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Preface

Dielectric spectroscopy has a long history of characterizing the magnitude and time
or frequency dependence of the polarization that results from an external electric
field. Technical developments have facilitated access to a broad range of timescales
and frequencies, covering at least the range from 1 ps to 1 year in terms of observed
equilibrium relaxation times. This broadband property together with the high
resolution and measurement automation have turned dielectric relaxation mea-
surements into a standard tool for characterizing the dynamics of a wide range of
materials by measuring the permittivity, e. In a typical experiment, polarization
P = ve0E is proportional to the magnitude of the applied field E, implying that the
susceptibility v = e – 1 remains independent of the amplitude of the electric field. In
fact, many experimental reports do not specify the field amplitude, because it is
considered irrelevant for the results. At sufficiently high electric fields, however, the
dielectric behavior will depend on the field magnitude in this nonlinear regime.

The term “nonlinear dielectric effect” refers to any signature of deviations from
the linear correlation between polarization P and external electric field E. The
interest in studying such nonlinear features goes back to P. Debye and his book on
Polar Molecules published in 1929. At the time, only dielectric saturation was a
known nonlinear effect, observed as a reduction in the amplitude of permittivity.
About 10 years later, the chemical effect was recognized by Piekara, which
amounted to an increase in amplitudes. Subsequently, it has been discovered that
also time constants can be affected by high fields, leading to accelerated or frus-
trated dynamics, depending on the type of field used, alternating versus static. The
slowing down of dielectric relaxation by static electric fields in simple liquids was
not discovered until 2014. In recent years, tremendous advances have been made
regarding both the high-resolution measurements of nonlinear dielectric effects and
their understanding in terms of theoretical and modeling approaches.

The aim of this book is to introduce the ideas and concepts of Nonlinear
Dielectric Spectroscopy, outline its history, and provide insight into the present
state of the art of the experimental technology and understanding of nonlinear
dielectric effects. Emphasis will be on what can be learned from nonlinear exper-
iments that could not be derived from the linear counterparts. It will become clear
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that nonlinear dielectric spectroscopy can be used as a tool to measure structural
recovery or physical aging, as well as potential connections between dynamics and
thermodynamic variables such as enthalpy and entropy. Supercooled liquids in their
viscous regime are ideal candidates for investigating nonlinear effects, because they
are particularly sensitive to changes in temperature, and are thus expected to be
sensitive to changes in the electric field. Other interesting materials to be covered
are plastic crystals and complex liquids near criticality. It is also to be pointed out
that, compared with other techniques such as mechanical shear experiments, the
nonlinear regime of dielectric spectroscopy is special in the sense that the energies
involved always remain small compared with thermal energies.

Theoretical approaches to nonlinear effects are particularly complicated because
the tools available for the linear regime no longer apply. As a result, there is no
single generally accepted theory regarding nonlinear dielectric responses of real
liquids. Various approaches to nonlinear dielectric features have been reported, and
the different aspects will be communicated in the first three chapters. The remaining
chapters focus more on the experimental aspects, involving different experimental
techniques and a range of materials such as liquids, supercooled liquids, plastic
crystals, electrolytes, ionic liquids, and polymeric materials. The reader will notice
that the contributions will offer different or even conflicting views on how to
interpret the results observed with nonlinear dielectric spectroscopy. This feature
reflects the present state of research activities, indicating that this field still bears
numerous unresolved questions that warrant further research on nonlinear dielectric
spectroscopy for years to come.

The editor is grateful to all the contributors to this volume for a smooth and
effective collaboration on this joint project. Support from the staff of Springer and
from the Series Editor, F. Kremer, is also gratefully acknowledged.

Tempe, USA Ranko Richert
January 2018
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Nonlinear Dielectric Response of Polar
Liquids

Dmitry V. Matyushov

Abstract The linear dielectric constant of a polar molecular material is mostly the
function of the molecular dipole moment and of the binary correlations between the
dipoles. The dielectric response becomes nonlinear for a sufficiently strong electric
field gaining a dielectric decrement proportional, in the lowest order, to the squared
field magnitude. The alteration of the dielectric response with the electric field is
governed by a combination of binary and three- and four-particle dipolar correla-
tions and thus provides new structural information absent in the linear response.
Similar higher order correlations between the molecular dipoles enter the tempera-
ture derivative of the linear dielectric constant. Mean-field models, often applied to
construct theories of linear dielectric response, fail to account for these multi-particle
correlations and do not provide an adequate description of the nonlinear dielectric
effect. Perturbation theories of polar liquids offer a potential resolution. They have
shown promise in describing the elevation of the glass transition temperature by an
external electric field. The application of such models reveals a fundamental distinc-
tion in polarization of low-temperature glass formers close to the glass transition and
high-temperature, low-viscous liquids. The dielectric response of the former is close
to the prescription of Maxwell’s electrostatics where surface charge is created at any
dielectric interface. On the contrary, rotations of interfacial dipoles are allowed in
high-temperature liquids, and they effectively average the surface charge out to zero.
Models capturing this essential physicswill be required for the theoretical description
of the nonlinear dielectric effect in these two types of polar materials.

1 Introduction

This chapter discusses theoretical approaches to nonlinear response of polarmaterials
to the externally applied electric field. The domain of linear theories is limited by the
assumption of a linear scaling of the macroscopic dipole moment M with the applied

D. V. Matyushov (B)
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2 D. V. Matyushov

field. The response to an external field depends on the geometry of the sample through
the polarization of the sample’s surface. On the contrary, experimental evidence
suggests that the response to theMaxwell field is local and independent of the sample
shape. The dielectric susceptibility, connecting M to the Maxwell field, and the
dielectric constant ε defined from the susceptibility are both material properties.

The dependence of the dipole induced in a macroscopic sample on its shape
is a direct consequence of the long-range, ∝ r−3, scaling of the interaction energy
between the dipoles. The same distance dependence enters the pair distribution func-
tions [23] describing intermolecular correlations. This long-range scaling, therefore,
has to be eliminated in the theories of local material properties. In the linear regime,
this is achieved by the Kirkwood–Onsager equation [4], which allows the cancela-
tion of the long-ranged correlations through a linear combination of the longitudinal
and transverse components of the polar response [35]. This result directly follows
from liquid-state theories operating in terms of pair distribution functions [24]. We
follow here a somewhat different approach and, for the sake of pedagogy, arrive at
the Kirkwood–Onsager result from the general electrostatic considerations applied
to a slab sample of the dielectric. This derivation is contrasted with the spherical
geometry of the sample commonly used [4, 17] following Kirkwood’s original work
[27]. Before discussing the issues pertinent to the linear dielectric response, we start
with exact relations for the thermodynamics of polarized dielectrics, which are not
limited by the linear response approximation. Those can be found in the standard
textbooks on dielectrics [25, 31], as well as in more specialized monographs [4,
17]. We, however, combine the thermodynamic results with statistical fluctuation
relations usually not provided in the standard sources.

The Kirkwood–Onsager equation for the linear dielectric constant connects it to
the variance of the sample’s macroscopic dipole moment. This variance involves
binary correlations between the molecular dipoles quantified through the Kirkwood
correlation factor gK , which is connected to a specific angular projection of the pair
correlation function. However, already the temperature derivative of the dielectric
constant brings the demand on the theory to a new level since it requires orienta-
tional correlations of the order higher than binary and cannot be described on the
same level of theory as the dielectric constant itself [47]. Orientational correlations
of even higher order, between three or four distinct dipoles in the liquid, are required
for the description of the first nonlinear correction to the dielectric constant [18, 44],
which makes the dielectric response depend on the electric field. Both binary den-
sity and binary orientational correlations, along with the higher order orientational
correlations, enter the observable decrement of the dielectric constant, which scales
quadratically with the Maxwell field. Moreover, the binary and higher order corre-
lations strongly compensate each other in the final result for the dielectric function
decrement. No simple approximation, such as a mean-field model, can therefore be
applied to this problem.

The overall change of the dielectric constant with the Maxwell field can gener-
ally be represented as a product of the Binder parameter [30] for the dipole moment
measured along the field and the number of particles N in the sample. The Binder
parameter is designed to gauge the deviation of the global statistics of a chosen
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extensive property from the Gaussian statistics expected for a macroscopic mate-
rial far from points of global instability (phase transitions and criticality). From this
perspective, the decrement of the dielectric constant with increasing electric field is
a fundamental parameter giving access to non-Gaussian fluctuations of the macro-
scopic dipole moment not observable in the thermodynamic limit N → ∞ [44].
More specifically, it gives access to the first expansion term of the Binder parameter
in N−1. This parameter provides, at the expense of significantly increased complex-
ity, a glimpse of the material properties not accessible in linear response.

A significant assumption adopted in the derivation of the nonlinear dielectric
response presented below and silently adopted in the literature is that, being a func-
tion of the external field, the dielectric function remains a local material property,
i.e., a property independent of the sample shape. Experiment suggests that this is a
reasonable assumption, but the current state of the theory does not allow a direct cal-
culation of highest ordermany-particle correlations involved. It is therefore important
to present a theoretical treatment, even incomplete, that consistently leads to local
nonlinear response functions. Perturbation expansions for the thermodynamics of
polar liquids in the form of Padé-truncated perturbation series [22, 62] allow such a
derivation.We show below how to apply this theoretical approach to derive the linear
dielectric response. This formalism provides a new solution for the local field acting
on a molecule in the polar liquid. The typically applied approximation, derived from
solving the dielectric boundary-value problem, for the so-called cavity field [4] is
generally inconsistent with atomistic computer simulations and the new analytical
theory provides a better agreement with the numerical results. A fundamental issue
appearing in the analysis of the experimental data is a significant distinction between
the local dielectric response exhibited by high-temperature and low-temperature liq-
uids. It appears that Lorentz’s concept of a virtual interface, producing no surface
charges, is more reliable at high temperatures, while slower relaxing liquids, close
to the glass transition, fall into the domain of solid-like interfaces envisioned by the
Maxwell view of dielectric polarization [48].

The distinction between the Lorentz’s and Maxwell’s views of interfacial polar-
ization comes in direct focus in an attempt to understand the elevation of the glass
transition temperature by an external field. This theory is based on the use of the Padé-
truncated perturbation theories of polar liquids [22] to formulate the configurational
entropy of a polar glass former [45]. The application of the electric field lowers the
configurational entropy thus shifting the glass transition temperature upward. The
amount of the shift is, however, strongly affected by whether the Lorentz or Maxwell
view of the local field in the dielectric is adopted. The Maxwell result turns out to be
more consistent with experimental evidence. This outcome strongly suggests that the
boundary conditions applied in the dielectric response problem significantly depend
on the ability of the interfacial polar molecules to average out the surface charge
on the observation window of the experiment. A supercooled liquid near the glass
transition suppresses the orientational motions, thus leading to solid-like Maxwell
boundary conditions.We discuss this problem inmore detail at the end of this chapter.
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2 Thermodynamic and Statistical Relations

Dielectric experiments performed with plane capacitors report the free energy stored
inside the capacitor and are usually presented in the form of capacitance, fromwhich
the dielectric constant is derived. The electrostatic free energy is quadratic in the
Maxwell field E = Δφ/d determined experimentally as the ratio of the electric
potential drop on the capacitors plates Δφ and the distance d between them (Fig. 1).
When the capacitor volume is V , the equation for the electrostatic Helmholtz free
energy becomes [31] (in Gaussian units)

FE = V

8π
εE E

2. (1)

Equation (1) is formally exact since it represents the electrostatic free energy, gen-
erally nonlinear in the Maxwell field, in the form of the capacitance

C = εEV/(4πd2) (2)

including an unknown function εE = εE (E).
Very few exact relations can be establishedwithout resorting to the linear response

when εE = ε is the dielectric constant of the material. Alternatively, for relatively
weak fields relevant for most experimental conditions (up to ∼300 kV/cm [56]),
εE = ε + ΔεE can be expanded in the powers of E . The first nonvanishing term in
the series is quadratic in E for isotropic materials. The dielectric constant decrement
ΔεE is therefore linear in E2

ΔεE = −aE2. (3)

The proportionality constant a is known as the Piekara coefficient [7]. It is usually
anticipated to be positive and, in such cases, is associated with dielectric saturation,
when, loosely speaking, dipoles diminish their ability to respond in high fields. This
mechanism is usually discussed in the framework of the mean-field Langevin model.
However, negative values have been observed as well [7, 38], and those are generally
related to multiparticle dipolar correlations in a polar liquid [18] as we discuss in
more detail below.

Before these approximations are introduced, one can start with exact thermo-
dynamic relations. The alteration of the Helmhotz free energy of the bulk material
performed at constant volume (subscript “V”) is given by the following relation [31]:

δFV = −SδT + V

4π
EδD. (4)

Here, D = E + 4π〈M〉E/V is the dielectric displacement and 〈M〉E is the dipole
moment induced in the material in the presence of the external field. We denote
M as the dipole moment of a macroscopic sample along the direction of the field,
which we align along the z-axis of the laboratory frame (Fig. 1). The z-projection
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ex

E0z = Ez

E0x

x

= Ex

Ez

z

= Δφ/d

Fig. 1 Cartoon of the slab geometry of the dielectric sample with the projections of the dipole
moment Mz and Mx along the corresponding axes. The drop of the electrostatic potential Δφ at the
capacitor’s plates creates the Maxwell field E = Ez = Δφ/d inside the dielectric. The boundary
conditions for the slab preserve the electric field across the slab plane, E0x = Ex , while theMaxwell
field is reduced by ε relative to the external field in the z-direction perpendicular to the slab. Also
shown is the unit vector ê along the molecular dipole m and its corresponding projections on the
axes

will be explicitly indicated where its omission can lead to confusion with other
Cartesian components. For the rest of our discussion, we consider the plane capacitor
geometry commonly used in the experimental setup. In this geometry, the dielectric
displacement is equal to the field E0 of the external charges on the capacitor’s plates.
If the charge density (charge per unit area) is σ0, one obtains from the standard
electrostatic arguments [31] D = E0 = 4πσ0. This connection implies that varying
D and E0 is achieved by charging the plates.

Equation (4) leads to the connection between the external field and the Maxwell
field through the relation

E = (4π/V ) (∂F/∂E0)V,T = E0 − 4π〈M〉E/V . (5)

One additionally obtains the Maxwell relation between the variation of the entropy
with the external field and the temperature derivative of the induced dipole moment
〈M〉E (

∂S

∂E0

)
V,T

=
(

∂〈M〉E
∂T

)
V,E0

. (6)

The dipole moment 〈M〉E induced in the material by the external field is the target
of statistical theories of dielectrics [17]. It is generally calculated by recognizing that
the external perturbation produced by the field of external charges is −M · E0 =
−ME0 [31]. The induced dipole is then calculated as the statistical average
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〈M〉E = [Q(E0)]−1
∫

Me−βH0+βME0dΓ, (7)

where H0 is the Hamiltonian of the unperturbed dielectric and

Q(E0) =
∫

e−βH0+βME0dΓ (8)

is the partition function of the polar material in the external field. The phase space
element dΓ involves all degrees of freedom of the macroscopic sample over which
integration is performed and β = (kBT )−1 is the inverse temperature. From this defi-
nition, one can immediately convert theMaxwell relation in Eq. (6) to the fluctuation
relation involving the correlation of the dipole moment with the system Hamiltonian

T

(
∂S

∂E0

)
V,T

= 〈δMβδH〉E , (9)

where H = H0 − ME0, δM = M − 〈M〉E , and δH = H − 〈H〉E .
The use of a linear relation between the Maxwell and external fields, E = εE0,

significantly simplifies the thermodynamics of dielectrics. The free energy of the
capacitor becomes

FE = V

8π
ED. (10)

This free energy is a sumof the component describing the electric field in vacuum (the
first summand) and the free energy of polarizing the dielectric (the second summand)

FE = V

8π
E2
0 − 1

2 E0〈M〉E . (11)

One can next calculate the entropy of electrostatic polarization, which is expressed
through the derivative of the dielectric constant with temperature taken at the constant
volume [17, 31]

T SE = FE

(
∂ ln ε

∂ ln T

)
V

. (12)

The constant volume temperature derivative can be related to themore often available
temperature derivative at constant pressure through the thermodynamic relation [47]

(
∂ε

∂T

)
V

=
(

∂ε

∂T

)
P

+ αP

βT

(
∂ε

∂P

)
T

. (13)

Here, αP is the isobaric expansivity and βT is the isothermal compressibility. The
results of calculating this correction from experimental data [37] are listed in Table1
for a number of common polar liquids. The derivatives at constant volume and pres-
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Fig. 2 −(∂ ln ε/∂ ln T )V versus −(∂ ln ε/∂ ln T )P shown for experimental data in Table1 (points,
formamide is omitted). The dashed line refers to a linear fit through the points with the equation
−0.019 + 0.908x

sure follow an approximately linear relation shown in Fig. 2 for the polar liquids
listed in Table1.

The temperature derivative of the dielectric constant can be connected to the
correlation between the dipole moment and energy (Hamiltonian) fluctuations by
using Eq. (9). Since the right-hand side in Eq. (12) is taken from linear response, the
same approximation needs to be applied to Eq. (9). By keeping only terms quadratic
in the electric field, one arrives at a fluctuation relation for the linear response entropy

T SE = βE2
0

2
〈M2(βδH0 − 1)〉. (14)

Here,we use angular bracketswithout the subscript to designate a statistical ensemble
average in the absence of the external field and have assumed 〈M〉 = 0, which is true
for isotropic materials without spontaneous polarization (ferroelectricity). Also note
that since entropy is extensive, one has to require that both correlators, 〈M2δH0〉 and
〈M2〉, scale with the number of particles as ∝ N .

The external field E0 is weak compared to local fields in a polar material in all
practical cases. A perturbation expansion of the statistical averages in terms of the
external perturbation H ′ = −ME0 often applies, as in fact done in deriving Eq.
(14). The resulting expansion is in the powers of E0. On the contrary, an expansion
in the powers of the Maxwell field is required for the local material properties,
such as εE and in the corresponding definition of the Piekara coefficient in Eq. (3).
The difficulty of connecting the response to the external field E0, following from
statistical theories, to the response to the Maxwell field required by local properties
andmeasured experimentally is shared by all theories of dielectrics [12, 17]. Arriving
at the material dielectric constant from fluctuation relations requires connecting E
to E0. This connection depends on the chosen geometry of the sample [17] due to
charges produced at its surface by the polarizing external field. Given the final result
must be independent of the sample shape, one commonly resorts to calculating 〈M〉E
for a specific shape forwhich the connection between E and E0 is particularly simple.
Typical derivations are performed either for a spherical dielectric sample or for a
spherical region inside a continuous dielectric [27]. A generalization to an arbitrary
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shape cut from a liquid volume can be found in the paper by Høye and Stell [24].
Here, we follow a somewhat alternative route by deriving all equations for the linear
and nonlinear dielectric response for a slab geometry of the sample. We show below
how this approach can be applied to deriving the linear Kirkwood–Onsager equation
for the dielectric constant ε, but first start with some general relations which can
be obtained solely from the assumption that the nonlinear dielectric polarization is
small compared to the linear one.

One can start with an empirical relation representing the dipole moment induced
in the sample as a series expansion in odd powers of the Maxwell field [7, 56]

〈M〉E
V

= χ1E + χ3E
3, (15)

where χ1 is the linear dielectric susceptibility ε = 1 + 4πχ1. This relation can be
substituted into the thermodynamic link between the field of external charges E0 and
the Maxwell field E in Eq. (5), which leads to the relation between E0 and E

E0 = εE + 4πχ3E
3. (16)

From this formula, one obtains for the variation of the external field

δD = δE0 = εδE + 12πχ3E
2δE . (17)

The resulting connection between δE0 and δE can be used to integrate the free energy
in Eq. (4) to arrive at Eq. (1) in which the nonlinear dielectric function becomes

εE = ε + 6πχ3E
2. (18)

One therefore obtains for the Piekara coefficient in Eq. (3)

a = −6πχ3. (19)

3 Linear Response

The connection between the linear dielectric constant and the variance of the sample
dipole moment is provided by the Kirkwood–Onsager equation [4, 17]. We adopt
here the slab geometry of the sample (Fig. 1) and assume that the electric field can
be aligned either along the z-axis, as is done in the standard dielectric setup [4], or
along the x-axis, which would typically correspond to experiments with absorption
of light propagating perpendicular to the slab plane [46]. The first-order perturbation
expansion in Eqs. (7) and (8) yields

〈Mα〉E = β〈M2
α〉E0α, (20)
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whereα = x, z specifies Cartesian projections. For the slab geometry, the connection
between E0 and E depends on whether the field is perpendicular or parallel to the
slab plane [25]: E0z = εEz and E0x = Ex (Fig. 1). Since the response to theMaxwell
field, 4π〈Mα〉E = V (ε − 1)Eα , is invariant in respect to the projection taken for an
isotropic dielectric, one can write the dielectric constant in terms of the variance of
the total dipole moment of the sample 〈M2〉 = 〈M2

z 〉 + 2〈M2
x 〉. This procedure leads

to the Kirkwood–Onsager equation

(ε − 1)(2ε + 1)

9ε
= 4π

9V
β〈M2〉. (21)

The variance of the sample dipole in the absence of the external field is independent
of the shape of a macroscopic sample and the Kirkwood–Onsager equation can be
used for any macroscopic material [24]. A useful connection between 〈M2〉 and
variances of the corresponding projections follows from this derivation

〈M2〉 = (2ε + 1)〈M2
z 〉 = 2ε + 1

ε
〈M2

x 〉. (22)

The dipole moment M in Kirkwood–Onsager equation is the total dipole of the
sample, including all permanent and induced molecular dipoles. We will discuss the
separation into two components below and first start off by neglecting the molecular
polarizability and the corresponding induced dipoles. The dipole moment M then
becomes the sum of N molecular permanent dipoles m j : M = ∑N

j=1 m j . The left-
hand side of Eq. (21) becomes

(4π/9V )β〈M2〉 = ygK , (23)

where
y = (4π/9)βm2ρ, (24)

ρ = N/V is the number density, andm is the magnitude of the molecular dipole (see
Table1 for the typical values). The parameter y plays the role of the effective density
of permanent dipoles in the liquid, while gK in Eq. (23) is the Kirkwood correlation
factor [27]

gK = N−1
∑
i, j

〈êi · ê j 〉. (25)

It is given in terms of the unit vectors ê j along the direction of the molecular dipole
m j (Fig. 1) and thus defines the average cosine of the angles between all pairs of
dipoles in the liquid. We discuss an alternative definition of the Kirkwood factor
below in connection to the nonlinear dielectric effect.

The average over the orientations of the dipoles can be expressed in terms of
the pair correlation function [22, 23] of the liquid h(1, 2) = h(r12,ω1,ω2), which
depends on the distance r12 between two dipoles and their orientationsω1 andω2. The
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scalar product Δ(1, 2) = ê1 · ê2, when averaged over the orientations of the dipoles
ω1 and ω2, creates the projection hΔ(r) [22, 23] of the pair correlation function on
the rotational invariant Δ(1, 2)

hΔ(r) = 3〈Δ(1, 2)h(1, 2)〉ω1,ω2 . (26)

The Kirkwood factor is usually expressed as the k = 0 value of the Fourier transform
of the Δ-projected correlation function h̃Δ(k = 0)

gK = 1 + (ρ/3)h̃Δ(k = 0). (27)

The correlation function hΔ(r) is short-ranged, which implies that it decays to
zero faster than r−3 of the dipole–dipole interactions in the liquid [63]. In fact, another
projection of the pair correlation function on a rotational invariant, the projection on
D(1, 2) = 3(ê1 · r̂12)(r̂12 · ê2) − (ê1 · ê2), decays as r−3 at long distances, hD(r) →
(ε − 1)2/(4περyr3) [63], where y is given by Eq. (24) and r̂12 = r12/r12. Linear
combinations of the Fourier-transformedΔ- and D-projections enter the longitudinal
(L) and transverse (T) structure factors of the polarization fluctuations in the liquid
[53], which depend on the wavevector k

SL(k) = 1 + (ρ/3)
[
h̃Δ(k) + 2h̃D(k)

]
,

ST (k) = 1 + (ρ/3)
[
h̃Δ(k) − h̃D(k)

]
.

(28)

Both SL(k) and ST (k) are long-ranged, but the trace of the structure factor

gK (k) = 1 + (ρ/3)h̃Δ(k) = 1
3

[
SL(k) + 2ST (k)

]
(29)

eliminates the long-range dipolar correlations present in h̃D(k) and leads to Eq. (27)
at k → 0. Examples of SL ,T (k), as well as the k-dependent Kirkwood factor gK (k),
are shown in Fig. 3 for SPC/E force-field model of water [60].

Fig. 3 Longitudinal (L) and transverse (T) structure factors and gK (k) from Eq. (29) for SPC/E
water at T = 300 K from molecular dynamics simulations [60]
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The physical meaning of the Kirkwood derivation [27] and of the corresponding
Onsager–Kirkwood relation [Eq. (21)] is, therefore, in eliminating the long-range
dipole–dipole correlations, scaling as r−3 and producing the dependence of the result
on the sample shape [24]. The linear combination of the longitudinal (z-axis) and
transverse (x-axis) responses reduces the problem to the local correlations repre-
sented by hΔ(r). The locality of the linear dielectric constant ε is, therefore, directly
linked to the locality of hΔ(r) or of the corresponding direct correlation function
cΔ(r) [54]. This simple notion raises an objection to a recently proposed interpreta-
tion of second-order light scattering [10] from electrolytes in terms of long-ranged
hΔ(r) [8]. If a long-ranged componentwith hΔ(r) ∝ r−3, or slower asymptote,would
indeed exist, the dielectric constant of an electrolyte would cease to be a material
property, for which no evidence exists either experimentally or theoretically [6]. The
derivation of the Kirkwood–Onsager equation outlined here also makes it clear that
the linear combination of the longitudinal and transverse projections, leading to Eqs.
(27) and (29), is specific to linear response and cannot be extended to the defini-
tion of the nonlinear dielectric function εE . It is therefore not justified to use the
Kirkwood–Onsager equation to connect εE to 〈M2〉E [29] in the general nonlinear
scenario.

The use of linear response and the relations between the variance of the dipole
moment and the dielectric constant provide a fluctuation relation for the derivative of
the dielectric constant with temperature. Combining Eqs. (12) and (14), one arrives
at the following fluctuation relation for the logarithmic derivative of the dielectric
constant with respect to temperature:

(
∂ ln ε

∂ ln T

)
V

= 1 + ε

(
4πβ2

V
〈M2δH0〉 − 1

)
, (30)

where H0 is the total energy (Hamiltonian) of the unperturbed liquid, see Eq. (7).
Equation (30) clearly shows that the temperature derivative of the dielectric con-

stant reports on dipolar correlations of the order higher than the binary correlations
affecting the linear dielectric constant through the Kirkwood factor. The nonlinear
dielectric effects, which we consider next, are also strongly influenced by the higher
order correlations and can potentially deliver structural and dynamic information
not available from the linear dielectric constant [34, 56]. Before we proceed to that
next topic, we first present the result for the temperature derivative of the dielectric
constant connecting it to numerical simulations of polar liquids.

Since spherical cutoff is commonly employed in atomistic simulations of liquids
[2] one needs fluctuation relations in terms of the spherically symmetric vector dipole
moment. For that purpose, Eqs. (12) and (14) can be rewritten in the form

(
∂ ln ε

∂ ln T

)
V

= 3ε

2ε2 + 1
MT , (31)

where
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MT = 4πβ

3V
〈M2(βδH0 − 1)〉. (32)

The dimensionless parameter MT in this equation can be calculated from experimen-
tal temperature derivatives of the dielectric constant listed in Table1 for molecular
liquids [37]. The results are shown in Fig. 4, where MT follows an approximately
linear scaling with the dielectric constant, MT 	 −0.75ε, (dashed line in Fig. 4).
This scaling suggests ε(T ) ∝ T−9/8, which is quite close to the commonly used [67]
empirical approximation ε(T ) ∝ T−1. The latter empirical result is in fact in perfect
agreement with MT values obtained by excluding H-bonding liquids listed in Table1
(polar liquids shown by closed points in Fig. 4), which yields MT 	 −0.64ε. These
empirical observations suggest a fluctuation relation which should approximately
hold for high-temperature polar liquids

2πβ

εV
〈M2(βδH0 − 1)〉 	 −1. (33)

What is currently not known is whether deviations from this relation can be used to
signal an “abnormal” behavior of a liquid.Anobvious target for using suchfluctuation
relations in numerical simulations is to detect intermittent structural fluctuations,
such as formation of hydrogen-bonded rings in alcohols [61], when the Kirkwood
correlation factor gains a significant temperature dependence.

From the thermodynamic perspective, the empirical relation ε(T ) ∝ T−1 implies
that the entire free energy of electrostatic polarization is applied to the polarization
entropy

FE = −T SE (34)

and the internal energy of electric polarization vanishes,UE = 0. There seems to be
no fundamental reason why this result should hold in an extended range of tempera-
tures. This implies that ε(T ) ∝ T−1 has to be violated, as indeed was found in recent
experiments with propylene carbonate derivatives [66]. It is also violated in simula-

Fig. 4 MT calculated from Eqs. (31) and (32) for polar liquids (closed points) and alcohols and
water (open points, formamide omitted) at T = 298 K. The experimental data are taken from Ref.
[37] and the dashed line, MT = −0.75ε, is the fit to all data. The dash-dotted line, MT = −0.64ε,
is the fit to the polar liquids only. The solid line refers to the fluid of dipolar hard spheres (DHS)
[40]
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tions of the model fluid of dipolar hard spheres [40], as is shown by the solid line in
Fig. 4. The origin of the empirical temperature scaling is theβ-factor in the right-hand
side of the Kirkwood–Onsager equation [Eq. (21)], which results in ε(T ) ∝ T−1 at
ε 
 1 if 〈M2〉 or gK are temperature-independent. This, however, is not the case
when dielectric data are collected over an extended range of temperatures. Figure5
shows 〈M2〉(T ) 	 m2NgK (T ) for glycerol [47].

