will show below that the equation for determining the filter h is:

dh
5 = Ken(0), (20.84)
i—il = KF(e)x(1). (20.85)

K is a positive constant to adjust in practice and F(e) is a non-increasing
function of the error e.

It is emphasized here that the estimator is constructed from x(¢) which is not
marred by the noise. It will be necessary in practice to have a sensor providing the
pure signal x(z).

We now show using the vector analogy why Eq. (20.84) is favorable (Fig. 20.4).

Misalignment vector is noted r:

r=h—h. (20.86)

We see that e(r) = r'x.
The filter with impulse response / is constant during the filter adaptation time,

dn _ dr_ _di
we haveEfO. Soaf dr
Assuming the equation of adaptive filter (20.84) we have

dr

Tl —K(r'x)x. (20.87)

Fig. 20.4 Misalignment
vector r and its projection on
signal
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In this case the error norm tends to zero as time increases. To show this, we
multiply the two members of the previous equation by . We have

,dr ,dr1d

= — K -
" ¢ T T 2

or |r|]*= —Ke?. (20.88)

)

The length of the misalignment vector r thus decreases. This is true for any K > 0.
So:

d
@ (F'r) = —2Ké*. (20.89)

We integrate this relationship between 0 and any subsequent time t:

T
=0 — r'rlimr = ZK/ezdr. (20.90)
0

As 'r is not growing, the left term is bounded. It will necessarily be the same for
the right-hand side. So when t — oo the standard error must approach zero
(le] — 0) to ensure the convergence of the integral.

The validity of Eq. (20.84) has been shown to determine the filter h.

Use of the form (20.85) of the filter: The general expression (20.85) of the
adaptive filter with a non-increasing function F(e) of the error e.

dh
E = KF(@)X

Suppose that there exists a function C(e) such that F(e) = %—f

de _
As 4= X we have

_dCde  dC _dh

*—F(e)xfa.

s (20.91)

Then % is chosen as a vector pointing in the direction of the gradient C(e),
where the decrease is the fastest. This is what gives the gradient method name to
this technique.

Practical determination of /[n] in digital form:

di

The derivative ' is replaced by the difference hln+1,i] — hln,i] and then we

have the equation of the filter:

hln+1,i] = hln,i] + Ke[n]x[n — 1] + leakage term. (20.92)
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We add a leakage term so that in case of misalignment, the vector h does not
remain aligned in a wrong direction.

How do we choose K? We should not take it too big because the misalignment
vector would land in a plane perpendicular to x and can no longer move although
h and h had quite different directions. If the vector x moves slightly, the error will be
important.

Summary

We have treated in this chapter the modeling of a digital causal signal in the time
domain, i.e. we searched a finite number of coefficients as small as possible, which
bring the possibility to reconstruct the signal using these coefficients. The signal is
modeled here as the impulse response of a LTI ARMA system using a least squares
approach. After having shown in the frequency domain that the general equations of
the model are nonlinear making the resolution very difficult, we used less ambitious
approaches. We developed the Padé representation of a signal, which is exact on a
number of points equal to the number of coefficients chosen for the model, but
whose estimate of the signal outside this range is very poor. The search of coef-
ficients reduces to solving a linear system of equations whose solutions were sought
by matrix methods.

In Prony’s method, the least square method is performed on subsets of the time
axis. The Shanks method is a refinement of that method. All-pole modeling
(AR) with the Prony’s method gives very good results in speech processing (it is
known under the name LPC Linear Predictive Coding). We have exposed corre-
lation and covariance methods which are used for time-limited signals. Adaptive
filtering has been developed for nonstationary signals analysis. The filter coeffi-
cients are reassessed as the signal is changing. This type of filtering is efficient to
block out known spurious signals, such as echoes on a transmission line.

Exercises
Calculating an inverse filter:
Let the digital filter defined by the recurrence relation: g[n] = f[n] — 0.9f[n — 1].

1. What is the impulse response A [n] of this filter? Represent this function.

2. Give the expression of its transfer function H,(z). Deduce the frequency
response. Knowing that the sampling rate is f, = 20kHz and is using a geo-
metric argument, trace the evolution with frequency of the frequency response
magnitude |H;(¢")|. What is the character of the filter?

3. Let the causal filter whose transfer function is H,(z) be the inverse of Hi(z).
(Hy(z)H1(z) = 1). Trace the evolution with the frequency of the frequency
response magnitude ]Hz(ej‘“T)‘. What is the character of the filter?

4. Give the expression of the impulse response /,[n] of the inverse filter H>(z).
Calculate the convolution product /4 [n] ® ha[n]. Explain simply the result.

5. We want to simulate the inverse filter with a finite impulse response filter,
causal, whose impulse response h[n| is limited to N + 1 terms.
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Ln-lkb.)l\):—

The input signal of this filter is & [n]. The output signal of the FIR is denoted
d[n]. It is an estimator of the pulse unit d[n]: d[n] = S o bk hi[n — K.

The error at instant n is denoted e[n] = d[n] — d[n].
The filter coefficients are obtained by a least squares method in which one seeks
to minimize the squared error

o0

- 2 lefn] [* = ; (51a] — 8) "

The solution of this problem is analogous to the method of Shanks.
Demonstrate formula to reach the filter coefficients b[k].

. Calculate the matrices of the linear system used in solving the case N + 1 = 6.
. The system solution provides a coefficients vector:
= [0.9304, 0.7601, 0. 5982, 0.4429, 0.2926, 0.1455]
Calculate the estimator 3[n] and the quadratic error in the case of Question 6.
. It is found that the error proves less, for the same number N + 1 of terms, when
creating an inverse filter whose output is a delayed pulse d[n — ng) instead of
0[n]. What is the new expression of the linear system used in solving the
problem? (N.A. ng = 5)
Solution:
hi[n] = 6[n] — 0.96[n — 1].
. Hi(z) =1-09z1 H (7)) =1 —0.9e7T. 1t is a high-pass filter.
- Ha(2) = g = 1ot H2(9°7) = =g It is a low-pass filter.
. We assume a causal filter. /1,[n] = 0.9"U[n].
. This error is minimum when the partial derivatives of &y with respect to the

parameters b*[k| are zero:

e
ab*[k]io for k=0,1,...,N
Namely
de. 0 ie*[n]ew Z—ihl[n—k] 5[n]—ib[l] hiln —1]
Ob*[k]  Ob*[k] e v .
=0,
or also:

ib[l] ihl[nfk}hl[nfl] :ih][n—k}é[n]; k=0,1,..,N

=0 n=0

3
Il
<
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As was done in the Prony’s method, we define the deterministic correlation

function: ryp, [k, I] = 3 hy[n — k] hy[n — I]. Furthermore, we define ryp, [k] =
n=0

S hi[n— K] 8[n].
n=0

The equation can be rewritten as:

N
> bl run, k1) = ron [k); k=0, 1,...,N. (20.93)
=0

This relationship can be written in matrix form:

[ 7 0,00 7wy 0,1 g [0,2] oo g [O,N] ) [ B[O] ] [ rom, (0] ]
Py [1,0] g (L, 1] 7w [1,2] o g [LN] || B[1] Fony [1]
Thihy [2’0] Thyhy [27 1] rh1h1[272] cee T [27N] . b[Z] = | Tom [2]

_rhlhl[N70} rhlhl[NvH rhlhl[N’z] rhlhl[N’N}_ _b[N]_ _r(Shl[N]_

This last equation can be written in simplified form using an induction on the
coefficients ry,p, [k, I]. Indeed:

rhl;l,[k+l,l+1] = zm:hl[n— [k+1“h1[}’l— [Z+IH
n=0

= ihl[n*k]hl[n*l] Zihl[l‘l*k}hl[n*l]+h1[*l *k]hl[*l 71]

n=-—1 n=0

As k>0 and [ >0, and the filter causal, the second term is zero and we can
write:

Pigiy [k + 1,14+ 1] =y, [k, 1.
For this same reason we write for convenience:

Thyhy [k, l} = Ty [k - l}

We can rewrite Eq. (20.93) under the form:

> bl ru k= 1) = ron [kl;  k=0,1,...,N. (20.94)

N
=0
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The equation is then written:

Thyhy [0] rhlhl[l] rhlhl[z} s Fhyhy [N] b[O} Fon, [O]
rhl/"l[l] rhlhl[o] rhlhl[]‘} s Ty [N - l] b[l} r&hl[l]
Thihy [2] rhlhl[l] rhlhl[o} cee P [N_ 2] . b[Z} = | Tom [2]
rhlhl[N] Thyhy [N_ 1] Thyhy [N_z] ce Ty [0} b[N] Tsn, [N}

P 1] = hi[n] @ hy[—n.

hi[n] = d[n] — 0.96[n — 1].

P [0] = 1+40.9x0.9 = 181, 1y, [1] = —0.9, rpyp, [n] =0 elsewhere,
rom [0] = 1, ron [k] = 0 if k # 0.

6. Calculation of the matrices used in the linear system resolution when N + 1 = 6.

The system is written:

181 =09 0 ... 0 b[0] 1
-09 181 -09 ... 0 b[1] 0
0 —09 181 ... 0 | [b2]|=]0
0 0 0 .. 18] |p[s 0

With Matlab we find:

B =(0.9304 0.7601 0.5982 0.4429 0.2926 0.1455)T

. Vector B components are the values of the estimator of the impulse response of
the inverse system:

ha[n] = {0.9304, 0.7601, 0.5982, 0.4429, 0.2926, 0.1455, 0, 0, 0, O}, forn
=0,1,...

True inverse filter impulse response is Az [n] = 0.9"U|n], being for first values of
n: 1, 0.9, 0.81, 0.73, 0.66, 0.59.
The convolution of the vector B with the vector h; = 1, —0.9, 0, 0 gives

(0.9304, —0.0773, —0.0859, —0.0954, —0.1060, —0.1178, —0.1309, 0, 0, 0, 0...)"

The result is satisfactory.
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Chapter 21
Random Signals: Statistics Basis

This chapter recalls the basis of the statistics for a random variable with values in a
continuum. We define the probability density function and the cumulative distri-
bution function of a r.v.: expectancy, variance, the moments of a distribution, and
the characteristic function. Particular attention is paid to the Gaussian distribution
(normal distribution). The probability density function of a function of a random
variable is determined.

In the second part of this chapter, we present the statistics of two random
variables (also called second-order statistics). We define their joint probability
density and the marginal probability densities. We give an overview of the
Bayesian statistical aspect. We define the correlation coefficient, the orthogonality
and independence in probability. These concepts are used for the study of two
jointly Gaussian variables. It is then shown that the probability density function of
the sum of two independent r.v. is the convolution of their probability densities.
This result is extended qualitatively to the sum of a large number of independent
random variables that appear to follow approximately a Gaussian distribution. This
result is known as the central limit theorem. We finally consider the statistical
distribution of complex variables and the correlation of two complex r.v.

A table of Gauss’s law is given at the end of the chapter.

A random signal is a function of time for which the value at a given time is not
certain. It depends on the value of a random event . In general, ¢ is not identified.

We denote x(z, ) the signal or x(¢) too. The use of bold letter emphasizes the
randomness of the variable. Thus, at a given time, x(¢) may generally take infinite
possible values dependent on &. To follow the successive values of x(z) over time
means following a realization of x(z).

Figure 21.1 shows three realizations of a random signal x(¢).

At a given time 7, x(¢) is a random variable. To study this random variable (r.v.),
we can use the classical statistical concepts: probability density function fi(,)(x),
expectancy, variance, etc.

© Springer International Publishing Switzerland 2016 407
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Modern Acoustics and Signal Processing, DOI 10.1007/978-3-319-42382-1_21
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x1(t)

x2(t)

x3(t)

Fig. 21.1 Example of 3 realizations of x()

We will mainly studyin the following the case where x(¢) values belong to a
continuum in R or C. We only briefly talk about the case of a discrete distribution
of values of x(¢), when we discuss the quantization problem of error made when
converting an analog signal to digital using an analog/digital converter.

At every moment ¢, the probability density function of the variable x(¢) provides
the statistical properties of this variable. However, this function, defined for each
value of ¢, is insufficient when one seeks to describe the time evolution of x(z).
Probability densities should be used for this purpose involving several values of
time:

Sete)x(0)x(n)... (x(t1),x(t2),x(23),...) and whatever these times. Most often in
practice, these functions are not known. We then simply use parameters such as the
average or the moments, and the expectancies of the products of signal values at
different times.

21.1 First-Order Statistics

21.1.1 Case of a Real Random Variable

Probability density function of a real continuous random variable:

We assume that the values of x(¢) are real. The function f((x) defined in the
following is called the probability density function (pdf) of this continuous random
variable. To simplify the notation, we simply write x the variable x(¢) at time ¢. The
probability density function will be noted f;(x) below.
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By definition, f; (x)dx is the probability that x(#) has values in the infinitely small
interval {x,x+ dx} (Fig. 21.2):

P{x<x(t) <x+dx} = fi(x)dx. (21.1)
As a probability is positive or zero, the probability density function f(x) is
necessarily positive or zero.

On a finite length interval, the probability for x to realize in the interval {x;,x,}
is: (Fig. 21.3)

P{x; <x §x2}:/fx(x)dx. (21.2)

Normalization condition: Since the probability of getting x over the entire
range of real numbers is equal to 1, we can write:

/ fe(x)dx=1. (21.3)

Cumulative distribution function:
The cumulative distribution function Fy(x) is the probability that the random
variable x takes any value less than a value x. By definition (Fig. 21.4)

X
Fe(x) = P{x<x} = / fe(x) dx. (21.4)
—00
Fig. 21.2 An example of a
probability density function Sy (X :!
fe(x)
e
Fig. 21.3 The grayed area is A
the probability that x is found ful2)

in the interval {x;,x;}
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Fig. 21.4 The grayed area is A\
the cumulative distribution 17
function Fy(x)

Obviously we have:
Fy(0) = 1. (21.3)

Expected value of the random variable x:
It is defined by:

+ o0

E{x} = / Xfe(x)dx = n,. (21.6)

—00

The expected value 7, is also called expectation, average, mean or, better,
ensemble average (to better distinguish it from a time average which will be studied
in the following).

In the general case, the expectation of a variable in a random process is time
dependent.

Variance: It is the mean (the ensemble average) of the squared deviation of the
random variable from its mean value.

It is defined by

+ oo

w=E{w-n)} = [ Gon e (1.7)

—00

The standard deviation oy is defined as the square root of the variance:

oy = /s (21.8)

Property: An important result in practice is that the variance of a r.v. is equal to
the square expectation minus the squared mean of the r.v.:
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Indeed
+00 +oo
w= [ Gonla0e= [0 - 2m o
e b too (21.9)
w= [ Rrwac-o [ sp@eced [ Awa
Therefore
ve = E{x?} — (E{x})". (21.10)

Skewness and kurtosis:
First of all we define the moment of order n of a distribution

= E{(x—n,)"}. (21.11)

We call skewness (asymmetry) the third-order moment normalized by the
division by the standard deviation raised to the third power:

E{x-n0’}

ms = O'f, (2112)
The kurtosis is the fourth normalized moment
4
E{ x() —n)*}
my=———~=. (21.13)

4
O-x

Chebyshev inequality:
Let x be a real r.v. Its variance is given by

o = 7 (x =) f(x) dx = /oo X2 f(xc) dxe.

We used the centered random variable x,= x — 7, .
Let a be any positive constant. We have

—a a

ot = 7 X f (xe) dxe = / X f (xe) doxe + / X f () doxe + /OO X2 f (xe) doxe.

—00 —a
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In the first and the third term x? > a* .

We then have the inequality: o®>a? [7 f(xe)dx.+ [“ x2f(xc)dx. +
a® [ f(xc) dxe.

Alternatively, since the second term is positive:

o’ >a / f(xe) dx, +d? /f(cx) dx.

So finally we have the Chebyshev inequality

i8]

g

Prljx — 5| >a] < (21.14)

2
Exercise

Let x be a real random variable uniformly distributed in the interval {—$,4}.

By definition, the probability density function f,(x) is constant between and
{—4,4} and zero elsewhere: (See Fig. 21.5).

_|c i<y
Fex) = 0 elsewhere’ (21.15)
The normalization condition f_;oo fe(x)dx =1 leads to find
C= ! (21.16)
= .
The expectation of x is
+ oo 1 g
Efx} = n, / xfx(x)dx:—/xdx:O. (21.17)
a
Fig. 21.5 Uniform
probability density function in S (%)
the interval {— %,%} C
» 0 x
2

[ E
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The variable x is centered; its variance is

e e 1 ; 1 315 2
_ )2 — 2 Ra=2t =&
Vx - / ('x ’7x) fv;c(‘x)d‘x / xzf).f(x)dx a/‘x dx a 3 » 12
— 0 —00 g
(21.18)

21.1.2 Gaussian Distribution (Normal Law)

We say that x = x(¢) is a Gaussian variable when its probability density function is
given by (Fig. 21.6)

1 n)?

e 2, 21.19
V2no? ( )

We will show by calculating the Gaussian integrals detailed in the following that
the distribution parameters appearing in the probability density function are the
mean and the variance: E{x} = and v(x) = ¢° .

It is also said that x(z) follows a normal distribution N(#, ¢). This distribution
has great theoretical and practical interests. It depends only on two parameters 7 and
a.

As shown in (21.19), the probability density function is maximum when the
x value equals the expectation #. It is symmetrical with respect to 7. One can see
that if the variable x differs from the average value by some o, the exponential
becomes small. Thus, o characterizes the distribution spreading. A more quanti-
tative property of o will be given subsequently.

The method of calculating a probability in the case of a Gaussian distribution is
now studied on a numerical application.

We assume that, due to the thermal noise, the voltage across a resistor at time ¢ is
a Gaussian random variable with mean value # = 1.1 mV and standard deviation
2.3mV.

fe(x) =

Fig. 21.6 Gaussian
probability density function § [X )
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Fig. 21.7 The shaded area is 4
the probability for x to realize 8 {x )
in the interval {x;,x,}

-’?;rx,

We want to evaluate the probability of measuring a voltage between —2 mV and
2mV. As seen above, the probability that the Gaussian r.v. x is realized in the range
{x1,x2} is given in (Fig. 21.7)

17
P={x<x<x}= /e_ 202 dx. (21.20)
Ny
2no ;

The integral of the Gaussian exponential is not a simple function; the result
cannot be obtained directly.
The following change of variable is generally carried out:

(21.21)

Then: dx = gdz,
| ) 22
22
P{xj<x<x}= E/ e Tdz=P{zi<z<n} = /fz(z) dz, (21.22)
z, z

with
ez (21.23)

z is a random variable following a normal distribution N(0, 1), centered with a
standard deviation equal to 1.

The cumulative distribution function F(z) of the centered r.v. z is connected to
the commonly used error function.

4

gl
1 2 1 2
F(Zl) = P{Z<Z1} = \/TTE / e 2dz=05+ \/TTE/ e 2dz. (2124)
-0 0
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The error function is defined by

tl
2
erf (1)) -7 / e "dr. (21.25)
0

The integral on z in (21.24) is connected to the error function erf(z) by the
change of variable t = % So

4 L
1 2 1 _p . 21

— [ e 2dz:—/e “dt, witht, = —=. 21.26

\/27r0/ 710 : \/5 ( )

F(z1) =051+ %]e-’?dt :O.5<1+erf<%)>. (21.27)
0

This relationship is used to calculate, using a spreadsheet, the integral values of
the reduced centered variable z on the range going from —oo to any value z;. These
values are given in the table at the end of this chapter.

The evaluation of the integral (21.20) passes by the calculation of the boundaries
z1 and z5. Here z; = =354 = —1.35; 2, = 2731 = 0.39. (See Fig. 21.8).

We then assess the probability sought (shaded area) from the values read from
the table: P = 0.651 — (1 — 0.911) = 0.562. There are 56.2 chances out of 100 that
the measured voltage is within the range {—2mV, 2mV}.

Prediction interval with a 5 % risk of a Gaussian variable:

We now calculate the prediction interval (symmetric) with a 5 % risk of the
random variable x distributed according to the law N(#, o), that is to say, the range
in which the r.v. has 95 % chances to be observed. In other words, we search the
interval such that

P{x<x<x} =P{n—a<x<n+a} =0.95. (21.28)

Fig. 21.8 Shaded area
under the pdf of centered
reduced r.v.z
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We are interested in the reduced variable

We look for z; such that
P{—z1 <z<z1} =0.95.
Due to the symmetry of the distribution, z; is such that
P{z<z1} =0.975.

Reading the table, we find z; = 1.96.
So

P{n—1960<x<n+1960} =0.95.
We note that (See Fig. 21.9).

Plso(x) = {n — 1.96 0,1+ 1.96 ¢}.

(21.29)

(21.30)

(21.31)

(21.32)

(21.33)

We conclude that the variable x has 95 % chances of being realized in an

interval with approximate width 40 centered on the mean # .

21.1.2.1 Moments of the Gaussian Distribution

We recall now the general methodology for calculating Gaussian integrals. First we

calculate the integral:

+ 00
(o) = / e dx with o > Oreal.

—00

Fig. 21.9 The value of the
shaded area is 0.95. Its
boundaries give the 95 %
prediction interval

0.95

(21.34)

Z -

751960 7 p+1960

X
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For this calculation, we evaluate the square of this integral:

+00 +00 oo 27
Pla) = / / e " )y dy = / / e ™ rdrdo.
i 00 (21.35)
Pa) = 2n/ e rdr.
0
We note 2 = u; du = 2rdr
Pa)=n / e idy = — [ = T (21.36)
o o
0
So
I(2) = g (21.37)

The moments of the Gaussian distribution are calculated using the derivatives of
I(o):

d;(;) o 76 ety \/,;<_ %) o (21.38)

This shows that

+ 00
.
/ e e = 2 /o% (21.39)
—0

Similarly, by differentiating twice with respect to o we get the fourth moment

+ 00
d’1 3
2= / x“e*”zdx:ﬁza*%. (21.40)

It is thus seen that by successive differentiations, one can reach all integrals
containing even powers of x, i.e., calculate the different even moments of the
Gaussian distribution. The odd moments are zero as the functions to integrate are
odd in the range —oo, + co.
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Application: asymmetry and flatness of the Gaussian distribution:

As the moments of odd order are zero, the third-order moment, then the
asymmetry, is zero.

On the other hand,

1 i 4 _bn? 1 i 4
Uy = x—n)e 22 dx= / x,e 22dx,. 21.41
4 V2no? ( ) V2no? ( )
—00 —00
Using the result (21.40) we can write
1 r 2 1 3 5/2 4
Ly = xte22dy, = V1= (26%)" "= 36" 21.42
¢ V2na? V2ng?2 = 4 ( ) ( )
—0Q
The flatness of a Gaussian distribution is then
_ K
my —9—3. (21.43)

We have calculated in Chap. 7 the Fourier transform of a Gaussian. The result
was

+ oo

/ efo(xzeiikxdx = e%\/—i. (2144)
o

—00

We deduce the expression of the Fourier transform of a Gaussian probability
density function of a centered variable:

Pad o4

2
Let f(x) = \/217176_?, its FTis: F(k) =e 2 . (21.45)

It is thus seen that the Fourier transform of a Gaussian is a Gaussian.

For a Gaussian variable with a nonzero expected value 5, the pdf appears as the
previous density translated by 5. Using the shift theorem connecting the FT of a
translated function to that of the un-translated function by multiplication by a phase
factor, we have

(x=m? . .
Let f(x) = \/227677, its FT is : F(k) = e“k”e_%. (21.46)
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21.1.2.2 Characteristic Function

We call characteristic function @(k) of a r.v. with probability density function f(x)
the function given by the integral

+ oo

d(k) = / f(x)e*dx. (21.47)

—00

It appears that the characteristic function is connected to the Fourier transform
F(k) of the probability density function of the r.v. by the relationship:

®(k) = F(—k)
So for a Gaussian variable
Let f(x) = e_% the characteristic function is : @(k) = eibne==F (21.48)
: V2no? ’ : : :

21.1.3 Probability Density Function of a Function
of a Random Variable

Let y be a function of the random variable x. How, knowing the probability law of
x can we deduce that of y?

In a domain where the function y(x) is monotonous, every event giving to x the
value x, will give to y the value y. The probability to find x between x and x + dx is
equal to the probability to find y between y and y 4+ dy. We can then write:

[fe(x)d] = [fy (v)dy|. (21.49)

Note the absolute values that serve to ensure the necessarily positive character of
the probabilities. Densities being positive, we may write

BO) =) g (21.50)

&

In the case where a same value of y can be obtained for several values of x, we
split the interval of variation of x in intervals where the function y(x) is
monotonous.
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The probability |f,(y)dy| is the sum of the probabilities of realization of x:
|fx (x)dx]; on the different intervals with a one to one correspondence between x and y:

5 ()dy| = Ife(x)dxl; + [fe(x)dl, + .. (21.51)

Figure 21.10 shows the example where y = x*>. Two intervals of x give the
realization of y between y and y + dy.

Application: > (Chi-square) variable with one degree of freedom.

This variable plays an important role in statistics since it is largely used to
evaluate the noise in a signal, the squared error of a model or the deviation of a
distribution of variables with a theoretical distribution (for that last application, see
Chap. 22). Let us study here its properties.

Let x be a Gaussian centered reduced r.v. N(0, 1). One seeks the distribution of
the variable y = x? (called a x> variable with one degree of freedom):

We have:

1 e 2 dy
X) =——=e 7, y=x"and — = 2x. 21.52
B = 2=t ) = e M) (21.53)
——e 2 — = e . )

TR oy Y vy Y

We have multiplied by 2 because there are 2 values of x for a given value of y.
0 | 00 )

E{y} = dy = —/ e 2dy. 21.54
{r} / ¥y (v)dy verd Ve :dy (21.54)

We note y = x2; dy = 2xdx; /y = x.

00 + 00
1 2 1 2
E{y} =—= [ xe "2xdx = —= [ xe 7dx=1 21.55
v “2_”0/ 7= 2139
The calculus of the variance of x is recognized:v(y) = E{y*} — (E{y})*.
¥ (x)
Y+

&y
y/

X X+dx [0 x x+dc X

Fig. 21.10 In this example, |f,(y)dy| = |f; (x)dx|, + [fi (x)dx],
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In a first step, we calculate E{y*} = m I ye - \}_dy

We note y = x? .E{yz}:\/—foC 46’7—2xdx—\/—f e %dx.
We must integrate the product of the fourth power of x with the Gaussian
function. Using the results recalled above on Gaussian integrals, we have

E{y} —\/_ V32 =3.

Therefore v(y) =3 — 1 =2.
So

E{y*} =1;v() =2 (21.56)

Characteristic function of the y? variable with one degree of freedom:

+ o0

o) = [ =ity ——

“le 2U ehdy.
\/27r / ) dy

—00

Using the result in the table of Fourier transforms given in Chap. 7, we get

L N 1
¢(k):E(_Jk+§) ﬁ_w (21.57)

21.2 Second-Order Statistics

21.2.1 Case of Two Real Random Variables

We are interested in the result of the values x(#;) and x(z,) obtained for two times #;
and 1, . They are both random variables. It is clear that if the signal x(7) is obtained
at the output of a physical system and if the times 7, and #, are quite close, the
measured values are generally not independent. For example, if the value at time #;
is strongly negative, the value obtained at a close time #, will most likely be also
negative, etc.

We are led to study statistics of two r.v. which will be also called second-order
statistics. For convenience, we write x(¢;) = x and x(7,) = y.
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21.2.1.1 Joint Probability Density Function

The probability that x and y are realized in the neighborhoods dx and dy of x and
y is (See Fig. 21.11):

P{x<x <x+dx,y<y<y+dy,} = fiy(x,y)dxdy. (21.58)
This probability is proportional to the infinitesimal area dx dy of a rectangle
whose vertices is the point (x,y) in the plane xOy. It is weighted by the function

fey(x,y) that acts as a mass density in the plane xOy.
The function f(x(t;),x(f2)) = fey(x,y) is the joint probability density function.

21.2.1.2 Joint Cumulative Distribution Function

It is defined as the probability that x <x and y <y:

X y
Pl <x,y<y) = Fyylx,y) = / / flryidy.  (21.59)

The domain of integration is hatched in gray (Fig. 21.12).
Fyy(x,y) is the joint cumulative distribution function.

Fig. 21.11 Infinitesimal area YA
dxdy

e

0 x x+dx X

Fig. 21.12 Domain of YA\
integration is hatched in gray
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We have evidently

0% Fyy

21.2.1.3 Marginal Cumulative Distribution Function

The marginal cumulative distribution function is defined as the probability that
x < x whatever the value of y

X

Px<x) =P{x<x,Vy} = / / So(x,y)dxdy = Fy,(x, 00). (21.61)

—00 —00

The domain of integration is hatched in gray (Fig. 21.13).

The marginal probability density function f; (x) is given by f(x) = W
It comes
+ 0o
50 = [ty (1.62)

Correlation of the random variables x and y:
By definition, the correlation of variables x and y (assumed real) is the expec-
tation of their product

+o0 +00
= [ [ ot (21.63)
—o0  —00
Fig. 21.13 The domain of P4
integration is the half-plane
x<x
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Covariance of r.v. x and y:

By definition, the covariance Cyy is the correlation of the centered variables. It is
defined as

Coy = E{(x =) (y — ) } = Efxey.}- (21.64)
Property: One can easily show that
Cyy = E{xy} — E{x}E{y} = E{xy} — n,n,. (21.65)

Correlation coefficient of variables x and y:
The correlation coefficient ry, of variables x and y is defined by

C
Ty = — - (21.66)
0x0y
Important property:
|rey| <1 (21.67)

To show this property, we construct a quadratic form where Z is any real number
and we take the expectation of this form. This expectation of a square quantity is
necessarily positive or zero:

E{ [ix =)+ (v — ny)}z} = 262+ 02 +27Cey 2 0, (21.68)

We recognize a polynomial of degree 2 in A. In order that its value be always
positive or zero regardless /, it is necessary that its discriminant is negative or zero,
so that there is no root accompanied by a change of sign of the polynomial.

: 2 2.2 G .
It is thus necessary that C;;, — gy0, <0. Then Lx—jyl <1, or: |rxy| <l
Orthogonality and non-correlation:
Two r.v. x and y are said orthogonal if their correlation is zero:

E{xy} =0. (21.69)

Two r.v. x and y are said uncorrelated if their covariance is zero, that is to say if
Cyy = 0 (and then ryy, = 0). We will have in this case: E{xy} = n,1,.

Note that the concepts of orthogonality and no correlation imposed by use are
not in good agreement with the original semantic definitions.

Discussion: If two r.v. are uncorrelated, centered variables (x —7,) and
(y - ny) are orthogonal: x — 1, Ly —1n, .

If two r.v. are uncorrelated and their expectations are zero, then they are
orthogonal: x Ly



21.2  Second-Order Statistics 425

Characteristic function of two r.v. x and y:
The characteristic function ®(k;, k,) of joint random variables x and y is defined
from the double integral of the joint probability density function fyy (x,y):

+o00 +o00
(ki ky) = / / Foy(x, y)e® 1 e® dx dy. (21.70)
—00 —00

The characteristic function is related to the two-dimensional FT F(k;,k,) of the
joint probability density function fiy(x, y):

B(ky, k) = F(—ky, —ks). (21.71)

21.2.1.4 Conditional Probability Density Function

The conditional probability density function of a random variable y is defined as the
probability density function of that r.v. knowing that the r.v. x has been realized and
took a value x. This density is noted fy|,(y). One says: f;|.(y) is the probability
density of y if x.

There is an important relationship between the joint probability density and
marginal and conditional probability density functions expressed in the following
theorem:

Theorem The joint probability density function is equal to the product of the
marginal probability density function of x by the conditional probability density
function of y.

S (x,y) = fe()fyx(v)- (21.72)
We have, of course, also

For(,3) = K0y (). (21.73)

Definition The random variables x and y are called independent if their joint
probability density function is equal to the product of their marginal densities:

Joy (6 3) = e (S ()- (21.74)
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We can see that, in the case of independence, the conditional probability den-
sities are equal to the marginal probability density functions.

Se(y) = £ (v) and fiy (x) = fie(x). (21.75)

Property If the random variables x and y are independent, according to (22.17)
their characteristic function is given by

+o0o +oo +00 +o0o

k17k2 / / f;cy x y 1k1x 1k2ydxdy* / / f;c f)" 1k1x lkzvdxdy,

Ok, k) = / f(x)edr / )Ry = @, (k) (k).
(21.76)

In this case, the characteristic function of the couple (x,y) of joint variables is
the product of the marginal characteristic functions of x and of y.

21.2.1.5 Bayesian Statistical Aspect

In recent years, the use of Bayesian statistics has been rapidly developing in signal
processing. It is used in many areas such as signal quality enhancement or source of
signal localization. It may be seen as the evaluation of the probability of the cause
of a phenomenon. It is an aspect of statistical inference where one looks to sta-
tistical properties by analyzing the data. The treatment of this topic is beyond the
scope of this book and the reader is advised to get insights of this field in the
literature. To expose the concept of Bayesian statistics, rather than focus on the
probability densities, we use discrete events probabilities.

Consider two events A and B with probabilities P(A) and P(B). The likelihood of
the joint realization of both events A and B, P(A and B) is noted P(ANB).

The conditional probability of B, the event A having been realized, is defined by
the ratio of the joint probability P(ANB) by P(A). So:

P(ANB)

P(B|A) = “P(A)

(21.77)
Obviously we can write P(ANB) = P(B)P(A|B), and P(A) = M, and also

(BlA)
P(A|B) = A(Q)B) P(B) = P;?A\QBI?'
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Bayes rule:
Since P(ANB) = P(A)P(B|A) = P(B)P(A|B),we have
P(A|B) = %. (21.78)

For conditional probability densities defined in Sect. 21.4.4, the Bayes rule
would be written as

) ~E2 R, (21.79)

The rule given in (21.78) is also called the rule of the probability of the causes.
To explain this term, we change the notation. We call D the event that has been
observed as a data of the particular problem (D is used to say that it is a data). We
note H the event that is assumed to have been realized (hypothesis H). The
Eq. (21.78) takes the form:

P(H|D) = Pi(DI'f(Ig (H) (21.80)
Let us call H' the event corresponding to the non realization of H.
We can write
P(D) = P(D|H)P(H) + P(D|H')P(H'), (2181)
or:
P(D) = P(D|H)P(H) + P(D|H')(1 — P(H)). (21.82)
Equation (21.80) becomes:
P(H|D) = 7 P(DIH)P(H) (21.83)

(DIH)P(H) + P(DIH')(1 — P(H))"

This last expression expresses the probability that the measurement D has been
caused by the realization of the event H.

Two exercises from problems encountered in medical statistics are given at the
end of this chapter.
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21.2.2 Two Joint Gaussian r.r.

