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Series Preface for Modern Acoustics and Signal Processing

In the popular mind, the term “acoustics” refers to the properties of a room or other
environment—the acoustics of a room are good or the acoustics are bad. But as
understood in the professional acoustical societies of the world, such as the highly
influential Acoustical Society of America, the concept of acoustics is much broader.
Of course, it is concerned with the acoustical properties of concert halls, classrooms,
offices, and factories—a topic generally known as architectural acoustics, but it also
is concerned with vibrations and waves too high or too low to be audible.
Acousticians employ ultrasound in probing the properties of materials, or in medicine
for imaging, diagnosis, therapy, and surgery. Acoustics includes infrasound—the
wind driven motions of skyscrapers, the vibrations of the earth, and the macroscopic
dynamics of the sun.

Acoustics studies the interaction of waves with structures, from the detection of
submarines in the sea to the buffeting of spacecraft. The scope of acoustics ranges
from the electronic recording of rock and roll and the control of noise in our
environments to the inhomogeneous distribution of matter in the cosmos.

Acoustics extends to the production and reception of speech and to the songs of
humans and animals. It is in music, from the generation of sounds by musical
instruments to the emotional response of listeners. Along this path, acoustics
encounters the complex processing in the auditory nervous system, its anatomy,
genetics, and physiology—perception and behavior of living things.

Acoustics is a practical science, andmodern acoustics is so tightly coupled to digital
signal processing that the two fields have become inseparable. Signal processing is not
only an indispensable tool for synthesis and analysis, it informs many of our most
fundamental models for how acoustical communication systems work.

Given the importance of acoustics to modern science, industry, and human
welfare Springer presents this series of scientific literature, entitled Modern
Acoustics and Signal Processing. This series of monographs and reference books is
intended to cover all areas of today’s acoustics as an interdisciplinary field. We
expect that scientists, engineers, and graduate students will find the books in this
series useful in their research, teaching and studies.

William M. Hartmann
Series Editor-in-Chief

More information about this series at http://www.springer.com/series/3754
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Preface

The aim of this book is to explain and present naturally in a didactic manner the
principles and methods of signal analysis. It is intended both for students who have
no prior knowledge of the topic as well as for those who, having received intro-
ductory training, have only retained a disheartening ensemble of mathematical
formulas with little or no appreciation for their underlying scientific basis. The goal
of the author is to lay the foundations and to develop logically and progressively the
mathematical tools in order to associate knowledge, intuition, and understanding.
By focusing at every stage of the presentation on the essential aspects, it is then
easy to make progress in the establishment of the theory and to build upon those
fundamentals to simply expose and derive the most current techniques of signal
processing.

A prerequisite is a first-year multivariable calculus course at the university level
with the basic concepts used to solve differential equations, perform integration, and
solve problems in linear algebra.

Students will come away from the book equipped with the handling of Dirac
distribution, integration in the complex plane, applications of linear algebra, and the
opportunity to link the abstraction of mathematical formulas with practical appli-
cations, to conceive and perform the fundamental operations in deterministic and
random signal processing.

The notions and techniques exposed in this book are essential in different
engineering fields: telecommunications, teledetection, acoustics, imaging, nonde-
structive evaluation, and defence.

Such techniques are used in:

Spectral analysis
Design of analog and digital filters
Amplitude and phase modulations in telecommunications
Voice recognition and speech synthesis
Sonar and radar ranging
Signal detection in the presence of noise
Echo cancelation on transmission lines
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Noise cancelation, reduction
Data compression by parametric modeling
Data compression by multi-resolution
Seismic exploration
Noise source identification
Noise reduction
Control of antimissile systems (Only first concepts are given here)
Detection of first signs of mechanical failure
Sound analysis, musical instruments, music synthesis
Audio noise reduction

Selected problems, many of them with worked solutions, at the end of each chapter
support the content with examples.

To enable the transition to applications, an overview of the MATLAB pro-
gramming language is given in Appendix 3 along with an example program. As
they work through the book, students are strongly recommended to write programs
to derive the results presented in the text. They will discover with wonder how the
treatments whose notions they had spent several hours, maybe even days, to master,
can be performed in a few tens of a second using preprogrammed functions
embedded in the language. Browsing through the information given by the help
command within MATLAB is a fascinating journey in the signal processing
territory.

The first part of the book primarily discusses continuous-time systems and
signals because they provide intuitive access to basic concepts. The nature of a
signal is inseparable from that of the systems that create or receive it. We first show
in Chap. 1 that, for the linear and time-invariant (LTI) systems that are often
encountered in physics, the exponential signals est have a remarkable property: The
action of LTI systems on these signals leaves their shape unchanged. Only the
amplitude and the temporal location of these signals are affected. The action of an
LTI system comes down to the multiplication of the input signals est by a function,
called the transfer function, which depends only on the complex parameter s. This
situation is encountered for filtering harmonic signals ejxt (monochromatic), which
are a special form of exponential signals. The rule is simple: The frequency of the
output signal of the LTI system is the same as the frequency of the input signal.

Using the case of R, L, C electrical circuits, a thorough analysis of the first- and
second-order systems is given in Chap. 2. It is shown that their properties are
completely conditioned by the position of the poles and zeros of their transfer
functions in the complex plane. These two filters are the building blocks of the vast
majority of filters.

In Chap. 3 on Fourier series, we find the first superposition of elementary
signals, i.e., the sum of an exponential at a base frequency and the exponentials
whose frequencies are multiples of the base frequency. This type of periodic sum
signals is encountered particularly in music. We derive and discuss the rule of
decomposition and reconstruction of these signals on the basis of harmonic func-
tions. The theoretical aspects are deepened by the introduction of the concept of
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Hilbert space. We define Hermitian operators in this space. We show that the
eigenvalues of these operators are real and that the eigenvectors related to two
non-equal eigenvalues are orthogonal. We show that the eigenvectors of the

operator i ddt have the form ejnx1t and may constitute a basis of the Hilbert space L2

of periodic functions of period T1. We also encounter the first example of optimal
decomposition of a signal by a finite sum of functions. In that case, we show with
an example the appearance of the Gibbs phenomenon on the reconstructed signal.
In the last part of the chapter, we show the decisive advantage provided by Fourier
analysis to characterize the physical properties of a signal.

The Dirac distribution plays an essential role in signal analysis. We define it in
Chap. 4 as the infinite sum of monochromatic functions. This definition is best
suited to signal theory because it leads naturally to the relationship between the
impulse response of a system and its frequency response by Fourier transformation.
This transformation is the cornerstone of signal analysis. It decomposes any signal
into its monochromatic components as Newton’s prism splits light. We simply
deduce the response of a system to a signal of any shape.

The theoretical and practical aspects of Fourier transform of analog signals are
developed in Chaps. 5–7. Chapter 5 introduces Fourier transform and its close
relationship with the LTI systems. It is natural to decompose any signal in a series
of harmonic components, to compute the action of the system on each component,
and then reconstruct the results of those actions to recover the signal at the output
of the system.

The discussion here emphasizes the essential nature of the Fourier integral, a key
insight for students and practitioners: The projection of a function on sine functions.
Simply put, it measures the proximity of this function with a sine wave according to
the frequency of that sinusoid. This understanding then allows us to anticipate the
effect of further treatments with a qualitative assessment of the situation.

Chapters 6 and 7 provide a range of detailed formulas and worked examples. It is
strongly recommended that the reader work through these examples as an exercise.
The ease of calculation that he will thereby acquire will be useful in a range of
areas, from causal or analytical signals to modulations and time–frequency analysis,
for example.

Chapter 8 is dedicated to the calculation of the impulse response of first- and
second-order systems. The integration techniques in the complex plane used in
these calculations are detailed in Appendix 1. We show that the causality of the
system depends upon the position of the poles of its transfer function in the
complex plane.

We explore in Chap. 9 the relationship between the two-sided Laplace transform
and the Fourier transform. Attention is given to the domain of definition of the
transfer function of a system and the consequence on stability and causality of that
system. This property is an educational, striking example of the correspondence of a
mathematical expression with a physical property.

Three main types of analog filters, Butterworth, Chebyshev and Bessel, are
studied in Chap. 10. Their chief characteristics are given using the results of Chap. 2.
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We explain qualitatively the differences in the properties of these three different
classes offilters by the relative positions of the poles of their transfer functions in the
Laplace plane. The study of these properties based on simple geometric arguments
allows a general comprehension of the behavior filters. It is found in a slightly
different form in the study of digital filters carried out in Chaps. 14 and 15 in the
second part of the book.

In Chap. 11 we study the properties of causal and analytic signals. We
demonstrate the formula giving the Fourier transform of the Heaviside function and
prove the link by the Hilbert transform between the real part and the imaginary part
of a signal in a domain when it is zero for negative values of the variable in the
conjugate domain. Causal signals are the natural output of physical systems. In
consequence, signal processing deals mainly with causal signals. Analytic signals
have zero values at negative frequencies. They are a mathematical trick to allow an
easy treatment of signal modulations.

While Fourier analysis is unrivaled to analyze the properties of linear systems
and stationary signals, it is insufficient to account in an intelligible manner for the
variation of signal properties over time. This is the case when dealing with the
localization of echoes in radar or in seismic analysis. We are led to use a short-time
Fourier transform and, more generally, to use the methods for time–frequency
analysis developed in Chap. 12. A representation of the signals on alternative basis
functions localized in time, as in continuous wavelet decomposition and in analysis
with filter banks, is developed in this chapter.

Nowadays, signal recording and treatments are mainly digital. For this reason,
the second part of the book is devoted to the presentation of digital processing
methods. Claude Shannon has proven that we could sample a signal at each tick of a
clock without loss of information. One can perfectly reconstruct the signal value at
any time from the recorded samples if certain conditions are met. Of course, a
condition on the frequency of the clock must be respected: The faster the signal
variations are, the more frequent the samples will need to be in order to properly
describe these variations, i.e., the greater the clock frequency must be. These
notions are presented simply in Chap. 13 by qualitative arguments.

It is thus possible to sample a signal, process it digitally, and reconstruct the
resulting processed analog signal, if desired. The prevalence of digital processing
today is due to advances in electronics and computer technology, and to the
algorithm of fast Fourier transform of Cooley and Tukey which has revolutionized
signal processing. Because of this algorithm, it became possible to perform Fourier
analysis in real time. It quickly became apparent to users that digital treatments
were much more flexible and that they also allow treatment inapplicable in analog.
In this second part, in parallel to the presentation of the analog processing, we
define the numerical Fourier transform and the z-transform which is analogous to
the Laplace transform for time-continuous signals. The eigenfunction zn of digital
LTI systems plays a role similar to the function est for analog systems developed in
Chaps. 14 and 15. We define the digital moving average filters (MA).
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Chapter 16 presents the Fourier transform of digital signals. The Shannon
aliasing theorem and Shannon–Whittaker sampling theorem are demonstrated.
Specific numerical transforms are discussed: the discrete Fourier transform and its
use as the algorithm of fast Fourier transform (FFT). Fourier transform of
time-limited signals is detailed, and the advantage of apodization windows is
highlighted.

We find in Chap. 17 the properties of Autoregressive filters and ARMA filters.
The pros and cons of these filters are compared to those of the MA filters
encountered in Chap. 14.

Chapter 18 deals with minimum-phase filters and inverse filtering. The decisive
advantage of numerical methods is also reflected in the calculation of inverse filters
and in the treatment of nonstationary signals. The deconvolution techniques of a
signal used in particular for the seismic signals are discussed.

We use the Haar transform as a first step for the description of nonstationary
signals processing in Chap. 19. It allows a simple access to the concepts of filter
banks and mirror filters. The Le Gall Tabatabai 5-3 filter used in the JPEG-2000
image compression standard is used to illustrate multiresolution methods. It
becomes possible to decompose a signal using a simple filtering operation and
return exactly to the signal using a second filter. The discrete wavelet transform is
discussed using the example of the Daubechies wavelets. Their use is widespread
today in signal processing and data compression of sound signals and images. The
analogy between the filter bank processing and multiresolution analysis is
emphasized.

Chapter 20 treats the parametric modeling of a signal as given by the impulse
response of a digital system. The limits of Padé modeling are explained and the
advantages of Prony’s method are given. Prony’s sytem of equations allows, for
example, the modeling of a voice signal. It is called Linear Prediction Coding
(LPC) in speech analysis. The chapter ends with the important concept of adaptive
filters proposed by Widrow, which is a tracking algorithm in the least square sense
that is able to subtract a spurious signal from the signal of interest. It provides an
efficient noise canceler technique.

The third part of the book is devoted to the presentation of the properties of
random signals and their treatments. After a refresher in the essential concepts of
statistics on a single random variable and the normal law, Chap. 21 proceeds to an
in-depth discussion of the statistics of two random variables.

The treatment of multiple r.v. is found in Chap. 22. The chi-square law used
widely in statistics is presented and its use for the test of hypothesis of a probability
law is illustrated by the example of testing the central limit theorem. The linear
regression of a collection of data is studied by a simple method and by the use of
results of linear algebra. We expose the Tikhonov regularization method which
greatly improves the results when dealing with noisy data and ill-conditioned
matrices. The maximum likelihood method of parameter estimation is discussed in
several examples.
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In Chap. 23 the correlation of two r.v., the correlation and covariance matrices,
are defined. We show the optimality of Karhunen–Loève, principal components
development, of a collection of random variables on a deterministic functions basis.

Chapter 24 is dedicated to the analysis of wide sense stationary signals (wss).
We study the properties of their correlation functions, coherence, and power
spectral densities. Filtering of random, digital, and analog signals is described. We
study the role of filtering to improve the signal-to-noise ratio.

Spectral analysis of a random signal is often confronted with the fact that only
one record of the signal is available which cannot claim to represent the statistical
properties of the signal. However, when a signal is ergodic, it is possible to estimate
the spectral properties from a single record using regularization methods. Different
estimators of the autocorrelation function, the power spectral density, and methods
to reduce the variance of these estimators are studied in Chap. 25.

Chapter 26 is dedicated to the parametric estimation of random signals. The
Yule–Walker equations which enable the modeling of a regular process by an
ARMA filter are established. Modeling a finite number of data is studied. The
methods of extraction of significant components of Capon and Pisarenko are
described.

Chapter 27, the final chapter in the book, develops the application of stochastic
orthogonality on estimation and optimal filtering of random signals. The concepts
have been established by Wiener. We present several Wiener filters for estimation
and prediction using FIR, causal, and noncausal filters. In 1960 R. Kalman pro-
posed a recursive algorithm for noise reduction and state system estimation. Its
reach is beyond that of Wiener’s filter as it is able to deal with nonstationary
signals. It has the advantage of being highly computationally efficient which brings
the possibility to make real-time estimations. We discuss its principle and provide a
simple example of application.

Three appendices are included at the end of the book. The first two contain
essential mathematical concepts. Appendix 1 is dedicated to integration in the
complex plane and the residue theorem, which are used in the Fourier, Laplace, and
z-transforms calculations.

Appendix 2 contains a review of matrices and linear algebra. The concepts
discussed in this appendix are essential to the understanding of current digital
processing methods.

Appendix 3 is devoted to the description of the MATLAB software and its use in
signal analysis programming.

This book is translated, expanded, and updated from a book published in 2012 in
French. I took the opportunity, while doing the translation in English, to bring
improvements to the initial text and develop some aspects which seemed missing.

xii Preface

http://dx.doi.org/10.1007/978-3-319-42382-1_23
http://dx.doi.org/10.1007/978-3-319-42382-1_24
http://dx.doi.org/10.1007/978-3-319-42382-1_25
http://dx.doi.org/10.1007/978-3-319-42382-1_26
http://dx.doi.org/10.1007/978-3-319-42382-1_27


Acknowledgments

The writing of this book was made possible by my presence as an Emeritus
Professor in the team Modeling, Propagation and Acoustic Imaging (MPIA) at the
Institut Jean le Rond d’Alembert of the Pierre and Marie Curie (Paris VI)
University. I want to thank my colleagues for their advice.

Thanks to Alice de Botton for her help in the translation of a large part of the
manuscript.

I want to thank particularly Prof. William M. Hartmann for his precious sug-
gestions and his numerous corrections to the manuscript. The rigor and clarity
of the text owe him a lot.

I want to thank my editor, Sara Kate Heukerott, for her confidence and her warm
support.

I thank Anne-Marie for her constant, patient support, for her help in the trans-
lation and for her care in reviewing the manuscript.

Paris, France Frédéric Cohen Tenoudji

Preface xiii



Contents

1 Notions on Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Stationary Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Continuous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Linear Time Invariant Systems (LTI) . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Eigenfunctions of LTI Systems . . . . . . . . . . . . . . . . . 3
1.4.2 Transfer Function and Frequency Response. . . . . . . . 6

1.5 Linear Differential Equations with Constant Coefficients . . . . . 7
1.6 Linearity of Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 First and Second Order Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 First Order System. R, C Circuit. . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Graphic Representation of the Frequency

Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Geometric Interpretation of the Variation

of the Frequency Response . . . . . . . . . . . . . . . . . . . . 17
2.1.5 R, C Circuit with Output on the Resistor

Terminals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Second Order System. R, L, C Series Circuit . . . . . . . . . . . . . . 21

2.2.1 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Second Order System Frequency Response . . . . . . . . 23
2.2.3 Geometric Interpretation of the Variation

of the Frequency Response . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Bode Representation of the Gain . . . . . . . . . . . . . . . . 28

2.3 Case of Sharp Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Quality Factor Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xv

http://dx.doi.org/10.1007/978-3-319-42382-1_1
http://dx.doi.org/10.1007/978-3-319-42382-1_1
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_1#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_2
http://dx.doi.org/10.1007/978-3-319-42382-1_2
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec13
http://dx.doi.org/10.1007/978-3-319-42382-1_2#Sec13


3 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Decomposition of a Periodic Function in Fourier Series . . . . . . 37
3.2 Parseval’s Theorem for Fourier Series . . . . . . . . . . . . . . . . . . . 42
3.3 Sum of a Finite Number of Exponentials . . . . . . . . . . . . . . . . . 45
3.4 Hilbert Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Gibbs Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Nonlinearity of a System and Harmonic Generation . . . . . . . . . 53

4 The Dirac Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1 Infinite Sum of Exponentials. Cauchy Principal Value . . . . . . . 60
4.2 Dirichlet Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Dirac Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Properties of the Dirac Distribution . . . . . . . . . . . . . . 69
4.3.3 Definition of the Convolution Product . . . . . . . . . . . . 70
4.3.4 Primitive of the Dirac Distribution. Heaviside

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.5 Derivatives of the Dirac Distribution . . . . . . . . . . . . . 73

5 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1 Impulse Response of an LTI System . . . . . . . . . . . . . . . . . . . . 77
5.2 Fourier Transform of a Signal. . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Direct Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 79
5.2.2 Inverse Fourier Transform . . . . . . . . . . . . . . . . . . . . . 79

5.3 Properties of Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Symmetry Properties of the Fourier Transform

of a Real Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Time-Delay Property of the Fourier Transform . . . . . 83

5.4 Power and Energy of a Signal; Parseval–Plancherel
Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Deriving a Signal and Fourier Transform . . . . . . . . . . . . . . . . . 86
5.6 Fourier Transform of Dirac Distribution

and of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7 Two-Dimensional Fourier Transform . . . . . . . . . . . . . . . . . . . . 89

6 Fourier Transform and LTI Filter Systems . . . . . . . . . . . . . . . . . . . 93
6.1 Response of a LTI System to Any Form of Input Signal . . . . . 93
6.2 Temporal Relastionship Between the Input and Output

Signals of an LTI Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Fourier Transform and Convolution in Physics. . . . . . . . . . . . . 96
6.4 Fourier Transform of the Product of Two Functions. . . . . . . . . 97
6.5 Fourier Transform of a Periodic Function . . . . . . . . . . . . . . . . . 98
6.6 Deterministic Correlation Functions . . . . . . . . . . . . . . . . . . . . . 99
6.7 Signal Spreads. Heisenberg–Gabor Uncertainty

Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xvi Contents

http://dx.doi.org/10.1007/978-3-319-42382-1_3
http://dx.doi.org/10.1007/978-3-319-42382-1_3
http://dx.doi.org/10.1007/978-3-319-42382-1_3#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_3#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_3#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_3#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_3#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_3#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_3#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_3#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_3#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_3#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_3#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_3#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_4
http://dx.doi.org/10.1007/978-3-319-42382-1_4
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_5
http://dx.doi.org/10.1007/978-3-319-42382-1_5
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_5#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_6
http://dx.doi.org/10.1007/978-3-319-42382-1_6
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_6#Sec7


7 Fourier Transforms and Convolution Calculations. . . . . . . . . . . . . . 111
7.1 Fourier Transformation of Common Fonctions . . . . . . . . . . . . . 111

7.1.1 Fourier Transform of a Rectangular Window . . . . . . 111
7.1.2 Fourier Transform of a Triangular Window. . . . . . . . 113
7.1.3 Fourier Transform of Hanning Window. . . . . . . . . . . 114
7.1.4 Fourier Transform of a Gaussian Function . . . . . . . . 115

7.2 Behavior at Infinity of the Fourier Amplitude of a Signal . . . . 120
7.3 Limitation in Time or Frequency of a Signal . . . . . . . . . . . . . . 120

7.3.1 Fourier Transform of a Time-Limited Cosine . . . . . . 120
7.3.2 Practical Interest of Multiplying a Signal

by a Time Window Before Calculating
a Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3.3 Frequency Limitation; Gibbs Phenomenon . . . . . . . . 122
7.4 Convolution Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4.1 Response of a First Order System to Different
Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4.2 Examples of Calculations of Convolution . . . . . . . . . 128

8 Impulse Response of LTI Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.1 Impulse Response of a First-Order Filter . . . . . . . . . . . . . . . . . 138
8.2 Impulse Response of a Second Order Filter . . . . . . . . . . . . . . . 142

9 Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.1 Direct and Inverse Transforms . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.1.1 Study of Convergence with an Example . . . . . . . . . . 151
9.1.2 Another Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.2 Stability of a System and Laplace Transform . . . . . . . . . . . . . . 153
9.2.1 Marginal Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.2.2 Minimum-Phase Filter . . . . . . . . . . . . . . . . . . . . . . . . 155

9.3 Applications of Laplace Transform . . . . . . . . . . . . . . . . . . . . . . 155
9.3.1 Response of a System to Any Input Signal . . . . . . . . 157

10 Analog Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.1 Delay of a Signal Crossing a Low-Pass Filter. . . . . . . . . . . . . . 159
10.2 Butterworth Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.3 Chebyshev Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.4 Bessel Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
10.5 Comparison of the Different Filters Responses . . . . . . . . . . . . . 170

11 Causal Signals—Analytic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
11.1 Fourier Transform of the Pseudo-Function 1

t . . . . . . . . . . . . . . . 177
11.2 Fourier Transform of a Causal Signal; Hilbert Transform. . . . . 181
11.3 Paley-Wiener Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
11.4 Analytic Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Contents xvii

http://dx.doi.org/10.1007/978-3-319-42382-1_7
http://dx.doi.org/10.1007/978-3-319-42382-1_7
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec13
http://dx.doi.org/10.1007/978-3-319-42382-1_7#Sec13
http://dx.doi.org/10.1007/978-3-319-42382-1_8
http://dx.doi.org/10.1007/978-3-319-42382-1_8
http://dx.doi.org/10.1007/978-3-319-42382-1_8#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_8#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_8#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_8#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_9
http://dx.doi.org/10.1007/978-3-319-42382-1_9
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_9#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_10
http://dx.doi.org/10.1007/978-3-319-42382-1_10
http://dx.doi.org/10.1007/978-3-319-42382-1_10#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_10#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_10#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_10#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_10#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_10#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_10#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_10#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_10#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_10#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_11
http://dx.doi.org/10.1007/978-3-319-42382-1_11
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec4


11.4.1 Instantaneous Frequency of a Chirp. . . . . . . . . . . . . . 190
11.4.2 Double-Sideband (DSB) Signal Modulation . . . . . . . 190
11.4.3 Single-Sideband Signal Modulation (SSB). . . . . . . . . 193
11.4.4 Band-pass Filtering of Amplitude Modulated

Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.5 Phase and Group Time Delays . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.6 Decomposition of a Voice Signal by a Filter Bank. . . . . . . . . . 199

12 Time–Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
12.1 Short-Time Fourier Transform (STFT) and Spectrogram . . . . . 208
12.2 Wigner–Ville Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
12.3 Continuous Wavelet Transform. . . . . . . . . . . . . . . . . . . . . . . . . 217

12.3.1 Examples of Wavelets . . . . . . . . . . . . . . . . . . . . . . . . 217
12.3.2 Decomposition and Reconstruction of a Signal

with Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
12.3.3 Shannon Wavelet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

13 Notions on Digital Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
13.1 Analog to Digital Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 228
13.2 Criterion for a Good Sampling in Time Domain. . . . . . . . . . . . 230
13.3 Simple Digital Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

14 Discrete Systems—Moving Average Systems . . . . . . . . . . . . . . . . . . . 235
14.1 Linear, Time-Invariant Systems (LTI) . . . . . . . . . . . . . . . . . . . . 236
14.2 Properties of LTI Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
14.3 Notion of Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
14.4 Frequency Response of a LTI System . . . . . . . . . . . . . . . . . . . 239
14.5 Moving Average (MA) Filters . . . . . . . . . . . . . . . . . . . . . . . . . 240
14.6 Geometric Interpretation of Gain Variation with Frequency . . . 241
14.7 Properties of Moving Average (MA) Filters, also Called

Finite Impulse Response (FIR) . . . . . . . . . . . . . . . . . . . . . . . . . 244
14.8 Other Examples of All-Zero Filters (MA). . . . . . . . . . . . . . . . . 246

15 Z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
15.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
15.2 Inversion of z-Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
15.3 z-Transform of the Product of Two Functions . . . . . . . . . . . . . 258
15.4 Properties of the z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 259
15.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

16 Fourier Transform of Digital Signals . . . . . . . . . . . . . . . . . . . . . . . . . 263
16.1 Poisson’s Summation Formula . . . . . . . . . . . . . . . . . . . . . . . . . 264
16.2 Shannon Aliasing Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
16.3 Sampling Theorem of Shannon–Whittaker . . . . . . . . . . . . . . . . 267
16.4 Application of Poisson’s Summation Formula: Fourier

Transform of a Sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
16.5 Fourier Transform of a Product of Functions of Time . . . . . . . 270

xviii Contents

http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_11#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_12
http://dx.doi.org/10.1007/978-3-319-42382-1_12
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_12#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_13
http://dx.doi.org/10.1007/978-3-319-42382-1_13
http://dx.doi.org/10.1007/978-3-319-42382-1_13#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_13#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_13#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_13#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_13#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_13#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_14
http://dx.doi.org/10.1007/978-3-319-42382-1_14
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_14#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_15
http://dx.doi.org/10.1007/978-3-319-42382-1_15
http://dx.doi.org/10.1007/978-3-319-42382-1_15#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_15#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_15#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_15#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_15#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_15#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_15#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_15#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_15#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_15#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_16
http://dx.doi.org/10.1007/978-3-319-42382-1_16
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec5


16.6 Parseval’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
16.7 Fourier Transform of a Rectangular Window . . . . . . . . . . . . . . 272
16.8 Fourier Transform of a Sine Function Limited in Time . . . . . . 273
16.9 Apodization Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
16.10 Discrete Fourier Transform (DFT) . . . . . . . . . . . . . . . . . . . . . . 279

16.10.1 Important Special Case: The DFT
of a Bounded Support Function. . . . . . . . . . . . . . . . . 281

16.11 Fast Fourier Transform Algorithm (FFT) . . . . . . . . . . . . . . . . . 281
16.12 Matrix Form of DFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
16.13 Signal Interpolation by Zero Padding . . . . . . . . . . . . . . . . . . . . 284
16.14 Artifacts of the Fourier Transform on a Computer . . . . . . . . . . 286

17 Autoregressive Systems (AR)—ARMA Systems . . . . . . . . . . . . . . . . 291
17.1 Autoregressive First-Order System . . . . . . . . . . . . . . . . . . . . . . 292

17.1.1 Case of a Causal System . . . . . . . . . . . . . . . . . . . . . . 292
17.1.2 Analysis of the Anticausal System. . . . . . . . . . . . . . . 295

17.2 Autoregressive System (Recursive) of Second Order . . . . . . . . 297
17.2.1 Calculation of the System Transfer

Function HðzÞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
17.2.2 Geometric Interpretation of Variation

of Frequency Gain Magnitude . . . . . . . . . . . . . . . . . . 299
17.2.3 Impulse Response of Second-Order System. . . . . . . . 302
17.2.4 Functional Diagrams of the Digital System

of Second Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
17.3 ARMA Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
17.4 Transition from an Analog Filter to a Digital Filter . . . . . . . . . 310

17.4.1 Correspondence by the Bilinear Transformation . . . . 310
17.4.2 Correspondence by Impulse Response

Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
17.4.3 Correspondence by Frequency Response

Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

18 Minimum-Phase Systems—Deconvolution . . . . . . . . . . . . . . . . . . . . . 321
18.1 Minimum-Phase Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

18.1.1 Notion of Minimum-Phase System . . . . . . . . . . . . . . 321
18.1.2 Properties of Minimum-Phase Systems . . . . . . . . . . . 326

18.2 Deconvolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
18.2.1 Interest of Deconvolution . . . . . . . . . . . . . . . . . . . . . 327
18.2.2 Deconvolution Techniques. . . . . . . . . . . . . . . . . . . . . 328

19 Wavelets; Multiresolution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 337
19.1 Dyadic Decomposition-Reconstruction of a Digital

Signal; Two Channels Filter Bank . . . . . . . . . . . . . . . . . . . . . . 338
19.2 Multiresolution Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . . 346
19.3 Daubechies Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Contents xix

http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec13
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec13
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec14
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec14
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec15
http://dx.doi.org/10.1007/978-3-319-42382-1_16#Sec15
http://dx.doi.org/10.1007/978-3-319-42382-1_17
http://dx.doi.org/10.1007/978-3-319-42382-1_17
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec13
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec13
http://dx.doi.org/10.1007/978-3-319-42382-1_17#Sec13
http://dx.doi.org/10.1007/978-3-319-42382-1_18
http://dx.doi.org/10.1007/978-3-319-42382-1_18
http://dx.doi.org/10.1007/978-3-319-42382-1_18#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_18#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_18#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_18#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_18#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_18#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_18#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_18#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_18#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_18#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_18#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_18#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_19
http://dx.doi.org/10.1007/978-3-319-42382-1_19
http://dx.doi.org/10.1007/978-3-319-42382-1_19#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_19#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_19#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_19#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_19#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_19#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_19#Sec3


20 Parametric Estimate—Modeling of Deterministic
Signals—Linear Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
20.1 Least Square Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
20.2 Padé Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

20.2.1 Padé Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 381
20.2.2 All-pole Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
20.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

20.3 Prony’s Approximation Method. Shanks Method . . . . . . . . . . . 385
20.3.1 Prony’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
20.3.2 Shanks Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

20.4 All-pole Modeling in the Context of the Prony’s
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

20.5 All-pole Modeling in the Case of a Finite Number
of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
20.5.1 Autocorrelation Method . . . . . . . . . . . . . . . . . . . . . . . 394
20.5.2 Covariance Method . . . . . . . . . . . . . . . . . . . . . . . . . . 395

20.6 Adaptive Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

21 Random Signals: Statistics Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
21.1 First-Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

21.1.1 Case of a Real Random Variable. . . . . . . . . . . . . . . . 408
21.1.2 Gaussian Distribution (Normal Law) . . . . . . . . . . . . . 413
21.1.3 Probability Density Function of a Function

of a Random Variable . . . . . . . . . . . . . . . . . . . . . . . . 419
21.2 Second-Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

21.2.1 Case of Two Real Random Variables . . . . . . . . . . . . 421
21.2.2 Two Joint Gaussian r.r. . . . . . . . . . . . . . . . . . . . . . . . 428
21.2.3 Properties of the Sum of Two r.v . . . . . . . . . . . . . . . 431
21.2.4 Complex Random Variables . . . . . . . . . . . . . . . . . . . 435

22 Multiple Random Variables—Linear Regression Maximum
Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
22.1 v2t (Chi-Square) Variable with t Degrees of Freedom. . . . . . . . 445
22.2 Least Squares Linear Regression. . . . . . . . . . . . . . . . . . . . . . . . 449

22.2.1 Simple Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
22.2.2 Elaborate Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

22.3 Linear Regression with Noise on Data—Tikhonov
Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

22.4 Parametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
22.4.1 Issues of the Estimation. . . . . . . . . . . . . . . . . . . . . . . 455
22.4.2 Maximum Likelihood Parametric Estimation . . . . . . . 458
22.4.3 Cramér-Rao Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 460

xx Contents

http://dx.doi.org/10.1007/978-3-319-42382-1_20
http://dx.doi.org/10.1007/978-3-319-42382-1_20
http://dx.doi.org/10.1007/978-3-319-42382-1_20
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec13
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Sec13
http://dx.doi.org/10.1007/978-3-319-42382-1_20#Bib1
http://dx.doi.org/10.1007/978-3-319-42382-1_21
http://dx.doi.org/10.1007/978-3-319-42382-1_21
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec14
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec14
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec17
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec17
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec20
http://dx.doi.org/10.1007/978-3-319-42382-1_21#Sec20
http://dx.doi.org/10.1007/978-3-319-42382-1_22
http://dx.doi.org/10.1007/978-3-319-42382-1_22
http://dx.doi.org/10.1007/978-3-319-42382-1_22
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_22#Sec9


23 Correlation and Covariance Matrices of a Complex
Random Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
23.1 Definition of Correlation and Covariance Matrices . . . . . . . . . . 467

23.1.1 Properties of Correlation Matrix . . . . . . . . . . . . . . . . 468
23.2 Linear Transformation of Random Vectors . . . . . . . . . . . . . . . . 469
23.3 Multivariate Gaussian Probability Density Functions . . . . . . . . 471
23.4 Estimation of the Correlation Matrix from Observations. . . . . . 474
23.5 Karhunen-Loève Development . . . . . . . . . . . . . . . . . . . . . . . . . 476

23.5.1 Example of Using the Correlation
and Covariance Matrices . . . . . . . . . . . . . . . . . . . . . . 476

23.5.2 Theoretical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 478
23.5.3 Optimality of Karhunen-Loève Development. . . . . . . 480

24 Correlation Functions, Spectral Power Densities
of Random Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
24.1 Correlation Function of a Random Signal. . . . . . . . . . . . . . . . . 483

24.1.1 Correlation Function of a Wide Sense
Stationary (WSS) Signal . . . . . . . . . . . . . . . . . . . . . . 484

24.1.2 Properties of the Correlation Function . . . . . . . . . . . . 485
24.1.3 Centered White Noise . . . . . . . . . . . . . . . . . . . . . . . . 486

24.2 Filtering a Random Signal by a LTI Filter . . . . . . . . . . . . . . . . 486
24.2.1 Expected Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
24.2.2 Correlation Functions of Input and Output

Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
24.3 Power Spectral Density of a WSS Signal . . . . . . . . . . . . . . . . . 488
24.4 Filtering a Centered White Noise with a First Order Filter . . . . 491
24.5 Coherence Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
24.6 Autocorrelation Matrix of a Random Signal . . . . . . . . . . . . . . . 496
24.7 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
24.8 Analog Random Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
24.9 Matched Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

25 Ergodicity; Temporal and Spectral Estimations . . . . . . . . . . . . . . . . 511
25.1 Estimation of the Average of a Random Signal . . . . . . . . . . . . 512

25.1.1 Expectation of the Average Estimator . . . . . . . . . . . . 512
25.1.2 Variance of the Average Estimator . . . . . . . . . . . . . . 512
25.1.3 Ergodicity Conditions . . . . . . . . . . . . . . . . . . . . . . . . 514

25.2 Estimation of the Correlation Function . . . . . . . . . . . . . . . . . . . 515
25.3 Spectral Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

25.3.1 Raw Estimator of the Power Spectral Density
or Periodogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

25.3.2 Statistical Properties of the Periodogram . . . . . . . . . . 519
25.4 Improvement of the Spectral Estimation . . . . . . . . . . . . . . . . . . 522

Contents xxi

http://dx.doi.org/10.1007/978-3-319-42382-1_23
http://dx.doi.org/10.1007/978-3-319-42382-1_23
http://dx.doi.org/10.1007/978-3-319-42382-1_23
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_23#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_24
http://dx.doi.org/10.1007/978-3-319-42382-1_24
http://dx.doi.org/10.1007/978-3-319-42382-1_24
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec13
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec13
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec14
http://dx.doi.org/10.1007/978-3-319-42382-1_24#Sec14
http://dx.doi.org/10.1007/978-3-319-42382-1_25
http://dx.doi.org/10.1007/978-3-319-42382-1_25
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec9


25.5 Search for Harmonic Components . . . . . . . . . . . . . . . . . . . . . . 524
25.5.1 Capon Method (“Maximum Likelihood”) . . . . . . . . . 524
25.5.2 Pisarenko Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

26 Parametric Modeling of Random Signals . . . . . . . . . . . . . . . . . . . . . 529
26.1 Paley–Wiener Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
26.2 Parametric Modeling of Random Signals . . . . . . . . . . . . . . . . . 532

26.2.1 Yule-Walker Equations . . . . . . . . . . . . . . . . . . . . . . . 532
26.2.2 Search of the ARMA Model Coefficients for a

Regular Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
26.2.3 AR Modeling of a Regular Random Signal . . . . . . . . 536
26.2.4 MA Modeling of a Regular Random Signal . . . . . . . 538

27 Optimal Filtering; Wiener and Kalman Filters . . . . . . . . . . . . . . . . . 543
27.1 Optimal Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

27.1.1 Stochastic Orthogonality . . . . . . . . . . . . . . . . . . . . . . 544
27.1.2 Optimal Least Squares Estimate. . . . . . . . . . . . . . . . . 544

27.2 Wiener Optimal Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
27.2.1 FIR Wiener Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
27.2.2 Linear Prediction of a Random Signal . . . . . . . . . . . . 549

27.3 IIR Wiener Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
27.3.1 Non-Causal Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
27.3.2 Causal Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

27.4 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
27.4.1 Recursive Estimate of a Constant State . . . . . . . . . . . 555
27.4.2 General Form of the Kalman Recursive

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Appendix A: Functions of a Complex Variable . . . . . . . . . . . . . . . . . . . . 563

Appendix B: Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Appendix C: Computer Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

xxii Contents

http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_25#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_26
http://dx.doi.org/10.1007/978-3-319-42382-1_26
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_26#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_27
http://dx.doi.org/10.1007/978-3-319-42382-1_27
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec1
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec2
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec3
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec4
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec5
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec6
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec7
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec8
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec9
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec10
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec11
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec12
http://dx.doi.org/10.1007/978-3-319-42382-1_27#Sec12


About the Author

Frédéric Cohen Tenoudji is Emeritus Professor at Pierre and Marie Curie
University in Paris. His research field is nondestructive evaluation by ultrasonics,
defect characterization, and linear and nonlinear sound propagation in heteroge-
neous materials with applications to civil engineering: concrete cure monitoring,
materials structural integrity. He develops ultrasound instrumentation for NDE with
graphic user interface and embedded signal processing.

Cohen Tenoudji teaches signal processing, sensors, ultrasonics, and object-
oriented programming. From 1985 to 1986 he was Member of the Technical Staff at
the Science Center of Rockwell International, NDE Department, in Thousand
Oaks, CA.

xxiii



Chapter 1
Notions on Systems

In this chapter, we present the general properties of linear systems found in the
physical world, particularly linear systems with time independent properties (LTI
systems). After defining the concepts of eigenfunctions and eigenvalues of an
operator, we show that the operator associated with a LTI system commutes with
the time translation operator. We show that, as a consequence, the complex
exponential functions of time are eigenfunctions of LTI systems. Thus, we attain
the remarkable property that if the input signal of these systems is monochromatic,
the signal at the output is also monochromatic and has the same frequency. We
arrive in this way at the fundamental notions of transfer and frequency response
functions of a system.

We define a system as a device producing a signal y tð Þ (generally a physical
quantity that can be transformed into an electrical signal) in response to an input
signal xðtÞ: The system can be described mathematically by an operator O acting on
the function xðtÞ to provide the output function yðtÞ:

yðtÞ ¼ OðxðtÞÞ: ð1:1Þ

1.1 Linear Systems

Let x1ðtÞ and x2ðtÞ be any two signals. System output signals corresponding to the
inputs x1ðtÞ and x2ðtÞ denote, respectively, y1ðtÞ and y2ðtÞ: The system is linear if,
given any two constants a1 and a2, to the input linear a1x1ðtÞþ a2x2ðtÞ, it makes the
corresponding linear combination of the signals y1ðtÞ and y2ðtÞ with the same
coefficients a1 and a2: a1y1ðtÞþ a2y2ðtÞ:
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a1y1ðtÞþ a2y2ðtÞ ¼ O a1x1ðtÞþ a2x2ðtÞð Þ: ð1:2Þ

In particular, it appears that if the system is linear, the doubling of the input
signal results in a doubling of the output signal. The nonlinearity threshold of an
operational amplifier is visible on an oscilloscope by the clipping of large values of
the signal when the amplitude of the input signal is strongly increased.

1.2 Stationary Systems

A system is said to be stationary if its properties are invariant in time. Let y tð Þ be the
output corresponding to any given signal x tð Þ: A stationary system will respond the
delayed output y t � sð Þ to the delayed input x t � sð Þ.

In symbolic form we write: If yðtÞ ¼ OðxðtÞÞ, then

yðt � sÞ ¼ Oðxðt � sÞÞ: ð1:3Þ

By definition, the translational operator in time Ts performs the translation in
time of a function f tð Þ of an amount s:

Ts f ðtÞ ¼ gðtÞ ¼ f ðt � sÞ: ð1:4Þ

The left side of the relationship (1.3) can be read as follows:
yðt � sÞ ¼ TsyðtÞ ¼ TsOðxðtÞÞ.

A system is said to be stationary if its properties are invariant in time. Let y tð Þ be
the output corresponding to any given signal xðtÞ. A stationary system will respond
the delayed exit y t � sð Þ to the delayed input x t � sð Þ.

While the right side of this relationship can be read as follows:
Oðxðt � sÞÞ ¼ O TsxðtÞð Þ.

In other words, we can rewrite (1.3) in the form:

TsOxðtÞ ¼ OTsxðtÞ: ð1:5Þ

It is said that the two operators commute.
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1.3 Continuous Systems

Let xnðtÞ be a sequence of input signals, and xðtÞ the limit of this sequence when
n tends to infinity. We note ynðtÞ and yðtÞ, respectively, the system responses to the
signals xnðtÞ and to its limit xðtÞ. The system is continuous if

yðtÞ ¼ lim
n!1 ynðtÞ: ð1:6Þ

1.4 Linear Time Invariant Systems (LTI)

Simple physical systems generally have the property of being linear, time invariant,
and continuous. Only these systems are studied later in this course.

1.4.1 Eigenfunctions of LTI Systems

A function f ðtÞ is said to be an eigenfunction of an operator O if the result of the
action of the system on the function f ðtÞ is a function proportional to f ðtÞ:

Oð f ðtÞÞ ¼ kf ðtÞ; ð1:7Þ

where k is a complex constant called the eigenvalue corresponding to the eigen-
function f tð Þ.
Role of the Exponential Function est

The purpose of this section is to show that the functions of time with exponential
form est are eigenfunctions of linear, time invariant operators.

The operator Ts defined above performs translation in time of a function f tð Þ by
an amount s:

Ts f ðtÞ ¼ gðtÞ ¼ f ðt � sÞ: ð1:8Þ

When s is positive, the shift is toward greater values, to the right. In this case, the
value of the function g tð Þ at the time t is the value that the function f ðtÞ had at the
previous time t � s.

There is a relationship between the translation operator Ts and the derivative

operator d
dt:
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It is assumed in what follows that the function f ðtÞ and its derivatives are
sufficiently regular. Taylor development of f ðt � sÞ is then:

f ðt � sÞ ¼ f ðtÞ � s
df
dt

þ s2

2
d2f
dt2

� s3

6
d3f
dt3

þ � � � þ ð�1Þnsn
n!

dnf
dtn

þ � � � ð1:9Þ

One can formally write the translation operator as follows:

Ts ¼ e�s ddt ¼ 1� s
d
dt

þ s2

2
d2

dt2
� s3

6
d3

dt3
þ � � � ð1:10Þ

Indeed:

Tsf ðtÞ ¼ e�sddtf ðtÞ ¼ f ðtÞ � s
df
dt

þ s2

2
d2f
dt2

� s3

6
d3f
dt3

þ � � � ¼ f ðt � sÞ: ð1:11Þ

The Taylor formula giving the value of a function in the neighborhood of a point
is recognized.

It is further noted that the operator Ts commutes with the derivative d
dt.

Indeed,

d
dt
e�s ddt f ðtÞ ¼ f 0ðtÞ � s

d2f
dt2

þ s2

2
d3f
dt3

� s3

6
d4f
dt4

þ � � � ; ð1:12Þ

and also:

e�s ddt
d
dt
f ðtÞ ¼ f 0ðtÞ � s

d2f
dt2

þ s2

2
d3f
dt3

� s3

6
d4f
dt4

þ � � � : ð1:13Þ

This proves the commutativity of the two operators:

d
dt
Tsf ¼ Ts

d
dt
f : ð1:14Þ

The operator d
dt plays a fundamental role in the description of the evolution of

physical systems with time (e.g., in differential equations with constant coefficients
encountered in electricity).

It remains to show that Ts and d
dt have the same system of eigenfunctions. Noting

O1 ¼ d
dt and O2 ¼ Ts, we have formally:

O1O2 ¼ O2O1: ð1:15Þ
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Let f1 be an eigenfunction of O1 with the eigenvalue k1. Assuming also that the
operators are linear, we have

O1O2f1 ¼ O2O1f1 ¼ O2k1f1 ¼ k1O2f1: ð1:16Þ

So it appears that O2f1 is also an eigenfunction of O1 with the same eigenvalue
k1 as f1. We necessarily have proportionality between O2f1 and f1 as they represent
eigenvectors with the same eigenvalue. Then we see that, due to the commutativity
of the operators, f1 is also an eigenfunction of O2. This result is of general
application.

In the present case, we look first an eigenfunction f1 of the operator d
dt. That

function must be a solution of the differential equation:

d
dt
f1 ¼ sf1: ð1:17Þ

This equation is a first-order differential equation with one constant coefficient.
Its general solution is

f1ðtÞ ¼ Aest: ð1:18Þ

We see that the eigenfunctions of the operator ddt have the form est, where s is any

complex constant. We note that

d
dt
est ¼ sest: ð1:19Þ

We can check to complete that the exponential are eigenfunctions of the
translation operator in time:

Let f1 tð Þ ¼ est, then, Tsest ¼ esðt�sÞ ¼ Cest. The eigenvalue is: k1 ¼ C ¼ e�ss.
In summary, the eigenfunctions of the translation operator are exponential

functions of time.
We note the following property, valid for any LTI system:

Let O be the system operator. To say that the operator O is translational
invariant in time comes to write the commutation relation of the system
operator with the translation operator OTs ¼ TsO. The eigenfunctions of
O will be to search through the eigenfunctions of Ts, i.e., among the functions
of the form est.

Thus

O estð Þ ¼ kest: ð1:20Þ
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The major role to be played by the functions f ðtÞ ¼ est for physical LTI systems
appears here. As is made clear in the following, in electronics and signal processing,
the eigenvalue k of the system operator is denoted H sð Þ as it is a function of s in the
general case.

1.4.2 Transfer Function and Frequency Response

As shown above, when a signal of the form xðtÞ ¼ est is presented as input of a
linear, time invariant system, the output signal will have the form

yðtÞ ¼ HðsÞest: ð1:21Þ

The operator’s complex eigenvalue HðsÞ is called transfer (system) function of
the system. It is also known as the transmittance of the filter.

In case where x tð Þ ¼ ejxt that is to say that s is pure imaginary, the signal xðtÞ is
a monochromatic signal (also called harmonic signal) with pulsation x written in
complex notation following Euler’s formula

xðtÞ ¼ ejxt ¼ cosxtþ j sinxt: ð1:22Þ

Note that we use j ¼ ffiffiffiffiffiffiffi�1
p

to represent the imaginary part instead than i. This
notation is common in electricity and in signal analysis to avoid confusion with the
current i flowing within a circuit.

At the filter output, we have:

yðtÞ ¼ HðjxÞejxt: ð1:23Þ

It should be noted that the filter output signal y tð Þ is also monochromatic with
the same angular frequency as the input signal to the filter.

HðjxÞ is named the frequency response. The common use in electronics and in
signal analysis is to write HðxÞ instead of HðjxÞ. One should be careful to avoid
the difficulties caused by this change of notation.

In summary, when the input signal is monochromatic, the output signal of a
linear, time invariant filter is monochromatic and has the same frequency as the
input signal. Practically, if a filter is used in a nonlinear regime, as is the case of an
operational amplifier whose output saturates for large values of the input signal, the
output is no longer harmonic. Even when the input signal is monochromatic, one
sees new frequencies in the output, generally multiples of the fundamental
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frequency of the input signal. In the example of an operational amplifier in satu-
ration, when the input signal is sinusoidal, its development in the Fourier series has
only one coefficient. It corresponds to the frequency of the sine. The output signal
has a shape close to a periodic rectangular signal. As will be detailed in Chap. 3, its
development into a Fourier series have an infinite number of coefficients for the
frequencies corresponding to odd multiples of the fundamental frequency.

Note: A linear combination of two eigenfunctions is usually not an eigenfunc-
tion. Indeed, let f1ðtÞ and f2ðtÞ be two eigenfunctions of the operator with different
eigenvalues:

Oðf1ðtÞÞ ¼ k1f1ðtÞ and Oðf2ðtÞÞ ¼ k2f2ðtÞ:

Then

Oða1f1ðtÞþ a2f2ðtÞÞ ¼ a1k1f1ðtÞþ a2k2f2ðtÞ 6¼ kða1f1ðtÞþ a2f2ðtÞÞ if k1 6¼ k2:

ð1:24Þ

Thus, while ejxt and e�jxt are eigenfunctions of a system (e.g., an RC filter as an
electric circuit) cosxt ¼ ejxt þe�jxt

2 is not one in the general case.
We thus clearly see the benefits of using the complex exponential rather than

trigonometric sine and cosine functions in calculations.
It should be emphasized here that the physical signals are real as is cos xt and

not as the type of the complex exponential ejxt or e�jxt. Besides, how can we
imagine a negative frequency �x for a signal? Our answer is that negative fre-
quencies are a mathematical fiction introduced to make calculations easier. We will
generally proceed as this in the calculations: we perform calculations with complex
exponential then, at the end, we return to real signals by extracting the real parts of
the results.

1.5 Linear Differential Equations with Constant
Coefficients

Many physical systems, electrical (described by generalized Ohm’s law) or
mechanical (fundamental relation of dynamics) satisfy the following general
equation:

dmyðtÞ
dtm

þ a1
dm�1yðtÞ
dtm�1 þ a2

dm�2yðtÞ
dtm�2 þ � � � þ amyðtÞ

¼ b0
drxðtÞ
dtr

þ b1
dr�1xðtÞ
dtr�1 þ � � � þ brxðtÞ ð1:25Þ
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The coefficients of this equation a1; a2;. . .; am and b0;b1; b2;. . .; br are constant.
They contain the characteristics of the system which does not evolve with time. It
only appears in this equation invariable linear combinations in the time of the input
and output functions x tð Þ and y tð Þ and their derivatives. As before, the study of such
a LTI system relies on its transfer function H sð Þ, that is to say, it relies on the
response of the system y tð Þ ¼ H sð Þest to the input x tð Þ ¼ est.

The derivative of order r of x tð Þ that appears in the (1.25) in this case is

drxðtÞ
dtr

¼ srest: ð1:26Þ

Similarly, the derivative of order m of y tð Þ is

dmyðtÞ
dtm

¼ smHðsÞest: ð1:27Þ

After replacing in Eq. (1.25) and simplification by est, we obtain the following
expression for the system transfer function H sð Þ:

HðsÞ ¼ b0sr þ b1sr�1 þ � � � þ br
sm þ a1sm�1 þ a2sm�2 þ � � � þ am

: ð1:28Þ

As will be detailed in Chap. 2, the system properties are fully contained in the
properties of the function H sð Þ conditioned by the positions of the roots of its
numerator (zeros of the transfer function) and the denominator (poles of the transfer
function).

1.6 Linearity of Physical Systems

In the last paragraph, we discuss the case of linear and nonlinear systems. Generally
a signal amplifier is expected to be linear, that is to say, satisfies the property given
by the formula (1.2). A special case of this approach is that if the input signal is
multiplied by a factor 2 (or 10, or any number) linearity causes the output signal to
be also multiplied by 2 (or 10, or the same any number).

For example, is a circuit consisting of an operational amplifier of gain 50 linear?
If the amplitude of the input signal is multiplied by 10, will the output signal also be
multiplied by 10? Yes, as long as the amplitude of the output signal does not reach
the power supply voltage of the op amp (�12 V for example). Beyond that
threshold the output signal is saturated to �12V.

This operational amplifier circuit will therefore be considered as linear, as long
as the output signal does not exceed �12V, for example in the case of a 50 gain, as
long as the input signal does not reach � 12

50 ¼ 240mV.
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Generally, the nonlinearities of a system occur when the amplitude of the system
input signal is important. Two physical examples of nonlinearities are the audio
amplifier used with a strong input signal (a saturated guitar amplifier, prized by
some rock groups is an extreme example) or a high intensity laser light passing
through a transparent medium.

As will be discussed in Chap. 3 on the Fourier series, the nonlinearities are
accompanied by generation of double, triple the fundamental frequency compo-
nents, or more (these components are called harmonics of the fundamental fre-
quency). The possibility of generating high frequencies by the harmonic is used in
many applications’ design in physics.

It will be specified on an example in Chap. 3, how the analysis of harmonics in
the output signal of a system can be used to study the physical mechanism
responsible for the nonlinearity of the system.

Summary
We have proved in this chapter that linear, time invariant systems operators, have
eigenfunctions of the form of exponential functions. This has been shown to be the
result of the commutativity of these operators with the time translation operator. We
have explained the concepts of transfer and frequency response functions and
demonstrated the fundamental property that the frequency of a monochromatic
signal remains unchanged at the throughput of these systems. The next chapter will
verify these concepts in the canonical examples of first and second-order systems,
which are the cornerstone of electronic filter systems.

Exercises

I. Consider the system defined by the differential equation yðtÞ ¼ b0
dxðtÞ
dt þ b1xðtÞ.

Show that this system operator noted O is linear, time invariant.

Solution:
Linearity: We note y1ðtÞ ¼ O x1ðtÞð Þ and y2ðtÞ ¼ O x2ðtÞð Þ. Let xðtÞ ¼ c1x1ðtÞþ

c2x2ðtÞ be a linear combination with any coefficients of the input functions.
Calculation of the output function yðtÞ ¼ O xðtÞð Þ.

yðtÞ ¼ b0
d c1x1ðtÞþ c2x2ðtÞð Þ

dt
þ b1 c1x1ðtÞþ c2x2ðtÞð Þ;

yðtÞ ¼ b0
dc1x1ðtÞ

dt
þ b0

dc2x2ðtÞ
dt

þ b1c1x1ðtÞþ b1c2x2ðtÞ ¼ c1y1ðtÞþ c2y2ðtÞ:

The latter relation corresponds to the definition of the system O linearity.
Translation invariance in time: Given yðtÞ ¼ O xðtÞð Þ. What is O xðt � sÞð Þ?
O xðt � sÞð Þ ¼ b0

dxðt�sÞ
dt þ b1xðt � sÞ ¼ b0

dxðt0Þ
dt þ b1xðt0Þ (with t0 ¼ t � s).
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We recognize in the right-hand side b0
dxðt0Þ
dt þ b1xðt0Þ ¼ yðt0Þ, which may be

written yðt � sÞ ¼ b0
dxðt�sÞ

dt þ b1xðt � sÞ which corresponds to the definition of the
stationarity of the system O.

II. Let the system defined by the equation: yðtÞ ¼ bx2ðtÞ. Is this system linear?
Time invariant?

Solution:
Linearity: We note y1ðtÞ ¼ O x1ðtÞð Þ and y2ðtÞ ¼ O x2ðtÞð Þ. Let xðtÞ ¼
c1x1ðtÞþ c2x2ðtÞ be a linear combination with any coefficients of the input
variables.
Calculation of the output signal:

yðtÞ ¼ b c1x1ðtÞþ c2x2ðtÞð Þ2¼ b c21x
2
1ðtÞþ c22x

2
2ðtÞþ 2c1x1ðtÞc2x2ðtÞ

� �

yðtÞ ¼ c21y1ðtÞþ c22y2ðtÞþ 2bc1c2x1ðtÞx2ðtÞ 6¼ c1y1ðtÞþ c2y2ðtÞ:

In the general case, the system is not linear.
Translation invariance over time: The system is not translation invariant in time.
This result stems from the fact that the multiplier of the input signal is a function
of time.
Translational invariance in time: We have yðtÞ ¼ O xðtÞð Þ. O xðt � sÞð Þ ¼
bx2ðt � sÞ.
We recognize yðt � sÞ in the right hand side. The system is time invariant.

III. Is the system defined by the equation: yðtÞ ¼ cos t xðtÞ linear? Is it time
invariant?

Solution:
Linearity: We study the system operation on a linear combination: let
xðtÞ ¼ c1x1ðtÞþ c2x2ðtÞ.
yðtÞ ¼ cos t c1x1ðtÞþ c2x2ðtÞð Þ ¼ c1 cos tx1ðtÞþ c2 cos tx2ðtÞ ¼ c1y1ðtÞþ c2y2ðtÞ:.
The system is linear.
Translation invariance in time: O xðt � sÞð Þ ¼ cos t xðt � sÞ.
It is different from yðt � sÞ ¼ cosðt � sÞxðt � sÞ. The system is not translation
invariant in time.
This result ensues from the fact that the multiplier of the input signal is a
function of time.
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Chapter 2
First and Second Order Systems

In this chapter, the properties of the transfer function and frequency response of first
and second order systems are studied on some examples from electrical circuit laws.
We show that their properties are governed by the poles (i.e., the zeros of the
denominator) of the transfer function which is a rational fraction. A geometric
argument based on the location of the poles of the transfer function in the complex
plane allows a qualitative interpretation of the behavior of the frequency response
with varying frequency. This geometric interpretation is easily generalized to sit-
uations with any number of zeros and poles. It proves useful for the understanding
of the general behavior of filters. The study begins here with the simplest system,
the first order system. Then the second order circuit system is presented thoroughly.
The logarithmic Bode representation of the frequency gain is introduced and its
advantages demonstrated. The quality factor Q of a resonant circuit is defined.

2.1 First Order System. R, C Circuit

Consider the electrical circuit consisting of a resistor and a capacitor in series
(Fig. 2.1). The circuit is powered by an internal resistance-free generator of elec-
tromotive force e(t). The charge on one plate of the capacitor is written q, and the

voltage across the capacitor noted vðtÞ ¼ qðtÞ
C .

The generalized Ohm law writes:

R
dq
dt

þ q
C
¼ eðtÞ: ð2:1Þ

With a system point of view, we write e(t) as the input variable and v(t) as the
output variable.
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2.1.1 Transfer Function

The Eq. (2.1) can be written in the form of an operator acting on q:

R
d
dt

þ 1
C

� �
q ¼ eðtÞ: ð2:2Þ

This system is linear and time invariant. According to the fundamental result
shown in Chap. 1, when e(t) has the form est, the charge q(t) on a plate of the
capacitor and the voltage v(t) across it will have the same exponential form. This
can be checked:

Posing eðtÞ ¼ est and looking for q(t) in the form: qðtÞ ¼ Best.
Replacing its expression in Eq. (2.2) we have:

RB
d
dt
est þ B

C
est ¼ est: ð2:3Þ

By simplifying by est, we see that the proposed solution is valid if the following
relationship is satisfied:

Rsþ 1
C

� �
B ¼ 1: ð2:4Þ

or

B ¼ 1
Rsþ 1

C

� � ¼ C
RCsþ 1

: ð2:5Þ

The voltage across the capacitor (system output variable) is given by:

vðtÞ ¼ q
C
¼ 1

RCsþ 1
est ¼ HðsÞest: ð2:6Þ

We notice that est is eigenfunction of the system and that H(s) is its transfer
function. The circuit transfer function H(s) is thus written

Fig. 2.1 First order system;
R, C circuit
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HðsÞ ¼ 1
RCsþ 1

: ð2:7Þ

H(s) is a rational fraction with a simple pole (a simple zero of the denominator)
in (See Fig. 2.2)

s0 ¼ � 1
RC

: ð2:8Þ

We can equivalently write H(s) as

HðsÞ ¼ �s0
s� s0

: ð2:9Þ

The presence of a single simple pole is the reason for the first-order system name
applying to this circuit.

2.1.2 Frequency Response

The frequency response is a particular case of the transfer function. In the function
H(s), the variable s is a complex number that will be written in the form:
s ¼ rþ jx. s belongs to the complex plane. With reference to the Laplace trans-
formation detailed in Chap. 9, the s plane is also called Laplace plane. This plane is
identified by the real axis r and the imaginary axis jx.

vðtÞ ¼ 1
RCðrþ jxÞþ 1

ertejxt: ð2:10Þ

If r = 0, that is, for a monochromatic input signal eðtÞ ¼ ejxt:

vðtÞ ¼ 1
1þ jRCx

ejxt ¼ HðxÞejxt ð2:11Þ

Fig. 2.2 Pole of the transfer
function in the s plane
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The frequency response is:

HðxÞ ¼ 1
1þ jRCx

ð2:12Þ

The angular frequency x is related to the frequency f by the relationship
x = 2pf.

We see, of course, that ejxt is also eigenfunction of the system. The frequency
response H(x) (also called complex gain of the filter) is the transfer function H
(s) evaluated on the imaginary axis r = 0.

By showing the modulus HðxÞj j and the argument u of the frequency response,
we write:

vðtÞ ¼ HðxÞejxt ¼ HðxÞj jejuejxt ð2:13Þ

Therefore, while the modulus of the input signal ejxt is 1, the output signal
modulus is HðxÞj j. It appears that the modulus of the frequency response is the gain
in amplitude of the signal passing through the filter. The phase shift u of the output
signal relative to the input signal is the argument of the complex gain H(x). The
magnitude and phase are functions of x in the general case.

Note: For convenience, the function H(x) is called frequency response, although
this function is expressed as a function of the angular frequency x and not of the
frequency f.

For the variation of the gain as a function of the frequency f, we replace x by 2pf
in the expression of H(x).

As noted above, the function ejxt is the system eigenfunction but the function
cosxt ¼ ejxt þe�jxt

2 ; linear combination of two eigenfunctions, is not. The system
response for a cosine input is searched as follows:

If the electromotive force ejxx has the form e(t) = cos xt, due to the linearity of
the system, we can write the answer in the form:

vðtÞ ¼ 1
2

HðxÞejxt þHð�xÞe�jxt� � ð2:14Þ

vðtÞ ¼ 1
2

1
1þ jRCx

ejxt þ 1
1� jRCx

e�jxt
� �

¼ 1
2

1
1þ jRCx

ejxt
� �

þ c:c: ð2:15Þ

c.c. is written to describe a complex conjugate of the previous term within the
equation. The sum of a complex number and of its complex conjugate is equal to
twice its real part, the following applies:

vðtÞ ¼ <e 1
1þ jRCx

ejxt
� �

ð2:16Þ
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The notation ℜe() means that we must take the real part of the complex
expression. It comes:

vðtÞ ¼ <e 1� jRCx
1þR2C2x2

� �
ðcosxtþ j sinxtÞ

� �

¼ 1
1þR2C2x2 ðcosxtþRCx sinxtÞ: ð2:17Þ

We can rewrite this result in the form:

vðtÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2C2x2

p 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2C2x2

p cosxtþ RCx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2C2x2

p sinxt
� �

; ð2:18Þ

or in another form:

vðtÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2C2x2

p cos xtþuð Þ; ð2:19Þ

with

cosu ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2C2x2

p and sinu ¼ �RCx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2C2x2

p ; ð2:20Þ

and then tanu ¼ �RCx:
Behavior of the solution at low and high frequencies
At low frequencies, that is to say, when RCx � 1, we see on the solution (2.19)

that vðtÞ ffi cosxt. The output signal is in phase with the input signal and has equal
amplitude.

At high frequency,whenRCx � 1, the solution (2.19) becomes: vðtÞ ffi 1
RCx sinxt:

The output signal is in quadrature with the input signal with a phase shift
u ffi � p

2 and its amplitude decreases with frequency as 1
x :

Note: Conciseness of the results when expressed in the form of complex
exponentials will be compared to the heaviness from those expressed in sine and
cosine.

2.1.3 Graphic Representation of the Frequency Response

Since HðxÞ ¼ 1
1þ jRCx, the modulus is:

H xð Þj j ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2C2x2

p ; ð2:21Þ
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and phase

u ¼ �Arg RCxð Þ ð2:22Þ

In Fig. 2.3, are represented the modulus and phase of H(x).
For the value xc of x such that RCxc = 1, the value of the gain modulus is 1ffiffi

2
p :

Using its value in decibels: HdB ¼ 20 log10 H xcð Þj jð Þ ¼ 20 log10
1ffiffi
2

p
	 


¼ �3 dB:

Frequency fc ¼ xc
2p ¼ 1

2pRC is called the −3 dB cutoff frequency.
It is seen in Fig. 2.3b that the phase variation range goes from p

2 to � p
2 :

Bode representation
Scale in decibels
In the Bode representation the magnitudes logarithm are represented. As mentioned
above, the decibel value of a quantity A is AdB ¼ 20 log10 A. This unit of measure
was introduced by G. Bell to describe the acoustic sensitivity of the human ear
(hence the name of this unit). The sensitivity of the ear is logarithmic: if the
intensity of a sound is multiplied by 10, the ear feels a multiplication by 2. If the
intensity is multiplied by 100, the ear feels a multiplication by 4. This physiological
property allows the ear to hear correctly loud sounds, but remain sensitive to very
low sounds. Moreover, as will be discussed in Chap. 3, the note of a musical
instrument is accompanied by the presence of harmonics whose frequencies are
multiples of the fundamental frequency. The amplitudes of these harmonics are
specific to each instrument. They can be several tens of times lower than that of the
fundamental component. As the ear analyzes the sounds from frequency, its log-
arithmic sensitivity somehow enhances the amplitude of low harmonics. This
allows it to be physiologically sensitive to harmonics, so to the musicality of the
instrument. It is important to remember that the representation in logarithm rein-
forces the low values of a variable relatively to strong values. This property is
exploited in the Bode representation with which we may monitor small changes of

Fig. 2.3 Frequency response of R C circuit. a Modulus. b Phase

16 2 First and Second Order Systems

http://dx.doi.org/10.1007/978-3-319-42382-1_3


the variable values, whereas in linear representation, they would have been unde-
tectable. This representation has better dynamics. This explains why the gain of the
filters is most often plotted in dB.

Another quality of the logarithmic representation is that a variation with fre-
quency in power law appears as a straight line whose slope gives the value of the
power law coefficient.

By definition, the decibel value of the frequency response is equal to 20 times
the base 10 logarithm of the frequency response modulus.

HdB ¼ 20 log10 H xð Þj jð Þ: ð2:23Þ

Assuming that at high frequencies, the system has an asymptotic behavior of the
form H xð Þj j ’ xn, then HdB ¼ 20 log10 x

n ¼ n 20 log10 x. In a logarithmic rep-
resentation HdB ¼ f 20 log10 xð Þ, the variation is linear.

Figure 2.4 shows the gain in dB of the first order filter. Note the linear
asymptotic behavior of the high-frequency curve. The asymptote passes through the
point (0, 0), that is to say, for the x-axis value x ¼ 1

RC. The slope of the line is −1,
reflecting the asymptotic gain as 1

x (Fig. 2.4). H xð Þj j decreases by 20 decibels per
decade (a decade corresponds to a multiplication of the frequency by a factor of 10).
This decrease is also −6 dB per octave (the octave is defined in music as the
interval between two notes when the frequency of a note is twice that of the other.
For example, the frequency of the note C is multiplied by 2 when going on a piano
keyboard from a C to a C immediately above).

2.1.4 Geometric Interpretation of the Variation
of the Frequency Response

It has been shown above that the transfer function is: H sð Þ ¼ �s0
s�s0

, with s0 ¼ � 1
RC.

The frequency response is:

Fig. 2.4 Log–log plot of
gain magnitude (first order
system)

2.1 First Order System. R, C Circuit 17



HðxÞ ¼ �s0
jx� s0

: ð2:24Þ

In the complex plane s ¼ rþ jx. The point of the plane corresponding to the
real pole s0 ¼ � 1

RC is noted on Fig. 2.5. The point M is the point jx representative
of the monochromatic signal to the frequency x. The complex number in the

denominator of H(x) can be associated to the vector PM
�!

. The modulus of H(x) is
inversely proportional to the length PM of that vector:

HðxÞj j ¼ �s0j j
PM

¼ 1
RC

1
PM

: ð2:25Þ

Using the Pythagorean theorem we write PM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

R2C2

q
:

We find the variation in function of the frequency of the modulus of H(x)
according to the variation in length of the segment PM when the point M scans the
vertical axis r ¼ 0 from �j1 (frequency �1) to þ j1 (frequency þ1).

For very high negative frequencies the segment PM is very large, and its inverse
is very small. Thus HðxÞj j is very small. When the frequency decreases in absolute
value to the zero frequency, the segment PM decreases, and HðxÞj j increases.

The segment PM is minimal for x = 0 and its inverse HðxÞj j is maximal. The
gain will decrease continuously when x increases from zero, the segment PM
continuously growing. As shown on Fig. 2.6. Since the phase of the output signals
is equal to the argument of H(x),

u xð Þ ¼ Arg HðxÞð Þ ¼ Arg �s0ð Þ � Arg jx� s0ð Þ:

s0 being real and negative, we have u xð Þ ¼ �Arg jx� s0ð Þ:
The argument of jx� s0 is equal to the angle formed by the vector PM

�!
with the

horizontal axis. When the frequency is largely negative this angle is close to � p
2, the

phase of H(x) (the opposite to that angle) is then close to p
2. The change of phase

with frequency is shown Fig. 2.6.

σ

jω

0
0

1
s

RC
= −

P

M

( )ϕ ω−

Fig. 2.5 Vector PM
�!

situation
for a given frequency
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2.1.5 R, C Circuit with Output on the Resistor Terminals

This system is a second example of a first order system. The circuit is identical to
that of Sect. 1.1 but the output voltage is taken at the terminals of the resistor (Fig.
2.7). We have the following diagram:

The calculation of the charge across the capacitor is the same as in Sect. 2.1.1.
When e tð Þ ¼ est we have again:

q tð Þ ¼ C
RCsþ 1

est: ð2:26Þ

vðtÞ ¼ R
dq
dt

¼ RCs
RCsþ 1

est ¼ HðsÞest: ð2:27Þ

The transfer function is in this case:

HðsÞ ¼ RCs
RCsþ 1

¼ �s0
RCs
s� s0

¼ s
s� s0

: ð2:28Þ

The transfer function has a zero in s = 0 and a pole in s0 ¼ � 1
RC :

Fig. 2.6 Frequency response of R C circuit after geometric interpretation. a Modulus. b Phase

Fig. 2.7 R C Circuit with
output taken at resistor
terminals
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Geometric interpretation of the variation of gain with frequency:
We have:

H xð Þ ¼ jx
jx� s0

: ð2:29Þ

As can be seen in Fig. 2.5, the gain modulus is equal to the ratio of two
segments:

H xð Þj j ¼ OM
PM

: ð2:30Þ

As x varies, the point M scans upward the axis r ¼ 0.
When xj j is very large, the lengths of the segments OM and PM are very slightly

different, the gain is close to 1. When x is close to zero, the numerator becomes
small while the denominator remains finite. The gain in amplitude H xð Þj j is close to
zero.

The phase is the argument of the numerator of H(x) minus the argument of its
denominator:

u xð Þ ¼ Arg jxð Þ � Arg jx� s0ð Þ: ð2:31Þ

Arg jxð Þ equals � p
2 when x < 0 and equals p

2 if x > 0 (there is a p jump when x
passes through zero). As seen above, �Arg jx� s0ð Þ varies from p

2 to � p
2 when x

varies from −∞ to +∞. The variations of the gain and phase with x are shown in
Fig. 2.8.

Fig. 2.8 Frequency gain for second R C circuit. a Modulus. b Phase
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2.2 Second Order System. R, L, C Series Circuit

The emf e(t) is applied to the terminals of a circuit composed of an inductor L, a
resistor R and a capacitor C in series (Fig. 2.9). As above, the electric charge on a
plate of the capacitor is denoted by q, and v(t) is the voltage across the capacitor.

Generalized Ohm’s law takes the form:

L
d2q
dt2

þR
dq
dt

þ q
C
¼ eðtÞ: ð2:32Þ

2.2.1 Transfer Function

This system is linear, invariant by translation in time. The circuit transfer function H
(s) is obtained by taking e tð Þ ¼ est for excitation and seeking q(t) of the form
q tð Þ ¼ Best:

LB
d2

dt2
est þRB

d
dt
est þ B

C
est ¼ est: ð2:33Þ

That is to solve the equation

Ls2 þRsþ 1
C

� �
B ¼ 1: ð2:34Þ

It is necessary to have the equality B ¼ 1
Ls2 þRsþ 1

C
¼ C

LCs2 þRCsþ 1 :

The voltage across the capacitor is given by:

vðtÞ ¼ qðtÞ
C

¼ 1
LCs2 þRCsþ 1

est ¼ HðsÞest: ð2:35Þ

The system transfer function is therefore:

H sð Þ ¼ 1
LCs2 þRCsþ 1

: ð2:36Þ

Fig. 2.9 Second order
circuit; R L C in series
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The transfer function is again a rational fraction which must initially determine
the poles. The denominator is a polynomial in s. A general property of polynomials
with complex coefficients is that they always have roots. These roots belong to the
field of complex numbers. In addition, another property of polynomials is that when
all the coefficients of the various powers of the variable s are real, the roots are
either real or come in complex conjugate pairs.

Search of the Poles of the Transfer Function
The polynomial being of second degree, he always has two roots which will be
distinct or multiple. For this reason, this circuit is called a second order filter.

The transfer function has the general form:

HðsÞ ¼ 1
LCs2 þRCsþ 1

¼ 1
LC

1
s� s1ð Þ s� s2ð Þ : ð2:37Þ

Analysis of the roots of the quadratic polynomial LCs2 þRCsþ 1:
The discriminant of the polynomial is:

D ¼ R2C2 � 4LC: ð2:38Þ

The roots of the polynomial are noted s1 and s2.

� If D[ 0; s1;2 ¼ �RC �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2C2 � 4LC

p

2LC
¼ � R

2L
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

4L2
� 1
LC

r

: ð2:39Þ

The two roots are real.

� If D ¼ 0; s1 ¼ s2 ¼ � R
2L

; the polynomial has a double real root: ð2:40Þ

� If D\0; s1;2 ¼ � R
2L

� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R2

4L2

r

; the two roots are complex conjugate:

ð2:41Þ

Writing

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R2

4L2

r

; ð2:42Þ
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we have:

s1;2 ¼ � R
2L

� jx0 ð2:43Þ

2.2.2 Second Order System Frequency Response

The poles of the transfer function will condition the frequency response of the
system H(x), response to a monochromatic input signal of the form ejxt:

Simply replacing s by jx in the expression of H(s), we have

HðxÞ ¼ 1
�LCx2 þ jRCxþ 1

¼ 1
LC

1
ðjx� s1Þðjx� s2Þ : ð2:44Þ

Note that H(0) = 1. Calculation programs like Matlab easily enable graphical
representation of the modulus and phase of H(x).

2.2.3 Geometric Interpretation of the Variation
of the Frequency Response

It is interesting to further develop a geometric argument to interpret the variation of
the frequency response. Its modulus is:

HðxÞj j ¼ 1
LC

1
jx� s1j j jx� s2j j : ð2:45Þ

Having placed the poles s1 (point P1) and s2 (point P2) in the complex plane
r; jxð Þ; we see that the modulus of H(x) is inversely proportional to the lengths of
segments joining point M (representing jx) to the points P1 and P2.

HðxÞj j ¼ 1
LC

1
MP1MP2

: ð2:46Þ

The phase is given by the sum of the angles made by the vectors P1M
��!

and P2M
��!

with the x-axis:

uðxÞ ¼ ArgðHðxÞÞ ¼ �Argðjx� s1Þ � Argðjx� s2Þ: ð2:47Þ

One can thus deduce qualitatively the following variations of gain and phase:

• If D > 0, poles s1 and s2 lie on the real axis x = 0 (Fig. 2.10).
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We see in Fig. 2.10 that the maximum gain value is obtained for zero frequency,
value of x for which the segments P1M and P2M are minimal. The gain decreases
as 1

x2 when xj j ! 1, each of the two segments P1M and P2M growing like xj j:
The circuit behaves as a low pass filter.

When x is largely negative, angles of the two vectors P1M
��!

and P2M
��!

with the
horizontal are each approximately � p

2 ; phase will be p.
When x increases, M scans vertically the axis r = 0 and angles vary from � p

2 to
p
2 (Fig. 2.11). They will be 0 for x = 0, the phase will be zero. Then as the angles
increase toward p

2 the phase tends toward −p.

• If D = 0, both poles are merged on the real axis (Fig. 2.12). The discussion is
similar to the previous case and the system still has a low-pass filter behavior
(Fig. 2.13).

• If D < 0, the two poles are complex conjugates. We note H1 and H2 the pro-
jections of P1 and P2 on the axis jx (Fig. 2.14). For large negative values of x,
we have the same behavior as before, the segments P1M and P2M are large and
the modulus HðxÞj j very small, and the phase tends toward p (Figs. 2.14, 2.15
and 2.16).

(a) (b)

Fig. 2.10 Geometric interpretation in case of two real poles. a Poles situation. b Gain modulus

Fig. 2.11 Phase variation
given by geometric
interpretation
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Fig. 2.12 Two poles merged on real axis

Phase
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Fig. 2.13 Frequency gain in case of a double real pole. a Magnitude. b Phase
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Fig. 2.14 Vectors P1M and
P2M situation for a given
frequency
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• When x increases, a first maximum of HðxÞj j will occur when the product of
the lengths of the segments P1M and P2M will reach a minimum. This will
occur to a first intermediate position of M between H2 and O.

The more points P1 and P2 will be close to the imaginary axis, that is to say, the
more R

2L will be small compared to x0, the more segments P1M and P2M can
become smaller and H xð Þj j can become great. The resonance pulsation xr for
which H xð Þj j is maximal will be closer to x0 when the points P1 and P2 are close
to the imaginary axis.

HðxÞj jmaxffi Hðx0Þj j ¼ 1
LC

1
H1P1

1
H1P2

: ð2:48Þ

The quantity R
2L characterizes the damping of the circuit. Curves 1, 2 and 3 in

Fig. 2.15 show the trend of the gain when the damping is increasing (with respect to
x0). Thus, it is to remember that as the pole is closer to the vertical axis, the
resonance is sharper and the resonance frequency nearer to x0.

Regarding the phase, it is found that when the pole is close to the vertical axis,

the angle of the vector P1M
��!

with horizontal changes abruptly from a value close to
� p

2 to a value close to
p
2 when x passes through resonance (Fig. 2.16). In the case of

strong resonance, phase starts from p and varies from p to 0 when x passes the

r 0

( )

( )

( )

( )

( )H ω

ωω ω0ω− 0

3

1

1

2

Fig. 2.15 Gain magnitudes
for different damping
situations

Fig. 2.16 Gain phases for
different damping situations
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value �xr where the phase passes to −p. In the case of a damped system (pole
farther from the vertical axis) angles vary more gradually.

It may be noted to put an end to this discussion that, as before, the gain decreases
as 1

x2 when xj j ! 1, both segments P1M and P2M in the denominator of the
frequency response increasing as xj j.

On the following graphs showing the magnitude (Fig. 2.17) and phase
(Fig. 2.18) of the gain, in the case where L = 0.1, C = 0.1 and where R was varied
by taking the values 0.1, 0.3, 0.5, 0.7, 0.9.

The module is shown in linear scale:
1
RC represents roughly the half width of the modulus of H(x).
Phase varies from p to −p.
The resonance frequency xr which is the abscissa of the maximum of the

frequency response modulus, is analytically determined by annulling the derivative

Fig. 2.17 Numerical simulations: gain magnitudes for different damping

Fig. 2.18 Numerical simulations: gain phases for different damping
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of H xð Þj j. The denominator of the frequency responsemodule includes the sum of
squares of the real and the imaginary parts:

H xð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� LCx2ð Þ2 þR2C2x2

s

: ð2:49Þ

The resonant frequency xr is the frequency for which d H xð Þj j
dx ¼ 0:

This amounts to calculating the solutions of the equation canceling the derivative
of the denominator. It comes:

xr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R2

2L2

r

: ð2:50Þ

There are two solutions with opposite signs. Only the positive frequency is
significant for real signals. It can be seen on the positive root that as the resistance
R increases it causes the decrease of the resonant frequency, as it was anticipated
qualitatively.

To calculate the filter gain at the resonance, this root is reported in the gain
expression. It comes:

H xrð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� LCx2
r

� �2 þR2C2x2
r

s

¼ 1
RCx0

: ð2:51Þ

Where x0 is given by (2.42). This result is remarkable for its simplicity.

2.2.4 Bode Representation of the Gain

Figure 2.19 shows the variation of 20 log10 H xð Þj jð Þ ¼ f 20 log10
x
xr

	 

for the fol-

lowing values of the system parameters: R = 1 Ω, L = 10−4 H, C = 10−6 F.
This gives the resonant frequency xr ¼ 9:975� 104 rad/s. The gain for the

resonance frequency is approximately equal to 20 dB. The theoretical gain in
decibels for the resonance frequency is calculated from the formula (2.51). It is

20 log10 H xrð Þj j ¼ 20 log10
1

RCx0
¼ 20:01 dB: ð2:52Þ

The system resonant frequency xr ¼ 9:975� 104 rad/s is slightly lower than the
frequency x0 ¼ 9:9875� 104 rad/s, imaginary part of the positive pole frequency.
Resonance is sharp.
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Note the linear behavior of the curve at high frequencies. As seen in Fig. 2.19, at
high frequencies H xð Þj j decreases of 40 decibels per decade (when the frequency is
multiplied by 10), as characteristic of the decay in 1

x2. This decrease corresponds
to −12 dB per octave (when the frequency is multiplied by 2).

The asymptotic line to the high frequency curve (dotted line in Fig. 2.19) passes
through the point (0, 0), that is to say, for the abscissa value x ¼ xr. Please note
that this is only true in the case of sharp resonance that is specified in the following
paragraph.

2.3 Case of Sharp Resonance

We have seen that in the case of a sharp resonance, the resonance frequency which
corresponds to the maximum of HðxÞj j is near x0. We can use in this case an
approximate expression of HðxÞj j in the vicinity of the resonance. Geometrically,
when x is near x0, we allocate all of the variation of the modulus HðxÞj j to the
variation of the segment MP1. In the scheme of this approximation, the gain is
maximum when M is in H1:

HðxÞj jmaxffi Hðx0Þj j ¼ 1
LC

1
H1P1

1
H1P2

: ð2:53Þ

We have approximately H1P2 ffi H1H2, then:

HðxÞj jmaxffi Hðx0Þj j ¼ 1
LC

1
H1P1

1
H1H2

: ð2:54Þ

Under this approximation of sharp resonance, as H1P1 ¼ R
2L and H1H2 ¼ 2x0,

we have

Fig. 2.19 Log-log plot of
gain magnitude (second order
system)
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then:

HðxÞj jmaxffi
1
LC

2L
R

1
2x0

¼ x2
0
2L
R

1
2x0

¼ Lx0

R
: ð2:55Þ

Bandwidth at −3 dB of the resonator
Noting M1 the point on the imaginary axis as H1M1 ¼ H1P1 and x1 the cor-

responding angular frequency, we have

Hðx1Þj j ¼ 1
LC

1
M1P1

1
M1P2

ffi 1
LC

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM1H1Þ2 þðH1P1Þ2

q
1

H1P2

¼ 1
LC

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðH1P1Þ2

q
1

H1H2
:

ð2:56Þ

Therefore

Hðx1Þj j ffi 1
ffiffiffi
2

p HðxÞj jmax: ð2:57Þ

Expressing this ratio in decibels:

Hðx1Þj jdB ¼ 20 log10 Hðx1Þj j ffi 20 log10 HðxÞj jmax þ 20 log10
1
ffiffiffi
2

p ;

Hðx1Þj jdB ¼ HðxÞj jmaxðdBÞ�3 dB:
ð2:58Þ

At point M2 (pulsation x2) symmetrical ofM1 with respect to H1, the attenuation
is also 3 dB relatively to the maximum gain of the filter. Bandwidth at −3 dB is
then as follows:

Dx ¼ x2 � x1 ¼ 2H1P1 ¼ R
L
:

2.4 Quality Factor Q

We name Quality factor Q the ratio

Q ¼ x0

Dx
ð2:59Þ

The sharper the resonance, the smaller Dx and the higher Q.
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In this case:

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R2

4L2

r

and Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC � R2

4L2

q

R
L

: ð2:60Þ

Since the damping is small, the second term in the root can be neglected when
compared to the first term. Then

Q ffi
ffiffiffiffiffiffi
1
LC

r
L
R
¼

ffiffiffiffi
L
C

r
1
R
: ð2:61Þ

Or, writing approximately

LCx2
0 ¼ 1; Q ¼ Lx0

R
: ð2:62Þ

It is noted that, in the case of sharp resonance, the value of Q is equal to the
maximum gain at resonance. Indeed, it has been seen that H xrð Þj j ¼ 1

RCx0
. As in the

case of sharp resonance, the relationship LCx2
0 ¼ 1 is approximately satisfied, it

finally comes H xrð Þj j ¼ Lx0
R ¼ Q, as it had been shown geometrically in the pre-

ceding paragraph (Eq. (2.55)).
Decrease over time in the amplitude of the eigenfunctions corresponding to

the values of the poles
The eigenfunctions of the resonant system for values of s equal to those of the

poles have the form

es1;2t ¼ e�
R
2Lt�jx0t ¼ e�

R
2Lte�jx0t ð2:63Þ

The amplitude of these functions varies with time as e�
R
2Lt. In a pseudoperiod

T0 ¼ 2p
x0
; this amplitude will vary by a factor

e�
R
2LT0 ¼ e�

R
2L

2p
x0 ¼ e�

p
Q: ð2:64Þ

When the Q-factor is great compared to 1, we can perform a limited expansion of
the exponential and write: e�

p
Q ffi 1� p

Q þ . . .

In a pseudoperiod, the amplitudes of functions es1t and es2t decrease by a factor
p
Q : It will be shown in the following that the following linear combination of these
functions es1;2t is the response of second order system in a very short pulse (Dirac
pulse). This impulse response has the form:

hðtÞ ¼ 1
LC

1
ðs1 � s2Þ ðe

s1t � es2tÞUðtÞ: ð2:65Þ
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In practice, in the case of complex conjugate poles, one measures the Q-factor
from the decay of h(t) during the pseudoperiod T0.

Summary

The important first and second order electrical R, L, C circuit systems were studied
in this chapter. The position of the poles of the transfer functions was used for
qualitatively explaining the variation in frequency of the module and phase
responses. This interpretation is fundamental in understanding the behavior of these
filters and provides a generalized view of the frequency response of electronic
systems. The Bode representation has been presented. The concept of quality factor
used to characterize the properties of many physical systems was introduced.

Exercises

I. Consider the circuit composed of the series arrangement of a resistor
R = 100 X, an inductor coil value L = 0.01 H, and a capacitance
C = 10−10 F. Note e(t) the voltage across the assembly and v(t) the voltage
across the capacitor.

1. It is assumed that the emf e(t) has the form eðtÞ ¼ est where s is a complex
number capacitor s ¼ rþ jxð Þ.
(a) Give the expression of the voltage v(t).
(b) Give the expression of the filter transfer function. What are the poles of

this transfer function? Represent the position of the poles.
(c) Give the expression of the filter’s frequency response. By a geometric

argument based on the position of the poles, give the aspect of the
variation of gain with frequency module.

2. Note that the transfer function can be written as a product of two terms of
the first order H sð Þ ¼ H1 sð ÞH2 sð Þ. From the variation of H1ðxÞj j with x,
give the �3 dB bandwidth of the first filter. By noticing that H2ðxÞj j
remains approximately constant in the vicinity of the resonance, give the
bandwidth at −3 dB of HðxÞj j:

II. Consider again the circuit including the elements R, L and C placed in series
with the output at the resistor terminals this time. Show that the transfer
function is in this case:

HðsÞ ¼ RCs
LCs2 þRCsþ 1

:

Locate the zeros of H(s) in the complex plane. Show that the circuit does not
allow the continuous to pass (the frequency response is zero at zero fre-
quency). Can this system keep a resonator character? Show that the resonance

frequency is equal to x00 ¼
ffiffiffiffiffi
1
LC

q
whatever damping. Explain qualitatively that

the presence of the zero of the transfer function pushes the positive resonance
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frequency toward higher frequencies, frequency as the negative pole frequency
tends to decrease.
Which is the gain of the resonance filter? Show that the gain decreases at high
frequencies.
Qualitatively, observe that the presence of the zero of the transfer function at
x = 0 pushes the positive resonance frequency toward higher frequencies,
while the negative pole tends to decrease that frequency. What is the filter gain
at resonance? Show that the gain decreases as 1

x at high frequencies.
III. Create a circuit of the second order by arranging an inductor L, a resistor R and

a capacitor C in series. The input signal is feeding the ensemble and the output
signal is taken across the capacitance.

(A) The modulus of this filter frequency response is given by Fig. 2.20:

1. What is the value of the quality Q-factor of the circuit?
2. (a) Making the approximation of a sharp resonance, taking R = 4.7 X,

evaluate L and C knowing that the resonant frequency is precisely
6.1389 105 Hz.

(b) Place the poles of the filter transfer function in the Laplace plane.

(B) The impulse response of that filter is given in Fig. 2.21.
Evaluate from these curves L and C the quality factor of the circuit, still taking
R = 4.7 Ω.

Solution:

(A) In the graph of the frequency response we can estimate its maximum ampli-
tude at about 46. In the course, it has been shown that the maximum amplitude
is equal to the Q-factor. So we evaluate Q = 46.

Fig. 2.20 Gain magnitude (a); with zoom in (b)
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Second method for determining Q: Q ¼ x0
Dx ¼ f0

Df (Df is the bandwidth at

−3 dB). The amplitude at −3 dB is estimated to 46ffiffi
2

p ¼ 32:5:

On the graph of the frequency response the resonance frequency is seen to be
f0¼6:14� 105 Hz. The frequencies for which the frequency response is
attenuated by −3 dB are 6.21 � 105 Hz and 6.075 � 105 Hz, and It can be
inferred that Q ¼ 6:14

ð6:21�6:075Þ ¼ 45:5; which value must be equal to the value

given by the first method, the difference being due to uncertainties determi-
nations on the graph. Since Q ¼ 45:5 ¼ Lx0

R ; the resonance frequency in this
case of sharp resonance is given by: LCx2

0 ¼ 1. It comes L = 5.5105 H and
C = 1.2 � 10−9 F.

(B) Determination from the impulse response: we measure graphically the pseu-
doperiod T0 of the signal and we deduce x0 ¼ 2p

T0
. In a pseudoperiod, the

amplitude varies by the factor e�
p
Q:We deduce Q from it. We then calculate the

constants L and C of the circuit knowing R = 4.7 Ω.

Fig. 2.21 Impulse response (a); with zoom in (b)
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Chapter 3
Fourier Series

Fourier series have played an important role in the understanding and the devel-
opment of signal analysis. The original interest was for music and the fact that the
notes of many instruments are composed of frequencies which are multiples of a
fundamental frequency. These tones are called harmonics as their combination is
harmonious, pleasant to ear.

In the previous two chapters, we have highlighted the fundamental role played by
exponential functions est and particularly by the exponential ejxt representing peri-
odic, monochromatic signals. In this chapter, we study the decomposition-
reconstruction of periodic signals in Fourier series. We study with a graphic exam-
ple the idea behind the calculation of a coefficient which is the signal multiplication
by a sine function followed by integration in time. We study the effect of limitation of
the number of terms of the series on the signal reconstruction (Gibbs phenomenon)
and the optimal coefficients of the reconstructing series. Hilbert spaces, which gen-
eralize these concepts, are introduced. We show that the functions ejxt are the

eigenfunctions of the Hermitian operator i ddt and can be used as an orthogonal basis

of development of periodic functions. At the end of the chapter, we illustrate the fact
that frequency analysis and displays in logarithmic scale are favorable in the analysis
of sounds and the nonlinearity of a system.

An example of a monochromatic signal is the sound generated by a tuning fork.
Each note of the musical scale corresponds to a frequency well determined, for
example,. A4 corresponds to the frequency 440 Hz. The sound of a tuning fork
which mainly consists of a sine wave is musically poor. A property common to all
musical instruments is that the fundamental note is accompanied by harmonic
frequencies, that is to say, by sound components whose frequencies are multiples of
the fundamental frequency.
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For example, for a vibrating string under tension, fixed at its ends as is the case
for a guitar or a piano, the natural frequencies of vibration of the string are given by
the expression:

fn ¼ n
c
2l
; ð3:1Þ

where n is a positive integer, and c is the speed of the vibration along the string
length. The speed is given by

c ¼
ffiffiffiffi
T
q

s
; ð3:2Þ

with T the tension and ρ the mass per unit length of the string.
The excitation of the string by hitting or rubbing generates, in proportions that

depend upon the instrument and the excitation mode, the fundamental frequency
f1 ¼ c

2l and its harmonics. It is its richness in harmonics which partially gives its
specificity, timbre, to the note created by a musical instrument.

Similarly, in the spoken language, the vowels are compound sounds. They are
the addition of signals whose frequencies are integer multiples of a fundamental
frequency f1 ¼ x1

2p (this frequency is called the pitch). Physically, the sound gen-
eration of a vowel is explained as follows: The air comes out of the lungs in a
continuous flow. The vocal cords (sorts of membranes located in the pharynx)
periodically seal off the air. A pressure sensor placed downstream of the cords
would measure a sequence of pulses in air pressure. The fundamental frequency of
these pulses, the pitch, is about 100 Hz for men and approximately 200 Hz for
women. These very short repetitive pulses—in an ideal mathematical modeling, we
would speak of a Dirac comb which will be defined later in this course—are very
rich in harmonics (with existence of harmonics up to the ranks 40 or 50). The sound
of one vowel differs from that of another vowel by the relative importance of the
different harmonics. The dimensions of sound resonators that are the larynx, nasal
cavity and mouth determine the importance of these harmonics.

Mathematically, that composition of harmonic sounds can be noted as a sum of
exponentials by the formula:

f tð Þ ¼
Xþ1

n¼�1
cnejnx1t: ð3:3Þ

This composition is called a Fourier series. The development of a function in a
Fourier series and the calculation of coefficients of the series are detailed in the next
paragraph.
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3.1 Decomposition of a Periodic Function in Fourier
Series

Let f(t) be a real or complex periodic function of time with period T1. Its Fourier

analysis is based on a sequence of functions un tð Þ, periodicals, with period
T1
n
, of

exponential or sinusoidal shapes:

un tð Þ ¼ ejnx1t;where n is an integer andx1 ¼ 2p
T1

ð3:4Þ

The choice of these functions is dictated by the fact that they are eigenfunctions
of most physical systems and that any two functions un tð Þ and um tð Þ are orthogonal
when m 6¼ n; that is to say that their scalar product is zero. The scalar product of
these two functions is defined by

un tð Þ;um tð Þh i ¼ 1
T1

ZT1
0

un tð Þu�
m tð Þdt ¼ 1

T1

ZT1
0

ej n�mð Þx1tdt: ð3:5Þ

In the integral appears the complex conjugate u�
m tð Þ of the second term um tð Þ

contained in the bracket in the left-hand side. By performing the integration we
verify that:

un tð Þ;um tð Þh i ¼ 0 if n 6¼ m
1 if n ¼ m

���� : ð3:6Þ

Thus, the functions un tð Þ and um tð Þ are orthogonal if m 6¼ n.
We also write the last result in the condensed form un tð Þ;um tð Þh i ¼ d m� nð Þ,

where d m� nð Þ is the Kronecker symbol, equal to 0 if n 6¼ m and to 1 if n ¼ m.
Thus, the functions un tð Þ are orthonormal.

The Fourier coefficients cn of the function f(t) are defined as the projections
based of f(t) on functions un tð Þ. That is to say, they are given by the scalar product

f tð Þ;un tð Þh i ¼ 1
T1

ZT1
0

f tð Þu�
n tð Þdt ¼ 1

T1

ZT1
0

Xþ1

n0¼�1
cn0un0 tð Þu�

n tð Þdt

¼ 1
T1

Xþ1

n0¼�1
cn0
ZT1
0

un0 tð Þu�
n tð Þdt ¼ 1

T1

Xþ1

n0¼�1
cn0d n� n0ð Þ ¼ cn:

cn ¼ f tð Þ;un tð Þh i ¼ 1
T1

ZT1
0

f tð Þe�jnx1tdt: ð3:7Þ
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Note that the integration interval extends over a signal period. It is easily shown
that the coefficient cn does not depend on the start time of the integration interval,
but on the width of this interval only.

The fundamental theorem on Fourier series states that for a function f(t) con-
tinuous and continuous derivative except for a finite number of points in a period,
the infinite sum

Pþ1
n¼�1 cnun tð Þ converges to half the sum of the limits to the left

and right values of the function abscissa t:

Xþ1

n¼�1
cnun tð Þ ¼ 1

2
f tþ 0ð Þþ f t � 0ð Þð Þ: ð3:8Þ

If the function f(t) is continuous at time t, we will have:

Xþ1

n¼�1
cnun tð Þ ¼ f tð Þ ð3:9Þ

The expression in the development of exponential functions is then:

f tð Þ ¼
Xþ1

n¼�1
cnejnx1t:

The ensemble of periodic functions f(t) of period T1 is a vector space. Indeed this
set satisfies the following conditions of definition of a vector space: The scalar
multiplication (by a complex or real) of a function of the space (periodic function of
period T1) also belongs to the space (it is also periodic with period T1). Furthermore,
linear combinations of any two functions of the space belong to it (any linear
combination of periodic functions of period T1 is also periodic with period T1).

Since any function f(t) of this space can be generated by a linear combination of
functions ejnx1t, we say that the infinite set of functions ejnx1t is a basis of the vector
space of periodic functions of time with period T1 ¼ 2p

x1
. The relations (3.6) show

that this basis is orthonormal.

Development in the Particular Case of a Real Function
Since f(t) is assumed real, then f tð Þ ¼ f � tð Þ. In the development of f(t) we have then:

f tð Þ ¼
Xþ1

n¼�1
cnejnx1t ¼ f � tð Þ ¼

Xþ1

n0¼�1
c�n0e

�jn0x1t: ð3:10Þ

By comparing the two sums, posing n0 ¼ �n; we get

Xþ1

n¼�1
cnejnx1t ¼

Xþ1

n¼�1
c��ne

jnx1t: ð3:11Þ
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We have then for all n:

c��n ¼ cn; or c�n ¼ c�n; 8n: ð3:12Þ

So, Fourier coefficients of terms of the series for negative frequencies are the
complex conjugates of the coefficients of the terms for symmetric positive
frequencies.

Discussion of the Complex Character of Coefficients cn
It is seen that the coefficients cn are complex in the general case, by expanding the
exponential in the integral (3.7),

cn ¼ 1
T1

ZT1
0

f tð Þe�jnx1tdt ¼ 1
T1

ZT1
0

f tð Þ cos nx1t dt � j
T1

ZT1
0

f tð Þ sin nx1t dt: ð3:13Þ

As we can shift both boundaries of the integration interval without changing the
value of the integral, we also have:

cn ¼ 1
T1

ZT12 1

�T1
2

f tð Þ cos nx1t dt � j
T1

ZT12
�T1

2

f tð Þ sin nx1t dt: ð3:14Þ

Some interesting special cases are discussed in the following.
In the case where the function f(t) is real, from (3.14) we can write: cn ¼

an � jbn with an and bn real and given by

an ¼ 1
T1

ZT12 1

�T1
2

f tð Þ cos nx1t dt and bn ¼ 1
T1

ZT12
�T1

2

f tð Þ sin nx1t dt: ð3:15Þ

Then:

f tð Þ ¼
Xþ1

n¼�1
an � jbnð Þejnx1t ¼

Xþ1

n¼�1
an � jbnð Þ cos nx1tþ j sin nx1tð Þ: ð3:16Þ

As f(t) is real, taking the real part of the right side of (3.16) we have:

f tð Þ ¼
Xþ1

n¼�1
an cos nx1tþ

Xþ1

n¼�1
bn sin nx1t; ð3:17Þ

sum of two series with an and bn real coefficients given by (3.15).
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The index n in the previous sums varies from minus infinity to plus infinity. Due
to parity of cosine and sine functions contained in Eq. (3.15), we see that we have:
a�n ¼ an and b�n ¼ �bn: One can reduce the summations interval to positive or
zero values of n and write the relation (3.17) in the form:

f tð Þ ¼ a0 þ 2
Xþ1

n¼1

an cos nx1tþ 2
Xþ1

n¼1

bn sin nx1t: ð3:18Þ

Note the appearance of the factor of 2 resulting from the combination of positive
and negative frequencies ejnx1t and ejnx1t exponential. The coefficient 2 could be
removed in (3.18). By changing the notation, this equation becomes:

f tð Þ ¼ A0

2
þ
Xþ1

n¼1

An cos nx1tþ
Xþ1

n¼1

Bn sin nx1t; ð3:19Þ

with

An ¼ 2
T1

ZT12 1

�T1
2

f tð Þ cos nx1t dt and Bn ¼ 2
T1

ZT12
�T1

2

f tð Þ sin nx1t dt: ð3:20Þ

If the function f(t) is real and even, we have in addition bn ¼ 0, because it is the
integral of an even function on a symmetrical interval around t ¼ 0. Similarly, if the
function f(t) is real and odd, we will have an ¼ 0, since the integral of an odd
function over a symmetric interval around t ¼ 0 is zero.

To conclude this discussion, the focus is on the development of Fourier of the
function f tð Þ ¼ cos x1tþuð Þ. By expanding the cosine:

f tð Þ ¼ cosx1t cosu� sinx1t sinu ¼ 2a1 cosx1tþ 2b1 sinx1t;

with 2a1 ¼ cosu and 2b1 ¼ � sinu:
The signal phase determines the distribution of the power of the signal (the

magnitude of the signal; Power will be precisely defined in the next paragraph)
between the real and the imaginary part of the Fourier coefficient c1. If the phase is
zero, the power is carried by the real part a1 of the Fourier coefficient. If the phase is
p
2
, the power is carried by the imaginary part b1 of the Fourier coefficient.

Illustration on an Example of the Calculation of the Fourier Coefficients
It is interesting here to illustrate how the dot product of f(t) of period T1 with the
base functions cos nx1t and sin nx1t allows these functions to analyze the signal
shape. In this example, the function f(t) is a square wave, even, with zero mean and
period T1. On Fig. 3.1a Top) are shown f(t) as well as the function cosx1t. It is seen
that the cosine follows the slow variations of the function. In Fig. 3.1b (Top) is the
product f tð Þ cosx1t represented over one period. It is noted that this product is
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always positive. Its integral over the period will have a relatively large positive
value.

On Fig. 3.1a (Middle) the function f(t) and cos 2x1t. On Fig. 3.1b (Middle) is
the product f tð Þ cos 2x1t over one period. We see that this product oscillates around
zero. Its integral will be small. In fact, the integral will be zero because the negative
oscillations compensate exactly in this case the positive oscillations. In conse-
quence, the Fourier coefficient of harmonic 2 will be zero. On Fig. 3.1a (Bottom)

Fig. 3.1 a Time functions to multiply; b their products
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are shown f(t) as well as the function cos 3x1t. On Fig. 3.1b (Bottom) is the product
f tð Þ cos 3x1t over one period. It varies a lot around zero. The integral will be small.
In fact, the integral will be negative because the negative part of the oscillations
outweighs the positive ones.

Thus, the Fourier coefficient of harmonic 3 will be negative. We could do the
same for higher orders n. For functions of the form sin nx1t, the Fourier coefficients
are all zero since they result from the integral of the product of an even by an odd
function. The principle of Fourier analysis which is the integration of the product of
the function to be analyzed by the trigonometric analysis functions is well under-
stood in this example.

The exact calculation of the Fourier coefficients of a square signal will be made
by means of an exercise later in this chapter.

3.2 Parseval’s Theorem for Fourier Series

The power P(t) of a complex signal f(t) is defined as follows:

P tð Þ ¼ f tð Þf � tð Þ; ð3:21Þ

with f*(t) the complex conjugate of f(t).
This definition is consistent with that of the power in an electrical circuit element

which is equal to P tð Þ ¼ v tð Þi� tð Þ, where v tð Þ is the potential difference across the
element and i tð Þ is the current through that element. In signal analysis, f(t) plays
both the role of voltage and current. One can say that f(t) appears as the voltage
across an element with impedance 1 X.

In the case of a real signal we obviously have

P tð Þ ¼ f 2 tð Þ: ð3:22Þ

The power depends on time; we will speak of P(t) as an instantaneous power.
The signal energy is the integral of the power on the time axis:

E ¼
Z1
�1

P tð Þdt ¼
Z1
�1

f tð Þf � tð Þdt: ð3:23Þ

When the signal f(t) is periodic of period T1, the energy is infinite. For this type of
signals, the focus is on the average signal power Pm over one period. It is defined by:

Pm ¼ 1
T1

ZT1
0

f � tð Þf tð Þdt: ð3:24Þ
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Replacing the functions by their Fourier developments, and setting
un tð Þ ¼ ejnx1t, with x1 ¼ 2p

T1
, we write

P ¼ 1
T1

ZT1
0

Xþ1

n¼�1
c�nu

�
n tð Þ

Xþ1

n0¼�1
cn0un0 tð Þdt: ð3:25Þ

Assuming that the mathematical conditions for reversing the order of the sum-
mations are verified, and using the fact that the functions un tð Þ are orthonormal
over one period, we write:

Pm ¼ 1
T1

Xþ1

n¼�1

Xþ1

n0¼�1
c�ncn0

ZT1
0

u�
n tð Þun0 tð Þdt

¼
Xþ1

n¼�1

Xþ1

n0¼�1
c�ncn0d n� n0ð Þ ¼

Xþ1

n¼�1
c�ncn ¼

Xþ1

n¼�1
cnj j2:

ð3:26Þ

Thus we have the following relationship, which is the expression of the
Parseval’s theorem for Fourier series

Pm ¼ 1
T1

ZT1
0

f � tð Þf tð Þdt ¼
Xþ1

n¼�1
cnj j2: ð3:27Þ

This result tells that the average power of the signal over a period is the infinite
sum of the squared moduli of the coefficients of the Fourier series. It is interesting to
note in this formula that the quantities cnj j2 have the dimensionality of a power.

The squared modulus cnj j2 is the contribution to the average power of the
harmonic signal ejnx1t of order n.

Example of Decomposition of a Periodic Signal
Let f(t) be the square periodical signal (Fig. 3.2), of period T1, formed by the
repetition of the pattern PT tð Þ, which is a symmetrical rectangular window of width
T, equal to 1 for tj j\ T

2 and 0 zero elsewhere:

PT tð Þ ¼ 1 for tj j\ T
2

0 elsewhere

���� : ð3:28Þ

We may write:

f tð Þ ¼
Xþ1

n¼�1
PT t � nT1ð Þ: ð3:29Þ
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It is necessary that T\T1 in order that f(t) is not always equal to 1.

Calculation of the coefficients of the development of f(t): the function f(t) is
periodic, the integration being performed over a period, we may shift for conve-
nience the boundaries in the integral appearing in (3.7), the interval being still equal
to T1.

Thus:

cn ¼ 1
T1

ZT1
0

f tð Þe�jnx1tdt ¼ 1
T1

ZT12
�T1

2

f tð Þe�jnx1tdt: ð3:30Þ

In this interval, f tð Þ ¼ PT tð Þ. Since PT tð Þ is zero outside the interval � T
2 ;

T
2

� �
and is 1 within the interval, we can write

cn ¼ 1
T1

ZT12
�T1

2

f tð Þe�jnx1tdt ¼ 1
T1

ZT12
�T1

2

PT tð Þe�jnx1tdt ¼ 1
T1

ZT
2

�T
2

e�jnx1tdt: ð3:31Þ

By performing the integration:

cn ¼ 1
T1

e�jnx1
T
2 � ejnx1

T
2

�jnx1
¼ 1

T1

2 sin nx1
T
2

� �
nx1

: ð3:32Þ

This result holds for n 6¼ 0, the denominator in Eq. (3.32) having to be different
from 0 for the integration in this form to be possible.

For the case n ¼ 0, integration (3.31) is carried out directly. In this case

c0 ¼ 1
T1

ZT
2

�T
2

e�0dt ¼ 1
T1

ZT
2

�T
2

dt ¼ T
T1

ð3:33Þ

Fig. 3.2 Square periodic signal
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Since x1T1 ¼ 2p the relationship (3.32) may be simplified, and we have

cn ¼ 1
np

sin nx1
T
2

� 	
: ð3:34Þ

It is noted that the coefficients decrease as
1
n
. This type of decay is characteristic

of the discontinuous nature of the function f(t). As discussed later in this course, this
decrease is considered slow.

Special case: If T ¼ T1
2 , the signal is symmetrical. The coefficients for n 6¼ 0

become:

cn ¼ 1
np

sin nx1
T1
4

� 	
¼ 1

np
sin n

2p
T1

T1
4

� 	
¼ 1

np
sin n

p
2


 �
: ð3:35Þ

Expressing these results for different values of n, we get for the first terms:

c0 ¼ 1
2
; c1 ¼ 1

p
; c2 ¼ 0; c3 ¼ � 1

3p
; c4 ¼ 0; c5 ¼ 1

5p
; . . .

The function being even, the development of the Fourier series limited to pos-
itive values of n is f tð Þ ¼ a0 þ 2

Pþ1
n¼1 an cos nx1t:

For the first terms we have:

f tð Þ ¼ 1
2
þ 2

p
cosx1t � 2

3p
cos 3x1tþ 2

5p
cos 5x1t. . . ð3:36Þ

Except for n ¼ 0 the coefficients of even orders are zero. The odd-order coef-

ficients decrease as
1
n
. Only odd harmonics are present in the decomposition.

Note: The preceding square wave was positive or zero. One often uses in
electronics a bipolar signal (symmetrically positive and negative). The Fourier
coefficients of this signal are the same as above, except that the coefficient c0 is zero
in this case.

The coefficient c0, given by the integral c0 ¼ 1
T1

R T1
0 f tð Þdt; represents the average

value of the signal over one period.

3.3 Sum of a Finite Number of Exponentials

Optimal Development Coefficients of a Function
A problem may arise in practice when one is able only to use a finite number N of
terms in the series (for example, in a numerical calculation). In this case, we seek to
approach the better possible the function f(t) by a linear combination of a finite
number of basis functions (exponentials in the case of Fourier series). In the general

3.2 Parseval’s Theorem for Fourier Series 45



case, we cannot hope to find the exact value of f(t) for all time. We will have an
estimate of f(t). This estimator is noted f̂ tð Þ by placing a cap on the function to be
estimated. Its form is:

f̂ tð Þ ¼
XN
n¼1

c0nu tð Þ ð3:37Þ

The following question arises: How to choose the coefficients c0n so that the error
in estimating f(t) is as small as possible? In other words how can we estimate
optimally f(t)? Let us write the estimation error as:

e tð Þ ¼ f tð Þ � f̂ tð Þ: ð3:38Þ

We want f̂ tð Þ to represent at best f(t), so that the “distance” between f̂ tð Þ and f tð Þ
should be the smallest possible. This distance is calculated from the scalar product
e tð Þ; e tð Þh i, the quadratic error e which is defined by:

e ¼ e tð Þ; e tð Þh i ¼ f tð Þ � f̂ tð Þ; f tð Þ � f̂ tð Þ� 

: ð3:39Þ

The error is searched to be minimal. That error is then called the standard error.ffiffi
e

p
is the distance between f(t) and its estimator.

The coefficients c0n that minimize the quadratic error are determined by the con-
dition that the partial derivatives of e with respect to the coefficients c0�n are zero

@e
@c;�n

¼ 0: ð3:40Þ

The squared norm of the error is:

ek k2¼ e ¼ 1
T1

ZT1
0

XN
n¼1

c0nun tð Þ � f tð Þ
�����

�����
2

dt: ð3:41Þ

The optimal coefficients will be obtained by canceling the following partial
derivatives:

@e
@c0�n

¼ e;
@e
@c0�n

� �
¼ 1

T1

ZT1
0

f tð Þ �
XN
n0¼1

c0n0un0 tð Þ
 !

u�
n tð Þdt ¼ 0: ð3:42Þ

Note that this equation can be written in the form of the cancelation of the scalar
product
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e;un tð Þh i ¼ 0: ð3:43Þ

In other words, the minimum error vector is orthogonal to the base vectors un tð Þ.
Since

1
T1

ZT1
0

XN
n0¼1

c0n0un0 tð Þ
 !

u�
n tð Þdt ¼ c0n0dðn0 � nÞ ¼ c0n; ð3:44Þ

and

1
T1

ZT1
0

f tð Þu�
n tð Þdt ¼ cn; ð3:45Þ

we have the result:

c0n ¼ cn: ð3:46Þ

This is an important result. When the function f(t) is approached by a linear
combination of basis functions un tð Þ limited to a finite number of terms, the
coefficients of the combination that minimize the quadratic error are the coefficients
of the Fourier series of f(t).

Important note: In the preceding derivation, it was assumed that the derivatives
with respect to c0n and over c0�n are independent. This may seem surprising, as c0n and
c0�n are complex conjugates. The underlying reason is that c0n and c0�n are complex
numbers composed of two independent real numbers. The derivation with respect to
c0�n hides formally derivation versus these two numbers. It could be shown that in the
final result of the cancelation of the derivative calculations with respect to the real
numbers, we get the same results by considering formally c0�n as independent of c0n.

Geometric interpretation: f(t) can be considered as a vector belonging to an
infinite dimensional space spanned by the infinitely many basis vectors un tð Þ (space
of all linear combinations of the functions un tð Þ). A finite number N of basis vectors
generates a hyperplane PN in that space. The vector f(t) is out of this plane in the
general case. The estimator f̂ tð Þ which consists of a linear combination of vectors
which belong to this hyperplane PN will necessarily be in PN (Fig. 3.3).

Fig. 3.3 Vector f(t) and its
estimator f̂ tð Þ
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According (3.43) we have

e?un ) e? f̂ tð Þ ð3:47Þ

Thus, the error vector has to be perpendicular to the estimator. The optimal
estimator f̂ tð Þ is the projection of f(t) onto the space PN generated by the N base
vectors un tð Þ.

3.4 Hilbert Spaces

The properties described above are within the scope of the general properties of
Hilbert spaces. A Hilbert space is a vector space with a scalar product and provided
with some additional properties.

Properties that define a Hilbert space:

• The sum of two elements of the set is an element of the set.
• The multiplication of an element of the set by a scalar belongs to the set.
• Definition of a scalar product:

– The inner product of two elements of the set is a scalar.
– A norm is defined from the scalar product. It is used for defining a distance

between two elements of the set.
– A Cauchy sequence of elements of the set converges.
– The limit of a sequence of elements of the set belongs to the set. It is unique.

We say that the space is complete.

Important properties of a Hilbert space:

• A subset composed of elements of the space generates a Hilbert space H1, subset
of H.

• One element of H is written as a linear combination of an element of H1 and an
element of its complement in H noted H2.

• The subspaces H1 and H2 are orthogonal.

For example, the ensemble of even functions and that of odd functions, periodic
with period T1, and summable over a period form two orthogonal Hilbert subspaces
of the ensemble of all periodic functions of time with period T1.

We could separate the space into other orthogonal subspaces, such as separating
the space generated by the N primary functions of the base and the one generated by
the functions of the complementary set.

Theoretical Aspects of Exponential Fourier Series Expansion
Consider the set of periodic functions of period T1 integrable over a period. Let
w1 tð Þ and w2 tð Þ be any two functions belonging to that set. Following definition
(3.5) their scalar product is given by:
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w1 tð Þ;w2 tð Þh i ¼ 1
T1

ZT1
0

w1 tð Þw�
2 tð Þdt: ð3:48Þ

With this scalar product, the set is a Hilbert space.

Definition of a Self-Adjoint Operator:
Let O be an operator operating on the functions of this space. The adjoint operator

Oy of O is defined by:

Oyw1 tð Þ;w2 tð Þ
D E

¼ w1 tð Þ;Ow2 tð Þh i: ð3:49Þ

An operator O is said self-adjoint (or Hermitian) if it is such that:

Oy ¼ O ð3:50Þ

We have therefore in this case.

Ow1 tð Þ;w2 tð Þh i ¼ w1 tð Þ;Ow2 tð Þh i: ð3:51Þ

The operator O ¼ i ddt plays an important role in the context of Fourier series

development of periodic functions with period T1. Let us show that it is Hermitian.
Following the definition (3.49) and the relationship (3.48), we have:

O
y
w1 tð Þ;w2 tð Þ

� �
¼ 1

T1

ZT1
0

w1 tð Þ i
d
dt
w2 tð Þ

� 	�
dt: ð3:52Þ

We integrate by parts:

O
y
w1 tð Þ;w2 tð Þ

� �
¼ � 1

T1
i w1 tð Þw�

2 tð Þ�� ��T1
0 þ

ZT1
0

i
d
dt
w1 tð Þw�

2 tð Þdt; ð3:53Þ

The first term of the second member is zero, since the functions are periodic. It
comes:

O
y
w1 tð Þ;w2 tð Þ

� �
¼
ZT1
0

i
d
dt
w1 tð Þw�

2 tð Þdt: ð3:54Þ

We see that Oy ¼ O. The operator i ddt is Hermitian.

3.4 Hilbert Spaces 49



Eigenvalues and eigenfunctions of a Hermitian operator

The eigenvalues are real

Let u tð Þ be an eigenfunction of a Hermitian operator O such that Ou tð Þ ¼ ku tð Þ,
a priori the eigenvalue k is complex.

We use the fact that O is Hermitian to write [see (3.51)]:

Ou tð Þ;u tð Þh i = u tð Þ;Ou tð Þh i: ð3:55Þ

Since

Ou tð Þ;u tð Þh i = ku tð Þ;u tð Þh i ¼ k u tð Þ;u tð Þh i;

and

u tð Þ;Ou tð Þh i ¼ u tð Þ; ku tð Þh i ¼ k� u tð Þ;u tð Þh i;

then:

k ¼ k�: ð3:56Þ

We have demonstrated that the eigenvalues of a Hermitian operator are real.

The Eigenfunctions Relative to Nonequal Eigenvalues Are Orthogonal
To prove this property, we use u1 tð Þ and u2 tð Þ being any 2 eigenvectors of a
Hermitian operator O.

We can write: Ou1 tð Þ;u2 tð Þh i ¼ k1 u1 tð Þ;u2 tð Þh i:
Similarly: u1 tð Þ;Ou2 tð Þh i ¼ k�2 u1 tð Þ;u2 tð Þh i.
Since the eigenvalues are real we have k�2 ¼ k2.
Taking in account the Hermiticity relationship (3.51), we must have

k1 u1 tð Þ;u2 tð Þh i ¼ k�2 u1 tð Þ;u2 tð Þh i ¼ k2 u1 tð Þ;u2 tð Þh i:

If k1 and k2 are different, in order that the above equation could be satisfied, it is
necessary that

u1 tð Þ;u2 tð Þh i ¼ 0: ð3:57Þ

We see that the eigenfunctions related to two different eigenvalues are
orthogonal.

We apply now these results of a general scope to Fourier series development.

First, we determine the eigenfunctions of the Hermitian operator O ¼ i ddt:

Ou tð Þ ¼ ku tð Þ [with k real according to the property (3.56)],
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i
du tð Þ
dt

¼ ku tð Þ;u tð Þ ¼ Ce
k
i t;

or equivalently:

u tð Þ ¼ Ceixt with x real and C any constant: ð3:58Þ

The argument in the exponential must be imaginary.

We have shown in Chap. 1 that the eigenfunctions of the operator d
dt, and by

consequence, the eigenfunctions of LTI systems, were the functions Cept with the

eigenvalues p which may be any complex number. The operator d
dt is

non-Hermitian.

However, we may verify that the eigenfunctions of i ddt, which are Ceixt, are also

eigenfunctions of d
dt. In conclusion, among the eigenfunctions of d

dt, the eigen-

functions Ceixt of i ddt may be chosen to form an orthogonal basis for a development

of a periodic function. This is the principle of the Fourier series development of a
function.

In Chap. 5 on Fourier transform, an other scalar product will be used for the
development of square-integrable, nonperiodic functions, in the L2 Hilbert space.

Remark: The above development on Hermitian operators derives from quantum
mechanics where they have been used for many decades. The consideration of
non-Hermitian operators in quantum mechanics is fairly recent. This subject is
nowadays an active field of research.

3.5 Gibbs Phenomenon

This very important phenomenon in practice occurs when the order of the sum of
exponentials is limited to a finite number N, that is to say, when limiting superiorly
the harmonics frequency. This is the case when a signal passes through an amplifier
with band limited to low frequencies. This phenomenon is observed, for example,
on the screen of a 30 MHz bandwidth oscilloscope when viewing the square signal
from a low frequency signal generator. In the case where the initial time function
has a discontinuity (which is the case of the square wave), the limited bandwidth of
the oscilloscope reduces the high-frequency content and gives a representation of
the signal using a limited sum of exponentials. The visualized signal has an
oscillation at the location of the discontinuity. One of the remarkable aspects of this
phenomenon is that as great as is the maximum order N, the oscillations are always
present and keep the same amplitude. Only the frequency of the oscillations
increases with N. This phenomenon is quantitatively studied in the chapter on the
applications of the Fourier transform.
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A numerical simulation is performed on the square signal studied in the previous
example (3.29). In Fig. 3.4a (Top), the periodic square signal is shown as well as
the partial sum 1

2 þ 2
p cosx1t. In Fig. 3.4b (Top) is the sum limited to the first

harmonic of odd row. On Fig. 3.4a (Bottom) is the sum of harmonics f1–5f1. The
square wave aspect is beginning to appear. In Fig. 3.4b (Bottom) has harmonics
from f1–13f1.

We can see an over-oscillation at the discontinuities of the function that
expresses the Gibbs phenomenon. This phenomenon will continue to exist for
arbitrarily large values of the highest frequency kept.

Fig. 3.4 Gibbs phenomenon for different sum number limitations
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Gibbs phenomenon reflects both the prodigious nature of the development of a
function as a sum of exponentials but also the default of this development: It is
possible theoretically to obtain a constant value for f(t) in an interval (the oscillation
of functions ejnx1t cancel by interference in performing the summation) yet the sum
should include an infinite number of terms. When seeking to represent the function
f(t) with a finite number of coefficients, this reconstitution presents spurious
oscillations. This problem is encountered in compressing information in digital
encoding (audio or video for example). Other compression techniques such as the
decomposition of a signal on a wavelet basis do not have this drawback. This
decomposition will be discussed in Chap. 12.

3.6 Nonlinearity of a System and Harmonic Generation

In the following example, we show using a numerical simulation that Fourier
analysis provides information about a signal in the Fourier domain that a temporal
analysis cannot detect. In particular, it can reveal the nonlinear character, even
small, of a system.

Assume that a sine wave x tð Þ ¼ sin 2pf1tð Þ drives an amplifier whose gain is
noted G. The amplifier is assumed to have a slight nonlinearity such that instead of
having an output signal

y tð Þ ¼ G0 sin 2pf1tð Þ; ð3:59Þ

where G0 is a constant. The output signal of the system is:

y tð Þ ¼ G0 sin 2pf1tð Þ � sgn sin 2pf1tð Þð Þa sin2 2pf1tð Þ: ð3:60Þ

The sign function sgnðxÞ equals 1 if its argument x is positive, and −1 if its
argument is negative. a is the nonlinearity factor, smaller than 1.

The defect of this amplifier is that its gain decreases as the magnitude of the
signal increases according to Eq. (3.60).

In the numerical application which follows, we take G0 ¼ 1. The signal fre-
quency is chosen equal to f1 ¼ 82Hz. A representation versus frequency in decibels
is used to highlight the very low amplitudes (-150 dB corresponds to an amplitude
of 3.2 × 10−8, value extremely low). The value of the first Fourier coefficient
corresponding to the fundamental frequency of 82 Hz is 1, which corresponds to a
value equal to 0 dB. First, we represent in Fig. 3.5 the ideal case of an amplifier
without nonlinearity for which a ¼ 0. Obviously there is just a single spectral line.