The temperature dependence of 〈M2〉 leads not only to the violation of the
ε(T ) ∝ T−1 empirical rule, but also violates a more fundamental requirement
typically imposed on macroscopic variables and known as the Nyquist [51], or
fluctuation–dissipation [28], theorem. It prescribes that the variance of amacroscopic
extensive variable A is proportional to the number of particles in the system N and
temperature T : 〈(δA)2〉 ∝ NT , δA = A − 〈A〉. The linear scaling of 〈M2〉 with N
is usually observed and is very essential to our arguments below regarding the non-
linear dielectric effect. On the contrary, the temperature scaling of the macroscopic
dipole moment clearly violates the Nyquist theorem: it decreases with increasing T
instead of the anticipated linear increase. In contrast to the dipole moment, thermal
fluctuations of the liquid density behave in accord with the Nyquist theorem (Fig.
5). The k = 0 value of the density–density structure factor

S(0) = 〈(δN )2〉Ω/〈N 〉Ω = β−1ρβT (35)

describes fluctuations δN = N − 〈N 〉Ω of the number of particles N in a given
volume Ω relative to the average value 〈N 〉Ω . For a sufficiently large Ω and a
macroscopic N , one expects S(0) ∝ T in a qualitative agreement with observations
[9, 11, 14].

The microscopic origin of 〈M2〉(T ) shown in Fig. 5 and shared by many polar
liquids [66] has never been clarified. More theoretical studies of the temperature
effect on the dielectric constant and the Kirkwood factor are required, but they all
share the same difficulty of accounting for multiparticle orientational correlations
entering the fluctuation relations in Eqs. (31) and (32). While the Kirkwood factor
reflects only binary correlations, its temperature dependence requires understanding
orientational correlations of higher order.

Fig. 5 〈M2〉/(Nm2) for glycerol versus temperature (m = 4.6 D) [47]. The solid line, referring to
the right axis, shows S(0) calculated from the adiabatic bulk modulus [9, 11]. The filled points refer
to direct measurements of βT [14]. The dashed lines are polynomial fits through the experimental
points
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4 Molecular Polarizability

As mentioned above, the variance 〈M2〉 in the Kirkwood–Onsager equation (21)
represents the sum of all permanent and induced, due to electronic and vibrational
polarizability, molecular dipoles in a macroscopic sample. The separation of the two
components is achieved by introducing the effective polarity parameter ye into the
modified Kirkwood–Onsager equation

(ε − 1)(2ε + 1)

9ε
= yegK . (36)

The polarity parameter ye needs special care for polarizable molecular liquids.
Theproblemof incorporating themolecular polarizability as a separate component

of the dielectric response, distinct from the permanent dipoles, occupied already
early studies by Onsager [52] and Fröhlich [17]. The most widely used relation for
the dielectric constant is due to Fröhlich who considered the model of permanent
dipoles of the liquid immersed in the polarizable continuum characterized by the
high-frequency dielectric constant ε∞ (Table1). The Kirkwood–Fröhlich equation
then reads

(ε − ε∞)(2ε + ε∞)

ε(ε∞ + 2)2
= ygK . (37)

This equation achieves a specific form for the dipole moment in the liquid state m ′,
which is typically enhanced compared to the gas-phase dipole moment m due to
molecular polarizability α [4]. The polarizability itself is enhanced from the gas-
phase value α to the condensed-phase value α′.

The prescription for obtaining m ′ in Fröhlich’s approach is just one of many
possible formulations of mean-field theories for screening the permanent charges
by induced molecular dipoles [24]. Microscopic mean-field theories of polarizable
liquids [63, 65] allow far better estimates ofm ′ andα′ thanFröhlich’s ansatz.Different
routes to these parameters can be summarized in terms of a single effective polarity
parameter ye in Eq. (36), which becomes [4, 63]

ye = (4π/9)βρ(m ′)2 + (4π/3)ρα′. (38)

A significant advantage of this formulation is that it preserves the left-hand side of the
Kirkwood–Onsager equation [Eqs. (21) and (36)], shifting the focus to the calculation
or experimental measurement of the effective condensed-phase dipole moment m ′
and polarizability α′. Such calculations of ye applying the Wertheim theory [65] of
polarizable liquids are listed in Table2. These results are then used in Eq. (36) to
calculate gK from experimental ε (Table2). Since molecular polarizability directly
enters the calculations, the sensitivity to the choice of ε∞, typically complicating
estimates of gK from the Kirkwood–Fröhlich equation [37], is avoided when Eq.
(36) is used instead.
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Table 2 Nonlinear response coefficients bP [subscript “P” refers to constant pressure in Eq. (49)]
calculated from experimental Piekara coefficients [37]

Liquid ye gK bP bMF
V bMF,a

V b(2)
V

Methanol 2.80 2.54 0.276 0.018 0.742 −0.54

Ethanol 1.93 2.74 0.269 0.024 0.675 −0.53

Propanol 1.51 2.92 0.324 0.028 0.661 −0.52

t-butanol 1.21 1.90 0.287 0.051 0.508 −0.54

Water 6.65b 2.61 0.068 0.008 0.915 −0.52

1,1-dichloroethane 1.35 1.55 0.228 0.054 0.450 −0.44

Chlorophorm 1.53 0.60 0.149 0.104 0.293 4.53
aWith the cavity field susceptibility determined from the perturbation expansions according to
Eq. (72). by = 6.22 for SPC/E force-field water used to produce the structure factors in Fig. 3

5 Non-Gaussian Fluctuations of the Macroscopic Dipole

Before proceeding to the derivation of the Piekara coefficient, let’s first lake a look
at the general question of what such a parameter can tell us about the statistics of
dipolar fluctuations in a macroscopic material. The starting point here is the partition
function of a dielectric material in Eq. (8). One can consider the dipole moment M
as a stochastic variable and define the cumulant generating function [21]

eg(E0) = 〈eβME0〉 = Q(E0)

Q(0)
. (39)

The function g(E0) is given by the cumulant series in the field E0 with the coefficients
defined in terms of cumulants Kn of the stochastic variable M

g(E0) =
∞∑
n=2

(βE0)
n

n! Kn. (40)

The sum starts with n = 2 because 〈M〉 = 0 and the second cumulant K2 is equal to
the dipole moment variance

K2 = 〈M2〉. (41)

The fourth cumulant K4 = 〈M4〉 − 3〈M2〉2 can be written as K4 = −3〈M2〉2UN

with
UN = 1 − 〈M4〉/(3〈M2〉2). (42)

The parameter UN quantifies the deviation of the statistics of M from the Gaus-
sian statistics;UN = 0 when M is a Gaussian stochastic variable. The subscript “N”
specifies that certain scaling of this parameter with the number of molecules N is
anticipated, in analogy to a similar parameter considered in the theory of critical
phenomena [30]. As mentioned above, the variance of the dipole moment of the bulk
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material scales linearly with N , 〈M2〉 ∝ N . This scaling implies that the statistics of
the macroscopic dipole moment M of a thermodynamically stable phase, character-
ized by a single free energy minimum, is Gaussian (UN → 0) in the thermodynamic
limit N → ∞. Only close to the critical point of transition to spontaneous polar-
ization (such as ferroelectricity) can the system visit a finite number of alternative
free energy minima. Transitions between these alternative configurations make the
statistics of the macroscopic dipole non-Gaussian, characterized by a nonzero UN

[30].
From Eqs. (39) and (40), the average dipole moment induced by the external field

is

〈M〉E =
∞∑
n=1

(βE0)
n

n! Kn+1. (43)

By truncating the series after the second expansion term, one obtains for the uniform
polarization of the sample

〈M〉E
V

= βE0
〈M2〉
V

− (βE0)
3 〈M2〉2
2V 2ρ

BV , (44)

where
BV = NUN (45)

and the subscript “V” specifies the constant volume conditions.
Since UN → 0 at N → ∞, it can be represented by a series in powers of N−1.

Therefore, in contrast to UN itself, BV in Eq. (45) is finite at N → ∞ and gives
access to the O(N−1) expansion term of UN in powers of N−1. We conclude that
the cubic expansion term, connecting the induced dipole with E3

0 , characterizes
deviations from the Gaussian statistics of the dipole moment in finite-size samples.
Such deviations cannot be observed by direct measurements of the dipole moment
performed on macroscopic samples, but are accessed through the measurements of
the third-order susceptibility connected to the Piekara coefficient [Eq. (19)]. We next
show that such third-order susceptibility fundamentally reflects correlations between
many distinct dipoles in the liquid and cannot be reduced to the binary correlations
sufficient for linear response.

6 Nonlinear Dielectric Response

The derivation of the nonlinear dielectric response in terms of the external field E0

[Eq. (44)] can be recast in terms of the Maxwell field E . This is achieved by using
the connection between 〈M2

z 〉 and the total dipole variance 〈M2〉 from Eq. (22) and
the connection between the external and Maxwell field given by expansion (16). By
keeping only the terms up to ∝ E3, the substitution of Eqs. (16), (22), (23), and (33)
into (44) leads to the equation for χ3
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χ3 = 9yegK
2ε + 1

χ3 − βε3

2ρ

(
9yegK

4π(2ε + 1)

)2

BV . (46)

By applying the Kirkwood–Onsager equation [Eq. (36)], one arrives at

χ3 = − βε2Δε2

2(4π)2ρ
BV , (47)

where Δε = ε − 1.
The final result for the dielectric constant decrement can be written in terms of

the reduced free energy density of the electric field in the capacitor

fE = (βε/8πρ)E2 (48)

It is easy to see [Eq. (10)] that fE is the free energy of the electrostatic field per
molecule of the liquid divided by kBT . In terms of this natural energy scale, the
dielectric increment becomes [see Eq. (19)]

ΔεE,V = −Δε2 fEbV , (49)

where we have defined a new dimensionless nonlinear response parameter

bV = 3
2εBV . (50)

The subscript “V ” in ΔεE,V specifies the dielectric increment at constant volume of
the liquid, which does not incorporate potential electrostriction when measurements
are done at constant pressure [16, 36]. Most data are collected at P = Const, but the
correction from V = Const to P = Const is very minor [44].

The reason for scaling BV with ε in Eq. (50) is the observation that bV is nearly
constant formanymolecular liquids, in contrast to the Piekara coefficient. Table2 lists
bP (P = Const) values calculated from reported Piekara coefficients [37] according
to Eq. (49). If the relative invariance of bP,V among molecular liquids (with water
being a notable exception) and/or thermodynamic conditions is confirmed, the for-
mulation in terms of the reduced cumulant bV provides a significant insight since it
anticipates a simple scaling for the Piekara coefficient

a ∝ βεΔε2Vm, (51)

where Vm is the molar volume.
The simultaneous constancy of bV and (∂ ln ε/∂ ln T )V suggests another empirical

relation
ΔεE,V 	 0.3Δε2SE/(kBN ), (52)

where SE is the polarization entropy in Eq. (12) (linear response). There might be no
fundamental reason for this correlation since thefluctuation relations for the nonlinear
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dielectric decrement and polarization entropy are clearly distinct. It is also limited to
high-temperature liquids listed in Table2, which have supplied the proportionality
coefficient in this equation.

The parameter BV in Eq. (50) is the reduced cumulant quantifying the non-
Gaussian character of dipole moment fluctuations in the dielectric [Eqs. (42) and
(45)]. As we show below, it involves complex many-particle correlations between
the dipoles in the liquid. Before we turn to a fully microscopic derivation, it is useful
to derive an expression for bV in the framework of a mean-field theory of dielectrics.

One constructs a mean-field theory by reducing the instantaneous polarization of
the liquid created by the external field and thus depending on liquid’s configuration
by an average local field produced by all dipoles oriented by the field [19, 64].
The prescription introduced by Onsager [52] for this local field is in terms of the
cavity field experienced by a dipole placed inside a physical dielectric cavity carved
from the dielectric. Such a cavity field Ec = χcE0 is the product of the cavity field
susceptibilityχc and the external field E0 [40]. If, followingOnsager [52], one assigns
the cavity to a single molecule, the dielectric models suggest the relation [25]

χc = 3/(2ε + ε∞). (53)

Here, the high-frequency dielectric constant ε∞ appears from the assumption that
the entire liquid outside a given molecule carries the dielectric constant ε, while only
the electronic polarizability, characterized by ε∞, exists inside the molecule. The
solution of the dielectric boundary volume problem can be formulated in terms of
the dielectric drop ε/ε∞ at the dividing dielectric surface [31], which leads to Eq.
(53).

Based on the assumption of independent liquid dipoles experiencing the local
field Ec, one calculates the average dipole of the liquid in the form of the Langevin
function L(x) = coth(x) − 1/x

〈M〉E = NmL (βmχcE0) . (54)

A clear advantage of this formulation is that it allows both linear and nonlinear dielec-
tric response for an induced dipole. The Langevin model also allows an extension
from the static response to rotational dynamics of the mean-field dipole described
as Brownian rotational diffusion [13]. Solutions of such equations give access to
nonlinear frequency-dependent susceptibilities. What is absent from these dynamic
theories is the dynamics of the cavity susceptibility, the static limit of which is given
by Eq. (53). It accounts for the collective effect of all dipoles surrounding a given
target dipole and polarized by the external field. While modeling χc is still a theo-
retical challenge, as we discuss below, it is not the main difficulty of the mean-field
models. The main deficiency comes from the assumption of an ideal gas of dipoles
representing a dense polar liquid. Nevertheless, one readily arrives at the nonlinear
dielectric effect by expanding Eq. (54) in powers of E0. The lowest order dielectric
increment is given then by Eq. (49) with the mean-field formula for the parameter
bV
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bMF
V = 2

5
χc. (55)

From the perspective of mean-field theories, the problem of calculating the non-
linear dielectric response is reduced to the problem of the local cavity field, which
we consider in more detail below. If the prescription given by Eq. (55) is adopted,
bMF
V 	 3/(5ε) at ε 
 1. This result comes in direct contradiction with reported

instances [7, 38] of negative bV , which are missed altogether by the mean-field
theories. The values of bMF

V obtained by combining Eqs. (53) and (55) are also too
low compared to observations (Table2). The use of the cavity susceptibility derived
below to replace the continuum expression (53) somewhat improves the agreement
with observations (Table2). However, from the fundamental perspective, the Piekara
coefficient is the result of compensatory influence of binary and higher order dipolar
correlations completely missed by the mean-field theories, as we discuss next.

In contrast to the Kirkwood–Onsager equation for the linear dielectric constant,
the nonlinear dielectric response expressed in terms of the reduced fourth-order
cumulant [Eq. (44)] does not clearly separate the long-range correlations, carrying
the potential dependence on the sample shape, from the short-range correlations.
One has to prove that the resulting parameter BV involves short-range correlations
only. This is achieved by splitting the fourth-order cumulant of the sample dipole
moment into a sequence of terms of increasing correlation order

m−4〈M4〉 = N

5
+

∑
i �= j

[
3〈e2i ze2j z〉 + 4〈eize3j z〉

]

+6
∑

i �= j �=k

〈eize jze2kz〉 +
∑

i �= j �=k �=m

〈eize jzekzemz〉.
(56)

Here, eiz is the z-projection of the unit vector of the molecular dipole. The two terms
in the brackets in the second summand can be expressed in terms of the established
binary correlations in the liquid, while the last two terms represent triple- and fourth-
order correlations between distinct dipoles in the liquid, which have to be short-
ranged. For the terms in the second summand in Eq. (56), one derives

3
∑
i �= j

〈e2i ze2j z〉 = N 2/3 + (N/3)ρh̃0(0),

4
∑
i �= j

〈eize3j z〉 = (4N/5)(SL(0) − 1).
(57)

In this equation, h0(r) = g0(r) − 1 is the angular isotropic pair correlation function
of the liquid and h̃0(k) is its Fourier transform. Further, SL(0) is the k = 0 value of
the longitudinal structure factor given by Eq. (28).

One can repeat the same derivation for the x-projection of the dipole moment,
which yields an equation identical to Eq. (56) upon the substitution eiz → eix . Cor-
respondingly, Eq. (57) converts to
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3
∑
i �= j

〈e2i x e2j x 〉 = N 2/3 + (N/3)ρh̃0(0),

4
∑
i �= j

〈eixe3j x 〉 = (4N/5)(ST (0) − 1).
(58)

The inequality between the z- and x-projections for 〈eiαe3jα〉, α = x, z in Eqs. (57)
and (58) was clarified by Fulton [20].

The cumulant expansion in terms of the external field E0 in Eq. (44) can now be
written separately for 〈Mz〉E and 〈Mx 〉E by assuming that the same external field E0

is applied along both directions. Combining them as 〈Mz〉E + 2〈Mx 〉E leads to the
total dipole moment of the sampleM in the linear expansion term in Eq. (44) and to
the elimination of the long-range component of the dipolar correlation function hD

from the linear combination of the longitudinal and transverse responses of the polar
liquid in Eqs. (57) and (58). The result is the analogue of Eq. (44)

〈Mz〉E + 2〈Mx 〉E = βE0〈M2〉 + (βE0)
3(K4/2), (59)

where

K4 = 2m4N

15

[
H (2) + H (3,4)

]
. (60)

In Eq. (60), the binary correlations are collected into the k = 0 density–density
structure factor S(0) given by Eq. (33) and the Kirkwood factor according to the
relation

H (2) = 6(gK − 1) + 5
2 S(0) − 1. (61)

Further, the third- and fourth-order correlations [last two summands in Eq. (56)],
which are currently challenging to compute [44], are collected into the component
H (3,4) in Eq. (60). Importantly, K4 carries the expected ∝ N scaling, implying that
both H (2) and H (3,4) are intensive parameters.

Combining Eq. (59) with the expansion of the dipole moment in terms of the
powers of theMaxwell field inEq. (15) and accounting for the connection between the
Maxwell field and the external field for the slab sample, one arrives at the following
expression for the nonlinear expansion coefficient:

χ3 = 3ε3

2ε3 + 1

β3K4

6V
	 β3K4

4V
. (62)

This equation can be used directly to estimate the Piekara coefficient in Eq. (19).
Alternatively, one can use Eq. (62) to obtain the dimensionless reduced cumulant bV
in Eq. (50), which becomes

bV = − 1

10

(
2ε + 1

gK ε

)2 [
H (2) + H (3,4)

]
. (63)
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Fig. 6 gK calculated from Eq. (64) (circles) and from the dielectric constant according to the
Kirkwood–Onsager equation [Eq. (21)] by using the reported simulation data [40]. The inset shows
gK − 1 at εs = 30.6 versus the reciprocal number of particles 1/〈N 〉within a spherical cutoff equal
to the half of the length of the simulation cell. The dashed line is the linear regression through the
simulation points. Its intercept for each liquid polarity is reported by a filled circle in the main panel.
All points refer to Monte Carlo simulations of fluids of dipolar hard spheres with varying dipole
moment [46]

The estimates of bV based on experimental Piekara coefficients suggest that both the
binary correlations incorporated into H (2) and the higher order correlations entering
H (3,4) are equally important [44] (Table2). Specifically, H (2) are usually positive
and the overall positive values of bV observed for many polar liquids arise from the
compensating effect of the negative H (3,4) component.

Equations (57) and (58) provide a definition of the Kirkwood factor alternative
to commonly used in terms of the average cosines between the liquid dipoles [Eq.
(25)]

gK = 5

3N

∑
α

∑
i, j

〈eiαe3jα〉. (64)

Here, α = x, y, z specifies three Cartesian components of the unit vector of the
molecular dipole (Fig. 1). Calculating theKirkwood factor fromfinite-size numerical
simulations turned out to be a nontrivial computational problem [33, 49]. It is not
clear at the moment if Eq. (64) provides a superior route for computations. However,
when sufficient sampling is achievable, the standard route [49] to gK through Eqs.
(21) and (23) is consistent with Eq. (64). Figure4 illustrates this point for a fluid of
dipolar hard spheres [46].

7 Perturbation Theories of Polar Liquids

Thermodynamic functions of polar liquids are obviously affected by interactions of
molecular multipoles. One successful approach to calculate the free energy of mul-
tipolar interactions is through Padé-truncated perturbation series introduced by Stell
and coworkers [22, 62]. The idea is to expand the free energy of a macroscopic sam-
ple in the anisotropic interaction energy Ha while adopting the isotropic distribution
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functions obtained with the isotropic part on intermolecular interactions as reference.
The free energy of the liquid

F = F0 + ΔF = F0 − F2 + F3 + · · · (65)

becomes a sum of the reference isotropic part F0 and the perturbation expansion for
the polar part collected into ΔF . The expansion terms can be directly calculated,
for instance: F2 = (β/2)〈H 2

a 〉 and F3 = (β2/6)〈H 3
a 〉. The terms beyond F3 involve

high-order dipolar correlations, for which no computational or formal approaches
have been developed. The perturbation expansion has to be truncated, and the Padé
truncation [22, 62] offers the following form

ΔF = − F2

1 + F3/F2
. (66)

This approximation is exact for the first two expansion terms and generates a sign-
alternating infinite series, as expected from the general properties of the infinite
perturbation series for dipolar liquids [62].

This procedure, which performs exceptionally well for polar liquids [22], can be
extended to a dipolar fluid placed in the external electric field [45]. Since the external
field is typically weak, the solution of the problem is achieved by applying the mean-
field approximation. It replaces the instantaneous field of all dipoles in the liquid
polarized by the external field with a local cavity field Ec acting on each dipole

Ha(E0) = Ha −
∑
j

m j · Ec. (67)

The new definition of the anisotropic interaction Ha(E0) can be used in the perturba-
tion expansion to replace ΔF with the polarization free energy ΔFE in the presence
of the field. It turns out that from two terms, F2 and F3, used in the Padé form only
F2 is affected by the field. The cumulant 〈H 2

a 〉 is replaced with

〈Ha(E0)
2〉 = 〈H 2

a 〉 + (m2/3)Nχ2
c E

2
0 . (68)

Consequently, ΔFE is given by Eq. (66) in which one replaces F2 with F2(E0) =
(β/2)〈Ha(E0)

2〉. This formulation of the theory, despite the use of the cavity field sus-
ceptibility, is a significant step forward compared to the Langevin equation [Eq. (54)].
It explicitly takes into account the orientational correlations between the dipoles in
the liquid, while they are totally neglected in the one-particle Langevin formula.

The inspection of Eq. (66) shows that its combination with Eq. (68) leads to the
polarization free energy nonlinear in the external field E0. Both linear and nonlinear
relations for the dipole induced in the sample by the external field can be established
based on this formalism. We present here the linear results, followed the theory’s
application to the problem of the field effect on the glass transition.
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The dipole moment induced in the sample by the external field E0 is obtained as
the derivative of the polarization free energy [see Eq. (5)]

〈M〉E = −
(

∂ΔFE

∂E0

)
V,T

. (69)

One obtains for a given component of the dipole moment in the linear response
approximation

4π

V
〈Mz〉E = 3yχ2

c E0z
1 + 2z

(1 + z)2
, (70)

where

z = F3

F2
= β

3

〈H 3
a 〉

〈H 2
a 〉 . (71)

Since the free energy has been established for an isotropic liquid, one has to repeat
the derivative for each Cartesian component and then follow the procedure outlined
above for the slab sample to establish the connection of the perturbation expansion
to the dipole moment variance 〈M2〉. The result of this procedure is a new equation
for the cavity susceptibility

χc = √
gK

1 + z√
1 + 2z

. (72)

The terms F2 and F3 in the perturbation expansion for the free energy are well
established for simple model liquids with known reference distribution functions
describing isotropic interactions in the liquid [22]. For a fluid of dipolar hard spheres,

z = y

4π

ITD(ρ∗)
I6(ρ∗)

. (73)

Here, In = 4π
∫ ∞
0 g0(r)(dr/rn−2) is the two-particle perturbation integral calculated

based on the pair distribution function g0(r) of the reference system. Correspond-
ingly, IT D(ρ∗) is the three-particle perturbation integral involvingdipolar interactions
between three separate molecular dipoles. Both functions are tabulated as polyno-
mials of the reduced density ρ∗ = ρσ 3, where σ is the diameter of the hard sphere
[32]

ITD(x) = 16.4493 + 19.8096x + 7.4085x2 − 1.0792x3 − 0.9901x4 − 1.0249x5,

I6(x) = 4.1888 + 2.8287x + 0.8331x2 + 0.0317x3 + 0.0858x4 − 0.0846x5.
(74)

The Kirkwood factor gK (y) is often known from numerical simulations and can
be used to test Eq. (72). Figure7 compares the results of independent simulations of
the cavity field in dipolar fluids [40] to the analytical formula. The Maxwell solution
given by Eq. (53) agrees with simulations only at small ε (dashed line in Fig. 7).
On the other hand, Eq. (72), does not capture the initial drop of the cavity field, but
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Fig. 7 Cavity field at molecules of a homogeneous fluid of dipolar hard spheres calculated from
Monte Carlo simulations (MC) [40], from theMaxwell solution for a cavity carved from a dielectric
(Maxwell, Eq. (53) with ε∞ = 1), and from Padé-based perturbation expansion leading to Eq. (72)
(Pade).The small filleddiamonds refer to the calculations done according toEq. (72) for liquids listed
in Table1. The large diamond is the cavity field calculated from molecular dynamics simulations of
the Lennard–Jones sphere with the size equal to the size of the water molecule immersed in SPC/E
force-field water (ε = 71.5) [39]. The results for molecular liquids and SPC/E water are reported
at T = 298 K

provides an overall better description of the shape of χc(ε). The distinction between
the perturbation and Maxwell results is most significant at ε 
 1 when their ratio
scales as ε3/2. The analytical calculations are also extended to the liquids listed in
Table1 (filled diamonds in Fig. 7). Empirical Kirkwood factors listed in Ref. [37] and
the hard-sphere diameters from Ref. [59] were used in this rather crude calculation,
which does not include higher ordermolecularmultipoles [22] in addition to a number
of other approximations. Nevertheless, the calculations yield the cavity field forwater
essentially coinciding with that produced by molecular dynamics simulations for a
water-like Lennard–Jones sphere placed in SPC/Ewater [39] [a large diamond in Fig.
6 at the same level as the small diamond referring to Eq. (72)]. The water calculation
does not coincide with the SPC/E result because the dielectric constant of the latter is
shifted to ε = 71.5 at T = 298 K. Overall, these data, even though currently limited,
indicate that continuum prescription for the cavity field susceptibility, given by Eq.
(53), has a very limited range of applicability (small ε) and is bound to fail for most
polar molecular liquids.

There is a fundamental reason for the failure of continuum estimates of the cavity
field in molecular liquids. The standard model, going back toMaxwell [48], assumes
that electric field leads to surface charge at any dividing surface.Maxwell thought of a
dielectric in terms of two mutually neutralizing fluids carrying positive and negative
charge. Within this model, the external field shifts one fluid relative to the other,
thus creating positive and negative lobes of the surface charge at any closed surface
within the dielectric (Fig. 8a). The current view of a polarized dielectric is in terms
of molecular dipoles aligned by the field and creating the surface charge through
the corresponding ends of the dipoles exposed to the dielectric surface [25] (Fig.
8b). While this latter view is probably correct for solid or strongly viscous materials
(see below), it can hardly provide the correct physical picture for high-temperature
polar liquids. The conceptual difficulty here is that the external fields are weak and
aligning energies supplied by them cannot compete with thermal agitation. The issue
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(a) (b)

Fig. 8 Schematic representation of the origin of the surface charge at dielectric interfaces in the
Maxwell model of deformable positively and negatively charged fluids (a) and in the model of
oriented surface dipoles (b)

of timescales is hidden here, as is often the case with seemingly static problems [15].
If the surface dipoles can rotate, through thermal agitation, on the experimental time-
scale, the surface alignment averages out to zero and no surface charge is produced.
A molecular cavity with surface charge then effectively turns into the virtual cavity
considered by Lorentz [4], which does not carry surface charge. This likely does not
happen for low-temperature liquids close to the glass transition since the relaxation
time is very close to the observation time and some residual surface charge must be
preserved (see below).

The dielectric Lorentz cavity is a macroscopic construct that considers a large
volume of polarized liquid separated from the rest of the polarized liquid without
producing a real physical interface (virtual cavity) [4]. The cavity field susceptibility
in such virtual cavity is

χc = ε + 2ε∞
3ε

. (75)

Comparing this equation to the Maxwell result in Eq. (53), one can see that the
main qualitative distinction between two results is that the Maxwell cavity field
strongly screens the field of external charges, χc 	 3/(2ε), while the Lorentz cavity
susceptibility reduces to a constant χc → 1/3 at ε 
 1. This latter limit is indeed
reached in simulations of large soluteswhich do not significantly perturb the structure
of the liquid and thus mimic the Lorentz cavity [39, 40] (Fig. 9). A significant
point here is that the liquid molecules in the surface layer are not restrained in their
molecular motions and average the surface charge out to zero on the observation
time.