21.2.2.1 Probability Densities

By definition, x and y are jointly Gaussian if their joint probability density function
is given by

(17%‘)2 2r(x=nx) (y=11y) +(,“7’]y)2

S (x,y) = e N o 5 /. 21.84
(5.) 2o,V 1 —r? ( )

Further, it will be shown that r is the correlation coefficient of x and y.

In the following, the study is restricted to the case where the means of x and y are
null and where their variances are equal. This particular case makes it simple
calculation, but is still worth in practice. It helps to understand the nature of the
problem.

In that case

1 —— (P —2rxy +?
folwy) = 2= (), (21.85)

We calculate the marginal probability density of x: fi(x) = f_t)ooc foy(x,y)dy .
For this, we write initially fi,(x,y) in another form. We can pose o = ﬁ

("=2r9) in which the first two terms

and the term is factored. There is then a term e™*
of a squared difference is recognized.

We write then

Y= 2ny = =) - r (21.86)
So
1 20 -m?
Folvy) =S pmse e (21.87)
or:

1 2 1 __-m)?
x,y) = O R S ) 21.88
Sy (:7) V2nra? 2na2(1 — r2) ( )

We recognize the product of the marginal probability density of x by the con-
ditional density of y. Indeed
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+ 00 + oo

1 e 1 o
X) = Xy)dy = e [ afuady. (21.89
fx(®) / Sy (x,3) dy V2nra? / 2n62(1 — r?) v ( )

We recognize in this expression the integral of a Gaussian probability density
function from minus infinity to plus infinity. This integral is 1.
So we have

Joy (%, ) = e ()1 (v)- (21.90)
with:
A = e B andf () = T, (21.91)
V2ng? y‘x 2n0%(1 — r?)

Interpreting the shape of this density:

The value x being observed, the r.v. y is conditioned by this observation. It is r.v.
with e.v. 7y, = rx and variance o}, = o*(1 — r?) <o’

The observed value of x has “pulled” the statistics of y. For example, if r is
positive, it is more likely to observe a negative value for y if a negative value was
observed for x.

We also note that the conditioned variance of y is equal or less (as > < 1) to that
of y unconditioned. The statistical range of probable values of y is reduced. We see
in Fig. 21.14 that the width of conditional probability density f;.(y) is smaller than

that of the marginal density f,(y):

Fig. 21.14 Marginal pdf f (y:lf
/y(y) and conditioned pdf ¥

W

0 7y Y
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Limit cases:
r = 0 (no correlation); the joint probability density is

1 21 _2
f-;fy(x7y) = \/27'[76 20° \/We 202, (2192)

The two r.v. x and y are thus also independent. For Gaussian variables, the
non-correlation is equivalent to independence.

r =1 (full correlation); the variance of y|x is zero. If a given value of x is
observed, the value of y|x is definitely the value of x.

We verify now that the coefficient r is the correlation coefficient of x and y de-
fined by

_Colxy) _E{G-n)b-n)} E{xy}

P ogay 0y0y 0.0y (21.93)
in the case wheres, =1, = 0.

Indeed
1  -m?

+ 00 + 00
1 2 =)
E{xy} = e 22dx —ye ¥()dy. 21.94
b} / V2ra? / V2na?(1 — r2)y Y ( )
—00 -0

The second integral is the average of y conditioned by x, that is ) = rx.
So:

+ oo
2
E{xy} = 2:1:02 / e 2dx = ro’. (21.95)
We thus get
E{xy}
== (21.96)

21.2.2.2 Characteristic Function

We place first in the case previously treated where the expectations of the variables
is zero and variances are both equal to 2. Their correlation coefficient is 7.

1 —— L (P—2rmy+y?
fvy(x,y) = me 252(142)( )7 (21'97)



21.2  Second-Order Statistics 431

for(xy) = \/217175% \/zmzl(li_rz)em‘y”‘z). (21.98)
+00 +oo
(21.99)

The characteristic function of the Gaussian conditional variable y|x is recognized
. o2 (1=
in the second integral. It is e*>*e ==

We now have to evaluate

@(k k ) 1 52(1—,2)‘(% _a2 i(ki + k) dx (21 100)
Lk) = e 2 e ’e "Ndx. .
V2mng? /
We finally have
(-2 2 )2

Dk ko) =7 e T (21.101)
21.2.3 Properties of the Sum of Two r.v
21.2.3.1 Probability Density Function
Consider

z=x+y, (21.102)

the probability density function f;(z) can be deduced from the joint probability
density fiy(x,y). For that we calculate the cumulative distribution function of z:

+

F.(z) = / fo(x,y)dxdy = /oodxz/_xfxy(x,y)dy. (21.103)

x+y<z -

The integration domain is the half-plane below the line of equation y =z —x
which is parallel to the second bisector (see Fig. 21.15).
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Fig. 21.15 Half plane of

18 % , (%)
integration below the line N

yeed \ y=z-X

In the particular case where the r.v. x and y are independent:

fo(x,y) =fX)AD). (21.104)

So

Fy(z) = / ﬁc(X)dX/fo”y(y)dy: / fe(X)Fy(z — x)dx. (21.105)

+ o0

file) = 28 _ / L@ - x) dr = £(2) ©.(). (21.106)

—00

Thus

f(2) = fe(2) @ f5(2). (21.107)

It is thus seen that the probability density function of the sum of two independent
r.v. is equal to the convolution product of the probability density functions of these
I.V..

Expectation of the sum of two r.v.:

If z=x+y, E{z} = E{x} + E{y} = n, +1,. The expectation of the sum is the
sum of expectations.

If x; and x, have a same average 7, the expectation of their arithmetic mean m is:

E{m)} :%(E{xl} +E{x2}) = 1. (21.108)
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Variance of the sum of two r.v.
If

z=x-+yvar() = E{ (e +y — (E{x} + Ep})’ | = E{ (xe 4.7},
=E{x}} +E{y’} +2E{xy.}

If the two variables are independent E{x.y,} = E{x.}E{y.} = 0.
In that case

var(z) = E{x?} + E{y2} = var(x) + var(y). (21.109)

In this case, the variance of the sum of the two r.v. is the sum of their variances.
Thus, letm = ﬁzyzl x;, the arithmetic mean of N independent random variables
with identical expected values and variances (1 and ¢?). So,

1
E{m} = nandvar(m) :NUZ' (21.110)
We see that the arithmetic mean m of r.v. will approach more the expectation
value if the number N of variables is large, since its variance decreases as
N increases.

21.2.3.2 Central Limit Theorem

This theorem is presented here with an example. Suppose that x and y are two
independent uniformly distributed r.v. within the interval {— .4 ¢- The probability
density function of their sum z being the auto convolution of rectangular functions
densities is a triangular function. The length of the base of the triangle, which is the
sum of the supports of the functions that are convoluted, has the value 2a.

If now x, x;, x3 and x4, are four independent variables uniformly distributed in
an interval {— 5 ,%}, by grouping terms two by two, it is seen that the density of the
sum z, convolution of two triangular shapes densities has a bell shape where the
connection to zero values at the ends of the interval is parabolic.

In pursuing these summations of r.v., and if we make the sum of a large number
of independent r.v. distributed identically on a bounded support, it is found that the
shape of the density of the sum of these variables approaches a Gaussian shape. We
understand that it would be the same if the initial density had a form other than
rectangular, triangular, for example.

This property is very useful in statistics, and is known as the central limit
theorem.
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Exercise
Calculation of the probability density function of a function of two r.v.
Let

z=1/x24y?%, (21.111)

to calculate the probability density function of the r.v. z, it is again more convenient
to pass through the calculation of the cumulative distribution function of z,

7) Z//fxy(x,y)dxdy. (21.112)

The domain of integration D is the set of points in the plane xOy that realizes the
condition z <z. It is the disk centered in O with radius z (Fig. 21.16).

We assume that x and y are Gaussian variables, independent with zero expec-
tations and variances o2, their joint probability density is given by

1 2 1 »?
(6, y) = felx = e e . 21.113

Fz(z):L// S dvdy (D:z<2). (21.114)

2ng?
D

The integration is performed in polar coordinates. The infinitesimal surface
element becomes z dz d6.

2n

l Z _)‘ . 1 4 _i
F,(z) :2n02/e 27 zdz/ Zg/e 2zdz. (21.115)
0

0

Fig. 21.16 Disc of Vv
integration z <z
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So

(2 Z%ZE%U(Z). (21.116)

z is distributed according to a Rayleigh law.
Let us calculate the mean and variance of z:

| 00 | + oo

2 2
L fedra o L [ e
E{Z}—;/e 227 dz_20'2 / z7e 22dz (21.117)

0 —00
1
=53 —V2no%e® = a\/g (21.118)

To calculate the variance of z,, we use the relationship v(z) = E {z } (E {z})

The first term is: E{z*} =55 [~ e 2«Zz3dz =L [e 2%4@
We denoted z> = u, and so 2zdz = du.
Integrating by parts

[o.¢]
1 w100 .
E{z’} = 3.7 [—262%7}0 +24° / e du p. (21.119)

0

The first term of this sum is zero. It comes: E{z?} = —2¢7 {e’ﬁ}o =262 .

Finally: v(z) =20 — 0?2 =¢*(2 - %).

Then

E{Z}

1/ = 1.91306. (21.120)
\/—T

21.2.4 Complex Random Variables

21.2.4.1 Probability Density Function of a Complex r.v.

Let xz and x; be two random variables. The quantity x = xg +jx; is a complex
random variable, with j = v/ —1 .
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The statistical properties of x are governed by the joint probability density
function:

P{x,<x, <x, +dx,,x, <x, <x,+dx} = fr,x, (x,,x,)dx dx,. (21.121)
Expectancy: Expectancy of x = xp + jx; is the sum of expectations of xg and jx;.
E{x}=FE{xg} +jE{x/}. (21.122)

Variance: Before defining the variance, first let us calculate the following
expression:

E{(x - E{x})z}:E{(xR +jx; — E{xg) —jE{x,})z} (21.123)
:E{ (Xre + jx,c)z} = E{x}, — X2 + 2j¥rexsc ). (21.124)

A variance is expected to be a real nonnegative number. The real part of the
previously calculated quantity is

E{xz. —x5.} = E{xz.} — E{xL.}. (21.125)

This expression could be negative if E {x,z-‘,c} <E {xi_}. On the other hand, it has
an eventually nonzero imaginary part: 2E{xg.Xy.}.
So we must define the variance in another way by using the complex conjugates:

v(x) = E{(x — E{x})(x — E{x})"}. (21.126)
Indeed
v(x) = E{(x — E.{x})(x - Ej{x})*}ZE{(szc —i—j:c[c)(x&. +ixe) ) (21.127)
v(x) = E{(xgc +jX1c) (XRe — jX10)} = E{ch erlc}'

This expectation is real, positive, or zero, as expected of a variance.

21.2.4.2 Correlation of Two Complex R.V

Consider two complex random variables:

x| = X1g +jxyyandx; = xr + jxo;. (21.128)
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Their correlation is defined as
E{x1x3} = E{(x1r + jxu) (x2r — jx2)"}. (21.129)
We have
E{x\x3} = E{xigxor + XX} +JE{x11X28 — X1p%2/}. (21.130)

This correlation is a complex number, sum of four correlations. Its real and
imaginary parts are each the sum of two correlations. E{xlxz} carries only
incomplete information about correlations.

There is a case where the correlation gives all the information, it is the case
where some of the correlations contained in (22.133) are equal. Specifically if

E{xgx2r} = E{x1xy} and E{x|xor} = —E{x1px2}. (21.131)

In this case we have
E{x\x;} = 2E{x\gpxor} + 2JE{x11%2r }- (21.132)

It is noted that then
E{x1x2} = E{xigxop} — E{x1x21} +jE{x1x2r} +jE{x1gx2;} = 0. (21.133)

We always assume in the following that the complex random variables under
study have this property. This is related to the physical nature of signals which are
the general subject of our study.

Example 1
Let the random signal

x(1) = Age!”'e?. (21.134)

The amplitude Ay is a certain, real positive number. The phase ¢ is a random
number uniformly distributed between —n and + 7.
The values of the signal at two instants #; and #, are two random variables.

X = x(ll) = A()Cjwtlejq); Xy = x(lz) = Aoejwtzei(p.

Co . . 21.135
E{x1} = E{Ag@”e?} = Agd™ E{el?} = 0. (21.135)
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The expectancy is null, as
1 T
E{e?} = 5 / e?dp = 0. (21.136)

The signal has the property (21.134) emphasized in the previous paragraph:
E{xix,} = E{Ae"1e? Ao ™el?} = A2 TRE{e20) = 0. (21.137)
We calculate the correlation:

E{xix;} = E{Ajeel?Age 1726717} = A2l EL]} = AZel@(170),
(21.138)

Example 2
We discuss these properties on an example from acoustics. Let a plane acoustic
wave propagating in a fluid in the direction x.

The sound pressure can be written as p = poe!®(~2).

It is assumed that due to homogeneities in the medium, the speed ¢ varies
randomly around an average value co. One writes the index in the form n = <. The
index is a random variable that can be written in the form n = 1+ ¢. The r.v. ¢ has
zero expectation. It is assumed in the sequel that n is Gaussian and its standard
deviation is noted ¢ . Similarly n is Gaussian with mean 1 and variance ¢°.

Sound pressure is thus a function of the random variable n. We now determine
. . i —ii
the mean and variance of the acoustic pressure: p = ppe'®e " .

+ 0o
E{p} _ poeith{efiwf—(’)‘} _ poeith{efian} _ poeiwt / efi“"f(n)dn.
-0

We denoted o = ‘f—;‘ One sees the Fourier transform of the probability density
function (Gaussian) of n. Using the formula (21.46) we obtain

2,22
22 o _ oty

E{p} = poee e~ = ppee e 0 21.139
pt=p p

o2k 2

or, using the average wave number ko = &, E{p} = poe"”'e e >
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Limit cases:
At low frequencies E{p} = poe'’e**, At high frequencies E{p} = 0.
The variance of p is defined by

var(p) = E{(p — E{p})(p" — E{p"})}.

It is

— a2k ¥ _a2k2x2
var(p) :pﬁ +p(2)e 7k —2E{p}E{p }:p(z](l —e 7k ).

At low frequencies the variance is low. It goes to 0 with frequency going to O.
The variance becomes equal to p? at high frequencies. The amplitude of the
variation of p is then equal to the pressure modulus py .

Summary

We presented the main statistical properties of a random variable with values in a
continuum. We have defined the probability density function and the cumulative
distribution function of a r.v.: expectancy, variance, the moments of a distribution,
and the characteristic function. The Gaussian distribution (normal distribution) has
been studied thoroughly. The probability density function of a function of a random
variable has been studied with chi-square law as an example. In the second part of
this chapter, we have presented the second-order statistics.

The joint probability density, the marginal probability densities were defined.
Bayesian aspect of conditional statistics has been introduced. The correlation
coefficient, orthogonality and independence in probability concepts were intro-
duced. Two jointly Gaussian variables are exposed as an illustration. It has been
shown that the probability density function of the sum of two independent r.v. is the
convolution of their probability densities. This result is extended to the sum of a
large number of independent random variables that appear to follow approximately
a Gaussian distribution (central limit theorem). Basic properties of complex r.v.
have been exposed.

A table of Gauss’s law is given at the end of the chapter.

Exercises

I. If the size of an individual in a population can be considered as a Gaussian r.v.
with expectancy 1.75 m and standard deviation 0.1 m, what is the probability
that the size of an individual taken at random deviates from the mean by more
than 10 cm?; that it exceeds 1.95 m?
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II. Let x be a random variable uniformly distributed between —n and n. Let

y = sinx. Show that the pdf of y is f;(y) = %\/11_7

II. Two r.v. x and y are jointly Gaussian. Their expectancies are null and their
variances are equal. We assume that ¢, = 5.64 x 10~* and that their correla-
tion coefficient is 7 = 0.8415. Knowing that x = 1073 V was measured, what is
the probability of measuring a negative value for y?

Solution: y|x is a Gaussian random variable with oy, = \/02(1 —r?) =

3.05 x 1074,
We can apply the formula of the conditional probability:

(y—rx)?

() = e 707 with ), = rx = 0.8415 x 107,

2n0%(1 — r?)

We make the change of variable z = % Writing y; = 0, the corresponding
ylx

. . — —3
boundary of the reduced centered variable is z; = % = —% =2.762.
ylx .

Referring to the table of Gauss’s law, we see that there is 1 — 0.9971 = 0.0029, less
than three chances in a thousand for obtaining a negative value for y.

IV. Let x and y be two independent random variables distributed according to a
Gaussian distribution. Show that their sum is also distributed according to a
Gaussian law.

Hint: Use characteristic functions and the theorem of the FT of a convolution
product.
Explain qualitatively why values of y near its average are more probable.

V. A box labeled 1 contains 75 red and 25 black balls. A second box 2 contains 40
red and 40 black balls. Knowing that a black ball was drawn from one of the

two boxes selected at random, what is the probability that it was drawn from the
box 1?

We note P(N) the probability that a ball is black and P(R) that it is red.
Since the box is chosen at random: P(1) = P(2) = 0.5.
The probability that a ball is red or black is necessarily equal to 1:

P(NUR) =P(N)+P(R)—P(NNR) = 1.

A ball cannot be both red and black, so P(NNR) = 0; then P(N) + P(R) = 1.
A black ball necessarily belonging to the box 1 or 2, since a black ball cannot be
from both urns 1 and 2 we have:

P(N)=P(NN1)+P(NN2)—P(NN1N2)=P(NN1)+P(NN2).
P(N) = P(1)P(N|1) + P(2)P(N|2).
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Since P(1) = P(2) = 0.5, P(N) =0.5 -0.754+0.5 - 0.5 = 0.625.
Similarly P(R) = 0.5 -0.25+0.5 - 0.5 = 0.375.
Using Bayes’ theorem we can write

N|DP(1) 075 05 _ .
P(N)  0.625

PN =2

The probability that the black ball was drawn from the box 1 is 0.6.

Similarly P(2[N) = 25252 — 0505 — 0.4,
It is normal to obtain that P(1|N) + P(2|N) = 1, the black ball could not have

been drawn otherwise that from box 1 or 2.

VI. A person belongs to a population whose risk of developing cancer is 5 %. This
person makes a test whose probability of detection of an existing cancer is
80 %. This test, however, gives a wrongly positive result in 20 % of cases.
The test happens to be positive for that person. What is the probability that the
person has cancer?

We use the formula (21.83).

D is the event that the test is positive. H is the event: the person has cancer.

P(H) is the probability that the person has cancer: P(H) = 0.05.

P(D|H) is the probability that the test is positive, the person having cancer
P(D|H) =0.8.

P(DI|H’) is the probability that the test is positive, the person having not cancer

P(D|H') =0.2.
We seek the probability that the person has cancer when the test has been positive
Formula (21.83) is written: P(H|D) = jgois 205555 = 0.1739.

There are less than one in five chances that the person has cancer. The need for
treatment will be assessed knowingly by the therapist.

The following table gives the values of the function: F(z;) = P{z<z1} =

2
1z =
ﬁf—loo e 7dz.
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The table read is as follows: We assume that z; = 1.35. To obtain the value of
F(1.35), we move down in the column until z; = 1.3 then move on the horizontal
until the column 00.05. We read F(1.35) = 0.91149.



Chapter 22

Multiple Random Variables—Linear
Regression Maximum Likelihood
Estimation

This chapter is dealing with the statistics of multiple random variables. First, we recall
the theoretical results of the statistics of a Chi-square variable with any number of
degrees of freedom. The Chi-square distribution law is used for comparing two
statistical distributions. One example of application is used to test the applicability of
the central limit theorem to the sum of up to 26 r.v. We study the linear regression
of the data of multiple observations on r.v. After recalling the simple method of
regression, we encounter more elaborate methods based on approximation methods
used in linear algebra. We give the principle of Tikhonov regularization of the
problem which is useful when the involved matrix is ill conditioned. The useful,
empirical L-curve method for obtaining the regularizing parameter is presented.
A simple example is given to present the different aspects of the problem. In the
following, we discuss the maximum likelihood aspect of statistical parameter esti-
mation and introduce the Cramér-Rao bound and its properties.

22.1 2 (Chi-Square) Variable with v Degrees of Freedom

By definition, it is the sum of v independent Gaussian reduced centered variables z;,
squared: 2 = Y., z7. It is a random variable. 2 is the sum of independent ran-
dom variables; the probability density of its distribution is the convolution of the
probability density functions of the elements z7 of the sum.

Characteristic function: Accordingly, its characteristic function is the product
of the characteristic functions of all variables. According to formula (21.57) the
characteristic function of each variable is: (DZ,Z (k) = W We have then

1

m(@:w.

X

(22.1)
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Probability density function: The probability density function of y? is the

inverse Fourier transform of ®,.(—k) = m According to the formula given
; Yy

in the table of Fourier transforms in Chap. 7, with the notation x> = x, we have
1 s tall
fol) = e (%) U(x). (22.2)

I'(x) is the gamma function; it is an extension of the factorial function. U(x) is
the Heaviside function reflecting the fact that the probability density function is zero
for x<0.

Depending on the parity of v, we have

T TR I OV

U(x) if v is odd, (22.3)

and

felx) = FE-1)@=2)..20) U(x) for v even. (22.4)

Properties: Using the independence assumption, we have from (21.56):

Mean : E{y’} = E{Zzz} = EU:E{z?} =vl=u. (22.5)
i=1 i=1

14 14
Variance : var(y;) = var <Zzl2> = var(z}) =v.2 =2u. (22.6)
P P

¥ test: This test is used to compare two distributions of data, particularly, to
compare a distribution of observed values to a theoretical distribution.

If the r.v. is continuous, one separates its range of variation in r classes (usually
r ~ 15-25). When performing N measurements of the variable, the frequency of
occurrence f; = % is determined, ratio of the number N, observed in each class k to
the total number of measurements. We denote N, the expected number in the class
according to the proposed theoretical distribution. Most often Ny is different from
N;. This difference may result from a random deviation from the theoretical value
or because the assumed theoretical statistical distribution is not the one that governs
the issue.

It is shown that if the theoretical law is satisfied and the deviations are due to
chance, the following variable
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r _N/ 2
=y e N ¥ o (22.7)
k=1

follows a ? law. The number of degrees of freedom is 7 at maximum. It diminishes
by the number of parameters of the observed distribution used to build the theo-
retical distribution.

It is » — 1 if we impose a common mean, and is » — 2 if we impose the same
mean and the same variance.

The principle of the test is the following:

We assume that the observed data are distributed along the expected theoretical
distribution (this assumption is called Hy hypothesis, or also null hypothesis). The
observed difference is in that event due to chance. The probability of observing a
very high value of X? is low. We adopt the following decision rule: if the value X>
is less than a threshold value noted x%, we accept the null hypothesis. Above this
value the hypothesis is rejected. The threshold value depends also on the degree of
certainty that we seek to achieve.

The following table gives the values y7 that have a 5 % probability to be
exceeded with a number of degrees of freedom going from 1 to 30 for a ¥ r.v.

v 1 2 3 4 5 6 7 8 9 10
2 |3.84 5.99 7.81 9.49 11.07 1259 |14.07 [15.51 [16.92 |18.31
v 11 12 13 14 15 16 17 18 19 20

¥ [19.67 |21.03 [2236 |23.68 |25 26.3 27.59 |28.87 |30.14 |31.41
v 21 22 23 24 25 26 27 28 29 30
2 3267 |33.92 (3517 |3641 |37.65 |38.88 |[40.11 |41.34 |42.56 |43.77

The operating mode of the test is studied on two examples:

Example 1
We launched 1000 times a coin and observed 550 tails and 450 heads. Can we
accept that the coin is fair (i.e., that the probability is 72 for each side)?

Solution: We make the hypothesis Hj that the coin is fair. With the above
notation, the numbers observed in both classes are: N; = 550 and N, = 450 while
the expected numbers are N| = 500 and N5 = 500. The X? difference between the
two distributions is:

(550 — 500)* N (450 — 500)> 52500 _

2 __
X = 500 500 500

10.

As we use a distribution with an assumed mean of 0.5, the number of degrees of
freedom is » — 1 = 1. The value 1(2) at the 95 % confidence level is 3.84. The 95 %
confidence level is widely used to define the threshold of acceptability.



448 22 Multiple Random Variables—Linear Regression ...

The deviation observed X? is equal to 10, exceeding (quite clearly) the threshold
value; we reject the null hypothesis, that is to say, we reject the hypothesis that the
observed difference is due to odds. In conclusion, we consider that the coin is unfair.

Example 2

We test the central limit theorem by posing the following problem: if one makes the
sum of M independent variables uniformly distributed in an interval around O in the
same way, from what value of M can we accept that the sum of these variables is
Gaussian?

The results of a test performed numerically with Matlab are exposed in the
following. The rand() function is used. It provides a draw for a uniformly dis-
tributed variable between O and 1. First, 0.5 is removed from each draw to obtain a
centered variable distributed between —0.5 and 0.5. According to the result (21.18),

the variance of this variable is ﬁ The variance of the sum of these M identical
independent variables is 4.

To calculate the expected frequencies of the sample having a Gaussian distri-
bution, we use the er £() Matlab function. It provides the integral from O to x of the
probability density function of a centered reduced Gaussian variable (zero mean,
standard deviation 1). In the second step, we use the diff() function to get an
approximation of its derivative.

95 % of the values of the reduced centered Gaussian lie between —1.96 and 1.96.
We choose to define 24 classes between —3.45 and +3.55 and use the hist ()
function to generate the histogram of the experimental distribution. It will be

necessary to divide the sum of the M uniformly distributed r.v. by its standard
deviation \/% to obtain a variable with standard deviation equal to 1 to perform the
comparison with the Gaussian population.

We do the sum of 10° draws of the sum of M uniformly distributed r.v. for
different values of M. The following table summarizes the values of X2 that we call
sz’seudoGaussian (an rOW)‘

For comparison we note on the third row the values of X2 obtained for 10° draws
of a Gaussian r.v.

For 24 classes, or v = 23 degrees of freedom, the value x% at the 95 % confi-
dence level is 35.17.

M 2 4 6 8 10 |12 |14 |16 |18 |20 (22 |24 |26
2900 |408 |196 |94 52 |50 |66 |33 (33 |29 (42 |9 18
64 42 40.5 (445 |37 |32 |28 |52 |54 |36 |21 |53 |42

2
XPseudoG
XZ

Gauss

X3 eudo decreases when M increases. For M < 16, X340 > 3. In consequence
we reject in these cases the Hy hypothesis, we will not accept that this variable has a
Gaussian character. From around M = 20, we can accept the H, hypothesis and
admit the Gaussian character stated by the central limit theorem.
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In the third line we see that X2, exceeds 3 fairly regularly. This abnormality
is due to imperfections in the numerical test conducted, in particular the class
treatment of values at the ends of the range of variation.

22.2 Least Squares Linear Regression

22.2.1 Simple Method

We assume that an unknown linear relationship relates two variables x and y. We
perform m measurements {x;,y;} of these variables. Several possible sources of
errors are the cause that a perfect linear relationship is not observed. Each mea-
surement provides:

yi =ox;i+ fi+e (22.8)

We assume that the error ¢; is random and distributed evenly above or under the
line.

We look here for the “best” line relating the data, in other words, we look for the
line minimizing the sum of squared errors

8225 8[2:

i=1 i

(i — ox; — B)°. (22.9)

m

We look for the “best” o and f8. They are obtained by minimizing &> versus o and

B.

e’ & I\
a—;z—;Z(yi—axi—ﬁFQ OTﬁZE;()’i—WG) (22.10)

In the following, the arithmetic means of the data are noted as:

y:%i_iyiandxzééxi. (22.11)
It comes
f=y—oax. (22.12)
8*82 == z’": 2(yi — ox; — f)xi = 0. (22.13)
oo .
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Also

or:

Then

LS e STy m R R __
_ e Dt YiXi = Dy Yiki DR VX —mXY Dl ViXi — XY

1 m . m e m 2 _ 2 1 m 2 =2
mZilex]xl D oiy XiXi D iy Xj —mx i Dist X — X

(22.14)

. . . COV(x,y . . .
Last formula is sometimes written o = var(&;)' This notation is abusive as

cov(x,y) and var(x) are estimates which result here from arithmetic sums and are
not statistical expectations.

Example

For four successive times, x; = 1,2,3,4, four values of a quantity y have been
measured: y; =2,3,7,8. The regression line parameters given by (22.12) and
(22.14) are « = 2.2 and f = —0.5. We see in Fig. 22.1 the four measured pairs
{x:, ¥} and the regression line with parameters o = 2.2 and § = —0.5.

Fig. 22.1 Four 9
measurements of the pair
{xi,y:i} (stars) and the
regression line

Time



222 Least Squares Linear Regression 451

22.2.2 Elaborate Method

We write the problem met in the previous example in a linear application matrix
form Ax = b.
Here the unknown vector is

xzz(Z),an4:

We verify now that the determination of the regression line is equivalent to the
research of the solutions of the system is Ax = b, equivalently

and b = (22.15)

AW N~
et
o0 N W N

+p (22.16)

AW N =
—_ == =
o0 W N

The discussion here follows the developments given in Appendix 2 on linear
algebra.

We are in the case A,,, where m = 4 and n = 2. The system is overdetermined.
The two column vectors of matrix A are linearly independent. They are vectors in
R* but cannot form a basis of R*. The rank of A is 2, number equal to the count of

its independent columns. The matrix is full rank. The vector b € R’ cannot in this
case be written as a linear combination of the columns vectors of A. The system has
no solution. The linear regression is the result of the search of an approximate
solution of the system in the least mean square sense. This approximate solution has
been derived in Appendix 2, it is given by formula (A2.34).

It is:
xo = (A"A)"'A"p. (22.17)
With the use of Matlab, it comes xo = ( _2(')25 ) . We find again the values of the

slope 2.2 and the y-intercept —0.5 of the regression line which were found by the
simple method.

It is clear that for more than two coefficients for vector x, the matrix method is
much easier when one uses a numerical computing software as Matlab.
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22.3 Linear Regression with Noise on Data—Tikhonov
Regularization

The solution given by the formula (22.16) is conceivable in the case encountered
above since the inversion of matrix A7A is possible because it is full rank (r = 2).
The presence of noise on the matrix elements will influence the stability of the
result and thus the closeness of the result of the inversion with the ideal solution.
The noise sensitivity is reflected in the condition number of matrix AP A, that is to
say the ratio of its maximum to its minimum eigenvalues. In case the matrix is not
full rank, at least one of the eigenvalues of AP A is zero, which corresponds to the
limit case of an infinite condition number and the matrix A¥A is not invertible. Let
us discuss here from the spectral decomposition theorem consequences of robust-
ness to noise through the condition number the influence of the eigenvalues of
matrix A”A. Following the formula (A2.52) in Appendix 2, the spectral theorem
states that A4 = Z?:l i,u,-uf’ the orthonormal vectors u; are the eigenvectors of
matrix A”A and J; are the associated eigenvalues.

Assuming that the matrix AP A is invertible, which is the case when all the
eigenvalues are different from 0, and following formula (A2.19) in Appendix 2 we
have (A”A)™" = 371 Lul'u;. 1t is found again that the matrix is not invertible if
one of its eigenvalues is zero. It is seen that the magnitude of the vector solution xg
given by Eq. (22.17) is highly dependent upon the lowest eigenvalues.

The noise present on matrix A will influence the eigenvalues of APA; accord-
ingly, the noise on the smaller eigenvalues may cause a significant error on the
amplitude of the solution xy. It is understood that adding a small quantity to all
eigenvalues will change only slightly the values of significant eigenvalues but is a
great change to small eigenvalues; in consequence that addition stabilizes the result
by reducing the contribution to the solution of the small eigenvalues as this solution
depends upon the inverse matrix. In other words, it reduces the amplitude of the
solution which may blow up due to errors caused by noise on the smaller
eigenvalues.

In its simplest form, Tikhonov regularization takes the following form; rather
than trying to minimize the quantity ||Ax — b||* (called norm L,), we seek to
minimize the square error

& = ||Ax — b + ul|x| > (22.18)
Since
2 2 2_ H H
& = ||Ax = b|I" + pllx||"= (Ax — b)" (Ax — b) + ux"x,

g)%,z, = A" (Ax — b) + pix =0. The solution is such that A”Ax, — A"b + px,=0,
so (A"A + puI)x, = A"b, where I is the (n x n) identity matrix.
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Finally, the best approximate least square solution is
x, = (A"A 4 ul)"'Alp. (22.19)
When the matrix A is real, that solution is
x,= (ATA 4 uI)~'ATb. (22.20)

It is seen that the chosen form of the error given by (22.17) leads to heighten the
low eigenvalues by addition of the term u I before calculating the inverse matrix, as
was discussed above. This operation is called prewhitening because it tends to
equalize the spectrum of values, to whiten it.

In case the matrix A is rectangular, the discussion must be conducted from the
spectral theorem which involves the SVD. We can also say that the orthogonal
vectors of the identity matrix I form a conceivable basis for the development of a
vector € R". Some of these vectors are supplement to the absent vectors in the
development of A”A according to the spectral theorem.

The question that arises at this level is: what is the value that we must give the
regularization parameter u for the best estimate of x, in the presence of noise? A
large value of u has the effect of lowering the x, norm but tends to obscure the role
of the actual eigenvalues and thus lose its proximity with the right solution, so to
lose in resolution. Conversely, too low a value of u leads to a noisy solution.
A compromise must be found. Different methods of finding the u optimal value
have been proposed. We will discuss here only the method of using the elbow of the
L-shaped curve, when the logarithms of the norm of the solution versus the residual
norm are represented.

To test the u parameter values, the curve looks as follows (Fig. 22.2). As
recorded in the literature on the subject, the experience has shown that the optimal
value of u occurs at the elbow which is identified in the figure by an arrow.

Fig. 22.2 L-curve used for 10° S
the determination of the
optimum value of the
regularizing parameter (From
P.C. Hansen, The L-curve and =5
its use in the numerical W10t
treatment of invers =
eatment of inverse = ————
problems) 5
=
=
=]
5 10"} ) &~ w=0.1
a =1
10° .

10 10° 10
Residual norm [|Ax, bll,

1
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If u is too small, there is an important noise on the solution causing a sharp
increase of the norm solution when diminishing p. If u is too large, the distance
between the estimated vector Ax, and the goal b becomes too large.

Note: We have discussed the simplest form of Tikhonov regularization. More
elaborate methods have been proposed. One example is the case where instead of
adding the matrix ul before inversion as given by formula (22.20) where this
diagonal matrix has the same value along the diagonal, a richer matrix is added
which can, in principle lead to an estimation closer to the best value.