In the case of weak nonlinearity with a ¼ 0:001, as shown in Fig. 3.6, we are
unable to detect the manifestation of this nonlinearity on the shape of the time
signal (Fig. 3.6a). As far as we can judge, the signal maximum is always 1 and the
sinusoidal shape seems unchanged. On the other hand, one sees in the Fourier
domain additional lines whose amplitudes are given by the nonzero coefficients for
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odd multiple harmonic frequencies of 82 Hz (Fig. 3.6b). Here we see the interest of
the Fourier analysis. And thanks to the representation in decibels (logarithmic
representation), low values are less crushed by the dynamics that in linear scale and
can be seen in the figure up to the 19th harmonic. The harmonic 3 is located
approximately 75 dB below the fundamental. This corresponds to a ratio of 1:8�
10�4 in linear scale, which is very little. One says that the harmonic distortion is
−75 dB for the harmonic 3.

Very low harmonic distortion (*−50 dB) is present in the audio amplifiers of
high fidelity. Such a quality is sought after by musicians. It was noted above that the
ear analyzes the signals in the Fourier domain and has a logarithmic sensitivity,
which enables it to detect very weak signals mixed with strong signals, e.g.,
unwanted harmonics.

Fig. 3.5 Signal a and its Fourier magnitude b in case of zero nonlinearity (α = 0)

Fig. 3.6 Signal a and its Fourier magnitude b when α = 0.001
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The case of a very strong nonlinearity a ¼ 0:45 is discussed finally. This time
the nonlinearity is also very apparent in the time domain (Fig. 3.7a). Signal peaks
have weakened. In extreme cases, the signal begins to approximate a square wave.
The harmonic Fourier coefficient c3 of harmonic 3 is −20 dB about the fundamental
c1, a factor of 10 in amplitude (Fig. 3.7b).

We see how the Fourier domain allows quantifying the harmonic content. This
analysis is particularly important in audio applications. We will detail later in this
course how to record and process a signal to make a correct analysis of nonlinearities.

In a second example, the nonlinearity is assumed cubic, that is to say, that the
output signal is given by:

y tð Þ ¼ G0 sin 2pf1tð Þ � a sin3 2pf1tð Þ. ð3:61Þ

If a ¼ 0:01 the time and frequency representations of the output signal are
plotted in Fig. 3.8. Again, the analysis in the time domain does not provide a tool to

Fig. 3.7 Signal a and its Fourier magnitude b when α = 0.45

Fig. 3.8 Signal a and its Fourier magnitude b in case of a cubic nonlinearity
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detect the nonlinearity. However, the Fourier domain is again very rich in infor-
mation. We can be see on Fig. 3.8b that for such nonlinearity, only two Fourier
coefficients, c1 and c3 are different from zero for the output signal, in contrast to
what was observed for the quadratic nonlinearity of the previous example.

It appears from this example that the analysis of the amplitude of the harmonics
of a signal is a valuable means of investigation of the physical system which creates
this signal.

Total Harmonic Distortion of a Signal
This rate measures the ratio of the total power of higher order than 1 harmonics to
the power of the fundamental component. We have therefore:

THD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
nj j[ 1

cnj j2
c1j j2

vuut . ð3:62Þ

It can also be written by (3.19):

THD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
nj j[ 1

A2
n þB2

n

A2
1 þB2

1

vuut . ð3:63Þ

Assuming that the amplitude of the second harmonic relative to the fundamental
is 1 %, and that of the rank 3 amplitude is 1.5 %, the THD will be:

THD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:012 þ 0:0152

p ¼ 0:018 ¼ 1:8%, or in decibels −34.9 dB.
For high fidelity music, it is accepted that the THD of an amplifier should be

smaller than 1 % (−40 dB).

Summary
This chapter has been dedicated to the study of complex periodic time signals. We
have shown that theses signals can be expressed as a sum of harmonic signals
whose frequencies are multiples of a fundamental frequency. The expansion
coefficients are calculated by an integral which represents the projection of the
signal on the basis of these harmonic functions. We qualitatively explain the
magnitude of a projection on a given function. Parseval theorem on Fourier series
expresses the power of a signal to be the sum of the squared moduli of the coef-
ficients. We have shown that the coefficients of the optimal approximation of any
signal as a linear combination of a limited number of basis functions are the Fourier
series coefficients. A geometric interpretation of this behavior in Hilbert spaces has
been given. We have shown that the functions ejxt are the eigenfunctions of the

Hermitian operator i ddt and can be used as an orthogonal basis of development of

periodic functions. The first manifestation of the Gibbs phenomenon is observed on
the limited series. It has been shown on an example how the study of the amplitude
of the Fourier coefficients can be used to study the nonlinearity of a system that may
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not be apparent in the time domain. The advantages of a logarithmic representation
(dB) are shown to evaluate nonlinearity.

Exercise
Calculate the Fourier expansion of the sawtooth signal of the following form

(Fig. 3.9). Show that the Fourier coefficients decrease with n like
1
n2
. This decrease

in
1
n2

of the coefficients will be interpreted later in the course as a feature of the

Fourier expansion of continuous functions whose derivatives are discontinuous.

Fig. 3.9 Sawtooth signal
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Chapter 4
The Dirac Distribution

We introduce in this chapter the concept of Dirac distribution. It is conceived as an
infinitely brief pulse occurring at time zero. The Dirac distribution is a very
powerful mathematical tool in signal analysis, especially in the Fourier transform.
We demonstrate here the first golden formula of signal analysis:

Z1

�1
ejxtdx ¼ 2pd tð Þ

We give simple examples illustrating the rules of its use.
The response of a LTI system to a monochromatic signal input has been studied in

Chaps. 1 and 2. In Chap. 3, it was shown that a periodic signal of period T1 can be
considered as the sum of monochromatic signals whose frequencies are multiples of
a fundamental frequency f1 ¼ 1

T1
. To go further, we must focus our attention on

nonperiodic signals. They represent the general case and are richer in information
than a simple monochromatic signal. The study of the response of LTI systems to
signals of any form begins here by calculating the response of these systems to a
special signal x(t) resulting from the summation of infinite monochromatic signals
with the same amplitude (here unit amplitude) for all frequencies:

Z1

�1
ejxtdx ¼ 2pd tð Þ ð4:1Þ

This particular signal, simple in its construction, is very interesting for the
entirety of this course. However, it has no representation in the form of a function.
The mathematical difficulty encountered to obtain the signal in the time domain as
defined by the previous integral is that the integral does not converge.
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This chapter is devoted to the study of this important problem in signal analysis.
It leads to the notion of the Dirac distribution, which is an extremely effective tool
in calculations. We present in the following the notions of convolution product and
of integral and derivatives of the Dirac distribution.

4.1 Infinite Sum of Exponentials. Cauchy Principal Value

Let us study the properties of the integral (4.1):

Zþ1

�1
ejxtdx: ð4:2Þ

Within the meaning of conventional integration of a function, this integral does
not converge. Indeed, the convergence of this improper integral requires that the
following limit exists

lim
A!1
B!�1

ZA

B

ejxtdx ¼ lim
A!1
B!�1

ejtA � ejtB

jt
: ð4:3Þ

However, this limit does not exist since both exponentials appearing in the right
hand side oscillate indefinitely when A and B tend to infinity, and therefore do not
tend to a limit independently of each other. Thus, the integral in (4.1) does not
converge.

One is led to focus on another summation of monochromatic signals corre-
sponding to the Cauchy principal value of the integral. It is defined as

PV
Z1

�1
ejxtdx ¼ lim

A!1

ZA

�A

ejxtdx ð4:4Þ

We now note the symmetry of the limits of integration. If the limit exists in the
definition (4.4), the Cauchy principal value of the integral exists.

In the general case, when the integral of a function exists, the Cauchy principal
value of that integral exists. But the converse is not true: the Cauchy principal value
can exist without the convergence of the integral.
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However, in the case studied here, even in the sense of the Cauchy principal
value, there is no convergence. Indeed,

PV
Z1

�1
ejxtdx ¼ lim

A!1

ZA

�A

ejxtdx ¼ lim
A!1

ejtA � e�jtA

jt
¼ lim

A!1
2 sinAt

t
: ð4:5Þ

This last expression does not tend either to a finite limit 8t as A ! 1 because
the sine oscillates indefinitely between −1 and +1. However, we can see that the
function oscillates more rapidly when A is great. The first zero of the function is
obtained for t0 ¼ p

A. This value tends to zero as A ! 1. The limit value at t ¼ 0 of
the function 2 sinAt

t is 2A. It tends to infinity with A. So, when A is large, the graph of
the function 2 sinAt

t (Fig. 4.1) shows a very pronounced maximum for t ¼ 0 and
oscillations for t 6¼ 0 whose amplitude decreases more quickly as A is greater.

4.2 Dirichlet Integral

However, when integrated over t the product of the function 2 sinAt
t , whose oscil-

lations are fast when A is large, by any function u tð Þ with sufficiently slow vari-
ation, gives an approximately zero contribution to the integral for any value t 6¼ 0.
Let us see this in more detail:

The integral of the product of a function u tð Þ by 2 sinAt
t is called a Dirichlet

integral.

Fig. 4.1 Function 2 sinAt
t as a

function of time
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Let u tð Þ be a continuous function at t ¼ 0. The following relation holds:

lim
A!1

2
Rþ1

�1
uðtÞ sinAtt dt ¼ 2puð0Þ: ð4:6Þ

Proof The function u tð Þ is assumed to be sufficiently regular, continuous and
differentiable at many orders. The study focuses firstly on the integral

Zb

a

uðtÞ � uð0Þ
t

sinAtdt ðwith a\0\bÞ: ð4:7Þ

By assumption, the function uðtÞ�uð0Þ
t is continuous and has a continuous

derivative around 0.

We note f tð Þ ¼ uðtÞ�uð0Þ
t and calculate the integral (4.7) by parts:

Zb

a

f ðtÞ sinAtdt ¼ � 1
A
f ðtÞ cosAt�½ b

a þ
1
A

Zb

a

f 0ðtÞ cosAtdt: ð4:8Þ

We note M a common upper bound to f(t) and f 0ðtÞ in the finite interval a; b½ �.
The modulus of the integral is less than 2M

A þ Mðb�aÞ
A which tends to zero when

A ! 1. Therefore it tends zero. Thus:

lim
A!1

Zb

a

f ðtÞ sinAtdt ¼ lim
A!1

Zb

a

uðtÞ � uð0Þ
t

sinAtdt ¼ 0: ð4:9Þ

This result can be rewritten as:

lim
A!1

Zb

a

uðtÞ
t

sinAtdt ¼ uð0Þ lim
A!1

Zb

a

sinAt
t

dt: ð4:10Þ

We could have anticipated this result with a qualitative reasoning: As shown in
Fig. 4.2, the functionu tð Þ assumed continuous and regular in t ¼ 0 can be considered
constant and equal to u 0ð Þ in the vicinity of t ¼ 0 (neighborhood smaller as A is
greater). Only in this neighborhood, the function 2 sinAt

t is significantly different from 0.
This explains qualitatively the factorization of u 0ð Þ in the second member of (4.10).
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To demonstrate formula (4.6), it remains to be shown that

lim
A!1

Zþ1

�1

sinAt
t

dt ¼ p: ð4:11Þ

We note At ¼ x;Adt ¼ dx and A[ 0;
We are led to evaluate the quasi-integral:

I ¼ PV
Zþ1

�1

sin x
x

dx ð4:12Þ

The function sin x
x which appears many times in signal analysis is called sin c (for

cardinal sine). Then, one notes sin c xð Þ ¼ sin x
x .

This integral has a singularity in x ¼ 0. Summation will only be possible if the
singularity is approached symmetrically around 0. This justifies the use of ½ circle
of radius e in the following calculation. The Cauchy Principal value has to be taken
both for x ¼ 0 and at infinite.

The integration is performed in the complex plane. The auxiliary function ejz

z is
introduced, based on the complex variable z ¼ xþ jy. The principles of integration
of a complex function are detailed in Appendix A1.

The function ejz

z is integrated on the closed contour (see Fig. 4.3) within which it
is holomorphic (continuously differentiable).

Cauchy’s theorem states that the path integral of a function on a closed contour
within which the function is holomorphic is zero. In this case:

Fig. 4.2 Functions 2 sinAt
t

and u tð Þ
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Z�e

�R

ejx

x
dxþ

Z

a

ejz

z
dzþ

ZR

e

ejx

x
dxþ

Z

C

ejz

z
dz ¼ 0:

1ð Þ 2ð Þ 3ð Þ 4ð Þ
ð4:13Þ

The integral (2) is carried clockwise along a semicircle a of radius e, to avoid the
singularity of the function ejz

z at z ¼ 0. The integral (4) is carried along a semicircle
C of radius R.

The sum I [formula (4.12)] is obtained from the summation of integrals (1) and
(3) with the limits e ! 0 and R ! 1.

Firstly, one gets

Zþ1

�1

ejx

x
dx ¼

Zþ1

�1

cos xþ j sin x
x

dx ¼ j
Zþ1

�1

sin x
x

dx: ð4:14Þ

Indeed, since the function cos x
x is odd, its integration on a symmetric interval is

zero:

Zþ1

�1

cos x
x

dx ¼ 0: ð4:15Þ

Therefore:

I ¼
Zþ1

�1

sin x
x

dx ¼ 1
j
Im

Zþ1

�1

ejx

x
dx

0

@

1

A

¼ 1
j
lim ��!R!1

½e!0�

Z�e

�R

ejx

x
dxþ

ZR

e

ejx

x
dx

0

@

1

A

ð4:16Þ

Fig. 4.3 Integration contourC
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I ¼
Zþ1

�1

sin x
x

dx ¼ 1
j
lim ��!R!1

½e!0�
1ð Þþ 3ð Þf g ð4:17Þ

Taking into account Eq. (4.12), we can write

I ¼ PV
Zþ1

�1

sin x
x

dx ¼ � 1
j
lim ��!R!1

½e!0�
2ð Þþ 4ð Þf g ð4:18Þ

The integrals

Z

a
and

Z

C

2ð Þ 4ð Þ
are evaluated at the limits e ! 0 and R ! 1.

The integral (4) on C is zero when R ! 1, because the function 1
z appearing in

the integral tends to zero, which allows the application of Jordan Lemma 3 (see
Appendix 1).

Calculation of integral (2)

Z

a

ejz

z
dz : ð4:19Þ

The integral over the semi-circle can be set using the angle h between the radius
locating the point on the semi-circle and the horizontal.

We can note z ¼ eejh and express the differential element dz on the circle of
constant radius e. The integral over a becomes:

Z

a

ejz

z
dz ¼

Z0

p

ejee
ih

eejh
eejhjdh ¼ j

Z0

p

ejee
ih
dh; ð4:20Þ

where, as e is very small, ejee
jh ffi ej0 ¼ 1.

Thus

j
Z0

p

ejee
ih
dh ffi j

Z0

p

dh ¼ �jp: ð4:21Þ
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Inserting this result in (4.18), we obtain:

I ¼
Zþ1

�1

sin x
x

dx ¼ p: ð4:22Þ

(Note that we have also
R þ1
0

sin x
x dx ¼ p

2 ,as
sin x
x is an even function).

Finally,

lim
A!1

2
Zþ1

�1
uðtÞ sinAt

t
dt ¼ 2puð0Þ: ð4:23Þ

Thus, returning to the notation of Eq. (4.5):

PV
Z1

�1

Z1

�1
u tð Þejxtdxdt¼ 2pu 0ð Þ: ð4:24Þ

Symbolically we write:

Z 1

�1
d tð Þu tð Þdt ¼ u 0ð Þ; ð4:25Þ

where it was noted:

PV
Z1

�1
ejxtdx ¼ 2pd tð Þ: ð4:26Þ

This equation is often written (incorrectly as the main concept of principal value
is omitted) in the form:

R1

�1
ejxtdx ¼ 2pd tð Þ: ð4:27Þ

The formula (4.26) is very important. We could call it the golden formula for the
calculations in signal processing because it can make easy calculations that would
be very difficult without its use.

By a simple change of variable in (4.27), we see that we also have:R1
�1 e�jxtdx ¼ 2pd tð Þ.
Similarly, exchanging roles of x and t we can write:

R1
�1 e�jxtdt ¼ 2pd xð Þ.
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4.3 Dirac Distribution

4.3.1 Definition

Sometimes, Eq. (4.25) is written as:

Z 1

�1
d tð Þu tð Þdt ¼ u 0ð Þ � d;uh i ð4:28Þ

We have noted symbolically

PV
Rþ1

�1
ejxtdx ¼ 2pd tð Þ ð4:29Þ

These last two equations define the Dirac distribution d tð Þ. Sometimes one
speaks of Dirac function. This is incorrect. Indeed, d tð Þ has meaning only within an
integral (4.28).

To avoid too much abstraction in the calculations, we write d tð Þ out of an
integral and visualize it (incorrectly) as a function of time with an arrow tending to
infinity at t ¼ 0 and with a zero value elsewhere. However, one should be aware of
errors that could come from this oversimplification. In case of doubt about the
behavior of d tð Þ in a calculation, one should always return to the full writing (4.28).

We can find qualitatively this result by a numerical simulation:
Since ejxt ¼ cosxtþ j sinxt, the integration of the exponential consists in two

separate integrals of cosine and sine functions of different frequencies.
If one represents graphically some cosine (Fig. 4.4), it is seen that, whatever the

frequency, their common value at t ¼ 0 is 1. While for t 6¼ 0 the cosine have

Fig. 4.4 Graph of ten cosine
functions with different
frequencies
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various values depending on their frequency. It is clear that if we do the sum of all
the cosine, for t 6¼ 0 the amount will be blurred by interference and we obtain 0. It
is only at t ¼ 0 that all cosine being equal to 1, the sum of the infinite number of
terms will be infinite.

The sum of 5000 cosine with frequencies selected using a random number
generator is shown in Fig. 4.5 we find the maximum amplitude value in t ¼ 0 to be
5000 (each cosine is 1 at this point) and the general shape of a sinc function. It is
understandable that if the number of cosines of different frequencies is infinitely
large, the limit of this sum will be a Dirac distribution.

For the sum of imaginary terms in (4.27), we have the same phenomenon of
cancellation for t 6¼ 0, but as all the sine functions are zero at t ¼ 0, their sum will
be zero also.

In summary, the infinite sum of exponentials will be real, infinite at t ¼ 0 and
will be zero elsewhere.

We must not forget that no time function can meet this definition. One talks of a
distribution. The amount found is meaningful only within an integral as defined in
Eq. (4.28).

Another view possible of the Dirac distribution is that of a rectangular pulse
centered at t ¼ 0 (Fig. 4.6). As it is not possible to define a function infinitely short,
the Dirac distribution is defined by a passage to the limit of a rectangular pulse
PTðtÞ starting at time t ¼ � T

2, with width T and height 1=T . The area under the
graph is 1, regardless of T .

Again, d tð Þ cannot be considered as a function, since it is zero everywhere and
infinite at t ¼ 0, a behavior inconsistent with the definition of a function. In Fig. 4.7
we represent the Dirac distribution with the convention accepted by physicists to fix
the imagination.

Fig. 4.5 Sum of 5000 cosine
functions with random
frequencies
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The Dirac distribution can be seen as the limit of different functions dependent
upon a parameter when this parameter tends to zero (or infinite, depending on the
function definition).

In particular, one shows that one may use a Gaussian function whose spread
tends towards zero:

d(t) ¼ lim
c!0

1
c

ffiffiffi
p

p e�
t2

c2 : ð4:30Þ

We also have the following possible definition:

dðtÞ ¼ lim
c!0

1
c

ffiffiffiffi
jp

p ej
t2

c2 : ð4:31Þ

f ðtÞ ¼ 1
c

ffiffiffiffi
jp

p ej
t2

c2 appears as a linearly frequency modulated signal.

4.3.2 Properties of the Dirac Distribution

Rigorous definition of the distribution d tð Þ is given by its action on a function inside
an integral. If the function f(t) is continuous in t ¼ 0, the following equation for-
mally defines d tð Þ:

Zþ1

�1
f ðtÞdðtÞdt ¼ f ð0Þ: ð4:32Þ

Fig. 4.7 Conventional
representation of Dirac
distribution

Fig. 4.6 Rectangular pulse
with area 1
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Special case:
In the case where f ðtÞ ¼ 1, the formula (4.32) becomes:

Zþ1

�1
dðtÞdt ¼ 1: ð4:33Þ

Note:
In formula (4.29), the result remains unchanged if x is replaced by �x in the

integral. We will have therefore:

PV
Zþ1

�1
e�jxtdx ¼ 2pdðtÞ: ð4:34Þ

Similarly, there will be a similar formula integrating over t instead of x:

PV
Zþ1

�1
e�jxtdt ¼ 2pdðxÞ: ð4:35Þ

4.3.3 Definition of the Convolution Product

The convolution product of two functions f(t) and g(t), is defined by the following
integral:

yðtÞ ¼ Rþ1

�1
f ðt0Þg t � t0ð Þdt0 ð4:36Þ

By the change of variables t00 = t�t0; we also have:

yðtÞ ¼ �
Z�1

þ1
f t � t00ð Þg t00ð Þdt00 ¼

Zþ1

�1
f t � t0ð Þg t0ð Þdt0; ð4:37Þ

t00 was replaced by t0 in the last member of the equation.
The symmetry of the formulas (4.36) and (4.37) is noted.
The convolution integral is conventionally written by the following notation:

yðtÞ = f ðtÞ�gðtÞ: ð4:38Þ

Properties: The convolution product is commutative, associative and distribu-
tive. These results come from the properties of integration.
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Convolution of a function with the Dirac distribution:
This convolution is written:

f ðtÞ�dðtÞ ¼
Zþ1

�1
f t�t0ð Þd t0ð Þdt0 ¼ f ðtÞ: ð4:39Þ

We applied the formula (4.28) defining the Dirac distribution to get the result
f(t).

This result shows that the convolution of a function f(t) with dðtÞ gives back f(t).
It is said that dðtÞ is the neutral element of the convolution product.

Translation property of the convolution of a function with d t � t0ð Þ:
The convolution of a function f(t) with d t � t0ð Þ leads to the translation of this

function:

f ðtÞ � d t � t0ð Þ ¼
Zþ1

�1
f t � t0ð Þd t0 � t0ð Þdt0 ¼

Zþ1

�1
f t � t00 � t0ð Þd t00ð Þdt00

¼ f t � t0ð Þ: ð4:40Þ

This last result is significant to remember:

f ðtÞ�d t � t0ð Þ = f t�t0ð Þ: ð4:41Þ

Scale change in the Dirac distribution:
Let the function f(t) be continuous at t ¼ 0 and a a real number different from

zero. We have the following property:

Zþ1

�1
f ðtÞdðatÞdt ¼ 1

aj j f ð0Þ: ð4:42Þ

Indeed, by first treating the case a[ 0:

Zþ1

�1
f ðtÞdðatÞdt ¼ 1

a

Zþ1

�1
f

x
a

� �
dðxÞdx ¼ 1

a
f ð0Þ:

We have noted at ¼ x.
In the case, where a\0:

Zþ1

�1
f ðtÞdðatÞdt ¼ 1

a

Z�1

þ1
f

x
a

� �
dðxÞdx ¼ � 1

a

Zþ1

�1
f

x
a

� �
dðxÞdx ¼ � 1

a
f ð0Þ:
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Again, we have noted at ¼ x. Note the sign change caused by the change in the
integral boundaries in x. Since a\0, x ¼ 1 when t ¼ �1 and x ¼ �1 if t ¼ 1

The formula (4.42) assembles the two cases.
Similarly it can be shown that:

Zþ1

�1
f ðtÞd at � t1ð Þdt ¼ 1

aj j f
t1
a

� �
: ð4:43Þ

4.3.4 Primitive of the Dirac Distribution. Heaviside
Function

As seen in formula (4.33),
R þ1
�1 dðtÞdt ¼ 1: The argument exposed now lacks of

mathematical rigor, but it leads to a result readily understandable and usable by a
physicist.

The Dirac distribution being essentially localized in t ¼ 0, the value of an
integral of dðtÞ will be different depending on whether the integration domain
contains the point t ¼ 0 or not. Thus we can write:

Z t

�1
dðtÞdt ¼ 0 if t\0 and

Z t

�1
dðtÞdt ¼ 1 if t [ 0: ð4:44Þ

Thus we see that the integral of the Dirac distribution is the Heaviside function
UðtÞ (Fig. 4.8).

This function is zero for negative times and is equal to 1 for positive times. Its
value at t ¼ 0 is not important in the calculations. Some authors take 0, others 1,
others ½, for the value at the origin.

Conversely we have:

dUðtÞ
dt ¼ dðtÞ ð4:45Þ

Fig. 4.8 Heaviside function
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4.3.5 Derivatives of the Dirac Distribution

The first derivative is denoted:

d0ðtÞ ¼ dd tð Þ
dt

: ð4:46Þ

Since dðtÞ is a distribution, its derivation presents a problem. To give meaning to
d0ðtÞ, its action on a function f(t) is evaluated through integration:

Zþ1

�1
d0 tð Þf tð Þdt ð4:47Þ

By integrating by parts:
R1
�1 d0ðtÞf ðtÞdt ¼ dðtÞf ðtÞ½ �1�1 � R1

�1 dðtÞf 0ðtÞdt.
In the case where the function f ðtÞ vanishes at infinity, the integrated term

vanishes and we get:

Zþ1

�1
d0 tð Þf tð Þdt ¼ �

Zþ1

�1
d tð Þf 0 tð Þdt ¼ �f 0 0ð Þ: ð4:48Þ

Thus d0ðtÞ is characterized in that its integration with a function f ðtÞ gives the
value of that function at t ¼ 0 with a reversed sign.

It was assumed that the derivative of the function f(t) is continuous at t ¼ 0.
Similarly, it is shown that if the function f(t) (with a bounded support) is suf-

ficiently regular in t ¼ 0, we have:

Z1

�1
d00ðtÞf ðtÞdt ¼f 00ð0Þ: ð4:49Þ

More generally, noting d nð ÞðtÞ the nth derivative of the Dirac distribution, if the
function f(t) is sufficiently regular at t ¼ 0, one has:

Z1

�1
d nð ÞðtÞf ðtÞdt ¼ �1ð Þnf nð Þð0Þ ð4:50Þ

Summary
We have defined in this chapter the Dirac distribution dðtÞ which plays a key role in
the mathematics of signal analysis. The Dirichlet integral, which leads us here to the
definition of the Cauchy’s principal value was introduced for that purpose. Its
evaluation was performed in the complex plane. We found the formula
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R1
�1 e�jxtdx ¼ 2pd tð Þ which plays a very important role in calculations and which
could be called the golden formula in signal analysis. The use of the Dirac distri-
bution in calculations was exposed. Its primitive integral (the Heaviside function)
and its derivatives were defined.

Exercises

I. Represent graphically the distributions d t � 5ð Þ and d tþ 5ð Þ�U tð Þ.
Answer: d tþ 5ð Þ�U tð Þ ¼ U tþ 5ð Þ.

II. Show that we have:

Zþ1

�1
sin 5tdðtÞdt ¼ 0

Zþ1

�1
sin 5tdðtþ 2Þdt ¼ sinð�10Þ

Zþ1

�1
cos 5ðtþ 2Þdðtþ 2Þdt ¼ 1:

Zþ1

�1
cos 5ðtþ 2Þdð2tþ 4Þdt ¼ 1

2
:

III. Calculate the following derivatives: ddt U tð Þ cos x0tð Þ; ddt U tð Þ sin x0tð Þ:
Solution:

d
dt
U tð Þ cos x0tð Þ ¼ dU tð Þ

dt
cos x0tð Þ � U tð Þx0 sin x0tð Þ

¼ d tð Þ cos x0tð Þ � U tð Þx0 sin x0tð Þ:

Otherwise, as d tð Þ cos x0tð Þ ¼ d tð Þ,

Zþ1

�1
d tð Þ cos x0tð Þf tð Þdt ¼ cos 0ð Þf 0ð Þ ¼ f 0ð Þ and

Zþ1

�1
d tð Þf tð Þdt ¼f 0ð Þ:
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Finally:

d
dt
U tð Þ cos x0tð Þ ¼ d tð Þ � U tð Þx0 sin x0tð Þ:

Similarly:

d
dt
U tð Þ sin x0tð Þ ¼ d tð Þ sin x0tð ÞþU tð Þx0 cos x0tð Þ ¼ U tð Þx0 cos x0tð Þ;

because

Zþ1

�1
d tð Þ sin x0tð Þf tð Þdt ¼ sin 0ð Þf 0ð Þ ¼ 0:
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Chapter 5
Fourier Transform

In the previous chapter the Dirac distribution has been introduced as a sum of
exponentials ejxt with all possible frequencies and amplitude as one. Equation (4.35)
can be rewritten as 1

2pPV
R þ1
�1 ejxtdx ¼ dðtÞ. Using this formula as a start, we

introduce naturally the notion of impulse response of an LTI system. The impulse
response appears to be the inverse Fourier transform of the frequency response of the
system. This leads to the general definition of the inverse and direct Fourier trans-
forms. We examine in this chapter the first main results given by Fourier transfor-
mation. The Parseval–Plancherel energy theorem is demonstrated. The important
Poisson’s summation formula which may be called the second golden formula in
signal analysis is given as

X1

n¼�1
e�jxnT0 ¼ 2p

T0

X1

n¼�1
d x� n

2p
T0

� �
:

Finally, in this chapter, we present the elements of the two-dimensional Fourier
transform.

5.1 Impulse Response of an LTI System

The impulse response of a system is defined as the system response to the input
signal dðtÞ, when the system has not been prepared in advance. For instance, in the
case of a first-order electrical system met in Chap. 2, non-preparation consists in the
fact that the capacitor is not charged when the emf eðtÞ is applied to the circuit.

In the following, the system is assumed to be linear time invariant (LTI). It is
now shown that the impulse response which will be denoted as hðtÞ is connected to
the frequency response of the system HðxÞ by integration. The reasoning is
strengthened by the use of diagrams.
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In Chap. 1 it has been shown that the LTI system response to an input is
HðjxÞejxt. It was also said that the function HðjxÞ was often HðxÞ noted in signal
analysis.

The system is linear, by hypothesis; its response to a sum of exponentials
(represented here by integration in the sense of principal value) is the sum of each
individual response according to the following scheme:

If, moreover, the input signal is divided by 2p, due to its linearity, the system
response is also divided by 2p. The Dirac distribution may be recognized in the
input signal. By convention, the system output is noted as hðtÞ.

To summarize, we note that if the input signal is

dðtÞ ¼ 1
2p

PV
Zþ1

�1
ejxtdx; ð5:1Þ

the output will be

hðtÞ ¼ 1
2p

PV
Zþ1

�1
HðxÞejxtdx: ð5:2Þ

The Cauchy principal value of the integral (5.2) defines the inverse Fourier
transform. It is said that the impulse response of an LTI system is the inverse
Fourier transform of the frequency response.

The principal value notation PV is often overlooked because it can embarrass
students unfamiliar with this concept. This notation is omitted in the following
while keeping in mind that the convergence of the PV is less restrictive than that of
the improper integral. However, in practical calculations, we will have the right to
let the boundaries go symmetrically to infinity in the evaluation of Eq. (5.2).
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Note that, according to the above definition of the impulse response, it exists
only if the sum (5.2) converges (in Cauchy’s sense). In particular, it is necessary for
the function HðxÞ to be bounded for all x. Accordingly, the transfer function HðpÞ
of the system should not have a pole on the imaginary axis (axis jx). It is also
necessary that the modulus of the function HðxÞ decreases quickly enough when
xj j ! 1 in order for integration to be possible.

5.2 Fourier Transform of a Signal

5.2.1 Direct Fourier Transform

In the previous section, the concept of inverse Fourier transform was encountered
before the concept of direct Fourier transform. The reason is that the concept of
superposition of exponential basis of formulas (5.1) and (5.2) appears to be fun-
damental in the understanding of the Fourier transform.

The Fourier transform XðxÞ of a signal xðtÞ is defined by the expression

XðxÞ ¼
Zþ1

�1
xðtÞe�jxtdt: ð5:3Þ

The existence of XðxÞ is dependent on the integral convergence.
We see for example that it is necessary for the function to decrease rapidly

enough at infinity so that the integral converges. A set of functions that play an
important role is the set of square-summable (integrable)functions. This set gen-
erates a Hilbert space L2.

In contrast, a periodic function, a sine example, does not decrease at infinity and
will not have a Fourier transform in the sense of ordinary convergence of an
integral. However, as noted above in the discussion of the Dirac distribution, it is
possible to give a meaning to certain non-convergent summations. The sine func-
tion has a Fourier transform in the sense of distributions.

It is conventional to use lowercase to write functions in the time domain (for
example xðtÞ) and to write the first letter in capital in the Fourier domain (example
XðxÞ). It is recommended to follow this convention that allows better tracking
during calculations on these functions. Scoring with a capital the first letter of the
Heaviside function UðtÞ is a rare case where the convention is not respected.

5.2.2 Inverse Fourier Transform

Having defined in the preceding paragraph the Fourier transform XðxÞ of a function
xðtÞ, it is now shown that it is possible to calculate xðtÞ, knowing XðxÞ.
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Let XðxÞ be the Fourier transform of xðtÞ, using the integration variable t0 for
demonstration purposes, we write

XðxÞ ¼
Zþ1

�1
x t0ð Þe�jxt0dt0: ð5:4Þ

Consider the integral

ZA

�A

XðxÞejxtdx ¼
ZA

�A

Zþ1

�1
x t0ð Þejxte�jxt0dxdt0: ð5:5Þ

We assume now without justification that the order of integration does not
matter. Reversing the order of summations, however, requires that restrictive
conditions on the convergence of the integrals are verified (the discussion of these
conditions is beyond the scope of this book). These conditions are generally met in
problems in signal analysis. In the following, the order of the summations will be
systematically switched when necessary.

As demonstrated in Sect. 5.4,

lim
A!1

ZA

�A

ejx t�t0ð Þdx ¼ 2pd t � t0ð Þ: ð5:6Þ

By taking the limit of Eq. (5.5) when A ! 1,

lim
A!1

ZA

�A

XðxÞejxtdx ¼
Zþ1

�1
x t0ð Þd t � t0ð Þ2pdt0 ¼ 2pxðtÞ: ð5:7Þ

We use equation

Zþ1

�1
x t0ð Þd t � t0ð Þdt0 ¼ xðtÞ: ð5:8Þ

The relationship (5.7) is written as

xðtÞ ¼ 1
2p

lim
A!1

ZA

�A

XðxÞejxtdx: ð5:9Þ
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Noting PV the Cauchy principal value of the integral, we have finally

xðtÞ ¼ 1
2p

PV
Zþ1

�1
XðxÞejxtdx: ð5:10Þ

This formula is that of the inverse Fourier transform, which calculates xðtÞ from
XðxÞ.

As stated previously, the convergence condition of the principal value is less
restrictive than that of the integral (improper). Indeed, it is necessary to have
convergence when the limits are reached independently when the variable goes to
�1 and þ1 in order that the integral can exist. In the summation leading to the
Cauchy principal value, the two bounds �A and þA tend symmetrically to infinity.
In that case, there may be a compensation phenomenon between contributions at
infinity due to the symmetry of the bounds causing a finite limit of the sum.

As already mentioned, in practice one often omits PV in giving the formula and
write symmetrically the pair of Fourier direct and inverse transforms:

Direct Fourier Transform:

XðxÞ ¼
Zþ1

�1
xðtÞe�jxtdt: ð5:11Þ

Inverse Fourier Transform:

xðtÞ ¼ 1
2p

Zþ1

�1
XðxÞejxtdx: ð5:12Þ

As it appears in the inverse transformation formula, a signal xðtÞ which has a
Fourier transform can be considered as a sum of exponentials ejxt weighted by the
factor XðxÞ. All frequencies are involved in the construction of xðtÞ.

Thus, even a non-periodic function of time appears as a sum of periodic func-
tions (the exponential ejxt). This result may seem surprising. On the other hand,
how the sum of periodic functions which do not vanish at infinity could represent a
non-periodic function xðtÞ that could be null at infinite?

However, this is possible. Just think of the phenomenon of destructive inter-
ference encountered in optics, in which the sum of light vibrations can lead to dark
areas on a screen.

The acceptance of the concept that Fourier developed in his famous paper on the
propagation of heat proved difficult. The community of mathematicians was divided
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at that time on that acceptance. The Fourier transform is now one of the pillars of
the modeling of physical phenomena.

Mathematically, we can consider the Fourier transform as the development of
the function xðtÞ on the infinite, continuous basis of exponential ejxt with all pos-
sible frequencies. The function XðxÞ is the coefficient of the development of xðtÞ
relative to the basis function ejxt. It can be written as a scalar product:

XðxÞ ¼
Zþ1

�1
xðtÞe�jxtdt ¼ xðtÞ; ejxt� �

:

Since the scalar product ejxt; ejx
0t

� � ¼ R1
�1 ej x�x0ð Þtdt ¼ 2pd x� x0ð Þ is zero for

x 6¼ x0, we say that these functions are orthogonal. The passage to the limit x0 !
x acts as the normalization condition. The reader is encouraged to refer to the
discussion of Hilbert spaces in Chap. 3 to have a general perspective of the problem
addressed.

5.3 Properties of Fourier Transform

5.3.1 Symmetry Properties of the Fourier Transform
of a Real Signal

Let xðtÞ be a real signal and XðxÞ ¼ XReðxÞþ jXImðxÞ its Fourier transform:

XReðxÞþ jXImðxÞ ¼
Zþ1

�1
xðtÞe�jxtdt ¼

Zþ1

�1
xðtÞ cosxt dt � j

Zþ1

�1
xðtÞ sinxt dt:

ð5:13Þ

Identifying the real and imaginary parts of the two members of the equation, and
as xðtÞ is real, it becomes

XReðxÞ ¼
Zþ1

�1
xðtÞ cosxt dt; ð5:14Þ

and

XImðxÞ ¼ �
Zþ1

�1
xðtÞ sinxt dt: ð5:15Þ
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Since cosxt and sinxt are, respectively, even and odd functions of x, we have

XReðxÞ ¼
Zþ1

�1
xðtÞ cosxtdt even function of x

and

XIm xð Þ ¼ �
Zþ1

�1
x tð Þ sinxtdt odd function of x

Similarly, again using parities of cosxt and sinxt functions, it is seen that the
modulus XðxÞj j is even and the phase uðxÞ odd. The modulus is given by

XðxÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
ReðxÞþX2

ImðxÞ
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zþ1

�1
xðtÞ cosxt dt

0

@

1

A

2

þ
Zþ1

�1
xðtÞ sinxt dt

0

@

1

A

2
vuuut : ð5:16Þ

XðxÞj j is an even function because the squaring cancels the change of sign of
sinxt.

The phase

uðxÞ ¼ Arg
XImðxÞ
XReðxÞ

� �
¼ Arg

� R þ1
�1 xðtÞ sinxt dt

R þ1
�1 xðtÞ cosxt dt ; ð5:17Þ

is an odd function of x since the sign of sinxt changes and that of cosxt stays the
same in the change x to �x.

Special cases:

If the signal x tð Þ is real and even, the imaginary part of its Fourier transform is
zero, as can be seen from Eq. (5.15) which becomes the integral of an odd function.
Similarly, if x tð Þ is real and odd, the real part of its Fourier transform is zero as
shown by Eq.(5.14).

5.3.2 Time-Delay Property of the Fourier Transform

Let f ðtÞ ¼ xðt � t0Þ be the function xðtÞ delayed by t0. Its Fourier transform is
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FðxÞ ¼
Zþ1

�1
x t � t0ð Þe�jxtdt ¼

Zþ1

�1
x t0ð Þe�jx t0 þ t0ð Þdt0:

We have written t0 ¼ ðt � t0Þ.

FðxÞ ¼ e�jxt0

Zþ1

�1
x t0ð Þe�jxt0dt0 ¼ e�jxt0XðxÞ: ð5:18Þ

The Fourier transform of the delayed function is equal to the Fourier transform
of the original function multiplied by the phase factor e�jxt0 . This result is
important. It plays a large role in signal analysis calculations.

5.4 Power and Energy of a Signal; Parseval–Plancherel
Theorem

The power (instantaneous) PðtÞ of a complex, certain signal xðtÞ is defined as

PðtÞ ¼ xðtÞx�ðtÞ ¼ xðtÞj j2: ð5:19Þ

If the signal xðtÞ is real, the instantaneous power becomes

PðtÞ ¼ x2ðtÞ: ð5:20Þ

The energy E of a signal is the integral of the power for time varying from �1
to þ1. In the case of a real signal, the energy is given by

E ¼
Zþ1

�1
x2ðtÞdt: ð5:21Þ

The energy of a complex signal will be

E ¼
Zþ1

�1
xðtÞj j2dt: ð5:22Þ

Parseval–Plancherel theorem states how the energy can be calculated in the time
domain or in the frequency domain. It is written here in the general case of a
complex signal as
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E ¼
Zþ1

�1
xðtÞj j2dt ¼ 1

2p

Zþ1

�1
XðxÞj j2dx: ð5:23Þ

Indeed,
Zþ1

�1
xðtÞj j2dt ¼

Zþ1

�1
xðtÞx�ðtÞdt: ð5:24Þ

Since we can write xðtÞ ¼ 1
2pPV

R þ1
�1 XðxÞejxtdx, and

x�ðtÞ ¼ 1
2p

PV
Zþ1

�1
XðxÞejxtdx

0

@

1

A

�

¼ 1
2p

PV
Zþ1

�1
X�ðxÞe�jxtdx: ð5:25Þ

Using x0 as the variable of integration in one of the two integrals, we may write

Zþ1

�1
xðtÞj j2dt ¼ 1

ð2pÞ2
Zþ1

�1
PV

Zþ1

�1
PV

Zþ1

�1
XðxÞX� x0ð Þejxte�jx0tdxdx0dt:

We first evaluate the integral with respect to time in the second member.
Since PV

R þ1
�1 ej x�x0ð Þtdt ¼ 2pd x� x0ð Þ, it appears necessary to evaluate the

principal value of the integral in the left side.
We have

PV
Zþ1

�1
xðtÞj j2dt ¼ 1

2p
PV

Zþ1

�1
PV

Zþ1

�1
XðxÞX� x0ð Þd x� x0ð Þdxdx0

After integration on x0, we finally have

PV
Zþ1

�1
xðtÞj j2dt ¼ 1

2p
PV

Zþ1

�1
XðxÞX�ðxÞdx ¼ 1

2p
PV

Zþ1

�1
XðxÞj j2dx; ð5:26Þ

which is the expression of the Parseval theorem expressed by Eq. (5.23).
In practice, xðtÞ is often a real function of time. Parseval’s theorem in this case

takes the following form:

E ¼ PV
Zþ1

�1
xðtÞ2dt ¼ 1

2p
PV

Zþ1

�1
XðxÞj j2dx: ð5:27Þ
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The quantity XðxÞj j2 appears as the spectral energy density. In practice, we note
that we can calculate the energy of a signal by integration in the time domain or in
the frequency domain. The notation PV is generally omitted in writing the theorem.

5.5 Deriving a Signal and Fourier Transform

In the following the FT XdðxÞ of the derivative of a signal xðtÞ is inferred from the
FT XðxÞ of that signal:

XdðxÞ ¼
Zþ1

�1

dxðtÞ
dt

e�jxtdt:

We integrate by parts: XdðxÞ ¼ xðtÞe�jxt
� �1

�1 þ jx
R þ1
�1 xðtÞe�jxtdt.

When the function xðtÞ vanishes at infinity, as is the case for a finite energy
signal (this is not the case of a sine or cosine who oscillate indefinitely between �1
and þ 1), the first term cancels out, and we have

XdðxÞ ¼ jx
Zþ1

�1
xðtÞe�jxtdt ¼ jxXðxÞ: ð5:28Þ

Generalizing, and in the case where the derivatives of xðtÞ are continuous up to
order n� 1 and tend to zero as t tends to infinity, we get

dnxðtÞ
dtn

�!TF ðjxÞnXðxÞ: ð5:29Þ

Conversely, in the (very unlikely) case where primitives (antiderivatives) of xðtÞ
of order n are zero for t ! 1, knowing the FT XðxÞ of the signal xðtÞ, we can
deduce the FT of its primitives as

ðPrimitive of order n of xðtÞÞ�!TF 1
ðdxÞn XðxÞ: ð5:30Þ

We note that if the function xðtÞ does not vanish for t ! 1 the above formula is
not applicable.
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5.6 Fourier Transform of Dirac Distribution
and of Trigonometric Functions

Fourier transform of dðtÞ:

FðdðtÞÞ ¼
Zþ1

�1
dðtÞ e�jxtdt ¼ e�jx0 ¼ 1: ð5:31Þ

Fourier transform of 1:

Since PV
R þ1
�1 e�jxtdt ¼ 2pdðxÞ, the Fourier transform of 1 is 2pdðxÞ.

Once again, only the PV of integrals appears, and strictly speaking, the constant
function f ðtÞ ¼ 1 has no FT if the definition (5.11) is adopted.

Henceforth, we will often omit to include PV in the formulas on the Fourier
transform to not overload the notation.

Fourier Transforms of cosx0t and sinx0t:

By definition, the transform of cosx0t is

Zþ1

�1
cos x0tð Þe�jxtdt ¼

Zþ1

�1

ejx0t þ e�jx0t

2

� �
e�jxtdt: ð5:32Þ

By the sum of two integrals, we have

1
2

Zþ1

�1
e�jðxþx0Þtdtþ 1

2

Zþ1

�1
e�jðx�x0Þtdt ¼ pd x� x0ð Þþ pd xþx0ð Þ: ð5:33Þ

So

F cosx0tð Þ ¼ pd x� x0ð Þþ pd xþx0ð Þ: ð5:34Þ

Similarly, we have

F sinx0tð Þ ¼ �j pd x� x0ð Þ � pd xþx0ð Þð Þ: ð5:35Þ

In Fig. 5.1 we see the real part of F cosx0tð Þ, and the imaginary part is zero.
The imaginary part of F sinx0tð Þ is shown in Fig. 5.2. The real part is zero.
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Fourier Transform of a Dirac comb

A Dirac comb is a periodic sequence of Dirac impulses (Fig. 5.3). The period of
these pulses is noted T0:

( )t = ( )0
n

t nTδ
∞

=−∞

−∑ ð5:36Þ

Calculation of the Fourier transform of this comb:

ð5:37Þ

It was assumed that the conditions for interchanging the order of summations
were met. This sum appears as the Fourier series of a periodic function of x with
period 2p

T0
, because each exponential is periodic in x. The result of this summation is

noted YðxÞ. As shown in Eq. (5.31), the coefficients of its Fourier series are all
equal to 1.

0ω−

(         )0+

0ω− 0ω ω0

ω ωπδ (         )0ω ωπδ −

Fig. 5.1 Fourier transform of
cosx0t

+

0ω− 0 0ω ω

(        )0ω ωπδ −−

(        )0ω ωπδ
Fig. 5.2 Fourier transform of
sinx0t

Fig. 5.3 Dirac comb
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According to the general properties of Fourier series, they can be deduced from
YðxÞ by the following formula:

cn ¼ 1 ¼ T0
2p

Z
p
T0

� p
T0

YðxÞejnxT0dx: ð5:38Þ

We see qualitatively that the only way to get 1 regardless of n, i.e., regardless of
the speed of variation with x of the exponential functions, is that YðxÞ is zero for
all frequencies except for x ¼ 0. YðxÞ cannot be a function because it is too
irregular. It is the Dirac distribution dðxÞ (within a multiplicative coefficient).

Between � p
T0

and p
T0
, we must have

YðxÞ ¼ 2p
T0

dðxÞ: ð5:39Þ

Finally, as YðxÞ is periodic, we have the following:

Poisson summation formula

X1

n¼�1
e�jxnT0 ¼ 2p

T0

X1

n¼�1
d x� n

2p
T0

� �
: ð5:40Þ

In conclusion, it is seen that the Fourier transform of the Dirac comb with
period T0 is a Dirac comb with period 2p

T0
:

ð5:41Þ

As will be seen in Chap. 6, the Poisson formula plays an important role in the
calculations of the Fourier transform of periodic signals.

5.7 Two-Dimensional Fourier Transform

Let x t1; t2ð Þ be a function of two variables. Its two-dimensional FT is defined by

X x1;x2ð Þ ¼
Zþ1

�1

Zþ1

�1
x t1; t2ð Þe�jx1t1e�jx2t2dt1dt2: ð5:42Þ
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It may be shown as above (formula 5.12) that the inversion formula is

x t1; t2ð Þ ¼ 1
4p2

Zþ1

�1

Zþ1

�1
Xðx1;x2Þejx1t1ejx2t2dx1dx2: ð5:43Þ

The principal value notations of these integrals have been omitted.
This transformation is widely used in the field of treatment of 2D images. In this

case, the time variables t1; t2 are replaced by space variables x1; x2. The conjugate
variables are noted as k1; k2 and are called spatial frequencies. One has, therefore,

F k1; k2ð Þ ¼
Zþ1

�1

Zþ1

�1
f x1; x2ð Þe�jk1x1e�jk2x2dx1dx2 ð5:44Þ

and

f x1; x2ð Þ ¼ 1
4p2

Zþ1

�1

Zþ1

�1
Fðk1; k2Þejk1x1ejk2x2dk1dk2: ð5:45Þ

Using of a vector notation and writing~x ¼ x1
x2

				 and ~k ¼ k1
k2

				 , we also have

F k1; k2ð Þ ¼
Zþ1

�1

Zþ1

�1
f x1; x2ð Þe�j~k:~xdx1dx2 ð5:46Þ

and

f x1; x2ð Þ ¼ 1
4p2

Zþ1

�1

Zþ1

�1
Fðk1; k2Þej~k:~xdk1dk2: ð5:47Þ

These formulas can be written in polar coordinates r; h, and k;/ with

x1 ¼ r cos h; x2 ¼ r sin h and dx1dx2 ¼ rdrdh:

k1 ¼ k cos/; k2 ¼ k sin/ and dk1dk2 ¼ kdkd/:
ð5:48Þ

F k1; k2ð Þ ¼
Zþ1

0

Z2p

0

f r; hð Þe�jk1r cos he�jk2r sin hrdrdh ð5:49Þ
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and

f ðr; hÞ ¼ 1
4p2

Zþ1

0

Z2p

0

Fðk;/Þejkr cos/ cos hejkr sin/ sin hkdkd/: ð5:50Þ

Special case:

If the function f ðr; hÞ depends only on r, the formula (5.49) becomes

F k1; k2ð Þ ¼
Zþ1

0

f ðrÞrdr
Z2p

0

e�jkr cos/ cos he�jkr sin/ sin hdh; ð5:51Þ

or

F k1; k2ð Þ ¼
Zþ1

0

f ðrÞrdr
Z2p

0

e�jkr cosð/�hÞdh:

The following important mathematical result is now used:

Z2p

0

ejkr cos hdh ¼ 2pJ0ðkrÞ; ð5:52Þ

where J0 xð Þ is the first kind Bessel function of order 0.
The integration on h being performed over the period of the cosine function, the

integral no longer depends upon /.
We then have F k1; k2ð Þ ¼ 2p

R1
0 f ðrÞJ0ðkrÞrdr.

It is noted that the result depends only upon k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
.

We have

FðkÞ ¼ 2p
Z1

0

f ðrÞJ0ðkrÞrdr: ð5:53Þ

Conversely, the formula (5.50) becomes

f ðrÞ ¼ 1
2p

Zþ1

0

FðkÞJ0ðkrÞkdk: ð5:54Þ
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We say that the functions gðrÞ ¼ 2pf ðrÞ and FðkÞ are Hankel transforms
(Fourier–Bessel transforms) of each other.

More generally, the Hankel transform of order n n� � 1
2


 �
of a function f ðrÞ is

FnðkÞ ¼
Z1

0

f ðrÞJnðkrÞrdr: Inversely f ðrÞ ¼
Z1

0

FnðkÞJnðkrÞrdr: ð5:55Þ

Jn xð Þ is the first kind Bessel function of order n.
Let us recall the orthogonality property of Bessel functions:

Z1

0

JnðkrÞJn k0rð Þrdr ¼ 1
k
d k � k0ð Þ; ð5:56Þ

with k; k0 [ 0.
Parseval–Plancherel theorem:

Z1

0

f ðrÞgðrÞrdr ¼
Z1

0

FnðkÞGnðkÞkdk: ð5:57Þ

Summary
Using the definition of the Dirac distribution, we have been able to show that the
impulse response of an LTI system is the inverse Fourier transform of its frequency
response. The direct and Fourier transform formulas result naturally. The important
property of the phase factor induced by a time delay of a signal is given. The
Parseval–Plancherel theorem is demonstrated. First important results were obtained:
the Fourier transforms of a Dirac distribution, trigonometric functions, and a Dirac
comb. The second golden rule of signal analysis, the Poisson’s summation formula,
was established. We have given elements of the two-dimensional Fourier transform.

Next chapter will study the use of Fourier transform in analyzing linear, sta-
tionary systems.

Exercises

1. Recall the value of the FT of function hðtÞ ¼ 1
RC e

� t
RCUðtÞ. Give the FT of dh

dt by a
direct calculation and by using Eq. (5.29).

2. Use the orthogonality property of Bessel functions given in Eq.(5.56) to verify
the coherence of the two-dimensional transform pair given in Eqs. (5.53) and
(5.54).

3. Using the integration property
R
J0ðxÞxdx ¼ xJ1ðxÞ, find the 2D Fourier trans-

form of a circular disk (Result known as Airy pattern in optics).
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Chapter 6
Fourier Transform and LTI Filter Systems

In the previous chapter, the Fourier transform and its inverse have been introduced
in a natural way by studying the response of an LTI system using a sum of complex
exponentials ejωt of equal amplitude. The response of an LTI system to any form of
input signal is studied in this chapter. We demonstrate the relationships in the time
and frequency domains between the input and output signals. A convolution in the
time domain corresponds to a product in the frequency domain. We give the
expression of the Fourier transform of the product of two functions. The formula of
the FT of a periodic function establishes a bridge between Fourier series and
Fourier transform. The deterministic correlation function is defined. The important
application of measuring the delay between an impulsive signal and its replica is
detailed. We give as an example the use in radar and sonar of a chirp signal. The
spreads of a signal in time and frequency domains are defined. The Heisenberg–
Gabor inequality is demonstrated. This inequality becomes equality in the case of a
Gaussian signal. The chapter concludes with a discussion of the impossibility for a
signal to have infinite supports simultaneously in time and frequency domains.

6.1 Response of a LTI System to Any Form
of Input Signal

The reasoning is illustrated by a series of diagrams.
By definition of the frequency response of a system to an input of the signal with

form ejxt, the output signal will be written as HðxÞ ejxt:

© Springer International Publishing Switzerland 2016
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If the input signal ejxt is multiplied by an amplitude XðxÞ, the system being
linear, the output will also be multiplied by XðxÞ:

The input signals are superimposed by an integration over x. The system lin-
earity leads to an integration of individual response outputs:

To complete, dividing by 2p, it shows the inverse Fourier transform of XðxÞ.
Linearity results in the output division by the same factor 2p:

In summary, an input signal is given by

xðtÞ ¼ 1
2p

Zþ1

�1
XðxÞejxtdx: ð6:1Þ

The system will provide the output signal yðtÞ whose form is

yðtÞ ¼ 1
2p

Zþ1

�1
HðxÞXðxÞejxtdx: ð6:2Þ

Denoting YðxÞ the Fourier transform of yðtÞ, it is seen that we have the fol-
lowing property:

YðxÞ ¼ HðxÞXðxÞ: ð6:3Þ

Thus, the Fourier transform of the output signal of an LTI filter is the product
of the Fourier transform of the input signal by the filter frequency response.
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6.2 Temporal Relastionship Between the Input
and Output Signals of an LTI Filter

One starts from Eq. (6.2): yðtÞ ¼ 1
2p

R þ1
�1 HðxÞXðxÞejxtdx.

In this expression, we use XðxÞ ¼ R þ1
�1 xðt0Þe�jxt0dt0 in the integral giving yðtÞ,

and then swaps the order of integration (assuming that the conditions for the
validity of the permutation in integrations are met):

yðtÞ ¼ 1
2p

Z þ1

�1
HðxÞ

Z þ1

�1
x t0ð Þe�jxt0 dt0ejxt dx

¼
Z þ1

�1
x t0ð Þdt0 1

2p

Z þ1

�1
HðxÞejx t�t0ð Þdx:

ð6:4Þ

The integral on x gives h t � t0ð Þ. We thus have

yðtÞ ¼
Z þ1

�1
x t0ð Þ h t � t0ð Þdt0: ð6:5Þ

One recognizes a convolution integral that we will note symbolically as

yðtÞ ¼ xðtÞ � hðtÞ: ð6:6Þ

It is noteworthy that the output signal of an LTI system (not prepared) is the
convolution of the input signal with the system impulse response.

Note The convolution product of xðtÞ and hðtÞ does not provide a complete solution
to the problem in the case where the system is “prepared” by initial conditions. In the
case of the first-order system found in Chap. 2, this preparation corresponds, for
example, to an electric charge placed on the capacitor plates prior to application of
the input signal. In this case, the general solution comprises additional terms.

Physical systems are generally damped; these additional terms disappear in the
long run where only the term xðtÞ � hðtÞ is likely to remain. We will call the first
term as transient, the term resulting from the convolution representing the sta-
tionary solution.

Direct proof of formula (6.6).
Using the property of the Dirac distribution, we write

xðtÞ ¼
Z1

�1
xðsÞdðt � sÞds: ð6:7Þ
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The output result of the action of the system operator O on the input signal is

yðtÞ ¼ OðxðtÞÞ ¼ O
Zþ1

�1
xðsÞ dðt � sÞ ds

0

@

1

A: ð6:8Þ

Due to the linearity, we can swap the integral operator and the system
operator O:

yðtÞ ¼
Zþ1

�1
xðsÞOðdðt � sÞÞ ds: ð6:9Þ

Note that the operator O did not act on xðsÞ which is considered as the weight
assigned to the Dirac pulse dðt � sÞ which is a function of time t.

By definition of h tð Þ, we have

hðtÞ ¼ OðdðtÞÞ: ð6:10Þ

Since the system is time invariant we have

Oðdðt � sÞÞ ¼ hðt � sÞ: ð6:11Þ

It now comes using the system linearity property:

yðtÞ ¼
Zþ1

�1
xðsÞ hðt � sÞ ds ¼ xðtÞ � hðtÞ: ð6:12Þ

In summary, it has been shown that the Fourier transform of the convolution of
two functions is the simple product of the Fourier transforms of these two functions:

yðtÞ ¼ xðtÞ � hðtÞ is transformed into YðxÞ ¼ XðxÞHðxÞ:

6.3 Fourier Transform and Convolution in Physics

Many physical systems have the LTI property. The propagation of an electrical
signal, light or sound, in a medium can be interpreted as the passage of a signal in a
filter, most often LTI. As has been shown, after passing through the filter, the signal
is the convolution of the input signal by the impulse response of the filter. Some
convolution products are calculated in Chap. 7, and we will find that even in the
simplest case, the calculation is thorny. In contrast, in the frequency domain, the
Fourier transform of the output signal is simply the product of the input signal
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Fourier transform by the system frequency response. Thus, most often in Physics,
system analysis will be performed for a monochromatic input signal in the system.
The response to any signal is obtained by inverse Fourier transform of the product
of the monochromatic output function (frequency response) with the Fourier
transform of the input signal.

6.4 Fourier Transform of the Product of Two Functions

The formula now demonstrated conveys great interest in practice.
Consider the product of two functions

gðtÞ ¼ xðtÞf ðtÞ: ð6:13Þ

Calculation of its Fourier transform:

GðxÞ ¼
Zþ1

�1
xðtÞf ðtÞe�jxtdt: ð6:14Þ

Expressing f ðtÞ from its inverse FT,

GðxÞ ¼ 1
2p

Zþ1

�1
xðtÞ

Z þ1

�1
F x0ð Þejx0te�jxt dx0dt: ð6:15Þ

By interchanging the order of integration,

GðxÞ ¼ 1
2p

Zþ1

�1
F x0ð Þdx0

Zþ1

�1
xðtÞe�j x�x0ð Þt dt¼ 1

2p

Zþ1

�1
F x0ð ÞX x� x0ð Þ dx0:

ð6:16Þ

A convolution integral is recognized as calculated in the Fourier domain.
Thus, the Fourier transform of a simple product of two functions of time is the

convolution of the Fourier transforms of the two functions divided by 2p:

gðtÞ ¼ xðtÞf ðtÞ is transformed inGðxÞ ¼ 1
2p

XðxÞ � FðxÞ: ð6:17Þ
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6.5 Fourier Transform of a Periodic Function

The development of a periodic function in Fourier series was studied in Chap. 3.

The periodic function f ðtÞ of period T1 is written in the form f tð Þ ¼ Pþ1

n¼�1
cnejnx1t.

The Fourier coefficients are given by integrals over one period:

cn ¼ 1
T1

RT1

0
f tð Þe�jnx1t dt.

We seek here the relationship between the Fourier transform of f ðtÞ and the
coefficients of its Fourier series expansion. We denote f0ðtÞ the function equal to
f ðtÞ over a period and zero elsewhere. The function f ðtÞ appears as the infinite sum
of the function f0ðtÞ and its translated of all the multiples of the period T1:

f ðtÞ ¼
Xþ1

n¼�1
f0 t � nT1ð Þ: ð6:18Þ

Using the property that the translated of a function can be written as a convo-
lution f0 t � nT1ð Þ ¼ f0 tð Þ � d t � nT1ð Þ, we can rewrite Eq. (6.18) in the following
form:

f ðtÞ ¼
Xþ1

n¼�1
f0ðtÞ � d t � nT1ð Þ; ð6:19Þ

or using the distributive property of convolution:

f ðtÞ ¼ f0ðtÞ �
Xþ1

n¼�1
d t � nT1ð Þ: ð6:20Þ

Calculation of the FT of f tð Þ: The FT of this convolution is equal to the products
of FTs.

We can write

FðxÞ ¼ F0ðxÞ
Zþ1

�1

Xþ1

n¼�1
d t � nT1ð Þe�jxtdt ¼ F0ðxÞ

Xþ1

n¼�1
e�jxnT1 ; ð6:21Þ

with

F0ðxÞ ¼
Zþ1

�1
f0ðtÞe�jxtdt ¼

Z T1

0
f0ðtÞe�jxtdt: ð6:22Þ
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Using the Poisson summation formula (see Chap. 5), we get

FðxÞ ¼ F0ðxÞ
Xþ1

n¼�1
d x� nx1ð Þ; ð6:23Þ

and we can write

FðxÞ ¼
Xþ1

n¼�1
F0 nx1ð Þd x� nx1ð Þ: ð6:24Þ

The spectrum of F xð Þ is a line spectrum, a Dirac comb. The weights associated
with each Dirac distribution are the values of the function at theirs abscissa:

F0 nx1ð Þ ¼
ZT1

0

f0ðtÞe�jnx1tdt ¼ cn: ð6:25Þ

It was recognized in F0 nx1ð Þ the coefficients cn of the Fourier series of f(t).
The results of this section are important since they provide a bridge between

Fourier series and Fourier transform developments of a periodic function.

6.6 Deterministic Correlation Functions

The deterministic cross-correlation function of two signals xðtÞ and yðtÞ is defined
by the integral

rxyðsÞ ¼
Zþ1

�1
xðtþ sÞy�ðtÞdt: ð6:26Þ

Its Fourier transform is

RxyðxÞ ¼
Zþ1

�1
rxyðsÞe�jxs ds ¼

Zþ1

�1
y�ðtÞ

Zþ1

�1
xðtþ sÞe�jxs dsdt;

RxyðxÞ ¼
Zþ1

�1
y�ðtÞ

Zþ1

�1
XðxÞejxt dt ¼ XðxÞY�ðxÞ:

ð6:27Þ

The deterministic autocorrelation function of a signal xðtÞ is defined by the
integral
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cðsÞ ¼
Zþ1

�1
xðtþ sÞx�ðtÞdt: ð6:28Þ

For a real signal this operation is equivalent to multiplying the signal by its
translated version of the parameter value �s.

We can reveal a convolution product by the change of variable t0 ¼ �t. We have

cðsÞ ¼
Zþ1

�1
x� �t0ð Þx s� t0ð Þ dt0 ¼ x�ð�sÞ � xðsÞ: ð6:29Þ

We note that in the case where the function xðtÞ is real, the correlation cðsÞ is
equal to the convolution of xðtÞ with its reversed in time xð�tÞ.

The Fourier transform of the autocorrelation function is denoted CðxÞ as

CðxÞ ¼
Zþ1

�1
cðsÞe�jxs ds: ð6:30Þ

Taking the FT of the convolution yields

CðxÞ ¼ XðxÞF x�ð�sÞð Þ ¼ XðxÞX�ðxÞ ¼ XðxÞj j2: ð6:31Þ

One would deduce directly this result from the relationship (6.27).
Referring to the Parseval theorem on energy, XðxÞj j2 is called the spectral

energy density of the signal.
By extension RxyðxÞ ¼ XðxÞY�ðxÞ is called the spectral energy density of

interaction of the two signals xðtÞ and yðtÞ. In the case where the function xðtÞ is
real, we have

cðsÞ ¼
Zþ1

�1
xðtÞxðtþ sÞdt: ð6:32Þ

When xðtÞ is real, its FT verifies the relationship X�ðxÞ ¼ Xð�xÞ. We will also
have in this case:

CðxÞ ¼ XðxÞXð�xÞ: ð6:33Þ

Localization of the maximum of the autocorrelation function of a real signal
The following inequality is verified:

cðsÞj j � cð0Þ: ð6:34Þ
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This property is demonstrated in the following in the case of a real signal xðtÞ.
For any real parameter k, the next integral of the squared quantity is always positive
or null:

Zþ1

�1
xðtþ sÞþ kxðtÞð Þ2 dt� 0: ð6:35Þ

Developing the square within the integral:

Zþ1

�1
x2ðtþ sÞþ 2kxðtÞ xðtþ sÞþ k2xðtÞ� �

dt� 0;

or

cð0Þþ 2kcðsÞþ k2cð0Þ� 0: ð6:36Þ

The left inequality member is a quadratic polynomial in k. To be always positive
or zero it is necessary that, cð0Þ being positive, it has no root. That is to say, its
discriminant must be negative or zero. Thus, the polynomial coefficients must
verify the following condition: c2ðsÞ � c2ð0Þ� 0, and because cð0Þ is always
positive or zero: cðsÞj j � cð0Þ. Q.E.D.

We notice that the maximum of the autocorrelation function modulus is located
in s ¼ 0. This property is widely used in signal analysis, such as in radar or sonar,
to calculate the delay of a replica of a signal relative to the signal transmitted to
probe the environment. Indeed noting yðtÞ the echo signal delayed by b, yðtÞ ¼
Axðt � bÞ (b is the replica delay).

iðsÞ ¼
Zþ1

�1
xðtÞ yðtþ sÞ dt ¼ A

Zþ1

�1
xðtÞ xðt � bþ sÞ dt: ð6:37Þ

The cross-correlation function iðsÞ will have its maximum for �bþ s ¼ 0, so for
s ¼ b.

In the following simulation a chirp function was chosen, which has the
remarkable property of having an autocorrelation function very localized in time. It
is shown how one can determine the delay of the second signal, delayed by 400 μs
by pointing to the maximum of the cross-correlation function (Fig. 6.1).

Due to the continuous variation of the frequency, for a slight time lag, the
function oscillations of different frequencies are multiplied, which leads to cance-
lation of the integral of their product. The cross-correlation is very localized in time
and the delay easily measured (see Exercise VI). This property is the reason of the
wide use of chirp signals in radar.
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6.7 Signal Spreads. Heisenberg–Gabor Uncertainty
Relationship

To measure the spreads in time rt and frequency rx of a signal, the following
definitions of these quantities are used:

r2t ¼
1
E

Z1

�1
t2 f ðtÞj j2 dt; r2x ¼ 1

2pE

Z1

�1
x2 FðxÞj j2 dx: ð6:38Þ

where E is the signal energy: E ¼ R1
�1 f ðtÞj j2 dt.

The decay at infinity of functions f ðtÞj j2 and FðxÞj j2 are assumed fast enough to
ensure the convergence of integrals. According to Parseval’s theorem (see Chap. 5),

E ¼
Z1

�1
f ðtÞj j2 dt ¼ 1

2p

Z1

�1
FðxÞj j2 dx: ð6:39Þ

Fig. 6.1 a Chirp function; b Delayed chirp; c Cross-correlation
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Care is taken to choose the origins of time and frequency, such that

Z1

�1
t f ðtÞj j2 dt ¼ 0 and

Z1

�1
x FðxÞj j2 dx ¼ 0: ð6:40Þ

We show now that if the condition
ffiffi
t

p
f ðtÞ ! 0; ð6:41Þ

is verified when tj j ! 1, then

rtrx � 1
2
; ð6:42Þ

with equality occurring only when

f ðtÞ ¼ Ae�at2 : ð6:43Þ

For ease of demonstration, it is assumed that function f ðtÞ is real.
According to Schwarz inequality, we can write

Z1

�1
tf
df
dt

dt

������

������

2

�
Z1

�1
t2f 2dt

Z1

�1

df
dt

����

����

2

dt: ð6:44Þ

Integrating by parts the first member and using the assumption (6.41) and taking
E ¼ 1 to facilitate writing,

Z1

�1
tf
df
dt

dt ¼
Z 1

�1
t
df 2

2
¼ t

f 2

2

����

1

�1
� 1
2

Z 1

�1
f 2dt ¼ � 1

2
: ð6:45Þ

According to the properties of the Fourier transform of the function f tð Þ which is
assumed regular,

Z1

�1

df
dt

����

����

2

dt ¼ 1
2p

Z 1

�1
x2 FðxÞj j2dx; ð6:46Þ

since FT of dfdt is in this case jxF xð Þ.
By transferring these results in the inequality (6.44) we have the inequality

1
4
�

Z1

�1
t2f 2 dt

1
2p

Z1

�1
x2 FðxÞj j2 dx; ð6:47Þ

6.7 Signal Spreads. Heisenberg–Gabor Uncertainty Relationship 103



so 1
4 � r2t r

2
x, which demonstrates Eq. (6.42).

The Schwarz inequality becomes an equality if the two terms in the integral

(6.44) are proportional, that is to say if dfdt ¼ ktf , as can be seen by solving this

differential equation, if

f ðtÞ ¼ Aek
t2
2 ¼ Ae�at2 ; ð6:48Þ

(with a[ 0 to make integration of f ðtÞ possible).
Thus, the Gaussian function has the property to have a product of spreads in time

and frequency minimum. This property has been recognized by Gabor. It proposes
the use of this function limited to its central part as a sliding multiplicative window
for the calculation of the spectrogram (see definition in Chap. 12).

The inequality rtrx � 1
2 implies that we cannot arbitrarily make the spread of a

signal small in the time domain or in the frequency domain without an expansion in
the conjugate domain. This inequality is identical to the Heisenberg uncertainty
relation encountered in quantum mechanics. It is known in the field of signal
analysis as the Heisenberg–Gabor inequality. Using the time and frequency vari-
ables, this inequality takes the form

rtrf � 1
4p

; ð6:49Þ

or, noting, respectively, T and B the spreads of the signal in the time and frequency
domains,

BT � 1
4p

: ð6:50Þ

Impossibility for a signal to have simultaneously finite time and frequency
supports
The above inequality does not inform about the possibility that a signal has limited
supports both in time and frequency. We now show that it is impossible to have a
limited time support width T when the frequency support is limited to a band B.

Inversion Fourier formula would be written otherwise as

xðtÞ ¼ 1
2p

Zþ
B
2

�B
2

XðxÞejxt dx ¼ 0 when tj j[ T
2
: ð6:51Þ

If xðtÞ was zero outside support � T
2 ;

T
2

� �
, it would be the same for its derivatives,

and its nth derivative could be written as
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dnxðtÞ
dtn

¼ 1
2p

Zþ B
2

�B
2

ðjxÞnXðxÞejxt dx ¼ 0 when tj j[ T
2
: ð6:52Þ

Taking any time s within the range � T
2 ;

T
2

� �
, using the inversion of the Fourier

formula, we can write

xðsÞ ¼ 1
2p

Zþ
B
2

�B
2

XðxÞ ejxs dx

We can also write

xðsÞ ¼ 1
2p

Zþ B
2

�B
2

XðxÞejxðs�tÞejxt dx: ð6:53Þ

We can replace in the integral the exponential by its development in Taylor
series:

ejxðs�tÞ ¼
X1

n¼�1

jxðs� tÞ½ �n
n!

: ð6:54Þ

Substituting this expression for the exponential in Eq. (6.53),

xðsÞ ¼ 1
2p

Zþ B
2

�B
2

XðxÞ
X1

n¼�1

jxðs� tÞ½ �n
n!

ejxt dx

¼ 1
2p

X1

n¼�1

½ðs� tÞ�n
n!

Zþ B
2

�B
2

XðxÞðjxÞnejxt dx

ð6:55Þ

The last integral is null by hypothesis, according to Eq. (6.52). This logically
leads to xðsÞ ¼ 0, for any s in the range � T

2 ;
T
2

� �
, which is contrary to the

hypothesis.
We thus arrive at the result that the condition (6.51) is impossible to achieve for

a band-limited signal. A signal may not have both a limited frequency bandwidth
and be limited in time to a finite length interval.
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Summary
We have demonstrated the relationships in the time and frequency domains between
the input and output signals of an LTI system (convolution in the time domain,
product in frequency domain). We showed that the Fourier transform of the product
of two functions is the convolution of their FT divided by 2p. The use of distri-
butions allows considering Fourier series as a special case of Fourier transform. We
have defined and discussed the properties of the deterministic correlation function
which is of uttermost importance for the comparison of two signals. We have
shown the interest of using a sweeping frequency signal (chirp) for target local-
ization by correlation radar. The spreads of a signal in time and frequency domains
have been defined and the Heisenberg–Gabor inequality demonstrated. The
advantage brought by a Gaussian signal has been shown. The chapter concludes by
exposing the impossibility for a signal to have infinite supports, simultaneously in
time and frequency domains.

In the next chapter, several Fourier transforms of useful functions and convo-
lution calculations are given.

Exercises

I. 1a. Calculate the Fourier transform of the function f ðtÞ ¼ sinx0t.
1b. Note PT tð Þ the rectangular window centered at the origin with width 2T:

PT tð Þ ¼ 1 if tj j\T and 0 elsewhere. Calculate its Fourier transform.
Specify the zeros of this function.

2a. Let the function gðtÞ ¼ f ðtÞPT tð Þ Deduct from Question 1 the Fourier
transform of gðtÞ (a convolution calculation).

2b. It is assumed that the half width T of the rectangular window is exactly
three times the period T0 of f ðtÞ. Show that the function gðtÞ is con-
tinuous. What can be expected on the decay of the high frequency
spectrum of gðtÞ?

3. By a drawing show how the superposition of the two sincs in the fre-
quency domain results in a partial compensation of the lobes at high
frequencies.

II. An electronic multiplier circuit provides the product yðtÞ of a function xðtÞ
with a Dirac comb pðtÞ ¼ P1

n¼�1
dðt � nTÞ.

1. Calculate the Fourier transform YðxÞ of yðtÞ ¼ xðtÞpðtÞ.
2. It is assumed that the spectrum of xðtÞ is limited to an interval �fm; fmf g.

Give the frequency response of a filter that retrieves xðtÞ from yðtÞ.
III. Spectrum analyzer.

1. Let the function f tð Þ ¼ cosx0t. Calculate its Fourier transform FðxÞ.
2. Let the rectangular window PðtÞ ¼ 1 for 0� t\T , and equal to 0 elsewhere.

Calculate the Fourier transform WðxÞ of the function PðtÞ:
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3. It is assumed that T ¼ 10T0 where T0 ¼ 2p
x0
. Represent FðxÞ and WðxÞ func-

tions moduli.
4. A spectrum analyzer calculates the FT of a signal f ðtÞ multiplied by the rect-

angular window PðtÞ: We note gðtÞ the product. gðtÞ ¼ f ðtÞPðtÞ:
a. Calculate its FT GðxÞ.
b. Show that this function is the sum of two functions, and represent their

respective moduli.
c. Explain why GðxÞ will be an estimate of FðxÞ which improves as the width

T of the window is larger compared with the period T0 of the cosine.

5. Bartlett window BðtÞ is defined as the triangular window shown in Fig. 6.2.

Assuming that this function BðtÞ is given by BðtÞ ¼ PðtÞ �PðtÞ; calculate its
FT WB xð Þ.
6. Justify the interest, when performing the spectral analysis, to multiply the

function f tð Þ ¼ cosx0t by the Bartlett window rather than by the rectangular
window to estimate the spectral amplitude.

IV. Lock-in amplifier.
1. Let the function x0ðtÞ ¼ cosx0t. Calculate its Fourier transform X0ðxÞ. Graph

this FT.
2. Let the signal x2ðtÞ ¼ x20ðtÞ. Calculate the FT X2 xð Þ of x2ðtÞ using the fact that

x2ðtÞ is the product of x0ðtÞ by itself and the theorem giving the FT of a product
of two functions. Graph X2ðxÞ.

3. Why can we say that
R1
�1 x2ðtÞ dt ¼ X2ð0Þ?

4. Evaluate the energy E of the signal x0ðtÞ in the time domain: E ¼ R1
�1 x20ðtÞdt

and in the frequency domain (in the latter case, rely on Question 3. One can
discuss starting from the graph of X2ðxÞ).

5. Let f ðtÞ ¼ A0 cos x0tþu0ð ÞþA1 cos x1tþu1ð Þ be a signal where A0 and A1

are two positive real constants. Calculate the FT FðxÞ.
6. Represent individually the FT of each component in FðxÞ. Qualitatively infer

the shape of the spectrum FðxÞ.
7. Consider the rectangular window PðtÞ ¼ 1 for � T

2 � t\ T
2, and 0 elsewhere.

Fig. 6.2 Bartlett window
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Calculate the Fourier transform WðxÞ of the function PðtÞ:
Calculate the Fourier transform GðxÞ of the function gðtÞ ¼ PðtÞ cosðx2tþu2Þ:
Represent this FT.

8. A lock-in amplifier is an apparatus which, to assess the magnitude of a
monochromatic component in a signal f ðtÞ, performs electronically the fol-
lowing operation (product and integration): M ¼ R1

�1 f ðtÞgðtÞ dt, where the
function gðtÞ is given in the previous question.

The following questions help to understand the operation if the function f ðtÞ has
the form given in Question 5.

a. Calculate the FT of the product f ðtÞgðtÞ. Graphically explain the composition of
the spectrum.

b. Building on Question 3, give the conditions upon x2 and u2 for M to be great.
Show that if x1 � x0 we can evaluate A0 or A1.

Solution:

1. XðxÞ ¼ p d x� x0ð Þþ d xþx0ð Þð Þ refer to the drawing in the course.

2:
X2ðxÞ ¼ 1

2p
XðxÞ � XðxÞ ¼ 1

2p
p d x� x0ð Þþ d xþx0ð Þð Þ � p d x� x0ð Þþ d xþx0ð Þð Þ

X2ðxÞ ¼ p
2

d x� 2x0ð Þþ 2dðxÞþ d xþ 2x0ð Þð Þ

3. Since X2ðxÞ ¼
R1
�1 x2ðtÞe�jxtdt, for x ¼ 0 we have X2ð0Þ ¼

R1
�1 x2ðtÞdt

4. Since the signal is periodic, its energy is infinite and the integral of the square
will not converge. In the frequency domain, the energy is X2ð0Þ and is infinite
due to the term pd xð Þ which is infinite in x ¼ 0.

5: FðxÞ ¼ A0p d x� x0ð Þ � d xþx0ð Þð Þ cosu0 � A0pj d x� x0ð Þþ d xþx0ð Þð Þ sinu0

þA1p d x� x1ð Þþ d xþx1ð Þð Þ cosu1 � A1pj d x� x1ð Þ � d xþx1ð Þð Þ sinu1:

6. The real and imaginary parts of FðxÞ are each constituted of two Dirac
distributions.

7. WðxÞ ¼ T sin c xT
2

� �
; GðxÞ ¼ 1

2p T sin c xT
2

� �� p d x� x2ð Þ � d xþx2ð Þð Þð
cosu2 � pj d x� x2ð Þþ d xþx2ð Þð Þ sinu2Þ:
Convolutions with Dirac distributions result in translations of the sinc function.

8. a. The FT is 1
2pFðxÞ � GðxÞ. We have translations of the sinc function.

b. M is also the value of FT in the previous question in x ¼ 0. There must be a
translated sinc with a maximum in x ¼ 0. We must have x2 ¼ x1 or
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x2 ¼ x0. If the angular frequencies x1 and x0 are very different, the sinc
functions are widely spaced and overlapping is negligible. We can then
determine A0 (or A1). Phase u2 is set to be equal to the phase u0 (or u1), to
get M to be maximum. Therefore, we can measure the magnitude and phase
of each component 1 or 2 by choosing the frequency x2 and phase u2.

V. Consider the Bartlett window K2TðtÞ; shown in the following figure:

Using the results of the course, answer the following questions:

1. Calculate the energy of the signal K2TðtÞ by integration in the time domain, and
by integration in the frequency domain. Recall the general theorem giving the
equality of these calculation results.

2. Calculate the spreads of this signal in the time and frequency domains. Verify
that their product satisfies the inequality Heisenberg–Gabor.

Reminder:
R1
�1

sin2 x
x2 dx ¼ p;

R1
�1

sin4 x
x2 dx ¼ p

2;
R1
�1

sin4 x
x4 dx ¼ 2p

3 .
Solution:

1. The energy of this real signal is defined by E ¼ R1
�1 K2ðtÞ dt: After integration,

E ¼ 2
3 T

3. By Parseval–Plancherel theorem, the energy is also E ¼
1
2p

R1
�1 K2ðxÞ dx .

KðxÞ is given by KðxÞ ¼ T2 sin c2 xT
2

� �
:

Then E ¼ 1
2p

R1
�1 T2 sin c2 xT

2

� �� �2
dx ¼ T4

p

R1
0 sin c4 xT

2

� �
dx ¼ 2T3

3

2. r2t ¼ 1
E

R1
�1 t2K2ðtÞdt ¼ T2

10 ; r
2
x ¼ 1

2pE

R1
�1 x2 KðxÞj j2dx ¼ 3

T2 :

r1rx ¼
ffiffiffiffi
3
10

q
[ 1

2. The Heisenberg–Gabor inequality is verified.

VI. A complex chirp is expressed as xðtÞ ¼ ej x0 tþ at2ð Þð Þ. x0 and a are two real
constants.

1. Calculate its autocorrelation function.
2. In practice the integration interval is necessarily limited to �T ; T½ �.

Calculate the autocorrelation of the time limited signal.

Solution:

1. rxxðsÞ ¼
R1
�1 xðtþ sÞx�ðtÞdt:
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rxxðsÞ ¼
Z1

�1
ej x0 tþ sþ aðtþ sÞ2ð Þð Þe�j x0 tþ at2ð Þð Þ dt ¼

Z1

�1
ej x0 sþ 2atsþ as2ð Þð Þ dt

rxxðsÞ ¼ ejx0sejx0as2
R1
�1 ej2x0ats dt ¼ ejx0sejx0as22pd 2x0asð Þ, or rxxðtÞ ¼ 2pd

2x0asð Þ.
This result shows the efficiency of the use of a chirp in radar target localization.

2. By assumption, in practice, the signal is limited to 0; T½ �. Its autocorrelation is

rxxðsÞ ¼
ZT

�T

ej x0 tþ sþ a tþ sð Þ2ð Þð Þe�j x0 tþ at2ð Þð Þ dt ¼
ZT

�T

ej x0 sþ 2atsþ as2ð Þð Þ dt:

rxxðsÞ ¼ ejx0sejx0as2
Z T

�T
ej2x0ats dt ¼ ejx0sejx0as2 e

j2x0aTs � e�j2x0aTs

2jx0as
:

rxx sð Þ ¼ ejx0sejx0as2 sin 2x0aTsð Þ
x0as

;

rxxðsÞj j ¼ sin 2x0aTsð Þ
x0as

����

���� ¼ 2T sin c 2x0aTsð Þj j:

1/2 the width of the correlation peak is obtained by sin x
x ¼ 0, therefore for x0 ¼ p.

It comes s0 ¼ p
2x0aT

. The width tends to zero for large T ;x0; a.
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Chapter 7
Fourier Transforms and Convolution
Calculations

This third chapter on Fourier transforms deals with the application on practical
cases of the theorems on Fourier transform and convolution established in previous
chapters. The Fourier transform of common windows used in signal analysis are
evaluated. Successively rectangular (also called boxcar), triangular (Bartlett),
Hanning, and Gaussian are considered. We use the notions on complex integration
given in Appendix 1 to calculate the Fourier transform of Gaussian functions We
show on practical examples that for smooth, time-limited signals, the decrease of
the Fourier transform at infinity is related to the continuity properties of the signal at
its boundaries in the time domain. The smoother the junction is in the time domain,
the faster the amplitude of the Fourier transform decreases at infinite frequencies.
Examples of calculations of convolution are detailed at the end of this chapter to
help diminish the risks of errors often made. The chapter ends with a table of
Fourier transforms of common functions.

7.1 Fourier Transformation of Common Fonctions

7.1.1 Fourier Transform of a Rectangular Window

Note PTðtÞ the even function, equal to 1 for tj j\ T
2 and 0 elsewhere (Fig. 7.1):

PTðtÞ ¼ 1 tj j\ T
2

0 elsewhere

���� ; ð7:1Þ

This function is symmetrical around t ¼ 0, with width T. Let us calculate its
Fourier transform

© Springer International Publishing Switzerland 2016
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WrðxÞ ¼ FðPTðtÞÞ ¼
Zþ1

�1
PTðtÞe�jxtdt ¼

Z
T
2

�T
2

e�jxtdt ¼ e�jxT
2 � ejx

T
2

�jx
ð7:2Þ

so

WrðxÞ ¼
2 sin xT

2

x
¼ 2T

Tx

sin xT
2

1
¼ T

sin xT
2

xT
2

¼ T sinc
xT
2

� �
: ð7:3Þ

We used the classic notation sin x
x ¼ sincðxÞ that defines the cardinal sine function.

The shape of the Fourier transform is given in Fig. 7.2. The amplitude of the
main maximum is evaluated by taking the limit for x ! 0 of WrðxÞ. As sin xT

2 is
equivalent to xT

2 for small values of ω, we have Wrð0Þ ¼ T .
We now wish to estimate the value of the second extremum (negative here). We

seek an extremum of a function of the form F xð Þ ¼ T sin x
x .

The abscissa of the function extrema is obtained by cancelation of its derivative
with respect to x

Fig. 7.1 Rectangular
window

Fig. 7.2 Fourier transform of
a rectangular window
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d
dx

sin x
x

� �
¼ x cos x� sin x

x2
¼ 0: ð7:4Þ

This derivative is equal to zero for values of x such that tgx ¼ x. The tran-
scendental equation is solved numerically or graphically. The first solution after
x ¼ 0 is xmax2 ¼ 4:4934.

The relative amplitude of the second extremum with respect to the main lobe is
given by

Wðxmax2Þj j
Wð0Þj j ¼ 20 log10 � sin 4:4934

4:4934

� �
¼ �13:26dB: ð7:5Þ

The abscissa of the following secondary extremum is x ¼ 7:7252. Its relative
magnitude is 0:1284, or in decibels, �17:83dB. We also note that except for the
first solutions, the solutions xk are close to the values kp

2 with k odd. When
approaching the value of the first secondary extremum by the function’s value
�17:9dB for the abscissa x ¼ 3p

2 ¼ 4:7124 making the numerator maximum, the
error on the evaluation of this extremum is below 0:1 dB.

It will be noted to complete that the high frequency envelope decay of function
WrðxÞ is as 1

x. This decrease with ω is slow (6 dB per octave). This slow decrease
reflects the discontinuous nature of the function PTðtÞ.

7.1.2 Fourier Transform of a Triangular Window

The convolution of the rectangular window PTðtÞ with itself is a triangular window
K2TðtÞ with width 2T. It is called the Bartlett window in signal analysis (Fig. 7.3).

K2TðtÞ ¼ PTðtÞ �PTðtÞ: ð7:6Þ

The theorem of the Fourier transform of the convolution of two functions states
that the Fourier transform of the convolution product is equal to the product of the
functions Fourier transforms. The FT of the function K2TðtÞ will then be the square
of the FT of PTðtÞ seen in Fig. 7.4

WtriðxÞ ¼ W2
r ðxÞ ¼ T2 sin c2

xT
2

� �
: ð7:7Þ

Fig. 7.3 Bartlett window
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Note in the figure the decay as 1
x2 of the function’s envelope. This rate of decay is

faster than that of the rectangular window. It is due to the fact that the function
K2TðtÞ is continuous but its derivative is discontinuous (in 0 and 2T).

7.1.3 Fourier Transform of Hanning Window

This window is defined by (see Fig. 7.5).

wH tð Þ ¼ 0:5þ 0:5 cos 2pT t for tj j\ T
2

wH tð Þ ¼ 0 elsewhere
:

���� ð7:8Þ

Note that the function and its derivative are continuous (horizontal tangent) in
tj j ¼ T

2. The decay at infinity of the FT will necessarily be faster than the previous
two windows.

Calculation of FT of wHðtÞ

WHðxÞ ¼ 0:5
Z

T
2

�T
2

e�jxtdtþ 0:25
Z

T
2

�T
2

ej xe�xð Þtdtþ 0:25
Z

T
2

�T
2

e�j xe þxð Þtdt; ð7:9Þ

Fig. 7.4 Fourier transform of
Bartlett window

Fig. 7.5 Hanning window
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WHðxÞ ¼ 0:5T
sin xT

2
xT
2

þ 0:25T
sin xe � xð Þ T2
xe � xð Þ T2

þ 0:25T
sin xþxeð Þ T2
xþxeð Þ T2

: ð7:10Þ

(We wrote xe ¼ 2p
T ). This Fourier transform is the sum of three cardinal sine

(Fig. 7.6). The first is centered at x ¼ 0. It is represented by the fine line in the
figure, the other two are respectively centered in þxe and �xe with half-relative
amplitude. The function WHðxÞ is shown in bold lines.

As seen in the figure, the central lobe of this sum is twice as wide as that of the
function sin x

x . We also see that the compensation of side lobes leads to lower values
of the oscillations amplitudes of function WHðxÞ and therefore a more rapid
decrease with ω than in the case of the FT of the rectangular window. The first
secondary extremum of WHðxÞ is �32:3 dB below that of main lobe.

This result is to be compared with that of the FT of the rectangular window. For
the frequency of this extremum, the maximum amplitude of the second secondary
lobe of the rectangular window of the FT is only �17:833 dB below the main lobe.
This shows that the oscillations of the Hann window FT decrease much faster than
those of the FT of the rectangular window. This is because the Hann window
function is continuous and its derivative is continuous.

7.1.4 Fourier Transform of a Gaussian Function

Gaussian functions are widely used in the field of signal analysis and in statistics.
Before calculating the Fourier transform of a Gaussian, the properties of the inte-
grals of Gaussian functions are described.

Integration of Gaussian functions
A Gaussian function is a function of the form

f ðxÞ ¼ e�ax2 with a[ 0 real: ð7:11Þ

Fig. 7.6 Fourier transform resulting from a summation
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The parameter α controls the Gaussian decay with x, and by consequence, the
width of the bell curve. In Fig. 7.7a, we have a ¼ 1 and in 7.7b a ¼ 0:1.

The general methodology for calculating the Gauss integrals is now described.
One first calculates the integral

IðaÞ ¼
Zþ1

�1
e�ax2dxwith a[ 0 real: ð7:12Þ

The calculation of this integral is not straightforward. Various techniques may be
used. The method given here is through the calculation of the squared integral in
order to perform the integration in polar coordinates

I2ðaÞ ¼
Zþ1

�1

Zþ1

�1
e�aðx2 þ y2Þdxdy ¼

Z1

0

Z2p

0

e�ar2rdrdh:

I2ðaÞ ¼ 2p
Z1

0

e�ar2rdr:

ð7:13Þ

We note r2 ¼ u; du ¼ 2rdr

I2ðaÞ ¼ p
Z1

0

e�audu ¼ � p
a
e�au½ �10 ¼ p

a
: ð7:14Þ

The desired integral is then

IðaÞ ¼
ffiffiffi
p
a

r
: ð7:15Þ

Fig. 7.7 Gaussian functions for parameter values: a a ¼ 1 and b a ¼ 0:1
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In the calculation of the moments of the Gaussian distribution, it is interesting to
use the derivatives of IðaÞ

dIðaÞ
da

¼ �
Zþ1

�1
x2e�ax2dx ¼ ffiffiffi

p
p � 1

2

� �
a�

3
2: ð7:16Þ

Thus we see that
Zþ1

�1
x2e�ax2dx ¼ 1

2

ffiffiffiffiffi
p
a3

r
: ð7:17Þ

Similarly taking twice the derivative relatively to α

d2I
da2

¼
Zþ1

�1
x4e�ax2dx ¼ ffiffiffi

p
p 3

4
a�

5
2: ð7:18Þ

It is thus seen that by successive differentiations we can calculate all integrals
containing even powers, that is, calculate the various moments of the Gaussian
distribution. The odd moments are zero, as the integrand is odd on the interval �1,
þ1.

Calculation of the Fourier transform of e�ax2

IðkÞ ¼
Zþ1

�1
e�ax2e�ikxdxwith a[ 0 real: ð7:19Þ

To calculate IðkÞ the function f ðzÞ ¼ e�az2 is integrated in the complex plane on
a positively oriented contour C, consisting of line L1, segment of x axis limited by
�R and R, of the vertical segment L2 with abscissa R limited by y ¼ 0 and y ¼ a, of
the horizontal segment L3 with ordinate y ¼ a limited by R and �R, and the vertical
segment L4 with abscissa �R (Fig. 7.8)

Fig. 7.8 Integration contour
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The function f zð Þ is holomorphic inside contour C. The integral over this con-
tour is zero according to Cauchy theorem.

Z
�

C
e�az2dz ¼

Z

L1

e�az2dzþ
Z

L2

e�az2dzþ
Z

L3

e�az2dzþ
Z

L4

e�az2dz ¼ 0: ð7:20Þ

In the first integral on L1, we have y ¼ 0. So

Z

L1

e�az2dz ¼
ZR

�R

e�ax2dx: ð7:21Þ

As shown above, when R ! 1 this integral tends to
ffiffi
p
a

p
.

In the integral over L2,
R
L2
e�az2dz ¼ R Rþ ia

R e�az2dz. With dz ¼ idy.
We will show that this integral tends to zero as R ! 1. The modulus of the

integral is less than or equal to the integral of the modulus. We have the inequalities

Z

L2

e�az2dz

������

������
�

Z

L2

e�az2
���

��� dzj j ¼
Za

0

e�a Rþ iyð Þ2
���

��� dy ¼
Za

0

e�a R2�y2ð Þdy: ð7:22Þ

So,

Z

L2

e�az2dz

������

������
�

Za

0

e�a R2�y2ð Þdy� eaa
2
Za

0

e�aR2
dy ¼ eaa

2
e�aR2

Za

0

dy ¼ a eaa
2
e�aR2

:

ð7:23Þ

The last quantity tends to zero when R ! 1 (a is finite), it follows that

Z

L2

e�az2dz ! 0whenR ! 1:

It will be the same for the integral over L4. So we have

Z

L3

e�az2dz ¼ �
Z

L1

e�az2dz: ð7:24Þ

We can therefore write this last equality in the form
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Zþ1

�1
e�a xþ iað Þ2dx ¼

Zþ1

�1
e�ax2dx ¼

ffiffiffi
p
a

r
: ð7:25Þ

Expanding the square contained in the left-hand side

Zþ1

�1
e�ax2�2iaaxþ aa2dx ¼ eaa

2
Zþ1

�1
e�ax2e�2iaaxdx ¼

ffiffiffi
p
a

r
: ð7:26Þ

It is recognized in the last integral the sought Fourier transform. Noting k ¼ 2aa
we can write

Zþ1

�1
e�ax2e�2iaaxdx ¼

Zþ1

�1
e�ax2e�ikxdx ¼ e�aa2

ffiffiffi
p
a

r
¼ e�

k2
4a

ffiffiffi
p
a

r
: ð7:27Þ

Finally

Zþ1

�1
e�ax2e�ikxdx ¼ e�

k2
4a

ffiffiffi
p
a

r
: ð7:28Þ

It is thus seen that the Fourier transform of a Gaussian is a Gaussian.
Returning to the conjugate variables t and ω used in signal analysis, we will have

the formula for the Fourier transform of the function e�at2 :

Zþ1

�1
e�at2e�jxtdt ¼ e�

x2
4a

ffiffiffi
p
a

r
: ð7:29Þ

It will be accepted here that this result remains valid if α is complex, provided
that ReðaÞ[ 0.

Finally, we seek to determine the transform of a Gaussian whose maximum
amplitude occurs at abscissa τ

f ðtÞ ¼ e�aðt�sÞ2 :

This function is translated by a quantity τ from the function e�at2 . Using the
time-delay property connecting the FT of a translated function to that of the
non-translated one by the multiplication by a phase factor depending on the
function, we will have

7.1 Fourier Transformation of Common Fonctions 119



The FT of f ðtÞ ¼ e�aðt�sÞ2 is expressed as

FðxÞ ¼ e�ixse�
x2
4a

ffiffiffi
p
a

r
: ð7:30Þ

7.2 Behavior at Infinity of the Fourier Amplitude
of a Signal

It has been previously found that the amplitude of the FT of a rectangular function
was decreasing as 1

x when x ! 1 and that of a triangular function decreases as 1
x2.

The more regular the function is in the time domain (continuous and differentiable
at order n), the more its decrease at infinity is fast.

Time property Decay in frequency at infinity

Function with a discontinuity 1
x

Continuous function, discontinuous derivative 1
x2

… …

Discontinuity in the nth derivative 1
xnþ 1

Smoothing performed by a
convolution product
The convolution products are functions obtained by integration. In general, the
integration provides a function more regular than the one integrated. For example,
integration of a function with a finite discontinuity gives a function continuous at
the discontinuity. The integral of a function with an angular point will be rounded at
this point. Convolution generally operates a smoothing akin to a low-pass filtering.
This property will be found in the following section, the analysis being made in the
frequency domain.

Another interesting property that will be seen in Example 7.2, Sect. 7.3 is that
the support of the convolution product is equal to the sum of the supports of the two
functions in the product.

7.3 Limitation in Time or Frequency of a Signal

7.3.1 Fourier Transform of a Time-Limited Cosine

Calculating the Fourier transform of a cosine with angular frequency x0 limited in
time by a rectangular window to the interval � T

2 ;
T
2

� �
(Fig. 7.9)
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yðtÞ ¼ PTðtÞ cosx0t: ð7:31Þ

The FT of a two functions product is equal to the convolution of FTs divided by
2p. (See formula (6.17)). It follows from the previous results that

YðxÞ ¼ 1
2p

T
sin xT

2
xT
2

� p d x� x0ð Þþ p d xþx0ð Þð Þ: ð7:32Þ

The convolution of a function with d x� x0ð Þ resulting in its translation, we
have

Y xð Þ ¼ T
2

sin x� x0ð Þ T2
x� x0ð Þ T2

þ sin xþx0ð Þ T2
xþx0ð Þ T2

� 	
: ð7:33Þ

Note that the FT of a time-limited cosine is given directly by the FT of the
rectangular window limiting the cosine function (sinc function). The frequency x0

of the cosine, in turn, acts on the position of the sinc function on the ω axis.
The time limitation results in a spreading of the FT on the entire frequency axis

(Fig. 7.10).
The temporal discontinuity caused by the rectangular window boundaries pro-

duces a spreading of the spectrum decreasing as 1
x. We note from the figure that the

spreading of the sinc centered in �x0 (shown in thin line) is superimposed on the

Fig. 7.9 Time limited cosine

Fig. 7.10 Two constituents of the sum in FT
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one centered in x0. It follows that the maximum of the positive frequencies is not
located exactly in x0, causing an error when trying to measure an unknown fre-
quency x0. To reduce this effect we will take care in practice to satisfy the con-
dition T � T0, which implies that x0 � 2p

T . The peaks are relatively far from each
other, relatively to the period of oscillation in the frequency domain.

7.3.2 Practical Interest of Multiplying a Signal by a Time
Window Before Calculating a Spectrum

In practice, when we want to compute the Fourier transform of a physical signal a
spectrum analyzer is used or the calculation is done numerically. The operation can
be done only on a time signal limited by the temporal analysis window, because one
cannot wait forever to get the result.

Thus, looking to the analysis of a sinusoidal signal at the output of an amplifier
for example, the actual analysis is performed on a time signal limited by a rect-
angular window (or another window if a numerical calculation is carried out).
A sinc function which spreads the frequency information on the whole frequency
axis is obtained.

In case a different frequency small signal is superimposed on a large signal, the
spectral component of the small signal is embedded in the oscillations of the sinc of
the large signal. It may happen that this small spectral component is not observable.
However, if the data is multiplied by a Hann window (for example), the oscillations
of the spectrum of the main signal decreases much more rapidly with frequency and
thus a small spectral component is less likely to be embedded in the oscillations of
large signal and can be more easily observable. Hann window is an example of an
apodization window. This operation of multiplication of a signal by a window is
particularly easy to make in numerical signal processing where they are commonly
used.

7.3.3 Frequency Limitation; Gibbs Phenomenon

Gibbs phenomenon is the occurrence of oscillations on a function of time when the
width of its spectrum is forced to be limited (this is the case for a rectangular signal
crossing a low-pass filter with steep edges, for example).

The FT of PTðtÞ is

WrðxÞ ¼ T
sin xT

2
xT
2

: ð7:34Þ
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Assume now that we limit the spectrum to low frequencies, for example by
passing through an ideal low-pass filter with frequency response HðxÞ ¼ PxM ðxÞ,
where xM is the maximum frequency

PxM ðxÞ ¼ 1 for xj j\xM

PxM ðxÞ ¼ 0 elsewhere

���� .

The limited spectrum at low frequencies is

WLFðxÞ ¼ WrðxÞHðxÞ: ð7:35Þ

Its inverse FT is

wLFðtÞ ¼ PrðtÞ � hðtÞ: ð7:36Þ

hðtÞ is given by

hðtÞ ¼ 1
2p

Z1

�1
HðxÞ ejxtdx ¼ 1

2p

ZxM

�xM

ejxtdx ¼ 1
2p

ejxMt � ejxMt

jt
¼ 1

p
sinxMt

t
;

ð7:37Þ

so

wBFðtÞ ¼ PrðtÞ � 1
p
sinxMt

t
: ð7:38Þ

Assume now that xMT[ [ 1, i.e., that the oscillations of sinxMt
t are rapid

compared to the duration of the rectangular signal. For t close to 0, the convolution
integral includes the oscillations of the function sinxMt

t on both sides of the maximum

and therefore we have approximately wBFðtÞ ¼
R1
�1

1
p
sinxMt0

t0 dt0 ¼ 1
p

R1
�1

sin x
x dx ¼ 1.

In contrast, when t is close to T
2, the integration is done only on a part of the

oscillations of the sinxMt
t function. Compensation between the oscillations is no

longer total and in the result of the convolution integral it appears values that hover
around 1. The maximum amplitude of the oscillation comes for t ¼ T

2 � p
xM
, when

the central peak is completely included in the integral. As seen on the graph, the
maximum value is 1

p

R p
�1

sin x
x dx ¼ 1:0895 (value calculated numerically).

In conclusion, when xMT � 1 and when the function spectrum is limited to low
frequencies, after return to the time domain, oscillations occur in the vicinity of the
discontinuity. The amplitude of these oscillations is independent of the width of the
frequency band kept. They persist even if the width of the frequency band kept is
high.

The Gibbs phenomenon appears in (Fig. 7.11). The oscillation of the reconsti-
tuted signal after limitation to the low frequencies of the spectrum of the signal
PTðtÞ appears in the vicinity of the discontinuity of the function at T

2.
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Note: We have studied the manifestation of the Gibbs phenomenon in the time
domain. Given the symmetry of the direct and inverse FT formulas, the phenomenon
is of course also present in the frequency domain. One example is the FT of the
rectangular window, discontinuous function in time. It is a sinc oscillating function.

7.4 Convolution Calculations

7.4.1 Response of a First Order System to Different Input
Signals

The impulse response of the first order RC system in Chap. 2 is hðtÞ ¼ 1
RC e

� t
RCUðtÞ.

1. We now seek to evaluate the system response to an input signal of the form
eðtÞ ¼ xðtÞ ¼ UðtÞ cosx0t. We look for yðtÞ ¼ R þ1

�1 xðsÞhðt � sÞds. Using the
decomposition cosx0t ¼ 1

2 ejx0t þ e�jx0t

 �

, we can write

yðtÞ ¼ 1
2
hðtÞ � UðtÞejx0t þ c:c: ð7:39Þ

Calculating the first integral

I1 ¼ 1
2
hðtÞ � UðtÞejx0t ¼ 1

2RC

Zþ1

�1
UðsÞe� s

RCUðt � sÞejx0 t�sð Þds:

Since the function UðsÞ is zero for s\0 and 1 for s[ 0 we have

I1 ¼ 1
2RC

Zþ1

0

e�
s
RCUðt � sÞ ejx0ðt�sÞds: ð7:40Þ

The above integral is zero for t� 0 because in this case, Uðt � sÞ is zero in (7.40).

Fig. 7.11 Gibbs phenomenon at function discontinuity
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What is its value for t[ 0 ? The upper limit of the integral is t because beyond
this value of τ, Uðt � sÞ vanishes.

I1 ¼ 1
2RC

Z t

0

e�
s
RCejx0ðt�sÞds ¼ 1

2RC
ejx0t

Z t

0

e� jx0 þ 1
RCð Þsds;

I1 ¼ 1
2

1
jRCx0 þ 1ð Þ ejx0t � e�

s
RC


 �
:

ð7:41Þ

By adding the complex conjugate integral, we get

yðtÞ ¼ � 1
R2C2x2

0 þ 1
e�

t
RCUðtÞþ 1

R2C2x2
0 þ 1

cosx0tþRCx0 sinx0tð ÞUðtÞ:

ð7:42Þ

The output signal of the filter is composed of two terms

• The first term is a transient term which becomes very small when time exceeds a
few RC.

• The second term is the stationary term already found in Chap. 2, where the
response of the first-order system to the input signal cosxt was calculated, this
signal existing since time minus infinity.

Thus after times exceeding few RC, the output signal reaches its steady state,
where everything happens as if the input signal filter had been present from very
remote times.

2. In this other example (Fig. 7.12), the determination of the system response is
performed as a convolution in the presence of the initial condition in the
first-order system RC. It is assumed that at time t ¼ 0, the capacitor is charged
with the charge q0.

When the switch is opened, the potential of the point A relative to ground is q0
C .

Ohm’s law is written R dq
dt þ

q
C ¼ q0

C , with no current flowing in the resistor.

When the switch is closed, the potential of point A drops instantaneously to 0;
we have

R
dq
dt

þ q
C
¼ 0: ð7:43Þ

We can gather these two equations in the form

R
dq
dt

þ q
C
¼ q0

C
Uð�tÞ: ð7:44Þ
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Everything happens as if the system was attacked by the electromotive force
eðtÞ ¼ q0

C Uð�tÞ. The output of the system is determined by the relationship

yðtÞ ¼
Zþ1

�1
hðsÞeðt � sÞds ¼ 1

RC
e�

t
RCUðtÞ � q0

C
Uð�tÞ: ð7:45Þ

It is seen that the function yðtÞ is obtained by integrating the product of two
functions of τ: the function hðsÞ and the function eðt � sÞ obtained by reversing in
time the function eðsÞ (to obtain the function eð�sÞ) then translation by t. The
graphic resolution that is used in the following calculation avoids calculation errors
often committed in the evaluation of convolution products. First we represent the
functions to be convoluted (Fig. 7.13)

In (Fig. 7.14) are shown the case t\0, the functions contained in the convo-
lution integral of the variable of integration τ and their product. Care is taken in
representing the functions one above the other to make things simple and minimize
errors of reasoning.

When t\0

yðtÞ ¼ 1
RC

q0
C

Zþ1

0

e�
s
RCds ¼ � q0

C
e�

s
RC

� 
þ1
0 ¼ q0

C
ð7:46Þ

For the case t[ 0, the functions and their product are (Fig. 7.15)
For t[ 0, we have

Fig. 7.12 R C circuit

Fig. 7.13 a Time reversed of
UðtÞ. b Impulse response hðtÞ
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yðtÞ ¼ 1
RC

q0
C

Zþ1

t

e�
s
RCds ¼ � q0

C
e�

s
RC

� 
þ1
t ¼ q0

C
e�

t
RC ð7:47Þ

In summary, the output signal will have the form (Fig. 7.16)

Fig. 7.14 Two functions to
multiply (top). Their product
(bottom)

Fig. 7.15 Two functions to
multiply (top). Their product
(bottom)

7.4 Convolution Calculations 127



We find back with the convolution calculation the capacitor discharge law that
occurs at the grounding of the circuit input.

7.4.2 Examples of Calculations of Convolution

Example 1 Let the functions xðtÞ and hðtÞ given by

xðtÞ ¼ UðtÞ � Uðt � 2Þ and hðtÞ ¼ e�atUðtÞ:

(UðtÞ Is the Heaviside function and a a real positive number). xðtÞ is a rectan-
gular window equal to 1 between 0 and 2.

The convolution has the form yðtÞ ¼ R þ1
�1 UðsÞ � Uðs� 2Þð Þe�a t�sð ÞUðt � sÞds.

The formal calculation of this integral involves a comprehensive analysis of
functions supports. Again it is recommended that the complete graphical processing
described now should be used. First of all, the functions to integrate are (Fig. 7.17)

We look for yðtÞ ¼ R þ1
�1 xðsÞhðt � sÞds. We represent graphically the functions

xðsÞ ¼ UðsÞ � Uðs� 2Þ, hðt � sÞ ¼ e�aðt�sÞUðt � sÞ and their product.
The function hðt � sÞ ¼ e�aðt�sÞUðt � sÞ is the reversed in time of hðsÞ ¼

e�asUðsÞ translated by t.
Figure 7.18 gives the graph of the time reversed hð�sÞ ¼ easUð�sÞ
For the translation of the function by t, three cases are met
For t\0 (Fig. 7.19)
It is noted that for s\0, xðsÞ ¼ 0. The product of the two functions is zero.

Fig. 7.16 Output signal

Fig. 7.17 Two functions to
convolve
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Fig. 7.18 Time reversed of
hðsÞ

Fig. 7.19 Two functions to
multiply (top); Their product
(bottom)

Fig. 7.20 Two functions to
multiply (top); Their product
(bottom)
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For s[ 0, hðt � sÞ is zero and the product of two functions is still zero. The
integral of the product is then zero. So yðtÞ ¼ 0 for t\0.

For 0\t\2 (Fig. 7.20)
For s\0, the product of the two functions is again zero since xðsÞ ¼ 0.
In the interval 0\s\2, the product of the two functions is not null when

0\s\t. For t\s the product is again zero.

Therefore yðtÞ ¼ R t
0 e

�aðt�sÞds ¼e�at
R t
0 e

asds ¼ e�at easjt0
a ¼ 1

a 1� e�atð Þ.
For 2\t (Fig. 7.21)
For s\0, the product of the two functions is still zero since xðsÞ ¼ 0.
In the interval 0\s\2 the product of the two functions is different from 0.
When 2\s, the product becomes zero again.

Then yðtÞ ¼ R 2
0 e

�aðt�sÞds ¼e�at
R 2
0 e

asds ¼ e�at easj20
a ¼ 1

a e
�at e2a � 1ð Þ

In summary yðtÞ ¼
0 if t\0
1� e�atð Þ=a if 0\t\2
e�at e2a � 1ð Þ=a if 2\t

������

The reader will verify that the function yðtÞ is continuous at the boundaries of the
interval 0; 2f g.
Example 2 Let xðtÞ be the rectangular window given by xðtÞ ¼ UðtÞ � Uðt � TÞ.

We look to assess the auto convolution yðtÞ ¼ xðtÞ � xðtÞ.
First we represent in Fig. 7.22 the functions xðsÞ and xð�sÞ:
We now have four cases values depending on the possible values of t
If t\0 (Fig. 7.23)

Fig. 7.21 Two functions to
multiply (top); Their product
(bottom)

130 7 Fourier Transforms and Convolution Calculations



The product of xðsÞ and xðt � sÞ is zero 8s then yðtÞ ¼ 0.
If 0\t\T (Fig. 7.24)
The product of xðsÞ and xðt � sÞ is zero for s\0 and for s[ t. It is equal to 1

whenever 0\s\t. Thus yðtÞ ¼ R t
0 ds ¼ t.

If T\t\2T (Fig. 7.25)

Fig. 7.22 Function xðsÞ and
its time reversed

Fig. 7.23 Two functions to
multiply (top); Their product
(bottom)

Fig. 7.24 Two functions to
multiply (top); Their product
(bottom)
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The product of xðsÞ and xðt � sÞ is zero for s\t and for s[ T . It is 1 for
t\s\T .

yðtÞ ¼
Z T

t�T
ds ¼ 2T�t:

If 2T\t (Fig. 7.26)
The product of xðsÞ and xðt � sÞ is always zero and whatever τ; yðtÞ ¼ 0

In summary yðtÞ ¼
0 if t\0
t if 0\t\T
2T � t if T\t\2T
0 if 2T\t

��������

The function yðtÞ is triangular with a base 2T (Fig. 7.27).

Fig. 7.25 Two functions to
multiply (top); Their product
(bottom)

Fig. 7.26 Two functions to
multiply (top); Their product
(bottom)
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It can be seen in the preceding examples that the convolution of two causal
functions is causal and that the autoconvolution of a rectangular window function is
triangular.

Summary
We have applied theorems on Fourier transform and convolution for the calcula-
tions of Fourier transforms of common windows met in signal analysis.
Rectangular, triangular, Hanning, Gaussian, are considered. Calculations of Fourier
transforms were carried out in detail and give a good example of the use of inte-
gration of complex functions. We have related the decrease of the magnitude of
Fourier transform of a window at infinite frequencies to the smoothness of its
junction to zero at the edges of the window. Several examples of convolution were
given. The chapter ends with a table of Fourier transforms of common functions.

Exercises

I. Gibbs phenomenon. Let the input signal in a filter be a rectangular pulse xðtÞ
equal to 1 between �s=2 and s=2 and null elsewhere. The filter is an ideal
lowpass with HðxÞ ¼ Ke�jxt0 when �xc\x\xc, and null elsewhere.

1. Give XðxÞ and YðxÞ the Fourier transforms of the input and output signals
xðtÞ and yðtÞ.

2. Show that yðtÞ is the difference of two sine integral functions SiðuÞ, where
SiðuÞ ¼ R u

0
sin x
x dx.

3. Use a Matlab simulation to obtain the results for yðtÞ in Fig. 7.28 in the
cases K ¼ 1, s ¼ 2, t0 ¼ 2, xc ¼ 10, xc ¼ 20.

Solution

1. XðxÞ ¼ s sinc xs
2


 �
; YðxÞ ¼ Ks sinc xs

2


 �
e�jxt0 for �xc\x\xc and null

elsewhere.

2. yðtÞ ¼ Ks
2p

Rxc

�xc
sinc xs=2ð Þejx t�t0ð Þdx ¼ Ks

p

Rxc

0
sin xs=2ð Þ
xs=2 cosx t � t0ð Þdx. (The

integral of the odd function sin xs=2ð Þ
xs=2 sinx t � t0ð Þ over a symmetric interval is

zero).

Fig. 7.27 Triangular window
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yðtÞ ¼ Ks
2p

Zxc

0

sinx t � t0 þ s=2ð Þ
xs=2

� sinx t � t0 � s=2ð Þ
xs=2

dx:

yðtÞ ¼ K
p

Zxc t�t0 þ s=2ð Þ

0

sin x
x

dx� K
p

Zxc t�t0�s=2ð Þ

0

sin x
x

dx:

yðtÞ ¼ K
p

Si xc t � t0 þ s=2ð Þð Þ � Si xc t � t0 � s=2ð Þð Þf g:

3. xc ¼ 10 plain line; xc ¼ 20 dashed line.

II. Consider the function f ðtÞ ¼ e�
t2

2r2 (Gaussian signal), where σ is a constant
having the dimension of a time. Referring to the definitions in Chap. 6, show
that the squares of spreads in time and frequency of this function are

r2t ¼
1
E

Z1

�1
t2 f ðtÞj j2dt ¼ r2

2
et r2x ¼ 1

2pE

Z1

�1
x2 FðxÞj j2dx ¼ 1

2r2
:

Show that the Heisenberg-Gabor relation for Gaussian signals is verified.

III. Consider the function wðtÞ ¼ e�
t2

2r2eix0t (complex Morlet wavelet), where x0

and σ are constants. Calculate its Fourier transform WðxÞ.
Solution: The FT of the product of functions is given by the convolution of their
FT.
We have

F e�
t2

2r2

� �
¼ e�

r2x2
2

ffiffiffiffiffiffiffiffiffiffi
2pr2

p
; F eix0t


 � ¼ 2pd x� x0ð Þ:

Thus

WðxÞ ¼ 1
2p

e�
r2x2
2

ffiffiffiffiffiffiffiffiffiffi
2pr2

p
� 2pd x� x0ð Þ

� �
¼

ffiffiffiffiffiffiffiffiffiffi
2pr2

p
e�

r2 x�x0ð Þ2
2 :

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.5

0

0.5

1

1.5

y 
(t

) 

Fig. 7.28 Gibbs phenomenon after low-pass filtering
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The Heisenberg-Gabor relation follows naturally.
IV. Consider the function hðtÞ ¼ 1 for 0� t� 2 and zero elsewhere.

Let xðtÞ ¼ dðt � 3Þþ e�0:5tðUðtÞ � Uðt � 5ÞÞ. Calculate the convolution
yðtÞ ¼ xðtÞ � hðtÞ.

IV. In the table of Fourier transforms at the end of this chapter, we see that the FT
of
e�at cos x0tð ÞUðtÞ is aþ jx

aþ jxð Þ2 þx2
0

and the FT of e�at sin x0tð ÞUðtÞ is x0

aþ jxð Þ2 þx2
0

.

Comment on the asymptotic behavior of these two FT at high frequencies
deriving on the discontinuities of these functions in the time domain.

Table of Fourier transforms

Time Frequency

dðtÞ 1

1 2pdðxÞ
f ðtÞ FðxÞ
f t � t0ð Þ FðxÞe�jxt0

f ðtÞ � gðtÞ FðxÞGðxÞ
f ðtÞgðtÞ 1

2pFðxÞ � GðxÞ
ejx0 t 2pd x� x0ð Þ
cos x0tð Þ p d x� x0ð Þþ d xþx0ð Þð Þ
sin x0tð Þ �jp d x� x0ð Þ � d xþx0ð Þð Þ
PT ðtÞ ¼ 1 tj j\ T

2
0 elsewhere

����
T sin c xT

2


 �

K2T ðtÞ ¼ PT ðtÞ �PT ðtÞ T2 sin c2 xT
2


 �

a[ 0 e�atUðtÞ 1
aþ jx

te�atUðtÞ 1
aþ jxð Þ2

e�a tj jUðtÞ 2a
a2 þx2

ReðaÞ� 0 e�at2 ffiffi
p
a

p
e�

x2
4a

Pseudo function Pf 1
t


 � �jpsgnðxÞ (see chap. 9)
1
2 dðtÞþ j

2pPf
1
t


 �
UðxÞ

UðtÞ pdðxÞþ 1
j Pf

1
x


 �

sgnðtÞ 2
j Pf

1
x


 �

e�at cos x0tð ÞUðtÞ aþ jx
aþ jxð Þ2 þx2

0

e�at sin x0tð ÞUðtÞ x0

aþ jxð Þ2 þx2
0

ReðtÞ[ � 1 ttUðtÞ ðjxÞ�t�1Cðtþ 1Þ
t�

1
2UðtÞ ðjxÞ�1

2
ffiffiffi
p

p

ReðtÞ[ � 1 tteatUðtÞ jx� að Þ�t�1C tþ 1ð Þ
(continued)
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(continued)

Time Frequency

f t � t0ð Þ FðxÞe�jxt0

f ðtÞ � gðtÞ FðxÞGðxÞ
f ðtÞgðtÞ 1

2pFðxÞ � GðxÞ
f ðtÞejx0 t F x� x0ð Þ
PT ðtÞ cosx0t T

2
sin x�x0ð ÞT2
x�x0ð ÞT2

þ sin xþx0ð ÞT2
xþx0ð ÞT2

n o

P1

n¼�1
d t � nT0ð Þ 2p

T0

P1

n¼�1
d x� n 2p

T0

� �

d0ðtÞ jx

dðnÞðtÞ ðjxÞn
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Chapter 8
Impulse Response of LTI Systems

It was shown in Chap. 5 that the impulse response of a LTI system is the inverse
Fourier transform of the frequency response. It is given by the integral

hðtÞ ¼ 1
2p

PV
Zþ1

�1
HðxÞejxtdx: ð8:1Þ

The immediately apparent difficulty in the calculation of hðtÞ is that the function
HðxÞ is in the general case a complex function of x. The integral cannot generally
be evaluated simply by the methods of integration of real functions. The integration
is then performed in the complex plane by integration over a closed contour. The
principles of the analysis and integration of a complex function are presented in
Appendix A1. We use as examples the calculations of the impulse responses of
first- and second-order systems.

It appears the important result that the causality of a stable physical system is
implied by the position of the poles of the transfer function in the half complex
plane with negative real parts.

The complex variable s encountered in the definition of transfer functions HðsÞ
was written as s = r + jx. As HðxÞ ¼ HðsÞjr¼0, relationship (8.1) becomes

hðtÞ ¼ 1
2pj

PV
Zþ j1

�j1
HðsÞestds: ð8:2Þ

The integral is evaluated on the vertical axis on which r ¼ jx. Since one has to
calculate the principal value of an integral, we can make the boundaries tend
symmetrically to infinity. The residue method is generally used to calculate the
integral.

© Springer International Publishing Switzerland 2016
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To begin this chapter, the impulse response hðtÞ is calculated for simple
examples to highlight the causal relationship between the stability of a system and
the situation of the poles of the system transfer function in the complex plane.

8.1 Impulse Response of a First-Order Filter

We have seen that the frequency response of the RC circuit was

HðxÞ ¼ 1
1þ jRCx

ð8:3Þ

The impulse response hðtÞ is given by the inverse Fourier transformation (as dis-
cussed above, the principal value notation will be no longer mentioned hereinafter)

hðtÞ ¼ 1
2p

Zþ1

�1

1
1þ jRCx

ejxtdx ð8:4Þ

or, according to (8.2)

hðtÞ ¼ 1
2pj

Zþ j1

�j1

1
1þRCs

estds ð8:5Þ

The integral is calculated by the residue method. For this, first of all we define a
closed contour C which is composed of the vertical axis and a half great circle C in
the left or half planes with radius tending toward infinity.

According to the residue theorem (see Appendix A1), the integral over a closed
contour of H sð Þest is equal to the sum of the residues (labeled Resi) inside the
contour C

Zþ j1

�j1
HðsÞ estdsþ

Z
C

HðsÞ estds ¼ 2pj
X
i

Resi: ð8:6Þ

For the first-order filter

HðsÞ ¼ �s0
s� s0

ð8:7Þ

138 8 Impulse Response of LTI Systems



This function has a simple pole at s0 where

s0 ¼ � 1
RC

: ð8:8Þ

One must distinguish two cases

• If t[ 0, we can apply Jordan’s lemma on C (see Appendix 1) if the exponential
modulus of ept is bounded. For this to be so, in the case where t is positive, it is
necessary that r, the real part of s, is negative. Thus we close the contour of the
half circle to the left (Fig. 8.1). According to Jordan’s lemma, the integral tends
to be zero as R! 1. Z

C

HðsÞestds ¼ 0: ð8:9Þ

The contour encompasses the simple pole s0. There is a residue of the integral
for this contour called Bromwich contour then

Zþ j1

�j1
HðsÞestds ¼ 2pjðResÞs¼s0 ¼ 2pj lims�[ s0ðs� s0ÞHðsÞest ¼ �2pjs0es0t

ð8:10Þ

Finally if t[ 0

hðtÞ ¼ �s0es0t ¼ 1
RC

e�
1
RCt: ð8:11Þ

Fig. 8.1 Integration
Bromwich contour for the
case t[ 0
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• Case t\0: To apply Jordan’s lemma on C it is necessary for r to be positive, so
that the exponential est remains bounded when s follows the half circle. We
therefore close the contour by the half circle on the vertical axis right (Fig. 8.2)
and the integral tends to zero when R! 1. The contour surrounds no pole;
there is no residue.