The notion that molecular interfaces of liquids at sufficiently high temperatures do
not carry surface charge has direct impact on observations where polarization of the
interface is probed by experiment. One such observable property is the absorption of
radiation by solutions. The radiation in the THz domain of frequencies is fast enough
to allow dynamic freezing of the dipole moment of a large solute, but provides a suf-
ficient observation window for the water molecules to relax. Figure10 illustrates the
distinction between the Maxwell and Lorentz cavity susceptibilities used to calcu-
late absorption of THz radiation by aqueous solutions of lysozyme with changing
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Fig. 9 χc(ε) for hard-sphere cavities of varying size in liquids of dipolar hard sphereswith changing
dipole moment (points) [40]. The legend lists the ratio of the cavity diameter to that of the liquid.
Lines refer to the Lorentz [solid, Eq. (75)] and Maxwell [dashed, Eq. (53)] cavity susceptibilities

Fig. 10 Δᾱabs = αabs/αw − 1 calculated from the absorption coefficient of the solution, αabs, and
water, αw, versus the volume fraction η0 of lysozyme in solution. The use of the Lorentz cavity
susceptibility [Eq. (75), solid line] provides a better description of the experimental results (points
[50]) than the Maxwell cavity susceptibility [Eq. (53), dashed line]

concentration [50]. Even though one might expect that the protein–water interface
is too complex to allow any simple model, it appears that waters in the hydration
shells are sufficiently disordered to produce an overall Lorentz cavity field when the
electric field of radiation is applied [41]. The Lorentz susceptibility then provides a
satisfactory account of the change in the absorption coefficient against the volume
fraction of the protein in solution (Fig. 10). This outcome can be rationalized for
large solutes creating cavities approaching the macroscopic limit envisioned by the
Lorentz virtual cavity construction. For local fields acting on individual molecules
inside the bulk liquid, the Lorentz result is hardly applicable, as is indeed seen from
simulations and calculations shown in Figs. 7 and 9. Microscopic perturbation the-
ories give superior description in this case. The current formulation, however, does
not anticipate nearly frozen orientational dynamics of low-temperature liquids near
the point of glass transition as we discuss next.

8 Effect of the Electric Field on Glass Transition

Electric field elevates the temperature of glass transition Tg , and the change ΔTg ∝
E2 scales quadratically with the applied field. Glass transition is commonly viewed
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as a dynamical phenomenon requiring crossing of the main relaxation process of the
glass former with the experimental observation time [3]. Therefore, the alteration
of the glass transition temperature is measured from the effect of the electric field
on the relaxation time of the main relaxation process [56]. However, an alternative
perspective on the glass transition views the dynamic slowing down as merely a
manifestation of thermodynamic changes in the system related to shrinking of the
configuration space available to the system with lowering temperature [1]. This per-
spective places the configurational entropy Sc of the material in the forefront as the
main property to consider when addressing the approach to the glass transition [42,
57]. The temperature of the laboratory glass transition also turns out to be close
to the thermodynamic Kauzmann temperature TK at which configurational entropy
vanishes. If the thermodynamic view of glass transition is adopted, all effects of
thermodynamic and external conditions on glass transition are reduced to the cor-
responding effects on the configurational entropy. When applied to the effect of the
electric field, one approximates ΔTg by the corresponding shift of the Kauzmann
temperature: ΔTK 	 ΔTg (Fig. 11).

In the canonical Gibbs ensemble, the configurational entropy is the logarithm of
the density of states evaluated at the average energy of the system Ē

Sc = kB ln
[
Ω(Ē)

]
. (76)

The density of statesΩ(E) in turn enters the canonical partition function in the form
of the Laplace transformation from the variable of energy E to the variable of inverse
temperature β

e−βF(β) =
∫ ∞

0
Ω(E)e−βEdE . (77)

If the functional form F(β) is known, this information can be used to calculateΩ(E)

by inverse Laplace transform. This opportunity presents itself for the Padé-truncated
perturbation expansion for polar liquids [45] discussed above. The free energy in Eq.
(66) can be rewritten as

ΔTK

ΔTg

E = 0

E > 0

T

sc σ∞

Fig. 11 Schematic representation of the effect of the electric field on the temperature dependence
of the configurational entropy and the depression of the glass transition caused by the shift of the
Kauzmann temperature
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ΔF ∝ −N
z2

1 + z
, (78)

where z, as defined by Eqs. (71) and (73), is proportional toβ with the proportionality
coefficient determined by perturbation theories. This functional form allows an exact
inverse Laplace transform and the calculation of the density of states related to
orientational degrees of freedom of the dipoles in the liquid. The corresponding
configurational entropy becomes [45]

sc = Sc/(kBN ) = σ∞ + sp, (79)

where
sp = − s0

(1 + T/T ′)2
(80)

is the entropy of the dipolar interactions in the liquid

sp = − 1

kBN

(
∂ΔF

∂T

)
V

. (81)

In Eqs. (79) and (80), T/T ′ = 1/z and σ∞ defines the configurational entropy per
molecular dipole at T → ∞ [57] (Fig. 11). Further, the dimensionless entropy s0
of disordering the dipoles when changing the temperature from T = 0 to T → ∞
is constructed from the second-order and third-order cumulants of the anisotropic
intermolecular interaction Ha

s0 = (9/2N )〈H 2
a 〉3/〈H 3

a 〉2. (82)

As is seen from Eq. (79), the appearance of the Kauzmann temperature TK > 0 is
related to the requirement σ∞ < s0.

Since the high-temperature plateau σ∞ is not affected by the field, the change in
the configurational entropy induced by the electric field is given by the corresponding
change in the entropy of the polar liquid [Eq. (79)]

ΔscE = ΔspE , (83)

where the subscript “E” specifies the effect of the electric field on the corresponding
quantities. The change in the entropy of dipolar interactions ΔspE can be approxi-
mated by SE/(kBN ) in Eq. (12) [26].

The configurational entropy is decreased in the presence of the field (Fig. 11),
with the resulting upward shift in the temperature at which sc becomes zero, i.e., the
Kauzmann temperature. The dependence on the electric field enters the configura-
tional entropy through the parameter z in Eq. (71), which depends on E2

0 through
〈Ha(E0)

2〉 in Eq. (68). From this connection, the relative change of TK is obtained
as [45]



30 D. V. Matyushov

σ∞
ΔTK
TK

= β2
K

6
√
2

(mEc)
2

1 + z
, (84)

where βK = (kBTK )−1. By assuming ΔTK /TK 	 ΔTg/Tg and employing the
Kirkwood–Onsager equation [Eq. (33)], this relation can be brought to the form

σ∞
ΔTg
Tg

= (εg − 1)(2εg + 1)

3
√
2gK

χ2
c

fE
1 + z

, (85)

where εg = ε(Tg) and fE is the electrostatic free energy per molecule given by Eq.
(48) and reduced with kBTg . Note that the nonlinear dielectric effect discussed above
in terms of the Langevin model [Eqs. (54) and (55)] and the elevation of Tg are both
affected by χ2

c . This is also the case for nonlinear spectroscopic techniques [5]. These
observables are, therefore, sensitive to the models applied to describe χc.

The theoretical prediction for the shift of the glass transition temperature is
strongly dependent on the model used for the cavity susceptibility χc. If one assumes
the high-temperature model for this function and employs Eq. (72), the result is

σ∞
ΔTg
Tg

	 fE

√
2ε2g
3

1 + z

1 + 2z
∝ βε3gVm . (86)

If, on the contrary, the Maxwell model with χc 	 3/(2εg) [Eq. (53)] is adopted, one
obtains

σ∞(ΔTg/Tg) 	 (3/2
√
2gK ) fE/(1 + z) ∝ β(εg/gK )Vm . (87)

The cubic scaling ofΔTg with the dielectric constant εg in Eq. (86) is not supported
by the presently available data for the elevation of Tg by the external field [58].
For instance, for 2-methyltetrahydrofuran glass former with Tg = 97.5 K and εg 	
16.8 one obtains (σ∞/ fE )(ΔTg/Tg)(1 + z) 	 1.0 [58], where σ∞ = 9.9 and z =
T ′/TK = 0.81 [45]. This result is more consistent with the Maxwell limit in Eq.
(87) than with the cavity field from perturbation theories used in Eq. (86). This
comparison suggests that the Maxwell model for the cavity susceptibility is a better
representation of polarization of liquids close to the glass transition. The comparison
of high-temperature and low-temperature limits for the cavity field also suggests that
χc(T ) must show a substantial drop on approach to Tg . We are not aware of any
experiments reporting χc(T ) over an extended range of temperatures.

From a more fundamental perspective, a significant impact of the model adopted
for the cavity field on the calculated ΔTg is an indication that different theoret-
ical descriptions of interfacial polarization might be required for high- and low-
temperature liquids. The distinction between the Maxwell and Lorentz results for
the cavity field is a consequence of different types of boundary conditions imposed
on the solution of the Poisson equation in the dielectric boundary-value problem [25,
43]. The high-temperature liquids average out the orientations of the dipoles in the
interface, thus mostly eliminating the surface charge. This physics leads to a signifi-
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cant reduction of the screening imposed by a polar liquid on the field of the external
charges. In contrast, thermal motions are nearly frozen dynamically near Tg and the
surface charge at the dielectric dividing surface is preserved. The same outcome can
be manifested at interfaces where slowing of the rotational thermal motions of the
interfacial dipoles is achieved by intermolecular interactions between the liquid and
the substrate. The classical problem of ion solvation is a physically relevant example.
Similar considerations might apply to the frequency-dependent cavity field suscepti-
bility, which might show a dynamical crossover at frequencies corresponding to the
rate of collective relaxation of the interface. The dynamic response of the cavity field
has not yet received attention in the literature either theoretically or experimentally.
The general issues of the role of collective dynamics and structure of interfaces in the
observable dielectric properties still pose significant challenges to our understanding
of the dielectric response and remain open questions requiring further studies.

9 Conclusions

Nonlinear response of polar materials to an external electric field provides informa-
tion not available in the linear regime. The main fundamental distinction of the non-
linear dielectric susceptibility is the access to nontrivial high-order orientational cor-
relations of molecular dipoles. Microscopic understanding of the nonlinear response
is mostly an uncharted territory. Experimental challenges of resolving a relatively
weak nonlinear response and separating it from complications arising from heating
and other potential artifacts are still significant. While substantial progress of experi-
mental techniques has been achieved in recent years [34, 55, 56], theory still largely
lags behind. This comes in a stark contrast to many recent advances of computa-
tional techniques in understanding microscopic correlations underlying observables
interrogated by experiment [23]. The reason for this lack of progress is in astound-
ing difficulties encountered in computing many-particle molecular correlations in
condensed-phase materials. Analytical approximations for multi-body correlations
are nearly nonexistent and direct numerical simulations typically fail to converge the
corresponding correlation functions. This is a new frontier for simulations of polar
materials currently driven by advances in experiment reviewed in this volume.

Despite significant theoretical difficulties, some emergent opportunities have been
outlined here. In particular, temperature derivatives of linear response functions pro-
vide information about triple and fourth-order correlations. While these observables
already give access to nonbinary dipolar correlations, theymight be potentially easier
to compute compared to the nonlinear dielectric function. The development of formal
theories is still required, in particular in the form of the connection between observ-
ables produced in linear and nonlinear response. The cavity susceptibility, which
strongly affects the mean-field nonlinear response and field-induced elevation of the
glass transition temperature, is one such property of interest. It enters many spec-
troscopic observables and can potentially be accessed independently to test formal
theories. We have shown here that this function crosses from the high-temperature
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Lorentz limit to the low-temperature Maxwell limit when the relaxation time of the
liquid dipoles approaches the observation window and dipolar screening in polarized
interfaces becomes more prominent.
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Nonlinear Dielectric Relaxation in AC
and DC Electric Fields

P. M. Déjardin, W. T. Coffey, F. Ladieu and Yu. P. Kalmykov

Abstract Current theories of the nonlinear static and dynamic dielectric suscepti-
bilities of polar fluids subjected to strongAC andDC electric fields are reviewedwith
specific emphasis on those extending Debye’s theory of linear dielectric relaxation of
an assembly of polar molecules. The inclusion of intermolecular interactions in this
theory as well as nonlinear dielectric relaxation in the presence of time-dependent
fields is discussed. In particular, we emphasize the role played by intermolecular
interactions in the determination of the macroscopic dielectric properties of a polar
fluid via microscopic calculations, in both the linear and nonlinear responses.

1 Introduction

A well-founded microscopic theory of the electric polarization (both static and
dynamic) of polar fluids is essential to understanding many dielectric and electro-
optical relaxation phenomena and as such was initiated by Debye [1]. He first calcu-
lated the static susceptibility of an assembly of noninteracting rigid dipoles obtaining
a result which is essentially a replica of Langevin’s theory of paramagnetism and so
is called the Langevin–Debye theory. He then extended the calculation to include the
linear dielectric susceptibility of noninteracting polar molecules subjected to a weak
AC electric field, which unlike the static situation poses a nonequilibrium problem.
In order to accomplish this, he treated the effects of the heat bath surrounding a
dipole via the rotational diffusion model. This is based on a generalization of Ein-
stein’s 1905 [2] theory of the translational Brownian motion [3] to rotation on the
unit sphere and to include the effects of a weak AC field applied along an axis chosen
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as the Z-axis. Thus, in the dynamical Debye theory as with that of Einstein, inertial
effects are negligible and the rotation of the molecule is described by a random walk
over small angular orientations. Later, his original calculation was generalized (using
perturbation theory) to cover nonlinear phenomena in polar dielectrics subjected to
strong AC and indeed other external fields [4–6]. As specific examples, we cite both
the dynamic Kerr and nonlinear dielectric effects [4–8]. In particular, in nonlin-
ear dielectric relaxation, depending on the particular form of the stimulus chosen,
additional terms in the fundamental, third, etc., harmonic appear in the polarization
response [5–7], which have been confirmed by experiment [4, 9–12]. Furthermore,
the dynamical Debye theory has also been extended (by exact numerical solution
using matrix continued fractions) to include nonlinear effects in arbitrarily large
external fields [13–16]. Nevertheless, assemblies of noninteracting dipoles are still
assumed implying that the Debye theory and its extensions may not be used for
dense dipolar systems, where intermolecular interactions are significant. Although
the treatment of the latter is much more involved, several methods are still avail-
able. For example, the dielectric relaxation of polar nematic liquid crystals may be
regarded as the rotational Brownian motion in the Maier–Saupe uniaxial anisotropy
potential [17, 18], leading to an Arrhenius-like escape over a barrier process due to
the shuttling action of the rotational Brownian motion giving rise to reversal of a
dipole occurring in all the dynamical responses. Such a mechanism was first identi-
fied by Kramers [19] in the context of the translational Brownian motion, and was
recognized by Debye in the context of normal dispersion and absorption in solids.
The method comprises the static mean field approach. However, such a treatment,
although of restricted applicability because it ignores local order effects, is eas-
ily visualized and permits quantitative evaluation of dielectric parameters. Thus, it
qualitatively demonstrates the effect of intermolecular interaction on these, an effect
which must be included for the purpose of comparison with experimental data [20].
Yet another advantage is that it also yields the nonlinear response of assemblies of
noninteracting uniaxial single-domain ferromagnetic particles [21]. Unfortunately,
the static mean field method still ignores dynamical effects due to intermolecular
interactions.

In contrast, the dynamical mean field method reveals dynamical effects due to
intermolecular interactions manifesting themselves at the nonlinear response level
only [22]. These novel predictions are interesting as they are qualitatively similar
to observations of supercooled polar liquid nonlinear dielectric response measure-
ments, namely non-monotonic behavior of the nonlinear response moduli, without
corresponding modification of the linear response at low frequencies.

A succinct account of nonlinear dielectric effects in liquids has recently been
given by Richert [23], who emphasized the growing importance of such measure-
ments in so far as they can characterize many polar fluids in various states. Here, we
review nonlinear dielectric response calculations based on further developments of
the Debye theory which are accomplished by generalizing it to include both strong
electric fields and intermolecular interactions. The chapter is organized as follows: in
Sects. 2 and 3, we review the methods used in [7] for the nonlinear dynamic dielec-
tric susceptibilities of a gas of noninteracting dipoles subjected to strong DC and AC
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electric fields. Next twomean fieldmodels of interaction are described in Sects. 4 and
5, while Sect. 6 is devoted to internal field corrections. These are the only corrections
needed as a dielectric liquid always occupies the entire empty space between the elec-
trodes of the measuring device. The depolarizing field effect is first discussed. Next,
Sect. 7 shows how to include both static and dynamical intermolecular correlations.

2 Nonlinear Dielectric Response of Noninteracting Polar
Molecules to a Strong AC Electric Field

We consider the nonlinear AC (alternating current) stationary response of an assem-
bly of noninteracting polar molecules (electric dipoles) undergoing rotational Brow-
nian motion due to the heat bath and also acted upon by a strong external AC field
E(t). Moreover, we suppose without loss of generality that E is directed along the
Z-axis of the laboratory coordinate system so that axial symmetry is preserved. This
treatment is a simple extension of the work of Debye and is essentially due to Coffey
and Paranjape [7]. The starting point of the theory is the rotational diffusion equation
(the Smoluchowski equation, a particular form of the Fokker–Planck equation) due
to Debye for the surface distribution function of the dipole orientations on the unit
sphere when embedded in a heat bath, viz.,

2τD
∂W

∂t
� 1

sin ϑ

∂

∂ϑ

[
sin ϑ

(
∂W

∂ϑ
+ βW

∂V

∂ϑ

)]
. (1)

In Eq. (1) TD � ς / (2kT ) is the rotational diffusion time also called the Debye
relaxation time, and expresses the given fluctuation–dissipation relation which exists
between the magnitude of the Brownian Schwankung of the angle ϑ and the tem-
perature T and friction constant ς , i.e., ϑ2/ (4δt) � kT/ς . Here β � (kT )−1, k is
Boltzmann’s constant, ϑ is the angle a (tagged) dipole moment makes with the exter-
nally applied uniform electric field E (t), W (ϑ, t) is the surface probability density
of orientations of a dipole, and V (ϑ, t) is the potential of axially symmetric applied
external torques. Here, it is simply that of the interaction of a dipole with the electric
field, namely

V (ϑ, t) � −μE (t) cosϑ, (2)

whereμ is the dipole moment of a molecule, and E (t) is the amplitude of the electric
field. The polarization in the field direction is then

P (t) � ρ0μ

π∫
0

cosϑ W (ϑ, t) sin ϑdϑ. (3)
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Equation (3) is evaluated via the statistical moment method, which consists in
expanding W (ϑ, t) as a series of Legendre polynomials Pn (cosϑ) [24], i.e.

W (ϑ, t) �
∞∑
n�0

(
n +

1

2

)
fn (t) Pn (cosϑ), (4)

and then using the recurrence and orthogonality properties of the Pn , thereby yielding
an infinite hierarchy of differential-recurrence relations for the statistical moments
fn (t), viz.,

2τD
n (n + 1)

ḟn (t) + fn (t) � ξ (t)

2n + 1

[
fn−1 (t) − fn+1 (t)

]
, n > 0 (5)

Here f0 � 1, ξ (t) � βμE (t) and Eq. (3) by orthogonality can be rewritten using
Eq. (4) as

P (t) � ρ0μ f1 (t) . (6)

Now, even for strong electric field intensities, ξ (t) < 1, thus the hierarchy of
Eq. (5) may be solved by iterating a perturbation series, yielding

fn (t) � f (0)
n +

∞∑
k�1

f (k)
n (t), (7)

where the superscript (k) indicates the desired order in the field strength, yielding
the perturbed equations

n (n + 1) f (0)
n � 0, (8)

2τD
n (n + 1)

ḟ (k)
n (t) + f (k)

n (t) � ξ (t)

2n + 1

[
f (k−1)
n−1 (t) − f (k−1)

n+1 (t)
]
, (9)

The hierarchy of recurrence Eq. (9) is solved subjected to the initial condition
f (k)
n (−∞) � 0 since we are interested in the steady-state regime only. Now, the

solution of Eq. (8) is obvious since it is a simple algebraic equation. Thus f (0)
n � 0

for all n �� 0. Moreover, f (0)
0 � f0 � 1 and f (k)

0 � 0, k > 0. Hence, the linear
response of the polarization is given explicitly by f (1)

1 (t), that is

f (1)
1 (t) � 1

3τD

t∫
−∞

e− t−t1
τD ξ (t1) dt1. (10)

Since f (1)
n (−∞) � 0, we have

f (1)
n (t) � 0, n �� 1 (11)
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Likewise, we have the quadratic response functions f (2)
n (t), viz.,

f (2)
n (t) � 0, n �� 2, (12)

and

f (2)
2 (t) � 1

5τ 2
D

t∫
−∞

t2∫
−∞

e− 3(t−t2)
τD ξ (t2) e

− t2−t1
τD ξ (t1) dt1dt2. (13)

Moreover, via Eq. (9) for n � 1 and k � 3, we have the cubic polarization
dynamical response, viz.,

f (3)
1 (t) � − 1

15τ 3
D

t∫
−∞

t3∫
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t2∫
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e− t−t3
τD ξ (t3) e

− 3(t3−t2)
τD ξ (t2) e

− t2−t1
τD ξ (t1) dt1dt2dt3 (14)

Now, specializing to the pure AC field E (t) � E0 cosωt so that ξ (t) � ξ0 cosωt
with ξ0 � βμE0, the polarization Eq. (6) can be written as

P (t) � P (1) (t) + P (3) (t) ,

where P (1) (t) is the linear polarization response given by

P (1) (t) � ρ0μξ0

3
(
1 + ω2τ 2

D

) (cosωt + ωτD sinωt) , (15)

which is the result of Debye, while the cubic polarization P (3) (t) is

P(3) (t) � ρ0μξ30

60
(
1 + ω2τ 2D

) (
9 + 4ω2τ 2D

)
{(

13ω2τ 2D − 27
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cosωt − 2ωτD

(
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sinωt

3
(
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)
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17ω2τ 2D − 3
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cos 3ωt + 2ωτD
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sin 3ωt(

1 + 9ω2τ 2D

)
}

. (16)

This equation represents one of the most important results of the nonlinear Debye
theory, demonstrating that for strong AC field amplitudes, the linear response (15) is
corrected by the first term in the right-hand side of Eq. (16), while the second term
predicts the existence of a third harmonic in the polarization response. This result
was confirmed experimentally 20 years after its publication [12]. When ω � 0,
P (t) � Ps is time-independent and is given by the two first terms in the Taylor
expansion of the Langevin function, viz.,

Ps � ρ0μ

(
ξ0

3
− ξ 3

0

45

)
, (17)
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The treatment described here must be further refined if the electric field comprises
both a DC part and an AC part, since then the static conditions are no longer given
by Eq. (8). This is the subject of the next section.

3 Nonlinear Dielectric Response in Superimposed AC
and DC Electric Fields

The basic equation is still the rotational Smoluchowski Eq. (1) as given by Debye,
with polarization given by Eq. (3) or (6), save that

V (ϑ, t) � −μ (ES + E0 cosωt) cosϑ, (18)

where ES is the static electric field amplitude, also supposed uniform and applied in
the direction of the AC field. The differential-recurrence relations (5) now become

2τD
n (n + 1)

ḟn (t) + fn (t) � ξS + ξ (t)

2n + 1

[
fn−1 (t) − fn+1 (t)

]
, n > 0. (19)

Where ξS � βμES.
We further assume that all transients due to the (sudden) application of the DC

field ES have disappeared, so that the assembly of dipoles has reached equilibrium
in the absence of the AC field. Furthermore, starting from this configuration which
represents the stationary state of the system before E0 cosωt is applied, we then
consider the new stationary state (i.e., all transient effects due to the application of
E0 cosωt have also disappeared) obtained in the presence of both fields. Hence, we
can also use the perturbation expansion, Eq. (7) yielding the perturbation equations

n (n + 1) f (0)
n � n (n + 1) ξS

2n + 1

[
f (0)
n−1 − f (0)

n+1

]
, (20)

2τD
n(n+1)

d
dt f

(k)
n (t) + f (k)

n (t) � ξS
2n+1

[
f (k)
n−1 (t) − f (k)

n+1 (t)
]

+ ξ(t)
2n+1

[
f (k−1)
n−1 (t) − f (k−1)

n+1 (t)
]
.

(21)

Equation (20) can be solved using continued fractions, allowing one to express
the static moments as ratios of modified Bessel functions [3]. However, we avoid this
here because we can use the condition ξS < 1, yielding a perturbation expansion of
all the f (k)

n (t) in terms of the powers of the DC field strength. Thus, we write, in an
obvious notation

f (0)
n �

∞∑
q�0

f (0,q)
n , (22)
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f (k)
n (t) �

∞∑
q�0

f (k,q)
n (t). (23)

Thus, the perturbation Eqs. (20) and (21) become
(
f (0,0)
0 � f (0)

0 � f0 � 1
)
,

n (n + 1) f (0,q)
n � n (n + 1) ξS
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[
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]
, (24)

2τD
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(25)

The polarization response to third order in the field strength is

P (t) � P (1) (t) + P (2) (t) + P (3) (t) , (26)

where

P (1) (t) � ρ0μ
(
f (1,0)
1 (t) + f (0,1)

1

)
(27)

is the linear polarization response, while

P (2) (t) � ρ0μ
(
f (2,0)
1 (t) + f (1,1)

1 (t) + f (0,2)
1

)
, (28)

is the quadratic polarization response (expected to vanish), and finally

P (3) (t) � ρ0μ
(
f (3,0)
1 (t) + f (2,1)

1 (t) + f (1,2)
1 (t) + f (0,3)

1

)
(29)

is the cubic polarization response. The nonlinear polarization (26) is explicitly deter-
mined by solving Eq. (24) up to q � 3. For q � 0, we have n (n + 1) f (0,0)

n � 0
implying f (0,0)

n � 0, n �� 0. For q � 1, Eq. (24) become

n (n + 1) f (0,1)
n � n (n + 1) ξS

2n + 1

[
f (0,0)
n−1 − f (0,0)

n+1

]
, (30)

with nonvanishing solution

f (0,1)
1 � ξS

3
. (31)

which is the first term in the Taylor expansion of the Langevin function. For q � 2,
we have

n (n + 1) f (0,2)
n � n (n + 1) ξS

2n + 1

[
f (0,1)
n−1 − f (0,1)

n+1

]
, (32)
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with solution

f (0,2)
2 � ξ 2

S

15
. (33)

which is the first term in the Taylor expansion of 〈P2〉0. Finally, for q � 3, we have

n (n + 1) f (0,3)
n � n (n + 1) ξS

2n + 1

[
f (0,2)
n−1 − f (0,2)

n+1

]
, (34)

so that

f (0,3)
1 � − ξ 3

S

45
, f (0,3)

3 � ξ 3
S

105
, (35)

as expected.
Next, we evaluate f (1,0)

1 (t), the linear response to the AC field. Obviously, we
see that f (1,0)

n (t) � 0 save for n � 1, thus Eq. (25) becomes

τD ḟ (1,0)
1 (t) + f (1,0)

1 (t) � ξ (t)

3
, (36)

with steady-state solution the Debye response, viz.,

f (1,0)
1 (t) � ξ0

3
(
1 + ω2τ 2

D

) (cosωt + ωτD sinωt) . (37)

Thus the linear polarization is

P (1) (t) � ρ0μ

3

[
ξS +

ξ0(
1 + ω2τ 2

D

) (cosωt + ωτD sinωt)

]
. (38)

This result is physically acceptable, since in the linear response approximation,
the steady-state DC and AC responses simply superimpose.