We illustrate the method of regularization described above (Formula 22.22) by
the following simple numerical simulation derived from the previous example. We
use a matrix with a large A condition number to accentuate the problem related to
the high discrepancy of the eigenvalues of the matrix. If both columns were equal,
the condition number would be infinite; if we slightly modify the elements of the
second column we avoid the infinite and get an important condition number:

1 1.1

2 19 . . . .
A= 3 205 | The singular value decomposition of A gives the two sin-

4 4.15

gular values 7.7926 and 0.1422. The condition number 7.7926/0.1422 is fairly high,
leading to an ill-conditioned matrix and making the inversion sensitive to noise.

1.92
—0.5 . 3.18
For a vector xop = ( N >, the vector Axgy = by is by = 499
7.13
To simulate the presence of zero mean noise on the by measurement, we set
2
3
b= 5
7

The least square optimal unregularized estimation of x is xo = (ATA)_IATb =

—0.8961
( 2.566 >
The noise added to by has caused the discrepancy between xo and xp.
1.9267
3.0835
4.8819
7.0652
Following Tikhonov regularization procedure, we look for a solution x,, closer to

xgo. We use the relationship (22.22) in function of the regularizing factor u.
The results are given in Fig. 22.3. We see in Fig. 22.3a that the squared norm

Axo =

|Ax,, — bo||> has a minimum for g = 5.5 x 103, For this value of x, we have

. _ (05248
n=\ 21992 )
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Fig. 22.3 a Squared distance between the estimated b and the vector by without noise; b Squared
solution norm versus squared residual norm in log-log plot

Using the regularizing factor p, we reach a vector x,, fairly close to xy.

In Fig. 22.3b, the vector norm squared ||x,,||2 is plotted in function of the
residual norm squared ||Ax, — b||* in logarithmic scale. The classic L-shaped curve
is not found but nevertheless as marked on the figure the value of u = 5.5 x 1073

corresponds to the transition of the curve between the linear regime on the right and
the curved part on its left.

22.4 Parametric Estimation

22.4.1 Issues of the Estimation

A physical measured signal depends on one or more parameters that one seeks to
estimate by experience. This is the case of the depth of a geological formation, the
distance and/or speed of a radar target, the frequency of a sound signal, etc.

We note 0 the unknown parameter sought after and 0 an estimator for this
parameter that is built from the physical knowledge of the problem and the mea-
sured values of the signal. In the general case, the data are affected by random
uncertainties due to noise on the signal. As a result, the estimator is a random

variable. It will be noted @ in bold in the following text. We call bias of the
estimator the difference of the expectation of the estimator and of the true value of
the parameter.

It is noted

b=E{0} —0. (22.21)

Since we do not know 0, this bias is unknown.
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The mean square error of the estimate is defined by

2 = E{(O - 0)2}. (22.22)

The squared error is the sum of the signal variance and of the squared bias. To
show this, we write:

2 =E{(0-0)°} = E{(0 - E(0} + E{0} — 0’ }.
The reader should infer from the previous that
& = var(0) + b°. (22.23)

Then, the mean square error of an estimator is superior or equal to its variance.
The mean square error is minimum if the estimator is unbiased.

Chebyshev inequality expressed by Eq. (22.14) is written for the estimator 0:
var(0)

Pr[|@)—0|28} < 2

(22.24)

We deduce from (22.23) that between two estimators having the same variance,
the unbiased estimator has the smallest squared error. It is useful to note here that
one can define different unbiased estimators for the parameter 6 and that their

variances will generally be different. A natural method of research of an optimal 0is
minimizing the mean square error. Unfortunately, if the estimator is biased (so it is
not known a priori), this minimization usually does not lead to the expression of a
valid optimal estimator whatever the value of the parameter 0. The method of
maximum likelihood estimation outlined in the following section provides a means
of determining the minimum variance unbiased estimator.

Example: Sample of N drawings of a r.v. x
We measure N values x;. Formulas (21.112) give the mean and variance of the
arithmetic mean of the measured values x;. They prove that it is an unbiased
estimate of the ensemble average 7.

Now we discuss the variance estimation of the statistical distribution.

If the expectation # is known, the following quantity is an unbiased estimator of
the variance

62 = %Z (x; — ). (22.25)
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Indeed

G52 N 2 RS 2 Ly 2 2
E{¢°} =E NZ(xi—”]) :N;E{(xi—n) }:]VNG =% (22.26)

i=1

In the case of a Gaussian variable, the centered differences % are reduced cen-

tered Gaussian variables and we can apply the results of the y? distribution with
N degrees of freedom. We deduce the variance of the estimator (22.25):

N 2 2
SO\ 2y _ 2y _ 281\ _ a4 Xa) _ 4
var(N6*) = ;:l var(x;) = Nvar(x]) = Nvar(a F) =No¢ var(;) =2Ng".

Therefore, var(N6?) = N?var(6?) = 2 Ng* from which

_ 26%

var(6?) N (22.27)

In the case where the expectation is unknown, it can be estimated by

N
m=33o X

The following variance estimator is unbiased

1 &
2 N2
G =v_1 ;:1 (xi —m)". (22.28)
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It is easily shown that we can introduce the centered variables x;. = x; — 1 and
get

E{&z} = ﬁ]%ZIE{((xm — X10) + (Xie — X2¢) + -+ -+ (Kie 7xNC))2}.

The term (x;. — x;c) being zero, there are N — 1 nonzero terms in the brace. In

W Cross terms.

the squaring operation, there are N — 1 square terms and
Expectation of one square term E{(xic — x;c)’} = E{x2} + E{x2.} — 2E{x;cx;c}.
If measurements are independent, E{x;.xj.} = E{x;c }E{x;c} = 0.
In that case E{(x;. — xjc)z} =202
Next, we evaluate the expectation of a cross-term when the measures are
independent

E{ (xie = 250)(xic = 3ic)} = E{o.} = o*.

It comes E{6°} = (N—L)#N((N —1)20° +2WJZ),

and finally E{6?} = & (26% + (N — 2)¢?) = o>

This proves that the estimator (22.28) is unbiased.

Analogously to the evaluation of the variance of the estimator in the previous

case where the expectation was known, it is shown that the variance of that esti-
mator is

var(6°) = : (22.29)

22.4.2 Maximum Likelihood Parametric Estimation

Likelihood function
We consider successively one, then several, random variables.

When the probability density function is considered as a function of the
parameter 0, it is called the likelihood function. It is noted f;.(x; 0).

For the purposes of estimating an unknown parameter maximum likelihood, the
parameter is estimated by the value that maximizes the probability density. Note On.

This property can be interpreted qualitatively using the following example: An
extraterrestrial arrives on earth in the desert and has no idea of the size of a human:
10 m? 20 cm? The first human he met measures 1.75 m. It is natural for the alien to
assume that the average size of humans is that one, because if that is the case the
probability of observing a size in a given neighborhood of the average is maximum
(the assumption that the distribution is Gaussian is the underlying reasoning).
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For estimating an unknown parameter in the sense of maximum likelihood, the
parameter 0 is estimated by the value that maximizes the probability density
function. We note it @m‘

Gaussian case: The likelihood function for the mean of the Gaussian process is

Fen(oin) = e . (22.30)

\/2na}

It is assumed that a value x; of x has been observed and that it is known that the
process is Gaussian without however knowing 7. We look for an estimation of 7.

The value of the estimator # which makes the likelihood function maximum is
obtained by canceling the derivative of f,, or that of Inf,,, with respect to 7 (since
the function In is monotonic).

The function Infy., (x; 1) is called log-likelihood function.

The latter function is derived and one seeks the value of # that makes it
maximum

(xi—n)*
dnfey(xin) 9T (u-n) ;
on on a3 » O T = ( )

Thus, the estimator of the maximum likelihood expectation is the observed value
x; of the variable. This estimator is not biased as E{x;} = #.

If is carried out N independent observations x; of the r.v. x, the likelihood
function is defined as the product of probability density functions. In the case of
Gaussian variables, likelihood function of expectation is

N
f;cnx’/l H

The logarithm of this function is

Infy (x;7) = =N In /27102 — Z 26 . (22.33)
0

This function can be written in expanded form

N N x N x?
In fe (x;1) = _F,f + < E ?> n— (Nln 2no} + g 20'2>' (22.34)
0 0

i=1 "0 i=1

<xl )2

22.32
27r0'0 ( )
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We seek the maximum of the log-likelihood function

AMnfiey (x5 1) N 1 &
S — o+ =Y x=0. 22.35
o 7" 3 ,;x (22:39)

The estimator of the expectation with maximum likelihood will be in this case

) 1 &
My = N;xi. (22.36)

It is the arithmetic average of the observed values of the r.v.
It is noted that this estimator is unbiased since E{#,,,} = 7.
The variance of the maximum likelihood estimator is given by

i) = (a7} = 88 (S () b= {7}

=

= |Oql\)

(22.37)

We used the fact that as two successive observations are uncorrelated, the
expectation of the cross terms is zero E{x;.xjc.} = 0 if i # j.

Search formulas for maximum likelihood

9(x; 0 Infy.0(x; 0
o O) - _ o MalO)f (22.38)
00 0=0,ny o0 0=0,,
For complex random variables we would have
Vo feo(x;0)] 5, =0 or Vylnfi(x;0) Mo =0. (22.39)

my

22.4.3 Cramér-Rao Bound

Let 0 be an unbiased estimator of 0. We show in the following that its variance
should verify the inequality

var(d) > ————_. (22.40)

E{ (c?lnf,gz)(x;())) 2 }
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An estimator is said to be efficient if its variance is minimal. This minimum
variance is called the Cramér-Rao bound. We have thus for an efficient estimator

N 1
var(0) = ———v- (22.41)
£ { (ﬁlnﬁ;o(xr,@)) }
00
As will be shown below, we have in this case
A Infy.o(x;
Bx) — 0 = k() - 205 0) (22.42)

00

If an unbiased minimum variance estimator exists, it must satisfy the
Eq. (22.42).
By definition, the estimator in the sense of maximum likelihood of  must satisfy

Olnfy.o(x; 0)

20 =0

0=0,,

Substituting 6 by O, in (22.42) we get

Olnfyo(x; 0)

0(x) — Oy = K (Opy) - 0

=0. (22.43)
0=0,,

Therefore,

0(x) = Oy (22.44)

In conclusion, the unbiased maximum likelihood estimator is the minimum
variance estimator.

Demonstration of the Cramér-Rao formula
It is assumed that the estimator is unbiased E{0(x)} = 0. We can write in this case:

E{ (é(x) - 9)} - / feo(x: 0) (é(x) - H)dx ~0 (22.45)

We derive this expression under the integral sign with respect to 0:

7 (agée (O(x) - 0) — fr0(x; 0))dx =0, (22.46)
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or even:

7 8(%" (é(x) - H)dx ~1. (22.47)

The above formula can be rewritten

alnﬂﬁﬁ‘”(g)() 0)ar=1, (22.48)
or
x 2
- / (812](3‘;0&‘/’2)((9@—Q)ﬁ;éz)dx : (22.49)

Using the Schwarz inequality we can write,

< / ((Blnﬁw) . 9) ]C (@(x)—@)zfx;gdx. (22.50)

—00 —

It is recognized in the second term the variance of 6 and we can write

var(6) > !

I ((‘9‘“"*“) £ )

This last expression is the inequality (22.40).
The Schwarz inequality becomes equality when the two terms in the integral
(22.49) are proportional

(00) = 0)£177 = K(0) - (Llnf"g@(ﬂ e)ﬁ;{f), (22.52)

(22.51)

Or even (é(x) - 0) = K(0) - 2259 which is the Eq. (22.42).

Other form of Cramér-Rao inequality

1

var(@)> — .
& Infi0(x;0)
{0

(22.53)
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Indeed, we start from the integral ffcoo feo(x;0)dx = 1 and take its derivative
with respect to 0:

[ Ofeo . [ Oinfi -
/ Py — o feodz = 0. (22.54)

—00 —00

Deriving a second time with respect to 6:

00 5 2
/ (%ﬁc;e + (81;];,(;0> fx:@) dx = 0. (22.55)

—00

Or, having recognized expectations
(’9lnfx.0 2 82 ll’lﬁc()
E : =—-F : . 22.56
{ ( o0 ) 00 ( )
Example

In the example of Gaussian variables encountered earlier, we had

alnﬂ;ﬂ (.Xf; ’/I) i ()C,' - '/I) (2257)

on -

We take the expectation of the square of this function. Since observations are not
correlated, the cross terms are zero and we have

2
onfey (1) NE{(xi—n)} Ne} N
E (—nf-”(x’ ’7)) L ML S (22.58)
on — a; oy 0

From this result, we deduce from the inequality of Cramér-Rao (22.40) that any
unbiased estimator of the average should satisfy the relationship

o2
var(ig) > 2. (22.59)
N
The variance of the estimator of the maximum likelihood expectation calculated

in (22.37) satisfies precisely to equality, as it should.

Summary

We have first recalled in this chapter the important Chi-square law for testing the
statistical distribution of a collection of data. We have tested the tendency of the
sum of many r.v. to follow a Gaussian distribution. We have studied the classical
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methods of linear regression of a collection of measurements and presented the
Tikhonov regularizing method. The method of using the L-curve elbow to deter-
mine the value of the regularizing parameter value has been qualitatively discussed.
The chapter ends with the estimation of statistical parameters in the sense of
maximum likelihood.

Exercises

I. A random variable x is distributed according to a normal distribution. Its mean
is known but its variance is not.

IL.

1.

2.

We measure x and find the value x. Give an estimator of the variance of
x at maximum likelihood.

We make N measurements and found the values x;. Give an estimator of
the variance of x at maximum likelihood.

. In the context of Question 2, give the Cramér-Rao lower bound of

variance.

An unknown parameter x is measured with two equipments having different
precisions. The errors are random, Gaussian. The result of the first measure-
ment is x;; the measurement standard error is ¢;. The second equipment
delivers the value x, with a standard error ;. (1) Given a maximum likelihood
estimation (MLE) of x. What is the standard error of the estimation?

(2) Can we say that the MLE of x is the minimum variance estimator of x.
Solution:

(1) The pdf of random measurements x; and x, are:

| 1 e

fil) =——=e * andfo(x)) = ——e 2 .

\/2no? N

The measurement being independent, the joint pdf is

6192 (p-v?

1 252 262 . . :
X1,X2) = e i e *2 . This function may be interpreted as the
f( 1) 2) \/W y p

likelihood function of x.

1 _ *;)2 _(o *2»)2
L) =flx,0) =——==e *Te 2.
2noio;

To get the maximum likelihood estimation of x we apply condition (22.38):

a2 17%

—Ologj’; &) — 0. Thus —(’“g?) + —(xzagx) = 0 leading to X = x, P - g teata
We may interpret this result in saying that if, for example, the standard
error o, is smaller than o, the weight of x; is smaller than that of x,, the
MLE of x will be closer to the measurement given by the best instrument

(x7 in this example).
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(@)

x being the true, unknown value of the parameter, the estimation x will be
a Gaussian variable with average x and variance 2. We have

’(};2)2 1 ’% ’% . .
(@) = \/ﬁe o= Tﬁe 1 e 2 . This last relation must be
true for any value of x, for example O and any couple of measurements
(x1,x2), for example x;1 = 1 and x, = 1. The variance of the MLE of x is

thus given by: L =1 + %.

7]
2 2
i 2

22 «“ml

Q
[Y S o

If 00 < 04,

k)

% x will be very close to x;, within a small
)?
margin error o;.
2

2
. - _ 0'2 G’l . . .
The estimator X = x; P +x; P is unbiased since

2 2

2 2
05 g7+ o
E{x} = E{xi} 5—*= o 5 +E{x = x—L z —
03

X2 X =
EECE =

Property (22.44) states that X is the minimum variance estimator of x.



Chapter 23
Correlation and Covariance Matrices
of a Complex Random Vector

We introduce in this chapter the correlation and covariance matrices of a complex
random vector. The Hermitian nature of these matrices allows their diagonalization
in the basis of their orthogonal eigenvectors. These concepts are discussed on
jointly Gaussian variables. We study the principal component analysis of a vector
of observations and the optimum Karhunen-Loéve development.

23.1 Definition of Correlation and Covariance Matrices

Let the complex random vector

X1
X2

x=| .. (23.1)
XN

Its correlation matrix is defined by

E{\xl\z} E{xlxz} E{xlxl*\,}

E{xx} E{x:%5 .o E{xxy
Ry = E{xx"} = { ’ ‘} {?2} _ {?N} (23.2)
E{xNx’l‘} E{xNxE} E{|xN\2}
This matrix is square with dimensions N x N.
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The covariance matrix is defined by
Cox = E{(x = n)(x —n,)"}. (23.3)
We have the relationship
Ree = Coe . (23.4)

Correlation and covariance matrices have the Hermitian symmetry, i.e., they are
equal to their transposed conjugate:

Ry =RI and Cy =CY. (23.5)

23.1.1 Properties of Correlation Matrix

* 2 2
L Bl < B (i} B {b) (23.6)
Indeed, following a method that has been used previously herein we calculate
N 2 *
E{|(xiaxy)[*} = E{ (xi+ 737) (i + )"}
:E{ <|x,~|2+|/1|2|xj|2+xi/1*xf+x;‘2xj>}. (23.7)

This expectation must be positive or zero, since it is the expectation of a square
modulus which is a positive or zero number and whatever the value of the
parameter / is.

We note E {xix;f} = Ael?. 1 is chosen such that

A= |Ae. (23.8)
Then
E{ <|x,-|2 + |;L|2|Xj|2 +xi}."x; +x,-*/bc,~> } = E{ <|xi|2> } +E{ (V-|2|xj|2> }
+ E{ (x,-i*x} +xi*)x,-> },

E{ <|x,-\2) } +E{ (W}x,\z) } +E{ (x,-z*x; +x,.*;oc,-)} - E{ <|x,-|2> } + u|25{ <|x,-|2) } 247

This polynomial with the modulus of 4 as a variable must be positive or zero
regardless |A|, for that its discriminant must be negative or zero, i.e.,
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A2 —E{ (|xi|2) }E{(’xj|2)}§0, (23.9)
we then find the desired formula: ‘E{x,-x}‘}’ < \/E{|xi|2}\/E{|xj|2}-

2. The correlation matrix is positive-semidefinite. That is to say that, for any vector
a with dimension N we have

a"R..a>0. (23.10)

It may be noted that the above expression implies that this quantity is a scalar
since it is compared to 0.
Indeed

a"Ria = a"E{xx"}a = E{a"xx"a} = E{|xHa|2}, (23.11)

which is scalar, real, always positive or zero. The quantity x”a is scalar and a’x is
its complex conjugate.

23.2 Linear Transformation of Random Vectors

Let x be a complex random vector. Let y resulting from a linear application y = Ax.
The expectancy calculation operation is itself a linear operation, the expectation
vector of y is written n,= An,.
The correlation matrix of the r.v. y is given by

Ry, = E{yy"} = E{(Ax)(Ax)""} = AE{xx" }A". (23.12)
So

R,y = AR, A", (23.13)

Diagonalization of the Correlation Matrix
We denote e an eigenvector of the correlation matrix

R.ce = Je. (23.14)

Since the (N x N) matrix Ry, is Hermitian, it is possible to find N orthonormal
eigenvectors.
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1 if I=k
e{’ekza[l—k]:{o e (23.15)
Each eigenvector satisfies a relation of the type
Rxxek = /Ikek. (2316)
So we have
A if 1=k
e 'R, e; = {ok i oIk (23.17)

The matrix E whose columns are the eigenvectors of R, is defined as follows:

| |
E=|e; e ... ey|- (23.18)

EE" = ]. The matrix E is unitary.
We can write

_ eH _ "
. —— eé’ —— | | /E)l }(; 8
E"RoE = : Rocler e en| = 7
I B | 0 0w
=A.
(23.19)

Let us define the vector x’ by

x' =Ex = x. (23.20)

The random variables components of x’ are two by two orthogonal. Indeed
E{x'x""} = Ryy = E{E"xx"E} = E"E{xx" }E = E"R.E =A  (2321)

The correlation matrix R, is diagonal. It is composed by the eigenvalues of
Ry
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We can also write
EE"R..EE"=R..= EAE". (23.22)
This relationship can be used to invert the matrix R,,. Since the matrix is unitary
E-'=E". (23.23)
We have

R=(EAE")'=EA'E". (23.24)

Eigenvalues of the Correlation Matrix
As seen above, the eigenvalues of the correlation matrix are the expectations of
square moduli of the random components of the vector x’.

E{xxl'} = E{|x;|2} -y (23.25)

1

As being the expectations of a square modulus, the eigenvalues of the correlation
matrix will therefore be positive or zero.

If the correlation matrix is not singular, its discriminant is nonzero. As the
determinant remains unchanged in the unitary base change generated by the matrix
E, its value is equal to the product of the eigenvalues, which will therefore be all
positive (nonzero) in this case.

The trace of the correlation matrix also remains unchanged in the base change. It
is therefore equal to the sum of the eigenvalues of the matrix.

23.3 Multivariate Gaussian Probability Density Functions

x is a real Gaussian random vector with dimension N when its probability density
function has the form:

1

T ~—
felx) = ﬁe—%(x—ﬂx) Co (x=115) (23.26)
(27)?|Cux
Cyx is the covariance matrix of the vector x. This matrix is symmetric
C;xl is the inverse matrix of the covariance matrix of x. It is also symmetrical

(x — ;,,)T is the transposed vector of centered vector x,
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If x is a complex Gaussian random vector of dimension N, its probability density
function has the form

1

_ ) e ) 23.27
7| C| © ( )

fe(x)

(x — W)H is the conjugate transpose (said Hermitian conjugate) of the centered
vector x.

The covariance matrix Cy, of the vector x has Hermitian symmetry; it is equal to
its conjugate transpose. The inverse matrix C.;! of the covariance matrix is also
Hermitian.

Conditional Probability Density Functions
If x and y are real Gaussian random vectors with N and M dimensions, respectively,
the probability density of y conditioned by x has the form

e 20m) Gl (). (23.28)

1
fyp(.)’|x) = %

(27)7|Cy

If x and y are complex Gaussian random vectors with N and M dimensions,
respectively, the probability density of y conditioned by x has the form:

L on)in)
L =———¢ ) Tl W) 23.29
f}\ (y|x) nM’Cy\x| ( )

Example of Two Real Jointly Gaussian Random Vectors
Let x be a random vector whose two components are jointly Gaussian random
variables. By definition, the vector x probability density function is given by

fulx) = b e ) (23.30)

1
(27)|Cax?
The vector of expectations is
n= (’71>. (23.31)
2
We note x. the centered vector. We have

frlne) = ————e G, (23.32)
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To illustrate these properties, we take the following example of a covariance

matrix:
8 2
Cxx = ( 2 2 ) .

0.1667 —0.1667
(—0.1667 0.6667 )

The eigenvalues of the covariance matrix are 8.606 and 1.394, and the eigen-
values of the inverse matrix are 0.1162 and 0.7171. These values are the inverse of
the eigenvalues of the covariance matrix.

. -1 —
Its inverse is C,, =

' o ) ) 0.1162 0
—1 frd
The matrix C, is diagonalizable Diag. = ( 0 07171 )

The eigenvectors with norm 1 of the matrix C,,! corresponding to the eigenvalue
. 0.9571 —0.2898
0.1162 and 0.7171 are, respectively, (0.2898) and < 0.9571 )

It is verified that these two vectors are orthogonal. These eigenvectors are also
eigenvectors of the matrix Cy.

Passage from Vector x to Vector x’
As seen above, we define vector x’ by x' = Eflx,

Where E = | e; e is the matrix composed of the eigenvectors of Cy,,
R -
and E7 = | — el — |, the Hermitian conjugate matrix of these vectors.

Thus continuing the previous example

g [09571 —02898] Ly _ [ 09571 0.2898
~ 102898 09571 |’ ~ | —0.2898 0.9571
X,

1) [ 09571 0.2898 ) [ x;
x, )\ —0.2898 0.9571 x )"

The quadratic form appearing in the exponential who wrote
_ 0.1667 —0.1667 \ [ x;
0= (x "2)(—0.1667 0.6667 ) <x2>'

, (01162 0 X
becomes Q = (¥, xz)( 0 0_7171)()/;)'

The relationship between x and x' is given by <
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So,
/2 2
X1 X

=0.1162x2 +0.7171x2 = .
0 s 2 73606 ' 1.394

(23.33)

Because Cx/] ¢, = 0 we conclude that the components x| and x), are not correlated.

This implies independence for two Gaussian r.v.. It is thus possible, by a change of
basis, to diagonalize the inverse of the covariance matrix and create a random vector
whose components are Gaussian and independent in probability. In (23.33) we
recognize the equation of an ellipse with the semi-axes equal to 2.9336 and 1.181.

-1
(YL o1 (09571 02898 ' (0.9571 —0.2898
We havex =(B") "' with (£") 7(—0.2898 09571 ) ~ {02898 0.9571

One can express the direction cosines of the unitary vectors of the new base in

the former
cosa) (09571 —0.2898) /1)  /0.9571
sin / \0.2898  0.9571 0/ \0.2898)°

cosf\ (09571 —0.2898) /0  (—0.2898
sinf /) \0.2898 0.9571 1) \ 09571 )

23.4 Estimation of the Correlation Matrix from
Observations

In some cases, we do not know the correlation matrix but we have only K vectors

x®) that are independent realizations of the random vector x.

These data are used to estimate the correlation function by noting that the
expectation of any function (x) of x can be estimated by averaging the values of
this function on the K realizations

E{p(x)} =1 i yl(x(K>). (23.34)

K
Example

oo |, o2 yeo—| 2] ,o_|0
x [0], x {1}, x {_2}, x [2. (23.35)

Estimation of the expectation vector

et [ )

=1
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Estimation of the correlation matrix

(23.37)

We can formulate the calculation in a more condensed manner. We define the
data matrix X composed of sampled vectors

X= : . (23.38)

The estimator of the correlation function can be written

R 1
R, = }XHX. (23.39)

In the above example the last two expressions take the form

1 0 1

vo |72 1| e L[t -2 2 0]|=2 1 |_[i —2
12 2 f®=Tzlo 1 2 2||2 2|7 | o
0 2 0 2 S

(23.40)

It is noted that the data matrix can be partitioned in columns vectors

X=|x; x ... xy|- (23.41)
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An element of the matrix of the estimator of the correlation function can be
written

1
. H
g = =X, Xj.
Kk

23.5 Karhunen-Loeve Development

23.5.1 Example of Using the Correlation and Covariance
Matrices

This method is also called principal component development. We choose to begin
the presentation of this method with an example:

We assume that we measure the radiation emitted by vegetation by remote
sensing using four optical sensors operating in different light spectral bands. The
amplitudes appear as jointly Gaussian random variables. The flow rate of the
communication channel between the satellite and the earth is limited, it is desired to
transmit only to earth the data that contain the most information and are statistically
independent.

The results of a preliminary calibration of such sensors have shown that the r.v.
are real and that the expectation vector is

0.17
0.7
0.21
and that the correlation matrix between the four channels is
5.3289 5.019 —4.8221 0.3357
R, — 5.019 9.59 —1.091 —3.953 (23.43)

—4.8221 —-1.091 9.2169 —-3.8273
0.3357 —3.953 —3.8273 4.3441

Note that the correlation matrix is symmetrical as expected. We seek to diago-
nalize the covariance matrix which is

53 49 -—48 03
49 91 —10 —4.1
Cxx = Nyxy — nxﬂf = —48 —1.0 9.2 -3.8
03 —41 -38 43

(23.44)
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The diagonalization of the covariance matrix gives the matrix of the eigenvalues
and the corresponding eigenvectors, respectively,

150 0 0 0
L_| 0 07379 0 o |
0 0 0028 0 |
0 0 0 121353
(23.45)
—0.5774 —0.6285 —0.5211 —0.01
g | 05774 0.0467 05723 0.5805

0.5774 —0.5818 —0.0512 0.5705
0 —0.5140 0.6312 —0.5809

Note that two eigenvalues are clearly distinguishable A; = 15.0 and
A4 = 12.1353. The other two eigenvalues are much smaller.

The eigenvectors of the covariance matrix define four orthogonal directions in
space. The traces of matrices Cy, and A are equal. But the values are concentrated
(the power carried by the random signal components is concentrated) on the values
1 and 4.

SR
e __
The relationship x’ = Eflx = 2 x may be interpreted as a

SR —
rotation in the four-dimensional space effected on the data vector x.

The components of x’ represent the components of the random measurements
vector along the four orthogonal directions. The first and fourth components are
those that have the greatest variance, so that will hold the most power, so the more
information.

Practically, having obtained a measured value x;, x;, x3 and x4, from the four
sensors we apply to that vector x the application EX,

x| x| —~0.5774 —0.5774 0.5774 0 X1

Y | _ g | % | _ | 06285 00467 —05818 —0.5140 | | x;

ST x| T | -05211 05723 00512 0.6312 | | x

X, X4 —~0.01 05805 0.5705 —0.5809 | | x4
(23.46)

We will transmit on the communications channel only those components x/1 and
x; which are the independent random variables (equivalence between independence
and orthogonality for Gaussian variables) that have the largest variances. The
compression ratio of the data is two.
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23.5.2 Theoretical Aspects

The above example lies within the scope of the Karhunen-Lo¢ve expansion that we
detail now.
Let us consider a segment of a random sequence

{x[n]; n=0,1,.. .N—1}. (23.47)

This segment can be developed on any base formed of a sequence ¢;[n] of
deterministic orthonormal functions

{x[n] = k19, [n] + 120, [n] + - -+ + Knoy[n]}, (23.48)

With the functions ¢,[n] satisfying the relationship
= 1 i=j
;% n]g;n] = {0 i (23.49)

The coefficients x; can then be calculated by

K = 2 @} [n]x[n]. (23.50)
n=0

We now want a particular set of functions ¢;[n] to perform the statistical
orthogonality

A _ G it i=j
E{klk,}—{o it (23.51)

The vector of coefficients is defined as

K|
K2
kK=1.1- (23.52)
KN
And the matrix
‘Pi[o]
| | | . @;[1] )
D= Py P2 - PN | with @, = : i=1,2,...,N
| | :
@;[N — 1]
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Note that the column vectors of @ are orthonormal and satisfy

1 if i=j

H
90 =10 i it (23.54)

The matrix is @ unitary. Equation (23.50) can be rewritten in matrix form:

K
| R
X = O ¢ ... Oy = (DK, (2355)
o N
and
Y —
K= ? x =0'x. (23.56)
_ q,z _

One can give the following interpretation: If we consider the sequence x[n] as a
vector in a N-dimensional space, the coefficients «; appear to be the components of
the same vector in a coordinate system obtained by rotation.

The eigenvectors of the correlation matrix having the orthogonality property
may be selected as vectors ¢;. Then:

Rqu)i:j'i(pi- (2357)

If the vector x[n] can be viewed as consisting of N values of a wide sense
stationary signal, the correlation matrix is Hermitian and Toeplitz and we can write

=

Ru[l — Kokl = Zig;ll], i=0,1,...,N—1. (23.58)
0

=~
Il

We will now show that the vectors ¢; may be used to achieve the Eq. (23.51) of
the stochastic orthogonality of coefficients ;.

We note
N-1 N-1
= gilnlx[n] and & =" ¢;mlx[m]. (23.59)
n=0 m=0
N—1N-1 N—1N-1
E{ } = @; [n|E{x[n]x"[m] } ¢;[m] @; [n]Rux[n — m]@;[m].
n=0 m=0 n=0 m=0

(23.60)
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or, based on the above relationship

0 it i) (23.61)

E{M“f} = ijlfé(/’?[”}@j[”] =

In this context, the Eq. (23.50) is called the Karhunen-Loéve development.
It is also shown that the development (23.50) in eigenfunctions of the correlation
function is the only one that satisfies the Eq. (23.51).

23.5.3 Optimality of Karhunen-Loéve Development

We want to approach the vector x[n] by a linear combination of functions ¢,[n] but
with a number M <N of these functions. x[n] estimator is noted x[n]

] = xip,lnl; M<N. (23.62)
i=1

The error sequence is defined by
g[n] = x[n] — x[n). (23.63)

The problem is to find the coefficients x; and the base functions ¢,[n] that
minimize the error. We chose to minimize the squared error

N—1
e = E{Z |s|2[n}}. (23.64)

We can write

N M N
X = Zki(/’i = Zkiq)i + Z KiQ; . (23.65)
i=1 i=1 i=M +1
~ —
X €
N N N
e =E{e"s} E{( > KT@?)( 3 w,-)} = > E{P} @366)
=M+ 1 i=M +1 i=M+1
The error may be written in the form
N
6= Y ¢ofRuo; (23.67)

i=M+1
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We must now minimize (23.67) within the constraints
oo, =1 for i=M+1,M+2,...,N. (23.68)

This problem is that of a constrained minimization. The Lagrange multipliers
method is used. We define the function

N
L= ¢oRuagi+ Z 21— ¢l g)). (23.69)
i=M +1 i=M +1
Taking the gradient with respect to ¢! and get
Vq,iHL =Ry p; — 2ip; = 0, (23.70)
or:
Ry, = ip; for i=M+1,M+2,... N. (23.71)

This implies that the vectors ¢; should be eigenvectors of the correlation matrix.
The error is

N N N
&= Z (pfinxQDi = Z (Pflii(Pi = Z Ai. (23.72)
i=M+1 i=M+1 i=M+1

So, when choosing the M eigenvectors among those with the largest eigenvalues,
we minimize the error committed in the approximation. This is the principle of the
optimal Karhunen-Loeve development.

Summary

We have introduced in this chapter the correlation and covariance matrices of a
complex random vector. We have demonstrated that due to their Hermitian nature,
matrices may be diagonalized in the basis of their orthogonal eigenvectors. We have
used Gaussian variables to illustrate these concepts. We studied the principal
component analysis of a vector of observations and established the optimum
Karhunen-Loéve development.



Chapter 24
Correlation Functions, Spectral Power
Densities of Random Signals

To keep continuity with the previous part of the book on digital signals, we choose
to show first in this chapter the properties of digital random signals, knowing that
the treatments today are mainly performed on digital signals. We encounter in this
chapter two functions which are fundamental for signal analysis: the correlation
function and the power spectral density (PSD). These functions are defined for wide
sense stationary (WSS) random signals, signals whose first two moments of the
signal values at two different instants are constant over time. The PSD is defined as
the Fourier transform of the correlation function. We study the filtering of WSS
signals by LTI systems and give the theorems linking correlations and DSP of input
and output signals. White noise filtering by a first order autoregressive system is
treated as an example. The coherence function defined afterward is a powerful tool
to identify and quantify in a noisy signal the sources constituting the noise. At the
end of this chapter, we give a brief definition of correlation functions and power
spectral densities of analog signals. This gives more intuitive demonstrations of
certain applications such as the influence of a filter for increasing the signal-to-noise
ratio or matched filtering of a noisy signal with random noise. Many exercises with
worked solutions at the end of this chapter will help the reader become familiar with
the results, important in signal analysis.