So, according to Cauchy theorem

Zþ j1

�j1
HðsÞestdsþ

Z
C

HðsÞestds ¼ 0: ð8:12Þ

As the integral over the semicircle
R
C HðsÞestds ¼ 0 vanishes, by the application of

Jordan’s lemma, we get

Zþ j1

�j1
HðsÞestds = 0; ð8:13Þ

or, for t \0,

hðtÞ ¼ 0: ð8:14Þ

In summary, for any value of t we have

hðtÞ ¼ 1
RC

e�
t

RCUðtÞ; ð8:15Þ

where UðtÞ is the Heaviside function, equal to zero for t \0 and to 1 for t [ 0
(Fig. 8.3).

Fig. 8.2 Integration
Bromwich contour for the
case t\0
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To complete, we now check as an exercise, that the solution hðtÞ is correct by
referring the previous result in the original differential equation and using the
properties of the derivative of a discontinuous function.

The initial equation resulting from Ohm’s law is

R
dqðtÞ
dt

þ q
C
¼ dðtÞ; ð8:16Þ

with

hðtÞ ¼ qðtÞ
C

¼ 1
RC

e�
t

RCUðtÞ: ð8:17Þ

The electric charge is

qðtÞ ¼ 1
R
e�

t
RCUðtÞ: ð8:18Þ

Its derivative is

dqðtÞ
dt

¼ � 1
R2C

e�
t

RCUðtÞþ 1
R
e�

t
RCdðtÞ: ð8:19Þ

The second term of the second member 1
R e

� t
RCdðtÞ is equal to 1

R dðtÞ as the expo-
nential is 1 for t ¼ 0.

Indeed, by acting the distribution function 1
R e

� t
RCdðtÞ on a probe function uðtÞ in

an integral

Zþ1

�1

1
R
e�

t
RCdðtÞuðtÞdt ¼ 1

R
uð0Þ: ð8:20Þ

Fig. 8.3 Impulse response
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The result is the same as for the distribution 1
R dðtÞ

Zþ1

�1

1
R
dðtÞuðtÞdt ¼ 1

R
uð0Þ: ð8:21Þ

So

dqðtÞ
dt

¼ � 1
R2C

e�
t

RCUðtÞþ 1
R
dðtÞ: ð8:22Þ

We replace this derivative in the differential Eq. (8.16) and eðtÞ ¼ dðtÞ is found
back in the second member

R
dqðtÞ
dt

þ q
C
¼ � 1

RC
e�

t
RCUðtÞþ dðtÞþ 1

RC
e�

t
RCUðtÞ ¼ dðtÞ: ð8:23Þ

To complete this study of the first-order system we check now that HðxÞ ¼
1

1þ jRCx is the Fourier transform of hðtÞ ¼ 1
RC e

� t
RCUðtÞ.

Zþ1

�1

1
RC

e�
t

RCUðtÞe�jxtdt ¼ 1
RC

Zþ1

0

e�
1
RCþ jxð Þtdt ¼ 1

RC
e�

1
RCþ jxð Þt

�ð 1
RC þ jxÞ

" #þ1

0

;

ð8:24Þ

and then,

HðxÞ ¼ 1
RC

1
1
RC þ jx

 !
¼ 1

1þ jxRC
: ð8:25Þ

8.2 Impulse Response of a Second Order Filter

Recall that the impulse response of a LTI filter is given by

hðtÞ ¼ 1
2pj

R þ j1
�j1 HðsÞ estds.

With here

HðsÞ ¼ 1
LCs2 þRCsþ 1

¼ 1
LC

1
ðs� s1Þðs� s2Þ : ð8:26Þ
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Case where the roots the roots s1 and s2 are different
We can develop the rational fraction into simple elements.We write

1
ðs� s1Þðs� s2Þ ¼

A
ðs� s1Þ þ

B
ðs� s2Þ : ð8:27Þ

We search A and B identifying the terms resulting from using the same
denominator.

Aðs� s2ÞþBðs� s1Þ
ðs� s1Þðs� s2Þ ¼ 1

ðs� s1Þðs� s2Þ ; ð8:28Þ

yet ðAþBÞs� As2 � Bs1 ¼ 1. This relationship should be verified for any s. It
comes B ¼ �A and �As2 þAs1 ¼ 1.

Then A ¼ 1
ðs1�s2Þ and B ¼ � 1

ðs1�s2Þ,and

HðsÞ ¼ 1
LC

ð 1
ðs1 � s2Þðs� s1Þ �

1
ðs1 � s2Þðs� s2ÞÞ: ð8:29Þ

We meet a situation of two first-order systems in parallel. The impulse response is
obtained from the result for the impulse response of the first-order filter.

hðtÞ ¼ 1
LC

1
ðs1 � s2Þ es1t � es2tð ÞUðtÞ: ð8:30Þ

The poles s1 and s2 are the roots of the polynomial LCs2 þRCsþ 1 ¼ 0 in the
denominator. These roots depend on the value of the discriminant of the polynomial
D ¼ R2C2 � 4LC.

• If D[ 0,

s1 � s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

L2
� 4
LC

r
: ð8:31Þ

The impulse response will be in this case

hðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2C2 � 4LC

p e�
R
2Lt e

ffiffiffiffiffiffiffiffiffiffi
R2

4L2
� 1

LC

p
t � e�

ffiffiffiffiffiffiffiffiffiffi
R2

4L2
� 1

LC

p
t

� �
UðtÞ: ð8:32Þ

This impulse response is constituted by the difference between two decreasing
exponential.
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Figure 8.4a shows the two functions appearing in (8.32). h tð Þ shown in Fig. 8.4b
is their difference. (R ¼ 40 X; L ¼ 10�2 H, C ¼ 10�4 F:).

• If D\0

s1 � s2 ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
LC

� R2

L2

r
; ð8:33Þ

hðtÞ ¼ 1

j2LC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC � R2

4L2

q e�
R
2Lt ej

ffiffiffiffiffiffiffiffiffiffi
1
LC� R2

4L2

p
t � e�j

ffiffiffiffiffiffiffiffiffiffi
1
LC� R2

4L2

p
t

� �
UðtÞ: ð8:34Þ

Finally

hðtÞ ¼ 1
LC

e�
R
2Lt
sinx0t
x0

UðtÞ; ð8:35Þ

with

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R2

4L2

r
: ð8:36Þ

The impulse response is shown in Fig. 8.5 for the values R ¼ 5 X; L ¼ 10�2 H,
C ¼ 10�4 F:

Fig. 8.4 a Functions appearing in (8.32); b Impulse response
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Case where the roots s1 and s2 are equal
This is the case if the discriminant D ¼ 0. The denominator has a real double root

s1 ¼ s2 ¼ � R
2L

: ð8:37Þ

The transfer function is

HðsÞ ¼ 1
LC

1

ðs� s1Þ2
: ð8:38Þ

To calculate hðtÞ in this case one must calculate the residue at double pole s1.
Reminder of the residue theorem: Let the function F sð Þ with a pole of order n in

s ¼ a
The residue from the integration of FðsÞ along a closed contour surrounding the

pole is

Resin s¼a ¼ 1
n� 1ð Þ!

dn�1

dsn�1 s� að ÞnFðsÞ½ �s¼a: ð8:39Þ

In the present case Resin s¼s1 ¼ d
ds s� s1ð Þ2HðsÞest
h i

s¼s1
¼ 1

LC
d
ds e

st
h i

s¼s1
.

Therefore Resin s¼s1 ¼ 1
LC te

s1t.
In this last case the impulse response is

hðtÞ ¼ 1
LC

te�
R
2LtUðtÞ ð8:40Þ

The impulse response is shown for this critical damping in Fig. 8.6 for values
R ¼ 20 X;

L ¼ 10�2 H, C ¼ 10�4 F:

Fig. 8.5 Impulse response in
a case where D\0
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To complete this study, we check in one case that the function hðtÞ is the
solution of the differential equation of the second-order filter where the second
member is eðtÞ ¼ dðtÞ

We choose the case where hðtÞ has the expression hðtÞ ¼ 1
LC e

� R
2Lt sinx0t

x0
UðtÞ

dhðtÞ
dt

¼ d
dt

1
LC

e�
R
2Lt
sinx0t
x0

� �
UðtÞþ 1

LC
e�

R
2Lt
sinx0t
x0

dðtÞ ð8:41Þ

The second term vanishes since the function multiplying dðtÞ is zero for t ¼ 0.

dhðtÞ
dt

¼ � R
2L2C

e�
R
2Lt
sinx0t
x0

� �
UðtÞþ 1

LC
e�

R
2Lt cosx0t

� �
UðtÞ: ð8:42Þ

Also

d2hðtÞ
dt2

¼ R2

4L3C
e�

R
2Lt
sinx0t
x0

� �
UðtÞ � R

2L2C
e�

R
2Lt cosx0t

� �
UðtÞ � R

2L2C
e�

R
2Lt
sinx0t
x0

� �
dðtÞ

� R
2L2C

e�
R
2Lt cosx0t

� �
UðtÞ � x0

1
LC

e�
R
2Lt sinx0t

� �
UðtÞþ 1

LC
e�

R
2Lt cosx0t

� �
dðtÞ:

ð8:43Þ

Simplifying

d2hðtÞ
dt2

¼ R2

4L3C
e�

R
2Lt
sinx0t
x0

� �
UðtÞ � R

L2C
e�

R
2Lt cosx0t

� �
UðtÞ

� x0
1
LC

e�
R
2Lt sinx0t

� �
UðtÞþ 1

LC
dðtÞ:

ð8:44Þ

Fig. 8.6 Impulse response in
the case of critical damping

146 8 Impulse Response of LTI Systems



Now we verify that LC d2
h

dt2 þRC dh
dt þ hðtÞ ¼ dðtÞ

R2

4L2
e�

R
2Lt
sinx0t
x0

� �
UðtÞ � R

L
e�

R
2Lt cosx0t

� �
UðtÞ � x0e�

R
2Lt sinx0t

� �
UðtÞþ dðtÞ

� R2

2L2
e�

R
2Lt
sinx0t
x0

� �
UðtÞþ R

L
e�

R
2Lt cosx0t

� �
UðtÞþ 1

LC
e�

R
2Lt
sinx0t
x0

� �
UðtÞ

¼ e�
R
2Lt
sinx0t
x0

UðtÞ � R2

4L2
� x2

0 þ
1
LC

� �
þ dðtÞ ¼ dðtÞ: ð8:45Þ

we have written x2
0 ¼ 1

LC � R2

4L2.
This calculation proves that the impulse response satisfies generalized Ohm’s

law when the second member is eðtÞ ¼ dðtÞ.
Example We search the impulse response of the current for the electric circuit RC
of the first order.

Ohm’s law is written with variable qðtÞ

R
dq
dt

þ q
C
¼ eðtÞ: ð8:46Þ

Using the current in the circuit as a variable, Ohm’s law is
RiðtÞþ 1

C

R
iðtÞdt ¼ eðtÞ

Calculation of the current transfer function: We note eðtÞ ¼ est

We are looking for iðtÞ in the form iðtÞ ¼ Aest. Then
R
iðtÞdt ¼ 1

s Ae
st.

Using this expression in Ohm’s law RAest þ 1
Cs Ae

st ¼ est.
This equation is verified for all t if A Rþ 1

Cs

� � ¼ 1, or when A ¼ 1
Rþ 1

Cs
¼ sC

1þRCs.

So, the current transfer function is

HðsÞ ¼ A ¼ sC
1þRCs

: ð8:47Þ

This function has a zero in s ¼ 0 and a pole s0 ¼ � 1
RC. H sð Þ is decomposed into

simple elements as: HðsÞ ¼ Dþ EðsÞ
FðsÞ ¼ DFðsÞþEðsÞ

FðsÞ ¼ D 1þRCsð ÞþEðsÞ
1þRCs ¼ sC

1þRCs.

By identifying the coefficients of the powers of s it comes D ¼ 1
R and E ¼ � 1

R.
Then

HðsÞ ¼ 1
R
� 1
R RCsþ 1ð Þ : ð8:48Þ

Calculating hðtÞ by integration given in (8.2) h tð Þ ¼ 1
2pj

R j1
�j1

1
R � 1

RCsþ 1

� �
estds.
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On the integration vertical axis we have s ¼ jx, then

h tð Þ ¼ 1
R

1
2p

Z1
�1

ejxtdx� 1
2pj

Zj1
�j1

1
R

1
RCsþ 1

estds; ð8:49Þ

Using a result of first-order filter, we finally get

hðtÞ ¼ 1
R
dðtÞ � 1

R2C
e�

t
RCUðtÞ: ð8:50Þ

The reader will verify as an exercise that this result maybe found by a time
derivation of the impulse response in tension across the capacitor.

Summary
We have carried out in this chapter the calculation of the impulse responses of two
important circuit cases in electricity. They are calculated by performing the inverse
transform calculations of the response function H xð Þ by integration in the complex
plane on a closed contour and using the residue theorem. We have shown that the
causality of a stable physical system is implied by the position of the poles of the
transfer function in the half complex plane with negative real parts.

Next chapter on Laplace transform generalizes these results and studies on
examples the properties of causality and stability.

Exercise
This exercise comes as a following of Exercise 1, Chap. 2.

(a) Give the expression for calculating the impulse response hðtÞ from the fre-
quency response function HðxÞ.

(b) By integration in the complex plane, calculate hðtÞ. Justify the causal nature of
this function. Give the graph of hðtÞ.
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Chapter 9
Laplace Transform

The direct and inverse Laplace transforms are defined in this chapter. As specified
in formulas 9.1–9.4 of this chapter, the Fourier transformation appears as a special
case of the Laplace transform for s ¼ jx. In Chap. 2 we used the transfer function
properties defined in the ðr; jxÞ plane to explain the variations of the frequency
response of a system which is a function of the single variable x. The inversion
formula for the Fourier transform recalled here (9.2) shows that the function FðsÞ is
the two-sided Laplace transform (integration from �1 to þ1) of the function
f ðtÞ. Laplace transform has played a very important role in electrical engineering in
the study of electronic systems responses, causal by essence. It was oriented pri-
marily for the treatment of causal signals, zero for negative time. Historically the
one-sided form of the Laplace transform was used. The transfer function of an
electrical circuit, written in the form of a rational fraction was decomposed into
simple elements. For canonical form of input signals, it was possible to calculate the
output signal in the Laplace domain as products of simpler functions. Simple rules
treated the boundary conditions at time t ¼ 0.

With the use of distributions which allow generalizing all functions, the Fourier
transform calculations and the development of digital computation, the Laplace
transform is less dominant today, especially in theoretical calculations. An
important goal of this chapter is to provide an understanding of the domain of
definition of the Laplace transform and its association with causality and stability of
a system.

The special case of a marginally stable system is also discussed.

9.1 Direct and Inverse Transforms

It has been shown in chapter 8 that calculation of an inverse Fourier transform of
the general form

© Springer International Publishing Switzerland 2016
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f tð Þ ¼ 1
2p

PV
Zþ1

�1
F xð Þejxtdx ð9:1Þ

had been performed in the complex plane using the integral

f tð Þ ¼ 1
2pj

PV
Zþ j1

�j1
F sð Þestds: ð9:2Þ

The function F sð Þ is the two-sided Laplace transform of the function f tð Þ, given by
the integral

FðsÞ ¼
Z1

�1
f ðtÞ e�stdt; ð9:3Þ

where s is any complex number.
By posing s ¼ rþ jx as was done previously, we see that in the case where

r ¼ 0, the value of the Laplace transform on the vertical axis where r ¼ 0 is given
by

FðsÞjr¼0¼
Z1

�1
f ðtÞ e�stdt: ð9:4Þ

We recognize the right side as the Fourier transform of the function f tð Þ.
Thus, the Fourier transform F xð Þ of a function appears to be a special case of the

two-sided Laplace transform of that function. The term two-sided means that, both
boundaries in the time integral tend to infinity. In the one-sided Laplace transform,
the lower boundary of the integral is t ¼ 0. In reason of its proximity to the Fourier
transform, the two-sided Laplace transform is preferred in this course.

In summary, the two-sided Laplace transform is

Direct transform : FðsÞ ¼
Z1

�1
f ðtÞ e�stdt: ð9:5Þ

Inverse transform : f tð Þ ¼ 1
2pj

PV
Zþ j1

�j1
f ðtÞ e�stds: ð9:6Þ
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Of the foregoing, it is seen that the transfer function of an LTI system is the
Laplace transform of its impulse response.

While the Fourier transform is defined on the s ¼ jx axis, the Laplace transform
is defined in the plane s. This is a two-dimensional function as the FT is
one-dimensional. By the fact it contains much more information on the function
f tð Þ. In particular, the function F sð Þ reveals the crucial importance played by its
poles and zeros.

The integral (9.5) defining the Laplace transform converges only for certain
values of s. The function F sð Þ is not defined in some parts of the complex s plane.

9.1.1 Study of Convergence with an Example

Let the function

f ðtÞ ¼ e�atUðtÞ; ð9:7Þ

where a is a real number for any sign and U tð Þ is the Heaviside function.
Then:

FðsÞ ¼
Z1

1
e�ate�stdt ¼ e�ðsþ aÞt��

1�1

�ðsþ aÞ ; ð9:8Þ

with s ¼ rþ jx. The exponential in the numerator tends to a finite limit when
t tends to infinity only if the exponential modulus e�ðrþ jxþ aÞt�� �� ¼ e�ðrþ aÞt�� �� tends
to zero as t tends to infinity. It is necessary that rþ a[ 0, equivalently

r[ � a: ð9:9Þ

In this case the Laplace transform is

FðsÞ ¼ 1
ðsþ aÞ : ð9:10Þ

Since the condition r[ � a must be verified to ensure convergence, the function
F sð Þ is defined only in the half s plane, to the right of the vertical r ¼ �a.

It is interesting to detail the study of the convergence which depends upon the
sign of a

• If a[ 0 (Fig. 9.1),
f ðtÞ ¼ e�atUðtÞ is a decreasing function of t tending to zero as t tends to infinity.
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The vertical line r ¼ �a lies in the part of the complex plane where the real part
of s is negative (Fig. 9.2).
In particular, F sð Þ exists for s ¼ jx. FðxÞ ¼ FðsÞjs¼jx¼

R1
�1 f ðtÞ e�jxtdt.

We see that in this case the Fourier transform of the function f tð Þ is defined.
• If a\0; f ðtÞ ¼ e�atUðtÞ is an increasing function of t tending to infinity as

t tends to infinity (Fig. 9.3).

The vertical line r ¼ �a belongs to the right of the imaginary axis r ¼ 0. F sð Þ
is defined on the right of the vertical (Fig. 9.4). The Fourier transform of this signal
does not exist. A system that would have this exponentially increasing impulse
response is described as unstable.

Fig. 9.1 f ðtÞ in the case
a[ 0

Fig. 9.2 Domain of
definition of F sð Þ when a[ 0

Fig. 9.3 f ðtÞ in the case a\0

Fig. 9.4 Domain of
definition of F sð Þ when a\0
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9.1.2 Another Example

Calculate the Laplace transform of f ðtÞ ¼�a tj j assuming a is real positive (Fig. 9.5).

FðsÞ ¼
Z1

�1
e�a tj je�stdt ¼

Z0

�1
eate�stdtþ

Z1

0

e�ate�stdt: ð9:11Þ

The first integral converges for r\a. The second converges when r[ � a. Then

FðsÞ ¼ � 1
s� a

þ 1
sþ a

¼ 2a
a2 � s2

: ð9:12Þ

F sð Þ will be defined for all s belonging to the vertical strip bounded by the two lines
�a and þ a (Fig. 9.6).The imaginary axis r ¼ 0 belonging to this area of con-
vergence, the Fourier transform of f tð Þ exists.

9.2 Stability of a System and Laplace Transform

As seen in the case of the first and second-order systems, impulse response decays
exponentially in time. This is the usual case for physical systems.

The domain of definition in the Laplace plane of transfer function H sð Þ of causal
systems is a half plane on the right of a vertical line. When causal systems are
damped, this vertical is located in the part of the plane where r\0.

Fig. 9.5 f ðtÞ ¼�a tj j when
a[ 0

Fig. 9.6 Domain of
definition of F sð Þ when a[ 0
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This shows that for these systems, the frequency response H xð Þ cannot be
infinite for any value of the angular frequency x. This ensures that for any input
signal in the form ejxt in the system, the output signal H xð Þ ejxt has finite
amplitude. It is said that such a system is stable. It can be shown that

A necessary and sufficient condition for a LTI system to be stable is that its
impulse response h tð Þ is such that

R1
�1 hðtÞj j dt\1.

It follows from the foregoing that the poles of the transfer function of a
causal and stable system have a strictly negative real part.

9.2.1 Marginal Stability

A special case of stability is encountered when the singularity of the transfer
function of a system lies on the imaginary axis. This is the case when the frequency
response is

H xð Þ ¼ 1
j x� x0ð Þ : ð9:13Þ

Let us determine its impulse response. It is given by

h tð Þ ¼ 1
2p

PV
Zþ1

�1
H xð Þejxtdx ¼ 1

2p
PV

Zþ1

�1

1
j x� x0ð Þ e

jxtdx:

We note x� x0 ¼ X, then dx ¼ dX. It comes

h tð Þ ¼ 1
2p

PV
Zþ1

�1

1
jX

ej Xþx0ð ÞtdX ¼ ejx0t 1
2p

PV
Zþ1

�1

1
jX

ej Xtð ÞdX: ð9:14Þ

We look for a causal filter. We determine h tð Þ using the artifice of adding a constant
a[ 0 to the denominator and make a tend toward 0. Noting s ¼ jX, we have

h tð Þ ¼ ejx0t lima!0
1
2pj

PV
Zþ j1

�j1

1
aþ s

estds

0

B@

1

CA: ð9:15Þ
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Using results (9.10) and (9.7), we have

h tð Þ ¼ ejx0t lima!0 e�at U tð Þð Þ ¼ ejx0t U tð Þ: ð9:16Þ

The amplitude of h tð Þ does not blow out to infinity for large t, nor decreases to 0.
The filter is said marginally stable.

9.2.2 Minimum-Phase Filter

A minimum-phase filter is defined as a causal and stable filter whose inverse is
causal and stable. It follows from this definition that the poles and zeros of this filter
lie on the left of the imaginary axis in the Laplace plane.

We admit here the following property: from all filters with the same modulus of
the frequency response, the minimum-phase filter is the one whose impulse
response is the earliest. (This property is linked to the evolution of phase with
frequency of this filter).

9.3 Applications of Laplace Transform

Many physical, electrical systems (generalized Ohm’s law) or mechanical (funda-
mental laws of dynamics) satisfy the following general equation:

dmyðtÞ
dtm

þ a1
dm�1yðtÞ
dtm�1 þ a2

dm�2yðtÞ
dtm�2 þ . . .þ amyðtÞ

¼ b0
drxðtÞ
dtr

þ b1
dr�1xðtÞ
dtr�1 þ . . .þ brxðtÞ: ð9:17Þ

Note that in this type of equation, the functions and their derivatives appear only
with a power 1. If it is not the case, the differential equation is not linear and the
following development does not apply.

As seen in Chaps. 1 and 2, in this equation where appears only linear combi-
nations of derivatives of input and output functions x tð Þ and y tð Þ, the study of the
system relies on its transfer function, i.e., on the system response y tð Þ:

y tð Þ ¼ H sð Þest ð9:18Þ

to the input x tð Þ of the form

x tð Þ ¼ est: ð9:19Þ
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The r order derivative of x tð Þ that appears in the Eq. (9.17) is in this case

drxðtÞ
dtr

¼ srest: ð9:20Þ

Similarly, the m order derivative of y tð Þ is

dmyðtÞ
dtm

¼ smH sð Þ est: ð9:21Þ

After substituting in Eq. (9.17) and by simplifying by est, we obtain the following
expression for the transfer function H sð Þ of the system

HðsÞ ¼ b0sr þ b1sr�1 þ . . .::þ br
sm þ a1sm�1 þ a2sm�2 þ . . .::þ am

: ð9:22Þ

We obtain the impulse response of the system in developing H sð Þ in simple ele-
ments and use of the following rule, which is a direct result of the calculation by
residues as was used in Chap. 8

tnesitUðtÞ$T L n!

ðs� siÞnþ 1 ð9:23Þ

For example, if n ¼ 0,

esitUðtÞ$T L 1
s� si

; ð9:24Þ

if n ¼ 1,

t esitUðtÞ$T L 1

s� sið Þ2 : ð9:25Þ

Example Consider the transfer function of a causal system of the form

HðsÞ ¼ 1

sðsþ 1Þ2 : ð9:26Þ

Decomposed into simple elements, HðsÞ is written

HðsÞ ¼ 1
s
� 1

ðsþ 1Þ2 �
1

ðsþ 1Þ : ð9:27Þ
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The filter impulse response is then

hðtÞ ¼ ð1� t e�t � e�tÞUðtÞ: ð9:28Þ

We note the following important results The domain of definition of the
transfer function of a causal system is the half plane s on the right side of the
singularity whose real part is the highest.

We recall that a physical system (causal) is stable if all the poles of its
transfer function have a negative real part.

A stable physical system (causal) has a frequency response.

9.3.1 Response of a System to Any Input Signal

We know that the response of an LTI system with impulse response h tð Þ to an input
signal x tð Þ is y tð Þ ¼ x tð Þ � h tð Þ. For causal signals and systems (to ensure the
convergence of time integrals) or decreasing fast enough at infinity, it is possible to
write yðsÞ ¼ xðsÞHðsÞ.

To obtain the time response y tð Þ, we will seek the images of time functions x tð Þ
and h tð Þ, carry out their product to have yðsÞ, and then go back into the time domain
to obtain y tð Þ.
Summary
After giving the formulas of the two-sided Laplace transform, we studied on
examples the convergence of the integral giving the transform, and determined the
domain of definition of the Laplace transform function in the complex s plane.
Marginally stable systems have been discussed. We have shown that the differential
equations with constant coefficients encountered in electronic circuits Ohm’s law
take the form of a rational function in the Laplace domain. Formulas for the
transition from time domain to Laplace plane are given in a table at the end of the
chapter.

Exercise
Consider the marginally stable filter whose frequency response function is given by
(9.13).

Let the input signal of this filter be x tð Þ ¼ ejx0tU tð Þ. Show that the output is

y tð Þ ¼ t ejx0tU tð Þ:
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Solution: A first manner is to use results (9.24) and (9.25).
A second manner is to calculate directly the convolution y tð Þ ¼ x tð Þ � h tð Þ ¼

ejx0tU tð Þ � ejx0tU tð Þ. y tð Þ ¼ Rþ1

�1
ejx0sU sð Þejx0 t�sð ÞU t � sð Þds.

y tð Þ ¼ ejx0t
R1

�1
U sð ÞU t � sð Þds ¼ tejx0tU tð Þ. This result will be used in a further

chapter when the Goertzel filter algorithm is detailed.

Tableof Laplace transforms

Function in time Laplace transform

d tð Þ 1

U tð Þ 1
s

tU tð Þ 1
s2

tnU tð Þ n!
snþ 1

a[ 0; e�atU tð Þ 1
sþ a

te�atU tð Þ 1
sþ að Þ2

tne�atU tð Þ n!
sþ að Þnþ 1

cos x0tð ÞU tð Þ s
s2 þx2

0

sin x0tð ÞU tð Þ x0
s2 þx2

0

e�at cos x0tð ÞU tð Þ sþ a
sþ að Þ2 þx2

0

e�at sin x0tð ÞU tð Þ x0

sþ að Þ2 þx2
0

f tð Þ F sð Þ
f t � t0ð Þ F sð Þe�st0

f tð Þ � g tð Þ F sð ÞG sð Þ
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Chapter 10
Analog Filters

Analog filters play an important role in signal processing. We deal here with some
important, common cases. The analysis will be limited to the case of low-pass
filters. We consider first, three classical all-poles filters: Butterworth, Chebyshev,
and Bessel. We discuss their performances with regard to the situation of the poles
of their transfer functions in the Laplace plane. It appears that the Butterworth filter
has the flattest frequency response in the passband. The Chebyshev filter has the
shortest transition region between the passband and the attenuated band. The Bessel
filter will be used when minimum deformation of the signal through the filter is
searched for. The band-pass or high-pass filters are deduced by moving the poles of
the transfer function of the low-pass filters in the Laplace plane. The chapter ends
with a comparison of the frequency responses of filters from each class.

10.1 Delay of a Signal Crossing a Low-Pass Filter

This paragraph is intended to define the delay of a signal passing through a filter.
The reasoning is based on the frequency behavior of low-pass filters near zero
frequency.

Consider a low-pass filter with frequency response H xð Þ. First of all we seek the
approximate shape of the frequency response of the filter in the low-frequency limit.
We perform a Taylor expansion of H xð Þ in the vicinity of the zero frequency.

The module HðxÞj j is an even function. Its value approximated at zero order is

HðxÞj j ffi Hð0Þ: ð10:1Þ
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The argument of H xð Þ (phase shift taken by the signal ejxt when crossing the
filter) developed to order 1 is written as

uðxÞ ffi uð0Þþx
du
dx

: ð10:2Þ

As u xð Þ is an odd function, continuous in x ¼ 0, it is zero at x ¼ 0. Therefore
in the vicinity of the zero frequency

uðxÞ ffi x
du
dx

: ð10:3Þ

du
dx has the dimensions of a time. We have seen in the examples of filters of the

first and second order that in the vicinity of x ¼ 0, the phase is a decreasing
function of x.

This leads us to write

du
dx

����
x¼0

¼ �s; ð10:4Þ

where s represents a positive time.
As will be explained in a following chapter, this delay is that taken by the

envelope of a signal formed by the superposition of harmonic signals in a frequency
band when crossing a band-pass filter. It is called the group delay. The phase delay
will also be defined and calculated from the phase shift taken by an exponential
monochromatic signal. In general, phase and group delays are functions of
frequency.

Group delay : sg xð Þ ¼ � du xð Þ
dx

: ð10:5Þ

Phase delay : su xð Þ ¼ �u xð Þ
x

: ð10:6Þ

Using relations from (10.1) to (10.4), it is thus possible to write in the vicinity of
the zero frequency

HðxÞ ffi Hð0Þe�jxs ð10:7Þ

Filtering of a Low-Frequency Signal
Now we study the effect of the previous filter on a signal x tð Þ presented to its input.
It is assumed now that the spectral range of x tð Þ does not extend beyond the area of
validity of the LF approximation detailed above (x tð Þ is a signal with very low
frequency). In that case one may use the approximation
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HðxÞ ffi Hð0Þe�jxs: ð10:8Þ

The output signal y tð Þ is then

yðtÞ ¼ 1
2p

Zþ1

�1
YðxÞejxtdx ¼ 1

2p

Zþ1

�1
XðxÞHðxÞejxtdx

ffi 1
2p

Zþ1

�1
XðxÞHð0Þe�jxsejxtdx: ð10:9Þ

And so

yðtÞ ffi Hð0Þ 1
2p

Zþ1

�1
XðxÞejxðt�sÞdx ¼ Hð0Þxðt � sÞ: ð10:10Þ

In summary

yðtÞ ffi Hð0Þxðt � sÞ: ð10:11Þ

The filter output signal appears (within a multiplicative constant) identical to the
delayed input signal by s.

We treat as exercises at the end of this chapter some cases of distortions
appearing when the filter frequency response departs slightly from (10.8).

10.2 Butterworth Filters

A low-pass Butterworth filter is defined from the square modulus of its frequency
response

A xð Þ ¼ H xð ÞH� xð Þ ¼ 1
1þ x2ð Þn : ð10:12Þ

x is the normalized frequency x
xc
. n is an integer which defines the filter’s order.

Figure 10.1 shows an example of the gain modulus G xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
A xð Þp

when
n ¼ 6

It is noted that the gain is flat at low frequency, equal to 1ffiffi
2

p at x ¼ 1 (this

corresponds to −3 dB attenuation at the cut-off frequency) and that the transition
from passing to attenuating bands is quite gradual. The bigger n is the flatter and
will gain when xj j\1.
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It is assumed that the coefficients of the various powers of s appearing in the
transfer function are real, which implies that the poles are real or come in pairs of
complex conjugates (arithmetic theorem).

We note H xð Þ the frequency response of the filter that we look for. Let us detail
the simple cases where n ¼ 1 and 2.

If n ¼ 1; A xð Þ ¼ H xð ÞH� xð Þ ¼ 1
1þx2 ; H sð Þ has one pole s1.

H xð ÞH� xð Þ ¼ 1
jx� s1

1
�jx� s�1

¼ 1
x2 þ jx s1 � s�1

� �þ s1s�1
:

We necessarily have s1 � s�1 ¼ 0 and s1s�1 ¼ 1. It results that s1 is real and
s1 ¼ �1, as the causality of the filter requires a pole with a negative real part.

If n = 2

A xð Þ ¼ H xð ÞH� xð Þ ¼ 1
1þx4 : ð10:13Þ

H sð Þ has two poles s1 and s2. HðsÞ ¼ 1
s�s1

1
s�s2

;

HðxÞ ¼ 1
jx� s1

1
jx� s2

¼ 1
�x2 � jx ðs1 þ s2Þþ s1s2

:

To satisfy the canonical form of a second-order filter seen in Chap. 2, it is
necessary that s2 ¼ s�1 and that s1s2 is real. In addition to meet the form (10.13) it is
necessary that s1s2 ¼ 1.

Fig. 10.1 Gain magnitude of
a Butterworth filter when
n = 6
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To ensure causality it is necessary that Re ðs1Þ ¼ Reðs2Þ\0. It becomes

s1 ¼ �
ffiffiffi
2

p

2
þ j

ffiffiffi
2

p

2
; s2 ¼ �

ffiffiffi
2

p

2
� j

ffiffiffi
2

p

2
:

Let us study now the general cases

• If n is even

A sð Þ will have the form

A sð Þ ¼ 1
1þ s2n

: ð10:14Þ

Let us search first the poles of A sð Þ. The roots of the denominator (roots of −1)
are determined by solving the equation

s2n ¼ �1: ð10:15Þ

We search solutions in the form

s ¼ ejh: ð10:16Þ

It becomes

hk ¼ 2kþ 1ð Þ p
2n

with k ¼ 0; 1; 2; . . .; 2n� 1: ð10:17Þ

It is noted that there are 2n roots on the unit circle. Poles of A sð Þ come in groups
of 4 (Fig. 10.2).

To satisfy the causality condition, the poles of the H sð Þ are selected as the poles
of A sð Þ with negative real values.

• If n is odd

A sð Þ will have the form

A sð Þ ¼ 1
1� s2n

:

The poles of A sð Þ are determined by solving the equation s2n ¼ 1.
We search solutions in the form s ¼ ejh. It becomes hk ¼ kp

n with
k ¼ 0; 1; 2; . . .; 2n� 1. At least two real poles will exist (Fig. 10.3).

Compared to other filters, Butterworth filters have the property that among all
filters their frequency response curve is the flattest at zero frequency. On the
other hand, the transition zone from passing to attenuating will be less steep than for
a Chebyshev filter of the same order.
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Exercise
Determining a third-order Butterworth low-pass filter with a −3 dB cut-off fre-
quency fc ¼ 1 MHz . We pose xc ¼ 2pfc ¼ 2p� 106 rad/s.

We have

A xð Þ ¼ H xð ÞH� xð Þ ¼ 1

1þ x
xc

� �6 ¼
x6

c

x6
c þx6 :

Since A xð Þ ¼ A sð Þjs¼jx, it becomes A sð Þ ¼ x6
c

x6
c�s6 ¼ � x6

c
s6�x6

c
.

Fig. 10.2 Symmetry of A sð Þ
poles (n even)

Fig. 10.3 Symmetry of A sð Þ
poles (n odd)
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All six poles of A sð Þ are located on a circle of radius xc

sk ¼ xcejhk with hk ¼ k
p
3

and k ¼ 0; 1; 2; . . .; 5:

To build the transfer function H sð Þ of the system assumed causal, we select poles
whose real parts are negative

s2 ¼ xcej
2p
3 ¼ xc � 1

2
þ j

ffiffiffi
3

p

2

� 	
; s3 ¼ xcejp ¼ �xc and

s4 ¼ xcej
4p
3 ¼ xc � 1

2
� j

ffiffiffi
3

p

2

� 	
:

Note that the poles s2 and s4 are complex conjugates.

H sð Þ ¼ x3
c

s� s2ð Þ s� s3ð Þ s� s4ð Þ ¼
xc

s� s3ð Þ
x2

c

s� s2ð Þ s� s�2
� � ¼ H1ðsÞH2ðsÞ:

H sð Þ is taken in the form of the product of a first-order and of a second-order
transfer functions (in cascade).

The impulse response of the first-order system is

h1ðtÞ ¼ xces3tUðtÞ:

That of the second-order filter is

h2ðtÞ ¼ x2
c

1
ðs2 � s4Þ es2t � es4tð ÞUðtÞ:

The product of the transfer functions corresponds to a convolution product of the
impulse responses in the time domain. The frequency response is

hðtÞ ¼ h1ðtÞ � h2ðtÞ:

It is necessary to calculate convolutions of the type sðtÞ ¼ es3tUðtÞ � es2tUðtÞ:
Each convolution being causal, we get for example for t[ 0:

sðtÞ ¼
Z1

�1
es3 t�sð ÞU t � sð Þes2sUðsÞds ¼

Z t

0

es3 t�sð Þes2sds ¼ es3t
Z t

0

e s2�s3ð Þsds

¼ es3t
e s2�s3ð Þs��t

0

s2 � s3ð Þ ¼ 1
s2 � s3ð Þ es2t � es3tð Þ:
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Therefore

hðtÞ ¼ x3
c

s2 � s4ð Þ
1

s2 � s3ð Þ es2t � es3tð Þ � 1
s4 � s3ð Þ es4t � es3tð Þ

� 	
UðtÞ:

We can verify that this impulse response is real.
The frequency response is

HðxÞ ¼ xc

jxþxcð Þ
x2

c

�x2 þ jxxc þx2
c

� � :

For the first order, we use a RC circuit, RC ¼ 1
xc

¼ 1:59� 10�7 s, with for

example R ¼ 103X; C ¼ 1:59� 10�10 F. For the second order, we use a series
RLC filter

LC ¼ 1
x2

c
¼ 2:53� 10�14:

RC ¼ 1
xc

¼ 1:59� 10�7 s, for example R ¼ 103 X; C ¼ 1:59� 10�10F; L ¼
1:59� 10�4 H.

10.3 Chebyshev Filters

Type 1 Chebyshev filter that is studied here shows an oscillation of the gain in the
passband and has none in the stop band. It is defined from the square modulus of
the frequency response

A xð Þ ¼ HðxÞH�ðxÞ ¼ 1
1þ e2T2

n xð Þ : ð10:18Þ

e is a parameter related to the oscillation in the passband, Tn xð Þ is a Chebyshev
polynomial defined by

Tn xð Þ ¼ cos nArccos xð Þð Þ if xj j � 1
cosh nArccosh xð Þð Þ if xj j[ 1

���� : ð10:19Þ

T2
n xð Þ oscillates between 0 and 1 when xj j � 1. A xð Þ oscillates between 1 and

1
1þ e2 in that interval.

We note that the Chebyshev filter has the distinctive feature of having a gain
with a constant amplitude oscillation in passband.
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It will be assumed here that the poles of the transmittance (transfer function) are
simple and given by

rk ¼ �sinh a sin
2k � 1
2n

p

� 	
; ð10:20Þ

and

xk ¼ cosh a cos
2k � 1
2n

p

� 	
; ð10:21Þ

with

a ¼ 1
n
Arcsinh

1
e

� 	
and k ¼ 1; 2. . .; n: ð10:22Þ

The poles are located on an ellipse (Chebyshev ellipse) such that

r2k
sinh2a

þ x2
k

cosh2a
¼ 1: ð10:23Þ

Numerical Application
If n ¼ 6 and e ¼ 0:2, it becomes cosh a ¼ 1:0752 and sinh a ¼ 0:395.

The equation of the ellipse is

x2

0:156
þ y2

1:156
¼ 1:

The ellipse is elongated along the axis y. The length of the semi-major axis is
1.075. That of half the minor axis is 0.395 (Fig. 10.4). The poles of the transmit-
tance are closer to the vertical axis than in the case of the Butterworth filter to which
the poles are located on a circle.

This is this proximity to the vertical axis which causes oscillations on the gain in
the passband of the Chebyshev filter that are not observed for the Butterworth filter
(Fig. 10.5). It is also this proximity that ensures the rapid transition of the pass-band
to the stopband of the transmittance of the Chebyshev filter.

By various numerical tests, we find that for a given order n, the oscillation in the
passband in the case e ¼ 0:1 is less pronounced than for e ¼ 0:5, as seen above on
the properties of A xð Þ (the poles are furthest from the vertical axis), which is an
advantage. But the disadvantage is that the passband—stopband transition is
slower.
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10.4 Bessel Filters

The disadvantage of both previous filters types, especially the Chebyshev filter, is
that the group delay of a component signal spectrum depends on the mean fre-
quency of the signal. This may result in a distortion of the signal or variable delay
of a pulse with frequency in the filter. In the design of the Bessel filter, the
steadiness of the group delay is preferred giving less importance to the filter
selectivity. The idea beneath the reasoning of construction of this filter is the
following. A filter with the transfer function HðsÞ ¼ e�ss, and thus the frequency
response HðxÞ ¼ e�jxs, introduce phase and group delays sg ¼ su ¼ s independent
of frequency.

Fig. 10.4 Transmittance
poles of a Chebyshev filter;
n = 6; e ¼ 0:2

Fig. 10.5 Frequency gain of
a Chebyshev filter; n = 6;
e ¼ 0:2
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To simplify the analysis it is noted in the following calculation ss ¼ s. We
cannot find an exact expression of H sð Þ above in the form of a rational fraction. The
series expansion of e�s ¼ 1

es ¼ 1
1þ sþ s2

2 þ ...
limited to any order gives insufficient

results when s is not very small. We choose the following approximation method;
we write

e�s ¼ 1
cosh sþ sinh s

: ð10:24Þ

The development of coth s in continuous fraction is used

coth s ¼ 1
s
þ 1

3
s þ 1

5
sþ 1

7
sþ 1

...::

: ð10:25Þ

Limiting the development to order n, an approximate expression of coth s is
obtained.

At order 3 we get

coth s ffi 1
s
þ 1

3
s þ 1

5
s

¼ 6s2 þ 15
s3 þ 15s

ffi cosh s
sinh s

: ð10:26Þ

We identify the numerators and denominators, and we take

cosh s ffi 6s2 þ 15; sinh s ffi s3 þ 15s: ð10:27Þ

These expressions are replaced in the expression of H sð Þ.
At order 3

HðsÞ ¼ 1
chsþ shs

ffi 1
s3 þ 6s2 þ 15sþ 15

: ð10:28Þ

The polynomial in the denominator is a third-order Bessel polynomial.
Limiting the development to first orders, we obtain the following polynomials:

P1 ¼ sþ 1

P2 ¼ s2 þ 3sþ 3:

P3 ¼ s3 þ 6s2 þ 15sþ 15:

P4 ¼ s4 þ 10s3 þ 45s2 þ 105sþ 105:

P5 ¼ s5 þ 15s4 þ 105s3 þ 420s2þ 945sþ 945:

P6 ¼ s6 þ 21s5 þ 210s4 þ 1260s3þ 4725s2 þ 10; 395sþ 10; 395:

P7 ¼ s7 þ 28s6 þ 378s5 þ 3150s4þ 17; 325s3 þ 62; 370s2 þ 135; 135sþ 135135:

P8 ¼ s8 þ 36s7 þ 630s6 þ 6930s5þ 51; 975s4 þ 270; 270s3 þ 945; 945s2 þ 2; 027; 025sþ 2; 027; 025:
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We obtain the higher order polynomials by recurrence

Pn ¼ ð2n� 1ÞPn�1 þ s2Pn�2: ð10:29Þ

10.5 Comparison of the Different Filters Responses

We choose to do the comparison for eighth order filters. The different behavior of
frequency responses is explained by the respective positions of poles which are
shown in Fig. 10.6. The poles of the Chebyshev filter (represented by x signs) are
close to the imaginary axis. This explains the undulations of the gain that is sen-
sitive to resonance represented by each pole. In the case of Chebyshev filter, the

angle between the vector MP1


!

joining the point M on the ordinate axis jx to the
highest pole on the figure varies greatly when M passes the ordinate of this pole.
This causes a rapid phase change and therefore an important group delay at the edge
of the passband. Conversely, the highest frequency Bessel filter pole is relatively
distant from the imaginary axis, inducing a slow variation of the phase. The pole
with highest frequency of the Butterworth filter is at an intermediate distance from
the imaginary axis compared to the two other filter types discussed here inducing an
intermediate behavior.

Figure 10.7 shows the modules, phases, and group delays of the three types of
filters studied here.

Fig. 10.6 Positions of the
poles for the three 8th order
filters
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Fig. 10.7 Comparison of filter responses: Gains (top); Phases (middle); Group delays (bottom)
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The Bessel filter gain modulus is a bell curve. This filter is poorly selective. The
regular variation of the phase induces a constant group delay in the passband (main
advantage of the filter).

The gain of the Butterworth filter is flat in the passband (main advantage of the
filter), but the variation in the transition band is not very quick (compared to that of
Chebyshev filter shown at the bottom of the figure). The pronounced variation of
the phase in the vicinities of x ¼ 1j j induces a maximum group delay in these
neighborhoods (remember that the group delay is given by the derivative of the
phase with respect to x).

The gain of the Chebyshev filter has oscillations (barely visible in the figure) in
the pass bandwidth. The transition, passband to stopband, is very pronounced (main
advantage of this filter). The strong variation of the phase in the vicinities of x ¼ 1j j
induces a very important group delay in these regions. The oscillations of the group
delay are apparent. They are caused by the rippling of the phase for each frequency
close to the imaginary part of a pole.

Summary
In this chapter we have studied three classes of analog filters which play an
important role in signal processing. Their transfer functions have rational fractions
forms. We showed that their filtering properties are explained by the localization of
the poles of the transfer functions in the Laplace plane. It appears that the
Butterworth filter has the flattest frequency response in the passband. The
Chebyshev filter has the shortest transition region between the passband and the
attenuated band. The Bessel filter will be used when minimum deformation of the
signal through the filter is searched for. Amplitude and phase distortions of signals
are briefly discussed in the exercises section.

Exercises

I. A Butterworth filter is defined by the square modulus of its frequency
response

AðxÞ ¼ 1

1þ x
xc

� �6 :

1. Determine the poles of the fraction AðsÞ and give the expression of the
realizable filter frequency response HðxÞ with AðxÞ being its square
modulus. What is the filter’s order?

2. Draw the graph of the filter gain according to frequency. What are in
decibel the gains of the filter at the cut-off frequency fc ? at 2fc ?

3. What is the impulse response of this filter?
4. Remind the comparative advantages of Butterworth and Chebyshev fil-

ters. (Base the discussion on the pole positions in the Laplace plane).
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II. Chebyshev filter: The square modulus of the frequency response of type 1
Chebyshev filter is given by A xð Þ ¼ HðxÞH�ðxÞ ¼ 1

1þ e2T2
n xð Þ. e is a

parameter and Tn xð Þ is a Chebyshev polynomial, oscillating between 0 and 1
when xj j � 1. Assume that n ¼ 12 and e ¼ 0:25. We use Arcsinh 1

e

� � ¼
2:0947.

1. Show that the poles of A sð Þ are located on an ellipse which we determine
as the main axes.

2. It is desired that the filter is physically realizable, i.e., causal. How to
make the selection of A sð Þ poles to build the transfer function H sð Þ ?
Give the expression of H sð Þ, then that of H xð Þ. Specify the nature of the
filter.

3. Draw the shape of the square modulus of the gain A xð Þ based on the
properties of Tn xð Þ. Give an approximate value of the angular frequencies
for which A xð Þ has relative maxima.

III. Bessel filter: The transfer function of a third-order Bessel filter has the form

HðsÞ ¼ 1
s3 þ 6s2 þ 15sþ 15

:

The poles of HðsÞ are s1 ¼ �1:8389þ j1:7544; s2 ¼ �2:3222; s3 ¼
�1:8389� j1:7544.
The function HðsÞ is defined for Re sð Þ[ �1:8389.

1. Can we say that the filter is causal?
Why can it be said that this filter has a frequency response? Give this
frequency response.

2. This filter can result from cascading of two filters with real impulse
responses. Give the transfer functions of these filters.

3. Derive the impulse response of the filter of order 3.
Represent graphically the variations of the modulus and phase of the
filter’s frequency response.

IV. The squared modulus of the frequency response of an analog filter is denoted
AðxÞ

AðxÞ ¼ HðxÞH�ðxÞ:

1. Knowing that A sð Þ is a rational function whose 12 poles are

�0:04� j;�0:025� 1:02j;�0:025� 0:98j; 0:04� j;

0:025� 1:02j; 0:025� 0:98j;

locate these poles in the Laplace plane.
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Based on a geometric argument, give the appearance of the
frequency-gain modulus and specify the nature of the filter.

2. Build the frequency response of the physically realizable filter. Indicate
the principle of the practical realization of this filter.

V. Amplitude response distortion.
The frequency response of an ideal low-pass filter is HðxÞ ¼ K e�jxt0 . We
consider a filter with gain amplitude varying slightly in the band-pass.
HðxÞj j ¼ K 1þ a cos xs=2ð Þð Þ for � 2p

s \x\ 2p
s and 0 elsewhere. a is sup-

posed to be small. Evaluate the filter output y tð Þ for an input x tð Þ.
Solution

YðxÞ ¼ HðxÞXðxÞ ¼ K e�jxt0 1þ a cos xs=2ð Þð ÞXðxÞ:
YðxÞ ¼ K e�jxt0 XðxÞþK e�jxt0 a

2
ejxs=2 XðxÞþK e�jxt0 a

2
e�jxs=2 XðxÞ:

Using the time-delay property

y tð Þ ¼ Kx t � t0ð ÞþK
a
2
x t � t0 þ s=2ð ÞþK

a
2
x t � t0 � s=2ð Þ:

y tð Þ ¼ y0 tð Þþ a
2 y0 tþ s=2ð Þþ a

2 y0 t � s=2ð Þ. The output signal is composed
of the output in the absence of distortion and of two small echoes sur-
rounding the main component.

VI. First-order phase distortion.
The frequency response of a non ideal low-pass filter is supposed to be
HðxÞ ¼ K e�j xt0�bsinxs=2ð Þ for � 2p

s \x\ 2p
s and 0 elsewhere. b is supposed

to be small. Evaluate the filter output y tð Þ for an input x tð Þ.
Solution

YðxÞ ¼ HðxÞXðxÞ ¼ K e�j xt0�b sinxs=2ð Þ XðxÞ:

We use the following development of the periodic exponential in first kind
Bessel functions

ejb sinxs=2 ¼
X1

n¼�1
JnðbÞejnxs=2:

JnðxÞ is given by the polynomial expansion

JnðxÞ ¼
X1

k¼0

�1ð Þk x=2ð Þnþ 2k

k! nþ kð Þ! :
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For small x, limiting the development at first order we may write

J1ð�xÞ ffi � x
2
; J0ðxÞ ffi 1; J1ðxÞ ffi x

2
; JnðxÞ ffi 0 for n[ 1:

Then

HðxÞ ffi K e�jxt0 1þ b
2
ejxs=2 � b

2
e�jxs=2

� 	
:

y tð Þ ¼ y0 tð Þþ b
2 y0 tþ s=2ð Þ � b

2 y0 t � s=2ð Þ. In the output signal, two echoes
with opposite amplitude surround the main signal component.
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Chapter 11
Causal Signals—Analytic Signals

It was shown in Chap. 8 that the impulse response of a physical system is zero for
negative time. This follows from the principle of causality: the output of the filter
cannot precede the signal that created it, in this case, the Dirac distribution which is
zero for negative time. The effect cannot precede the cause. The physical system,
which satisfies the principle of causality, is said to be causal. By extension, the
impulse response is said to be causal. More generally, we will call causal any
function that is null for negative time. The general properties of these functions are
discussed here starting from the properties of the Fourier transform of the Heaviside
function. In the first paragraph, the Fourier transform of the pseudo-function 1/t is
carried out, by integration in the complex plane, as a preliminary calculation that
leads to the FT of the Heaviside function. We then show that the real and imaginary
parts of the Fourier transform of a causal system are related by integration rela-
tionship formulas called the Hilbert transform. Analytic signals are defined as
having a zero FT at negative frequencies. This notion brings an efficient tool to
study several signal modulations and band-pass filtering.

11.1 Fourier Transform of the Pseudo-Function 1
t

We desire to calculate the Fourier transform of the function 1
t defined by the integral

Zþ1

�1

1
t
e�jxtdt: ð11:1Þ

This integral does not converge because of the singularity in t ¼ 0 of the inte-
grand and its behavior at infinity. Strictly speaking, the function 1

t has no Fourier
transform.
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We can only define the Cauchy principal value of the integral as

I ¼ PV
Zþ1

�1

1
t
e�jxtdt ¼ lim

e!0
R!1

Z�e

�R

1
t
e�jxtdtþ

ZR

e

1
t
e�jxtdt

8
<

:

9
=

;
: ð11:2Þ

Then we say that I is the Fourier transform of the pseudo-function Pf 1
t

� �
.

The principal value has an interest since it allows calculating the Fourier
transform of the Heaviside function, as seen in the following.

Integration is used in the complex plane on the closed contour C compound of
the real axis and the two semicircles of radii e and R (Fig. 11.1)

The function being holomorph inside the contour C, the integral over this
contour is zero (Cauchy theorem)

R�e

�R

1
x e

�jxxdxþ R

a

e�jxz

z dzþ RR

e

1
x e

�jxxdxþ R

C

e�jxz

z dz ¼ 0:

ð1Þ ð2Þ ð3Þ ð4Þ
ð11:3Þ

According to the definition of I we have

I ¼ lim
e!0
R!1

1ð Þþ 3ð Þf g: ð11:4Þ

limR!1 4ð Þ will be zero only if the exponential modulus appearing in the integral
can be bounded (Jordan’s lemma). This modulus is

e�jxz
�� �� ¼ e�jxðxþ jyÞ�� �� ¼ exy ¼ exR sin h: ð11:5Þ

We see that this modulus is bounded if the condition xy\0 is satisfied.
If x\0, the C contour is closed by the upper semicircle, so on C, one has xy\0.
We have on the semicircle C

Z

C

e�jxz

z
dz ¼ 0: ð11:6Þ

Fig. 11.1 Integration
contour C
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Calculation of integral (2)
R

a

e�jxz

z dz

The integral over the semicircle can be set by the angle h between the radius
locating the point on the semicircle and the horizontal.

We can write z ¼ e ejh, and on the circle dz ¼ e ejhj dh,

Z

a

ejzx

z
dz ¼

Z0

p

ejxee
i h

eejh
ejhjedh ¼ j

Z0

p

ejee
i h
dh; ð11:7Þ

where, as e is small,

j
Z0

p

ejee
ih
dh ffi j

Z0

p

dh ¼ �jp: ð11:8Þ

On the small semicircle

lim
e!0

ð2Þ ¼
Z

a

e�jxz

z
dz ¼ �jp; ð11:9Þ

then

I ¼ PV
Zþ1

�1

1
t
e�jxtdt ¼ jp if x\0: ð11:10Þ

If x[ 0, we seek to have xy\0 in the integral over C. We close the contour
from below to have y\0. Note that the small semicircle is browsed in the opposite
direction of the previous case,

Z

a

e�jxz

z
dz ¼ jp: ð11:11Þ

It results

I ¼ PV
Zþ1

�1

1
t
e�jxtdt ¼ �jp if x[ 0: ð11:12Þ
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In summary

I ¼ PV
Zþ1

�1

1
t
e�jxtdt ¼ �jp sgn ðxÞ: ð11:13Þ

With the sign function of x with the values

sgn xð Þ ¼ �1 if x\0
1 if x[ 0

���� : ð11:14Þ

We have found that j
pPf

1
t

� �
has the Fourier transform sgn ðxÞ.

Now we deduce from the previous result the function whose Fourier transform is
U xð Þ Heaviside function in the frequency domain x. First we see that

UðxÞ ¼ 1
2
ð1þ sgn ðxÞÞ: ð11:15Þ

Since
R þ1
�1 dðtÞe�jxtdt ¼ 1, it can be said that 1 is the Fourier transform of dðtÞ.

Therefore 1
2 is the Fourier transform of 1

2 dðtÞ.

Finally :
1
2
d tð Þþ j

2p
Pf

1
t

� �
has the FTU xð Þ: ð11:16Þ

Similarly, we calculate the Fourier Transform of the Heaviside function of time
U tð Þ. We can write

PV
Zþ1

�1

1
x
ejxt dx ¼ jp sgn ðtÞ: ð11:17Þ

The sign change in the exponential induced the change of sign in the second
member.

Therefore

1
2p

PV
Zþ1

�1

1
x
ejxt dx ¼ j

2
sgn ðtÞ: ð11:18Þ

Thus, the inverse FT of Pf 1
x

� �
is j

2 sgnðtÞ.
So FT of sgnðtÞ is 2

j Pf
1
x

� �
.
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As

UðtÞ ¼ 1
2
ð1þ sgn ðtÞÞ; ð11:19Þ

its Fourier transform is 1
2 2p dðxÞþ 2

j Pf
1
x

� �� �
. Finally

U tð Þ										!Fourier transf
p dðxÞþ 1

j
Pf ð1

x
Þ: ð11:20Þ

11.2 Fourier Transform of a Causal Signal; Hilbert
Transform

Let xðtÞ be a causal signal, i.e. a signal xðtÞ null for t\0.
We can write

xðtÞ ¼ xðtÞ UðtÞ ðwhere UðtÞ is the Heaviside functionÞ: ð11:21Þ

What are the properties of the Fourier transform of xðtÞ?
We recall the formula for the Fourier transform of a product of two functions

Zþ1

�1
xðtÞ UðtÞe�jxtdt ¼ 1

2p

Zþ1

�1
Xðx0Þ Vðx� x0Þdx0 ¼ 1

2p
XðxÞ � VðxÞ;

ð11:22Þ

where FT of UðtÞ was noted V xð Þ.

VðxÞ ¼ p dðxÞþ 1
j
Pf

1
x

� �
: ð11:23Þ

Taking the Fourier transforms of both sides of the Eq. (11.21),

XðxÞ ¼ 1
2p

XðxÞ � VðxÞ: ð11:24Þ

We note XðxÞ ¼ AðxÞþ jBðxÞ.
It becomes

AðxÞþ jBðxÞ ¼ 1
2p

ðAðxÞþ jBðxÞÞ � p dðxÞþ 1
j
Pf

1
x

� �� �� �
: ð11:25Þ
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As dðxÞ is the neutral element of the convolution, it becomes

A
2
ðxÞþ j

2
BðxÞ ¼ AðxÞ � 1

2pj
Pf

1
x

� �
þBðxÞ � 1

2p
Pf

1
x

� �
: ð11:26Þ

Equating the real and imaginary parts of the two members, we obtain the rela-
tionship between the real and the imaginary part of the FT of a causal signal

AðxÞ ¼ 1
p
BðxÞ � Pf

1
x

� �
or AðxÞ ¼ 1

p
PV

Z1

�1
Bðx0Þ 1

x� x0dx
0: ð11:27Þ

BðxÞ ¼ � 1
p
AðxÞ � Pf ð1

x
Þ and BðxÞ ¼ � 1

p
PV

Z1

�1
Aðx0Þ 1

x� x0dx
0:

ð11:28Þ

It is thus seen that the real and imaginary parts of the Fourier transform of a
causal signal are not independent. The integral in the second member of Eq. (11.27)
is called a Hilbert integral. It is said that the real and imaginary parts AðxÞ and BðxÞ
are Hilbert transforms of each other.

A physical system is always causal. The impulse response of a linear physical
system is in consequence a causal function. The real and imaginary parts of the
frequency response of these systems are related by the relationship demonstrated
above. These relations are known in electromagnetism as the Kramers-Kronig
relations, connecting the real and imaginary parts of the dielectric constant of a
propagation medium that acts as a linear filter.

Relationship between the modulus and phase of the frequency response of a
minimum phase filter
A minimum phase filter is such that all the poles and zeros of its transfer function
HðsÞ are located left of the imaginary axis.

The filter frequency response is noted HðxÞ. Using the magnitude and phase of
HðxÞ

HðxÞ ¼ HðxÞj jejuðxÞ. Taking the logarithm: logHðxÞ ¼ log HðxÞj j þ juðxÞ.
All poles and zeros of HðsÞ being to the left of the imaginary axis, the function

log HðsÞj j remains finite for Re sð Þ[ 0, whichmeans that logHðsÞ has all its zeros and
poles to the left of the imaginary axis. Then, this function is the Laplace transform of a
causal function. This property leads, as has been shown previously, that the real and
imaginary parts of logHðxÞ are Hilbert transforms of each other. So we can write

uðxÞ ¼ � 1
p
PV

Z1

�1

log Hðx0Þj j
x� x0 dx0: ð11:29Þ
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This formula is very appealing because it implies that if we measure the
amplitude versus the frequency of a phenomenon, we can deduce the phase vari-
ation law. However, this relationship is rarely used in practice because we must be
able to experimentally measure the amplitude across the whole frequency axis, from
minus infinity to plus infinity, which is rarely possible in practice.

However, this formula allows the evaluation of asymptotic behaviors of the
module or phase in some cases.

Application example
What is the causal signal whose Fourier transform real part is a rectangular
function?

We denote P2XðxÞ this function equal to 1 for xj j\X and zero elsewhere
(Fig. 11.2)

AðxÞ ¼ P2XðxÞ: ð11:30Þ

BðxÞ ¼ � 1
p
PV

ZþX

�X

1
x� x0 dx

0: ð11:31Þ

The result is (Fig. 11.3)

BðxÞ ¼ 1
p
Log

x� X
xþX

����

����: ð11:32Þ

The demonstration is instructive. For example, we study the case where the
singularity is within the interval of integration

�X\x\X.

Then

PV
ZþX

�X

dx0

x� x0 ¼ lim
e!0

Zx�e

�X

dx0

x� x0 þ
ZX

xþ e

dx0

x� x0

0

@

1

A

ð1Þ ð2Þ
ð11:33Þ

Fig. 11.2 Rectangular
window in frequency domain
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Note that the principal value was used by taking e common to lower and
upper bounds.

In the first integral x� x0 [ 0; we set X ¼ x� x0; dX ¼ �dx0:

ð1Þ ¼
Ze

xþX

� dX
X

¼
ZxþX

e

dX
X

¼ Log
xþX

e
ð11:34Þ

Note that when e ! 0 this term tends to infinity.
In the second integral x� x0\0; we set X ¼ x0 � x; dX ¼ dx0.

ð2Þ ¼
ZX�x

e

� dX
X

¼ �Log
X� x

e
ð11:35Þ

Again, this expression tends to infinity when e ! 0, but the sum of (1) and (2) is
limited.

There is compensation between the two diverging values

ð1Þþ ð2Þ ¼ Log
xþX
X� x

: ð11:36Þ

Fig. 11.3 Imaginary part BðxÞ of analytic signal
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Thus

BðxÞ ¼ � 1
p
Log

xþX
X� x

¼ 1
p
Log

X� x
xþX

: ð11:37Þ

One could look at the other cases for the situation of x to find the complete
formula (11.32) which contains absolute values.

Determination of xðtÞ

XðxÞ ¼ AðxÞþ jBðxÞ ¼ AðxÞ � dðxÞ � j
p
Pf

1
x

� �
 �
ð11:38Þ

XðxÞ ¼ AðxÞ � 1
p

pdðxÞþ 1
j
Pf

1
x

� �
 �
¼ AðxÞ � 1

p
F UðtÞð Þ ð11:39Þ

Noting aðtÞ the inverse FT of AðxÞ,

XðxÞ ¼ 1
p
F aðtÞð Þ � F UðtÞð Þ or XðxÞ ¼ 2F aðtÞUðtÞð Þ:

and finally

xðtÞ ¼ 2aðtÞUðtÞ ð11:40Þ

It remains to calculate aðtÞ

aðtÞ ¼ 1
2p

ZX

�X

ejxtdx ¼ 1
2p

ejXt � e�jXt

jt
¼ 1

pt
sinXt ð11:41Þ

we deduce the signal

x tð Þ : xðtÞ ¼ 2
pt

UðtÞ sinðXtÞ: ð11:42Þ

11.3 Paley-Wiener Theorem

This theorem states a necessary and sufficient condition for causality of a signal
from the modulus of its Fourier transform. Suffice it to state

Theorem A necessary and sufficient condition for xðtÞ be causal is that the fol-
lowing integral converges.
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Zþ1

�1

Log XðxÞj jj j
1þx2 dx \ 1: ð11:43Þ

An immediate application is that no physically realizable filters (i.e., causal) can
have a transfer function with a modulus equal to zero over a whole frequency
interval. This is an important result in signal analysis.

The Paley-Wiener integral can admit singularities at isolated points
Log 0ð Þj j ¼ 1ð Þ but not on a whole segment.
We can deduce that we cannot find a physical filter that completely eliminates a

frequency band. A low-pass filter with the rectangular response P2XðxÞ ¼ 1 for
�X\x\X and zero elsewhere, cannot be physically realized.

11.4 Analytic Signal

This is by definition a signal whose spectral amplitude is zero for negative fre-
quencies. We can then write

XðxÞ ¼ XðxÞ UðxÞ ð11:44Þ

In the time domain we have

xðtÞ ¼ xðtÞ � F�1 U xð Þð Þ: ð11:45Þ

xðtÞ ¼ xðtÞ � 1
2
dðtÞþ j

2p
Pf

1
t

� �� �
: ð11:46Þ

xðtÞ is necessarily complex. We note

xðtÞ ¼ x1ðtÞþ jx2ðtÞ: ð11:47Þ

It becomes

x1ðtÞþ jx2ðtÞ ¼ 1
2
x1ðtÞþ j

1
2
x2ðtÞþ ðx1ðtÞþ jx2ðtÞÞ � j

2p
Pf

1
t

� �
; ð11:48Þ

x1ðtÞþ jx2ðtÞ ¼ j
p
x1ðtÞ � Pf

1
t

� �
� 1
p
x2ðtÞ � Pf

1
t

� �
: ð11:49Þ
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By identifying the real and imaginary parts of two members

x1ðtÞ ¼ � 1
p
x2ðtÞ � Pf

1
t

� �
ð11:50Þ

x2ðtÞ ¼ 1
p
x1ðtÞ � Pf

1
t

� �
: ð11:51Þ

Concept of instantaneous frequency of a signal
Let x1ðtÞ a real signal and xðtÞ the analytic signal associated with x1ðtÞ.

We call instantaneous frequency of the signal x1ðtÞ the quantity

f0 ¼ 1
2p

d
dt
Arg x tð Þð Þ:

Important properties

1: XðxÞ ¼ F x1ðtÞþ jx2ðtÞð Þ; ð11:52Þ

XðxÞ ¼ F x1ðtÞð Þþ jF 1
p
x1ðtÞ � Pf

1
t

� �� �
; ð11:53Þ

XðxÞ ¼ F x1ðtÞ � dðtÞþ j
p
Pf

1
t

� �� �� �
; or XðxÞ ¼ 2X1ðxÞUðxÞ:

ð11:54Þ

So XðxÞ is obtained by taking twice the spectrum of x1ðtÞ for positive
frequencies.

2. The analytic signal can be rewritten

xðtÞ ¼ x1ðtÞþ jx2ðtÞ:

Its FT is written

XðxÞ ¼ X1ðxÞþ jX2ðxÞ ¼ 2X1ðxÞUðxÞ: ð11:55Þ

So we must have for negative frequencies X1ðxÞþ jX2ðxÞ ¼ 0,
so

X2ðxÞ ¼ j X1ðxÞ if x\0: ð11:56Þ
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For positive frequencies

X1ðxÞþ jX2ðxÞ ¼ 2X1ðxÞ;

so

X2ðxÞ ¼ �jX1ðxÞ if x[ 0: ð11:57Þ

In summary

X2ðxÞ ¼ �j sgn ðxÞX1ðxÞ: ð11:58Þ

Application
We calculate the analytic signal whose real part is x1ðtÞ ¼ cosx0t (See Fig. 11.4).

X1ðxÞ ¼
Zþ1

�1
cosðx0tÞe�jxt dt ¼ 1

2

Zþ1

�1
e�jðx�x0Þt dtþ 1

2

Zþ1

�1
e�jðxþx0 Þt dt;

ð11:59Þ

X1ðxÞ ¼ p dðx� x0Þþ p dðxþx0Þ: ð11:60Þ

The analytic signal is then, according to (11.54) (Fig. 11.5)

XðxÞ ¼ 2pdðx� x0Þ: ð11:61Þ

Fig. 11.4 Real part X1ðxÞ of
analytic signal

Fig. 11.5 Analytic
signal XðxÞ
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Taking the inverse FT, the analytic signal in the time domain is

xðtÞ ¼ ejx0t: ð11:62Þ

x1ðtÞ is the real part of xðtÞ

x1ðtÞ ¼ cosx0t; ð11:63Þ

x2ðtÞ is the imaginary part of xðtÞ

x2ðtÞ ¼ sinx0t: ð11:64Þ

The signal x2ðtÞ is in phase quadrature with x1ðtÞ.
Exercise
Check that the FTs of x1ðtÞ ¼ cosx0t and of x2ðtÞ ¼ sinx0t satisfy the relation-
ships (11.50) and (11.51).

Note

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21ðtÞþ x22ðtÞ

q
¼ 1: ð11:65Þ

The analytic signal modulus is constant and gives the amplitude of the cosine.
Since

Arg
x2ðtÞ
x1ðtÞ

� �
¼ x0t; ð11:66Þ

the analytic signal argument is used to calculate the instantaneous phase.
By a derivative with respect to time we obtain the instantaneous frequency

x0 ¼ d
dt
Arg

x2ðtÞ
x1ðtÞ

� �
; ð11:67Þ

which is also in this case

x0 ¼ 1
t
Arg

x2ðtÞ
x1ðtÞ

� �
: ð11:68Þ

Signal with slowly varying frequency Let the signal whose frequency varies with
time

x1ðtÞ ¼ cos x0ðtÞ tð Þ: ð11:69Þ
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If the angular frequency slowly changes over time, we may write

xðtÞ ffi ejx0ðtÞt; ð11:70Þ

whereas previously

x0ðtÞ ¼ 1
t
Arg

x2ðtÞ
x1ðtÞ

� �
: ð11:71Þ

It is thus possible to follow the evolution of the signal frequency with time.

11.4.1 Instantaneous Frequency of a Chirp

Consider the signal

x1ðtÞ ¼ cos x0tþ b
2
t2

� �
: ð11:72Þ

The associated analytic signal is

xðtÞ ¼ ej x0tþ b
2t
2ð Þ: ð11:73Þ

Arg x tð Þð Þ ¼ x0tþ b
2
t2

� �
: ð11:74Þ

The instantaneous frequency is

f tð Þ ¼ 1
2p

x0 þ btð Þ: ð11:75Þ

In this chirp signal, the frequency increases linearly with time.
In Fig. 11.6 are shown the real and imaginary parts of the analytic signal of a

chirp used in practice. The third figure shows the spectral amplitude and the fourth
shows the instantaneous frequency of the signal calculated using formula (11.67).

11.4.2 Double-Sideband (DSB) Signal Modulation

Consider the signal x1ðtÞ resulting from the product of an amplitude aðtÞ by a carrier
signal
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cosx0t : x1ðtÞ ¼ aðtÞ cosx0t: ð11:76Þ

We assume that the variation with time of aðtÞ is slow compared to that of
cosx0t. More precisely, it is assumed that the maximum frequency r present in the
spectrum of aðtÞ is less than x0

2 : r\ x0
2 . The spectrum of aðtÞ shown on Fig. 11.7

represents this condition

Fig. 11.6 Left column Top Chirp; Bottom Its Fourier transform; Right column Top Imaginary
part of analytic signal; Bottom Instantaneous frequency

Fig. 11.7 Frequency
limitation of spectrum AðxÞ
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The Fourier transform formula for a product of two functions of time is used to
calculate X1ðxÞ:

X1ðxÞ ¼ 1
2p

AðxÞ � pdðx� x0Þþ pdðxþx0Þ½ �; ð11:77Þ

therefore (see Fig. 11.8)

X1ðxÞ ¼ 1
2
Aðx� x0Þþ 1

2
Aðxþx0Þ: ð11:78Þ

We seek to determine the analytic signal of which x1ðtÞ is the real part. As the
maximum frequency in AðxÞ is less than x0

2 , the function Aðx� x0Þ is zero for
negative frequencies and the function Aðxþx0Þ is zero for positive frequencies
(see Fig. 11.8). In this case, the analytic signal is (Fig. 11.9)

XðxÞ ¼ Aðx� x0Þ: ð11:79Þ

In the time domain, the analytic signal is

xðtÞ ¼ aðtÞ ejx0t ð11:80Þ

By expanding the exponential we have

xðtÞ ¼ aðtÞ ðcosx0tþ j sinx0tÞ: ð11:81Þ

Fig. 11.8 Real part X1ðxÞ of
analytic signal

Fig. 11.9 Analytic signal
XðxÞ in DSB modulation
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So:

x1ðtÞ ¼ aðtÞ cosx0t and x2ðtÞ ¼ aðtÞ sinx0t: ð11:82Þ

It follows that one can obtain the modulus of the modulation signal

aðtÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1
ðtÞþ x22ðtÞ

q
; ð11:83Þ

The absolute value of the envelope is obtained by taking the modulus of the
analytic signal. The pulsation of the carrier is obtained by

Arg
x2ðtÞ
x1ðtÞ

� �
¼ x0t; x0 ¼ d

dt
Arg

x2ðtÞ
x1ðtÞ

� �
: ð11:84Þ

Remark We will see in the exercises on amplitude modulation at the end of this
chapter that it is possible to retrieve the modulation function and not only its
magnitude by adding a constant to the modulation function.

11.4.3 Single-Sideband Signal Modulation (SSB)

We return to the previous example of amplitude modulation. Let aðtÞ a real signal
whose spectrum is limited to the low frequencies. A xð Þ ¼ 0 for xj j[x0. Let x1 tð Þ
be the signal x1 tð Þ ¼ a tð Þ cosx0t. As noted above, we have (Fig. 11.10)

X1 xð Þ ¼ 1
2
A x� x0ð Þþ 1

2
A xþx0ð Þ: ð11:85Þ

The analytic signal is (Fig. 11.11):

X xð Þ ¼ 2X1 xð ÞU xð Þ ¼ A x� x0ð Þ: ð11:86Þ

( )1X ω

0
1
2
A ω ω⎛ ⎞

⎜ ⎟⎝ ⎠
+ 0

1
2
A ω ω⎛ ⎞

⎜ ⎟⎝ ⎠
−

0ω− 0ω ω

Fig. 11.10 Amplitude
modulated spectrum X1 xð Þ
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Calculating the inverse Fourier transform of X xð Þ we obtain

x tð Þ ¼ x1 tð Þþ jx2 tð Þ ¼ a tð Þejx0t; ð11:87Þ

so:

x2 tð Þ ¼ a tð Þ sinx0t:

a tð Þ being real, it has the property

A �xð Þ ¼ A� xð Þ:

It follows that X xð Þj j is symmetrical with respect to x0.
It is seen that the positive frequency spectrum contains all the information on

a tð Þ.
Let us note (see Fig. 11.12)

Z xð Þ ¼ 2A xð ÞU xð Þ: ð11:88Þ

z tð Þ ¼ a tð Þþ j~a tð Þ, where ~a tð Þ is the Hilbert transform of a tð Þ.
One can choose to limit the size of the frequency band during transmission, by

transmitting only the signal s tð Þ which is determined by the following relationships
(Fig. 11.13):

ZS xð Þ ¼ Z x� x0ð Þ:

Fig. 11.11 Analytic
amplitude modulated
spectrum X xð Þ

(Z ω

ω− ω ω

)

0 0

Fig. 11.12 Single side band
analytic Z xð Þ
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We have

zS tð Þ ¼ z tð Þejx0t ¼ a tð Þþ j~a tð Þð Þejx0t: ð11:89Þ

s tð Þ, the real part of zS tð Þ, is written using the assumption that a tð Þ is real

s tð Þ ¼ a tð Þ cosx0t � ~a tð Þ sinx0t: ð11:90Þ

In reception, we can recover a tð Þ from s tð Þ. Indeed multiplying s tð Þ by 2 cosx0t,
we get

2s tð Þ cosx0t ¼ 2a tð Þ cos2 x0t � 2~a tð Þ cosx0t sinx0t

¼ a tð Þþ a tð Þ cos 2x0t � ~a tð Þ sin 2x0t:
ð11:91Þ

By low-pass filtering, it is possible to recover a tð Þ at reception.
A delicate problem encountered in practice is that one does not always know a

priori the frequency x0 used in the generation of the signal by modulation. It may
be necessary to ‘find’ it at the reception. Furthermore a shift in frequency between
the transmission and reception is accompanied by a distortion of the received signal
(in SSB radio transmission, deformation of the voice is known as ‘Donald Duck
voice’).

11.4.4 Band-pass Filtering of Amplitude Modulated Signal

Let f tð Þ be a real signal as input to a system with the real impulse response h tð Þ. The
output g tð Þ of the system is given by g tð Þ ¼ f tð Þ � h tð Þ.

The different analytic signals in frequency domain are noted Zi xð Þ, with

Zf xð Þ ¼ 2U xð ÞF xð Þ; Zh xð Þ ¼ 2U xð ÞH xð Þ;
Zg xð Þ ¼ 2U xð ÞG xð Þ: ð11:92Þ

( )sZ ω

0ω− 0ω ω

Fig. 11.13 Single side band
modulated spectrum ZS xð Þ
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As G xð Þ ¼ H xð ÞF xð Þ, we may write:

Zg xð Þ ¼ Zh xð ÞF xð Þ ¼ Zf xð ÞH xð Þ ¼ 1
2
Zh xð ÞZf xð Þ: ð11:93Þ

Noting zgðtÞ, zf ðtÞ and zh tð Þ, the temporal analytic signals corresponding
respectively to the signals g tð Þ; f tð Þ, and h tð Þ, we have the relations

zg tð Þ ¼ zh tð Þ � f tð Þ ¼ zf tð Þ � h tð Þ ¼ 1
2
zh tð Þ � zf tð Þ: ð11:94Þ

Thus g tð Þ can be obtained by one of the preceding convolutions.
For example, we see that if f tð Þ is given by f tð Þ ¼ a tð Þ cosx0t and since h tð Þ is

real, the filter output will be

g tð Þ ¼ Re a tð Þejx0t
� �� h tð Þ: ð11:95Þ

It is assumed that the filter with impulse response h tð Þ is band-pass, with fre-
quency response H xð Þ, with modulus H xð Þj j and phase u xð Þ. An example of
modulus and phase for H xð Þ is given in Fig. 11.14

We build the corresponding low-pass filter Hb xð Þ defined by (Fig. 11.15):

Hb xð Þ ¼ Zh xþx0ð Þe�ju0 ; where u0 ¼ u x0ð Þ: ð11:96Þ

It is assumed in the following that H xð Þ is a symmetric filter in the sense that
Hb �xð Þ ¼ H�

b xð Þ. In this case, we remark that

Zh xð Þ ¼ Hb x� x0ð Þeju0 ; ð11:97Þ

and therefore zh tð Þ ¼ hb tð Þej x0tþu0ð Þ, where hb tð Þ is the impulse response of the
low-pass filter. As hb tð Þ is real, we have, taking the real part of zh tð Þ:

h tð Þ ¼ hb tð Þ cos x0tþu0ð Þ: ð11:98Þ

ω

ω
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ω

ω
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ϕ ω⎛ ⎞
⎜ ⎟⎝ ⎠

( )H ω

0ω

0

0

0

ϕ ω

0

Fig. 11.14 Band-pass filter
response H xð Þ
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We now assume that the system input is the modulated signal f tð Þ given by

f tð Þ ¼ a tð Þ cosx0t:

Then

Zf xð Þ ¼ A x� x0ð Þ; Zh xð Þ ¼ Hb x� x0ð Þeju0 :

We have

Zg xð Þ ¼ 1
2
Zh xð ÞZf xð Þ ¼ 1

2
A x� x0ð ÞHb x� x0ð Þju0

¼ 1
2
Gb x� x0ð Þju0 ;

and therefore

g tð Þ ¼ 1
2
Re gb tð Þej x0tþu0ð Þ

� �
: ð11:99Þ

We have written gb tð Þ ¼ a tð Þ � hb tð Þ.
The response of the system is a modulated signal whose envelope is the response

of the LF equivalent system filtering the envelope a tð Þ of the input signal (within a
½ factor).

11.5 Phase and Group Time Delays

General property
We consider a low-pass filter and we assume that the spectrum of the input signal is
limited to very low frequencies. To estimate the filter response to such a signal, the
gain amplitude can be approximated by a constant and the phase by a linear law

0ω−

0ω−

0ω

0ω

( )bH ω

( )bϕ ω
ω

ω

Fig. 11.15 Low-pass filter
response Hb xð Þ
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H xð Þj j ffi H 0ð Þ and u xð Þ ¼ �xs:

We then see that the system acts as a pure time shift filter.
In the case of the low-pass filter Hb xð Þ, the output is written in these conditions

gb tð Þ ¼ Hb 0ð Þa t � sð Þ:

In the case of a frequency response of the filter H xð Þ operating in a frequency
band around x0, we write

tg x0ð Þ ¼ �du
dx

����
x¼x0

and tp x0ð Þ ¼ �u xð Þ
x

����
x¼x0

ð11:100Þ

It is now shown that tg is the delay of the signal envelope (group delay) and tp is
the delay of one of the spectral components constituting the group (phase delay).

The phase introduced by the equivalent low-pass filter Hb xð Þ described above
has the form

ub xð Þ ¼ u xþx0ð Þ � u0 xð Þ:

We have

u0
b 0ð Þ ¼ u0 x0ð Þ ¼ �tg:

The derivative of the phase of the envelope has the value �tg.
Furthermore

Hb 0ð Þ ¼ Zh x0ð Þe�ju0 :

The response of the equivalent low-pass filter has the form
gb tð Þ ffi 2 H x0ð Þj ja t � tg

� �
; it is real by hypothesis.

Since we have

g tð Þ ¼ 1
2
Re gb tð Þej x0tþu0ð Þ

� �
;

it follows

g tð Þ ffi H x0ð Þj ja t � tg
� �

cos x0tþu0ð Þ; ð11:101Þ

and therefore:

g tð Þ ffi H x0ð Þj ja t � tg
� �

cosx0 t � tp
� �

:
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The output signal consists of the envelope delayed by the group delay tg,
modulating a cosine shifted in phase by u0 ¼ �x0tp. tp is the phase delay intro-
duced by the filter.

11.6 Decomposition of a Voice Signal by a Filter Bank

The following example is an illustration of the modulation techniques used in the
processing of voice signals. As explained above, the ear is sensitive only to the
frequency content of an audible signal. A series of treatments in the frequency
domain is acceptable if it renders the original spectrum, even without respect to the
temporal shape of the signals. This is what allows the use of filter banks in speech
processing. Nowadays, recording and transmission of voice signals are mainly
digital. These actions are preceded by the conversion of analog signals into digital
signals in a first step. This is detailed in the second part of the book devoted to
digital signals. It is shown that the quality of the conversion depends on the number
of quantization of the analog/digital converter levels. The greater the number of
levels, the higher is the quality of the coding. But this accuracy requires a high
number of quantization bits. In many applications, it is desired that the coding is
done economically by reducing the number of bits while maintaining a sufficient
quality during playback.

This is the case when the information transfer is limited by the throughput of the
transmission channel. One is then led to divide the audio signal frequency band into
subbands, to digitize, encode, and process signals contained in each of the sub-
bands, and to reconstruct the audio signal at the end of the processing chain.
A typical example is the following treatment:

Let us note s tð Þ an original voice signal. The frequency band characteristic of the
signal is divided into subbands by a filter bank (4 in Fig. 11.16).

We denote sn tð Þ the result of filtering of the original signal by the nth band-pass
filter in fn; fn þBnf g whose impulse response is noted hn tð Þ.

We thus have

sn tð Þ ¼ hn tð Þ � s tð Þ: ð11:102Þ

Fig. 11.16 Example of filter
bank
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To bring this signal in the baseband it is multiplied by cosxnt. We note rn tð Þ this
product

rn tð Þ ¼ sn tð Þ cosxnt:

Figure 11.17 shows for the band f2; f2 þB2f g, in a) the spectrum of rn tð Þ, in b)
and that of cos xnt and in c) that of their product. A low-pass filtering allows to
keep only the central portion of the spectrum �B2;B2f g. The signal from the
low-pass filter is converted digitally.

It has been shown that the quantization noise was less impeding in this subband
coding, and that one could use converters with a reduced number of bits. One gains
in volume of information and in transfer speed. The signal is transmitted in digital
form.

Fig. 11.17 a nth filter
response; b modulation
spectrum; c baseband
spectrum

Fig. 11.18 a Baseband
spectrum; b modulation
spectrum; c band
reconstructed spectrum
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Results are presented in Fig. 11.18. At signal reception, each component in the
baseband (spectrum Fig. 11.18a) for the subband 2 in the figure), is multiplied by
cosxnt (spectrum given in Fig. 11.18b). Pass-band filtering finally returns the
subband (Fig. 11.18c). The final signal is reconstructed by adding the components
of the different bands.

Summary
We have studied in this chapter the properties of causal functions which are null for
negative time and analytic functions which are null for negative frequency. The
general properties of these functions have been derived from the properties of the
Fourier transform of the Heaviside function. That Fourier transform has been
evaluated from the FT of the pseudo-function 1/t. The real and imaginary parts of
the FT of a causal system have been shown to be related by integration relationship
formulas called the Hilbert transform. The properties of analytic signals have been
used to study several types of signal modulations and band-pass filtering. The group
and phase delays of the output signals of band-pass filters have been introduced.
Frequency modulation is met in an exercise.

Exercises

I. Amplitude modulation.
A signal f1 tð Þ comprises a carrier with angular frequency x0 modulated in
amplitude by the signal 1þ cosXt; f1 tð Þ ¼ 1þ cosXtð Þ cosx0t.

1. Represent the appearance of f1 tð Þ when X � x0.
2. What is the spectrum (representation in the Fourier domain) of the signal

f1 tð Þ? Graph the spectrum assuming that X\x0. Give the bandwidth of the
signal f1 tð Þ.

3. What is the analytic signal z tð Þ whose f1 tð Þ is the real part? Calculate the
modulus of z tð Þ. Compare this result graphically with the representation of
question 1.

II. Amplitude modulation.
Consider the signal f ðtÞ ¼ 1þ aðtÞð Þ cosx0t. It is assumed that aðtÞ is a slowly
varying function with magnitude less than 1 and whose spectrum AðxÞ is
limited to the interval �xmax;xmaxf g with 2xmax\x0.

1. Draw the shape of the function f ðtÞ.
2. Give the expression of FðxÞ, the Fourier transform of f ðtÞ. Represent the

shape of the spectrum FðxÞ.
3. Calculate the analytic signal zf ðtÞ associated with f ðtÞ.
4. To demodulate the signal f ðtÞ we multiply it by cosx0t. We note gðtÞ this

product.
What is the Fourier Transform of g tð Þ? How to retrieve aðtÞ by filtering?
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Solution

1. To draw f tð Þ we choose as an example: aðtÞ ¼ 0:4 cosx1t, with f1 ¼ 5 kHz
and f0 ¼ 127 kHz. Shape of f tð Þ

2. F xð Þ ¼ 1
2p 2pd xð ÞþA xð Þð Þ � p d x� x0ð Þþ d xþx0ð Þð Þ:

To illustrate this we take a spectrum of A xð Þ of the form

F xð Þ ¼ p d x� x0ð Þþ d xþx0ð Þð Þþ 1
2

A x� x0ð ÞþA xþx0ð Þð Þ:

Appearance of the spectrum F xð Þ:

3. Zf xð Þ ¼ 2pd x� x0ð ÞþA x� x0ð Þ; zf tð Þ ¼ 1þ a tð Þð Þejx0t:

4. G xð Þ ¼ 1
2pF xð Þ � p d x� x0ð Þþ d xþx0ð Þð Þ ¼ 1

2 F x� x0ð ÞþF xþx0ð Þð Þ:
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A low-pass filtering will extract 1þ a tð Þ. a tð Þ is extracted by filtering off the
DC component. Note that this method only applies if a tð Þ has no DC com-
ponent, as in the case shown in figure representing A xð Þ. Speech or music
signals have this property.

III. Frequency modulation:
This exercise exposes the principle of phase modulation of a carrier with fre-
quency x0 by the signal A0 sinXt. We assume that the angular frequency of the
modulation signal verifies X � x0. A is the modulation index.
We note f2 tð Þ this phase modulated signal:

f2 tð Þ ¼ cos x0tþA sinXtð Þ:

We accept here that the periodic function ejA sinXt has a development in Fourier

series of the form ejA sinXt ¼ P1

n¼�1
JnðAÞejnXt, where the functions JnðAÞ are the

Fourier series coefficients. They are the Bessel functions of the first kind of
order n having the following properties:

a. Jn functions are damped oscillating functions like sine or cosine with a fairly
low damping (JnðAÞ behaves as 1ffiffiffi

A
p for A large).

b. Jnð�AÞ ¼ �1ð ÞnJnðAÞ ¼ J�nðAÞ,
c. JnðAÞ becomes small for n[A.

Refer to the following table for some numerical values of JnðzÞ.
1. Give the spectral representation of the signal f2 tð Þ.
2. Numerical application (Broadcasting radio in FM band 87.5–108 MHz):

The frequency of the highest audio signal for radio transmission in the FM
band is f ¼ 15 kHz. A second baseband is used to encode stereo signals
from f ¼ 26 kHz to f ¼ 53 kHz. A 3 kHz band is used around f ¼ 50 kHz
to code various information. The congestion standard in FM band is that the
frequency excursion granted to an FM station must not exceed �75 kHz. It
is assumed in this example that the carrier frequency is f0 ¼ 100 MHz and
that the maximum frequency of the signal to be transmitted is 75 kHz.
Based on the following table of Bessel functions, what is the maximum
modulation index A if the tolerance for the amplitude of the spurious lines is
one percent maximum of the amplitude of the main frequency line?
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A J0(A) J1(A) J2(A) J3(A) J4(A)

0 1.0000 0.0000 0.0000 0.0000 0.0000

0.1 0.9975 0.0499 0.0012 0.0000 0.0000

0.2 0.9900 0.0995 0.0050 0.0002 0.0000

0.3 0.9776 0.1483 0.0112 0.0006 0.0000

0.4 0.9604 0.1960 0.0197 0.0013 0.0001

0.5 0.9385 0.2423 0.0306 0.0026 0.0002

0.6 0.9120 0.2867 0.0437 0.0044 0.0003

0.7 0.8812 0.3290 0.0588 0.0069 0.0006

0.8 0.8463 0.3688 0.0758 0.0102 0.0010

0.9 0.8075 0.4059 0.0946 0.0144 0.0016

1 0.7652 0.4401 0.1149 0.0196 0.0025

1.1 0.7196 0.4709 0.1366 0.0257 0.0036

1.2 0.6711 0.4983 0.1593 0.0329 0.0050

1.3 0.6201 0.5220 0.1830 0.0411 0.0068

1.4 0.5669 0.5419 0.2074 0.0505 0.0091

1.5 0.5118 0.5579 0.2321 0.0610 0.0118

1.6 0.4554 0.5699 0.2570 0.0725 0.0150

Solution

1: f2 tð Þ ¼ 1
2

ej x0tþA sinXtð Þ þ e�j x0tþA sinXtð Þ
� �

:

First we consider the exponential ej x0tþA sin Xtð Þ ¼ ejx0tejA sin Xt ¼
P1

n¼�1
JnðAÞej x0 þ nXð Þt.

The spectrum of f2 tð Þ which is a periodic function is a line spectrum. The
amplitude of these lines are JnðAÞ. It is noted that, since
J�nðAÞ ¼ �1ð ÞnJnðAÞ, the spectrum modulus is symmetrical about the
center frequency x0. If the modulation index A is small, the property
c. causes the number of lines around the carrier frequency to be low.
It is assumed that significant amplitudes lines are limited to two side lines.
We can write

ej x0tþA sinXtð Þ ¼ J0ðAÞejx0t þ J1ðAÞej x0 þXð Þt þ J�1ðAÞej x0�Xð Þt þ J2ðAÞej x0 þ 2Xð Þt þ J�2ðAÞej x0�2Xð Þt

¼ ejx0t J0ðAÞþ j2J1ðAÞ sinXtþ 2J2ðAÞ cos 2Xtð Þ:
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Therefore

f2 tð Þ ¼ 1
2

ejx0t J0ðAÞþ j2J1ðAÞ sinXtþ 2J2ðAÞ cos 2Xtð Þ� �

þ 1
2

e�jx0t J0ðAÞ � j2J1ðAÞ sinXtþ 2J2ðAÞ cos 2Xtð Þ� �
:

f2 tð Þ ¼ J0ðAÞ cosx0t � 2J1ðAÞ sinx0t sinXtþ 2J2ðAÞ cosx0t cos 2Xt:

In the above expression of f2 tð Þ, the spectrum is limited to the main line at
frequency x0, to two lines at x0 � X and two lines at x0 � 2X.
In the numerical example, these lines correspond to the frequency of the
carrier at f0 ¼ 100 MHz and to frequencies f1;�1 ¼ 100 MHz� 75 kHz and
f2;�2 ¼ 100 MHz� 150 kHz.

2. The frequencies of the second sidebands exceed the recommended fre-
quency deviation. By limiting the modulation index to A ¼ 0:2 the ampli-
tude of the second sidebands remains limited to 1 % of the amplitude of the
main frequency.
In practice, the frequency difference between two FM radio stations is at
minimum 400 kHz. This allows an excursion of ±200 kHz, avoiding the
embarrassment of overlapping second sidebands. Maintaining a low index
of modulation, one can in principle transmit modulation signals whose
frequency can reach 200 kHz.
Finally, notice that the first sideband is in quadrature (p2 phase shift) with the
carrier, unlike what happens with the amplitude modulation where the phase
difference is zero.
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Chapter 12
Time–Frequency Analysis

Fourier analysis is not relevant to describe a signal when some of its properties
change over time. This is the case, for example, for the chirp signal that we studied
previously whose instantaneous frequency varies with time. Acoustically, the ear
perceives for this type of signal an increase (or decrease) in the tone, while a simple
Fourier transform of the signal does not provide easily interpretable information on
the evolution of the “apparent frequency” of the signal over time. Although the
frequency concept has been defined for a periodic signal, we continue to talk of
frequency for this kind of signal. For example, for a chirp, we say that the frequency
increases (or decreases) with time. The term frequency being inaccurate we rather
speak of instantaneous frequency.

Simple Fourier analysis is unable to provide easily usable variables that are
capable of describing the evolution with time of these signals’ characteristics. These
signals are called nonstationary and their analysis is called time–frequency analysis.
Advances in the analysis of these signals have been important in recent years and
allowed, among other things, to arrive at treatment techniques such as signal
compression (MP3 audio, or JPEG video), signal detection in noisy environment, or
restoring old recordings on 78 rpm discs.

This chapter reviews various methods for analyzing nonstationary signals.
Multiplication of the signal by a sliding window leads to short-time Fourier analysis
and spectrogram. In the Wigner–Ville distribution, the time reversed signal plays
the role of a sliding window analyzer. The inconvenience of the preceding methods
is that the width of the window of analysis is kept fixed. The analysis cannot be
optimal both for a fast varying part and a slowly varying part of one signal. The
continuous wavelet transform (CWT) principle is to explore the signal with a
window whose width takes successively all possible values. We explain the theo-
retical basis of this method. Several wavelets are presented: Morlet, Mexican hat
and Shannon wavelets. Later in this book, after developing the rules for calculations
on digital signals, Chap. 19 is a continuation of this chapter for digital signals.
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12.1 Short-Time Fourier Transform (STFT)
and Spectrogram

Let xðtÞ be a signal and wðtÞ a time window. The following quantity is called the
short-time Fourier transform (STFT) or sliding Fourier transform:

STFTðt;xÞ ¼
Zþ1

�1
x sð Þw� s� tð Þe�jxsds: ð12:1Þ

This quantity is interpreted as follows: Within the integral, the time signal xðsÞ is
multiplied by the sliding window wðs� tÞ (by its complex conjugate in the general
case of complex signals) whose role is the selection of some part of the signal in a
neighborhood of the instant t, then the Fourier transform of the product is calcu-
lated. wðsÞ is a window centered at time s ¼ 0 whose width is empirically chosen to
discriminate as well as possible the evolutions of the signal on the time axis.
Commonly used windows are Hanning or Gaussian (also called Gabor window).

The STFT is also called Gabor transform.

Spectrogram
The following quantity is called Spectrogram

Sðt;xÞ ¼
Zþ1

�1
x sð Þw� s� tð Þe�jxsds

������

������

2

: ð12:2Þ

It is the squared modulus of the STFT.
It is shown in the following that we also have the relationship

Sðt;xÞ ¼ 1
2p

� �2 Zþ1

�1
X x0ð ÞW� x0 � xð Þejx0tdx0

������

������

2

: ð12:3Þ

To demonstrate this result, we first calculate the Gabor transform that we note as
I for convenience

I ¼
Zþ1

�1
x sð Þw� s� tð Þe�jxsds; ð12:4Þ

x sð Þ and w� s� tð Þ are then expressed from their Fourier transform within I

x sð Þ ¼ 1
2p

Zþ1

�1
X x0ð Þejx0sdx0 and w� s� tð Þ ¼ 1

2p

Zþ1

�1
W� x00ð Þe�jx00 s�tð Þdx00
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I ¼ 1
2p

� �2 Zþ1

�1

Zþ1

�1

Zþ1

�1
X x0ð Þejx0sdx0W� x00ð Þe�jx00 s�tð Þdx00e�jxsds: ð12:5Þ

We flip the order of integration to start by integrating upon s

I ¼ 1
2p

� �2 Zþ1

�1

Zþ1

�1
X x0ð ÞW� x00ð Þdx0dx00ejx

00t
Z þ1

�1
ej x

0�x00�xð Þsds; ð12:6Þ

I ¼ 1
2p

Zþ1

�1

Zþ1

�1
X x0ð ÞW� x00ð Þejx00td x0 � x00 � xð Þdx0dx00:

We then integrate upon x00 for example

I ¼ 1
2p

Zþ1

�1
X x0ð ÞW� x0 � xð Þej x0�xð Þtdx0: ð12:7Þ

Sðt;xÞ ¼ II� ¼ 1
2p

� �2 Zþ1

�1
X x0ð ÞW� x0 � xð Þej x0�xð Þtdx0

������

������

2

: ð12:8Þ

The term e�jxt disappears in the modulus computation,

Sðt;xÞ ¼ 1
2p

� �2 Zþ1

�1
X x0ð ÞW� x0 � xð Þejx0tdx0

������

������

2

; Q:E:D: ð12:9Þ

It can be interpreted as follows: Let us first imagine that the spectrum W xð Þ of
the window lies predominantly in a neighborhood of zero frequency (spectrum of a
low-pass filter). The bandwidth W xð Þ is assumed to be small compared with that of
X xð Þ.

As shown in Eq. (12.9), Sðt;xÞ is obtained by the multiplication of the signal
spectrum X x0ð Þ by the spectrum of the window W x0ð Þ translated in frequency
followed by an inverse FT. This is looking at time t, the contribution to the signal of
the frequency band selected by W� x0 � xð Þ.

In practice, a spectrogram is obtained by tracking over time the changes in the
outputs of a filter bank. This analysis was common when signals treatments were
only made by analog ways.
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A weakness of the concept expressed in formula (12.3) is that the bandwidth of
the translated filter W x0 � xð Þ is the same for all frequency ranges. If this width
may be sufficient to adequately assess the spectral amplitude in a certain frequency
band, it may be quite inadequate to assess the spectral amplitude of the signal when
the frequency lies in other bands.

One could imagine for overcoming this drawback to use a filter bank having the
same Q-factor rather than same spectral width.

One can also express this idea in the time domain by saying that if a large time
window is used to assess correctly the amplitude at low frequencies (to have a good
resolution at low frequencies given the Heisenberg–Gabor uncertainty principle),
this width is too large to account for rapid changes in high frequencies from one
moment to the other within the time window. Rather, we would like a shorter time
window to analyze the high frequencies. We are led to the concept of multiscale
analysis.

Since the rise of digital computers where the possibilities of computing in the
time domain are more important, the spectrogram analysis in the frequency domain
has been supplanted by the calculation in the time domain.

Example of Spectrogram
Consider the following signal composed of a linearly increasing frequency chirp, to
which is added a small sinusoidal component

xðtÞ ¼ sin x0tþ b
2
t2

� �
þ 0:3 sin 2pf1tð Þ;

with x0 ¼ 2� 103 rad/s; b ¼ 6� 105; f1 ¼ 1:6� 105 Hz.

Figure 12.1 shows the signal xðtÞ (a) and the magnitude Xðf Þj j of its Fourier
transform (b)

Fig. 12.1 Chirp signal and its FT: a Signal xðtÞ; b Its FT X fð Þj j
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While the increase of the signal frequency is apparent on the temporal shape, the
spectral amplitude shown in Fig. 12.1b bears no indication of the evolution in
frequency.

Figure 12.2 represents in pseudo-3D two spectrograms calculated with windows
of different shapes.

The spectrogram on the left is calculated by taking the FT after a multiplication
by a rectangular moving window with a 100 ls width. The second one is obtained
using a Gabor window (Gaussian window) with spread rt ¼ 31:6 ls.

Fig. 12.2 a Spectrogram of xðtÞ with rect. window; b Spectrogram of xðtÞ with Gabor window

12.1 Short-Time Fourier Transform (STFT) and Spectrogram 211



The horizontal axis from left to right is the time axis, the second horizontal axis
is the frequency axis.

The permanent nature of the sine with frequency f1 ¼ 1:6� 105 Hz and the
linear increase over time of the chirp are clearly visible on both spectrograms.

The peak occurs when the frequency of the chirp lies in the vicinity of the
sinusoid frequency.

The smoother shape of the spectrogram given by the Gabor window is due to the
apodization effect of a Gaussian window.

12.2 Wigner–Ville Distribution

The Wigner–Ville distribution of a signal is defined by the relation

Wðt;xÞ ¼
Zþ1

�1
x tþ s

2

� �
x� t � s

2

� �
e�jxsds: ð12:10Þ

Note that in the terms appearing in the product, the time s integration variable
appears with a plus sign in a term and with a minus sign in the second. The minus
sign is characteristic of a time reversal of the signal (as is the case in a convolution).

If we compare this definition with that of the spectrogram, we note that in the
integral, the time reversed signal plays the role of a sliding window analyzer. The
parts with slow variations will select the parts with slow changes and fast changing
parts select the parts with rapid changes, this property acts as a kind of window in
the time domain that is appropriate to local variations of the signal.

The dimension ofWðt;xÞ is that of an energy, dependant on t and x. The goal of
this distribution is to give the energy of the signal at the frequencyx at a given time t.

Properties

Zþ1

�1
Wðt;xÞdt ¼ XðxÞj j2: ð12:11Þ

Indeed, let us first write the expressions of the Fourier transforms of the time
functions appearing in the right side

Wðt;xÞ ¼ 1
2p

� �2 Zþ1

�1
e�jxsds

Zþ1

�1
Xðx0Þejx0 tþ s

2ð Þdx0
Zþ1

�1
X�ðx00Þe�jx00 t�s

2ð Þdx00:

ð12:12Þ
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We integrate this expression on t

Zþ1

�1
Wðt;xÞdt ¼ 1

2p

� �2 Zþ1

�1
dt

Zþ1

�1
e�jxsds

Zþ1

�1
Xðx0Þejx0 tþ s

2ð Þdx0
Zþ1

�1
X�ðx00Þe�jx00 t�s

2ð Þdx00:

ð12:13Þ

Switching the order of integrations, we first integrate over t

Zþ1

�1
Wðt;xÞdt¼ 1

2p

� �2 Zþ1

�1
e�jxsds

Zþ1

�1
Xðx0Þejx0s2 dx0

Zþ1

�1
X�ðx00Þejx00s2 dx00

Zþ1

�1
ej x

0�x00ð Þtdt

Zþ1

�1
Wðt;xÞdt¼ 1

2p

Zþ1

�1
e�jxsds

Zþ1

�1
Xðx0Þejx0s2 dx0

Zþ1

�1
X�ðx00Þejx00s2 d x0 � x00ð Þdx00:

We then integrate upon x00

Zþ1

�1
Wðt;xÞdt ¼ 1

2p

Zþ1

�1
e�jxsds

Zþ1

�1
Xðx0ÞX�ðx0Þejx0sdx0:

We first do the integration on s

Zþ1

�1
Wðt;xÞdt ¼ 1

2p

Zþ1

�1
Xðx0ÞX�ðx0Þdx0

Zþ1

�1
e�j x�x0ð Þsds;

Zþ1

�1
Wðt;xÞdt ¼

Zþ1

�1
Xðx0ÞX�ðx0Þd x� x0ð Þdx0 ¼ XðxÞj j2: ð12:14Þ

Finally we obtain the relation (12.11)

Zþ1

�1
Wðt;xÞdt ¼ XðxÞj j2 ð12:15Þ

Similarly we have

1
2p

Zþ1

�1
Wðt;xÞdx ¼ xðtÞj j2: ð12:16Þ
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Indeed

1
2p

Zþ1

�1
Wðt;xÞdx ¼ 1

2p

Zþ1

�1

Zþ1

�1
x tþ s

2

� �
x� t � s

2

� �
e�jxsdt dx: ð12:17Þ

Integrating firstly over x,

1
2p

Zþ1

�1
Wðt;xÞdx¼ 1

2p

Zþ1

�1
x tþ s

2

� �
x� t � s

2

� �
dt

Zþ1

�1
e�jxsdx

¼ 1
2p

Zþ1

�1
x tþ s

2

� �
x� t � s

2

� �
ds 2p dðsÞ:

ð12:18Þ

Finally

1
2p

Zþ1

�1
Wðt;xÞ dx ¼ x tð Þx� tð Þ ¼ x tð Þj j2: ð12:19Þ

We now show that the Wigner–Ville distribution of xðtÞ can be expressed in the
Fourier domain by the following expression:

Wðt;xÞ ¼
Zþ1

�1
X xþ x0

2

� �
X� x� x0

2

� �
ejx

0tdx0: ð12:20Þ

To do it, the following inverse FT terms are replaced in the definition (12.10)

x tþ s
2

� �
¼ 1

2p

Zþ1

�1
Xðx0Þ ejx0 tþ s

2ð Þdx0 and x� t � s
2

� �
¼ 1

2p

Zþ

�1
X�ðx00Þe�jx00 t�s

2ð Þdx00:

Wðt;xÞ ¼ 1
2p

� �2 Zþ1

�1
Xðx0Þ ejx0tdx0

Zþ1

�1
X�ðx00Þ e�jx00tdx00

Zþ1

�1
ej

x0
2 þ x00

2 �xð Þsds:

After integration on s we get

Wðt;xÞ ¼ 1
2p

Zþ1

�1
Xðx0Þejx0tdx0

Zþ1

�1
X�ðx00Þ e�jx00td

x0

2
þ x00

2
� x

� �
dx00:

After integration on x00 Wðt;xÞ ¼ 1
p

Rþ1

�1
Xðx0Þ ejx0tX�ð2x� x0Þ e�jð2x�x0Þt dx0.
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Now the following change of variables is made: x0 ¼ x� x00
2 ; dx0 ¼ � dx00

2 .
It becomes

Wðt;xÞ ¼ 1
2p

Zþ1

�1
X x� x00

2

� �
X� xþ x00

2

� �
e�jx00tdx00;

which becomes after the last change of variables x0 ¼ �x00

Wðt;xÞ ¼ 1
2p

Zþ1

�1
X xþ x0

2

� �
X� x� x0

2

� �
ejx

0tdx0 Q:E:D: ð12:21Þ

The interest of this formula appears in the following examples.

Example 1 Calculus of the Wigner–Ville distribution of a signal whose frequency
varies linearly over time

x tð Þ ¼ ejx0tejat
2
: ð12:22Þ

x tþ s
2

� �
¼ ejx0 tþ s

2ð Þeja tþ s
2ð Þ2 ; x t � s

2

� �
¼ ejx0 t�s

2ð Þeja t�s
2ð Þ2 ;

x� t � s
2

� �
¼ e�jx0 t�s

2ð Þe�ja t�s
2ð Þ2 :

After calculation we get x tþ s
2

� �
x� t � s

2

� � ¼ ejx0se2jats.

Wðt;xÞ ¼
Zþ1

�1
ejx0se2jatse�jxsds ¼

Zþ1

�1
ej x0 þ 2at�xð Þsds:

Wðt;xÞ ¼ 2p d x0 þ 2at � xð Þ: ð12:23Þ

Wðt;xÞ is zero unless the condition x ¼ x0 þ 2at is satisfied.
The distribution Wðt;xÞ is shown in Fig. 12.3 in the plane ðt;xÞ

Fig. 12.3 Wigner–Ville
distribution of xðtÞ
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Example 2 Calculation of Wigner–Ville distribution for a signal whose frequency
varies linearly with time and amplitude is modulated by a Gaussian shape

x tð Þ ¼ e�
t�t0ð Þ2
2r2 ejx0tejat

2
: ð12:24Þ

x tþ s
2

� �
¼ e�

tþ s
2�t0ð Þ2
2r2 ejx0 tþ s

2ð Þeja tþ s
2ð Þ2 ;

x� t � s
2

� �
¼ e�

t�s
2�t0ð Þ2
2r2 e�jx0 t�s

2ð Þe�ja t�s
2ð Þ2 :

It becomes x tþ s
2

� �
x� t � s

2

� � ¼ e�
1
r2

t�t0ð Þ2 þ s2
4

� �
ejx0se2jats.

Wðt;xÞ ¼ F x tþ s
2

� �
x� t � s

2

� �� �
¼ e�

1
r2

t�t0ð Þ2 1
2p

F e�
s2

4r2

� �
� F ejx0se2jats

� �
:

As e�pt2 has the FT
ffiffi
p
p

q
e�

x2
4p , e�

s2

4r2 has the FT
ffiffiffiffiffiffiffiffiffiffi
p4r2

p
e�x2r2 .

We then have

Wðt;xÞ ¼ 2r
ffiffiffi
p

p
e�

1
r2

t�t0ð Þ2e�r2 x�x0�2atð Þ2 : ð12:25Þ

For a given t, the maximum of the distribution is such that @W t;xð Þ
@x ¼ 0, then for

x ¼ x0 þ 2at: ð12:26Þ

We expect to see in the time–frequency plane a track similar to that of Fig. 12.3.
The maximum of the distribution in the time–frequency plane will occur at the point

where the two partial derivatives are zero, for @W t;xð Þ
@x ¼ 0 and for @W t;xð Þ

@t ¼ 0. The
first derivative has already been performed. To make zero the derivative with
respect to time, we do the change of variables u ¼ t � t0. The factor in the expo-
nential is written as

g uð Þ ¼ � u2

r2
� r2 x� x0 � 2au� 2at0ð Þ2:

Just impose dg uð Þ
du ¼ � 2u

r2 þ 2ar2 x� x0 � 2au� 2at0ð Þ ¼ 0.

This gives

t � t0 ¼ r4a x� x0 � 2at0ð Þ
1þ 2a2r4

: ð12:27Þ
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Conditions (12.26) and (12.27) impose that the maximum of the distribution is
reached for t ¼ t0.

We present in the following results of a numerical simulation which has been
taken for t0 ¼ 4; r ¼ 4; x0 ¼ 5:5; and a ¼ 0:5.

We recognize the Gaussian envelope of the signal on Fig. 12.4a. Figure 12.4b
shows the linear track in the time–frequency plane of the higher amplitudes of the
function. We numerically verify that the maximum of the function occurs for
t ¼ t0 ¼ 4.

It must be emphasised finally that for signals consisting of a superposition of
signals, terms resulting from interference between the signals appear in the Wigner–
Ville distribution. This results in difficulties in the interpretation of images for the
detection of characteristics of the component signals. The wavelet analysis
described in the following partially overcomes this problem.

12.3 Continuous Wavelet Transform

12.3.1 Examples of Wavelets

The aim of CWT is to decompose signals on a basis of functions providing good
localization both in time and frequency domains. By assumption, the signal x tð Þ to
be decomposed are square-integrable 2 L2ð Þ. The wavelet w tð Þ considered here is a
continuous function in the time domain with a continuous FT. It should be also such
that

Fig. 12.4 a) chirp with a Gaussian envelope b) Wigner–Ville distribution of xðtÞ
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Z1

�1
w tð Þdt ¼ 0: ð12:28Þ

This last condition is called the eligibility requirement for the function w tð Þ to be
a wavelet. We note WðxÞ the FT of w tð Þ.

The relationship (12.28) entails

W 0ð Þ ¼ 0: ð12:29Þ

The norm of the wavelet is assumed to be equal to 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z1

�1
wðtÞw�ðtÞdt

0

@

1

A

vuuut ¼ 1: ð12:30Þ

In principle, a wavelet is localized around the origin with a narrow temporal
spread.

A first example of wavelet is the “Mexican hat.” It is the second derivative of the

Gaussian function f ðtÞ ¼ 1ffiffiffiffiffiffiffi
2pr2

p e�
t2

2r2 with the sign changed: wðtÞ ¼ 1ffiffiffiffi
2p

p
r3
e�

t2

2r2

1� t2
r2

� �
.

The condition of eligibility is verified. It is represented in Fig. 12.5 for r ¼ 0:1.
A second example is the Morlet wavelet which is a monochromatic signal with

frequency x0 modulated in amplitude by a Gaussian function w tð Þ ¼ e�
t2

2r2eix0t.
Its FT is (see Chap. 7):

Fig. 12.5 Mexican hat
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WðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2pr2

p
e�

r2 x�x0ð Þ2
2 :

The Gaussian shape of the envelope ensures the minimum of the product of time
and frequency spreads (see Chap. 6). The eligibility condition is not satisfied by this
function since Wð0Þ 6¼ 0, however, if x0 [ 5

r the frequency peak of the Gaussian
that is located in the vicinity of x0 is sufficiently far from the origin, and the decay
controlled by 1

r sufficient so that Wð0Þ ’ 0. Figure 12.6 shows the real part of the
Morlet wavelet and its spectral amplitude when x0 ¼ 1 and r ¼ 5. We see that
Wð0Þ is almost equal to zero (Wð0Þ ¼ 1:37� 10�4).

12.3.2 Decomposition and Reconstruction of a Signal
with Wavelets

A wavelet basis consists of functions normalized to 1 wa;b tð Þ ¼ 1ffiffi
a

p w t�b
a

� �
. These

functions are obtained from the mother wavelet w tð Þ by an expansion with the scale
factor a real[ 0ð Þ and a time translation b 2 R.

By definition, the wavelet transform of xðtÞ is

Xx a; bð Þ ¼ \x tð Þ;wa;b tð Þ[ ¼ 1
ffiffiffi
a

p
Z1

�1
x tð Þw� t � b

a

� �
dt: ð12:31Þ

This operation is referred as a time-scale analysis.

Fig. 12.6 a Morlet wavelet; b Spectral amplitude of Morlet wavelet
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The above integral is the value of the correlation function between the functions
xðtÞ and wa;bðtÞ for a couple ða; bÞ. We have already seen that a correlation is a
convolution in which one function was reversed in time, so we can write

Xxða; bÞ ¼ xðbÞ � ~w�
a;bðbÞ; ð12:32Þ

where the time reversal of w�
a;bðbÞ was noted ~w�

a;bðbÞ.
In interpreting the previous convolution as a filtering, one can say that Xx a; bð Þ is

the result of filtering x tð Þ by a filter whose impulse response is an expanded version
(if a[ 0) or contracted (if a\0) of the wavelet, reversed in time. Since the wavelet
is such that the FT is such thatWð0Þ ¼ 0, the filter appears as a band-pass filter. The
bandwidth of the filter is determined by the scale factor a.

In this transformation, Xx a; bð Þj j2 appears as a cross power spectral density.
We will show in the following that in the case where the wavelet w tð Þ is real, the

function x tð Þ can be found back from its transform defined in (12.31) by the
following relationship:

x tð Þ ¼ 1
Cw

Z1

0

Z1

�1

1
a2

Xx a; bð Þ 1
ffiffiffi
a

p w
t � b
a

� �
dbda; ð12:33Þ

where

Cw ¼ 1
2

Z1

�1

W xð Þj j2
xj j dx: ð12:34Þ

Cw is finite. This follows from condition (12.29) resulting in that the singularity in
x ¼ 0, caused by the term 1

xj j in the integral, is compensated by the zero of the

numerator at this point.
Relation (12.33) also appears as a convolution product. Xx a; bð Þ, being itself

given by a convolution, this relationship is then a double convolution.
The demonstration of the important result expressed by formula (12.33) is done

here in the Fourier domain. It consists in showing that the FT of the two members
of this relationship are equal. The FT of a convolution being equal to the product of
FT, the demonstration can be written formally. It is preferred here to perform the
calculation step by step in order to show how the technical difficulty presented by
the presence of the scale factor a in the functions can be treated. The Fourier
transform of ~w�

a;b tð Þ is calculated

Z1

�1

~w�
a;b tð Þe�jxtdt ¼

Z1

�1
w�
a;b �tð Þe�jxtdt ¼

Z1

�1
w�
a;b tð Þejxtdt ¼ W�

a;b xð Þ ð12:35Þ
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Wa;b xð Þ ¼
Z1

�1
wa;b tð Þe�jxtdt ¼ 1

ffiffiffi
a

p
Z1

�1
w

t � b
a

� �
e�jxtdt:

Writing t�b
a ¼ t0 the previous integral becomes

Wa;b xð Þ ¼ 1
ffiffiffi
a

p
Z1

�1
wðt0Þe�jx at0 þ bð Þadt0 ¼ ffiffiffi

a
p

e�jxb
Z1

�1
wðt0Þe�jxat0dt0

¼ ffiffiffi
a

p
e�jxbW axð Þ: ð12:36Þ

Thus, the FT of ~w�
a;b tð Þ is ffiffiffi

a
p

ejxbW� axð Þ because a and b are real.
We now show that the FT of the two members of Eq. (12.33) are equal, which

necessarily causes the equality of these two terms. We first calculate the FT of the
integral on b appearing in the right side. We set

I1 ¼
Z1

�1

Z1

�1

1
a2

Xx a; bð Þ 1
ffiffiffi
a

p w
t � b
a

� �
e�jxtdbdt: ð12:37Þ

We write t�b
a ¼ u; t ¼ auþ b; dt ¼ adu.

I1 ¼
Z1

�1

Z1

�1

1
a2

Xx a; bð Þ 1
ffiffiffi
a

p w uð Þ e�jxaue�jxbdbadu:

I1 ¼
Z1

�1

1
a

1
ffiffiffi
a

p Xx a; bð Þe�jxb
Z1

�1
w uð Þ e�jxaudbdu:

I1 ¼ W axð Þ
Z1

�1

1
a

1
ffiffiffi
a

p Xx a; bð Þe�jxb db:

Xx a; bð Þ is replaced by the expression (12.31) which defines it

I1 ¼ W axð Þ 1
a2

Z1

�1
xðt0Þ

Z1

�1
w� t0 � b

a

� �
e�jxbdbdt0:

The following integral on b is calculated

I2 ¼
Z1

�1
w� t0 � b

a

� �
e�jxb db: ð12:38Þ
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We write t0�b
a ¼ u; b ¼ t0 � au; db ¼ �adu.

I2 ¼
Z1

�1
w� uð Þe�jxt0ejxauadu ¼ ae�jxt0W� axð Þ: ð12:39Þ

Then

I1 ¼ W axð Þ 1
a2

Z1

�1
xðt0Þae�jxt0W� axð Þdt0 ¼ 1

a
W axð Þj j2X xð Þ:

The FT of the two members of (12.33) leads to

X xð Þ ¼ X xð Þ 1
Cw

Z1

0

1
a
W axð Þj j2da:

We write ax ¼ u; da ¼ du
x .

1 ¼ 1
Cw

Z1

0

1
u
W uð Þj j2du ¼ 1

Cw

1
2

Z1

�1

W uð Þj j2
uj j du ¼ 1;

from the definition of Cw in (12.34), and as w tð Þ is real by assumption, the modulus
of its FT is even.

It follows from the foregoing that the relationship (12.33) which expresses the
reconstruction of x tð Þ from its wavelet transform is demonstrated.

It is interesting to note that the convolution playing an essential role in the
formulas of direct and inverse wavelet transforms, the calculations become simple
products in the Fourier domain. Numerical calculations are carried out quickly and
easily by using the fast Fourier transform which will be described later in this book
in Chap. 16.

Finally, we note that in the continuous wavelet analysis, the parameters a and
b vary within a continuum. In other words, to recover the function x tð Þ, it is
necessary to use an infinite number of basis functions. We will see in Chap. 25 that
it is possible to define a basis for the development of functions in L2 made of
wavelets limited in time. It will be technically necessary in that context to define a
second function, the scaling function, which will be noted / tð Þ.

Figure 12.7 shows on the top a signal composed of two pulses with different
spreads. On the figure below is shown its decomposition on Morlet wavelets basis
calculated with MATLAB.
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Figure 12.8 shows on the top a signal composed of a sinusoid of fixed frequency
mixed with a chirp of increasing frequency to which is superimposed a random
signal. Below, the decomposition upon a Morlet wavelet basis clearly shows the
three components of the signal.

Fig. 12.7 Signal to analyze (top); Magnitude of decomposition coefficients Xa;b

�� �� (bottom)

Fig. 12.8 Signal to analyze (top); Magnitude of decomposition coefficients Xa;b

�� �� (bottom)
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12.3.3 Shannon Wavelet

We saw above in the example of the Morlet wavelet that a wavelet operates a
band-pass filtering of the signal to be analyzed. The envelope of the frequency
response is Gaussian in that case. We can try to have a more effective frequency
selection by using rectangular windows in the frequency domain. The decompo-
sition of the signal corresponds to a subband coding of the signal. The construction
of this wavelet first passes by the recognition that we can build an ideal band-pass
filter by the linear combination of sinc functions in the time domain. We first
demonstrate that these functions may form an orthogonal basis for developing
functions in the time domain.

Shannon–Whittaker sampling theorem: This theorem proved later in Chap. 26
stipulates that a function f tð Þ whose spectrum is bounded on the interval � 1

2T ;
1
2T


 �

can be reconstructed from its sampled values with a step T.

f tð Þ ¼
Xþ1

n¼�1
f ðnTÞ sin

p
T t � nTð Þ� �

p
T t � nTð Þ : ð12:40Þ

To make things easy, without loss of generality, we consider the particular case
where T ¼ 1. Let the space of functions whose spectrum is bounded on the interval
� 1

2 ;
1
2


 �
be noted V0. The formula (12.40) becomes

f tð Þ ¼
Xþ1

n¼�1
f nð Þ sin p t � nð Þð Þ

p t � nð Þ : ð12:41Þ

Let us write HðtÞ ¼ sin ptð Þ
pt . The functions H t � nð Þ ¼ sin p t�nð Þð Þ

p t�nð Þ with n2 Z form

an orthonormal basis in V0. The function HðtÞ is the scaling function / tð Þ asso-
ciated with the Shannon wavelet from which the wavelet functions are built.

Let us now demonstrate the orthonormality of functions H t � nð Þ in the Fourier

domain. We first calculate P xð Þ ¼ Rþ1

�1
H tð ÞH t � nð Þe�jxtdt, then take the value of

P xð Þ in x ¼ 0. The function P xð Þ, Fourier transform of the product of the func-
tions H tð Þ and H t � nð Þ is given by the convolution product of their Fourier
transforms

P xð Þ ¼ 1
2p

F sin ptð Þ
pt

� �
� F sin p t � nð Þð Þ

p t � nð Þ
� �� 


: ð12:42Þ

It is now recognized that sin ptð Þ
pt is the inverse FT of a rectangular window in the

frequency domain, with value 1 in the interval �p; pf g and zero elsewhere (check
that)
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F sin ptð Þ
pt

� �
¼ P �p;pf g xð Þ: ð12:43Þ

Applying the shifting theorem, we get

F sin p t � nð Þð Þ
p t � nð Þ

� �
¼ P �p;pf g xð Þe�jnx: ð12:44Þ

Then P xð Þ ¼ 1
2p

Rþ1

�1
P �p;pf g x� x0ð ÞP �p;pf g x0ð Þe�jnx0

dx0.