We now calculate the quadratic polarization response (28). Clearly, f (0,2)
1 � 0 by

our earlier arguments, while the two remaining functions in Eq. (28) must satisfy the
differential equations

τD ḟ (1,1)
1 (t) + f (1,1)

1 (t) � 0,

τD ḟ (2,0)
1 (t) + f (2,0)

1 (t) � 0,

with steady-state solutions f (1,1)
1 (t) � 0 and f (2,0)

1 (t) � 0. Therefore, as expected,

P (2) (t) � 0. (39)
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Finally, we evaluate P (3) (t) as given by Eq. (29). We already have f (0,3)
1 since it

is given by Eq. (35). The three remaining functions satisfy

τD ḟ (3,0)
1 (t) + f (3,0)

1 (t) � −ξ (t)

3
f (2,0)
2 (t) , (40)

τD ḟ (2,1)
1 (t) + f (2,1)

1 (t) � −ξS

3
f (2,0)
2 (t) − ξ (t)

3
f (1,1)
2 (t) , (41)

τD ḟ (1,2)
1 (t) + f (1,2)

1 (t) � −ξS

3
f (1,1)
2 (t) − ξ (t)

3
f (0,2)
2 . (42)

The determination of f (3,0)
1 (t), f (2,1)

1 (t) and f (1,2)
1 (t) requires knowledge of

f (2,0)
2 (t) and f (1,1)

2 (t) which satisfy

τD ḟ (2,0)
2 (t) + 3 f (2,0)

2 (t) � 3ξ (t)

5
f (1,0)
1 (t) , (43)

τD ḟ (1,1)
2 (t) + 3 f (1,1)

2 (t) � 3ξS
5

f (1,0)
1 (t) +

3ξ (t)

5
f (0,1)
1 . (44)

We infer that the DCfield does not affect the 3ω component of the nonlinear polar-
ization in the cubic response approximation, due to Eq. (37) and because f (3,0)

1 (t) is
the sole term in the nonlinear polarization containing 3ω terms. Equations (40)–(44)
then yield

f (3,0)
1 (t) � ξ30

60
(
1 + ω2τ 2D

) (
9 + 4ω2τ 2D

)
{(

13ω2τ 2D − 27
)
cosωt − 2ωτD

(
21 + ω2τ 2D

)
sinωt

3
(
1 + ω2τ 2D

)

+

(
17ω2τ 2D − 3

)
cos 3ωt + 2ωτD

(
3ω2τ 2D − 7

)
sin 3ωt(

1 + 9ω2τ 2D

)
}

, (45)

i.e., the original Coffey–Paranjape result, and along with this the additional terms

f (2,1)1 (t) � − ξ20 ξS
90

(
27 + 7ω2τ2D

)
(
1 + ω2τ2D

) (
9 + ω2τ2D

)

+
ξ20 ξS
30

(
8ω6τ6D + 62ω4τ4D + 153ω2τ2D − 81

)
cos 2ωt(

1 + ω2τ2D

) (
9 + ω2τ2D

) (
1 + 4ω2τ2D

) (
9 + 4ω2τ2D

)

_
2ξ20 ξS
15

ωτD

(
4ω4τ4D + 22ω2τ2D + 63

)
sin 2ωt(

1 + ω2τ2D

) (
9 + ω2τ2D

) (
1 + 4ω2τ2D

) (
9 + 4ω2τ2D

) , (46)

f (1,2)1 (t) � − ξ0ξ2S
45

(
27 + ω2τ2D − 2ω4τ4D

)
cosωt + ωτD

(
42 + 19ω2τ2D + ω4τ4D

)
sinωt

(
1 + ω2τ2D

)2 (
9 + ω2τ2D

) . (47)

Furthermore, for ω � 0, we have

P (3) (t) � −ρ0μ (ξ0 + ξS)
3

45
. (48)

This is simply the second term of the Taylor expansion for the Langevin function
with two superimposed DC fields.
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Now, Eqs. (45)–(47) should be commented upon. First, on inspection of Eq. (46),
application of a DC field in addition to an AC one causes a 2ω harmonic term to
appear on the resulting DC response. This nonlinear frequency-dependent effect is
completely different, however, from that due to the dynamicKerr effect because there,
an AC field alone is required to create a frequency-dependent DC term (the square
law nonlinearity rectifies the applied field). Nevertheless, the qualitative frequency
behavior is the same for both phenomena. Second, on inspection of Eq. (45), an
extra term oscillating at the fundamental is superimposed on the pure AC response.
Third, these formulas pertainwith obvious changes in notation tomagnetic relaxation
of blocked ferrofluids [3]. Finally, we see that the DC field does not affect the third
harmonic term at all at this level of approximation. However, if the pentic response is
considered, the fundamental and the third harmonic will also be affected. In contrast
to the original Coffey–Paranjape formulas, these results have been obtained only
recently [25].

4 Account of Interactions via a Mean Field Potential

We shall now treat intermolecular interactions via a mean field static potential. The
basic idea has been alluded to by Fröhlich [26], and relies on the Ansatz that inter-
molecular interactions may be represented by a (mean field) symmetric double-well
potential. Thus, away of including them in the dynamical Eq. (1) is to choose a poten-
tial exhibiting two wells in a cycle of the motion. Then, guided by the work of Maier
and Saupe [17] at equilibrium and Martin, Meier and Saupe [17] for time-dependent
situations in nematic liquid crystals, we merely rewrite V (ϑ, t) as

V (ϑ, t) � K sin2 ϑ − μ (ES + E (t)) cosϑ, (49)

where K represents an intermolecular interaction strength. We remark that disparate
physical problems can be modeled using Eqs. (1) and (49), e.g., the nonlinear relax-
ation of (noninteracting)magnetic nanoparticles, with application tomagnetic hyper-
thermia and information storage, or equally well the dielectric relaxation of polar
nematic liquid crystals. Numerical and analytical calculations have been undertaken
recently [27], which we now summarize.

The electric polarization is still given by Eq. (3), however, the differential-
recurrence relations become [3]

2τD
n(n+1) ḟn (t) +

[
1 − 2σ

(2n−1)(2n+3)

]
fn (t) � ξS+ξ(t)

2n+1

[
fn−1 (t) − fn+1 (t)

]

+2σ
[

(n−1)
(2n−1)(2n+1) fn−2 (t) − (n+2)

(2n+1)(2n+3) fn+2 (t)
]
,

(50)
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where σ � βK . Again specializing to a pure AC field, we seek the solution of
Eq. (50) as a perturbation series in the AC field amplitude (cf. Eq. 7), so yielding the
perturbed equations

2τD
n(n+1) ḟ

(k)
n (t) + f (k)

n (t) � ξS
2n+1

[
f (k)
n−1 (t) − f (k)

n+1 (t)
]

+ ξ(t)
2n+1

[
f (k−1)
n−1 (t) − f (k−1)

n+1 (t)
]

+2σ
[

n−1
(2n−1)(2n+1) f

(k)
n−2 (t) − n+2

(2n+1)(2n+3) f
(k)
n+2 (t)

]
, k > 0,

(51)

with the stationary values

f (0)
n � Z−1

π∫
0

Pn (cosϑ) e−σ sin2 ϑ+ξS cosϑ sin ϑdϑ, (52)

and the partition function

Z �
π∫

0

e−σ sin2 ϑ+ξS cosϑ sin ϑdϑ. (53)

However, it is no longer possible to solve the hierarchy of Eq. (51) by simple
straightforward iteration, because of the mathematical complexity caused by the
coupling between the seven kinds of terms involved. Nevertheless, as demonstrated
in [27], wemay formally solve these equations by writing them inmatrix form. Thus,
we introduce the column vectors in which the n dependence is subsumed,

c(0) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (0)
1

f (0)
2

...

f (0)
n

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, c(k) (t) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (k)
1 (t)

f (k)
2 (t)

...

f (k)
n (t)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, k > 0. (54)

Hence, Eq. (51) become the forced matrix differential equations

τD ċ(1) (t) + Ac(1) (t) � ξ (t) c1, (55)

τD ċ(k) (t) + Ac(k) (t) � ξ (t)Bc(k−1) (t) , (56)

where
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c1 � 1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ Bc(0). (57)

The matrix elements of the time-independent system matrix A and driving force
matrix B in Eqs. (55)–(57) are thus given by

(A)nm � n (n + 1)

2

(
− 2σ (n − 1)

(2n − 1) (2n + 1)
δnm+2 +

[
1 − 2σ

(2n − 1) (2n + 3)

]
δnm

+
ξS

2n + 1
(δnm−1 − δnm+1) +

2σ (n + 2)

(2n + 1) (2n + 3)
δnm−2

)
, (58)

(B)nm � n (n + 1)

2 (2n + 1)
(δnm+1 − δnm−1) (59)

(δnm isKronecker’s delta). The solution of thematrix Eqs. (55) and (56) is obtained
by quadratures. We have, as in the scalar case, with c(k) (−∞) � 0, k > 0,

c(1) (t) � 1

τD

t∫
−∞

ξ
(
t ′
)
e−A t−t ′

τD c1dt ′, (60)

while

c(k) (t) � 1

τD

t∫
−∞

ξ
(
t ′
)
e−A t−t ′

τD Bc(k−1)
(
t ′
)
dt ′, k > 1. (61)

Next, iterating Eq. (61) twice yields vector-valued time-ordered integral repre-
sentations of the vector quadratic and cubic responses analogous to the scalar case.
We have

c(2) (t) � 1

τ 2
D

t∫
−∞

t ′∫
−∞

ξ
(
t ′
)
ξ
(
t ′′
)
e−A t−t ′

τD Be−A t ′−t ′′
τD c1dt ′′dt ′, (62)

c(3) (t) � 1

τ 3
D

t∫
−∞

t ′∫
−∞

t ′′∫
−∞

ξ
(
t ′
)
ξ
(
t ′′
)
ξ
(
t ′′′

)
e−A t−t ′

τD Be−A t ′−t ′′
τD Be−A t ′′−t ′′′

τD c1dt ′′′dt ′′dt ′

(63)
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Furthermore, for ξ (t) � ξ0 cosωt , Eqs. (61), (62), and (63) can bewritten in forms
suitable for numerical computational purposes [27]. We have from Eqs. (61)–(63):

c(1) (t) � ξ0Re
[
ϕ

(1)
1 (ω) eiωt

]
, (64)

c(2) (t) � ξ 2
0

2
Re

[
ϕ

(2)
0 (ω) + �

(2)
2 (2ω)ϕ

(2)
0 (ω) e2iωt

]
, (65)

c(3) (t) � ξ 3
0

4
Re

{(
2Re

[
�

(3)
1 (ω)

]
ϕ

(2)
0 (ω) + �

(3)
1 (ω)�

(2)
2 (2ω) ϕ

(2)
0 (ω)

)
eiωt

+ �
(3)
1 (3ω) �

(2)
2 (2ω)ϕ

(2)
0 (ω) e3iωt

}
,

,

(66)

where

ϕ
(1)
1 (ω) � G (ω) c1, ϕ

(2)
0 (ω) � A−1Bϕ

(1)
1 (ω) , (67)

�
(2)
2 (ω) � G (ω)A, �

(3)
1 (ω) � G (ω)B, (68)

G (ω) � (A + iωτDI)−1 , (69)

and I is the identity matrix. In writing Eqs. (64)–(69), we have supposed that the
transition matrix exp (At) satisfies the condition

lim
t→−∞ eAt � 0, (70)

because all the eigenvalues of the system matrix A are real and positive due to
the properties of the Smoluchowski operator [28]. Furthermore, the vectors ϕ

(1)
1 (ω)

and ϕ
(2)
0 (ω) in Eq. (67) can also be written as linear and second-order nonlinear

generalized normalized susceptibilities Xn1 (ω) and X (2)
n0 (ω), viz.,

ϕ
(1)
1 (ω) �

⎛
⎜⎜⎜⎜⎜⎝

χ11X11 (ω)

χ21X21 (ω)

χ31X31 (ω)

...

⎞
⎟⎟⎟⎟⎟⎠

, ϕ
(2)
0 (ω) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

χ12X
(2)
10 (ω)

χ22X
(2)
20 (ω)

χ32X
(2)
30 (ω)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(71)

with Xn1 (0) � 1 and X (2)
n0 (0) � 1, while χn1 �

[
ϕ

(1)
1 (0)

]
n
and χn2 �[

�
(3)
1 (0)ϕ

(2)
0 (0)

]
n
are the corresponding static susceptibilities.

Although the foregoing matrix solutions facilitate numerical evaluation of non-
linear responses, they do not permit a qualitative understanding of the relaxation
dynamics. These can be qualitatively understood however via the so-called two-
mode approximation, originating in the large separation of the timescales of the fast
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intra-well and slow over-barrier (or inter-well) relaxation modes in the asymmetric
double-well mean field potential (i.e., Eq. 49) with E (t) � 0). Here, we simply write
down these two-mode approximations for the first and second-order responses and
deduce from them the cubic one. Details can be found in [27].

It has become well established in the last two decades [3, 29] that the linear AC
response to of dipolar systems undergoing (overdamped) rotational Brownianmotion
in a field of force essentially comprises two processes, namely

(a) A slow Arrhenius over-barrier relaxation process, with the same timescale for
all linear response functions, which is represented here by the slowest decaying
eigenvalue of the transition matrix exp (−At) � L−1

[
(sI + A)−1

]
, where L−1

denotes the inverse Laplace transform,
(b) A fast intra-well relaxation process which is not thermally activated and is near

degenerate, with a characteristic timescale depending on the order of the linear
response function considered.

Thus, we write for the general matrix elements of the linear response

f (1)
n (t) � ξ0χn1Re

[
Xn1 (ω) eiωt

]
, (72)

where the scalar representations of χn1 and Xn1 (ω) are [3]

χn1 � 〈Pn P1〉0 − 〈Pn〉0 〈P1〉0 , (73)

Xn1 (ω) � �n1

1 + iω/λ1
+

1 − �n1

1 + iωτ
(n1)
W

. (74)

Here, �n1 is the weight of the thermally activated process specific to the func-
tion f (1)

n (t), and τ
(n1)
W is the timescale of the short time near degenerate intra-well

processes also specific to the function f (1)
n (t). These parameters are defined by [3]

�n1 � τn1/τ
(n1)
eff − 1

λ1τn1 − 2 +
(
λ1τ

(n1)
eff

)−1 , (75)

τ
(n1)
W � τ

(n1)
eff

λ1τn1 − 1

λ1τ
(n1)
eff − 1

, (76)

where in terms of low and high frequency limits of the generalized linear suscepti-
bility

τn1 � lim
ω→0

(ωχn1)
−1 Im

([
ϕ

(1)
1 (ω)

]
n

)
, (77)

τ
(n1)
eff � lim

ω→∞
χn1

ω
Im

([
ϕ

(1)
1 (ω)

]
n

)−1
(78)
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The quadratic response functions f (2)
n (t) can also be represented in similar scalar

fashion using the two-mode approximation. For example, we cite f (2)
1 (t) for the

polarization of the quadratic nonlinear response that is given by

f (2)
1 (t) � ξ 2

0

2
χ12Re

[
X (2)
10 (ω) + X12 (2ω) X (2)

10 (ω) e2iωt
]
, (79)

where

X (2)
10 (ω) � �10

1 + iω/λ1
+

1 − �10

1 + iωτ
(10)
W

, (80)

X ′(2)
10 (ω) � �′

10

1 + iω/λ1
+

1 − �′
10

1 + iωτ
(10)
W

(81)

X12 (ω) � �12

1 + iωτ12
+

1 − �12

1 + iωτ
(12)
W

(82)

The parameters �10 and τ
(10)
W can be evaluated via

�10 � τ10/τ
eff
10 − 1

λ1τ10 − 2 +
(
λ1τ

eff
10

)−1 , (83)

τ
(10)
W � τ

(10)
eff

λ1τ10 − 1

λ1τ
(10)
eff − 1

, (84)

where the characteristic times τ10 and τ
(10)
eff are determined by

τ10 � lim
ω→0

(ωχ12)
−1 Im

([
ϕ

(2)
0 (ω)

]
1

)
, (85)

τ
(10)
eff � lim

ω→∞
χ12

ω
Im

([
ϕ

(2)
0 (ω)

]
1

)−1
(86)

However, unlike Eqs. (75) and (76), analytic equations for the parameters �′
10,

τ
′(10)
W , �12, τ12 and τ

(12)
W are unknown. Therefore, in Eqs. (81) and (82), they are

treated as adjustable. In this way, the cubic polarization response f (3)
1 (t) can be

rewritten as

f (3)
1 (t) � ξ 3

0

4
χ13Re

{(
2Re [X13 (ω)] X ′(2)

10 (ω) + X13 (ω) X12 (ω) X ′(2)
10 (ω)

)
eiωt

+ X13 (3ω) X12 (2ω) X ′(2)
10 (ω) e3iωt

}
(87)

with X ′(2)
10 (ω) given by Eq. (81) and

X13 (ω) � �13

1 + iω/λ1
+

1 − �13

1 + iωτ
(13)
W

, (88)
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Fig. 1 (Color on line) Real
(a) and imaginary (b) parts
of the linear susceptibility
F (1)
1 (ω) � χ11X11 (ω)

versus the normalized
frequency ωτD for various
DC field amplitudes ξ0 with
anisotropy parameter
σ � 10. Solid lines: the
matrix solution. Symbols:
the two-mode approximation

(a)

(b)

where �13 and τ
(13)
W are again adjustable parameters.

As indicated by Figs. 1 and 2, the two-mode approximation formulas yield excel-
lent agreement with the exact numerical solution obtained via various matrix meth-
ods. The introduction of a distribution of relaxation times in the above calculations is
discussed in [27]. The treatment as outlined may be used to any order in perturbation
theory in the field strength. Thus, it may directly be applied both to nonlinear dielec-
tric relaxation of polar nematic liquid crystals and to nonlinear magnetic relaxation
of noninteracting single-domain ferromagnetic particles, and indeed to all polar sys-
tems where the interaction field is static. However, if this field is replaced by a mean
field accounting for the dynamics of the dipole, then pronounced new features appear
which are revealed in the nonlinear response only. We now review these.

5 Dynamical Mean Field Effects in the Nonlinear Dielectric
Response

Here, dynamical effects due to interactions are accounted for in first approximation,
as inspired by Berne [30]. He, by solving the Poisson equation with natural boundary
conditions, demonstrated that the collective tumbling of an assembly of interacting
dipoles was described by a nonlinear Fokker–Planck equation, where the orienta-
tional pair distribution function is systematically unity. Consequently, the potential
has dynamical features related to the time-dependent orientational probability den-
sity. The Fokker–Planck (Smoluchowski) Eq. (1) is formally unchanged, however V
is now replaced by

V (ϑ, t) � Us (ϑ, t) + Vint (ϑ, t) , (89)
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(a)

(c)

(b)

(d)

Fig. 2 (Color on line) Modulus of a the DC component of the nonlinear dielectric response∣∣∣F (2)
1,0 (ω)

∣∣∣, b the second harmonic component of the nonlinear dielectric response
∣∣∣F (2)

1,2 (ω)

∣∣∣, c the
fundamental component of that response

∣∣∣F (3)
1,1 (ω)

∣∣∣, and d the third harmonic component
∣∣∣F (3)

1,3 (ω)

∣∣∣
versus ωτD for various DC field amplitudes ξ0 with σ � 10. Solid lines: matrix solution. Symbols:
two-mode approximation using the fitting parameters as described in the text

where Us in Eq. (89) as usual contains the orientational terms due to the externally
applied fields, while in the dipolar approximation [22], the interaction field is repre-
sented by

Vint (ϑ, t) � 4πρ0μ
2

3
cosϑ f1 (t) . (90)

Under these conditions, we may write

βV (ϑ, t) � −ξ (t) cosϑ + λ cosϑ f1 (t) , (91)

where

λ � 4πβρ0μ
2/3 (92)

is 4π times the linear Langevin susceptibility of an ideal gas of dipoles. Thus, using
Eqs. (1) and (91), we have the intrinsically nonlinear differential-recurrence relations
as opposed to the linear result Eq. (5)
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2τD
n(n + 1)

ḟn (t) + fn (t) � 1

2n + 1
[ξ (t) − λ f1 (t)]

[
fn−1 (t) − fn+1 (t)

]
. (93)

The perturbation expansion (7) to cubic order in the field strength then yields the
scheme

f (0)n � λ f (0)1
2n + 1

[
f (0)n+1 − f (0)n−1

]
, (94)

2τD ḟ (1)n (t)

n (n + 1)
+ f (1)n (t) � ξ (t) − λ f (1)1 (t)

2n + 1

[
f (0)n−1 − f (0)n+1

]
+

λ f (0)1
2n + 1

[
f (1)n+1 (t) − f (1)n−1 (t)

]
, (95)

2τD ḟ (2)n (t)

n (n + 1)
+ f (2)n (t) � ξ (t) − λ f (1)1 (t)

2n + 1

[
f (1)n−1 (t) − f (1)n+1 (t)

]
+

λ f (2)1 (t)

2n + 1

[
f (0)n+1 − f (0)n−1

]

+
λ f (0)1
2n + 1

[
f (2)n+1 (t) − f (2)n−1 (t)

]
, (96)

and

2τD ḟ (3)
n (t)

n (n + 1)
+ f (3)

n (t) � ξ (t) − λ f (1)
1 (t)

2n + 1

[
f (2)
n−1 (t) − f (2)

n+1 (t)
]
+

λ f (3)
1 (t)

2n + 1

[
f (0)
n+1 − f (0)

n−1

]

+
λ f (2)

1 (t)

2n + 1

[
f (1)
n+1 (t) − f (1)

n−1 (t)
]
+

λ f (0)
1

2n + 1

[
f (3)
n+1 (t) − f (3)

n−1 (t)
]
. (97)

We desire f (1)
1 (t) and f (3)

1 (t). Thus [22] we have, specializing to a pure AC field

f (1)
1 (t) � ξ0

[
α

′(1)
1 (ω) cosωt + α

′′(1)
1 (ω) sinωt

]
(98)

with

α
′(1)
1 (ω) � 1

(3 + λ)(1 + ω2τ 2
1 )

, (99)

α
′′(1)
1 (ω) � ωτ1

(3 + λ)(1 + ω2τ 2
1 )

, (100)

and

τ1 � 3τD
3 + λ

. (101)

Clearly, the linear response to the AC stimulus in the dynamical mean field picture
is still essentially of Debye type. In contrast, however, the nonlinear response f (3)

1 (t)
is now given by

f (3)
1 (t) � ξ30

[
α

′(1)
3 (ω) cosωt + α

′′(1)
3 (ω) sinωt + α

′(3)
3 (ω) cos 3ωt + α

′′(3)
3 (ω) sin 3ωt

]
, (102)

where

α
′(1)
3 (ω) � − 3

20

(3 + λ)2 (4λ − 39) ω4τ41 + (378 + 522λ + 51λ2)ω2τ21 + 729

(3 + λ)4 [81 + 4 (3 + λ)2 ω2τ21 ](1 + ω2τ21 )
3

, (103)

α
′′(1)
3 (ω) �

ωτ1

{
81 (2λ − 21) + 3 (3 + λ)

[
(λ (λ − 45) − 198) − (3 + λ)2 ω2τ21

]
ω2τ21

}

10(3 + λ)4
(
81 + 4 (3 + λ)4 ω2τ21

) (
1 + ω2τ21

)3 , (104)
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Fig. 3 Normalized modulus of the normalized nonlinear response 3ω component A(3)
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α
′(3)
3 (ω) �

9
[
(3 + λ)2 (51 + 20λ)ω6τ61 + 3 (279 − 4λ (λ (6 + λ) − 21)) ω4τ41 − 3 (λ (78 + λ) − 99) ω2τ21 − 81

]

20 (3 + λ)4
[
81 + 4 (3 + λ)2 ω2τ21

] [
1 + ω2τ21

]3 [
1 + 9ω2τ21

] (105)

α
′′(3)
3 (ω) �

9ωτ1

{
9 (2λ − 21) +

(
λ3 − 243λ − 297

)
ω2τ21 − 3 (3 + λ)

[
(3 + λ (19 + 4λ)) − (3 + λ)2 ω2τ21

]
ω4τ41

}

10 (3 + λ)4
[
81 + 4 (3 + λ)2 ω2τ21

] [
1 + ω2τ21

]3 [
1 + 9ω2τ21

] (106)

For λ � 0, these formulas become the usual nonlinear response of noninteracting
dipoles to alternating electric fields. However, cf. Figures 3 and 4, they strongly
deviate from the known results for large interactions, thereby revealing pronounced
dynamical effects due to intermolecular interactions, which must be investigated
via nonlinear response measurements. In particular, the humped-back shape of the
nonlinear response moduli found at large λ reveals the non-monotonic behavior of
that response for interacting molecules.

This finding is in marked contrast to that of the previous section, where the modu-
lus of the nonlinear response ismonotonic for all interaction strengths. Now, recalling
that the mean field approximation is a poor representation of long range intermolec-
ular interactions, shorter interaction ranges could be modeled using the model under
discussion by superimposing a P2 (cosϑ) f2 (t) term in the interaction potential (90).
This Ansatz then leads to aMartin–Maier–Saupe-type model as pertains to dielectric
relaxation of polar nematic liquid crystals. In particular, as the amplitude of the P2
term is increased, the humped-back shape disappears, implying that Eqs. (103)–(106)
can represent at best the “trivial” contribution to Ladieu’s toy model of nonlinear
dielectric relaxation of supercooled liquids [31]. This conclusion may be drawn
because according to the present theory, on decreasing the temperature, the humped-
back behavior of the nonlinear response spectrum vanishes, while experimental data
on glycerol exhibit the opposite behavior [22, 32]. Finally, quantitative comparison
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Fig. 4 Normalized modulus of the ω nonlinear polarizability component A(1)
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of Eqs. (103)–(106) with experiment implies that we are using them for−3 < λ ≤ 3,
meaning that they can now only pertain to low densities. This behavior agrees with
that expected from the mean field (or random phase) approximation [33], although
that occasionally predicts a large density effect. Consequently, the only feasible way
to treat dynamical effects of the intermolecular interactions in the above calculation
is to abandon the mean field approximation entirely so that intermolecular orien-
tational correlations can be fully included. This task is much more involved and is
beyond the scope of our review.

6 Depolarizing Field and Internal Field

First, we recall various electrostatic concepts, e.g., the depolarizing and internal
fields, as they may be important in explaining experimental data. We start with
the depolarizing field. As much as possible, we loosely follow Brown’s excellent
presentation of the subject [34].

(a) The depolarizing field.

Consider a capacitor polarized due to a constant voltage imposed between its
electrodes in vacuo.Consequently, an electric fieldEvac exists between the electrodes.
However, insertion of a dielectric will cause a decrease in the voltage between the
electrodes (with respect to the field measured in vacuo). The origin of the decrease
is that polarization charges (of opposite signs) appear at the surfaces of the dielectric
which interface with the electrodes in order to ensure global electro-neutrality of the
overall structure (capacitor+dielectric). Consequently, one says that the dielectric is
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polarized, and the electric field inside the dielectric Ed has an opposite direction to
that of Evac. Hence, the overall electric field between the plates is decreased, thereby
explaining the voltage decrease due to the insertion of the dielectric, hence the name
“depolarizing field” for Ed [35]. Standard electrostatics shows that the depolarizing
field Ed is systematically proportional to the polarization vector of the substance,
and points in an opposite direction to that of the polarization vector of the dielectric.
Moreover, Ed depends on the sample shape. Thus

Ed � − ↔
Dp · P, (107)

where
↔
Dp is the depolarization tensor. The total field inside the dielectric (called the

Maxwell field) is then E � Evac +Ed, and the various electric susceptibilities as well
as the linear and nonlinear permittivities in electromagnetic theory are defined with
respect to this field. For example, in the linear case in the AC regime, we have

P(1) (ω) � ←→
χ

(1)
(ω) · E (ω) , (108)

where ←→
χ

(1)
(ω) is the linear susceptibility Cartesian tensor. For a macroscopic

spherical isotropic sample, this tensor becomes a scalar so that the linear polarization
can be linked to the vacuum field Evac, e.g., for a pure AC field in vacuo, we have

P(1) (ω) � 3

4π

(
4πχ(1) (ω)

3 + 4πχ(1) (ω)

)
· Evac. (109)

Since it is believed that the linear susceptibility (and therefore the linear complex
permittivity) of a sample is an intensive quantity, determining it under the assumption
of a specific shape is relatively unimportant since calculations for two different
shapes lead to the same expression [22, 36]. In particular, the expression for the
linear complex permittivity is the same both for an infinite thin dielectric sheet and
for a sphere, yielding [22, 36]

ε (ω) − 1 � 4πχ(1) (ω) � λ

1 + iωτD
, (110)

where λ is given by Eq. (92). This equation yields in particular the Langevin–De-
bye equation for an assembly of purely polar molecules ε (0) − 1 � λ in the static
regime. Now, the nonlinear susceptibilities may depend on the sample shape; how-
ever, if a liquid completely fills the vacuum between the electrodes, such corrections
are unnecessary, because then the applied field coincides with the Maxwell field.
However, for strongly polar liquids, the Langevin–Debye equation ε (0) − 1 � λ

noticeably disagrees with experiment, if the actual value of the dipole moment is
used. This is also true for any trivial modification of this equation. An explanation of
this discrepancy was given by Lorentz. He conjectured that a typical molecule in a
dense system does not experience the applied field as a consequence of the discrete
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nature of matter, instead it experiences that field plus the sum of the electric fields
due to all the other molecules, thus automatically leading to the concept of internal
or local field.

(b) The internal field.

We have seen that this field was introduced into the literature by Lorentz. Fur-
thermore, it is a convenient tool in the classical microscopic theory of dielectrics
[36] because at the molecular level, matter can no longer be regarded as continu-
ous. Although, strictly speaking, the calculation of this field should be quantum-
mechanical, nevertheless the translational and rotational motion of the molecules
does not depart markedly from classical behavior. Thus, we will continue with
the classical treatment, and again following Brown’s discussion [34], excluding the
motion of atoms or ions within the molecules.

By definition, the internal field E� is the field at the position of a specific (tagged)
molecule due to all charges except those attached to that molecule. Now, although
writing a general expression for the polarization (i.e., a macroscopic quantity) in
microscopic terms is relatively straightforward (i.e., the statistical average of the
vector sum of all molecular dipoles times the number of molecules per unit volume
or concentration), it is not at all simple to relate the internal field E� to the Maxwell
field E, or even to its average value [34]. Only for solutions of polar molecules in
nonpolar solvents is this distinction unimportant and then only in the simplest cases
can such a relation be established. These have been considered in detail by Lorentz
and later by Onsager.

(i) Outline of the Lorentz method for E� for polar dielectrics

We proceed as follows [34]: we construct a macroscopic sphere of radius R
(i.e., large with respect to intermolecular distances, but small with respect to the
overall macroscopic size of our sample), with center taken as the location of a typical
molecule where the local field is calculated. The local field can then be divided into
two parts: that due to matter outside the sphere Eout and that due to matter inside it
Ein. Under quite general conditions, we have from electrostatics

Eout � E +
4πP
3

. (111)

The computation of Ein is more difficult, as it must account in some way for the
spatial arrangement of the molecules near the (tagged) one at which E� is calculated.
Lorentz showed, assuming that the molecules are arranged at the sites of a simple
cubic lattice, that

Ein � 0. (112)

Hence, if the molecules near our (tagged) one are also situated at the sites of such
a lattice, Lorentz finds that
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E� � Ein + Eout � E +
4πP
3

. (113)

If the arrangement differs from the simple cubic one, then we have

E� � E +
4πP
3

+ Ein, (114)

whereEin is unknown. For a dielectric consisting of purely polarmolecules, Eq. (113)
leads to the Debye–Lorentz equation of state, viz.