24.1 Correlation Function of a Random Signal

Let x[n] be a random signal, which is assumed here complex for more generality.
For any two times n; and n,, x[n;] and x[n,] are r.v. each with their first order
statistics. In particular, their expectations are

E{x[ni]} =0y, and  E{x[no]} = nyp, - (24.1)
A priori, these expectations may be different.
© Springer International Publishing Switzerland 2016 483
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Their variances are

var(x[n;]) = cov(x[n], x[n1]) = E{ ’x[nl] —_— 2}’ (24.2)

var(x[na]) = cov(x[m], x{ma]) = E{ ]~ 2}. (24.3)

which also differ a priori.
From Eq. (24.2) it follows that

var(x[ni]) = E{x[mil[m]} =ty 1" qm,) (24.4)

Note the complex conjugation which allows treatment of the general case of
complex signals.

Let us consider the two r.v. x[n;] and x[nz]; We call correlation function the
expectancy of the product

Ren)xiny) 11, 12] = E{x[n1]x"[no] }. (24.5)

In the general case Ry[n;,n;] is a function of the two times n; and n,.

24.1.1 Correlation Function of a Wide Sense Stationary
(WSS) Signal

A very important special case occurs when the function Ry [11, 1] depends only on
the proximity of times n; and n, regardless of the absolute position n;. This is the
case of wide sense stationary signals (WSS).

We say that a signal is wide sense stationary (WSS) iff:

(2) The expectation E{x[n]} = 1y, is independent of time. Therefore
Nx[n) = M- (246>

(b) The correlation function Ry, jxn,|[11,72] depends only on the time difference
m=n; —np.

Note:

Ry[n1, 2] = Rux[nz +m,na) = E{x[ny + m|x"[ny]} = E{x[n + m]x"[n]} = Ry [m].
(24.7)

These signals are often encountered in practice.
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The correlation function Ry[m] is also called autocorrelation function of the
signal x[n].

Power of a WSS Signal
By definition, the power of a wide sense stationary signal is given by

Pln] = E{x[n}x"[n]}. (24.8)

This is a priori a function of time in the general case.

The time interval between the two values of x is zero, we have
P[n] = E{x[n]x"[n]} = Rux[n — n] = Ry [0]. (24.9)

It is noted that the power is constant over time P[n] = P = Cte.

24.1.2 Properties of the Correlation Function
(a) The maximum of the autocorrelation function of a WSS signal is located at the
origin.
We have
|Rux[m]| < Rex[0] (24.10)

To demonstrate this property, in the following, the expectation of the square is
calculated with a complex parameter /:

E{|x[n+m] - }x[n]|2} = E{|x[n+m]\2} — E{x[n]x"[n 4+ m] — 2*x* [n|x[n + m]}
+E{|zx[n}|2}.
E{|x[n+m] - }Jc[n]|2} - (1 + |/1|2>Rxx[0] — IR’ [m] — X" Rexlm).
(24.11)

This expectation of a square modulus is necessarily positive or zero, regardless
of the parameter A value.

We note Ry [m] = |Ry[m][e?]. We choose 2 such that A = |A]el"].

Expression (24.11) becomes

(1 + |i|2)Rxx[O] — 202||Ryx[m]| = 0. (24.12)
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For the polynomial to be always positive or zero, it is necessary that the dis-
criminant of the second degree polynomial in |4| is negative or zero. So we will
have

|Ryx [m]|27fo [0] <0, s0, as Ry, [0] is positive |Ryx[m]| < Ryx[0].

(b) The autocorrelation function is a symmetric conjugate function

Ree[m] = E{x[n+mlx*[n]} = R, [—m]. (24.13)

If the signal x[n] is real, Ryx[m] = Ryx[—m)], the correlation function is even.

24.1.3 Centered White Noise

By definition, a centered white noise is a real random signal of zero mean, wide
sense stationary, whose correlation function is given by the Kronecker function
o[m]:

Rux[m] = NO[m]. (24.14)

24.2 Filtering a Random Signal by a LTI Filter
24.2.1 Expected Values

The random signal to the filter input is noted x[n]. The output signal y[n] has the
form

yln] = _Z x[n — m)h[m] = x[n] ® h[n]. (24.15)

The expectation of the output signal y[n] is
E{ylnl} =nyln) = Y E{xln—m}hm] = Y nln—m]hm].  (24.16)
If n,[n — m] is constant (especially, if x[n] is stationary), we have

=ne S hlm) = nH(D) (24.17)

m=—0oQ
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It follows that if expectancy of x[n] is zero, the expectancy of y[n] will be
zero too.

24.2.2 Correlation Functions of Input and Output Signals

Assume now that signal x[n] is WSS. We calculate the cross-correlation functions
of the input and output signals:

Ry[n+m,n] = E{x[n+mly*[n]}, (24.18)
Ry[n+m,n) = i E{x[n+mlx*[n — m'|}h*[n], (24.19)
Ryyln+m,n] = zm: Ry [m+m'| b [m]. (24.20)

We note m" = —m'; Ryy[n+m,n] = Ryy[m| =3 Rex[m — m"|h*[—m"].
Ryy[m] = Ryx[m] ® h*[—m]. (24.21)

Ryy[m] is the convolution of Ry [m] and h*[—m].
Similarly, we have

Ry[n+m,n] = E{y[n+ m|x*[n]}. (24.22)
Ry[n+m,n] = zm: E{x[n+m — m'|x*[n]} h[m'], (24.23)
Ryc[n+m,n] = i Ryx[m — m'|h[m] = Ryx[m] @ hm]. (24.24)

Calculation of the Autocorrelation Function of the Output Signal

Ryy[n+m,n] = E{y[n+mly*[n]}. (24.25)

Ryyln+m,n] = E{yln+mly"[n]} = _i E{xfm =y [n]} A
Ryyn+m,n] = i Ryy[m — m'|hm] = Ryy[m] ® hlm]. (24.26)

m'=—o00
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So Ryy[n+m,n] no longer depends on n and we will write
Ryy[m] = Ryy[m] @ h[m]. (24.27)

It follows that the filter output signal is also wide sense stationary.

Finally a double convolution leads from Ry [m] to Ryy[m]

Ryylm] = Ruxlm] ® h*[—m] @ hlm). (24.28)

24.3 Power Spectral Density of a WSS Signal

The signal x[n] is assumed wide sense stationary. The power spectral density of x[n]
is, by definition, the Fourier transform of the autocorrelation function

xx e]u)T Z Ry —Jn(uT. (2429)

n=-—0o0

The spectral density is real. Indeed

S;x (ej(uT) — (i Rxx[n]e—jn(uT> Z e]na)T Z Rxx e’”("r

— Z Rxx 7Jn 'oT _ x(eij)~
So,
St (7)) = See (7). (24.30)

Conversely, one can evaluate the correlation function by taking the inverse
Fourier transform of the power spectral density:
+5
Re[n] = — / Sex (7) T doo. (24.31)
,

_®e
2

The cross-spectrum Sy, (ej‘”T) is defined by:

e]wT Z ny —Jan. (2432)

n=—0o0
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By taking the Fourier transform of the convolution product we have

o0

Sw(@) = D7 (Ral] @ W [-n))e ",
e . (24.33)
Sxy (e]wT) =S, (e|wT) Z n [_n]efjan =S (e]wT)H* (eij) )

Similarly, we calculate
Syy (e]wT) _ Sxx (ej(uT)H* (ejmT)H(eij) _ Sxx (e]wT> ’H(ej(aT) |2. (2434)

This important expression gives the relationship between the spectral densities of
the input and output signals of a filter with frequency response H(el“T).
More generally we define the z function

Swe(2) = ZDO: Ry[n]z™". (24.35)

Property

Sul1/2) = (i Rxx[n]z*”> = > R = Y Rl
= i Rxx[n/]zinl = S (2),
thus
See(1/27) = Sxx () (24.36)
We have also
00 B o . - . 1

Sole) = Z (Rux[n] ® W [=n])z™" = Sux(2) Z W [=nle" = See(2)H <2_>
(24.37)

and also

Syy(2) = Sex(2)H" (-) H(z). (24.38)
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This last expression is the generalization of relationship (24.34) to the entire
z-plane. It is widely used in filter modeling as in Wiener filter modeling.

Power Spectral Density of Centered White Noise
Let Ryx[m] = Nd[m]. Tts spectral density is

e]u)T Z Rxx —Jan =N Z 5 —Jan (2439)

n=—00 n=—00

This density is uniform throughout the frequency axis; It is this property that
gives it its name, by analogy with the spectrum of white light.

We Infer an Important Property
A (power spectral density) is real, positive or zero

Sex (e7) > 0. (24.40)
To show this, we calculate
+%
1 . : 2
E{|y[n]|2} = Ry, [0] = — / Sex (€7)|H (") |"deo. (24.41)

_oe
2

We assume y[n] to be the output of a filter attacked by x[n] and with frequency
response H (e/T) such that

T 1 a<w<b
(e’ ) ’ 0 elsewhere in the period - (24.42)
We will have
| b
Ry[0] = — / Sex (€7 do. (24.43)

a

Now Ry,[0] is always positive or zero since it is the expectation of a square
modulus. The two boundaries a and b of the filter frequency band were selected in
any manner, it follows that the right side must be >0 V(a and b), which requires
that Sy, (€°7) > 0.

In particular we have

Sex () doo. (24.44)
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Recall that Ry, [0] is the signal power. This explains why Sy, (ej“’T) that is real,
positive or zero, and whose integral over frequency gives the power of the WSS
signal is called power spectral density (PSD).

24.4 Filtering a Centered White Noise with a First Order
Filter

Let the real centered white noise x[n], wide sense stationary of zero expectation and
autocorrelation function Ry, [n] = Nd[n] with d[n] the function of Kronecker.
This signal is used as input to a causal first order filter of temporal equation

y[n] = Ky[n — 1] + x[n]. (24.45)

The impulse response of this filter is

h[n] = K"U|n]. (24.46)
and the system response is
y[n] = hjn] @ x[n] = Z h[m]x[n — m]. (24.47)

The expectation of y[n]| is

e —E{y[n]}—E{ ) h[m]x[n—m1} = S HmEfxln - m]} =0,

(24.48)
The cross-correlation function of x[n] and y[n] is calculated with
Ryy[m] = Rex[m] ® h*[—m] = Nh*[—m]. (24.49)
The autocorrelation of y[n] is written
Ryy[m] = Ryx[m] @ ' [—m] @ hjm] = Nh*[—-m] @ hjm] = N Z W [—m'|hm — m']
=N > W' hm+m" =N Y hmhm+n]
=N Y KUK Um+ ).
m’'=—00

(24.50)
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First, we consider the case m > 0

Rylm] = NK™ 3" |KP" Ul +m). (24.51)

m'=0

Within the sum, the step function is different from zero if m + m’' > 0, namely for
m’' > — m. In the range of variation of m, the step function has always value 1.

NK™ K =N 24.52
SR =N (24.2)

(If [K| <1, as it is assumed a priori to ensure stability of the system).
We now deal with the case m <0

=N > KUK Um o+ m). (24.53)
m'=—o00

The function U[m + n'] is nonzero if m+m' >0, that is to say for m’' > — m.
The starting index of the sum is now —m which is positive.

Ry, [m] = NK" i ‘| = NK™ IR gt ] (24.54)
" o 1—[k[? 1—|KJ? '
We verify that we have
Ryy[m] = R}, [-m]. (24.55)

Power Spectral Density of the Output Filter Noise

wT —Jm(uT
yy e] E : Ryy

<”§C K™ ﬂmwT 1+ mz(] K jmwT> ) (2456)

0

The first sum is

it . 1
KMe—imoT :W' (2457)

3
I
o
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The second sum is

m=0 m' =00
. P 1
*(—m) ,—jmoT __ sm’ _jm' oT __
m;mK e "l = mEr:o K"l R oeTE (24.58)

. 1 1 1
Sy (e”T) =N A — 1
.V)( ) 1— |K‘2 (1 _ Kef_le + 1— K*GJwT ) )

j — Krel*T - —joTy) _ — —joT _ gH*eioT
Sy (67) = N—! ((1 K*eloT) + (1 — KedoT) — (1 — Ke 3T) (1 — K*¢l )>’

1— K| (1 — Ke7i“T)(1 — K*eiT)
- 1 2 — KreloT _ ge—ioT _ | _|_K*eij _|_Kefj(uT _ |K|2
Syy (e] ) =N 2 _ —joT _ g*ajoT )
1-|K| (1 — KeTT)(1 — K*el®T)
Finally,
: N
Sy (7)) = (24.59)

(1 — KeJoT)(1 — K*el*T)
It is noted that since the filter frequency response is

1

H(E) = T geor)

(24.60)
We have

Sy (€7) = S (T ) H (T ) H* (7). (24.61)

These results are consistent with the general relationship (24.34).

24.5 Coherence Function

A method widely used for identifying noise sources is the method of the coherence
function. This method lies in the comparison of a measured noise with that created
by a possible source of the noise. At each frequency one can measure the fraction of
the noise assignable to that source.

We define the coherence function between two WSS random signals s[n] and
x[n] by the expression

_ 8w
VS (€T) /Sy (eT)

(24.62)
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Where Sq, (6/°T) is the cross-spectral density (cross-spectrum, FT of Ry [m]) of
s[n] and x[n]. Sxx (/T and S, (e*7) are the respective spectral densities of s[n] and
x[n].

Properties:

1. Let us assume that s[n] is the output of a LTI system of which x[n] is the input
signal and k[n] the impulse response. We calculate functions appearing in the
coherence function 7y, (e*7):

Sex (eij) _ Z Rsx[n}e*jan _ Z Rsx[n]e*jan _ Z Rxx[ﬂ] ®h[n]efjan.

(24.63)
Sex (61) = S (€“T)H(eT). (24.64)
Referring to this result in (24.62), we have
) S eij H eij
ysx<erT) — | xx( : T)|| ( )l ) (2465)
V/Sxx(€1T) /Sy ()
A. A spectral density being always > 0, this equation becomes
R S G 1] Su@HED

B \/Sxx (e]wT)\/Sss(erT) N \/W\/Sxx(ejw'l‘”H(eij”z B

(24.66)

2. Assume now that the signal s[n] consists of the sum of the output signal y[n] of a
LTI system (whose input is x[n]) and a second random signal z[n] of unknown
origin and which is considered as a noise, y[n] is considered the signal. It is
assumed that the signals x[n] are z[n] are not correlated. Signals are also assumed
real with zero mean: s[n] = y[n] +z|n].

s[n

<l 48

Let us calculate in this case the coherence function 7y, (ei‘“T). The calculus
begins by the determination of the correlation functions. Using the non correlation
of x[n] and z[n] we can write
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Ryx[m] = Ry [m] + Ryx[m] = Ry [m] ® him] + Ry [m] = Ryx[m] ® h[m].  (24.67)
Ser (T) = Sy (T H (7). (24.68)

Ry [m] is then calculated. Because z[n] is not correlated to x[n] it is not to y[n].
We have therefore

Rs[m] = Ryy[m] + Ry [m] + Rey[m] + Rz [m] = Ryy[m] + Rez[m]. (24.69)

Taking the Fourier transform of Ry [m] we then have

Ses (A7) = Sy (°7) + S22 (€°7) = S (7 |[H(&T) [* + Sz (7). (24.70)

(&) = S M) )] SENCR D)
/S xx \/Sxx e]a)T)| +S (ej(uT)
T
ysx e]u)T ‘H(ej )’ 1 — , (2472)
\/|He1wT| +3 S=(07) \/1+,S”‘<S’Jw).
Sul(@) (&) s (1)
or
: 1
) = 24.73
Vor (€7) D) (24.73)
14+ -
Syy(@v)T)

Since the spectral densities are real, positive or zero, we see that the coherence
function 7, (¢*7) is between 0 and 1.

0 <y (7)< 1. (24.74)

The coherence function will be close to 1 for the frequencies where the spectral
density of the signal y[n] is large compared with that of the noise z[n].

The ratio of power spectral densities of the noise and of the signal at frequencies
o is noted:

w Szz(ej )
(") = 5, (07T (24.75)
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Equation (24.73) is then written

; 1
7 (697) = ——— 24.76
C T (24.76)
or even
. 1
r(@7) = 50— — 1 24.77
(=) Vae(6T) 24.77)
24.6 Autocorrelation Matrix of a Random Signal
Let x = [x[0],x[1],...,x[p]]" a vector consisting of p+1 values of the random

signal x[n]. We further assume that the signal x[n] is wide sense stationary.
The exterior product of x by its Hermitian conjugate x is a matrix (p +1)x

(p+1):

KO0 O] 0l
e bf” A 1;:cu A ])f | -
ple 0] ] . xlplelp)

If x[n] is WSS, the autocorrelation matrix is obtained by taking the expectations
of each term.

Having noticed that since the signal is SSL, E{x[n + m|x*[n]} = Ry[m].

since Ry [m] = RE [—m],

Rld) R R
Ry = E{xx'"} = in[] R”i[o] R”[p:_l] . (24.79)
Rulpl Rulp—1] ... Ru0]

R,, is a Hermitian matrix. It is also a Toeplitz matrix, that is to say that the
elements along the main diagonal are equal. This matrix is also definite, not neg-
ative. Its eigenvalues are real and not negative. The eigenvectors associated with
different eigenvalues are orthogonal.

Property: The eigenvalues of an autocorrelation matrix nxn of a stationary
signal at large are bounded below and above by the minimum and maximum values
of the power spectral density):

min Sy, (€/”7) < /; < max Sy (617). (24.80)
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24.7 Beamforming

Consider a signal x[n] resulting from a recording by a sensor of a random acoustic
signal wave propagating in a fluid. Assume now that one has an antenna consisting
of an array of identical sensors uniformly distributed on a line and distant from each
other by a. In the case of propagation in the form of a plane wave, the signal
received by the sensor p + 1 is the signal received by the sensor p multiplied by a
delay s = “51“9 . ¢ is the speed of the wave in the medium, 0 is the angle of the wave
vector with the perpendicular axis to the network:

X, 1[n] =x,[n —s] = x,[n] ® o[n — s]. (24.81)

The next development aims to find the direction of the source of the acoustic
wave from the data recorded by the sensors. Considering the matrix Ry.[m] of
cross-correlation functions between the signals of the various sensors:

Ry, [m] Ry, [m] Ry,x, [m]
Ree M) Ryyx,[m] ... Ry, [m

Rxx [m] _ XQJC:] xe:2 : xzx: - (2482)
Ruyx, (M) Ryyxy[m] - Ry [m]

It follows from the above assumptions that the cross-correlation function of two
successive sensor signals is related to the autocorrelation function of the signal from
a sensor by the relationship

Ry, x,[m] = E{x, 1[n+mlx,[n]} = E{x,[n+m — sx,[n]} = Ry x [m —s].
Or even
Ry, ix, [m] = Ry, [m] @ d[m — s]. (24.83)
The matrix Ry, [m] is then
Rix[m] = Ry x, [m]
o[m] o[m — s] co. Olm— (M —1)s]
o[m + s o[m] co. Olm— (M —2)s]
© : : : :
om—+ (M —1)s] dm+ (M —2)s] ... o[m]

(24.84)

We now consider the matrix of cross-spectra, consisting of FT of the different
terms of the matrix of correlation functions. By applying the shift theorem to the
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different elements of the matrix and by denoting So(e””) the power spectral
density of the signal of one sensor, then

1 e JsoT . efj(Mfl)sz
) ) ejsz 1 . e—j(M—Z)sz
Sex (€7) = 8o (eT) , , _ : . (24.85)
e/‘(Mf'l)sz ej(Mf.Z)sz ) ) 1

The matrix of phase factors is Hermitian and Toeplitz. Generally, its eigenvalues
are real or null and its eigenvectors are orthogonal. Here, the column vectors of this
matrix are not independent. They are deduced from each other by multiplication by
a complex term of the form e /T, It follows that the determinant of the matrix is
zero. The matrix is singular and rank 1. The eigenvalues are all zero except one
whose value is M. The corresponding eigenvector is the column vector
(1 edel .. edM-lsol )H. The determination of this vector can be used to
trace back the delay s and thus the direction of propagation of the plane wave and
therefore the direction of the source.

By studying the case of superposition of two signals from two propagation
directions (in practice two remote sources), the matrix of cross-spectra has two
nonzero eigenvalues. This method gives access to the knowledge of the number of
sources. However the two associated eigenvectors are orthogonal and are not
independently associated with the direction of each source. The inverse Fourier
transform of the first row of the matrix, however, allows to determine the values of
the delays s; and s, and so find the directions of the sources.

Note: The results would be the same if the signal x[n] was certain. In that case we
would be dealing with deterministic correlation functions and their Fourier
transforms.

24.8 Analog Random Signals

It is appropriate at this stage to give the main results of the analysis of random
signals in continuous time. The formulas are similar to those digital signals but
some developments given hereinafter are easier and more intuitive to establish on
analog signals. Consider x() an analog random signal. The correlation function for
this signal is defined by:

Rer)x(n) (1, 12) = E{x(t1)x"(12) }. (24.86)

The signal will be wide sense stationary iff:

(a) His expectation is independent of time E{x(t)} = 1y () = -
(b) Its correlation function Rx(,l)x(,2>(t1,t2) depends only on the time difference
T =1 — t;. We shall note Ry () the signal x(#) correlation function.



24.8 Analog Random Signals 499

The power of the WSS signal x(¢) is given by: P(t) = E{x(t)x*(¢)}.

We have in this case P(f) = P = Ry (0).

An analog centered white noise is a real random signal, zero expectancy, WSS,
whose correlation function is given by the Dirac distribution 6(7): Ry (7) = N6(7).

The correlation function of the output signal y(7) of LTI filter with impulse
response h(r) is

Ry () = Ry (7) @ 1" (1) @ h(1). (24.87)

The power spectral density) of the WSS signal x(¢) is the Fourier transform of its
autocorrelation function

Sex(w) = / Ry (1)e7¥"dr. (24.88)

A power spectral density is real, positive, or zero:
Sex(®) >0 (24.89)

Considering a real signal x(7), sum of a deterministic signal s(¢) and a random
signal b(z): x(r) = s(¢) + b(¢). The signal-to-noise ratio for this signal is defined as
the power of the certain signal to that of the random signal. We write

Pog _ 50 (24.90)

o Pb(,) E{bz(l‘)} '

We see that the signal-to-noise ratio can be increased by decreasing the power of
the noise by filtering.

Passage of White Noise in an Ideal Low Pass Filter

Consider a white noise b(¢). Its correlation function is Ry () = No(1). Its power
spectral density is Spy(w) = f_t)ooc Ry (1)e 7%dr = f_+oooo Né&(t)e7'dt = N. It is
constant. The power of white noise is infinite as P, = Ry (0) = co. Note that since
an infinite power is physically impossible, white noise should not have infinite
power. It is a mathematical fiction. In practice, a white noise is a very broadband
noise.

Now we input this white noise in a low pass filter ideal (unity gain within the
bandwidth) with cutoff frequency w,.

In the time domain we have b (¢) = b(¢) ® h(z) .

The spectral density of the output signal is

Sblbl(w) = |H(w)|25bb(w) (2491)
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The power of the output signal is

Ra, (0) = 5- / o (0)doo = 5 / I (0) Sy ()do
_ 7 Ndw =N (24.92)
T2 T '

—We

It is seen that the output power from the filter is proportional to the bandwidth of
this filter.

We have a similar result when a band-pass filter is used. It is assumed that the
band-pass filter, assumed ideal, has unity gain within a bandwidth 2w, centered in
wy.

The power of the output signal is

—wo + ¢ W —

1 1 20,
R (0) = 5 / Ndo+ - / Ndw:N: . (24.93)

—Wo— W, o + W,

The practical value of this filtering appears in the following situation. It is
assumed that in the noisy signal x(¢) = s(¢) + b(z), the noise is white.
At the outlet of the filter we have x1(f) = (s(t) +b(2)) ® h(zt) = s1(¢) +b1(¢).

s(t)ib)(l)ﬂ (l)_""b)l O]

Assume that the bandwidth of the ideal filter is adjusted to that of the signal s(z).
The signal s(#) remains unchanged in the filter x;(¢) = s(¢) + b, (z), but the noise
power is decreased. The signal-to-noise ratio at the output of the filter is in this case

52 Sz
— E{b%(t()t)} - Ng (24.94)

p(t)

It thus appears that the signal-to-noise ratio that can be achieved with noisy
signals is all the more larger as the bandwidth of the signal is weak.

In space telecommunications, signals from very distant sensors of the earth have
extremely low amplitude. The signals are very noisy. To benefit from the result set
and can effectively filter the noise at reception, we choose to communicate infor-
mation using very narrow-band signals. In reception the signals are amplified by
masers which are amplifiers with very high gain and very narrow band. This
improves considerably the signal-to-noise ratio at reception. Research on masers
accompanied those on lasers that can be considered very narrow-band amplifiers
operating in bands of optical frequencies.



24.9 Matched Filter 501

24.9 Matched Filter

In the former case, it was sought to improve the signal-to-noise ratio by filtering,
preserving as well as possible the temporal shape of the certain signal. Another
situation is where one seeks to detect the presence of a signal within a noisy signal.
This is the case where a radar signal processing first looks for the presence of a
target by detecting the echo. The shape of the expected echo is known: it is identical
to that of the transmitted signal which we denote here s(z). We show in the fol-
lowing that there is a filter which optimizes the detection of the signal s(¢) in the
noise. Let us note the impulse response A(¢) of this desired filter. It is assumed that
the noise b(r) is WSS.
The output of the filter is x1(¢) = (s(t) +b(z)) ® h(t) = s1(¢) + b1 (1).

s(t) +b(1) s1(t) +b1 (1)

(H]

The impulse response of the system is determined so that at a certain time #; the
signal-to-noise ratio as defined below is maximized. At the output of the filter, this
ratio is

_ si(n)
PO) = przay (24.95)

We have S () = S(w)H(w). So, at time #;: 51 (1) = = [ > S(w)H(w)d" do.
For a real signal

+ 00 2

st () = \sl(t1)|2:# / S(w)H(w)e™ da| . (24.96)

—0Q

2

The denominator is estimated. Since Spp1(w) = Spp(w)|H(w)|”, taking its
inverse FT we obtain Ry 5, (t) = A [ % Sy (w)|H(w)[e"dw.
2 Lore 2
E{bi(11)} = Ry, (0) = E/ Spp () |H ()| do. (24.97)
It is assumed that the input is white noise with Sy, () = N.
1 + 00 it 2
7|/ o S(w)H(w)e" dw
p(ty) =42 |fﬂ N | . (24.98)

|H ()] de

2n J—o0
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Recall Schwarz’s inequality

/ Fi(0)F>(w)do| < / |Fy(w)]*dw / |F>(w))*dw

There is equality iff F;(w) = kF*(w), where k is any real constant.
This result is used in the problem considered

2

+ 00 + 00 + 0o
/ S(w)H ()1 do| < / ()P dw / |H(o)[*do,
thus
Jr
1
oty g—N/ o)} do. (24.99)
—00

The maximum value of the signal-to-noise ratio will be achieved if and only if
H(w) = kS*(w)e ", (24.100)

Resulting in the time domain

+ o0
=k S*(w)e e do.

As S(w) = ffoooo (t)e~/®'dt, and since the signal is supposedly real,

+ 00

S*(w) = / s(r) dr. (24.101)

It comes by making the change of variable ¢ = —r S*(w) = f_+ococ s(—1")
eJordy.
So §*(w) is the Fourier transform of s(—1).
Thus s(—1) = 5 [ 12 8% (0) &'dw so s(t; — 1) = L [T 5" (w) e 71" da,
It finally comes
h(t) = ks(t; —1). (24.102)

Therefore the optimal filter impulse response is a replica of the signal s(z)
obtained by performing
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1. a time reversal of the transmitted signal
2. atemporal translation of the reversed signal by a delay equal to #; that is the time
of the round trip of the backscattered signal from the target.

The convolution operation with a returned signal being a correlation, this type of
radar is called radar by correlation.

This type of radar is only a stage in the evolution of remote sensing techniques. It
provides information on the position of an object but not its speed. Measuring the
velocity of the target is based on the measurement of the Doppler effect which affected
the echo. This effect is a shift in frequency of the signal due to the relative speed of the
target and the transmitter—receiver antenna. The change in frequency is low; it is
necessary that the signal duration is relatively long to allow determination. The signal
s(t) of radar that simultaneously measures the position and frequency must meet two
apparently contradictory requirements: be short enough to permit accurate localiza-
tion and discrimination between targets and yet be sufficiently long to permit mea-
surement of speed. Modern techniques optimize the shape of the signal used s(#). The
reader is encouraged to refer to books on the subject to deepen this theme.

Summary

We encountered in this chapter two functions which are fundamental for signal
analysis: the correlation function and the power spectral density of wide sense
stationary (WSS) random signals. We studied the filtering of WSS signals by a LTI
system and gave the theorems linking correlations and DSP of input and output
signals. The coherence function defined afterward is a powerful tool to identify in a
noisy signal the sources constituting the noise. At the end of this chapter, we gave
the equivalent formula for correlation functions and power spectral densities of
analog signals. We have seen how one can increase the signal-to-noise ratio with a
filter. We have exposed the principle of the matched filter, widely used in radar and
sonar. It increases the probability of detection of an echo in a noisy environment.
Many corrected exercises at the end of this chapter will help the reader become
familiar with these important results.

Exercises

I. Matched digital filter. It is assumed that the digital signals are obtained by
analog—digital conversion at a sampling frequency f; = 20 kHz.

A. Let the digital filter defined by the following time equation:

glnl = =fln] = fln = 1] +f[n = 2] +f[n - 3].

1. Give the impulse response A[n] of the filter and represent this function. Is the
filter causal?

2. Calculate the system transfer function H(z). Having noticed that z = 1 is a root
of H(z) = 0, determine the notable points of H(z) and represent them in the z
plane.
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3. Deduct the shape of the frequency response modulus of H(&/”) from the
position of these notable points. What are the frequencies of the signals blocked
by the filter? Calculate the expressions of the frequency response H (/") and of
its module.

4. We use at the filter input a signal fy[n] which is time reversal of h[n]
foln] = h[—n]. Calculate the filter output signal go[n]. What is the Fourier
transform of this signal?

B. We show now that the previous filter is well suited to the detection of the signal
foln] when it is vitiated by an additional noise b[n]. It is assumed in the fol-
lowing that the digital noise b[n] is white, wide sense stationary, Gaussian, with
zero mean and autocorrelation function Rpp[m] = d[m] (6[m] is the Kronecker
function).

1. What is the standard deviation of the noise signal b[n|? Give the prediction
interval (symmetric) at risk 5 % of noise voltage b[n]. What is the power
spectral density of b[n]?

2. Itis first assumed that the noise b[n] is the question I filter input. We note Ry, [m]
the output signal. What is the expectation of the signal y[r|? What is its vari-
ance? Give the prediction interval (symmetric) at 5 % risk of noise y[n| at the
filter output. Give the expression of the autocorrelation function Ry, [m]. What is
the power spectral density of y[n]?

3. We note fn] the signal fy[n] (met in question 1.4) added with noise b[n]:

fIn] = fo[n] +b[n]. What are the expectation and variance of f[n]?
This signal is presented at the input of the filter met in A. The output signal is
noted g[n]. What are the expectation and variance of g[n|?

4. We call power (instantaneous) of a deterministic signal, its square. The power of
a random signal is the expectation of its square. Thus Py [n] = fZ[n] and
Pyln] = E{bz[n]}

The signal-to-noise ratio of the signal f[n] is p[n] El{)fb%[;]]} . Calculate the value

of this ratio for different values of n.

5. Calculate the signal-to-noise ratio in the signal g[n]. Show that the fact of having
used to filter the noisy signal a filter whose impulse response is the time reverse
of the signal fy[n] that is to be detected has increased the probability of detection
of this signal (increased ratio signal to noise at the crossing of the matched
filter).

Solution: A 1. hln] = —d[n] — d[n — 1] + 6[n — 2] + d[n — 3]. The filter is causal
because the impulse response is zero for n <0.

2. H) = —1—-z'+72+73 =73(-2 -2 +z+1).
H(1)=(-1—1+1+1)=0.
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By the division of polynomials we get

H(z) = —z3(z—1)(2+2z+1) = —z 3z —1)(z+1)*, which has a triple
pole in z=1, a single zero in z=1 and a double zero in z= —1.
H(euuT) =_1— efij +efj2wT+efj3wT'

3. The filter is band-pass. The gain is zero for @ = 0 and w = X(for f :%).
4. goln] = foln] ® hin] = h[—n] ® h[n]. That is to say, the autocorrelation function
of h[n].

goln] = foln] ® hln] = h[—n] @ h[n].
goln] = —0[n+3] —26[n+2]+d[n+1]+4dn|+dn — 1] — 26[n — 2] — o[n — 3].

As expected, this function is even and has its maximum in n = 0.
G(eT) = | (&)

Bl. 07 = Rpp[0] = 6[0] = 1. The standard deviation g, = 1. Plsy, = {—1.96,
1.96}.

2. The expectation of b[n] being zero, that of Ry, [m] will be also.

Ryy[m] = Ry [m] © hlm] @ h[—m] = 6[m] @ hlm] @ h[—m] = hlm] © h[—m];

3. E{fn]} = E{fo[n]} + E{b[n]} = fo[n] = h[—n], for the expectation of a certain
value is itself and the expectation of b[n| is zero by hypothesis.

gln] = fln] ® hin] = (foln] +b(n]) ® hn]; E{g[n]} = foln] © hln] = go[n].

The variance of g[n] is that of Ry, [m]: Gf, =4.

4. For the signal f[n] the signal-to-noise ratio is py[n] :@ = ft[n] equal to zero
or 1.

5. For the signal g[n] the signal-to-noise ratio is pg[n] :@. In particular

pg[0] = 4. At time n = 0 the signal-to-noise ratio of the filtered signal g[n] is at

least fourtimes greater than that of f[n] increasing the probability of signal f[n]
detection in noise.
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II. MA digital filter

N-1
1. Let the digital filter defined by the temporal equation y[n] =+ > s (5=1) x[n+1]
- 2
with N odd.

a. What is the impulse response of the filter? Represent this when N = 9.
b. Calculate the filter transfer function H(z). Locate its zeros in the complex plane.

From the position of these zeros predict appearance of the filter frequency gain
modulus.

c. Give the expression of the frequency response H (ei“’T) (T is the sampling step).

Why could we predict that this function was real? Which are the frequencies of
signals blocked by the filter in the case where the sampling frequency is
f. = 1MHz?

Accurately represent the frequency response.