P xð Þjx¼0¼
1
2p

Zþ1

�1
P �p;pf g �x0ð ÞP �p;pf g x0ð Þe�jnx0

dx0 ¼ 1
2p

Zp

�p

e�jnx0
dx0;

P xð Þjx¼0¼
Zþ1

�1
H tð ÞH t � nð Þdt ¼ 0 if n 6¼ 0; ð12:45Þ

and

P xð Þjx¼0¼
Zþ1

�1
H2 tð Þ ¼ 1 if n ¼ 0: ð12:46Þ

Note We have just shown that
Rþ1

�1
sin2 ptð Þ
p2t2 dt ¼ 1. With a simple change of variable

the value of the following classic integral is obtained
Rþ1

�1
sin x
x

� �2
dx ¼ p:

The mother Shannon wavelet is defined as the difference of two sincs

w tð Þ ¼ 2sinc 2ptð Þ � sinc ptð Þ ¼ sin 2ptð Þ � sin ptð Þ
pt

: ð12:47Þ

Figure 12.9 shows, in the time interval �10; 10f g, the two sincs contained in the
definition (12.47), the mother Shannon wavelet, and below, their FT calculated
numerically. The oscillations on the spectra are numerical artifacts. The Shannon
wavelet acts as an ideal band-pass filter. As can be seen, the price to pay to have a
very selective filtering is that the support of the wavelet is not compact.

We see in this example the band-pass character of the wavelet. The frequency
bands of the wavelets derived from the mother wavelet by the scale factor a will
scan the frequency axis and allow the analysis of a signal in different frequency
bands.
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Summary
This chapter is the presentation of methods developed to overcome the insufficiency
of the Fourier transformation to describe signals whose properties vary in time. The
sliding Fourier transform and its square modulus, the spectrogram, consist in
multiplying the function by a sliding window before taking the FT for analyzing the
signal locally. The window is moved successively along the whole time axis. The
Wigner–Ville distribution is a related method where the signal itself is used as the
analyzing function. These methods are however limited by the fact that the width of
the analysis windows is fixed. The CWT allows the use of a window with variable
width. It meets in an optimal way the detection of portions of the signal where the
variation is fast as well as those where the signal varies slowly. The decomposition–
reconstruction formulas of a signal on a wavelets basis have been demonstrated in
the chapter. We will find in Chap. 19 the extension of wavelet analysis to digital
signals.

Fig. 12.9 Sincs functions and their spectra (left); Shannon wavelet and its spectrum (right)
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Chapter 13
Notions on Digital Signals

Digital signals are sequences of numbers. The index in the sequence acts as the
time. We say that time is discrete (or discontinuous). Digital signals may be purely
synthetic (calculated algorithmically) or result from the conversion of analog sig-
nals by Analog/Digital converters (abbreviated ADC). Digital signals have nowa-
days become prominent, driven by continuing advances in microelectronics
(Moore’s Law, which has been verified for over thirty years, states that the ability to
integrate electronic circuits doubles every 18 months).

Digital signals possess several advantages compared to analog signals: First,
their treatment is more flexible. Processes on digital signals can be achieved that are
impossible for analog signals. For example, one can easily change the parameters in
a rule of calculation to improve filtering.

Second, the signal-to-noise ratio of digital signals can be large. For example, it
can be maintained intact during propagation on a transmission channel unlike the
situation for an analog signal that is always negatively affected during propagation.
Indeed, the use of error-correcting codes allows finding back exactly the original
digital signal at the output of the transmission channel.

In this chapter, we first give some idea of the analog to digital signal conversion
and the error committed during this operation conditioned by the limited resolution
of the converter. We show with a simple example the necessity of using a sampling
frequency of the analog signal that is sufficiently high so that rapid variations of a
signal can be correctly rendered in the digital signal. We also show with the simple
example of digitizing a sine function how a frequency component higher than the
sampling frequency can have the same digital image as a low-frequency signal
caused by a stroboscopic effect (aliasing). These facts will be demonstrated
mathematically in Chap. 19. We give at the end of this chapter, the expression of
simple digital signals. We emphasize the fact that they appear as weighted
sequences of Kronecker unit pulses.
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13.1 Analog to Digital Conversion

An Analog to Digital Converter (ADC) has two main characteristics:

– Its sampling frequency fe which is the number of conversions per second.
– Its resolution (given by the number of possible levels at the converter output).

While the values of the signal to be sampled are real numbers, their coding by
the converter is in integer values.

The conversion operation requires the comparison of the value of the signal to
different reference levels values. It requires a certain time which generally increases
with the number of levels of comparison. It is conditioned by the speed of electronic
circuits that are used. Increasing the accuracy of the conversion may require a
change of technology and the decrease of the sampling frequency.

The quantization levels of a converter are generally uniformly distributed.
However in some cases levels are used spaced by a logarithmic law. This is the case
for some telephone connections (A law or μ law). Low levels are relatively close
together allowing good rendering of small signals while high levels may still be
digitized (approximately). This brings a good dynamic to the digitized signal.

The number of levels of a converter is generally a power of two: 2M .

– For 8-bit converters, M = 8; There are 28 = 256 levels.
– For 12-bit converters, M = 12; There are 212 = 4096 levels.

Several techniques are used to improve performance of conversion operations.
They are based on the statistical properties of the signal to be sampled. It is rare to
see the signal vary greatly from one sample to the next. The expected variation is
small compared with the difference between the extreme values of the signal. Thus,
a first method is to digitize the difference between the value of a sample and that of
the previous sample whose value has been stored. Thus the amplitude range to be
scanned is not required to cover the whole range of signal values. This principle can
be extended to the use of values of several previous samples: One can make a
prediction of the expected value for a sample from these earlier samples. The
difference between the expected value and the true value is digitized (predictive
coding). These converters are called Delta-Sigma (Sigma evokes the notion of sum
and Delta the difference between the expected value and the value found). It has
been shown that it is effective for the speech signals to decompose the signal by a
bank of filters, to do a predictive coding conversion of each filtered component then
digitally reconstruct the signal. A good reproduction of the signal is attained, even if
the number of bits of the converter may seem insufficient a priori.

Scanning audible signals: The frequency of audible signals is less than 20 kHz.
Today audible signals converters are used whose sampling frequencies range from
40 to 80 kHz (44.1 kHz in a digital compact disc). The sound is recorded digitally on
a compact disc. When reading the record is processed and converted into an analog
signal for listening (by a Digital to Analog Converter DAC). The ear is very sensitive
to imperfections of the reproduced sound, so the precision of the converters must be
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high to get a good record: at least 16 bits or better, 24 bits to satisfy the ears of a
musician in the case of a converter that does not use predictive coding.

The number of bits of a converter decreases as the frequency of the converter
increases. Currently there are 16-bit digitizers to about 360 MHz. For 12-bit digi-
tizers the sampling frequency rises to 3.5 GHz. Above this frequency, there are
8-bit digitizers (flash converters) up to frequencies of the order of 40 Gigahertz.

Example of accuracy of a converter
Take an 8-bit converter (256 levels) for sampling a bipolar signal in a ±1 V range.
We have the following correspondence between the levels and voltage:

Level Voltage

0 → 1 V

128 → 0 V

255 → 1 V–7.81 mV

Giving a precision 1
128 ¼ 7:81mV per bit.

The maximum error of the converter is 3.9 mV, that is to say half the least
significant bit 1

2 LSB.
The minimum relative error is

error
signalmax

¼ 0:5
128

¼ 1
256

¼ 1
2M

;

with a correspondence in decibels: 20 log10
1

256 ¼ �48:16 dB.
For 8-bit converted signals, the signal-to-noise ratio will not exceed 45 dB.
For a 16-bit converter we will have: error

signalmax ¼ 1
216 ¼ 1

65536 ) �96:3 dB. This

is much better than for the 8-bit converter.
The presence of converter quantization levels therefore causes that the numerical

values do not correspond exactly to the analog values. This error is equivalent to the
superposition of a numerical error signal which fluctuates rapidly from one sample
to another. The result is the emergence of broadband noise which is greater when
the resolution of the converter is lower.

Experimentally, one can reduce the quantization error in two situations

1. If the sampling frequency of the analog–digital converter is high, much higher
than the maximum frequency present in the signal to be digitized. This is the case,
for example, when the signal supplied by a sensor has a maximum frequency of
5 MHz and the converter has a sampling frequency of 125 MHz. It is understood
that since the signal varies relatively slowly, successive samples will land often on
the same level of quantization. By smoothing the digital signal by a moving
average digital filter, one softens the signal by creating signal values between the
quantization levels. This operation is performed without unduly affecting the
signal spectrum. This method brings about 2 quantization bits in the example.
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2. Another method is possible in the case where the signal to be measured is
certain, repetitive, with random noise superimposed on it. This situation is met
in ultrasound echography for example where one can send the same impulsion
repeatedly toward the target (the target must be fixed to make the method
workable). Electronic noise present in the signal is usually sufficient to make the
technique possible. The sum of several digitized signals is made using a com-
puter. While the deterministic signal is affected by the same quantization error
for each signal, the noise shifts randomly the noisy signal to different quanti-
zation levels, and so, at a given time, successive digitized signals will not land to
the same level. Summing successive digitized signals, operates a statistical
average of these values. Thus the average may have an intermediate value
between two initial quantization levels. By averaging N ¼ 1024 signals, we can
expect to benefit from

ffiffiffiffi
N

p ¼ ffiffiffiffiffiffiffiffiffiffi
1024

p ¼ 32 intermediate levels.

Of course, the noise must meet certain conditions; it should not be too low; its
standard deviation should be at least of the order of 2–3 times the quantization
interval. It should not be too large either to avoid that the value of the averaged
signal would be far from that of the non-noisy signal. In this example, one can gain
3–4 quantization bits.

If natural electronic noise is too low, it is perfectly possible to consider adding an
additional synthetic noise in order to make the operation possible.

In the rest of this course, we will not take into account the quantization error.

Notation of a digital signal fe is the sampling frequency, the sampling step T ¼ 1
fe
.

The analog–digital conversion establishes the correspondence: f tð Þ ! f nTð Þ.
We write f tð Þ ! f nTð Þ ¼ f nT½ � ¼ f n½ �.
Note that for a digital signal, the time variable n is discrete. We note the time

function f n½ � using square brackets around n, as the arrays in conventional pro-
gramming languages such as assembly or C are noted.

13.2 Criterion for a Good Sampling in Time Domain

To achieve an acceptable sampling, it is necessary that the variations of the signal to
be sampled are not too rapid between two sampling instants. More precisely:

Shannon Theorem For the sampling of a signal to be correct in a spectral point
of view, it is necessary that the spectral amplitude of the signal to be sampled are
restricted to the frequency domain � fe

2 ;
fe
2.

If the Shannon condition is not met, aliasing phenomenon occurs.

Figure 13.1 shows qualitatively an example of digitalization of two signals with
different frequency contents. On top, the samples follow well the variations of a
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slowly varying signal. Using the same sample frequency, we see that the higher
frequency signal is not sampled accurately. Some fast variations are not apparent on
the samples.

This theorem will be proved in Chap. 16. It is preferred here to illustrate this
condition on the simple example of a sinusoidal signal and bring up the problem
caused by insufficient sampling frequency:

Let f ðtÞ the signal to digitize

f ðtÞ ¼ sinx0t ¼ sin 2pf0t ð13:1Þ

At times nT we have:

f ðnTÞ ¼ sin 2pf0nT ð13:2Þ

The digital signal will be

f n½ � ¼ sin 2pf0nT ð13:3Þ

Since

T ¼ 1
fe
; f n½ � ¼ sin 2p

f0
fe
n ð13:4Þ

Let f2ðtÞ ¼ sin 2pf 00t the analog signal whose frequency exceeds the sampling
frequency by the value f0: f 00 ¼ fe þ f0.

Fig. 13.1 Two sampled signals: correctly (top); incorrectly (bottom)
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f2 n½ � ¼ sin 2p
f 00
fe
n ¼ sin 2p

fe
fe
nþ 2p

f0
fe
n

� �

¼ sin 2p
f0
fe
nþ 2pn

� �
¼ sin 2p

f0
fe
n

ð13:5Þ

It is seen that the analog signals with frequencies f0 and f 00 ¼ fe þ f0 have the
same numerical representation.

Similarly, if f 00 ¼ fe � f0,

f2 n½ � ¼ sin 2p
f 00
fe
n ¼ sin 2p

fe
fe
n� 2p

f0
fe
n

� �
¼ � sin 2p

f0
fe
n ð13:6Þ

The above two examples illustrate the aliasing.
This phenomenon is identical to the stroboscopic effect, well known in optics. In

movies, where the pictures are presented with a time step of T = 1/24 s, we may see
the wheels of a vehicle or the blades of a helicopter rotate very slowly or sometimes
even backwards.

13.3 Simple Digital Signals

The basic digital signal is the unit pulse d n½ � (Kronecker function) defined by
(Fig. 13.2):

d n½ � ¼ 0 if n 6¼ 0
1 if n ¼ 0

���� : ð13:7Þ

For digital signals, this function plays the role of the Dirac distribution for
continuous-time signals. We should not confuse this digital signal which is 1 at the
origin with the Dirac distribution which is infinite at the origin.

Definition of the step function (Fig. 13.3):

U n½ � ¼ 0 for n\0
1 for n� 0

���� : ð13:8Þ

Fig. 13.2 Kronecker unit
pulse d n½ �

232 13 Notions on Digital Signals



This function plays for digital signals the role of the Heaviside function for
continuous-time signals.

Translation of the unit pulse
Translation to the right by one step

d n� 1½ � ¼ 0 for n 6¼ 1
1 for n ¼ 1

���� ð13:9Þ

Translation by m steps

d n� m½ � ¼ 0 for n 6¼ m
1 for n ¼ m

���� ð13:10Þ

The translation is to the right as m positive, as is the case in Fig. 13.4:

Note Any numerical function can be considered as a linear combination of
Kronecker pulses d n� m½ �. So the step function can be written:

U n½ � ¼
X1

m¼0

d n� m½ �: ð13:11Þ

We will use in the sequel the following entry representing any function f n½ � as a
linear combination of Kronecker functions

f n½ � ¼
X1

m¼�1
f m½ �d n� m½ � ð13:12Þ

In this sum, factors f ½m� act as weights affecting each Kronecker pulse.

Fig. 13.4 Unit pulse
translated by m

Fig. 13.3 Step function U n½ �
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Summary
This chapter was an introduction to digital signals. We have detailed the two major
characteristics of an analog to digital converter: the resolution of the quantization
which depends on the number of levels of the converter evaluated in number of bits
and the sampling frequency. On simple examples, we have shown that insufficient
sampling frequency did not allow accounting for the rapid changes of the analog
signal and we highlighted the problem of aliasing occurring in that case. We give
the expression of simple digital signals and emphasize the fact that a digital signal
appears as a succession of weighted unit Kronecker pulses.

Exercises
A digital rectangular window is a function with a constant value in a given time
interval and zero elsewhere. Show that the function P½n� ¼ U½n� � U½n� 8� is a

rectangular window. Represent this function. We can write P½n� ¼ P7

m¼0
d½n� m�.

Solution:

I. The function U½n� is zero for negative times and is 1 for positive times. The
function U½n� 8� will be 1 starting at n ¼ 8. Their difference will cancel for
n[ 7.

II. Graph the function f ½n� ¼ ð�1ÞnU½n�.
Answer:
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Chapter 14
Discrete Systems—Moving Average
Systems

This first chapter on discrete systems is intended to show that simple rules of sums
or differences in calculations on sequences of numbers can act as digital filters on
these numbers, smoothing or enhancing certain spectral components of these sig-
nals. The digital filters have the decisive advantage of being easy to implement in a
signal processing chain, easily modifiable, and able to vary over time to adapt to the
evolutions of the signals to be processed (adaptive filtering, Kalman filtering).

This chapter is a mirror image of Chaps. 1 and 2 of this book that were dealing
with analog signals. Drawing on an example of a smoothing filter (Moving
Average, MA), the concepts of digital filter and linear time-invariant system are
defined. We show that the function zn is an eigenfunction of a time-invariant digital
system as was the exponential est for analog systems. The impulse response, the
transfer function and the frequency response are defined. The z-plane plays the role
played by the Laplace plane for analog systems. A discrete convolution of the input
signal by the impulse response provides the output signal. We study some examples
of moving average filters and show how we can interpret geometrically the varia-
tion of the system’s frequency response. The frequency response of a discrete
system is inherently periodic in frequency. The advantages of the Moving Average
filters are that they have a finite impulse response length. We see also that it is
possible to create filters with zero phase shifts. A disadvantage of MA filters is that
they are not very selective.

A discrete system associates to a sequence f ½n� considered as an input, another
sequence g½n� considered to be the output of the system.

�!f ½n� System�!g½n�

Systems are commonly called filters.
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An example of system is

g½n� ¼ 1
3

f ½n� 1� þ f ½n� þ f ½n� 1�ð Þ: ð14:1Þ

This last system operates a smoothing of the signal f ½n�. It provides a moving
average of f ½n�.

14.1 Linear, Time-Invariant Systems (LTI)

The properties that define a LTI system are
Linearity:
Let two arbitrary functions f1½n� and f2½n� enter the system:
Namely,

�!f1½n� System �!g1½n� and�!f2½n� System �!g2½n�: ð14:2Þ

The system is linear if for any two constants a1 and a2, then

��������!a1f1½n� þ a2f2½n�
System ��������!a1g1½n� þ a2g2½n� ð14:3Þ

Time invariance:
Let

�!f n½ �
System�!g n½ � ð14:4Þ

The system is translational invariant in time (we say also stationary) if its
response to the delayed input is identical to the delayed initial response. That is to
say, if and only if (iff)

����!f n�m½ �
System ����!g n�m½ � ð14:5Þ

14.2 Properties of LTI Systems

We call impulse response h½n� the output function of the non-preprepared system
for an input d½n�, pulse with unit amplitude at time n ¼ 0.

�!d n½ �
System�!h n½ � ð14:6Þ
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Calculation of the output g½n� when the input signal f ½n� has an arbitrary
shape
It has been pointed out above that the function f ½n� can be regarded as a sequence of
Kronecker functions d½n� shifted

f ½n� ¼
Xþ1

m¼�1
f ½m� d½n� m�: ð14:7Þ

One can therefore consider that pulses f ½m� d½n� m� localized in n ¼ m suc-
cessively enter the filter.

At the output of the LTI system, we will have, because of its properties of
linearity and time invariance, the sum of the responses h½n� m� to each of the
pulses d½n� m� that comprise the input signal.

We can then write

g½n� ¼
Xþ1

m¼�1
f ½m� h½n� m�: ð14:8Þ

It can be shown by a simple change of variables that we also have

g½n� ¼
Xþ1

m¼�1
f ½n� m� h½m�: ð14:9Þ

We say that the system output is the convolution (discrete) of the input signal
with the impulse response. Symbolically

g½n� ¼ f ½n� � h½n�: ð14:10Þ

It is easily shown that the convolution product is associative and distributive.
As an exercise, one will verify that the convolution of two causal signals is

causal.

14.3 Notion of Transfer Function

Let z be an arbitrary complex number. The functions zn are eigenfunctions of the
operator describing the LTI filter. This means that there is a function HðzÞ such that

����!f ½n�¼zn
System ������!g½n�¼znHðzÞ ð14:11Þ

Indeed, if f ½n� ¼ zn, according to (14.8) we have g½n� ¼ Pþ1
m¼�1 zm h½n� m�.

Let n − m = k. We have g½n� ¼ Pþ1
k¼�1 zn�kh½k�, or also
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g½n� ¼ zn
Xþ1

k¼�1
h½k�z�k: ð14:12Þ

The sum of the series appearing in the above equation is a function of z only
which will be noted HðzÞ. This function is called the system transfer function.

It is given by

HðzÞ ¼
Xþ1

k¼�1
h½k�z�k: ð14:13Þ

We then have

g½n� ¼ HðzÞzn if f ½n� ¼ zn ð14:14Þ

More generally, the z transform FðzÞ of an arbitrary function f ½n�, is defined by
the relationship

FðzÞ ¼
Xþ1

n¼�1
z�nf ½n�: ð14:15Þ

We can see from that the filter transfer function is the z transform of its impulse
response.

Theorem Consider a discrete LTI system. The z transform, GðzÞ of the
system output signal is the product of the z transform of the input signal FðzÞ
by the system transfer function HðzÞ: GðzÞ ¼ HðzÞFðzÞ.

Indeed �!f ½n� System �������������!
g½n�¼

P
m¼�1

þ1
h½n�m�f ½m�

The z transform of g½n� is given by GðzÞ ¼ Pþ1
n¼�1 g½n� z�n

GðzÞ ¼
Xþ1

n¼�1

Xþ1

m¼�1
h½n� m� f ½m�z�n ¼

Xþ1

p¼�1

Xþ1

m¼�1
h½p� f ½m�z�mz�p:

We noted n� m ¼ p. z�n ¼ z�mz�p.
The variables are separated, we can write

GðzÞ ¼
Xþ1

p¼�1
h½p� z�p

Xþ1

m¼�1
f ½m� z�m ¼ HðzÞFðzÞ: ð14:16Þ
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Case where functions f ½n� and h½n� have limited lengths N1 and N2

This is a case often encountered in practice. It can be reduced by simply changing
the time origin to the case of two causal signals. The convolution product of two
causal signals is causal. The sum of the durations N1 and N2 of f ½n� and h½n� signals
is a high bound to the signal duration of g½n�. The z transform of g½n� may be written
in this case

GðzÞ ¼
Xþ1

n¼�1
g½n� z�n ¼

XN1 þN2

n¼0

g½n� z�n ¼
XN1 þN2

n¼0

z�n
Xn

m¼0

f ½m� h½n� m�: ð14:17Þ

The form of GðzÞ is that of a polynomial in z�1. The coefficients of the poly-
nomial are terms of the convolution product of f ½n� and h½n�. The first coefficients of
the polynomial are

f 0½ �h 0½ �; f 0½ �h 1½ � þ f 1½ �h 0½ �; f 0½ �h 2½ � þ f 1½ �h 1½ � þ f 2½ �h 0½ �; etc

The terms of the convolution product are obtained by the multiplication of the
two polynomials in z�1:

MATLAB uses this calculation method when calling the function conv(f, h).

14.4 Frequency Response of a LTI System

Consider the monochromatic input signal f ½n� ¼ ejxnT . The digital signal obtained
by sampling the analog signal f ðtÞ ¼ ejxt is recognized.

This signal has the form f ½n� ¼ zn, with z ¼ ejxT :
According to (14.14) we necessarily have

g½n� ¼ ejnxTHðejxTÞ: ð14:18Þ

�!e
jxnT

System ������!HðejxT ÞejxnT

It is noted that the output signal is also monochromatic. It has the same angular
frequency as the input signal. HðejxTÞ is the frequency response of the filter (also
known as complex gain). It is the system transfer function evaluated on the unit
circle.

HðejxTÞ ¼
Xþ1

n¼�1
h½n� e�jxnT : ð14:19Þ

The system frequency response is the Fourier transform (in the sense of oper-
ations on digital signals) of the impulse response.
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Important property The frequency response HðejxTÞ of a discrete filter is a
periodic function of ω, with period xe ¼ 2p

T . Indeed all the exponential e�jxnT

contained in the sum are periodic functions of ω. Their periods are sub-
multiples of xe. The period of the series sum is the greatest period, xe,
appearing in the sum.

14.5 Moving Average (MA) Filters

These are filters whose impulse response is time-limited. They are also referred as
finite impulse response (FIR) filters.

This impulse response is often written in the form h½n� ¼ Pn2
k¼n1 b½k� d½n� k�, or

h½n� ¼ Pn2
k¼n1 bk d½n� k�, with n1 and n2 both integers.

The general equation relating the input and output signals of these filters has the
form

g½n� ¼
Xn2

m¼n1

bmf ½n� m�: ð14:20Þ

To understand on an example the behavior of these filters, we return to the
system previously met

g½n� ¼ 1
3
f ½n� 1� þ f ½n� þ f ½nþ 1�½ �: ð14:21Þ

Calculating the impulse response h½n� (Fig. 14.1):

h½n� ¼ 1
3

d½n� 1� þ d½n� þ d½nþ 1�ð Þ: ð14:22Þ

It is observed on Fig. 14.1 that the impulse response of this filter is limited to 3
points. It is not causal, since it is not zero for n\0.

Fig. 14.1 Impulse response
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The transfer function of this filter function is given by

HðzÞ ¼ 1
3

z�1 þ z0 þ zþ 1
� � ¼ 1

3
z�1 z2 þ zþ 1

� � ¼ 1
3
z�1 z� z0ð Þ z� z�0

� �
: ð14:23Þ

A z polynomial has always roots in the complex set C. The number of roots is
necessarily equal to the degree of the polynomial. In the present case, the two roots
are complex conjugate because the polynomial coefficients are real.

Except for the z ¼ 0 pole (which could be eliminated by translating the impulse
response by one step to the right), the notable points are the zeros z0 and z�0: This
filter belongs to the moving average filters class (MA). These filters are also called
all-zero filters.

Calculation of HðzÞ zeros: The polynomial PðzÞ ¼ z2 þ zþ 1 has two roots

z0; z
�
0 ¼ � b� ffiffiffiffi

D
p

2
¼ � 1

2
� j

ffiffiffi
3

p

2
¼ e�j2p3

14.6 Geometric Interpretation of Gain Variation
with Frequency

Geometrically, the representative point M of the complex number z ¼ ejxT lies on
the circle of radius 1 (Fig. 14.2 a). Its position on the circle depends on the angular
frequency ω. The frequency response module is 1=3 times the product of the length

Fig. 14.2 a Representative point of a monochromatic signal; b segments controlling the gain
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of two segments joining the point M to the two points Z0 and Z 0
0 which correspond

to the polynomial zeros (Fig. 14.2 b). The frequency response is

HðejxTÞ ¼ 1
3
e�jxTðejxT � z0ÞðejxT � z�0Þ: ð14:24Þ

Its modulus is HðejxTÞ�� �� ¼ 1
3 ðejxT � z0Þ
�� �� ðejxT � z�0Þ

�� ��.

H ejxT
� ��� �� ¼ 1

3
ðejxT � z0Þ
�� �� ðejxT � z�0Þ

�� �� ¼ 1
3
MZ0 �MZ 0

0: ð14:25Þ

When the frequency varies, the point M scans the unit circle. When this point
approaches the point Z0 (when xT approaches 2p

3 ) the length of segment MZ0
decreases and becomes zero for M at point Z0 (for x0T ¼ 2p

3 , or x0 ¼ 2p
T

1
3 ¼ xe

3 ).
The gain will increase again when M scans the arc Z0 Z 0

0 and cancels again for M in
Z 0
0: Thus one qualitatively explains the shape of the gain module function of ω

shown in Fig. 14.3.
We could have directly calculated the frequency response HðejxTÞ as the FT of

the impulse response

HðejxTÞ ¼ 1
3

e�jxT þ 1þ ejxT
� � ¼ 1

3
1þ 2 cos xTð Þ: ð14:26Þ

Figure 14.3 shows that the filter gain is important at low frequencies. Although
the gain is a periodic function and finds maximum values at frequencies multiple of
2p
T , we still speak of a low-pass filter for the following reason. It is important to
understand that the neighborhoods of xn ¼ n 2p

T are also low frequency neighbor-
hoods. Indeed a monochromatic signal of the form ejnxT at these frequencies will
have the form ejn

2p
T T ¼ ej2pn ¼ 1 which is the epitome of a continuous signal.

In contrast, the frequency zone around x ¼ xN ¼ p
T is a high frequency area as

the monochromatic signal with the form ejnxT will have the form ejn
p
TT ¼ ejpn ¼

ð�1Þn for x ¼ xN ¼ p
T, which signal changes sign at each instant being an example

of a signal of high frequency.

H(e      )

T

π 2

3T

π
T

π 2π ω

jωT

−
T

Fig. 14.3 Gain magnitude

242 14 Discrete Systems—Moving Average Systems



In conclusion, since the frequency response is a periodic function, we may
restrict its analysis to a period, in the interval � p

T ;
p
T

� � ¼ � xe
2 ; xe

2

� �
, whose center

being the low-frequency area, the vicinity of the edges being the high frequency
area.

Example The above filter is not very selective. For a low-pass filter more selective,
you can add two zeros located in the high-frequency area.

For Z1;x1T ¼ 5
12 2p (this corresponds to a 150° angle of 150° of OM with the

horizontal axis). The second zero is chosen to be the complex conjugate of the
previous to ensure the impulse response to be real. For Z 0

1;x
0
1T ¼ � 5

12 2p.
HðzÞ will have the form

HðzÞ ¼ z� ej
2p
3

	 

z� e�j2p3

	 

z� ej2p

5
12

	 

z� e�j2p 5

12

	 

: ð14:27Þ

In polynomial form

HðzÞ ¼ ðz� z0Þðz� z�0Þðz� z1Þðz� z�1Þ
¼ ðz2 � zðz0 þ z�0Þþ 1Þðz2 � zðz1 þ z�1Þþ 1Þ; ð14:28Þ

HðzÞ ¼ ðz2 � 2z cos x0T þ 1Þðz2 � 2z cos x1T þ 1Þ; ð14:29Þ

x0 and x1 being the angular frequencies of the zeros z0 and z1 of the
polynomial.

Because cos ð150�Þ ¼ �0:866; we get

HðzÞ ¼ ðz2 þ zþ 1Þðz2 þ 1:732zþ 1Þ: ð14:30Þ

By developing (14.30)

HðzÞ ¼ z4 þ 2:732z3 þ 3:732z2 þ 2:732zþ 1: ð14:31Þ

If one wishes to impose a gain 1 at zero frequency ðz ¼ 1Þ; it should be nor-
malized by the factor

Hð1Þ ¼ 1þ 2:732þ 3:732þ 2:732þ 1 ¼ 11:196: ð14:32Þ

As shown in Fig. 14.4, the gain modulus that is given by the expression
HðejxTÞ�� �� ¼ MZ0 �MZ 0

0 �MZ1 �MZ 0
1 will be greater at lower frequencies (when the

point M is in the right half plane) than at high frequencies (when the point M is
located in the half plane to the left). The contrast passband stopband is more
important in this case than in the first example because of the greater number of
zeros in the left half plane.
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At Nyquist frequency: xNT ¼ p and z ¼ �1:

Hð�1Þ ¼ 1þ 2:732þ 3:732� 2:732þ 1 ¼ 0:268: ð14:33Þ

The attenuation at Nyquist frequency in decibels is 20 log10
0:268
11:196 ¼ �32:4 dB.

Impulse response of this filter

h n½ � ¼ d nþ 4½ � þ 2:732 d nþ 3½ � þ 3:732 d nþ 2½ � þ 2:732 d nþ 1½ � þ d n½ �: ð14:34Þ

This filter is anti-causal. His transfer function has only positive powers of z.
We could have made the impulse response to be even by multiplying HðzÞ by

z�2, which amounts to shifting the time signal two steps to the right

H0ðzÞ ¼ z�2ðz4 þ 2:732 z3. . .Þ ¼ z2 þ 2:732 zþ 3:732þ 2:732 z�1 þ z�2; ð14:35Þ

h0 n½ � ¼ d nþ 2½ � þ 2:732 d nþ 1½ � þ 3:732 d n½ � þ 2:732 d n� 1½ � þ d n� 2½ �:
ð14:36Þ

Therefore

g0 n½ � ¼ f n� 2½ � þ 2:732f n� 1½ � þ 3:732f n½ � þ 2:732f nþ 1½ � þ f nþ 2½ �: ð14:37Þ

14.7 Properties of Moving Average (MA) Filters,
also Called Finite Impulse Response (FIR)

Generally, a filter whose transfer function is a polynomial is called moving average
(MA) filter. This function has the general form

HðzÞ ¼
Xn¼n2

n¼n1

b n½ � z�n; n1 and n2 being two finite integers: ð14:38Þ

Fig. 14.4 Segments
controlling the gain
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Notable points of HðzÞ are zeros of the polynomial. This function has no poles
(except pole in z ¼ 0 that can be removed by a time lag). For this reason this type of
filter is also called all-zero filter.

The impulse response is limited to N ¼ n2 � n1 þ 1 points. We write

h½n� ¼
Xm¼n2

m¼n1

b½m� d n� m½ �: ð14:39Þ

This time limitation justifies the name of finite response filter (FIR) for this type
of filter.

The temporal limitation of the FIR brings benefits because the calculations are
shorter.

The numerical calculation of the output signal at any instant n, can be carried out
completely without the need to truncate the impulse response. In electronic circuits
DSP signal processors (Digital Signal Processor), one can find a wired calculation
circuit performing convolution and get the result in near-real time (with a time lag
often not prohibitive).

These filters also have the advantage of allowing the realization of linear phase
filters. In this case, the group and phase time delays are equal and do not depend
upon frequency.

The latter property allows preserving the shape of the signal after passing
through the filter.

In ultrasound echography for example, it brings an advantage for the discrimi-
nation of two close targets.

This type of filter has the major disadvantage of the slowness of the transition
passband to block-band. We will use auto regressive (AR) filters which will be
defined later if one wants to achieve a filter with a rapid transition from the fre-
quency response between the passband and the attenuated band.

Linear phase filter
Let use consider a FIR filter whose impulse response is even.

h n½ � ¼ . . .þ a2d nþ 2½ � þ a1d nþ 1½ � þ a0d n½ � þ a1d n� 1½ � þ a2d n� 2½ � þ . . .:

ð14:40Þ

The frequency response is

HðejxTÞ ¼ 2
a0
2

þ a1 cosxT þ a2 cos 2xT þ . . .
	 


: ð14:41Þ

The frequency response is real. The phase shift is always zero or π (this when the
frequency response is negative).

By delaying the impulse response, for example to produce a causal filter, the
phase shift is linear. Indeed if h0 n½ � ¼ h n� m½ �;H0ðejxTÞ ¼ e�jmxTHðejxTÞ.

The phase shift u ¼ �mxT varies linearly with ω.
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This operation is only possible with a finite impulse response filter. Causality
generally required to an IIR filter prohibits most often the parity of the impulse
response. In that case, the technique explained can be used in the following when a
zero phase shift filter is desired.

Performing a zero phase filtering
We show now that it is possible to realize easily a zero phase filter using two
consecutive filtering through the same filter and two time reversals. The supposedly
real signal of limited duration is noted f ½n�. The impulse response of the MA filter
used is noted h½n� and supposed to be real.

A first filtering of the signal f ½n� is performed in the filter. The output signal is
g½n� ¼ f ½n� � h½n�. This signal being the convolution of two real signals is real.

In the Fourier domain the following relation holds GðejxTÞ ¼ FðejxTÞHðejxTÞ.
Since g½n� is real, FT of this signal reversed in time g½�n� is

G�ðejxTÞ ¼ F�ðejxTÞH�ðejxTÞ.
We denote x½n� the result obtained by filtering g½�n� with the same filter

x½n� ¼ g½�n� � h½n�

In the Fourier domain we have the relationship

XðejxTÞ ¼ F�ðejxTÞH�ðejxTÞHðejxTÞ ¼ F�ðejxTÞ HðejxTÞ�� ��2:

If we time reverse x½n� and note y½n� ¼ x½�n�, we have in the Fourier domain

YðejxTÞ ¼ FðejxTÞ HðejxTÞ�� ��2: ð14:42Þ

The output signal phase after this double filtering is identical to that of the input

signal. The gain of the equivalent filter is HðejxTÞ�� ��2.
In MATLAB the filtfilt() function realizes this double filtering.
On this example, we can see the flexibility of numerical filtering operations on

an operation impossible to perform (or at least very difficult) in analog signal
processing.

14.8 Other Examples of All-Zero Filters (MA)

Low-Pass Filter: The moving average filter considered above, with impulse
response given by (14.22), causes only an attenuation of 9.54 dB to a signal with
the Nyquist frequency, relatively to continuous signal. At this frequency, a cosine

246 14 Discrete Systems—Moving Average Systems



signal changes sign at each value of n. (Quick change, so a high frequency character
of this type of signal).

You may prefer a smoothing of the form described now which completely
alleviates (obliterates) the Nyquist frequency component. The impulse response of
this filter is

h½n� ¼ 1
2
d½nþ 1� þ d½n� þ 1

2
d½n� 1�: ð14:43Þ

Its frequency response is

HðejxTÞ ¼ 1
2
ejxT þ 1þ 1

2
e�jxT ¼ 1þ cosxT : ð14:44Þ

The shape of the gain with frequency is given in Fig. 14.5
The transfer function is

HðzÞ ¼ z
2
þ 1þ z�1

2
¼ z�1

2
z2 þ 2zþ 1
� � ¼ z�1

2
ðzþ 1Þ2: ð14:45Þ

This function has a double root, in z ¼ �1, or z ¼ ejp (Fig. 14.6).
The zero of HðzÞ in z ¼ �1 makes it possible to completely attenuate the signal

at the Nyquist frequency. We see from this example that the filter design is built by
reasoning in terms of properties in the z plane. Since it was desired to eliminate the
Nyquist frequency at the filter crossing, a zero of HðzÞ was placed in z ¼ �1.

H(e     )

T

π−
T

π 2π ω

j Tω

−
T

Fig. 14.5 Gain magnitude

Fig. 14.6 Pole and zero
locations
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High-pass filter blocking the dc component
The following filter is often used to simulate deriving a digital signal as is done in
analog processing. A zero (unique) is placed in z ¼ 1 to obtain HðejxTÞx¼0 ¼ 0.
The transfer function is

HðzÞ ¼ z� 1: ð14:46Þ

A causal filter is preferred made by translating the impulse response by one time
step. This amounts to multiply the transfer function by z�1: HðzÞ ¼ 1� z�1.
(Hð1Þ ¼ 0 is verified).

The impulse response is

h½n� ¼ d½n� � d½n� 1�: ð14:47Þ

The temporal filter equation is

g½n� ¼ f ½n� � f ½n� 1�: ð14:48Þ

The frequency response is

HðejxTÞ ¼ 1� e�jxT : ð14:49Þ

We can rewrite this function in the following form

HðejxTÞ ¼ e�jx2Tðejx2T � e�jx2TÞ ¼ e�jx2T2j sin
xT
2

; ð14:50Þ

having a modulus: HðejxTÞ�� �� ¼ 2 sin xT
2

�� ��:
We would have found qualitatively the shape of the variation of gain with

frequency using geometric reasoning based on that HðejxTÞ�� �� ¼ 1� e�jxT
�� ��: This

module is equal to the segment AM length, which increases when M moves away
from the point A corresponding to zero frequency and reaches the maximum of 2
for x ¼ p

T (Fig. 14.7 a, b).

j TH(e      )

T
π−

T
π 2

T
π ω−

(a) (b) ω

Fig. 14.7 a Segment AM controlling the gain; b gain magnitude
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Low-frequency behavior: We are interested in the development of HðejxTÞ near
x ¼ 0 (For x 	 p

T).

HðejxTÞ ¼ 1� e�jxT ffi 1� ð1� jxTÞ ¼ jxT ð14:51Þ

The frequency response is proportional to jx. At low frequencies, this discrete
filter has the same frequency response as the analog derivative filter (within a
T constant factor).

Note: The frequency response of the analog derivative filter is given by
d
dt e

jxt ¼ jxejxt, giving HaðxÞ ¼ jx.

We note that the temporal filter equation g½n� ¼ 1
T f ½n� � f ½n� 1�ð Þ is a numer-

ical approximation of the analog derivative filter.
The simulation is not as good for the digital signals of high frequency as the

analog differentiator gain is π at Nyquist frequency when it is only 2 for the discrete
filter.

In the following, another simulation of the derivation will be presented. The
frequency response will be preserved, but at the cost of a less simple, and infinite
duration, impulse response, thus less able to convolution calculation with DSP
processors.

Summary
This chapter was the first treating discrete systems in this course. We have defined
the concept of digital filters by using the example of a moving average filter. We
have shown that for LTI systems, the function zn is an eigenfunction of the system
as was the exponential est for analog filters. The impulse response, the transfer
function, and the frequency response have been defined. The z-plane plays the role
played by Laplace s-plane for analog systems. We showed that the frequency
response of a digital filter is periodic in frequency and made a parallel with the
development in Fourier series studied in Chap. 3. We studied some examples of
moving average filters and showed how we can interpret geometrically the variation
of the frequency response function. The location of the zeros of the transfer function
was shown to condition the frequency response.

Exercises

I. A filter has a single zero z1 ¼ 1 and a second single zero z2 ¼ �1. Give the
expression of the transfer function of a filter having these zeros. Give its
impulse and frequency responses, using a geometric argument to explain the
variation of gain with frequency. Assuming a Fe ¼ 106 Hz sampling frequency,
what is the filter gain at frequency f ¼ 250 kHz?
Solution: We simply take HðzÞ ¼ ðz� 1Þðzþ 1Þ ¼ z2 � 1.
The impulse response is h½n� ¼ d½nþ 2� � d½n�.
The frequency response is: HðejxTÞ ¼ ej2xT � 1 ¼ ejxT ejxT � e�jxT

� � ¼
ejxT2j sinxT .
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We see on the figure in the z-plane that the gain modulus G ¼ MA MB is zero
for x ¼ 0 and xT ¼ p. It is maximum for xT ¼ p

2, then for f ¼ Fe
4 ¼ 250 kHz,

that is to say when the point M comes in P. The gain module is then
G ¼ PA PB ¼ 2.

We would have found the gain analytically by writing: G ¼ HðejxTÞ�� �� ¼
2 sinxTj j. This last function cancels in x ¼ 0 and x ¼ p

T, and reaches its
maximum for x ¼ p

2T.
II. A filter transfer function is HðzÞ ¼ z�8 þ 1. What are the properties of this

filter?
Solution: The zeros of the transfer function are the solutions of the equation
z�8 ¼ �1, or also z8 ¼ �1. Written in trigonometric form: q8ej8h ¼ ejðpþ 2kpÞ.
The solutions qke

jhk are such that qk ¼ 1 and hk ¼ p
8 þ k p

4(with ðk ¼ 0; 1; . . .7Þ:
The impulse response is h½n� ¼ d½n� þ d½n� 8�.

( )j TH e ω
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T
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The frequency response is: H ejxT
� � ¼ e�j8xT þ 1. The frequency gain looks as

follows:
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Chapter 15
Z-Transform

The z-transform plays for digital signals the role of the Laplace transform for analog
signals. The circumference of the zero centered circle of radius 1 in the z-plane
plays the role of the imaginary axis of frequencies in the Laplace plane. In this
chapter, after having defined the z-transform and the Fourier transform of a
numerical sequence, we specify the domain of convergence of the power series, that
is to say, the domain of definition of the z-transform. It is shown that the domain of
convergence of a causal sequence is the exterior of a disc centered at the origin with
radius R1 (conversely the interior for an anticausal sequence). In the case of a causal
sequence, the Fourier transform exists if R1\1. Using the properties of integration
on a closed contour and the residue theorem in the complex plane, we demonstrate
the inversion formula of the z-transform that allows the determination of the ele-
ments of a sequence provided one knows the z-transform. We show that the z-
transform of a product of two series is given by a convolution formula in the
frequency domain. Various properties of the z-transform are given in a table. Two
interesting exercises on the z-transform of a time reversed function are given at the
end of the chapter.

15.1 Definition

The z-transform of a sequence f ½n� is defined by the relation

F(z) ¼
Xþ1

n¼�1
f [n]z�n: ð15:1Þ

This transformation is referred to as two sided since the boundaries of the sum
extend to infinity on both sides.
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The Fourier transform of the digital signal is defined by

FðejxTÞ ¼
Xþ1

n¼�1
f ½n�e�jxnT : ð15:2Þ

It is the z-transform calculated for z ¼ ejxT which belongs to the unit circle.
The function FðzÞ appears as the sum of a power series in z. The values f ½n� act

as the sequence of coefficients. FðzÞ is a Laurent series.

F zð Þ ¼ . . .þ f �2½ �z2 þ f �1½ �z1 þ f 0½ � þ f 1½ �z�1 þ f 2½ �z�2 þ . . . ð15:3Þ

_______________
if the sequence f ½n� is anticausal
_______________
if the sequence f ½n� is causal
For a given sequence f ½n�, the convergence of the series, which implies the

existence of FðzÞ, will be ensured only if z belongs to certain domains of the
complex plane (for zj j “sufficiently large” and/or zj j “small enough”).

More specifically
The convergence domain of a Laurent series is the intersection D of two discs
centered at z ¼ 0 with radii R1 and R2; R1\ zj j\R2 (Fig. 15.1).

Possibly, for a given sequence f ½n�, one can have R1 ¼ 0 and R2 ¼ 1.
For example, for a causal sequence, we have

F zð Þ ¼ f 0½ � þ f 1½ �z�1 þ f 2½ �z�2 þ . . .: ð15:4Þ

It is clear that for zj j large enough, the series giving FðzÞ converges as long as
f ½n� does not increase with n faster that znj j. The domain of convergence D is the
outside of a disc with radius R1. This domain zj j[R1 is hatched in Fig. 15.2.

The distance from the origin z ¼ 0 of the singularity of FðzÞ the farthest from the
origin is the series convergence radius. It follows that the circle with radius R1 does
not belong to the convergence domain.

The causal function f ½n� will have a FT or not depending whether or not
R1\1. In other words, FT exists if the circle z ¼ 1 belongs to the convergence
domain.

Fig. 15.1 Convergence
domain D in the general case
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Example
The step function U½n� has a z-transform for zj j[ 1 but no Fourier transform.
Indeed its z-transform is

V zð Þ ¼
X1

n¼0

z�n: ð15:5Þ

VðzÞ is the sum of a geometric series with common ratio z�1 which converges if
zj j[ 1:

V zð Þ ¼
X1

n¼0

z�n ¼ 1
1� z�1 ¼

z
z� 1

if zj j[ 1: ð15:6Þ

However, since the value z ¼ 1 is a pole of VðzÞ, the convergence radius is
R1 ¼ 1.

Thus U½n� has no FT.
For an anticausal sequence, the z-transform has the form

F zð Þ ¼ . . .f �2½ �z2 þ f �1½ �z1: ð15:7Þ

This series converges for zj j\R2 if the function is not growing too fast when
n tends towards minus infinity. The area of convergence is the hatched disc in
Fig. 15.3.

An anticausal function f ½n� has a FT if R2 [ 1.

Fig. 15.2 Convergence
domain D of a causal
sequence

Fig. 15.3 Convergence
domain D of an anticausal
sequence

15.1 Definition 255



15.2 Inversion of z-Transform

The objective here is calculating f ½n� from its z-transform.
Beforehand, we prove the following result on integration of zn in the complex

plane on a circle centered at the origin:

Z
�
C

zndz ¼ 0 if n 6¼ �1
2pj if n ¼ �1

���� : ð15:8Þ

The trigonometric form of z is used for this z ¼ qejh: Then zn ¼ qnejnh:
On the integrating circle centered in z ¼ 0; we have dz ¼ qejhjdh (Fig. 15.4).

Z
� zndz ¼

Z2p

0

qnejnhqejhjdh ¼ jqnþ 1
Z2p

0

ejðnþ 1Þhdh:

If n 6¼ �1

I ¼ jqnþ 1 ej nþ 1ð Þh� �2p
0

j nþ 1ð Þ ¼ 0: ð15:9Þ

If n ¼ �1

I ¼ jq0
Z2p

0

e0dh ¼ j
Z2p

0

dh ¼ 2pj: ð15:10Þ

We can calculate the values of f ½n� from integrals including FðzÞ.
We now show by way of example how f ½1� is obtained by the integration of FðzÞ

on a closed contour located in its domain of definition D and surrounding the origin.

Fig. 15.4 Integration contour
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Assume that the conditions of term by term integration of the series are met

Z
�

C2D
FðzÞdz ¼ . . .

Z
�
C

f ½�1�zdzþ
Z
�
C

f ½0�z0dzþ
Z
�
C

f ½1�z�1dzþ . . . ð15:11Þ

By using the property demonstrated above, these integrals are zero except those
where the term z�1 appears. We have therefore

Z
�

C2D
FðzÞdz ¼ 2pj f 1½ �: ð15:12Þ

Likewise, after multiplication by z inside the integral

Z
�

C2D
zF zð Þdz ¼ . . .

Z
�
C

f �1½ �z2dzþ
Z
�
C

f 0½ �z1dzþ
Z
�
C

f 1½ �z0dzþ
Z
�
C

f 2½ �z�1dzþ . . .

¼ 2pj f 2½ �

These results may be extended to the general case. For any n we have

f n½ � ¼ 1
2pj

Z
�

C2D
zn�1F zð Þdz: ð15:13Þ

Important note
The integration circle, centered at the origin, is obviously taken in the domain of
definition of the function FðzÞ; otherwise the operation is meaningless.

In practice, the residue theorem can be used for integration of FðzÞ zn�1 using the
residues at its poles included in the integration contour

f n½ � ¼
X

i

Residuesi: ð15:14Þ

This development is valid when FðzÞ is a rational fraction of z. This is usually
the case in digital signal analysis.

We recall here the formula given in Appendix 1 which calculates a residue.
Let the function f ðzÞ having a pole of order n in z ¼ a;

Residuejin z¼a¼
1

ðn� 1Þ!
dn�1

dzn�1 ðz� aÞnf (z)½ �z¼a: ð15:15Þ

In particular, if the circle zj j ¼ 1 is located at the area of convergence, the
Fourier transform does exist and the inversion formula takes a particular form on
circle z ¼ 1:
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We note z ¼ ejxT ; dz ¼ ejxT jTdx:

f n½ � ¼ 1
2pj

Z
2p
T

0

ejðn�1ÞxTFðejxTÞjTejxTdx ¼ T
2p

Z
2p
T

0

FðejxTÞejnxTdx; ð15:16Þ

or

f n½ � ¼ 1
xe

Zxe

0

FðejxTÞ ejnxTdx: ð15:17Þ

One would have found this formula considering that FðejxTÞ is a periodic
function of ω with period xe ¼ 2p

T . The values of the function f ½n� appear to be the
coefficients of the Fourier series expansion of this periodic function.

15.3 z-Transform of the Product of Two Functions

Consider the function

y n½ � ¼ f n½ �g n½ �: ð15:18Þ

We look to express the z-transform of y½n� from those of f ½n� and g½n�:

Y zð Þ ¼
Xþ1

n¼�1
f n½ � g n½ �z�n:

In the sum, we express f ½n� from its z-transform FðzÞ. The definition domain of
FðzÞ is noted Df . Y (z) ¼ 1

2pj
R
�C2Df

z0�1Fðz0Þdz0 Pþ1
n¼�1 g½n�z�nz0n:

Y zð Þ ¼ 1
2pj

Z
�

C2Df

z0�1F z0ð Þdz0
Xþ1

n¼�1
g n½ � z

z0

� ��n

:

Noting D the intersection of definition domains of FðzÞ and GðzÞ;

Y zð Þ ¼ 1
2pj

Z
�

C2D
F z0ð ÞG z

z0

� �
z0�1dz0 ð15:19Þ
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15.4 Properties of the z-Transform

Some important properties are summarized in the following table. Readers are
invited to make their demonstrations as an exercise.

Table of z-transforms

Sequence Transform

d½n� 1

d½n� m� z�m

U½n� z
z�1 si zj j[ 1

KnU½n� z
z�K si zj j[ Kj j

f ½n� FðzÞ
Delay by m steps f ½n� m� z�mFðzÞ
Conjugate f �½n� F�ðz�Þ

ð�1Þnf ½n� Fð�zÞ
Time reversal

• infinite signal duration f ½�n� Fðz�1Þ
• finite N signal duration f ½�n� z�NFðz�1Þ
Convolution f ½n� � g½n� FðzÞGðzÞ
Multiplication by n nf ½n� �z dFðzÞdz
f ½n� is symmetric conjugate f ½n� ¼ f �½�n� FðzÞ ¼ F� 1

z�

� �

15.5 Applications

A filter can be designed by selecting a priori its transfer function or frequency
response. The impulse response of this filter is then obtained by the inversion
formula.

As an example, we present the study of the digital equivalent of the analog
derivative filter with conservation of the shape of the frequency response: The
frequency response of the analog derivative filter is HaðxÞ ¼ jx. In the interval
� xe

2 \x\ xe
2 the frequency response of the digital filter is selected to be

HðejxTÞ ¼ jxT . As HðejxTÞ is necessarily periodic with period xe ¼ 2p
T , the fre-

quency response over the entire frequency axis is obtained by repeating this pattern
with a period xe (Fig. 15.5). The response of the analog filter is multiplied by T for
obtaining a frequency response of the digital filter with the same dimension as the
time signal, as it should be.

15.4 Properties of the z-Transform 259



The impulse response is obtained by inverting the frequency response

h n½ � ¼ 1
xe

Z
xe
2

�xe
2

jxTejnxTdx ¼ jT
xe

Z
xe
2

�xe
2

xejnxTdx: ð15:20Þ

The integration is done by parts: We note

x ¼ u; du ¼ dx; ejnxTdx ¼ dv; v ¼ ejnxT

jnT
ðif n 6¼ 0Þ:

h n½ � ¼ jT
xe

xejnxT

jnT

	 
xe
2

�xe
2

�
Z
xe
2

�xe
2

ejnxT

jnT
dx

8
><

>:

9
>=

>;

¼ jT
xe

xe
2 ejn

xe
2 T þ xe

2 e�jnxe2 T

jnT
� ejnxT

�n2T2

	 
xe
2

�xe
2

( )

h n½ � ¼ 1
n
cos npþ jT

xen2T2 ejn
xe
2 T � e�jnxe2 T

� �
; h n½ � ¼ 1

n
cos npþ j

xen2T
2j sin

*
0

np

The second term of the right side is always zero when n 6¼ 0:
Finally h n½ � ¼ 1

n cos np if n 6¼ 0;
For n ¼ 0 the calculation is resumed at the beginning (Fig. 15.6):

h 0½ � ¼ jT
xe

Z
xe
2

�xe
2

xdx ¼ jT
xe

x2

2

	 
xe
2

�xe
2

¼ 0:

Fig. 15.5 Discrete
differentiator frequency
response
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In summary

h[n] ¼ ð�1Þn 1
n
when n 6¼ 0 and h[n] = 0 for n = 0. ð15:21Þ

We verify that h½n� is an odd function which gives a purely imaginary frequency
response. We find again the slow decay of h½n� as 1

n. This function can be considered
to consist of Fourier series expansion coefficients of a periodic function in fre-
quency having discontinuities (finite step in xe

2 in the first period).

Summary
This chapter provides the main properties of the z-transform: Convergence condi-
tions of the z-power series and definition domains of z-transform, existing condi-
tions of the FT. We demonstrated the z-transform and Fourier transform inversion
formulas and made the connection with the formula giving the coefficients of the
Fourier series encountered in Chap. 3. The main properties of the z-transform are
given. Two exercises on time reversal of functions whose results will be used in
following chapters are given at the end of the chapter.

Exercises

I. Calculate the z-transform of the signal f ½n� ¼ ð�1Þn for n� 0, and zero for
n\0, specifying its definition domain. (Answer: FðzÞ ¼ 1

1þ z�1 with zj j[ 1).
II. Denoting FðzÞ the z-transform of f ½n�, connect the z-transform and Fourier

transforms of g½n� ¼ ð�1Þnf ½n� and f ½n�:
[Answer: GðzÞ ¼ Fð�zÞ; G(ejxT ) ¼ Fð�ejxTÞ ¼ Fðej xT þ pð ÞÞ].

III. Let f ½n� the function defined on the support f0;Ng: Its time reverse is noted
h½n�:
Link the z-transforms of f ½n� and h½n� as well as their Fourier transforms.
Show that a zero z0 of the z-transform of f n½ � leads to a zero 1

z0
of its time

reversed z-transform.
Solution: F(z) ¼ PN

n¼0 f ½n� z�n; Hðz) ¼ PN
n¼0 f [N � n] z�n.

Fig. 15.6 Discrete
differentiator impulse
response
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By a change of variable p ¼ N � n, it comes

HðzÞ ¼
XN

p¼0

f ½p� z�Nþ p ¼ z�N
XN

p¼0

f [p] zp ¼ z�NF
1
z

� �
:

HðejxTÞ ¼ e�jNxTFðe�jxTÞ; HðejxTÞ ¼ e�jNxTF�ðejxTÞ if f ½n� is a real
function.

If FðzÞ ¼ ðz� z0Þ, then HðzÞ ¼ z�1 1
z � z0

� �
¼ �z0z�2 z� 1

z0

� �
:

IV. The function f ½n� is defined on the support f0;Ng. Let the function
g½n� ¼ ð�1Þn~f ½n�, where ~f ½n� is the time reversed of f ½n�. Link the z-trans-
forms of f ½n� and g½n� as well as their Fourier transforms.
Solution: GðzÞ ¼ PN

n¼0 ð�1Þnf ½N � n� z�n ¼ PN
p¼0 f ½p�ð�1ÞN�pz�N þ p ¼

z�Nð�1ÞNF � 1
z

� �
:

GðejxTÞ ¼ e�jNxTð�1ÞNF�ðejðxT þ pÞÞ:

V. Note FðzÞ the z-transform of f ½n�. What is the function of which
1
2 FðzÞþFð�zÞð Þ is the z-transform?
Answer: The function searched for is half the sum of the respective inverse z-
transforms. According to the result of exercise 2, it is:

1
2 f ½n� þ ð�1Þnf ½n�ð Þ ¼ f ½n� if n even

0 if n odd

���� :
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Chapter 16
Fourier Transform of Digital Signals

This chapter presents the main properties of the Fourier transformation of digital
signals. Having given the definition of the Fourier transform of a digital signal, we
explain the Poisson summation formula which is the essential formula for Fourier
analysis of periodic signals. Then, we demonstrate the Shannon theorem which sets
the conditions for which sampling takes place without loss of information. We then
show the Whittaker–Shannon theorem proving that an analog signal can be
reconstructed from its samples if the sampling was done respecting the Shannon
condition. We also demonstrate the Parseval energy theorem for sampled signals.
Since computer analysis is necessarily performed on finite-length signals, it is
interesting to look into the situation where initially infinite-length signals have their
support truncated by the multiplication by a finite duration window keeping only
the samples lying within a time interval, a rectangular window. After calculating the
Fourier transform of a digital rectangular window, we are interested in the FT of a
time-limited sine function. It is found that the abrupt truncation effected by the
rectangular window causes oscillations in the spectrum (manifestation of the Gibbs
phenomenon) which will spread in the spectral domain. We are led to consider
more gradual selecting windows which greatly reduce the oscillation amplitudes
(hence the name apodization window which they are given: from Latin, removing
the foot). We show an example of how the multiplication of a finite duration signal
with a Hanning window can be used to distinguish a small spectral component in a
spectrum dominated by a frequency component of great amplitude.

Basically, a computer is only able to calculate a spectrum for a finite number of
frequencies. By selecting these frequencies as uniformly distributed, it is possible to
reduce the inverse Fourier transform operation involving an integral to a discrete
summation. This comes at the price of a periodization in the time domain. For a
signal with finite time duration N, a periodization with a period greater than N allows
an exact recovery of the original time signal without superimposition. This operation
wherein the direct and inverse Fourier transforms are discrete is called discrete
Fourier transform. Cooley and Tukey have shown that by choosing the number of
points of this transform to be a power of 2, it is possible to perform the calculation

© Springer International Publishing Switzerland 2016
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much faster by dichotomy. This calculation algorithm is known as the Fast Fourier
Transform (FFT). It has revolutionized signal analysis techniques and allows using
signal processor hardware specifically designated to perform spectrum calculations
in near real time. We explain its principle in this chapter. The chapter ends with the
presentation of the interpolation of a signal by adding zeros in the conjugate domain;
it is followed by showing artifacts of Fourier analysis with a computer.

The Fourier transform FðejxTÞ of a numerical signal f n½ � resulting from the
sampling of an analog signal at the frequency fe ¼ 1

T is defined by

FðejxTÞ ¼
Xþ1

n¼�1
f n½ �e�jxnT : ð16:1Þ

For this transform may exist, the series must converge. It is necessary that the
function f n½ � decreases sufficiently rapidly at infinity. The function FðejxTÞ is
periodic with period xe ¼ 2pfe ¼ 2p

T . The function f n½ � is found back by the
inversion formula demonstrated in Chap. 15:

f n½ � ¼ 1
xe

Zxe

0

F ejxT
� �

ejnxTdx: ð16:2Þ

Shannon’s theorem expresses the relationship between the Fourier transform of a
function f n½ � obtained by digitizing an analog function f ðtÞ and the Fourier trans-
form of this analog function. This relationship is based on the Poisson summation
formula reviewed in the following section.

16.1 Poisson’s Summation Formula

We want to evaluate the following sum:

Y ejXT
� � ¼ Xþ1

n¼�1
enjXT : ð16:3Þ

It is a Fourier series of the variable X. The function thus developed must be
periodic in X of period 2p

T ¼ xe. The Fourier coefficients are all equal to 1. The
integrals must all give 1 for every n:

1
xe

Zxe2
�xe

2

Y ejXT
� �

e�jnXTdX ¼ 1 8n: ð16:4Þ
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Intuitively, we understand that the function Y ejXT
� �

must have a very particular
form, since the result of the integration of its multiplication by functions e�jnXT with
oscillations varying with n has always the same result. We conclude that this
function cannot be defined other than in X ¼ 0. It follows that we necessarily have
YðejXTÞ ¼ xedðXÞ in the interval � xe

2 ; xe
2

� �
. It is a Dirac distribution localized in

X ¼ 0.
YðejXTÞ being a periodic function with period xe, and as the Dirac distributions

do not overlap, we have on the entire frequency axis

YðejXTÞ ¼ xe

Xþ1

l¼�1
dðX� lxeÞ: ð16:5Þ

Then we get the Poisson summation formula:

Xþ1

n¼�1
ejnXT ¼ xe

Xþ1

l¼�1
dðX� lxeÞ with xe ¼ 2p

T
: ð16:6Þ

This formula is fundamental to the study of periodic signals and sampled signals.

16.2 Shannon Aliasing Theorem

Let f ðtÞ be a function of the continuous-time (analog signal). Its Fourier transform
is given by

FaðxÞ ¼
Zþ1

�1
f ðtÞ e�jxtdt: ð16:7Þ

We sample f ðtÞ to create the sequence f n½ �: f n½ � ¼ f ðnTÞ.
The Fourier transform of the numerical signal is defined as

F ejxT
� � ¼ Xþ1

n¼�1
f n½ �e�jxnT : ð16:8Þ

The Fourier transform of the analog function f ðtÞ is noted as FaðxÞ. The sam-
pled values of f ðtÞ can be calculated by the inverse Fourier transform of the
function FaðxÞ:

f ½n� ¼ f ðnTÞ ¼ 1
2p

Zþ1

�1
Faðx0Þejx0nTdx0: ð16:9Þ
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By replacing these expressions of f n½ � from integrals in the discrete sum, the
numerical Fourier transform can be rewritten as

F ejxT
� � ¼ 1

2p

Xþ1

n¼�1

Zþ1

�1
Faðx0Þejx0nTe�jxnTdx0: ð16:10Þ

By swapping the order of summations, we have

F ejxT
� � ¼ 1

2p

Zþ1

�1
Faðx0Þdx0 Xþ1

n¼�1
ejðx

0�xÞnT : ð16:11Þ

After applying the Poisson summation formula:

F ejxT
� � ¼ xe

2p

Zþ1

�1
Faðx0Þdx0 Xþ1

l¼�1
d x0 � x� lxeð Þ: ð16:12Þ

We integrate over x0 and get

F ejxT
� � ¼ 1

T

Xþ1

l¼�1
Faðxþ lxeÞ: ð16:13Þ

It appears that F ejxT
� �

is the sum of the analog Fourier transform and all its
translations by a multiple of the sampling angular frequency xe. This is the formula
that describes the folding of spectra.

We note the general property that the sampling of a function in a domain (here
the time domain) is accompanied by a periodization in the conjugate domain (in this
case, the Fourier domain).

2 Cases Are Possible

(a) The support of Fa xð Þ is greater than xe. There will be overlap. In the case of
Fig. 16.1, the support of Fa xð Þ is limited to the interval �r; rf g and the
inequality xe\2r holds.
The information on Fa xð Þ is lost in the summation.

(b) If the support of Fa xð Þ is limited to interval �r; rf g and xe [ 2r, translated
spectra do not overlap as shown in Fig. 16.2.

In this case of nonoverlapping, the information on Fa xð Þ is not degraded by the
summation. Between � xe

2 and xe
2 , the numerical signal spectrum is identical (within

the factor T) to the analog spectrum.
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Shannon Condition
Thus, if the function FaðxÞ has a bounded support to 2r and the sampling fre-
quency is such that xe � 2r the folding will not result in the superimposition of the
motif FaðxÞ and its translated.

In this case F ejxT
� �

and FaðxÞ will be identical in the first period of the Fourier
transform of the numerical function.

This condition called Shannon condition requires that for a correct sampling of
a signal (that is to say, so that the spectrum of the numerical signal represents
exactly the one of the analog signal), it is necessary that the sampling frequency is
greater than twice the maximum frequency present in the spectrum.

16.3 Sampling Theorem of Shannon–Whittaker

Let f tð Þ be a continuous time function with Fourier transform Fa xð Þ

f tð Þ �!Fourier
Fa xð Þ ¼

Zþ1

�1
f tð Þ e�jxtdt ð16:14Þ

We seek a relationship between f tð Þ and its sampled values f nTð Þ used to define
F ejxT
� �

. If the function Fa xð Þ has a bound and that the Shannon condition xe [ 2r
is met holds, we can write

f tð Þ ¼ 1
2p

Zþ1

�1
FaðxÞejxtdx ¼ 1

2p

Zr
�r

FaðxÞejxtdx ¼ 1
2p

Zxe2
�xe

2

FaðxÞejxtdx;

( )aF ω

2
eω−

2
eω eω

ω

σ− σ ω

)TF(e j   T
Fig. 16.1 Case of aliased
spectra overlapping

aF

σ−
2
eω−

2
eωσ eω ω

ω )TF(e j   T( )ωFig. 16.2 Nonoverlapping
when Nyquist criterion is
verified
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or using equality between FaðxÞ and TF ejxT
� �

valid in the interval � xe
2 ; xe

2

� �
and

given by (16.13):

f ðtÞ ¼ T
2p

Zxe2
�xe

2

F ejxT
� �

ejxtdx: ð16:15Þ

Remember that F ejxT
� � ¼Pþ1

n¼�1 f nTð Þe�jnxT . Copying this expression in
(16.15), we write

f ðtÞ ¼ 1
xe

Xþ1

n¼�1
f ðnTÞ

Zxe2
�xe

2

ejx t�nTð Þdx: ð16:16Þ

The integration on x gives

Zxe2
�xe

2

ejx t�nTð Þdx ¼ ej
xe
2 t�nTð Þ � e�jxe2 t�nTð Þ

j t � nTð Þ ¼ 2 sin xe
2 t � nTð Þ� �
t � nT

: ð16:17Þ

We multiply both terms of the fraction by xe
2

f ðtÞ ¼ 1
xe

xe

2
2
Xþ1

n¼�1
f ðnTÞ sin

xe
2 ðt � nTÞ

xe
2 ðt � nTÞ ; ð16:18Þ

f ðtÞ ¼
Xþ1

n¼�1
f ðnTÞ sin c

xe

2
ðt � nTÞ

� �
: ð16:19Þ

This results known as Shannon–Whittaker sampling theorem states that from
samples f nTð Þ taken at times nT , one can find back the value of function f tð Þ for all t.

The information is not lost in the sampling operation. The cardinal sine functions
act as interpolation functions.

It is interesting to analyze an example of the recovery of the function f tð Þ from
its samples f nT½ �. In this example, assume that the Shannon condition is met and
that the values of f nTð Þ are nonzero only between t ¼ �T and t ¼ 7T :

f nTð Þ ¼ 0.8; 1; 1.2; 1.6; 1.9; 2.2; 1.5; 0.7. For n ¼ �1; 0; 1. . .; 6 (Fig. 16.3).
Note that each sin c has its zeros for time values equal to nT . The sum signal

f ðtÞ, in bold in Fig. 16.3, passes by all the sampled values f nT½ �. The residual
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oscillation that appears on f ðtÞ in this simulation is a manifestation of the Gibbs
phenomenon: a limited frequency band signal often exhibits oscillations localized
near the areas of rapid variation of the time signal.

16.4 Application of Poisson’s Summation Formula:
Fourier Transform of a Sine

Let f n½ � ¼ sinðnxoTÞ. Its Fourier transform is written as

F ejxT
� � ¼ Xþ1

n¼�1
sinðnxoTÞe�jnxT ¼ 1

2j

Xþ1

n¼�1
ejnxoT � e�jnxoT
� �

e�jnxT : ð16:20Þ

F ejxT
� �

consists of two sums of exponential products which are calculated using
the Poisson’s summation formula:

Xþ1

n¼�1
ejn xo�xð ÞT ¼ xe

Xþ1

n¼�1
d x� xo � nxeð Þ: ð16:21Þ

Therefore,

F ejxT
� � ¼ � jxe

2

Xþ1

n¼�1
d x� xo � nxeð Þ � d xþxo � nxeð Þ

 !
: ð16:22Þ

Fig. 16.3 Reconstruction of a function from its samples
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The spectrum of a digitized sine is thus constituted by two Dirac combs of period
xe. (See Fig. 16.4).

The analysis of numerical signals is done in practice necessarily upon
time-limited signals. Although we can theoretically calculate the Fourier transform
of the sine function over the whole axis, arrays in computer calculation have
necessarily finite length. Accordingly, numerical computation is only able to pro-
vide the Fourier transform of the sine function limited to a finite time interval.

16.5 Fourier Transform of a Product of Functions of Time

The multiplication of two signals in the time domain corresponds to their convo-
lution in the frequency domain.

Note y½n�, the product of functions f ½n� and w½n�:

y½n� ¼ f ½n�w½n�: ð16:23Þ

Xþ1

n¼�1
f n½ �w n½ �e�jnxT ¼

Xþ1

n¼�1
f n½ � 1

xe

Zxe

0

W ejx
0T

� �
ejx

0nTe�jnxTdx0: ð16:24Þ

By swapping the orders of the integral and of summation:

Xþ1

n¼�1
f ½n�w½n�e�jnxT ¼ 1

xe

Zxe

0

W ejx
0T

� �
dx0 Xþ1

n¼�1
f ½n�e�jðx�x0ÞnT : ð16:25Þ

Finally,

Y ejxT
� � ¼ 1

xe

Zxe

0

W ejx
0T

� �
F ej x�x0ð ÞT
� �

dx0: ð16:26Þ

Fig. 16.4 Two Dirac combs
in the FT of a sine function
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This is a “convolution integral” in the frequency domain specific to the case of
numerical signals.

We note that the Fourier transform of a product of two numerical signals is
obtained from the “circular convolution” Fourier transforms of the two functions.
The integration takes place over a period in the Fourier domain.

16.6 Parseval’s Theorem

The energy E of a numerical signal is defined by

E ¼
Xþ1

n¼�1
f ½n�2�� ��: ð16:27Þ

Parseval theorem states that energy can also be calculated in the frequency
domain. To demonstrate this, we treat the general case of a complex signal f ½n�. To
use the result of the preceding paragraph, we write

y½n� ¼ f ½n�f �½n�: ð16:28Þ

Its Fourier transform is

Xþ1

n¼�1
y½n�e�jnxT ¼

Xþ1

n¼�1
f ½n�f �½n�e�jnxT ¼ 1

xe

Zxe

0

F ejx
0T

� �
F� ej x�x0ð ÞT
� �

dx0:

ð16:29Þ

Taking x ¼ 0 in the above relation, we get

E ¼
Xþ1

n¼�1
f ½n�f �½n� ¼ 1

xe

Zxe

0

Fðejx0TÞF� e�jx0T
� �

dx0 ¼ 1
xe

Zxe

0

F ejx
0T

� ���� ���2dx0:

ð16:30Þ

The latter relationship is the expression of the Parseval theorem for numerical
signals:

Xþ1

n¼�1
f ½n�j j2 ¼ 1

xe

Zxe

0

F ejxT
� ��� ��2dx: ð16:31Þ

If the signal f n½ � is real, Parseval theorem takes the form
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Xþ1

n¼�1
f 2½n� ¼ 1

xe

Zxe

0

F ejxT
� ��� ��2dx: ð16:32Þ

16.7 Fourier Transform of a Rectangular Window

Let the function wr n½ � be equal to 1 between 0 and N � 1 and zero elsewhere. Its
Fourier transform is written as

Wr ejxT
� � ¼XN�1

n¼0

e�jxnT ¼ 1� e�jxNT

1� e�jxT ¼ e�jxNT
2

e�jxT2

sinN xT
2

sin xT
2

: ð16:33Þ

At zero frequency Wrðx ¼ 0Þ ¼ N. The first part of Wr ejxT
� �

is a phase term

with modulus 1. In mathematics, the function sinNxT
2

sinxT2
is called a Dirichlet function. In

optics, it is called the grating function, because it is related to the amplitude of the
diffracted wave by an optical grating. The maximum of the function is in x ¼ 0,
where the resolution of the indeterminate form gives the value N. The zeros of the
Dirichlet function occur for frequencies such that sinN xT

2 ¼ 0, thus for N xkT
2 ¼ kp

with k integer, giving xk ¼ k xe
N . There will be N zeros in the interval 0;xef g.

This function is represented in linear scale on the left and in decibels on right in
Fig. 16.5 in the case N ¼ 21. It is verified that, except for the first peak, the zeros of
the function are regularly distributed.

Fig. 16.5 Dirichlet function; a In linear scale; b In decibels
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We now evaluate the amplitude the first secondary maximum when N is great.
The oscillation of the sine in numerator is fast and thus the first zeros of the
numerator are obtained for small values of the factor xT

2 . So under these conditions
we can use the following approximation sin xT

2 ffi xT
2 in the denominator. The first

secondary maximum is obtained for sinN x1T
2 ¼ �1, that is to say for N x1T

2 ¼ 3p
2 .

So

Wr ejx1T
� ��� �� ffi 2

xT
¼ 2N

3p
: ð16:34Þ

The relative amplitude of the first secondary maximum is Wrj j1stlobe
Wrj jmaxi

¼ 2
3p.

Expressed in 20 log10
2
3p ¼ �13:46 dB, as seen on Fig. 16.5b. This lobe has a

significant relative importance.
The Dirichlet function plays for numerical signals a role similar to the sin c

function for analog signals. As seen in Fig. 16.6, the height of the peaks of
oscillations of the function slowly decreases with frequency. It is still about −60 dB
at the Nyquist frequency in the case N ¼ 1000.

16.8 Fourier Transform of a Sine Function Limited
in Time

We want to calculate the Fourier transform of a sine limited in time. This limitation
problem occurs generally when attempting to calculate numerically a Fourier
transform, the signals then having of necessity a finite duration. Assume the signal
length limited to N points.

Fig. 16.6 FT of a rectangular
window for N = 1000
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Let us calculate

Y ejxT
� � ¼XN�1

n¼0

sin nxoTð Þe�jnxT : ð16:35Þ

To bring out a Fourier transform which requires a summation from minus
infinity to plus infinity on summation index n, we multiply sin nxoTð Þ by the

rectangular window wr½n� equal to 1 from 0 to N � 1
0 elsewhere

���� . This allows extending the

bounds of the summation to infinity. Y ejxT
� �

remains unchanged:

Y ejxT
� � ¼ Xþ1

n¼�1
wr½n�sin nxoTð Þe�jnxT : ð16:36Þ

It appears the Fourier transform of a simple product whose result is the con-
volution of the Fourier transforms of these functions. As shown above, the Fourier
transform of the rectangular window is

Wr ejxT
� � ¼ e�j N þ 1ð ÞxT2 sinN

xT
2

sin xT
2

: ð16:37Þ

In computing the Y ejxT
� �

, the Fourier transform of the sine being a Dirac comb,
one will have to calculate convolution integrals of the form

I ¼ 1
xe

xe

Zxe

o

d xo � x0ð Þe�j Nþ 1ð Þ x�x0ð ÞT2 sin
N x�x0ð ÞT

2

sin x�x0ð ÞT
2

dx0: ð16:38Þ

I ¼ e�j Nþ 1ð Þ x�xoð ÞT2 sin
N x�xoð ÞT

2

sin x�xoð ÞT
2

:

The zeros of this function noted xl are given by

N
xl � xo

2

� �
T ¼ lp:

So

xl � xoð Þ ¼ 2p
T

l
N
; or : xl ¼ xo þ 2p

T
l
N
: ð16:39Þ

Thus, in the Fourier transform of a sine limited in time, the Dirichlet functions

274 16 Fourier Transform of Digital Signals



sin N x�nxe�x0ð ÞT
2

sin x�nxe�xoð ÞT
2

ð16:40Þ

replace the Dirac distributions which appear in the FT of a continuous time sine.
These functions are decreasing slowly as x moves away from an angular frequency
nxe � x0. (See Fig. 16.7).

This results in a spreading on the whole frequency axis of the Fourier transform
of this truncated sine. This is particularly troublesome when attempting to identify
small spectral components in a spectrum.

It is for this reason that a time-limited signal is often multiplied by a time
window of a different shape whose Fourier transform spreading extends over a
smaller interval of frequency. These windows are called apodization windows.

16.9 Apodization Windows

The general property of these windows is that the more the function is regular in the
time domain (continuity of the function and its first derivatives at the edges of the
window), the less the frequency spreading will be high.

For example, the Hann window which in its analog form is a continuous function
and whose derivative is continuous, has a frequency spectrum more compact than
that of the rectangular window having a discontinuity at its boundaries.

Hamming windows:

wH½n� ¼ aþð1� aÞ cos 2pn
N

; ð16:41Þ

where � N�1
2

� �� n� N�1
2 and 0\a\1.

A special case of this window is the von Hann window (Hanning window) when
a ¼ 0:5.

The advantage thereof is that the window function is connected continuously
with zero values outside the central range.

The main lobe of the Fourier transform of this window is twice wider than that of
the rectangular window, but the first side lobe has a much smaller amplitude
(−31.4 dB instead of −13.6 dB).

Fig. 16.7 Discrete FT of a
sine at frequency x0
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One can wonder about the interest of a Hamming window in case a 6¼ 0:5.
Indeed, in this case, the function is discontinuous at its edges, resulting in frequency
spreading. The lobes of the Fourier transform in this window are less regular. One
can take advantage of this irregularity, by a proper choice of a value, to lower the
amplitude of a lobe to permit detection of a small signal at the frequency of the
lobe.

Figure 16.8 shows on the same scale the moduli of the FT of a Hanning window
(Fig. 16.8a) and a rectangular window (Fig. 16.8b) in the case N ¼ 21.

Note the relatively rapid decay of the oscillations of the Hanning window. This
rapid decrease is accompanied by an expansion by a factor of 2 of the main peak.
The Hanning window is an example of the apodization windows which aims to
reduce the amplitude of the oscillations peaks around the main peak.

Tukey window:
This window is also called edge cosine window. Its temporal form is a constant

central plateau connected by half cosine cycles to zero at both ends. The decay of
the oscillations in the Fourier domain is less rapid than that of the Hanning window
but the signal energy is larger, which may be advantageous in the analysis of signals
in the presence of random noise.

Blackman window:
w n½ � ¼ a0 � a1 cos 2pn

N�1

� �þ a2 cos 4pn
N�1

� �
with a0 ¼ 1�a

2 ; a1 ¼ 1
2; a2 ¼ a

2.
Typically for this window, a ¼ 0:16.
Kaiser window:
This window is considered excellent. The amplitude of the oscillation in fre-

quency decreases more rapidly than the oscillation of the Hanning window.

Fig. 16.8 FT transforms of two windows; a Hanning; b Rectangular
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wK ½n� ¼
I0 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2n

ðN�1Þ
h i2r !

I0ðbÞ : ð16:42Þ

I0 is the modified Bessel function of zero order. b is a parameter varying in
practice between 2 and 30. The greater is this parameter, the greater selection is
effective. This window can give a −60 dB second lobe.

Practical calculation:

I0ðxÞ ¼ 1þ
X1
k¼1

x=2ð Þk
k!

" #2
: ð16:43Þ

The summation can be limited to the first 5 terms for x ¼ 0:5 and to 25 for
x ¼ 19:0.

In Matlab, the kaiser() function provides the numerical values of this
window.

The rectangular window is the best for detecting a signal in noise. The width of
the central lobe of the Fourier transform of the Blackman window is 1.9 that of
Hanning 1.28.

The first Blackman secondary lobe is 7.4 dB below that of the Hanning window.
Energy ratios:

10 log10
Hanning energy
Blackman energy


 �
¼ 0:9 dB;

Hanning energy
Rectangular energy


 �
¼ 0:375 ) �4:26 dB:

The following example illustrates the advantage of multiplying a signal by an
apodization window. It is assumed that the signal f ½n� is limited to N ¼ 2048 points
and is composed by the sum of two sines with frequencies f0 and f1. We assume that
the amplitude of the sine with frequency f1 is relatively much lower (10−5) than the
first.

f n½ � ¼ sin 2pf0nTð Þþ e sin 2pf1nTð Þ with e ¼ 10�5, f0 ¼ fe=50, and f1 ¼ 3:5f0.
It is impossible to detect the presence of the small signal on the time display of

the signal (Fig. 16.9a). Its Fourier transform is shown in Fig. 16.9b. The oscilla-
tions of the Fourier transform are not apparent because the number of points N of
the FFT is the same as the length of the signal (this fact will be discussed in the
following section on FFT). This frequency curve does not detect the presence of
small signal, due to the spreading of the spectrum of the main sinus. This spreading
is caused by the rectangular window effect due to the intrinsic limitation of the
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signal length to 2048 points. This spreading completely invades the small sine
spectrum area.

The result of the multiplication of the signal f ½n� by a Hanning window is shown
below on the left. Its spectrum in decibels on his right shows clearly the component
at frequency f1. We further note the relative height of −100 dB between the peaks
that can be evaluated in Fig. 16.10 corresponding to e ¼ 10�5.

Fig. 16.9 Analysis of the sum of two sine functions (rectangular window); a In time domain; b In
Fourier domain

Fig. 16.10 Analysis of the sum of two sine functions (Hanning window); a In time domain; b In
Fourier domain
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In summary, brutal truncation of the signal caused to the edges of the rectangular
window has resulted in the frequency spreading. The gradual shift toward zero
provided by the multiplication by the apodization window reduces spreading and
allows detection of the presence of a small harmonic component and measurement
of its amplitude. We see here again the interest of the logarithmic representation
(dB) for the detection of small harmonic components.

16.10 Discrete Fourier Transform (DFT)

The Fourier transform of the numerical signal f n½ � is given by

F ejxT
� � ¼ Xn¼þ1

n¼�1
f ½n�e�jnxT : ð16:44Þ

The inversion formula giving f ½n� is an integral over a period of the Fourier
transform:

f ½n� ¼ 1
xe

Zxe

0

F ejxT
� �

ejnxTdx: ð16:45Þ

We place ourselves in the context of a numerical calculation of the integral
where a discrete sum is used as an approximation of the integral. The result of this
sum is only an approximation of f ½n� and is denoted differently, fp½n�.

fp½n� ¼ 1
xe

XN�1

k¼0

F ejxkT
� �

ejnxkTDx: ð16:46Þ

The interval 0;xef g has been divided into N intervals with width Dx ¼ xe
N . The

samples of the function F ejxT
� �

at N points were noted F ejxkT
� �

, with angular
frequencies

xk ¼ k
xe

N
and k ¼ 0; 1; 2; . . .;N � 1: ð16:47Þ

We also note F k½ � these samples that are naturally given by:

F½k� ¼ F ejxkT
� � ¼ Xþ1

n¼�1
f ½n�e�jnxkT with xk ¼ k

xe

N
: ð16:48Þ
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It becomes

ejnxkT ¼ ejnk
xe
N T ¼ ej2p

nk
N since xeT ¼ 2p:

Therefore,

fp½n� ¼ 1
N

XN�1

k¼0

F½k�ej2pnkN : ð16:49Þ

It is to be noted that because the exponential are periodic functions, fp½n� is also a
periodic function of n, with period N while f ½n� was not a priori. This explains the
subscript p used to note that function.

Now we establish the relationship between fp½n� and f ½n�.
We replace F½k� ¼ F ejxkT

� � ¼ Pþ1

n¼�1
f n0½ �e�j2pn

0k
N in the expression giving fp½n�.

It comes after swapping the order of summation:

fp½n� ¼ 1
N

Xþ1

n0¼�1
f n0½ �

XN�1

k¼0

e�j2p
n0�nð Þk
N : ð16:50Þ

It is recognized in the sum on k the sum of a geometric series.

S ¼
XN�1

k¼0

e�j2pkN n�n0ð Þ ¼ 1� e�j2p n�n0ð Þ

1� e�j2pN n�n0ð Þ : ð16:51Þ

The numerator of this fraction is always zero since n and n0 are integers.
The sum S will be zero unless the denominator is zero too. This is the case when

n� n0ð Þ ¼ lN.
In this case the sum is reassessed S ¼PN�1

k¼0 1 ¼ N.
It becomes then

fp½n� ¼
Xþ1

l¼�1
f nþ lN½ �: ð16:52Þ

We see that fp½n� is the sum of f ½n� and of all its translated by quantities lN. There
is a temporal aliasing of function f ½n�. fp½n� is a periodic function of period
N. Sampling of the Fourier transform results in the time domain in a periodization
of the signal and aliasing.
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16.10.1 Important Special Case: The DFT of a Bounded
Support Function

In the case where f ½n� is a function with support superiorly bounded to N points,
there will be identity between f ½n� and fp½n� on the support of f ½n�. In this case, we
can write a pair of transforms:

F k½ � ¼ PN�1

n¼0
f n½ � e�j2pnkN ð16:53Þ

f ½n� ¼ 1
N

PN�1

k¼0
F½k�ej2pnkN : ð16:54Þ

These two relationships define the Discrete Fourier Transform (DFT).
It is this transform which is numerically calculated by the Fast Fourier

Transform algorithm (FFT) originally developed by Cooley and Tukey. In practice,
the range of variation of the index k in the frequency domain is 0;N � 1f g
matching the frequency interval 0; N � 1ð Þ xe

N

� �
.

16.11 Fast Fourier Transform Algorithm (FFT)

FFT algorithms have allowed gaining a major factor in the calculation times of the
discrete Fourier transform (a factor of 100 for signals with thousand points). This
time saving made possible the real-time spectral analysis of signals. This contri-
bution was decisive in the signal analysis by computer.

This very famous algorithm was proposed by Cooley and Tukey (1965). It is
based on successive subdivisions of data to be analyzed in packages of two by
decimation. It assumes that the number N of data is a power of 2: N ¼ 2M .

We now show how this time saving is possible in the calculation of the formula
(16.53).

It is therefore assumed in the following that N is even. We set

WN ¼ e�j2pN : ð16:55Þ

Equation (16.53) is

F½k� ¼
XN�1

n¼0

f ½n�Wnk
N : ð16:56Þ

We verify from (16.55) that
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W nþmNð Þ kþ lNð Þ
N ¼ Wnk

N for all m; l integers: ð16:57Þ

It is noted that the factor Wnk
N is periodic in k with period N, leading to a periodic

F½k� with the same period. So we need to just evaluate F½k� in N points.
To estimate the gain in computing time provided by the FFT, we will assess the

number of operations required to calculate the function F½k�. For each of the
N values of k, if one uses the formula (16.56), N2 complex multiplication of the
function values f ½n� should be performed with the factorsWnk

N . We will calculate N2

values of Wnk
N if we take N time as well as frequency points. For N ¼ 1000, we

must know 106 the values of Wnk
N which is considerable. The computing of a term is

important Wnk
N because it is constituted by calculations of sine and cosine values

that are relatively long. While these values can be set in advance in a table, one
should always perform N2 complex multiplications followed by N summations.
When N is large, we can estimate to about N2 the number of required operations.

Now we examine the principle of the Cooley Tukey FFT who managed to avoid
N2 operations to bring their total to approximately N log2 N. The algorithm pro-
ceeds by a decimation in the time domain. To expose its principle, we choose an
even number N of points. The sum (16.56) is separated into a sum of two terms
discriminating values of the function of even and odd ranks:

F½k� ¼
XN=2�1

n¼0

f ½2n�W2nk
N þ

XN=2�1

n¼0

f ½2nþ 1�W 2nþ 1ð Þk
N : ð16:58Þ

Note that

W2
N ¼ e�j2p�2N ¼ e�j 2pN=2 ¼ WN=2: ð16:59Þ

Noting f1 n½ � ¼ f 2n½ � and f2 n½ � ¼ f 2nþ 1½ �, we can write

F½k� ¼
XN=2�1

n¼0

f1½n�Wnk
N=2 þWk

N

XN=2�1

n¼0

f2½n�Wnk
N=2; ð16:60Þ

or

F½k� ¼ F1½k� þWk
NF2½k�; ð16:61Þ

where F1½k� and F2½k� appear as DFT calculated in N=2 points.
As we now show, the advantage of this decomposition is that one only needs to

calculate half of F½k� values, those on the interval 0� k� N
2 � 1. We can deduce

F½k� for N
2 � k�N � 1 from these first values.

Indeed, for values of k higher than N=2, we write k0 ¼ kþ N
2, 0� k� N

2 � 1.
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We have

F k0½ � ¼ F1 k
0½ � þWk0

N F2 k
0½ �; ð16:62Þ

F1 k
0½ � ¼

XN=2�1

n¼0

f1½n�e�j 2pN=2n kþN=2ð Þ ¼
XN=2�1

n¼0

f1½n�e�j 2pN=2nke�j 2pN=2nN=2

¼
XN=2�1

n¼0

f1½n�e�j 2pN=2nk:

Therefore, F1 k0½ � ¼ F1½k�: Similarly, we have

F2 k
0½ � ¼ F2½k�: ð16:63Þ

The factor Wk0
N in the second term remains to be considered:

Wk0
N ¼ WkþN=2

N ¼ e�j2pN kþN=2ð Þ ¼ e�j2pN ke�j2pN N=2ð Þ ¼ �e�j2pN k ¼ �Wk
N :

We can summarize these results as follows:

F½k� ¼ F1½k� þWk
NF2½k� for 0� k� N

2 � 1

F1 k � N
2

� 
�Wk�N=2
N F2 k � N

2

� 

for N

2 � k�N � 1

(
: ð16:64Þ

To fix ideas, we consider the case N ¼ 8:
We have F½0� ¼ F1½0� þWk¼0

N F2½0�;F½1� ¼ F1½1� þWk¼1
N F2½1�;

F½2� ¼ F1½2� þWk¼2
N F2½2�;F½3� ¼ F1½3� þWk¼3

N F2½3�:

We deduce F½4� ¼ F1½0� �Wk¼0
N F2½0�;F½5� ¼ F1½1� �Wk¼1

N F2½1�;

F½6� ¼ F1½2� �Wk¼2
N F2½2�;F½7� ¼ F1½3� �Wk¼3

N F2½3�:

As an example, we see that between the calculations of F½0� and F½4�, only the
sign preceding Wk¼0

N has changed. We saved in the operation about 50 % of the
computing time.

Decimation by a factor of 2 can be repeated several times (That is the reason
why an initial number N to be a power of 2 is chosen) and lead to calculations
involving only grouping two terms of the function f ½n�. The calculation time
decreases by about 50 % each time.

It may be shown that while the initial calculation required about N2 operations,
the number of operations required by Cooley Tukey algorithm is N log2 N.

For N = 1024, the gain in calculation time is a factor of about 100.
For N = 4048, the gain is about 300.
For N = 16,384, the gain is about 1000.
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16.12 Matrix Form of DFT

According to (16.53), the DFT of f ½n� is written as F½k� ¼ PN�1

n¼0
f ½n�Wnk

N , where

WN ¼ e�j2pN and 0� k�N � 1. A matrix form can be used:

F½0�
F½1�
F½2�
. . .

F½N � 1�

0
BBBB@

1
CCCCA ¼

1 1 1 . . . 1
1 WN W2

N . . . WN�1
N

1 W2
N W4

N . . . W2 N�1ð Þ
N

. . . . . . . . . . . . . . .
1 WN�1

N W2 N�1ð Þ
N . . . W N�1ð Þ2

N

0
BBBB@

1
CCCCA

f ½0�
f ½1�
f ½2�
. . .

f ½N � 1�

0
BBBB@

1
CCCCA:

ð16:65Þ

The Fourier matrix has remarkable properties. Its column vectors are orthogonal
two by two. Conversely, we have

f ½0�
f ½1�
f ½2�
. . .

f ½N � 1�

0
BBBB@

1
CCCCA ¼ 1

N

1 1 1 . . . 1
1 W�

N W�2
N . . . W�N�1

N

1 W�2
N W�4

N . . . W�2 N�1ð Þ
N

. . . . . . . . . . . . . . .
1 W� N�1ð Þ

N W�2 N�1ð Þ
N W� N�1ð Þ2

N

0
BBBB@

1
CCCCA

F½0�
F½1�
F½2�
. . .

F½N � 1�

0
BBBB@

1
CCCCA:

ð16:66Þ

Except for the factor 1=N, the inverse matrix of the linear transformation is the
conjugate of the original matrix.

This matrix form of DFT is used in many calculations.

16.13 Signal Interpolation by Zero Padding

Nowadays, Fourier analysis is performed mainly on digitized signals using the
discrete Fourier (16.53) and (16.54)). The calculations are carried out using FFT
algorithms. By construction, the DFT provides the value of the Fourier transform of
the signal F ejxT

� �
in a finite number of points. It is assumed that the signal is

sampled in accordance with Shannon’s condition and that its length is finite and

equal to points N. As shown above, the DFT F½k� ¼ PN�1

n¼0
f ½n�e�j2pnkN provides the

value of the signal’s FT at N frequency points xk ¼ k xe
N with k 2 0;N � 1f g.
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It is shown below that the use of the DFT with addition of zeros (zero padding)
is used to interpolate the signals in frequency or time.

Frequency interpolation: Assume that we add zeros N to the sequence f ½n� and
that we calculate the DFT on 2N points: F0 k½ � ¼ P2N�1

n¼0
f n½ �e�j2pnk2N .

For even values of k, we note k ¼ 2k0, and we have:

F0 2k0½ � ¼
X2N�1

n¼0

f ½n�e�j2pn2k
0

2N ¼
XN�1

n¼0

f ½n�e�j2pnk
0

N : ð16:67Þ

The upper boundary of the sum has been reduced to N � 1 because the function
f ½n� is zero by hypothesis beyond this value. It is seen that for even values of k we
find back the DFT values at N points. For odd values of k, one obtains new values
of the Fourier transform F ejxT

� �
of the signal f ½n�. This is equivalent to an inter-

polation of the values given by the DFT on N points. Obviously, this operation can
be conducted by filling the signal with a greater number of zeros so as to reach a
desired frequency resolution.

Interpolation in time: Equivalently, one can interpolate in time. This has
practical value when the sampling frequency is limited to a given value, but one
desires to know closer values in time of the underlying analog signal . It is known
that the DFT inversion formula is f ½n� ¼ 1

N

PN�1
k¼0 F½k�ej2pnkN

The function F½k� being periodic, with period N we can also write

f ½n� ¼ 1
N

XN2�1

k¼�N
2

F½k�ej2pnkN : ð16:68Þ

Let us complete the function F½k� with zeros up to the boundaries �N and
N. This function is noted as F0½k�. Now we compute the inverse DFT on 2N points
of F0½k� by noting:

f 0½n� ¼ 1
2N

XN�1

k¼�N

F0½k�ej2pnk2N : ð16:69Þ

For even values of n we note n ¼ 2n0. We have

f 0 2n0½ � ¼ 1
2N

XN�1

k¼�N

F0½k�ej2p2n0k2N ¼ 1
2N

XN�1

k¼�N

F0½k�ej2pn0kN : ð16:70Þ

Since the function F0½k� is zero outside the interval � N
2 ;

N
2

� �
, we have
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f 0 2n0½ � ¼ 1
2N

XN2�1

k¼�N
2

F0½k�ej2pn0kN ¼ 1
2
f n0½ �: ð16:71Þ

We find for even values of the index n (within a factor of 2), the value of the
function f ½n�. For odd values of the index, interpolated values between two even
values are obtained.

Note: In the above calculations negative indexes were used to facilitate the
demonstration. However, the indexes of the functions used in the numerical cal-
culations are positive or zero. As shown in the preceding figures, these indexes
correspond to the frequency interval 0;xef g. In the Fourier domain, adding zeros
must be made in the central zone around xe

2 .
The interest of interpolation in the time domain appears in the following

application: The standard sample rate for audio CDs is 44.1 kHz. According to the
sampling theorem, it is possible in principle to reconstruct the audio signal f tð Þ from
the values f n½ � ¼ f nTð Þ recorded on the CD, using the formula (16.19).

The difficulty is that it is impossible to electronically realize the sinc functions
that appear in this formula.

The expedient to keep constant the value of the function during the time interval
between samples (f tð Þ is then approximated by a stairs function) is not acceptable
from a point of view of the quality of the audio output (the ear is very sensitive to
discontinuities at the edges of the intervals).

Even after a low-pass filtering of this step function, the audio quality of the
reconstructed signal is insufficient. It is preferable to interpolate the signal
numerically in time in a first step as previously described, so as to have samples
closest in time, so as to create a step function with narrower steps before smoothing
this function by low-pass filtering.

16.14 Artifacts of the Fourier Transform on a Computer

Almost anybody who has calculated and displayed the FFT of a sine function with a
computer for the first time has been surprised that instead of observing a single
frequency line, he observes a series of lines closely packed around the expected
frequency. The phenomenon is normal and can be explained by the following:

The FFT algorithm generally used to calculate the Fourier transform samples the
frequency range in N points evenly distributed in the frequency interval 0 $ xe.
The frequency step is xe

N ¼ 2p
T

1
N. When calculating by a computer the Fourier

transform of a sine function limited to N points, we have shown that it appeared in
the frequency domain a Dirichlet function resulting from the FT of the rectangular
window.
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The step in the spectrum calculated by the method of Cooley and Tukey cal-
culated in N points corresponds exactly to the interval between two zeros of the FT
of the window function.

Two situations may occur in practice:

(a) If xo falls somewhere between two values xk ¼ k 2p
T

1
N and xkþ 1 ¼

kþ 1ð Þ 2pT 1
N the maximum spectrum DFT value does not reach N

2 and the other
values fall somewhere on the secondary peaks of the Fourier transform, as
shown in Fig. 16.11.

(b) If the sine frequency xo falls exactly on a frequency xk ¼ k 2p
T

1
N, a peak is then

obtained in xo, but the zeros of the function sin N x�xoð ÞT
2 fall on the other

multiples of 2p
T

1
N. And give 0 (Fig. 16.12). There is therefore a single peak in

xo (with height N
2 due to the factor 1

2 that appears in the exponential devel-
opment of the sine).

Fig. 16.12 Sampling of
spectrum when x0 ¼ xk

Fig. 16.11 Sampling of
spectrum when x0 6¼ xk
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Summary
This chapter gives the main properties of the Fourier transformation of digital
signals. After having given the Poisson summation formula, we demonstrated the
Shannon sampling theorem and the theorem of Shannon–Whittaker proving that an
analog signal can be reconstructed from its samples if the sampling was done
respecting the Shannon condition. For the treatment of limited duration signals,
which are inherently multiplied by a rectangular window, we have calculated the
Fourier transform of a rectangular window and showed that the multiplication of a
time-limited signal by an apodization window allows a better quality of spectral
analysis. We have defined the discrete Fourier transform and studied the FFT
algorithm of Cooley and Tukey, operating on signals whose length is a power of 2,
which can calculate spectra very rapidly. The chapter was completed by the
interpolation method by zero padding and the peculiarities of the sampled spectra
obtained by numerical calculations.

Exercises

I. Denote the causal Hanning window:

wH½n� ¼
1
2 1� cos 2pn

N�1

� �
for n ¼ 0; 1; . . .;N � 1

0 elsewhere

�
:

Show that its Fourier transform is

WH ejxT
� � ¼ e�jxTN�1

2
1
2
sin NxT=2ð Þ
sin xT=2ð Þ þ 1

4
sin N xT � /0ð Þ=2ð Þ
sin xT � /0ð Þ=2ð Þ þ 1

4
sin N xT þ/0ð Þ=2ð Þ
sin xT þ/0ð Þ=2ð Þ


 �
;

with /0 ¼ 2p
N�1.

II. A function f ðtÞ has a spectrum FaðxÞ limited to the interval �x0;x0f g. It is
sampled at frequency xe ¼ 2x0, in accordance with Shannon’s condition. We
denote F ejxT

� �
the Fourier transform of the sampled function f n½ �. Show that

if the function f ðtÞ is sampled at frequency xe
2 , aliasing occurs, and that its

Fourier transform in the range � xe
2 ; xe

2

� �
is given by F2 ejxT

� � ¼
1
T Fa ej xþ xe

2ð ÞT� �
þFa ejxT

� �þFa ej x�xe
2ð ÞT� �� �

; or

F2 ejxT
� � ¼ F ej xþ xe

2ð ÞT� �
þF ejxT

� �þF ej x�xe
2ð ÞT� �� �

:

III. Quadrature mirror filters:
A numerical filter is defined by its temporal equation:

g0½n� ¼ f ½n� þ f ½n� 1�:
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1. Compute the impulse response h0 n½ � of this filter; its transfer function. Place the
remarkable points of this function in the z-plane. Calculate the frequency
response H0 ejxT

� �
. Graph the frequency gain. What is the character of this

filter?
A second filter is defined as follows: Its gain is mirror of the previous filter with
respect to the angular frequency xe

4 . We have thus H1 ejxT
� ��� �� ¼ H0 ejðxT�pÞ� ��� ��.

Make a drawing to give the aspect of H1 ejxT
� ��� ��. Conclude that we can deduce

the remarkable points of this filter from those of the first filter by symmetry.
Calculate the transfer function, the frequency response H1 ejxT

� �
and the impulse

response h1 n½ � of this filter.
2. Prove the relationship H0 ejxT

� ��� ��2 þ H1 ejxT
� ��� ��2¼ Cte.

3. The scalar product of two signals is defined by s1 n½ �; s2 n½ �h i ¼ P1
n¼�1

s�1 n½ �s2 n½ �.
Show that h0 n½ � and h1 n½ � are orthogonal by a calculation in the time domain.
Find again the orthogonality by a calculation in the frequency domain.

4. Let the signal f n½ � ¼ 1 if 0� n� 10
0 elsewhere

���� . Calculate the outputs g0 n½ � and g1 n½ � of
the previous filters. Can we say that one of the two responses gives the slow part
of the input and the other the details?
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Chapter 17
Autoregressive Systems (AR)—ARMA
Systems

We studied in Chap. 14 the digital Moving Average LTI systems. It was clear that
those filters are simple to implement because their impulse response is finite. They
allow one to filter out totally some chosen frequency components; however, they
have the disadvantage of having a frequency response that varies slowly. That
makes them not very selective and unsuitable for making band-pass filters. The
autoregressive filters presented in this chapter do not have these disadvantages.
They are digital equivalents of the analog filters presented in Chap. 10. They can be
higly selective but their disadvantage is that their impulse response has an infinite
length. This chapter begins with the presentation of the AR filters of the first and
second order. We determine their impulse responses, study their stability, and
calculate their transfer functions and their domain of definition in the z-plane. As
before, the geometric interpretation of the frequency gain provides a thorough
understanding of the filter’s mode of operation and gives way to generalization
toward ARMA filters (Autoregressive–Moving Average) of which several exam-
ples are studied. It is interesting to be able to use the many accumulated results in
the literature on analog filters; various methods of passing from an analog filter to
its digital equivalent are presented, but, in essence, the equivalence cannot be
performed perfectly. We study the pros and cons of commonly used methods.

In the autoregressive type of filter, the time equation giving the value of the
output signal g n½ � at time n contains terms representing the value of the output
signal at earlier moments g n� 1½ �; g n� 2½ �; . . .; g n� k½ �. They are also referred as
systems with feedback. The general form of the equation of a time autoregressive
systems is:

g n½ � ¼ �
Xp

k¼1

akg n� k½ � þ b0f n½ �: ð17:1Þ
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17.1 Autoregressive First-Order System

This system is recursive and defined by the time equation:

g n½ � ¼ Kg n� 1½ � þ f n½ �; ð17:2Þ

where K is a complex or real constant. This temporal equation alone does not define
a system but two. An additional hypothesis is necessary to define a system: the
causal or noncausal hypothesis.

17.1.1 Case of a Causal System

We now show that the hypothesis h �1½ � ¼ 0 is sufficient to ensure the causality of
the filter.

In what follows, we calculate the impulse response by induction.
Let the input signal be f n½ � ¼ d n½ �. In determining the impulse response, we

consider separately the cases of negative and positive or zero times:

n� 0 n\0
h 0½ � ¼ Kh �1½ � þ 1 ¼ 1; h �1½ � ¼ 0 by assumption
h 1½ � ¼ K; h �2½ � ¼ 0;
. . . . . .
h n½ � ¼ Kn; h n½ � ¼ 0:

Therefore,

h n½ � ¼ KnU n½ �: ð17:3Þ

This function is called causal because its values are zero for negative time.
In the following, for ease of presentation, the constant K is assumed real. The

results are easily generalized to the complex case.
Figure 17.1 shows that the impulse response is decreasing if Kj j\1, increasing

Kj j[ 1, and alternate if K\0.
For Kj j[ 1 the impulse response increases indefinitely in absolute terms,

reflecting the instability of the system, since a finite input f n½ � ¼ d n½ � causes an
output going to infinity.

Transfer function of first-order system
As seen before, this function is the z-transform of the impulse response:

HðzÞ ¼
Xþ1

n¼�1
Knz�nU n½ � ¼

X1

n¼0

Knz�n: ð17:4Þ
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It is the sum of a geometric series of common ratio Kz�1.
It converges if the magnitude of the common ratio is less than 1 so Kz�1

�� ��\1, or
Kj j\ zj j. It becomes

HðzÞ ¼ 1
1� Kz�1 ¼

z
z� K

: ð17:5Þ

This function has a singularity (a simple pole) in z ¼ K.
We denote D the convergence domain of the series which will be the domain of

definition of HðzÞ. It is the locus of points such that zj j[ Kj j. D is the outer area of
a disc centered at the origin with radius Kj j (Fig. 17.2).

Fig. 17.1 Impulse response for the causal first-order system for different values of parameter K

Fig. 17.2 Definition domain
D of a causal first-order
system
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Note that if Kj j[ 1 the FT does not exist, because the circle zj j ¼ 1 is not in the
convergence domain. In this case, the system is not stable. As shown above, the
impulse response increases indefinitely in absolute value.

If Kj j\1 the FT exists and is expressed by

H ejxT
� � ¼ ejxT

ejxT � K
: ð17:6Þ

Gain magnitude variation with frequency
Geometrically, we have (See Fig. 17.3)

H ejxT
� ��� �� ¼ 1

ejxT � Kj j ¼
1
PM

: ð17:7Þ

For x ¼ 0; H 1ð Þj j ¼ 1
1� K

: For xT ¼ p; H �1ð Þj j ¼ 1
1þK

: ð17:8Þ

The aspect of the gain magnitude is conditioned by the length of segment PM
which connects the point M representative of the monochromatic signal ejnxT to the
pole P with abscissa K on the real axis.

To illustrate the behavior of the gain with frequency, we take the case K[ 0 as
an example. When x ¼ 0 the pointM lies in A, the segment PM has a length 1� K,
which is its minimum value. Its inverse 1

PM is maximum with value 1
1�K. The

maximum gain is in x ¼ 0. When x increases from 0, the segment PM length
increases, the gain decreases to the minimum value 1

1þK obtained for x ¼ p
T. For

K[ 0 we have therefore a low-pass filter.
Similarly, it is seen that in the case K\0 the filter is high pass.
In Fig. 17.4 the frequency response of the magnitude’s low-pass filter is on

the left, on the right is the gain of the high-pass filter. The abscissa xT ranges from
0 to 2p.

Fig. 17.3 Unit circle and

vector PM
�!

governing the gain
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17.1.2 Analysis of the Anticausal System

The hypothesis h 1½ � ¼ 0 is sufficient to define it. It becomes

for n� 0 for n\0
h 1½ � ¼ 0 ¼ Kh 0½ � þ 0 h �1½ � ¼ Kh �2½ � ) h �2½ � ¼ �K�2

h 0½ � ¼ Kh �1½ � þ 1 ¼ 0 ) h �1½ � ¼ �K�1

) h 0½ � ¼ 0 . . .
. . . . . .
h 2½ � ¼ Kh 1½ � þ 0 ¼ 0 . . .
h n½ � ¼ 0 h n½ � ¼ �Kn:

In summary,

h n½ � ¼ �KnU �n� 1½ �: ð17:9Þ

Calculation of the anticausal filter transfer function HðzÞ

HðzÞ ¼ �
Xþ1

n¼�1
z�nKnU �n� 1½ � ¼ �

X�1

n¼�1
Knz�n: ð17:10Þ

We write m ¼ �n� 1;

HðzÞ ¼ �
X1

m¼0

K�m�1zmþ 1 ¼ � z
K

X1

m¼0

z
K

� �m
: ð17:11Þ

Fig. 17.4 Gain magnitude with positive (left) and negative (right) values of parameter K
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This geometric series converges if zj j\ Kj j, it becomes

HðzÞ ¼ � z
K

1
1� z

K

¼ � z
K � z

¼ z
z� K

: ð17:12Þ

The domain of definition of H zð Þ is within the disc of radius Kj j (Fig. 17.5).
Note that if Kj j[ 1 the system possesses a frequency response.
It is noted that the expression of the transfer function of the anticausal filter

(17.12) is the same as that of the causal filter (17.5). What differentiates the two
transfer functions is their domain of definition in the z-plane. We see that it is
essential to specify the domain of definition of a system transfer function.

An instructive exercise is to recalculate the impulse response from the transfer
function. The calculation will be done by the residues method, taking the inte-
grating circle radius of radius R surrounding the origin included in each case within
the definition domain: Kj j\R is taken to find the impulse response of the causal
filter and R\ Kj j for the case of the anticausal filter.

Exercise
Calculation of the output of the causal filter of first order when the input signal is
the step function f n½ � ¼ U n½ �

The system output is given by

g n½ � ¼
Xþ1

m¼�1
KmU m½ �U n� m½ � ¼

Xn

m¼0

Km if n� 0; ð17:13Þ

and g n½ � ¼ 0 for n\0. The output is also causal.

for n ¼ 0 : g 0½ � ¼ 1
for n ¼ 1 : g 1½ � ¼ 1�K2

1�K ¼ 1�Kð Þ 1þKð Þ
1�K ¼ 1þK

for any other n : g n½ � ¼ 1�Knþ 1

1�K

g n½ � ¼ 1�Knþ 1

1�K ¼ 1�Kð Þ
1�K 1þK þ � � � þKnð Þ ¼ 1þK þ � � � þKn:

We have therefore

g n½ � ¼ 1þKþ � � � þKnð ÞU n½ �: ð17:14Þ

We see directly that g n½ � has no FT since this function increases indefinitely with n.

Fig. 17.5 Definition domain
D of an anticausal first-order
system
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Exercise
Repeat this calculation using the z-transform and residue theorem.

Show in first time that GðzÞ ¼ HðzÞ VðzÞ ¼ 1
1�Kz�1

1
1�z�1, then show in the case

Kj j\1 that the definition domain of GðzÞ is the exterior of the disc with radius 1
(that is, the intersection of definition domains of HðzÞ and VðzÞ). Then calculate the
first terms of function g n½ � after showing that this function is causal.

17.2 Autoregressive System (Recursive) of Second Order

This system is defined by the time equation:

g n½ � ¼ a1g n� 1½ � þ a2g n� 2½ � þ f n½ �; ð17:15Þ

where a1 and a2 are two complex constants in the general case. As in the case of
first-order system, a hypothesis about the possible causality of the system is nec-
essary to fully define the system.

17.2.1 Calculation of the System Transfer Function HðzÞ

As the calculation of the impulse response of this filter is more difficult than in the
case of first-order AR system, we rather study the filter properties by addressing the
problem by calculating first the transfer function. The system is linear, time
invariant. Then, by definition of the transfer function, when the input is of the form
f n½ � ¼ zn, the output takes the form g n½ � ¼ HðzÞzn.

Using the translation property g n� m½ � ¼ HðzÞzn�m and replacing it in temporal
equation we get HðzÞzn � a1HðzÞz�1zn � a2HðzÞz�2zn ¼ zn, or simplifying by zn:

HðzÞ ¼ 1
1� a1z�1 � a2z�2 ¼

z2

z2 � a1z� a2
: ð17:16Þ

Assume now that the system is causal. This assumption leads, as was shown in
the previous chapter, that the definition domain of HðzÞ is the outside of a disc
centered at the origin and whose radius is the distance between the coordinate origin
and the furthest singularity from the origin. We are led to identify the poles of HðzÞ.
The second-degree polynomial at denominator always has two roots in C.
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For simplicity, we will restrict here the study to the case where both coefficients
a1 and a2 are real (as will appear below, this ensures that the impulse response is
real), then the roots are either real or complex conjugate.

The full discussion of the nature of the roots depending on the value of the
discriminant of the second-degree polynomial is not done here. Is treated in the
following only the most common case in practice where both roots are complex
conjugate. We can write in this case

HðzÞ ¼ z2

z� zp
� �

z� z�p
� � ; ð17:17Þ

or also

HðzÞ ¼ z2

z2 � z zp þ z�p
� �

þ zpz�p
: ð17:18Þ

By identifying the coefficients of the powers of z one must have

a1 ¼ zp þ z�p; a2 ¼ �zpz
�
p: ð17:19Þ

We note zp ¼ rejxpT , (xpT is the argument of a pole).
We have therefore

zp þ z�p ¼ 2r cosxpT ; zpz
�
p ¼ r2: ð17:20Þ

Finally,

a1 ¼ 2r cosxpT and a2 ¼ �r2: ð17:21Þ

Thus,

HðzÞ ¼ z2

z2 � 2zr cosxpT þ r2
: ð17:22Þ

If the frequency response exists, it is written as

H ejxT
� � ¼ e2jxT

e2jxT � 2ejxTr cosxpT þ r2
: ð17:23Þ
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Using the formula (17.17) in the case z ¼ rejxT , the magnitude of the frequency
response is given by

H ejxT
� ��� �� ¼ 1

ejxT � rejxpTð Þ ejxT � re�jxpTð Þj jj j ð17:24Þ

We see that for the frequency response to exist, it is first necessary that the poles
are not located on the unit circle. Moreover, the unit circle must belong to the
definition domain of function HðzÞ.

In the following discussion, the filter is supposed causal and the frequency
response defined, which requires that the poles’ magnitudes are necessarily less
than 1 (r\1).

17.2.2 Geometric Interpretation of Variation of Frequency
Gain Magnitude

According to (17.24), we can write

H ejxT
� ��� �� ¼ 1

MP �MP0 : ð17:25Þ

Figure 17.6 shows the pole situation and the position ofM on the unit circle for a
given frequency.

The gain magnitude is the inverse of the product of the lengths of the segments
MP and MP0 connecting the point M to each of the poles. The gain will be great if
one of the segments MP or MP0 becomes small. There will be resonance when
M approaches a pole (e.g., MP decreases when x ! xp).

The sharpness of the resonance depends on the proximity of the pole and the
circle radius of radius 1. If the pole is close to the circle, the resonance will be
sharp, the amplitude at the resonance high, and the resonant frequency will be close
to the frequency of the pole.

Fig. 17.6 Pole situation and

vectors PM
�!

and P0M
��!

controlling the frequency gain

17.2 Autoregressive System (Recursive) of Second Order 299



As shown in Fig. 17.7, the more distant the pole from the circle of radius 1, the
less pronounced is the maximum, and the resonance frequency moves to lower
frequencies. This shift toward the low frequencies is due to the growing influence of
the second pole on the resonance of the first pole.

If the pole is near the circle, i.e., if r is close to 1, the resonance is sharp. It
manifests for xrT ffi �xpT . It is assumed in the following that we are in this
situation.

For M close to P: MP ffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HM2 þPH2

p
; PH ¼ 1� r, so HM ffi HM

_ ¼ ðxp � xÞT
(see Fig. 17.8).

In the above relationship, the length of the segment HM was assimilated to the

length of the arc HM
_

. As seen in Fig. 17.8, one can write MP0 ffi PP0 ¼ 2r sinxpT .

Fig. 17.7 Gain of a
second-order AR filter for
several pole magnitudes

Fig. 17.8 Geometric
situation in the case of sharp
resonance
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In the vicinity of the resonance frequency in the case of a sharp resonance, the
expression of the gain takes the form

H ejxT
� ��� �� ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xp � x
� �2

T2 þ 1� rð Þ2
q

1
2r sinxpT

ð17:26Þ

At resonance, for xr 	 xp, the gain is maximum. It is given by

Hj jMax¼ H ejxT
� ��� ��

x¼xp
¼ 1

1� rð Þ2r sinxpT
ð17:27Þ

Calculation of the -3 bB bandwidth in the case of a sharp resonance
For two angular frequencies x1 and x2, the two terms under the square root in
(17.26) are equal:

xp � x1;2
� �

T
�� �� ¼ 1� rð Þ: ð17:28Þ

Then,

H ejx1;2T
� ��� �� ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� rð Þ2

q
2r sinxpT

¼ Hj jMaxffiffiffi
2

p : ð17:29Þ

We choose x1\xp. Equation (17.28) is writen as xp � x1
� �

T ¼ 1� r, or
x1 ¼ xp � 1�r

T .
For the other angular frequency x2 [xp, we have x2 ¼ xp þ 1�r

T .
The −3 dB bandwidth is then

Dx ¼ x2 � x1 ¼ 2
1� r
T

	 

¼ 2

T
1� rð Þ ¼ xe

p
1� rð Þ: ð17:30Þ

N.A. if r ¼ 0:999, we get Dx ¼ xe
p 10�3.

Returning to frequency variable f ¼ x
2p, the −3 dB bandwidth is

Df ¼ fe
p

1� rð Þ ð17:31Þ

We also see that the sampling frequency being given, one can determine the pole
magnitude r to achieve the desired −3 dB bandwidth.

N.A. Let fe ¼ 20 kHz. If one looks for a resonance frequency of fr ¼ 1:2 kHz
and a bandwidth Df ¼ 300Hz, we will take fp ¼ fr ¼ 1:2 kHz (hypothesis of sharp

resonance that is justified a posteriori) and r ¼ 1� p Df
fe
¼ 0:9529. Then,
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xpT ¼ 2pfpT ¼ 2p
fp
fe
¼ 0:377:

We deduce the coefficients a1 and a2: a1 ¼ 2r cosxpT ¼ 2
 0:9529

cos 0:377 ¼ 1:772;

a2 ¼ �r2 ¼ �0:95292 ¼ �0:908:

The time equation of this filter is as follows: g n½ � ¼ 1:772g n� 1½ ��
0:908g n� 2½ � þ f n½ �.

17.2.3 Impulse Response of Second-Order System

It is assumed here that the filter is causal. We start from the expression of the
transfer function given in (17.17).

After dividing the numerator and denominator by z2, we write

HðzÞ ¼ 1

1� zp
z

� �
1� z�p

z

� � : ð17:32Þ

Since the filter is causal, the domain of definition D is the exterior of the disk of
radius r ¼ zp

�� ��, as was justified in the chapter on the z-transform. The division z2

was permitted because the point z ¼ 0 does not belong to the domain of definition
of HðzÞ.

We recognize in HðzÞ a product of first-order system transfer functions:

H1ðzÞ ¼ 1
1� zP

z

and H2ðzÞ ¼ 1

1� z�P
z

: ð17:33Þ

We have therefore in the time domain a convolution:

h n½ � ¼ h1 n½ � � h2 n½ �: ð17:34Þ

Assuming causal first-order systems,

h1 n½ � ¼ znPU n½ � and h2 n½ � ¼ z�nP U n½ �;

h n½ � ¼
Xþ1

m¼�1
zmPU m½ �z�n�m

P U n� m½ �: ð17:35Þ

h n½ � will be causal: h n½ � ¼ Pn

m¼0
zmP z

�n�m
P U n½ �.
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It is wise to use the trigonometric form: zP ¼ rejxpT ,

h n½ � ¼ U n½ �
Xn

m¼0

rmejxpmTrn�me�jxpðn�mÞT

¼ U n½ �rne�jxpnT
Xn

m¼0

e2jxPmT ¼ U n½ �rne�jxpnT 1� ej2xpðnþ 1ÞT

1� e2jxpT
:

Finally,

h n½ � ¼ rn
sinxpðnþ 1ÞT

sinxpT
U½n�: ð17:36Þ

Figure 17.9 shows an example of the impulse response of a resonant
second-order filter.

17.2.4 Functional Diagrams of the Digital System of Second
Order

The output signal is given by the relation

g n½ � ¼ a1g n� 1½ � þ a2g n� 2½ � þ f n½ �: ð17:37Þ

1. Basic chart: (Fig. 17.10).

Fig. 17.9 Second AR
system; example of a resonant
impulse response
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2. Representation by two first-order systems in cascade:

We have

G zð Þ ¼ H zð ÞF zð Þ ¼ z
z� zP

z
z� z�P

F zð Þ ¼ H1 zð ÞH2 zð ÞF zð Þ: ð17:38Þ

The filter can be realized by two filters of the first-order connected in cascade
(Fig. 17.11).

Their time equations are written as

s n½ � ¼ zPs n� 1½ � þ f n½ �;
g n½ � ¼ z�Pg n� 1½ � þ s n½ �: ð17:39Þ

3. Realization by two first-order systems in parallel:

H zð Þ ¼ z2

z� zPð Þ z� z�Pð Þ : ð17:40Þ

H zð Þ is decomposed into a sum of two simple elements (Fig. 17.12).

Fig. 17.10 Basic
representation

pz
1z− 1z−

*
pzpz

Fig. 17.11 Representation
by cascade of two first-order
systems

pz

*
pz

A

B

Fig. 17.12 Representation
by two first-order systems in
parallel
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H zð Þ ¼ Az
z� zP

þ Bz
z� z�P

¼ Az2 � Azz�P þBz2 � BzzP
D

;

) AþB ¼ 1; Az�P þBzP ¼ 0 ) B ¼ �Az�P
zP

:

A 1� z�P
zP

	 

¼ 1; A ¼ 1

1� z�P
zP

¼ zP
zP � z�P

; B ¼ z�P
z�P � zP

:

ð17:41Þ

17.3 ARMA Filters

Generally, an ARMA filter (Autoregressive–Moving Average) is defined by the
time equation:

g n½ � þ
Xp

k¼1

akg n� k½ � ¼
Xq

k¼0

bkf n� k½ �: ð17:42Þ

Its transfer function has the form

HðzÞ ¼ b0 þ b1z�1 þ b2z�2 þ � � � þ bqz�q

1þ a1z�1 þ � � � þ apz�p
¼ b0

Qq

k¼1
ð1� zkz�1Þ

Qp

k¼1
ð1� pkz�1Þ

: ð17:43Þ

This is a rational fraction of polynomial functions in z.
By a choice of the position of zeros and poles of this polynomial in the complex

plane, we can get the desired frequency response or approaching it closely.
Optimization techniques for locating these remarkable points to approach the
desired result have been developed.

In the design of ARMA filters, we also use the body of knowledge on analog
filters for getting digital filters with similar properties using passing techniques from
analog to digital, examples of which are presented below.

Example of an ARMA filter
Rejection filter (also called notch filter): The objective in the design of this type of
filter is to obtain a frequency response as flat as possible, except in a narrow
frequency band where the gain cancels at its center. The shape of the frequency
response is that of a plank of wood in which we sawed a notch.

Principle: Place a zero of the transfer function on the unit circle to cancel the
gain at frequency f0 and also place a pole near the zero with the same argument
(Fig. 17.13).
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HðzÞ ¼ ðz� z0Þ
ðz� zpÞ with z0 ¼ ejx0T ; zp ¼ rejx0T and r ffi 1: ð17:44Þ

Using a geometric interpretation it is found that the frequency gain magnitude is
given by the ratio of segments joining the point M representative of a monochro-
matic signal with frequency x to the zero Z0 and the pole Zp of the transfer
function:

H ejxT
� ��� �� ¼ MZ0

MZp
: ð17:45Þ

This magnitude is nearly 1 for frequencies far from x0, as the distances of the
point M to the neighboring points Z0 and Zp are close. However, the gain is zero for
x ¼ x0 since the segment MZ0 length is zero.