ε − 1

ε + 2
� λ

3
, (115)

where ε � ε (0). Since λ ∝ T−1, Eq. (115) predicts a transition from an unpolarized
to a spontaneous polarized state at a finite temperature. For water in particular, this
temperature coincides with room temperature, therefore giving rise to a fundamental
criterion whereby Eqs. (113) and (115) must be rejected for polar dielectric liquids
with large dielectric constants. Finally, Eq. (114) is not used in practice because of
the extreme difficulty in evaluating Ein.

(ii) Outline of Onsager’s method of calculating E� for polar dielectrics.

As already alluded to above, the Lorentz method of calculating ε for polar sub-
stances must be rejected. Now, Onsager [37] remarked (full details are available in
[39]) that the effect of long range dipole–dipole interactions is not accounted for
properly in Lorentz’s computation of E�. In effect, he modified Lorentz’s method to
include the effects of the surroundings of the tagged molecule of permanent dipole
moment μ on the local field at this molecule. In order to calculate ε, he used a model
originally proposed by Bell [38] for a spherical dipolar molecule embedded in a
dielectric. This model is a rigid point dipole situated at the center of a macroscopic
empty spherical cavity of radius a in a dielectric continuumwith permittivity equal to
the bulk permittivity ε. The radius of the cavity is determined from the close-packing
condition

4πρ0a3

3
� 1,

so that the volume of the cavity is that available to each molecule. Now the dipole μ

itself creates a dipolar field that polarizes the surroundings. The resulting polarization
of the surroundings in turn induces a uniform field in the cavity which is called the
reaction field R. For a spherical cavity, the uniform field R has the same direction
as the dipole moment in the cavity (if the cavity is not spherical, this is not so), thus,
for purely polar molecules, Onsager can write R � f μ. Furthermore, if a uniform
electric fieldE is imposed on the dielectric by external sources, standard electrostatics
[35] shows that the field in the empty cavity (i.e., with no dipole in it) is not equal to
E. This field is called the cavity field G and for a spherical cavity, is collinear with
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E, so that we have G � gE. Then Onsager writes the overall field in the spherical
cavity in the presence of E and the tagged dipole μ due to the surroundings as

E� � G + R � gE + f μ, (116)

The coefficients g and f can be calculated via electrostatics [35]. For a spherical
cavity of radius a in an infinite dielectric, we have (details in [39, 47])

g � 3ε

2ε + 1
, f � 2 (ε − 1)

(2ε + 1) a3
. (117)

Now, at equilibrium, the reaction field gives rise to zero torque on the tagged dipole
because the term −μ · R contributes only a constant to its orientational potential
energy. Then, by equating the macroscopic polarization from electrostatics with that
obtained via statistical mechanics, Onsager finds (in the linear regime)

(ε − 1)E � λgE. (118)

Thus, by using Eq. (117), we have Onsager’s equation describing dielectrics con-
sisting of pure polar molecules, viz.,

(ε − 1) (2ε + 1)

3ε
� λ. (119)

For polar and isotropically polarizable molecules, Eq. (119) is only slightly mod-
ified. Using ε∞ � n2 (where n is the refractive index of the medium) and the
Lorenz–Lorentz equation [39], Onsager finds

(ε − ε∞) (2ε + ε∞)

ε (ε∞ + 2)2
� λ

3
. (120)

Equation (120) may be used to determine the permittivity of assemblies of pure
polar molecules. However, for water at 25 °C, Eq. (120) yields ε ≈ 30, while the
experimental value is 78.5. Nevertheless, Onsager’s method has the great advantage
of removing the unphysical ferroelectric Curie point predicted by the Lorentz–Debye
formula (115). The lack of full agreement with the experimental value of ε suggests
that Eq. (120) should be improved.

(iii) The Kirkwood–Fröhlich formula for the relative permittivity

Onsager’s Eq. (120) was generalized by Kirkwood [40] to a cavity containing
a very large number of interacting molecules and he obtained in so doing a much
more acceptable value for the relative permittivity of water. However, Fröhlich [39]
presented a more systematic derivation valid for all assemblies of polar molecules,
which may be summarized as follows. We regard our entire macroscopic specimen
as a very large sphere of radius b placed in a uniform field and select from it a smaller
yet still macroscopic sphere of radius a, such as a << b. The inner sphere is treated
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on a microscopic basis (i.e., via statistical mechanics), while the large surrounding
shell is treated as a continuous dielectric medium, i.e., on a macroscopic basis. The
entire system (inner sphere + surroundings) is assumed to obey the laws of classical
statistical mechanics. Regarding the inner sphere, the total dipole moment of an
ensemble of N charges is

M (X) �
N∑
i�1

eiri , (121)

where ri is the displacement of charge number i and ei is its charge. Now, an atom or
molecule contains several elementary charges (s in total) and X is the ensemble of
the associated displacements ri . Following Fröhlich, we term an atom or molecule
of the inner sphere a cell and label such a cell j, and assume that each cell makes the
same contribution to the polarization in the direction of the applied field E inside
the shell. The dipole moment of the cell j is, applying Eq. (121) to the cell j

m
(
x j

) �
s∑

k�1

e jkr jk (122)

with obvious notations. Then, the total dipole moment of the inner sphere comprising
N cells is

M (X) �
N∑
j�1

m
(
x j

) �
N∑
j�1

s∑
k�1

e jkr jk (123)

Now the mean total dipole moment of the inner sphere in the direction of E is

〈M · e〉 � 1

Z

π∫
0

∫
N

(M (X) · e) e−βU (X,E) sin ϑdXdϑ, (124)

where U (X,E) is the potential energy of the system of molecules inside the inner
sphere in the presence of E, ϑ is the angle between M and E, e is a unit vector in
the direction of E, and Z is the partition function defined by

Z �
π∫

0

∫
N

e−βU (X,E) sin ϑdXdϑ.

Hence, in the linear approximation in E, we have (details in [39])

〈M · e〉 � 3ε

2ε + 1

β

3

〈
M2

〉
0 , (125)
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where
〈
M2

〉
0 is the mean square value of the dipole moment of the inner sphere in the

absence of the electric field. By equating the (macroscopic) polarization obtained
via electrostatics with that given by Eq. (125), we then have

(ε − 1) (2ε + 1)

3ε
� 4πβ

3υ

〈
M2

〉
0 , (126)

where υ is the volume of the dielectric. The last equation is a perfectly general result,
and is the equation of state for linear dielectrics. Put succinctly, it yields ε in terms
of the mean square fluctuations of the dipole moment of a macroscopic spherical
specimen of the dielectric embedded in a large volume of the same dielectric. These
fluctuations in the dipole moment are the total fluctuations from all causes, because
in the dielectric several mechanisms of polarization may be operative [39].

Equation (126) may further be specialized to identify a specific mechanism,
namely the contribution of the displacement (or distortional) polarization to the total
dipole moment of a molecule, which is the sum of the permanent and the induced
dipolemoment. This postulate assumes that the contribution of this mechanism to the
permittivity may be treated by separating the overall polarization into a systematic
term essentially due to the permanent dipoles of the molecules and a term due to
the elastic displacement of all charges. For simplicity, the latter mechanism is then
treated on a continuous basis, assuming that for this mechanism only the inner sphere
is filled with material having static relative permittivity ε∞. The sum of the cavity
and reaction fields yields

E� � 3εE
2ε + ε∞

+
2 (ε − ε∞)

a3 (2ε + ε∞)
M, (127)

plus the field of the dipoleM. Since both the dipole and the reaction fields contribute
only a constant to the orientational potential energy, Eq. (126) becomes (details again
in [39])

(ε − ε∞) (2ε + ε∞)

3ε
� 4πβ

〈
M2

〉
0

3υ
. (128)

Now, the evaluation of the static permittivity from Eq. (128) requires the calcu-
lation of

〈
M2

〉
0. On using Eq. (123) and confining ourselves to terms linear in E, we

have

〈
M2

〉
0 �

N∑
j�1

Z−1
0

∫
N

m
(
x j

) · M (X) e−βU (X,0)dX, (129)

where

Z0 �
∫
N

e−βU (X,0)dX
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is the partition function in the absence of the external field. On introducing the
notation

dX j � dx1 . . . dx j−1dx j+1 . . . dxN

so that

dX � dX jdx j ,

we can rewrite Eq. (129) with some algebra as

〈
M2

〉
0 �

N∑
j�1

∫
j

dx jm
(
x j

) ·

∫
N−1

M (X) e−βU (X,0)dX j

∫
N−1

e−βU (X,0)dX j

∫
N−1

e−βU (X,0)dX j

∫
N
e−βU (X,0)dX

.

Next, by introducing the probability p
(
x j

)
of finding the jth cell with the set of

displacements x j

p
(
x j

) �

∫
N−1

e−βU (X,0)dX j

∫
N
e−βU (X,0)dX

and m∗ (x j
)
the mean moment of the sphere given that its jth cell has a set of fixed

displacements x j so that

m∗ (x j
) �

∫
N−1

M (X) e−βU (X,0)dX j

∫
N−1

e−βU (X,0)dX j
,

one may express the mean square dipole fluctuations
〈
M2

〉
0 as a sum of statistical

averages over the jth cell only. In other words, we have

〈
M2

〉
0 �

N∑
j�1

∫
j

dx jm
(
x j

) · m∗ (x j
)
p
(
x j

)
dx j . (130)

Next, it may be shown from electrostatics [41] that the dipole moment induced
in a sphere by a dipole residing in a cavity in that sphere is independent of the size
of the latter. This result is extremely important because ε is an intensive quantity
(therefore independent of the size and shape of the dielectric, and the calculations
are easiest for spherical shapes). This result is true even if the cavity is not concentric
with the surrounding spherical shell, so that the precise location of the cavity in the
dielectric is unimportant provided it is taken as spherical. Next, let m∗

s denote the
dipole moment of a sphere surrounding the jth cell. Thus, if m∗

s can be obtained by
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treating the jth cell as a point dipole in a spherical cavity surrounded by a continuous
dielectric, then

m∗
s � m∗,

where by definition m∗ is the dipole moment of the entire sphere. Thus, we have

m∗ � m,

so that Eq. (128) reduces to Onsager’s Eq. (120). Therefore, we must assume that
m∗ �� m, since Onsager’s equation does not predict ε quantitatively, meaning that
it is impossible to treat the jth cell as a point dipole surrounded by a continuous
dielectric. In other words, m∗ �� m if and only if

– The shape of the jth cell differs from that of a sphere, a hypothesis that we do not
make, otherwise the electrostatic part of the calculation becomes very difficult,

– The region surrounding the jth cell cannot be treated on a macroscopic basis, a
hypothesis that wewill maintain in our calculation of ε because thenwe can handle
the surroundings of the jth cell by the methods of (classical) statistical mechanics.

Furthermore, an important consequence of all the electrostatic considerations
made above is that m∗ is independent of the position of the jth cell as long as this
cell is so far removed from the bounding surface of the dielectric so that it allows
its interaction with the outside to be treated on a macroscopic basis. Of course, for
an infinite dielectric, this last condition is always true. Bearing in mind all the above
hypotheses, we have

〈
M2

〉
0 � N

〈
m · m∗〉

0 ,

since each cell contributes equally to the polarization. Consequently, Eq. (128)
becomes

(ε − ε∞) (2ε + ε∞)

3ε
� 4πβρ0

3

〈
m · m∗〉

0 . (131)

In this equation, ρ0 � N/υ is the number of cells per unit volume of the dielectric,
andm andm∗ now refer to nonelectronic displacements. Having derived Eq. (131),
we can obtain the so-called Kirkwood–Fröhlich equation by first choosing the cell
j in such a way that it contains only one dipolar molecule of dipole moment μ,
meaning that the orientations of the dipoles are the only variables. We now define

m∗ � μ∗, (132)

where μ∗ is the average dipole moment of the sphere when the tagged dipole μ is
held in a fixed orientation. Now, in a liquid, in the absence of an applied field, all
dipolar directions are equivalent therefore
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〈
m · m∗〉

0 � 〈
μ · μ∗〉

0

and we must also have

〈
μ · μ∗〉

0 � μ · μ∗. (133)

Finally, if the interactions with nearest neighbors only are considered, then μ∗
is the sum of the moment μ of the tagged dipole held in a fixed orientation relative
to its neighbors and the average of the sum of the moments of its nearest neighbors.
Hence, if z represents the average number of nearest neighbors, we have

μ · μ∗ � μ2
(
1 + z 〈cos γ 〉Av

) � μ2gK ,

where γ is the angle between neighboring dipoles, and gK is called the Kirkwood
correlation factor, so that Eq. (128) becomes

(ε − ε∞) (2ε + ε∞)

3ε
� 4πρ0μ

2gK
3kT

. (134)

Furthermore, the value of the dipole moment to be used in Eq. (134) is the dipole
moment of amolecule embedded in amediumof dielectric constant ε∞. Thismoment
is related to the vacuum moment by the equation [39]

μ � ε∞ + 2

3
μg, (135)

where μg is the dipole moment of the molecule in vacuo. Hence, by combining
Eqs. (134) and (135), we finally have the Kirkwood–Fröhlich equation, viz.,

(ε − ε∞) (2ε + ε∞)

ε (ε∞ + 2)2
� λgK

3
. (136)

By accounting for nearest neighbor contributions as described above, Kirkwood
obtained ε � 67 for water at 25 °C, a far more acceptable value. By including both
nearest and next-nearest neighbors in the evaluation of gK , Oster and Kirkwood
[42] found ε � 78.5, in excellent agreement with experiment. Now, we describe
the generalization of the Kirkwood–Fröhlich equation to the frequency-dependent
(complex) permittivity in the linear approximation.

(iv) The dynamical equation for the linear complex permittivity

Any theory of the linear complex permittivity ε (ω) of polar fluids must include
the effect of the local field at the dynamical level. This calculation is much more
involved than its static counterpart, because the dynamics of the internal field are
generally unknown [39] and in addition are a function of ε (ω), i.e., the property one
is trying to calculate. However, we may proceed in a general sense by establishing a
relation between the time-dependent dipolemoment of the dielectric and the complex
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permittivity. The dipole moment induced in a dielectric body induced by a very small
time-dependent external electric field is, at any time (assuming that both quasi-
electrostatics and linear response obtain)

M (t) �
t∫

0

E (t − x)
da

dx
(x) dx, (137)

where a (t) is the step response of the body and E (t) � 0 for t < 0. Following
Scaife [41], we introduce the aftereffect function b (t) defined by

b (t) �
{
a (∞) − a (t) (t > 0)

0 (t < 0)
, (138)

so that the polarizability α (ω) of the body is given by

α (ω) �
∞∫
0

ȧ (t) e−iωtdt � −
∞∫
0

ḃ (t) e−iωtdt . (139)

We must now relate a (t) (or b (t)) to the induced time-dependent dipole moment
M (t). This is accomplished by via the fluctuation–dissipation theorem which we
explain as follows. First, we remark that by applying the Kramers–Kronig relations
to α (ω) � α′ (ω) − iα′′ (ω), viz.,

α′ (ω) � 2

π

∞∫
0

zα′′ (z)
z2 − ω2

dz, α′′ (ω) � − 2

π

∞∫
0

ωα′ (z)
z2 − ω2

dz,

we have, at zero frequency

α′ (0) � 2

π

∞∫
0

α′′ (ω)

ω
dω � β

3

〈
M2

〉
0 . (140)

Now, denoting time averages by an overbar, we have by ergodicity

〈
M2

〉
0 � M2 � lim

T ′→∞
1

T ′

T ′/2∫
−T ′/2

M (t) · M (t) dt

However, by the Parseval–Plancherel theorem, we must also have
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〈
M2

〉
0 � 1

2π

∞∫
−∞

lim
T ′→∞

∣∣∣M̃ (ω) · M̃∗ (−ω)

∣∣∣
T ′ dω � 1

2π

∞∫
−∞

SM (ω) dω, (141)

where the star denotes the complex conjugate, the tilde denotes the Fourier transform
of M(t), i.e.,

M̃ (ω) �
T ′/2∫

−T ′/2

M (t) e−iωtdt, T ′ → ∞,

and SM (ω) is by definition the spectral density of the fluctuations of the dipole M.
Hence via Eqs. (140) and (141), we then have the fluctuation–dissipation theorem
(FDT),

6α′′ (ω) � βωSM (ω) . (142)

Thus, we have related the dissipative part α′′ (ω) of the frequency-dependent
complex polarizability to the spectral density of the spontaneous fluctuations in the
dipole moment at equilibrium of the dielectric body. In deriving the FDT, we have
asserted that macroscopic fluctuations decay according to macroscopic laws.

Now, on introducing the autocorrelation function of the dipole CM (t) defined by

CM (t) � lim
T ′→∞

1

T ′

T ′/2∫
−T ′/2

M
(
t − t ′

) · M (
t ′
)
dt ′ � M (t − t ′) · M (t ′). (143)

so that by theWiener–Khintchine theorem [3],CM (t) and SM (ω) are Fourier cosine
transform pairs, hence recalling that CM (t) is even in time and SM (ω) is even in
frequency we have

CM (t) � 1

π

∞∫
0

SM (ω) cos (ωt) dω � 6

πβ

∞∫
0

α′′ (ω)

ω
cos (ωt) dω (144)

In writing the foregoing equation, we have used the FDT Eq. (142). Thus, by
Fourier inversion, Eq. (144) obviously yields α′′ (ω) in terms of the Fourier cosine
transform of the aftereffect function b (t), viz.,

α′′ (ω) � βω

3

∞∫
0

CM (t) cos (ωt) dt � ω

∞∫
0

b (t) cos (ωt) dt

where we have used Eq. (139). Thus b (t) and M (t) are related via
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3b (t) � βCM (t) (145)

Now, by ergodicity and stationarity in time, we also have

CM (t) � 〈M (0) · M (t)〉0 .

Thus, the polarizability may be expressed in terms of the total dipole moment
fluctuations as

α (ω) � β

3

⎧⎨
⎩
〈
M2

〉
0 − iω

∞∫
0

〈M (0) · M (t)〉0 e−iωtdt

⎫⎬
⎭ . (146)

This is the commonly known Kubo relation generalizing that of Fröhlich at zero
frequency, viz., α′ (0) � β

〈
M2

〉
0 /3 to the frequency-dependent case, as obtained

using the new method of Scaife [47]. Furthermore Scaife (see [47], Chap. 7,
Eq. (7.217) has also shown by means of rather involved calculations that Eq. (128)
may be generalized to the frequency-dependent case yielding

[ε (ω) − ε∞] [2ε∗ (ω) + ε∞] [2ε (ω) + 1]

ε (ω) [2ε∗ (ω) + 1] (ε∞ + 2)2
� 4πα (ω)

3υ
. (147)

Here, we have separated the displacement polarization mechanism as before, and
α (ω) is the polarizability of a sphere in vacuo (i.e., calculated by means of classical
statistical mechanics). Any further calculation necessitates a detailed investigation
of the dynamics of the fluctuation phenomena at the microscopic level.

In this context, Nee and Zwanzig [43] included the fact that in the time-dependent
situation the reaction field R lags behind the dipole. Thus, they obtained, for the
dynamicalOnsagermodel (i.e., ignoring dynamical correlations) the Fatuzzo–Mason
equation [44], viz.,

[ε (ω) − ε∞] [2ε (ω) + ε∞]

3λε (ω)
� 1

1 − iωτD − (
1 − ε∞

ε

) (
ε(ω)−ε

2ε(ω)+ε∞

) . (148)

Hence, they were able to reproduce the experimental complex permittivity of
glycerol at −60 °C. However, their derivation of Eq. (148) is open to objection. In
effect, when a dipole rotates, it produces a time-dependent field outside the cavity,
and energy is dissipated to the surroundings because of dielectric loss. Therefore,
the dipole moment slows down: this is dielectric friction. This frictional effect is in
addition to the local effects of van der Waals forces, which are usually represented
by the frictional term in the Langevin equation [3]. The problem is then to determine
how dielectric friction combines with the Stokes–Einstein friction of the rotational
Brownian motion [39]. Therefore, the most rigorous treatment of the linear complex
permittivity to date is that of Scaife, Eq. (147) [47].

https://doi.org/10.1007/978-3-319-77574-6_7
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(v) The nonlinear static susceptibilities and the local field

The range of validity of both the Onsager and the Kirkwood–Fröhlich equations
has been described in Fröhlich’s own words [39]: a molecule occupies a sphere of
radius a, its polarizability is isotropic and no saturation effects can take place. In
other words, provided the external field is small and static, the above treatment of the
local field holds. If the field is increased so that the dielectric behaves nonlinearly, all
the above treatment must be revisited. Here, we summarize the inclusion of internal
field effects on nonlinear susceptibilities. Thus, we briefly review the main results
already obtained for the cubic dielectric increment of polar fluids. In this context,
Onsager mentions that his local field formula (116) is not suitable for estimating
nonlinear effects due to strong electric fields. The reason for that is in the absence of
free charges, the electric displacement vector D obeys the Maxwell equation:

∇ · D � 0, (149)

while the Maxwell field obeys the irrotational condition

∇ × E � 0 (150)

so that E � −∇�, where � is the electrostatic potential. However, Eqs. (149) and
(150) cannot be solved without a constitutive equation linking D and E, which for
nonlinear dielectrics is

D � εR
(
E2)E. (151)

Furthermore, we are interested in the cubic dielectric increment only, thus wemay
expand the field-dependent permittivity εR

(
E2

)
as

εR
(
E2

) ≈ ε
(
1 − κE2

)
, (152)

where κ is the relative cubic nonlinear dielectric increment and ε is the constant
linear permittivity as before. Now, it is found [45] that κ is of the order of 10−18

m2/V2 and is usually positive (normal saturation), however, negative values have
also been observed (anomalous saturation) [45–47]. By analogy with the Langevin
theory of paramagnetism, the phenomenon described by Eq. (152) is called dielectric
saturation. From Eqs. (149)–(152), we see that the electrostatic potential� no longer
satisfies Laplace’s equation, instead satisfying [45]

(
1 − κ (∇�)2

)∇2� � κ (∇� · ∇) (∇�)2 (153)

The details of the approximate perturbative solution of the nonlinear Eq. (153) are
given elsewhere [45], and may be summarized as follows. Because of the smallness
of κ , one may seek the solution of Eq. (153) by perturbation methods, i.e., we may
write
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� � �(0) + κ �(1). (154)

Here, �(0) is the solution of Laplace’s equation while �(1) is the perturbed part
of the electrostatic potential because the dielectric is no longer linear. Including the
effect of the polarizability of the molecules, we then find that the Kirkwood–Fröhlich
equation is modified to (details in [45])

ε − ε∞ �
(

3ε

2ε + ε∞

)
4πβ

〈
M2

〉
0

3υ
+ 2κε

(
2ε − 5ε∞
(2ε + ε∞)4

)
(4π)3 β

〈
M4

〉
0

15υ3

+
(4π)2 κε (ε∞ − 1)

〈
M2

〉
0

(2ε + 1) υ2

[
2

3

2ε − 5ε∞
(2ε + ε∞)3

− 32πβε

5 (2ε + ε∞)4

〈
M4

〉
0

υ
〈
M2

〉
0

]
,

(155)

while the nonlinear dielectric increment is

�ε

E2
� κε � − 4πβ3

90υQ

(
2ε + 1

2ε + ε∞

)(
3ε

2ε + ε∞

)3 (
3
〈
M4

〉
0 − 5

〈
M2

〉2
0

)
(156)

where �ε is the absolute nonlinear dielectric increment, and

Q � 1 +
1

5

(ε∞ − 1)
(
28ε3 − 66ε2ε∞ − 60εε2∞ − 37ε3∞

)

(2ε + ε∞)4

+
4πβ

〈
M2

〉
0

15υ (2ε + ε∞)5

{(
28ε3 − 66ε2ε∞ − 60εε2∞ − 37ε3∞

)
(2ε + 1) −54ε (ε∞ − 1)

(
4ε2 + 2εε∞ + 3ε2∞

)}

+
(4π)2 β2

(
9
〈
M4

〉
0

− 5
〈
M2

〉2
0

)

75υ2 (2ε + ε∞)6

{
6ε2 (ε∞ − 1) (2ε − 5ε∞) −ε (2ε + 1)

(
4ε2 − 8εε∞ + 13ε2∞

)}

+ 3
(4π)3 β3ε2

(
3
〈
M6

〉
0

− 5
〈
M2

〉2
0

〈
M4

〉
0

)

25υ3 (2ε + ε∞)7

(
4ε2 − 18εε∞ + 10ε − 5ε∞

)
. (157)

Now, the extra terms in the modified Kirkwood–Fröhlich Eq. (155) can usually
be ignored in practice, especially for liquids with large permittivity. In contrast, the
expression for the nonlinear dielectric increment cannot be simplified. Here, it is
impossible to proceed without a statistical model allowing the calculation of the
statistical averages in Eqs. (156) and (157).

Other attempts to calculate �ε/E2 were made before that of Coffey and Scaife.
Following an earlier remark of Van Vleck [48], a first calculation of the nonlinear
dielectric increment was attempted by Thiébaut [49], assuming that intermolecular
correlations are negligible. Orientational correlations were included in the formula
derived with the assumptions of Van Vleck by Kielich [50] before Thiébaut’s work,
then later by Barriol and Greffe [51], and Böttcher [46], with the result

�ε

E2
� κε � 4πρ0β

3μ4

45

ε4 (ε∞ + 2)4

(2ε + ε∞)2
(
2ε2 + ε2∞

) RS, (158)
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where

RS � 3
〈
M4

〉
0 − 5

〈
M2

〉2
0

2ρ0υμ4
(159)

is called the Piekara–Kielich correlation factor [46, 50], which also arises in the
Coffey–Scaife formula. However, unlike the Kirkwood factor, RS may be negative
or positive, indicating that an anomalous saturation effect may on occasion dominate
the normal saturation effect. Now, Van Vleck’s derivation [48] assumes that

εR
(
E2

) ≈ ε
(
1 − κE (0)2

)
, (160)

where E(0) � −∇�(0) is the field existing in a linear dielectric. However, as already
pointed out by Onsager and later by Brown [34], no logical grounds exist for making
this assumption about a nonlinear dielectric and then replacing εR

(
E2

)
by εR

(
E (0)2

)
both in the cavity and reaction field factors (117), because this is equivalent to assum-
ing that the dielectric is linear in the overall sense, despite the fact that one is
attempting to calculate a nonlinear property. Hence, one cannot merely assume that
Eq. (160) holds for a nonlinear dielectric. A more complete theoretical discussion
is given in [45].

Now, although Eq. (160) is, stricto sensu, incorrect, comparison of Eq. (158) with
experiment (with Rs � 1) shows that agreement may sometimes be achieved, espe-
cially in substances where the Kirkwood correlation factor has value 1 [45]. Marked
differences between the Thiébaut [49] and Coffey–Scaife formulas and experimental
data occur occasionally [45], nevertheless the disagreement arises for both formulas
from the same sources of uncertainty, namely, either experimental errors or the lack
of accounting for orientational correlations. Thus, Eq. (156) demonstrates clearly
that the local field manifests itself quite differently for the relative permittivity and
for the nonlinear cubic dielectric increment.

Regarding dynamical susceptibilities, all we may anticipate is that the single
dielectric increment splits in two dynamical responses: one at the fundamental and
one at the third harmonic.

7 A Perspective: The Dean-Kawasaki Approach

As alluded to previously, it is very difficult, if not impossible, to calculate the dynam-
ics of the internal field exactly. Nevertheless, the various correlation effects may still
be calculated by using a specificmany-bodymethod, comprising the Dean-Kawasaki
method [52, 53]. The latter naturally extends Berne’s approach [54] so far as themean
field approximation is relaxed. For simplicity, we consider an assembly of dipoles
that are distributed at random however with positions fixed in space so that only the
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rotational degrees of freedom are relevant. The stochastic equation describing the
collective tumbling of the dipoles is then [53]

2τD
∂ρ

∂t
(u, t) � ∇u ·

[
βρ (u, t)∇u

δF

δρ
(u, t) + γ (u, t)

]
, (161)

where γ (u, t) is a randomGaussianwhite noise vector fieldwith statistical properties

γ (u, t) � 0, (162)

γi (u, t) γ j (u′, t) � τ−1
D ρ (u, t)δi jδ

(
u − u′) δ

(
t − t ′

)
, (i, j) � x, y, z. (163)

Here, the overbar denotes an average over the distribution of the realizations of
the noise field γ, δi j is Kronecker’s delta while δ

(
u − u′) and δ

(
t − t ′

)
are Dirac

delta functions, ρ is defined by

ρ (u, t) �
N∑
i�1

δ (u − ui (t)), (164)

ui (t) is the orientation of dipole i with dynamics governed by its individual
rotational Langevin equation, F � F [ρ] is a free energy functional and is also
a (stochastic) functional of ρ (the compact notation δF/δρ holds for a functional
derivative taken in the usualway for deterministic quantities). If only pair interactions
are retained, the free energy functional F for a pure species may be restricted to just
an entropic term, a field orientational term and (long range) pair intermolecular
interactions, viz.,

F [ρ] (t) � kT
∫

ρ (u, t) ln ρ (u, t) du − μE (t)
∫

(u · e) ρ (u, t) du

+
1

2

∫ ∫
ρ (u, t)Um

(
u,u′) ρ

(
u′, t

)
dudu′, (165)

where Um
(
u,u′) is the interaction energy for a single pair of dipoles. By defining

the orientational one-body and pair densities W and W2 by the equations

ρ (u, t) � W (u, t) , ρ (u, t) ρ (u′, t) � W2
(
u,u′, t

)
, (166)

and averaging Eq. (161) over the distribution of the realizations of the noise field,
we have the partial integrodifferential equation

2τD
∂W

∂t
(u, t) � ∇u · [∇uW (u, t) + βW (u, t)∇uVi (u)]

+ β∇u ·
∫

∇uUm
(
u,u′)W2

(
u,u′, t

)
du′, (167)
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where Vi (u, t) � −μE (t) (u · e) is the mean electrostatic orientational energy
due to the molecular field (i.e., the orientational electrostatic energy as seen by a
molecule). As written, Eq. (167) is just a rotational Fokker–Planck (Smoluchowski)
equation forced by pair interactions. However, it may also be regarded as a nonlinear
integrodifferential equation forW the orientational single-body density, becauseW2

may be written in most general form as

W2
(
u,u′, t

) � W (u, t)W
(
u′, t

)
g
(
u,u′, t

)
,

where g
(
u,u′, t

)
is the dynamical orientational pair distribution function. In particu-

lar, Eq. (167) has been used to evaluate the temperature dependence of the dielectric
constant of water and methanol, giving satisfactory agreement between the Kirk-
wood–Fröhlich formula and experimental data without any fitting parameter [55].
Thus, it appears that higher nonlinear correlation factors could also be computed
with this method.