2. It is now assumed that the signal x[n] is random, WSS and for each value of n,
x[n] has an even distribution between and —1 and + 1.

a. Specify the mean and the standard deviation of x[n].

b. Assuming that two successive values of the signal are independent, give the
distribution of g[n] = x[n] +x[n + 1]. Calculate the variance of g[n].

c. Extend these results to the filter defined in question 1.

N-1
vt 4
Solution: 1. a. Aln] =% > dn+I.IfN =9, hln] =3 > d[n+1).
=) =4

_1 I _ 1240~ _1,-52-1 _ 1, -42-1
b. H(z)—§Zz §lzl—§Z 171—52 1°

The numerator has 9 zeros regularly placed on the unit circle z = %
(k=0,1,..,8). The zero in z = 1 is balanced by the zero at denominator. The filter
will let pass the DC component and block frequencies fi = k% with
(k=0,1, .., 8).

c H(ei”’T) =1 5 (1 +2cos wT +2cos 2wT + 2 cos 4wT). This function is real since
the impulse response is even. The blocked frequencies are f; =k %

(k=1,.,8).
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2. a. fy =4 for —1 <x<1 and zero elsewhere. E{x[n]} = 0. 07 =1.
b. The two values x[n| and x[n+ 1] being independent, the PDF of g[n] is
fz = f:(x) ® fe(x), convolution of two rectangular windows. It is a triangular
window with base {—2, 2}. The variance of g[n] is the sum of the two vari-
ances, a§ =2
c. For the sum upon nine elements, the probability density function is the con-
volution of several triangles. This is a bell curve that starts to look like a

Gaussian (see the central limit theorem). The variance is 9%.

III. Sinusoidal signal with a random phase

Let x[n] = Acos(wonT + @) the random signal where A and w, are constants
and O is a random variable uniformly distributed between —n and 7.

. Give the PDF fg of ©.
. What are the expectations of @ and x[n]?
. Calculate the autocorrelation function of the signal x[n].

. Same questions if now x[n] = Ae/(“"T +©),

AW N~

Solution: 1. fg = i between 0 and 27.

2. E{@®} = 0. E{x[n]} = E{A(cos(wonT) cos ® — sin(wonT) sin @)}.

E{x[n]} = Acos(wonT)E{cos @} — Asin(wonT)E{sin@®} = 0.

3. E{x*[nx[n+m]} = E{Acos(wonT + @)A cos(wo(n+m)T + @)}
2 2
= %E{cos(womT) + cos(wp(2n+m)T +20)} = %cos(womT).

4. E{x[n]} = 0; E{x*[n]x[n+m|} = E{Ae T +O)gg/nln+mT 4 @)} = A’E
{ej(womTJrG))} =0.

IV. Statistics of first and second order Gaussian signals.

Let b(¢) be an analog Gaussian noise, with zero expectancy and whose corre-
lation function is Rpp(t) = Bo(t). (where o(t) is the Dirac distribution and
B=10"1%).

This random signal is the input of an ideal, gain 1, low pass filter for
{|w| <wo = 10°} and zero elsewhere. The filter output is noted x().

1. Calculate the correlation function of signal x(z). What is the joint probability
function of the couple of variables {x(#),x(z2)}, where #; are #, two times
separated by T = 1076?

2. Knowing that at time #;, was measured x(#;) = 10~ V was measured, what is
the probability of measuring a negative value 1 ps later?
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3. The signal x(¢) is presented to the input of a quadratic electronic circuit (the
output of the circuit is the square of the input signal). The output is noted y(z).

a. What is the PDF of y(z).
b. Calculate the correlation function and the psd of y(7).

Solution Spy(w) = B. So Sxx(w) = B for {|w| <wy = 10°} and zero elsewhere.

+ o

1 B sin @ Bw,
1. Ry (1) = oy / Be”"dw = o Tosmc(wor)

—@o
2. Since the filter input signal b(¢) is Gaussian, x(¢) is also Gaussian. It is also WSS
as b(¢) is. His expectancy is zero like that of b(¢). Its variance is

B
02 = Ry (0) = ::" NA.G2 = 10*6.6,; —5.64107.

2

The PDF of x() is fi(x) = \/z_ze 2z,

The correlation coefficient of x(;) and x(r;) is given by

r(t) = 2:‘58; = sinc(wo1).
N. A. For T = 1075, r = sinc(1) = 0.8415.
Denoting x = x(#;) and y = x(,), the joint PDF is

iy 5,3) = e T )

1
withr = 0.84 2 _ 6
27[0’)%\/1— —72 tthr 8415 and Oy = 107".

3. The result is given by the exercise I of Chap. 22.
Reference should be made to Chap. 21. We have

a. fy(y) = \/2—2\/' “‘%U(y).
b. Correlation of (1) is Ry, (t) = E{y*(1)y(t+ 1)} = E{x*(1)x*(t+ 1)}

To return to the notations of Chap. 22 we set x(¢#)=x and x(¢t +1)=y.
We look for E{x?y*} = ffcoo J75 ¥y fey(x,y)dxdy. Using the conditional PDF
2 O rv)z
o 3 B} = %, [P T e 0
In the integral over y, the conditioned expectation of y?> conditioned is recog-
nized. The expectation of a square being equal to the variance plus the square of
expectancy, this integral is ¢2(1 — r?) + r2x>
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_a2
Thus: E{x*y*} = \/;T?ffooo x*(2(1 — r*) +r’x*)e *idx. Integrals giving the

moments of order two and four of the Gaussian function appear. The result will be

_ 2
- 2 sin ot
of the form Ry (1) = a+br* = a+b( oot )

+ oo . ) . 2
S0 1 Sy (@) = / ath (Sm wof) et = 2nad(t) + b F (Sm wof) .
woT WoT

—00

The FT of sinc squared is the convolution (divided by 27) of the FT of sinc by
itself. As it is a rectangular function, the result will be a triangular window on the
interval {—2wg,2wo}.

V. Consider a WSS random Gaussian signal with zero mean x(#) and autocorre-
lation Ry (7). Let y(f) = x*(¢). Give the correlation function and spectral
density of y(¢); its mean and variance.

Solution:

Ry (1) = EQp(0y(t + 1)} = E{2(0x(1+ 7).

We use the following property valid for the mean of the product of
four real Gaussian variables by, by, b3, bs: E{bibybs3bs} =
E{blbg}E{b3b4} + E{b1b4}E{b2b3} + E{b1b3 }E{b2b4}

Ryy(v) = E{x(1)x(0) }E{x (¢ + 1) (t + 1) } + 2E{x(0)x(1 + 7) }E{x (1)x(1 + 1)},

Ry (1) = R%,(0) +2R2, (7). Syy(w) = 6*0(w) + L Sex(0) @ Sex(w), with ¢* the

variance of x(#): RZ.(0) = ¢*.

E{y(t)} = E{x*()} =R, (0) = > E{y* (1)} = E{x*(1)} = 30"

Variance of y(t) = E{y*(1)} — e*{y(1)} = 30* — o* = 24"

VI. We have three simultaneous recording of random signals. It is assumed that
the signals are wide sense stationary and ergodic. The record length has N =

N
8192 points. We calculate the sums Y s;[n] for i=1, 2, 3 and find

n=1
N
approximately zero. The following sums are calculated: R;; =+ >_ s:[n]s;[n]
=1
for i, j=1, 2, 3 and find R;; = 43.0384; R, = 7.4729; Rz = —10.5892;
R22 = 26.5357; R23 = —31.7579; R33 = 42.9762.
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1. Build the correlation matrix of signal values at time n and recall the general
properties of this type of matrix.

Using Matlab we look for the eigenvalues and eigenvectors of this matrix and
find:

—0.0149 0.9184 0.3953

Eigenvectors: V = | —0.7889 —0.2537 0.5598 ,
—0.6144 0.3035 —0.7283
1.9429 0 0
Eigenvalues: A = 0 37.4753 0
0 0 73.1322

2. Show that the information carried by these three signals can be approached by
the contents of two orthogonal signals which are calculated from the three

signals.

Estimate the error in this approximation.



Chapter 25
Ergodicity; Temporal and Spectral
Estimations

In many practical cases, we have only one realization of a random signal x[n] and
we cannot operate an ensemble average. This is the case, for example, when
transmitting a signal on a noisy communication channel, or the case of a satellite
image of a terrain area, etc. We are led to try to estimate the statistical properties
from the behavior of the process x[n] using this single realization. It is conceivable
that over time, the values of x[n] can browse all the possible values of the measured
variable, and there may be equivalence between expectancy at a given time and the
time average. Time averaging should be performed on a large enough interval to
allow that almost all probable values of x[n| could be attained. The signal should
necessarily possess qualities of stationarity. We will talk of ergodicity if the
equivalence between expectation and time average exists. But even in the case
where a signal is ergodic, difficulty is encountered in practice, because a record of
this signal has necessarily a limited length. Ergodicity can only be reached
asymptotically when the sample length tends to infinity. A precise discussion is
needed when one studies the role of the duration of the realization. Temporal
integrals can only provide estimates of intrinsic statistical properties. It is for this
reason that we speak of estimators.

We study the estimation of the mean of a random signal by the sum of con-
secutive samples and the variance of the estimator. We discuss some conditions for
the ergodicity of the signal regarding the mean. We present two estimators of the
correlation functions and discuss their variances. An estimator of the power spectral
density is taken as the Fourier transform of one estimator of the correlation func-
tion. We show that the poor quality of the raw estimator of the psd results from the
poor estimation of the correlation function for large time delays. We present the
methods that are used to improve largely the spectral estimation.

The chapter ends with the presentation of methods for extracting one or several
harmonic components in a noisy spectrum. The Capon maximum likelihood super
resolution method and Pisarenko method are discussed.

© Springer International Publishing Switzerland 2016 511
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25.1 Estimation of the Average of a Random Signal

For example, we define an estimate of the expected value (average) of the signal as
the sum of 2N + 1 consecutive values of the signal. The caret above the obtained
value highlights the fact that we are dealing with an estimator.

Mo 41 [1] :ﬁ _Z x[n —m]. (25.1)

We must realize that this estimator is a random variable, and the same operation
on a different realization sample or another time interval would give a different
value. Like any random variable this estimator has an expected value and a variance
that we will seek to evaluate.

25.1.1 Expectation of the Average Estimator

When the process is stationary, the expectancy of the signal is constant. In this case
the statistical average and time average operations being linear and independent,
their order of application can be switched, and then:

| R | R

E — =
a1 2 Bl = o

m=— m=—

E{iiyx 1[0} = Ny = M- (25.2)

The expectation of the estimator is equal to the quantity which it is desired to
estimate. We then say that the estimator is unbiased.

25.1.2 Variance of the Average Estimator

We study now how this sum over 2N + 1 values approaches the mathematical
expectation. We realize that if the successive values are highly correlated for small
time differences and not for large time laps, we will have to perform the sum on
large enough time intervals in order that the function x[r] might take all possible
values and that chance plays its role. The length of the summation interval enters
into account. We cannot hope to have i,y ; = 7, on any summation interval of
finite length.

It is however possible only by a passage to the limit N — oo, the estimator of the
mean tends towards the expected value: limy_.o ffon41[n] = 1,. We can then
consider that the successive values of x[n] run through all the possibilities offered
by chance. We then say that the signal is ergodic with respect to the average.
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We will have a value with certainty only if the variance of the estimator is equal
to 0 for N — co. So we will have:

lim var(i,y ., 1[n]) = 0. (25.3)

—00

The variance of this estimator is:

var (i 4 1n]) = E{ (i 1 11n) = 1) }- (25.4)

We want to show that:

; . m|
Var('lzN+1[’l]) = INT1 ;N Cim] (1_2N+ 1). (25.5)

Indeed, setting
x[n] — n, = x.[n), (25.6)

var (i o1 11]) = E{ (11 = 1)} (25.7)

m=—N
1 ul ?
= E ¢ —
<2N+1mZNx [ m]>

1
1 N
(2N+1)2 (Z Z E{xc[n— xc[n—m]}>.

So:

Var(f]ZNJrl[n]) 2N+1 <Z Z xxm m ) (258)

m=—Nm'=—N

Since the signal is assumed wss its covariance C,,[m — m’] depends only on the
difference m — m'.

We write out m —m’ = m”. As can be seen in Fig. 25.1, in the plane indicated
by the axes m’ and m, the relationship m —m’ = Cre is the equation of a line
parallel to the first bisector which can be written as m = m” +m'.
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Fig. 25.1 Summation line m 4
m = m" +m’ in the plane _N N { N
/ 1
m',m : N N
m=m'+tm"
-N 0 / -m" N m'
m L

-N N
-N -N-m" -N -N

The number of points on this line segment is 2N + 1 — |m"|.
We can therefore write:

) 1 N p p
var (fiox 41 [n]) = W (W—Z:z]v Cu[m"|2N+1 —|m |)>a (25.9)

; 1 S " |
\/ar(rm+1[rz]):m > Cm[m](l—2N+1> .QED. (25.10)
2N

m=—

25.1.3 Ergodicity Conditions

One cannot infer from the expression (25.10) a necessary and sufficient condition
for ergodicity. However, we can find sufficient conditions by analyzing the behavior
of this sum to the limit where N — oo.

We first notice that the factor ﬁ tends to zero as N — oo. Itis thus sufficient that
the sum converges in order that this factor provides a zero limit value for the variance.

Example of white noise:

The white noise covariance is the Kronecker function by definition. We can
write: Cy.[m] = B[m]. The sum shown in Eq. (25.10) is equal to B.

We have then:

A B
1. e B 25.11
Jim var(ioy 4 []) = lim S -
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The variance of the estimator of the mean tends to zero as N — co.

The white noise average can therefore be estimated with a time sum if the
condition ﬁ < 1 is verified.

Similarly if the covariance of the signal x[n] is absolutely summable, the signal
will be ergodic with respect to the average. This is the case for example if Cyy[m]
and its support are bounded.

25.2 Estimation of the Correlation Function

Assume now that one has at our disposal a limited number of signal values, and that
one does not know the correlation function of the signal or its spectral power
density. We place ourselves in a real case where we have only values of random
signal x[n] on an interval {O,N — 1}.
The correlation function (unknown) is defined as Ry [m] = E{x[n + m]x*[n]}.
Consider the following estimator of the correlation function:

1 N—m—1
R _[m]=—— x[n+m)x*[n] for 0<m<N, (25.12)

N-—-m <=

and
R, [-m] =R [m] for —N<m<0,

to satisfy the property of Hermitian conjugation of the correlation function.

It is noted that the summing interval decreases when m > 0 increases. For values
of m approaching N, the summation interval becomes small. It is expected in this
case that the variance of the estimator becomes large since the arithmetic average of
the products x[n 4+ m]x*[n] is done on a small number of these products.

The expectation of this estimator is for 0 <m <N:

N—m—1

E{R, m]} = ﬁ S Efxfn+mlx'n]} = HRxx[m] — Rufm]. (25.13)
n=0

This estimate of the correlation function is unbiased.
We can define a second estimator:

1 N—m—1
Refm) =~ > x[n+mlx‘[n] for 0<m<N, (25.14)
n=0
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and

Ry [-m] = R:m] for —N<m<0.
The expectation of this estimator is for 0 <m <N:

1 N—m—1 —m

E{Rulil} = Y E{x[n—i—m]x*[n]}:NTRxx[m]. (25.15)

This estimator is biased. But it has the following advantages: for values of
m approaching N, it gives a low value. In this case, this tends to provide low values
for variance. A second advantage is that it lends itself much better to the calcula-
tions as is outlined below. It is widely used for that reason.

Variance of the estimator R, [m]:

Its calculation involves calculating the expectation of the square modulus of the
estimator.

N—-m—1N—m—1

E{‘R;x[m”z}i o Z Z E{x[n1 + mlx* [ ]x* [ -+ mlx[na] ).

np=

(25.16)

One sees in the summation a moment of order four, which makes it impractical
calculation in the general case. In case the signal is Gaussian the calculation can be
continued using the following property valid for complex Gaussian variables
by,by, b3, by the fourth order moment can be expressed from moments of order 2:

E{bib3bsb}} = E{b\b}E{b3b}} + E{b\b} } E{b3bs}. (25.17)
In this case one can write the Eq. (25.16) in the form:

N—-m—1N-—m—1

E{|R;x[m]|2} = m ZO Zo (Rxx[m}Rxx[_m] “l‘Rxx[nl - n2]Rxx[n2 - nl])7

Bt} = 2 2 (Rl R =)

ny=!

For the variance we must subtract from the last expression the square modulus of
expectancy. It comes:

N—m—1N—m—1

(R,/\cx[ ]) N m 2 Z Z ‘Rxx ni _n2| . (2518)

Ny =
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By performing a similar calculation to that of the variance of the expectation of
the average, one obtains:

(N—1=|ml)
; 1 K] 2
/ — _
var(R.,.[m]) = Nl k}(NZlilmD (1 N |m|) |Rux k]| (25.19)

As for the mean we can find ergodicity conditions for the estimator of the
correlation function.

The variance of the unbiased estimator is deduced from the variance (25.19) by
the relation:

var (Ry[m]) = (N—TW) var (R, [m]). (25.20)

For a non-Gaussian process x[n|, previous results are satisfactory in the
approximation when m < N.

It is noted that one cannot calculate estimation beyond the summing interval.
This estimate is equivalent to postulate that the values of the correlation function
outside the range are zero. This is not the only way to proceed. Extrapolation
methods of the correlation function beyond this range have been developed.

25.3 Spectral Estimation

The frame of spectral estimates is the evaluation of the power spectral density
(PSD) of a random signal or the detection and evaluation of monochromatic
components in a noisy signal. The signal is assumed to be wide sense stationary and
ergodic to allow estimation of the time correlation function.

Different existing techniques can be distinguished in parametric and
non-parametric methods. Among the non-parametric methods can be found:

e The methods of reduction of the spectral variance by averaging (Bartlett
method), smoothing of spectra (Blackman and Tukey) or by a combination of
both (Welch’s method).

e The extraction methods of monochromatic components. They are based on the
concept of orthogonal subspaces: signal subspace and noise subspace
(Pisarenko, MUSIC, ESPRIT methods)

Among the parametric methods we find methods based on the use of the Yule
Walker equations and other methods of constrained minimization:

MA modeling

AR modeling; Equivalent to Burg maximum entropy method
ARMA modeling

The method of “maximum likelihood” of Capon
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25.3.1 Raw Estimator of the Power Spectral
Density or Periodogram

Now it is assumed that the signal is ergodic for the correlation function.
The raw estimator of the power spectral density or periodogram is defined by the

Fourier transform of Ry [m]:

S (€97) = Z R, [m]e T (25.21)

m=—0o0

The relationship (25.22) can be interpreted as containing a convolution product
where appears the signal limited in time by a rectangular window w,[n]:

x:[n] = x[n]w,[n], (25.22)
with

1; 1<n<N

wrln] = 0; elsewhere”

(25.23)
The convolution is written:

Ryxlm] = %x,[m] ® x[~m). (25.24)

The Fourier transform of this convolution is used to write the raw estimate of the
PSD in the form:

2
- % X, (7). (25.25)

o]

Z x, [m]efjmwT

m=—00

Sxx (ej(oT) _ %

The estimator is easily obtained by calculating the FFT of the data x[n].

The variance of this estimator is large. As discussed below, the standard devi-
ation of a value of the spectral estimator at a given frequency is of the order of
magnitude of the correct value (this corresponds to a 100 % error margin). This
problem is caused by the poor quality of the estimator of the correlation function for
large offset values. Indeed, as we have noted earlier, for large offsets, the number of
products that we sum is reduced.
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25.3.2 Statistical Properties of the Periodogram

Expectancy of the Periodogram
The periodogram is defined by:

2

OO .
Z x, [m]efjmwT

m=—0Q

Pxx (ein) _ Sxx (ein) :%

The expectation of the periodogram is given by:

N—1 N—1 N—|l|

E{Py ()} = Z E{Ry [ }e T = Z 5 Recllle 7.

I==N+1 I==N+1

We use in this calculation the Bartlett window:

jory _ |2 lI| <N
wa () = 16; elsewhere
It comes:
E{i’xx (ej”T)} = Z Ry [Jwp[lle T,
I=—00

In the frequency domain, we write:
E{Puc (&) } = Wp(7) @ S (),
where Wp(e1T) is the Fourier transform of the Bartlett window:

: sin*(Now

The convolution is written as:

~l=

Wi (7) @ S (17) = wi / Wi (eiw’T) Sex (ei“"—“m) do'.

T
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(25.26)

(25.27)

(25.28)

(25.29)

(25.30)

(25.31)

(25.32)

We see that the periodogram Py, (ej“’T) is a biased estimator since the expec-

tancy of this estimator is not equal to the amount Sy, (ej‘“T) which it is desired to

estimate.
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However this estimator is consistent (it tends toward the function to estimate in
the limit N — 00), because when the width of the window tends to infinity, the
function W (er’T) becomes very narrow, resulting in that the result of the con-

volution in (25.32) tends toward the function Sy, (e/7).

Jim Ws(el”T) @ Spe (7)) = S (7). (25.33)

Variance and Covariance of the Periodogram

1. The signal x[n] is a Gaussian white noise

To address this problem it is assumed that the signal x[n] is a Gaussian white

noise complex b[n] with variance o3.

Initially we calculate the correlation between two values of the periodogram
obtained for two angular frequencies w; and w,. It is given by:

E{Pw ()P (&)} = E{BE N BE 53

where B(e/T) is the Fourier transform of the data sample. We develop the previous
expression:

E Pbb e](olT e]U)zT b 7_|n]colT b* e]k]wlT
{Pos () P (
Z b n2 e —jnpw, T Zb* e]]Q(UzT}

nz—O
-1 N-1 N-1 N-1

= Z > Z E{bln]b" [k1]b (2] [k2]}

ny =0 kl =0 n2—0 k2
e—_]l‘l] (o) Te]kl (o) Te_anszCszsz.

We now use the property of complex Gaussian variables given in formula
(25.17):

We have then:

if I’ll:kl andnzzkzorm:kzandnzzkl

E{b[m]b" [ki]b[n:2]b" ko] } = {((;2 elsewhere

(25.36)
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By replacing in the correlation we get:

sin(N(wy — 2)T/2)\*
(Vo oa72) ] (25.37)

E{Pyy (') Py (1) } =

The covariance is given by:

cov [Pun () P (6°7)] = E{Pun (&) P (67}

R ) . . (25.38)
— E{Py (') }E{Pyy (") }.
Since we have:
. NN — .
E{Pbb (e’wlT>} _ N| |Rbb me—lelT
e (25.39)
-3 M e g
I=—N+1
It comes:
. o T o sin(N(w; — @)T/2)\ >
) (I

The variance of the periodogram is obtained by letting w; — @, in the
covariance:

var [Pbb (eT)] = a}. (25.41)

Thus, the standard deviation o of periodogram is equal to the PSD o3 which one
seeks to estimate.

This estimator is not consistent to the extent that, by letting the sample length go
to infinity, we do not find the PSD. An increase of the length of the record does not
bring any improvement, as we accept the large values of the offset in the calculation
of the correlation function.

2. The signal x[n] is a regular random signal

The previous proof is valid for a Gaussian white noise signal. In the event that
x[n] is a regular Gaussian noise (see the definition in Chap. 26), noting H.,(e/T) the
frequency response of the causal filter used to model the signal x[n], we can write:

D jo 1 jo 6} 0]
Por () = S [X(&T)[ = ! () B(T)

= !Hca( ") Pan (7).

(25.42)
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The covariance writes:

OV [Pra (&) P (7)) = [Hoa (&) |y (€77 Peov o (7 By (677
(25.43)

or:

1 _ 2
con P u)] = [l P (=2 )

— jor jao Sin(N(CU @ )T/Z)
= S (@)@ T>(Nsm<<wll—w22>T/2>>'

(25.44)

The variance is then:
var [Py (6°7)] = S2.(eT). (25.45)

It is observed that the variance of the periodogram is of the order of magnitude
of the square of the spectral density. In other words, the standard deviation of
periodogram is the magnitude of the spectral density which it is desired to estimate.
The error in an estimate of the spectral density of the periodogram is of the order of
100 %.

25.4 Improvement of the Spectral Estimation

Several techniques for improving the estimation are now described.

Bartlett method:

If the length of the data sample is sufficient, the data are best used by partitioning
the sample in L parts and averaging the estimators obtained on each slice. L is
determined by tests.

The variance of the estimator is reduced through the averaging. The averaged

estimator SY (ei®7) is
SM e]wT Z e]wT (2546)

Blackman and Tukey method:

This method treats the source of the problem which is the poor quality of the
estimator of the correlation function for large offset values. The method lies in the
multiplication of the estimator of the correlation function given by (25.12) by a
window w([m| which retains only the most reliable values, the values obtained for
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small offsets. The Hann window is suitable. The width of the window is determined
by tests. We note R? [m] this estimator, called smoothed estimator.
We have:

I};’x [m] = Ryx[m]w[m]. (25.47)

The smoothed corresponding estimator S'J‘jx (e/T) of the spectral density is then
given by the FT of (25.47) leading to the circular convolution:

we

2
PO 1 . - I
82 (eloT) = — / Sex (e"” T) W (e'(““‘” >T) do'. (25.48)
We
-5
The convolution carries out a smoothing in the frequency domain. The variance
of the spectrum is significantly reduced.
Welch method:
This method combines the contributions of the two previous methods. The
record is divided in L slices. The estimators smoothed by windowing the signal
directly in the time domain are calculated for each slice, and the average is used:

L
S;/Zelch (eij) — %Z S;z;(ejmT) (2549)
i=1

This estimator is best for this class of methods.

The following example illustrates in Fig. 25.2 the different stages of spectral
analysis in the following situation: A signal consisting of 2048 samples of a digital
white noise (Fig. 25.2b) is the input of an AR filter having the frequency response
shown in Fig. 25.2a.

From the results in Chap. 24, the spectral density of the filter output signal is the
squared modulus of the frequency response. The periodogram, raw estimator of this
spectral density, given by the squared modulus of the Fourier transform of the
signal resulting from the filtering of 2048 samples is shown in Fig. 25.2c. We see
the randomness of this estimate for which the standard deviation of the estimation
of a value is of the order of magnitude of that value. Figure 25.2d is the estimator of
the correlation function calculated by inverse FT of the periodogram. In Fig. 25.2e,
we see the result of the product of the correlation function by a time window.
Figure 25.2f is the smoothed estimator of the spectral density obtained by the FT of
this windowed correlation function. Note the greater regularity of this estimator.

The result would have been even better by averaging estimators obtained on
slices of the signal. But beware; the slices lengths should not be too small to avoid
the appearance of biased values in the spectral estimate. The smoothing of a
spectrum allows more reliable detection of harmonic components of low amplitude
(Application to detection of ships in underwater acoustics for example).
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Fig. 25.2 a Frequency response of the initial filter; b Input white Gaussian noise; ¢ Raw estimate
of the output PSD; d Raw correlation function; e Translated, windowed correlation function;
f Smooth estimate of the PSD

25.5 Search for Harmonic Components

In this section, we are looking for methods of extracting one or several
monochromatic components embedded in noise.

25.5.1 Capon Method (“Maximum Likelihood”)

In this method, we look for a FIR filter with N terms driven by a white noise whose
frequency response is constrained to be 1 at the desired frequency of analysis and
whose variance of the output signal is as low as possible. Thus the power of the
output signal is mainly that of the signal at frequency wy.
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We define the vectors:

hwo [0] 1
B, [1] e’ [n — N +1]
hy = hwo [2] :50 = ei2woT X = :
: . x[n —1]
oy [N = 1] oVl .
The filter output is:
N-1
R, [K] = h{x,
k=0

where ¥ is the time-reversed of x and h{ is the transpose of h.
We desire to minimize the output power:

= E{ "} = B E{& 2 bhi= Wl Ro s = B Rocho,

while satisfying the constraint:

wT —n()T H
wg eJ 0 g hwo neo :s()hO: L.

n=0

We introduce the Lagrange function:
L =h{Ruho+u(l —siho) + 1" (1 — hlso).
Taking the gradient with respect to hOH and zeroing it:
VL = Ruho — ('so = 0,
S0:
hy = ,u*R;so.
Copying this result in (25.51), we have:

H % oH p—1
Soho = W'sg R so =1,

525

(25.50)

(25.51)

(25.52)

(25.53)

(25.54)

(25.55)
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S0:
= (25.56)
r=n= sHR sy '
Thus Eq. (25.54) writes:
R71
ho = 2. (25.57)
sy RS0
Finally, the output power at frequency wy is:
HRJRWR,, 1
P=hliRyhg =00 B0 (25.58)
(sHR !s0) $o Ry S0

By repeating the reasoning for different frequencies, we write the maximum
likelihood spectrum estimator:

1

Hp—1¢"
STR_'S

SML (o) = (25.59)

25.5.2 Pisarenko Method

It is a method of extracting monochromatic components embedded in noise.

If we study a complex exponential with fixed frequency As[n] but whose
amplitude A is complex random because the phase ¢ is random, the phase is
assumed uniformly distributed over the interval [0, 27]:

As[n] = |AlePemT, (25.60)

To this signal is added a white noise w[n] with variance 3 and uncorrelated with
signal As[n]. We note x[n] the sum of these signals:

x[n] = As[n] +wln]. (25.61)

We assume that N consecutive values of the signal were measured. We write:

x[0) 1 w(0]
x[1] e’ wll]
x=| 0 s=| e fw=| L e

x[N — l] e]'(N—'l)on w[N — l]
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Since the signal and noise are uncorrelated, the correlation matrix has the form:
Ry = E{As(As)H} +E{ww"} = Pyss" + a3l (25.63)
with
Py = E{AA"}

An eigenvector of the matrix Ry, is the vector s.
Indeed:

Rus = Poss™s + ags = (NPy + a3 )s. (25.64)

We used in that ss =N.
The corresponding eigenvalue is

NPy + a2, (25.65)

Since the eigenvectors of R,, are orthogonal, all its other eigenvectors are
orthogonal to s. We note e; one of these eigenvectors. We must have:

R.e; = Pyss'e; + aéei = Jée,-. (25.66)

These eigenvectors will therefore have an eigenvalue smaller than that of s.

So the method is to search among the eigenvalues of R,, the largest. The cor-
responding eigenvector allows the determination of the frequency g of the har-
monic component.

In the case of several harmonic components, and only one component of noise,
the eigenvector ey is determined which corresponds to the lower eigenvalue. The
eigenvectors corresponding to harmonic components will all be orthogonal to this
vector and we have:

stey = 0. (25.67)

The following quantity which takes large values when the denominator
approaches zero will detect the frequencies present in the signal:

1
=—7. (25.68)
H
|si'en|
Summary
In practical cases, the statistics of a signal is often unknown and one has to use the
data to estimate that statistics. It is possible when the signal has ergodic properties.
We have studied in the chapter the estimators of the average and of the correlation
functions. We have given their mean and variances and discussed the ergodicity
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conditions. The estimator of the power spectral density is taken as the Fourier
transform of the estimator of the correlation function. We have shown that the
regularity of the estimated spectrum is improved by the regularization of the esti-
mator of the correlation function for large offset times. The principles of the highly
effective methods of Bartlett, Blackman and Tukey and Welch are given and
illustrated by an example. The chapter ends with the presentation of methods for
extracting one or several harmonic components in a noisy spectrum. Capon max-
imum likelihood super resolution method, Pisarenko method have been discussed.



Chapter 26
Parametric Modeling of Random Signals

This chapter deals with parametric modeling of random signals. Initially, we
demonstrate the Paley—Wiener condition on the power spectral density of a signal.
If this condition is verified, it is possible to factor the z power-density of a signal in
the form of a product where appears the transfer function of a causal and stable
system which has a causal and stable inverse. In that case, the noise is called
regular. It appears that a regular random process can be seen as the output signal of
a minimum phase filter driven by white noise. In the following, we study the
filtering of white noise by an ARMA filter. We arrive at the Yule-Walker equations
system connecting the values of the correlation function of the output signal to the
filter coefficients. These equations make it possible to extrapolate the correlation
function beyond the time interval used as the basis of the system of equations, or, in
the case where the filter coefficients are unknown, to determine the coefficients of
this filter. Calculating the coefficients of the MA part of the filter is delicate; one
often seeks a more simple representation of a regular noise by an AR model. Then
we arrive at a smoothed estimate of the power spectral density of the noise. The
chapter concludes by modeling a regular noise by MA filtering of a white noise.

26.1 Paley—Wiener Condition

Random regular process
It is assumed here that the spectrum of a wide-sense stationary random signal under
consideration does not include lines (no periodic signal time components).

We show next that if the following condition is satisfied

z
/ |In Sy (7] < 00, (26.1)
.
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the spectral density can then be factorized as
Sxx(2) = KoHea(2)H, (1/27), (26.2)

where Kj is a positive constant and H,,(z) is the transfer function of a stable causal
system with a causal and stable inverse. The random process is then called regular.
For z = /T, the power spectral density has the form

See (7)) = Ko|Hea(&T)[". (26.3)

When Sy (z) is a rational fraction of polynomials, H,(z) represents a minimum
phase filter.

We first remark that the spectrum Sy, (e/7) can vanish at isolated points, but
cannot be strictly limited to a frequency band. Indeed, when S, (e/”) vanishes, its
logarithm becomes infinite. This infinite value does not prevent the convergence of
the integral, when it occurs for isolated points; the singularity introduced by the
logarithm is weak. However, it prevents the convergence when it manifests itself on
a continuum of points.

Thus, it appears that a regular random process can be regarded as the output
signal of a minimum phase filter driven by white noise. (K, represents the variance
of white noise at the input of the filter).

white noise b1 x[n]
— = |H, (Z) —
[Spp()=Ko]

x[n white noise » . .
Inversely: ﬂ> —[n]> (innovations process).

Demonstration of Paley—Wiener condition

Assume the condition (26.1) satisfied. The spectral density therefore exists. The z-
density is necessarily defined in a domain containing the unit circle. Recall that the
spectral density is a nonnegative real function. The logarithm of this quantity is a
function defined when S, (e/*7) is positive. This function can be written as a
convergent Fourier series.

00
In Sy, (6°7) = Z cre %7 with ¢y = ¢}, since In Sy, (e7)is real.
k=—00
Now consider the development in power of z:

In Sy (z) = f: az . (26.4)

k=—00
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This series must converge in a circular ring centered in z = 0 and including the
unit circle:

R<|z]<1/R.

We can rewrite Eq. (26.4) in the form

In Sy (2 —Co—i-zckz + chzk—co+chz +ch,z (26.5)

k=—00

Taking the exponential of the last expression
Sul2) = e 4 edair i = e (o) (X)L (266)

The first term is a positive constant. The second term is the sum of a causal series
that converges on the unit circle. We recognize in (26.6) the form of Eq. (26.2).