To obtain a real impulse response, it is necessary that the coefficients appearing
in the expression of the transfer function are real, this is not the case in (17.44) for
all frequencies.

This leads us to add complex conjugates of zero and pole in (17.46).
Thus, among the coefficients of the polynomials appear the sum and the product

of complex conjugate numbers that are real quantities. The filter transfer function is
then

HðzÞ ¼ ðz� z0Þ z� z�0
� �

ðz� zpÞ z� z�p
� � : ð17:46Þ

In the following example, it was taken fe ¼ 20 kHz, f0 ¼ 2 kHz and r ¼ 0:98.
Meanwhile in the interval � fe

2 ;
fe
2

� �
, the shape of the frequency response mod-

ulus is given in Fig. 17.14.
The reader is invited to explain, using a geometric argument, why in this

example, the gain value at plateau is about 1.02 rather than 1.
This type of filter is used when we want to eliminate a parasitic frequency signal

which sometimes overlaps with the signal (frequency of 60 Hz, for example, in
highly amplified signals as is the case for electrocardiograms).

Fig. 17.13 Case of vicinity
of pole and zero
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Comb filter
It is a rejection filter for removing a fundamental frequency and its harmonics. We
reproduce regularly along the unit circle the zero–pole configuration encountered in
the previous example. To do this, the filter transfer function is

H zð Þ ¼ 1� z�M

1� Az�M
¼ zM � 1

zM � A
; A is a real positive number close to 1: ð17:47Þ

The zeros of H zð Þ are z0k ¼ ej
2pk
M . Its poles are zpk ¼

ffiffiffi
AM

p
ej

2pk
M , with

k ¼ 0; 1; 2; . . .;M � 1.
For a causal and stable filter, A\1 is chosen and for definition domain of H zð Þ,

the exterior of the circle of radius
ffiffiffi
AM

p
. Note that zeros z0k ¼ ej

2pk
M and poles zpk ¼ffiffiffi

AM
p

ej
2pk
M have same argument.

The frequency response is written as H ejxT
� � ¼ 1�e�jMxT

1�Ae�jMxT .
N.A. If M ¼ 10 and A ¼ 0:9, poles’ magnitude is r ¼ 0:9895, a value very close

to 1. We take T = 1. Figure 17.15 shows the remarkable points location (left) and
the representation of the filter frequency gain magnitude (right).

Because of the shape of its gain, the filter is called comb filter.
The maximum gain is 1.053. The width of the notch depends on r, as shown

below. The gain will be approximately 1ffiffi
2

p (−3 dB) if ZM1
PM1

¼ 1ffiffi
2

p .

1
ffiffiffi
2

p ¼ ZM1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZM2

1 þPM2
1

p ) ZM1 ¼ PZ ¼ 1� r:

Then x1 � x0ð ÞT ’ 1� r:.

Thus, the −3 dB bandwidth is given by Dx ¼ x2 � x1 ¼ 2 1�rð Þ
T .

Fig. 17.14 Frequency
response of a notch filter
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As r ¼ ffiffiffi
A10

p ¼ 0:9895, Dx ¼ 0:021 if T ¼ 1. The closer to 1 is r, the narrower
will be the width of the rejected band.

From Eq. (17.47), we deduce that the time equation of the comb filter is as
follows:

g n½ � ¼ Ag n�M½ � þ f n½ � � f n�M½ �: ð17:48Þ

Goertzel algorithm
This algorithm provides a numerical efficient way of evaluating a spectral compo-
nent at a chosen frequency x0. It is based on the property that the Fourier transform
for a given frequency x0 of a digital signal limited in time to N points may be written
as the output of a first-order AR system. Let us start with the expression of the DFT
of a causal signal f n½ �, assuming that T ¼ 1. According to (16.53),

F k½ � ¼
XN�1

n¼0

f n½ � e�j2pnkN : ð17:49Þ

We note Wk
N ¼ e�j2pkN . The last equation becomes

F k½ � ¼
XN�1

n¼0

f n½ �Wkn
N ¼

XN�1

n¼0

f n½ �W�k N�nð Þ
N ; ð17:50Þ

since W�kN
N ¼ ej

2pNk
N ¼ 1, k being an integer.

F k½ � appears to be the convolution of f n½ � andW�nk
N U n½ � evaluated at n ¼ N. The

step function has been introduced to impose F k½ � ¼ 0 for N\0.
In conclusion F k½ � is the output of a filter with an input f n½ �. The transfer

function H zð Þ of this filter is the z-transform of W�nk
N U n½ �. H zð Þ ¼

P1

�1
W�nk

N U n½ �z�n ¼ P1

0
W�nk

N z�n The sum of this geometric series is

Fig. 17.15 Comb filter (M = 10); Pole–zeros situation (left); Frequency response (right)
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H zð Þ ¼ 1
1�W�k

N z�1
¼ 1

1� e�j2pkN z�1
: ð17:51Þ

The filter is a first-order AR with a pole on the unit circle. Extending this result
for any frequency x0, we write

H zð Þ ¼ 1
1� e�jx0Tz�1 : ð17:52Þ

The situation of the pole is analog to that met in Chap. 10 for a system mar-
ginally stable with a pole on the imaginary axis. The magnitude of the impulse
response should increase as n, the time variable.

The advantage of this result is that when we need to calculate a spectral com-
ponent amplitude at one (or a small number of frequencies) the numerical calculus
is faster and much simpler to implement in hardware than a FFT.

A refinement is provided by the following algorithm which avoids the complex
calculation implied by (17.52) and in consequence is faster.

It consists of a cascade of a second-order AR filter with its complex conjugate
poles zp1;2 on the unit circle at frequency x0.

H1 zð Þ ¼ 1
1� z�1ejx0Tð Þ 1� z�1e�jx0Tð Þ : ð17:53Þ

This filter is followed by a single-zero MA filter. The zero is located at one pole
of the first filter to cancel out the effect of that pole:

H2 zð Þ ¼ 1� z�1ejx0T ð17:55Þ

The transfer function of the cascade is

H zð Þ ¼ H1 zð ÞH2 zð Þ ¼ 1
1� z�1e�jx0Tð Þ : ð17:56Þ

Let us look at the problem in the time domain. We note f n½ � the input signal and
w n½ � the output of the first filter according to the time equation:

w n½ � ¼ 2 cos x0Tð Þw n� 1½ � � w n� 2½ � þ f n½ �: ð17:57Þ

w n½ � is the input of the second filter whose output is y n½ �. We have

y n½ � ¼ w n½ � � w n� 1½ �ejx0T ð17:58Þ

The calculation is faster that the one resulting from (17.52) since (17.56) is a
calculation with real numbers and (17.57) is a complex equation which is per-
formed only once, for n ¼ N.
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Example An example of application is the recognition in a noisy environment of
frequencies used in the Dual-Tone Multi-Frequency signaling (DTMF) when
punching a key in a touch key telephone.

The touch 1 generates f0 ¼ 697Hz and f 00 ¼ 1209Hz.
The touch 4 generates f1 ¼ 770Hz and f 01 ¼ 1209Hz.
Let us see on a simulation with Matlab in Fig. 17.16, how the discrimination

between touch 1 and touch 4 is possible with the Goelter algorithm.
The sampling frequency is Fe ¼ 10 kHz; signals at f0 ¼ 697Hz and f1 ¼ 770Hz

with amplitude 1; zero mean Gaussian noise with standard deviation is added to the
signals. For the plot, the output of the filter has been divided by the index n in the
sequence. The selection frequency of the filter is f0 ¼ 697Hz.

It is clear on 17.16 that after 100 ms (time inferior to the pressured key time) touch
1 with its frequency f0 ¼ 697Hz is recognized by the value 1 of the output amplitude.

17.4 Transition from an Analog Filter to a Digital Filter

Several techniques are used to design digital filters with properties close to those of
analog filters that are known for a long time. In the general case, no method is
perfect in the sense that none provides simultaneous equal frequency responses and
impulse responses of digital and analog filters.

17.4.1 Correspondence by the Bilinear Transformation

This first mapping rule, widely used, is obtained by a bilinear transformation in the
complex plane allowing the passage of the transfer function Ha sð Þ of the analog
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Fig. 17.16 Filter outputs;
Top 690 Hz; Bottom 770 Hz
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filter to that of the digital filter H zð Þ. s is the Laplace variable s ¼ rþ jx. The
bilinear transformation is

s ¼ 2
T
1� z�1

1þ z�1 : ð17:62Þ

T is the sampling interval. The factor ensures 2
T that s has the dimension of the

inverse of a time.
Discussion of this transformation: This mapping transforms the imaginary axis

jx of the Laplace plane in the unit circle of the z-plane. s ¼ 0 (analog frequency
zero) corresponds to the point z ¼ 1 (digital zero frequency). s ¼ j1 corresponds
z ¼ �1 (Nyquist frequency, the highest discrete frequency).

The imaginary axis in the Laplace plane (vertical axis of angular frequencies for
which s ¼ jx) is transformed in the unit circle in digital, as can be seen by
expressing z as a function of s from (17.62):

z ¼ 1þ sT
2

1� sT
2

: ð17:63Þ

If s ¼ jx (s is on the imaginary axis, representative monochromatic signals), we
see that z is the ratio of a complex number and its conjugate complex. This complex
number is noted here in its trigonometric form qejh:

z ¼ 1þ j xT2
1� j xT2

¼ qejh

qe�jh ¼ e2jh ¼ eju with u ¼ 2h: ð17:64Þ

Thus, for all points of the pure imaginary axis s ¼ jx in the Laplace plane we
have zj j ¼ 1, which reflects the transformation of the imaginary axis for s into the
circle of radius 1 for z.

Then,

tan h ¼ xT
2
1

¼ xT
2

) Arg zð Þ ¼ 2h ¼ 2 arctan
xT
2

: ð17:65Þ

Conversely, transformation of unit circle in the imaginary axis will be written as
s ¼ jx ¼ j 2T tan h ¼ j 2T tan

u
2, where u is the argument of z.

Example of the digital filter corresponding to a first-order analog filter:

The analog filter transfer function has the form

Ha sð Þ ¼ 1
s� s1

: ð17:66Þ

Using the relation (17.62), that of the digital filter is then
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H zð Þ ¼ 1
2
T

1�z�1

1þ z�1

� �
� 2

T
1�z�1

1
1þ z�1

1

� � ¼ T
4

zþ 1ð Þ z1 þ 1ð Þ
z� z1

: ð17:67Þ

We see in particular that the transmittance of the analog filter decreases to zero
as the frequency approaches infinity, making the filter a low-pass filter. The transfer
function of the corresponding digital filter has a zero at the Nyquist frequency
z ¼ �1ð Þ, the highest frequency of the digital signal. This frequency corresponds to
x ¼ 1 for the analog filter. The digital filter is also low pass.

N.A. Fig. 17.17 shows the frequency responses of a causal first-order analog
filter and that of the digital filter obtained by bilinear transformation. We took
s1 ¼ �10þ j100 and T ¼ 10�3. The pole s1 was chosen close to the imaginary axis
so as to ensure a sizable dynamic peak for a limited interval of x. T was chosen to
be relatively small to obtain a location of the pole z1 in the first quadrant, in the low
frequency area, so that the peak occurs at low frequency, far from the Nyquist
frequency. It is observed that at high frequencies the digital gain falls below the
analog gain due to the zero of the digital transfer function for
xe
2 ¼ p

T ¼ 3141:6 rad/s.

17.4.2 Correspondence by Impulse Response Sampling

The digital filter impulse response is selected as a sampling of the frequency
response of the analog filter h n½ � ¼ ha nTð Þ. As seen earlier on the properties when
sampling, the digital filter frequency response is given by the infinite sum of analog
responses translated by multiple of xe :

Fig. 17.17 Frequency
responses of analog and
digital filters (bilinear
transform)
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H ejxT
� � ¼ 1

T

Xþ1

n¼�1
Ha x� nxeð Þ ð17:68Þ

Again we take for example, the first-order analog filter met before. The impulse
response of the analog filter is ha tð Þ ¼ � 1

s1
es1tU tð Þ, which is complex in this digital

implementation since p1 ¼ �10þ j100 is complex. The filter gain is shown in
Fig. 17.18.

At high frequencies, the value of the digital gain rises above that of the analog
gain due to the summation operation of the translated spectra.

17.4.3 Correspondence by Frequency Response Sampling

The principle of this technique is to sample the frequency response of the analog
filter and assign these values Ha xkð Þ (within the factor 1=T) to the frequency
response H ejxkT

� �
of the digital filter. As essentially the function H ejxT

� �
is

periodic, the operation is realistic only if the support of Ha xð Þ is bounded or if the
“forgotten” values are negligible. Digitally, the frequency domain is a continuum. It
is necessary to evaluate the frequency response between two sampled values. The
technique is based on the discrete Fourier transform. At first the digital impulse
response is calculated by the inverse discrete Fourier transform of H ejxkT

� �
. This

function has necessarily a finite duration since one cannot indefinitely extend the
computations time. Moreover, we seek to minimize the inevitable folding error

Fig. 17.18 Frequency
responses of analog and
digital filters (impulse
response sampling)
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(here in the time domain) accompanying the discretization (here in the frequency
domain) by taking a sufficiently tight sampling of the frequency response.

Once the digital impulse response is calculated, we can evaluate the frequency
response for any frequency using the Fourier transform. The overall process pro-
vides a frequency response on a continuum which passes through the sampled
points.

Example of building an ideal low-pass filter without phase:

By hypothesis, Ha xð Þ ¼ 1 for xj j\X and is zero elsewhere. This function is
sampled and we take H ejxkT

� � ¼ 1 for xj j\X. The interval width is divided into
intervals. To highlight the effects, the number of points used here is low N ¼ 16.
We take H ejxkT

� � ¼ 1 for integer values of k: k 2 �3; 3½ � and 0 elsewhere.
h n½ � is constructed by inverse discrete Fourier transformation on N points. The

obtained impulse response is limited to N points. In Fig. 17.19 the continuous line
represents the frequency response of the low-pass filter and 16 samples of the
function.

The impulse response with N ¼ 16 points is given by h n½ � ¼ 1
16

P3

k¼�3
ej2p

nk
16.

It is noted that h n½ � is an even function of n.
h 0½ � ¼ 0:4375, h 1½ � ¼ 0:3142, h 2½ � ¼ 0:0625, h 3½ � ¼ �0:0965, h 4½ � ¼ �0:0625,

h 5½ � ¼ 0:0417, h 6½ � ¼ 0:0625, h 7½ � ¼ �0:0124, h 8½ � ¼ �0:0625.
Using these values of h n½ �, we can calculate H ejxT

� � 8x by Fourier transfor-
mation. We can obtain a sampling of this Fourier transform by performing the FFT
calculation on any number of points M taken between 0 and fe. Note that M can be
taken large compared to the original number N that was used to limit the duration of
the impulse response of the FIR filter to be N.

We may take M ¼ 512; 1024; 2048, etc.

H ejxkT
� � ¼

X8

n¼�8

h n½ � e�jnxkT with xk ¼ k
M

xe: ð17:69Þ

Figure 17.20 shows different frequency responses in the interval 0;xef g.
fe ¼ 1Hz.

Note that the function H ejxT
� �

passes through the sampled values and its
oscillations in the vicinities of the function Ha xð Þ transitions are due to the Gibbs

Fig. 17.19 Sampling of a
frequency response
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phenomenon in frequency. By sampling the analog frequency response more
tightly, we get a closer match of the original function, without nevertheless
removing oscillations caused by the discontinuities of the function Ha xð Þ.

Warning: We cannot ensure in the above example an even function h n½ � with an
even N ¼ 16 number. In this case, it is necessary not to use a sample at the end of
the interval to ensure the periodicity of the inverse DFT on 16 points. It then
introduces a phase which is absent in the analog filter.

Summary
The autoregressive filters presented in this chapter are digital equivalents of the
analog filters met in Chap. 10. Their advantage is their high selectivity they allow.
Yet, their disadvantage is that their impulse response has an infinite length,
implying that, in principle, we should wait a time infinite to get the result of the
convolution of an input signal with the impulse response. This chapter began with
the presentation of the first and second-order AR filters. We have determined their
impulse responses, the conditions of stability, their transfer functions, and the
definition domain of these functions in the z-plane. As usual, the geometric inter-
pretation of the frequency gain has provided a thorough understanding of the
operation of the filter and generalization to interpret the ARMA filters
(Autoregressive–Moving Average) of which several examples have been studied.
To use the many accumulated results in the literature on analog filters, various
methods of passing from an analog filter to its digital equivalent have been exposed.
In essence, the transition cannot be done accurately. We study the pluses and
minuses of commonly used methods.

Fig. 17.20 Sampled
frequency response and
interpolated spectrum
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Exercises

I. It is assumed that the signals are sampled at frequency fe ¼ 50MHz.
A digital filter is defined by the position of the two poles of its transfer function:

p0 ¼ 0:97

ffiffiffi
2

p

2
ð1þ iÞ and p�0 ¼ 0:97

ffiffiffi
2

p

2
ð1� iÞ

1. Give the expressions of the filter transfer function HðzÞ and frequency
response HðejxTÞ.

2. Give the aspect of this frequency response magnitude justifying it by the
situation of poles of HðzÞ.

3. What is the resonance frequency for a real input signal? Assuming that the
resonance is sharp, give the −3 dB bandwidth.

4. Give the impulse response of the filter.

II. Consider the filter defined by its difference equation:

g n½ � ¼ 1=4 f n� 1½ � þ 2f n½ � þ f nþ 1½ �ð Þ:

1. What is the frequency response of this filter? Represent the gain versus fre-
quency. What is the nature of the filter? Give its -3 dB bandwidth.

2. What is the impulse response? Write the difference equation of a causal filter
having the same gain (in magnitude) than the last. Compare its frequency
response to that of the previous filter.

3. Calculate an all-zeros filter whose four zeros are on the unit circle in �2p=3 and
� 2p=3þ p=6ð Þ.
Give the aspect of the frequency response. Can we speak of a low-pass filter?
Give attenuation at Nyquist frequency.
Give its impulse response assuming causality with nonzero response time at
n ¼ 0.

III. Fourier analysis of a digital signal:
Let the digital sinusoidal signal be s0 n½ � ¼ sinð2p f0nTÞ (with f0 ¼ 2 kHz and
fe ¼ 20 kHz).

1. Calculate the Fourier transform S0ðejxTÞ of this signal. Represent this function.
2. We assume that only a portion y n½ � of the sine limited to N ¼ 2048 points is

available (from 0 to N � 1).
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a. Write y n½ � in the form of the product of the sine function and a rectangular
window.

b. Deduce the FT YðejxTÞ as a convolution. Qualitatively represent the modulus of
YðejxTÞ. Taking as reference the modulus at f0 ¼ 2 kHz give an upper bound to
the modulus at 4 kHz.

c. Do we distinguish in the module’s representation the presence of a second
sinusoidal signal at frequency 4 kHz and amplitude e ¼ 10�3 superimposed to
the previous signal (s n½ � ¼ s0 n½ � þ es1 n½ �)?

3. To improve the detectability of a small signal superimposed on the first, the
signal s n½ � is multiplied by a Hanning window wH n½ � consisting of one cycle of a
sine signal equal to 0 in n = 0 and n ¼ N � 1.

a. Give the expression of wH n½ � and calculate its Fourier transform WHðejxTÞ.
Represent approximately the latter function modulus.

b. Explain the reason for the increased detectability of the low spectral component
when the signal s n½ � ¼ s0 n½ � þ es1 n½ � is multiplied by the Hanning window.
Perform numerical evaluation.

IV. Digital Filtering: The transfer function of a digital filter is

HðzÞ ¼ ðz�ejp3Þðz�e�jp3Þ
ðz�0:99ejp3Þðz�0:99e�jp3Þ. Knowing that the sampling frequency is

fe ¼ 20 kHz, give the aspect of the frequency gain. Give the impulse response of
this filter.

Note Assume that digital signals come from sampling at 20 kHz.

V. A digital signal x n½ � consists of an infinite succession of Kronecker pulses
whose repetition frequency f0 is 100 Hz.

A.

1. Give the expression of the signal x n½ � and represent graphically this signal.
2. What is the Fourier transform of this signal? Represent this FT.

B. The signal x n½ � is used as input to a first-order causal system with the parameter
K.

3. Give the expression of the output signal y n½ �.
4. On what condition upon K the system response to a Kronecker pulse does

not exceed, at the entrance to the next excitement, 5 % of its initial value?
Represent approximately the output signal in the case where K has the limit
value (take three significant figures for K).

5. Give the expression of FT of the output signal. Represent this FT.

C. The signal x n½ � is now the input of a second-order system. One pole is noted
zp ¼ rejxpT . Assume that the resonance is sharp.
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6. Remind the expression of the impulse response of the second-order system.
How to choose r to be in the limiting case of the Question B4 (r ¼ r5%)?

7. Demonstrate the expression of the second-order system frequency response
valid in the vicinity of the resonance frequency (strong). Demonstrate
formula giving the −3 dB bandwidth.

8. Place the poles in the complex plane in the case where the resonance
frequency is, in succession, 600 Hz, 1000 Hz, and 2400 Hz, and r ¼ r5%.
Calculate the −3 dB bandwidth.

9. The three systems of the previous question are placed in parallel, with the
input signal x n½ � defined in A. It is desired that the spectral amplitudes of
the output signal are such that the frequency components at 600 Hz and
1000 Hz have the same amplitude, with a −20 dB relative amplitude to that
at 2400 Hz. Show that it is necessary to precede the filter by amplifiers
whose gains are independent of frequency to readjust the output amplitudes
to desired levels.

10. Give the expression of the output signal as a combination of convolutions.
11. The excitation signal has not an infinite duration but lasts 1/4 s. Describe in

time and frequency the effect of this limitation.

NOTE: The problem models the digital synthesis of the vowel a (Attention a en
anglais ne sonne pas come le a français). The three frequencies are the first three
formants of a. The excitation Kronecker pulses are provided by the vocal cords
which interrupt the output of air from the lungs in the form of very short pulses.
This air enters the resonant cavities, larynx, mouth, whose adjustments provide the
desired formants. The first two formants of the vowel i are approximately 200 and
2400 Hz. The frequency of such pulses for a female voice (of the order of 200 Hz)
is twice that for a male voice.

VI. It is assumed that the digital signals originate from sampling with 10 kHz
frequency.

Consider the digital filter defined by the equation: g n½ � ¼ f n½ � � 1:99858f
n� 1½ � þ f n� 2½ �.
1. Determine the transfer function HðzÞ of this filter. Show that it has two zeros on

the unit circle. Represent the position of the zeros in the z-plane.
2. Conclude by a geometric argument the aspect of its frequency response after

calculating the gain at zero frequency and 5 kHz.
Can you use this filter to remove 60 Hz AC noise? Justify.

3. Give the impulse response of this filter.

VII. Let the digital filter defined by the temporal equation be

y n½ � ¼ 1
N

P
N�1
2

l¼�ðN�1
2 Þ

x nþ l½ �, with N odd.
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1. What is the impulse response of the filter? Represent it when N ¼ 9.
2. Determine in this case the filter transfer function HðzÞ. Locate its zeros in the

complex plane. From the position of these zeros, predict the shape of the filter
frequency gain magnitude.

3. Give the expression of the frequency response HðejxTÞ (T is the sampling
interval).

Why could we predict that this function was real?
What are the signal frequencies blocked by the filter in the case where the

sampling frequency is fe ¼ 1 MHz. Accurately represent the frequency response.

VIII. Let the causal digital filter defined by the equation be

y n½ � ¼ 1:98 cos
p
4

� �
y n� 1½ � � 0:992y n� 2½ � þ x n½ � þ x n� 1½ �:

1. Calculate the system transfer function HðzÞ. Represent its remarkable points in
the complex plane.

2. Show that the filter results from the cascade of two filters: a MA filter (Filter 1,
H1ðzÞ) and an AR filter (Filter 2, H2ðzÞ). Give the functions H1ðzÞ and H2ðzÞ as
well as their remarkable points. Discuss the problem in terms of stability and
causality.

3. Calculate the frequency response of the MA filter and specify the nature of this
filter. Represent its gain. Give the impulse response h1 n½ � of this filter.
What is the response of the filter to the input x n½ � ¼ U n½ � � U n� 4½ �?

4. Specify the character of the AR filter and give the appearance of its gain with
frequency.
Making the approximation valid if the pole is near the unit circle, give an
approximate value of its resonant frequency and its bandwidth (in Hertz).
Give the impulse response h2 n½ � of this filter and its aspect as a function of n.

5. Deduct from the above questions, the impulse response of the complete filter.

IX. Let the digital filter defined by the temporal equation be g n½ � ¼
rg n� 1½ � þ f n½ � � f n� 1½ � with r ¼ 0:99. The filter is supposed causal.

1. What is the transfer function of this filter? Place its notable points in the
complex plane.

2. Give qualitatively using a geometric argument the shape of the frequency
response (magnitude and phase) by specifying the values for frequencies f0 ¼ 0,
f0 ¼ 5 kHz, and f0 ¼ 10 kHz. Compare the effects of this filter to those of the
filter in question 1.

3. What is the impulse response of the filter?
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X. Let the digital filter defined by the following time equation be

g n½ � ¼ �f n½ � � f n� 1½ � þ f n� 2½ � þ f n� 3½ �:

1. Give the impulse response h n½ � of the filter and represent this function. Is the
filter causal?

2. Calculate the system transfer function HðzÞ. Having noticed that z ¼ 1 is a root
of HðzÞ ¼ 0 determine the remarkable points of HðzÞ and represent them in the
z-plane.

3. Deduct from the position of these notable points of HðzÞ, the shape of the
frequency response modulus HðejxTÞ. What are the frequencies of the signals
blocked by the filter? Calculate the expressions of the frequency response
HðejxTÞ and of its modulus.

4. The input signal is now f0 n½ � which is the time reversal of h n½ �: f0 n½ � ¼ h �n½ �.
Calculate the filter output signal g0 n½ �. What is the Fourier transform of this
signal?
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Chapter 18
Minimum-Phase Systems—Deconvolution

In this chapter we introduce the notion of the minimum-phase system. We show
with simple examples for two causal FIR systems having the same amplitude of the
frequency gain, that a filter whose zeros are located within the unit circle will have a
lower variation of phase with frequency. It follows that the impulse response of this
filter is earlier. Since a minimum-phase causal filter has its zeros inside the unit
circle, its inverse will be causal with its poles inside the unit circle, resulting in its
stability. Deconvolving a signal is thus possible, that is to say, finding back the
input signal of a filter by filtering the output signal of that filter. Then, we present
the general problem of deconvolution with its frequency and time aspects.
Deconvolution by the complex cepstrum method is introduced. It is illustrated with
an example inspired from seismic measurements.

18.1 Minimum-Phase Systems

18.1.1 Notion of Minimum-Phase System

We begin this study by discussion of the phase shift generated by a very simple
filter: an FIR for which the transfer function is limited to two terms:

HðzÞ ¼ b0 þ b1 z
�1: ð18:1Þ

This function is defined in the whole complex plane except at the point z ¼ 0.
We deduce that the filter is causal. It is stable, as the unit circle is within the domain
of definition of HðzÞ.

The time equation of this filter is

g½n� ¼ b0 f ½n� þ b1 f ½n� 1�: ð18:2Þ
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Its impulse response is

h½n� ¼ b0 d½n� þ b1 d½n� 1�: ð18:3Þ

It consists of a pulse in time n ¼ 0 followed by a second pulse at time n ¼ 1.The
zero of the transfer function is z0 ¼ � b1

b0
. The relation (18.1) can be rewritten as

HðzÞ ¼ b0 1� z0 z
�1� �

: ð18:4Þ

For a reason which will appear later, we are interested in a filter whose transfer
function H1ðzÞ results by multiplying HðzÞ by the following term:

z�1 � z�0
1� z0 z�1 ¼ �z�0

� � 1� 1=z�0
� �

z�1

1� z0 z�1 : ð18:5Þ

For H1ðzÞ, this term compensates the zero z0 and adds the zero 1=z�0 whose
modulus is the inverse of z0 modulus and with the same argument.

H1ðzÞ ¼ b0 1� z0 z
�1� � z�1 � z�0

1� z0 z�1 ¼ b0 z�1 � z�0
� � ¼ �b0 z

�
0 1� z�1

z�0

� �
: ð18:6Þ

The moduli of frequency responses of the two filters H ejxT
� ��� �� and H1 ejxT

� ��� ��

are equal because the multiplier term modulus evaluated on the unit circle is 1:

e�jxT � z�0
1� z0 e�jxT

����

���� ¼ e�jxT
�� �� 1� z�0e

jxT

1� z0 e�jxT

����

���� ¼ 1: ð18:7Þ

In the last fraction appeared the modulus of the ratio of a complex number and of
its conjugate complex which is 1.

We can also say that the filter whose transfer function is the ratio given in (18.5)
is an all-pass filter because the frequency response modulus is 1 at all frequencies.

Of course, the phase shifts generated by the two filters HðzÞ and H1ðzÞ are
different.

The transfer function of the second filter is

H1ðzÞ ¼ �b0 z
�
0 1� z�1

z�0

� �
with z�0 ¼ � b�1

b�0
: ð18:8Þ

It is easier to continue the discussion with real coefficients b0 and b1 which
ensure a real impulse response.

Since z0 ¼ � b1
b0
the zero of H1ðzÞ, 1

z�0
is 1

z�0
¼ 1

z0
¼ � b0

b1
.

H1ðzÞ ¼ b1 1þ b0
b1
z�1

� �
¼ b1 þ b0 z�1. Hence h1½n� ¼ b1 d½n� þ b0 d½n� 1�.

The H1ðzÞ filter impulse response is the time reverse of that of the original filter.
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The z0 position in the complex plane with respect to the unit circle depends on
the value of the ratio b1

b0
.

Assuming b0j j[ b1j j, then z0j j\1. The zero of HðzÞ lies within the unit circle
while that of H1ðzÞ is located outside this circle.

The effect of these zeros position on the phase of the frequency responses is now
studied in an example.

By choosing b0 ¼ 1 and b1 ¼ 0:5, z0 ¼ �0:5, the impulse response h½n� and the
z0 position obtained are shown in Fig. 18.1a, b.

The impulse response h1½n� and the zero position of the filter H1 zð Þ are shown in
Fig. 18.2a, b.

The gain magnitude is shown in Fig. 18.3a, equal for both filters (by con-
struction) and in Fig. 18.3b the respective phases of frequency responses are
plotted. It is noted that the two phases are negative for positive frequencies, as is the
case for causal filters, and that the phase shift created by the second filter is always
more negative than that of the first.

Fig. 18.1 a Impulse response; b zero of transfer function

Fig. 18.2 a Impulse response; b zero of transfer function
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By comparison it is said that the first filter is minimum phase.
We now show geometrically why this difference in phase variation is due to the

fact that the zero of the transfer function is inside the unit circle for the first filter
and is outside for the second filter.

The first filter frequency response is

H ejxT
� � ¼ b0 þ b1 e�jxT : ð18:9Þ

We are still in the case b0 [ b1. The argument of H ejxT
� �

is equal to the angle
made by the vector sum of the vector b0 and the vector b1e�jxT with the real axis.
When xT varies from 0 to 2p, the point M circulates counterclockwise on the unit
circle, and the end of the vector sum sweeps the circle centered at b0 with radius b1
as shown in bold in Fig. 18.4a. It is noted that in the case of the left figure the phase
will be contained in an interval within the range � p

2 ;
p
2

	 

.

The frequency response of the second filter is

H1 ejxT
� � ¼ b1 þ b0 e�jxT : ð18:10Þ

The end of the vector sum travels in a circle centered in b1 and radius b0
(Fig. 18.4b). As b0 [ b1 this circle surrounds the origin, leading the phase decrease
from 0 down to �2p.

In summary, we have shown on an example the general property that a filter
whose zero lies inside the unit circle is causal, stable, and minimum phase. One
whose zero is outside the unit circle is causal, stable but is not minimum phase.

For these filters with one zero, the impulse response is limited to two elements. If
the magnitude of the first term of the response exceeds that of the second, the filter
is minimum phase. Qualitatively we could say that energy comes faster (since the
first term is the largest) from the minimum-phase filter (mpf).

The importance of the concept of minimum-phase causal filter is that this filter
has a causal and stable inverse filter, that is to say that there is a causal and stable
filter whose transfer function denoted here HinvðzÞ is such that HinvðzÞ ¼ 1

H zð Þ.

Fig. 18.3 a Gain of both filters; b Phases
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If b0j j[ b1j j, as has been seen above, the zero of the filter transfer function
HðzÞ ¼ b0 1� z0 z�1ð Þ is inside the unit circle. For its inverse filter
HinvðzÞ ¼ 1

b0 1�z0 z�1ð Þ, the zero turned into a pole. As this pole is within the unit

circle, the causal filter is stable. It is a first-order autoregressive system whose
impulse response is

hinv½n� ¼ 1
b0

� b1
b0

� �n

U½n�: ð18:11Þ

If the filter and its inverse are placed in cascade, the overall transfer function is

HðzÞHinvðzÞ ¼ 1; ð18:12Þ

resulting in the time domain

h½n� � hinv½n� ¼ d½n�: ð18:13Þ

By applying the inverse filter to the signal consisting of the impulse response,
the impulse unit is obtained.

This principle is often used, particularly in the analysis of seismic signals, and it
is then called deconvolution. This technique will be detailed hereinafter.

Fig. 18.4 a H ejxT
� � ¼ b0 þ b1e�jxT ; b H1 ejxT

� � ¼ b1 þ b0e�jxT
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18.1.2 Properties of Minimum-Phase Systems

This analysis was developed on a filter with a single zero to clearly show the
properties that will now be generalized. First, it is easily seen that the product of
two minimum-phase transfer functions is minimum phase.

More generally, a minimum-phase polynomial is a polynomial in which all zeros
are located within the unit circle. A minimum-phase system is a linear,
time-invariant system over time, causal, whose transfer function is a rational

function:HðzÞ ¼ BðzÞ
AðzÞ where AðzÞ and BðzÞ are minimum-phase polynomials.

Thus the poles and zeros of HðzÞ are contained in the unit circle. As a result, the
inverse of such a system whose transfer function is HinvðzÞ ¼ 1

HðzÞ is also a

minimum-phase system (the poles and zeros are exchanged by the inversion).
A non-minimum phase system whose poles and zeros are not located on the unit

circle can give passage to a minimum-phase system having an equal frequency
response modulus by moving the poles and zeros lying outside the unit circle within
this circle. Thus by multiplying the transfer function by terms of the type in (18.5),
the modulus of the frequency response is unchanged.

We note h½n� and hmin½n� the impulse responses of two filters having the same
frequency response magnitude HðejxTÞ�� ��, the second corresponding to the
minimum-phase filter. It is shown mathematically that energy emerges faster from
mpf. Thus, we have whatever n:

Xn

k¼0

h½k�j j2 �
Xn

k¼0

hmin½k�j j2: ð18:14Þ

The response of the mpf is earlier.
In the following example, we consider two FIRs having same frequency

response. The zeros of the minimum-phase filter are shown in Fig. 18.5a. All zeros
are inside the unit circle. In Fig. 18.5b, two conjugate complex zeros of the mpf

Fig. 18.5 Poles location of two filters with same gain. a Mpf; b Not mpf
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have been displaced outside of the unit circle using the transformation rule of a zero
z0 in a zero 1=z�0.

Figure 18.6 shows the two impulse responses (mpf in a) with their values at
every moment written above the graph. We can verify that at every moment n, the
property (18.14) is verified.

Zeros of the minimum-phase filter:

z0 = 0:9� cosðpi=4:2Þþ i� sinðpi=4:2Þð Þ; z�0 ¼ 0:9� cos(pi=4:2Þ � i�sin(pi=4:2Þð Þ;
z1 = 0:8� cosðpi=2:8Þ + i� sinðpi=2:8Þð Þ; z�1 ¼ 0:8� cosðpi=2:8Þ � i� sinðpi=2:8Þð Þ;

Zeros of the second filter:

z0 = 0:9� cos(pi=4:2Þþ i� sinðpi=4:2Þð Þ; z�0 = 0:9� cos(pi=4:2Þ � i� sinðpi=4:2Þð Þ;
z1 = 1:12� cos(pi=2:8Þ + i�sin(pi=2:8Þð Þ; z�1 ¼ 1:12� cos(pi=2:8Þ � i�sin(pi=2:8Þð Þ;

18.2 Deconvolution

18.2.1 Interest of Deconvolution

When a signal reaches the observer, it has a history. It propagated over a com-
munication medium and has undergone transformations. In general, during this
process, noise is added on the original signal. It is often important to search to
recover the original signal existing before these deformations. This research is an
inverse problem: knowing the distortion of the transmission system properties, how,
from the final distorted signal, can we find back the original signal? There are many
situations in the case of the analysis of sounds. For example, can we find back the
musical quality of orchestras that were recorded a century ago with imperfect
recording means? Can we remove the creaking old recordings on disk phonograph?

Fig. 18.6 Impulse responses of two filters with same gain. a Mpf; b Not mpf
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This issue has generated a great deal of research. Numerous results have been
obtained, either with linear techniques, or with nonlinear processes. The digital
signal processing made possible unachievable results by analog processing.

As part of LTI systems study developed in this work, this objective is a de-
convolution. In digital, the problem is expressed as follows: the received signal y½n�
resulting from the filtering of a signal x½n� by an LTI filter with impulse response
h½n�. We have

y½n� ¼ x½n� � h½n�.
The question that arises is how to operate inverse filtering, that is to say find

back the signal x½n� from the measured signal y½n�?.
This problem is illustrated by the following diagram:

By modeling of physical problem, sometimes it is possible to have a good
approximation of h½n�. How to retrieve x½n� related to y½n� by the convolution

y½n� ¼
Xþ1

m¼�1
x½m�h½n� m�: ð18:15Þ

18.2.2 Deconvolution Techniques

Deconvolution by complex spectral amplitudes division
Convolution (18.15) becomes a simple product in the frequency domain:

YðejxTÞ ¼ XðejxTÞHðejxTÞ. Since XðejxTÞ ¼ YðejxT Þ
HðejxT Þ ¼ YðejxTÞHinvðejxTÞ, with

HinvðejxTÞ ¼ 1
HðejxT Þ, we can write

x½n� ¼ 1
xe

Zxe

0

YðejxTÞ
HðejxTÞ e

jxnTdx: ð18:16Þ

In the frequency domain, the deconvolution is illustrated by the scheme
Thus, by taking the ratio of the FT of the received signal y½n� and that of the

impulse response h½n� the previously measured or otherwise determined, it is in
principle possible to get x½n� by an inverse Fourier transform.

Very attractive in principle, this technique is rarely used in practice for the
following reasons: noise, however small, in signal y½n� has spectral components in
frequency ranges in which the size of HðejxTÞ which is in the denominator is low or
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even zero. Division by zero of these non-zero values of YðejxTÞ because of the
noise will give some very important values to the ratio. These values lead to an
aberrant result of the estimation of x½n�.

We may in some cases use empirical methods which give fairly good results.
Having found for example that a transmission channel weakens the high frequen-
cies, we may enhance the high frequencies in reception to find satisfactory spectral
amplitude. This spectrum recovery technique is widely used in analog or digital
processing in restoring sound signals recorded a century ago.

When it is possible to calculate the impulse response hinv½n� of an inverse filter,
the original signal x½n� can be obtained by convolving the signal y½n� therewith:

y½n� � hinv½n� ¼ x½n� � h½n� � hinv½n� ¼ x½n�:

Since by definition h½n� � hinv½n� ¼ d½n�.
Inverse filtering deconvolution
When it is possible to calculate the impulse response hinv½n� of an inverse filter, the
original signal x½n� can be obtained by convolving the signal y½n� therewith:

y½n� � hinv½n� ¼ x½n� � h½n� � hinv½n� ¼ x½n�;

Since by definition h½n� � hinv½n� ¼ d½n�.
We saw earlier that a minimum-phase causal filter has a causal and stable

inverse. It is then possible in that case to determine numerically hinv½n�. This
operation is illustrated in the following example. Figure 18.7a shows a FIR wavelet
with 21 coefficients which can be considered as the impulse response of a
minimum-phase filter as the all zeros of the filter transfer function are inside the unit

circle (Fig. 18.7b): h½n� ¼ P20

m¼0
bmd½n� m�.

Fig. 18.7 FIR wavelet: a Wavelet; b zeros situation
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The transfer function of the causal inverse filter is calculated by converting the
zeros into poles. In principle, one can compute the impulse response hinv½n� of the
inverse filter analytically. This function has an infinite duration since the inverse
filter is AR. In practice, we proceed by numerically inverse DFT a sampling of
function Hinv ejxT

� �
on a number of points N. The resulting hp inv½n� is limited to

N points. It imperfectly represents the impulse response hinv½n�. If the number of
points N is sufficiently large, the temporal aliasing will be low, and the function
obtained will be close enough to the real response hinv½n� of the inverse filter. In
Fig. 18.8a we see the calculated function hp inv½n� using an inverse FFT on N ¼ 64
points of the initial wavelet and in Fig. 18.8b the result of the convolution
h½n� � hp inv½n�. On the convolution product we recover the value 1 of the function
d½n� in n ¼ 0, but a small parasitic signal appeared beyond n ¼ 63 due to the
limiting of hp inv½n� support to N ¼ 64 points.

The case of a wavelet, which is the impulse response of a non-mpf filter having
same frequency response module as above is now presented. The wavelet (not mpf)
is shown in Fig. 18.9a. The impulse response of the causal inverse filter, evaluated
on 64 points, is shown in Fig. 18.9b. We can see from the figure that this inverse
causal filter is unstable. The deconvolution is impossible.

Deconvolution by the complex Cepstrum method
The deconvolution technique by applying the inverse filter developed in the pre-
ceding paragraph assumes that we a priori know the wavelet present in the com-
posite signal. In this case, this method is very effective to pinpoint the arrival time
and amplitude of the wavelet. It is able to separate the arrival times of two replicas
of the wavelet very near even if they overlap within the composite signal.

Fig. 18.8 a Causal filter inverse response; b Deconvolution result
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In practice, however, the wavelet constituting a signal is generally not known a
priori. This is the case, for example, in the processing of seismic signals, where
even if the temporal shape of the excitation signal from an explosion generating a
disturbance in the ground is known, the signal received by a remote sensor results in
filtering the original signal by the propagation medium which arrives completely
deformed.

The deconvolution method by the complex cepstrum does not require a priori
knowledge of wavelet buried in the composite signal. The name of this technique
comes from a pun based on the inversion of the word spectrum.

Consider a signal x½n�. Its z-transform (its complex spectrum) is noted XðzÞ. The
time function called complex cepstrum x̂½n� is defined by

x̂½n� ¼ 1
2pj

Z
�

C
log XðzÞð Þzn�1dz: ð18:17Þ

The first reason for the use of the logarithm is that the logarithm of a product is
equal to the sum of the logarithms of the members of that product. It is worth noting
here the notion of logarithm of a complex number. By showing the modules and
arguments of XðzÞ, XðzÞ ¼ XðzÞj jejArg XðzÞð Þ, one can write

log XðzÞð Þ ¼ log XðzÞj jð Þþ jArg XðzÞð Þ: ð18:18Þ

Now it is assumed that x½n� is the convolution of two functions f ½n� and g½n�:
x½n� ¼ f ½n� � g½n�. It follows that XðzÞ ¼ FðzÞGðzÞ, product of z-transforms of f ½n�
and g½n�. Then

Fig. 18.9 a Non-mpf filter wavelet; b impulse response
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log XðzÞð Þ ¼ log FðzÞð Þþ log GðzÞð Þ: ð18:19Þ

It then comes, due to the linearity of the z-transform, x̂½n� ¼ f̂ ½n� þ ĝ½n�.
Complex cepstrum of x½n� is the sum of the complex cepstra of f ½n� and g½n�.
If we can make a separation in the time domain of functions f̂ ½n� and ĝ½n�, the

deconvolution is successful. We can get back f ½n� by first taking log FðzÞð Þ, the
logarithm of f ½n�’s z-transform. Then, by taking the exponential of this result, we
get FðzÞ and finally eventually performing the inverse z-transform we obtain f ½n�.

An example of a typical deconvolution in a seismic situation is now presented. It
is assumed that the signal consists of a wavelet f ½n� and a replica (echo by a
subterranean layer, for example) located at a later time g½n� ¼ a f n� n0½ �.

We assume that aj j\1, which is natural for the case of an echo.So,

x½n� ¼ f ½n� þ a f n� n0½ �: ð18:20Þ

We can rewrite it as

x½n� ¼ f ½n� þ a f ½n� � d n� n0½ � ¼ f ½n� � d½n� þ a d n� n0½ �ð Þ:

Taking z ¼ ejxT , we can write

X ejxT
� � ¼ F ejxT

� �
FT d½n� þ a d n� n0½ �ð Þ;

X ejxT
� � ¼ F ejxT

� �
1þ a e�jn0xT
� �

:
ð18:21Þ

log X ejxT
� �� � ¼ log F ejxT

� �� �þ log 1þ a e�jn0xT
� �

: ð18:22Þ

Since it has been assumed that aj j\1, one can use the development of
log 1þ uð Þ in the vicinity of u ¼ 0 and write

log 1þ a e�jn0xT
� � ’ a e�jn0xT þ a2e�2jn0xT þ . . . ð18:23Þ

The inverse FT of this infinite sum is

ĝ½n� ¼ a d n� n0½ � þ a2d n� 2n0½ � þ . . .;

therefore

x̂½n� ¼ f̂ ½n� þ ĝ½n� ¼ f̂ ½n� þ a d n� n0½ � þ a2d n� 2n0½ � þ . . .: ð18:24Þ

The cepstrum of x½n� is composed of the sum of the cepstrum of the wavelet f ½n�
and a series of d functions located at the instants kn0. It is then possible to identify
first the delay n0 of the replica with a study of the periodicity of these peaks. It is
also possible to remove these peaks from x̂½n�, e.g., by interpolating the values in
kn0 by the average of the values on the left and right of the abscissa. A good
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evaluation is then obtained for f̂ ½n�. It remains only to take its FT log F ejxT
� �� �

,
then perform the exponential of this function, and finally take the inverse FT for
obtaining the wavelet f ½n�.

A numerical simulation is presented in the following example. To create the
composite signal x½n�, the wavelet f ½n� is the impulse response of a second-order
filter h½n� ¼ a1 h½n� 1� þ a2 h½n� 2� þ d½n� with a1 ¼ 1:65 and a2 ¼ �0:8. The
time of arrival of the replica is n0 ¼ 10. Its relative amplitude is a ¼ �0:7. The sum
of these two signals is performed: x½n� ¼ f ½n� þ af n� n0½ �, which is represented in
Fig. 18.10a. Figure 18.10b shows the cepstrum x̂½n�. Note the peaks with period-
icity 10. This allows finding the delay n0 ¼ 10 of the replica.

We remove the peaks by replacing the value of x̂½n� in these points with the
average of the adjacent point values. We then have a good assessment of the
cepstrum of the wavelet f̂ ½n� (Fig. 18.9a). The wavelet is derived in accordance with
the end of the algorithm described above. The calculation result is shown in
Fig. 18.11b. It overlaps very well with the original wavelet. Deconvolution suc-
ceeded in this case.

By subtracting x½n� of the wavelet reconstructed, that is to say by calculating
x n½ � � f n½ �, one can calculate the replica. It superimposes very well to the function
af n� n0½ �, as shown in Fig. 18.12.
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Fig. 18.10 a Sum of a signal and its replica; b Cepstrum of x½n�
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Fig. 18.11 a Cepstrum of f ½n�; b Reconstructed wavelet

Fig. 18.12 Replica and its
reconstruction
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Summary
In this chapter we have first introduced the notion of minimum-phase system. We
have shown with simple examples of two causal FIR systems having the same
amplitude of the frequency gain, where filter whose zeros are located within the unit
circle will have a lower variation of phase with frequency. It follows that the
impulse response of this filter is earlier. Since a minimum-phase causal filter has its
zeros inside the unit circle, its inverse is causal with its poles inside the unit circle
and then causal. Deconvolving a signal is possible in some cases by finding back
the input signal of a filter by filtering the output signal of that filter. We have
presented the general problem of deconvolution with its frequency and time aspects.
Deconvolution by the complex cepstrum method has been introduced. It was
illustrated by an example inspired from seismic measurements.
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Chapter 19
Wavelets; Multiresolution Analysis

This chapter follows Chap. 12 on time-frequency analysis. It has been shown how
decomposition on a wavelet basis allows highlighting effectively changes with time
of the properties of a signal. Signal processing is mainly done digitally today;
wavelet bases with compact support have been searched which could be used by
simple filtering operations. These bases must also allow reconstructing the signal
accurately and easily from the decomposition coefficients. This treatment, which is
called multi-resolution analysis, is remarkably effective in data compression,
especially for image processing.

To begin this chapter, we return to the general problem. The amount of infor-
mation exchanged and stored digitally today is enormous. To make these operations
possible with transmission channels with physically intrinsic limited throughput
and storage capacity, compression techniques that allow information made
acceptable for audio or video were sought. Along with the steady increase in the
speed of electronic components, intensive research has been conducted to develop
new coding algorithms for data compression. A striking example of the results of
this research is found when consulting an aerial view of a location on Internet. First
appears the globe with few details. One may rotate the view to center approximately
on the desired location, and then ask for magnification. The first image is blurred
without much detail. This leaves the user some time to adjust the centering of the
map on his place of interest. It would be very inefficient to convey all the details of
a map (operation that takes a long time) for a card that is not properly centered. The
operation continues with increasing magnifications. This shows the efficiency
during the transmission of an image to transmit firstly a view without the details,
and then transmit the detailed information when needed.

It is known that the details of a signal are contained in the high frequencies. Hence
the idea to separate information contained in high and low frequencies. This is the
principle of the use of filter banks. The progress of the analysis of these filter banks
led to multiresolution analysis. It allows numerical separation of frequency bands
recursively while still allowing the ability to reconstruct the signal without loss of
information in a second step. The presentation of these concepts in this chapter
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begins with the principles of the dyadic decomposition-reconstruction of a signal.
The initial Haar Transform mathematical developments are given as an example.
Their understanding makes it easier to address the concepts of multi-resolution
analysis. The space devoted to this problem being limited in this book, readers are
invited to deepen the concepts briefly described here with the many books dedicated
to wavelet analysis, especially the books of S. Mallat and I. Daubechies.

There is a relationship between filter banks and wavelets that we are aiming to
put in evidence here.

19.1 Dyadic Decomposition-Reconstruction of a Digital
Signal; Two Channels Filter Bank

Dyadic decomposition now exposed allows by a simple linear filtering operation the
decomposition of a digital signal into two components. One component contains the
low frequencies and the other the high frequencies. It is possible under certain
conditions using a second filtering operation on the two components to fully
recover the original signal.

The question raises: A signal x[n] is filtered by a filter with impulse response
h0½n�. One sample over 2 of the output signal is set to zero (this operation is
symbolized in the graph below by the symbol decimation by 2 and then re
extension by 2). The result is filtered by the filter with impulse response g0½n�. On a
parallel branch the same operation is made with filters with impulse responses h1½n�
and g1½n�. The output signals are added (see Fig. 19.1).

We denote y0½n� the signal at the output of the first filter in the upper branch of
the graph. Its z-transform is: Y0ðzÞ ¼ XðzÞH0ðzÞ. We note ŷ0½n� the signal resulting
from zeroing a sample over 2 of y0½n� and Ŷ0ðzÞ its z-transform.

Ŷ0ðzÞ is related to Y0ðzÞ by the relationship:

Ŷ0ðzÞ ¼ 1
2

Y0ðzÞþ Y0ð�zÞð Þ: ð19:1Þ

Indeed, the development of Y0ðzÞ is:

Y0ðzÞ ¼ . . .þ y0½�2�z2 þ y0½�1�z1 þ y0½0� þ y0½1�z�1y0½2�z�2 þ . . .

Fig. 19.1 Two channels filter bank decomposition-reconstruction
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We have: Y0ð�zÞ ¼ . . .þ y0½�2�z2 � y0½�1�z1 þ y0½0� � y0½1�z�1 þ y0½2�z�2 þ . . ..
Then 1

2 Y0ðzÞþ Y0ð�zÞð Þ ¼ . . .þ y0½�2�z2 þ y0½0� þ y0½2�z�2 þ . . ..
We recognize the z-transform of the series ŷ0½n� in which all the terms of even

ranks were canceled.
We note Ŷ0ðzÞ and Ŷ1ðzÞ respectively the z-transform of ŷ0½n� and ŷ1½n�. The

z-transform of the output signal is:

FðzÞ ¼ G0ðzÞŶ0ðzÞþG1ðzÞŶ1ðzÞ: ð19:2Þ

Using the relation (19.1):
FðzÞ ¼ 1

2G0ðzÞ Y0ðzÞþ Y0ð�zÞð Þþ 1
2G1ðzÞ Y1ðzÞþ Y1ð�zÞð Þ. Or,

FðzÞ ¼ 1
2
G0ðzÞ H0ðzÞXðzÞþH0ð�zÞXð�zÞð Þþ 1

2
G1ðzÞ H1ðzÞXðzÞþH1ð�zÞXð�zÞð Þ

Thus:

FðzÞ ¼ 1
2

H0ðzÞG0ðzÞþH1ðzÞG1ðzÞð ÞXðzÞþ 1
2

H0ð�zÞG0ðzÞþH1ð�zÞG1ðzÞð ÞXð�zÞ:
ð19:3Þ

We want now F(z) to be a filtering of X(z) without aliasing. It is then necessary
that the factor of X(−z) is zero in (19.3). Thus, we necessarily have:

H0ð�zÞG0ðzÞþH1ð�zÞG1ðzÞ ¼ 0: ð19:4Þ

Then:

FðzÞ ¼ 1
2

H0ðzÞG0ðzÞþH1ðzÞG1ðzÞð ÞXðzÞ: ð19:5Þ

The condition (19.4) may be verified by different functions combinations.
A particularly interesting case is met when the filters are such that the output F

(z) is equal to a delayed version of X(z). In other words we are looking for a
combination of filters that will allow a reconstruction of the signal x[n] after its
decomposition in two components for compression purpose, for example.

We seek these 4 filters H0ðzÞ, H1ðzÞ, G0ðzÞ and G1ðzÞ as causal.
Because of their causality, the filters necessarily generate a delay for the output

signal. If we note m > 0 the delay of x [n] by the crossing through the filter, we will
have:

FðzÞ ¼ XðzÞz�m: ð19:6Þ
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A possible configuration is:

G0ðzÞ ¼ zkH1ð�zÞ andG1ðzÞ ¼ �zkH0ð�zÞ: ð19:7Þ

Another possibility is given by a change in sign:

G0ðzÞ ¼ �zkH1ð�zÞ andG1ðzÞ ¼ zkH0ð�zÞ; ð19:8Þ

where k may be any integer.
In the case (19.7),

FðzÞ ¼ 1
2
zk H0ðzÞH1ð�zÞ � H1ðzÞH0ð�zÞð ÞXðzÞ: ð19:9Þ

Let us write PðzÞ ¼ H0ðzÞH1ð�zÞ. Taking (19.4), in account, relation (19.3) is
written:

FðzÞ ¼ 1
2

PðzÞ � Pð�zÞð ÞzkXðzÞ:

In this case we should have

PðzÞ � Pð�zÞ ¼ 2 and k ¼ �m: ð19:10Þ

This equation appears as a sufficient condition for the quadruplet of filters allows
the decomposition- reconstruction of the signal without loss of information.

In the case (19.8) with again PðzÞ ¼ H0ðzÞH1ð�zÞ we get

PðzÞ � Pð�zÞ ¼ �2: ð19:11Þ

The following two paragraphs are simple examples of this decomposition. We
will expose their limitations. Wavelet decomposition allows the determination of
more efficient decompositions.

Haar transform
The decomposition by the Haar transform is a first example of the previous results.

The Haar transform of a pair of variable
x1
x2

� �
in a pair

y1
y2

� �
is defined

as:
y1
y2

� �
¼ T

x1
x2

� �
, wherein the matrix T is:

T ¼ 1
ffiffiffi
2

p 1 1
1 �1

� �
: ð19:12Þ
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Inversely we have:

y1 ¼ 1
ffiffiffi
2

p x1 þ 1
ffiffiffi
2

p x2 and y2 ¼ 1
ffiffiffi
2

p x1 � 1
ffiffiffi
2

p x2: ð19:13Þ

The matrix T shown in (19.12) is symmetric. Its determinant has an absolute
value of 1 and its column vectors are orthogonal. It follows that its inverse equals its
transpose:

T�1 ¼ TT ¼ 1
ffiffiffi
2

p 1 1
1 �1

� �
: ð19:14Þ

Therefore

x1 ¼ 1
ffiffiffi
2

p y1 þ 1
ffiffiffi
2

p y2 and x2 ¼ 1
ffiffiffi
2

p y1 � 1
ffiffiffi
2

p y2: ð19:15Þ

We can apply this transformation in signal processing. Consider a sequence of
values which constitutes a signal x[n]. Based on this transform, two data sequences
y0½n� and y1½n� may be created by:

y0½n� ¼ 1
ffiffiffi
2

p x½n� 1� þ 1
ffiffiffi
2

p x½n� and y1½n� ¼ 1
ffiffiffi
2

p x½n� 1� � 1
ffiffiffi
2

p x½n�: ð19:16Þ

In practice, the signal x[n] is causal. y0½n� and y1½n� are the output signals of two
causal MA filters. The function y0½n� represents a smoothed version of the signal x
[n] and y1½n� is the derivation (numerical) of that signal. The respective impulse
responses of these filters are:

h0½n� ¼ 1
ffiffiffi
2

p d½n� 1� þ d½n�ð Þ and h1½n� ¼ 1
ffiffiffi
2

p d½n� 1� � d½n�ð Þ: ð19:17Þ

Their transfer functions are:

H0ðzÞ ¼ 1
ffiffiffi
2

p ðz�1 þ 1Þ andH1ðzÞ ¼ 1
ffiffiffi
2

p ðz�1 � 1Þ: ð19:18Þ

The first filter is low-pass as its transfer function has a zero at z = −1. The
second has a transmittance zero at z = 1, which makes it a high-pass filter.

We take T = 1 without loss of generality. The frequency responses are:

H0ðejxÞ ¼ 1
ffiffiffi
2

p e�jx þ 1
� �

andH1ðejxÞ ¼ 1
ffiffiffi
2

p e�jx � 1
� �

: ð19:19Þ
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Reconstruction of the signal from its components
We use the notations x1 ¼ x½n� 1� and x2 ¼ x½n� with y1 ¼ y0½n� and y2 ¼ y1½n� in
(19.15).

Relations (19.16) imply that to each signal value x[n] correspond two values
y0½n� and y1½n� that both contain information on the signal x[n] at the instants n and
n−1. Thus, according to the Eq. (19.15), we have:

x½n� 1� ¼ 1
ffiffiffi
2

p y0½n� þ 1
ffiffiffi
2

p y1½n�; 8n; ð19:20Þ

and

x½n� ¼ 1
ffiffiffi
2

p y0½n� � 1
ffiffiffi
2

p y1½n�; 8n: ð19:21Þ

If we keep only one value among 2 of y0½n� and y1½n� (decimation by 2 or, in
other words, sub-sampling by 2), we can still go back to the function x[n] by an
inverse transformation using the matrix given in (19.14). There is no loss of
information.

Since we used one value over 2 of y1½n� and y2½n�, one can define the functions
ŷ0½n� and ŷ1½n� such that ŷ0½n� ¼ y0½n� and ŷ1½n� ¼ y1½n� for even values of n and are
zero for odd values.

It is then possible to reconstruct the signal x[n] from the signals ŷ0½n� and ŷ1½n�
writing for any n:

x½n� ¼ 1
ffiffiffi
2

p ŷ0½nþ 1� þ ŷ0½n�ð Þþ 1
ffiffiffi
2

p ŷ1½nþ 1� � ŷ1½n�ð Þ; 8n: ð19:22Þ

x½n� ¼ g0½n� � ŷ0½n� þ g1½n� � ŷ1½n� or XðzÞ ¼ G0ðzÞŶ0ðzÞþG1ðzÞŶ1ðzÞ;

with

g0½n� ¼ 1
ffiffiffi
2

p d½nþ 1� þ d½n�ð Þ and g1½n� ¼ 1
ffiffiffi
2

p d½nþ 1� � d½n�ð Þ:

With

G0ðzÞ ¼ 1
ffiffiffi
2

p ðzþ 1Þ andG1ðzÞ ¼ 1
ffiffiffi
2

p ðz� 1Þ: ð19:23Þ

Using (19.18), we may write:

G0ðzÞ ¼ �zH1ð�zÞ andG1ðzÞ ¼ zH0ð�zÞ:
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We find that:

G0ðzÞH0ðzÞþG1ðzÞH1ðzÞ ¼ �zH1ð�zÞH0ðzÞþ zH0ð�zÞH1ðzÞ ¼ �2z; ð19:24Þ

which is consistent with (19.10),
and

G0ðzÞH0ð�zÞþG1ðzÞH1ð�zÞ ¼ 0: ð19:25Þ

The last expression (19.25) is the relation (19.4).
Filters with transfer functions H0ðzÞ and H1ðzÞ appear as decomposition filters

(analysis filter bank) signal. Filters with transfer functions G0ðzÞ and G1ðzÞ are
reconstruction filters (synthesis filters) of this signal.

Note The decomposition filters of the Haar transform H0ðejxÞ and H1ðejxÞ have an
interesting property. We note on (19.19) that H1ðejxÞ ¼ �H0 ej xþpð Þ� �

. Thus:

H1ðejxÞ
�� �� ¼ H0 ej xþpð Þ

� 	���
���:

The following relationship stands:

H0ðej xð ÞÞ�� ��2 þ H1ðejxÞ
�� ��2¼ H0ðej xð ÞÞ�� ��2 þ H0 ej xþ pð Þ

� 	���
���
2
¼ 2: ð19:26Þ

The gains amplitudes are represented in Fig. 19.2 in the case 0�x� p. These
moduli are symmetrical with respect to x ¼ p

2. These filters are called quadrature
mirror filters.

This filter bank is simple and works very well. However, we note that the filters
are not very selective, so it is not very effective in the separation of HF and LF.
After passing through the LF filter, there are too much HFs remaining and vice
versa in the HF filter. We are led to search for other, more efficient, filters.

Fig. 19.2 Spectral
amplitudes of Haar filters for
f0�x\pg
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Daubechies wavelets are designed to solve this problem. They are detailed in
Sect. 19.3 of this chapter.

LeGall-Tabatabai filter bank 5–3
We take as a second example the LeGall-Tabatabai filter bank 5–3 (It is used for
image compression and is part of the JPEG2000 image coding standard). By
assumption, the filters are linear-phase FIR, that is to say, their impulse responses
do have a center of symmetry.

The role of high-pass filter is assigned to H1ðejxTÞ. In the example discussed
here, its impulse response is limited to three values. The high-pass property is
achieved when H1ðzÞ has a double zero in z = 1. This is the case for the causal filter
with transfer function:

H1ðzÞ ¼ 1
4
z�2ðz� 1Þ2 ¼ 1

4
� 1
2
z�1 þ 1

4
z�2: ð19:27Þ

By hypothesis, (as the impulse response is limited to 5 elements), H0ðzÞ has the
form:

H0ðzÞ ¼ a2 þ a1z
�1 þ a0z

�2 þ a1z
�3 þ a2z

�4: ð19:28Þ

One notices the symmetry of the coefficients which ensures linear phase shifts by
the filters.

PðzÞ ¼ H0ðzÞH1ð�zÞ ¼ a2
4

þ a1
4

þ a2
2

� 	
z�1 þ a0

4
þ a1

2
þ a2

4

� 	
z�2 þ a1

4
þ a0

2
þ a1

4

� 	
z�3

þ a0
4

þ a1
2

þ a2
4

� 	
z�4 þ a1

4
þ a2

2

� 	
z�5 þ a2

4
z�6:

ð19:29Þ

Pð�zÞ ¼ a2
4
� a1

4
þ a2

2

� 	
z�1 þ a0

4
þ a1

2
þ a2

4

� 	
z�2 � a1

4
þ a0

2
þ a1

4

� 	
z�3

þ a0
4

þ a1
2

þ a2
4

� 	
z�4 � a1

4
þ a2

2

� 	
z�5 þ a2

4
z�6:

PðzÞ � Pð�zÞ ¼ a1
2

þ a2
� 	

z�1 þ a1
2

þ a0 þ a1
2

� 	
z�3 þ a1

2
þ a2

� 	
z�5: ð19:30Þ

The center of symmetry of the output signal is located in m = 3. To satisfy the
condition we must have: PðzÞ � Pð�zÞ ¼ 2z�3.

It is therefore necessary that: a1
2 þ a2 ¼ 0, thus: a2 ¼ � a1

2 .
Also it is necessary that a0 þ a1 ¼ 2.
If we take a0 ¼ 3

2, then a1 ¼ 1
2 and a2 ¼ � 1

4.
Finally: h0 ¼ � 1

4 ;
1
2 ;

3
2 ;

1
2 ;� 1

4

� �
(low-pass) and h1 ¼ 1

4 ;� 1
2 ;

1
4

� �
(high-pass).

These two expressions are the impulse responses of the analysis filters.
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The impulse responses of the synthesis filters are deduced from relationships
(19.7).

g0 ¼ 1
4
;
1
2
;
1
4

� �
ðlow-passÞ and g1 ¼ 1

4
;
1
2
;� 3

2
;
1
2
;
1
4

� �
ðhigh-passÞ:

The frequency responses of the LeGall-Tabatabai 5–3 filters are shown in
Fig. 19.3.

In the previous example the filters were calculated through the determination of
the coefficients of z−1 polynomials. This determination is made empirically, with no
overall strategy for filtering. The discrete wavelet analysis which is developed in the
next section provides a theoretical framework for the research of analysis filters and
provides a more fruitful approach to the problem. We will find that the results of
this research result as does the previous method, in the determination of the
coefficients of FIR type filters.

Fig. 19.3 Spectral amplitudes of LeGall-Tabatabai filters; Top, decomposition a Low pass;
b High pass; Bottom, reconstruction c Low pass; d High pass
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As is shown in the following, relations (19.24) and (19.25) are also encountered in
the decomposition of a signal on a basis of compactly supported wavelets
(Daubechies wavelets, for example). It will be seen that the functions h0½n� and h1½n�
encountered in (19.17) are used for construction of the scaling function and the
Daubechies wavelet with two coefficients Db2 which is identical to the Haar wavelet.

19.2 Multiresolution Wavelet Analysis

Haar functions basis
In this presentation, the Haar wavelet is used to address simply the principles of
discrete wavelet analysis. Although in practice the signal processing are done by
numerical calculations, the functions under study are functions of continuous time
t. The analysis of the properties of these treatments being done in the frequency
domain, a difficulty which is encountered in the following lies in the coexistence of
analog and digital Fourier transforms in the calculations.

Let us first define the scaling function /ðtÞ on the interval [0, 1] over which it is
equal to 1 (Fig. 19.4):

/ðtÞ ¼ 1 for t 2 ½0; 1�
0 elsewhere

���� : ð19:31Þ

The time axis t is divided into contiguous intervals with widths equal to 1. The
functions /ðt � kÞ will be equal to 1 in the intervals ½k; kþ 1�, 8 k 2 Z. A piecewise
function f0ðtÞ constant in each of the intervals ½k; kþ 1� can be written as a linear
combination of the functions /ðt � kÞ:

f0ðtÞ ¼
X1

k¼�1
ak/ðt � kÞ: ð19:32Þ

We denote V0 the space generated by the set of functions /ðt � kÞ.
Example Let a function f0ðtÞ equal to 3 in the interval [0, 1] and to −2 in the
interval [4, 5] and zero elsewhere. We get by identification in (19.32) a0 ¼ 3 et
a4 ¼ �2. Other expansion coefficients are zero.

Fig. 19.4 Haar scaling
function /ðtÞ
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A more general method for determining the coefficients uses a scalar product.
Here, the dot product of two real functions f ðtÞ and gðtÞ is defined by:

\f ðtÞ; gðtÞ[ ¼
Z1

�1
f ðtÞgðtÞdt: ð19:33Þ

The norm of f ðtÞ is: fk k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
\f ðtÞ; f ðtÞ[p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR þ1
�1 f 2ðtÞdt

q
.

The functions f ðtÞ and gðtÞ must be square integrable (f ðtÞ 2 L2).
It is readily apparent that since the intersection of the functions supports /ðtÞ and

/ðt � kÞ is zero for k 6¼ 0, we have \/ðtÞ;/ðt � kÞ[ ¼ R1
�1 /ðtÞ/ðt � kÞdt ¼ 0

for k 6¼ 0.
The functions /ðt � kÞ form an orthogonal basis of the space V0. The elements

of this basis are normalized to 1 as

/ðt � kÞk k2¼ \/ðt � kÞ;/ðt � kÞ[ ¼
Z1

�1
/2ðt � kÞdt ¼ 1: ð19:34Þ

The expansion coefficients ak in the development (19.32) can be determined as
being the projections of the function f0ðtÞ on the functions of the basis:

\f0ðtÞ;/ðt � kÞ[ ¼
Z1

�1

X1

k0¼�1
ak0/ðt � k0Þ/ðt � kÞdt ¼ ak ð19:35Þ

By this method we find again in the previous example a0 ¼ 3 and a4 ¼ �2.
One can increase the resolution in the analysis of piecewise constant functions

along the time axis by dividing by 2 the width of each interval. We are led to use for
the representation the functions /ð2tÞ and /ð2t � 1Þ which are compressed ver-
sions of /ðtÞ on the t-axis. The function /ð2t � 1Þ is a delayed version of function
/ð2tÞ by the delay t ¼ 1

2 (Fig. 19.5).
It is easily seen that we have /ðtÞ ¼ c0/ð2tÞþ c1/ð2t � 1Þ, with c0 ¼ 1 and

c1 ¼ 1.

Fig. 19.5 Haar scaling
functions a /ð2tÞ;
b /ð2t � 1Þ
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The functions /ð2t � kÞ generate the space V1 of piecewise constant functions
on intervals of width 1

2. They form an orthogonal basis. It appears that a function
belonging to the space V0 also belongs to V1. We therefore have V0 � V1.

We then notice that the function /ðtÞ is normalized to 1, but /ð2tÞ is not, asR1
�1 /2ð2tÞdt ¼ 1

2. To overcome this drawback, the orthonormal functions /jkðtÞ are
defined:

/jkðtÞ ¼ 2j=2/ð2 jt � kÞ: ð19:36Þ

In the case of a 2 compression factor, j is 1. It comes /1kðtÞ ¼ 21=2/ð2t � kÞ.
Example The development of the function f1ðtÞ 2 V1 equal to −1 in the interval
0; 12

 �

and 3 in the interval 1
2 ; 1
� �

takes the form:

f1ðtÞ ¼
X1

k¼�1
ak/1kðtÞ ¼ a0/10ðtÞþ a1/11ðtÞ ¼ a0

ffiffiffi
2

p
/ð2tÞþ a1

ffiffiffi
2

p
/ð2t � 1Þ:

The coefficients a0 and a1 of the development of f1ðtÞ are determined by pro-
jecting that function on the functions of the basis. We have:

\f1ðtÞ;/10ðtÞ[ ¼
ffiffiffi
2

p Z1

0

f1ðtÞ/ð2tÞdt ¼ �
ffiffiffi
2

p

2
¼ a0:

Similarly, a1 ¼ \f1ðtÞ;/11ðtÞ[ ¼ \f1ðtÞ;
ffiffiffi
2

p
/ð2t � 1Þ[ . This leads to

a1 ¼ 3ffiffi
2

p .

Again, dividing by 2 the support of the basis functions, one can represent
functions having 4 possibly different successive values in the range [0, 1]. A new
basis of the space V2 of all these functions is built on the contracted functions by a
factor of 4 of the scaling function /ðtÞ. It consists of functions:

/20ðtÞ ¼ 2/ð4tÞ;/21ðtÞ ¼ 2/ð4t � 1Þ;/22ðtÞ ¼ 2/ð4t � 2Þ and/23ðtÞ
¼ 2/ð4t � 3Þ:

Approximation of any function
We now consider a function f ðtÞ, a priori non-constant piecewise, square integrable:R þ1
�1 f tð Þj j2dt\1, f tð Þ 2 L2ð Þ. Assume that each interval [k, k + 1] is divided into
2j contiguous equal intervals. We note ak the orthogonal projection of f(t) on the
function 2j=2/ð2 jt � kÞ which is equal to 2j on the interval k

2j ;
kþ 1
2j


 �
.
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The sum fj tð Þ ¼ 2j=2
P2j�1

k¼0 ak/ 2 jt � kð Þ is an approximation with the resolution
2−j of the function f(t). The approximation will be better as the width of the interval
2−j is smaller.

The mechanism by successive divisions by 2 of the intervals where the function
is constant is clear. The production of bases of orthogonal functions is easy, but
these bases, built solely on compressions of function /ðtÞ, do not have much
interest. Indeed, the knowledge of all the coefficients (2 coefficients in the example
above) is required to estimate the function, even for a rough estimate.

An additional function wðtÞ is introduced, the Haar wavelet, which will be used
to build more efficient orthogonal bases. The Haar mother wavelet is defined as
(Fig. 19.6):

wðtÞ ¼ 1 for t 2 ½0; 1=2�
�1 for t 2 1; 1=2� �
���� and 0 elsewhere: ð19:37Þ

It is a wavelet as its integral is zero; that it is condensed in a restricted time.
Furthermore its support is compact.

To consider a basis using this wavelet, let us return to the space V1 of functions
constant on intervals of widths 1

2. An alternative basis for this space is constituted by
the two functions / tð Þ and wðtÞ. These functions are orthogonal and normalized to
1, as can easily be verified.

We now want the development on this basis of the function f1ðtÞ met above, with
value −1 in the interval 0; 12


 �
and equals 3 in the interval 1

2 ; 1
� �

.
Writing f1ðtÞ ¼ a0/ðtÞþ b0wðtÞ, we have:

\f1ðtÞ;/ðtÞ[ ¼
Z1

�1
f1ðtÞ/ðtÞdt ¼

Z1

0

f1ðtÞ/ðtÞdt ¼ a0

Z1

0

/ðtÞ/ðtÞdt ¼ a0:

This scalar product is \f1ðtÞ;/ðtÞ[ ¼
Z1

0

f1ðtÞ/ðtÞdt ¼ �
Z1=2

0

/ðtÞdtþ 3
Z1

1=2

/ðtÞdt ¼ 1,

thus a0 ¼ 1 and b0 ¼
R1

0
f1ðtÞwðtÞdt ¼ �1

R1=2

0
wðtÞdtþ 3

R1

1=2
wðtÞdt ¼ �2.

Thus f1ðtÞ ¼ /ðtÞ � 2wðtÞ.
The function /ðtÞ is constant in the interval [0, 1], the projection of f1ðtÞ on /ðtÞ

provides the average value of this function on the interval. The positive value
a0 ¼ 1 reflects the fact that the function is more often positive than negative in this

Fig. 19.6 Haar wavelet wðtÞ
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interval. The fact that b0 ¼ �2\0 informs us that either f1ðtÞ is highly negative in
the interval 0; 12


 �
, or greatly positive in the range 1

2 ; 1
� �

. In summary, /ðtÞ gives an
average value and wðtÞ an unbalance.

Functions /ðt � kÞ span the space V0. Functions wðt � kÞ generate a space W0

orthogonal noted V0. The union of these spaces is the space V1. Thus
V1 ¼ V0 �W0.

We now subdivide each interval of width 1 into 4 equal intervals, the function
f2ðtÞ belongs to the space noted V2. One is led to seek a compound basis using
functions /ðt � kÞ and several versions contracted or not of wðt � kÞ.

To make the mechanism readily apparent, we focus on the sub space of V2 of
functions null outside the interval [0, 1]. An orthonormal basis of this sub space is
made of /ðtÞ, wðtÞ, ffiffiffi

2
p

wð2tÞ and ffiffiffi
2

p
wð2t � 1Þ. These last two functions are shown

in Fig. 19.7.
By noting W1 the space generated by the two functions

ffiffiffi
2

p
wð2tÞ andffiffiffi

2
p

wð2t � 1Þ, one has V2 ¼ V1 �W1 or equivalently V2 ¼ V0 �W0 �W1.

Example Consider a piecewise constant function f3ðtÞ defined upon the interval [0,
1]. This interval is divided into 23 = 8 intervals (j = 3). This function equals 6
within the interval 0; 18


 �
and −2 in the interval 3

8 ;
4
8


 �
. We look for the development

of this function on the basis consisting of the 8 orthogonal functions (the verifi-
cation of orthogonality is left to the reader):

/ðtÞ;wðtÞ;wð2tÞ;wð2t � 1Þ;wð4tÞ;wð4t � 1Þ;wð4t � 2Þ;wð4t � 3Þ:

The transition to a vector notation is useful. Each component of a vector is equal
to the value of the function in the successive intervals. Thus it is written:

f3ðtÞ ! f3 ¼

6
0
0
0
�2
0
0
0

0

BBBBBBBBBB@

1

CCCCCCCCCCA

Fig. 19.7 Haar functions;
a wð2tÞ; b wð2t � 1Þ
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These column vectors taking upmuch space in thewritten pagewe prefer to use the
followingwriting of a transposed row vector: f3 ¼ 6 0 0 0 �2 0 0 0ð ÞT .

In the calculations, the scalar product of f3ðtÞ with the functions of a basis, for

example wðtÞ, \f3ðtÞ;wðtÞ[ ¼ R 1
0 f3ðtÞwðtÞdt, is replaced by the scalar product of

the vector f3 with the vector w ¼ 1 1 1 1 �1 �1 �1 �1ð ÞT after
normalization to 1:

w ¼ 1

2
ffiffiffi
2

p 1 1 1 1 �1 �1 �1 �1ð ÞT :

It comes:

\f3ðtÞ;wðtÞ[ ¼ 6 0 0 0 �2 0 0 0ð Þ 1

2
ffiffiffi
2

p 1 1 1 1 �1 �1 �1 �1ð ÞT¼ 2
ffiffiffi
2

p

The different standard basis vectors will be noted vk:

v1 ¼ /t ¼
1

2
ffiffiffi
2

p 1 1 1 1 1 1 1 1ð ÞT ; v2 ¼ wt ¼
1

2
ffiffiffi
2

p 1 1 1 1 �1 �1 �1 �1ð ÞT ;

v3 ¼ w2t ¼
1
2

1 1 �1 �1 0 0 0 0ð ÞT ; v4 ¼ w2t�1 ¼
1
2

0 0 0 0 1 1 �1 �1ð ÞT ;

v5 ¼ w4t ¼
1
ffiffiffi
2

p 1 �1 0 0 0 0 0 0ð ÞT ; v6 ¼ w4t�1 ¼
1
ffiffiffi
2

p 0 0 1 �1 0 0 0 0ð ÞT ;

v7 ¼ w4t�2 ¼
1
ffiffiffi
2

p 0 0 0 0 1 �1 0 0ð ÞT ; v8 ¼ w4t�3 ¼
1
ffiffiffi
2

p 0 0 0 0 0 0 1 �1ð ÞT :

The expansion coefficients of f3ðtÞ are: ak ¼
ffiffiffi
2

p
; 2

ffiffiffi
2

p
; 3;�1; 3

ffiffiffi
2

p
; 0;� ffiffiffi

2
p

; 0
� 


.
These coefficients are the numerical wavelet transform of the original function.

We verify that:

f3ðtÞ ¼
X8

k¼1

akvkðtÞ: ð19:38Þ

It is interesting to observe graphically the results of an approximation of f3ðtÞ
consisting of a sum of terms reduced to a number lower than 8. First of all we show
in Fig. 19.8 the perfect reconstruction of f3ðtÞ obtained by the sum (19.38).

Figure 19.9 shows an approximation f31ðtÞ with the sum limited to its first 4
coefficients. We find that we have lost in resolution (in optics, it would be said that
the image is blurred) but both pulses at 0 and 1

2 are fairly well localized:

Comparison with a limitation in the Fourier domain
We want to test here the reconstruction of the signal when using only a part of the
expansion coefficients of the discrete Fourier transform. The inversion of the DFT
formula is denoted here in matrix form. It is:
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f ½0�
f ½1�
f ½2�
. . .
f ½7�

0

BBBB@

1

CCCCA
¼ 1

N

1 1 1 . . . 1
1 W�

8 W�2
8 . . . W�7

8
1 W�2

8 W�4
8 . . . W�14

8
. . . . . . . . . . . . . . .
1 W�7

8 W�14
8 . . . W�49

8

0

BBBB@

1

CCCCA

F½0�
F½1�
F½2�
. . .
F½7�

0

BBBB@

1

CCCCA
:

Of course, the reconstruction is perfect when all 8 Fourier coefficients are used in
the inverse DFT. Reconstitution is then tested when we keep only 5 coefficients
corresponding to the lower frequencies by imposing F½3� ¼ F½4� ¼ F½5� ¼ 0. The
result is reproduced in Fig. 19.10:

We see the resulting oscillation of the Gibbs phenomenon on all t axis.
Reconstruction is not as good as when using the wavelets.

The Haar functions /ðtÞ are discontinuous; they are ill-suited to serve as a basis
for approximations for smooth functions since reconstructions will necessarily
present discontinuities. Many compressed wavelets would be necessary to reduce

Fig. 19.8 Function f3ðtÞ
under analysis and its perfect
reconstruction

Fig. 19.9 Reconstruction
with a sum limited to first 4
elements
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the effect of these discontinuities and achieve sufficient approximation. One is led to
seek other bases wavelets functions, continuous with compact support. Mallat and
Daubechies established the theoretical framework for determining that type of
wavelets. They calculated wavelets adapted to dyadic multiresolution (successive
divisions of the support by a factor of 2).

19.3 Daubechies Wavelets

Definition of the scaling function /ðtÞ
The search for these wavelets begins by determining a scaling function with the
following properties:

The scaling function /ðtÞ must be real, causal, with a compact support (/ðtÞ is
zero outside a closed interval [0, N] of the variable t). The upper bound N of this
interval is a positive integer. In practice, this integer will be small (less than a few
dozens). Its value will depend upon the desired level of resolution of the analysis.
A continuous function /ðtÞ on the entire time axis is sought, that implies that at
both ends of its support,

/ð0Þ ¼ /ðNÞ ¼ 0: ð19:39Þ

In the literature on wavelets, the scaling function is called the “father” function.
The desired scaling function /ðtÞ is normalized by hypothesis. It must verify:

Zþ1

�1
/2ðtÞdt ¼ 1: ð19:40Þ

Fig. 19.10 Reconstruction
with a Fourier sum limited to
low frequencies
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We impose to the function /ðtÞ and to its translated by an integer m to be
orthonormal:

\/ðtÞ;/ðt � mÞ[ ¼
Zþ1

�1
/ðtÞ/ðt � mÞdt ¼ d½m�withm 2 Z: ð19:41Þ

The key point of multiresolution analysis is that /ðtÞ has to be obtained by a
linear combination of its compressed versions by a factor of 2 and translated by
integer values:

/ðtÞ ¼
XN

k¼0

ck/ð2t � kÞwith k 2 N: ð19:42Þ

It appears that the upper limit N of the sum index has the value of the right
boundary of the support of /ðtÞ.

The desired function /ðtÞ should be such that its compressed versions by a factor
of 2 and translated by an integer k are orthogonal:

/ð2tÞ;/ð2t � kÞh i ¼
Zþ1

�1
/ð2tÞ/ð2t � kÞdt ¼ 0 if k 6¼ 0: ð19:43Þ

For 8 k 2 Z, the following property is verified:

/ð2t � kÞk k2¼ /ð2t � kÞ;/ð2t � kÞh i ¼
Zþ1

�1
/2ð2t � kÞdt

¼ 1
2

Zþ1

�1
/2ðyÞdy ¼ 1

2
:

ð19:44Þ

Given (19.42) the constraint (19.43) implies a relation between the coefficients ck.
Indeed:

Z1

�1
/ðtÞ/ðt � mÞdt ¼

Z1

�1

XN

k¼0

ck/ð2t � kÞ
XN

k0¼0

ck0/ð2t � 2m� k0Þdt:

The integrals of the various products are zero unless k0 ¼ k � 2m. Then:

Z1

�1
/ðtÞ/ðt � mÞdt ¼ 1

2

XN

k¼0

ckck�2m ¼ d½m�:
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The following relation between the coefficients must be verified:

XN

k¼0

ckck�2m ¼ 2d½m�: ð19:45Þ

In particular, when m = 0,
PN

k¼0
c2k ¼ 2.

Definition of the wavelet wðtÞ
The wavelet is defined as:

w tð Þ ¼
XN

k¼0

�1ð ÞkcN�k/ 2t � kð Þ ð19:46Þ

The coefficients cN−k are those of the development of /ðtÞ but taken in reverse
order, starting with the end. The following will justify this choice for the coeffi-
cients of the development.

In the literature on wavelets, the function wðtÞ is called “mother” wavelet.
By assumption, the wavelet wðtÞ is orthogonal to the scale function:

Z1

�1
/ðtÞwðtÞdt ¼ 0: ð19:47Þ

This implies an other relationship between the coefficients ck. Replacing the
functions in the last integral by their developments, it comes:

Z1

�1

XN

k¼0

ck/ð2t � kÞ
XN

k0¼0

ð�1Þk
0
cN�k0/ð2t � k

0 Þdt ¼ 0: ð19:48Þ

Due to the orthogonality of the functions /ð2t � k
0 Þ and relation (19.43), we

have:

1
2

XN

k¼0

ð�1ÞkckcN�k ¼ 0 and finally
XN

k¼0

ð�1ÞkckcN�k ¼ 0: ð19:49Þ

For this cancellation to occur, it is necessary that the number of coefficients be
even to avoid a central coefficient to be zero. That is to say that N must be odd. This
is assumed in the following discussion.

For the Haar wavelet, which is within the scope of Daubechies wavelets (it is
sometimes called Db2), although it is not continuous, we have N = 1, c0 = 1,
c1 = 1.
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A new constraint on the value of the coefficients ck is provided by an other
requirement imposed on the wavelet wðtÞ. We require that its integral is zero (see
Chap. 12):

Z1

�1
wðtÞdt ¼ 0; ð19:50Þ

then,

XN

k¼0

ð�1ÞkcN�k

Z1

�1
/ð2t � kÞdt ¼ 0:

By a simple change of variables we see that
R1

�1
/ð2t � kÞdt ¼ 1

2

R1

�1
/ðyÞdy ¼ Cte.

It follows that the following relation between the coefficients must be satisfied:

XN

k¼0

ð�1ÞkcN�k ¼ 0: ð19:51Þ

This is a third connection between the coefficients ck.
For the wavelet Db4 (N = 3) relation (19.51) writes c3 � c2 þ c1 � c0 ¼ 0.

Properties in the Fourier domain
The standard notation in the literature on wavelets for the FT of the scaling function

/ðtÞ is used: /̂ðxÞ ¼ R1

�1
/ðtÞe�jxtdt.

It follows that the FT of /ð2tÞ can be written:

Fð/ð2tÞÞ ¼
Z1

�1
/ð2tÞe�jxtdt ¼ 1

2

Z1

�1
/ðyÞe�jxy

2dy ¼ 1
2
/̂

x
2

� 	
: ð19:52Þ

By a simple change of variable, the shift theorem is expressed:

F /ð2t � kÞð Þ ¼ 1
2

Z1

�1
/ðyÞe�jxðyþ kÞ

2 dy ¼ 1
2
/̂

x
2

� 	
e�jxk

2:

By calculating the FT of the two members of the relationship (19.42), we have:
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/̂ðxÞ ¼
Z1

�1

XN

k¼0

ck/ð2t � kÞe�jxtdt ¼ 1
2
/̂

x
2

� 	XN

k¼0

cke�jxk
2 ¼ P

x
2

� 	
/̂

x
2

� 	

ð19:53Þ

where we write

PðxÞ ¼ 1
2

XN

k¼0

cke�jxk: ð19:54Þ

PðxÞ is the Fourier transform of the function formed by the sequence of the
coefficients ck.

Note A difficulty using this notation appears here: PðxÞ which is the Fourier
transform of a numerical function will be noted in the same way than /̂ðxÞ which is
the Fourier transform of an analog function. Consistency with the rest of the book
would ask that the notation PðejxÞ is used rather than PðxÞ but the literature on
wavelet has adopted PðxÞ. In the calculations, we must be careful to the difference
in nature of PðxÞ and /̂ðxÞ. The lack of hat in PðxÞ recalls the difference. By abuse
of notation, we write in a simplified manner:

PðxÞjx¼0¼ PðejxÞ��
x¼0¼ Pð0Þ:

Based on the results of the Fourier transform of digital functions, we know that
the function PðxÞ is periodic, with period 2p. Imposing x ¼ 0 in the relationship
(19.53), it comes,

/̂ð0Þ ¼ Pð0Þ/̂ð0Þwhich imposesPð0Þ ¼ 1: ð19:55Þ

Thus using (19.54) with x ¼ 0, we see that the expansion coefficients ck must
verify the sum rule:

XN

k¼0

ck ¼ 2Pð0Þ ¼ 2: ð19:56Þ

Iterating relation (19.53), we may write: /̂ðxÞ ¼ P x
2

� �
P x

4

� �
/̂ x

4

� �
.

Generalizing, we have:

/̂ðxÞ ¼
YJ

j¼1

P
x
2 j

� 	
/̂

x
2J

� 	
: ð19:57Þ

If /̂ðxÞ is continuous at x ¼ 0, then lim
J!1

/̂ x
2J
� � ¼ /̂ð0Þ.
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It comes:/̂ðxÞ ¼ Q1

j¼1
P x

2 j

� �
/̂ð0Þ. In the following we show that /̂ð0Þ ¼ 1.

Therefore

/̂ðxÞ ¼
Y1

j¼1

P
x
2 j

� 	
: ð19:58Þ

It is interesting to note here that the Fourier transform of the scale function is
given by the Fourier transform of the sequence of coefficients ck. It is useful for the
following discussion to define the function P(z), half of the z-transform of the
sequence of coefficients ck:

PðzÞ ¼ 1
2

XN

k¼0

ckz
�k: ð19:59Þ

We have the property PðpÞ ¼ PðzÞjx¼p¼ 0. Indeed, according to (19.51) we
have:

PðpÞ ¼ 1
2

XN

k¼0

cke�jpk ¼ 1
2

XN

k¼0

ð�1Þkck ¼ 0: ð19:60Þ

Thus, the function P(z) defined in (19.59) has a zero in the z plane at z = −1.
It is seen from Eq. (19.53) that this zero of P xð Þ at x ¼ p leads to a zero /̂ðxÞ

for x ¼ 2p.
Because it is periodic function of x, P xð Þ has zeros at 3p; 5p; . . . which implies

that /̂ðxÞ has zeros at 6p; 10p; . . ..
Writing x ¼ 4p in (19.53), we have /̂ 4pð Þ ¼ P 2pð Þ/̂ 2pð Þ ¼ 2/̂ 2pð Þ ¼ 0 from

the foregoing. A generalization can be deduced:

/̂ð2lpÞ ¼ 0 for l 6¼ 0: ð19:61Þ

These properties are apparent in Fig. 19.11 which shows the variations of PðxÞj j
and of /̂ðxÞ

���
��� with x (the first function represented over a period) for Db4. PðxÞj j

was calculated from the FFT of coefficients ck whose values will be determined in

the following. The function /̂ðxÞ
���

��� was calculated in an approximate way from the

relationship (19.58), limiting the product to the first 6 terms.
The scalar product (19.41) appears as a correlation function that depends on the

discrete variable m. It is noted C [m]. Noting ~/ðtÞ the time reversal of /ðtÞ, we write:

C½m� ¼
Z1

�1
/ðtÞ~/ðm� tÞdt: ð19:62Þ

358 19 Wavelets; Multiresolution Analysis



In the previous integral we recognize the value of the convolution product of
/ðtÞ and ~/ðtÞ evaluated at t = m. C[m] appears as a sampling of the correlation
function C(t) for integer values m of time t.

The FT of C tð Þ is ĈðxÞ ¼ /̂ðxÞ ~̂/ðxÞ ¼ /̂ðxÞ/̂�ðxÞ ¼ /̂ðxÞ
���

���
2
.

According to the Shannon aliasing theorem, the discrete FT of C[m] is the

infinite sum
P1

l¼�1
Ĉðxþ l2pÞ. This sum is 1 since the numerical FT of C½m� ¼ d½m�

is 1. Thus, we arrive at the important result

X1

l¼�1
/̂ðxþ l2pÞ
���

���
2
¼ 1: ð19:63Þ

In particular, if we make x ¼ 0 in the previous equation, we have

X1

l¼�1
/̂ðl2pÞ
���

���
2
¼ 1: ð19:64Þ

The scaling function is assumed to have a compact support. It follows that from
the time-frequency uncertainty relation, its spectrum necessarily extends to infinity.
The relation (19.64) states that the sum of the values of the squared modulus of the
FT of /ðtÞ at abscissas corresponding to all multiples of 2p equals 1.

Fig. 19.11 Spectral
amplitudes; a PðxÞj j;
b /̂ðxÞ
���

���
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Given (19.61), it follows that /̂ 0ð Þ
���

���
2
¼ 1. Then /̂ 0ð Þ ¼ 	1. By convention

the + sign is chosen. So we have: /̂ 0ð Þ ¼ R1
�1 / tð Þdt ¼ 1. We note that this is only

a constraint of a scale factor on /ðtÞ.
Fourier transform of the wavelet wðtÞ
To complete the definition of Daubechies wavelet Db4 which has 4 non-zero
coefficients, one last condition is imposed on the wavelet wðtÞ. His first moment in t
must be zero, which will allow a better analysis of very regular functions:

Z1

�1
twðtÞdt ¼ 0: ð19:65Þ

We now show that this condition leads to the following relationship:

XN

k¼0

ð�1ÞkkcN�k ¼ 0: ð19:66Þ

The proof is performed in the Fourier domain.
One notes:

ŵðxÞ ¼
Z1

�1
wðtÞe�jxtdt: ð19:67Þ

We first remark that condition (19.50) implies ŵð0Þ ¼ 0.

Differentiating (19.67) under the integral sign: dŵðxÞ
dx ¼ �j

R1

�1
wðtÞe�jxtdt.As a

result

j
dŵðxÞ
dx

�����
x¼0

¼ jŵ
0 ð0Þ ¼

Z1

�1
tw tð Þdt ¼ 0: ð19:68Þ

Since ŵð0Þ ¼ 0 and ŵ0ð0Þ ¼ 0, taking the Taylor expansion of the function
ŵðxÞ in the vicinity of x ¼ 0, we see that ŵðxÞ varies as x2 if in the neighborhood
of x ¼ 0 ŵ00ð0Þ 6¼ 0.

To continue the proof, analogously to the relationship (19.53), it is shown that:

ŵðxÞ ¼ G
x
2

� 	
/̂

x
2

� 	
; ð19:69Þ
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where GðxÞ is the discrete transform of the sequence of coefficients in (19.46):

GðxÞ ¼ 1
2

XN

k¼0

ð�1ÞkcN�ke�jxk: ð19:70Þ

The relation (19.60) implies that

Gð0Þ ¼ 0: ð19:71Þ

We derive the product (19.69): ŵ
0 ðxÞ ¼ G

0 x
2

� �
/̂ x

2

� �þG x
2

� �
/̂

0 x
2

� �
. We evaluate

it at x ¼ 0. ŵ
0 ð0Þ ¼ G

0 ð0Þ/̂ð0ÞþGð0Þ/̂0 ð0Þ ¼ G
0 ð0Þ (We used Eq. (19.71) and the

fact that /̂ð0Þ ¼ 1).
Using the relation (19.68), we get

G
0 ð0Þ ¼ 0: ð19:72Þ

Since G
0 ðxÞ ¼ � j

2

XN

k¼0

ð�1ÞkkcN�ke�jxk , it comes G
0 ð0Þ ¼ � j

2

PN

k¼0
ð�1ÞkkcN�k ¼ 0,

and finally

XN

k¼0

ð�1ÞkkcN�k ¼ 0: ð19:73Þ

The fourth condition on the coefficients makes the ensemble of conditions
sufficient to allow the determination of the coefficients of the wavelet Db4
Daubechies, for which /ðtÞ is defined on the interval t 2 ½0; 3� and is continuous at
its boundaries /ð0Þ ¼ /ð3Þ ¼ 0.

These coefficients are: c0 ¼ 1
4 1þ ffiffiffi

3
p� �

; c1 ¼ 1
4 3þ ffiffiffi

3
p� �

; c2 ¼ 1
4 3� ffiffiffi

3
p� �

;

c3 ¼ 1
4 1� ffiffiffi

3
p� �

:

The reader can verify that these values of the coefficients satisfy the relations
previously encountered. This will allow him to review all of these conditions. In the
following we give a preferred method for determining the value of these
coefficients.

Mallat, Meyer theorem

It has been shown previously (19.63) that
P1

l¼�1
/̂ðxþ l2pÞ
���

���
2
¼ 1.

Reporting in this relation /̂ðxÞ as written in (19.53): /̂ðxÞ ¼ P x
2

� �
/̂ x

2

� �
, we

have:

X1

l¼�1
P

x
2
þ lp

� 	���
���
2
/̂

x
2
þ lp

� 	���
���
2
¼ 1
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or, as x is arbitrary,

X1

l¼�1
Pðxþ lpÞj j2 /̂ðxþ lpÞ

���
���
2
¼ 1:

We separate the terms of even and odd ranks. We use the fact that PðxÞ is
periodic with period 2p. Pðxþ 2npÞ ¼ PðxÞ;Pðxþ 2nþ 1ð ÞpÞ ¼ Pðxþ pÞ:

So we have PðxÞj j2
X1

n¼�1
/̂ðxþ 2npÞ
���

���
2
þ Pðxþ pÞj j2

X1

n¼�1
/̂ðxþð2nþ 1ÞpÞ
���

���
2
¼ 1 .

The two sums being equal to 1 in the previous equation according to (19.63), we
have finally:

PðxÞj j2 þ Pðxþ pÞj j2¼ 1: ð19:74Þ

Figure 19.12 shows PðxÞj j2, Pðxþ pÞj j2, and their sum, equal to 1 for Db4
Daubechies wavelet.

From the results of Chap. 15, we know that the numerical Fourier transform
GðxÞ of the wavelet coefficients is related to that of the coefficients of the devel-
opment of /ðtÞ by

GðxÞ ¼ e�jNxð�1ÞNP�ðxþ pÞ: ð19:75Þ

Then GðxÞj j ¼ Pðxþ pÞj j.
Relation (19.74) also takes the form

PðxÞj j2 þ GðxÞj j2¼ 1: ð19:76Þ

From these results we may say that the digital filters consisting of the coefficients
of the expansion of the scaling function and those developing the wavelet upon the
functions /ð2t � kÞ are mirror filters.

ω

2
P ω⎛ ⎞

⎜ ⎟⎝ ⎠

2
P ω π⎛ ⎞

⎜ ⎟
⎝ ⎠

+

22
P Pω ω π⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
+ +

Fig. 19.12 Spectral
amplitudes PðxÞj j and
Pðxþ pÞj j2 for f0�x\2pg
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The first filter of frequency response PðxÞ is low-pass, the second with fre-
quency response GðxÞ is high-pass.

The following property is verified:

PðxÞG�ðxÞþPðxþ pÞG�ðxþ pÞ ¼ 0: ð19:77Þ

Indeed, according to (19.75):

PðxÞG�ðxÞ ¼ PðxÞejNxð�1ÞNPðxþ pÞ: ð19:78Þ

and

Pðxþ pÞG�ðxþ pÞ ¼ Pðxþ pÞejN xþpð Þð�1ÞNPðxÞ: ð19:79Þ

These last two relationships lead (19.77) since ejNðxþ pÞ ¼ �ejNx as N is odd.
We have also:

PðxÞP�ðxþ pÞþGðxÞG�ðxþ pÞ ¼ 0; ð19:80Þ

because PðxÞP�ðxþ pÞþ e�jNxð�1ÞNP�ðxþ pÞejN xþpð Þð�1ÞNPðxÞ ¼ 0.
The wavelet is such that

ŵð2xÞ ¼ GðxÞ/̂ðxÞ ð19:81Þ

[according to (19.69)].
For Db4, the variation of G xð Þ as x2 around x ¼ 0 corresponds to a variation of

P xð Þ as x� pð Þ2 around x ¼ p.
Equivalently, we can say that the function P(z) has a double zero at z = −1. For

Db6, we require ŵ00ð0Þ ¼ 0. The first term of its Taylor expansion around x ¼ 0 is
in x3, the second moment is zero:

R1
�1 t2wðtÞdt ¼ 0. Then P(z) has a triple zero at

z = −1. We see that the number of zeros of P(z) at z = −1 increase with the order of
a Daubechies wavelet (See Byrne in Signal Processing—A mathematical approach,
Peters Ltd Ed.).

Returning to Db4, we now express the consequence of the double zero of
P (z) en z = −1. P (z) has necessarily the form PðzÞ ¼ ðzþ 1Þ2QðzÞ.

In Fig. 19.13 we see the double zero in z = −1 and one zero in z = 0.2679 for
the function P(z) of Db4.

Posing z ¼ ejx, we have PðxÞ ¼ ðejx þ 1Þ2QðxÞ.
The development of ðejx þ 1Þ2 is:

ejx þ 1
� �2¼ e2jx þ 2ejx þ 1 ¼ ejx ejx þ 2þ e�jx

� � ¼ 2ejxð1þ cosxÞ
¼ 4ejx cos

x
2
;
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Thus:

PðxÞj j2¼ 16 cos2
x
2

QðxÞj j2:

In the case where PðxÞj j2¼ cos2 x
2, (which is the case of Db2 and not of Db4),

we have

Pðxþ pÞj j2¼ cos2
ðxþ pÞ

2
¼ sin2

x
2
;

and of course, we have:

PðxÞj j2 þ Pðxþ pÞj j2¼ cos2
x
2
þ sin2

x
2
¼ 1 ð19:82Þ

Daubechies Db4 wavelet
For the construction of Daubechies wavelets, we can use the following method,
which is preferred. It consists in raising both sides of the above equation to an odd
power N = 2n−1 with n a positive integer. If n = 2, then N = 3, we get Daubechies
Db4.

cos2 x
2 þ sin2 x

2

� �3¼ 1. The development of this expression shows the binomial
coefficients Ck

N .

cos2
x
2
þ sin2

x
2

� 	3
¼ cos6

x
2
þ 3 cos4

x
2
sin2

x
2
þ 3 cos2

x
2
sin4

x
2
þ sin6

x
2
:

PðxÞj j2¼ cos6 x
2 þ 3 cos4 x

2 sin
2 x
2 ¼ cos4 x

2 cos2 x
2 þ 3 sin2 x

2

� �
may be taken.

Fig. 19.13 Zero-poles
locations of P (z) function for
Db4
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We still verify (19.74) as the second part of the binomial expansion is equal to
Pðxþ pÞj j2.We must have PðxÞ ¼ cos2 x

2 cos x2 þ ffiffiffi
3

p
sin x

2

� �
ejhðxÞ.

Taking ejhðxÞ ¼ e�j3x2 , a polynomial is obtained:

PðxÞ ¼ 1
2

c0 þ c1e�jx þ c2e�j2x þ c3e�j3x� �
:

The coefficients of all other powers of e�jx are zero.
Indeed:

cos
x
2
¼ ej

x
2 þ e�jx2

2
; cos2

x
2
¼ 1

4
ejx þ e�jx þ 2
� �

:

PðxÞ ¼ 1
4

ejx þ e�jx þ 2
� � ej

x
2 þ e�jx2

2
þ j

ffiffiffi
3

p ej
x
2 � e�jx2

2j

� �
e�j3x2 ;

PðxÞ ¼ 1
8

ejx þ e�jx þ 2
� �

e�jx 1þ
ffiffiffi
3

p� 	
þ e�j2x 1�

ffiffiffi
3

p� 	� 	
:

The 4 coefficients ck of Db4 are determined by identification:

c0 ¼ 1
4

1þ
ffiffiffi
3

p� 	
; c1 ¼ 1

4
3þ

ffiffiffi
3

p� 	
; c2 ¼ 1

4
3�

ffiffiffi
3

p� 	
; c3 ¼ 1

4
1�

ffiffiffi
3

p� 	
:

The problem of using the wavelet Db4 is resolved at this stage. This may seem
surprising as we do not know yet neither the scaling function /ðtÞ nor the wavelet
wðtÞ.

Firstly we recall that the support of the function /ðtÞ is the interval [0, 3] for
Db4.

For Db4, N = 3, which implies that the support of the function /ðtÞ has a width
3. Arbitrarily the left boundary of the support of /ðtÞ is placed at x = 0.

The rapid decrease at infinity of /̂ðxÞ accompanies the fact that the multiple zero
of PðxÞ in x ¼ p affects the decay of /̂ðxÞ. This is a consequence of the relation
(19.58).

From the decay properties at infinity of FT function encountered in Chap. 7, it
follows that the function does not present discontinuities across the support for
Db4. It entrains that to allow continuity at the support boundaries for Db4, it is
necessary that

/ð0Þ ¼ /ð3Þ ¼ 0: ð19:83Þ

In the following the Db4 wavelet is taken as an example to demonstrate the
calculation of /ðtÞ for any rational abscissa. We show that we can calculate the
values of /ð1Þ and /ð2Þ from the coefficients c0 to c3 and then we can deduce the
values at other points by iteration.
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Since /ðtÞ ¼ P3

k¼0
ck/ð2t � kÞ, and taking in account (19.83) we can write:

/ð1Þ ¼
X3

k¼0

ck/ð2� kÞ ¼ c0/ð2Þþ c1/ð1Þ:

We also have:

/ð2Þ ¼
X3

k¼0

ck/ð4� kÞ ¼ c2/ð2Þþ c3/ð1Þ:

These two equations can be grouped in the form of a linear system:

/ð1Þ
/ð2Þ

� �
¼ c1 c0

c3 c2

� �
/ð1Þ
/ð2Þ

� �
: ð19:84Þ

/ð1Þ
/ð2Þ

� �
appears to be an eigenvector of the matrix

c1 c0
c3 c2

� �
for the eigen-

value k ¼ 1. The numerical calculation of the coefficient matrix in (19.84) shows
that it actually has the eigenvalue k ¼ 1 with the corresponding eigenvector
/ð1Þ
/ð2Þ

� �
¼ a

0:9659
�0:2588

� �
, where a is any constant. As may be verified on the

final values of the function /ðtÞ, we must have a ¼ ffiffiffi
2

p
to finally get

R1
�1 /ðtÞdt ¼ 1. It comes then:

/ð1Þ
/ð2Þ

� �
¼ ffiffiffi

2
p 0:9659

�0:2588

� �
¼ 1:3660

�0:3660

� �
.

Having determined /ð1Þ and /ð2Þ, we can deduce the values of /ðtÞ for the
half-integer abscissa by the recurrence relation. For example:

/ð0:5Þ ¼
X3

k¼0

ck/ð1� kÞ ¼ c0/ð1Þþ c1/ð0Þ ¼ c0/ð1Þ ¼ 0:9330:

Likewise:

/ð1:5Þ ¼
X3

k¼0

ck/ð3� kÞ ¼ c0/ð3Þþ c1/ð2Þþ c2/ð1Þþ c3/ð0Þ
¼ c1/ð2Þþ c2/ð1Þ ¼ 0:0012:

Continuing the process /ð0:25Þ, /ð0:75Þ can be determined, and so on.
Note that we have access to the values of the scaling function /ðtÞ for values of

t located in a grid with as fine resolution as desired, but we do not know yet this
function.
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Figures 19.14 and 19.15 show the scaling function and the Daubechies wavelet
for two values of the number N of coefficients.

Remember that if N = 1 you have Db2 which is identical to the Haar wavelet
defined between 0 and 1:

/ð0Þ ¼ 0;/ð0:5Þ ¼ 1;/ð1Þ ¼ 1

wð0Þ ¼ 0;wð0:5Þ ¼ 1;wð1Þ ¼ �1:

Scaling function and wavelet Daubechies wavelet Db32 (N = 3): (Fig. 19.14)
Scaling function and wavelet Daubechies wavelet Db32 (N = 31): (Fig. 19.15)

Decomposition and reconstruction of a function on a wavelet basis:
A function of the set V0 can be decomposed as follows:

f ðtÞ ¼
X

k

ak/ðt � kÞ ¼
X

k

bk/
t
2
� k

� 	
þ

X

k

dkw
t
2
� k

� 	
: ð19:85Þ

Taking the FT of both sides of the previous equation and proceeding analo-
gously to the demonstration of the (19.53), we obtain the following relationship in
the Fourier domain:

f̂ ðxÞ ¼ aðxÞ/̂ðxÞ ¼ 2bð2xÞ/̂ð2xÞþ 2dð2xÞŵð2xÞ: ð19:86Þ

Fig. 19.14 Daubechies Db4 (N = 3); a Scaling function /ðtÞ; b Wavelet wðtÞ

Fig. 19.15 Daubechies Db32 (N = 31); a Scaling function /ðtÞ; b Wavelet wðtÞ
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The Fourier transforms of the sequences of the coefficients ak, bk and dk are
noted aðxÞ, bðxÞ and dðxÞ.

As /̂ð2xÞ ¼ PðxÞ/̂ðxÞ according to (19.53), it follows by using (19.81):

aðxÞ/̂ðxÞ ¼ 2bð2xÞPðxÞ/̂ðxÞþ 2dð2xÞGðxÞ/̂ðxÞ;

Then:

aðxÞ ¼ 2bð2xÞPðxÞþ 2dð2xÞGðxÞ: ð19:87Þ

We check now that we have:

bð2xÞ ¼ 1
2 aðxÞP�ðxÞþ aðxþ pÞP�ðxþ pÞð Þ; ð19:88Þ

and

dð2xÞ ¼ 1
2 aðxÞG�ðxÞþ aðxþ pÞG�ðxþ pÞð Þ: ð19:89Þ

To do this we replace in (19.87) bð2xÞ and dð2xÞ given by the above
expressions:

aðxÞ ¼ aðxÞP�ðxÞPðxÞþ aðxþ pÞP�ðxþ pÞPðxÞ
þ aðxÞG�ðxÞGðxÞþ aðxþ pÞG� xþ pð ÞGðxÞ:

aðxÞ ¼ aðxÞ P�ðxÞPðxÞþG�ðxÞGðxÞð Þ
þ aðxþ pÞ PðxÞP�ðxþ pÞþGðxÞG�ðxþ pÞð Þ:

This relationship verified 8 x validates relationships (19.88) and (19.89), taking
into account the relationships (19.76) and (19.80).

In summary, formula (19.88) will be used to calculate the blurred version.
The formula (19.89) will be used to calculate signal details. The formula (19.87)

will be used to reconstruct the signal from its two components.
Finally, we show how one can calculate the coefficients of the filters with

frequency responses bðxÞ and dðxÞ.
We note FN ðckÞ the numerical Fourier transform of the sequence of coefficients

ck.

For Db4, we have: PðzÞ ¼ 1
2

P3

k¼0
ckz�k;PðxÞ ¼ 1

2

P3

k¼0
cke�jxk ¼ 1

2FN ðckÞ;

P�ðxÞ ¼ 1
2

X3

k¼0

ckejxk ¼ 1
2
F�

N ðckÞ
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We also have: Pðxþ pÞ ¼ 1
2

X3

k¼0

cke�jðxþ pÞk ¼ 1
2

X3

k¼0

ð�1Þkcke�jxk ¼ 1
2
FN ðð�1ÞkckÞ .

and P�ðxþ pÞ ¼ 1
2F�

Nðð�1ÞkckÞ.
Then

bð2xÞ ¼ 1
2

FN ða½k�Þ 1
2
F�

N ðc½k�Þ þFN ð�1Þka½k�
� 	 1

2
F�

N ð�1Þkc½k�
� 	� �

:

We recognize in the first term the FT of the cross-correlation function of
a [k] and c [k].

The second term is the FT of the cross-correlation function of ð�1Þka½k� and
ð�1Þkc½k�.

To clarify, we apply this formula to Db4. It provides in the time domain:

b
k
2

� �
¼ 1

4
a½k� � c3d½kþ 3� þ c2d½kþ 2� þ c1d½kþ 1� þ c0d½k�ð Þð Þ

þ 1
4

ð�1Þka½k� � �c3d½kþ 3� þ c2d½kþ 2� � c1d½kþ 1� þ c0d½k�ð Þ
� 	

:

Note the reverse in the time domain to move from correlation to convolution.
For even values of k, we get:

b
k
2

� �
¼ a½k� � 1

2
c3d½kþ 3� þ c2d½kþ 2� þ c1d½kþ 1� þ c0d½k�ð Þ: ð19:90Þ

For odd values of k,

b
k
2

� �
¼ 0: ð19:91Þ

We can write these relations in the form:

b½k� ¼ a½k� � h0D½k�; ð19:92Þ

With

h0D½k� ¼ 1
2

c3d½kþ 3� þ c2d½kþ 2� þ c1d½kþ 1� þ c0d½k�ð Þ for k even: ð19:93Þ

and b½k� ¼ 0 for odd values of k.
h0D k½ � is the impulse response of a low-pass non-causal filter. In practice, a

causal filter created by a delay of three steps of this impulse response is used. We
will write then:

h0D½k� ¼ 1
2

c3d½k� þ c2d½k � 1� þ c1d½k � 2� þ c0d½k � 3�ð Þ: ð19:94Þ
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We now look for the impulse response of the second decomposition filter given
by the relation (19.89). The FT GðxÞ is given by (19.70). For Db4, we have:

GðxÞ ¼ 1
2

X3

k¼0

ð�1Þkc3�ke�jxk ¼ 1
2
FN ðð�1Þk~ckÞ:

Then

G�ðxÞ ¼ 1
2

X3

k¼0

ð�1Þkc3�kejxk ¼ 1
2
F�

N ðð�1Þk~ckÞ:

Gðxþ pÞ ¼ 1
2

X3

k¼0

ð�1Þkc3�ke�jðxþpÞk ¼ 1
2

X3

k¼0

c3�ke�jxk ¼ 1
2
FN ð~ckÞ:

G�ðxþ pÞ ¼ 1
2
F�

N ð~ckÞ:

dð2xÞ ¼ 1
2

FN ða½k�Þ 1
2
F�

N ð�1Þk~c½k�
� 	

þFN ð�1Þka½k�
� 	 1

2
F�

N ð~ckÞ
� �

:

In the time domain we have:

d
k
2

� �
¼ 1

4
a½k� � c3d½k� � c2d½kþ 1� þ c1d½kþ 2� � c0d½kþ 3�ð Þð Þ

þ 1
4

�1ð Þka½k� � c3d½k� þ c2d½kþ 1� þ c1d½kþ 2� þ c0d½kþ 3�ð Þ
� 	

For even values of k, we get:

d
k
2

� �
¼ a½k� � 1

2
c3 d½k� � c2 d½kþ 1� þ c1 d½kþ 2� � c0 d½kþ 3�ð Þ:

For odd values of k, d½k� ¼ 0.
We can write this relationship as: d k½ � ¼ a k½ � � h1D k½ �,with h1D½k� ¼

1
2 �c0 d½kþ 3� þ c1 d½kþ 2� � c2 d½kþ 1� þ c3 d½k�ð Þ for k even.

and always d½k� ¼ 0 for odd values of k.
h1D k½ � is the impulse response of a non-causal high-pass filter. In practice, using

a causal filter created with a delay of three steps of this impulse response. We then
write:

h1D½k� ¼ 1
2

�c0d½k� þ c1 d½k � 1� � c2 d½k � 2� þ c3 d½k � 3�ð Þ: ð19:95Þ

The filters reconstructing the signal from its LF and HF components have
respective frequency responses PðxÞ and GðxÞ, as the relationship (19.87) states.
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Within a factor of 2, Decomposition and reconstruction filters satisfy relations
(19.24) and (19.25).

This factor 2 is not important since it reflects a simple multiplication of the filters
gains by a constant. We have here:

PðzÞH0ðzÞþGðzÞH1ðzÞ ¼ 1; ð19:96Þ

and

PðzÞH0ð�zÞþGðzÞH1ð�zÞ ¼ 0: ð19:97Þ

From the decomposition PðxÞ and GðxÞ we get the reconstruction filters:

h0R½k� ¼ c0d½k� þ c1d½k � 1� þ c2d½k � 2� þ c3d½k � 3�:

h1R½k� ¼ c3d½k� � c2d½k � 1� þ c1 d½k � 2� � c0d½k � 3�:

We note the dissymmetry by the factor ½ between the decomposition and
reconstruction filters responses. Matlab uses symmetric formulas imposing a
common multiplying factor

ffiffiffi
2

p
to all impulse responses.

The impulse responses of the different filters given by Matlab for Db4 (Db4 is
called db2 by Matlab) appear in Fig. 19.16:

Finally, the frequency responses of the analysis filters (decomposition) are given
in Fig. 19.17:

Fig. 19.16 Daubechies Db4 impulse responses; Top decomposition a Low pass; b High pass;
Bottom reconstruction c Low pass; d High pass
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We encounter again the major role played by these relations in the dyadic
multiresolution analysis.

The decomposition of a signal may proceed recursively: In the first step the
blurred component is extracted (the approximation) of the signal [by filtering LF
represented by H0(z) whose impulse response is given by (19.94)] and the com-
ponent containing details [given by the HF filter represented by H1(z)]. The oper-
ation is repeated and the blurred part is again decomposed in LF and HF
components, etc., in a tree structure.

This multiresolution analysis can be represented by the diagram in Fig. 19.18:
The reconstruction is also recursive, starting from right to left, up into the tree

structure, which is to render more and more details of the signal.

Summary
This chapter was dedicated to the analysis of a signal with multi-resolution. The
dyadic decomposition-reconstruction scheme allows the separation of the frequency
components in low frequencies (the shape) and high frequencies (the details) by two
filters. The reconstruction may be performed with the use of the two associated
filters. The decomposition may be performed recursively and, at any step, the signal

Fig. 19.17 Daubechies Db4 spectral amplitudes of decomposition filters; a Low pass; b High
pass

0H z

0H z

0H z

1H z

1H z

1H z

Fig. 19.18 Dyadic decomposition scheme
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may be reconstructed exactly. After having exposed the principle of the dyadic
decomposition, we have detailed the Haar transform and the LeGall-Tabatabai
decomposition. Haar wavelet has been introduced but it is ill-suited to serve as a
basis for approximations of smooth functions since reconstructions will necessarily
present discontinuities. Mallat and Daubechies have established the theory and
created wavelets which can be generated with the use of a small number of coef-
ficients, that can be continuous with continuous derivatives up to a chosen order,
and which allow the dyadic scheme. At a given order of continuity corresponds a
Daubechies wavelet and the 2 decomposition-reconstruction filter pairs.

Exercises

I. Let the signal x½n� ¼ U½n� � U½n� 10�. Show using a picture that this signal is
a digital rectangular window. This signal is filtered by two filters in parallel
with transfer functions: H0ðzÞ ¼ z�1 þ 1ð Þ and H1 zð Þ ¼ z�1 � 1ð Þ. Calculate
the two output signals y0½n� and y1½n�. Show that the first filter provides a
smoothing (a blurring) of the input signal and that the second detects transi-
tions at the edge of the function x[n] (in a two-dimensional filtering one would
speak of contour detection in an image). Compare this result to the Haar
transform encountered above.

II. Calculate numerically using Matlab the functions PðxÞ and GðxÞ for the
Daubechies wavelet Db4 from the FFT of coefficients ck. Derive approximate
values of functions /̂ðxÞ and ŵðxÞ from relations (19.58) and (19.69).

We will have limited the infinite products to the first six terms. Deduct by the
inverse Fourier transform (ifft()function), the scaling functions and the wavelet
Db4. Compare the results to those presented in the figures of these functions given
in this chapter.

19.3 Daubechies Wavelets 373



Chapter 20
Parametric Estimate—Modeling
of Deterministic Signals—Linear
Prediction

In this chapter our goal is the modeling of a digital signal in the time domain, i.e.
we want to find a finite number of coefficients as small as possible, which allows the
possibility to reconstruct exactly or approximately the signal with the use of these
coefficients. We focus to model the signal as the impulse response of a LTI ARMA
system. We only model causal signals.

In the general case, a finite number of coefficients do not allow to estimate a
signal without making an error. The principle of the method is to minimize the error
in the least squares sense. In the first section we show, using the frequency domain
to demonstrate that property, that the equations derived from the least squares
method are nonlinear, difficult, or impossible to solve. So we need to look at other
methods necessarily less efficient in principle. We first study the Padé representa-
tion of the signal, which is accurate on a number of points equal to the number of
coefficients chosen for the model, but whose estimate of the signal outside this
range is very poor. The search for the coefficients reduces to solving a linear system
of equations whose solutions are sought by matrix methods. One is led to release
the accuracy constraints on the first points of the signal and seek to minimize the
error on larger parts of the time axis. This is the principle of Prony’s method and its
improvement by the method of Shanks. All-pole modeling (AR) detailed then gives
very good results in speech synthesis [it is known under the name LPC (Linear
Predictive Coding)]. Techniques called correlation and covariance methods are
used for time-limited signals.1

The preceding methods are useless in the cases where the properties of the
systems involved in the signal production vary with time. Adaptive filtering has
been developed for nonstationary signals analysis. The filter coefficients are reas-
sessed as the signal evolves in time. This type of filtering is studied at the end of this
chapter.

1To go further the reader is invited to refer to the excellent books of C.W. Therrien and M.H.
Hayes listed in the bibliography at the end of this book.

© Springer International Publishing Switzerland 2016
F. Cohen Tenoudji, Analog and Digital Signal Analysis,
Modern Acoustics and Signal Processing, DOI 10.1007/978-3-319-42382-1_20
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20.1 Least Square Method

Consider a digital deterministic signal x n½ �. We desire to model this signal using a
limited number of parameters, either to compress the information, or to interpolate
and find absent data or to predict future values, yet unknown, of the signal. These
techniques are widely used, like in speech processing or telecommunications, for
example.

The estimator of the signal is noted x̂ n½ � and the error e n½ �:

e n½ � ¼ x n½ � � x̂ n½ �: ð20:1Þ

We assume hereinafter that the signal x n½ � is zero for negative time n\0. It is the
same for the estimator x̂ n½ �.

The choice of the estimator parameters is here performed by seeking to minimize
the squared error over the whole time axis:

e ¼
X1

n¼0

e n½ �j j2 ¼
X1

n¼0

x n½ � � x̂ n½ �j j2: ð20:2Þ

The moduli express here the general treatment of complex signals.
Using the signals z transform, we get from (20.1):

EðzÞ ¼ XðzÞ � X̂ðzÞ: ð20:3Þ

We focus here on the choice often used where the estimator X̂ðzÞ is sought in the
form of a rational function (This technique is known as Linear Prediction Coding,
LPC):

X̂ðzÞ ¼ BqðzÞ
ApðzÞ ¼

Pq
k¼0 bq k½ �z�k

1þ Pp
k¼1 ap k½ �z�k

: ð20:4Þ

We look for a causal estimator x̂ n½ � (as is x n½ �) and stable. The definition domain
of X̂ðzÞ therefore includes the unit circle. Thus, the Fourier transforms XðejxTÞ and
X̂ðejxTÞ must exist.