8 Conclusion

Wehave reviewed a number of methods for the calculation of the linear and nonlinear
polarization responses to externally applied fields, both for noninteracting and inter-
acting molecules. In this way, we have emphasized the role that may be played by
dynamical interaction effects and the possible importance of the internal field effects
in these nonlinear responses. In particular, we have given a simple method whereby
thermally activated effects could be included in the theory. Moreover, we have also
indicated how dynamical effects due to intermolecular interactions may alter the
nonlinear polarizability spectra without affecting the linear response. The inclusion
of internal field effects in these nonlinear spectra is absolutely nontrivial and is left
for future investigation. Here, we have accounted for intermolecular interactions at
the mean field level only, thereby effectively neglecting intermolecular interactions.
However, we have also indicated how the collective tumbling of the dipolar system
may be treated on the basis of the Dean-Kawasaki formalism, because this allows the
inclusion of static and dynamic correlations at the molecular level. This formalism
is essentially equivalent to the Bogolyubov–Born–Green–Kirkwood–Yvon formal-
ism [33] treatment by diffusion processes, in which inertial effects are neglected
completely. In effect, the short-range van der Waals forces are accounted for using
a white noise approximation in the manner of Langevin [3], while the long range
forces are treated explicitly. In particular, the Dean-Kawasaki formalism is able to
reproduce the nonlinear integrodifferential equation obeyed by the equilibrium pair
distribution function [32], in turn reducing to the Born–Green equation [33] when
the Kirkwood superposition principle is used. Therefore, for the purpose of mod-
eling long range interaction potentials, the various correlation factors occurring in
Eqs. (136) and (156) can be computed. These tasks are left for future research.
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Abstract The nonlinear response for systems exhibiting Markovian stochastic
dynamics is calculated using time-dependent perturbation theory for the Green’s
function, the conditional probability to find the system in a given configuration at a
certain time given it was in another configuration at an earlier time. In general, the
Green’s function obeys a so-called master-equation for the balance of the gain and
loss of probability in the various configurations of the system. Using various mod-
els for the reorientational motion of molecules it is found that the scaled modulus
of the third-order response, X3, shows a hump-like behavior for random rotational
motion in some cases and it exhibits “trivial” behavior, a monotonuos decay from
a finite zero-frequency value to a vanishing high-frequency limit, if the model of
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1 Introduction

Broadband dielectric spectroscopy is a very powerful method to investigate the
dynamical behavior of condensed matter systems over an extremely broad frequency
range [1]. This is particularly important for systems like supercooled liquids and
glasses where the dynamics spans timescales from very fast dynamics to extremely
slow processes like the primary relaxation or the normalmode relaxation in polymers
[2, 3]. In order to study the dynamically heterogeneous nature of glassy relaxation,
however, one has to apply frequency-selective techniques [4–7]. Apart from probing
the system at more than two times, as in higher dimensional NMR experiments [8–
10], also the application of strong electric fields allows to monitor dynamical hetero-
geneities via the nonresonant hole-burning techniques [11, 12]. Similar techniques
have also been used to monitor magnetic [13] and mechanical [14] hole-burning.

Motivated by a theoretical prediction of Bouchaud and Biroli [15], in the past
a number of experimental studies of the nonlinear dielectric response have been
conducted, for a very recent review see [16]. The idea was that the modulus of the
third-order response function is related to the number of cooperatively rearranging
particles Ncorr participating in the primary relaxation process. As a function of fre-
quency, the modulus exhibits a peak near the mean relaxation frequency and this
was attributed to the existence of “glassy correlations” [17]. In this interpretation
of the nonlinear response, the height of the peak is a measure of Ncorr and experi-
mental results have been analyzed along these lines [17, 18]. On the other hand, a
monotonous decay of the modulus from a finite low-frequency value to zero at high
frequencieswas interpreted as being indicative of the lack of spatial correlations in the
system and was assumed to indicate “trivial” behavior [18], i.e., the reorientational
motion molecules lacking cooperativity.

Other studies of the nonlinear dielectric relaxation have been interpreted in terms
of models that do not exhibit any spatial structure like the Box model, further phe-
nomenological models [16, 19–21] and also the mode coupling theory of the glass
transition [22]. Other models used to compute the cubic response of glasses devoid
of spatial structure are a toy model based on the assumption of the existence of
correlated particles [23] and a phenomenological model for the primary relaxation
[24]. Additionally, the nonlinear response for molecules undergoing isotropic reori-
entational diffusion has been calculated and the resulting modulus does not exhibit
a hump-like structure [25] but shows trivial behavior only. Quite recently, the fifth-
order nonlinear susceptibilities of supercooled glycerol and propylene carbonate have
been determined giving strong support for the interpretation in terms of cooperatively
moving particles [26].

We have computed the third-order and the fifth-order response for a well-known
model exhibitingglassy relaxation, the so-called trapmodel, and found that for certain
values of the model parameters a hump is found in both cases [27, 28]. In addition
for the model of dipoles reorienting in an asymmetric double-well potential humps
are observed. These calculations were performed using time-dependent perturbation
theory for the propagator of the underlying stochastic dynamics and will be reviewed
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in the present chapter. As mentioned above, the nonlinear response theory of dipole
reorientations has been worked out for various models of rotational diffusion [25,
29–31] and has also been extended to include long-range dipolar interactions [32].
In most of these calculations, it is assumed that the stochastic reorientations of the
molecules can be described in terms of a Fokker–Planck equation (FPE) [33, 34]. The
perturbation theory presented in the present chapter generalizes these approaches to
the treatment of the propagator of the more generally applicable master-equation
(ME) [33, 35].

In general, the dielectric polarization is related to the expectation value of the
electric dipole moment of the sample, see e.g., [1]. Here, we will not consider details
of the theory of dielectrics, but we take the following simplified view. The response
to an external electrical field E(t) is determined by the change of the energy of the
systemdue to the alignment of the dipolemomentM in the field,∝ (−M · E(t)). The
dielectric response is determined by the time-dependent average 〈M(t)〉. Through-
out the present chapter, we assume that M depends on a set of relevant coordinates
q(t), M(t) = M(q(t)). Although not necessary for the general discussion, the coor-
dinates q(t) are chosen to represent a Markov process and the stochastic dynamics
is described by a ME or a FPE [33–35]. The coordinates q(t) might represent one
or more relevant angles defining the orientation of a molecule in a laboratory—fixed
frame, in the most general case three Eulerian angles, or q(t) can also represent
some collective variables characterizing the relevant configurations of the system.
With this, the expectation value can be written as

〈M(t)〉 =
∫
dqM(q)p(q, t). (1)

Here, p(q, t) denotes the probability to find the value q at time t . Therefore, the
response is determined by the time evolution of p(q, t). General results do only
exist in the linear response regime, where the fluctuation–dissipation theorem (FDT)
holds, see e.g. Ref. [1]. The FDT relates the linear response R(t, s) to the time
derivative of the equilibrium correlation function of the variable conjugated to the
applied field (the dipole moment), CM(t, s), which can be written for times t ≥ s:

R(t, s) = δ〈M(t)〉
δE(s)

∣∣∣∣
E=0

= β
∂CM(t, s)

∂s
. (2)

Here, β = (kBT )−1 (kB is the Boltzmann constant, in the following set to unity) and
CM(t, s) is given by

CM(t, s) = 〈M(t)M(s)〉 =
∫
dq

∫
dq ′M(q)M(q ′)G(q, t |q ′, s)p(q ′, s), (3)

where G(q, t |q ′, s), denotes the conditional probability (Green’s function) to find
the value q at time t , given it had the value q ′ at time s. Generally, the time-dependent
probability can be computed from
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p(q, t) =
∫
dq ′G(q, t |q ′, s)p(q ′, s). (4)

If one is interested in the generally nonlinear response of the system to a field applied
at time s, one has to extend the calculation to the desired order in the field E and
then uses

〈M(t)〉 =
∫
dq

∫
dq ′M(q)G(E)(q, t |q ′, s)p(q ′, s). (5)

Note, that Eq. (4) cannot be used here, because theGreen’s function is to be calculated
in the presence of the field and the a priori distribution p(q ′, s) is the one before the
field is switched on. Here, using an expansion of G(E)(q, t |q ′, s) linear in the field
yields the linear response, and using the nth order gives the corresponding nonlinear
order.

In the present chapter, we will discuss the high-order (third- and fifth-order)
response for systems exhibiting a stochastic dynamics that can be assumed to be
Markovian. In the following section, we will briefly recall some aspects of simple
models of stochastic dynamics and then formulate the time-dependent perturbation
theory that will be used to calculate the relevant response functions according to
Eq. (5).

2 Markovian Stochastic Dynamics

As mentioned above, if the stochastic dynamics can be considered to be Markovian
the Green’s function G(q, t |q ′, t ′), obeys the ME:

Ġ(qk, t |ql , t0) =
∫
dqnW(qk, qn, t)G(qn, t |ql , t0). (6)

Here, the elements of the master-operator, W(qn, qk, t) are given by [33, 35]

W(qk, ql , t) = W (qk, ql , t) − δ(qk − ql)
∫
dqnW (qn, ql , t), (7)

where W (qk, ql , t) is the transition rate from ql to qk at time t .
Equation (6) has to be solved with the initial condition G(qk, t0|ql, t0) =

δ(qk − ql), where δ(x) denotes the Dirac delta function. The explicit form of the
ME reads as

Ġ(qk , t |ql , t0) = −
∫
dqnW (qn, qk , t)G(qk , t |ql , t0) +

∫
dqnW (qk , qn, t)G(qn, t |ql , t0).
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Here, the first term describes the loss of probability in ‘state’ qk due to all transitions
out of this state with the effective escape rate

∫
dqnW (qn, qk, t) and the second terms

gives account of the gain in probability in qk .
The derivation of a FPE starting from themore generalME is quite straightforward

and the result can be written in the form [33, 35]

Ġ(qk, t |ql , t0) = L(qk, t)G(qk, t |ql , t0), (8)

where L(qk, t) denotes the FP-operator. Generally, the FPE is used if one considers
diffusion processes and the ME can be used to treat problems with larger jump
lengths. For further information regarding the properties of the ME and the FPE, we
refer to textbooks [33–36].

If the dynamics is stationary, all one-time quantities do not depend on time, such
as the stationary distributions, pstat.(q, t) = peq(q), and two-time quantities only
depend on the time difference, e.g., CM(t, s) = CM(t − s). Furthermore, the same
holds for theGreen’s function,G(q, t |q ′, s) = G(q, t − s|q ′) and the long-time limit
of G(q, t |q ′) yields the equilibrium population, limt→∞ G(q, t |q ′) = peq(q).

Molecular Reorientations: Rotational diffusion, rotational random jumps

In the past, a number of models for the reorientational motion of molecules in super-
cooled liquids have been considered and these models have been used in the inter-
pretation of (linear) dielectric response functions and NMR relaxation times and
spectra, see e.g. Refs. [37, 38]. Among these models are the well-known model of
rotational diffusion, the model of random reorientational jumps, and also models
treating rotational jumps of finite width.
Rotational diffusion: If one considers the isotropic rotational diffusion ofmolecules,
one has the FPE:

Ġ(w, t |w0) = DR
1

sin2 θ

[
sin θ · ∂θ (sin θ · ∂θ ) + ∂2

ϕ

]
G(w, t |w0), (9)

where w = (θ, ϕ) and DR denotes the diffusion coefficient. The solution of this
equation is well known and is given by the series

G(w, t |w0) =
∞∑
l=0

l∑
m=−l

Yl,m(w)Y ∗
l,m(w0)e

−DRl(l+1)t (10)

with Yl,m(w) representing a spherical harmonics. From this expressions, rank-
dependent time correlation functions can be computed and one finds that they decay
exponentially according to Cl(t) = 〈Yl,0(w(t))Y ∗

l,0(w(0))〉 = Cl(0)e−DRl(l+1)t [37].
If one compares the relaxation times τl = ∫

dt∞0 Cl(t) relevant for dielectric relaxation
(l = 1) and NMR (l = 2), one finds τ1/τ2 = 3 at variance with most experimental
results obtained for supercooled liquids, where more typically τ1/τ2 
 1 is found
[38].
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Rotational random jumps: A l-independent result for the rotational correlation
functions is found in the framework of the model of rotational random jumps. Here,
it is assumed that any rotation completely decorrelates the orientational degrees of
freedom and therefore the master-operator has the following form:

W(w,w0) = �

[
1

4π
− δ(w − w0)

]
(11)

This means that a transition out of an orientation w0 takes place with a rate � and
ends at any other orientation on the sphere with equal probability ((4π)−1). The
solution reads as

G(w, t |w0) = 1

4π
+ e−�t

[
δ(w − w0) − 1

4π

]
(12)

and in this case one finds for the rotational correlation functions the l-independent
expression Cl(t) = e−�t .

More general models for the rotational motion incorporating rotational jumps
have been considered, e.g., in Refs. [37, 39, 40] and references therein and in some
cases also the heterogeneous nature of the rotational relaxation in supercooled liquids
has been taken into account explicitly [38, 41–43].

The asymmetric double-well potential model

A quite different model that often has been used to model dielectric relaxation is the
model of dipole reorientations in an asymmetric double-well potential (ADWP). The
dipole can assume two orientations separated by a barrier, cf. Fig. 1. The dynamics of
this system is then described as a process of diffusive barrier crossing and therefore
one has to consider the FPE for the diffusion in the presence of a potential V (q, t).
This time-dependent potential usually contains a time-independent term that is given
by the ADWP and the time-dependent coupling to the external fields. In this case,
the FP-operator has the following generic form:

L(q, t) = D∂qe
−βV (q,t)∂qe

βV (q,t) = βD∂qV
′(q, t) + D∂2

q . (13)

If one considers the double-well potential with deep wells as in Fig. 1, one can
discriminate between two types of dynamical processes. The intra-well relaxation
is fast and can be modeled by the well-known Ornstein–Uhlenbeck process [33].
The diffusive barrier crossing can be treated using Kramers theory and gives rise to
transition rates that are of anArrhenius formwith the barrier as an apparent activation
free energy. We will denote the two orientations corresponding to the minima of the
ADWPby ‘1’ and ‘2’, characterized by polar angles θ1 = θ and θ2 = (θ + π) [12, 27,
28, 44]. The transition rates between these two states are given by W12 = We−β
/2

andW21 = We+β
/2. Here
 denotes the asymmetry, cf. Fig. 1, andW is the hopping
rate in the symmetric case, W = W0e−βV , with the average activation energy V .
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Fig. 1 Sketch of an
asymmetric double well
potential. The asymmetry is
denoted by 
 and the
average activation energy is
V . The rate for a transition
from state (orientation) 2 to 1
is given by W12

Δ

V

W12

1

2

In this case, the long-time behavior after equilibration within the wells can be
properly describedby aMEfor the populations of the twowells, see e.g. [45]. ThisME
is then a discrete version ofEq. (6),whichwith the abbreviationsGkl(t) = G(qk, t |ql)
and Wkl = W (qk |ql) is given by

Ġkl(t) =
∑
n

WknGnl(t), (14)

where the elements of themaster-operator areWkl = Wkl − δkl
∑

n Wnl , i.e. Ġkl(t) =∑
n[WknGnl(t) − WnkGkl(t)].
For the ADWP model, the Green’s functions in the field-free case are given by

Gkl (t) = p
eq
k

(
1 − e−t/τ

)
+ δkle

−t/τ with τ−1 = 2W cosh(β
/2) and p
eq
k = τ · Wkl . (15)

The time correlation function relevant for dielectric relaxation, CM(t) [Eq. (3)], is
calculated assuming

Mk = M cos(θk) and therefore M1 = M cos(θ) ; M2 = −M cos(θ)

with M denoting the static molecular dipole moment. After performing the average
over all orientations, 〈cosn(θk)〉 = (n + 1)−1 for n even and 〈cosn(θk)〉 = 0 for n
odd, one finds

CM(t) = M2

3
(1 − δ2)e−t/τ (16)

Here, the definition
δ = tanh(β
/2) (17)

has been used. The prefactor stems from 〈M2〉 = ∑
k M

2
k p

eq
k = (M2/3)(1 − δ2)

where the isotropic average has been performed (hence the factor 1/3).

The Gaussian trap model

Also models that do not treat molecular reorientations explicitly can be used to
compute response functions if the coupling of the relevant variables to the field are
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specified. In this chapter, we will consider the trap model with a Gaussian density of
states [46, 47]. This type of model has been used quite successfully to understand
certain aspects of glassy dynamics [48–50]. Themain ingredients of themodel can be
summarized as follows. It is assumed that the minima of the free-energy landscape,
ε, are distributed according to a Gaussian:

ρ(ε)= 1√
2πσ

e−ε2/(2σ 2) (18)

with σ = 1. This assumption has been shown to be in reasonable agreement with the
distributions of meta basin energies [51]. The transitions among the various ‘states’
ε are modeled as an activated escape out of the initial state with the destination state
chosen at random, i.e., according to the density of states, Eq. (18):

W (ε|ε0) = ρ(ε) · κ(ε0) (19)

with the escape rate
κ(ε) = κ∞eβε. (20)

Because ρ(ε) is normalized,
∫
dερ(ε) = 1, the ME reads

Ġ(ε, t |ε0) = −κ(ε)G(ε, t |ε0) + ρ(ε)

∫
dε′κ(ε′)G(ε′, t |ε0). (21)

The equilibrium populations are given by the long-time limit of the Green’s function
and are also Gaussian:

peq(ε) = lim
t→∞ G(ε, t |ε0) = 1√

2πσ
e−(ε−ε̄)2/(2σ 2) ; ε̄ = −βσ 2 (22)

The detailed calculation of the response functions and also the time correlation func-
tions CM(t) = 〈M(t)M(0)〉 requires a choice of the functional dependence of the
‘moments’ M(t) on the trap energies ε. (Note that in the present discussion the trap
energy ε plays the role of the generalized ‘coordinate’ q introduced in the Introduc-
tion.)

In order to calculate the response, one further has to quantify the dependence of
the ‘moment’ M(ε) on the trap energy ε. The choice of this dependence represents
a further assumption of the calculation and has a strong impact on the results for
the response functions, as will be discussed below. According to Eqs. (2) and (3) the
linear response is determined by the equilibrium auto-correlation function CM(t). In
the present chapter, we will always make the following reasonable assumption:

〈M(ε)〉 = 0 and 〈M(ε)M(ε0)〉 = δ(ε − ε0)〈M(ε)2〉. (23)

Using this, one finds for CM(t):
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CM(t) =
∫
dε〈M(ε)〉e−κ(ε)t peq(ε). (24)

We mention that for ε independent M , 〈M(ε)2〉 = 〈M2〉, this correlation function
reduces to the ‘jump-correlation function’, which decays whenever a transition takes
place and thus can be viewed as an intermediate scattering function for a large value
of the modulus of the scattering vector [38].

3 Nonlinear Response Theory for Markov Processes

The response of the system to an external E field applied at time t0 and measured
by the observable M(t) (the dipole moment) is given by Eq. (5), which in a discrete
version reads as

χM(t, t0) = 〈M(t)〉 =
∑
kl

MkG
(E)
kl (t, t0)pk(t0). (25)

Here, Mk is a shorthand notation for M(qk). The time-dependent perturbation theory
for the Green’s function G(E)

kl (t, t0) is obtained in the following way. Starting from
theME in the discrete version of Eq. (6), one translates theME into amatrix notation:

∂tG(t, t0) = W(t)G(t, t0). (26)

The matrix elements of the propagator are G(t, t0)kl = Gkl(t, t0) = G(qk, t |ql , t0)
and those of the master—operator are given by Wkl(t) = W(qk, ql , t). The formal

solution of the ME can be written asG(t, t0) = T exp
(∫ t

t0
dτW(τ )

)
G(t0, t0) where

T denotes the time-ordering operator and G(t0, t0)kl = δkl . Note that the same for-
malism is applicable to the solution of a FPEwith the only difference that the master-
operator is to be replaced by the FP-operator. Differences between the perturbation
theory for a FPE and aMEappear, however,when dealingwith the nonlinear response
functions, see the discussion below. If an electric field is applied, the corresponding
ME is written as ∂tG(E)(t, t0) = W (E)(t)G(E)(t, t0).

In order to set up the perturbation theory we decompose the master-operator into
an unperturbed (field-free) part and a perturbation contribution,

W (E)(t) = W(t) + V(t). (27)

Without specifying the expression for the coupling to the field, the elements of the
individual terms W(t) and V(t) generally are obtained from a Taylor expansion of
W (E)(t) with respect to the electric field,
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W (E)
kl (t) =

∞∑
n=0

1

n!W
(n)
kl (t) · [βE(t)]n with W (n)

kl (t) = dn

d(βE)n
W (E)

kl (t)

∣∣∣∣
E=0

(28)
and accordingly we have the decomposition into the field-free partWkl(t) = W (0)

kl (t)
and the perturbation

V(t) =
∞∑
n=1

V (n)(t) with V (n)(t)kl = [βE(t)]n
n!

[
W (n)

kl (t) − δkl
∑
m

W (n)
ml (t)

]
.

(29)
The formal perturbation expansion for the propagator starts from the Dyson-like
equation

G(E)(t, t0) = G(t, t0) +
t∫

t0

dt ′G(t, t ′)V(t ′)G(E)(t ′, t0) (30)

with G(t, t0) ≡ G(0)(t, t0). In an abbreviated form, we write for this equation

G(E) = G + G ⊗ V ⊗ G(E) (31)

where the time arguments are omitted and the convolution is abbreviated by the ‘⊗’
symbol. Using Eqs. (28) and (29), one finds the following general expression for the
nth-order Green’s function G(n)(t, t0):

G(n) =
n−1∑
m=0

G(0) ⊗ V (n−m) ⊗ G(m) with G(0) ≡ G (32)

In the next step, one uses the expression for the matrix elements of G(n)(t, t0),
G(n)

kl (t, t0), in Eq. (25) in order to compute the nth-order response,

χ(n)(t, t0) =
∑
kl

MkG
(n)
kl (t, t0)pk(t0). (33)

Note that these response functions represent so-called integrated response functions.
Of course, it is also possible to define the corresponding pulse-response functions,
R, as in Eq. (2) and then the integrated response is obtained by multiplication of R(n)

with the time-dependent fields and integrating over the internal times [27, 28].
The remaining problem in the formulation of the response theory is the deter-

mination of the field dependence of the transition rates W (E)
kl (t). We note that in

general there is no definite recipe for this if the dynamics is described by a ME.
Only in case of a diffusive dynamics represented by a FPE the field dependence of
the FP-operator is determined by the force exerted by the applied field. Here, we
will obtain the field dependence of the transition rates from the following consid-
erations. One assumes that the field couples to a variable M , giving a contribution
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(−E · Mk) to the energy and therefore the Boltzmann factor and the equilibrium
population peqk is altered accordingly. Together with the detailed balance condition
Wkl p

eq
l = Wlk p

eq
k this suggests an exponential dependence of the W (E)

kl (t) on the
field. This is further substantiated by the following argument. One writes the discrete
version of the FPE for the diffusion in a field, Eq. (13), on a grid of points {qk} with
equal spacing 
q = (qk+1 − qk) and the definitions D = D/(
q)2, Vk = V (qk),
pk(t) = p(qk, t)
q in the form of a ME [33, 52]:

ṗk = Wk(k+1) pk+1 + Wk(k−1) pk−1 − (
W (k+1)k + W (k−1)k

)
pk

with
Wk(k±1) = D

[
1 − (β/2)(Vk − Vk±1)

] 
 De−(β/2)(Vk−Vk±1)

From this it is evident that the exponential field-dependence follows from Vk ∝
−EMk .

Using an exponential dependence, a quite general model is obtained using the
following expression:

W (E)
kl (t) = Wkl(t)e

βE(t)[γ Mk−μMl ]. (34)

Here, γ andμ can be chosen arbitrarily [53–55] and for γ = 1 − μ, themodel fulfills
detailed balance. Ifμ = 1, γ = 0, the field couples to the initial state of the transition
and for μ = 0, γ = 1, the coupling takes place via the destination state.

The above expressions for theG(n) simplify considerably, if the stochastic dynam-
ics is described by a FPE. This is because in that case there is no ambiguity in the
choice of the coupling to the field. The coupling of the dipoles to the field adds a
term (−E · M(q)) to the potential V (q) and this has to be incorporated into the FPE,
yielding a strictly linear coupling [33]. Therefore, one has V (m) = 0 for m > 1 and
Eq. (32) becomesG(n) = G(0) ⊗ V (1) ⊗ G(n−1). If one uses Eq. (34) in the linearized
form of the ME, one obtainsW (E)

(k+1)k(t) = W(k+1)k(t)(1 + βE(t)[γ M(k+1) − μMk])
which for μ = γ = 1/2 gives the force term in the FP-operator.

Using the expressions for the unperturbed Green’s functions, one can calculate
the corresponding nonlinear response functions for anymodel that is used to describe
the molecular motion. In the following, we will focus on the response to sinusoidal
fields of the form H(t) = H0 cos (ωt), for which the various response functions for
times long compared to the initial transients can be written as

χ(1)(t) = H0

2

[
e−iωtχ1(ω) + c.c.

]

χ(3)(t) = H 3
0

2

[
e−iωtχ

(1)
3 (ω) + e−i3ωtχ

(3)
3 (ω) + c.c.

]
(35)

χ(5)(t) = H 5
0

2

[
e−iωtχ

(1)
5 (ω) + e−i3ωtχ

(3)
5 (ω) + e−i5ωtχ

(5)
5 (ω) + c.c.

]

where c.c. denotes the complex conjugate.
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4 Results for Simple Models

In this section, the results obtained for the linear and the nonlinear dielectric response
using the stochastic models discussed above in Sect. 2 will be presented and dis-
cussed.

4.1 Reorientation Models

Here, we consider the rotational motion of molecules in terms of the simple models
of rotational diffusion and of rotational random jumps. It is important to point out
that no aspect of cooperative motion is incorporated in these models. In this sense,
they do not allow for the treatment of so-called glassy correlations and constitute
models that have been termed as trivial in the context of the nonlinear response of
supercooled liquids [17, 26].

Rotational diffusion

The linear and nonlinear dielectric spectra for the model of isotropic rotational dif-
fusion have been calculated and the corresponding expressions are repeated here
for convenience [25]. We only mention that the method used in Ref. [25] is slightly
different from the time-dependent perturbation theory as outlined above. The results,
however, agree. The calculation using the perturbation theory starts from the FPE,
Eq. (9),with the inclusion of a term (−M cos θ · E(t)) coupling to thefield. This gives
rise to a decomposition of the FP-operator similar to Eq. (27),L(E)(t) = L0 + V (1)(t)
with V (1)(t) = βME(t)(2 cos θ + sin θ∂θ ).

For the linear response, one finds

χ1,RD(ω) = 
χ1,RD
1

1 − iωτ1
with 
χ1,RD = β

M2

3
. (36)

For the cubic response, we consider the 3ω-component, which for this model is given
by

χ
(3)
3,RD(ω) = − 1

60
β3M4SRD(ωτ1) ; SRD(x) = (3 − 17x2) + i x(14 − 6x2)

(1 + x2)(9 + 4x2)(1 + 9x2)
(37)

Here, x = ωτ1 with τ1 = 1/(2DR).

Rotational random jumps

In this case, one has to consider a ME and thus one has to fix the values ofμ and γ in
Eq. (34). Here, we will choose these values according to the following consideration.
The idea underlying the random jump model is that starting from a given orientation
any other orientation can be reached in a single jump, thus completely randomizing
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the distribution of orientations. Therefore, we assume that the same holds for the
dependence of the molecular dipole moment on the orientational degrees of freedom.
Correspondingly, we start with a coupling to the initial orientation (say θ ) according
to (−E · M cos θ) and we average over the orientations that can be reached (say
θ ′), 〈(−E · M cos θ ′)〉. Since 〈cos θ ′〉 = 0, this corresponds to choosing μ = 1 and
γ = 0 and we will present results for this particular choice.