The Paley—Wiener condition involves the logarithm modulus. A second equation
identical to (26.4) can be written for the function In(1/S.(z)) whose series must
also be convergent, causal, and stable. Thus, the inverse of the causal and stable
system H(z) must also be causal and stable as specified in the statement accom-
panying the Eq. (26.2).

It can be shown, furthermore, that the Paley—Wiener condition is necessary, i.e.,
the Eq. (26.2) induces inequality (26.1).

Example

Let Six(z) = %. Its zeros and poles can be determined with Matlab.

Zeros : (0+ 1.2910i); (0—1.2910i); (0 + 0.7746i); (0—0.77461).
Poles : (04 0); (1.6667 + 0i); (0.6000 + 0i).

These points have the necessary symmetry for a regular process, because, as it
was seen above, if z( is a zero or a pole, 1 /z(’; should be a zero or a pole too.

For example, for zo = 1.2910i, 1/z}, = (1/1.2910i)"= 0.7746i is also a zero.

To construct H(z), we select from the zeros and the poles of Sy, (z) those which
ensure causality and stability of H(z), which are thus within the unit circle.

| (z = 0.7746i)(z +0.7746i)

-
(2) =2 - 06
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It remains to be verified that the constant K appearing in Eq. (26.3) is positive.
A pole in z = 0 has been positioned to obtain a causal filter.
We obtain the impulse response of this filter with Matlab:

h[0] = 0.9991—0.0000i; 2[1] = 0.5988—0.0006i; 4[2] = 0.9592 + 0.0019i;
h[3] = 0.5759 +0.0017i; h[4] = 0.3459 4 0.0014i; [5] = 0.2079 + 0.0010i;
h[6] = 0.1250 + 0.0007i; h[7] = 0.0753 + 0.0005i; 2[8] = 0.0454 + 0.0004i;
h[9] = 0.0274 + 0.0002i;

The appearance of an imaginary part (small) is due to imprecision in the
calculation.

26.2 Parametric Modeling of Random Signals
26.2.1 Yule-Walker Equations

We study the case of filtering a wide-sense stationary white noise w[n] with zero
mean, by a causal ARMA filter. We are interested in the properties of different
correlation functions. We denote x[n] the output signal of the filter whose impulse
response is noted A[n].

As shown before, the random signal x[n] is also wide-sense stationary. By

assumption, the filter transfer function has the form H(z) = i"g.
»
In the time domain we have
x[n] = wln] ® hln]. (26.7)
We can write formally
B
X(2) = HW() = 24w, (26.8)
Ap(2)

or
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In the time domain we have

x[n] + iap[l] [n—1 :ibq wn — 1. (26.9)
=1

Let us multiply both members of the Eq. (26.9) by x*[n — k| and take the
expectations of each term. We have

E{x[n|x*[n — }+Zap |E{x[n — I}x* Z [NE{w[n — ]x*[n — k]}.
1=0
(26.10)
Namely
Ree[k] + Ep:ap k—1 = Eq:bq (26.11)
I=1 1=0
since
Ryxlk — 1] = E{w[n — l]x"[n — k]} = E{w[n —1 l ZOC: wn—k— m]h[m]] }
= E{w[n —1 l i wn—k— m}h[m]] =a i olk+m — l]h*[m]}
= Uih*[l—k},

we can rewrite (26.11) in the form
)4 q
Reclk] + > ap[Rexlk — 1] = 03, > _ by[l]*[1 — ]. (26.12)
=1 =0

Since the filter is supposed causal, each term of the second member is zero for
k > 1. For any value of k, the lower boundary of the sum on [ will be k.
We set the second term equal to a2 c,[k] with

k| = zq:bq[l}h*[l—k]. (26.13)
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Note that this term is zero for k > q.
In summary, we will therefore write

- a2 c,lk); 0<k<q
— = woqLth
Rix [k] + ;ap [[Rux [k — 1] { 0: k>q (26.14)

This system is known as the Yule—Walker system of equations.
Let us write this system in matrix form:

R« [0] Ryx[—1] . Rux[—D]
Rux[1] R [0] . Rux[—p+1] .
: ap(1]
Ryx[q] Rx[q — 1] . Ryx[q — p] a,2]
Rux[g+1] Rix[q] S Rexlg —p+1]
: : : a”[p}
L Rexg+p] Ruxlg+p—1] Ry[q] i
¢q[0]
cq[1]
— 2 _c,,_[q]_ (26.15)
0
o ]

Several cases may be treated as follows:

Extrapolation of the correlation function: If the values of coefficients a,[k] and
b, k] are known and if the correlation function Ry [k] is known up to the order p,
its values can be deduced for higher values of time lags.

For example if p > g, according to (26.14) we have

Zp: [k — 1] for k > p.

If the coefficients a,[k] and b,[k] are unknown and if the correlation function
Ryx[k] is known, we can calculate the filter coefficients (case of modeling).
However, the Yule-Walker equations are nonlinear with respect to the calcu-
lation of the coefficients a, k] and b,[k]. We may carry out linearization methods
similar to those encountered for deterministic signals. These methods are studied
in the following.
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26.2.2 Search of the ARMA Model Coefficients
Jor a Regular Process

The Yule-Walker Eq. (26.15) can be used to estimate the unknown parameters
aplk] and by[k] of the model. It is assumed that the random process is regular.
According to the Paley—Wiener condition, it can be modeled as the output of a
minimum phase filter ARMA with white noise input. We assume here that we
know the correlation function of the process being modeled. Without loss of
generality, it is assumed that the input white noise model filter has a unit variance.

In a first step, using the lower submatrices in the system (26.15), we write, after a
manipulation similar to that which was used in the Prony method

Rixlq] Rulg—1] ... Rulg—p+1]] [apll]
Rix[q +1] Rix[q] <o Rulg—p+2]| | /2]
Ralg+p—1] Rulg+p-2 ...  Rala | lalp]
Ruxlg+1]
_ R""[":”] (26.16)
Rxx[é+p]

This system called the Yule-Walker modified equations permits the evaluation
of parameters g, [k].

The second step is the evaluation of the coefficients b,[k]. The linear system
must be solved from the upper part of the system (26.15):

Ryx[0] Ry [1] e Ry [p] 1 cq[0]
Rux[1] Rix[0] oo Rylp—1] ay(1] » cql1]

. : : . : =0, : . (26.17)
Rulql Relg—1] ... Rylp—dl ap[p] cqldl

q
Recall here that ¢4 [k] = > b,[l|h* [l — k], zero for k > q.
i=k

The function c,[k| appears as the convolution of b, k] with h*[—k].
Its z-transform is given by

By(1/2)

Cule) = BH(1/2') = By() 3175

(26.18)

At this stage, ¢, [k] is known for all values of k > 0 since it is calculated by the
Eq. (26.17).
The causal part of the z-transform of ¢, [k] is thus known.
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We note it [Cy(2)], = D ope cqlk]z ™.

The anticausal part of C,(z) only contains positive powers of z.

An argument based on the factorization of power spectral densities is now used.
Since the signal x[n] is assumed regular, we can write

B,(2) B,(1/2")
DA (26.19)

See(2) = H()H"(1/27) =

It is assumed that the signal x[#n] is filtered by the filter whose transfer function
A,(z) is known at this stage of calculation, and the output signal of this filter is
noted y[n]. The spectral density of this signal:

Syy(2) = Sax(2)Ap(2)A,(1/2") = By(2)B,(1/2"). (26.20)
According to (26.18) we have
Sy(2) = Co()As(1/27) = [Cy(2)] , As(1/2) + [Cyla)] _An(1/z7).  (26.21)

Since the function A7 (1/z") contains only positive powers of z the causal portion
of Syy(z) is written as

[Sw(@)] , = [Ca(2)] , A;(1/2). (26.22)

Knowing the coefficients c,[k] for k > 0 and the coefficients a,[k], we can cal-
culate [Syy (z)] . directly, and thus by identification of negative powers of z coef-
ficients, the values of Ryy[n] for n>0.

We have Sy, (z) = > oo Ryy[n]z". Given that the autocorrelation function has
the property of being symmetric conjugate: Ryy[—n] = R} [n], and knowing the
causal part of the power series in development of Sy, (z), it is possible, by symmetry
of powers of z, to restore the anticausal part of its development and therefore
recover the function Syy(z).

We get finally B,(z) using the decomposition Sy, (z) = B,(z)B,(1/z").

26.2.3 AR Modeling of a Regular Random Signal

This is a special case of the previous model.
Here

_ by[0]
IREDYETALE

H(z) (26.23)
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The Yule—Walker equations then take the form
< 2
Ruclk] + Y " ay[[|Rex[k — 1) = |by[0]|"3[k]; &k >0. (26.24)
—1

We write this system in matrix form

Ilgxx [(1)} 2;; [(1)] e ggx@ - ;] ap [; Rux[1]
xx[ ] xx[ ] xxh?:_ ] ' ap:[ ] _ Rxf[z] . (2625)
Rxxh; —1] RxxD; -2} ... Rx:; [0] ap.[l’] Rxx' (P

The resolution of this system provides the model parameters a,[k]. To get |bq [0]|
we use the Yule-Walker equation for k = 0.

[b9[0]]*= Rex[0] + Y ap[Rex[1) = raf0] + > @, (IR [1]

If the correlation function is known a priori as it has been assumed, the power
spectral density is simply given by the FT of the correlation function.

If the correlation function is an estimate, the starting point is the Yule—Walker
equations where appear estimators. Using an estimate of the correlation function,
these equations take the form

K]+ Za,, k —I] = by[OJh*[—k]; Vk. (26.26)

We obtain the estimator of the spectral density by taking the FT of the estimator
of the correlation function.

After determining the coefficients by solving the linear system of Yule-Walker,
we can write the spectral density in a particular form where appear the coefficients
of the AR filter. For this, taking the FT of the last equation that is obtained by
multiplying by e %7 and summing on k

xx e_]mT Zap e]wT —jloT :bq[O] Z h*[_k]efjkwT.

k=—00

or
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OS5 o [He T b [0 (e )
ST e T+ ST a e
_ 5 !

T S e T 0, I

Sxx (eij) _ bq[
(26.27)

At this stage, it is interesting to use a vector notation showing scalar products:

N T P |

S (7)) = b2[0] ——— = B2[0 , 26.28
(") = B10) gy g = 10 o (26.28)
where the vectors are
1 1
eloT ap[l]
s = e]Z(UT and a; = | % [2] . (2629)
e‘jpr Llp [p]

26.2.4 MA Modeling of a Regular Random Signal

It is also a special case of the model developed in 26.2. We recall that w[n] is a
white wss noise, with zero mean.
Now we have

x[n] = " bylklw[n — k]. (26.30)

Noting that h[k] = b,[k], Eq. (26.14) becomes

Ru[k] = zq: byl [l — K] = by[K] ® bE[—K]. (26.31)
=0

This equation is nonlinear. To solve the problem, we pass by the power spectral
densities by taking the z-transform of Eq. (26.31):

Se(z) = Eq: Rec[k]z™* = B,(2)B}(1/2"). (26.32)
k=—q
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with

The zeros of B,(z) are noted ;. We can write:

q

Swx(z) = By(2)B(1/2") |2f[ -z Y[ (1 -Biz).  (2633)

k=1 k=1

Sorting zeros and respecting the symmetry, B,(z) can be traced back to a filter.
Since the process to be modeled is regular, B,(z) takes the form of a minimum
phase filter. Indeed, it was shown that a regular process could be written as

Sex(z) = 030(2)0*(1/7) = 7} ﬁ 1 — oz ﬁ 1 —oz), (26.34)

k=1 k=1

where Q(z) is a minimum phase polynomial. Thus, the coefficients o are within the
unit circle. The filter order ¢ is determined by the study of the physical problem or
by tests.

Note the analogy with Blackman and Tukey method of spectral estimation where
we would use a narrow rectangular window with 2¢ 4 1 nonzero elements.

In the case where the correlation function Ry, [k] and the power spectral density
are not known a priori, the estimators are used for these functions on the assumption
that the random process is regular.

Example 1

A simulation is done in which the filter has two zeros: zyp = 0.95 e and
z5 = 0.95 e ¥, N = 4096 samples are drawn according to a normal N (0, 1) law.
The raw estimate of the power spectral density of the input signal is
Se(eT) = L|x (ei‘UT)|2. The raw estimate of the spectral power-density of the
output signal is S,,(el*) = Sxx(ej‘“T)|H(ej‘“T)|2.

We calculate the raw estimate of the correlation function of the output signal by
taking the inverse Fourier transform: Ry [m] = F~!(S,,(e/7)).

Assuming (rightly) a filter having two zeros, the polynomial is created having 4
zeros and an axis of symmetry at value 1 (index 1 in Matlab corresponds to time
zero) to respect the parity of the correlation function. The polynomial coefficients
are R,y[3], Ryy[2], Ryy[1], Ryy[2], R,y [3]. We select the zeros of this polynomial that
are inside the unit circle to construct the estimated filter.

The results for a signal draw are shown in Fig. 26.1 On the top we see the position
of the zeros of the polynomials. The zeros inside the unit circle are selected to build

the causal estimated filter. In the bottom figure, the frequency response of the initial
filter is shown in bold and the frequency response of the estimated filter in light.
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Results vary from a draw to another. The results of a second draw are presented
in Fig. 26.2. It is seen on the top that the zero positions do not correspond to the

proviso that if zy is a zero of the polynomial, 1/z} must also be a root.

On the bottom, it is seen that the frequency response minima do not match, this
is due to noise on the estimate of the zeros arguments. The outcome is improved by
taking for the argument the average of the arguments of nearby zeros. There is an
improvement on the position of the filter zeros in frequency seen on the graph
where the initial response and the estimated frequency are almost superimposed.
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Example 2
In this example, two pairs of zeros of the filter lie inside the disk with radius R = 1.
20,24 = 0.95(cos (2n/3) £ jsin (27/3)); z1, 2} = 0.8(cos (n/3) £ jsin (n/3)).

The polynomial coefficients estimates from data are Ryy[5], R, [4], R3],
Ry,\’ [2]’Ry}'[1]7 Ryy [2]7 RWB]’R,V}’ [‘H?Ryy [5]

In Fig. 26.3, we see on the top the zeros of the polynomial; on the bottom in
bold the true frequency response and in light, its estimate.

Summary

We have demonstrated the Paley—Wiener condition on the power spectral density of
a signal. When it is verified, it allows the factorization of the z power-density of a
random signal in a product of transfer functions of causal and stable systems with
inverse causal and stable. A regular random process can be seen as the output signal
of a minimum phase filter driven by white noise. We studied the filtering of white
noise by an ARMA filter and arrived to Yule-Walker equations These equations
allow extrapolation of the correlation function or, in the case where the filter
coefficients are unknown, the determination of the coefficients of this filter. We
have studied the simple representations of a regular noise by an AR model or a MA
model. We arrived at smoothed estimates of the power spectral density of the noise.

Exercises

Linear Prediction: We wish to model a wide-sense stationary random digital signal
y[n] as the response of an autoregressive second-order digital filter attacked by
white noise with unit variance. On a sample of 8192 data points, with duration
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163.84 x 10™%s, we obtain the following estimates of the first elements of the
correlation function in the vicinity of n = 0:

Ryy[0] = 47.4429; R, [1] = 33.6281; R, [2] = 2.3623; R, [3] = —27.3656;

Ryy[4] = —39.1847.. ...

1. Determine the filter model coefficients (Demonstrate the formulas used).
2. What are the resonance frequency and the bandwidth at —3 dB of the filter?



Chapter 27
Optimal Filtering; Wiener and Kalman
Filters

This final chapter is devoted to the modeling and filtering of noisy signals by
seeking an optimum estimator in the least squares sense. The basics of this analysis
were laid by N. Wiener. These techniques are now an essential part of signal
processing. First, we define stochastic orthogonality of two r.v. Then we study the
estimation of a random variable by a linear combination of other random variables
and then give the equation to calculate the best estimate of the filter’s coefficients in
the least squares sense. In the case of wide-sense stationary signals, a first example
is the search for a Wiener filter providing the estimate of a random signal from the
measurement of a second random signal which is correlated to it. The search for a
filter in the form of a FIR filter requires the resolution of the Wiener—Hopf linear
system of equations. An example of application to the case of an additive noise
provides the coefficients of the FIR filter and allows quantifying the gain of the
signal-to-noise ratio introduced by the filtering. A second important application is
the prediction of the value of a signal from the previous measurements on a finite
number of points. In the case of finding an IR Wiener filter, two different situations
arise. In the case of looking for a non-causal filter, the resolution is easy by
processing in the Fourier domain. In the search for a more realistic causal filter,
treatment is more difficult and requires the factorization of the z-spectral density
which is difficult to carry out in practice. Kalman brought a breakthrough to this
problem by searching recursively for the estimator. This formulation allows the
treatment of non-stationary signals, and the recursive nature of the calculations
allows for quick calculations using only the last immediate estimate and the last
measured value. The applications are countless, in control systems and in the
defense industry. We only focus here on the principle of the filter and its application
to simple cases. However, the reader is equipped to extend his fundamental
understanding of this technique to a wide range of advanced applications.
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27.1 Optimal Estimation

27.1.1 Stochastic Orthogonality

The scalar product of two complex random variables is defined as follows:
<x,y > = E{xy"} (27.1)

For real variables, we have <x,y > = E{xy}.
The norm of a r.v. is defined by a square

I¥*= Efex'} = <x,x>. (27.2)

If this inner product is zero, we say that the two r.v. are orthogonal.

27.1.2 Optimal Least Squares Estimate

We seek to estimate a random variable y by a linear combination of other r.v. x,,.
We note

N
=" am. (27.3)

n=1
The estimate is erroneous, we commit the error
e=y—y. (27.4)

The square error is

INU
s=llelf={p-3[ | ~£

(27.5)

N
y — Z apXy
n=1

We seek the coefficients «a, that minimize the error norm

oe N
=Eq -2 - nXn Z :07
o, { (” 20 ) } (276

E{ex;} =0.
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We note ¢;g the minimum square error. The coefficients a, that minimize the
error norm will be such that the error is orthogonal to the r.v. x,,. &.5 then becomes

&g = E{e(y — i%%) } = E{ey*}. (27.7)

n=1

The filter is optimal in the sense of minimizing the quadratic error.
The set of relationships

E{ (y - i%%)«\f;} =0 (27.8)
n=1

takes the following form structure:

ajry) +agryp. .. +anriy = 1o
ainy+axry. ..+ ayrn = 1o (27.9)

airyy +axrya. .. +anryy = roy

with rg; = E{yxi*} et rj = E{xix;.* }
The resolution of this linear system allows the determination of the coefficients
of the optimal estimate of y.

The Wiener FIR filter which is detailed now is an application to the temporal
signals optimal estimation.

27.2 Wiener Optimal Filtering
27.2.1 FIR Wiener Filter

In this section, we seek an estimator d[n] of a random signal d[n], assumed
wide-sense stationary, from the values of a measured signal x[n].

The unknown impulse response of the FIR filter that minimizes the square error
is noted w(n]. We note ¢ the order of the moving average filter. Assuming a causal
filter we can write

eln] =d[n|—dn|=dn]— > w[lx[n—1. (27.10)
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The squared error will be minimum when the error vector is orthogonal to the
approximation vectors:
Eleln]x*ln—k]} =0; (k=0,1,2,...,q—1),
so:

q—1

E{e[n|x*[n — k|} = E{d[n]x*[n — k]|} — Z w[l|E{x[n — l]x*[n — k]} = 0.

1=0

This equation is

_
—_

wll|rlk — 1] = raxlk]; k=0,1,2,...,q—1, (27.11)
1

Il
o

This is the system of Wiener—Hopf equations that can be written in matrix form
using the property of the correlation matrix having the Hermitian symmetry:

Fx[0] reel1] rexl2] Fecld = 1] w(0]
Tex[1] Fex[0] ri[1] ... rxx [q —2] w(l]
Tyx[2] ex[1] Txx[0] rilg—3 w[2]
Vxx [6]— 1] Vxx [6]— 2] Fxx [6]— 3] .. rxx.[o} W[q ._ 1]
Fax [0]
rdx[l]
— | ral2] | (27.12)
raslg — 1
or in condensed form:
R.w =rg. (27.13)

As seen above, the minimum square error is written as

=0

S 1w n—l} [n]}7 (27.14)

ers = E{e[nld’[n]} = E{

thus

ers = raa0] — Y wll]ry [l (27.15)
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ers = raal0] — rflw, (27.16)
or
eLs = raal0] — reR ] ras. (27.17)

Application. Filtering an additive noise
It is now assumed that the signal d[n] is marred by a noise v[n] with a zero
expectation of noise and uncorrelated with the signal d|n].

Writing x[n] the measured signal, we have

x[n] = dn] +v[n]. (27.18)
Since E{d[n)v*[n — K]} = 0, we can write
ras[k] = E{d[n)x*[n — K]} = E{d[n]d"[n — k|} = raalk]. (27.19)
Similarly

reck] = E{x[n)x*[n — K]} = E{d[n]d*[n — K]} + E{v[n]v*[n — K]} = raalk] + ry[k].
(27.20)

In matrix form we note
[Raa +Ryy]w = raa. (27.21)

Example
d[n] is a real random process with zero expectation with correlation function
raalk] = ¥l (autoregressive first-order filter).

We denote x[n] the measured signal as x[n] = d[n] + v[n], where v[n] is a white
noise with power r,,[0] = o2 that is added to the signal d[n].

We look, for example, for an FIR filter limited to three elements. Its transfer
function has the form:

W(z) = wl0] +wl]e™" +w[2] % (27.22)
Wiener-Hopf equations are written as

0] ree[l] rx[2] w[0] Fax [0]
Fee[l] ree[0]  rax[l] wll] | = | rae[1] |, (27.23)
Fee[2] Fee[1] Fe[O] w[2] Tax[2]
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or, taking into account Egs. (27.19) and (27.20):

1+ « o2 w(0] 1
o 1+a2 o wll|=1]a]. (27.24)
o2 o 1+a2 w[2] o?

The resolution of the previous system then gives the coefficients of the FIR
Wiener filter.

Numerical application: Treat the case where o = 0.7 and o2 = 1.
We solve the previous system using Matlab and we get

w[0] = 0.4189; w[l] = 0.1750; w[2] = 0.0811.
The minimum square error can be calculated using Eq. (27.15):

p—1

ers = raal0] = Y wlllrg [l = 1 — (0.4189+0.1750 0.7+ 0.0811 * 0.49)
=0
= 0.4189.

Signal-to-noise ratios:

e Before filtering: The signal power is E { ’v[n]z‘} = 03 = 1. The noise power is

E{|v[n]2|} = g2 = 1. The signal-to-noise ratio is 1 or 0 dB.

e After filtering: The signal becomes d’'[n] = d[n] ® w[n]. The output noise is
V' [n] = v[n] @ win].

e The signal power is

1 o o wl[0]
E{\d'[n]2\}:wTRddw:[w[O] w1l w2]| @ 1 o« |.|w]]
o o 1 w(2]
= 0.3685
The noise power is
2 w[0
E{|v’[n] ;}szWZ[w[O} wi1] wi2)] wg = 02127

The output signal-to-noise ratio:

0.3685
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Mean square deviation of the signal x[n] relative to the signal d[n]:
E{v[ny*[n]} = = 1.
Mean square deviation of the estimator d[n] relative to the signal d|n]:
ers = 0.4189.

The decrease of the error power is 10 logl0 (1/0.4189) = 3.78 dB.

In Fig. 27.1 (Top), the power spectral density of the AR process is shown as a
bold line and the frequency response of the Wiener filter (adjusted to have the same
maximum) is in fine line. It is seen that the calculated filter favors the frequency
interval containing the signal. In the bottom figure, we see the two zeros of the
transfer function of this filter.

27.2.2 Linear Prediction of a Random Signal

Here we seek an estimator X[n + 1] of the random signal x[n + 1]. The signal values
were measured until time n. The unknown impulse response of the FIR which
minimizes the square error is noted w[n]. Assuming a causal filter we can write

p—1
Ma+11=> wiklx[n — k. (27.25)
k=0

Fig. 27.1 Wiener modeling
of an AR process; top moduli 9 |
(Wiener model in fine line); 5 |
bottom filter zeros positions 2
2 J
1 - T T T T T

5

a 05 o

g 0 a .

= . i

W 05 ho 9

E R0

3 2 1 o 1 2 3

Real part
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Previous results are used by searching
rack] = E{d[n]x*[n — k]} = E{x[n+ 1]x"[n — k]} = rye[k+ 1]. (27.26)

Wiener-Hopf equations then become

e [0] Teel1] Teel2] Teelp = 1] wl0] Fex[1]
Fax[1] ex[0] Teel1] Teelp = 2] w(l] Fee[2]
Fx 2] Fx 1] Fxx [0] Telp = 3] w(2] — | (3] ,
relp =1 ralp—2 ralp—3 .. 0] | lwl—-1] L]
(27.27)
and the minimum squared error is
p—1
ers = rexe[0] — Y wlk]rs [k +1]. (27.28)
k=0

For example, we seek the predictive FIR filter with three coefficients of a
first-order AR process with autocorrelation function ry,[k] = ol (with o = 0.7).
It is thus sought that

x[n+1] = w[0lx[n] + w[l]x[n — 1]+ w[2]x[n — 2].

Wiener—Hopf equations are written as

1 o o] [w[0] o
o 1 ool | wl]| =]
o o 1 w[2] o

Using Matlab, we find
w[0] =0.7; w[l] =0; w[2] =0.
Thus we get
X[n+1] = 0.7x[n].

We thus find in this particular case the recurrence relation of the AR filter which
defines x[n].

Linear prediction in case of an additive noise
Here we seek an estimator x[n + 1] of the random signal x[n + 1].
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Measures y[n] are noisy by an additive noise v[n| that is assumed white with unit
variance:

y[n] = x[n] +v[n]. (27.29)
The estimate takes the form:
p—1
Xn+1] = wlk] y[n — k]. (27.30)
k=0
p—1
eli+1] =xln+ 1]~ %[+ 1] =x[n+1] — S wlllyln 1.
=0

The quadratic error is minimal when the error vector is orthogonal to the
approximation vectors:

E{eln+1y‘[n—k} =0; (k=0,1,2,...,p— 1),
so:
p—1

Efeln+1)y*[n — K]} = E{x[n+ 1]y [n — K]} = > wll]E{y[n — ly*"[n — K]} = 0.
=0

This equation is

-1

willrylk =1 = re[k+1];  (k=0,1,2,...,p— 1), (27.31)

=

l§

Il
o

We have noted
Fex [k + 1] = rgy[k].
Or in condensed form
[Rux + oW = ryy. (27.32)

In the example discussed above, with o = 0.7 we would have

l+o? o o? w(0] o
«  1+a2  a | |wl]| =] (27.33)
o? o 1+o? w[2] o

with w[0] = 0.2932, w[1] = 0.1225, w[2] = 0.0568 (Fig. 27.2).
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Fig. 27.2 FIR linear
prediction of an AR process;
top moduli (Linear prediction
model in fine line); bottom:
filter zeros positions
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27.3 IIR Wiener Filter
27.3.1 Non-Causal Filter

We search again in this section an estimator d[n] of a random signal d|[n] from the
values of a measured signal x[n]. The unknown impulse response of the IIR filter
which minimizes the quadratic error is noted h[n]. We can write

eln] = djn] —d[n] = dn] — i [l x[n —1]. (27.34)

The quadratic error is minimal when the error vector is orthogonal to the
approximation vectors

Eleln]x'n—k]} =0; —oo<k<co.
or

E{e[n)x*[n — k|} = E{d[n]x"[n — k]} — i A E{x[n — l]x*[n — k|} = 0.

I=—00

This equation is

zoc: hlrelk — 1) = rae[k]; —oco<k<oo. (27.35)

[=—00



27.3 IIR Wiener Filter 553

These are the Wiener-Hopf equations for the non-causal filter with Infinite
Impulse Response (IIR).

The solution is sought in the frequency domain. It was recognized in the first
member of (27.35) a convolution product. Passing in the Fourier domain we have

Sxx(eij)H(eij) _ de(eij).
We deduce the filter’s frequency response as

de (ej(uT)

H(ej‘”T) = See(ei®T) :

(27.36)

27.3.2 Causal Filter

This time we seek an estimator in the form of the output signal of a causal filter as
follows:

ih x[n—1); eln] =d[n] —d[n] = dn] — ihmx[n — 1.

1=0 =0

The quadratic error is minimum when the error vector is orthogonal to the
approximation vectors:

Ele[nlx*[n—k]} =0; 0<k<oo.

Wiener—Hopf equations are written in this case:

> e[k — 1) = rack];  0<k<oo. (27.37)
=0

First, we study the particular case where the filter input signal v[n| is white noise
with unit variance. Note g[n] the impulse response of this filter.
Equation (27.37) can be written in this case:

Z gl)olk — 1] = ray[k],
1=0

s0, glk] = ray[k] for 0 <k < oo, or, using the step function Ulk] : g[k] = ra [k]U[K].
Taking the z-transform:

G(z) = [Sav(2)] 4, (27.38)

The causal part of the transform of rg4,[k] was noted [Sq,(2)], -
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It is now assumed that the filter input signal x[n] is regular with
Sex(2) = ogQ(z)Q*(l/z*), (27.39)
where Q(z) is minimum phase
0(z) = 1+q[llz " +qR2lz27% +...
If x[n] is filtered by a filter with transfer function

1

= ol (27.40)

F(z)

(This filter is system 1 in the diagram below).
The output v[n] will have the spectral density:

va(Z) = Sxx(Z)F(Z)F*(l/Z*) =1.

It is seen that F(z) is the transfer function of a whitening filter.
The optimum filter is the cascade of the two previous filters:

H(z) = G(z)F(z). (27.41)

X[nj vinj a[nl

—>5— Systeme 1 S Systtme 2 | —

As v[n] is formed by the filtering of x[n] by the whitening filter f[n], we can write

ray[k] = E{d[n]v"[n — k|} = E{d[n] [f: fllxln — k- l]] }

I=—00

= > Fllralko+ 1)

I=—00
whose z-Transform is written:

de (Z)

San(2) = F(1/2)8a:(2) = 2500 77y

So G(z) reads

6(2) 1[&"‘7@} . (27.42)
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Finally, we get

H() = G)F(z) = — [&"”7(2)} (27.43)

bus = raall] — > Al = / [Saa(€7) — H(&T)S5, (7] dov. (27.44)

=0 ®e

Qe

27.4 Kalman Filter'

Up to this point in this chapter, the processed signals were wide-sense stationary,
their first and second time moments were constant over time. This property is only
little or not met in practice where the properties of a physical system under mod-
eling vary slowly or quickly in time. Slowly, in the case, for example, for the drift
of the components of an electronic circuit with temperature, quickly, in the case of
the in-flight environment of an aircraft. The very notion of correlation function
defined in an earlier chapter by of (24.7) does not apply. There needs to be an
instantaneous signal processing in optimal seeking treatment. The Kalman filter
operates an optimal recursive data processing. Since 1960, when R. Kalman pub-
lished his article in the ASME transactions, this filtering is widely used in prediction
problems of the state of a system in the most diverse fields as, for example, robotics
or aeronautics. This is a subject of intense theoretical and applied research. Many
books have been devoted to it. An exhaustive presentation of this subject is beyond
the scope of this book. We simply expose its principle here.

The measurements on the system are performed successively in time and each
new measure allows reevaluating the system state and predicting the state in a near
future. The goal of the formulation is to integrate the new data in recursive formulas.

27.4.1 Recursive Estimate of a Constant State

For this presentation, we follow P. Maybeck supporting his explanation with an
example. First, to simplify the interpretation of the recurrence relation, the system is
assumed to be stationary, and each new measurement improves the knowledge of
the system as described in the following.

"Kalman R.E., A new approach to linear filtering and prediction problems, J. Basic Eng., vol 82D,
pp. 35-45, 1960
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Suppose that we try to determine the position of an object standing still using
successive measurements in a noisy environment. At time ¢ the signal to be mea-
sured is noted z(f) =x+w(z). The noise w(f) is assumed white Gaussian,
non-stationary.

At time #,, the measurement result is z(7;) = z; = x+w(z;). The variance of the
measurement is assumed to be known; it is noted a?l. At time t#,, the measurement
result is z(f2) = zo = x+w(t2). It is assumed that the measurement environment
has changed. The variance of the measurement is now Ji. Let us now detail how
the second measure has improved the evaluation of the position of the object.

The statistical problem was treated as an exercise at the end of Chap. 22. The
search of the best estimation was sought in the sense of maximum likelihood. Using
that result, with the notations of the current paragraph, the best estimates of x at
times #; and t, are

)A(I(ll) =2, O-,%(tl) = O'?l; (2745)
a’ a? 1 11

)AC(lz) =7 2 +2 g s = — —. (2746)
0_31 + O—gz O—gl + O—gz O-)gc(tz) 0_31 0—32

The estimate of x and the variance of this estimate have varied between the first
and the second evaluations. We can describe these changes in a recursive manner as
follows:

Variation of the position x estimator as follows:

2 2

o o
¥(t) =x(t) + =—2— (220 — z1). Thus [x() = x(t1) + K(z2 — z1)|, with K = —32—.
x(n) = x(n) O_gl O_i (z2—21) us |x( 2) = x(t) (22 21)| i O_gl ‘Ti

Variation of the estimator of the variance of the x estimator as follows:

2 2
O-Z] oZz

2

_ _ 2 2 2 _ 2 2
05(([2> = m = O'Zl — Ko or, (75602) = O-A(tl) — K05(<tl>‘. (2747)
21 22

21’ X

The two framed equations are written in the Kalman recursion form.

27.4.2 General Form of the Kalman Recursive Equation

Bold typeface emphasizes that the variables are vectors of parameters.

The operator has access to measurements whose values at time n constitute the
vector y[n]. These measurements represent a linear modification by the factor H|n|
of the vector of interest x[n] to which is added a white measurement noise with zero
mean v|n].

Thus, the measurement at time »n is given by
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y[n] = H[n]x[n] + v[n]. (27.48)
The noise vector is white:
E{v[n)»"[k]} = RS[k — n] = 7,0[k — n]. (27.49)
The system state evolves over time as
x[n] = ®[n — 1]x[n — 1] +wn|. (27.50)
®[n — 1] is the propagator which drives the system from state x[n — 1] to state

x[n].
w(n] is a disruptive random white noise in the system evolution:

E{wnw[k]} = Qo[k — n] = a5, 5[k — n]. (27.51)

The estimator X[n] of x[n] at time n uses the propagation by ®[n — 1] of the
estimate X[n — 1] of x[n — 1] at time n — 1 and corrects this estimation with the term

K[n|(v[n] — Hln — 1)®[n — 1] &[n — 1)). (27.52)

This correction term is proportional to the difference between the measure y[n] at
time n and the output multiplied by factor H[n — 1] of the propagation of x[n — 1].
K[n] is the Kalman filter coefficient to be determined by optimization.