We show now that the least squares method leads to the resolution, difficult, of
nonlinear equations. Using Parseval theorem for the energy of the error we write:

e ¼
X1

n¼0

e n½ �j j2 ¼ 1
xe

Zxe

0

EðejxTÞ�� ��2dx ¼ 1
xe

Zxe

0

XðejxTÞ � X̂ðejxTÞ�� ��2dx: ð20:5Þ
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The error is minimum when the partial derivatives of e with respect to the
unknown parameters are zero:

@e
@a�p k½ �

¼ 0 for k ¼ 1; 2; . . . p; ð20:6aÞ

and

@e
@b�q k½ �

¼ 0 for k ¼ 0; 1; 2; . . .; q: ð20:6bÞ

Using the fact that a�p k½ � and ap k½ � can be considered as independent variables,
we have:

@e
@a�p k½ �

¼ 1
xe

Zxe

0

@

@a�p k½ �
X�ðejxTÞ � X̂�ðejxTÞ� �

XðejxTÞ � X̂ðejxTÞ� �� �
dx

¼ 1
xe

Zxe

0

� @

@a�p k½ �
X̂�ðejxTÞ XðejxTÞ � X̂ðejxTÞ� �� �

dx

¼ 1
xe

Zxe

0

XðejxTÞ � BqðejxTÞ
ApðejxTÞ

� �
B�
qðejxTÞ

A�
pðejxTÞ

	 
2 e
jkxTdx:

ð20:7Þ

Similarly:

@e
@b�q k½ �

¼ 1
xe

Zxe

0

� @

@b�q k½ �
XðejxTÞ � BqðejxTÞ

ApðejxTÞ
� �

B�
qðejxTÞ

A�
pðejxTÞ

" #

ex

¼ � 1
xe

Zxe

0

XðejxTÞ � BqðejxTÞ
ApðejxTÞ

� �
ejkxT

A�
pðejxTÞ

ex:

ð20:8Þ

We see that the equations @e
@a� k½ � ¼ 0 and @e

@b� k½ � ¼ 0 are nonlinear. Their resolution

is difficult in general. For this reason, the least squares method is rarely used in this
context and other approximations are preferred.
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20.2 Padé Representation

The method consists to equal x n½ � and x̂ n½ � on a given time interval and taking X̂ðzÞ
in the form (20.4). Let us detail it:

X̂ðzÞ ¼ BqðzÞ
ApðzÞ ¼

Pq
k¼0 bq k½ �z�k

1þ Pp
k¼1 ap k½ �z�k : ð20:9Þ

The method operates in the time domain. Putting in the time domain we have:

x̂ n½ � þ
Xp

k¼1

ap k½ � x̂ n� k½ � ¼
Xq

k¼0

bq k½ � d n� k½ �: ð20:10Þ

Indeed by multiplying each term of this equation by z�n and summing over n:

X1

n¼�1
x̂ n½ � z�n þ

Xp

k¼1

ap k½ �
X1

n¼�1
x̂ n� k½ � z�n ¼

Xq

k¼0

bq k½ �
X1

n¼�1
d n� k½ �z�n;

which has the form:

ApðzÞX̂ðzÞ ¼ BqðzÞ: ð20:11Þ

It is recognized in the temporal Eq. (20.10), the equation of an ARMA filter, x̂ n½ �
appearing as the impulse response of this filter.

The first terms will be given by:

x̂ 0½ � ¼ bq 0½ �;
x̂ 1½ � þ ap 1½ �x̂ 0½ � ¼ bq 1½ �;
x̂ 2½ � þ ap 1½ �x̂ 1½ � þ ap 2½ �x̂ 0½ � ¼ bq 2½ �;
x̂ 3½ � þ ap 1½ �x̂ 2½ � þ ap 2½ �x̂ 1½ � þ ap 3½ �x̂ 0½ � ¼ bq 3½ �;

As mentioned above, the method consists in giving to the estimator x̂ n½ � the
signal x n½ � values for some values of n. Since we limit the orders of functions ApðzÞ
and BqðzÞ respectively to p and q, the equality of x n½ � and x̂ n½ � can only be imposed
on a number of points limited to pþ qþ 1. The moments are chosen in the interval
0; pþ qf g. In this interval we must have:

x n½ � þ
Xp

k¼1

ap k½ �x n� k½ � ¼ bq n½ �; n ¼ 0; 1; . . .; q
0; n ¼ qþ 1; . . .; qþ p

�
: ð20:12Þ
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This equation will allow to determine the parameters ap k½ � and bq k½ �.
We can write this equation in matrix form:

x 0½ � 0 . . . 0
x 1½ � x 0½ � . . . 0
x 2½ � x 1½ � . . . 0

..

. ..
. ..

.

x q½ � x q� 1½ � . . . x q� p½ �
� � � ��� ��� ���
x qþ 1½ � x q½ � . . . x q� pþ 1½ �

..

. ..
. ..

.

x qþ p½ � x qþ p� 1½ � . . . x q½ �

2

666666666666664

3

777777777777775

:

1
ap 1½ �
ap 2½ �
..
.

ap p½ �

2

666664

3

777775
¼

bq 0½ �
bq 1½ �
bq 2½ �
..
.

bq q½ �
� � �

0
..
.

0

2

666666666666664

3

777777777777775

:

ð20:13Þ

The resolution of this linear system is carried out in two stages. First we solve
the system consisting of the second part of the matrices in which the coefficients
bq k½ � are not involved:

x qþ 1½ � x q½ � . . . x q� pþ 1½ �
x qþ 2½ � x qþ 1½ � . . . x q� pþ 2½ �

..

. ..
. ..

.

x qþ p½ � x qþ p� 1½ � . . . x q½ �

2

6664

3

7775
:

1
ap 1½ �
ap 2½ �
..
.

ap p½ �

2

666664

3

777775
¼

0
0
..
.

0

2

664

3

775: ð20:14Þ

This system can be rewritten as:

x qþ 1½ �
x qþ 2½ �

..

.

x qþ p½ �

2

66664

3

77775
þ

x q½ � x q� 1½ � . . . x q� pþ 1½ �
x qþ 1½ � x q½ � . . . x q� pþ 2½ �

..

. ..
. ..

.

x qþ p� 1½ � x qþ p� 2½ � . . . x q½ �

2

66664

3

77775
:

ap 1½ �
ap 2½ �
..
.

ap p½ �

2

66664

3

77775
¼

0

0

..

.

0

2

66664

3

77775
;

ð20:15Þ

or:

x q½ � x q� 1½ � . . . x q� pþ 1½ �
x qþ 1½ � x q½ � . . . x q� pþ 2½ �

..

. ..
. ..

.

x qþ p� 1½ � x qþ p� 2½ � . . . x q½ �

2

6664

3

7775
:

ap 1½ �
ap 2½ �
..
.

ap p½ �

2

6664

3

7775
¼ �

x qþ 1½ �
x qþ 2½ �

..

.

x qþ p½ �

2

6664

3

7775
:

ð20:16Þ
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We can write this system in a more condensed way:

Xqap ¼ �xqþ 1; ð20:17Þ

with

ap ¼ ap 1½ �; ap 2½ �; . . .; ap p½ �� �T
; ð20:18Þ

xqþ 1 ¼ x qþ 1½ �; x qþ 2½ �; . . .; x qþ p½ �½ �T;

and

Xq¼
x q½ � x q� 1½ � . . . x q� pþ 1½ �

x qþ 1½ � x q½ � . . . x q� pþ 2½ �
..
. ..

. ..
.

x qþ p� 1½ � x qþ p� 2½ � . . . x q½ �

2

6664

3

7775
: ð20:19Þ

Xq is a Toeplitz matrix (matrix of which all elements along a parallel to the main
diagonal are equal) unsymmetrical.

Depending on the properties of the matrix Xq three cases may be met:

1. The matrix Xq is non-singular. It thus has an inverse matrix and Eq. (20.16) can
be solved by multiplying on the left by the inverse: ap ¼ �X�1

q xqþ 1.
2. The matrix Xq is singular. If there is a vector ap that solves the system (20.16),

this solution is not unique. As Xq is singular, the homogeneous system Xq z ¼ 0
has nonzero solutions. In this case the vector ~ap ¼ ap þ z is also a solution of
(20.16).
The solution which gives the vector having a reduced number of nonzero terms
ap k½ � is often chosen.

3. The matrix Xq is singular and no solution ap of the system (20.16) exists. This
system has a second member as a 0½ � ¼ 1 is assumed. This assumption is erro-
neous. One must seek the solution ap of the system Xq ap ¼ 0.
Having determined the series of coefficients ap, in a second step, the coefficients
of the vector bq are determined. To this we transfer these coefficients ap in the
upper part of the matrix Eq. (20.13) which is written:

x 0½ � 0 . . . 0
x 1½ � x 0½ � . . . 0
x 2½ � x 1½ � . . . 0

..

. ..
. ..

.

x q½ � x q� 1½ � . . . x q� p½ �

2

666664

3

777775
:

1
ap 1½ �
ap 2½ �
..
.

ap p½ �

2

666664

3

777775
¼

bq 0½ �
bq 1½ �
bq 2½ �
..
.

bq q½ �

2

666664

3

777775
: ð20:20Þ
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This equation can also be written as a recurrence equation whose resolution is
immediate:

x n½ � þ
Xp

k¼1

ap k½ � x n� k½ � ¼ bq n½ � for n ¼ 0; 1. . .; q: ð20:21Þ

20.2.1 Padé Approximation

So far, we found the equations for finding the coefficients multiplying the data
values x n� k½ � to satisfy the recurrence Eq. (20.21) on the pþ qþ 1 first points. It
is not an approximation but the resolution of a system of equation.

On the other hand, this system of equations is found to be the same as the one
found in mathematics when it is desired to represent a function f xð Þ of a continuous
variable x by a rational fraction of polynomials by imposing that its first pþ qþ 1
derivatives have the same values in x ¼ 0 than those of the function f xð Þ. This
method can be qualified as an improved Taylor expansion to order pþ qþ 1 of the
function f xð Þ in the vicinity of x ¼ 0. In this context the method is called the Padé
approximation. It is known in numerical analysis that the Taylor expansion is good
in the vicinity of the origin but strongly deviates from the function f xð Þ when one
moves away from the origin. The same phenomenon will be observed in the
framework of digital signals when attempting to use the Padé development for
values of n outside of the initial interval.

This fact leads us to rule out the Padé representation when searching an estimator
of the signal x n½ �.

20.2.2 All-pole Modeling

In the case where one seeks an all-pole modeling of the signal in the frame of the
Padé representation, X̂ðzÞ is sought in the form:

X̂ðzÞ ¼ b 0½ �
1þ Pp

k¼1 ap k½ �z�k
: ð20:22Þ

The system giving ap is written in this case:

x 0½ � 0 . . . 0
x 1½ � x 0½ � . . . 0

..

. ..
. ..

.

x p� 1½ � x p� 2½ � . . . x 0½ �

2

6664

3

7775
:

ap 1½ �
ap 2½ �
..
.

ap p½ �

2

6664

3

7775
¼ �

x 1½ �
x 2½ �
..
.

x p½ �

2

6664

3

7775
: ð20:23Þ
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The latter matrix is triangular, the solution is obtained by simply solving the
iteration:

ap k½ � ¼ � 1
x 0½ � x k½ � þ

Xk�1

l¼1

ap l½ �x k � l½ �
" #

; ð20:24Þ

and b 0½ � ¼ x 0½ �.

20.2.3 Examples

Example 1
We look to model a signal whose first values are:

x ¼ 2; �0:1; 0:81; 0:729; 0:6561; . . .:; . . .:½ �:

We place ourselves in a case where we look for a model with p ¼ 2; q ¼ 1.
Equation (20.13) has the form:

x 0½ � 0 0
x 1½ � x 0½ � 0

��� ��� ���
x 2½ � x 1½ � x 0½ �
x 3½ � x 2½ � x 1½ �

2

66664

3

77775
:

1
ap 1½ �
ap 2½ �

2

4

3

5 ¼

bq 0½ �
bq 1½ �
� � �

0
0

2

66664

3

77775
: ð20:25Þ

First of all one must solve the system:

x 2½ � x 1½ � x 0½ �
x 3½ � x 2½ � x 1½ �

� 

:

1
ap 1½ �
ap 2½ �

2

4

3

5 ¼ 0
0

� 

: ð20:26Þ

Here:

0:81 �0:1 2
0:729 0:81 �0:1

� 

:

1
ap 1½ �
ap 2½ �

2

4

3

5 ¼ 0
0

� 

;

or, using the form (20.23) to solve:

�0:1 2
0:81 �0:1

� 

:
ap 1½ �
ap 2½ �

� 

¼ � 0:81

0:729

� 

:
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Using Matlab we get:

ap 1½ � ¼ �0:9559 and ap 2½ � ¼ �0:4528:

We then deduce the coefficients bq 0½ � and bq 1½ �:

2 0 0
�0:1 2 0

� 

:

1
�0:9559
�0:4528

2

4

3

5 ¼ bq 0½ �
bq 1½ �

� 

:

We find using Matlab: bq 0½ � ¼ 2:000 and bq 1½ � ¼ �2:0118.
The elements of x n½ � are recalculated to analyze the result and verify the absence

of miscalculation:

x 0½ � ¼ 2;

x 1½ � ¼ bq 1½ � � ap 1½ �x 0½ � ¼ �2:0118� ð�0:9559Þ � 2 ¼ �0:1;

x 2½ � ¼ �ap 1½ �x 1½ � � ap 2½ �x 0½ � ¼ 0:9559 � ð�0:1Þþ 0:4528 � 2 ¼ 0:81;

x 3½ � ¼ �ap 1½ �x 2½ � � ap 2½ �x 1½ � ¼ 0:9559 � 0:81þ 0:4528 � ð�0:1Þ ¼ 0:729;

x̂ 4½ � ¼ �ap 1½ �x 3½ � � ap 2½ �x 2½ � ¼ 0:9559 � 0:729þ 0:4528 � 0:81 ¼ 1:036;

Note that the values for n = 0, 1, 2, 3, are found exactly.
This is the principle of Padé approximation. However, the estimated value of

x 4½ � is 1.036 while the exact value was 0.6561.
It appears that the Padé approximation does not ensure that the error is controlled

outside of the interval used for the estimate. If orders p and q used are not good, the
errors can become important outside the interval 0; pþ qf g. It is this feature that
limits the interest of the Padé approximation.

We retry now the approximation in the previous example with another order for
the model. Taking p ¼ q ¼ 1 Eq. (20.13) now takes the form:

x 0½ � 0
x 1½ � x 0½ �

� � � ���
x 2½ � x 1½ �

2

664

3

775:
1

ap 1½ �
� 


¼
bq 0½ �
bq 1½ �
� � �

0

2

664

3

775:

First of all, we solve the system:

x 2½ � x 1½ �½ �: 1
ap 1½ �

� 

¼ 0;

thus ap 1½ � ¼ � x 2½ �
x 1½ � ¼ � 0:81

�0:1 ¼ 8:1.
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Example 2

x ¼ 2; 0:8; 0:72; 0:648; 0:5832; . . .::; . . .::½ �:

We look for a model with p ¼ 2 and q ¼ 1. Equation (20.13) has the form (20.25).
First of all, we solve the system: (20.26).

Here:

0:72 0:8 2
0:648 0:72 0:8

� 

:

1
ap 1½ �
ap 2½ �

2

4

3

5 ¼ 0
0

� 

;

or, using the form (20.23), to solve the system:

0:8 2
0:72 0:8

� 

:
ap 1½ �
ap 2½ �

� 

¼ � 0:72

0:648

� 

:

Using Matlab, we find: ap 1½ � ¼ �0:9 and ap 2½ � ¼ 0. We then derive the coef-
ficients bq 0½ � and bq 1½ � of the system:

2 0 0
0:8 2 0

� 
 1
�0:9
0

2

4

3

5 ¼ bq 0½ �
bq 1½ �

� 

:

We find: bq 0½ � ¼ 2:00 and bq 1½ � ¼ �1.
To finish we recalculate the elements of x n½ �:

x 0½ � ¼ 2;

x 1½ � ¼ bq 1½ � � ap 1½ �x 0½ � ¼ �1þ 0:9 � 2 ¼ 0:8;

x 2½ � ¼ �ap 1½ �x 1½ � � ap 2½ �x 0½ � ¼ 0:9 � 0:8þ 0 ¼ 0:72;

x 3½ � ¼ �ap 1½ �x 2½ � � ap 2½ �x 1½ � ¼ 0:9 � 0:72 ¼ 0:648;

x̂ 4½ � ¼ �ap 1½ �x 3½ � ¼ 0:9 � 0:648 ¼ 0:5832;

Again, we still find the exact values of x n½ � for n = 0, 1, 2, 3 ¼ pþ q as it is
expected.

But now the estimated value x̂ 4½ � is 0.5832, the same as that of the signal (the
index n ¼ 4 is yet outside the range 0; 3f g that was used for the estimate). In this
case, we found exactly the impulse response of the filter that was in the underlying
signal x n½ �.

Its transfer function is:

HðzÞ ¼ H1ðzÞH2ðzÞ ¼ 2� z�1� � 1
1� 0:9z�1

� �
:

The impulse response h n½ � of this filter is the convolution of the two impulse
responses h1 n½ � ¼ 2d n½ � � d n� 1½ � and h2 n½ � ¼ 0:9ð ÞnU n� 1½ �.
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20.3 Prony’s Approximation Method. Shanks Method

The limits of the Padé representation as an approximation method have been
demonstrated using examples. The problem encountered is due to the fact that by
completely canceling the error in a limited time interval, we allow this error to be
important outside this range.

20.3.1 Prony’s Method

The Prony’s method distributes the error over the entire time axis by releasing the
constraint in the interval 0; pþ qf g. We are still looking for modeling x n½ � using an
ARMA filter ().

Having discussed above the aspect of the estimator as may be interpreted as an
impulse response, we note the estimator

x̂ n½ � ¼ h n½ �: ð20:27Þ

We write:

e n½ � ¼ x n½ � � h n½ �: ð20:28Þ

Using z transform, we write:

EðzÞ ¼ XðzÞ � HðzÞ ¼ XðzÞ � BqðzÞ
ApðzÞ : ð20:29Þ

Multiplying by ApðzÞ, we have:

EðzÞApðzÞ ¼ XðzÞApðzÞ � BqðzÞ:

Noting:

E0 ðzÞ ¼ EðzÞApðzÞ;

We have

E0ðzÞ ¼ XðzÞApðzÞ � BqðzÞ; ð20:30Þ

or, in the time domain:

e0 n½ � ¼ x n½ � þ x n½ � � ap n½ � � bq n½ � with p[ 0: ð20:31Þ
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We write in more detail this equation, using the fact that bq n½ � is zero for n[ q:

e0 n½ � ¼
x n½ � þ Pp

k¼1
ap k½ � x n� k½ � � bq n½ �; n ¼ 0; 1; . . .; q

x n½ � þ Pp

k¼1
ap k½ � x n� k½ �; n[ q

8
>><

>>:
: ð20:32Þ

The Prony’s method is to determine the coefficients ap such that the square error
is minimum for n[ q:

e0 ¼
X1

n¼qþ 1

e0 n½ �j j2 ¼
X1

n¼qþ 1

x n½ � þ
Xp

k¼1

ap k½ �x n� k½ �
�����

�����

2

: ð20:33Þ

This error is minimum when the partial derivatives of e0 with respect to
parameters a�p k½ � are zero: @e0

@a�p k½ � ¼ 0 for k ¼ 1; 2; . . .; p.

@e0

@a�p k½ �
¼

X1

n¼qþ 1

x� n� k½ � x n½ � þ
Xp

l¼1

ap l½ �x n� l½ �
" #

¼
X1

n¼qþ 1

x� n� k½ �e0 n½ � ¼ 0:

ð20:34Þ

@e0

@a�p k½ �
¼

X1

n¼qþ 1

x� n� k½ �x n½ � þ
X1

n¼qþ 1

x� n� k½ �
Xp

l¼1

ap l½ �x n� l½ �
" #

¼ 0

or
X1

n¼qþ 1

x� n� k½ �x n½ � þ
Xp

l¼1

ap l½ �
X1

n¼qþ 1

x� n� k½ �x n� l½ �
" #

¼ 0; k ¼ 1; 2; . . .; p; l ¼ 1; 2; . . .; p:

ð20:35Þ

We write:

rxx k; l½ � ¼
X1

n¼qþ 1

x� n� k½ � x n� l½ �: ð20:36Þ

The function rxx k; l½ � has the form of a deterministic correlation function of the
signal x n½ �. Beware though, rxx k; l½ � is not the correlation function of x n½ � because
the summation upon n does not go from minus infinity to plus infinity (or in the
case of a causal signal from zero to infinity, which is the case for x n½ �).
Equations (20.35) are written also:

Xp

l¼1

ap l½ � rxx k; l½ � ¼ �rxx k; 0½ �; k ¼ 1; 2; . . .; p: ð20:37Þ
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This system of equations is called the ensemble of Prony’s normal equations. It
can be written in matrix form:

rxx 1; 1½ � rxx 1; 2½ � rxx 1; 3½ � . . . rxx 1; p½ �
rxx 2; 1½ � rxx 2; 2½ � rxx 2; 3½ � . . . rxx 2; p½ �
rxx 3; 1½ � rxx 3; 2½ � rxx 3; 3½ � . . . rxx 3; p½ �

..

. ..
. ..

. ..
.

rxx p; 1½ � rxx p; 2½ � rxx p; 3½ � . . . rxx p; p½ �

2

666664

3

777775
:

ap 1½ �
ap 2½ �
ap 3½ �
..
.

ap p½ �

2

666664

3

777775
¼ �

rxx 1; 0½ �
rxx 2; 0½ �
rxx 3; 0½ �

..

.

rxx p; 0½ �

2

666664

3

777775
:

ð20:38Þ

These equations can be written in condensed form: Rxxap ¼ �rxx.
The matrix Rxx is square, p� p, and has Hermitian symmetry (two elements

symmetrical with respect to the main diagonal are complex conjugates). rxx is a
column vector.

We note:

Xq ¼
x q½ � x q� 1½ � . . . x q� pþ 1½ �

x qþ 1½ � x q½ � . . . x q� pþ 2½ �
x qþ 2½ � x qþ 1½ � x q� pþ 3½ �

..

. ..
.

. . . ..
.

2

6664

3

7775
: ð20:39Þ

We can write:

Rxx ¼ XH
q Xq: ð20:40Þ

The error in the least square sense made in this approximation can be assessed:

e0LS ¼
X1

n¼qþ 1

e0 n½ �j j2 ¼
X1

n¼qþ 1

e0 n½ �e0� n½ � ¼
X1

n¼qþ 1

e0 n½ � x n½ � þ
Xp

k¼1

ap k½ �x n� k½ �
" #�

¼
X1

n¼qþ 1

e0 n½ �x� n½ � þ e0 n½ �
Xp

k¼1

ap k½ �x n� k½ �
" #�

:

The second term is zero, since the error is orthogonal to the various components
x� n� k½ � as shown in Eq. (20.34).

We have

e0LS ¼
X1

n¼qþ 1

e0 n½ � x� n½ � ¼
X1

n¼qþ 1

x n½ � þ
Xp

k¼1

ap k½ �x n� k½ �
" #

x� n½ �; ð20:41Þ
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and finally:

e0LS ¼ rxx 0; 0½ � þ
Xp

k¼1

ap k½ �rxx 0; k½ �: ð20:42Þ

The second step in the Prony’s approximation method is to determine the
coefficients bq k½ � as is done in the Padé’s method. For this, one uses the coefficients
ap k½ � determined by the resolution of (20.38) in Eq. (20.20) of the Padé’s repre-
sentation. At this stage, the only remaining unknowns are the coefficients bq k½ �:

x n½ � þ
Xp

k¼1

ap k½ � x n� k½ � ¼ bq n½ �; n ¼ 0; 1; . . .; q: ð20:43Þ

As seen above, the coefficients bq k½ � are obtained by iteration.
Another possible writing for the research of coefficients is to write the set of

equations in the form of the augmented Prony’s normal equations.
The system (20.37) can be written in the form:

rxx 1; 0½ �
rxx 2; 0½ �
rxx 3; 0½ �

..

.

rxx p; 0½ �

2

666664

j
j
j
j
j

rxx 1; 1½ � rxx 1; 2½ � rxx 1; 3½ � . . . rxx 1; p½ �
rxx 2; 1½ � rxx 2; 2½ � rxx 2; 3½ � . . . rxx 2; p½ �
rxx 3; 1½ � rxx 3; 2½ � rxx 3; 3½ � . . . rxx 3; p½ �

..

. ..
. ..

. ..
.

rxx p; 1½ � rxx p; 2½ � rxx p; 3½ � . . . rxx p; p½ �

�����������

:

1
���
ap 1½ �
ap 2½ �
..
.

ap p½ �

2

66666664

3

77777775

¼

0
0
0
..
.

0

2

66664

3

77775
;

ð20:44Þ

or, by introducing the error given by (20.42) in the system of equations:

rxx 0; 0½ � rxx 0; 1½ � rxx 0; 2½ � . . . rxx 0; p½ �
� � � ��� ��� ��� ���
rxx 1; 0½ � rxx 1; 1½ � rxx 1; 2½ � . . . rxx 1; p½ �
rxx 2; 0½ � rxx 2; 1½ � rxx 2; 2½ � . . . rxx 2; p½ �

..

. ..
. ..

. ..
.

rxx p; 0½ � rxx p; 1½ � rxx p; 2½ � . . . rxx p; p½ �

2

66666664

3

77777775

:

1
���
ap 1½ �
ap 2½ �
..
.

ap p½ �

2

66666664

3

77777775

¼

e0

� � �
0
0
..
.

0

2

6666664

3

7777775

:

ð20:45Þ

This system of equations can be written in condensed form:

Rxxa1p ¼ e0u1: ð20:46Þ
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The matrix Rxx is square, pþ 1ð Þ x pþ 1ð Þ. a1p is the vector ap increased with 1

and u1 is the vector u1 ¼ ½1; 0; 0; . . .; 0�T . The resolution of the system (20.45)
leads to the determination of the coefficients ap k½ �.

Note: The Prony’s method thus formulated requires exact knowledge of the
deterministic correlation matrix Rxx. To calculate it, we will need to have knowl-
edge of signal values x n½ � on the entire time axis, �1; þ1f g. The adjustments to
be made to the practical method when one only knows the signal values x n½ � on a
finite time interval will be discussed later.

20.3.2 Shanks Method

It differs from the Prony’s method at the evaluation of coefficients bq k½ � stage.
Instead of forcing strict equality between the values of the signal x n½ � and of its
estimator x̂ n½ � in the interval 0; qf g, we look for the coefficients bq k½ � by minimizing
the squared error over the entire time axis (or on a portion of it). Thus, the signal
values x n½ � for n[ q are included in the processing.

The problem is now reformulated. The error is given by:

e n½ � ¼ x n½ � � x̂ n½ �; ð20:47Þ

with:

X̂ðzÞ ¼ HðzÞ ¼ BqðzÞ
ApðzÞ ¼ BqðzÞ 1

ApðzÞ
� �

: ð20:48Þ

The shape of the latter term emphasizes the fact that the filter transfer function
HðzÞ results from the cascading of two filters with transfer functions 1

ApðzÞ and BqðzÞ.
The time equation of the impulse response g n½ � of the first filter 1=ApðzÞ has the

form:

g n½ � ¼ d n½ � �
Xp

k¼1

ap k½ �g n� k½ �: ð20:49Þ

It is an all-pole filter attacked by a unit pulse d n½ �. During the cascade, g n½ �
becomes the input signal of the second filter BqðzÞ whose time equation is:

x̂ n½ � ¼
Xq

k¼0

bq k½ �g n� k½ �: ð20:50Þ
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The estimation error is:

e n½ � ¼ x n½ � � x̂ n½ � ¼ x n½ � �
Xq

k¼0

bq k½ �g n� k½ �: ð20:51Þ

We minimize the squared error over the entire time axis:

e ¼
X1

n¼0

e n½ �j j2 ¼
X1

n¼0

x n½ � � x̂ n½ �j j2: ð20:52Þ

This error is minimum when the partial derivatives of e with respect to
parameters b�q k½ � are zero:

@e
@b�q k½ �

¼ 0 for k ¼ 0; 1; . . .; q:

or

@e
@b�q k½ �

¼ @

@b�q k½ �
X1

n¼0

e� n½ �e n½ �
( )

¼ �
X1

n¼0

g� n� k½ � x n½ � �
Xq

l¼0

bq l½ �g n� l½ �
( )

¼ 0;

or even:

Xq

l¼0

bq l½ �
X1

n¼0

g� n� k½ �g n� l½ � ¼
X1

n¼0

g� n� k½ �x n½ �; k ¼ 0; 1; . . .; q: ð20:53Þ

As was done in the Prony’s method, the deterministic correlation function is
defined by:

rgg k; l½ � ¼
X1

n¼0

g� n� k½ � g n� l½ �: ð20:54Þ

In addition, we note

rxg k½ � ¼
X1

n¼0

g� n� k½ � x n½ �: ð20:55Þ

Equation (20.53) can be rewritten as:

Xq

l¼0

bq l½ � rgg k; l½ � ¼ rxg k½ �; k ¼ 0; 1; . . . ; q: ð20:56Þ

390 20 Parametric Estimate—Modeling of …



The latter relationship is now written in matrix form:

rgg 0; 0½ � rgg 0; 1½ � rgg 0; 2½ � . . . rgg 0; q½ �
rgg 1; 0½ � rgg 1; 1½ � rgg 1; 2½ � . . . rgg 1; q½ �
rgg 2; 0½ � rgg 2; 1½ � rgg 2; 2½ � . . . rgg 2; q½ �

..

. ..
. ..

. ..
.

rgg q; 0½ � rgg q; 1½ � rgg q; 2½ � . . . rgg q; q½ �

2

666664

3

777775
:

bq 0½ �
bq 1½ �
bq 2½ �
..
.

bq q½ �

2

666664

3

777775
¼

rxg 0½ �
rxg 1½ �
rxg 2½ �
..
.

rxg q½ �

2

666664

3

777775
: ð20:57Þ

This last equation can be written in simplified form using an induction on the
coefficients rgg k; l½ �.

Indeed:

rgg kþ 1; lþ 1½ � ¼
X1

n¼0

g� n� kþ 1½ �½ � g n� lþ 1½ �½ �

¼
X1

n¼�1

g� n� k½ � g n� l½ � ¼
X1

n¼0

g� n� k½ � g n� l½ � þ g� �1� k½ �g �1� l½ �:

As k� 0 and l� 0, the filter 1=ApðzÞ is causal, the second term in the last sum is
zero and we can write:

rgg kþ 1; lþ 1½ � ¼ rgg k; l½ �: ð20:58Þ

This same reason leads to write for convenience:

rgg k; l½ � ¼ rgg k � l½ �:

We can rewrite Eq. (20.56) in the form:

Xq

l¼0

bq l½ � rgg k � l½ � ¼ rxg k½ �; k ¼ 0; 1; . . . ; q: ð20:59Þ

This equation is written in matrix form:

rgg 0½ � r�gg 1½ � r�gg 2½ � . . . r�gg q½ �
rgg 1½ � rgg 0½ � r�gg 1½ � . . . r�gg q� 1½ �
rgg 2½ � rgg 1½ � rgg 0½ � . . . r�gg q� 2½ �
..
. ..

. ..
. ..

.

rgg q½ � rgg q� 1½ � rgg q� 2½ � . . . rgg 0½ �

2

666664

3

777775
:

bq 0½ �
bq 1½ �
bq 2½ �
..
.

bq q½ �

2

666664

3

777775
¼

rxg 0½ �
rxg 1½ �
rxg 2½ �
..
.

rxg q½ �

2

666664

3

777775
;

ð20:60Þ
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that one can still write in condensed form:

Rggbq ¼ rxg: ð20:61Þ

The matrix Rgg is square, qþ 1ð Þ � qþ 1ð Þ, which has the Hermitian symmetry.
rxg is a column vector. The squared error is then:

e ¼
X1

n¼0

e n½ �j j2 ¼
X1

n¼0

x n½ � � x̂ n½ �j j2 ¼
X1

n¼0

x n½ � �
Xq

k¼0

bq k½ �g n� k½ �
" #�

e n½ �;

e ¼
X1

n¼0

x� n½ �e n½ � �
Xq

k¼0

b�q k½ �
X1

n¼0

g� n� k½ � e n½ �:

The squared error is minimal when the error is orthogonal to functions g� n� k½ �.
The last term is zero and we have for the least square error term:

eLS ¼
X1

n¼0

x� n½ �e n½ � ¼
X1

n¼0

x� n½ �x n½ � �
Xq

k¼0

bq k½ �
X1

n¼0

g n� k½ � x� n½ �;

or:

eLS ¼ rxx 0½ � �
Xq

k¼0

bq k½ �rxg k½ �: ð20:62Þ

20.4 All-pole Modeling in the Context of the Prony’s
Method

In some situations, the modeling of a signal by an all-pole model is sufficient. This
is the case when the physical signal can be considered as the result of filtering of a
simple signal by a bank of resonators. The modeling of the voice by this method is
very efficient. Modeling by all poles within the Prony’s method is a special case of
this method wherein

bq n½ � ¼ b0d n½ �: ð20:63Þ

The formula giving the error is now:

e0 n½ � ¼
x n½ � þ Pp

k¼1
ap k½ � x n� k½ � � b0d n½ � for n ¼ 0

x n½ � þ Pp

k¼1
ap k½ � x n� k½ � for n[ 0

8
>><

>>:
; ð20:64Þ
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which incidentally is just e0 n½ � ¼ x n½ � þ Pp

k¼1
ap k½ � x n� k½ � � b0d n½ � 8 n.

The formula (20.36) becomes:

rxx k; l½ � ¼
X1

n¼1

x� n� k½ � x n� l½ � with k ¼ 1; 2; . . .; p; l ¼ 1; 2; . . .; p:

ð20:65Þ

Noting that for n ¼ 0 the values of x� n� k½ � and x n� l½ � are zero because the
signal is causal and k ¼ 1; 2; . . .; p; l ¼ 1; 2; . . .; p, we can start the summation
index at n ¼ 0. We can rewrite the last sum:

rxx k; l½ � ¼
X1

n¼0

x� n� k½ � x n� l½ �: ð20:66Þ

One recognizes the deterministic autocorrelation function of the signal x n½ �. We
still have to solve the system

rxx 1; 1½ � rxx 1; 2½ � rxx 1; 3½ � . . . rxx 1; p½ �
rxx 2; 1½ � rxx 2; 2½ � rxx 2; 3½ � . . . rxx 2; p½ �
rxx 3; 1½ � rxx 3; 2½ � rxx 3; 3½ � . . . rxx 3; p½ �

..

. ..
. ..

. ..
.

rxx p; 1½ � rxx p; 2½ � rxx p; 3½ � . . . rxx p; p½ �

2

666664

3

777775
:

ap 1½ �
ap 2½ �
ap 3½ �
..
.

ap p½ �

2

666664

3

777775
¼ �

rxx 1; 0½ �
rxx 2; 0½ �
rxx 3; 0½ �

..

.

rxx p; 0½ �

2

666664

3

777775
:

ð20:67Þ

But this time, we can use the fact that rxx 1; 2½ � ¼ rxx 2; 3½ � ¼ rxx 3; 4½ �, that implies
that one can go from a double index notation to one with a single index:

rxx k; l½ � ¼ rxx l� k½ �: ð20:68Þ

The autocorrelation matrix used in that system (20.67) is Hermitian and Toeplitz.
We can rewrite the system in the form:

rxx 0½ � rxx 1½ � rxx 2½ � . . . rxx p� 1½ �
rxx �1½ � rxx 0½ � rxx 1½ � . . . rxx p� 2½ �
rxx �2½ � rxx �1½ � rxx 0½ � . . . rxx p� 3½ �

..

. ..
. ..

. ..
.

rxx 1� p½ � rxx 2� p½ � rxx 3� p½ � . . . rxx 0½ �

2

666664

3

777775
:

ap 1½ �
ap 2½ �
ap 3½ �
..
.

ap p½ �

2

666664

3

777775
¼ �

rxx �1½ �
rxx �2½ �
rxx �3½ �

..

.

rxx �p½ �

2

666664

3

777775
:

ð20:69Þ
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In the case of a real signal x n½ �, the autocorrelation matrix is real, symmetric and
the linear system of equations becomes:

rxx 0½ � rxx 1½ � rxx 2½ � . . . rxx p� 1½ �
rxx 1½ � rxx 0½ � rxx 1½ � . . . rxx p� 2½ �
rxx 2½ � rxx 1½ � rxx 0½ � . . . rxx p� 3½ �
..
. ..

. ..
. ..

.

rxx p� 1½ � rxx p� 2½ � rxx p� 3½ � . . . rxx 0½ �

2

666664

3

777775
:

ap 1½ �
ap 2½ �
ap 3½ �
..
.

ap p½ �

2

666664

3

777775
¼ �

rxx 1½ �
rxx 2½ �
rxx 3½ �
..
.

rxx p½ �

2

666664

3

777775
:

ð20:70Þ

In the case where the autocorrelation matrix is invertible, we get directly the
coefficients of the AR filter model. The estimator of the signal will then be

For n ¼ 0; b0 ¼ x 0½ �; for n 6¼ 0; x̂ n½ � ¼ �
Xp

k¼1

ap k½ � x̂ n� k½ �: ð20:71Þ

These formulas give the estimator of the signal x n½ � by the all-pole model.

20.5 All-pole Modeling in the Case of a Finite Number
of Data

The all-pole method must be set in the case where the signal x n½ � is unknown
outside of the interval 0;Nf g. The model is called Linear Predictive Coding (LPC).

Two methods known as the autocorrelation method and autocovariance method
names are used.

20.5.1 Autocorrelation Method

As seen above, in the all-pole case the Prony’s method defines the error to minimize
as:

e ¼
X1

n¼0

e n½ �j j2 with e n½ � ¼ x n½ � þ
Xp

k¼1

ap k½ �x n� k½ �: ð20:72Þ

The autocorrelation method makes the additional assumption that the signal is
zero outside the interval 0;Nf g.
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The resolution begins by defining a new signal ~x n½ � by the product of x n½ � with a
rectangular window,

~x n½ � ¼ x n½ �wR n½ �; ð20:73Þ

with

wR n½ � ¼ 1; n ¼ 0; 1; . . .;N
0; elsewhere

�
: ð20:74Þ

Correlations are now:

rxx k½ � ¼
X1

n¼0

~x� n� k½ �~x n½ �

¼
XN

n¼k

x� n� k½ �x n½ �; k ¼ 0; 1; 2; ::; p:

ð20:75Þ

The normal equations become:

Xp

l¼1

ap l½ �rxx k � l½ � ¼ �rxx k½ �; k ¼ 1; 2; ::; p: ð20:76Þ

The minimum square error is:

eLS ¼ rxx 0½ � þ
Xp

k¼1

ap k½ �r�xx k½ �: ð20:77Þ

We note that there is contradiction between the application of an all-pole model
with a finite number of poles, whose impulse response is of infinite duration (thus
has nonzero values outside the range 0;Nf g), to model a signal that is zero outside
the data range. This contradiction leads to a low quality of modeling.

20.5.2 Covariance Method

Rather than assigning zero values to the signal outside the range 0;Nf g, it is
preferable in this method only evaluate the error on the data window. In addition,
for greater generality the signal is not assumed causal. To avoid the transient effect
created by the shutting in n ¼ 0, we begin to take into account the error starting at
index n ¼ p, for which the correlation matrix does not include null values in the
beginning.
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The following squared error is minimized:

e ¼
XN

n¼p

e n½ �j j2: ð20:78Þ

The system of equations to be solved is the same as in the Prony’s method:

rxx 1; 1½ � rxx 1; 2½ � rxx 1; 3½ � . . . rxx 1; p½ �
rxx 2; 1½ � rxx 2; 2½ � rxx 2; 3½ � . . . rxx 2; p½ �
rxx 3; 1½ � rxx 3; 2½ � rxx 3; 3½ � . . . rxx 3; p½ �

..

. ..
. ..

. ..
.

rxx p; 1½ � rxx p; 2½ � rxx p; 3½ � . . . rxx p; p½ �

2

666664

3

777775
:

ap 1½ �
ap 2½ �
ap 3½ �
..
.

ap p½ �

2

666664

3

777775
¼ �

rxx 1; 0½ �
rxx 2; 0½ �
rxx 3; 0½ �

..

.

rxx p; 0½ �

2

666664

3

777775
;

ð20:79Þ

but the values of the correlation coefficients are

rxx k; l½ � ¼
XN

n¼p

x� n� k½ � x n� l½ �: ð20:80Þ

The correlation matrix is no longer symmetric nor Toeplitz.
The minimum square error is:

eLS ¼ rxx 0; 0½ � þ
Xp

k¼1

ap k½ �rxx 0; k½ �: ð20:81Þ

This method is considered to give better results than the correlation method in
the case of an all-pole filter because it does not require signal zero values as does
the autocorrelation method.

The all-pole modeling gives satisfactory results in the analysis of the voice.
Figure 20.1 shows the spectrum of the French vowel a and the spectrum modeled
by LPC with 32 coefficients a32 k½ �. The agreement is satisfactory. The coefficients
can be used back to synthesize the vowel a.

20.6 Adaptive Filter

This paragraph is a little apart in this chapter. It outlines a method for modeling a
nonstationary signal by a finite impulse response filter. The filter coefficients are
changed over time so as to adapt to slow changes in the parameters characterizing
the signal. This technique, due to Widrow (1975), provides a very powerful noise
removal algorithm when the useful signal is vitiated by an additive noise. It is, inter
alia, the origin of the noise canceling techniques. An FIR finite impulse response
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filter is used with a record entry for signal near the noise source. The impulse
response of the filter adjusts itself automatically. The output of this filter is used to
reduce unwanted noise from reception.

This method has its origin in the search of a way to remove the echo that appears
on a duplex phone line. To allow the passage of information in both directions on
the same line, a transformer is present at each end of the line. The impedance
mismatch at both ends of the line then causes reflections at these ends. This is
manifested for an interlocutor for an echo of his own voice. This echo is particularly
annoying if it occurs with a delay larger than a few tenths of seconds after emission.
Signal transmission taking place at speeds of the order of the speed of light, the
echo is annoying in the case of long distance propagation (for example
intercontinental).

For this presentation, although the processing is performed digitally, we adopt an
analog signal notation which allows a more intuitive description. Let us consider
the case of the problem of false echo cancelation. The useful signal is noted x tð Þ. At
this signal is superimposed additively a spurious signal z tð Þ that is a delayed version
of x tð Þ. Typically, this signal z tð Þ is not a simple delayed reproduction of the signal
x tð Þ but it has undergone unknown transformations that we model by the action of
an unknown filter with impulse response h tð Þ.

We write then: z tð Þ ¼ x tð Þ � h tð Þ. z tð Þ is the annoying echo that we try to delete
(Fig. 20.2).
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Fig. 20.1 Spectrum of
French vowel a and the
spectrum modeled by LPC
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To eliminate z tð Þ, we seek to create a filter whose impulse response ĥ tð Þ tends to
estimate the exact impulse response h tð Þ. We subtract its response ẑ tð Þ from z tð Þ, the
ideal is to achieve a zero subtraction result.

The error signal is noted e tð Þ: e tð Þ ¼ z tð Þ � ẑ tð Þ. (see Fig. 20.3).
We chose to model the action of the filters with digital filters with finite impulse

response (FIR) with N elements. The convolutions then take a discrete form:

z tð Þ ¼ z n½ � ¼
XN�1

i¼0

h i½ �x n� i½ �: ð20:82Þ

Vector Analogy
z tð Þ can be interpreted as the result of the dot product of two vectors: the vectors
x and h defined by:

x ¼

x n½ �
x n� 1½ �
x n� 2½ �

. . .
x n� N þ 1½ �

0

BBBB@

1

CCCCA
and h ¼

h 0½ �
h 1½ �
h 2½ �
. . .

h N � 1½ �

0

BBBB@

1

CCCCA
: ð20:83Þ

The convolution appears as the inner product of these vectors. Note the time
reversal in x.

We use Sondhi notation (Sondhi and Berkley 1980) to signify the transposition
of a vector.

We can write the spurious signal z as the dot product z ¼ h0x. Similarly ẑ ¼ ĥ0x.
With these notations, the error e ¼ z� ẑ ¼ h� ĥ

� �0
x is a scalar.

( )t

( )t

=

( ) ( )t t+

h

x

( ) ( ) ( )t t thz x

+x z

( )tx

Fig. 20.2 Superposition of a
signal x tð Þ and one echo
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( )ˆ th
( ) ( ) ( )ˆˆ t t th⊗=z x

( ) ( ) ( )ˆt t t−=e z z

x

z

=

Fig. 20.3 Error signal,
difference of one echo and its
estimation
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The principle of adaptive estimator filter is to vary ĥ over time to reduce the
error. We will show below that the equation for determining the filter ĥ is:

dĥ
dt

¼ Ke tð Þx tð Þ; ð20:84Þ

or

dĥ
dt

¼ KF eð Þx tð Þ: ð20:85Þ

K is a positive constant to adjust in practice and F eð Þ is a non-increasing
function of the error e.

It is emphasized here that the estimator is constructed from x tð Þ which is not
marred by the noise. It will be necessary in practice to have a sensor providing the
pure signal x tð Þ.

We now show using the vector analogy why Eq. (20.84) is favorable (Fig. 20.4).
Misalignment vector is noted r:

r ¼ h� ĥ: ð20:86Þ

We see that e tð Þ ¼ r0x.
The filter with impulse response h is constant during the filter adaptation time,

we have dh
dt ¼ 0. So dr

dt ¼ � dĥ
dt .

Assuming the equation of adaptive filter (20.84) we have

dr
dt

¼ �K r0xð Þx: ð20:87Þ

Fig. 20.4 Misalignment
vector r and its projection on
signal
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In this case the error norm tends to zero as time increases. To show this, we
multiply the two members of the previous equation by r0. We have

r0
dr
dt

¼ �Ke2; or r0
dr
dt

¼ 1
2
d
dt

rk k2¼ �Ke2: ð20:88Þ

The length of the misalignment vector r thus decreases. This is true for anyK[ 0.
So:

d
dt

r0rð Þ ¼ �2Ke2: ð20:89Þ

We integrate this relationship between 0 and any subsequent time s:

rr0 t¼0j � r0r t¼s ¼ 2K
Zs

0

e2

������
ds: ð20:90Þ

As r0r is not growing, the left term is bounded. It will necessarily be the same for
the right-hand side. So when s ! 1 the standard error must approach zero
( ej j ! 0) to ensure the convergence of the integral.

The validity of Eq. (20.84) has been shown to determine the filter ĥ.
Use of the form (20.85) of the filter: The general expression (20.85) of the

adaptive filter with a non-increasing function F eð Þ of the error e.

dĥ
dt

¼ KF eð Þx:

Suppose that there exists a function C eð Þ such that F eð Þ ¼ dC
de .

As dedĥ ¼ �x, we have

rĥC ¼ dC
de

de

dĥ
¼ � dC

de
x ¼ �F eð Þx ¼ dĥ

dt
: ð20:91Þ

Then dĥ
dt is chosen as a vector pointing in the direction of the gradient C eð Þ,

where the decrease is the fastest. This is what gives the gradient method name to
this technique.

Practical determination of ĥ n½ � in digital form:

The derivative dĥ
dt is replaced by the difference ĥ nþ 1; i½ � � ĥ n; i½ � and then we

have the equation of the filter:

ĥ nþ 1; i½ � ¼ ĥ n; i½ � þKe n½ �x n� 1½ � � leakage term: ð20:92Þ
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We add a leakage term so that in case of misalignment, the vector ĥ does not
remain aligned in a wrong direction.

How do we choose K? We should not take it too big because the misalignment
vector would land in a plane perpendicular to x and can no longer move although
h and ĥ had quite different directions. If the vector x moves slightly, the error will be
important.

Summary
We have treated in this chapter the modeling of a digital causal signal in the time
domain, i.e. we searched a finite number of coefficients as small as possible, which
bring the possibility to reconstruct the signal using these coefficients. The signal is
modeled here as the impulse response of a LTI ARMA system using a least squares
approach. After having shown in the frequency domain that the general equations of
the model are nonlinear making the resolution very difficult, we used less ambitious
approaches. We developed the Padé representation of a signal, which is exact on a
number of points equal to the number of coefficients chosen for the model, but
whose estimate of the signal outside this range is very poor. The search of coef-
ficients reduces to solving a linear system of equations whose solutions were sought
by matrix methods.

In Prony’s method, the least square method is performed on subsets of the time
axis. The Shanks method is a refinement of that method. All-pole modeling
(AR) with the Prony’s method gives very good results in speech processing (it is
known under the name LPC Linear Predictive Coding). We have exposed corre-
lation and covariance methods which are used for time-limited signals. Adaptive
filtering has been developed for nonstationary signals analysis. The filter coeffi-
cients are reassessed as the signal is changing. This type of filtering is efficient to
block out known spurious signals, such as echoes on a transmission line.

Exercises
Calculating an inverse filter:

Let the digital filter defined by the recurrence relation: g n½ � ¼ f n½ � � 0:9f n� 1½ �.
1. What is the impulse response h1 n½ � of this filter? Represent this function.
2. Give the expression of its transfer function H1ðzÞ. Deduce the frequency

response. Knowing that the sampling rate is fe ¼ 20kHz and is using a geo-
metric argument, trace the evolution with frequency of the frequency response
magnitude H1ðejxTÞ

�� ��. What is the character of the filter?
3. Let the causal filter whose transfer function is H2ðzÞ be the inverse of H1ðzÞ.

(H2ðzÞH1ðzÞ ¼ 1). Trace the evolution with the frequency of the frequency
response magnitude H2ðejxTÞ

�� ��. What is the character of the filter?
4. Give the expression of the impulse response h2 n½ � of the inverse filter H2ðzÞ.

Calculate the convolution product h1 n½ � � h2 n½ �. Explain simply the result.
5. We want to simulate the inverse filter with a finite impulse response filter,

causal, whose impulse response h n½ � is limited to Nþ 1 terms.
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The input signal of this filter is h1 n½ �. The output signal of the FIR is denoted
d̂ n½ �. It is an estimator of the pulse unit d n½ �: d̂ n½ � ¼ PN

k¼0 b k½ � h1 n� k½ �.
The error at instant n is denoted e n½ � ¼ d n½ � � d̂ n½ �.
The filter coefficients are obtained by a least squares method in which one seeks
to minimize the squared error

e ¼
X1

n¼0

e n½ �j j2 ¼
X1

n¼0

d n½ � � d̂ n½ �
	 
2

:

The solution of this problem is analogous to the method of Shanks.
Demonstrate formula to reach the filter coefficients b k½ �.

6. Calculate the matrices of the linear system used in solving the case N þ 1 ¼ 6.
7. The system solution provides a coefficients vector:

B = [0.9304, 0.7601, 0. 5982, 0.4429, 0.2926, 0.1455]’
Calculate the estimator d̂ n½ � and the quadratic error in the case of Question 6.

8. It is found that the error proves less, for the same number N þ 1 of terms, when
creating an inverse filter whose output is a delayed pulse d n� n0½ � instead of
d n½ �. What is the new expression of the linear system used in solving the
problem? (N.A. n0 ¼ 5)

Solution:

1. h1 n½ � ¼ d n½ � � 0:9d n� 1½ �.
2. H1ðzÞ ¼ 1� 0:9z�1: H1ðejxTÞ ¼ 1� 0:9e�jxT . It is a high-pass filter.
3. H2ðzÞ ¼ 1

H1ðzÞ ¼ 1
1�0:9z�1 : H2ðejxTÞ ¼ 1

1�0:9e�jxT . It is a low-pass filter.

4. We assume a causal filter. h2 n½ � ¼ 0:9nU n½ �.
5. This error is minimum when the partial derivatives of eMC with respect to the

parameters b� k½ � are zero:

@e
@b� k½ � ¼ 0 for k ¼ 0; 1; . . . ;N:

Namely:

@e
@b� k½ � ¼

@

@b� k½ �
X1

n¼0

e� n½ �e n½ �
( )

¼ �
X1

n¼0

h1 n� k½ � d n½ � �
XN

l¼0

b l½ � h1 n� l½ �
( )

¼ 0;

or also:

XN

l¼0

b l½ �
X1

n¼0

h1 n� k½ � h1 n� l½ � ¼
X1

n¼0

h1 n� k½ � d n½ �; k ¼ 0; 1; . . .; N:
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As was done in the Prony’s method, we define the deterministic correlation

function: rh1h1 k; l½ � ¼ P1

n¼0
h1 n� k½ � h1 n� l½ �. Furthermore, we define rdh1 k½ � ¼

P1

n¼0
h1 n� k½ � d n½ �.

The equation can be rewritten as:

XN

l¼0

b l½ � rh1h1 k; l½ � ¼ rdh1 k½ �; k ¼ 0; 1; . . .; N: ð20:93Þ

This relationship can be written in matrix form:

rh1h1 0; 0½ � rh1h1 0; 1½ � rh1h1 0; 2½ � . . . rh1h1 0;N½ �
rh1h1 1; 0½ � rh1h1 1; 1½ � rh1h1 1; 2½ � . . . rh1h1 1;N½ �
rh1h1 2; 0½ � rh1h1 2; 1½ � rh1h1 2; 2½ � . . . rh1h1 2;N½ �

..

. ..
. ..

. ..
.

rh1h1 N; 0½ � rh1h1 N; 1½ � rh1h1 N; 2½ � . . . rh1h1 N;N½ �

2

66666664

3

77777775

:

b 0½ �
b 1½ �
b 2½ �
..
.

b N½ �

2

66666664

3

77777775

¼

rdh1 0½ �
rdh1 1½ �
rdh1 2½ �

..

.

rdh1 N½ �

2

66666664

3

77777775

:

This last equation can be written in simplified form using an induction on the
coefficients rh1h1 k; l½ �. Indeed:

rh1h1 kþ 1; lþ 1½ � ¼
X1

n¼0

h1 n� kþ 1½ �½ � h1 n� lþ 1½ �½ �

¼
X1

n¼�1

h1 n� k½ � h1 n� l½ � ¼
X1

n¼0

h1 n� k½ � h1 n� l½ � þ h1 �1� k½ � h1 �1� l½ �:

As k� 0 and l� 0, and the filter causal, the second term is zero and we can
write:

rh1h1 kþ 1; lþ 1½ � ¼ rh1h1 k; l½ �:

For this same reason we write for convenience:

rh1h1 k; l½ � ¼ rh1h1 k � l½ �:

We can rewrite Eq. (20.93) under the form:

XN

l¼0

b l½ � rh1h1 k � l½ � ¼ rdh1 k½ �; k ¼ 0; 1; . . .; N: ð20:94Þ
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The equation is then written:

rh1h1 0½ � rh1h1 1½ � rh1h1 2½ � . . . rh1h1 N½ �
rh1h1 1½ � rh1h1 0½ � rh1h1 1½ � . . . rh1h1 N � 1½ �
rh1h1 2½ � rh1h1 1½ � rh1h1 0½ � . . . rh1h1 N � 2½ �

..

. ..
. ..

. ..
.

rh1h1 N½ � rh1h1 N � 1½ � rh1h1 N � 2½ � . . . rh1h1 0½ �

2

66666664

3

77777775

:

b 0½ �
b 1½ �
b 2½ �
..
.

b N½ �

2

66666664

3

77777775

¼

rdh1 0½ �
rdh1 1½ �
rdh1 2½ �

..

.

rdh1 N½ �

2

66666664

3

77777775

:

rh1h1 n½ � ¼ h1 n½ � � h1 �n½ �:
h1 n½ � ¼ d n½ � � 0:9d n� 1½ �:
rh1h1 0½ � ¼ 1þ 0:9 x 0:9 ¼ 1:81; rh1h1 1½ � ¼ �0:9; rh1h1 n½ � ¼ 0 elsewhere;

rdh1 0½ � ¼ 1; rdh1 k½ � ¼ 0 if k 6¼ 0:

6. Calculation of the matrices used in the linear system resolution when N þ 1 ¼ 6.
The system is written:

1:81 �0:9 0 . . . 0
�0:9 1:81 �0:9 . . . 0
0 �0:9 1:81 . . . 0
..
. ..

. ..
. ..

.

0 0 0 . . . 1:81

2

66664

3

77775
:

b 0½ �
b 1½ �
b 2½ �
..
.

b 5½ �

2

666664

3

777775
¼

1
0
0
..
.

0

2

66664

3

77775
:

With Matlab we find:

B ¼ 0:9304 0:7601 0:5982 0:4429 0:2926 0:1455ð ÞT

7. Vector B components are the values of the estimator of the impulse response of
the inverse system:

ĥ2 n½ � ¼ 0:9304; 0:7601; 0:5982; 0:4429; 0:2926; 0:1455; 0; 0; 0; 0f g; for n
¼ 0; 1; . . .

True inverse filter impulse response is h2 n½ � ¼ 0:9nU n½ �, being for first values of
n: 1, 0.9, 0.81, 0.73, 0.66, 0.59.
The convolution of the vector B with the vector h1 ¼ 1; �0:9; 0; 0 gives

0:9304; �0:0773; �0:0859; �0:0954; �0:1060; �0:1178; �0:1309; 0; 0; 0; 0. . .ð ÞT

The result is satisfactory.
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Chapter 21
Random Signals: Statistics Basis

This chapter recalls the basis of the statistics for a random variable with values in a
continuum. We define the probability density function and the cumulative distri-
bution function of a r.v.: expectancy, variance, the moments of a distribution, and
the characteristic function. Particular attention is paid to the Gaussian distribution
(normal distribution). The probability density function of a function of a random
variable is determined.

In the second part of this chapter, we present the statistics of two random
variables (also called second-order statistics). We define their joint probability
density and the marginal probability densities. We give an overview of the
Bayesian statistical aspect. We define the correlation coefficient, the orthogonality
and independence in probability. These concepts are used for the study of two
jointly Gaussian variables. It is then shown that the probability density function of
the sum of two independent r.v. is the convolution of their probability densities.
This result is extended qualitatively to the sum of a large number of independent
random variables that appear to follow approximately a Gaussian distribution. This
result is known as the central limit theorem. We finally consider the statistical
distribution of complex variables and the correlation of two complex r.v.

A table of Gauss’s law is given at the end of the chapter.
A random signal is a function of time for which the value at a given time is not

certain. It depends on the value of a random event n. In general, n is not identified.
We denote xðt; nÞ the signal or xðtÞ too. The use of bold letter emphasizes the

randomness of the variable. Thus, at a given time, xðtÞ may generally take infinite
possible values dependent on n. To follow the successive values of xðtÞ over time
means following a realization of xðtÞ:

Figure 21.1 shows three realizations of a random signal xðtÞ:
At a given time t, xðtÞ is a random variable. To study this random variable (r.v.),

we can use the classical statistical concepts: probability density function fxðtÞðxÞ;
expectancy, variance, etc.

© Springer International Publishing Switzerland 2016
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We will mainly studyin the following the case where xðtÞ values belong to a
continuum in R or C: We only briefly talk about the case of a discrete distribution
of values of xðtÞ; when we discuss the quantization problem of error made when
converting an analog signal to digital using an analog/digital converter.

At every moment t, the probability density function of the variable xðtÞ provides
the statistical properties of this variable. However, this function, defined for each
value of t, is insufficient when one seeks to describe the time evolution of xðtÞ:
Probability densities should be used for this purpose involving several values of
time:

fxðt1Þxðt2Þxðt3Þ... xðt1Þ; xðt2Þ; xðt3Þ; . . .ð Þ and whatever these times. Most often in
practice, these functions are not known. We then simply use parameters such as the
average or the moments, and the expectancies of the products of signal values at
different times.

21.1 First-Order Statistics

21.1.1 Case of a Real Random Variable

Probability density function of a real continuous random variable:
We assume that the values of xðtÞ are real. The function fxðtÞðxÞ defined in the

following is called the probability density function (pdf) of this continuous random
variable. To simplify the notation, we simply write x the variable xðtÞ at time t. The
probability density function will be noted fxðxÞ below.

0 0.5 1 1.5 2 2.5 3
-2

0

2

t

x1
(t
)

0 0.5 1 1.5 2 2.5 3
-2

0

2

4

t

x2
(t
)

0 0.5 1 1.5 2 2.5 3
-2

0

2

t

x3
(t
)

Fig. 21.1 Example of 3 realizations of xðtÞ
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By definition, fxðxÞdx is the probability that xðtÞ has values in the infinitely small
interval x; xþ dxf g (Fig. 21.2):

P x\xðtÞ� xþ dxf g ¼ fxðxÞdx: ð21:1Þ

As a probability is positive or zero, the probability density function fxðxÞ is
necessarily positive or zero.

On a finite length interval, the probability for x to realize in the interval x1; x2f g
is: (Fig. 21.3)

P x1\x� x2f g ¼
Zx2

x1

fxðxÞdx: ð21:2Þ

Normalization condition: Since the probability of getting x over the entire
range of real numbers is equal to 1, we can write:

Zþ1

�1
fxðxÞ dx ¼ 1: ð21:3Þ

Cumulative distribution function:
The cumulative distribution function FxðxÞ is the probability that the random

variable x takes any value less than a value x. By definition (Fig. 21.4)

FxðxÞ ¼ P x� xf g ¼
Zx

�1
fxðxÞ dx: ð21:4Þ

Fig. 21.2 An example of a
probability density function
fx xð Þ

Fig. 21.3 The grayed area is
the probability that x is found
in the interval x1; x2f g
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Obviously we have:

Fxð1Þ ¼ 1: ð21:5Þ

Expected value of the random variable x:
It is defined by:

E xf g ¼
Zþ1

�1
x fxðxÞdx ¼ gx: ð21:6Þ

The expected value gx is also called expectation, average, mean or, better,
ensemble average (to better distinguish it from a time average which will be studied
in the following).

In the general case, the expectation of a variable in a random process is time
dependent.

Variance: It is the mean (the ensemble average) of the squared deviation of the
random variable from its mean value.

It is defined by

vx ¼ E ðx� gxÞ2
n o

¼
Zþ1

�1
ðx� gxÞ2 fxðxÞ dx: ð21:7Þ

The standard deviation rx is defined as the square root of the variance:

rx ¼ ffiffiffiffiffi
vx

p
: ð21:8Þ

Property: An important result in practice is that the variance of a r.v. is equal to
the square expectation minus the squared mean of the r.v.:

Fig. 21.4 The grayed area is
the cumulative distribution
function FxðxÞ
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Indeed

vx ¼
Zþ1

�1
ðx� gxÞ2 fxðxÞ dx ¼

Zþ1

�1
ðx2 � 2xgx þ g2xÞfxðxÞ dx;

vx ¼
Zþ1

�1
x2fxðxÞ dx� 2gx

Zþ1

�1
x fxðxÞ dxþ g2x

Zþ1

�1
fxðxÞ dx:

ð21:9Þ

Therefore

vx ¼ E x2
� �� ðE xf gÞ2: ð21:10Þ

Skewness and kurtosis:
First of all we define the moment of order n of a distribution

ln ¼ E ðx� gxÞnf g: ð21:11Þ

We call skewness (asymmetry) the third-order moment normalized by the
division by the standard deviation raised to the third power:

m3 ¼
E ðx� gxÞ3
n o

r3x
: ð21:12Þ

The kurtosis is the fourth normalized moment

m4 ¼
E ðxðtÞ � gxÞ4
n o

r4x
: ð21:13Þ

Chebyshev inequality:
Let x be a real r.v. Its variance is given by

r2 ¼
Z1

�1
ðx� gÞ2 f ðxÞ dx ¼

Z1

�1
x2c f ðxcÞ dxc:

We used the centered random variable xc¼ x� gx .
Let a be any positive constant. We have

r2 ¼
Z1

�1
x2c f ðxcÞ dxc ¼

Z�a

�1
x2c f ðxcÞ dxc þ

Za

�a

x2c f ðxcÞ dxc þ
Z1

a

x2c f ðxcÞ dxc:
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In the first and the third term x2c [ a2 .
We then have the inequality: r2 � a2

R�a
�1 f ðxcÞ dxc þ

R a
�a x

2
c f ðxcÞ dxc þ

a2
R1
a f ðxcÞ dxc.
Alternatively, since the second term is positive:

r2 � a2
Z�a

�1
f ðxcÞ dxc þ a2

Z1

a

f ðcxÞ dcx:

So finally we have the Chebyshev inequality

Pr x� gj j � a½ � � r2

a2
: ð21:14Þ

Exercise
Let x be a real random variable uniformly distributed in the interval � a

2 ;
a
2

� �
:

By definition, the probability density function fxðxÞ is constant between and
� a

2 ;
a
2

� �
and zero elsewhere: (See Fig. 21.5).

fxðxÞ ¼ C if xj j � a
2

0 elsewhere

���� : ð21:15Þ

The normalization condition
R þ1
�1 fxðxÞ dx ¼ 1 leads to find

C ¼ 1
a
: ð21:16Þ

The expectation of x is

E xf g ¼ gx ¼
Zþ1

�1
x fxðxÞ dx ¼ 1

a

Z
a
2

�a
2

x dx ¼ 0: ð21:17Þ

Fig. 21.5 Uniform
probability density function in
the interval � a

2 ;
a
2

� �
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The variable x is centered; its variance is

vx ¼
Zþ1

�1
x� gxð Þ2 fxðxÞ dx ¼

Zþ1

�1
x2 fxðxÞ dx ¼ 1

a

Z
a
2

�a
2

x2 dx ¼ 1
a
x3

3

����

a
2

�a
2

¼ a2

12
:

ð21:18Þ

21.1.2 Gaussian Distribution (Normal Law)

We say that x ¼ xðtÞ is a Gaussian variable when its probability density function is
given by (Fig. 21.6)

fxðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
ðx�gÞ2
2r2 : ð21:19Þ

We will show by calculating the Gaussian integrals detailed in the following that
the distribution parameters appearing in the probability density function are the
mean and the variance: E xf g ¼ g and vðxÞ ¼ r2 .

It is also said that xðtÞ follows a normal distribution N g; rð Þ: This distribution
has great theoretical and practical interests. It depends only on two parameters g and
r.

As shown in (21.19), the probability density function is maximum when the
x value equals the expectation g. It is symmetrical with respect to g. One can see
that if the variable x differs from the average value by some r, the exponential
becomes small. Thus, r characterizes the distribution spreading. A more quanti-
tative property of r will be given subsequently.

The method of calculating a probability in the case of a Gaussian distribution is
now studied on a numerical application.

We assume that, due to the thermal noise, the voltage across a resistor at time t is
a Gaussian random variable with mean value g ¼ 1:1mV and standard deviation
2:3mV:

Fig. 21.6 Gaussian
probability density function
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We want to evaluate the probability of measuring a voltage between �2mV and
2mV: As seen above, the probability that the Gaussian r.v. x is realized in the range
x1; x2f g is given in (Fig. 21.7)

P ¼ x1\x� x2f g ¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p
Zx2

x1

e�
ðx�gÞ2
2r2 dx: ð21:20Þ

The integral of the Gaussian exponential is not a simple function; the result
cannot be obtained directly.

The following change of variable is generally carried out:

z ¼ x� g
r

: ð21:21Þ

Then: dx ¼ r dz;

P x1\x� x2f g ¼ 1
ffiffiffiffiffiffi
2p

p
Zz2

z1

e�
z2
2 dz ¼ P z1\z� z2f g ¼

Zz2

z1

fzðzÞ dz; ð21:22Þ

with

fzðzÞ ¼ 1
ffiffiffiffiffiffi
2p

p e�
z2
2 : ð21:23Þ

z is a random variable following a normal distribution Nð0; 1Þ; centered with a
standard deviation equal to 1.

The cumulative distribution function FðzÞ of the centered r.v. z is connected to
the commonly used error function.

F z1ð Þ ¼ P z\z1f g ¼ 1
ffiffiffiffiffiffi
2p

p
Zz1

�1
e�

z2
2 dz ¼ 0:5þ 1

ffiffiffiffiffiffi
2p

p
Zz1

0

e�
z2
2 dz: ð21:24Þ

Fig. 21.7 The shaded area is
the probability for x to realize
in the interval x1; x2f g
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The error function is defined by

erf t1ð Þ ¼ 2
ffiffiffi
p

p
Zt1

0

e�t2dt: ð21:25Þ

The integral on z in (21.24) is connected to the error function erf(z) by the
change of variable t ¼ zffiffi

2
p : So

1
ffiffiffiffiffiffi
2p

p
Zz1

0

e�
z2
2 dz ¼ 1

ffiffiffi
p

p
Zt1

0

e�t2dt; with t1 ¼ z1ffiffiffi
2

p : ð21:26Þ

F z1ð Þ ¼ 0:5 1þ 2
ffiffiffi
p

p
Zt1

0

e�t21 dt

0

@

1

A ¼ 0:5 1þ erf
z1ffiffiffi
2

p
� �� �

: ð21:27Þ

This relationship is used to calculate, using a spreadsheet, the integral values of
the reduced centered variable z on the range going from �1 to any value z1. These
values are given in the table at the end of this chapter.

The evaluation of the integral (21.20) passes by the calculation of the boundaries
z1 and z2. Here z1 ¼ �2�1:1

2:3 ¼ �1:35; z2 ¼ 2�1:1
2:3 ¼ 0:39: (See Fig. 21.8).

We then assess the probability sought (shaded area) from the values read from
the table: P ¼ 0:651� ð1� 0:911Þ ¼ 0:562: There are 56.2 chances out of 100 that
the measured voltage is within the range �2mV; 2mVf g:

Prediction interval with a 5 % risk of a Gaussian variable:
We now calculate the prediction interval (symmetric) with a 5 % risk of the

random variable x distributed according to the law Nðg; rÞ; that is to say, the range
in which the r.v. has 95 % chances to be observed. In other words, we search the
interval such that

P x1 � x\x2f g ¼ P g� a� x\gþ af g ¼ 0:95: ð21:28Þ

Fig. 21.8 Shaded area
under the pdf of centered
reduced r.v.z
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We are interested in the reduced variable

z ¼ x� g
r

: ð21:29Þ

We look for z1 such that

P �z1 � z\z1f g ¼ 0:95: ð21:30Þ

Due to the symmetry of the distribution, z1 is such that

P z\z1f g ¼ 0:975: ð21:31Þ

Reading the table, we find z1 ¼ 1:96:
So

P g� 1:96 r� x\gþ 1:96 rf g ¼ 0:95: ð21:32Þ

We note that (See Fig. 21.9).

PI5% xð Þ ¼ g� 1:96 r; gþ 1:96 rf g: ð21:33Þ

We conclude that the variable x has 95 % chances of being realized in an
interval with approximate width 4r centered on the mean g .

21.1.2.1 Moments of the Gaussian Distribution

We recall now the general methodology for calculating Gaussian integrals. First we
calculate the integral:

IðaÞ ¼
Zþ1

�1
e�ax2dx with a[ 0 real: ð21:34Þ

Fig. 21.9 The value of the
shaded area is 0.95. Its
boundaries give the 95 %
prediction interval
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For this calculation, we evaluate the square of this integral:

I2ðaÞ ¼
Zþ1

�1

Zþ1

�1
e�aðx2 þ y2Þdx dy ¼

Z1

0

Z2p

0

e�ar2r dr dh:

I2ðaÞ ¼ 2p
Z1

0

e�ar2r dr:

ð21:35Þ

We note r2 ¼ u; du ¼ 2rdr

I2ðaÞ ¼ p
Z1

0

e�audu ¼ � p
a
e�au½ �10 ¼ p

a
: ð21:36Þ

So

IðaÞ ¼
ffiffiffi
p
a

r
: ð21:37Þ

The moments of the Gaussian distribution are calculated using the derivatives of
IðaÞ:

dIðaÞ
da

¼ �
Zþ1

�1
x2e�ax2dx ¼ ffiffiffi

p
p � 1

2

� �
a�

3
2: ð21:38Þ

This shows that

Zþ1

�1
x2e�ax2dx ¼ 1

2

ffiffiffiffiffi
p
a3

r
: ð21:39Þ

Similarly, by differentiating twice with respect to a we get the fourth moment

d2I
da2

¼
Zþ1

�1
x4e�ax2dx ¼ ffiffiffi

p
p 3

4
a�

5
2: ð21:40Þ

It is thus seen that by successive differentiations, one can reach all integrals
containing even powers of x, i.e., calculate the different even moments of the
Gaussian distribution. The odd moments are zero as the functions to integrate are
odd in the range �1, þ1.
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Application: asymmetry and flatness of the Gaussian distribution:
As the moments of odd order are zero, the third-order moment, then the

asymmetry, is zero.
On the other hand,

l4 ¼
1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p
Z1

�1
x� gð Þ4e� x�gð Þ2

2r2 dx ¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p
Z1

�1
x4ce

� x2c
2r2dxc: ð21:41Þ

Using the result (21.40) we can write

l4 ¼
1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p
Z1

�1
x4ce

� x2c
2r2dxc ¼ 1

ffiffiffiffiffiffiffiffiffiffi
2pr2

p ffiffiffi
p

p 3
4

2r2
� 	5=2¼ 3r4: ð21:42Þ

The flatness of a Gaussian distribution is then

m4 ¼ l4
r4

¼ 3: ð21:43Þ

We have calculated in Chap. 7 the Fourier transform of a Gaussian. The result
was

Zþ1

�1
e�ax2e�ikxdx ¼ e�

k2
4a

ffiffiffi
p
a

r
: ð21:44Þ

We deduce the expression of the Fourier transform of a Gaussian probability
density function of a centered variable:

Let f ðxÞ ¼ 1ffiffiffiffiffiffiffi
2pr2

p e�
x2

2r2 ; its FT is : FðkÞ ¼ e�
r2k2
2 : ð21:45Þ

It is thus seen that the Fourier transform of a Gaussian is a Gaussian.
For a Gaussian variable with a nonzero expected value g, the pdf appears as the

previous density translated by g. Using the shift theorem connecting the FT of a
translated function to that of the un-translated function by multiplication by a phase
factor, we have

Let f ðxÞ ¼ 1ffiffiffiffiffiffiffi
2pr2

p e�
ðx�gÞ2
2r2 ; its FT is : FðkÞ ¼ e�ikge�

r2k2
2 : ð21:46Þ
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21.1.2.2 Characteristic Function

We call characteristic function UðkÞ of a r.v. with probability density function f ðxÞ
the function given by the integral

UðkÞ ¼
Zþ1

�1
f ðxÞeikxdx: ð21:47Þ

It appears that the characteristic function is connected to the Fourier transform
FðkÞ of the probability density function of the r.v. by the relationship:

UðkÞ ¼ Fð�kÞ:

So for a Gaussian variable

Let f ðxÞ ¼ 1ffiffiffiffiffiffiffi
2pr2

p e�
ðx�gÞ2
2r2 ; the characteristic function is : UðkÞ ¼ eikge�

r2k2
2 : ð21:48Þ

21.1.3 Probability Density Function of a Function
of a Random Variable

Let y be a function of the random variable x. How, knowing the probability law of
x can we deduce that of y?

In a domain where the function y xð Þ is monotonous, every event giving to x the
value x, will give to y the value y. The probability to find x between x and xþ dx is
equal to the probability to find y between y and yþ dy: We can then write:

fxðxÞdxj j ¼ fyðyÞdy
�� ��: ð21:49Þ

Note the absolute values that serve to ensure the necessarily positive character of
the probabilities. Densities being positive, we may write

fyðyÞ ¼ fxðxÞ 1
dy
dx

���
���
: ð21:50Þ

In the case where a same value of y can be obtained for several values of x, we
split the interval of variation of x in intervals where the function yðxÞ is
monotonous.
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The probability fyðyÞdy
�� �� is the sum of the probabilities of realization of x:

fxðxÞdxj ji on the different intervals with a one to one correspondence between x and y:

fyðyÞdy
�� �� ¼ fxðxÞdxj j1 þ fxðxÞdxj j2 þ . . . ð21:51Þ

Figure 21.10 shows the example where y = x2. Two intervals of x give the
realization of y between y and yþ dy:

Application: v2 (Chi-square) variable with one degree of freedom.
This variable plays an important role in statistics since it is largely used to

evaluate the noise in a signal, the squared error of a model or the deviation of a
distribution of variables with a theoretical distribution (for that last application, see
Chap. 22). Let us study here its properties.

Let x be a Gaussian centered reduced r.v. Nð0; 1Þ: One seeks the distribution of
the variable y ¼ x2 (called a v2 variable with one degree of freedom):

We have:

fxðxÞ ¼ 1
ffiffiffiffiffiffi
2p

p e�
x2
2 ; y ¼ x2 and

dy
dx

¼ 2x: ð21:52Þ

fyðyÞ ¼ 2
1
ffiffiffiffiffiffi
2p

p e�
y
2

1
2

ffiffiffi
y

p UðyÞ ¼ 1
ffiffiffiffiffiffiffiffi
2py

p e�
y
2UðyÞ: ð21:53Þ

We have multiplied by 2 because there are 2 values of x for a given value of y.

E yf g ¼
Z1

�1
yfyðyÞdy ¼ 1

ffiffiffiffiffiffi
2p

p
Z1

0

ffiffiffi
y

p
e�

y
2dy: ð21:54Þ

We note y ¼ x2; dy ¼ 2xdx;
ffiffiffi
y

p ¼ x:

E yf g ¼ 1
ffiffiffiffiffiffi
2p

p
Z1

0

xe�
x2
2 2xdx ¼ 1

ffiffiffiffiffiffi
2p

p
Zþ1

�1
x2e�

x2
2 dx ¼ 1: ð21:55Þ

The calculus of the variance of x is recognized:vðyÞ ¼ E y2
� �� ðE yf gÞ2:

Fig. 21.10 In this example, fyðyÞdy
�� �� ¼ fxðxÞdxj j1 þ fxðxÞdxj j2
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In a first step, we calculate E y2
� � ¼ 1ffiffiffiffi

2p
p

R1
0 y2e�

y
2 1ffiffi

y
p dy:

We note y ¼ x2 . E y2
� � ¼ 1ffiffiffiffi

2p
p

R1
0 x4e�

x2
2 1
x 2xdx ¼ 1ffiffiffiffi

2p
p

R þ1
�1 x4e�

x2
2 dx:

We must integrate the product of the fourth power of x with the Gaussian
function. Using the results recalled above on Gaussian integrals, we have

E y2
� � ¼ 1

ffiffiffiffiffiffi
2p

p ffiffiffi
p

p 3
4

ffiffiffiffiffi
32

p
¼ 3:

Therefore vðyÞ ¼ 3� 1 ¼ 2:
So

E v2
� � ¼ 1; vðv2Þ ¼ 2: ð21:56Þ

Characteristic function of the v2 variable with one degree of freedom:

UðkÞ ¼
Zþ1

�1

1
ffiffiffiffiffiffiffiffi
2py

p e�
y
2UðyÞeikydy ¼ 1

ffiffiffiffiffiffi
2p

p
Zþ1

�1
y�

1
2e�

y
2UðyÞeikydy:

Using the result in the table of Fourier transforms given in Chap. 7, we get

UðkÞ ¼ 1
ffiffiffiffiffiffi
2p

p �jkþ 1
2

� ��1
2 ffiffiffi

p
p ¼ 1

�2jkþ 1ð Þ1=2
: ð21:57Þ

21.2 Second-Order Statistics

21.2.1 Case of Two Real Random Variables

We are interested in the result of the values xðt1Þ and xðt2Þ obtained for two times t1
and t2 . They are both random variables. It is clear that if the signal xðtÞ is obtained
at the output of a physical system and if the times t1 and t2 are quite close, the
measured values are generally not independent. For example, if the value at time t1
is strongly negative, the value obtained at a close time t2 will most likely be also
negative, etc.

We are led to study statistics of two r.v. which will be also called second-order
statistics. For convenience, we write x t1ð Þ ¼ x and x t2ð Þ ¼ y:
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21.2.1.1 Joint Probability Density Function

The probability that x and y are realized in the neighborhoods dx and dy of x and
y is (See Fig. 21.11):

P x\x� xþ dx; y\y� yþ dy;f g ¼ fxy x; yð Þdxdy: ð21:58Þ

This probability is proportional to the infinitesimal area dx dy of a rectangle
whose vertices is the point ðx; yÞ in the plane xOy. It is weighted by the function
fxyðx; yÞ that acts as a mass density in the plane xOy.

The function f ðxðt1Þ; xðt2ÞÞ ¼ fxyðx; yÞ is the joint probability density function.

21.2.1.2 Joint Cumulative Distribution Function

It is defined as the probability that x� x and y� y:

P x� x; y� yð Þ ¼ Fxy x; yð Þ ¼
Zx

�1

Zy

�1
fxy x; yð Þdxdy: ð21:59Þ

The domain of integration is hatched in gray (Fig. 21.12).
Fxyðx; yÞ is the joint cumulative distribution function.

Fig. 21.11 Infinitesimal area
dx dy

Fig. 21.12 Domain of
integration is hatched in gray
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We have evidently

fxyðx; yÞ ¼ @2 Fxy

@x@y
: ð21:60Þ

21.2.1.3 Marginal Cumulative Distribution Function

The marginal cumulative distribution function is defined as the probability that
x� x whatever the value of y

P x� xð Þ ¼ P x� x; 8yf g ¼
Zx

�1

Zþ1

�1
fxy x; yð Þdxdy ¼ Fxy x;1ð Þ: ð21:61Þ

The domain of integration is hatched in gray (Fig. 21.13).

The marginal probability density function fxðxÞ is given by fx xð Þ ¼ @Fxy x;1ð Þ
@x :

It comes

fx xð Þ ¼
Zþ1

�1
fxy x; yð Þdy: ð21:62Þ

Correlation of the random variables x and y:
By definition, the correlation of variables x and y (assumed real) is the expec-

tation of their product

E xyf g ¼
Zþ1

�1

Zþ1

�1
xyfxy x; yð Þdxdy: ð21:63Þ

Fig. 21.13 The domain of
integration is the half-plane
x� x
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Covariance of r.v. x and y:
By definition, the covariance Cxy is the correlation of the centered variables. It is

defined as

Cxy ¼ E x� gxð Þ y� gy
� 	� � ¼ E xcycf g: ð21:64Þ

Property: One can easily show that

Cxy ¼ E xyf g � E xf gE yf g ¼ E xyf g � gxgy: ð21:65Þ

Correlation coefficient of variables x and y:
The correlation coefficient rxy of variables x and y is defined by

rxy ¼ Cxy

rxry
: ð21:66Þ

Important property:

rxy
�� ��� 1: ð21:67Þ

To show this property, we construct a quadratic form where k is any real number
and we take the expectation of this form. This expectation of a square quantity is
necessarily positive or zero:

E k x� gxð Þþ y� gy
� 	
 �2n o

¼ k2r2x þ r2y þ 2kCxy � 0: ð21:68Þ

We recognize a polynomial of degree 2 in k. In order that its value be always
positive or zero regardless k, it is necessary that its discriminant is negative or zero,
so that there is no root accompanied by a change of sign of the polynomial.

It is thus necessary that C2
xy � r2xr

2
y � 0: Then

Cxyj j
rxry

� 1; or: rxy
�� ��� 1:

Orthogonality and non-correlation:
Two r.v. x and y are said orthogonal if their correlation is zero:

E xyf g ¼ 0: ð21:69Þ

Two r.v. x and y are said uncorrelated if their covariance is zero, that is to say if
Cxy ¼ 0 (and then rxy ¼ 0Þ. We will have in this case: E xyf g ¼ gxgy.

Note that the concepts of orthogonality and no correlation imposed by use are
not in good agreement with the original semantic definitions.

Discussion: If two r.v. are uncorrelated, centered variables x� gxð Þ and
y� gy
� 	

are orthogonal: x� gx ? y� gy .
If two r.v. are uncorrelated and their expectations are zero, then they are

orthogonal: x ? y
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Characteristic function of two r.v. x and y:
The characteristic function Uðk1; k2Þ of joint random variables x and y is defined

from the double integral of the joint probability density function fxyðx; yÞ:

Uðk1; k2Þ ¼
Zþ1

�1

Zþ1

�1
fxyðx; yÞeik1xeik2ydx dy: ð21:70Þ

The characteristic function is related to the two-dimensional FT Fðk1; k2Þ of the
joint probability density function fxyðx; yÞ:

Uðk1; k2Þ ¼ Fð�k1;�k2Þ: ð21:71Þ

21.2.1.4 Conditional Probability Density Function

The conditional probability density function of a random variable y is defined as the
probability density function of that r.v. knowing that the r.v. x has been realized and
took a value x. This density is noted fy xj ðyÞ: One says: fy xj ðyÞ is the probability
density of y if x.

There is an important relationship between the joint probability density and
marginal and conditional probability density functions expressed in the following
theorem:

Theorem The joint probability density function is equal to the product of the
marginal probability density function of x by the conditional probability density
function of y.

fxy x; yð Þ ¼ fxðxÞfy xj ðyÞ: ð21:72Þ

We have, of course, also

fxy x; yð Þ ¼ fyðyÞfx yj ðxÞ: ð21:73Þ

Definition The random variables x and y are called independent if their joint
probability density function is equal to the product of their marginal densities:

fxy x; yð Þ ¼ fxðxÞfyðyÞ: ð21:74Þ
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We can see that, in the case of independence, the conditional probability den-
sities are equal to the marginal probability density functions.

fy xj ðyÞ ¼ fyðyÞ and fx yj ðxÞ ¼ fxðxÞ: ð21:75Þ

Property If the random variables x and y are independent, according to (22.17)
their characteristic function is given by

Uðk1; k2Þ ¼
Zþ1

�1

Zþ1

�1
fxyðx; yÞeik1xeik2ydx dy¼

Zþ1

�1

Zþ1

�1
fxðxÞfyðyÞeik1xeik2ydx dy;

Uðk1; k2Þ ¼
Zþ1

�1
fxðxÞeik1xdx

Zþ1

�1
fyðyÞeik2ydy¼ Uxðk1ÞUyðk2Þ:

ð21:76Þ

In this case, the characteristic function of the couple ðx; yÞ of joint variables is
the product of the marginal characteristic functions of x and of y.

21.2.1.5 Bayesian Statistical Aspect

In recent years, the use of Bayesian statistics has been rapidly developing in signal
processing. It is used in many areas such as signal quality enhancement or source of
signal localization. It may be seen as the evaluation of the probability of the cause
of a phenomenon. It is an aspect of statistical inference where one looks to sta-
tistical properties by analyzing the data. The treatment of this topic is beyond the
scope of this book and the reader is advised to get insights of this field in the
literature. To expose the concept of Bayesian statistics, rather than focus on the
probability densities, we use discrete events probabilities.

Consider two events A and B with probabilities PðAÞ and PðBÞ: The likelihood of
the joint realization of both events A and B, PðA andBÞ is noted P A\Bð Þ:

The conditional probability of B, the event A having been realized, is defined by
the ratio of the joint probability P A\Bð Þ by PðAÞ: So:

P BjAð Þ ¼ P A\Bð Þ
P Að Þ : ð21:77Þ

Obviously we can write P A\Bð Þ ¼ P Bð ÞP AjBð Þ, and P Að Þ ¼ P A\Bð Þ
P BjAð Þ , and also

P AjBð Þ ¼ P A\Bð Þ
P Bð Þ ; P Bð Þ ¼ P A\Bð Þ

P AjBð Þ :

426 21 Random Signals: Statistics Basis

http://dx.doi.org/10.1007/978-3-319-42382-1_22


Bayes rule:
Since P A\Bð Þ ¼ P Að ÞP BjAð Þ ¼ P Bð ÞP AjBð Þ;we have

P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ : ð21:78Þ

For conditional probability densities defined in Sect. 21.4.4, the Bayes rule
would be written as

fy xj ðyÞ ¼
fx yj ðxÞfyðyÞ

fxðxÞ : ð21:79Þ

The rule given in (21.78) is also called the rule of the probability of the causes.
To explain this term, we change the notation. We call D the event that has been
observed as a data of the particular problem (D is used to say that it is a data). We
note H the event that is assumed to have been realized (hypothesis H). The
Eq. (21.78) takes the form:

P HjDð Þ ¼ P DjHð ÞP Hð Þ
P Dð Þ : ð21:80Þ

Let us call H0 the event corresponding to the non realization of H.
We can write

P Dð Þ ¼ P DjHð ÞP Hð ÞþP DjH0ð ÞP H0ð Þ; ð21:81Þ

or:

P Dð Þ ¼ P DjHð ÞP Hð ÞþP DjH0ð Þ 1� P Hð Þð Þ: ð21:82Þ

Equation (21.80) becomes:

P HjDð Þ ¼ P DjHð ÞP Hð Þ
P DjHð ÞP Hð ÞþP DjH0ð Þ 1� P Hð Þð Þ : ð21:83Þ

This last expression expresses the probability that the measurement D has been
caused by the realization of the event H.

Two exercises from problems encountered in medical statistics are given at the
end of this chapter.
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21.2.2 Two Joint Gaussian r.r.

21.2.2.1 Probability Densities

By definition, x and y are jointly Gaussian if their joint probability density function
is given by

fxyðx; yÞ ¼ 1

2prxry
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p e
� 1

2ð1�r2Þ
x�gxð Þ2
r2x

�2rðx�gxÞðy�gyÞ
rxry

þ ðy�gyÞ2
r2y

� 


: ð21:84Þ

Further, it will be shown that r is the correlation coefficient of x and y.
In the following, the study is restricted to the case where the means of x and y are

null and where their variances are equal. This particular case makes it simple
calculation, but is still worth in practice. It helps to understand the nature of the
problem.

In that case

fxyðx; yÞ ¼ 1

2pr2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p e
� 1

2r2ð1�r2Þ x2�2rxyþ y2ð Þ
: ð21:85Þ

We calculate the marginal probability density of x: fx xð Þ ¼ R þ1
�1 fxyðx; yÞdy .

For this, we write initially fxyðx; yÞ in another form. We can pose a ¼ 1
2r2 1�r2ð Þ

and the term is factored. There is then a term e�aðy2�2rxyÞ in which the first two terms
of a squared difference is recognized.

We write then

y2 � 2rxy ¼ ðy� rxÞ2 � r2x2: ð21:86Þ

So

fxyðx; yÞ ¼ 1

2pr2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p e
� x2ð1�r2Þ

2r2ð1�r2Þe
� ðy�rxÞ2

2r2ð1�r2Þ; ð21:87Þ

or:

fxyðx; yÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
x2

2r2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2ð1� r2Þp e

� ðy�rxÞ2
2r2ð1�r2Þ: ð21:88Þ

We recognize the product of the marginal probability density of x by the con-
ditional density of y. Indeed
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fxðxÞ ¼
Zþ1

�1
fxyðx; yÞ dy ¼ 1

ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
x2

2r2

Zþ1

�1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2ð1� r2Þp e

ðy�rxÞ2
2r2ð1�r2Þdy: ð21:89Þ

We recognize in this expression the integral of a Gaussian probability density
function from minus infinity to plus infinity. This integral is 1.

So we have

fxyðx; yÞ ¼ fxðxÞfy xj ðyÞ: ð21:90Þ

with:

fxðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
x2

2r2 and fy xj ðyÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2ð1� r2Þp e

� ðy�rxÞ2
2r2ð1�r2Þ: ð21:91Þ

Interpreting the shape of this density:
The value x being observed, the r.v. y is conditioned by this observation. It is r.v.

with e.v. gy xj ¼ rx and variance r2y xj ¼ r2 1� r2ð Þ\r2.

The observed value of x has “pulled” the statistics of y. For example, if r is
positive, it is more likely to observe a negative value for y if a negative value was
observed for x.

We also note that the conditioned variance of y is equal or less (as r2 � 1Þ to that
of y unconditioned. The statistical range of probable values of y is reduced. We see
in Fig. 21.14 that the width of conditional probability density fy xj ðyÞ is smaller than
that of the marginal density fyðyÞ:

Fig. 21.14 Marginal pdf
fyðyÞ and conditioned pdf
fy xj ðyÞ
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Limit cases:
r ¼ 0 (no correlation); the joint probability density is

fxyðx; yÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
x2

2r2
1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
y2

2r2 : ð21:92Þ

The two r.v. x and y are thus also independent. For Gaussian variables, the
non-correlation is equivalent to independence.

r ¼ 1 (full correlation); the variance of y xj is zero. If a given value of x is
observed, the value of y xj is definitely the value of x.

We verify now that the coefficient r is the correlation coefficient of x and y de-
fined by

rxy ¼ Cxy x; yð Þ
rxry

¼ E x� gxð Þ y� gy
� 	� �

ryry
¼ E xyf g

rxry
in the case where gx ¼ gy ¼ 0:

ð21:93Þ

Indeed

E xyf g ¼
Zþ1

�1

1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p xe�
x2

2r2dx
Zþ1

�1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2 1� r2ð Þp ye

� y�rxð Þ2
2r2 1�r2ð Þdy: ð21:94Þ

The second integral is the average of y conditioned by x, that is gðy xÞj ¼ rx:
So:

E xyf g ¼ r
ffiffiffiffiffiffiffiffiffiffi
2pr2

p
Zþ1

�1
x2e�

x2

2r2dx ¼ rr2: ð21:95Þ

We thus get

r ¼ E xyf g
r2

: ð21:96Þ

21.2.2.2 Characteristic Function

We place first in the case previously treated where the expectations of the variables
is zero and variances are both equal to r2. Their correlation coefficient is r.

fxyðx; yÞ ¼ 1

2pr2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p e
� 1

2r2ð1�r2Þ x2�2rxyþ y2ð Þ
; ð21:97Þ
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fxyðx; yÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
x2

2r2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2ð1� r2Þp e

� 1
2r2ð1�r2Þðy�rx2Þ

: ð21:98Þ

Uðk1; k2Þ ¼
Zþ1

�1

1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
x2

2r2eik1xdx
Zþ1

�1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2ð1� r2Þp e

� 1
2r2ð1�r2Þðy�rx2Þ

eik2ydy:

ð21:99Þ

The characteristic function of the Gaussian conditional variable y xj is recognized

in the second integral. It is eik2rxe�
r2ð1�r2Þk2

2
2 .

We now have to evaluate

Uðk1; k2Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
r2ð1�r2Þk2

2
2

Zþ1

�1
e�

x2

2r2eiðk1 þ k2rÞxdx: ð21:100Þ

We finally have

Uðk1; k2Þ ¼ e�
r2ð1�r2Þk2

2
2 e�

r2ðk1 þ rk2Þ2
2 : ð21:101Þ

21.2.3 Properties of the Sum of Two r.v

21.2.3.1 Probability Density Function

Consider

z ¼ xþ y; ð21:102Þ

the probability density function fzðzÞ can be deduced from the joint probability
density fxyðx; yÞ: For that we calculate the cumulative distribution function of z:

FzðzÞ ¼
Z

xþ y� z

fxy x; yð Þdx dy ¼
Zþ1

�1
dx

Zz�x

�1
fxy x; yð Þ dy: ð21:103Þ

The integration domain is the half-plane below the line of equation y ¼ z� x
which is parallel to the second bisector (see Fig. 21.15).
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In the particular case where the r.v. x and y are independent:

fxyðx; yÞ ¼ fxðxÞfyðyÞ: ð21:104Þ

So

FzðzÞ ¼
Zþ1

�1
fxðxÞ dx

Z z�x

�1
fyðyÞ dy ¼

Zþ1

�1
fxðxÞFyðz� xÞdx: ð21:105Þ

fzðzÞ ¼ dFzðzÞ
dz

¼
Zþ1

�1
fxðxÞfyðz� xÞ dx ¼ fxðzÞ � fyðzÞ: ð21:106Þ

Thus

fzðzÞ ¼ fxðzÞ � fyðzÞ: ð21:107Þ

It is thus seen that the probability density function of the sum of two independent
r.v. is equal to the convolution product of the probability density functions of these
r.v..

Expectation of the sum of two r.v.:
If z ¼ xþ y; E zf g ¼ E xf gþE yf g ¼ gx þ gy. The expectation of the sum is the

sum of expectations.
If x1 and x2 have a same average g, the expectation of their arithmetic mean m is:

E mf g ¼ 1
2

E x1f gþE x2f gð Þ ¼ g: ð21:108Þ

Fig. 21.15 Half plane of
integration below the line
y ¼ z� x
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Variance of the sum of two r.v.
If

z ¼ xþ y; var zð Þ ¼ E xþ y� E xf gþE yf gð Þð Þ2
n o

¼ E xc þ ycð Þ2
n o

;

¼ E x2c
� �þE y2c

� �þ 2E xcycf g

If the two variables are independent E xcycf g ¼ E xcf gE ycf g ¼ 0:
In that case

var zð Þ ¼ E x2c
� �þE y2c

� � ¼ var xð Þþ var yð Þ: ð21:109Þ

In this case, the variance of the sum of the two r.v. is the sum of their variances.
Thus, let m ¼ 1

N

PN
i¼1 xi, the arithmetic mean of N independent random variables

with identical expected values and variances (g and r2). So,

E mf g ¼ g and var mð Þ ¼ 1
N
r2: ð21:110Þ

We see that the arithmetic mean m of r.v. will approach more the expectation
value if the number N of variables is large, since its variance decreases as
N increases.

21.2.3.2 Central Limit Theorem

This theorem is presented here with an example. Suppose that x and y are two
independent uniformly distributed r.v. within the interval � a

2 ;
a
2

� �
: The probability

density function of their sum z being the auto convolution of rectangular functions
densities is a triangular function. The length of the base of the triangle, which is the
sum of the supports of the functions that are convoluted, has the value 2a:

If now x1, x2, x3 and x4, are four independent variables uniformly distributed in
an interval � a

2 ;
a
2

� �
, by grouping terms two by two, it is seen that the density of the

sum z, convolution of two triangular shapes densities has a bell shape where the
connection to zero values at the ends of the interval is parabolic.

In pursuing these summations of r.v., and if we make the sum of a large number
of independent r.v. distributed identically on a bounded support, it is found that the
shape of the density of the sum of these variables approaches a Gaussian shape. We
understand that it would be the same if the initial density had a form other than
rectangular, triangular, for example.

This property is very useful in statistics, and is known as the central limit
theorem.
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Exercise
Calculation of the probability density function of a function of two r.v.
Let

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; ð21:111Þ

to calculate the probability density function of the r.v. z, it is again more convenient
to pass through the calculation of the cumulative distribution function of z,

FzðzÞ ¼
Z Z

D

fxyðx; yÞdxdy: ð21:112Þ

The domain of integration D is the set of points in the plane xOy that realizes the
condition z\z: It is the disk centered in O with radius z (Fig. 21.16).

We assume that x and y are Gaussian variables, independent with zero expec-
tations and variances r2, their joint probability density is given by

fxyðx; yÞ ¼ fxðxÞfyðyÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
x2

2r2
1
ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
y2

2r2 : ð21:113Þ

FzðzÞ ¼ 1
2pr2

Z Z

D

e�
ðx2 þ y2Þ

2r2 dx dy D : z� zð Þ: ð21:114Þ

The integration is performed in polar coordinates. The infinitesimal surface
element becomes z dz dh.

FzðzÞ ¼ 1
2pr2

Zz

0

e�
x2 þ y2

2r2 z dz
Z2p

0

dh ¼ 1
r2

Zz

0

e�
z2

2r2z dz: ð21:115Þ

Fig. 21.16 Disc of
integration z\z
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So

fzðzÞ ¼ 1
r2

ze�
z2

2r2UðzÞ: ð21:116Þ

z is distributed according to a Rayleigh law.
Let us calculate the mean and variance of z:

E zf g ¼ 1
r2

Z1

0

e�
z2

2r2z2dz ¼ 1
2r2

Zþ1

�1
z2e�

z2

2r2dz ð21:117Þ

¼ 1
2r2

ffiffiffiffiffiffiffiffiffiffi
2pr2

p
r2 ¼ r

ffiffiffi
p
2

r
: ð21:118Þ

To calculate the variance of z;, we use the relationship vðzÞ ¼ E z2
� �� ðE zf gÞ2.

The first term is: E z2
� � ¼ 1

2r2
R1
0 e�

z2

2r2z3dz ¼ 1
r2
R1
0 e�

u
2r2u du2

We denoted z2 ¼ u; and so 2zdz ¼ du:
Integrating by parts

E z2
� � ¼ 1

2r2
�2r2ue�

u
2r2

h i1

0
þ 2r2

Z1

0

e�
u

2r2du

8
<

:

9
=

;
: ð21:119Þ

The first term of this sum is zero. It comes: E z2
� � ¼ �2r2 e�

u
2r2

h i1

0
¼ 2r2 .

Finally: vðzÞ ¼ 2r2 � r2 p
2 ¼ r2 2� p

2

� 	
:

Then

q ¼ E zf g
ffiffiffiffiffiffiffiffi
vðzÞp ¼

ffiffi
p
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� p

2

� 	q ¼
ffiffiffiffiffiffiffiffiffiffiffi
p

4� p

r
¼ 1:91306: ð21:120Þ

21.2.4 Complex Random Variables

21.2.4.1 Probability Density Function of a Complex r.v.

Let xR and xI be two random variables. The quantity x ¼ xR þ jxI is a complex
random variable, with j ¼ ffiffiffiffiffiffiffi�1

p
.
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The statistical properties of x are governed by the joint probability density
function:

P xR\xR � xR þ dxR ; xI\xI � xI þ dxIf g ¼ fxRxI xR ; xIð ÞdxRdxI : ð21:121Þ

Expectancy: Expectancy of x ¼ xR þ jxI is the sum of expectations of xR and jxI :

E xf g¼E xRf gþ jE xIf g: ð21:122Þ

Variance: Before defining the variance, first let us calculate the following
expression:

E x� E xf gð Þ2
n o

¼E xR þ jxI � E xRf g � jE xIf gð Þ2
n o

ð21:123Þ

¼E xRc þ jxIcð Þ2
n o

¼ E x2Rc � x2Ic þ 2jxRcxIc
� �

: ð21:124Þ

A variance is expected to be a real nonnegative number. The real part of the
previously calculated quantity is

E x2Rc � x2Ic
� � ¼ E x2Rc

� �� E x2Ic
� �

: ð21:125Þ

This expression could be negative if E x2Rc
� �

\E x2Ic
� �

. On the other hand, it has
an eventually nonzero imaginary part: 2E xRcxIcf g:

So we must define the variance in another way by using the complex conjugates:

v xð Þ ¼ E x� E xf gð Þ x� E xf gð Þ�f g: ð21:126Þ

Indeed

v xð Þ ¼ E x� E xf gð Þ x� E xf gð Þ�f g¼E xRc þ jxIcð Þ xRc þ jxIcð Þ�f g;
v xð Þ ¼ E xRc þ jxIcð Þ xRc � jxIcð Þf g ¼ E x2Rc þ x2Ic

� �
:

ð21:127Þ

This expectation is real, positive, or zero, as expected of a variance.

21.2.4.2 Correlation of Two Complex R.V

Consider two complex random variables:

x1 ¼ x1R þ jx1I and x2 ¼ x2R þ jx2I : ð21:128Þ
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Their correlation is defined as

E x1 x�2
� � ¼ E x1R þ jx1Ið Þ x2R � jx2Ið Þ�f g: ð21:129Þ

We have

E x1 x�2
� � ¼ E x1Rx2R þ x1Ix2If gþ jE x1Ix2R � x1Rx2If g: ð21:130Þ

This correlation is a complex number, sum of four correlations. Its real and
imaginary parts are each the sum of two correlations. E x1x�2

� �
carries only

incomplete information about correlations.
There is a case where the correlation gives all the information, it is the case

where some of the correlations contained in (22.133) are equal. Specifically if

E x1Rx2Rf g ¼ E x1Ix2If g andE x1Ix2Rf g ¼ �E x1Rx2If g: ð21:131Þ

In this case we have

E x1x�2
� � ¼ 2E x1Rx2Rf gþ 2jE x1Ix2Rf g: ð21:132Þ

It is noted that then

E x1x2f g ¼ E x1Rx2Rf g � E x1Ix2If gþ jE x1Ix2Rf gþ jE x1Rx2If g ¼ 0: ð21:133Þ

We always assume in the following that the complex random variables under
study have this property. This is related to the physical nature of signals which are
the general subject of our study.

Example 1
Let the random signal

x tð Þ ¼ A0ejxteju: ð21:134Þ

The amplitude A0 is a certain, real positive number. The phase u is a random
number uniformly distributed between �p and þ p.

The values of the signal at two instants t1 and t2 are two random variables.

x1 ¼ x t1ð Þ ¼ A0ejxt1eju; x2 ¼ x t2ð Þ ¼ A0ejxt2eju:

E x1f g ¼ E A0ejxt1eju
� � ¼ A0ejxt1E eju

� � ¼ 0:
ð21:135Þ
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The expectancy is null, as

E eju
� � ¼ 1

2p

Zp

�p

ejudu ¼ 0: ð21:136Þ

The signal has the property (21.134) emphasized in the previous paragraph:

E x1x2f g ¼ E A0ejxt1ejuA0ejxt2eju
� � ¼ A2

0e
jx t1 þ t2ð ÞE ej2u

� � ¼ 0: ð21:137Þ

We calculate the correlation:

E x1x�2
� � ¼ E A0ejxt1ejuA0e�jxt2e�ju� � ¼ A2

0e
jx t1�t2ð ÞE 1f g ¼ A2

0e
jx t1�t2ð Þ:

ð21:138Þ

Example 2
We discuss these properties on an example from acoustics. Let a plane acoustic
wave propagating in a fluid in the direction x.

The sound pressure can be written as p ¼ p0eixðt�
x
cÞ.

It is assumed that due to homogeneities in the medium, the speed c varies
randomly around an average value c0. One writes the index in the form n ¼ c0

c : The
index is a random variable that can be written in the form n ¼ 1þ e: The r.v. e has
zero expectation. It is assumed in the sequel that n is Gaussian and its standard
deviation is noted r . Similarly n is Gaussian with mean 1 and variance r2.

Sound pressure is thus a function of the random variable n: We now determine

the mean and variance of the acoustic pressure: p ¼ p0eixte
�ixnx

c0 .

E pf g ¼ p0eixtE e�ixnx
c0

n o
¼ p0eixtE e�ian� � ¼ p0eixt

Zþ1

�1
e�ianf ðnÞdn:

We denoted a ¼ xx
c0
: One sees the Fourier transform of the probability density

function (Gaussian) of n: Using the formula (21.46) we obtain

E pf g ¼ p0eixte
�ixxc0 e�

r2a2
2 ¼ p0eixte

�ixxc0 e
�r2x2x2

2c2
0 ; ð21:139Þ

or, using the average wave number k0 ¼ x
c0
; E pf g ¼ p0eixte�ik0xe�

r2k2
0
x2

2 .
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Limit cases:
At low frequencies E pf g ¼ p0eixte�ik0x. At high frequencies E pf g ¼ 0:
The variance of p is defined by

varðpÞ ¼ E ðp� E pf gÞðp� � E p�f gÞf g:

It is

var pð Þ ¼ p20 þ p20e
�r2k20 x

2 � 2E pf gE p�f g ¼ p20ð1� e�r2k20 x
2Þ:

At low frequencies the variance is low. It goes to 0 with frequency going to 0.
The variance becomes equal to p20 at high frequencies. The amplitude of the

variation of p is then equal to the pressure modulus p0 .

Summary
We presented the main statistical properties of a random variable with values in a
continuum. We have defined the probability density function and the cumulative
distribution function of a r.v.: expectancy, variance, the moments of a distribution,
and the characteristic function. The Gaussian distribution (normal distribution) has
been studied thoroughly. The probability density function of a function of a random
variable has been studied with chi-square law as an example. In the second part of
this chapter, we have presented the second-order statistics.

The joint probability density, the marginal probability densities were defined.
Bayesian aspect of conditional statistics has been introduced. The correlation
coefficient, orthogonality and independence in probability concepts were intro-
duced. Two jointly Gaussian variables are exposed as an illustration. It has been
shown that the probability density function of the sum of two independent r.v. is the
convolution of their probability densities. This result is extended to the sum of a
large number of independent random variables that appear to follow approximately
a Gaussian distribution (central limit theorem). Basic properties of complex r.v.
have been exposed.

A table of Gauss’s law is given at the end of the chapter.

Exercises

I. If the size of an individual in a population can be considered as a Gaussian r.v.
with expectancy 1.75 m and standard deviation 0.1 m, what is the probability
that the size of an individual taken at random deviates from the mean by more
than 10 cm?; that it exceeds 1.95 m?
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II. Let x be a random variable uniformly distributed between �p and p. Let
y ¼ sin x: Show that the pdf of y is fyðyÞ ¼ 1

p
1ffiffiffiffiffiffiffiffi
1�y2

p :

III. Two r.v. x and y are jointly Gaussian. Their expectancies are null and their
variances are equal. We assume that rx ¼ 5:64� 10�4 and that their correla-
tion coefficient is r ¼ 0:8415: Knowing that x ¼ 10�3 V was measured, what is
the probability of measuring a negative value for y?

Solution: yjx is a Gaussian random variable with ry xj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2xð1� r2Þp ¼

3:05� 10�4.
We can apply the formula of the conditional probability:

fy xj ðyÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2ð1� r2Þp e

� ðy�rxÞ2
2r2ð1�r2Þ with gy xj ¼ rx ¼ 0:8415� 10�3:

We make the change of variable z ¼ y�gy xj
ry xj

: Writing y1 ¼ 0; the corresponding

boundary of the reduced centered variable is z1 ¼ �gy xj
ry xj

¼ � 0:8415�10�3

3:05�10�4 ¼ 2:762:

Referring to the table of Gauss’s law, we see that there is 1� 0:9971 ¼ 0:0029; less
than three chances in a thousand for obtaining a negative value for y:

IV. Let x and y be two independent random variables distributed according to a
Gaussian distribution. Show that their sum is also distributed according to a
Gaussian law.

Hint: Use characteristic functions and the theorem of the FT of a convolution
product.

Explain qualitatively why values of y near its average are more probable.

V. A box labeled 1 contains 75 red and 25 black balls. A second box 2 contains 40
red and 40 black balls. Knowing that a black ball was drawn from one of the
two boxes selected at random, what is the probability that it was drawn from the
box 1?

We note P Nð Þ the probability that a ball is black and P Rð Þ that it is red.
Since the box is chosen at random: P 1ð Þ ¼ P 2ð Þ ¼ 0:5:
The probability that a ball is red or black is necessarily equal to 1:

P N [Rð Þ ¼ P Nð ÞþP Rð Þ � P N \Rð Þ ¼ 1:

A ball cannot be both red and black, so P N \Rð Þ ¼ 0; then P Nð ÞþP Rð Þ ¼ 1:
A black ball necessarily belonging to the box 1 or 2, since a black ball cannot be

from both urns 1 and 2 we have:

P Nð Þ ¼ P N \ 1ð ÞþP N \ 2ð Þ � P N \ 1\ 2ð Þ ¼ P N \ 1ð ÞþP N \ 2ð Þ:
P Nð Þ ¼ P 1ð ÞP Nj1ð ÞþP 2ð ÞP Nj2ð Þ:
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Since P 1ð Þ ¼ P 2ð Þ ¼ 0:5; P Nð Þ ¼ 0:5 	 0:75þ 0:5 	 0:5 ¼ 0:625:
Similarly P Rð Þ ¼ 0:5 	 0:25þ 0:5 	 0:5 ¼ 0:375:
Using Bayes’ theorem we can write

P 1jNð Þ ¼ P Nj1ð ÞP 1ð Þ
P Nð Þ ¼ 0:75 	 0:5

0:625
¼ 0:6:

The probability that the black ball was drawn from the box 1 is 0:6:

Similarly P 2jNð Þ ¼ P Nj2ð ÞP 2ð Þ
P Nð Þ ¼ 0:5 	0:5

0:625 ¼ 0:4:

It is normal to obtain that P 1jNð ÞþP 2jNð Þ ¼ 1; the black ball could not have
been drawn otherwise that from box 1 or 2.

VI. A person belongs to a population whose risk of developing cancer is 5 %. This
person makes a test whose probability of detection of an existing cancer is
80 %. This test, however, gives a wrongly positive result in 20 % of cases.
The test happens to be positive for that person. What is the probability that the
person has cancer?

We use the formula (21.83).
D is the event that the test is positive. H is the event: the person has cancer.
P Hð Þ is the probability that the person has cancer: P Hð Þ ¼ 0:05:
P DjHð Þ is the probability that the test is positive, the person having cancer

P DjHð Þ ¼ 0:8:
P DjH0ð Þ is the probability that the test is positive, the person having not cancer

P DjH0ð Þ ¼ 0:2:
We seek the probability that the person has cancer when the test has been positive
Formula (21.83) is written: P HjDð Þ ¼ 0:8 	0:05

0:8 	0:05þ 0:2	0:95 ¼ 0:1739:
There are less than one in five chances that the person has cancer. The need for

treatment will be assessed knowingly by the therapist.

The following table gives the values of the function: F z1ð Þ ¼ P z\z1f g ¼
1ffiffiffiffi
2p

p
R z1�1 e�

z2
2 dz:
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The table read is as follows: We assume that z1 ¼ 1:35: To obtain the value of
F 1:35ð Þ; we move down in the column until z1 ¼ 1:3 then move on the horizontal
until the column 00.05: We read F 1:35ð Þ ¼ 0:91149:
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Chapter 22
Multiple Random Variables—Linear
Regression Maximum Likelihood
Estimation

This chapter is dealing with the statistics of multiple random variables. First, we recall
the theoretical results of the statistics of a Chi-square variable with any number of
degrees of freedom. The Chi-square distribution law is used for comparing two
statistical distributions. One example of application is used to test the applicability of
the central limit theorem to the sum of up to 26 r.v. We study the linear regression
of the data of multiple observations on r.v. After recalling the simple method of
regression, we encounter more elaborate methods based on approximation methods
used in linear algebra. We give the principle of Tikhonov regularization of the
problem which is useful when the involved matrix is ill conditioned. The useful,
empirical L-curve method for obtaining the regularizing parameter is presented.
A simple example is given to present the different aspects of the problem. In the
following, we discuss the maximum likelihood aspect of statistical parameter esti-
mation and introduce the Cramér-Rao bound and its properties.

22.1 v2t (Chi-Square) Variable with t Degrees of Freedom

By definition, it is the sum of t independent Gaussian reduced centered variables zi,
squared: v2t ¼

Pt
i¼1 z

2
i . It is a random variable. v2t is the sum of independent ran-

dom variables; the probability density of its distribution is the convolution of the
probability density functions of the elements z2i of the sum.

Characteristic function: Accordingly, its characteristic function is the product
of the characteristic functions of all variables. According to formula (21.57) the
characteristic function of each variable is: Uz2i

ðkÞ ¼ 1
�2jkþ 1ð Þ1=2. We have then

Uv2t
ðkÞ ¼ 1

ð�2jkþ 1Þt=2
: ð22:1Þ
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Probability density function: The probability density function of v2t is the
inverse Fourier transform of Uv2t

ð�kÞ ¼ 1
ð2jkþ 1Þt=2. According to the formula given

in the table of Fourier transforms in Chap. 7, with the notation v2t ¼ x, we have

fxðxÞ ¼ 1
2C t

2

� � e�x
2
x
2

� �t
2�1

UðxÞ: ð22:2Þ

CðxÞ is the gamma function; it is an extension of the factorial function. UðxÞ is
the Heaviside function reflecting the fact that the probability density function is zero
for x\0.

Depending on the parity of t, we have

fxðxÞ ¼ e�
x
2x

t
2�1

2
t
2 t

2 � 1
� �

t
2 � 2
� �

. . . 1
2

� � ffiffiffi
p

p UðxÞ if t is odd; ð22:3Þ

and

fxðxÞ ¼ e�
x
2x

t
2�1

2
t
2 t

2 � 1
� �

t
2 � 2
� �

. . .ð2Þð1ÞUðxÞ for t even: ð22:4Þ

Properties: Using the independence assumption, we have from (21.56):

Mean : E v2t
� � ¼ E

Xt
i¼1

z2i

( )
¼
Xt
i¼1

E z2i
� � ¼ t:1 ¼ t: ð22:5Þ

Variance : var v2t
� � ¼ var

Xt
i¼1

z2i

 !
¼
Xt
i¼1

var z2i
� � ¼ t:2 ¼ 2 t: ð22:6Þ

v2 test: This test is used to compare two distributions of data, particularly, to
compare a distribution of observed values to a theoretical distribution.

If the r.v. is continuous, one separates its range of variation in r classes (usually
r * 15–25). When performing N measurements of the variable, the frequency of
occurrence fk ¼ Nk

N is determined, ratio of the number Nk observed in each class k to
the total number of measurements. We denote N 0

k the expected number in the class
according to the proposed theoretical distribution. Most often Nk is different from
N 0
k . This difference may result from a random deviation from the theoretical value

or because the assumed theoretical statistical distribution is not the one that governs
the issue.

It is shown that if the theoretical law is satisfied and the deviations are due to
chance, the following variable
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X2 ¼
Xr
k¼1

ðNk � N 0
kÞ2

N 0
k

: ð22:7Þ

follows a v2 law. The number of degrees of freedom is r at maximum. It diminishes
by the number of parameters of the observed distribution used to build the theo-
retical distribution.

It is r − 1 if we impose a common mean, and is r − 2 if we impose the same
mean and the same variance.

The principle of the test is the following:
We assume that the observed data are distributed along the expected theoretical

distribution (this assumption is called H0 hypothesis, or also null hypothesis). The
observed difference is in that event due to chance. The probability of observing a
very high value of X2 is low. We adopt the following decision rule: if the value X2

is less than a threshold value noted v20, we accept the null hypothesis. Above this
value the hypothesis is rejected. The threshold value depends also on the degree of
certainty that we seek to achieve.

The following table gives the values v20 that have a 5 % probability to be
exceeded with a number of degrees of freedom going from 1 to 30 for a v2 r.v.

ν 1 2 3 4 5 6 7 8 9 10

v20 3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31

ν 11 12 13 14 15 16 17 18 19 20

v20 19.67 21.03 22.36 23.68 25 26.3 27.59 28.87 30.14 31.41

ν 21 22 23 24 25 26 27 28 29 30

v20 32.67 33.92 35.17 36.41 37.65 38.88 40.11 41.34 42.56 43.77

The operating mode of the test is studied on two examples:

Example 1
We launched 1000 times a coin and observed 550 tails and 450 heads. Can we
accept that the coin is fair (i.e., that the probability is ½ for each side)?

Solution: We make the hypothesis H0 that the coin is fair. With the above
notation, the numbers observed in both classes are: N1 ¼ 550 and N2 ¼ 450 while
the expected numbers are N 0

1 ¼ 500 and N 0
2 ¼ 500. The X2 difference between the

two distributions is:

X2 ¼ ð550� 500Þ2
500

þ ð450� 500Þ2
500

¼ 2
2500
500

¼ 10:

As we use a distribution with an assumed mean of 0.5, the number of degrees of
freedom is r � 1 ¼ 1. The value v20 at the 95 % confidence level is 3.84. The 95 %
confidence level is widely used to define the threshold of acceptability.

22.1 v2t (Chi-Square) Variable with t Degrees of Freedom… 447



The deviation observed X2 is equal to 10, exceeding (quite clearly) the threshold
value; we reject the null hypothesis, that is to say, we reject the hypothesis that the
observed difference is due to odds. In conclusion, we consider that the coin is unfair.

Example 2
We test the central limit theorem by posing the following problem: if one makes the
sum of M independent variables uniformly distributed in an interval around 0 in the
same way, from what value of M can we accept that the sum of these variables is
Gaussian?

The results of a test performed numerically with Matlab are exposed in the
following. The rand() function is used. It provides a draw for a uniformly dis-
tributed variable between 0 and 1. First, 0.5 is removed from each draw to obtain a
centered variable distributed between −0.5 and 0.5. According to the result (21.18),
the variance of this variable is 1

12. The variance of the sum of these M identical
independent variables is M

12.
To calculate the expected frequencies of the sample having a Gaussian distri-

bution, we use the erf() Matlab function. It provides the integral from 0 to x of the
probability density function of a centered reduced Gaussian variable (zero mean,
standard deviation 1). In the second step, we use the diff() function to get an
approximation of its derivative.

95 % of the values of the reduced centered Gaussian lie between −1.96 and 1.96.
We choose to define 24 classes between −3.45 and +3.55 and use the hist()
function to generate the histogram of the experimental distribution. It will be
necessary to divide the sum of the M uniformly distributed r.v. by its standard

deviation
ffiffiffiffi
M
12

q
to obtain a variable with standard deviation equal to 1 to perform the

comparison with the Gaussian population.
We do the sum of 105 draws of the sum of M uniformly distributed r.v. for

different values of M. The following table summarizes the values of X2 that we call
X2
PseudoGaussian (2nd row).
For comparison we note on the third row the values of X2 obtained for 105 draws

of a Gaussian r.v.

For 24 classes, or t ¼ 23 degrees of freedom, the value v20 at the 95 % confi-
dence level is 35.17.

M 2 4 6 8 10 12 14 16 18 20 22 24 26

X2
PseudoG 2900 408 196 94 52 50 66 33 33 29 42 9 18

X2
Gauss 64 42 40.5 44.5 37 32 28 52 54 36 21 53 42

X2
PseudoG decreases when M increases. For M\16, X2

PseudoG [ v20. In consequence
we reject in these cases the H0 hypothesis, we will not accept that this variable has a
Gaussian character. From around M ¼ 20, we can accept the H0 hypothesis and
admit the Gaussian character stated by the central limit theorem.
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In the third line we see that X2
Gauss exceeds v

2
0 fairly regularly. This abnormality

is due to imperfections in the numerical test conducted, in particular the class
treatment of values at the ends of the range of variation.

22.2 Least Squares Linear Regression

22.2.1 Simple Method

We assume that an unknown linear relationship relates two variables x and y. We
perform m measurements fxi; yig of these variables. Several possible sources of
errors are the cause that a perfect linear relationship is not observed. Each mea-
surement provides:

yi ¼ axi þ bþ ei: ð22:8Þ

We assume that the error ei is random and distributed evenly above or under the
line.

We look here for the “best” line relating the data, in other words, we look for the
line minimizing the sum of squared errors

e2 ¼
Xm
i¼1

e2i ¼
Xm
i¼1

ðyi � axi � bÞ2: ð22:9Þ

We look for the “best” a and b. They are obtained by minimizing e2 versus a and
b.

@e2

@b
¼ �

Xm
i¼1

2ðyi � axi � bÞ ¼ 0; or b ¼ 1
m

Xm
i¼1

ðyi � axiÞ: ð22:10Þ

In the following, the arithmetic means of the data are noted as:

�y ¼ 1
m

Xm
i¼1

yi and �x ¼ 1
m

Xm
i¼1

xi: ð22:11Þ

It comes

b ¼ �y� a�x: ð22:12Þ

@e2

@a
¼ �

Xm
i¼1

2ðyi � axi � bÞxi ¼ 0: ð22:13Þ
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Also

Xm
i¼1

yi � axi � 1
m

Xm
j¼1

ðyj � axjÞ
 !

xi ¼ 0;

or:

Xm
i¼1

yixi � axixi � 1
m

Xm
j¼1

ðyjxi � axjxiÞ
 !

¼ 0:

Then

a ¼
1
m

Pm
i;j¼1 yjxi �

Pm
i¼1 yixi

1
m

Pm
i;j¼1 xjxi �

Pm
i¼1 xixi

¼
Pm

i¼1 yixi � m�x�yPm
i¼1 x

2
i � m�x2

¼
1
m

Pm
i¼1 yixi � �x�y

1
m

Pm
i¼1 x

2
i � �x2

: ð22:14Þ

Last formula is sometimes written a ¼ covðx;yÞ
varðxÞ . This notation is abusive as

covðx; yÞ and varðxÞ are estimates which result here from arithmetic sums and are
not statistical expectations.

Example
For four successive times, xi ¼ 1; 2; 3; 4, four values of a quantity y have been
measured: yi ¼ 2; 3; 7; 8. The regression line parameters given by (22.12) and
(22.14) are a ¼ 2:2 and b ¼ �0:5. We see in Fig. 22.1 the four measured pairs
fxi; yig and the regression line with parameters a ¼ 2:2 and b ¼ �0:5.

1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

8

9

Time

y

Fig. 22.1 Four
measurements of the pair
fxi; yig (stars) and the
regression line
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22.2.2 Elaborate Method

We write the problem met in the previous example in a linear application matrix
form Ax ¼ b.

Here the unknown vector is

x ¼ a
b

	 

; with A ¼

1 1
2 1
3 1
4 1

0
BB@

1
CCA and b ¼

2
3
7
8

0
BB@

1
CCA: ð22:15Þ

We verify now that the determination of the regression line is equivalent to the
research of the solutions of the system is Ax ¼ b, equivalently

a

1
2
3
4

0
BB@

1
CCAþ b

1
1
1
1

0
BB@

1
CCA ¼

2
3
7
8

0
BB@

1
CCA: ð22:16Þ

The discussion here follows the developments given in Appendix 2 on linear
algebra.

We are in the case Amn where m ¼ 4 and n ¼ 2. The system is overdetermined.
The two column vectors of matrix A are linearly independent. They are vectors in
R

4 but cannot form a basis of R4. The rank of A is 2, number equal to the count of

its independent columns. The matrix is full rank. The vector b 2 R
4
cannot in this

case be written as a linear combination of the columns vectors of A. The system has
no solution. The linear regression is the result of the search of an approximate
solution of the system in the least mean square sense. This approximate solution has
been derived in Appendix 2, it is given by formula (A2.34).

It is:

x0 ¼ ðAHAÞ�1AHb: ð22:17Þ

With the use of Matlab, it comes x0 ¼ 2:2
�0:5

	 

. We find again the values of the

slope 2.2 and the y-intercept −0.5 of the regression line which were found by the
simple method.