The linear response is given by the same expression as for the model of rotational
diffusion, Eq. (36), with the replacement τ1 = 1/�. Also the third-order response can
be written in a form that is very similar to Eq. (37). However, the spectral function
is quite different and this gives rise to a different behavior.

χ
(3)
3,RJ(ω) = − 1

60
β3M4SRJ(ω/�) ; SRJ(x) = (2 + 62x2 − 144x4) − i x(1 − 167x2 + 36x4)

6(1 + x2)(1 + 4x2)(1 + 9x2)
(38)

with x = ω/�. In the past, experimental results have either been presented in terms
of real and imaginary part of the susceptibility or, alternatively, the modulus and
the phase have been considered. In particular, it has proven meaningful to scale the
modulus by the squared static linear response in the following way:

X3(ω) = T

(
χ1)2

∣∣∣χ(3)
3 (ω)

∣∣∣ (39)

This definition allows to get rid of the trivial temperature dependence of χ3, χ3 ∝ β3.
Using this, one can write for the two models considered:

X3,Z (ω) = 3

20
|SZ (ωτ1)| with Z ∈ (RD,RJ) (40)

The limiting values are

X3,Z (ω → 0) = 1

20
(41)

and for high frequencies both quantities vanish according to

X3,RD(ω → ∞) 
 1

40(ωτ1)3
; X3,RJ(ω → ∞) 
 1

40(ωτ1)
. (42)

In Fig. 2 we show the real and the imaginary part of the cubic response for the two
models considered. It is evident that the behavior of both quantities is somewhat
different from the respective linear response. Apart from an irrelevant overall phase,
the real part is not strictlymonotonously changing from the low-frequency limit to the
high frequency limit and also the imaginary part does not show the pure dissipative
behavior of a Debye lineshape (Note that Kramers–Kronig relations do not exist in
the nonlinear regime in general).
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Fig. 2 Real and imaginary
part of the cubic
susceptibility χ

(3)
3 (ω) for the

models of rotational
diffusion (red lines) and
rotational random jumps
(black lines). The green
dashed lines represent the
linear response (−10χ1(ω))

Fig. 3 Upper panel: X3(ω)

for the models of rotational
diffusion (red lines) and
rotational random jumps
(black lines). Lower panel:
Phase ϑ3(ω) =
acos(χ(3),

3 (ω)/χ
(3),
3 (ω)) (in

deg.) as a function of
frequency

The mentioned representation of the modulus is presented in Fig. 3. One can see
that the model of rotational random jumps exhibits a hump located at a frequency
somewhat smaller than the inverse relaxation time, whereas in case of rotational
diffusion a monotonous decay is found from the low-frequency limit X3(0) = 1/20
to the vanishing high-frequency limit. In the interpretation of Refs. [17, 18] the latter
behavior is expected for so-called trivial dynamics without glassy correlations and
the appearance of a hump is an indication of the occurance of such correlations. As
indicated in the Introduction, also models without spatial correlations can give rise to
a hump in X3(ω). It is, however, interesting that also X3 for a very simple model for
the rotational motion of molecules shows a hump-like behavior. The phases ϑ3(ω)
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behave very similar and one cannot extract any significant difference between the
two models.

4.2 ADWP Model

Performing the same calculation as for the reorientational models using Eq. (15) for
the field-free Green’s function, Eq. (15), one finds for the linear response:

χ1,ADWP(ω) = 
χ1,ADWP
1

1 − iωτ
where 
χ1,ADWP = β〈
M2〉 = β

M2

3

(
1 − δ2

)
(43)

where again δ = tanh(β
/2) and τ−1 = 2W cosh(β
/2) (Note that 
χ1,ADWP

differs by a factor 1/2 from the definition of χDWP in Ref. [44]). 
χ1,ADWP is of
course the same expectation value, 〈
M2〉, as in the expression for the two-time
correlation function, Eq. (16). The spectral shape of χ1,ADWP(ω) is identical to that
of the reorientational models. The amplitude, however, shows an extra temperature
dependence that is determined by the value of the asymmetry, cf. Fig. 4. For increas-
ing 
 the low-temperature limit approaches zero. In case of vanishing asymmetry,
the linear susceptibility is not distinguishable from the corresponding ones for the
reorientational models.

For the higher order response functions one has to choose the values of γ and
μ. However, as we have only two states and correspondingly there exists only a
single destination state for each transition, this choice is irrelevant and the results
all coincide provided that the detailed balance condition γ + μ = 1 is fulfilled. In a
straightforward calculation, one finds [27]:

χ
(3)
3,ADWP(ω) = M4

20
β3

(
1 − δ2

)
S3,ADWP(ωτ) (44)

Also in this case, the spectral function only depends on the product x = ωτ and is
given by

Fig. 4 Relative amplitude of
the linear susceptibility,

χ1,ADWP/
χ1,RD as a
function of temperature for
different values of the
asymmetry; 
 = 0: black,

 = 0.2: blue, 
 = 0.5:
green, 
 = 1.0: red,

 = 2.0: cyan
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S3,ADWP(x) = δ2
(1 − 11x2) + i6x(1 − x2)

(1 + x2)(1 + 4x2)(1 + 9x2)
+ 2(5x2 − 1) + i3x(x2 − 3)

6(1 + x2)(1 + 9x2)

In the following, we will consider X3(ω) according to Eq. (39). This quantity is given
by, cf. Eqs. (43) and (44):

X3,ADWP(ω) = 9

20

∣∣S3,ADWP(ωτ)
∣∣(

1 − δ2
) (45)

The limiting values for small and large frequencies are determined by the corre-
sponding limits of S3,ADWP(ωτ) and thus, one has

X3,ADWP(0) = 3

20

∣∣3δ2 − 1
∣∣(

1 − δ2
) ; X3,ADWP(ω → ∞) 
 1

40
(
1 − δ2

)
∣∣∣∣3δ

2

x3
− 1

x

∣∣∣∣ .
(46)

Before discussing the frequency dependence of X3,ADWP(ω), it is instructive to con-
sider X3,ADWP(0). This quantity is plotted as a function of temperature in Fig. 5. The
following features are evident immediately. For small 
, X3,ADWP(0) → 3/20 and
for large 
 one has X3,ADWP(0) → ∞. This behavior is reflected in Fig. 5 for small
temperatures (large β and thus large β
) where X3,ADWP(0) becomes very large.
Additionally, for finite values of the asymmetry, X3,ADWP(0) approaches the limit-
ing value 3/20 for high temperatures (β → 0). The drop to zero of X3,ADWP(0) is
determined by the condition

∣∣3δ2 − 1
∣∣ = 0 and therefore defines the characteristic

temperature

T3 = 


ln [(√3 + 1)/(
√
3 − 1)] 
 0.76
. (47)

The fact that X3,ADWP(0) vanishes at T3 has a strong impact on the behavior of its
frequency dependence [27].

As a function of frequency, a hump-like behavior is observed in a certain temper-
ature regime around T3, as shown in Fig. 6. The existence of the hump-like structure
is determined by X3,ADWP(0) and for temperatures much lower or much higher than
T3 only trivial behavior as for the model of rotational diffusion is observed. This fact

Fig. 5 Relative amplitude of
the cubic susceptibility,
X3,ADWP(0)/X3,RD(0) as a
function of temperature for
different values of the
asymmetry; 
 = 0: black,

 = 0.2: blue, 
 = 0.5:
green, 
 = 1.0: red,

 = 2.0: cyan
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Fig. 6 X3,ADWP(ω) for 
 = 1 as a function of frequency for different temperatures as indicated in
the upper panel. The full red line represents X3,RJ(ω) and the dashed red line X3,RD(ω), cf. Fig. 3.
The inset in the upper panel shows the ratio between the maximum value of X3,ADWP(ω) and its
zero-frequency limit, Xmax

3,ADWP(ω)/X3,ADWP(0) as a function of temperature. In the lower panel
the same data are plotted on a logarithmic scale. The black dashed line has slope 1/ω

is quantified in the inset of the upper panel in Fig. 6, where Xmax
3,ADWP(ω)/X3,ADWP(0)

is plotted as a function of temperature. In supercooled liquids it is observed that the
height of the peak decreases with increasing temperature [17]. In the ADWP model,
this is true only for T > T3, while for T < T3 the height increases with temperature.
For vanishing asymmetry, the hump disappears completely and X3,ADWP(ω) is very
similar to the corresponding quantity for reorientational motions. At high frequen-
cies, X3,ADWP(ω) behaves as that obtained for the model of rotational random jumps,
cf. Eq. (46). This equation also shows that the high-frequency behavior depends on
the value of 
 and the temperature, cf. Fig. 7. It is observed that for small values of
(β
) the high frequency behavior is very similar to that obtained for the model of
rotational random jumps. For large (β
) one finds a crossover from the behavior of
X3,RD(ω) to X3,RJ(ω) around ωτ ∼ 1. It should, however, be kept in mind that for
δ → 1 the cubic susceptibility vanishes completely [and X3,ADWP(ω) diverges due
to the denominator (1 − δ2) in Eq. (45)].

In the present chapter, we do not discuss the frequency dependence of the 1ω-
component of the third-order response and onlymention that this behaves very similar
to the 3ω-component, for details we refer to Ref. [27].

Fifth-order response

For the ADWP model, in addition to the third-order response we present the results
for the 5ω-component of the fifth-order response, χ

(5)
5,ADWP(ω). The calculation is

performed in the same way as in case of the linear response and the cubic response
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Fig. 7 X3(ω)/X3(0) as a function of frequency for different values of the asymmetry for
T = 1. black: 
 = 0, blue: 
 = 1, green: 
 = 2, cyan: 
 = 5, magenta: 
 = 10. The full red
line represents X3,RJ(ω)/X3,RJ(0) and the dashed red line X3,RD(ω)X3,RD(0)

with the result [28]:

χ
(5)
5,ADWP(ω) =

(
M6

112

)
β5(1 − δ2)S5,ADWP(ωτ) (48)

where the isotropic average has been performed and the spectral function is given by

S5,ADWP(x) = 1

15N (x)

{
(2 − 15δ2 + 15δ4) − 5(6 − 155δ2 + 255δ4)x2

+2(−612 + 3445δ2 + 2055δ4)x4

−20(176 + 865δ2)x6 + 3072x8
}

(49)

+ i x

8N (x)

{
(11 − 104δ2 + 120δ4) + 10(17 + 4δ2 − 180δ4)x2

+(−293 + 9424δ2 + 960δ4)x4

−20(157 + 160δ2)x6 + 192x8
}

N (x) = (1 + x2)(1 + 4x2)(1 + 9x2)(1 + 16x2)(1 + 25x2). (50)

Also in this case of the fifth-order response, the scaled modulus

X5,ADWP(ω) = |χ(5)
5,ADWP(ω)|

β2(
χ1,ADWP)3
(51)

can be considered in order to get rid of the trivial temperature dependence (χ(5)
5 ∼

β5). We start the discussion of X5 by considering the limits

X5,ADWP(0) = 9

560

∣∣∣2 − 15δ2 + 15δ4
∣∣∣

(1 − δ2)2
; X5,ADWP(ω → ∞) = 9

22400(1 − δ2)2
1

x
. (52)
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Fig. 8 X5,ADWP(0) as a
function of temperature for
different values of the
asymmetry; green: 
 = 0.5,
black: 
 = 1, blue: 
 = 2

Fig. 9 T 5χ
(5)
5,ADWP(ω) as a

function of frequency for
different values of the
asymmetry as indicated. The
black lines represent the real
part and the red lines the
imaginary part. Full lines
correspond to T = 1 and
dashed lines to T = T5,a
(Figure adopted from Ref.
[28])

The zero-frequency limit is shown inFig. 8 for different values of the asymmetry as
a function of temperature. It is obvious that X5,ADWP(0) vanishes at two characteristic
temperatures that are given by

T5;a/b = 


ln [(1 + za/b)/(1 − za/b)] with za/b =
√
15 ± √

105

30
(53)

which yields
T5;a 
 0.32
 with T5;b 
 1.19
. (54)

The frequency dependence of the real and the imaginary part of χ
(5)
5,ADWP(ω) are

displayed for some values of the asymmetry in Fig. 9. It is obvious that the overall
behavior of both, the real and the imaginary part, is comparable to the corresponding
third-order quantities, cf. Fig. 2. It is clear that also the fifth-order susceptibility
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for 
 = 0 does not display a temperature dependence apart from the one of the
relaxation time τ = 1/(2W ), cf. Eq. (15). The modulus X5,ADWP(ω) is shown in
Fig. 10 on a logarithmic scale. The temperature ranges encircled are centered around
the two characteristic temperatures T5;a 
 0.32 and T5;b 
 1.19. It is obvious that
for temperatures near to T5;a/b a hump-like behavior is found, but not for higher or
lower temperatures. The behavior in the range of the characteristic temperatures is
similar to what is observed for the third-order response around T3. However, as is
shown by the black line in Fig. 10, for T = T3 only trivial behavior is observed for
X5,ADWP(ω).

The temperature dependence of the relative maximum in X5,ADWP(ω) is shown in
Fig. 11 and compared to that of X3,ADWP(ω). From this plot it can be seen that there
is no hump in X5 near T3 and no hump in X3 near T5,a/b. This means, as a function of
temperature one expects to observe a peak in X5 at low temperatures (around T5,a)
the height of which first increases, then shows a maximum and decreases again. In
X3 only trivial behavior is observed in this temperature regime. Next, around T3 this
behavior is found in X3 and no peak occurs in X5. Only for still higher temperatures,
X5 exhibits a hump-like behavior in the regime around T5,b.

Fig. 10 X5,ADWP(ω) as a function of frequency for 
 = 1. The circles indicate the temperature
ranges around T5;a (blue) and T5;b (green). For these temperatures X5,ADWP(ω) is plotted in bold
red. Full lines represent temperatures higher than T5;a/b and dashed lines lower temperatures. The
bold black line is X5,ADWP(ω) for T = T3 (Figure adopted from Ref. [28])

Fig. 11 Relative height of
the hump,
Xmax
k,ADWP(ω)/Xk,ADWP(0),

as a function of temperature
for 
 = 1. k = 3 (blue line,
T3 
 0.76) or k = 5 (red line
T5;a 
 0.32 and
T5;b 
 1.19) (Figure
adopted from Ref. [28])
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4.3 Gaussian Trap Model

In the calculation of the response for this model, it will be assumed that the coupling
to the field takes place in the usual manner, i.e., via a reduction in the energy due
to the alignment of the moments in the field, ε(E) = ε − M(ε) · E(t). In addition,
the explicit functional form of the variable M(ε) has to be fixed as this defines the
particular version of the model. Here we use an Arrhenius-like dependence on the
trap energies [56]:

〈M(ε)2〉 = e−nβε (55)

where n is arbitrary and we setM2 = 1. For n = 0, 〈M2〉 is temperature-independent
as in case of the models of reorientational motions discussed above.

One important reason for the particular choice (55) is that the spectral shape of
the linear response is unaffected by this because it is given by (using γ + μ = 1):

χ1,GT (ω) = β

∫
dεp(ε)eq〈M(ε)〉 κ(ε)

κ(ε) − iω
(56)

If one now uses the relation
∫
dεp(ε)eqe−nβε κ(ε)

κ(ε) − iω
= e

n(n+2)
2 β2σ 2

∫
dεp(ε)eq

κ(ε)

κ(ε) − iωn

with the scaled frequency ωn = ωenβ
2σ 2

one finds

χ1,GT (ω) = 
χ1,GT

∫
dεp(ε)eq

κ(ε)

κ(ε) − iωn
with 
χ1,GT = βe

n(n+2)
2 β2σ 2

. (57)

Thus, the static susceptibility 
χ1,GT strongly depends on the choice of n and the
factor e

n(n+2)
2 β2σ 2

becomes only temperature independent for n = 0 and for n = −2.
For a further discussion of the properties of the linear susceptibility we refer to Ref.
[27]. We only mention that χ1,GT (ω) is basically independent of the choice of n and
that χ ′′

1,GT (ω) broadens with decreasing temperature meaning that time–temperature
superposition is not obeyed in the Gaussian trap model.

In the calculation of the nonlinear response functions, we have to fix the values of
γ andμ in Eq. (34). Due to the fact that we consider a thermally activated escape from
the initial trap of any transition with randomly chosen destination state, we assume
μ = 1 and γ = 0 as in the case of rotational random jumps. We note, however, that
the results for the third-order response do not strongly depend on this particular
choice [27].

We will not discuss the details of the calculations of the higher order response
functions. Here, it suffices to mention that in the computation of χ

(3)
3,GT (ω) the

fourthmoment 〈M(ε1)M(ε2)M(ε3)M(ε4)〉 and in case ofχ(5)
5,GT (ω) the sixthmoment

〈M(ε1)M(ε2)M(ε3)M(ε4)M(ε5)M(ε6)〉 have to be calculated. For these moments a
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Gaussian factorization approximation was applied. This appears meaningful in terms
of the physical properties of the model, it is however unclear how correlations will
modify the results. For more details concerning the actual calculations and for the
analytical expressions for the response functions we refer to Refs. [27, 28].

The nonlinear susceptibilities for n = 0 are shown as a function of frequency in
Fig. 12. It is apparent that both, the real and the imaginary part of the susceptibilities
vanish at low frequency. This can be understood from the analytic expressions for
the corresponding limits. From Fig. 12 it is clear that a hump-like behavior is to be
expected for the moduli. These quantities are plotted in Fig. 13, from which it is
clear that there is a hump in both, the third-order and the fifth-order scaled modulus.
The temperature dependence of the height of the peaks, however, is opposite to
what is observed experimentally. The height increases with increasing temperature.
Depending on the value of themodel parametern, different temperature dependencies
for the maximum height of the hump are observed. This is shown for some examples
in Fig. 14. It is obvious that for some values one observes a hump with a decreasing
height as a function of temperature and for other values one has either a nearly
temperature-independent behavior or an increase with temperature. This means, that
calculations employing a simple mean-field like model like the Gaussian trap model
considered here yield a rich scenario with very different results. A direct comparison
between the height of the humps in X3 and X5 does not show the X5 ∼ X2

3 behavior
expected for the model of correlated domains [26].

Fig. 12 T 3χ
(3)
3,GT (ω) (upper

panel) and T 5χ
(5)
5,GT (ω)

(lower panel) as a function of
frequency for n = 0, i.e.,
energy-independent
variables. The black lines
represent the real part and
the red lines the imaginary
part. The relaxation time is
given by τeq = ∫

dtCM (t) =
κ−1∞ e(3/2)β2σ 2

(Figure
adopted from Ref. [28])
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Fig. 13 X3,GT (ω) (upper
panel) and X5,GT (ω) (lower
panel) as a function of
frequency for n = 0 and for
T = 0.3σ to T = σ as
indicated by the arrows. The
inset in the lower panel
shows the temperature
dependence of the height of
the hump with that of X5
given by the full line and that
of X3 by the dashed lines
(Figure adopted from Ref.
[28])

Fig. 14 Xmax
k,GT for different

values of n as a function of
temperature. Full lines
represent the fifth-order and
dashed lines the third-order
hump maxima. Upper panel:
n = −1 and Xmax

3,GT for
comparison. Lower panel:
n = −4 (red lines) and
n = 1 (black lines)

5 Conclusions

In order to gain a deeper understanding of the information content of nonlinear
dielectric response functions it is necessary to consider explicit models for the reori-
entational motion and the relaxation in the systems considered. The reason for this
necessity lies in the fact that no analogue exists to the well-known fluctuation dissi-
pation theorem holding for linear response functions. Therefore, nonlinear response
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functions cannot be related to equilibrium (multi-time) correlation functions in gen-
eral and must be computed separately for each model considered.

In the present chapter, we reviewed the results of such calculations for models
with a dynamics that can be viewed as Markovian. In this case, the time evolution of
dynamic variables is governed by aME for the corresponding probabilities. Response
functions then are calculated as expectation values of the relevant (dipole) moments
and time-dependent perturbation theory for the corresponding Green’s functions is
used to obtain the results in the desired order in the external electric field. In these
calculations, the dependence of the transition rates on the field has to be fixed. A
quite general model is provided by assuming an exponential dependence that can be
motivated by the fact that the Boltzmann factors are modified due to the contribution
of the dipole energy. In case of diffusive dynamics, the ME turns into a FPE and the
exponential field dependence gives the corresponding force term in the FP-operator.

The important experimental observation of a hump in the nonlinear susceptibility
of some glass-forming liquids has been interpreted in terms of the existence and
the growth of amorphous order. The calculations using stochastic models for the
reorientational motion of molecules presented in the present chapter show that it is
possible to observe a hump-like behavior in case of rotational random jumps if it
assumed that the field couples to the initial orientation of a transition. However, the
height of the observed peak is temperature independent for this model. If on the other
hand rotational diffusion is used as a model for molecular reorientations, only trivial
behavior is observed.

Some further calculations have been performed that also exhibit a hump without
any glassy correlations. If the model of reorientations in an asymmetric double-well
potential is considered the observed decrease of the height of the hump with increas-
ing temperature in X3 is found for temperatures above T3. However, taking into
account X5 one has to assume that the relevant temperature regime is above T5;b. For
these temperatures, however, X3 only shows trivial behavior. Therefore, it appears
that such a model cannot be used for the interpretation of experimental results. We
have furthermore shown that also trap models that show some features of glassy
relaxation can yield hump-like shapes for the third-order and fifth-order moduli for
some values of the model parameters. It is possible to obtain different temperature
dependencies of the heights, but in most cases the experimentally determined rela-
tions between X3 and X5 seems not to be observed.

In conclusion, it appears that measurements of different higher order nonlinear
response functions are helpful to discriminate among various models for the relax-
ational processes in supercooled liquids and glasses.
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Effects of Strong Static Fields on the
Dielectric Relaxation of Supercooled
Liquids

Ranko Richert

Abstract When large DC-bias fields are applied to polar dielectric liquids, the ori-
entational polarization of dipoles will lead to a considerable macroscopic dipole
moment of the sample. In this situation, the dielectric relaxation behavior probed by
a small amplitude AC-field superimposed onto the large DC-field will differ from
the zero-bias field limit. This chapter summarizes the experimental approaches to
dielectric spectroscopy in the presence of a large amplitude static field and the find-
ings from such experiments. Only nonlinear effects that are completely reversible
will be addressed, focusing on glass forming materials, as systems near their glass
transition turn out to be particularly sensitive to external fields. The relation to third
harmonic responses obtained from AC-fields is briefly discussed.

1 Introduction

Dielectric material properties are characterized by the dielectric constant ε or the
dielectric susceptibility χ � ε − 1. These quantities are defined by the respective
constitutive equations, D � εε0E or P � χε0E , where E is the external electric
field, D is the dielectric displacement, P is the polarization, and ε0 � 8.854 × 10−12

AsV−1m−1 represents the permittivity of vacuum [1]. Here, the susceptibility χ is
meant to be a constant, implying thatP (and likewiseD) is proportional to the fieldE.
For a considerable range of fields, this proportionality can be verified by experiment.
However, if very large fields are applied or if polarization is detected with very high
resolution, deviations from this linear behavior can be observed [2].

The above constitutive equations reflect steady-state quantities, equivalent to the
limit of zero frequency. A much more complete characterization of a dielectric is
obtained via broadband dielectric spectroscopy, i.e., with frequency as an additional
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Fig. 1 Linear (dashed) and nonlinear (solid) relation in a P versus E representation. Oscillating
curves represent fields E(t) and the resulting responses P(t) for the case of a high DC-bias field,
EB. Here, the slope that defines ‘χ’ represents the derivative ∂P/∂E � ε0χ(ω, EB, tHF) at a certain
temperature and pressure, where the quantity tHF is the time for which the system has been exposed
to the high field. With increasing tHF, structural recovery lets the system approach equilibrium with
the high field

variable to obtain a spectrum ε̂ (ω) � ε′ (ω) − iε′′ (ω) [3, 4]. In order to measure
a dielectric spectrum in the presence of a high DC-bias field, the typical approach
is to superpose a large static field (EB) and a small amplitude (E0) oscillatory field,
such that E (t) � EB + E0 sin (ωt) with E0 itself being within the linear response
regime. This will lead to a polarization P (t) � PB + P0 (t), where the oscillating
component, P0(t), can be used to obtain the permittivity ε̂ (ω) in the presence of the
bias field. This situation is outlined schematically in a P versus E diagram in Fig. 1.
Only for small DC-fields one can expect that the dielectric relaxation spectrum is
independent of EB.

The following section will outline the experimental techniques used to measure
dielectric relaxation spectra for samples subject to a largeDC-biasfield.Experimental
findings and a discussion of their explanations will be subdivided in the following
manner. First, only those features will be addressed in which the system is in the
steady state in the sense that the material is in equilibrium with the external electric
field. This part is subdivided into nonlinear effects for which the dielectric relaxation
amplitude is affected and those for which the relaxation time constant changes with
the DC-field. This division is based upon the phenomenology of the effect and thus
somewhat arbitrary, and the separate discussion is not meant to imply that these
are independent effects. A subsequent section will then address the time scales the
sample requires to achieve equilibrium with the field, a process we will refer to as
structural recovery, due to its analogy to physical aging [5].
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2 Experimental Approaches

2.1 Observations in the Stationary Limit

Both a high DC-bias voltage (VB) and a small electrode separation (d) work in favor
of a high field E � V /d. High fields that exceed the dielectric strength (breakdown
field) of either the sample or the insulator used as electrode spacer can result in the
destruction of the sample, the spacers, the electrodes, aswell as the detection circuitry
involved in the permittivity experiments. Therefore, protectivemeasures should be in
place to avoid the consequences of material failure. Typical spacer polymers used in
disk geometries are polytetrafluorethylene (Teflon, PTFE) and polyimide (Kapton),
with dielectric strengths of 180 and 220 kV/cm at ambient conditions, respectively
[6].

Unless the capacitor electrode geometry is extremely rigid, the electrostrictive
force resulting from a high DC-field can cause an apparent change in the permittivity
[7, 8]. For a disk capacitor geometry with surface area A and separation d, the
electrostrictive force amounts to F � εsε0AE2

B

/
2. Assuming electrode spacers

with the total surface area a and Young’s modulus Y , this force can lead to a relative
distance change as large as� ln d � −εsε0AE2

B

/
(4aY ). Accounting for the rigidity

of the sample itselfwill reduce the effect further. This contribution to the field induced
change of permittivity must be minimized or corrected for in order to obtain the true
field effect on the sample. Under typical conditions, this effect is relatively small
compared with other sources of nonlinear effects [9].

Common to practically all dielectric methods involving high DC-fields is the
limited time for which the high field is applied. The main concerns associated with
long time exposure to a DC-field are the effects of Joule heating and electrode
polarization. Most samples studied by dielectric techniques display DC-conductivity
quantified by σ dc, which arises from the drift of unbound charges in the presence
of an electric field. Exposure to a high field leads to the introduction of heat via
the power density given by p � jE � σ dcE2. The amount q of heat added to the
system then increases linearly with time, q � p × t. The impact of Joule heating
on the temperature of the sample greatly depends on the rate of heat loss to the
electrodes, which often act as ‘infinite’ heat sinks relative to the small heat capacity
of the sample. Assuming constant electrode temperatures, the average temperature
increase within the sample amounts to �T avg � pd2/(12κ). Therefore, for a given
power density p, the Joule heating effect on T is increased linearly with the power p,
quadratically with electrode separation d, and reduced with thermal conductivity κ .

In addition to Joule heating, there is a transient heating effect that results from
the field step when the electric field is changed from zero to a level of EB for a
polar material [10–12]. This electrocaloric effect originates from the entropy density
change, �Es, that results from applying the field, which can be estimated using the
relation�Es� ε0(∂εs/∂T )E2

B/2 [1, 13], where the slope (∂εs/∂T ) is negative for most
materials. In an adiabatic situation, or similarly for very short times, the tempera-
ture increase would amount to �T � −T�Es/(ρCp), where ρCp is the volumetric
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heat capacity. This value for �T can serve as upper bound for nonadiabatic condi-
tions. When the field is removed, the sample is cooled by the depolarization-induced
entropy increase. Both power transients (field on, field off) will last for approximately
the dielectric relaxation time of the system [12]. Obviously, this effect will not be
influenced by the duration of how long the field is being applied.

In the long time limit, the current associated with DC-conductivity cannot be
sustained because most electrodes (metals with electronic conduction mechanism)
create blocking conditions with respect to the migration of ions. As a result, a DC-
field will eventually lead to electrode polarization, i.e., a space charge build-up near
the sample/electrode interfaces [14]. This space charge will counteract the charges
that create the external electric field, so that the sample interior will be subject to a
net field that is diminished relative to the externally applied field, EB � VB/d, and
the nonlinear effects will decline accordingly.

Regarding the timing of applying the bias field and collecting permittivity data
from an additional small signal oscillating field, the bottom line of the above consid-
erations is as follows. Subsequent to switching on the bias field, stationary conditions
will not be achieved until the polarization response to the field step, the entropy heat-
ing transient, and the sample equilibrating with the new field all have completed.
Data collection should begin only after steady state with respect to these processes
has been achieved, but prior to changes that may result from Joule heating or elec-
trode polarization. Several different experimental approaches to measuring DC-field
nonlinear dielectric effects in the stationary limit have been described in the literature
[15–21].