The recursive equation of the Kalman filter is

X[n] = ®[n — 1|x[n — 1]+ K[n|(y[n] — Hn — 1]®[n — 1]x[n —1]).  (27.53)

Here we follow the formulation of M.H. Hayes remarkable for its clarity.
The error at time 7 is the difference between x[n] and the value of the estimator
X[n], the measure y[n] at time n having been integrated.

e[n|n] = x[n] — x[n|n]. (27.54)
The error which does not take into account the measurement at time 7 is
elnln — 1] = x[n] — x[n|n — 1]. (27.55)

The goal now is to find a recursive equation for the mean square error which is at
time x[n]:

Pn|n] = E{e[n|n]e" [n|n]}. (27.56)

In the same manner, we note
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Plnjn — 1] = E{e[n|n — 1]e"[n|n — 1]}. (27.57)
Estimate of x[n] without using the measurement y|n]:
Xnn—1]=®n—-1]xn - 1n-1]. (27.58)
We may write the error e[n|n — 1] = x[n] — x[n|n — 1] as
enln — 1] = ®n — 1x[n — 1] +w[n] — ®n — 1]x[n — 1jn — 1]. (27.59)
Using e[n — 1jn — 1] = x[n — 1] — x[n — 1|n — 1], it comes
elnln — 1] = ®[n — lle[n — 1jn — 1] +wn]. (27.60)
We look for an unbiased estimator, so we impose a zero average of the error:
E{eln—1n—1]} = 0. (27.61)

and also
E{e[n|n — 1]} = 0. (27.62)

We have Pln|n — 1] = E{e[n|n — 1]e"[n|n — 1]}

Plnln — 1] = E{(®[n — 1]e n—1|n—1]+w[n])((l)[n—l]e[n—l|n—1]+w[n])H}

Plnjn — 1] = ®[n — 1] Pln — 1jn — 1]®"[n — 1] + Q[n] (27.63)
We note the following, defining K'[n]:
%[n|n] = K'[n]%[n|n — 1] + K[n]y[n). (27.64)
As efn|n] = x[n] — £[n|n], we write:
en|n] = x[n] — K'[n}%[n|n — 1] — K[ny[n). (27.65)
Thus

eln|n] = x[n] — K'[n](x[n] — e[n|n — 1]) — K[n](H[n]x[n] +v[n])

= (I - K'[n] — K[n]H[n))x[n] + K'[n]e[n|n — 1] — K[n]v[n] (27.66)



27.4 Kalman Filter 559

Since the two terms in the above expression are such that E{e[n|n — 1]} = 0,
and E{v[n]} = 0, the error e[n|n] will be unbiased if

K'[n] =1 — K[n]H|n] (27.67)
Expression (27.66) becomes
eln|n] = K'[ne[n|n — 1] — K[n]v[n],
or, using (27.67),
e[njn] = (I — K[n]H|[n])en|n — 1] — K[n]v[n]. (27.68)
Using expression (27.67) in (27.64) we write
x[n|n] = (I — K[n]H[n])x[n|n — 1] + K|[n]y[n].
We have obtained the recursion relation giving x[n|n]:
x[n|n] = %[n|n — 1]+ K[n|(y[n] — H[n)x[njn — 1]). (27.69)
The final stage of the demonstration is now to obtain the Kalman factor K[n] by

minimizing the least square error of the estimation.
We necessarily have

E{eln|n — 1]v[n]} = 0.
The square error P[n|n] = E{e[n|n|e[n|n]} is
Pn|n] = (I — K[n)H[n))P[n|n — 1](I — K[n]H[n])" + K[n]R[7)K"[n].  (27.70)
We seek to minimize the average square error:
&[n] = te(Pn|n]).
We accept here the following mathematical results:

d d
Eu~(KA) = A" and Etr(KAK”) = 2KA. (27.71)

It comes

%tr(P[nM) = —2(I — K[n]H[n])Pn|n — 1|H" + 2K[n]R[n] = 0. (27.72)
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We solve the above equation to obtain K|n]:

\K[n] = Plnjn — UH" [n](H[n|P[nln — UH"[n] + R[n)) " (27.73)

To obtain the recursion relation on the mean square error we write Eq. (27.70) in
the form:

Pln|n] = (I — K[n]H[n])P[n|n — 1]
— ((I — K[n]H[n])Pn|n — 1JH" [n] + K[n]R[n]) K" [n].

The second part of the last equation is zero because of (27.72). Then

\P[n|n] = (I — K[n]H[n])P[n|n — 1]| (27.74)

The three framed equations, (27.69), (27.73), and (27.74) are the Kalman filter
equations.
Recursivity requests to set the initial conditions. It is reasonable to take

£[0]0] = E{x[0]} and P[0|0] = E{x[0]x"[0]}.

Application

Recursive estimation of the position of a stationary object with direct observation.
For this particular case, we have ®[n] = 1, w[n] = 0, H[n| = 1.
Equation (27.63) becomes Pln|n — 1] = P[n — 1|n — 1]. We note it P[n — 1].
Equation (27.74) becomes

Pln] = (1 — K[n])P[n — 1].
Equation (27.73) becomes

Pln —1]

T

Recursively we have, P[1] = P%]Of;, P2l =..., Pn = %.
Thus
P[0]

K[n]:m.

The recursive estimation Eq. (27.69) becomes

P[]

X[n]=xn—-1]+ m

(¥[n] = %[n —1]).

We find that as n increases indefinitely, the estimation becomes constant, toward
the exact value, because the estimation is unbiased by construction.
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Summary

We have studied in this chapter the modeling and filtering of noisy signals by
seeking an optimum estimator in the least squares sense. After defining stochastic
orthogonality of two r.v., we have studied the Wiener estimation of a random
variable by a linear combination of other random variables and then gave the
equation to calculate the best estimate of the filter’s coefficients in the least squares
sense. In the case of wide-sense stationary signals, in a first example we have
exposed the search of a Wiener filter providing the estimate of a random signal from
the measurement of a second random signal which is correlated to it. In the choice
of a FIR filter, its determination passes by the resolution of the Wiener—Hopf linear
system of equations. We have shown on an example the improvement of the signal
to noise ratio brought by the filtering. A second important application is the pre-
diction of the value of a signal from the previous measurements on a finite number
of points. In the case of finding an IIR Wiener filter, we studied the non-causal and
the more elaborate causal cases.

We have developed the recursive approach of Kalman to the least square esti-
mation of the state of a physical system. It applies to non-stationary signals and
allows for quick calculations, using only the last immediate estimate and the last
measured value. Some applications to simple cases have been given.

Exercises
This exercise has been met in Chap. 22 and its solution was searched using the
Maximum likehood estimation. Here we search the solution with the least square
technique.

An unknown parameter x is measured with two equipments having different
precisions. The errors are random. The result of the first measurement is x; the
measurement standard error is ¢. The second equipment delivers the value x, with
a standard error o5.

Give the least square error linear estimation of x. What is the standard error of
the estimation?

Solution:

We search the estimator under the form: X = ajx; +axx;. The coefficients

should be such that & =E {||56 - x||2} is minimum. The partial derivatives
respective to the coefficients should be zero.
de¢ 0

94, = a—alE{(x — (a1x +a2xz))2} =0; E{(x — (a1x1 + a2x2))x1 } = 0.

It comes

E{XX]} +E{701X1X1} +E{fa2x2x1} =0.
xE{x1} — aiE{xix1} — a2E{xx:} = 0.
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Likewise deriving &> versus a, leads to

- a1E{x1x1} — aaE{xpx,} = 0.
X — G E{x1x2} — axE{x:x,} = 0.

Taking the difference of the two last equations, it comes —a; (E{x%}
—E{xox1}) — a2 (E{xpx1} — E{x}}) = 0. The measurements are independent, then
E{xx1} = E{xs}E{x1} = x*. Since E{x}} — x> = ¢, we have a;0? — ay03 =0,

0_2
ora; =ay O_—%
As E{i} = a1E{x1} + ®;E{x,} = x, we have a; +a, = 1, Finally a; = ﬁ,

2
7]

ay = W.
The standard squared error of the estimation is &> = E {(x — (a1x; + QQXQ))Z}.

The result should be valid for any value x and cannot depend on x.
To simplify we set x = 0.

& = E{(alxl + azxz)z} = AE{x}} + 2a1a:E{x1x2} + 3E{x3}.
As in this case E{x;x;} = E{x; }E{x;} = x> = 0.

& =0 = CE{} + BE{X} = dlo? + a3a3.

Finally, we have

—_

) , with

R= <R11 RIZ), and Ry; = E{x}, Rix = E{xix2}, Ryp = E{x3}, a = (al >

Ry Ry a

1 2 R» — R 2
_1 X 2 12 . 3
a=xR (1) = Rl T, (R“ B R12>' We verify that a; = a, 2

The above system can be written in matrix form: Ra =x2<



Appendix A
Functions of a Complex Variable

Only the essential concepts for the signal theory on the complex functions of the
complex variable are presented here. Because of its brevity, this discussion is
necessarily incomplete. Readers wishing to deepen these concepts are referred to
the general mathematics courses and to the many books on this important subject.

A.1. Notions on Complex Variables

A.l.1. Notion of a Complex Number

A complex number consists of the sum of a real part and an imaginary part.
We note z = x + jy, where j = v/—1 (In mathematics, we write i = v/—1. However,
in electronics and signal analysis we note j the root of —1, reserving the letter i to
name the current in a circuit).

A complex number z corresponds to a point M in the plane xOy called the
complex plane (Fig. A.1). The real part of z corresponds to the abscissa of M, its
imaginary part to the ordinate of M.

M is called image. We say that z is the affix of M.

As can be seen in the figure above, we have:

x=pcos® and y=psin0. (A.1)
We can write z as
z=pcosO+jpsin0. (A2)
The modulus p is given by p = \/)ﬁy2 The argument 0 is given by

0= Arg?. (A.3)
X
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Fig. A.1 Complex number y
z in the plane xOy.
M
Fhemmmomeme s - Z
g E
& |
0 x x
We admit the very important relationship (Euler formula):
e = cos 0 +sin 0. (A4)

A complex number z can be written in exponential trigonometric form:

z=pel (A.5)

A.1.2. Complex Function of a Complex Variable

A function of the complex variable z is noted f(z). It is an application of a subset
belonging to set C with value in C.

Signal theory focuses on the simple case of uniform functions of the variable z,
that is to say to functions having a single value for each value of z.

The concept of limit is particularly important for a function of the complex
variable defined in an area surrounding a point zo. By definition, we say that the
function f(z) tends towards the limit [ as z approaches zy if

[ = limf(z). (A.6)

720

zo being a point of the complex plane, the limit should be the same when z tends
towards zo from any point z of the neighborhood of zy (Fig. A.2).
The function f(z) is continuous in zq if

lim £ (z) = £ (z0). (A7)

Z—20
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Fig. A.2 Limit of function
f(2) at zo.

A.2. Complex Derivation

The derivative f’(z) of the function f(z) at any point z, is defined by

F@) = i L), (A8)

Here again, the limit must be the same starting from any point z in the neigh-
borhood of zj.
Example Let the function f(z) = 22

f(2) = (x+jy)* = 22 +2xy — y*. (A.9)

The derivative calculated for y constant is taken on a horizontal path z — zp:

df@m)| @)

ox

=2x+2jy =2z (A.10)
dz

y=cte
The derivative calculated for x constant is taken along a vertical path z — zp:

d 19) 1
RN L LA S R

We see that we could have derived formally f(z) with respect to z:

df(z)  dZ?
A A A.12
dz dz ¢ ( )
This geometric nature of complex functions defined in a planar domain gives
them particular properties.
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Only a few properties are given here:

We write the function f(z) as

(@) = filxy) +ifa(x,y); (A.13)

The following general property must be assessed:

afl(xay) _afZ(x,y)

% = R (A.14)
In the previous example,

fi(x,y) y (A15)

fa(x,y) = 2xy.

The derivatives of functions fi(x,y) and f>(x,y) have satisfied the relationship
(A.14).

If the function f(z) is defined, continuous at a point, it is infinitely differentiable
at this point.

A differentiable function at a point is analytic at this point, that is to say, it is
developable in power series. Noting z, this point, we have

d 1 d2
f(z) :f(Zo)-l-(z—zo)di; + E(Z_Zo)zé
(A.16)
1 ndn
Tt e L

Except for the constant function f(z) = C, a function f(z) cannot be defined,
analytic in the entire complex plane.

For example, the function f(z) =z is defined in the whole complex plane,
except in z = oc.

The function f(z) = 1 is not defined in z = 0. We say that it has a pole in z = 0.

~z
It is said that the function f(z) has a pole of order n in z = zp, if in a neigh-
A

borhood of this point it behaves like ey

A.3. Complex Integration

The complex integral is a path integral defined on the path I' by (see Fig. A.3)
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Fig. A.3 Path integral in
complex plane

/f(z)dz. (A.17)

This integral on a path from z; to zp depends in the general case on the path
followed from z; to z5.

A.3.1. Cauchy Theorem

This theorem is one of the most important in analysis. It reads:
The integral of f(z) on a closed contour enclosing an area within which the
function is analytical is zero (see Fig. A.4):

%f (z)dz = 0. (A.18)
r

We verify this theorem on a simple example: We assume that f(z) = z and that
the closed contour I' consists of the sequence of segments as shown in Fig. A.5:
I' =L+ L,+ Ls;+ Ls. We choose to follow the contour counter-clockwise.

Then
%f(z)dZZ/ zdz+/ zdz+/zdz+/zdz. (A.19)
r L L Ly Ly

Calculating the first integral over L;:
2 2 2 272
X X
dz= [ (x+jy)dx = |5 +ixl,_o| = |5| =2 (A.20)
2 o 1210
L 0

Fig. A.4 Integration on a T
closed path I
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Fig. A.5 Integration contour Y
r L
s A
2
Ly M, L
0 1 2 x
Calculating the second integral on L, where x = cste = 2:
272
SN . .y .
/Zdz=/(2+1y)1dy:][2y+]§] =4j—2. (A.21)
0
0

On L3, y = cste = 2, the third integral becomes

0 0
/Zdz—/ (x+7v) dx:/ (x+2j)dx {j—i&jx] =-2—-4j. (A22)
2
2

Calculating the last integral on Ly:

0 0
2
. . . . y
/Zdz:/(x+1y)| de=/Jdey=—5
Ly 2 2

x=0

0
=2. (A.23)
2

The sum of these four integrals is zero as expected from Cauchy Theorem. The
integral on the closed contour is zero. We say that the function f(z) is holomorphic
in the area inside the contour.

The condition that the integrand is analytic inside the integration contour is
satisfied since the function f(z) = z is regular in the whole complex plane except at
infinity.

The integral on the path L; + L, leading from O to A is equal to 4j.

If we traveled the path —L3; — L, leading from O to A, the integral would be
— (=2 —4j+2) = 4j too.

The property that we find here is that the integral does not depend on the path
followed if the inside area enclosed by the two paths contains no singularity.
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A.3.2. Integration on a Closed Contour
Surrounding a Pole

Integration of the function: f(z) = 7*:
We calculate the integral of the function f(z) = z" on the circle C centered at
7z =0, and browsed in the forward direction (Fig. A1.6):

In = % Zn dz. (A24)
C

The situation is different depending on whether n >0 or n<0.

e If n>0, the function f(z) = 7" is analytic inside the circle, and the integral will
be zero by Cauchy Theorem.

e Ifn<0,z=0isapole of order n. The function is not defined at all points of the
disk inside C and the integral /, may be different from zero.

We use the trigonometric form of z: z = pei’; 2 = pei"’.
On the integration circle centered in z =0, p is constant and we have:
dz = pel’jdo.

2n 2n
I, = ?{Zn dz = / pnejnopej()jdg :jpn+l / ej(n+l)0 do.
C 0 0
Ifn# -1,
ei(n+ 1)9} 2n
In:-nJrl[ 0:0.
B i)
Ifn=-1,
2n 2n
I, :jpo/ e°d9:j/ do = 2mj.
0 0
Fig. A.6 Integration circle y
for the function f(z) = 7" c
P
8
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So we note that:

0 ifn#—1

2nj ifn=—-1° (A.25)

9{ F'dz =
c

Integration on a circle around the origin of a function f(z) having a pole of
order n in z = 0:
z =0 is a pole of order so n of f(z) if

lim2f(2) = A,. (A.26)

The general form of f(z) valid in a neighborhood of z = 0 is:

A A, A )
ﬂd:?wikﬂ+~jf+m+mm~~+@a”. (A.27)

We seek to evaluate the integral of f(z) on the circle centered in z = 0 traveled in
the forward direction I = . f(z) dz
By integrating term by term the second member of (A.27), we have:

I—?{f dz—yf—d—i—

(A.28)
-+ —dZ—i-?{AodZ-l- +?{Anz”dz+---

c 2 c c
All these integrals are zero except gﬁc%dz.
So we have:

Ay )
I=7¢ f(z)dz= P ——dz=2mA_,. (A.29)
c c 2

A_ is called the residue of the integral of the function f(z) in z = 0.

The practical problem remaining to be solved is the evaluation of the residue A_;
of a function f(z).

For this, equation (A.27) is multiplied by z".

2f(2) = An+Apizt - FAL T AT - (A.30)
We take the n — 1 derivative of this equation

dam 1
dn 1

(Zf2)=n—-1)(n—-2)..A 1 +nn—1)...Apz+ -+~ (A.31)

The second member tends toward (n — 1)!A_; when z — 0.
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We have

1 ) n—1 .,
A = WEI—IBF(Z f(2))- (A.32)

More generally, let the function f(z) having a pole of order n in z = a. The
residue of this function in z = a is given by:

Ao = g im e (e = 0)7(@) (A33)

By applying Cauchy’s theorem, it can be shown that the integral over a closed
contour of any shape surrounding the poles is equal to the integral over a circle
surrounding the pole if it is possible to deform this contour to reduce it to a circle
without encountering poles.

Residue theorem: The integral over a closed contour I' traveled counter-
clockwise of a function f(z) having poles inside T is equal to the sum of
residues within this contour multiplied by 2j:

I= ff f(z)dz = 2mj ) Residues; (A.34)
T i

A.3.3. Jordan’s Lemma

There are several Jordan’s lemma. We will only consider here that lemma which
relates to the problems most frequently encountered in signal analysis.

Consider a function f(z) defined in an area of 1/2 upper plane y > 0.

If lim,| . f(z) = 0, the integral [ f(z)e® dz, extended to a circular arc centered

in O with radius r contained in the upper half plane (Fig. A.7), tends toward O when
r — 00.

Fig. A.7 Upper half circle of
integration
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Indeed, we set z = rel’ and let M(r) the upper limit of |f(z)| on the circular arc
|z| = r. We have |&%| = e™"*"? and on the circle |dz| = |re)’ d0] = r|d0).

According to the general theorem stating that the integral modulus is less than or
equal to the integral of the modulus, we can write

'/f(z)ejZ dz

The function sin 0 is symmetrical around 0 = 7, we can write (Fig. A.8):

< /U‘(z)\e” Sin0|dz|gM(;f)/<e”Si“0rd0 (A.35)
0

n

z
/efrsin() do = z/efrsin(?dg.
0

0

It can be seen from the figure that for 0 <6 < %, sin 0> %0, as the sinus is above
the line of slope 2.
So

20r [67r — 1]

e d0=2rM(r)———=nM(r)[1 —e].

T

/f(z)e"Z dz| <rM(r)2
C

(=]
(ST

(A.36)

This last expression tends towards O when r — oc.
Consequences of the previous Lemma:

L. If limp, ., f(z) = 0, the integral [ f(z)e ™ dz over the arc in the 1/2 lower plane
y<0 tends to zero as r — Q.

2. Let « a real number. The integral [ f(z)e * dz tends toward zero as r — oo on
the circular arc of radius r

a. in the lower 1/2 plane y <0 if o > 0.
b. in the upper 1/2 plane y > 0 if a2 <0.

Fig. A.8 Plot of sin 6 and
line with slope 2
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Linear Algebra

B.1. Vectors

A vector is an array of real or complex numbers or functions. The vectors are
treated mainly as column vectors (in the example here with N elements):

X1

= | (B.1)

xN
Transposed vector of a vector x (row vector):

x' =[x, x, ..., x| (B.2)
The Transposed Hermitian vector is:

M= " '=[x, x5, o, x). (B.3)

Euclidean norm (length) of a vector:

N 2
lxll,= {Z |in2} : (B4)
B.1.1. Linear Independence

Consider a set of n vectors vy,v,,...,v,. These vectors are called linearly inde-
pendent if the relation

vy + vy + -+ +o,v, = 01is verified only when o; = O for anyi (B.3)
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If we can find a set of non-zero coefficients o;, such that the relationship (B.5) is
verified, the vectors vy, v,,...,v, are linearly dependent.

B.1.2. Basis of a Vector Space

If the vectors vy, vy, ..., v, are linearly independent, the set of linear combinations
w= Z?:l o;v; 18 a vector space whose vectors vy, v,, ..., v, are a basis (not unique,
though).

B.1.3. Scalar Product

Let two complex vectors with same dimensions m,

aq b 1

a by
a= and b= | .

A b

Their inner product (or dot product) is defined by

(a,b) =a"b =" "ab;. (B.6)
i=1

The squared norm of a vector a is defined by
(@,a) =a"a = da;. (B.7)
i=1

The norm of vector a is

lall,= {(a,a)}. (B.8)
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B.2. Matrices

A matrix is an array of numbers typically noted as follows:

ajy ap apa ... dy
a1 axp a3 ... dy

A={a;}= |91 a2 a3 ... dm | Ahasmrowsandncolumns. (B.9)
aml  Am2  dm3 <o dmp

Its transpose is obtained by interchanging the rows and columns of A:

ayp dzp 4z ... dml
ap ap Ay ... G

AT = a3 a3 ax ... ap |, (B.10)
Aip d2n A3n .- Omn

Its Hermitian transpose is the conjugate transpose:

* * * *
dpp Gy d3yp ey
* * * *
app Ay dzp --- Gyp
H a, as, da; a’
A = | %3 dp A3z - Gy | (B.11)
* * * *
aln a2n a3n et amn

If the matrix A is square, its transpose is obtained by reflection on the diagonal.
If a square matrix is equal to its transpose, it is said to be symmetric.
If a square matrix is equal to its Hermitian transpose, it is called Hermitian.

Evidently we have (AH)H: A.

The rank r(A) of a matrix is the number (common to rows and columns) of
linearly independent row vectors and column vectors. We necessarily have:

r(A) <min(m,n). (B.12)
If
r(A) = min(m, n), the matrix is said full rank. (B.13)
Product of two matrices

The product of a (m x n) matrix A by a (n x p) matrix B, is a (m X p) matrix
C whose elements are given by:



576 Appendix B: Linear Algebra

Cij = Zaikbkj- (B14)
k=1

Note that the number of columns of A must be equal to the number of rows of B.
Important properties

— Let C = AB the product of matrices A and B.
We have:

C" =B"™AT and C" = B"A". (B.15)
— Let R = AMA the product of the Hermitian transpose A™ of a (m x n) matrix
A and of matrix A. R is square (n X n).
According to (B.15),
R =R". (B.16)

The matrix R is Hermitian (symmetric if the elements are real).
The rank of R is that of A:

r(A) = r(A"A) = r(AA"). (B.17)

— Similarly, let § = AA" the product of (m x n) matrix A and of its Hermitian
transpose A

S is square (m x m), Hermitian. (B.18)

Square matrices

If A is a square n x n full rank matrix, there is a single matrix A~! called inverse of
A such that:

A'A=4A""=1, (B.19)

o
—_
o

where I = is the square identity matrix. In this case A is said

o
[ )
—_
o

0 00 ... 1
invertible or nonsingular.

If A is not full rank, r(A) <n, A has no inverse. It is said noninvertible or
singular.
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Determinant of a square matrix A:

det(Ann) = Xn: (—1)i+ja,:/‘ det(A,;,-), (BQO)

i=1

where Aj; is the (n — 1) x (n — 1) matrix obtained by removing the ith row and jth
column of matrix A.

The determinant of a product of matrices is equal to the product of the deter-
minants of these matrices:

IfC=AB, det(C)= det(A)det(B). (B.21)
A square (n x n) matrix A, is nonsingular if and only if
det(A) # 0. (B.22)

The trace of a square matrix is the sum of its diagonal elements

tI'(A) = zn:a,',‘. (B23)
i=1

B.3. Linear Systems

Partition of a matrix A in column vectors:
A:[Cla €y ey cn]'

Partition of a matrix A in row vectors:

B.3.1. Linear System Equation

We denote b the result of the multiplication of a (m x n) matrix A by a n vector x;
Ax = b. The expanded form of this relationship is:
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ap dap d4apa ... A4 X1 by
a axp a3 ... Qg || X2 by
a1 axn az ... | |x3| = | b3 |. (B.24)
aml Am2  am3 cee Apun Xn bm

Using the rules of the matrix product we have:

ayxy +apxy + - +apx, = b
ax X1 +axpxy + -+ +aoXx, = by

(B.25)
am1X] +am2x2 + - +amn-xn = bm
We can check that
by an apn ais ain
by asy an anxs o
b3 = X asy _|_x2 asy +x3 ass —+ . +xn asp . (B26)
bm aml am am3 Amn

The vector b appears as a linear combination of the columns of A. We can write:
b= Z)C,’Ci. (B27)
i=1

The vector b is a member of the m-dimensional space C". If the matrix A and the
vector x are real, b € R™.

The column vectors of A generate a p-dimensional space, with p <m, called
column space of A. This space R is a sub-space of R”.

B.3.2. Basis of Space R™

If, among the n column vectors of the matrix A, p = m linearly independent vectors,
can be found, these vectors form a basis of R™. To make it so, it is obviously
necessary (but not sufficient) that n > m.

A m-dimensional vector space has an infinite number of bases.
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B.3.3. Resolution of a Linear System

If the (m x n) matrix A and n vector x are given a-priori, a unique vector b may be
found using the relationship (B.24). b is said to be the solution of a direct,
well-posed problem.

If the (m x n) matrix A and m vector b are given a-priori, the relationship (B.24)
appears as a system of equations to be resolved to find the n vector x solution. It
may happen that there is no solution or there is an infinite number of solutions. The
problem is said to be an inverse, ill-posed problem.

The resolution of this system is to search for the coefficients of the linear
combination of the m dimensions column vectors of the matrix A which could be
equal to the vector b. These coefficients of the linear combination are the compo-
nents of the vector x (see B.26).

We look for the n vectors x, solutions of the linear equation:

Ax =b. (B.28)

Equation (B.28) is a system of m linear equations with n unknown x; with
i=12,...,n

By construction, b € R™, that is to say that the number of components of b are
equal to the number of rows of the matrix A.

The solution of the equation Ax = b depends on the elements of the vector b, on
the respective values m and n, and on the rank of A.

The resolution of the system is the search of one or more vectors x which
possibly verify this equation.

The first question that arises is: does b belong to the column space of A?

We can support the reasoning on writing the system in form (B.26) and discuss
different cases occurring:

[m<m]: The number of column vectors is insufficient for generating all vectors of
a m -dimensional space. In other words, the p -dimensional (with p <n) column
space of the matrix cannot cover R™. An arbitrary vector b cannot always be
represented as a linear combination of the column vectors of A. In other words,
there are more equations than unknowns. The system is overdetermined.

— If the vector b € R?, we can find the coefficients x; and so find solutions for x.
If r = n the solution is unique.
If  <n <m, the columns of A are not linearly independent; the equation Ax =0
has an infinite number of solutions. It results that Ax = b has an infinite number
of solutions.

— Ifb ¢ R?, the system has no solution. In some applications one is interested in
an approximate solution. In these cases, we look for a vector x¢ which generates

a vector b € R? whose difference with b is minimal. Thus, we pose:
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N m
b= Z)C(),'Ci =Ax0.
i=1

The minimum error vector is:
e=b—b=>b—Ax. (B.29)

One generally chooses to search for a minimum error in the least squares sense.

The squared norm of the error ||e||*= ||b — Ax||* should be minimal. We recall that
it is given by:

le|*= [[b — Ax|*= (b — Ax)" (b — Ax) = (B" —x"A") (6 — Ax).  (B.30)
The vector x should be such that:

2
‘@%ﬂ: —AR (b — Axo) = 0. (B.31)

The notation x appears in the last equation as being its solution.
So,

Alle = 0. (B.32)
This result means that the norm of the squared error is minimum when the vector
e is orthogonal to each of the column vectors of A.
Equation (B.31) is written as:

AMAx, = AYp. (B.33)

We saw above in (B.18) that the matrix AA is square with (n x n) dimensions.
If the columns of A are linearly independent (A has full rank, r = n), then the

matrix AYA is invertible and by left multiplying equation (B.33) by (AHA)fl, we
see that the solution in the least squares sense is:

xo = (A"4)"'AMp. (B.34)
So:

b = Axy = A(A"A)"'A"b = P,b, (B.35)
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where
Py=A(AMA) AN, (B.36)

P, is called the projection matrix of a vector onto the space column of A.
m=ml: If r = m, A is a nonsingular square matrix, A~ exists and the solution
of the system is: x = A~'h. We may verify on (B.36) that

Pi=1. (B.37)

If r<m, A is singular. The column vectors of A are not linearly independent.
The discussion is similar to that conducted in the previous case. If the vector
b € R”, we can find a solution x (or an infinite number of solutions). Otherwise, a
minimum error may be considered.

n>m]: There are fewer equations than unknowns. The system is
underdetermined.

The existence of a solution will depend on the rank of the matrix.

If r = m there is a solution or an infinite number of solutions.

If r <m there are O or an infinite number of solutions.

B.4. Special Forms of Matrices

A diagonal matrix is a matrix whose elements outside the main diagonal are zero.
A square diagonal matrix has the form:

aly 0 0 N 0

0 aj 0 e 0

A= 0 0 ass 0
0O 0 0 Qnn

ag 0 0
ar 0 0 0 0 .
0 ap 0 0 0 0 ap © 0
A= or A= 0 S
0 0 0 ayu O 0 .
L0 0 : 0]
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A Bloc diagonal matrix is a square matrix whose diagonal elements are square
matrices:

A, O 0 0
0 An O 0
A= 0 0 A33 0
0 0 0 A
Exchange matrix:
0 0 1
0O ... 010
J=10 ... 1.0 0}, (B.38)
1 ... 00 O

This matrix is used to perform the inversion of terms of a vector:

Vi Vi
V2 Vn—1

Jl =1 | (B.39)
Vi V1

The left multiplication of a square matrix by J reverses the order of the terms in
each column of the matrix:

apnn  diz dais asy dsy dsj
IfA = a dxyp a3 |, then JTA = |4ay dyp axa|. (B40)
aszp  dz; dss aip  dip aps

The right multiplication of a square matrix by J inverses the terms of each row
of the matrix:

a3 app dp
AJ = | a3 dap daz|. (B 41)
asy dszy dasg

Likewise:
asy az as

JTAJ: azz dpy djp |- <B42)
apz diz dn
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Property
J =1
A square, matrix A is said Toeplitz if its elements along each diagonal are
equal:

aj = aj+1j+1 foralli<nandj<n.

A (n x n) matrix A is said Hankel if its elements along each of the diagonals
perpendicular to the main diagonal are equal: a;; = Cte;; for all i <n and j<n.

A real (n x n) matrix A is called orthogonal if its columns (and rows) are
1 fori=j

. o T, _
orthonormal, namely, if A = [a\, a», ..., a,)anda;a, {0 for i "

So:
ATA =1 and A '=AT.

A complex (n X n) matrix A is said unitary if its columns (and rows) are
orthonormal:

1 fori=j _
H . AH 1 H
aia]{o for i j.So.A A=I1 and A =A".

B.5. Quadratic and Hermitian Forms

The quadratic form of a real, (n X n) matrix A is the scalar defined by:

n n
Q4(x) =xTAx = Z Xiax;, (B.43)
i=1 j=1
where xT = [x1, X2, ..., Xx,]is a vector made up of n real variables. The
quadratic form is a quadratic function of the n variables x;, x;, ..., Xx,.
Example

3 4
A= [1 2]; 0a(x) = 3x] + 5x1x2 + 203
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Similarly, the Hermitian form of a (n x n) matrix A is defined by:

n n

Qa(x) = xMAx = Z in*aijxj. (B.44)

i=1 j=1

If the quadratic form of a matrix A is positive for all non-zero vectors x, the
matrix is said to be positive definite. If the quadratic form is non-negative, the
matrix is called positive semi-definite.

B.6. Eigenvalues and Eigenvectors of a Square Matrix

Let A be a square (n x n), matrix (singular or not). We consider the linear equation
Av = Jv (where v is a vector solution with n elements and 4 a complex constant).
This equation can also be written (A — AI)v = 0. For this equation to have a
non-zero vector solution v, it is necessary that the matrix A — /I is singular. Its
determinant must be zero.
p(A)=det(A — /I) is the characteristic polynomial of order n. Its roots /; are the

eigenvalues of the matrix A fori = 1,2,...,n. The corresponding vectors v; are the

eigenvectors: Av; = A;.

Properties

a. Nonzero eigenvectors [vy, Vv, ..., v,| corresponding to different eigen-
values 11, 4s,..., 4, are linearly independent.

To show this, we consider two eigenvectors v, and v,: Av; = Z;v; and
Av; = /121)2.

The equation (oqvy +opvy) =0 leads to A(ovy +opv2) =0 and, due to
linearity:

A(ayvy +opva) = (a1 2iv1 +oplavs) = 0.

The first equation may be written v, = — %, the second, v, = —%
If 41 # Z, the only solution satisfying the two equations is v; = v, = 0.
It follows that two non-null eigenvectors v; and v, that correspond to different
eigenvalues are linearly independent.

b. The eigenvalues of a Hermitian matrix are real. Indeed, let v; be an eigenvector
and /; its associated eigenvalue given by Av; = J,v;.
We multiply the equation on the left by vi: viAy; = v Jv;.
We take the Hermitian transpose of the previous equation (vf’Avi)H:

HaH, _ Hj)*,.
viiA%v; = v ;.
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The matrix A is assumed Hermitian, A = A”, one must have: vf’ Aivi = vf’ /l;’vi,
then

Ji =1

(B.45)

c. The eigenvectors of a Hermitian matrix corresponding to different eigenvalues
are orthogonal. In fact, consider two eigenvectors v; and v; corresponding to two
distinct eigenvalues /4; # 4;. They verify the equations Av; = A,v; and Av; = Av;
with )vi 7é ;uj.