It is clear that for more than two coefficients for vector x, the matrix method is
much easier when one uses a numerical computing software as Matlab.
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22.3 Linear Regression with Noise on Data—Tikhonov
Regularization

The solution given by the formula (22.16) is conceivable in the case encountered
above since the inversion of matrix AHA is possible because it is full rank (r ¼ 2).
The presence of noise on the matrix elements will influence the stability of the
result and thus the closeness of the result of the inversion with the ideal solution.
The noise sensitivity is reflected in the condition number of matrix AHA, that is to
say the ratio of its maximum to its minimum eigenvalues. In case the matrix is not
full rank, at least one of the eigenvalues of AHA is zero, which corresponds to the
limit case of an infinite condition number and the matrix AHA is not invertible. Let
us discuss here from the spectral decomposition theorem consequences of robust-
ness to noise through the condition number the influence of the eigenvalues of
matrix AHA. Following the formula (A2.52) in Appendix 2, the spectral theorem
states that AHA ¼Pn

i¼1 kiuiu
H
i the orthonormal vectors ui are the eigenvectors of

matrix AHA and ki are the associated eigenvalues.
Assuming that the matrix AHA is invertible, which is the case when all the

eigenvalues are different from 0, and following formula (A2.19) in Appendix 2 we
have ðAHAÞ�1 ¼Pn

i¼1
1
ki
uHi ui. It is found again that the matrix is not invertible if

one of its eigenvalues is zero. It is seen that the magnitude of the vector solution x0
given by Eq. (22.17) is highly dependent upon the lowest eigenvalues.

The noise present on matrix A will influence the eigenvalues of AHA; accord-
ingly, the noise on the smaller eigenvalues may cause a significant error on the
amplitude of the solution x0. It is understood that adding a small quantity to all
eigenvalues will change only slightly the values of significant eigenvalues but is a
great change to small eigenvalues; in consequence that addition stabilizes the result
by reducing the contribution to the solution of the small eigenvalues as this solution
depends upon the inverse matrix. In other words, it reduces the amplitude of the
solution which may blow up due to errors caused by noise on the smaller
eigenvalues.

In its simplest form, Tikhonov regularization takes the following form; rather
than trying to minimize the quantity kAx� bk2 (called norm L2), we seek to
minimize the square error

e2 ¼ Ax� bk k2 þ l xk k2: ð22:18Þ

Since

e2 ¼ Ax� bk k2 þ l xk k2¼ Ax� bð ÞH Ax� bð Þþ l xHx;

@e2
@xH ¼ AHðAx� bÞþ l x ¼0. The solution is such that AHAxl � AHbþ l xl¼0,

so ðAHAþ l IÞxl ¼ AHb, where I is the ðn� nÞ identity matrix.
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Finally, the best approximate least square solution is

xl ¼ ðAHAþ l IÞ�1AHb: ð22:19Þ

When the matrix A is real, that solution is

xl ¼ ðATAþ l IÞ�1ATb: ð22:20Þ

It is seen that the chosen form of the error given by (22.17) leads to heighten the
low eigenvalues by addition of the term l I before calculating the inverse matrix, as
was discussed above. This operation is called prewhitening because it tends to
equalize the spectrum of values, to whiten it.

In case the matrix A is rectangular, the discussion must be conducted from the
spectral theorem which involves the SVD. We can also say that the orthogonal
vectors of the identity matrix I form a conceivable basis for the development of a
vector 2 R

n. Some of these vectors are supplement to the absent vectors in the
development of AHA according to the spectral theorem.

The question that arises at this level is: what is the value that we must give the
regularization parameter l for the best estimate of xl in the presence of noise? A
large value of l has the effect of lowering the xl norm but tends to obscure the role
of the actual eigenvalues and thus lose its proximity with the right solution, so to
lose in resolution. Conversely, too low a value of l leads to a noisy solution.
A compromise must be found. Different methods of finding the l optimal value
have been proposed. We will discuss here only the method of using the elbow of the
L-shaped curve, when the logarithms of the norm of the solution versus the residual
norm are represented.

To test the l parameter values, the curve looks as follows (Fig. 22.2). As
recorded in the literature on the subject, the experience has shown that the optimal
value of l occurs at the elbow which is identified in the figure by an arrow.

Fig. 22.2 L-curve used for
the determination of the
optimum value of the
regularizing parameter (From
P.C. Hansen, The L-curve and
its use in the numerical
treatment of inverse
problems)
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If l is too small, there is an important noise on the solution causing a sharp
increase of the norm solution when diminishing l. If l is too large, the distance
between the estimated vector Axl and the goal b becomes too large.

Note: We have discussed the simplest form of Tikhonov regularization. More
elaborate methods have been proposed. One example is the case where instead of
adding the matrix lI before inversion as given by formula (22.20) where this
diagonal matrix has the same value along the diagonal, a richer matrix is added
which can, in principle lead to an estimation closer to the best value.

We illustrate the method of regularization described above (Formula 22.22) by
the following simple numerical simulation derived from the previous example. We
use a matrix with a large A condition number to accentuate the problem related to
the high discrepancy of the eigenvalues of the matrix. If both columns were equal,
the condition number would be infinite; if we slightly modify the elements of the
second column we avoid the infinite and get an important condition number:

A ¼
1 1:1
2 1:9
3 2:95
4 4:15

0
BB@

1
CCA. The singular value decomposition of A gives the two sin-

gular values 7.7926 and 0.1422. The condition number 7.7926/0.1422 is fairly high,
leading to an ill-conditioned matrix and making the inversion sensitive to noise.

For a vector x00 ¼ �0:5
2

	 

, the vector Ax00 ¼ b0 is b0 ¼

1:92
3:18
4:99
7:13

0
BB@

1
CCA.

To simulate the presence of zero mean noise on the b0 measurement, we set

b ¼
2
3
5
7

0
BB@

1
CCA.

The least square optimal unregularized estimation of x is x0 ¼ ðATAÞ�1ATb ¼
�0:8961
2:566

	 

.

The noise added to b0 has caused the discrepancy between x0 and x00.

Ax0 ¼
1:9267
3:0835
4:8819
7:0652

0
BB@

1
CCA.

Following Tikhonov regularization procedure, we look for a solution xl closer to
x00. We use the relationship (22.22) in function of the regularizing factor l.

The results are given in Fig. 22.3. We see in Fig. 22.3a that the squared norm
kAxl � b0k2 has a minimum for l ¼ 5:5� 10�3. For this value of l, we have

xl ¼ �0:5248
2:1992

	 

.
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Using the regularizing factor l, we reach a vector xl fairly close to x00.
In Fig. 22.3b, the vector norm squared kxlk2 is plotted in function of the

residual norm squared kAxl � bk2 in logarithmic scale. The classic L-shaped curve
is not found but nevertheless as marked on the figure the value of l ¼ 5:5� 10�3

corresponds to the transition of the curve between the linear regime on the right and
the curved part on its left.

22.4 Parametric Estimation

22.4.1 Issues of the Estimation

A physical measured signal depends on one or more parameters that one seeks to
estimate by experience. This is the case of the depth of a geological formation, the
distance and/or speed of a radar target, the frequency of a sound signal, etc.

We note h the unknown parameter sought after and ĥ an estimator for this
parameter that is built from the physical knowledge of the problem and the mea-
sured values of the signal. In the general case, the data are affected by random
uncertainties due to noise on the signal. As a result, the estimator is a random
variable. It will be noted ĥ in bold in the following text. We call bias of the
estimator the difference of the expectation of the estimator and of the true value of
the parameter.

It is noted

b ¼ Efĥg � h: ð22:21Þ

Since we do not know h, this bias is unknown.

Fig. 22.3 a Squared distance between the estimated b and the vector b0 without noise; b Squared
solution norm versus squared residual norm in log-log plot
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The mean square error of the estimate is defined by

e2 ¼ E ðĥ� hÞ2
n o

: ð22:22Þ

The squared error is the sum of the signal variance and of the squared bias. To
show this, we write:

e2 ¼ E ðĥ� hÞ2
n o

¼ E ðĥ� EfĥgþEfĥg � hÞ2
n o

:

The reader should infer from the previous that

e2 ¼ varðĥÞþ b2: ð22:23Þ

Then, the mean square error of an estimator is superior or equal to its variance.
The mean square error is minimum if the estimator is unbiased.

Chebyshev inequality expressed by Eq. (22.14) is written for the estimator ĥ:

Pr jĥ� hj � e
h i

� varðĥÞ
e2

: ð22:24Þ

We deduce from (22.23) that between two estimators having the same variance,
the unbiased estimator has the smallest squared error. It is useful to note here that
one can define different unbiased estimators for the parameter h and that their
variances will generally be different. A natural method of research of an optimal ĥ is
minimizing the mean square error. Unfortunately, if the estimator is biased (so it is
not known a priori), this minimization usually does not lead to the expression of a
valid optimal estimator whatever the value of the parameter h. The method of
maximum likelihood estimation outlined in the following section provides a means
of determining the minimum variance unbiased estimator.

Example: Sample of N drawings of a r.v. x
We measure N values xi. Formulas (21.112) give the mean and variance of the
arithmetic mean of the measured values xi. They prove that it is an unbiased
estimate of the ensemble average g.

Now we discuss the variance estimation of the statistical distribution.
If the expectation g is known, the following quantity is an unbiased estimator of

the variance

r̂2 ¼ 1
N

XN
i¼1

ðxi � gÞ2: ð22:25Þ
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Indeed

E r̂2
� � ¼ E

1
N

XN
i¼1

ðxi � gÞ2
( )

¼ 1
N

XN
i¼1

E ðxi � gÞ2
n o

¼ 1
N
Nr2 ¼ r2: ð22:26Þ

In the case of a Gaussian variable, the centered differences xci
r are reduced cen-

tered Gaussian variables and we can apply the results of the v2 distribution with
N degrees of freedom. We deduce the variance of the estimator (22.25):

varðNr̂2Þ ¼
XN
i¼1

varðx2i Þ ¼ Nvarðx21Þ ¼ Nvar r2
x2c1
r2

	 

¼ Nr4var

x2c1
r2

	 

¼ 2Nr4:

Therefore, varðNr̂2Þ ¼ N2varðr̂2Þ ¼ 2Nr4 from which

varðr̂2Þ ¼ 2r4

N
: ð22:27Þ

In the case where the expectation is unknown, it can be estimated by
m ¼ 1

N

PN
i¼1 xi.

The following variance estimator is unbiased

r̂2 ¼ 1
N � 1

XN
i¼1

ðxi �mÞ2: ð22:28Þ

Indeed

E r̂2
� � ¼ E

1
N � 1

XN
i¼1

ðxi �mÞ2
( )

¼ 1
N � 1

XN
i¼1

E xi � 1
N

XN
j¼1

xj

 !2
8<
:

9=
;;

E r̂2
� � ¼ 1

N � 1

XN
i¼1

E
xi
N

þ xi
N

þ . . .� 1
N

XN
j¼1

xj

 !2
8<
:

9=
;:

E r̂2
� � ¼ 1

N � 1
1
N2

XN
i¼1

E xi þ xi þ . . .�
XN
j¼1

xj

 !2
8<
:

9=
;;

E r̂2
� � ¼ 1

N � 1
1
N2

XN
i¼1

E ðxi � x1Þþ ðxi � x2Þþ . . .þðxi � xNÞð Þ2
n o

:
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It is easily shown that we can introduce the centered variables xic ¼ xi � g and
get

E r̂2
� � ¼ 1

N � 1
1
N2

XN
i¼1

E ðxic � x1cÞþ ðxic � x2cÞþ . . .þðxic � xNcÞð Þ2
n o

:

The term xic � xicð Þ being zero, there are N � 1 nonzero terms in the brace. In

the squaring operation, there are N � 1 square terms and ðN�1ÞðN�2Þ
2 cross terms.

Expectation of one square term Efðxic � xjcÞ2g ¼ Efx2icgþEfx2jcg � 2Efxicxjcg.
If measurements are independent, Efxicxjcg ¼ EfxicgEfxjcg ¼ 0.

In that case Efðxic � xjcÞ2g ¼ 2r2.
Next, we evaluate the expectation of a cross-term when the measures are

independent

E ðxic � xjcÞðxic � xkcÞ
� � ¼ E x2ic

� � ¼ r2:

It comes E r̂2
� � ¼ 1

ðN�1Þ
1
N2 N ðN � 1Þ2r2 þ 2 ðN�1ÞðN�2Þ

2 r2
� �

,

and finally Efr̂2g ¼ 1
N ð2r2 þðN � 2Þr2Þ ¼ r2.

This proves that the estimator (22.28) is unbiased.
Analogously to the evaluation of the variance of the estimator in the previous

case where the expectation was known, it is shown that the variance of that esti-
mator is

var r̂2
� � ¼ 2r4

N � 1
: ð22:29Þ

22.4.2 Maximum Likelihood Parametric Estimation

Likelihood function
We consider successively one, then several, random variables.

When the probability density function is considered as a function of the
parameter h, it is called the likelihood function. It is noted fx;hðx; hÞ.

For the purposes of estimating an unknown parameter maximum likelihood, the
parameter is estimated by the value that maximizes the probability density. Note On.

This property can be interpreted qualitatively using the following example: An
extraterrestrial arrives on earth in the desert and has no idea of the size of a human:
10 m? 20 cm? The first human he met measures 1.75 m. It is natural for the alien to
assume that the average size of humans is that one, because if that is the case the
probability of observing a size in a given neighborhood of the average is maximum
(the assumption that the distribution is Gaussian is the underlying reasoning).
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For estimating an unknown parameter in the sense of maximum likelihood, the
parameter h is estimated by the value that maximizes the probability density
function. We note it ĥmv.

Gaussian case: The likelihood function for the mean of the Gaussian process is

fx;g x; gð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr20

p e
�ðx�gÞ2

2r2
0 : ð22:30Þ

It is assumed that a value xi of x has been observed and that it is known that the
process is Gaussian without however knowing g. We look for an estimation of g.

The value of the estimator ĝ which makes the likelihood function maximum is
obtained by canceling the derivative of fx;g or that of ln fx;g with respect to g (since
the function ln is monotonic).

The function ln fx;gðx; gÞ is called log-likelihood function.
The latter function is derived and one seeks the value of ĝ that makes it

maximum

@lnfx;gðx; gÞ
@g

¼ �
@ ðxi�gÞ2

2r20

@g
¼ ðxi � gÞ

r20
¼ 0; or ĝmv ¼ xi: ð22:31Þ

Thus, the estimator of the maximum likelihood expectation is the observed value
xi of the variable. This estimator is not biased as Efxig ¼ g.

If is carried out N independent observations xi of the r.v. x, the likelihood
function is defined as the product of probability density functions. In the case of
Gaussian variables, likelihood function of expectation is

fx;g x; gð Þ ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2pr20

p e
�ðxi�gÞ2

2r2
0 : ð22:32Þ

The logarithm of this function is

ln fx;g x; gð Þ ¼ �N ln
ffiffiffiffiffiffiffiffiffiffi
2pr20

q
�
XN
i¼1

ðxi � gÞ2
2r20

: ð22:33Þ

This function can be written in expanded form

ln fx;g x; gð Þ ¼ � N
2r20

g2 þ
XN
i¼1

xi
r20

 !
g� Nln

ffiffiffiffiffiffiffiffiffiffi
2pr20

q
þ
XN
i¼1

x2i
2r20

 !
: ð22:34Þ
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We seek the maximum of the log-likelihood function

@lnfx;gðx; gÞ
@g

¼ � N
r20

gþ 1
r20

XN
i¼1

xi ¼ 0: ð22:35Þ

The estimator of the expectation with maximum likelihood will be in this case

ĝmv ¼
1
N

XN
i¼1

xi: ð22:36Þ

It is the arithmetic average of the observed values of the r.v.
It is noted that this estimator is unbiased since Efĝmvg ¼ g.
The variance of the maximum likelihood estimator is given by

varðĝmvÞ ¼ E ðĝmv � gÞ2
n o

¼ E
XN
i¼1

xi � g
N

� � !2
8<
:

9=
; ¼ 1

N2

XN
i¼1

E xi � gð Þ2
n o

¼ r20
N

:

ð22:37Þ

We used the fact that as two successive observations are uncorrelated, the
expectation of the cross terms is zero Efxicxjcg ¼ 0 if i 6¼ j.

Search formulas for maximum likelihood

@fx;hðx; hÞ
@h

����
h¼ĥmv

¼ 0 or
@lnfx;hðx; hÞ

@h

����
h¼ĥmv

¼ 0: ð22:38Þ

For complex random variables we would have

rh� fx;hðx; hÞ
��
h¼ĥmv

¼ 0 or rh� ln fx;hðx; hÞ
��
h¼ĥmv

¼ 0: ð22:39Þ

22.4.3 Cramér-Rao Bound

Let ĥ be an unbiased estimator of h. We show in the following that its variance
should verify the inequality

varðĥÞ� 1

E @lnfx;hðx;hÞ
@h

� �2� 
 : ð22:40Þ
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An estimator is said to be efficient if its variance is minimal. This minimum
variance is called the Cramér-Rao bound. We have thus for an efficient estimator

varðĥÞ ¼ 1

E @lnfx;hðx;hÞ
@h

� �2� 
 : ð22:41Þ

As will be shown below, we have in this case

ĥðxÞ � h ¼ KðhÞ � @lnfx;hðx; hÞ
@h

: ð22:42Þ

If an unbiased minimum variance estimator exists, it must satisfy the
Eq. (22.42).

By definition, the estimator in the sense of maximum likelihood of h must satisfy

@lnfx;hðx; hÞ
@h

����
h¼ĥmv

¼ 0:

Substituting h by ĥmv in (22.42) we get

ĥðxÞ � ĥmv ¼ KðĥmvÞ � @lnfx;hðx; hÞ
@h

����
h¼ĥmv

¼ 0: ð22:43Þ

Therefore,

ĥðxÞ ¼ ĥmv: ð22:44Þ

In conclusion, the unbiased maximum likelihood estimator is the minimum
variance estimator.

Demonstration of the Cramér-Rao formula
It is assumed that the estimator is unbiased EfĥðxÞg ¼ h. We can write in this case:

E ĥðxÞ � h
� �n o

¼
Z1
�1

fx;h x; hð Þ ĥðxÞ � h
� �

dx ¼ 0 ð22:45Þ

We derive this expression under the integral sign with respect to h:

Z1
�1

@fx;h
@h

ĥðxÞ � h
� �

� fx;hðx; hÞ
	 


dx ¼ 0; ð22:46Þ
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or even:

Z1
�1

@fx;h
@h

ĥðxÞ � h
� �

dx ¼ 1: ð22:47Þ

The above formula can be rewritten

Z1
�1

@lnfx;h
@h

fx;h ĥðxÞ � h
� �

dx ¼ 1; ð22:48Þ

or

1 ¼
Z1
�1

@lnfx;h
@h

f 1=2x;h

	 

ĥðxÞ � h
� �

f 1=2x;h

� �
dx

0
@

1
A

2

: ð22:49Þ

Using the Schwarz inequality we can write,

1�
Z1
�1

@lnfx;h
@h

	 
2

fx;h

 !
dx
Z1
�1

ĥðxÞ � h
� �2

fx;hdx: ð22:50Þ

It is recognized in the second term the variance of h and we can write

varðĥÞ� 1R1
�1

@lnfx;h
@h

� �2
fx;h

	 

dx

: ð22:51Þ

This last expression is the inequality (22.40).
The Schwarz inequality becomes equality when the two terms in the integral

(22.49) are proportional

ĥðxÞ � h
� �

f 1=2x;h ¼ KðhÞ � @lnfx;hðx; hÞ
@h

f 1=2x;h

	 

; ð22:52Þ

Or even ĥðxÞ � h
� �

¼ KðhÞ � @lnfx;hðx;hÞ@h which is the Eq. (22.42).

Other form of Cramér-Rao inequality

varðĥÞ� 1

�E @2 ln fx;hðx;hÞ
@h2

n o : ð22:53Þ
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Indeed, we start from the integral
R1
�1 fx;hðx; hÞdx ¼ 1 and take its derivative

with respect to h:

Z1
�1

@fx;h
@h

dx ¼
Z1
�1

@lnfx;h
@h

fx;hdx ¼ 0: ð22:54Þ

Deriving a second time with respect to h:

Z1
�1

@2 ln fx;h
@h2

fx;h þ @lnfx;h
@h

	 
2

fx;h

 !
dx ¼ 0: ð22:55Þ

Or, having recognized expectations

E
@lnfx;h
@h

	 
2
( )

¼ �E
@2 ln fx;h
@h2

	 
� 

: ð22:56Þ

Example
In the example of Gaussian variables encountered earlier, we had

@lnfx;gðx; gÞ
@g

¼
XN
i¼1

xi � gð Þ
r20

: ð22:57Þ

We take the expectation of the square of this function. Since observations are not
correlated, the cross terms are zero and we have

E
@lnfx;gðx; gÞ

@g

	 
2
( )

¼
XN
i¼1

E ðxi � gÞ2
n o

r40
¼ Nr20

r40
¼ N

r20
: ð22:58Þ

From this result, we deduce from the inequality of Cramér-Rao (22.40) that any
unbiased estimator of the average should satisfy the relationship

varðĝÞ� r20
N

: ð22:59Þ

The variance of the estimator of the maximum likelihood expectation calculated
in (22.37) satisfies precisely to equality, as it should.

Summary
We have first recalled in this chapter the important Chi-square law for testing the
statistical distribution of a collection of data. We have tested the tendency of the
sum of many r.v. to follow a Gaussian distribution. We have studied the classical
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methods of linear regression of a collection of measurements and presented the
Tikhonov regularizing method. The method of using the L-curve elbow to deter-
mine the value of the regularizing parameter value has been qualitatively discussed.
The chapter ends with the estimation of statistical parameters in the sense of
maximum likelihood.

Exercises

I. A random variable x is distributed according to a normal distribution. Its mean
is known but its variance is not.

1. We measure x and find the value x. Give an estimator of the variance of
x at maximum likelihood.

2. We make N measurements and found the values xi. Give an estimator of
the variance of x at maximum likelihood.

3. In the context of Question 2, give the Cramér-Rao lower bound of
variance.

II. An unknown parameter x is measured with two equipments having different
precisions. The errors are random, Gaussian. The result of the first measure-
ment is x1; the measurement standard error is r1. The second equipment
delivers the value x2 with a standard error r2. (1) Given a maximum likelihood
estimation (MLE) of x. What is the standard error of the estimation?
(2) Can we say that the MLE of x is the minimum variance estimator of x.
Solution:

(1) The pdf of random measurements x1 and x2 are:

f1ðx1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr21

p e
�ðx1�xÞ2

2r2
1 and f2ðx2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi

2pr22
p e

�ðx2�xÞ2
2r2

2 :

The measurement being independent, the joint pdf is

f ðx1; x2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pr21r

2
2

p e
�ðx1�xÞ2

2r2
1 e

�ðx2�xÞ2
2r2

2 . This function may be interpreted as the

likelihood function of x.

fxðxÞ ¼ f ðx1; x2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr21r

2
2

p e
�ðx1�xÞ2

2r2
1 e

�ðx2�xÞ2
2r2

2 :

To get the maximum likelihood estimation of xwe apply condition (22.38):
@logfxðxÞ

@x ¼ 0. Thus ðx1�xÞ
r21

þ ðx2�xÞ
r22

¼ 0 leading to �x ¼ x1
r22

r21 þr22
þ x2

r21
r21 þr22

.

We may interpret this result in saying that if, for example, the standard
error r2 is smaller than r1, the weight of x1 is smaller than that of x2, the
MLE of x will be closer to the measurement given by the best instrument
(x2 in this example).
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x being the true, unknown value of the parameter, the estimation �x will be
a Gaussian variable with average x and variance r2�x . We have

f�xð�xÞ ¼ 1ffiffiffiffiffiffiffi
2pr2�x

p e
�ð�x�xÞ2

2r2
�x ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2pr21r
2
2

p e
�ðx1�xÞ2

2r2
1 e

�ðx2�xÞ2
2r2

2 . This last relation must be

true for any value of x, for example 0 and any couple of measurements
ðx1; x2Þ, for example x1 ¼ 1 and x2 ¼ 1. The variance of the MLE of x is
thus given by: 1

r2�x
¼ 1

r21
þ 1

r22
.

If r2 � r1, 1
r2�x
	 1

r22
, r2�x 	 r22, �x will be very close to x2, within a small

margin error r2.

(2) The estimator �x ¼ x1
r22

r21 þr22
þ x2

r21
r21 þr22

is unbiased since

Ef�xg ¼ Efx1g r22
r21 þ r22

þEfx2g r21
r21 þ r22

¼ x
r21 þ r22
r21 þ r22

¼ x:

Property (22.44) states that �x is the minimum variance estimator of x.
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Chapter 23
Correlation and Covariance Matrices
of a Complex Random Vector

We introduce in this chapter the correlation and covariance matrices of a complex
random vector. The Hermitian nature of these matrices allows their diagonalization
in the basis of their orthogonal eigenvectors. These concepts are discussed on
jointly Gaussian variables. We study the principal component analysis of a vector
of observations and the optimum Karhunen-Loève development.

23.1 Definition of Correlation and Covariance Matrices

Let the complex random vector

x ¼
x1
x2
..
.

xN

2
6664

3
7775: ð23:1Þ

Its correlation matrix is defined by

Rxx ¼ E xxH
� � ¼

E x1j j2
n o

E x1x�2
� �

. . . E x1x�N
� �

E x2x�1
� �

E x2x�2
� �

. . . E x2x�N
� �

..

. ..
. ..

. ..
.

E xNx�1
� �

E xNx�2
� �

. . . E xNj j2
n o

2
666664

3
777775: ð23:2Þ

This matrix is square with dimensions N xN.
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The covariance matrix is defined by

Cxx ¼ E x� gxð Þ x� gxð ÞH� �
: ð23:3Þ

We have the relationship

Rxx ¼ Cxx þ gxg
H
x : ð23:4Þ

Correlation and covariance matrices have the Hermitian symmetry, i.e., they are
equal to their transposed conjugate:

Rxx ¼ RH
xx and Cxx ¼ CH

xx: ð23:5Þ

23.1.1 Properties of Correlation Matrix

1: E xix�j
n o��� ����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E xij j2
n or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E xj
�� ��2n or

: ð23:6Þ

Indeed, following a method that has been used previously herein we calculate

E xi þ kxj
� ��� ��2n o

¼ E xi þ kxj
� �

xi þ kxj
� ��� �

¼ E xij j2 þ kj j2 xj
�� ��2 þ xik

�x�j þ x�i kxj
� 	n o

: ð23:7Þ

This expectation must be positive or zero, since it is the expectation of a square
modulus which is a positive or zero number and whatever the value of the
parameter k is.

We note E xix�j
n o

¼ Aeju. k is chosen such that

k ¼ kj jeju: ð23:8Þ

Then

E xij j2 þ kj j2 xj
�� ��2þ xik�x�j þ x�i kxj

� 	n o
¼ E xij j2

� 	n o
þE kj j2 xj

�� ��2� 	n o
þE xik

�x�j þ x�i kxj
� 	n o

;

E xij j2
� 	n o

þE kj j2 xj
�� ��2� 	n o

þE xik
�x�j þ x�i kxj

� 	n o
¼ E xij j2

� 	n o
þ kj j2E xj

�� ��2� 	n o
þ 2A kj j:

This polynomial with the modulus of k as a variable must be positive or zero
regardless kj j, for that its discriminant must be negative or zero, i.e.,
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A2 � E xij j2
� 	n o

E xj
�� ��2� 	n o

� 0; ð23:9Þ

we then find the desired formula: E xix�j
n o��� ���� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E xij j2
n or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E xj
�� ��2n or

.

2. The correlation matrix is positive-semidefinite. That is to say that, for any vector
a with dimension N we have

aHRxxa� 0: ð23:10Þ

It may be noted that the above expression implies that this quantity is a scalar
since it is compared to 0.

Indeed

aHRxxa ¼ aHE xxH
� �

a ¼ E aHxxHa
� � ¼ E xHa

�� ��2n o
; ð23:11Þ

which is scalar, real, always positive or zero. The quantity xHa is scalar and aHx is
its complex conjugate.

23.2 Linear Transformation of Random Vectors

Let x be a complex random vector. Let y resulting from a linear application y ¼ Ax.
The expectancy calculation operation is itself a linear operation, the expectation

vector of y is written gy¼ Agx.
The correlation matrix of the r.v. y is given by

Ryy ¼ E yyH
� � ¼ E Axð Þ Axð ÞH� � ¼ AE xxH

� �
AH : ð23:12Þ

So

Ryy ¼ ARxxAH : ð23:13Þ

Diagonalization of the Correlation Matrix
We denote e an eigenvector of the correlation matrix

Rxxe ¼ ke: ð23:14Þ

Since the N xNð Þ matrix Rxx is Hermitian, it is possible to find N orthonormal
eigenvectors.
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eHl ek ¼ d l� k½ � ¼ 1 if l ¼ k
0 if l 6¼ k



: ð23:15Þ

Each eigenvector satisfies a relation of the type

Rxxek ¼ kkek: ð23:16Þ

So we have

eHl Rxxek ¼ kk if l ¼ k
0 if l 6¼ k



: ð23:17Þ

The matrix E whose columns are the eigenvectors of Rxx is defined as follows:

E ¼
j j j
e1 e2 . . . eN
j j j

2
4

3
5: ð23:18Þ

EEH ¼ I. The matrix E is unitary.
We can write

EHRxxE ¼
�� eH1 ��
�� eH2 ��

..

.

�� eHN ��

2
6664

3
7775Rxx

j j j
e1 e2 . . . eN
j j j

2
4

3
5 ¼

k1 0 0
0 k2 0
. . . . . . . . . . . .
0 0 kN

2
664

3
775

¼ K:

ð23:19Þ

Let us define the vector x0 by

x0 ¼ EHx ¼
�� eH1 ��
�� eH2 ��

..

.

�� eHN ��

2
6664

3
7775x: ð23:20Þ

The random variables components of x0 are two by two orthogonal. Indeed

E x0x0H
� � ¼ Rx0x0 ¼ E EHxxHE

� � ¼ EHE xxH
� �

E ¼ EHRxxE ¼K ð23:21Þ

The correlation matrix Rx0x0 is diagonal. It is composed by the eigenvalues of
Rxx.
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We can also write

EEHRxxEEH¼ Rxx¼ EKEH : ð23:22Þ

This relationship can be used to invert the matrix Rxx. Since the matrix is unitary

E�1 ¼ EH : ð23:23Þ

We have

R�1
xx ¼ EKEH

� ��1¼ EK�1 EH : ð23:24Þ

Eigenvalues of the Correlation Matrix
As seen above, the eigenvalues of the correlation matrix are the expectations of
square moduli of the random components of the vector x0.

E x0ix
0�
i

� � ¼ E x0i
�� ��2n o

¼ ki ð23:25Þ

As being the expectations of a square modulus, the eigenvalues of the correlation
matrix will therefore be positive or zero.

If the correlation matrix is not singular, its discriminant is nonzero. As the
determinant remains unchanged in the unitary base change generated by the matrix
E, its value is equal to the product of the eigenvalues, which will therefore be all
positive (nonzero) in this case.

The trace of the correlation matrix also remains unchanged in the base change. It
is therefore equal to the sum of the eigenvalues of the matrix.

23.3 Multivariate Gaussian Probability Density Functions

x is a real Gaussian random vector with dimension N when its probability density
function has the form:

fx xð Þ ¼ 1

2pð ÞN2 Cxxj j12
e�

1
2 x�gxð ÞTC�1

xx x�gxð Þ: ð23:26Þ

Cxx is the covariance matrix of the vector x. This matrix is symmetric
C�1
xx is the inverse matrix of the covariance matrix of x. It is also symmetrical

x� gð ÞT is the transposed vector of centered vector xc
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If x is a complex Gaussian random vector of dimension N, its probability density
function has the form

fx xð Þ ¼ 1
pN Cxxj j e

� x�gxð ÞHC�1
xx x�gxð Þ: ð23:27Þ

x� gð ÞH is the conjugate transpose (said Hermitian conjugate) of the centered
vector xc

The covariance matrix Cxx of the vector x has Hermitian symmetry; it is equal to
its conjugate transpose. The inverse matrix C�1

xx of the covariance matrix is also
Hermitian.

Conditional Probability Density Functions
If x and y are real Gaussian random vectors with N and M dimensions, respectively,
the probability density of y conditioned by x has the form

fy xj y xjð Þ ¼ 1

2pð ÞM2 Cy xj
�� ��12 e�

1
2 y�gy xjð ÞTC�1

y xj y�gy xjð Þ: ð23:28Þ

If x and y are complex Gaussian random vectors with N and M dimensions,
respectively, the probability density of y conditioned by x has the form:

fy xj y xjð Þ ¼ 1
pM Cy xj
�� �� e� y�gy xjð ÞHC�1

y xj y�gy xjð Þ: ð23:29Þ

Example of Two Real Jointly Gaussian Random Vectors
Let x be a random vector whose two components are jointly Gaussian random
variables. By definition, the vector x probability density function is given by

fx xð Þ ¼ 1

2pð Þ Cxxj j12
e�

1
2 x�gxð ÞTC�1

xx x�gxð Þ: ð23:30Þ

The vector of expectations is

g ¼ g1
g2

� �
: ð23:31Þ

We note xc the centered vector. We have

fxc xcð Þ ¼ 1

2pð Þ Cxxj j12
e�

1
2 xcð ÞTC�1

xx xcð Þ: ð23:32Þ
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To illustrate these properties, we take the following example of a covariance
matrix:

Cxx ¼ 8 2
2 2

� �
:

Its inverse is C�1
xx ¼ 0:1667 �0:1667

�0:1667 0:6667

� �
.

The eigenvalues of the covariance matrix are 8.606 and 1.394, and the eigen-
values of the inverse matrix are 0.1162 and 0.7171. These values are the inverse of
the eigenvalues of the covariance matrix.

The matrix C�1
xx is diagonalizable DiagC�1

xx
¼ 0:1162 0

0 0:7171

� �
.

The eigenvectors with norm 1 of the matrix C�1
xx corresponding to the eigenvalue

0.1162 and 0.7171 are, respectively,
0:9571
0:2898

� �
and

�0:2898
0:9571

� �
.

It is verified that these two vectors are orthogonal. These eigenvectors are also
eigenvectors of the matrix Cxx.

Passage from Vector x to Vector x0

As seen above, we define vector x0 by x0 ¼ EHx;

Where E ¼
j j
e1 e2
j j

2
4

3
5 is the matrix composed of the eigenvectors of Cxx,

and EH ¼
� eH1 �
� eH2 �
� � �

2
4

3
5, the Hermitian conjugate matrix of these vectors.

Thus continuing the previous example

E ¼ 0:9571 �0:2898
0:2898 0:9571


 �
; EH ¼ 0:9571 0:2898

�0:2898 0:9571


 �
:

The relationship between x and x
0
is given by x01

x02

� �
¼ 0:9571 0:2898

�0:2898 0:9571

� �
x1
x2

� �
.

The quadratic form appearing in the exponential who wrote

Q ¼ x1 x2ð Þ 0:1667 �0:1667
�0:1667 0:6667

� �
x1
x2

� �
:

becomes Q ¼ x01 x02ð Þ 0:1162 0
0 0:7171

� �
x01
x02

� �
.
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So,

Q ¼ 0:1162x021 þ 0:7171x022 ¼ x021
8:606

þ x022
1:394

: ð23:33Þ

Because Cx01x
0
2
¼ 0 we conclude that the components x01 and x02 are not correlated.

This implies independence for two Gaussian r.v.. It is thus possible, by a change of
basis, to diagonalize the inverse of the covariance matrix and create a random vector
whose components are Gaussian and independent in probability. In (23.33) we
recognize the equation of an ellipse with the semi-axes equal to 2.9336 and 1.181.

We have x ¼ EH
� ��1x0 with EH

� ��1¼ 0:9571 0:2898
�0:2898 0:9571

� ��1

¼ 0:9571 �0:2898
0:2898 0:9571

� �
.

One can express the direction cosines of the unitary vectors of the new base in
the former

cos a

sin a

� �
¼ 0:9571 �0:2898

0:2898 0:9571

� �
1

0

� �
¼ 0:9571

0:2898

� �
:

cos b

sin b

� �
¼ 0:9571 �0:2898

0:2898 0:9571

� �
0

1

� �
¼ �0:2898

0:9571

� �
:

23.4 Estimation of the Correlation Matrix from
Observations

In some cases, we do not know the correlation matrix but we have only K vectors
x Kð Þ that are independent realizations of the random vector x.

These data are used to estimate the correlation function by noting that the
expectation of any function w xð Þ of x can be estimated by averaging the values of
this function on the K realizations

E w xð Þf g ffi 1
K

XK
k¼1

w x Kð Þ
� 	

: ð23:34Þ

Example

x 1ð Þ ¼ 1
0


 �
; x 2ð Þ ¼ �2

1


 �
; x 3ð Þ ¼ 2

�2


 �
; x 4ð Þ ¼ 0

2


 �
: ð23:35Þ

Estimation of the expectation vector

ĝx ffi
1
K

XK
k¼1

x Kð Þ ¼ 1
4

1
0


 �
þ � 2

1


 �
þ 2

� 2


 �
þ 0

2


 �
 �
¼

1
4
1
4


 �
: ð23:36Þ
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Estimation of the correlation matrix

R̂xx ¼ 1
K

XK
k¼1

x Kð Þx Kð ÞH

¼ 1
4

1
0


 �
1 0½ � þ �2

1


 �
�2 1½ � þ 2

�2


 �
2 �2½ � þ 0

2


 �
0 2½ �


 �

¼
9
4 � 3

2

� 3
2

9
4

" #
:

ð23:37Þ

We can formulate the calculation in a more condensed manner. We define the
data matrix X composed of sampled vectors

X ¼

� x 1ð ÞH �
� x 2ð ÞH �

..

.

..

.

� x Kð ÞH �

2
666664

3
777775: ð23:38Þ

The estimator of the correlation function can be written

R̂xx ¼ 1
K
XHX: ð23:39Þ

In the above example the last two expressions take the form

X ¼
1 0
�2 1
2 �2
0 2

2
664

3
775; R̂xx ¼ 1

4
1 �2 2 0
0 1 �2 2


 � 1 0
�2 1
2 �2
0 2

2
664

3
775 ¼

9
4 � 3

2

� 3
2

9
4

" #
:

ð23:40Þ

It is noted that the data matrix can be partitioned in columns vectors

X ¼

..

. ..
. ..

.

..

. ..
. ..

.

x1 x2 . . . xN
..
. ..

. ..
.

..

. ..
. ..

.

2
66666664

3
77777775
: ð23:41Þ
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An element of the matrix of the estimator of the correlation function can be
written

r̂kl ¼ 1
K
xHk xl:

23.5 Karhunen-Loève Development

23.5.1 Example of Using the Correlation and Covariance
Matrices

This method is also called principal component development. We choose to begin
the presentation of this method with an example:

We assume that we measure the radiation emitted by vegetation by remote
sensing using four optical sensors operating in different light spectral bands. The
amplitudes appear as jointly Gaussian random variables. The flow rate of the
communication channel between the satellite and the earth is limited, it is desired to
transmit only to earth the data that contain the most information and are statistically
independent.

The results of a preliminary calibration of such sensors have shown that the r.v.
are real and that the expectation vector is

gx ¼
0:17
0:7

�0:13
0:21

2
664

3
775; ð23:42Þ

and that the correlation matrix between the four channels is

Rxx ¼
5:3289 5:019 �4:8221 0:3357
5:019 9:59 �1:091 �3:953

�4:8221 �1:091 9:2169 �3:8273
0:3357 �3:953 �3:8273 4:3441

2
664

3
775: ð23:43Þ

Note that the correlation matrix is symmetrical as expected. We seek to diago-
nalize the covariance matrix which is

Cxx ¼ Rxx � gxg
H
x ¼

5:3 4:9 �4:8 0:3
4:9 9:1 �1:0 �4:1
�4:8 �1:0 9:2 �3:8
0:3 �4:1 �3:8 4:3

2
664

3
775: ð23:44Þ
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The diagonalization of the covariance matrix gives the matrix of the eigenvalues
and the corresponding eigenvectors, respectively,

K ¼
15:0 0 0 0
0 0:7379 0 0
0 0 0:0268 0
0 0 0 12:1353

2
664

3
775;

E ¼
�0:5774 �0:6285 �0:5211 �0:01
�0:5774 0:0467 0:5723 0:5805
0:5774 �0:5818 �0:0512 0:5705

0 �0:5140 0:6312 �0:5809

2
664

3
775:

ð23:45Þ

Note that two eigenvalues are clearly distinguishable k1 ¼ 15:0 and
k4 ¼ 12:1353. The other two eigenvalues are much smaller.

The eigenvectors of the covariance matrix define four orthogonal directions in
space. The traces of matrices Cxx and K are equal. But the values are concentrated
(the power carried by the random signal components is concentrated) on the values
1 and 4.

The relationship x0 ¼ EHx ¼
�� eH1 ��
�� eH2 ��

..

.

�� eHN ��

2
6664

3
7775 x may be interpreted as a

rotation in the four-dimensional space effected on the data vector x.
The components of x0 represent the components of the random measurements

vector along the four orthogonal directions. The first and fourth components are
those that have the greatest variance, so that will hold the most power, so the more
information.

Practically, having obtained a measured value x1, x2, x3 and x4, from the four
sensors we apply to that vector x the application EH ,

x01
x02
x02
x0
40

2
664

3
775¼ EH

x1
x2
x2
x4

2
664

3
775 ¼

�0:5774 �0:5774 0:5774 0
�0:6285 0:0467 �0:5818 �0:5140
�0:5211 0:5723 �0:0512 0:6312
�0:01 0:5805 0:5705 �0:5809

2
664

3
775

x1
x2
x2
x4

2
664

3
775:

ð23:46Þ

We will transmit on the communications channel only those components x
0
1 and

x
0
4 which are the independent random variables (equivalence between independence
and orthogonality for Gaussian variables) that have the largest variances. The
compression ratio of the data is two.
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23.5.2 Theoretical Aspects

The above example lies within the scope of the Karhunen-Loève expansion that we
detail now.

Let us consider a segment of a random sequence

x n½ �; n ¼ 0; 1; . . .;N � 1f g: ð23:47Þ

This segment can be developed on any base formed of a sequence ui n½ � of
deterministic orthonormal functions

x n½ � ¼ j1u1 n½ � þ j2u2 n½ � þ � � � þ jNuN n½ �f g; ð23:48Þ

With the functions ui n½ � satisfying the relationship

XN�1

n¼0

u�
i n½ �uj n½ � ¼ 1 i ¼ j

0 i 6¼ j



: ð23:49Þ

The coefficients ji can then be calculated by

ji ¼
XN�1

n¼0

u�
i n½ �x n½ �: ð23:50Þ

We now want a particular set of functions ui n½ � to perform the statistical
orthogonality

E jij
�
j

n o
¼ f2i if i ¼ j

0 if i 6¼ j



: ð23:51Þ

The vector of coefficients is defined as

j ¼
j1
j2

..

.

jN

2
6664

3
7775: ð23:52Þ

And the matrix

U ¼
j j j
u1 u2 . . . uN
j j j

2
4

3
5; with ui ¼

ui 0½ �
ui 1½ �
..
.

ui N � 1½ �

2
6664

3
7775; i ¼ 1; 2; . . .;N

ð23:53Þ
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Note that the column vectors of U are orthonormal and satisfy

uH
i uj ¼ 1 if i ¼ j

0 if i 6¼ j

���� : ð23:54Þ

The matrix is U unitary. Equation (23.50) can be rewritten in matrix form:

x ¼
j j j
u1 u2 . . . uN
j j j

2
4

3
5

j1
j2

jN

2
664

3
775 ¼ Uj; ð23:55Þ

and

j ¼
�� uH

1 ��
�� uH

2 ��
..
.

�� uH
N ��

2
6664

3
7775x ¼UHx: ð23:56Þ

One can give the following interpretation: If we consider the sequence x n½ � as a
vector in a N-dimensional space, the coefficients ji appear to be the components of
the same vector in a coordinate system obtained by rotation.

The eigenvectors of the correlation matrix having the orthogonality property
may be selected as vectors ui. Then:

Rxxui¼kiui: ð23:57Þ

If the vector x n½ � can be viewed as consisting of N values of a wide sense
stationary signal, the correlation matrix is Hermitian and Toeplitz and we can write

XN�1

k¼0

Rxx l� k½ �ui k½ � ¼ kiui l½ �; i ¼ 0; 1; . . .;N � 1: ð23:58Þ

We will now show that the vectors ui may be used to achieve the Eq. (23.51) of
the stochastic orthogonality of coefficients ji.

We note

ji ¼
XN�1

n¼0

u�
i n½ �x n½ � and j�j ¼

XN�1

m¼0

ui m½ �x� m½ �: ð23:59Þ

E jij
�
j

n o
¼
XN�1

n¼0

XN�1

m¼0

u�
i n½ �E x n½ �x� m½ �f guj m½ � ¼

XN�1

n¼0

XN�1

m¼0

u�
i n½ �Rxx n� m½ �uj m½ �:

ð23:60Þ
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or, based on the above relationship

E jij
�
j

n o
¼ kj

XN�1

n¼0

u�
i n½ �uj n½ � ¼ kj if i ¼ j

0 if i 6¼ j

���� : ð23:61Þ

In this context, the Eq. (23.50) is called the Karhunen-Loève development.
It is also shown that the development (23.50) in eigenfunctions of the correlation

function is the only one that satisfies the Eq. (23.51).

23.5.3 Optimality of Karhunen-Loève Development

We want to approach the vector x n½ � by a linear combination of functions ui n½ � but
with a number M\N of these functions. x n½ � estimator is noted x̂ n½ �

x̂ n½ � ¼
XM
i¼1

jiui n½ �; M\N: ð23:62Þ

The error sequence is defined by

e n½ � ¼ x n½ � � x̂ n½ �: ð23:63Þ

The problem is to find the coefficients ji and the base functions ui n½ � that
minimize the error. We chose to minimize the squared error

e ¼ E
XN�1

n¼0

ej j2 n½ �
( )

: ð23:64Þ

We can write

x ¼
XN
i¼1

jiui ¼
XM
i¼1

jiui|fflfflfflffl{zfflfflfflffl}
x̂

þ
XN

i¼Mþ 1

jiui|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
e

: ð23:65Þ

e ¼ E eHe
� � ¼ E

XN
i¼Mþ 1

j�i u
H
i

 ! XN
i¼Mþ 1

jiui

 !( )
¼

XN
i¼Mþ 1

E jij j2
n o

: ð23:66Þ

The error may be written in the form

e ¼
XN

i¼Mþ 1

uH
i Rxxui: ð23:67Þ
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We must now minimize (23.67) within the constraints

uH
i ui ¼ 1 for i ¼ Mþ 1;Mþ 2; . . .;N: ð23:68Þ

This problem is that of a constrained minimization. The Lagrange multipliers
method is used. We define the function

L ¼
XN

i¼Mþ 1

uH
i Rxxui þ

XN
i¼Mþ 1

ki 1� uH
i ui

� �
: ð23:69Þ

Taking the gradient with respect to uH
i and get

ruH
i
L ¼ Rxxui � kiui ¼ 0; ð23:70Þ

or:

Rxxui ¼ kiui for i ¼ Mþ 1;Mþ 2; . . .;N: ð23:71Þ

This implies that the vectors ui should be eigenvectors of the correlation matrix.
The error is

e ¼
XN

i¼Mþ 1

uH
i Rxxui ¼

XN
i¼Mþ 1

uH
i kiui ¼

XN
i¼Mþ 1

ki: ð23:72Þ

So, when choosing theM eigenvectors among those with the largest eigenvalues,
we minimize the error committed in the approximation. This is the principle of the
optimal Karhunen-Loève development.

Summary
We have introduced in this chapter the correlation and covariance matrices of a
complex random vector. We have demonstrated that due to their Hermitian nature,
matrices may be diagonalized in the basis of their orthogonal eigenvectors. We have
used Gaussian variables to illustrate these concepts. We studied the principal
component analysis of a vector of observations and established the optimum
Karhunen-Loève development.
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Chapter 24
Correlation Functions, Spectral Power
Densities of Random Signals

To keep continuity with the previous part of the book on digital signals, we choose
to show first in this chapter the properties of digital random signals, knowing that
the treatments today are mainly performed on digital signals. We encounter in this
chapter two functions which are fundamental for signal analysis: the correlation
function and the power spectral density (PSD). These functions are defined for wide
sense stationary (WSS) random signals, signals whose first two moments of the
signal values at two different instants are constant over time. The PSD is defined as
the Fourier transform of the correlation function. We study the filtering of WSS
signals by LTI systems and give the theorems linking correlations and DSP of input
and output signals. White noise filtering by a first order autoregressive system is
treated as an example. The coherence function defined afterward is a powerful tool
to identify and quantify in a noisy signal the sources constituting the noise. At the
end of this chapter, we give a brief definition of correlation functions and power
spectral densities of analog signals. This gives more intuitive demonstrations of
certain applications such as the influence of a filter for increasing the signal-to-noise
ratio or matched filtering of a noisy signal with random noise. Many exercises with
worked solutions at the end of this chapter will help the reader become familiar with
the results, important in signal analysis.

24.1 Correlation Function of a Random Signal

Let x n½ � be a random signal, which is assumed here complex for more generality.
For any two times n1 and n2, x n1½ � and x n2½ � are r.v. each with their first order

statistics. In particular, their expectations are

E x n1½ �f g ¼ gx n1½ � and E x n2½ �f g ¼ gx n2½ � : ð24:1Þ

A priori, these expectations may be different.

© Springer International Publishing Switzerland 2016
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Their variances are

var x n1½ �ð Þ ¼ cov x n1½ �; x n1½ �ð Þ ¼ E x n1½ � � gx n1½ �
��� ���2� �

; ð24:2Þ

var x n2½ �ð Þ ¼ cov x n2½ �; x n2½ �ð Þ ¼ E x n2½ � � gx n2½ �
��� ���2� �

: ð24:3Þ

which also differ a priori.
From Eq. (24.2) it follows that

var x n1½ �ð Þ ¼ E x n1½ �x� n1½ �f g � gx n1½ � g
�
x n1½ � : ð24:4Þ

Note the complex conjugation which allows treatment of the general case of
complex signals.

Let us consider the two r.v. x n1½ � and x n2½ �; We call correlation function the
expectancy of the product

Rx n1½ �x n2½ � n1; n2½ � ¼ E x n1½ �x� n2½ �f g: ð24:5Þ

In the general case Rxx n1; n2½ � is a function of the two times n1 and n2.

24.1.1 Correlation Function of a Wide Sense Stationary
(WSS) Signal

A very important special case occurs when the function Rxx n1; n2½ � depends only on
the proximity of times n1 and n2 regardless of the absolute position n1. This is the
case of wide sense stationary signals (WSS).

We say that a signal is wide sense stationary (WSS) iff:

(a) The expectation E x n½ �f g ¼ gx n½ � is independent of time. Therefore

gx n½ � ¼ gx: ð24:6Þ

(b) The correlation function Rx n1½ �x n2½ � n1; n2½ � depends only on the time difference
m ¼ n1 � n2.

Note:

Rxx n1; n2½ � ¼ Rxx n2 þm; n2½ � ¼ E x n2 þm½ �x� n2½ �f g ¼ E x nþm½ �x� n½ �f g ¼ Rxx m½ �:
ð24:7Þ

These signals are often encountered in practice.
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The correlation function Rxx m½ � is also called autocorrelation function of the
signal x n½ �.
Power of a WSS Signal
By definition, the power of a wide sense stationary signal is given by

P n½ � ¼ E x n½ �x� n½ �f g: ð24:8Þ

This is a priori a function of time in the general case.

The time interval between the two values of x is zero, we have

P n½ � ¼ E x n½ �x� n½ �f g ¼ Rxx n� n½ � ¼ Rxx 0½ �: ð24:9Þ

It is noted that the power is constant over time P n½ � ¼ P ¼ Cte.

24.1.2 Properties of the Correlation Function

(a) The maximum of the autocorrelation function of a WSS signal is located at the
origin.

We have

Rxx m½ �j j �Rxx 0½ � ð24:10Þ

To demonstrate this property, in the following, the expectation of the square is
calculated with a complex parameter k:

E x nþm½ � � kx n½ �j j2
n o

¼ E x nþm½ �j j2
n o

� E kx n½ �x� nþm½ � � k�x� n½ �x nþm½ �f g

þE kx n½ �j j2
n o

:

E x nþm½ � � kx n½ �j j2
n o

¼ 1þ kj j2
� �

Rxx 0½ � � kR�
xx m½ � � k�Rxx m½ �:

ð24:11Þ

This expectation of a square modulus is necessarily positive or zero, regardless
of the parameter k value.

We note Rxx m½ � ¼ Rxx m½ �j jeju m½ �. We choose k such that k ¼ kj jeju m½ �.
Expression (24.11) becomes

1þ kj j2
� �

Rxx 0½ � � 2 kj j Rxx m½ �j j � 0: ð24:12Þ
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For the polynomial to be always positive or zero, it is necessary that the dis-
criminant of the second degree polynomial in kj j is negative or zero. So we will
have

Rxx m½ �j j2�R2
xx 0½ � � 0, so, as Rxx 0½ � is positive Rxx m½ �j j �Rxx 0½ �.

(b) The autocorrelation function is a symmetric conjugate function

Rxx m½ � ¼ E x nþm½ �x� n½ �f g ¼ R�
xx �m½ �: ð24:13Þ

If the signal x n½ � is real, Rxx m½ � ¼ Rxx �m½ �, the correlation function is even.

24.1.3 Centered White Noise

By definition, a centered white noise is a real random signal of zero mean, wide
sense stationary, whose correlation function is given by the Kronecker function
d m½ �:

Rxx m½ � ¼ Nd m½ �: ð24:14Þ

24.2 Filtering a Random Signal by a LTI Filter

24.2.1 Expected Values

The random signal to the filter input is noted x n½ �. The output signal y n½ � has the
form

y n½ � ¼
X1

m¼�1
x n� m½ �h m½ � ¼ x n½ � � h n½ �: ð24:15Þ

The expectation of the output signal y n½ � is

E y n½ �f g ¼ gy n½ � ¼
X1

m¼�1
E x n� m½ �f gh m½ � ¼

X1
m¼�1

gx n� m½ � h m½ �: ð24:16Þ

If gx n� m½ � is constant (especially, if x n½ � is stationary), we have

gy ¼ gx
X1

m¼�1
h m½ � ¼ gxHð1Þ: ð24:17Þ
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It follows that if expectancy of x n½ � is zero, the expectancy of y n½ � will be
zero too.

24.2.2 Correlation Functions of Input and Output Signals

Assume now that signal x n½ � is WSS. We calculate the cross-correlation functions
of the input and output signals:

Rxy nþm; n½ � ¼ E x nþm½ �y� n½ �f g; ð24:18Þ

Rxy nþm; n½ � ¼
X1

m0¼�1
E x nþm½ �x� n� m0½ �f gh� m0½ �; ð24:19Þ

Rxy nþm; n½ � ¼
X1

m0¼�1
Rxx mþm0½ � h� m0½ �: ð24:20Þ

We note m00 ¼ �m0; Rxy nþm; n½ � ¼ Rxy m½ � ¼P1
m00¼�1 Rxx m� m00½ �h� �m00½ �.

Rxy m½ � ¼ Rxx m½ � � h� �m½ �: ð24:21Þ

Rxy m½ � is the convolution of Rxx m½ � and h� �m½ �.
Similarly, we have

Ryx nþm; n½ � ¼ E y nþm½ �x� n½ �f g: ð24:22Þ

Ryx nþm; n½ � ¼
X1

m0¼�1
E x nþm� m0½ �x� n½ �f g h m0½ �; ð24:23Þ

Ryx nþm; n½ � ¼
X1

m0¼�1
Rxx m� m0½ �h m0½ � ¼ Rxx m½ � � h m½ �: ð24:24Þ

Calculation of the Autocorrelation Function of the Output Signal

Ryy nþm; n½ � ¼ E y nþm½ �y� n½ �f g: ð24:25Þ

Ryy nþm; n½ � ¼ E y nþm½ �y� n½ �f g ¼
X1

m0¼�1
E x nþm� m0½ �y� n½ �f g h m0½ �;

Ryy nþm; n½ � ¼
X1

m0¼�1
Rxy m� m0½ �h m0½ � ¼ Rxy m½ � � h m½ �: ð24:26Þ
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So Ryy nþm; n½ � no longer depends on n and we will write

Ryy m½ � ¼ Rxy m½ � � h m½ �: ð24:27Þ

It follows that the filter output signal is also wide sense stationary.

Finally a double convolution leads from Rxx m½ � to Ryy m½ �

Ryy m½ � ¼ Rxx m½ � � h� �m½ � � h m½ �: ð24:28Þ

24.3 Power Spectral Density of a WSS Signal

The signal x n½ � is assumed wide sense stationary. The power spectral density of x n½ �
is, by definition, the Fourier transform of the autocorrelation function

Sxx ejxT
� � ¼ X1

n¼�1
Rxx n½ �e�jnxT : ð24:29Þ

The spectral density is real. Indeed

S�xx ejxT
� � ¼ X1

n¼�1
Rxx n½ �e�jnxT

 !�
¼
X1
n¼�1

R�
xx n½ �ejnxT ¼

X1
n¼�1

Rxx �n½ �ejnxT

¼
X1

n0¼�1
Rxx n

0½ �e�jn0xT ¼Sxx ejxT
� �

:

So,

S�xx ejxT
� � ¼ Sxx ejxT

� �
: ð24:30Þ

Conversely, one can evaluate the correlation function by taking the inverse
Fourier transform of the power spectral density:

Rxx n½ � ¼ 1
xe

Zþ xe
2

�xe
2

Sxx ejxT
� �

ejnxTdx: ð24:31Þ

The cross-spectrum Sxy ejxT
� �

is defined by:

Sxy ejxT
� � ¼ X1

n¼�1
Rxy n½ �e�jnxT : ð24:32Þ
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By taking the Fourier transform of the convolution product we have

Sxy ejxT
� � ¼ X1

n¼�1
Rxx n½ � � h� �n½ �ð Þe�jnxT ;

Sxy ejxT
� � ¼ Sxx ejxT

� � X1
n¼�1

h� �n½ �e�jnxT ¼Sxx ejxT
� �

H� ejxT
� �

:

ð24:33Þ

Similarly, we calculate

Syy ejxT
� � ¼ Sxx ejxT

� �
H� ejxT
� �

H ejxT
� � ¼ Sxx ejxT

� �
H ejxT
� ��� ��2: ð24:34Þ

This important expression gives the relationship between the spectral densities of
the input and output signals of a filter with frequency response HðejxTÞ.

More generally we define the z function

Sxx zð Þ ¼
X1
n¼�1

Rxx n½ �z�n: ð24:35Þ

Property

S�xx 1=z�ð Þ ¼
X1
n¼�1

Rxx n½ �z�n
 !�

¼
X1
n¼�1

R�
xx n½ �zn ¼

X1
n¼�1

Rxx �n½ �zn

¼
X1

n0¼�1
Rxx n0½ �z�n0 ¼ Sxx zð Þ;

thus

S�xx 1=z�ð Þ ¼ Sxx zð Þ: ð24:36Þ

We have also

Sxy zð Þ ¼
X1
n¼�1

Rxx n½ � � h� �n½ �ð Þz�n ¼ Sxx zð Þ
X1
n¼�1

h� �n½ �z�n ¼ Sxx zð ÞH� 1
z�

	 

;

ð24:37Þ

and also

Syy zð Þ ¼ Sxx zð ÞH� 1
z�

	 

H zð Þ: ð24:38Þ
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This last expression is the generalization of relationship (24.34) to the entire
z-plane. It is widely used in filter modeling as in Wiener filter modeling.

Power Spectral Density of Centered White Noise
Let Rxx m½ � ¼ Nd m½ �. Its spectral density is

Sxx ejxT
� � ¼ X1

n¼�1
Rxx n½ �e�jnxT ¼ N

X1
n¼�1

d n½ �e�jnxT ¼ N: ð24:39Þ

This density is uniform throughout the frequency axis; It is this property that
gives it its name, by analogy with the spectrum of white light.

We Infer an Important Property
A (power spectral density) is real, positive or zero

Sxx ejxT
� �� 0: ð24:40Þ

To show this, we calculate

E y n½ �j j2
n o

¼ Ryy 0½ � ¼ 1
xe

Zþ xe
2

�xe
2

Sxx ejxT
� �

H ejxT
� ��� ��2dx: ð24:41Þ

We assume y n½ � to be the output of a filter attacked by x n½ � and with frequency
response H ejxT

� �
such that

H ejxT
� � ¼ 1 a\x\b

0 elsewhere in the period

���� : ð24:42Þ

We will have

Ryy 0½ � ¼ 1
xe

Zb
a

Sxx ejxT
� �

dx: ð24:43Þ

Now Ryy 0½ � is always positive or zero since it is the expectation of a square
modulus. The two boundaries a and b of the filter frequency band were selected in
any manner, it follows that the right side must be � 0 8 a and bð Þ, which requires
that Sxx ejxT

� �� 0.

In particular we have

Rxx 0½ � ¼ 1
xe

Zþ xe
2

�xe
2

Sxx ejxT
� �

dx: ð24:44Þ
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Recall that Rxx 0½ � is the signal power. This explains why Sxx ejxT
� �

that is real,
positive or zero, and whose integral over frequency gives the power of the WSS
signal is called power spectral density (PSD).

24.4 Filtering a Centered White Noise with a First Order
Filter

Let the real centered white noise x n½ �, wide sense stationary of zero expectation and
autocorrelation function Rxx n½ � ¼ Nd n½ � with d n½ � the function of Kronecker.

This signal is used as input to a causal first order filter of temporal equation

y n½ � ¼ Ky n� 1½ � þ x n½ �: ð24:45Þ

The impulse response of this filter is

h n½ � ¼ KnU n½ �: ð24:46Þ

and the system response is

y n½ � ¼ h n½ � � x n½ � ¼
X1

m¼�1
h m½ �x n� m½ �: ð24:47Þ

The expectation of y n½ � is

gy n½ � ¼ E y n½ �f g ¼ E
X1

m¼�1
h m½ �x n� m½ �

( )
¼
X1

m¼�1
h m½ �E x n� m½ �f g ¼ 0:

ð24:48Þ

The cross-correlation function of x n½ � and y n½ � is calculated with

Rxy m½ � ¼ Rxx m½ � � h� �m½ � ¼ Nh� �m½ �: ð24:49Þ

The autocorrelation of y n½ � is written

Ryy m½ � ¼ Rxx m½ � � h� �m½ � � h m½ � ¼ N h� �m½ � � h m½ � ¼ N
X1

m0¼�1
h� �m0½ �h m� m0½ �

¼ N
X1

m00¼�1
h� m00½ �h mþm00½ � ¼ N

X1
m0¼�1

h� m0½ �h mþm0½ �

¼ N
X1

m0¼�1
K�m0

U m0½ �K mþm0ð ÞU mþm0½ �:

ð24:50Þ
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First, we consider the case m[ 0

Ryy m½ � ¼ NKm
X1
m0¼0

Kj j2m0
U mþm0½ �: ð24:51Þ

Within the sum, the step function is different from zero if mþm0 � 0, namely for
m0 � � m. In the range of variation of m, the step function has always value 1.

Ryy m½ � ¼ NKm
X1
m0¼0

Kj j2m0 ¼ N
Km

1� Kj j2 : ð24:52Þ

(If Kj j\1, as it is assumed a priori to ensure stability of the system).
We now deal with the case m\0

Ryy m½ � ¼ N
X1

m0¼�1
K�m0

U m0½ �K mþm0ð ÞU mþm0½ �: ð24:53Þ

The function U mþm0½ � is nonzero if mþm0 � 0, that is to say for m0 � � m.
The starting index of the sum is now �m which is positive.

Ryy m½ � ¼ NKm
X1

m0¼�1
K2m0�� �� ¼ NKm Kj j�2m

1� Kj j2 ¼ NK� �mð Þ 1

1� Kj j2 ð24:54Þ

We verify that we have

Ryy m½ � ¼ R�
yy �m½ �: ð24:55Þ

Power Spectral Density of the Output Filter Noise

Syy ejxT
� � ¼ Xm¼1

m¼�1
Ryy½m�e�jmxT

¼ N
1

1� Kj j2
Xm¼1

m¼0

Kme�jmxT � 1þ
Xm¼0

m¼�1
K�ð�mÞe�jmxT

 !
: ð24:56Þ

The first sum is

Xm¼1

m¼0

Kme�jmxT ¼ 1
1� Ke�jx T

: ð24:57Þ
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The second sum is

Xm¼0

m¼�1
K�ð�mÞe�jmxT ¼

Xm0¼1

m0¼0

K�m0
ejm

0xT ¼ 1
1� K�ejxT

: ð24:58Þ

Syy ejxT
� � ¼ N

1

1� Kj j2
1

1� Ke�jxT þ 1
1� K�ejxT

� 1
	 


;

Syy ejxT
� � ¼ N

1

1� Kj j2
1� K�ejxT
� �þ 1� Ke�jxT

� �� 1� Ke�jxT
� �

1� K�ejxT
� �

1� Ke�jxTð Þ 1� K�ejxTð Þ
	 


;

Syy ejxT
� � ¼ N

1

1� Kj j2
2� K�ejxT � Ke�jxT � 1þK�ejxT þKe�jxT � Kj j2

1� Ke�jxTð Þ 1� K�ejxTð Þ

 !
:

Finally,

SyyðejxTÞ ¼ N
1� Ke�jxTð Þ 1� K�ejxTð Þ : ð24:59Þ

It is noted that since the filter frequency response is

H ejxT
� � ¼ 1

1� Ke�jxTð Þ ; ð24:60Þ

We have

SyyðejxTÞ ¼ SxxðejxTÞHðejxTÞH�ðejxTÞ: ð24:61Þ

These results are consistent with the general relationship (24.34).

24.5 Coherence Function

A method widely used for identifying noise sources is the method of the coherence
function. This method lies in the comparison of a measured noise with that created
by a possible source of the noise. At each frequency one can measure the fraction of
the noise assignable to that source.

We define the coherence function between two WSS random signals s n½ � and
x n½ � by the expression

csx ejxT
� � ¼ Ssx ejxT

� ��� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx ejxTð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sss ejxTð Þp ð24:62Þ
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Where Ssx ejxT
� �

is the cross-spectral density (cross-spectrum, FT of Rsx m½ �) of
s n½ � and x n½ �. Sxx ejxT

� �
and Sss ejxT

� �
are the respective spectral densities of s n½ � and

x n½ �.
Properties:

1. Let us assume that s n½ � is the output of a LTI system of which x n½ � is the input
signal and h n½ � the impulse response. We calculate functions appearing in the
coherence function csx ejxT

� �
:

Ssx ejxT
� � ¼ X1

n¼�1
Rsx n½ �e�jnxT ¼

X1
n¼�1

Rsx n½ �e�jnxT ¼
X1
n¼�1

Rxx n½ � � h n½ �e�jnxT:

ð24:63Þ

Ssx ejxT
� � ¼ Sxx ejxT

� �
H ejxT
� �

: ð24:64Þ

Referring to this result in (24.62), we have

csx ejxT
� � ¼ Sxx ejxT

� ��� �� H ejxT
� ��� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sxx ejxTð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sss ejxTð Þp : ð24:65Þ

A. A spectral density being always � 0, this equation becomes

csx ejxT
� � ¼ Sxx ejxT

� ��� �� H ejxT
� ��� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sxx ejxTð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sss ejxTð Þp ¼ Sxx ejxT

� �
H ejxT
� ��� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sxx ejxTð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx ejxTð Þ H ejxTð Þj j2

q ¼ 1:

ð24:66Þ

2. Assume now that the signal s n½ � consists of the sum of the output signal y n½ � of a
LTI system (whose input is x n½ �) and a second random signal z n½ � of unknown
origin and which is considered as a noise, y n½ � is considered the signal. It is
assumed that the signals x n½ � are z n½ � are not correlated. Signals are also assumed
real with zero mean: s n½ � ¼ y n½ � þ z n½ �.

Let us calculate in this case the coherence function csx ejxT
� �

. The calculus
begins by the determination of the correlation functions. Using the non correlation
of x n½ � and z n½ � we can write
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Rsx m½ � ¼ Ryx m½ � þRzx m½ � ¼ Rxx m½ � � h m½ � þRzx m½ � ¼ Rxx m½ � � h m½ �: ð24:67Þ

Ssx ejxT
� � ¼ Ssx ejxT

� �
H ejxT
� �

: ð24:68Þ

Rss m½ � is then calculated. Because z n½ � is not correlated to x n½ � it is not to y n½ �.
We have therefore

Rss m½ � ¼ Ryy m½ � þRyz m½ � þRzy m½ � þRzz m½ � ¼ Ryy m½ � þRzz m½ �: ð24:69Þ

Taking the Fourier transform of Rss m½ � we then have

Sss ejxT
� � ¼ Syy ejxT

� �þ Szz ejxT
� � ¼ Sxx ejxT

� �
H ejxT
� ��� ��2 þ Szz ejxT

� �
: ð24:70Þ

csx ejxT
� � ¼ Ssx ejxT

� �
H ejxT
� ��� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sxx ejxTð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx ejxTð Þ H ejxTð Þj j2 þ Szz ejxTð Þ

q ; ð24:71Þ

csx ejxT
� � ¼ H ejxT

� ��� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H ejxTð Þj j2 þ Szz ejxTð Þ

Sxx ejxTð Þ
r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Szz ejxTð Þ
H ejxTð Þj j2Sxx ejxTð Þ

r ; ð24:72Þ

or

csx ejxT
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Szz ejxTð Þ
Syy ejxTð Þ

r : ð24:73Þ

Since the spectral densities are real, positive or zero, we see that the coherence
function csx ejxT

� �
is between 0 and 1.

0� csx ejxT
� �� 1: ð24:74Þ

The coherence function will be close to 1 for the frequencies where the spectral
density of the signal y n½ � is large compared with that of the noise z n½ �.

The ratio of power spectral densities of the noise and of the signal at frequencies
x is noted:

r ejxT
� � ¼ Szz ejxT

� �
Syy ejxTð Þ : ð24:75Þ
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Equation (24.73) is then written

csx ejxT
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r ejxTð Þp ; ð24:76Þ

or even

r ejxT
� � ¼ 1

c2sx ejxTð Þ � 1: ð24:77Þ

24.6 Autocorrelation Matrix of a Random Signal

Let x ¼ x 0½ �; x 1½ �; . . .; x p½ �½ �T a vector consisting of pþ 1 values of the random
signal x n½ �. We further assume that the signal x n½ � is wide sense stationary.

The exterior product of x by its Hermitian conjugate xH is a matrix pþ 1ð Þ�
pþ 1ð Þ:

xxH ¼
x 0½ �x� 0½ � x 0½ �x� 1½ � . . . x 0½ �x� p½ �
x 1½ �x� 0½ � x 1½ �x� 1½ � . . . x 1½ �x� p½ �

..

. ..
. ..

. ..
.

x p½ �x� 0½ � x p½ �x� 1½ � . . . x p½ �x� p½ �

2
6664

3
7775: ð24:78Þ

If x n½ � is WSS, the autocorrelation matrix is obtained by taking the expectations
of each term.

Having noticed that since the signal is SSL, E x nþm½ �x� n½ �f g ¼ Rxx m½ �.
since Rxx m½ � ¼ R�

xx �m½ �,

Rxx ¼ E xxH
� 
 ¼

Rxx 0½ � R�
xx 1½ � . . . R�

xx p½ �
Rxx 1½ � Rxx 0½ � . . . R�

xx p� 1½ �
..
. ..

. ..
. ..

.

Rxx p½ � Rxx p� 1½ � . . . Rxx 0½ �

2
6664

3
7775: ð24:79Þ

Rxx is a Hermitian matrix. It is also a Toeplitz matrix, that is to say that the
elements along the main diagonal are equal. This matrix is also definite, not neg-
ative. Its eigenvalues are real and not negative. The eigenvectors associated with
different eigenvalues are orthogonal.

Property: The eigenvalues of an autocorrelation matrix n x n of a stationary
signal at large are bounded below and above by the minimum and maximum values
of the power spectral density):

min Sxx ejxT
� �� ki �max Sxx ejxT

� �
: ð24:80Þ
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24.7 Beamforming

Consider a signal x n½ � resulting from a recording by a sensor of a random acoustic
signal wave propagating in a fluid. Assume now that one has an antenna consisting
of an array of identical sensors uniformly distributed on a line and distant from each
other by a. In the case of propagation in the form of a plane wave, the signal
received by the sensor pþ 1 is the signal received by the sensor p multiplied by a
delay s ¼ a sin h

c . c is the speed of the wave in the medium, h is the angle of the wave
vector with the perpendicular axis to the network:

xpþ 1 n½ � ¼ xp n� s½ � ¼ xp n½ � � d n� s½ �: ð24:81Þ

The next development aims to find the direction of the source of the acoustic
wave from the data recorded by the sensors. Considering the matrix Rxx m½ � of
cross-correlation functions between the signals of the various sensors:

Rxx m½ � ¼
Rx1x1 m½ � Rx1x2 m½ � . . . Rx1xM m½ �
Rx2x1 m½ � Rx2x2 m½ � . . . Rx2xM m½ �

..

. ..
. ..

. ..
.

RxMx1 m½ � RxMx2 m½ � . . . RxMxM m½ �

2
6664

3
7775: ð24:82Þ

It follows from the above assumptions that the cross-correlation function of two
successive sensor signals is related to the autocorrelation function of the signal from
a sensor by the relationship

Rxpþ 1xp m½ � ¼ E xpþ 1 nþm½ �xp n½ �� 
 ¼ E xp nþm� s½ �xp n½ �� 
 ¼ Rxpxp m� s½ �:

Or even

Rxpþ 1xp m½ � ¼ Rxpxp m½ � � d m� s½ �: ð24:83Þ

The matrix Rxx m½ � is then

Rxx m½ � ¼ Rxnxn m½ �

�
d m½ � d m� s½ � . . . d m� M � 1ð Þs½ �

d mþ s½ � d m½ � . . . d m� M � 2ð Þs½ �
..
. ..

. ..
. ..

.

d mþ M � 1ð Þs½ � d mþ M � 2ð Þs½ � . . . d m½ �

2
6664

3
7775:

ð24:84Þ

We now consider the matrix of cross-spectra, consisting of FT of the different
terms of the matrix of correlation functions. By applying the shift theorem to the
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different elements of the matrix and by denoting S0 ejxT
� �

the power spectral
density of the signal of one sensor, then

Sxx ejxT
� � ¼ S0 ejxT

� � 1 e�jsxT . . . e�j M�1ð ÞsxT

ejsxT 1 . . . e�j M�2ð ÞsxT

..

. ..
. ..

. ..
.

ej M�1ð ÞsxT ej M�2ð ÞsxT . . . 1

2
6664

3
7775: ð24:85Þ

The matrix of phase factors is Hermitian and Toeplitz. Generally, its eigenvalues
are real or null and its eigenvectors are orthogonal. Here, the column vectors of this
matrix are not independent. They are deduced from each other by multiplication by
a complex term of the form e�jrsxT . It follows that the determinant of the matrix is
zero. The matrix is singular and rank 1. The eigenvalues are all zero except one
whose value is M. The corresponding eigenvector is the column vector

1 e�jsxT . . . e�j M�1ð ÞsxT� �H
. The determination of this vector can be used to

trace back the delay s and thus the direction of propagation of the plane wave and
therefore the direction of the source.

By studying the case of superposition of two signals from two propagation
directions (in practice two remote sources), the matrix of cross-spectra has two
nonzero eigenvalues. This method gives access to the knowledge of the number of
sources. However the two associated eigenvectors are orthogonal and are not
independently associated with the direction of each source. The inverse Fourier
transform of the first row of the matrix, however, allows to determine the values of
the delays s1 and s2 and so find the directions of the sources.

Note: The results would be the same if the signal x n½ � was certain. In that case we
would be dealing with deterministic correlation functions and their Fourier
transforms.

24.8 Analog Random Signals

It is appropriate at this stage to give the main results of the analysis of random
signals in continuous time. The formulas are similar to those digital signals but
some developments given hereinafter are easier and more intuitive to establish on
analog signals. Consider x tð Þ an analog random signal. The correlation function for
this signal is defined by:

Rx t1ð Þx t2ð Þ t1; t2ð Þ ¼ E x t1ð Þx� t2ð Þf g: ð24:86Þ

The signal will be wide sense stationary iff:

(a) His expectation is independent of time E x tð Þf g ¼ gx tð Þ ¼ gx.
(b) Its correlation function Rx t1ð Þx t2ð Þ t1; t2ð Þ depends only on the time difference

s ¼ t1 � t2. We shall note Rxx sð Þ the signal x tð Þ correlation function.
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The power of the WSS signal x tð Þ is given by: P tð Þ ¼ E x tð Þx� tð Þf g.
We have in this case P tð Þ ¼ P ¼ Rxx 0ð Þ.
An analog centered white noise is a real random signal, zero expectancy, WSS,

whose correlation function is given by the Dirac distribution d sð Þ: Rxx sð Þ ¼ Nd sð Þ.
The correlation function of the output signal y tð Þ of LTI filter with impulse

response h tð Þ is

Ryy sð Þ ¼ Rxx sð Þ � h� sð Þ � h sð Þ: ð24:87Þ

The power spectral density) of the WSS signal x tð Þ is the Fourier transform of its
autocorrelation function

Sxx xð Þ ¼
Z1
�1

Rxx sð Þe�jxsds: ð24:88Þ

A power spectral density is real, positive, or zero:

Sxx xð Þ� 0 ð24:89Þ

Considering a real signal x tð Þ, sum of a deterministic signal s tð Þ and a random
signal b tð Þ: x tð Þ ¼ s tð Þþ b tð Þ. The signal-to-noise ratio for this signal is defined as
the power of the certain signal to that of the random signal. We write

qðtÞ ¼ PsðtÞ
PbðtÞ

¼ s2ðtÞ
E b2ðtÞ� 
 : ð24:90Þ

We see that the signal-to-noise ratio can be increased by decreasing the power of
the noise by filtering.

Passage of White Noise in an Ideal Low Pass Filter
Consider a white noise b tð Þ. Its correlation function is Rbb sð Þ ¼ Nd sð Þ. Its power
spectral density is Sbb xð Þ ¼ R þ1

�1 Rbb sð Þe�jxsds ¼ R þ1
�1 Nd sð Þe�jxsds ¼ N. It is

constant. The power of white noise is infinite as Pb ¼ Rbb 0ð Þ ¼ 1. Note that since
an infinite power is physically impossible, white noise should not have infinite
power. It is a mathematical fiction. In practice, a white noise is a very broadband
noise.

Now we input this white noise in a low pass filter ideal (unity gain within the
bandwidth) with cutoff frequency xc.

In the time domain we have b1 tð Þ ¼ b tð Þ � h tð Þ .
The spectral density of the output signal is

Sb1b1 xð Þ ¼ H xð Þj j2Sbb xð Þ: ð24:91Þ
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The power of the output signal is

Rb1b1 0ð Þ ¼ 1
2p

Z1
�1

Sb1b1 xð Þdx ¼ 1
2p

Z1
�1

H xð Þj j2Sbb xð Þdx

¼ 1
2p

Zxc

�xc

N dx ¼ N
xc

p
: ð24:92Þ

It is seen that the output power from the filter is proportional to the bandwidth of
this filter.

We have a similar result when a band-pass filter is used. It is assumed that the
band-pass filter, assumed ideal, has unity gain within a bandwidth 2xc centered in
x0.

The power of the output signal is

Rb1b1 0ð Þ ¼ 1
2p

Z�x0 þxc

�x0�xc

Ndxþ 1
2p

Zx0�xc

x0 þxc

Ndx ¼ N
2xc

p
: ð24:93Þ

The practical value of this filtering appears in the following situation. It is
assumed that in the noisy signal x tð Þ ¼ s tð Þþ b tð Þ, the noise is white.

At the outlet of the filter we have x1 tð Þ ¼ s tð Þþ b tð Þð Þ � h tð Þ ¼ s1 tð Þþ b1 tð Þ.

�!sðtÞþ bðtÞ
H �!s1ðtÞþ b1ðtÞ

Assume that the bandwidth of the ideal filter is adjusted to that of the signal s tð Þ.
The signal s tð Þ remains unchanged in the filter x1 tð Þ ¼ s tð Þþ b1 tð Þ, but the noise
power is decreased. The signal-to-noise ratio at the output of the filter is in this case

qðtÞ ¼ s2ðtÞ
E b21ðtÞ
� 
 ¼ s2ðtÞ

N 2xc
p

: ð24:94Þ

It thus appears that the signal-to-noise ratio that can be achieved with noisy
signals is all the more larger as the bandwidth of the signal is weak.

In space telecommunications, signals from very distant sensors of the earth have
extremely low amplitude. The signals are very noisy. To benefit from the result set
and can effectively filter the noise at reception, we choose to communicate infor-
mation using very narrow-band signals. In reception the signals are amplified by
masers which are amplifiers with very high gain and very narrow band. This
improves considerably the signal-to-noise ratio at reception. Research on masers
accompanied those on lasers that can be considered very narrow-band amplifiers
operating in bands of optical frequencies.
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24.9 Matched Filter

In the former case, it was sought to improve the signal-to-noise ratio by filtering,
preserving as well as possible the temporal shape of the certain signal. Another
situation is where one seeks to detect the presence of a signal within a noisy signal.
This is the case where a radar signal processing first looks for the presence of a
target by detecting the echo. The shape of the expected echo is known: it is identical
to that of the transmitted signal which we denote here s tð Þ. We show in the fol-
lowing that there is a filter which optimizes the detection of the signal s tð Þ in the
noise. Let us note the impulse response h tð Þ of this desired filter. It is assumed that
the noise b tð Þ is WSS.

The output of the filter is x1 tð Þ ¼ s tð Þþ b tð Þð Þ � h tð Þ ¼ s1 tð Þþ b1 tð Þ.

�����!sðtÞþ bðtÞ
H ������!s1ðtÞþ b1ðtÞ

The impulse response of the system is determined so that at a certain time t1 the
signal-to-noise ratio as defined below is maximized. At the output of the filter, this
ratio is

qðt1Þ ¼ s21ðt1Þ
E b21ðt1Þ
� 
 : ð24:95Þ

We have S1 xð Þ ¼ S xð ÞH xð Þ. So, at time t1: s1 t1ð Þ ¼ 1
2p

R þ1
�1 S xð ÞH xð Þejxt1dx.

For a real signal

s21 t1ð Þ ¼ s1 t1ð Þj j2¼ 1
4p2

Zþ1

�1
S xð ÞH xð Þejxt1dx

������
������
2

: ð24:96Þ

The denominator is estimated. Since Sb1b1 xð Þ ¼ Sbb xð Þ H xð Þj j2, taking its
inverse FT we obtain Rb1b1 sð Þ ¼ 1

2p

R þ1
�1 Sbb xð Þ H xð Þj j2ejxsdx.

E b21 t1ð Þ� 
 ¼ Rb1b1 0ð Þ ¼ 1
2p

Z þ1

�1
Sbb xð Þ H xð Þj j2dx: ð24:97Þ

It is assumed that the input is white noise with Sbb xð Þ ¼ N.

q t1ð Þ ¼
1
4p2
R þ1
�1 S xð ÞH xð Þejxt1dx�� ��2
N
2p

R þ1
�1 H xð Þj j2dx : ð24:98Þ
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Recall Schwarz’s inequality

Zþ1

�1
F1 xð ÞF2 xð Þdx

������
������
2

�
Zþ1

�1
F1 xð Þj j2dx

Zþ1

�1
F2 xð Þj j2dx

There is equality iff F1 xð Þ ¼ kF� xð Þ, where k is any real constant.
This result is used in the problem considered

Zþ1

�1
S xð ÞH xð Þejxt1dx

������
������
2

�
Zþ1

�1
S xð Þj j2dx

Zþ1

�1
H xð Þj j2dx;

thus

q t1ð Þ� 1
2pN

Zþ1

�1
S xð Þj j2dx: ð24:99Þ

The maximum value of the signal-to-noise ratio will be achieved if and only if

H xð Þ ¼ k S� xð Þe�jxt1 : ð24:100Þ

Resulting in the time domain

h tð Þ ¼ k
1
2p

Zþ1

�1
S� xð Þe�jxt1ejxtdx:

As S xð Þ ¼ R þ1
�1 s tð Þ e�jxtdt, and since the signal is supposedly real,

S� xð Þ ¼
Zþ1

�1
s tð Þ ejxtdt: ð24:101Þ

It comes by making the change of variable t0 ¼ �t S� xð Þ ¼ R þ1
�1 s �t0ð Þ

e�jxt0dt0.
So S� xð Þ is the Fourier transform of s �tð Þ.
Thus s �tð Þ ¼ 1

2p

R þ1
�1 S� xð Þ ejxtdx so s t1 � tð Þ ¼ 1

2p

R þ1
�1 S� xð Þ e�jxt1ejxtdx,

It finally comes

h tð Þ ¼ ks t1 � tð Þ: ð24:102Þ

Therefore the optimal filter impulse response is a replica of the signal s tð Þ
obtained by performing
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1. a time reversal of the transmitted signal
2. a temporal translation of the reversed signal by a delay equal to t1 that is the time

of the round trip of the backscattered signal from the target.

The convolution operation with a returned signal being a correlation, this type of
radar is called radar by correlation.

This type of radar is only a stage in the evolution of remote sensing techniques. It
provides information on the position of an object but not its speed. Measuring the
velocity of the target is based on themeasurement of the Doppler effect which affected
the echo. This effect is a shift in frequency of the signal due to the relative speed of the
target and the transmitter–receiver antenna. The change in frequency is low; it is
necessary that the signal duration is relatively long to allow determination. The signal
s tð Þ of radar that simultaneously measures the position and frequency must meet two
apparently contradictory requirements: be short enough to permit accurate localiza-
tion and discrimination between targets and yet be sufficiently long to permit mea-
surement of speed. Modern techniques optimize the shape of the signal used s tð Þ. The
reader is encouraged to refer to books on the subject to deepen this theme.

Summary
We encountered in this chapter two functions which are fundamental for signal
analysis: the correlation function and the power spectral density of wide sense
stationary (WSS) random signals. We studied the filtering of WSS signals by a LTI
system and gave the theorems linking correlations and DSP of input and output
signals. The coherence function defined afterward is a powerful tool to identify in a
noisy signal the sources constituting the noise. At the end of this chapter, we gave
the equivalent formula for correlation functions and power spectral densities of
analog signals. We have seen how one can increase the signal-to-noise ratio with a
filter. We have exposed the principle of the matched filter, widely used in radar and
sonar. It increases the probability of detection of an echo in a noisy environment.
Many corrected exercises at the end of this chapter will help the reader become
familiar with these important results.

Exercises

I. Matched digital filter. It is assumed that the digital signals are obtained by
analog–digital conversion at a sampling frequency fs ¼ 20 kHz.

A. Let the digital filter defined by the following time equation:

g n½ � ¼ �f n½ � � f n� 1½ � þ f n� 2½ � þ f n� 3½ �:

1. Give the impulse response h n½ � of the filter and represent this function. Is the
filter causal?

2. Calculate the system transfer function H zð Þ. Having noticed that z ¼ 1 is a root
of H zð Þ ¼ 0, determine the notable points of H zð Þ and represent them in the z
plane.
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3. Deduct the shape of the frequency response modulus of H ejxT
� �

from the
position of these notable points. What are the frequencies of the signals blocked
by the filter? Calculate the expressions of the frequency response H ejxT

� �
and of

its module.
4. We use at the filter input a signal f0 n½ � which is time reversal of h n½ �

f0 n½ � ¼ h �n½ �. Calculate the filter output signal g0 n½ �. What is the Fourier
transform of this signal?

B. We show now that the previous filter is well suited to the detection of the signal
f0 n½ � when it is vitiated by an additional noise b n½ �. It is assumed in the fol-
lowing that the digital noise b n½ � is white, wide sense stationary, Gaussian, with
zero mean and autocorrelation function Rbb m½ � ¼ d m½ � (d m½ � is the Kronecker
function).

1. What is the standard deviation of the noise signal b n½ �? Give the prediction
interval (symmetric) at risk 5 % of noise voltage b n½ �. What is the power
spectral density of b n½ �?

2. It is first assumed that the noise b n½ � is the question I filter input. We note Ryy m½ �
the output signal. What is the expectation of the signal y n½ �? What is its vari-
ance? Give the prediction interval (symmetric) at 5 % risk of noise y n½ � at the
filter output. Give the expression of the autocorrelation function Ryy m½ �. What is
the power spectral density of y n½ �?

3. We note f n½ � the signal f0 n½ � (met in question I.4) added with noise b n½ �:
f n½ � ¼ f0 n½ � þ b n½ �. What are the expectation and variance of f n½ �?
This signal is presented at the input of the filter met in A. The output signal is

noted g n½ �. What are the expectation and variance of g n½ �?
4. We call power (instantaneous) of a deterministic signal, its square. The power of

a random signal is the expectation of its square. Thus Pf 0 n½ � ¼ f 20 n½ � and
Pb n½ � ¼ E b2 n½ �� 


.

The signal-to-noise ratio of the signal f n½ � is q n½ � ¼ Pf0 n½ �
E b2 n½ �f g . Calculate the value

of this ratio for different values of n.

5. Calculate the signal-to-noise ratio in the signal g n½ �. Show that the fact of having
used to filter the noisy signal a filter whose impulse response is the time reverse
of the signal f0 n½ � that is to be detected has increased the probability of detection
of this signal (increased ratio signal to noise at the crossing of the matched
filter).

Solution: A 1. h n½ � ¼ �d n½ � � d n� 1½ � þ d n� 2½ � þ d n� 3½ �. The filter is causal
because the impulse response is zero for n\0.

2. H zð Þ ¼ �1� z�1 þ z�2 þ z�3 ¼ z�3 �z3 � z2 þ zþ 1ð Þ.
H 1ð Þ ¼ �1� 1þ 1þ 1ð Þ ¼ 0.

504 24 Correlation Functions, Spectral Power Densities of Random Signals



By the division of polynomials we get
H zð Þ ¼ �z�3 z� 1ð Þ z2 þ 2zþ 1ð Þ ¼ �z�3 z� 1ð Þ zþ 1ð Þ2, which has a triple

pole in z ¼ 1, a single zero in z ¼ 1 and a double zero in z ¼ �1.
H ejxT
� � ¼ �1� e�jxT þ e�j2xT þ e�j3xT .

3. The filter is band-pass. The gain is zero for x ¼ 0 and x ¼ p
T(for f ¼ fe

2).
4. g0 n½ � ¼ f0 n½ � � h n½ � ¼ h �n½ � � h n½ �. That is to say, the autocorrelation function

of h n½ �.

g0 n½ � ¼ f0 n½ � � h n½ � ¼ h �n½ � � h n½ �:
g0 n½ � ¼ �d nþ 3½ � � 2d nþ 2½ � þ d nþ 1½ � þ 4d n½ � þ d n� 1½ � � 2d n� 2½ � � d n� 3½ �:

As expected, this function is even and has its maximum in n ¼ 0.

G ejxT
� � ¼ H ejxT

� ��� ��2:
B1. r2b ¼ Rbb 0½ � ¼ d 0½ � ¼ 1. The standard deviation rb ¼ 1. PI5% ¼ �1:96;f

1:96g.
2. The expectation of b n½ � being zero, that of Ryy m½ � will be also.

Ryy m½ � ¼ Rbb m½ � � h m½ � � h �m½ � ¼ d m½ � � h m½ � � h �m½ � ¼ h m½ � � h �m½ �;
r2y ¼ Ryy 0½ � ¼ 4:

3. E f n½ �f g ¼ E f0 n½ �f gþE b n½ �f g ¼ f0 n½ � ¼ h �n½ �, for the expectation of a certain
value is itself and the expectation of b n½ � is zero by hypothesis.

g n½ � ¼ f n½ � � h n½ � ¼ f0 n½ � þ b n½ �ð Þ � h n½ �;E g n½ �f g ¼ f0 n½ � � h n½ � ¼ g0 n½ �:

The variance of g n½ � is that of Ryy m½ �: r2g ¼ 4.

4. For the signal f n½ � the signal-to-noise ratio is qf n½ � ¼ f 20 n½ �
1 ¼ f 20 n½ � equal to zero

or 1.

5. For the signal g n½ � the signal-to-noise ratio is qg n½ � ¼ g20 n½ �
4 . In particular

qg 0½ � ¼ 4. At time n ¼ 0 the signal-to-noise ratio of the filtered signal g n½ � is at
least fourtimes greater than that of f n½ � increasing the probability of signal f0 n½ �
detection in noise.
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II. MA digital filter

1. Let the digital filter defined by the temporal equation y n½ � ¼ 1
N

PN�1
2

l¼�ðN�1
2 Þ x nþ l½ �

with N odd.

a. What is the impulse response of the filter? Represent this when N ¼ 9.
b. Calculate the filter transfer function H zð Þ. Locate its zeros in the complex plane.

From the position of these zeros predict appearance of the filter frequency gain
modulus.

c. Give the expression of the frequency response H ejxT
� �

(T is the sampling step).

Why could we predict that this function was real? Which are the frequencies of
signals blocked by the filter in the case where the sampling frequency is
fe ¼ 1MHz?

Accurately represent the frequency response.

2. It is now assumed that the signal x n½ � is random, WSS and for each value of n,
x n½ � has an even distribution between and �1 and þ 1.

a. Specify the mean and the standard deviation of x n½ �.
b. Assuming that two successive values of the signal are independent, give the

distribution of g n½ � ¼ x n½ � þ x nþ 1½ �. Calculate the variance of g n½ �.
c. Extend these results to the filter defined in question 1.

Solution: 1. a. h n½ � ¼ 1
N

PN�1
2

l¼�ðN�1
2 Þ

d nþ l½ �. If N ¼ 9, h n½ � ¼ 1
9

P4
l¼�4

d nþ l½ �.

b. H zð Þ ¼ 1
9

P4
l¼�4

z�l ¼ 1
9
z4�z�5

1�z�1 ¼ 1
9 z

�5 z9�1
1�z�1 ¼ 1

9 z
�4 z9�1

z�1 .

The numerator has 9 zeros regularly placed on the unit circle zk ¼ ejk
2p
9

k ¼ 0; 1; ::; 8ð Þ. The zero in z ¼ 1 is balanced by the zero at denominator. The filter
will let pass the DC component and block frequencies fk ¼ k fe

9 with
k ¼ 0; 1; ::; 8ð Þ.
c H ejxT

� � ¼ 1
9 1þ 2 cosxT þ 2 cos 2xT þ 2 cos 4xTð Þ. This function is real since

the impulse response is even. The blocked frequencies are fk ¼ k 106
9

k ¼ 1; ::; 8ð Þ.
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2. a. fx ¼ 1
2 for �1� x\1 and zero elsewhere. E x n½ �f g ¼ 0. r2x ¼ 1

3.

b. The two values x n½ � and x nþ 1½ � being independent, the PDF of g n½ � is
fg ¼ fx xð Þ � fx xð Þ, convolution of two rectangular windows. It is a triangular
window with base �2; 2f g. The variance of g n½ � is the sum of the two vari-
ances, r2g ¼ 2

3.
c. For the sum upon nine elements, the probability density function is the con-

volution of several triangles. This is a bell curve that starts to look like a
Gaussian (see the central limit theorem). The variance is 9 1

3.

III. Sinusoidal signal with a random phase

Let x n½ � ¼ A cos x0nT þHð Þ the random signal where A and x0 are constants
and H is a random variable uniformly distributed between �p and p.

1. Give the PDF fH of H.
2. What are the expectations of H and x n½ �?
3. Calculate the autocorrelation function of the signal x n½ �.
4. Same questions if now x n½ � ¼ Aej x0nT þHð Þ.

Solution: 1. fH ¼ 1
2p between 0 and 2p.

2. E Hf g ¼ 0. E x n½ �f g ¼ E A cos x0nTð Þ cosH� sin x0nTð Þ sinHð Þf g.

E x n½ �f g ¼ A cos x0nTð ÞE cosHf g � A sin x0nTð ÞE sinHf g ¼ 0:

3: E x� n½ �x nþm½ �f g ¼ E A cos x0nT þHð ÞA cos x0 nþmð ÞT þHð Þf g

¼ A2

2
E cos x0mTð Þþ cos x0 2nþmð ÞT þ 2Hð Þf g ¼ A2

2
cos x0mTð Þ:

4. E x n½ �f g ¼ 0; E x� n½ �x nþm½ �f g ¼ E Ae�j x0nT þHð ÞAej x0 nþmð ÞTð� þHÞg ¼ A2E

ej x0mT þHð Þ� 
 ¼ 0.

IV. Statistics of first and second order Gaussian signals.

Let bðtÞ be an analog Gaussian noise, with zero expectancy and whose corre-
lation function is RbbðsÞ ¼ BdðsÞ. (where dðsÞ is the Dirac distribution and
B ¼ 10�12).

This random signal is the input of an ideal, gain 1, low pass filter for
xj j\x0 ¼ 106

� 

and zero elsewhere. The filter output is noted xðtÞ.

1. Calculate the correlation function of signal xðtÞ. What is the joint probability
function of the couple of variables xðt1Þ; xðt2Þf g; where t1 are t2 two times
separated by s ¼ 10�6?

2. Knowing that at time t1, was measured xðt1Þ ¼ 10�3 V was measured, what is
the probability of measuring a negative value 1 ls later?
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3. The signal xðtÞ is presented to the input of a quadratic electronic circuit (the
output of the circuit is the square of the input signal). The output is noted yðtÞ.

a. What is the PDF of yðtÞ.
b. Calculate the correlation function and the psd of yðtÞ.

Solution SbbðxÞ ¼ B. So SxxðxÞ ¼ B for xj j\x0 ¼ 106
� 


and zero elsewhere.

1: RxxðsÞ ¼ 1
2p

Zþx0

�x0

Bejxsdx ¼ B
p
sinx0s

s
¼ Bx0

p
sinc x0sð Þ:

2. Since the filter input signal bðtÞ is Gaussian, xðtÞ is also Gaussian. It is also WSS
as bðtÞ is. His expectancy is zero like that of bðtÞ. Its variance is

r2x ¼ Rxxð0Þ ¼ Bx0

p
:N:A:r2x ¼

1
p
10�6:rx ¼ 5:64 10�4:

The PDF of xðtÞ is fxðxÞ ¼ 1ffiffiffiffiffiffiffi
2pr2x

p e
� x2

2r2x .

The correlation coefficient of xðt1Þ and xðt2Þ is given by

rðsÞ ¼ RxxðsÞ
Rxxð0Þ ¼ sinc x0sð Þ.

N. A. For s ¼ 10�6, r ¼ sinc 1ð Þ ¼ 0:8415.
Denoting x ¼ xðt1Þ and y ¼ xðt2Þ, the joint PDF is

fxyðx; yÞ ¼ 1

2pr2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p e
� 1

2ð1�r2Þr2x
x2�2rxyþ y2ð Þ

with r ¼ 0:8415 and r2x ¼
1
p
10�6:

3. The result is given by the exercise I of Chap. 22.

Reference should be made to Chap. 21. We have

a. fyðyÞ ¼ 1ffiffiffiffiffiffiffi
2pr2x

p 1ffiffi
y

p e
� y

2r2xUðyÞ:
b. Correlation of yðtÞ is RyyðsÞ ¼ E y� tð Þy tþ sð Þf g ¼ E x2 tð Þx2 tþ sð Þ� 


To return to the notations of Chap. 22, we set x tð Þ¼ x and x tþ sð Þ¼ y.
We look for E x2y2

� 
 ¼ R1�1
R1
�1 x2y2fxy x; yð Þdxdy. Using the conditional PDF

of y, E x2y2
� 
 ¼ R1�1

R1
�1 x2y2 1ffiffiffiffiffiffiffi

2pr2x
p e

� x2

2r2x 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2xð1�r2Þ

p e
� ðy�rxÞ2

2r2xð1�r2Þdxdy:

In the integral over y, the conditioned expectation of y2 conditioned is recog-
nized. The expectation of a square being equal to the variance plus the square of
expectancy, this integral is r2xð1� r2Þþ r2x2.
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Thus: E x2y2
� 
 ¼ 1ffiffiffiffiffiffiffi

2pr2x
p R1

�1 x2 r2xð1� r2Þþ r2x2
� �

e
� x2

2r2xdx. Integrals giving the

moments of order two and four of the Gaussian function appear. The result will be

of the form RyyðsÞ ¼ aþ br2 ¼ aþ b sinx0s
x0s

� �2

so : SyyðxÞ ¼
Zþ1

�1
aþ b

sinx0s
x0s

	 
2

e�jxsds ¼ 2pad sð Þþ b F
sinx0s
x0s

	 
2

:

The FT of sinc squared is the convolution (divided by 2p) of the FT of sinc by
itself. As it is a rectangular function, the result will be a triangular window on the
interval �2x0; 2x0f g.
V. Consider a WSS random Gaussian signal with zero mean x tð Þ and autocorre-

lation Rxx sð Þ. Let y tð Þ ¼ x2 tð Þ. Give the correlation function and spectral
density of y tð Þ; its mean and variance.

Solution:

Ryy sð Þ ¼ E y tð Þy tþ sð Þf g ¼ E x2 tð Þx2 tþ sð Þ� 

:

We use the following property valid for the mean of the product of
four real Gaussian variables b1, b2, b3, b4: E b1b2b3b4f g ¼
E b1b2f gE b3b4f gþE b1b4f gE b2b3f gþE b1b3f gE b2b4f g:

Ryy sð Þ ¼ E x tð Þx tð Þf gE x tþ sð Þx tþ sð Þf gþ 2E x tð Þx tþ sð Þf gE x tð Þx tþ sð Þf g;

Ryy sð Þ ¼ R2
xx 0ð Þþ 2R2

xx sð Þ. Syy xð Þ ¼ r4d xð Þþ 1
p Sxx xð Þ � Sxx xð Þ, with r2 the

variance of x tð Þ: R2
xx 0ð Þ ¼ r4.

E y tð Þf g ¼ E x2 tð Þ� 
 ¼ Rxx 0ð Þ ¼ r2:E y2 tð Þ� 
 ¼ E x4 tð Þ� 
 ¼ 3r4:

Variance of y tð Þ ¼ E y2 tð Þ� 
� e2 y tð Þf g ¼ 3r4 � r4 ¼ 2r4.

VI. We have three simultaneous recording of random signals. It is assumed that
the signals are wide sense stationary and ergodic. The record length has N ¼
8192 points. We calculate the sums

PN
n¼1

si n½ � for i ¼ 1; 2; 3 and find

approximately zero. The following sums are calculated: Ri j ¼ 1
N

PN
n¼1

si n½ � sj n½ �
for i; j ¼ 1; 2; 3 and find R11 ¼ 43:0384; R12 ¼ 7:4729; R13 ¼ �10:5892;
R22 ¼ 26:5357; R23 ¼ �31:7579; R33 ¼ 42:9762.
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1. Build the correlation matrix of signal values at time n and recall the general
properties of this type of matrix.

Using Matlab we look for the eigenvalues and eigenvectors of this matrix and
find:

Eigenvectors:V ¼
�0:0149 0:9184 0:3953

�0:7889 �0:2537 0:5598

�0:6144 0:3035 �0:7283

0
B@

1
CA;

Eigenvalues:K ¼
1:9429 0 0

0 37:4753 0

0 0 73:1322

0
B@

1
CA:

2. Show that the information carried by these three signals can be approached by
the contents of two orthogonal signals which are calculated from the three
signals.

Estimate the error in this approximation.
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Chapter 25
Ergodicity; Temporal and Spectral
Estimations

In many practical cases, we have only one realization of a random signal x½n� and
we cannot operate an ensemble average. This is the case, for example, when
transmitting a signal on a noisy communication channel, or the case of a satellite
image of a terrain area, etc. We are led to try to estimate the statistical properties
from the behavior of the process x½n� using this single realization. It is conceivable
that over time, the values of x½n� can browse all the possible values of the measured
variable, and there may be equivalence between expectancy at a given time and the
time average. Time averaging should be performed on a large enough interval to
allow that almost all probable values of x½n� could be attained. The signal should
necessarily possess qualities of stationarity. We will talk of ergodicity if the
equivalence between expectation and time average exists. But even in the case
where a signal is ergodic, difficulty is encountered in practice, because a record of
this signal has necessarily a limited length. Ergodicity can only be reached
asymptotically when the sample length tends to infinity. A precise discussion is
needed when one studies the role of the duration of the realization. Temporal
integrals can only provide estimates of intrinsic statistical properties. It is for this
reason that we speak of estimators.

We study the estimation of the mean of a random signal by the sum of con-
secutive samples and the variance of the estimator. We discuss some conditions for
the ergodicity of the signal regarding the mean. We present two estimators of the
correlation functions and discuss their variances. An estimator of the power spectral
density is taken as the Fourier transform of one estimator of the correlation func-
tion. We show that the poor quality of the raw estimator of the psd results from the
poor estimation of the correlation function for large time delays. We present the
methods that are used to improve largely the spectral estimation.

The chapter ends with the presentation of methods for extracting one or several
harmonic components in a noisy spectrum. The Capon maximum likelihood super
resolution method and Pisarenko method are discussed.

© Springer International Publishing Switzerland 2016
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Modern Acoustics and Signal Processing, DOI 10.1007/978-3-319-42382-1_25
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25.1 Estimation of the Average of a Random Signal

For example, we define an estimate of the expected value (average) of the signal as
the sum of 2N þ 1 consecutive values of the signal. The caret above the obtained
value highlights the fact that we are dealing with an estimator.

ĝ2Nþ 1½n� ¼
1

2Nþ 1

XN
m¼�N

x n� m½ �: ð25:1Þ

We must realize that this estimator is a random variable, and the same operation
on a different realization sample or another time interval would give a different
value. Like any random variable this estimator has an expected value and a variance
that we will seek to evaluate.

25.1.1 Expectation of the Average Estimator

When the process is stationary, the expectancy of the signal is constant. In this case
the statistical average and time average operations being linear and independent,
their order of application can be switched, and then:

E ĝ2Nþ 1½n�
� � ¼ 1

2N þ 1

XN
m¼�N

E x n� m½ �f g ¼ 1
2N þ 1

XN
m¼�N

gx ¼ gx: ð25:2Þ

The expectation of the estimator is equal to the quantity which it is desired to
estimate. We then say that the estimator is unbiased.

25.1.2 Variance of the Average Estimator

We study now how this sum over 2Nþ 1 values approaches the mathematical
expectation. We realize that if the successive values are highly correlated for small
time differences and not for large time laps, we will have to perform the sum on
large enough time intervals in order that the function x½n� might take all possible
values and that chance plays its role. The length of the summation interval enters
into account. We cannot hope to have ĝ2Nþ 1 ¼ gx on any summation interval of
finite length.

It is however possible only by a passage to the limit N ! 1, the estimator of the
mean tends towards the expected value: limN!1 ĝ2Nþ 1½n� ¼ gx. We can then
consider that the successive values of x½n� run through all the possibilities offered
by chance. We then say that the signal is ergodic with respect to the average.
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We will have a value with certainty only if the variance of the estimator is equal
to 0 for N ! 1. So we will have:

lim
N!1

var ĝ2Nþ 1½n�
� � ¼ 0: ð25:3Þ

The variance of this estimator is:

var ĝ2Nþ 1½n�
� � ¼ E ĝ2Nþ 1½n� � gx

� �2n o
: ð25:4Þ

We want to show that:

var ĝ2Nþ 1 n½ �� � ¼ 1
2Nþ 1

X2N
m¼�2N

Cxx m½ � 1� mj j
2N þ 1

� �
: ð25:5Þ

Indeed, setting

x½n� � gx ¼ xc½n�; ð25:6Þ

var ĝ2Nþ 1 n½ �� � ¼ E ĝ2Nþ 1 n½ � � gx
� �2n o

: ð25:7Þ

var ĝ2Nþ 1 n½ �� � ¼ E
1

2Nþ 1

XN
m¼�N

x n� m½ � � gxð Þ
 !2

8<
:

9=
;

¼ E
1

2Nþ 1

XN
m¼�N

xc n� m½ �
 !2

8<
:

9=
;

¼ E
1

2N þ 1

XN
m¼�N

xc n� m½ �
 !

1
2N þ 1

XN
m0¼�N

xc n� m0½ �
 !( )

¼ 1
2Nþ 1ð Þ 2

XN
m¼�N

XN
m0¼�N

E xc n� m0½ �xc n� m½ �f g
 !

:

So:

var ĝ2Nþ 1 n½ �� � ¼ 1

2Nþ 1ð Þ2
XN
m¼�N

XN
m0¼�N

Cxx m� m0½ �
 !

: ð25:8Þ

Since the signal is assumed wss its covariance Cxx m� m0½ � depends only on the
difference m� m0.

We write out m� m0 ¼ m00. As can be seen in Fig. 25.1, in the plane indicated
by the axes m0 and m, the relationship m� m0 ¼ Cte is the equation of a line
parallel to the first bisector which can be written as m ¼ m00 þm0.
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The number of points on this line segment is 2N þ 1� m00j j.
We can therefore write:

var ĝ2Nþ 1½n�
� � ¼ 1

2Nþ 1ð Þ2
X2N

m00¼�2N

Cxx m00½ � 2N þ 1� m00j jð Þ
 !

; ð25:9Þ

var ĝ2Nþ 1½n�
� � ¼ 1

2N þ 1

X2N
m00¼�2N

Cxx m
00½ � 1� m00j j

2Nþ 1

� � !
:Q:E:D: ð25:10Þ

25.1.3 Ergodicity Conditions

One cannot infer from the expression (25.10) a necessary and sufficient condition
for ergodicity. However, we can find sufficient conditions by analyzing the behavior
of this sum to the limit where N ! 1.

We first notice that the factor 1
2Nþ 1 tends to zero asN ! 1. It is thus sufficient that

the sum converges in order that this factor provides a zero limit value for the variance.
Example of white noise:
The white noise covariance is the Kronecker function by definition. We can

write: Cxx m½ � ¼ Bd m½ �. The sum shown in Eq. (25.10) is equal to B.
We have then:

lim
N!1

var ĝ2Nþ 1½n�
� � ¼ lim

N!1
B

2Nþ 1
¼ 0: ð25:11Þ

Fig. 25.1 Summation line
m ¼ m00 þm0 in the plane
m0;m00
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The variance of the estimator of the mean tends to zero as N ! 1.
The white noise average can therefore be estimated with a time sum if the

condition B
2N þ 1 � 1 is verified.

Similarly if the covariance of the signal x½n� is absolutely summable, the signal
will be ergodic with respect to the average. This is the case for example if Cxx½m�
and its support are bounded.

25.2 Estimation of the Correlation Function

Assume now that one has at our disposal a limited number of signal values, and that
one does not know the correlation function of the signal or its spectral power
density. We place ourselves in a real case where we have only values of random
signal x½n� on an interval 0;N � 1f g.

The correlation function (unknown) is defined as Rxx m½ � ¼ E x nþm½ �x� n½ �f g.
Consider the following estimator of the correlation function:

R̂0
xx½m� ¼

1
N � m

XN�m�1

n¼0

x nþm½ �x�½n� for 0�m\N; ð25:12Þ

and

R̂0
xx �m½ � ¼ R̂0�

xx m½ � for � N\m\0;

to satisfy the property of Hermitian conjugation of the correlation function.
It is noted that the summing interval decreases when m[ 0 increases. For values

of m approaching N, the summation interval becomes small. It is expected in this
case that the variance of the estimator becomes large since the arithmetic average of
the products x nþm½ �x�½n� is done on a small number of these products.

The expectation of this estimator is for 0�m\N:

E R̂0
xx m½ �� � ¼ 1

N � m

XN�m�1

n¼0

E x nþm½ �x�½n�f g ¼ N � m
N � m

Rxx½m� ¼ Rxx½m�: ð25:13Þ

This estimate of the correlation function is unbiased.
We can define a second estimator:

R̂xx½m� ¼ 1
N

XN�m�1

n¼0

x nþm½ �x�½n� for 0�m\N; ð25:14Þ
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and

R̂xx �m½ � ¼ R̂�
xx½m� for � N\m\0:

The expectation of this estimator is for 0�m\N:

E R̂xx m½ �� � ¼ 1
N

XN�m�1

n¼0

E x nþm½ �x�½n�f g ¼ N � m
N

Rxx½m�: ð25:15Þ

This estimator is biased. But it has the following advantages: for values of
m approaching N, it gives a low value. In this case, this tends to provide low values
for variance. A second advantage is that it lends itself much better to the calcula-
tions as is outlined below. It is widely used for that reason.

Variance of the estimator R̂0
xx½m�:

Its calculation involves calculating the expectation of the square modulus of the
estimator.

E R̂0
xx½m�

�� ��2n o
¼ 1

N � mð Þ2
XN�m�1

n1¼0

XN�m�1

n2¼0

E x n1 þm½ �x�½n1�x� n2 þm½ �x½n2�f g:

ð25:16Þ

One sees in the summation a moment of order four, which makes it impractical
calculation in the general case. In case the signal is Gaussian the calculation can be
continued using the following property valid for complex Gaussian variables
b1; b2; b3; b4: the fourth order moment can be expressed from moments of order 2:

E b1b�2b3b
�
4

� � ¼ E b1b�2
� �

E b3b�4
� �þE b1b�4

� �
E b�2b3
� �

: ð25:17Þ

In this case one can write the Eq. (25.16) in the form:

E R̂0
xx m½ ��� ��2n o

¼ 1

N � mð Þ2
XN�m�1

n1¼0

XN�m�1

n2¼0

Rxx½m�Rxx½�m� þRxx n1 � n2½ �Rxx n2 � n1½ �ð Þ;

E R̂0
xx m½ ��� ��2n o

¼ 1

N � mð Þ2
XN�m�1

n1¼0

XN�m�1

n2¼0

Rxx m½ �j j2 þ Rxx n1 � n2½ �j j2
	 


:

For the variance we must subtract from the last expression the square modulus of
expectancy. It comes:

var R̂0
xx m½ �� � ¼ 1

N � mð Þ2
XN�m�1

n1¼0

XN�m�1

n2¼0

Rxx n1 � n2½ �j j2: ð25:18Þ
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By performing a similar calculation to that of the variance of the expectation of
the average, one obtains:

var R̂0
xx½m�

� � ¼ 1
N � mj j

XN�1� mj jð Þ

k¼� N�1� mj jð Þ
1� kj j

N � mj j
� �

Rxx k½ �j j2: ð25:19Þ

As for the mean we can find ergodicity conditions for the estimator of the
correlation function.

The variance of the unbiased estimator is deduced from the variance (25.19) by
the relation:

var R̂xx m½ �� � ¼ N � mj j
N

� �2

var R̂0
xx½m�

� �
: ð25:20Þ

For a non-Gaussian process x n½ �, previous results are satisfactory in the
approximation when m � N.

It is noted that one cannot calculate estimation beyond the summing interval.
This estimate is equivalent to postulate that the values of the correlation function
outside the range are zero. This is not the only way to proceed. Extrapolation
methods of the correlation function beyond this range have been developed.

25.3 Spectral Estimation

The frame of spectral estimates is the evaluation of the power spectral density
(PSD) of a random signal or the detection and evaluation of monochromatic
components in a noisy signal. The signal is assumed to be wide sense stationary and
ergodic to allow estimation of the time correlation function.

Different existing techniques can be distinguished in parametric and
non-parametric methods. Among the non-parametric methods can be found:

• The methods of reduction of the spectral variance by averaging (Bartlett
method), smoothing of spectra (Blackman and Tukey) or by a combination of
both (Welch’s method).

• The extraction methods of monochromatic components. They are based on the
concept of orthogonal subspaces: signal subspace and noise subspace
(Pisarenko, MUSIC, ESPRIT methods)

Among the parametric methods we find methods based on the use of the Yule
Walker equations and other methods of constrained minimization:

• MA modeling
• AR modeling; Equivalent to Burg maximum entropy method
• ARMA modeling
• The method of “maximum likelihood” of Capon
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25.3.1 Raw Estimator of the Power Spectral
Density or Periodogram

Now it is assumed that the signal is ergodic for the correlation function.
The raw estimator of the power spectral density or periodogram is defined by the

Fourier transform of R̂xx½m�:

Ŝxx ejxT
� � ¼ X1

m¼�1
R̂xx½m�e�jmxT : ð25:21Þ

The relationship (25.22) can be interpreted as containing a convolution product
where appears the signal limited in time by a rectangular window wr n½ �:

xr½n� ¼ x½n�wr½n�; ð25:22Þ

with

wr½n� ¼ 1; 1� n�N
0; elsewhere

���� : ð25:23Þ

The convolution is written:

R̂xx½m� ¼ 1
N
xr½m� � x�r ½�m�: ð25:24Þ

The Fourier transform of this convolution is used to write the raw estimate of the
PSD in the form:

Ŝxx ejxT
� � ¼ 1

N

X1
m¼�1

xr m½ �e�jmxT

�����
�����
2

¼ 1
N

Xr ejxT
� ��� ��2: ð25:25Þ

The estimator is easily obtained by calculating the FFT of the data x½n�.
The variance of this estimator is large. As discussed below, the standard devi-

ation of a value of the spectral estimator at a given frequency is of the order of
magnitude of the correct value (this corresponds to a 100 % error margin). This
problem is caused by the poor quality of the estimator of the correlation function for
large offset values. Indeed, as we have noted earlier, for large offsets, the number of
products that we sum is reduced.
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25.3.2 Statistical Properties of the Periodogram

Expectancy of the Periodogram
The periodogram is defined by:

P̂xx ejxT
� � ¼ Ŝxx ejxT

� � ¼ 1
N

X1
m¼�1

xr½m�e�jmxT

�����
�����
2

: ð25:26Þ

The expectation of the periodogram is given by:

E P̂xx ejxT
� �� � ¼

XN�1

l¼�N þ 1

E R̂xx½l�
� �

e�jlxT ¼
XN�1

l¼�Nþ 1

N � lj j
N

Rxx½l�e�jlxT : ð25:27Þ

We use in this calculation the Bartlett window:

wB ejxT
� � ¼ N� lj j

N ; lj j\N
0; elsewhere

���� : ð25:28Þ

It comes:

E P̂xx ejxT
� �� � ¼

X1
l¼�1

Rxx½l�wB½l�e�jlxT : ð25:29Þ

In the frequency domain, we write:

E P̂xx ejxT
� �� � ¼ WB ejxT

� �� Sxx ejxT
� �

; ð25:30Þ

where WB ejxT
� �

is the Fourier transform of the Bartlett window:

WB ejxT
� � ¼ 1

N
sin2 NxT=2ð Þ
sin2 xT=2ð Þ : ð25:31Þ

The convolution is written as:

WB ejxT
� �� Sxx ejxT

� � ¼ 1
xe

Zp
T

�p
T

WB ejx
0T

	 

Sxx ej x�x0ð ÞT
	 


dx0: ð25:32Þ

We see that the periodogram P̂xx ejxT
� �

is a biased estimator since the expec-
tancy of this estimator is not equal to the amount Sxx ejxT

� �
which it is desired to

estimate.
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However this estimator is consistent (it tends toward the function to estimate in
the limit N ! 1), because when the width of the window tends to infinity, the
function WB ejxT

� �
becomes very narrow, resulting in that the result of the con-

volution in (25.32) tends toward the function Sxx ejxT
� �

.

lim
N!1

WBðejxTÞ � SxxðejxTÞ ¼ SxxðejxTÞ: ð25:33Þ

Variance and Covariance of the Periodogram

1. The signal x½n� is a Gaussian white noise

To address this problem it is assumed that the signal x½n� is a Gaussian white
noise complex b½n� with variance r2b.

Initially we calculate the correlation between two values of the periodogram
obtained for two angular frequencies x1 and x2. It is given by:

E P̂bb ejx1T
� �

P̂bb ejx2T
� �� � ¼ 1

N2 E B ejx1T
� ��� ��2 B ejx2T

� ��� ��2n o
; ð25:34Þ

where B ejxT
� �

is the Fourier transform of the data sample. We develop the previous
expression:

E P̂bb ejx1T
� �

P̂bb ejx2T
� �� � ¼ 1

N2 E
XN�1

n1¼0

b n1½ �e�jn1x1T
XN�1

k1¼0

b� k1½ �ejk1x1T

(

XN�1

n2¼0

b n2½ � e�jn2x2T
XN�1

k2¼0

b� k2½ �ejk2x2T

)

¼ 1
N2

XN�1

n1¼0

XN�1

k1¼0

XN�1

n2¼0

XN�1

k2¼0

E b n1½ �b� k1½ �b n2½ �b� k2½ �f g

e�jn1x1Tejk1x1Te�jn2x2Tejk2x2T :

We now use the property of complex Gaussian variables given in formula
(25.17):

E b1b�2b3b
�
4

� � ¼ E b1b�2
� �

E b3b�4
� �þE b1b�4

� �
E b�2b3
� �

: ð25:35Þ

We have then:

E b n1½ �b� k1½ �b n2½ �b� k2½ �f g ¼ r4b if n1 ¼ k1 and n2 ¼ k2 or n1 ¼ k2 and n2 ¼ k1
0 elsewhere

�
:

ð25:36Þ
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By replacing in the correlation we get:

E P̂bb ejx1T
� �

Pbb ejx2T
� �� � ¼ r4b 1þ sin N x1 � x2ð ÞT=2ð Þ

N sin x1 � x2ð ÞT=2ð Þ
� �2

" #
: ð25:37Þ

The covariance is given by:

cov P̂bb ejx1T
� �

P̂bb ejx2T
� �� 
 ¼ E P̂bb ejx1T

� �
P̂bb ejx2T
� �� �

� E P̂bb ejx1T
� �� �

E P̂bb ejx2T
� �� �

:
ð25:38Þ

Since we have:

E P̂bb ejx1T
� �� � ¼

XN�1

l¼�Nþ 1

N � lj j
N

Rbb l½ �e�jlx1T

¼
XN�1

l¼�Nþ 1

N � lj j
N

r2bd l½ �e�jlx1T ¼ r2b;

ð25:39Þ

It comes:

cov P̂bb ejx1T
� �

P̂bb ejx2T
� �� � ¼ r4b

sin N x1 � x2ð ÞT=2ð Þ
N sin x1 � x2ð ÞT=2ð Þ
� �2

: ð25:40Þ

The variance of the periodogram is obtained by letting x1 ! x2 in the
covariance:

var P̂bb ejxT
� �� 
 ¼ r4b: ð25:41Þ

Thus, the standard deviation r2b of periodogram is equal to the PSD r2b which one
seeks to estimate.

This estimator is not consistent to the extent that, by letting the sample length go
to infinity, we do not find the PSD. An increase of the length of the record does not
bring any improvement, as we accept the large values of the offset in the calculation
of the correlation function.

2. The signal x n½ � is a regular random signal

The previous proof is valid for a Gaussian white noise signal. In the event that
x½n� is a regular Gaussian noise (see the definition in Chap. 26), noting HcaðejxTÞ the
frequency response of the causal filter used to model the signal x½n�, we can write:

P̂xx ejxT
� � ¼ 1

N
X ejxT
� ��� ��2 ¼ 1

N
Hca ejxT
� ��� ��2 B ejxT

� ��� ��2
¼ Hca ejxT

� ��� ��2P̂bb ejxT
� �

:

ð25:42Þ
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The covariance writes:

cov P̂xx ejx1T
� �

P̂xx ejx2T
� �� 
 ¼ Hca ejx1T

� ��� ��2 Hca ejx2T
� ��� ��2cov P̂bb ejx1T

� �
P̂bb ejx2T
� �� 


;

ð25:43Þ

or:

cov P̂xxðejx1TÞP̂xxðejx2TÞ� 
 ¼ Hcaðejx1TÞ�� ��2 Hcaðejx2TÞ�� ��2r4b sin N x1 � x2ð ÞT=2ð Þ
N sin x1 � x2ð ÞT=2ð Þ
� �2

¼ Sxxðejx1TÞSxxðejx2TÞ sin N x1 � x2ð ÞT=2ð Þ
N sin x1 � x2ð ÞT=2ð Þ
� �2

:

ð25:44Þ

The variance is then:

var P̂xxðejxTÞ
� 
 � S2xxðejxTÞ: ð25:45Þ

It is observed that the variance of the periodogram is of the order of magnitude
of the square of the spectral density. In other words, the standard deviation of
periodogram is the magnitude of the spectral density which it is desired to estimate.
The error in an estimate of the spectral density of the periodogram is of the order of
100 %.

25.4 Improvement of the Spectral Estimation

Several techniques for improving the estimation are now described.
Bartlett method:
If the length of the data sample is sufficient, the data are best used by partitioning

the sample in L parts and averaging the estimators obtained on each slice. L is
determined by tests.