. . . . H H .
Left multiplying the two equations respectively by v;" and v;, we have:

Hpoo _ 5 H Hpo o _ 5 H
vi'Av; = )vivj v; and v;Av; = Ay
Taking the Hermitian conjugate of the last equation yields to:
HsH _ 2+ H
v; Ay = /Ijvj ;.

The matrix is assumed Hermitian then )L,Av;" vi = Avilvi.
The eigenvalues being real, ); = /;, then (ii — /lj)vJHv,- = 0s. As the eigenval-
ues are different by assumption, in order that this equation be verified, we must
have necessarily, VJH v; = 0.
Vectors v; and v; are orthogonal.

d. Any invertible (n x n) Hermitian matrix has n orthogonal eigenvectors.

e. An invertible Hermitian matrix A can be written as
A=UAU", (B.46)
wherein the matrix U is formed of the eigenvectors of A with unit norms (in
columns) and A is the diagonal matrix composed of the eigenvalues put in order

relative to the eigenvectors of A. The matrix U is unitary.
Indeed:

AU =A Vi V2 ... Yy - /1]171 }QV2 e )ann = UA. (B47)

By right multiplying Eq. (B.47) by U, we have A U U" = U A U", and as the
matrix U is unitary, U U" = I and so:

A=UAU" (B.48)
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As A is invertible, we have
Al=vuA'U" (B.49)

Matrix A and A are called similar. They are related by the basis change given by
U.

f. A unitary matrix U has the property |det(U)| = 1.

g. In consequence

det(A) = det(A) = H Ji. (B.50)

i=1

Therefore a matrix is nonsingular (invertible) if all of its eigenvalues are dif-
ferent from 0.
h. We have also

n

wr(A) = tr(A) = Y _ A (B.51)

i=1

i. A Hermitian matrix is positive definite if and only if its eigenvalues are positive.

A necessary and sufficient condition for A to be positive definite is that there is

an invertible matrix C such that A = C¥C.

A square matrix A and its transpose AT have the same set of eigenvalues.

k. Let A be an invertible Hermitian (n X n) matrix, A = U A U™ according to
relationship (B.46). The spectral theorem for a square matrix states that

—.

n
A=) Juull, (B.52)
i=1

where /; and u; are associated eigenvalues and eigenvectors. (The reader may
verify the theorem as an exercise on a 2 X 2 matrix A).

We have then:

Al = Zﬂlu.Hu,-. (B.53)

B.7. Singular Value Decomposition (SVD)

We have seen above that a square, symmetric (n x n) matrix A can be decomposed
as A = U A U, where A is the diagonal matrix of its eigenvalues and U is a
unitary matrix composed of the normalized relative eigenvectors.
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We show in the following that any rectangular (m x n) matrix A can be
decomposed as:

A =UxvH (B.54)

where U and V are unitary matrices composed of the eigenvectors respectively of
AA" and AMA, and X is a rectangular (m x n) matrix whose only non null elements
are along the first diagonal. Relationship (B.54) is called the Singular Value
Decomposition, and the non zero elements of X are called the singular values of A.
To demonstrate this property, let us search for a unitary matrix V such that:

AV = UE, (B.55)

where U is unitary and X is diagonal (but non square if (m # n)). Is this possible?
We right multiply (B.55) by VH: AVVH = ULV, Thus

A =Uxvi (B.56)
We left multiply (B.56) by AH:
AlA = veipipzvt = vefizvh, (B.57)

We know from (B.16) that AA is a square (n x n) Hermitian matrix. EME is
also square (n x n), diagonal. This result is analogous to the decomposition in
(B.48). V is the unitary matrix composed of the eigenvectors (n dimensions) of
AYA; the elements (diagonal) of matrix XM are the corresponding eigenvalues
(positives or zero).

Similarly, let us right multiply (B.56) by A™:

AAY = prviveiph = pxxtiph, (B.58)

AAY is square (m x m), Hermitian. XM is also square (m x m), diagonal, and
its elements are the eigenvalues of AA® (which are the same as the eigenvalues of
AYA). Its elements are positive or zero. U is the unitary matrix of the eigenvectors
(m dimensions) of A"A.

X! being square, diagonal, we can assess from the property (B.21) that the
product of diagonal matrices is diagonal, that we can find X, diagonal, whose non
zero elements are the square roots of the elements of XXH.

Spectral theorem for a rectangular matrix A

A= uwopl. (B.59)
i=1
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where u; and v; are the eigenvectors respectively of AA™ and AMA related to o;, the
diagonal elements of X; r is the rank of A (the same as that of AA" and AMA).

In summary, any rectangular matrix A can be decomposed as A = UXV! where
U and V are unitary matrices composed of the eigenvectors respectively of AA™ and
AYA | and I is diagonal such that the elements of X! are the common eigenvalues
of AA™ and A"A.

The matrix X is rectangular, diagonal, its elements are called the singular values
of the matrix A. The relation AV = UX is verified.

The condition number of a matrix is the ratio of its largest to its smallest singular
values.
Pseudo-inverse of a rectangular matrix
Let us revisit the resolution of system equation Ax = b.

Using SVD decomposition of A given in (B.56) we write: Ax = ULV'x = b.

The pseudo-inverse of A is the (n x m) matrix defined as
AT = vyoh, (B.60)
where X’ is a matrix whose elements are inverse of those of X.

It may be shown that:

— if A is full column rank, that is to say, r(A) = n <m (overdetermined system),

Atisa left-inverse of A (meaning At = I,, with I,,, the square (n x n) identity
matrix) with

AT = (aM4)7'aM, (B.61)

We have seen above in (B.34) that xo= ATb is the best estimate of x in the least
square sense.

— if A is full row rank, that is to say, r(A) = m <n (underdetermined system), Al

is a right-inverse of A (meaning AAT= I,, with I,,,, the square (m X m) identity
matrix) with

AT =A% (aam) ™ (B.62)

We have seen above that there are infinitely many solutions to the equation
Ax =b.
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The solution with minimal norm is Xminnorm = Az where z is a vector of the
m -dimensional complex space.

Ax = AA"2 =b. 2 =(AA")"'b. Xpinnom = A"z = A" (44") b = ATp.

B.8. Signal Filtering and Linear Algebra

A time limited signal having values equal to zero outside an interval {0, N — 1} can
be written as a vector:

x[(l)]
x= X[: ] . (B.63)
AN — 1]

The energy of vector x is its squared norm:

|| = Z x{n]|. (B.64)

In some cases we will consider a set of vectors containing the values of the
signal at the instants n, n — 1, n — N — 1:

x[n]
xin—1
x[n] = [ : ] . (B.65)
x[n—N —1]

Let h[n] the impulse response of a linear, causal, time invariant filter, whose
impulse response is finite, of order N — 1 and let x[n] be the filter input signal. The
filter output is given by the convolution:

y[n] = Z h[m]x[n — m]. (B.66)

m=0
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h[0]
h[1]
Posing h = . )
h[N — 1]
we have:

y[n] = h'x[n] = x"[n]h. (B.67)
The output of a digital filter is given by:
y[n] = h"x[n] = x"[n}h. (B.68)
If x[n] = 0 for n<0, the output y[n| of the filter can be written for n>0:
y = Xoh, (B.69)

where X is a convolution matrix defined by:

© x[0] 0 0 0
x[1] x[0] 0 0
x[2] x[1] x[0] ... 0
Xo=| - ; 5 e (B.70)

AN—1] N—-2 xN—3] 0]




Appendix C
Computer Calculations

The professional programming software Matlab is widely used in signal analysis. It
is simple to use and has great flexibility, its handling is fast, and it is well docu-
mented. It has Toolboxes on various subjects, particularly for signal analysis.

To learn about signal analysis, students can use a freeware, downloadable by
Internet. One can find very good clones of Matlab as Octave or Scilab where the
syntax is very similar to that of Matlab for the basic operations in signal analysis.

At the end of this appendix we give two small basic programs for a first contact
with this type of programming. Having copied the examples in the software editor,
one will launch the execution or make a copy and paste of a few lines in the
software command window.

Practical works, signal samples to be analyzed, and corrections are available
upon request at the email address: fcohentenoudji@yahoo.fr.

C.1. Notions in Matlab

A well-written program demands many comments describing the operations of
ongoing calculations. This practice facilitates understanding at a later reading.

Use the % symbol to put the rest of a line in comments.

Matlab is a numerical computing software that operates on arrays (vectors or
matrices).

The calculations are reduced to arithmetic operations on these arrays.

We note that there are 3 types of product of two vectors in Matlab:

The scalar and vector products use the operator *
The term by term product uses the operator . * (note the dot before the star).

Matlab is optimized for matrix calculation. A matrix product is calculated very
quickly. In contrast the for loops are extremely slow. Use for loops as a last resort.

© Springer International Publishing Switzerland 2016 591
F. Cohen Tenoudji, Analog and Digital Signal Analysis,
Modern Acoustics and Signal Processing, DOI 10.1007/978-3-319-42382-1
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Resizing an array in a loop by adding values is extremely detrimental in time.
We should declare the array to its maximum size at the start of the program, by
filling it with zeros for example.

A Matlab program is a series of calls to functions. For example the calculation of
a square root is performed with the call to sqrt(x) function which is programmed
into the function program sqrt.m.

In your work you will often see operations that you want to repeat. It is strongly
recommended to use functions such as myfunction.m that you have programmed.
These functions will have to be located in a directory accessible by the program.

Matlab manages the logic of the use of the operators and generates an error
message in the case of an illegal operation. Understanding an error message gen-
erated by Matlab avoids wasting time when eliminating this error.

The most common errors are the basic confusion between a row vector and a
column vector, poor integration of the dimension of a vector, the plot of a complex
vector, this last operation providing strange results. We will have to trace the real
part, imaginary, the modulus or the phase of a complex vector.

The following sections present some Matlab functions commonly used in signal
analysis.

C.1.1. Miscellaneous

%: To put a program line in comment

clear: removes all variables from the calculation memory (It is recommended to start
a program by this command to avoid confusion with variables already used in the
same Matlab session)

;- puts a semicolon after the declaration of a variable or a calculation to avoid
printing on screen the calculation result (this could result in a huge waste of time if
the calculation involves several thousand items)

home: refreshes the command window by deleting old texts

who: provides information on the variables used

whos: provides information on the variables used with the dimensions of the arrays
disp(‘Text’): writes text in the command window when running a program

help function: questions Matlab on how to use a function

for s = 0.0 : 1 : 1000, end: increments the variable s in steps of 1

for s = 1.0 : —0.1 : 0, end: decrements s in steps of —0.1

Assigning values to elements of a matrix. Example:
form=1:N,
forn=1:N,
a(m, n) =m +n;
end
end
break: to exit a loop prematurely

Creating a loop with the while command. Example:

n = 0;



Appendix C: Computer Calculations 593

while n < 1025,

n=n+ 1;

end

C.1.2. Vectors, Matrices

a=[1 2 3]: generates a real row vector

e=[142i 2+43i 3+5i]: generates a complex row vector

b=[142i 2+3i 3+5i ]': Transposition conjugate of a vector (we obtain a
column vector b conjugate transposed of e)

g¢=[1+2i 2+43i 345i]: Transposition of a vector: (the use of the point
indicates that the complex conjugation is not done)

zc = conj(z): complex conjugation of a vector

x = real(z): extraction of the real part of a complex vector z

y = imag(z): extraction of the imaginary part of a complex vector x

dim(x): returns the number of elements of vector x

sum(x): returns the value of the sum of vector x elements

prod(x): returns the value of the product of vector x elements

fliplr(a): reverses the order of elements of a row vector

flipud(b): reverses the order of elements of a column vector

x = zeros(1, n): creates a row vector with n zeros

x = ones(1, n): creates a row vector with n values 1

v = diag(A): returns a vector composed of diagonal elements of matrix A

t = trace(A): returns the trace (sum of diagonal elements) of matrix A.

Products of vectors
Ifa=[1 2 3|,
¢ = ax*d = 14: inner product (a is a row vector)
1 2 3
d=d +a= |2 4 6|: outer product
3609
e=2xa=ax2=[2 4 6]: product of a vector by a scalar
f=a.xa=[1 4 9] multiplication of arrays term by term (the point before
the operator * allows term by term multiplication)
a = [1: 1024]: creates an array: (row vector with 1024 elements consisting of
integers from 1 to 1024)
b =11:0.1:1024]: (creates numbers in the range 1-1024 by increments of 0.1)
¢ = a(12): value of an element of an array

Creation of a square matrix:
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1 2 0
A=[1 2 0 ; 2 5 1 ; 4 10 —l]givesA=[2 5 1
4 10 —1

A(3,1): gives 4 (3rd row, Ist column)

rank(A): returns the rank of matrix A (the number of linearly independent rows or
columns)

Square matrix d:

det(d): calculates the determinant of matrix d

inv(d): calculates the inverse matrix of matrix d

t = eig(d): t is a column vector containing the eigenvalues of d

[V,L] = eig (d): produces a diagonal matrix L containing the eigenvalues, and a
matrix V whose columns are the corresponding eigenvectors of d (V is the modal
matrix); the eigenvectors are normalized to have a norm 1. We have the relation:
d+xV =V=xL.

Rectangular matrix X:

Singular value decomposition (SVD):

[U,S,V] = svd(X): produces a diagonal matrix S, of the same dimensions as X and
with nonnegative diagonal elements in decreasing order, and unitary matrices U and
V so that

X=UxSxV.

cond(X): returns the condition number of matrix X, the ratio of the largest to the
smallest singular values; ratio of the largest to smallest eigenvalues if X is square.
X = pinv(A): produces the pseudo-inverse matrix X of matrix A.

C.1.3. Graphics

figure(4): prepares a graph in Figure 4

plot(A): graphically shows the elements of the vector A

grid on: draws a grid

xlabel(‘Time (sec)’): writes a label on x axis

ylabel(‘ Amplitude (V)’): writes a label on y axis

plot(b, “*’): traces the elements of vector b as stars

axis([xmin xmax ymin ymax|)): chooses the variation intervals of the graphic
coordinates

title (‘string’): displays the text string above the figure

legend(‘signal 1°): displays a small box combining the plot style to its identity
plot(x,y): represents the vector y as a function of the vector x. x and y must be 2
vectors with same dimension

stem(x): performs the bar graph of values of a vector x
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zoom on: triggers a graphic zoom that one controls with a box drawn with the
mouse by holding down the left button

zoom off: stops the ability to zoom with the mouse

plottools(‘on’): displays a dialog box that allows to select all parameters of a graph;
fonts, line thickness, axis intervals, etc ..

plot(x,y1,x,y2): represents both y1 and y2 as a function of x

semilogy(x,y): graph with linear scale for x and logarithmic for y

subplot(m,n,p): allows an m X n matrix of graphs and prepares the graph plot p
num2str (x): converts number x to a string. To perform the reverse operation use
sprintf()

surf(M) represents the values of a two-dimensional matrix as a 3D plot. For options
refer to Help section (help surfing)

shading interp: represents a smoothed graph after calling the surf() function
close(n): closes figure number n

close all: closes all figures.

C.1.4. Polynomials

poly(v): v being a vector, gives a vector whose elements are the coefficients of the
polynomial whose roots are the elements of v

roots(d): calculates the roots of the polynomial whose coefficients are elements of
the vector d. If d has n + 1 components, the polynomial is:

d()xX"+ - +d(n)x+d(n+1)

polyval(p, x): calculates the value of the polynomial whose coefficients are the
elements in p for the value of the variable x

zplane(z, p): traces in the complex plane the zeros specified in column vector z and
the poles specified in column vector p in the current figure

C.1.5. Signal

[y, n] = max(x): searches the maximum y of a vector x and returns the index n of the
position of this maximum

y = diff(x): calculates a vector y whose components are the differences of two
consecutive elements of a vector x. For example: y(1) = x(1) — x(1); (1) =x
2) —x(1); ... etc ...

index = find(x > 1.1): Returns the index vector whose elements are the indices of
the elements x satisfying the condition x > 1.1
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fft(x): computes the DFT of the vector x (fast if dim(x) is a power of 2, using the
Cooley-Tukey algorithm)

fft(x, Nfft): calculates the DFT on Nfft points of a vector x. (if Nfft > dim(x) the
vector is filled with zeros, if Nfft < dim(x) a truncated version of x is used)
ifft(x, Nfft): calculates the inverse DFT of the vector x on Nfft points

z = fftshift(y): shifts the vector y obtained by FFT by placing the center frequency
in the middle of the vector

abs(x): calculates the x complex modulus

angle(x): calculates the complex x argument in radians

a =rand(1,1024): calculates 1024 random numbers according to an uniformly
distributed law in the interval (0,1). a is a row vector; successive draws are
independent

a = randn(1,1024): calculates 1024 random numbers according to a Gaussian
distribution N (0,1). a is a row vector; successive draws are independent

Y = filter(B, A, X): filters the data in the vector X with the filter described by the
vectors A and B to give the filtered data Y. With:

a(l)y(n) =b()x(n) +b2)x(n — 1)+ --- +b(nb+ 1)x(n — nb) — a(2)y(n
—1)—---—a(na+1)y(n — na)

sound(x, f5): sends the signal corresponding to the values of the vector x to the
computer sound card with the sampling frequency fs. The min and max values of
the vector are expected between —1 and +1. If x is a matrix (&, 2) the output is in
stereo

[H,w] = freqz(B,A,N): returns the frequency vector and N-point complex fre-
quency response. If N is not specified, it is 512. We have:

o\ B(e’w) _ b(l) +b(2)e*jw 4o +b(nb+ 1)efjnbw
HE") = A(e®) a(l)+a(2)e7 + -+ +a(na+ 1)ein

H = freqz(B, A, w): returns the frequency response for frequency values specified
in w, in radians/ample; normally between O and 7.

[h, 1] = impz(b,a): calculates the impulse response of the filter with the coefficients
b in the numerator and a in denominator. The function chooses the number of
samples and returns the response in the column vector / and time in the column
vector ¢ (with ¢ = [0,n — 1]). n is the length of the impulse response.

¢ = xcorr(a, b): calculates the cross-correlation function of the vectors a and b. If
M 1is the dimension of the vectors a and b, the dimension of ¢ is 2 * M — 1.

¢ = conv(a, b): convolves vectors a and b. We have
cln+1) =320 alk+1)b(n — k).

R = toeplitz(FuncR): builds a Toeplitz symmetric matrix having FuncR as its first
row (used to pass from correlation function to correlation matrix).
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y = chirp(¢,fo, 11,1 ): generates a chirp signal whose frequency varies linearly with
the given instants in time ¢ vector. The instantaneous frequency at time ¢ = 0 is fj.
The final frequency at time #; is fj

x = Hilbert(x1): returns a complex vector x whose x1 is the real part and x2, the
imaginary part, x2 is the Hilbert transform of x1

b = specgram(a, Nfft, fs, w, Noverlap): calculates the short-time Fourier transform
on Nfft points of the vector a after multiplication by the window vector w, using an
overlap of Noverlap points

P = periodogram(a): calculates the power spectral density (PSD) of the signal
a. The calculation is performed using an FFT on a number of points equal to the
power of 2 immediately greater than the length of vector a

Cxy = mscohere(x, y): calculates the coherence function of two signals x and y (of
equal length)

wintool: opens a dialog box that allows you to set a window (Hann, Bartlett, etc.)
that can be applied to the data

C.1.6. Wavelets

waveinfo(‘wname’): provides information on the family of wavelets whose name is
‘wname’. For example ‘haar’ for the Haar wavelet, or ‘dbx’ for Daubechies
wavelets

[Phi, Psi, xval] = wavefun(‘db2’ iter): returns the scaling function Phi and wavelet
Psi (here of the wavelet db2) on a grid of values of x on 2”iter points. The iter
number is the number of iterations

[LO_D, HI_D, LO_R, HI_R] = wfilters(‘wname’): calculates the 4 analysis and
reconstruction filters associated with the wavelet whose name is ‘wname’

Coefs = cwt (S, SCALES, ‘wname’, ‘plot’): calculates the continuous wavelet
coefficients whose name is ‘wname’. Traces the result

[C, L] = wavedec(X, N, ‘wname’): returns the wavelet decomposition of the signal
X

[CA, CD] = dwt(X, ‘wname’): calculates the approximation coefficients CA and
details CD of the vector X. the name of the wavelet is ‘wname’

X = idwt(AC, CD, ‘wname’): inverse function of dwt()

C.1.7. File Management

save filename a: saving on disk the variable a to a file in Matlab format

save filename: saves to disk all current variables in a file in Matlab format

load filename: reads on the disk all the variables recorded in a file in Matlab format.
Can also read files saved in txt format
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M = dlmread(filename, delimiter) reads ASCII data in the file with the name
filename. The delineation between data is created by the delimiter (by default,
comma). Use \t’ for the TAB as the delimiter. The result is placed in the matrix M
fid = fopen(filename, permission) opens a file name filename and places the value
of the file handle in the variable fid. Permission can be ‘7’ or ‘w’ or ‘...” for
reading, writing or other

count = fwrite(fid, A, precision): writes the elements of the matrix A in the file
specified by fid. The values are written in the accuracy that can be ‘float’, ‘double’
or the like

status = fclose(fid): closes the file identified by fid

status = fclose(‘all’): closes all open files

s = wavread(filename): reads a file in Wave format(.wav extension)

sound(s): plays the signal s (from a .wav file)

C.2. Examples of Matlab Programs

Programming a vector:
One can define a frequency vector as follows:

= —1000: 0.1: 1000; (one defines here a vector composed of frequency values
between —1000 and 1000 Hz with an increment of 0.1 Hz).

We could also operate as follows:

kmax = 10,000;

= —kmax: 1: kmax;
frequencystep = 0.1; % 0.1 Hz
f =k * frequencystep;

This second way seems longer but can make clearer further reading of the
program.

Programming a function:
We assume that we want to write a function that calculates the module in decibels
and the phase of a complex vector. We write the following program:

function[moddB, phase] = moduledBphase (x)

maxi = max (abs (x));

moddB = 20 * logl0 (abs (x) / maxi);

phase = angle (x);

This program has to be recorded under the same name as the function:
moduledBphase.m.

The call to the function in the program will be as follows:

n = [0: 1: 1023];

vector = exp (i * n / 100);

[moduledB, phase] = moduledBphase (vector);
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figure (1)

subplot (1, 1, 2)

plot (moduledB)

subplot (1, 2, 2)

plot (phase)

Exercise: Type this MATLAB program:

clear

close all

fs = 20000;

disp (‘The sampling frequency is fs = 20000 Hz’);

% f0 frequency of the sine

fO = input ('Enter the frequency of the sine to be displayed (in Hz) ');
n = [0:1:2047];

m = n/fs;

sine = sin(2*pi*f0*tn);

figure (1)

plot (tn,sine);

title (‘(fs = 20,000 Hz) Display of a sine”’)

grid on

xlabel ('time (seconds)’)

ylabel ('sine ")

string = strcat (‘signal frequency:’ , num2str(f0), ‘Hz’);
legend(string)

% Spectrum calculation

k = [0:1:2047];

spectrum = fft(sine,2048);

% Here we chose the number of points of the FFT equal the number of signal
points.

fk = k*fs /2048;

omegak = 2*pi*fk;

figure (1)

plot (omegak(1:2048),abs(spectrum(1:2048)));

title (‘FT of a sine’)

grid on

xlabel (‘omega (rad/s)’)

ylabel (‘Modulus in linear scale’)

figure (2)

plot (fk(1:2048),abs(spectrum(1:2048)));

title (‘FT of a sine function’)

grid on

xlabel (‘frequency (Hz)’)

ylabel (‘Modulus in linear scale’)

% Now we represent the spectral amplitude in decibels:
Maxspectrum = max (abs(spectrum));

spectrumdB = 20 * log10(abs(spectrum)/maxspectrum);
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figure (3)

plot (fk,spectrumdB(1:2048));
title (‘FT of a sine’)

grid on

xlabel (‘frequency (Hz)’)
ylabel (‘Spectrum in decibels’)

The following figures show the results for f; = 400 Hz:

(fs = 20 000 Hz ) Display of a sine FT of a sine
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A

Adaptive filtering, 235, 375, 396

Aliasing, 227, 230, 265, 280, 288, 330, 339,
359

All-pole modeling, 375, 381, 392, 394, 396

Amplitude modulation, 193

Analog filters. See Analog systems

Analog systems, 1-9, 11, 13-16, 18-20,
22-24, 26-31, 33, 34, 159-163,
165-170, 172

Analog to digital conversion (ADC), 228

Analytic signal, 177, 184-193, 195-197

Anticausal system, 254, 255

Apodization, 122, 212, 263, 275-277, 279, 288

ARMA filters, 291, 305, 517

Artifacts of Fourier transform with computer,
264, 286, 287

Autocorrelation matrix, 394, 496

Autocorrelation method, 394

Autoregressive filters. See AutoRegressive
discrete systems

Autoregressive discrete systems (AR),
292-294, 296-302, 304-310, 312-315,

483, 547

B

Bandpass filtering of amplitude modulated
signal, 195

Bartlett method, 517, 522

Bartlett window, 107, 109, 113, 519

Bayes, 427, 441

Behavior at infinite of Fourier amplitude of a
signal, 120, 177

Bessel, 91, 92, 159, 168-170, 172-174

Bode, 11, 16, 28, 32

Butterworth, 159-163, 170, 172

C
Capon, 517, 524
Cauchy, 48, 63, 79, 118, 140, 178, 567
Cauchy Principal Value, 60, 63, 78, 81
Causal signal, 149, 157, 177, 181, 237, 307,
375, 386, 401
Causal system, 153, 156, 157, 177, 292, 317,
532
Central limit theorem, 407, 433, 439, 445, 448,
507
Characteristic function, 419, 421, 425, 426,
430, 445
Chebyshev, 159, 163, 166, 411, 456
Chirp, 93, 101, 102, 106, 109, 110, 190, 207,
210, 212, 217, 223
Chi-square variable, 420, 445
Coherence function, 483, 493-495
Complex
cepstrum, 330, 331
derivation, 565
integration, 566
random variables, 435-437, 460, 543
Conditional probability density, 425, 429, 472
Continuous systems, 3
Convolution, 60, 70, 71, 93, 95-98, 100, 106,
108, 111, 113, 120, 121, 123-126, 128,
130, 133, 135, 253, 259, 359, 369, 398,
432, 433, 439, 440, 445, 503, 507, 509,
518, 520, 523, 535
Cooley-Tukey, 263, 281-283, 596
Correlation, 106, 358
function (deterministic), 93, 99, 106, 359,
369, 376, 386, 389, 390, 393-395, 403
function (random), 483, 484, 486, 511, 515,
517, 518, 521, 522, 528, 529, 532, 534,
535, 537, 539, 547, 549
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Correlation (cont.)
of two complex r.v, 407, 436
of two r.v, 421, 425, 431, 432, 434
Correlation and covariance matrices, 467, 468,
476, 546
Couple of jointly Gaussian r.v., 428-430
Covariance, 424, 468, 476, 477, 513, 514, 520,
521
Covariance method, 375, 395
Cramér-Rao, 445, 460, 462, 463
Cumulative distribution function, 407, 409,
414, 423, 431, 434
joint, 422

D

Daubechies, 344, 346, 353, 360-364, 367,
371-373

Deconvolution, 325, 328, 330, 332, 333

Derivatives of Dirac distribution, 60, 73

Differential linear equations with constant
coefficients, 4, 5, 7, 157

Dirac distribution, 59, 60, 67-69, 71-79, 87,
92, 95, 99, 108

Direct Fourier transform, 77, 79, 81, 254

Dirichlet, 61, 73

Discrete Fourier Transform (DFT), 279, 281,
288, 313, 314, 351

Double Side Band modulation (DSB), 190, 192

E
Eigenfunctions of a LTI system, 1, 3
Eigenvalue of an operator, 1, 6, 7, 50
Eigenvalues and eigenvectors of a Hermitian
operator, 35, 49, 50, 56
Eigenvalues and eigenvectors of a matrix, 510
Energy spectral density, 86, 100
Ergodicity, 509, 511, 514, 517
Estimation of the
correlation function, 474, 515, 517
Correlation matrix from measurement, 474
mean of a random signal, 486, 511, 512,
515

F
Fast Fourier Transform (FFT), 330, 358
FFT. See Fast Fourier Transform
FIR filters. See Moving Average filters
Filter bank, 337, 338, 343
Filtering of a random signal, 483, 486
First order system

analog, 11-20

Index

Fourier series, 35
Fourier series decomposition, 35, 37, 261
Fourier transform and filtering by a LTI system
(analog), 93, 95, 99, 101, 104, 105
Fourier transform and filtering by a LTI system
(digital), 239
Fourier transform of
a causal signal, 181
a Dirac comb, 88
a Gaussian function, 111, 115
a Hanning window, 114
a periodic function, 88
a rectangular window, 111, 112
a time-limited cosine (analog), 120
a time-limited sine (digital), 275
a triangular window (analog), 113
a triangular window (digital), 272
analog signals, 79
digital signals, 253, 254
Dirac distribution, 87
the product of two functions (analog), 97
the product of two functions (digital), 270
trigonometric functions, 92
Frequency modulation, 203
Frequency response, 6, 9, 13-15, 17, 23, 28,
32, 33,77, 78, 92, 97, 137, 154, 155
Frequency spreading, 275, 279

G

Gabor, 102, 104, 106, 109, 134

Gauss distribution, 372

Gaussian probability density, 413, 418, 429

Geometric interpretation of the frequency
response variation, 11, 17, 23

Gibbs, 35, 51-53, 56, 122-124, 133, 352

Goertzel, 158

Group delay, 160, 168, 170-172, 198, 199

H
Haar, 338
function, 346, 350, 352
transform, 338, 340, 343
Hanning window, 114
Harmonic generation, 53
Heaviside, 72, 74, 79, 128, 140, 151, 446
Heisenberg—Gabor, 93, 102, 104, 106, 109,
134
Hermitian operator. See Self-adjoint operator
Hilbert spaces, 35, 48, 56, 82
Hilbert transform, 177, 182, 194, 201, 597
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IIR filters. See Autoregressive filters

Improving Spectral Estimation, 522

Impulse response, 31, 34, 77, 78, 92, 95, 96,
124, 137-142, 143, 145, 147, 148,
151-154, 156, 157, 259, 260, 338

Independence in probability, 407, 439

Instantaneous frequency, 187, 189-191, 207

Instantaneous phase, 189

Instantaneous power, 42, 84, 504

Interpolation by zero padding, 284

Inverse Fourier transform (analog), 77, 78

Inverse Fourier transform (digital), 262

J
Joint probability density, 407, 422
Jordan Lemma, 65, 139, 140

K
Kalman filter, 543, 555
Karhunen-Loéve, 467, 476, 478, 480, 481

L
Laplace transform, 13, 148—-151, 153, 155, 157,
158, 253
Least square methods, 376, 449, 544-546, 549,
555, 557, 559, 561
LeGall-Tabatabai, 344, 345, 372
Likelihood function, 458, 459, 464
Linear
algebra, 445, 451
independence, 451
prediction coding (LPC), 375, 376, 394,
397
system, 1
time invariant system (LTI), 3, 6
transformation of random vectors, 469
Linearity of physical systems, 3, 8

M
Mallat, Meyer, 361
Marginal stability, 154
Matched filtering, 483
Matlab, 591
Matrices. See Linear algebra
Maximum likelihood. See Likelihood function
Minimum phase system, 155, 321, 326
Modulation
amplitude, 193, 201
frequency, 203
Moments of a statistical distribution, 117
Morlet wavelet, 134
Mother wavelet, 349
Moving Average filters (MA), 229, 235-249
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Moving window, 211

Multiresolution, 353, 372

Multivariate Gaussian Probability Densities,
471

N

Nonlinearity of a system, 53

Non-parametric methods, 517

Normal law. See Gaussian law

Nyquist frequency, 244, 246, 247, 249, 273,
311, 312

0
Optimal
coefficients, 35, 45, 46, 56
estimation, 544, 545, 549, 551, 553, 555

P
Padé, 375, 378, 381, 383, 385
Paley—Wiener, 529
Parametric
estimation, 375, 378, 381, 383, 384, 445,
455
modeling, 375, 385, 532, 534, 535,
537-539, 541, 543
Parseval, 42, 43, 56, 77, 84, 85, 92, 100, 102,
109, 376
Periodogram, 518-522
Phase and group delays, 160, 168
Pisarenko, 511, 517, 526
Poisson, 77, 89, 92, 99
Power spectral density (PSD), 483, 488, 490,
491, 496, 499, 503, 511, 529, 536-539
Primitive of the Dirac distribution, 72
Probability density of
a Complex r.v., 435
a function of a random variable, 407
the sum of two r.v., 431
two r.v, 434
Prony, 385, 387-390, 393, 395, 396

Q

Quadratic form and Hermitian form, 424, 473,
583

Quality factor Q, 11, 30

R

Raw estimate of the power spectral density,
518, 524, 539

Regularization, 445, 452454

Regular random signal, 521, 532, 535, 536,
538, 539

Residue theorem, 138, 145, 148, 253, 257
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S
Sampling theorem, 224, 267
Scaling function, 346348, 353, 356, 359, 362,
365, 367, 373
Second order system, 9, 11, 21, 23, 31, 137,
153
Self-adjoint operator, 49
Shanks, 375, 385, 389
Shannon, 359
Sharp resonance, 29, 31, 33, 34
Signal
energy, 42, 84, 86, 102, 108, 109, 326
power, 42, 84, 477, 485, 491, 499, 504, 548
spread, 93, 102, 104, 106, 109
Signal-to-noise ratio, 483, 501, 503, 543, 548
Singular Value Decomposition (SVD), 454,
586
Spectral
energy density, 86, 100
estimation, 511, 517, 518, 522, 523, 539
Spectrogram, 104
Stationary systems, 2, 236
Stochastic orthogonality, 479
System stability, 138, 149, 153

T
Table of
Fourier transforms, 111, 133, 135
normal centered reduced, 442
Laplace transforms, 158
Tikhonov. See Regularization
Time-frequency analysis, 207-224

Index

Transfer Function, 6, 12, 21
Transition from analog to digital filters,
310-313

U
Uncertainty principle. See Heisenberg-Gabor

A%

Variance of
correlation function estimator, 515
mean estimator, 515

W

Wavelets, 338, 344, 352, 353, 355, 373

Welch, 517

‘White centered noise, 486, 490, 491, 499

Whitening filter, 554

Wide sense stationary signal (WSS), 491, 496,
499, 503

Wiener, 529, 531, 535, 543, 545, 546, 548,
550, 553

Wiener-Hopf, 543, 546, 547, 550, 553

Wigner-Ville distribution, 207, 212-217

Y
Yule-Walker, 529, 532, 534, 535, 537

Z

Z-transform, 253

Z-transform of the Product of Two Functions,
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