The variance of the estimator is reduced through the averaging. The averaged
estimator ŜMxxðejxTÞ is

ŜMxxðejxTÞ ¼
1
L

XL
i¼1

ŜixxðejxTÞ: ð25:46Þ

Blackman and Tukey method:
This method treats the source of the problem which is the poor quality of the

estimator of the correlation function for large offset values. The method lies in the
multiplication of the estimator of the correlation function given by (25.12) by a
window w½m� which retains only the most reliable values, the values obtained for
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small offsets. The Hann window is suitable. The width of the window is determined
by tests. We note R̂a

xx½m� this estimator, called smoothed estimator.
We have:

R̂a
xx½m� ¼ R̂xx½m�w½m�: ð25:47Þ

The smoothed corresponding estimator ŜaxxðejxTÞ of the spectral density is then
given by the FT of (25.47) leading to the circular convolution:

ŜaxxðejxTÞ ¼
1
xe

Zxe2
�xe

2

Ŝxx ejx
0T

	 

W ej x�x0ð ÞT
	 


dx0: ð25:48Þ

The convolution carries out a smoothing in the frequency domain. The variance
of the spectrum is significantly reduced.

Welch method:
This method combines the contributions of the two previous methods. The

record is divided in L slices. The estimators smoothed by windowing the signal
directly in the time domain are calculated for each slice, and the average is used:

ŜWelch
xx ðejxTÞ ¼ 1

L

XL
i¼1

ŜaixxðejxTÞ ð25:49Þ

This estimator is best for this class of methods.
The following example illustrates in Fig. 25.2 the different stages of spectral

analysis in the following situation: A signal consisting of 2048 samples of a digital
white noise (Fig. 25.2b) is the input of an AR filter having the frequency response
shown in Fig. 25.2a.

From the results in Chap. 24, the spectral density of the filter output signal is the
squared modulus of the frequency response. The periodogram, raw estimator of this
spectral density, given by the squared modulus of the Fourier transform of the
signal resulting from the filtering of 2048 samples is shown in Fig. 25.2c. We see
the randomness of this estimate for which the standard deviation of the estimation
of a value is of the order of magnitude of that value. Figure 25.2d is the estimator of
the correlation function calculated by inverse FT of the periodogram. In Fig. 25.2e,
we see the result of the product of the correlation function by a time window.
Figure 25.2f is the smoothed estimator of the spectral density obtained by the FT of
this windowed correlation function. Note the greater regularity of this estimator.

The result would have been even better by averaging estimators obtained on
slices of the signal. But beware; the slices lengths should not be too small to avoid
the appearance of biased values in the spectral estimate. The smoothing of a
spectrum allows more reliable detection of harmonic components of low amplitude
(Application to detection of ships in underwater acoustics for example).
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25.5 Search for Harmonic Components

In this section, we are looking for methods of extracting one or several
monochromatic components embedded in noise.

25.5.1 Capon Method (“Maximum Likelihood”)

In this method, we look for a FIR filter with N terms driven by a white noise whose
frequency response is constrained to be 1 at the desired frequency of analysis and
whose variance of the output signal is as low as possible. Thus the power of the
output signal is mainly that of the signal at frequency x0.

Fig. 25.2 a Frequency response of the initial filter; b Input white Gaussian noise; c Raw estimate
of the output PSD; d Raw correlation function; e Translated, windowed correlation function;
f Smooth estimate of the PSD
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We define the vectors:

h0 ¼

hx0 0½ �
hx0 1½ �
hx0 2½ �

..

.

hx0 N � 1½ �

2
666664

3
777775; s0 ¼

1
ejx0T

ej2x0T

..

.

ejðN�1Þx0T

2
66664

3
77775; x ¼

x n� Nþ 1½ �
..
.

x n� 1½ �
x n½ �

2
6664

3
7775:

The filter output is:

y½n� ¼
XN�1

k¼0

hx0 ½k�x½n� k� ¼ hT0~x;

where ~x is the time-reversed of x and hT0 is the transpose of h0.
We desire to minimize the output power:

P ¼ E y n½ �j j2
n o

¼ hT0E ~x ~xH
� �

h�0¼ hT0 ~Rxx h�0 ¼ hH0 Rxx h0; ð25:50Þ

while satisfying the constraint:

Hx0 ejx0T
� � ¼XN�1

n¼0

hx0 ½n�e�jnx0T ¼ sH0 h0 ¼ 1: ð25:51Þ

We introduce the Lagrange function:

L ¼ hH0 Rxx h0 þ l 1� sH0 h0
� �þ l� 1� hH0 s0

� �
: ð25:52Þ

Taking the gradient with respect to hH0 and zeroing it:

rh�0L ¼ Rxx h0 � l�s0 ¼ 0; ð25:53Þ

so:

h0 ¼ l�R�1
xx s0: ð25:54Þ

Copying this result in (25.51), we have:

sH0 h0 ¼ l�sH0 R
�1
xx s0 ¼ 1; ð25:55Þ
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so:

l� ¼ l ¼ 1
sH0 R�1

xx s0
: ð25:56Þ

Thus Eq. (25.54) writes:

h0 ¼ R�1
xx s0

sH0 R�1
xx s0

: ð25:57Þ

Finally, the output power at frequency x0 is:

P ¼ hH0 Rxxh0 ¼ sH0 R
�1
xx RxxR�1

xx s0
sH0 R�1

xx s0
� �2 ¼ 1

sH0 R�1
xx s0

: ð25:58Þ

By repeating the reasoning for different frequencies, we write the maximum
likelihood spectrum estimator:

ŜML
xx ejxT
� � ¼ 1

sHR�1
xx s

: ð25:59Þ

25.5.2 Pisarenko Method

It is a method of extracting monochromatic components embedded in noise.
If we study a complex exponential with fixed frequency As½n� but whose

amplitude A is complex random because the phase / is random, the phase is
assumed uniformly distributed over the interval 0; 2p½ �:

As½n� ¼ Aj jej/ejnx0T : ð25:60Þ

To this signal is added a white noise w½n� with variance r20 and uncorrelated with
signal As½n�. We note x½n� the sum of these signals:

x½n� ¼ As½n� þw½n�: ð25:61Þ

We assume that N consecutive values of the signal were measured. We write:

x ¼
x 0½ �
x 1½ �
..
.

x N � 1½ �

2
6664

3
7775; s ¼

1
ejx0T

ej2x0T

..

.

ejðN�1Þx0T

2
66664

3
77775; w ¼

w 0½ �
w 1½ �
..
.

w N � 1½ �

2
6664

3
7775: ð25:62Þ
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Since the signal and noise are uncorrelated, the correlation matrix has the form:

Rxx ¼ E As Asð ÞH� �þE wwH
� � ¼ P0ssH þ r20I; ð25:63Þ

with

P0 ¼ E AA�f g

An eigenvector of the matrix Rxx is the vector s.
Indeed:

Rxxs ¼ P0ss
Hsþ r20s ¼ NP0 þ r20

� �
s. ð25:64Þ

We used in that sHs ¼N.
The corresponding eigenvalue is

NP0 þ r20: ð25:65Þ

Since the eigenvectors of Rxx are orthogonal, all its other eigenvectors are
orthogonal to s. We note ei one of these eigenvectors. We must have:

Rxxei ¼ P0ssHei þ r20ei ¼ r20ei: ð25:66Þ

These eigenvectors will therefore have an eigenvalue smaller than that of s.
So the method is to search among the eigenvalues of Rxx the largest. The cor-

responding eigenvector allows the determination of the frequency x0 of the har-
monic component.

In the case of several harmonic components, and only one component of noise,
the eigenvector eN is determined which corresponds to the lower eigenvalue. The
eigenvectors corresponding to harmonic components will all be orthogonal to this
vector and we have:

sHi eN ¼ 0: ð25:67Þ

The following quantity which takes large values when the denominator
approaches zero will detect the frequencies present in the signal:

P ¼ 1

sHi eNj j2
: ð25:68Þ

Summary
In practical cases, the statistics of a signal is often unknown and one has to use the
data to estimate that statistics. It is possible when the signal has ergodic properties.
We have studied in the chapter the estimators of the average and of the correlation
functions. We have given their mean and variances and discussed the ergodicity

25.5 Search for Harmonic Components 527



conditions. The estimator of the power spectral density is taken as the Fourier
transform of the estimator of the correlation function. We have shown that the
regularity of the estimated spectrum is improved by the regularization of the esti-
mator of the correlation function for large offset times. The principles of the highly
effective methods of Bartlett, Blackman and Tukey and Welch are given and
illustrated by an example. The chapter ends with the presentation of methods for
extracting one or several harmonic components in a noisy spectrum. Capon max-
imum likelihood super resolution method, Pisarenko method have been discussed.
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Chapter 26
Parametric Modeling of Random Signals

This chapter deals with parametric modeling of random signals. Initially, we
demonstrate the Paley–Wiener condition on the power spectral density of a signal.
If this condition is verified, it is possible to factor the z power-density of a signal in
the form of a product where appears the transfer function of a causal and stable
system which has a causal and stable inverse. In that case, the noise is called
regular. It appears that a regular random process can be seen as the output signal of
a minimum phase filter driven by white noise. In the following, we study the
filtering of white noise by an ARMA filter. We arrive at the Yule-Walker equations
system connecting the values of the correlation function of the output signal to the
filter coefficients. These equations make it possible to extrapolate the correlation
function beyond the time interval used as the basis of the system of equations, or, in
the case where the filter coefficients are unknown, to determine the coefficients of
this filter. Calculating the coefficients of the MA part of the filter is delicate; one
often seeks a more simple representation of a regular noise by an AR model. Then
we arrive at a smoothed estimate of the power spectral density of the noise. The
chapter concludes by modeling a regular noise by MA filtering of a white noise.

26.1 Paley–Wiener Condition

Random regular process
It is assumed here that the spectrum of a wide-sense stationary random signal under
consideration does not include lines (no periodic signal time components).

We show next that if the following condition is satisfied

Z
p
T

�p
T

ln SxxðejxTÞ
�� ��\1; ð26:1Þ
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the spectral density can then be factorized as

SxxðzÞ ¼ K0HcaðzÞH�
cað1=z�Þ; ð26:2Þ

where K0 is a positive constant and HcaðzÞ is the transfer function of a stable causal
system with a causal and stable inverse. The random process is then called regular.

For z ¼ ejxT , the power spectral density has the form

SxxðejxTÞ ¼ K0 HcaðejxTÞ
�� ��2: ð26:3Þ

When SxxðzÞ is a rational fraction of polynomials, HcaðzÞ represents a minimum
phase filter.

We first remark that the spectrum SxxðejxTÞ can vanish at isolated points, but
cannot be strictly limited to a frequency band. Indeed, when SxxðejxTÞ vanishes, its
logarithm becomes infinite. This infinite value does not prevent the convergence of
the integral, when it occurs for isolated points; the singularity introduced by the
logarithm is weak. However, it prevents the convergence when it manifests itself on
a continuum of points.

Thus, it appears that a regular random process can be regarded as the output
signal of a minimum phase filter driven by white noise. (K0 represents the variance
of white noise at the input of the filter).

�����������!whitenoise b n½ �
½SbbðzÞ¼K0�

HcaðzÞ �!x n½ �

Inversely: �!x n½ �
H�1

ca ðzÞ �����������!
white noise b n½ �

(innovations process).

Demonstration of Paley–Wiener condition
Assume the condition (26.1) satisfied. The spectral density therefore exists. The z-
density is necessarily defined in a domain containing the unit circle. Recall that the
spectral density is a nonnegative real function. The logarithm of this quantity is a
function defined when SxxðejxTÞ is positive. This function can be written as a
convergent Fourier series.

ln SxxðejxTÞ ¼
X1

k¼�1
cke�jkxT with c�k ¼ c�k ; since ln SxxðejxTÞis real:

Now consider the development in power of z:

ln SxxðzÞ ¼
X1

k¼�1
ckz

�k: ð26:4Þ
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This series must converge in a circular ring centered in z = 0 and including the
unit circle:

R\ zj j\1=R:

We can rewrite Eq. (26.4) in the form

ln SxxðzÞ ¼ c0 þ
X1

k¼1

ckz
�k þ

X�1

k¼�1
ckz

�k ¼ c0 þ
X1

k¼1

ckz
�k þ

X1

k0¼1

c�k0z
k0 : ð26:5Þ

Taking the exponential of the last expression

SxxðzÞ ¼ ec0e
P1

k¼1
ckz�k

e
P1

k0¼1
c�
k0 z

k0 ¼ ec0 e
P1

k¼1
ckz�k

� �
e
P1

k¼1
ckð1=z�Þ�k

� ��
: ð26:6Þ

The first term is a positive constant. The second term is the sum of a causal series
that converges on the unit circle. We recognize in (26.6) the form of Eq. (26.2).

The Paley–Wiener condition involves the logarithm modulus. A second equation
identical to (26.4) can be written for the function ln 1=SxxðzÞð Þ whose series must
also be convergent, causal, and stable. Thus, the inverse of the causal and stable
system HðzÞ must also be causal and stable as specified in the statement accom-
panying the Eq. (26.2).

It can be shown, furthermore, that the Paley–Wiener condition is necessary, i.e.,
the Eq. (26.2) induces inequality (26.1).

Example
Let SxxðzÞ ¼ 15z4 þ 34z2 þ 15

�15z3 þ 34z2�15z. Its zeros and poles can be determined with Matlab.

Zeros : ð0þ 1:2910iÞ; ð0�1:2910iÞ; ð0þ 0:7746iÞ; ð0�0:7746iÞ:
Poles : ð0þ 0Þ; ð1:6667þ 0iÞ; ð0:6000þ 0iÞ:

These points have the necessary symmetry for a regular process, because, as it
was seen above, if z0 is a zero or a pole, 1=z�0 should be a zero or a pole too.

For example, for z0 ¼ 1:2910i; 1=z�0 ¼ 1=1:2910ið Þ�¼ 0:7746i is also a zero.
To construct HðzÞ, we select from the zeros and the poles of SxxðzÞ those which

ensure causality and stability of HðzÞ, which are thus within the unit circle.

HðzÞ ¼ z�1 ðz� 0:7746iÞðzþ 0:7746iÞ
z� 0:6

:
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It remains to be verified that the constant K0 appearing in Eq. (26.3) is positive.
A pole in z ¼ 0 has been positioned to obtain a causal filter.

We obtain the impulse response of this filter with Matlab:

h½0� ¼ 0:9991�0:0000i; h½1� ¼ 0:5988�0:0006i; h½2� ¼ 0:9592þ 0:0019i;

h½3� ¼ 0:5759þ 0:0017i; h½4� ¼ 0:3459þ 0:0014i; h½5� ¼ 0:2079þ 0:0010i;

h½6� ¼ 0:1250þ 0:0007i; h½7� ¼ 0:0753þ 0:0005i; h½8� ¼ 0:0454þ 0:0004i;

h½9� ¼ 0:0274þ 0:0002i;

The appearance of an imaginary part (small) is due to imprecision in the
calculation.

26.2 Parametric Modeling of Random Signals

26.2.1 Yule-Walker Equations

We study the case of filtering a wide-sense stationary white noise w[n] with zero
mean, by a causal ARMA filter. We are interested in the properties of different
correlation functions. We denote x[n] the output signal of the filter whose impulse
response is noted h[n].

As shown before, the random signal x[n] is also wide-sense stationary. By

assumption, the filter transfer function has the form HðzÞ ¼ BqðzÞ
ApðzÞ.

In the time domain we have

x[n] ¼ w[n]� h[n]: ð26:7Þ

We can write formally

XðzÞ ¼ HðzÞWðzÞ ¼ BqðzÞ
ApðzÞWðzÞ: ð26:8Þ

or

XðzÞApðzÞ ¼ BqðzÞWðzÞ:
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In the time domain we have

x n½ � þ
Xp

l¼1

ap l½ �x n� l½ � ¼
Xq

l¼0

bq l½ �w n� l½ �: ð26:9Þ

Let us multiply both members of the Eq. (26.9) by x�½n� k� and take the
expectations of each term. We have

E x n½ �x� n� k½ �f gþ
Xp

l¼1

ap l½ �E x n� l½ �x� n� k½ �f g ¼
Xq

l¼0

bq l½ �E w n� l½ �x� n� k½ �f g:

ð26:10Þ

Namely

Rxx k½ � þ
Xp

l¼1

ap l½ �Rxx k � l½ � ¼
Xq

l¼0

bq l½ �Rwx k � l½ �; ð26:11Þ

since

Rwx k � l½ � ¼ E w n� l½ �x� n� k½ �f g ¼ E w n� l½ �
X1

m¼�1
w n� k � m½ �h m½ �

" #�( )

¼ E w n� l½ �
X1

m¼�1
w n� k � m½ �h m½ �

" #�
¼ r2w

X1

m¼�1
d kþm� l½ �h� m½ �

( )

¼ r2wh
� l� k½ �;

we can rewrite (26.11) in the form

Rxx k½ � þ
Xp

l¼1

ap l½ �Rxx k � l½ � ¼ r2w
Xq

l¼0

bq l½ �h� l� k½ �: ð26:12Þ

Since the filter is supposed causal, each term of the second member is zero for
k[ l. For any value of k, the lower boundary of the sum on l will be k.

We set the second term equal to r2wcq½k� with

cq k½ � ¼
Xq

l¼k

bq l½ �h� l� k½ �: ð26:13Þ

26.2 Parametric Modeling of Random Signals 533



Note that this term is zero for k[ q:
In summary, we will therefore write

Rxx k½ � þ
Pp

l¼1
ap l½ �Rxx k � l½ � ¼ r2wcq k½ �; 0� k� q

0; k[ q

�
: ð26:14Þ

This system is known as the Yule–Walker system of equations.
Let us write this system in matrix form:

Rxx 0½ � Rxx �1½ � . . . Rxx �p½ �
Rxx 1½ � Rxx 0½ � . . . Rxx �pþ 1½ �

..

. ..
. ..

.

Rxx q½ � Rxx q� 1½ � . . . Rxx q� p½ �
� � � ��� ��� ���

Rxx qþ 1½ � Rxx q½ � . . . Rxx q� pþ 1½ �
..
. ..

. ..
.

Rxx qþ p½ � Rxx qþ p� 1½ � . . . Rxx q½ �

2

6666666666664

3

7777777777775

1
ap 1½ �
ap 2½ �
..
.

ap p½ �

2

666664

3

777775

¼ r2w

cq 0½ �
cq 1½ �
..
.

cq q½ �
� � �

0
..
.

0

2

6666666666664

3

7777777777775

: ð26:15Þ

Several cases may be treated as follows:

• Extrapolation of the correlation function: If the values of coefficients ap½k� and
bq½k� are known and if the correlation function Rxx½k� is known up to the order p,
its values can be deduced for higher values of time lags.
For example if p� q, according to (26.14) we have

Rxx k½ � ¼ �
Xp

l¼1

ap l½ �Rxx k � l½ � for k� p:

• If the coefficients ap½k� and bq½k� are unknown and if the correlation function
Rxx½k� is known, we can calculate the filter coefficients (case of modeling).
However, the Yule-Walker equations are nonlinear with respect to the calcu-
lation of the coefficients ap½k� and bq½k�. We may carry out linearization methods
similar to those encountered for deterministic signals. These methods are studied
in the following.
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26.2.2 Search of the ARMA Model Coefficients
for a Regular Process

The Yule–Walker Eq. (26.15) can be used to estimate the unknown parameters
ap½k� and bq½k� of the model. It is assumed that the random process is regular.
According to the Paley–Wiener condition, it can be modeled as the output of a
minimum phase filter ARMA with white noise input. We assume here that we
know the correlation function of the process being modeled. Without loss of
generality, it is assumed that the input white noise model filter has a unit variance.

In a first step, using the lower submatrices in the system (26.15), we write, after a
manipulation similar to that which was used in the Prony method

Rxx q½ � Rxx q� 1½ � . . . Rxx q� pþ 1½ �
Rxx qþ 1½ � Rxx q½ � . . . Rxx q� pþ 2½ �

..

. ..
. ..

.

Rxx qþ p� 1½ � Rxx qþ p� 2½ � . . . Rxx q½ �

2

6664

3

7775
:

ap 1½ �
ap 2½ �
..
.

ap p½ �

2

6664

3

7775

¼ �
Rxx qþ 1½ �
Rxx qþ 2½ �

..

.

Rxx qþ p½ �

2

6664

3

7775
: ð26:16Þ

This system called the Yule-Walker modified equations permits the evaluation
of parameters ap½k�.

The second step is the evaluation of the coefficients bq½k�. The linear system
must be solved from the upper part of the system (26.15):

Rxx 0½ � R�
xx 1½ � . . . R�

xx p½ �
Rxx 1½ � Rxx 0½ � . . . R�

xx p� 1½ �
..
. ..

. ..
.

Rxx q½ � Rxx q� 1½ � . . . R�
xx p� q½ �

2

6664

3

7775
:

1
ap 1½ �
..
.

ap p½ �

2

6664

3

7775
¼ r2w

cq 0½ �
cq 1½ �
..
.

cq q½ �

2

6664

3

7775
: ð26:17Þ

Recall here that cq½k� ¼
Pq

l¼k
bq½l�h�½l� k�, zero for k[ q.

The function cq½k� appears as the convolution of bq½k� with h�½�k�.
Its z-transform is given by

CqðzÞ ¼ BqðzÞH�ð1=z�Þ ¼ BqðzÞ
B�
qð1=z�Þ

A�
pð1=z�Þ

: ð26:18Þ

At this stage, cq½k� is known for all values of k� 0 since it is calculated by the
Eq. (26.17).

The causal part of the z-transform of cq½k� is thus known.
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We note it ½CqðzÞ�þ ¼ P1
k¼0 cq½k�z�k:

The anticausal part of CqðzÞ only contains positive powers of z.
An argument based on the factorization of power spectral densities is now used.

Since the signal x[n] is assumed regular, we can write

SxxðzÞ ¼ HðzÞH�ð1=z�Þ ¼ BqðzÞ
ApðzÞ

B�
qð1=z�Þ

A�
pð1=z�Þ

: ð26:19Þ

It is assumed that the signal x[n] is filtered by the filter whose transfer function
ApðzÞ is known at this stage of calculation, and the output signal of this filter is
noted y[n]. The spectral density of this signal:

SyyðzÞ ¼ SxxðzÞApðzÞA�
pð1=z�Þ ¼ BqðzÞB�

qð1=z�Þ: ð26:20Þ

According to (26.18) we have

SyyðzÞ ¼ CqðzÞA�
pð1=z�Þ ¼ CqðzÞ

� �
þA

�
pð1=z�Þ þ CqðzÞ

� �
�A

�
pð1=z�Þ: ð26:21Þ

Since the function A�
pð1=z�Þ contains only positive powers of z the causal portion

of SyyðzÞ is written as

SyyðzÞ
� �

þ¼ CqðzÞ
� �

þA
�
pð1=z�Þ: ð26:22Þ

Knowing the coefficients cq½k� for k[ 0 and the coefficients ap½k�, we can cal-
culate SyyðzÞ

� �
þ directly, and thus by identification of negative powers of z coef-

ficients, the values of Ryy½n� for n� 0.
We have SyyðzÞ ¼

P1
n¼�1 Ryy½n�z�n. Given that the autocorrelation function has

the property of being symmetric conjugate: Ryy½�n� ¼ R�
yy½n�, and knowing the

causal part of the power series in development of SyyðzÞ, it is possible, by symmetry
of powers of z, to restore the anticausal part of its development and therefore
recover the function SyyðzÞ.

We get finally BqðzÞ using the decomposition SyyðzÞ ¼ BqðzÞB�
qð1=z�Þ:

26.2.3 AR Modeling of a Regular Random Signal

This is a special case of the previous model.
Here

HðzÞ ¼ bq½0�
1þ Pp

k¼1 ap½k�z�k
: ð26:23Þ
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The Yule–Walker equations then take the form

Rxx k½ � þ
Xp

l¼1

ap l½ �Rxx k � l½ � ¼ bq 0½ ��� ��2d k½ �; k� 0: ð26:24Þ

We write this system in matrix form

Rxx 0½ � R�
xx 1½ � . . . R�

xx p� 1½ �
Rxx 1½ � Rxx 0½ � . . . R�

xx p� 2½ �
..
. ..

. ..
.

Rxx p� 1½ � Rxx p� 2½ � . . . Rxx 0½ �

2

6664

3

7775
:

ap 1½ �
ap 2½ �
..
.

ap p½ �

2

6664

3

7775
¼ �

Rxx 1½ �
Rxx 2½ �

..

.

Rxx p½ �

2

6664

3

7775
: ð26:25Þ

The resolution of this system provides the model parameters ap½k�. To get bq½0�
�� ��

we use the Yule–Walker equation for k = 0.

bq 0½ ��� ��2¼ Rxx 0½ � þ
Xp

l¼1

ap l½ �Rxx �l½ � ¼ rxx 0½ � þ
Xp

l¼1

ap l½ �R�
xx l½ �:

If the correlation function is known a priori as it has been assumed, the power
spectral density is simply given by the FT of the correlation function.

If the correlation function is an estimate, the starting point is the Yule–Walker
equations where appear estimators. Using an estimate of the correlation function,
these equations take the form

R̂xx k½ � þ
Xp

l¼1

ap l½ �R̂xx k � l½ � ¼ bq 0½ �h� �k½ �; 8 k: ð26:26Þ

We obtain the estimator of the spectral density by taking the FT of the estimator
of the correlation function.

After determining the coefficients by solving the linear system of Yule-Walker,
we can write the spectral density in a particular form where appear the coefficients
of the AR filter. For this, taking the FT of the last equation that is obtained by
multiplying by e�jkxT and summing on k

ŜxxðejxTÞþ
Xp

l¼1

ap l½ �ŜxxðejxTÞe�jlxT ¼ bq 0½ �
X1

k¼�1
h� �k½ �e�jkxT :

or
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ŜxxðejxTÞ ¼ bq 0½ �P1
k¼�1 h�½�k�e�jkxT

1þ Pp
l¼1 ap½l�e�jlxT ¼ bq½0�H�ðe�jxTÞ

1þ Pp
l¼1 ap½l�e�jlxT :

¼ b2q½0�
1þ Pp

l¼1 ap½l�e�jlxT

1
1þ Pp

l¼1 a
�
p½l�ejlxT

:

ð26:27Þ

At this stage, it is interesting to use a vector notation showing scalar products:

Ŝxx ejxT
	 
 ¼ b2q 0½ � 1

sHa1p

1
a1Hp s

¼ b2q 0½ � 1

a1Hp s
���

���
2 ; ð26:28Þ

where the vectors are

s ¼

1
ejxT

ej2xT

..

.

ejpxT

2

66664

3

77775
and a1p ¼

1
ap 1½ �
ap 2½ �
..
.

ap p½ �

2

666664

3

777775
: ð26:29Þ

26.2.4 MA Modeling of a Regular Random Signal

It is also a special case of the model developed in 26.2. We recall that w[n] is a
white wss noise, with zero mean.

Now we have

x n½ � ¼
Xq

k¼0

bq k½ �w n� k½ �: ð26:30Þ

Noting that h½k� ¼ bq½k�, Eq. (26.14) becomes

Rxx k½ � ¼
Xq

l¼0

bq l½ �h� l� k½ � ¼ bq k½ � � b�q �k½ �: ð26:31Þ

This equation is nonlinear. To solve the problem, we pass by the power spectral
densities by taking the z-transform of Eq. (26.31):

SxxðzÞ ¼
Xq

k¼�q

Rxx½k�z�k ¼ BqðzÞB�
qð1=z�Þ: ð26:32Þ
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with

BqðzÞ ¼
Xq

k¼0

bq½k�z�k:

The zeros of BqðzÞ are noted bk. We can write:

SxxðzÞ ¼ BqðzÞB�
qð1=z�Þ ¼ bq 0½ ��� ��2

Yq

k¼1

1� bkz
�1	 
Yq

k¼1

1� b�kz
	 


: ð26:33Þ

Sorting zeros and respecting the symmetry, BqðzÞ can be traced back to a filter.
Since the process to be modeled is regular, BqðzÞ takes the form of a minimum

phase filter. Indeed, it was shown that a regular process could be written as

SxxðzÞ ¼ r20QðzÞQ�ð1=z�Þ ¼ r20
Yq

k¼1

1� akz
�1	 
Yq

k¼1

1� a�kz
	 


; ð26:34Þ

where QðzÞ is a minimum phase polynomial. Thus, the coefficients ak are within the
unit circle. The filter order q is determined by the study of the physical problem or
by tests.

Note the analogy with Blackman and Tukey method of spectral estimation where
we would use a narrow rectangular window with 2qþ 1 nonzero elements.

In the case where the correlation function Rxx½k� and the power spectral density
are not known a priori, the estimators are used for these functions on the assumption
that the random process is regular.

Example 1
A simulation is done in which the filter has two zeros: z0 ¼ 0:95 ej

2p
3 and

z�0 ¼ 0:95 e�j2p3 . N = 4096 samples are drawn according to a normal N (0, 1) law.
The raw estimate of the power spectral density of the input signal is

ŜxxðejxTÞ ¼ 1
N XðejxTÞ�� ��2. The raw estimate of the spectral power-density of the

output signal is ŜyyðejxTÞ ¼ ŜxxðejxTÞ HðejxTÞ�� ��2.
We calculate the raw estimate of the correlation function of the output signal by

taking the inverse Fourier transform: R̂yy½m� ¼ F�1 ŜyyðejxTÞ
	 


.
Assuming (rightly) a filter having two zeros, the polynomial is created having 4

zeros and an axis of symmetry at value 1 (index 1 in Matlab corresponds to time
zero) to respect the parity of the correlation function. The polynomial coefficients
are R̂yy½3�; R̂yy½2�; R̂yy½1�; R̂yy½2�; R̂yy½3�. We select the zeros of this polynomial that
are inside the unit circle to construct the estimated filter.

The results for a signal draw are shown in Fig. 26.1 On the top we see the position
of the zeros of the polynomials. The zeros inside the unit circle are selected to build
the causal estimated filter. In the bottom figure, the frequency response of the initial
filter is shown in bold and the frequency response of the estimated filter in light.
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Results vary from a draw to another. The results of a second draw are presented
in Fig. 26.2. It is seen on the top that the zero positions do not correspond to the
proviso that if z0 is a zero of the polynomial, 1=z�0 must also be a root.

On the bottom, it is seen that the frequency response minima do not match, this
is due to noise on the estimate of the zeros arguments. The outcome is improved by
taking for the argument the average of the arguments of nearby zeros. There is an
improvement on the position of the filter zeros in frequency seen on the graph
where the initial response and the estimated frequency are almost superimposed.
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Fig. 26.1 Top zeros of the
polynomial; bottom filter
frequency response (bold) and
its estimate (light)

Fig. 26.2 Top zeros of the
estimated filter; bottom filter
frequency response and its
estimates
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Example 2
In this example, two pairs of zeros of the filter lie inside the disk with radius R ¼ 1:
z0; z�0 ¼ 0:95 cos ð2p=3Þ � j sin ð2p=3Þð Þ; z1; z�1 ¼ 0:8 cos ðp=3Þ � j sin ðp=3Þð Þ.

The polynomial coefficients estimates from data are R̂yy½5�; R̂yy½4�; R̂yy½3�;
R̂yy½2�; R̂yy½1�; R̂yy½2�; R̂yy½3�; R̂yy½4�; R̂yy½5�.

In Fig. 26.3, we see on the top the zeros of the polynomial; on the bottom in
bold the true frequency response and in light, its estimate.

Summary
We have demonstrated the Paley–Wiener condition on the power spectral density of
a signal. When it is verified, it allows the factorization of the z power-density of a
random signal in a product of transfer functions of causal and stable systems with
inverse causal and stable. A regular random process can be seen as the output signal
of a minimum phase filter driven by white noise. We studied the filtering of white
noise by an ARMA filter and arrived to Yule–Walker equations These equations
allow extrapolation of the correlation function or, in the case where the filter
coefficients are unknown, the determination of the coefficients of this filter. We
have studied the simple representations of a regular noise by an AR model or a MA
model. We arrived at smoothed estimates of the power spectral density of the noise.

Exercises
Linear Prediction: We wish to model a wide-sense stationary random digital signal
y½n� as the response of an autoregressive second-order digital filter attacked by
white noise with unit variance. On a sample of 8192 data points, with duration
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Fig. 26.3 Top zeros of the
estimated filter; bottom filter
frequency response (bold) and
its estimate (light)
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163:84	 10�6 s, we obtain the following estimates of the first elements of the
correlation function in the vicinity of n = 0:

R̂yy½0� ¼ 47:4429; R̂yy½1� ¼ 33:6281; R̂yy½2� ¼ 2:3623; R̂yy½3� ¼ �27:3656;

R̂yy½4� ¼ �39:1847. . .. . .

1. Determine the filter model coefficients (Demonstrate the formulas used).
2. What are the resonance frequency and the bandwidth at −3 dB of the filter?
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Chapter 27
Optimal Filtering; Wiener and Kalman
Filters

This final chapter is devoted to the modeling and filtering of noisy signals by
seeking an optimum estimator in the least squares sense. The basics of this analysis
were laid by N. Wiener. These techniques are now an essential part of signal
processing. First, we define stochastic orthogonality of two r.v. Then we study the
estimation of a random variable by a linear combination of other random variables
and then give the equation to calculate the best estimate of the filter’s coefficients in
the least squares sense. In the case of wide-sense stationary signals, a first example
is the search for a Wiener filter providing the estimate of a random signal from the
measurement of a second random signal which is correlated to it. The search for a
filter in the form of a FIR filter requires the resolution of the Wiener–Hopf linear
system of equations. An example of application to the case of an additive noise
provides the coefficients of the FIR filter and allows quantifying the gain of the
signal-to-noise ratio introduced by the filtering. A second important application is
the prediction of the value of a signal from the previous measurements on a finite
number of points. In the case of finding an IIR Wiener filter, two different situations
arise. In the case of looking for a non-causal filter, the resolution is easy by
processing in the Fourier domain. In the search for a more realistic causal filter,
treatment is more difficult and requires the factorization of the z-spectral density
which is difficult to carry out in practice. Kalman brought a breakthrough to this
problem by searching recursively for the estimator. This formulation allows the
treatment of non-stationary signals, and the recursive nature of the calculations
allows for quick calculations using only the last immediate estimate and the last
measured value. The applications are countless, in control systems and in the
defense industry. We only focus here on the principle of the filter and its application
to simple cases. However, the reader is equipped to extend his fundamental
understanding of this technique to a wide range of advanced applications.

© Springer International Publishing Switzerland 2016
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27.1 Optimal Estimation

27.1.1 Stochastic Orthogonality

The scalar product of two complex random variables is defined as follows:

\x; y[ ¼ E xy�f g ð27:1Þ

For real variables, we have \x; y[ ¼ Efxyg.
The norm of a r.v. is defined by a square

xk k2¼ E xx�f g ¼ \x; x[ : ð27:2Þ

If this inner product is zero, we say that the two r.v. are orthogonal.

27.1.2 Optimal Least Squares Estimate

We seek to estimate a random variable y by a linear combination of other r.v. xn.
We note

y
^ ¼

XN
n¼1

anxn: ð27:3Þ

The estimate is erroneous, we commit the error

e ¼ y� y
^
: ð27:4Þ

The square error is

e ¼ ek k2¼ E y� y
^��� ���2� �

¼ E y�
XN
n¼1

anxn

�����
�����
2

8<
:

9=
; ð27:5Þ

We seek the coefficients an that minimize the error norm

@e
@a�n

¼ E �2 y�
XN
n¼1

anxn

 !
x�n

( )
¼ 0;

E ex�n
� � ¼ 0:

ð27:6Þ
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We note eLS the minimum square error. The coefficients an that minimize the
error norm will be such that the error is orthogonal to the r.v. xn. eLS then becomes

eLS ¼ E e y�
XN
n¼1

anxn

 !�( )
min

¼ E ey�f g: ð27:7Þ

The filter is optimal in the sense of minimizing the quadratic error.
The set of relationships

E y�
XN
n¼1

anxn

 !
x�n

( )
¼ 0 ð27:8Þ

takes the following form structure:

a1r11 þ a2r12. . .þ aNr1N ¼ r01
a1r21 þ a2r22. . .þ awr2N ¼ r02
. . .

a1rN1 þ a2rN2. . .þ aNrNN ¼ r0N

ð27:9Þ

with r0i ¼ E yx�i
� �

et rij ¼ E xix�j
n o

.

The resolution of this linear system allows the determination of the coefficients
of the optimal estimate of y.

The Wiener FIR filter which is detailed now is an application to the temporal
signals optimal estimation.

27.2 Wiener Optimal Filtering

27.2.1 FIR Wiener Filter

In this section, we seek an estimator d̂½n� of a random signal d½n�, assumed
wide-sense stationary, from the values of a measured signal x½n�.

The unknown impulse response of the FIR filter that minimizes the square error
is noted w½n�. We note q the order of the moving average filter. Assuming a causal
filter we can write

e½n� ¼ d½n� � d̂½n� ¼ d½n� �
Xq�1

l¼0

w½l� x½n� l�: ð27:10Þ
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The squared error will be minimum when the error vector is orthogonal to the
approximation vectors:

E e½n�x�½n� k�f g ¼ 0; ðk ¼ 0; 1; 2; . . .; q� 1Þ;

so:

E e½n�x�½n� k�f g ¼ E d½n�x�½n� k�f g �
Xq�1

l¼0

w½l�E x½n� l�x�½n� k�f g ¼ 0:

This equation is

Xq�1

l¼0

w½l�rxx½k � l� ¼ rdx½k�; k ¼ 0; 1; 2; . . .; q� 1; ð27:11Þ

This is the system of Wiener–Hopf equations that can be written in matrix form
using the property of the correlation matrix having the Hermitian symmetry:

rxx½0� r�xx½1� r�xx½2� . . . r�xx½q� 1�
rxx½1� rxx½0� r�xx½1� . . . r�xx½q� 2�
rxx½2� rxx½1� rxx½0� . . . r�xx½q� 3�
..
. ..

. ..
. ..

.

rxx½q� 1� rxx½q� 2� rxx½q� 3� . . . rxx½0�

2
666664

3
777775:

w½0�
w½1�
w½2�
..
.

w½q� 1�

2
666664

3
777775

¼

rdx½0�
rdx½1�
rdx½2�
..
.

rdx½q� 1�

2
666664

3
777775; ð27:12Þ

or in condensed form:

Rxxw ¼ rdx: ð27:13Þ

As seen above, the minimum square error is written as

eLS ¼ E e½n�d�½n�f g ¼ E d½n� �
Xq�1

l¼0

w½l�x½n� l�
" #

d�½n�
( )

; ð27:14Þ

thus

eLS ¼ rdd½0� �
Xq�1

l¼0

w½l�r�dx½l�: ð27:15Þ
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eLS ¼ rdd½0� � rHdxw; ð27:16Þ

or

eLS ¼ rdd½0� � rHdxR
�1
xx rdx: ð27:17Þ

Application. Filtering an additive noise
It is now assumed that the signal d½n� is marred by a noise v½n� with a zero
expectation of noise and uncorrelated with the signal d½n�.

Writing x½n� the measured signal, we have

x½n� ¼ d½n� þ v½n�: ð27:18Þ

Since E d½n�v� n� k½ �f g ¼ 0, we can write

rdx½k� ¼ E d½n�x�½n� k�f g ¼ E d½n�d�½n� k�f g ¼ rdd½k�: ð27:19Þ

Similarly

rxx½k� ¼ E x½n�x�½n� k�f g ¼ E d½n�d�½n� k�f gþE v½n�v�½n� k�f g ¼ rdd½k� þ rvv½k�:
ð27:20Þ

In matrix form we note

Rdd þRvv½ �w ¼ rdd: ð27:21Þ
Example
d½n� is a real random process with zero expectation with correlation function
rdd½k� ¼ a kj j (autoregressive first-order filter).

We denote x½n� the measured signal as x½n� ¼ d½n� þ v½n�, where v½n� is a white
noise with power rvv½0� ¼ r2v that is added to the signal d½n�.

We look, for example, for an FIR filter limited to three elements. Its transfer
function has the form:

WðzÞ ¼ w½0� þw½1�z�1 þw½2�z�2: ð27:22Þ

Wiener-Hopf equations are written as

rxx½0� rxx½1� rxx½2�
rxx½1� rxx½0� rxx½1�
rxx½2� rxx½1� rxx½0�

2
4

3
5 w½0�

w½1�
w½2�

2
4

3
5 ¼

rdx½0�
rdx½1�
rdx½2�

2
4

3
5; ð27:23Þ
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or, taking into account Eqs. (27.19) and (27.20):

1þ r2v a a2

a 1þ r2v a
a2 a 1þ r2v

2
4

3
5 w½0�

w½1�
w½2�

2
4

3
5 ¼

1
a
a2

2
4

3
5: ð27:24Þ

The resolution of the previous system then gives the coefficients of the FIR
Wiener filter.

Numerical application: Treat the case where a ¼ 0:7 and r2v ¼ 1.
We solve the previous system using Matlab and we get

w½0� ¼ 0:4189; w½1� ¼ 0:1750; w½2� ¼ 0:0811:

The minimum square error can be calculated using Eq. (27.15):

eLS ¼ rdd½0� �
Xp�1

l¼0

w½l�r�dx½l� ¼ 1� ð0:4189þ 0:1750 � 0:7þ 0:0811 � 0:49Þ
¼ 0:4189:

Signal-to-noise ratios:

• Before filtering: The signal power is E v½n�2�� ��n o
¼ r2v ¼ 1. The noise power is

E v½n�2�� ��n o
¼ r2m ¼ 1. The signal-to-noise ratio is 1 or 0 dB.

• After filtering: The signal becomes d0½n� ¼ d½n� � w½n�. The output noise is
v0½n� ¼ v½n� � w½n�.

• The signal power is

E d0½n�2�� ��n o
¼ wTRddw ¼ w½0� w½1� w½2�½ �

1 a a2

a 1 a
a2 a 1

2
4

3
5: w½0�

w½1�
w½2�

2
4

3
5

¼ 0:3685

The noise power is

E v0½n�2�� ��n o
¼ wTw ¼ w½0� w½1� w½2�½ �:

w½0�
w½1�
w½2�

2
4

3
5 ¼ 0:2127

The output signal-to-noise ratio:

10 log10
0:3685
0:2127

¼ 2:39 dB:
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Mean square deviation of the signal x½n� relative to the signal d½n�:

E v½n�v�½n�f g ¼ r2v ¼ 1:

Mean square deviation of the estimator d̂½n� relative to the signal d½n�:

eLS ¼ 0:4189:

The decrease of the error power is 10 log10 (1/0.4189) = 3.78 dB.
In Fig. 27.1 (Top), the power spectral density of the AR process is shown as a

bold line and the frequency response of the Wiener filter (adjusted to have the same
maximum) is in fine line. It is seen that the calculated filter favors the frequency
interval containing the signal. In the bottom figure, we see the two zeros of the
transfer function of this filter.

27.2.2 Linear Prediction of a Random Signal

Here we seek an estimator x̂½nþ 1� of the random signal x½nþ 1�. The signal values
were measured until time n. The unknown impulse response of the FIR which
minimizes the square error is noted w½n�. Assuming a causal filter we can write

x̂½nþ 1� ¼
Xp�1

k¼0

w½k� x½n� k�: ð27:25Þ

Fig. 27.1 Wiener modeling
of an AR process; top moduli
(Wiener model in fine line);
bottom filter zeros positions
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Previous results are used by searching

rdx½k� ¼ E d½n�x�½n� k�f g ¼ E x½nþ 1�x�½n� k�f g ¼ rxx½kþ 1�: ð27:26Þ

Wiener-Hopf equations then become

rxx½0� r�xx½1� r�xx½2� . . . r�xx½p� 1�
rxx½1� rxx½0� r�xx½1� . . . r�xx½p� 2�
rxx½2� rxx½1� rxx½0� . . . r�xx½p� 3�
..
. ..

. ..
. ..

.

rxx½p� 1� rxx½p� 2� rxx½p� 3� . . . rxx½0�

2
666664

3
777775:

w½0�
w½1�
w½2�
..
.

w½p� 1�

2
666664

3
777775 ¼

rxx½1�
rxx½2�
rxx½3�
..
.

rxx½p�

2
666664

3
777775;

ð27:27Þ

and the minimum squared error is

eLS ¼ rxx½0� �
Xp�1

k¼0

w½k�r�xx½kþ 1�: ð27:28Þ

For example, we seek the predictive FIR filter with three coefficients of a
first-order AR process with autocorrelation function rxx½k� ¼ a kj j (with a ¼ 0:7).

It is thus sought that

x̂½nþ 1� ¼ w½0�x½n� þw½1�x½n� 1� þw½2�x½n� 2�:

Wiener–Hopf equations are written as

1 a a2

a 1 a
a2 a 1

2
4

3
5: w½0�

w½1�
w½2�

2
4

3
5 ¼

a
a2

a3

2
4

3
5:

Using Matlab, we find

w½0� ¼ 0:7; w½1� ¼ 0; w½2� ¼ 0:

Thus we get

x̂½nþ 1� ¼ 0:7x½n�:

We thus find in this particular case the recurrence relation of the AR filter which
defines x½n�.
Linear prediction in case of an additive noise
Here we seek an estimator x̂½nþ 1� of the random signal x½nþ 1�.
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Measures y½n� are noisy by an additive noise v½n� that is assumed white with unit
variance:

y½n� ¼ x½n� þ v½n�: ð27:29Þ

The estimate takes the form:

x̂½nþ 1� ¼
Xp�1

k¼0

w½k� y½n� k�: ð27:30Þ

e½nþ 1� ¼ x½nþ 1� � x̂½nþ 1� ¼ x½nþ 1� �
Xp�1

l¼0

w½l� y½n� l�:

The quadratic error is minimal when the error vector is orthogonal to the
approximation vectors:

E e½nþ 1�y�½n� k�f g ¼ 0; ðk ¼ 0; 1; 2; . . .; p� 1Þ;

so:

E e½nþ 1�y�½n� k�f g ¼ E x½nþ 1�y�½n� k�f g �
Xp�1

l¼0

w½l�E y½n� l�y�½n� k�f g ¼ 0:

This equation is

Xp�1

l¼0

w½l�ryy½k � l� ¼ rxx½kþ 1�; ðk ¼ 0; 1; 2; . . .; p� 1Þ; ð27:31Þ

We have noted

rxx½kþ 1� ¼ rdy½k�:

Or in condensed form

Rxx þ r2vI
� �

w ¼ rdy: ð27:32Þ

In the example discussed above, with a ¼ 0:7 we would have

1þ r2v a a2

a 1þ r2v a
a2 a 1þ r2v

2
4

3
5: w½0�

w½1�
w½2�

2
4

3
5 ¼

a
a2

a3

2
4

3
5: ð27:33Þ

with w½0� ¼ 0:2932, w½1� ¼ 0:1225, w½2� ¼ 0:0568 (Fig. 27.2).
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27.3 IIR Wiener Filter

27.3.1 Non-Causal Filter

We search again in this section an estimator d̂½n� of a random signal d½n� from the
values of a measured signal x½n�. The unknown impulse response of the IIR filter
which minimizes the quadratic error is noted h½n�. We can write

e½n� ¼ d½n� � d̂½n� ¼ d½n� �
X1
l¼�1

h½l� x½n� l�: ð27:34Þ

The quadratic error is minimal when the error vector is orthogonal to the
approximation vectors

E e½n�x�½n� k�f g ¼ 0; �1\k\1:

or

E e½n�x�½n� k�f g ¼ E d½n�x�½n� k�f g �
X1
l¼�1

h½l�E x½n� l�x�½n� k�f g ¼ 0:

This equation is

X1
l¼�1

h½l�rxx½k � l� ¼ rdx½k�; �1\k\1: ð27:35Þ

Fig. 27.2 FIR linear
prediction of an AR process;
top moduli (Linear prediction
model in fine line); bottom:
filter zeros positions
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These are the Wiener-Hopf equations for the non-causal filter with Infinite
Impulse Response (IIR).

The solution is sought in the frequency domain. It was recognized in the first
member of (27.35) a convolution product. Passing in the Fourier domain we have

SxxðejxTÞHðejxTÞ ¼ SdxðejxTÞ:

We deduce the filter’s frequency response as

HðejxTÞ ¼ SdxðejxTÞ
SxxðejxTÞ : ð27:36Þ

27.3.2 Causal Filter

This time we seek an estimator in the form of the output signal of a causal filter as
follows:

d̂½n� ¼
X1
l¼0

h½l� x½n� l�; e½n� ¼ d½n� � d̂½n� ¼ d½n� �
X1
l¼0

h½l� x½n� l�:

The quadratic error is minimum when the error vector is orthogonal to the
approximation vectors:

E e½n�x�½n� k�f g ¼ 0; 0� k\1:

Wiener–Hopf equations are written in this case:

X1
l¼0

h½l�rxx½k � l� ¼ rdx½k�; 0� k\1: ð27:37Þ

First, we study the particular case where the filter input signal v½n� is white noise
with unit variance. Note g½n� the impulse response of this filter.

Equation (27.37) can be written in this case:

X1
l¼0

g½l�d½k � l� ¼ rdv½k�;

so, g½k� ¼ rdv½k� for 0� k\1, or, using the step function U½k� : g½k� ¼ rdv½k�U½k�:
Taking the z-transform:

GðzÞ ¼ ½SdvðzÞ�þ ; ð27:38Þ

The causal part of the transform of rdv½k� was noted ½SdvðzÞ�þ .
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It is now assumed that the filter input signal x½n� is regular with

SxxðzÞ ¼ r20QðzÞQ�ð1=z�Þ; ð27:39Þ

where QðzÞ is minimum phase

QðzÞ ¼ 1þ q½1�z�1 þ q½2�z�2 þ . . .

If x½n� is filtered by a filter with transfer function

FðzÞ ¼ 1
r0 QðzÞ : ð27:40Þ

(This filter is system 1 in the diagram below).
The output v½n� will have the spectral density:

SvvðzÞ ¼ SxxðzÞFðzÞF�ð1=z�Þ ¼ 1:

It is seen that FðzÞ is the transfer function of a whitening filter.
The optimum filter is the cascade of the two previous filters:

HðzÞ ¼ GðzÞFðzÞ: ð27:41Þ

Système 1
x[n] v[n] d[n]

Système 2

ˆ

As v½n� is formed by the filtering of x½n� by the whitening filter f ½n�, we can write

rdv½k� ¼ E d½n�v�½n� k�f g ¼ E d½n�
X1
l¼�1

f ½l�x½n� k � l�
" #�( )

¼
X1
l¼�1

f �½l�rdx½kþ l�;

whose z-Transform is written:

SdvðzÞ ¼ F�ð1=z�ÞSdxðzÞ ¼ SdxðzÞ
r0 Q�ð1=z�Þ :

So GðzÞ reads

GðzÞ ¼ 1
r0

SdxðzÞ
Q�ð1=z�Þ
	 


þ
: ð27:42Þ
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Finally, we get

HðzÞ ¼ GðzÞFðzÞ ¼ 1
r20QðzÞ

SdxðzÞ
Q�ð1=z�Þ
	 


þ
ð27:43Þ

The minimum square error is

eLS ¼ rdd½l� �
X1
l¼0

h½l�r�dx½l� ¼
1
xe

Zxe2
�xe

2

SddðejxTÞ � HðejxTÞS�dxðejxTÞ
� �

dx: ð27:44Þ

27.4 Kalman Filter1

Up to this point in this chapter, the processed signals were wide-sense stationary,
their first and second time moments were constant over time. This property is only
little or not met in practice where the properties of a physical system under mod-
eling vary slowly or quickly in time. Slowly, in the case, for example, for the drift
of the components of an electronic circuit with temperature, quickly, in the case of
the in-flight environment of an aircraft. The very notion of correlation function
defined in an earlier chapter by of (24.7) does not apply. There needs to be an
instantaneous signal processing in optimal seeking treatment. The Kalman filter
operates an optimal recursive data processing. Since 1960, when R. Kalman pub-
lished his article in the ASME transactions, this filtering is widely used in prediction
problems of the state of a system in the most diverse fields as, for example, robotics
or aeronautics. This is a subject of intense theoretical and applied research. Many
books have been devoted to it. An exhaustive presentation of this subject is beyond
the scope of this book. We simply expose its principle here.

The measurements on the system are performed successively in time and each
new measure allows reevaluating the system state and predicting the state in a near
future. The goal of the formulation is to integrate the new data in recursive formulas.

27.4.1 Recursive Estimate of a Constant State

For this presentation, we follow P. Maybeck supporting his explanation with an
example. First, to simplify the interpretation of the recurrence relation, the system is
assumed to be stationary, and each new measurement improves the knowledge of
the system as described in the following.

1Kalman R.E., A new approach to linear filtering and prediction problems, J. Basic Eng., vol 82D,
pp. 35–45, 1960

27.3 IIR Wiener Filter 555

http://dx.doi.org/10.1007/978-3-319-42382-1_24


Suppose that we try to determine the position of an object standing still using
successive measurements in a noisy environment. At time t the signal to be mea-
sured is noted zðtÞ ¼ xþwðtÞ. The noise wðtÞ is assumed white Gaussian,
non-stationary.

At time t1, the measurement result is zðt1Þ ¼ z1 ¼ xþwðt1Þ. The variance of the
measurement is assumed to be known; it is noted r2z1 . At time t2, the measurement
result is zðt2Þ ¼ z2 ¼ xþwðt2Þ. It is assumed that the measurement environment
has changed. The variance of the measurement is now r2z2 . Let us now detail how
the second measure has improved the evaluation of the position of the object.

The statistical problem was treated as an exercise at the end of Chap. 22. The
search of the best estimation was sought in the sense of maximum likelihood. Using
that result, with the notations of the current paragraph, the best estimates of x at
times t1 and t2 are

x̂ðt1Þ ¼ z1; r2x̂ðt1Þ ¼ r2z1 ; ð27:45Þ

x̂ðt2Þ ¼ z1
r2z2

r2z1 þ r2z2
þ z2

r2z1
r2z1 þ r2z2

;
1

r2x̂ðt2Þ
¼ 1

r2z1
þ 1

r2z2
: ð27:46Þ

The estimate of x and the variance of this estimate have varied between the first
and the second evaluations. We can describe these changes in a recursive manner as
follows:

Variation of the position x estimator as follows:

x̂ðt2Þ ¼ x̂ðt1Þþ
r2z1

r2z1 þ r2z2
ðz2 � z1Þ: Thus x̂ðt2Þ ¼ x̂ðt1ÞþKðz2 � z1Þ ; with K ¼ r2z1

r2z1 þ r2z2
:

Variation of the estimator of the variance of the x estimator as follows:

r2x̂ðt2Þ ¼
r2z1r

2
z2

r2z1 þ r2z2
¼ r2z1 � Kr2z1 ; or, r

2
x̂ðt2Þ ¼ r2x̂ðt1Þ � Kr2x̂ðt1Þ : ð27:47Þ

The two framed equations are written in the Kalman recursion form.

27.4.2 General Form of the Kalman Recursive Equation

Bold typeface emphasizes that the variables are vectors of parameters.
The operator has access to measurements whose values at time n constitute the

vector y½n�. These measurements represent a linear modification by the factor H½n�
of the vector of interest x½n� to which is added a white measurement noise with zero
mean v½n�.

Thus, the measurement at time n is given by
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y½n� ¼ H½n�x½n� þ v½n�: ð27:48Þ

The noise vector is white:

E v½n�vH ½k�� � ¼ Rd½k � n� ¼ r2vd½k � n�: ð27:49Þ

The system state evolves over time as

x½n� ¼ U½n� 1� x½n� 1� þw½n�: ð27:50Þ

U½n� 1� is the propagator which drives the system from state x½n� 1� to state
x½n�.

w½n� is a disruptive random white noise in the system evolution:

E w½n�wH ½k�� � ¼ Qd½k � n� ¼ r2wd½k � n�: ð27:51Þ

The estimator x̂½n� of x½n� at time n uses the propagation by U½n� 1� of the
estimate x̂½n� 1� of x½n� 1� at time n� 1 and corrects this estimation with the term

K½n� y½n� �H½n� 1�U½n� 1� x̂½n� 1�ð Þ: ð27:52Þ

This correction term is proportional to the difference between the measure y½n� at
time n and the output multiplied by factor H½n� 1� of the propagation of x̂½n� 1�.
K½n� is the Kalman filter coefficient to be determined by optimization.

The recursive equation of the Kalman filter is

x̂½n� ¼ U½n� 1�x̂½n� 1� þK½n� y½n� �H½n� 1�U½n� 1� x̂½n� 1�ð Þ: ð27:53Þ

Here we follow the formulation of M.H. Hayes remarkable for its clarity.
The error at time n is the difference between x½n� and the value of the estimator

x̂½n�, the measure y½n� at time n having been integrated.

e½njn� ¼ x½n� � x̂½njn�: ð27:54Þ

The error which does not take into account the measurement at time n is

e½njn� 1� ¼ x½n� � x̂½njn� 1�: ð27:55Þ

The goal now is to find a recursive equation for the mean square error which is at
time x½n�:

P½njn� ¼ E e½njn�eH ½njn�� �
: ð27:56Þ

In the same manner, we note
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P njn� 1½ � ¼ E e½njn� 1�eH ½njn� 1�� �
: ð27:57Þ

Estimate of x½n� without using the measurement y½n�:

x̂½njn� 1� ¼ U½n� 1� x̂½n� 1jn� 1�: ð27:58Þ

We may write the error e½njn� 1� ¼ x½n� � x̂½njn� 1� as

e½njn� 1� ¼ U½n� 1�x½n� 1� þw½n� �U½n� 1�x̂½n� 1jn� 1�: ð27:59Þ

Using e½n� 1jn� 1� ¼ x½n� 1� � x̂½n� 1jn� 1�, it comes

e½njn� 1� ¼ U½n� 1�e½n� 1jn� 1� þw½n�: ð27:60Þ

We look for an unbiased estimator, so we impose a zero average of the error:

E e½n� 1jn� 1�f g ¼ 0: ð27:61Þ

and also

E e½njn� 1�f g ¼ 0: ð27:62Þ

We have P½njn� 1� ¼ E e½njn� 1�eH ½njn� 1�f g

P½njn� 1� ¼ E U½n� 1�e½n� 1jn� 1� þw½n�ð Þ U½n� 1�e½n� 1jn� 1� þw½n�ð ÞH� �
P½njn� 1� ¼ U½n� 1�P½n� 1jn� 1�UH ½n� 1� þQ½n� ð27:63Þ

We note the following, defining K0½n�:

x̂½njn� ¼ K0½n�x̂½njn� 1� þK½n�y½n�: ð27:64Þ

As e½njn� ¼ x½n� � x̂½njn�, we write:

e½njn� ¼ x½n� � K0½n�x̂½njn� 1� � K½n�y½n�: ð27:65Þ

Thus

e½njn� ¼ x½n� � K0½n� x½n� � e½njn� 1�ð Þ � K½n� H½n�x½n� þ v½n�ð Þ
¼ I � K0½n� � K½n�H½n�ð Þx½n� þK0½n�e½njn� 1� � K½n�v½n� ð27:66Þ
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Since the two terms in the above expression are such that E e½njn� 1�f g ¼ 0,
and E v½n�f g ¼ 0, the error e½njn� will be unbiased if

K0½n� ¼ I � K½n�H½n� ð27:67Þ

Expression (27.66) becomes

e½njn� ¼ K0½n�e½njn� 1� � K½n�v½n�;

or, using (27.67),

e½njn� ¼ I � K½n�H½n�ð Þe½njn� 1� � K½n�v½n�: ð27:68Þ

Using expression (27.67) in (27.64) we write

x̂½njn� ¼ I � K½n�H½n�ð Þx̂ njn� 1½ � þK½n�y½n�:

We have obtained the recursion relation giving x̂½njn�:

x̂½njn� ¼ x̂½njn� 1� þK½n� y½n� �H½n�x̂½njn� 1�ð Þ: ð27:69Þ

The final stage of the demonstration is now to obtain the Kalman factor K½n� by
minimizing the least square error of the estimation.

We necessarily have

E e½njn� 1�v½n�f g ¼ 0:

The square error P½njn� ¼ E e½njn�eH ½njn�f g is

P½njn� ¼ I � K½n�H½n�ð ÞP½njn� 1� I � K½n�H½n�ð ÞH þK½n�R½n�KH ½n�: ð27:70Þ

We seek to minimize the average square error:

n½n� ¼ tr P½njn�ð Þ:

We accept here the following mathematical results:

d
dK

trðKAÞ ¼ AH and
d
dK

tr KAKH
� � ¼ 2KA: ð27:71Þ

It comes

d
dK

tr P½njn�ð Þ ¼ �2 I � K½n�H½n�ð ÞP½njn� 1�HH þ 2K½n�R½n� ¼ 0: ð27:72Þ
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We solve the above equation to obtain K½n�:

K½n� ¼ P½njn� 1�HH ½n� H½n�P½njn� 1�HH ½n� þR½n�� ��1
: ð27:73Þ

To obtain the recursion relation on the mean square error we write Eq. (27.70) in
the form:

P½njn� ¼ I � K½n�H½n�ð ÞP½njn� 1�
� I � K½n�H½n�ð ÞP½njn� 1�HH ½n� þK½n�R½n�� �

KH ½n�:

The second part of the last equation is zero because of (27.72). Then

P½njn� ¼ I � K½n�H½n�ð ÞP½njn� 1�: ð27:74Þ

The three framed equations, (27.69), (27.73), and (27.74) are the Kalman filter
equations.

Recursivity requests to set the initial conditions. It is reasonable to take

x̂½0j0� ¼ E x½0�f g and P½0j0� ¼ E x½0�xH ½0�� �
:

Application
Recursive estimation of the position of a stationary object with direct observation.

For this particular case, we have U½n� ¼ 1, w½n� ¼ 0, H½n� ¼ 1.
Equation (27.63) becomes P½njn� 1� ¼ P½n� 1jn� 1�. We note it P½n� 1�:
Equation (27.74) becomes

P½n� ¼ 1� K½n�ð ÞP½n� 1�:

Equation (27.73) becomes

K½n� ¼ P½n� 1�
P½n� 1� þ r2v

:

Recursively we have, P½1� ¼ P½0�r2v
P½0� þ r2v

, P½2� ¼ . . ., P½n� ¼ P½0�r2v
nP½0� þr2v

.

Thus

K½n� ¼ P½0�
nP½0� þ r2v

:

The recursive estimation Eq. (27.69) becomes

x̂½n� ¼ x̂½n� 1� þ P½0�
nP½0� þ r2v

y½n� � x̂½n� 1�ð Þ:

We find that as n increases indefinitely, the estimation becomes constant, toward
the exact value, because the estimation is unbiased by construction.

560 27 Optimal Filtering: Wiener and Kalman Filters



Summary
We have studied in this chapter the modeling and filtering of noisy signals by
seeking an optimum estimator in the least squares sense. After defining stochastic
orthogonality of two r.v., we have studied the Wiener estimation of a random
variable by a linear combination of other random variables and then gave the
equation to calculate the best estimate of the filter’s coefficients in the least squares
sense. In the case of wide-sense stationary signals, in a first example we have
exposed the search of a Wiener filter providing the estimate of a random signal from
the measurement of a second random signal which is correlated to it. In the choice
of a FIR filter, its determination passes by the resolution of the Wiener–Hopf linear
system of equations. We have shown on an example the improvement of the signal
to noise ratio brought by the filtering. A second important application is the pre-
diction of the value of a signal from the previous measurements on a finite number
of points. In the case of finding an IIR Wiener filter, we studied the non-causal and
the more elaborate causal cases.

We have developed the recursive approach of Kalman to the least square esti-
mation of the state of a physical system. It applies to non-stationary signals and
allows for quick calculations, using only the last immediate estimate and the last
measured value. Some applications to simple cases have been given.

Exercises
This exercise has been met in Chap. 22 and its solution was searched using the
Maximum likehood estimation. Here we search the solution with the least square
technique.

An unknown parameter x is measured with two equipments having different
precisions. The errors are random. The result of the first measurement is x1; the
measurement standard error is r1. The second equipment delivers the value x2 with
a standard error r2.

Give the least square error linear estimation of x. What is the standard error of
the estimation?

Solution:
We search the estimator under the form: x̂ ¼ a1x1 þ a2x2. The coefficients

should be such that e2 ¼ E x̂� xk k2
n o

is minimum. The partial derivatives

respective to the coefficients should be zero.

@e2

@a1
¼ @

@a1
E x� ða1x1 þ a2x2Þð Þ2
n o

¼ 0; E x� ða1x1 þ a2x2Þð Þx1f g ¼ 0:

It comes

Efxx1gþEf�a1x1x1gþEf�a2x2x1g ¼ 0:
xEfx1g � a1Efx1x1g � a2Efx2x1g ¼ 0:
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Likewise deriving e2 versus a2 leads to

x2 � a1Efx1x1g � a2Efx2x1g ¼ 0:

x2 � a1Efx1x2g � a2Efx2x2g ¼ 0:

Taking the difference of the two last equations, it comes �a1 Efx21g
�

�Efx2x1gÞ � a2 Efx2x1g � Efx22g
� � ¼ 0. The measurements are independent, then

Efx2x1g ¼ Efx2gEfx1g ¼ x2. Since Efx21g � x2 ¼ r21, we have a1r21 � a2r22 ¼ 0,

or a1 ¼ a2
r22
r21
.

As Efx̂g ¼ a1Efx1gþ a2Efx2g ¼ x, we have a1 þ a2 ¼ 1, Finally a1 ¼ r22
r21 þr22

,

a2 ¼ r21
r21 þ r22

.

The standard squared error of the estimation is e2 ¼ E x� ða1x1 þ a2x2Þð Þ2
n o

.

The result should be valid for any value x and cannot depend on x.
To simplify we set x ¼ 0.

e2 ¼ E ða1x1 þ a2x2Þ2
n o

¼ a21Efx21gþ 2a1a2Efx1x2gþ a22Efx22g:
As in this case Efx1x2g ¼ Efx1gEfx2g ¼ x2 ¼ 0.

e2 ¼ r2 ¼ a21Efx21gþ a22Efx22g ¼ a21r
2
1 þ a22r

2
2:

Finally, we have

1
r2

¼ 1
r21

þ 1
r22

:

The above system can be written in matrix form: Ra ¼ x2
1
1


 �
, with

R ¼ R11 R12

R12 R22


 �
, and R11 ¼ Efx21g, R12 ¼ Efx1x2g, R22 ¼ Efx22g, a ¼ a1

a2


 �
.

a ¼ x2R�1 1
1


 �
¼ x2

R11R22�R2
12

R22 � R12

R11 � R12


 �
. We verify that a1 ¼ a2

r22
r21
.
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Appendix A
Functions of a Complex Variable

Only the essential concepts for the signal theory on the complex functions of the
complex variable are presented here. Because of its brevity, this discussion is
necessarily incomplete. Readers wishing to deepen these concepts are referred to
the general mathematics courses and to the many books on this important subject.

A.1. Notions on Complex Variables

A.1.1. Notion of a Complex Number

A complex number consists of the sum of a real part and an imaginary part.
We note z ¼ xþ jy, where j ¼ ffiffiffiffiffiffiffi�1

p
(In mathematics, we write i ¼ ffiffiffiffiffiffiffi�1

p
. However,

in electronics and signal analysis we note j the root of −1, reserving the letter i to
name the current in a circuit).

A complex number z corresponds to a point M in the plane xOy called the
complex plane (Fig. A.1). The real part of z corresponds to the abscissa of M, its
imaginary part to the ordinate of M.

M is called image. We say that z is the affix of M.
As can be seen in the figure above, we have:

x ¼ q cos h and y ¼ q sin h: ðA:1Þ

We can write z as

z ¼ q cos hþ jq sin h: ðA:2Þ

The modulus q is given by q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The argument h is given by

h ¼ Arg
y
x
: ðA:3Þ
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We admit the very important relationship (Euler formula):

ejh ¼ cos hþ j sin h: ðA:4Þ

A complex number z can be written in exponential trigonometric form:

z ¼ qejh: ðA:5Þ

A.1.2. Complex Function of a Complex Variable

A function of the complex variable z is noted f ðzÞ. It is an application of a subset
belonging to set C with value in C.

Signal theory focuses on the simple case of uniform functions of the variable z,
that is to say to functions having a single value for each value of z.

The concept of limit is particularly important for a function of the complex
variable defined in an area surrounding a point z0. By definition, we say that the
function f ðzÞ tends towards the limit l as z approaches z0 if

l ¼ lim
z!z0

f ðzÞ: ðA:6Þ

z0 being a point of the complex plane, the limit should be the same when z tends
towards z0 from any point z of the neighborhood of z0 (Fig. A.2).

The function f ðzÞ is continuous in z0 if

lim
z!z0

f ðzÞ ¼ f z0ð Þ: ðA:7Þ

Fig. A.1 Complex number
z in the plane xOy.
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A.2. Complex Derivation

The derivative f 0ðzÞ of the function f ðzÞ at any point z0 is defined by

f 0ðzÞjz¼z0¼ lim
z!z0

f ðzÞ � f z0ð Þ
z� z0

: ðA:8Þ

Here again, the limit must be the same starting from any point z in the neigh-
borhood of z0.
Example Let the function f zð Þ ¼ z2.

f ðzÞ ¼ ðxþ jyÞ2 ¼ x2 þ 2jxy� y2: ðA:9Þ

The derivative calculated for y constant is taken on a horizontal path z ! z0:

df ðzÞ
dz

����
y¼cte

¼ @f ðzÞ
@x

¼ 2xþ 2jy ¼ 2z: ðA:10Þ

The derivative calculated for x constant is taken along a vertical path z ! z0:

df ðzÞ
dz

����
x¼cte

¼ @f ðzÞ
j@y

¼ 2x� 1
j
2y ¼ 2ðxþ jyÞ ¼ 2z: ðA:11Þ

We see that we could have derived formally f ðzÞ with respect to z:

df ðzÞ
dz

¼ dz2

dz
¼ 2z: ðA:12Þ

This geometric nature of complex functions defined in a planar domain gives
them particular properties.

Fig. A.2 Limit of function
f zð Þ at z0.
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Only a few properties are given here:

• We write the function f ðzÞ as

f ðzÞ ¼ f1ðx; yÞþ jf2ðx; yÞ; ðA:13Þ

The following general property must be assessed:

@f1ðx; yÞ
@y

¼ � @f2ðx; yÞ
@x

: ðA:14Þ

In the previous example,

f1ðx; yÞ ¼ x2 � y2

f2ðx; yÞ ¼ 2xy:
ðA:15Þ

The derivatives of functions f1ðx; yÞ and f2ðx; yÞ have satisfied the relationship
(A.14).

• If the function f ðzÞ is defined, continuous at a point, it is infinitely differentiable
at this point.

• A differentiable function at a point is analytic at this point, that is to say, it is
developable in power series. Noting z0 this point, we have

f ðzÞ ¼ f z0ð Þþ z� z0ð Þdf
dz

����
z0

þ 1
2

z� z0ð Þ2d
2f
dz2

����
z0

þ � � � þ 1
n!

z� z0ð Þnd
nf
dzn

����
z0

þ � � �
ðA:16Þ

• Except for the constant function f ðzÞ ¼ C, a function f ðzÞ cannot be defined,
analytic in the entire complex plane.
For example, the function f ðzÞ ¼ z is defined in the whole complex plane,
except in z ¼ 1:

The function f ðzÞ ¼ 1
z is not defined in z ¼ 0. We say that it has a pole in z ¼ 0.

It is said that the function f ðzÞ has a pole of order n in z ¼ z0, if in a neigh-
borhood of this point it behaves like A

z�z0ð Þn.

A.3. Complex Integration

The complex integral is a path integral defined on the path C by (see Fig. A.3)
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Z

C
f ðzÞdz: ðA:17Þ

This integral on a path from z1 to z2 depends in the general case on the path
followed from z1 to z2.

A.3.1. Cauchy Theorem

This theorem is one of the most important in analysis. It reads:
The integral of f ðzÞ on a closed contour enclosing an area within which the

function is analytical is zero (see Fig. A.4):

Z
�
C

f ðzÞdz ¼ 0: ðA:18Þ

We verify this theorem on a simple example: We assume that f ðzÞ ¼ z and that
the closed contour C consists of the sequence of segments as shown in Fig. A.5:
C ¼ L1 þ L2 þ L3 þ L4. We choose to follow the contour counter-clockwise.

Then

Z
�

C
f ðzÞdz ¼

Z

L1

zdzþ
Z

L2

zdzþ
Z

L3

zdzþ
Z

L4

zdz: ðA:19Þ

Calculating the first integral over L1:

Z

L1

zdz ¼
Z2

0

xþ jyð Þdx ¼ x2

2
þ jyxjy¼0

� �2

0
¼ x2

2

� �2

0
¼ 2: ðA:20Þ

Fig. A.3 Path integral in
complex plane

Fig. A.4 Integration on a
closed path C
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Calculating the second integral on L2 where x ¼ cste ¼ 2:

Z

L2

z dz ¼
Z2

0

2þ jyð Þj dy ¼ j 2yþ j
y2

2

� �2

0
¼ 4j� 2: ðA:21Þ

On L3, y ¼ cste ¼ 2, the third integral becomes

Z

L3

z dz ¼
Z 0

2
xþ jyð Þ dx ¼

Z0

2

xþ 2jð Þ dx ¼ x2

2
þ 2jx

� �0

2
¼ �2� 4j: ðA:22Þ

Calculating the last integral on L4:

Z

L4

z dz ¼
Z0

2

xþ jyð Þj
x¼0

j dy ¼
Z0

2

jyj dy ¼ � y2

2

����

0

2
¼ 2: ðA:23Þ

The sum of these four integrals is zero as expected from Cauchy Theorem. The
integral on the closed contour is zero. We say that the function f ðzÞ is holomorphic
in the area inside the contour.

The condition that the integrand is analytic inside the integration contour is
satisfied since the function f ðzÞ ¼ z is regular in the whole complex plane except at
infinity.

The integral on the path L1 þ L2 leading from 0 to A is equal to 4j.
If we traveled the path �L3 � L4 leading from 0 to A, the integral would be

� �2� 4jþ 2ð Þ ¼ 4j too.
The property that we find here is that the integral does not depend on the path

followed if the inside area enclosed by the two paths contains no singularity.

Fig. A.5 Integration contour
C
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A.3.2. Integration on a Closed Contour
Surrounding a Pole

Integration of the function: f ðzÞ ¼ zn:
We calculate the integral of the function f zð Þ ¼ zn on the circle C centered at

z ¼ 0, and browsed in the forward direction (Fig. A1.6):

In ¼
Z
�

C
zn dz: ðA:24Þ

The situation is different depending on whether n� 0 or n\0.

• If n� 0, the function f zð Þ ¼ zn is analytic inside the circle, and the integral will
be zero by Cauchy Theorem.

• If n\0, z ¼ 0 is a pole of order n. The function is not defined at all points of the
disk inside C and the integral In may be different from zero.

We use the trigonometric form of z: z ¼ qejh; zn ¼ qnejnh.
On the integration circle centered in z ¼ 0, q is constant and we have:

dz ¼ q ejhj dh.

In ¼
Z
�
C

zn dz ¼
Z2p

0

qnejnhqejhj dh ¼ jqnþ 1
Z2p

0

ejðnþ 1Þh dh:

If n 6¼ −1,

In ¼ jqnþ 1 ej nþ 1ð Þh� �2p
0

j nþ 1ð Þ ¼ 0:

If n = −1,

I�1 ¼ jq0
Z 2p

0
e0 dh ¼ j

Z 2p

0
dh ¼ 2pj:

Fig. A.6 Integration circle
for the function f ðzÞ ¼ zn
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So we note that:
Z
�

C
zn dz ¼ 0 if n 6¼ �1

2pj if n ¼ �1

���� : ðA:25Þ

Integration on a circle around the origin of a function f ðzÞ having a pole of
order n in z = 0:

z ¼ 0 is a pole of order so n of f ðzÞ if
lim
z!0

znf ðzÞ ¼ An: ðA:26Þ

The general form of f ðzÞ valid in a neighborhood of z ¼ 0 is:

f ðzÞ ¼ An

zn
þ An�1

zn�1 þ � � �A�1

z
þA0 þA1zþ � � � þAnz

n. . .: ðA:27Þ

We seek to evaluate the integral of f ðzÞ on the circle centered in z ¼ 0 traveled in
the forward direction I ¼ R

�C f zð Þ dz.
By integrating term by term the second member of (A.27), we have:

I ¼
Z
�

C
f zð Þ dz ¼

Z
�

C

An

zn
dzþ

Z
�

C

An�1

zn�1 dz

þ � � � þ
Z
�

C

A�1

z
dzþ

Z
�

C
A0 dzþ � � � þ

Z
�

C
Anz

n dzþ � � �
ðA:28Þ

All these integrals are zero except
R
�C

A�1
z dz.

So we have:

I ¼
Z
�

C
f ðzÞ dz ¼

Z
�

C

A�1

z
dz ¼ 2pjA�1: ðA:29Þ

A�1 is called the residue of the integral of the function f ðzÞ in z ¼ 0.
The practical problem remaining to be solved is the evaluation of the residue A�1

of a function f ðzÞ.
For this, equation (A.27) is multiplied by zn.

znf zð Þ ¼ An þAn�1zþ � � � þA�1z
n�1 þA0z

n þ � � � ðA:30Þ

We take the n� 1 derivative of this equation

dn�1

dzn�1 znf ðzÞð Þ ¼ ðn� 1Þðn� 2Þ. . .A�1 þ nðn� 1Þ. . .A0zþ � � � ðA:31Þ

The second member tends toward n� 1ð Þ!A�1 when z ! 0.
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We have

A�1 ¼ 1
ðn� 1Þ! limz!0

dn�1

dzn�1 znf ðzÞð Þ: ðA:32Þ

More generally, let the function f ðzÞ having a pole of order n in z ¼ a. The
residue of this function in z ¼ a is given by:

A�1 ¼ 1
ðn� 1Þ! limz!a

dn�1

dzn�1 ðz� aÞnf ðzÞð Þ ðA:33Þ

By applying Cauchy’s theorem, it can be shown that the integral over a closed
contour of any shape surrounding the poles is equal to the integral over a circle
surrounding the pole if it is possible to deform this contour to reduce it to a circle
without encountering poles.

Residue theorem: The integral over a closed contour C traveled counter-
clockwise of a function f ðzÞ having poles inside C is equal to the sum of
residues within this contour multiplied by 2pj:

I ¼
Z
�
C

f ðzÞ dz ¼ 2pj
X

i

Residuesi ðA:34Þ

A.3.3. Jordan’s Lemma

There are several Jordan’s lemma. We will only consider here that lemma which
relates to the problems most frequently encountered in signal analysis.

Consider a function f ðzÞ defined in an area of 1/2 upper plane y[ 0.
If lim zj j!1 f zð Þ ¼ 0, the integral

R
f ðzÞejz dz, extended to a circular arc centered

in O with radius r contained in the upper half plane (Fig. A.7), tends toward 0 when
r ! 1.

Fig. A.7 Upper half circle of
integration
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Indeed, we set z ¼ rejh and let MðrÞ the upper limit of f ðzÞj j on the circular arc
zj j ¼ r. We have ejz

�� �� ¼ e�r sin h, and on the circle dzj j ¼ rejh dh
�� �� ¼ r dhj j.

According to the general theorem stating that the integral modulus is less than or
equal to the integral of the modulus, we can write

Z
f ðzÞejz dz

����

�����
Z

f ðzÞj je�r sin h dzj j �MðrÞ
Zp

0

e�r sin hr dh ðA:35Þ

The function sin h is symmetrical around h ¼ p
2, we can write (Fig. A.8):

Zp

0

e�r sin h dh ¼ 2
Z

p
2

0

e�r sin h dh:

It can be seen from the figure that for 0� h� p
2, sin h� 2

p h, as the sinus is above
the line of slope 2

p.
So

Z

C

f ðzÞejz dz
������

� r MðrÞ2
Z

p
2

0

e�
2hr
p dh ¼ 2r MðrÞ e�r � 1½ �

�2r
p

¼ pMðrÞ 1� e�r½ �:

�������

ðA:36Þ

This last expression tends towards 0 when r ! 1.
Consequences of the previous Lemma:

1. If lim zj j!1 f ðzÞ ¼ 0, the integral
R
f ðzÞe�jz dz over the arc in the 1/2 lower plane

y\0 tends to zero as r ! 1.
2. Let a a real number. The integral

R
f ðzÞe�jaz dz tends toward zero as r ! 1 on

the circular arc of radius r

a. in the lower 1/2 plane y\0 if a[ 0.
b. in the upper 1/2 plane y[ 0 if a\0.

Fig. A.8 Plot of sin h and
line with slope 2

p
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Appendix B
Linear Algebra

B.1. Vectors

A vector is an array of real or complex numbers or functions. The vectors are
treated mainly as column vectors (in the example here with N elements):

x ¼
x1
x2
..
.

xN

2

6664

3

7775
: ðB:1Þ

Transposed vector of a vector x (row vector):

xT ¼ x1; x2; . . .; xN½ �: ðB:2Þ

The Transposed Hermitian vector is:

xH ¼ xT
� 	�¼ x�1; x�2; . . .; x�N½ �: ðB:3Þ

Euclidean norm (length) of a vector:

xk k2¼
XN

i¼1

xij j2
( )1

2

: ðB:4Þ

B.1.1. Linear Independence

Consider a set of n vectors v1 ; v2; . . .; vn. These vectors are called linearly inde-
pendent if the relation

a1v1 þ a2v2 þ � � � þ anvn ¼ 0 is verified only when ai ¼ 0 for anyi ðB:5Þ

© Springer International Publishing Switzerland 2016
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If we can find a set of non-zero coefficients ai, such that the relationship (B.5) is
verified, the vectors v1 ; v2; . . .; vn are linearly dependent.

B.1.2. Basis of a Vector Space

If the vectors v1; v2; . . .; vn are linearly independent, the set of linear combinations
w ¼ Pn

i¼1 aivi is a vector space whose vectors v1; v2; . . .; vn are a basis (not unique,
though).

B.1.3. Scalar Product

Let two complex vectors with same dimensions m,

a ¼
a1
a2
..
.

am

2

6664

3

7775
and b ¼

b1
b2
..
.

bm

2

6664

3

7775
:

Their inner product (or dot product) is defined by

a; bh i ¼ aHb ¼
Xm

i¼1

a�i bi: ðB:6Þ

The squared norm of a vector a is defined by

a; ah i ¼ aHa ¼
Xm

i¼1

a�i ai: ðB:7Þ

The norm of vector a is

ak k2¼ a; ah if g1
2: ðB:8Þ
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B.2. Matrices

A matrix is an array of numbers typically noted as follows:

A ¼ ai j

 � ¼

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
..
. ..

. ..
. ..

.

am1 am2 am3 . . . amn

2

666664

3

777775
:A hasm rows and n columns: ðB:9Þ

Its transpose is obtained by interchanging the rows and columns of A:

AT ¼

a11 a21 a31 . . . am1
a12 a22 a32 . . . am2
a13 a23 a33 . . . am3
..
. ..

. ..
. ..

.

a1n a2n a3n . . . amn

2

666664

3

777775
: ðB:10Þ

Its Hermitian transpose is the conjugate transpose:

AH ¼

a�11 a�21 a�31 . . . a�m1
a�12 a�22 a�32 . . . a�m2
a�13 a�23 a�33 . . . a�m3
..
. ..

. ..
. ..

.

a�1n a�2n a�3n . . . a�mn

2

666664

3

777775
: ðB:11Þ

If the matrix A is square, its transpose is obtained by reflection on the diagonal.
If a square matrix is equal to its transpose, it is said to be symmetric.
If a square matrix is equal to its Hermitian transpose, it is called Hermitian.

Evidently we have AH
� 	H¼ A.

The rank rðAÞ of a matrix is the number (common to rows and columns) of
linearly independent row vectors and column vectors. We necessarily have:

rðAÞ�minðm; nÞ: ðB:12Þ

If

rðAÞ ¼ minðm; nÞ; thematrix is said full rank: ðB:13Þ

Product of two matrices
The product of a m� nð Þ matrix A by a n� pð Þ matrix B, is a m� pð Þ matrix
C whose elements are given by:
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cij ¼
Xn

k¼1

aikbkj: ðB:14Þ

Note that the number of columns of A must be equal to the number of rows of B.
Important properties

– Let C ¼ AB the product of matrices A and B.
We have:

CT ¼ BTAT and CH ¼ BHAH: ðB:15Þ

– Let R ¼ AHA the product of the Hermitian transpose AH of a m� nð Þ matrix
A and of matrix A. R is square n� nð Þ.
According to (B.15),

R ¼ RH: ðB:16Þ

The matrix R is Hermitian (symmetric if the elements are real).
The rank of R is that of A:

r Að Þ ¼ r AHA
� 	 ¼ r AAH� 	

: ðB:17Þ

– Similarly, let S ¼ AAH the product of m� nð Þ matrix A and of its Hermitian
transpose AH.

S is square ðm� mÞ;Hermitian: ðB:18Þ

Square matrices
If A is a square n� n full rank matrix, there is a single matrix A�1 called inverse of
A such that:

A�1A ¼ AA�1 ¼ I; ðB:19Þ

where I ¼

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
..
. ..

. ..
. ..

.

0 0 0 . . . 1

2

66664

3

77775
is the square identity matrix. In this case A is said

invertible or nonsingular.

If A is not full rank, r Að Þ\n, A has no inverse. It is said noninvertible or
singular.
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Determinant of a square matrix A:

detðAnnÞ ¼
Xn

i¼1

ð�1Þiþ jaij detðAijÞ; ðB:20Þ

where Aij is the n� 1ð Þ � n� 1ð Þ matrix obtained by removing the ith row and jth
column of matrix A.

The determinant of a product of matrices is equal to the product of the deter-
minants of these matrices:

If C ¼ AB; det(CÞ ¼ det(AÞ det(BÞ: ðB:21Þ

A square n� nð Þ matrix A, is nonsingular if and only if

detðAÞ 6¼ 0: ðB:22Þ

The trace of a square matrix is the sum of its diagonal elements

trðAÞ ¼
Xn

i¼1

aii: ðB:23Þ

B.3. Linear Systems

Partition of a matrix A in column vectors:

A ¼ c1; c2; . . .; cn½ �:

Partition of a matrix A in row vectors:

A ¼
l1
l2
..
.

lm

2

6664

3

7775
:

B.3.1. Linear System Equation

We denote b the result of the multiplication of a m� nð Þ matrix A by a n vector x;
Ax ¼ b. The expanded form of this relationship is:
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a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
..
. ..

. ..
. ..

.

am1 am2 am3 . . . amn

2

666664

3

777775

x1
x2
x3
..
.

xn

2

666664

3

777775
¼

b1
b2
b3
..
.

bm

2

666664

3

777775
: ðB:24Þ

Using the rules of the matrix product we have:

a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1
a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2

..

.

am1x1 þ am2x2 þ � � � þ amnxn ¼ bm

: ðB:25Þ

We can check that

b1
b2
b3
..
.

bm

2

666664

3

777775
¼ x1

a11
a21
a31
..
.

am1

2

666664

3

777775
þ x2

a12
a22
a32
..
.

am2

2

666664

3

777775
þ x3

a13
a23
a33
..
.

am3

2

666664

3

777775
þ � � � þ xn

a1n
a2n
a3n
..
.

amn

2

666664

3

777775
: ðB:26Þ

The vector b appears as a linear combination of the columns of A. We can write:

b ¼
Xn

i¼1

xici: ðB:27Þ

The vector b is a member of the m-dimensional space Cm. If the matrix A and the
vector x are real, b 2 R

m.
The column vectors of A generate a p-dimensional space, with p�m, called

column space of A. This space R
p is a sub-space of Rm.

B.3.2. Basis of Space R
m

If, among the n column vectors of the matrix A, p ¼ m linearly independent vectors,
can be found, these vectors form a basis of Rm. To make it so, it is obviously
necessary (but not sufficient) that n�m.

A m-dimensional vector space has an infinite number of bases.
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B.3.3. Resolution of a Linear System

If the m� nð Þ matrix A and n vector x are given a-priori, a unique vector b may be
found using the relationship (B.24). b is said to be the solution of a direct,
well-posed problem.

If the m� nð Þ matrix A and m vector b are given a-priori, the relationship (B.24)
appears as a system of equations to be resolved to find the n vector x solution. It
may happen that there is no solution or there is an infinite number of solutions. The
problem is said to be an inverse, ill-posed problem.

The resolution of this system is to search for the coefficients of the linear
combination of the m dimensions column vectors of the matrix A which could be
equal to the vector b. These coefficients of the linear combination are the compo-
nents of the vector x (see B.26).

We look for the n vectors x, solutions of the linear equation:

Ax ¼ b: ðB:28Þ

Equation (B.28) is a system of m linear equations with n unknown xi with
i ¼ 1; 2; . . .; n.

By construction, b 2 R
m, that is to say that the number of components of b are

equal to the number of rows of the matrix A.
The solution of the equation Ax ¼ b depends on the elements of the vector b, on

the respective values m and n, and on the rank of A.
The resolution of the system is the search of one or more vectors x which

possibly verify this equation.
The first question that arises is: does b belong to the column space of A?
We can support the reasoning on writing the system in form (B.26) and discuss

different cases occurring:
n\m : The number of column vectors is insufficient for generating all vectors of

a m -dimensional space. In other words, the p -dimensional (with p� n) column
space of the matrix cannot cover R

m. An arbitrary vector b cannot always be
represented as a linear combination of the column vectors of A. In other words,
there are more equations than unknowns. The system is overdetermined.

– If the vector b 2 R
p, we can find the coefficients xi and so find solutions for x.

If r ¼ n the solution is unique.
If r\n\m, the columns of A are not linearly independent; the equation Ax ¼0
has an infinite number of solutions. It results that Ax ¼ b has an infinite number
of solutions.

– If b 62 R
p, the system has no solution. In some applications one is interested in

an approximate solution. In these cases, we look for a vector x0 which generates
a vector b̂ 2 R

p whose difference with b is minimal. Thus, we pose:
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b̂ ¼
Xm

i¼1

x0ici ¼ Ax0:

The minimum error vector is:

e ¼ b� b̂ ¼ b� Ax0: ðB:29Þ

One generally chooses to search for a minimum error in the least squares sense.
The squared norm of the error ek k2¼ b� Axk k2 should be minimal. We recall that
it is given by:

ek k2¼ b� Axk k2¼ b� Axð ÞH b� Axð Þ ¼ bH � xHAH� 	
b� Axð Þ: ðB:30Þ

The vector x should be such that:

@ ek k2
@xH

¼ �AH b� Ax0ð Þ ¼ 0: ðB:31Þ

The notation x0 appears in the last equation as being its solution.
So,

AHe ¼ 0: ðB:32Þ

This result means that the norm of the squared error is minimum when the vector
e is orthogonal to each of the column vectors of A.

Equation (B.31) is written as:

AHAx0 ¼ AHb: ðB:33Þ

We saw above in (B.18) that the matrix AHA is square with n� nð Þ dimensions.
If the columns of A are linearly independent (A has full rank, r ¼ n), then the

matrix AHA is invertible and by left multiplying equation (B.33) by AHA
� 	�1

, we
see that the solution in the least squares sense is:

x0 ¼ AHA
� 	�1

AHb: ðB:34Þ

So:

b̂ ¼ Ax0 ¼ A AHA
� 	�1

AHb ¼ PAb; ðB:35Þ
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where

PA¼ A AHA
� 	�1

AH: ðB:36Þ

PA is called the projection matrix of a vector onto the space column of A.
n ¼ m : If r ¼ m, A is a nonsingular square matrix, A�1 exists and the solution

of the system is: x ¼ A�1b. We may verify on (B.36) that

PA¼ I: ðB:37Þ

If r\m, A is singular. The column vectors of A are not linearly independent.
The discussion is similar to that conducted in the previous case. If the vector
b 2 R

r, we can find a solution x (or an infinite number of solutions). Otherwise, a
minimum error may be considered.

n[m : There are fewer equations than unknowns. The system is
underdetermined.

The existence of a solution will depend on the rank of the matrix.
If r ¼ m there is a solution or an infinite number of solutions.
If r\m there are 0 or an infinite number of solutions.

B.4. Special Forms of Matrices

A diagonal matrix is a matrix whose elements outside the main diagonal are zero.
A square diagonal matrix has the form:

A ¼

a11 0 0 . . . 0
0 a22 0 . . . 0
0 0 a33 . . . 0
..
. ..

. ..
. ..

.

0 0 0 . . . ann

2

666664

3

777775
:

A rectangular diagonal matrix has the form:

A ¼
a11 0 0 0 0
0 a12 0 0 0
..
. ..

. ..
. ..

. ..
.

0 0 0 amk 0

2

6664

3

7775
or A ¼

a11 0 ..
.

0

0 a12 ..
.

0

0 0 ..
.

0

0 0 ..
.

akn

0 0 ..
.

0

2

666666664

3

777777775

:
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A Bloc diagonal matrix is a square matrix whose diagonal elements are square
matrices:

A ¼

A11 0 0 . . . 0
0 A22 0 . . . 0
0 0 A33 . . . 0
..
. ..

. ..
. ..

.

0 0 0 . . . Akk

2

666664

3

777775
:

Exchange matrix:

J ¼

0 . . . 0 0 1
0 . . . 0 1 0
0 . . . 1 0 0
..
. ..

. ..
. ..

.

1 . . . 0 0 0

2

66664

3

77775
: ðB:38Þ

This matrix is used to perform the inversion of terms of a vector:

J

v1
v2
..
.

vn

2

6664

3

7775
¼

vn
vn�1

..

.

v1

2

6664

3

7775
: ðB:39Þ

The left multiplication of a square matrix by J reverses the order of the terms in
each column of the matrix:

If A ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

2

4

3

5; then JTA ¼
a31 a32 a33
a21 a22 a23
a11 a12 a13

2

4

3

5: ðB:40Þ

The right multiplication of a square matrix by J inverses the terms of each row
of the matrix:

AJ ¼
a13 a12 a11
a23 a22 a21
a33 a32 a31

2

4

3

5: ðB:41Þ

Likewise:

JTAJ ¼
a33 a32 a31
a23 a22 a21
a13 a12 a11

2

4

3

5: ðB:42Þ
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Property

J2 ¼ I:

A square, matrix A is said Toeplitz if its elements along each diagonal are
equal:

aij ¼ aiþ 1 jþ 1 for all i\n and j\n:

A n� nð Þ matrix A is said Hankel if its elements along each of the diagonals
perpendicular to the main diagonal are equal: aij ¼ Cteiþ j for all i� n and j� n.

A real n� nð Þ matrix A is called orthogonal if its columns (and rows) are

orthonormal, namely, if A ¼ a1; a2; . . .; an½ � and aTi aj ¼
1 for i ¼ j
0 for i 6¼ j

�
.

So:

ATA ¼ I and A�1 ¼ AT:

A complex n� nð Þ matrix A is said unitary if its columns (and rows) are
orthonormal:

aHi aj ¼
1 for i ¼ j
0 for i 6¼ j

�
: So: AHA ¼ I and A�1 ¼ AH:

B.5. Quadratic and Hermitian Forms

The quadratic form of a real, n� nð Þ matrix A is the scalar defined by:

QAðxÞ ¼ xTAx ¼
Xn

i¼1

Xn

j¼1

xiaijxj; ðB:43Þ

where xT ¼ x1; x2; . . .; xn½ � is a vector made up of n real variables. The
quadratic form is a quadratic function of the n variables x1; x2; . . .; xn .
Example

A ¼ 3 4
1 2

� �
; QAðxÞ ¼ 3x21 þ 5x1x2 þ 2x22:
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Similarly, the Hermitian form of a n� nð Þ matrix A is defined by:

QAðxÞ ¼ xHAx ¼
Xn

i¼1

Xn

j¼1

x�i aijxj: ðB:44Þ

If the quadratic form of a matrix A is positive for all non-zero vectors x, the
matrix is said to be positive definite. If the quadratic form is non-negative, the
matrix is called positive semi-definite.

B.6. Eigenvalues and Eigenvectors of a Square Matrix

Let A be a square n� nð Þ, matrix (singular or not). We consider the linear equation
Av ¼ kv (where v is a vector solution with n elements and k a complex constant).

This equation can also be written A� kIð Þv ¼ 0. For this equation to have a
non-zero vector solution v, it is necessary that the matrix A� kI is singular. Its
determinant must be zero.

p kð Þ¼ det A� kIð Þ is the characteristic polynomial of order n. Its roots ki are the
eigenvalues of the matrix A for i ¼ 1; 2; . . .; n. The corresponding vectors vi are the
eigenvectors: Avi ¼ kivi.
Properties

a. Nonzero eigenvectors v1; v2; . . .; vn½ � corresponding to different eigen-
values k1, k2,…, kn are linearly independent.
To show this, we consider two eigenvectors v1 and v2: Av1 ¼ k1v1 and
Av2 ¼ k2v2.
The equation ða1v1 þ a2v2Þ ¼ 0 leads to Aða1v1 þ a2v2Þ ¼ 0 and, due to
linearity:

Aða1v1 þ a2v2Þ ¼ ða1k1v1 þ a2k2v2Þ ¼ 0:

The first equation may be written v2 ¼ � a1v1
a2
, the second, v2 ¼ � a1k1v1

a2k2
.

If k1 6¼ k2 the only solution satisfying the two equations is v1 ¼ v2 ¼ 0.
It follows that two non-null eigenvectors v1 and v2 that correspond to different
eigenvalues are linearly independent.

b. The eigenvalues of a Hermitian matrix are real. Indeed, let vi be an eigenvector
and ki its associated eigenvalue given by Avi ¼ kivi.
We multiply the equation on the left by vHi : v

H
i Avi ¼ vHi kivi:

We take the Hermitian transpose of the previous equation vHi Avi
� 	H¼

vHi A
Hvi ¼ vHi k

�
i vi.

584 Appendix B: Linear Algebra



The matrix A is assumed Hermitian, A ¼ AH , one must have: vHi kivi ¼ vHi k
�
i vi,

then

ki ¼ k�i : ðB:45Þ

c. The eigenvectors of a Hermitian matrix corresponding to different eigenvalues
are orthogonal. In fact, consider two eigenvectors vi and vj corresponding to two
distinct eigenvalues ki 6¼ kj. They verify the equations Avi ¼ kivi and Avj ¼ kjvj
with ki 6¼ kj.
Left multiplying the two equations respectively by vHj and vHi , we have:

vHj Avi ¼ kivHj vi and vHi Avj ¼ kjvHi vj:

Taking the Hermitian conjugate of the last equation yields to:

vHj A
Hvi ¼ k�j v

H
j vi:

The matrix is assumed Hermitian then kivHj vi ¼ k�j v
H
j vi.

The eigenvalues being real, k�j ¼ kj, then ki � kj
� 	

vHj vi ¼ 0s. As the eigenval-
ues are different by assumption, in order that this equation be verified, we must
have necessarily, vHj vi ¼ 0.
Vectors vi and vj are orthogonal.

d. Any invertible n� nð Þ Hermitian matrix has n orthogonal eigenvectors.
e. An invertible Hermitian matrix A can be written as

A ¼ UKUH ; ðB:46Þ

wherein the matrix U is formed of the eigenvectors of A with unit norms (in
columns) and K is the diagonal matrix composed of the eigenvalues put in order
relative to the eigenvectors of A. The matrix U is unitary.
Indeed:

AU ¼ A

..

. ..
. ..

. ..
.

v1 v2 . . . vn
..
. ..

. ..
. ..

.

0

BB@

1

CCA ¼
..
. ..

. ..
. ..

.

k1v1 k2v2 . . . knvn
..
. ..

. ..
. ..

.

0

BB@

1

CCA ¼ UK: ðB:47Þ

By right multiplying Eq. (B.47) by UH , we have A U UH ¼ U K UH, and as the
matrix U is unitary, U UH ¼ I and so:

A ¼ U K UH: ðB:48Þ
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As A is invertible, we have

A�1 ¼ UK�1 UH: ðB:49Þ

Matrix A and K are called similar. They are related by the basis change given by
U.

f. A unitary matrix U has the property det Uð Þj j ¼ 1.
g. In consequence

det(AÞ ¼ det(KÞ ¼
Yn

i¼1

ki: ðB:50Þ

Therefore a matrix is nonsingular (invertible) if all of its eigenvalues are dif-
ferent from 0.

h. We have also

tr(AÞ ¼ tr(KÞ ¼
Xn

i¼1

ki: ðB:51Þ

i. A Hermitian matrix is positive definite if and only if its eigenvalues are positive.
A necessary and sufficient condition for A to be positive definite is that there is
an invertible matrix C such that A ¼ CHC.

j. A square matrix A and its transpose AT have the same set of eigenvalues.
k. Let A be an invertible Hermitian n� nð Þ matrix, A ¼ U K UH according to

relationship (B.46). The spectral theorem for a square matrix states that

A ¼
Xn

i¼1

kiuiuHi ; ðB:52Þ

where ki and ui are associated eigenvalues and eigenvectors. (The reader may
verify the theorem as an exercise on a 2 � 2 matrix A).

We have then:

A�1 ¼
Xn

i¼1

1
ki
uHi ui: ðB:53Þ

B.7. Singular Value Decomposition (SVD)

We have seen above that a square, symmetric n� nð Þ matrix A can be decomposed
as A ¼ U K UH, where K is the diagonal matrix of its eigenvalues and U is a
unitary matrix composed of the normalized relative eigenvectors.
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We show in the following that any rectangular m� nð Þ matrix A can be
decomposed as:

A ¼ URVH; ðB:54Þ

where U and V are unitary matrices composed of the eigenvectors respectively of
AAH and AHA, and R is a rectangular m� nð Þ matrix whose only non null elements
are along the first diagonal. Relationship (B.54) is called the Singular Value
Decomposition, and the non zero elements of R are called the singular values of A.

To demonstrate this property, let us search for a unitary matrix V such that:

AV ¼ UR; ðB:55Þ

where U is unitary and R is diagonal (but non square if m 6¼ nð Þ). Is this possible?
We right multiply (B.55) by VH: AVVH ¼ URVH. Thus

A ¼ URVH: ðB:56Þ

We left multiply (B.56) by AH:

AHA ¼ VRHUHURVH ¼ VRHRVH: ðB:57Þ

We know from (B.16) that AHA is a square n� nð Þ Hermitian matrix. RHR is
also square n� nð Þ, diagonal. This result is analogous to the decomposition in
(B.48). V is the unitary matrix composed of the eigenvectors (n dimensions) of
AHA; the elements (diagonal) of matrix RHR are the corresponding eigenvalues
(positives or zero).

Similarly, let us right multiply (B.56) by AH:

AAH ¼ URVHVRHUH ¼ URRHUH: ðB:58Þ

AAH is square m� mð Þ, Hermitian. RRH is also square m� mð Þ, diagonal, and
its elements are the eigenvalues of AAH (which are the same as the eigenvalues of
AHA). Its elements are positive or zero. U is the unitary matrix of the eigenvectors
(m dimensions) of AHA.

RRH being square, diagonal, we can assess from the property (B.21) that the
product of diagonal matrices is diagonal, that we can find R, diagonal, whose non
zero elements are the square roots of the elements of RRH.
Spectral theorem for a rectangular matrix A

A ¼
Xr

i¼1

uirivHi : ðB:59Þ
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where ui and vi are the eigenvectors respectively of AAH and AHA related to ri, the
diagonal elements of R; r is the rank of A (the same as that of AAH and AHA).

In summary, any rectangular matrix A can be decomposed as A ¼ URVH where
U and V are unitary matrices composed of the eigenvectors respectively of AAH and
AHA, and R is diagonal such that the elements of RRH are the common eigenvalues
of AAH and AHA.

The matrix R is rectangular, diagonal, its elements are called the singular values
of the matrix A. The relation AV ¼ UR is verified.

The condition number of a matrix is the ratio of its largest to its smallest singular
values.
Pseudo-inverse of a rectangular matrix
Let us revisit the resolution of system equation Ax ¼ b.

Using SVD decomposition of A given in (B.56) we write: Ax ¼ URVHx ¼ b.

The pseudo-inverse of A is the n� mð Þ matrix defined as

Ay ¼ VR0UH; ðB:60Þ

where R0 is a matrix whose elements are inverse of those of R.
It may be shown that:

– if A is full column rank, that is to say, rðAÞ ¼ n�m (overdetermined system),

Ay is a left-inverse of A (meaning AyA ¼ In with In, the square n� nð Þ identity
matrix) with

Ay ¼ AHA
� 	�1

AH: ðB:61Þ

We have seen above in (B.34) that x0¼ Ayb is the best estimate of x in the least
square sense.

– if A is full row rank, that is to say, r Að Þ ¼ m� n (underdetermined system), Ay
is a right-inverse of A (meaning AAy¼ Im with Im, the square m� mð Þ identity
matrix) with

Ay ¼ AH AAH� 	�1
: ðB:62Þ

We have seen above that there are infinitely many solutions to the equation
Ax ¼ b.
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The solution with minimal norm is xmin norm ¼ AHz where z is a vector of the
m -dimensional complex space.

Ax ¼ AAHz ¼ b: z ¼ AAH� 	�1
b: xmin norm ¼ AHz ¼ AH AAH� 	�1

b ¼ Ayb:

B.8. Signal Filtering and Linear Algebra

A time limited signal having values equal to zero outside an interval 0;N � 1f g can
be written as a vector:

x ¼
x½0�
x½1�
..
.

x½N � 1�

2

6664

3

7775
: ðB:63Þ

The energy of vector x is its squared norm:

xk k2¼
XN

i¼1

x½n�j j2: ðB:64Þ

In some cases we will consider a set of vectors containing the values of the
signal at the instants n, n − 1, n – N – 1:

x½n� ¼
x½n�

x½n� 1�
..
.

x½n� N � 1�

2

6664

3

7775
: ðB:65Þ

Let h n½ � the impulse response of a linear, causal, time invariant filter, whose
impulse response is finite, of order N � 1 and let x n½ � be the filter input signal. The
filter output is given by the convolution:

y½n� ¼
XN

m¼0

h½m�x½n� m�: ðB:66Þ
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Posing h ¼
h 0½ �
h 1½ �
..
.

h N � 1½ �

2

6664

3

7775
,

we have:

y½n� ¼ hTx½n� ¼ xT½n�h: ðB:67Þ

The output of a digital filter is given by:

y n½ � ¼ hTx n½ � ¼ xT n½ �h: ðB:68Þ

If x n½ � ¼ 0 for n\0, the output y n½ � of the filter can be written for n� 0:

y ¼ X0h; ðB:69Þ

where X0 is a convolution matrix defined by:

X0 ¼

x½0� 0 0 . . . 0
x½1� x½0� 0 . . . 0
x½2� x½1� x½0� . . . 0

..

. ..
. ..

. ..
.

x½N � 1� x½N � 2� x½N � 3� x½0�
..
. ..

. ..
. ..

. ..
.

2

666666664

3

777777775

: ðB:70Þ
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Appendix C
Computer Calculations

The professional programming software Matlab is widely used in signal analysis. It
is simple to use and has great flexibility, its handling is fast, and it is well docu-
mented. It has Toolboxes on various subjects, particularly for signal analysis.

To learn about signal analysis, students can use a freeware, downloadable by
Internet. One can find very good clones of Matlab as Octave or Scilab where the
syntax is very similar to that of Matlab for the basic operations in signal analysis.

At the end of this appendix we give two small basic programs for a first contact
with this type of programming. Having copied the examples in the software editor,
one will launch the execution or make a copy and paste of a few lines in the
software command window.

Practical works, signal samples to be analyzed, and corrections are available
upon request at the email address: fcohentenoudji@yahoo.fr.

C.1. Notions in Matlab

A well-written program demands many comments describing the operations of
ongoing calculations. This practice facilitates understanding at a later reading.

Use the % symbol to put the rest of a line in comments.
Matlab is a numerical computing software that operates on arrays (vectors or

matrices).
The calculations are reduced to arithmetic operations on these arrays.
We note that there are 3 types of product of two vectors in Matlab:

The scalar and vector products use the operator *
The term by term product uses the operator . * (note the dot before the star).

Matlab is optimized for matrix calculation. A matrix product is calculated very
quickly. In contrast the for loops are extremely slow. Use for loops as a last resort.

© Springer International Publishing Switzerland 2016
F. Cohen Tenoudji, Analog and Digital Signal Analysis,
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Resizing an array in a loop by adding values is extremely detrimental in time.
We should declare the array to its maximum size at the start of the program, by
filling it with zeros for example.

A Matlab program is a series of calls to functions. For example the calculation of
a square root is performed with the call to sqrt(x) function which is programmed
into the function program sqrt.m.

In your work you will often see operations that you want to repeat. It is strongly
recommended to use functions such as myfunction.m that you have programmed.
These functions will have to be located in a directory accessible by the program.

Matlab manages the logic of the use of the operators and generates an error
message in the case of an illegal operation. Understanding an error message gen-
erated by Matlab avoids wasting time when eliminating this error.

The most common errors are the basic confusion between a row vector and a
column vector, poor integration of the dimension of a vector, the plot of a complex
vector, this last operation providing strange results. We will have to trace the real
part, imaginary, the modulus or the phase of a complex vector.

The following sections present some Matlab functions commonly used in signal
analysis.

C.1.1. Miscellaneous
%: To put a program line in comment
clear: removes all variables from the calculation memory (It is recommended to start
a program by this command to avoid confusion with variables already used in the
same Matlab session)
;: puts a semicolon after the declaration of a variable or a calculation to avoid
printing on screen the calculation result (this could result in a huge waste of time if
the calculation involves several thousand items)
home: refreshes the command window by deleting old texts
who: provides information on the variables used
whos: provides information on the variables used with the dimensions of the arrays
disp(‘Text’): writes text in the command window when running a program
help function: questions Matlab on how to use a function
for s = 0.0 : 1 : 1000, end: increments the variable s in steps of 1
for s = 1.0 : −0.1 : 0, end: decrements s in steps of −0.1

Assigning values to elements of a matrix. Example:
for m = 1 : N ,

for n = 1 : N ,
a(m, n) = m +n;

end
end

break: to exit a loop prematurely
Creating a loop with the while command. Example:

n = 0;

592 Appendix C: Computer Calculations



while n < 1025,

….
n = n + 1;

end

C.1.2. Vectors, Matrices
a ¼ 1 2 3½ �: generates a real row vector
e ¼ 1þ 2i 2þ 3i 3þ 5i½ �: generates a complex row vector
b ¼ 1þ 2i 2þ 3i 3þ 5i½ �0: Transposition conjugate of a vector (we obtain a
column vector b conjugate transposed of e)
g ¼ 1þ 2i 2þ 3i 3þ 5i½ �0: Transposition of a vector: (the use of the point
indicates that the complex conjugation is not done)
zc = conj(z): complex conjugation of a vector
x = real(z): extraction of the real part of a complex vector z
y = imag(z): extraction of the imaginary part of a complex vector x
dim(x): returns the number of elements of vector x
sum(x): returns the value of the sum of vector x elements
prod(x): returns the value of the product of vector x elements
fliplr(a): reverses the order of elements of a row vector
flipud(b): reverses the order of elements of a column vector
x = zeros(1, n): creates a row vector with n zeros
x = ones(1, n): creates a row vector with n values 1
v = diag(A): returns a vector composed of diagonal elements of matrix A
t = trace(A): returns the trace (sum of diagonal elements) of matrix A.

Products of vectors
If a ¼ 1 2 3½ �,

c ¼ a � a0 ¼ 14: inner product (a is a row vector)

d ¼ a0 � a ¼
1 2 3
2 4 6
3 6 9

2

4

3

5: outer product

e ¼ 2 � a ¼ a � 2 ¼ 2 4 6½ �: product of a vector by a scalar
f ¼ a : � a ¼ 1 4 9½ �: multiplication of arrays term by term (the point before

the operator * allows term by term multiplication)
a ¼ 1 : 1024½ �: creates an array: (row vector with 1024 elements consisting of

integers from 1 to 1024)
b ¼ 1 : 0:1 : 1024½ �: (creates numbers in the range 1–1024 by increments of 0.1)
c ¼ a 12ð Þ: value of an element of an array

Creation of a square matrix:
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A ¼ 1 2 0 ; 2 5 1 ; 4 10 �1½ � gives A ¼
1 2 0
2 5 1
4 10 �1

2

4

3

5

Að3; 1Þ: gives 4 (3rd row, 1st column)
rank(A): returns the rank of matrix A (the number of linearly independent rows or

columns)
Square matrix d:

det(d): calculates the determinant of matrix d
inv(d): calculates the inverse matrix of matrix d
t = eig(d): t is a column vector containing the eigenvalues of d
V ; L½ � ¼ eig ðdÞ: produces a diagonal matrix L containing the eigenvalues, and a
matrix V whose columns are the corresponding eigenvectors of d (V is the modal
matrix); the eigenvectors are normalized to have a norm 1. We have the relation:
d � V ¼ V � L.
Rectangular matrix X:

Singular value decomposition (SVD):
[U,S,V] = svd(X): produces a diagonal matrix S, of the same dimensions as X and
with nonnegative diagonal elements in decreasing order, and unitary matrices U and
V so that
X ¼ U � S � V 0.
cond(X): returns the condition number of matrix X, the ratio of the largest to the
smallest singular values; ratio of the largest to smallest eigenvalues if X is square.
X = pinv(A): produces the pseudo-inverse matrix X of matrix A.

C.1.3. Graphics
figure(4): prepares a graph in Figure 4
plot(A): graphically shows the elements of the vector A
grid on: draws a grid
xlabel(‘Time (sec)’): writes a label on x axis
ylabel(‘Amplitude (V)’): writes a label on y axis
plot(b, ‘*’): traces the elements of vector b as stars
axis xmin xmax ymin ymax½ �ð Þ): chooses the variation intervals of the graphic
coordinates
title (‘string’): displays the text string above the figure
legend(‘signal 1’): displays a small box combining the plot style to its identity
plot(x,y): represents the vector y as a function of the vector x. x and y must be 2
vectors with same dimension
stem(x): performs the bar graph of values of a vector x
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zoom on: triggers a graphic zoom that one controls with a box drawn with the
mouse by holding down the left button
zoom off: stops the ability to zoom with the mouse
plottools(‘on’): displays a dialog box that allows to select all parameters of a graph;
fonts, line thickness, axis intervals, etc ..
plot(x,y1,x,y2): represents both y1 and y2 as a function of x
semilogy(x,y): graph with linear scale for x and logarithmic for y
subplot(m,n,p): allows an m � n matrix of graphs and prepares the graph plot p
num2str (x): converts number x to a string. To perform the reverse operation use
sprintf()
surf(M) represents the values of a two-dimensional matrix as a 3D plot. For options
refer to Help section (help surfing)
shading interp: represents a smoothed graph after calling the surf() function
close(n): closes figure number n
close all: closes all figures.

C.1.4. Polynomials

poly(v): v being a vector, gives a vector whose elements are the coefficients of the
polynomial whose roots are the elements of v
roots(d): calculates the roots of the polynomial whose coefficients are elements of
the vector d. If d has n + 1 components, the polynomial is:

dð1Þxn þ � � � þ dðnÞxþ dðnþ 1Þ

polyval(p, x): calculates the value of the polynomial whose coefficients are the
elements in p for the value of the variable x
zplane(z, p): traces in the complex plane the zeros specified in column vector z and
the poles specified in column vector p in the current figure

C.1.5. Signal
[y, n] = max(x): searches the maximum y of a vector x and returns the index n of the
position of this maximum
y = diff(x): calculates a vector y whose components are the differences of two
consecutive elements of a vector x. For example: y(1) = x(1) − x(1); y(1) = x
(2) − x(1); … etc …
index = find(x > 1.1): Returns the index vector whose elements are the indices of
the elements x satisfying the condition x > 1.1
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fft(x): computes the DFT of the vector x (fast if dim(x) is a power of 2, using the
Cooley-Tukey algorithm)
fft(x, Nfft): calculates the DFT on Nfft points of a vector x. (if Nfft > dim(x) the
vector is filled with zeros, if Nfft < dim(x) a truncated version of x is used)
ifft(x, Nfft): calculates the inverse DFT of the vector x on Nfft points
z = fftshift(y): shifts the vector y obtained by FFT by placing the center frequency
in the middle of the vector
abs(x): calculates the x complex modulus
angle(x): calculates the complex x argument in radians
a = rand(1,1024): calculates 1024 random numbers according to an uniformly
distributed law in the interval (0,1). a is a row vector; successive draws are
independent
a = randn(1,1024): calculates 1024 random numbers according to a Gaussian
distribution N (0,1). a is a row vector; successive draws are independent
Y = filter(B, A, X): filters the data in the vector X with the filter described by the
vectors A and B to give the filtered data Y. With:

að1ÞyðnÞ ¼ bð1ÞxðnÞþ bð2Þxðn� 1Þþ � � � þ bðnbþ 1Þxðn� nbÞ � að2Þyðn
� 1Þ � � � � � aðnaþ 1Þyðn� naÞ

sound(x, fs): sends the signal corresponding to the values of the vector x to the
computer sound card with the sampling frequency fs. The min and max values of
the vector are expected between −1 and +1. If x is a matrix (N, 2) the output is in
stereo
H,w½ � ¼ freqzðB,A,NÞ: returns the frequency vector and N-point complex fre-
quency response. If N is not specified, it is 512. We have:

HðejxÞ ¼ BðejxÞ
AðejxÞ ¼

bð1Þþ bð2Þe�jx þ � � � þ bðnbþ 1Þe�jnbx

að1Þþ að2Þe�jx þ � � � þ aðnaþ 1Þe�jnax

H = freqz(B, A, w): returns the frequency response for frequency values specified
in w, in radians/ample; normally between 0 and p.
h; t½ � ¼ impz(b,a): calculates the impulse response of the filter with the coefficients
b in the numerator and a in denominator. The function chooses the number of
samples and returns the response in the column vector h and time in the column
vector t (with t ¼ 0; n� 1½ �0). n is the length of the impulse response.
c = xcorr(a, b): calculates the cross-correlation function of the vectors a and b. If
M is the dimension of the vectors a and b, the dimension of c is 2 �M � 1.
c = conv(a, b): convolves vectors a and b. We have
cðnþ 1Þ ¼ PN�1

k¼0 aðkþ 1Þ bðn� kÞ.
R = toeplitz(FuncR): builds a Toeplitz symmetric matrix having FuncR as its first
row (used to pass from correlation function to correlation matrix).
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y = chirp t; f0; t1; f1ð Þ: generates a chirp signal whose frequency varies linearly with
the given instants in time t vector. The instantaneous frequency at time t = 0 is f0.
The final frequency at time t1 is f1
x = Hilbert(x1): returns a complex vector x whose x1 is the real part and x2, the
imaginary part, x2 is the Hilbert transform of x1
b = specgram(a, Nfft, fs, w, Noverlap): calculates the short-time Fourier transform
on Nfft points of the vector a after multiplication by the window vector w, using an
overlap of Noverlap points
P = periodogram(a): calculates the power spectral density (PSD) of the signal
a. The calculation is performed using an FFT on a number of points equal to the
power of 2 immediately greater than the length of vector a
Cxy = mscohere(x, y): calculates the coherence function of two signals x and y (of
equal length)
wintool: opens a dialog box that allows you to set a window (Hann, Bartlett, etc.)
that can be applied to the data

C.1.6. Wavelets
waveinfo(‘wname’): provides information on the family of wavelets whose name is
‘wname’. For example ‘haar’ for the Haar wavelet, or ‘dbx’ for Daubechies
wavelets
[Phi, Psi, xval] = wavefun(‘db2’ iter): returns the scaling function Phi and wavelet
Psi (here of the wavelet db2) on a grid of values of x on 2^iter points. The iter
number is the number of iterations
[LO_D, HI_D, LO_R, HI_R] = wfilters(‘wname’): calculates the 4 analysis and
reconstruction filters associated with the wavelet whose name is ‘wname’
Coefs = cwt (S, SCALES, ‘wname’, ‘plot’): calculates the continuous wavelet
coefficients whose name is ‘wname’. Traces the result
[C, L] = wavedec(X, N, ‘wname’): returns the wavelet decomposition of the signal
X
[CA, CD] = dwt(X, ‘wname’): calculates the approximation coefficients CA and
details CD of the vector X. the name of the wavelet is ‘wname’
X = idwt(AC, CD, ‘wname’): inverse function of dwt()

C.1.7. File Management
save filename a: saving on disk the variable a to a file in Matlab format
save filename: saves to disk all current variables in a file in Matlab format
load filename: reads on the disk all the variables recorded in a file in Matlab format.
Can also read files saved in txt format
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M = dlmread(filename, delimiter) reads ASCII data in the file with the name
filename. The delineation between data is created by the delimiter (by default,
comma). Use ‘\t’ for the TAB as the delimiter. The result is placed in the matrix M
fid = fopen(filename, permission) opens a file name filename and places the value
of the file handle in the variable fid. Permission can be ‘r’ or ‘w’ or ‘…’ for
reading, writing or other
count = fwrite(fid, A, precision): writes the elements of the matrix A in the file
specified by fid. The values are written in the accuracy that can be ‘float’, ‘double’
or the like
status = fclose(fid): closes the file identified by fid
status = fclose(‘all’): closes all open files
s = wavread(filename): reads a file in Wave format(.wav extension)
sound(s): plays the signal s (from a .wav file)

C.2. Examples of Matlab Programs

Programming a vector:
One can define a frequency vector as follows:

f = −1000: 0.1: 1000; (one defines here a vector composed of frequency values
between −1000 and 1000 Hz with an increment of 0.1 Hz).

We could also operate as follows:

kmax = 10,000;
k = −kmax: 1: kmax;
frequencystep = 0.1; % 0.1 Hz
f = k * frequencystep;

This second way seems longer but can make clearer further reading of the
program.

Programming a function:
We assume that we want to write a function that calculates the module in decibels
and the phase of a complex vector. We write the following program:

function[moddB, phase] = moduledBphase (x)
maxi = max (abs (x));
moddB = 20 * log10 (abs (x) / maxi);
phase = angle (x);
This program has to be recorded under the same name as the function:
moduledBphase.m.
The call to the function in the program will be as follows:
n = [0: 1: 1023];
vector = exp (i * n / 100);
[moduledB, phase] = moduledBphase (vector);
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figure (1)
subplot (1, 1, 2)
plot (moduledB)
subplot (1, 2, 2)
plot (phase)
Exercise: Type this MATLAB program:
clear
close all
fs = 20000;
disp (‘The sampling frequency is fs = 20000 Hz’);
% f0 frequency of the sine
f0 = input ('Enter the frequency of the sine to be displayed (in Hz) ');
n = [0:1:2047];
tn = n/fs;
sine = sin(2*pi*f0*tn);
figure (1)
plot (tn,sine);
title (‘(fs = 20,000 Hz) Display of a sine’)
grid on
xlabel ('time (seconds)')
ylabel ('sine ')
string = strcat (‘signal frequency:’ , num2str(f0), ‘Hz’);
legend(string)
% Spectrum calculation
k = [0:1:2047];
spectrum = fft(sine,2048);
% Here we chose the number of points of the FFT equal the number of signal
points.
fk = k*fs /2048;
omegak = 2*pi*fk;
figure (1)
plot (omegak(1:2048),abs(spectrum(1:2048)));
title (‘FT of a sine’)
grid on
xlabel (‘omega (rad/s)’)
ylabel (‘Modulus in linear scale’)
figure (2)
plot (fk(1:2048),abs(spectrum(1:2048)));
title (‘FT of a sine function’)
grid on
xlabel (‘frequency (Hz)’)
ylabel (‘Modulus in linear scale’)
% Now we represent the spectral amplitude in decibels:
Maxspectrum = max (abs(spectrum));
spectrumdB = 20 * log10(abs(spectrum)/maxspectrum);
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figure (3)
plot (fk,spectrumdB(1:2048));
title (‘FT of a sine’)
grid on
xlabel (‘frequency (Hz)’)
ylabel (‘Spectrum in decibels’)

The following figures show the results for f0 ¼ 400 Hz:
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D
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Direct Fourier transform, 77, 79, 81, 254
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Discrete Fourier Transform (DFT), 279, 281,
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E
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operator, 35, 49, 50, 56
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Ergodicity, 509, 511, 514, 517
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correlation function, 474, 515, 517
Correlation matrix from measurement, 474
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F
Fast Fourier Transform (FFT), 330, 358
FFT. See Fast Fourier Transform
FIR filters. See Moving Average filters
Filter bank, 337, 338, 343
Filtering of a random signal, 483, 486
First order system

analog, 11–20

Fourier series, 35
Fourier series decomposition, 35, 37, 261
Fourier transform and filtering by a LTI system

(analog), 93, 95, 99, 101, 104, 105
Fourier transform and filtering by a LTI system
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Fourier transform of
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a Gaussian function, 111, 115
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a rectangular window, 111, 112
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a triangular window (analog), 113
a triangular window (digital), 272
analog signals, 79
digital signals, 253, 254
Dirac distribution, 87
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