2.2 Time-Resolved Experiments

When a small field step is applied to a depolarized sample, the polarization builds
up in a retarded fashion. If this polarization is within the regime of linear response,
then the parameters characterizing the relaxation amplitude �ε � εs − ε∞ and
the relaxation time τD are not affected by the presence of the field. A sufficiently
large electric DC-field, however, leads to changes in the relaxation parameters (�ε,
τD) and these quantities require some time to achieve their steady-state level. This
process is analogous to the physical aging that occurs following a temperature step
of considerable magnitude, and it is thus reasonable to adapt the term ‘structural
recovery’ for the approachof nonlinear dielectric effects to their stationary levels [22].

Experimental techniques that aremeant to record the evolution of nonlinear effects
as a function of time generally fall into two categories. If one period of the applied
frequency is very short compared with the desired time resolution, then permittivity
can be obtained virtually in real time while the system is approaching the steady-
state behavior. Equipment designed to achieve this with very high resolution has
been described by Górny et al. [17].

An alternative technique is required when the aim is to obtain permittivity for
each period of the applied field, i.e., with a time resolution of 2π /ω, where ω is
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the frequency of the oscillating field component [21]. In such a case, a smaller
number of periods of the AC-signal fill the time, tHF, that the high field is applied,
with tHF/(2π /ω) ≈ 10–1000. This situation facilitates recording the voltage (V ) and
current (I) traces as a function of time before and after the DC-field step-up or step-
down, ideally with a density of at least a few 100 points per period. A schematic
outline of the field protocol involved is presented in Fig. 2. Then, these curves are
analyzed by subjecting the signal �(t) of interest, current I(t), or voltage V (t), to a
period-by-period Fourier analysis, using

� ′ (ω) � ω

π

t+2π/ ω∫

t

sin
(
ωt ′

)
�

(
t ′
)
dt ′, (1a)

� ′′ (ω) � ω

π

t+2π/ ω∫

t

cos
(
ωt ′

)
�

(
t ′
)
dt ′, (1b)

where t would progress in increments of 2π /ω. The quantities � ′ and � ′′ respec-
tively denote the in-phase and out-of-phase amplitudes of the oscillating signal at
the fundamental frequency. For each period, the signal amplitude is obtained by
A(�) � √

� ′2 + � ′′2 and its phase by ϕ(�) � arctan
(
� ′/� ′′). From these values

for current (� � I) and voltage (� � V ), the time-dependent analogs of ε′ and ε′′
can be obtained via

ε′ � A(I ) sin�ϕ

ωA(V )Cgeo
, ε′′ � A(I ) cos�ϕ

ωA(V )Cgeo
, (2)

where �ϕ � ∣∣ϕ(I ) − ϕ(V )
∣∣ and with Cgeo � ε0A/d representing the geometric capac-

itance. Strictly speaking, susceptibility χ as well as related quantities such as ε′ and
ε′′ are correctly defined only for stationary conditions.

As indicated in Fig. 2, both field steps, on and off, lead to a current response that
hampers the Fourier analysis of the first periods after a field step. Since the field
step response lasts for about the structural relaxation time of the system, the periods
affected by the step response are those during which the time dependence of interest
occurs. A remedy to this problem is to record the signals again, but with the polarity
of the DC-field inverted, and then compute the average of the two results. In that
manner, the entire dataset can be subjected to Fourier analysis.

3 Nonlinear Effects in the Stationary Limit

This section deals with results obtained in the stationary limit, i.e., those for which
the sample is in equilibrium with both the small amplitude AC-field component and,
more importantly,with the strongDC-field.Aswill be discussed inmore detail further
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Fig. 2 Field protocols for the time-resolved experimental approaches to nonlinear effects. Low
amplitude AC-fields before and after the positive or negative DC-bias interval facilitate probing the
low field limit of χ and the decay of the nonlinear effect. Averaging over positive and negative going
DC-field steps facilitates the elimination of the step response, so that the odd Fourier components
can be obtained even for times for which the step response would otherwise distort the oscillatory
signal

below, it can take a time that is approximately equal to the structural relaxation time
before the nonlinear effect has approached its steady-state value. A schematic and
simplified view of how the permittivity is expected to bemodified by a large DC-field
is depicted in Fig. 3, albeit using exaggerated changes in both the amplitude and the
time constant between the low and high field cases. While this approach is one out of
many different routes to quantifying nonlinear dielectric behavior, the basis for Fig. 3
is to approximate the field-induced changes in the dielectric relaxation in terms of
the two parameters (�ε, τ α) that are most sensitive to a DC electric field in the case
of polar liquids. For a more detailed description, changes in the shape parameters
of the loss profile and higher Fourier components of the dielectric response may be
required.

3.1 Field-Induced Changes in Relaxation Amplitude

In a polar liquid, a considerable contribution to polarization canbedue to orientational
polarizability (αor) of molecular dipoles, while the electronic polarizability (αel) is
small by comparison. For noninteracting dipoles with moments μ, the polarization
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Fig. 3 a Calculated dielectric storage (ε′
lo) and loss (ε′′

lo) components for a HN-type system (τHN
� 1 s, αHN � 1, and γHN � 0.5) representing the low field limit (‘lo’). The high field counterparts
(ε′

hi, ε
′′
hi) are based on the same parameters but with smaller �ε and larger τHN to model the

saturation and electrorheological effect, respectively. Curves are shown on a reduced frequency
scale, ω/ωmax, where ωmax is the loss peak frequency in the low field limit. b The field-induced
change of the dielectric loss, (ε′′

hi − ε′′
lo)/ε

′′
lo, relative to the low field limit, (ε′′

lo). The curve is based
on the loss data shown in panel (a), where the changes are strongly exaggerated compared with
typical experiments

P ∝ (αel + αor) E can be expressed in terms of the average of the cosine of the
angle θ between dipole moment and field direction, P ∝ αelE + μ 〈cos θ〉 [3, 4].
At very small fields, the value of 〈cos θ〉 increases linearly with the field, but it
can not exceed unity, because 〈cos θ〉 � 1 corresponds to the situation in which all
dipoles are perfectly aligned with the field, and a further increase of E will not lead
to additional polarization. This implies that the practically linear relation between P
and E will have to break down for sufficiently high fields, leading to a reduction of
the susceptibility χ in the relation P � χε0E .

This above notion of nonlinear behavior can be quantified by requiring that the
equilibrium distribution of dipole orientations corresponds to maximal entropy at a
given temperature T . For noninteracting dipoles, the value of 〈cos θ〉 as a function
of field E and temperature T is given by [23, 24]
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〈cos θ〉 �
�
4π

cos θ eμE cos θ/ kT d�
�
4π

eμE cos θ/ kT d�
� cotanh (a) − 1

a
� L (a) . (3)

Here, L(a) represents the Langevin function and its argument a is defined as a
� μE/kBT . The dependence of 〈cos θ〉 on the field can be approximated by

L (a) ≈ 1

3
a − 1

45
a3 +

2

945
a5 − 2

9450
a7 + · · · . (4)

The recognition of this feature has led Debye to state: “Here we see that the
mean moment is not a linear function for large values of the argument, and for such
values the dielectric constant would not be a true constant but would depend upon
the field intensity” [25]. It is important to realize that the quantitative treatment of
the saturation effect of Eq. (4) is valid only for noninteracting dipoles.

For the more general case of a polar liquid, a description of steady-state polariza-
tion that includes nonlinear terms would read

P

ε0
� χE + χ(3)E3 + χ(5)E5 + χ(7)E7 + · · · , (5)

where E represents a static field. In practice, the susceptibility in the presence of a
high DC-bias field would be determined by a small amplitude oscillatory field, i.e.,
using E (t) � EB + E0 sin (ωt) with E0 
 EB. Provided that the amplitude E0 is
sufficiently small, the polarization would display two Fourier components, a static
level (P0) and another component (P1) that oscillates at a frequency ω [26]:

P̂0
ε0EB

� χ̂
(3)
0 E2

B, (6a)

P̂1 (ω)

ε0E0
� χ̂

(1)
1 (ω) + χ̂

(3,dc)
1 (ω) E2

B . (6b)

Higher order Fourier components will emerge only when E0 is large enough to
pick up the curvature of P(E) at the high DC-fields. The quantities χ

(n)
k represent

contributions from the nth power of the field in the kth Fourier component, whereχ
(1)
1

is usually written as χ . There is no simple connection among the values of χ
(n)
k for a

given material, and for higher fields additional terms such as χ
(5)
k may be required.

In order to study the impact of a large DC-bias electric field on the dielectric
constant (εs) or the relaxation amplitude (�ε), it is sufficient to measure the effect
of EB at a single frequency ω positioned within the low-frequency plateau of ε′(ω).
Because electronic polarizability and thus ε∞ (≈n2) is very insensitive to the field
magnitude, the field effect on �ε and on εs are usually equivalent. In a first approx-
imation, deviations from the low field limit depend quadratically on the field, so
that the Piekara factor, �Eεs

/
E2 or (εhi − εlo)

/
E2, is a useful metric of nonlinear

dielectric effects [27], where εhi and εlo denote the high and low field values, respec-
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Fig. 4 Frequency dependent
real part of permittivity,
ε′−ε∞, for
(S)-(–)-methoxy-PC at T
� 202 K for a high bias field
of EB � 114 kV/cm (solid
symbols) and for zero bias
(open symbols). At low
frequencies, the
field-induced reduction of
�ε amounts to 5%. Data
from Ref. [57]
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tively. Relative changes of the dielectric relaxation amplitude have also be used to
report field effects, derived either from the real or imaginary contribution to permit-
tivity at a given frequency,

(
ε′
hi − ε′

lo

)/(
ε′
lo − ε∞

)
or

(
ε′′
hi − ε′′

lo

)/
ε′′
lo, respectively.

As long as E0 is within the low field limit regime and no other source of nonlinear
behavior is present, a frequency dependence is not expected.

This saturation effect has been verified experimentally for numerous liquids,
including diethyl ether, for which Herweg has reported a reduction of the dielectric
constant with the field as early as 1920 [2]. Typical field induced relative changes
of �ε amount to about 1% for polar liquids at fields of the order of few hundred
kV/cm. A large number of materials has been characterized in terms of the dielectric
saturation effect [2, 28–32] and various theories have been developed to rational-
ize saturation in condensed dipole systems such as liquids [33–40]. An example of
a strong saturation effect is shown for a highly polar supercooled liquid in Fig. 4,
revealing a reduction of 5% of �ε at a field only EB � 114 kV/cm.

In the 1930s, it has been discovered by Piekara and Piekara that the dielectric
constant can increase by virtue of a large electric field [28]. This was observed for
a composition series involving benzene and nitrobenzene. While the benzene-rich
mixture displayed the negative values for �Eε that are typical of saturation, the sign
of �Eε changed to positive when the mixture was high in nitrobenzene content.
This nonlinear dielectric effect has been labeled as ‘negative saturation’, but the
present term ‘chemical effect’ is more appropriate, as it reflects better the origin of
this increase of the dielectric constant [41]. Very generally, whenever molecular or
supramolecular structures with different net dipole moments coexist in thermody-
namic equilibrium in the liquid, an electric field will generate a preference for the
more polar species [42]. In order to lead to a net positive change in�ε, the field must
increase the dielectric constant by more than the saturation that will occur inevitably
at the same time.
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A variety of mechanisms can be envisioned that give rise to such chemical effects.
The structure of molecules with intramolecular degrees of freedom can be altered
toward a higher molecular dipole moment, or two isomers with different dipole
moment may coexist in dynamic equilibrium. Small effects could result from align-
ing the axes of highest electronic polarizability with the electric field, analogous to
the Kerr effect. Larger field induced effects are possible when different supramolec-
ular structures are in thermodynamic equilibrium. Even if the molecular dipole
moment remains virtually unaltered, distinct supramolecular structures can differ
in their effective dipole moment via differences in their Kirkwood correlation fac-
tors [43–46].

Correlation in the orientation of dipoles can influence the dielectric constant con-
siderably, even at a constant dipole density. This feature is captured in the Kirk-
wood–Fröhlich equation [1, 3, 5, 8],

(εs − ε∞) (2εs + ε∞)

εs (ε∞ + 2)2
� ρNAμ2

9kBT ε0M
× gK, (7)

where εs and ε∞ are the dielectric constants in the limits of low and high frequency,
respectively. In Eq. (7), NA is Avogadro’s constant, ρ is the density, M is the molar
mass, kB is Boltzmann’s constant, and ε0 represents the permittivity of vacuum. The
correlation factor gK in Eq. (7) is often expressed in terms of the average dipole
orientation of the z neighboring dipoles, gK � 1 + z 〈cos θ〉, and it can be viewed
as rescaling the squared molecular dipole moment, μ2, to an effective value, μ2

eff �
μ2gK. Depending on the supramolecular structure of the system, μeff can turn out
larger or smaller than μ itself, depending on whether gK is larger or smaller than
unity. Values of gK > 1 indicate more parallel alignment of dipoles, whereas gK < 1
reflects antiparallel dipoles [47].

Electrostatic interactions among dipoles can lead to departures of gK from unity,
but stronger effects can be expected when orientational correlations result from cova-
lent bonds (as in polymers) or from hydrogen bonds as in alcohols. In particular,
monohydric alcohols can display a considerable range of gK values [48], from 0.1
to 4.2 within a series of octanol isomers [45–47]. The case gK � 0.1 is understood
as indicating mainly ring-like structures stabilized by hydrogen bonds, in which
dipoles cancel effectively. The other extreme, gK � 4.2, would suggest a preference
for hydrogen-bonded chains in which dipole moments are enhanced by a more par-
allel alignment. In the context of the chemical effect as a nonlinear dielectric feature,
of particular interest are those monohydric alcohols in which ring and chain-like
structures coexist in a dynamic equilibrium [45–47].

The compound 5-methyl-3-heptanol (5M3H) is a monohydric alcohol case where
the value of gK changes from 1.5 to 0.5 in a matter of a 20 K temperature increase
in the viscous regime above the glass transition temperature, T g. In this situation
gK � 1 must be understood as indicating the coexistence of chain-like (gK > 1) and
ring-like (gK < 1) structures, rather than uncorrelated dipole orientation. Near gK ≈
1, 5M3H is very sensitive to changes in external parameters, and only a moderate
electric field of 50 kV/cm is needed to enhance the relaxation amplitude, �ε, by
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The lines are fits reflecting the 11% increase in the Debye peak amplitude. Data from Ref. [49]

1% [49]. An example of such a pronounced chemical effect is shown for 5M3H in
Fig. 5, where the amplitude of the Debye peak is increased by 11% at a field of EB

� 171 kV/cm.

3.2 Field-Induced Changes in Relaxation Times

Complex liquids can be designed to change their viscosity as a matter of an external
electric field [50]. For simple single-component molecular liquids, such an elec-
trorheological effect is not immediately expected. However, several thermodynamic
arguments exist that the glass transition temperature T g of a polar liquid should
change with the application of an external electric field, which is the equivalent of
a field-dependent structural relaxation time at a given temperature. Moynihan pre-
dicted a shift of the glass transition, �ET g, when a static field (EB) is applied to a
system. For two distinct assumptions, a relaxation invariant volume (�relV � 0) and
or a relaxation invariant entropy (�relS � 0), the effect has been quantified via the
respective relations [51],

�ETg � ε0
�rel

[
∂ (χV )

/
∂p

]

2V�relα
E2

B, for �rel V � 0, (8a)

�ETg � −ε0
T�rel

[
∂ (χV )

/
∂T

]

2�relCp
E2

B, for �rel S � 0. (8b)
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Here, χ denotes the static dielectric susceptibility, V the volume, p the pressure, α
the volume thermal expansion coefficient, and Cp the heat capacity. The differences
labeled as ‘�rel’ refer to changes between the relaxed liquid and the unrelaxed glassy
state. For a typical polar glass-forming liquid (glycerol at T � 218 K) at a field of
EB � 100 kV/cm, values of �T g � 2 mK and �T g � 40 mK were derived from for
the respective conditions �relV � 0 and �relS � 0.

More recently, Johari reported a model leading to a field-induced shift of �ET g

≈ 23 mK at a static field of EB � 100 kV/cm for glycerol [52], i.e., not far from
the magnitude of effects expected on the basis of Moynihan’s approach. The basic
idea is to realize that the thermodynamic entropy is field dependent according to the
relation given by Fröhlich [1],

�E S � υ
ε0

2

(
∂εs

∂T

)

V

E2
B, (9)

where υ is the molar volume. According to this model, this change, �ES, should
be added to the configurational entropy, Scfg, that impacts the average structural
relaxation time (τ α) via the Adam–Gibbs (AG) approach [53],

log10
(
τα

/
s
) � A +

C

T × Scf g (T )
. (10)

Comparable field-induced shifts of the Kauzmann temperature, TK, at which the
configurational entropy vanishes [54], have been derived by Matyushov [55]. Shifts
of TK and T g have a similar impact on the relaxation dynamics.

Common to the above three approaches to how dynamics change with the appli-
cation of an external electric field is that relaxation times (and perhaps likewise vis-
cosity) increase with the magnitude of a static field. These predictions are obtained
under isothermal conditions, meaning that the field effects are not due to tempera-
ture changes that would result from the electrocaloric effects that modify temperature
under adiabatic conditions. It has been demonstrated only recently that such small
changes are accessible to experiment. Presently, a resolution of about�ET g � 0.3mK
at a static field of EB � 10 kV/cm for glycerol is possible, as reported by L’Hôte
et al. [20], which is equivalent to �ET g � 38 mK at EB � 100 kV/cm.

Experimentally, conclusive evidence of a change in relaxation time is obtained by
recording the permittivity spectrum for frequencies that cover the loss peak range,
e.g., by impedance spectroscopy in the presence of a DC-bias field of sufficient mag-
nitude. Because the slope ∂lgε′′/∂lgω vanishes at the loss peak at ωmax, the value
of ε′′

max � ε′′(ωmax) will not change as a result of small changes in the relaxation
time. Instead, ε′′

max is only affected by the dielectric relaxation amplitude, i.e., sat-
uration and/or chemical effects. The signature of a loss peak shift would be the
occurrence of elevated values of ε′′(ω < ωmax) and reduced values of ε′′(ω > ωmax)
relative to the high field level of ε′′

max. Such behavior has been observed for numer-
ous glass forming materials: poly(vinyla cetate) (PVAc), phenyl salicylate (SAL),
2-methyltetrahydrofuran (MTHF), cresolphthalein dimethylether (CPDE), glycerol
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Fig. 6 a Dielectric loss spectrum of CPDE at T � 335 K with peak frequency positioned at νmax
� 40 Hz. The solid line represents a Cole–Davidson fit with the parameters �ε � 15.0, τCD
� 5.8 ms, and γ CD � 0.67. b Quasi steady-state values of the field induced relative changes of the
dielectric loss for CPDE at T � 335 K. Symbols depict the nonlinear effect, (ε′′
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correcting for the frequency invariant saturation effect, φsat � 0.72%. The subscripts ‘hi’ and ‘lo’
refer to bias electric fields of EB � 217 kV/cm and EB � 0, respectively. The line is based on the
Cole–Davidson fit of (a), with �ε reduced by φsat � 0.72% and τCD increased by 0.75% for the
ε′′
hi case. Data from Ref. [62]

(GLY), propylene carbonate (PC), propylene glycol (PG), N-methyl-ε-caprolactam
(NMEC), [56], and 4-vinyl-1,3-dioxolan-2-one (vinyl-PC) [57]. These systems differ
considerably in their dielectric relaxation amplitudes (�ε � 3–100), glass transition
temperature (T g � 91–340 K), and chemical constitution. If the results are normal-
ized to a common field of EB � 100 kV/cm, shifts of T g for these eight compounds
range from �ET g � 3 to 28 mK, and time constant elevations vary between �E lnτ
� 0.14 and 1.65%. An example of the field-induced change of the loss spectrum
associated with an increased relaxation time is given in Fig. 6 for the liquid CPDE
near its glass transition.

For a number of the glass-formers listed above, not only are the �E lnτ val-
ues available from high-field dielectric studies, but calorimetric data has also been
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reported, so that the Adam–Gibbs parameter C in Eq. (10) can be evaluated [56,
58]. This parameter quantifies the extent to which the average structural relaxation
time depends on changes of the excess entropy Sexc, i.e., the difference between the
entropies of liquid and crystal. Therefore, it appears that all information is available
to test whether the AG relation also holds for field-induced entropy changes. How-
ever, this is not as straightforward as indicated by Johari. First, Eq. (9) requires as
input the slope of ∂εs/∂T at constant volume, dV � 0, whereas most experimental
results for this slope will refer to isobaric conditions, dp � 0. Typically, the dis-
crepancy between (∂εs/∂T )V and (∂εs/∂T )p amounts to not more than 20% for these
liquids [55]. Moreover, the entropy change calculated via Eq. (9) refers to that of the
total thermodynamic entropy, i.e., not to the excess entropy (Sexc � Sliquid − Scrystal)
that is accessible to adiabatic calorimetry, nor to the configurational entropy (Scfg)
that is meant to enter the AG relation of Eq. (10). In tests of the AG relation where
the temperature is used to tune entropy, it is usually assumed that Scfg and Sexc are
connected by a temperature invariant factor, f S � Scfg/Sexc, and most estimates of
f S are in the range from 0.5 to 0.9 [59, 60]. Quantitative results for several liquids
indicate that the Adam–Gibbs model fails to predict the effect of DC-field on the
relaxation time, unless unrealistic discrepancies between (∂εs/∂T )V and (∂εs/∂T )p
or between Scfg and Sexc are accepted [56, 61]. Nevertheless, entropy may be related
to this electrorheological effect, as a correlation between �E lnτ and �ES has been
observed for some liquids [62]. On the other hand, this correlation may simply imply
that dynamics (τ , η) are generally more sensitive to a field whenever the dielectric
constant (εs) is more sensitive to temperature. At present, there is no straightfor-
ward approach to determine the magnitudes of the effects for a given system in the
steady-state limit.

4 Field-Induced Structural Recovery

The discussion of the above subchapter was limited to stationary effects of a DC-bias
field. Naturally, it is not expected that these steady-state field effects are established
the instant that the field is applied. Analogous to physical aging and related features,
driving a systembeyond the regime of linear response initiates structural recovery [5].
On the basis of this analogy, one would expect the nonlinear effects to approach their
equilibrium values on a time scale that is reminiscent of that of the primary structural
relaxation [63, 64]. However, two important differences to the aging phenomenology
are worth pointing out: (i) field-induced changes of the logarithmic relaxation times,
lnτ , usually remain very small (a few percent), so that the time scale of structural
recovery remains practically constant while the system approaches equilibrium; (ii)
the typical experimental quantities used to gauge the deviation from the zero-field
state are quadratic in the field. The latter feature is the result of the symmetry of the
problem, as the polarity (sign) of the applied field does not impact the nonlinear field
effect. The resulting quadratic field dependence has consequences for the temporal
pattern of the structural recovery process [12], whichwill be outlined inwhat follows.
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Consider a depolarized dielectric to which a field is applied at a time t � ton and
subsequently removed at a time t � toff > ton, i.e., E(t) � EB for ton ≤ t ≤ toff and
E(t) � 0 otherwise. For a simple Debye-type system, the normalized polarization
response following ton would follow Rrise (t) � 1− exp (−t / τ), where ton is now set
to zero. The polarizationP(t) is normalized usingRrise(t)� (P(t)−P∞)/�P, withP∞
and�P representing the instantaneous polarization response and the time-dependent
polarization step magnitude, respectively. By analogy, the decay of the normalized
polarization is given by Rdecay (t) � exp (−t / τ), now with toff set to zero. Even for a
high field EB, the above time dependences would still be very good approximations
to a nonlinear polarization process, as the deviations from the linearity P ∝ E rarely
exceed a few percents. However, the time dependence expected for quantities that
gauge nonlinear effects (�Eεs, ε

′′
hi − ε′′

lo, third harmonic signal amplitudes χ3E2)
is different, as their steady-state levels depend quadratically on the field (in a first
approximation).

It has been argued that the generalization of the quadratic field dependence
in the static limit is the quadratic dependence on the time-dependent polariza-
tion expressed as a fictive field, Efic (t) � �P (t)

/
(ε0�ε), which approaches EB

in the long time limit [12, 62]. As a result, quantities whose steady-state level
scale with E2

B are expected to approach that level with a time pattern that fol-
lows P2(t). For the Debye-type examples mentioned above, this leads to R2

rise (t) �
1 − 2 exp (−t / τ) − exp

(−2t
/

τ
)
and R2

decay (t) � exp
(−2t

/
τ
)
. Clearly, the sym-

metry of the rise and decay patterns is lost in the nonlinear regime. For the simple
case of a Debye-type system, this feature is illustrated in Fig. 7.

When the field-induced effects are gauged via changes of the parameters lnτ (t)
or �ε(t), their time dependence would follow

ln τ (t) � ln τ 0 + �E ln τ ×
(

�P (t)

ε0�ε0EB

)2

, (11a)

�ε (t) � �ε0 + �E�ε ×
(

�P (t)

ε0�ε0EB

)2

, (11b)

where the superscript ‘0’ identifies a quantity evaluated at EB � 0. The steady-
state levels of the field-induced changes, �E lnτ and �E�ε, will depend quadrat-
ically on the field EB, and the terms in parentheses are normalized such that
0 ≤ �P(t)/(ε0�ε0EB) ≤ 1.

The situation regarding the dependence on P2(t) becomes more complicated for
systems with dispersive dynamics, i.e., those for which the loss spectrum is widened
compared with the Debye-type case used above for illustration purposes. Analogous
to approaches to structural recovery in the context of physical aging [5], one needs
to decide whether a model with a single or with multiple fictive fields is the more
appropriate description of the problem at hand [65–67]. As dispersive heterogeneous
dynamics involve different modes (labeled ‘i’) with specific time constants (τ i) [68,
69], the question of the number of fictive fields amounts to deciding whether struc-
tural recovery of each mode ‘i’ progresses according to its own polarization state,
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Fig. 7 Schematic representation of a system characterized by a polarization step response function,
χ(t) � exp(−t/τ ) with a single time constant τ , subject to a field E(t) that is constant at the level
E0 for times 0 ≤ t ≤ 6 ms and zero otherwise. In the linear response regime, the rise and decay
responses, R(t), are symmetric exponentials, see top panel. In the nonlinear regime, a quantity that
depends quadratically on E0 in the steady state case is expected to follow R2(t), resulting in the
rise/decay asymmetry shown in the bottom panel. Relative to the linear response, the rise of R2(t)
is retarded while its decay is accelerated. Adapted from Ref. [62]

�Pi (t)
/(

ε0�ε0i
)
, or governed by the average polarization, �P (t)

/(
ε0�ε0

)
. Here,

�εi refers to the contribution of mode ‘i’ to the total relaxation amplitude �ε, with
�ε � ∑

i �εi and similarly�P (t) � ∑
i �Pi (t). A single fictive field implies that

even those modes that have a very small time constant (τ i) relative to the average
(τ α) will not approach equilibrium any faster than the modes with larger τ i.

For various nonlinear dielectric effects [62], the time-resolved structural recovery
that has been initiated by a high static electric field displays the rise/decay asymmetry
mentioned above: saturation [12, 56–58], chemical effect [12, 49], and electrorheo-
logical effect [12, 56–58]. An example for which the time-dependent change of ε′′
is due to both saturation and the electrorheological effect is shown in Fig. 8, again
for CPDE. The same asymmetry is observed for other time-resolved changes that
are quadratic in the field: nonlinearities arising from energy absorbed from time-
dependent fields [70, 71], and the birefringence observed in studies of the electro-
opticalKerr effect (EOKE) [72–76]. The analogy between nonlinear dielectric effects
and EOKE has been emphasized in many treatments of dipolar systems subject to
high fields [77–80]. Quantitative analyses of these patterns have shown that the rise
and decay curves can be explained by the same time constant, provided that the
quadratic polarization dependence is accounted for. The present explanation for the
apparent rise/decay asymmetry has been validated by more complex field patterns,
where expectedly the transitions among two high field levels show almost symmetric
rise/decay behavior [12, 56].
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Fig. 8 Field-induced relative change of the ‘dielectric loss’ component, ε′′, for CPDE at a temper-
ature of T � 335 K, versus time with a resolution of one period. The ac-field, E(t) � E0sin(2πνt),
is characterized by E0 � 43 kV/cm and ν � 3.2 kHz, the dc-field pattern is indicated at the top.
Solid circles represent the values corrected for energy absorption and are thus assumed to reflect
the nonlinear effect associated with the high bias field. Lines are squared KWW fits to the rise and
fall behavior, respectively using φ0[1 − φ(t)]2 and φ0[φ(t)]2 with φ(t) � exp[−(t/τ 0)β ] and φ0
� −1.07%. Data from Ref. [62]

5 Relation to Cubic Susceptibilities

Cubic susceptibilities or third harmonic responses are usually not measured using
a high amplitude DC-field, but rather with a sufficiently strong alternating field,
E(t) � E0sin(ωt), and without DC-bias [81]. Therefore, a detailed discussion of
nonlinear effects measured via higher harmonics is outside the scope of this chapter.
Nevertheless, it is worthwhile pointing out the connection between what has been
established as nonlinear features from high DC-field experiments and the third har-
monic signals, with the latter often reported in terms of the dimensionless quantity
|χ3|E2

0 versus frequency, defined via

P̂3 (ω)

ε0E0
� χ̂3 (ω) E2

0 , (12)

where P̂3 (ω) denotes the frequency domain polarization signal at 3ω.
A model has been proposed that links the changes of the peak amplitude of |χ3|E2

0
spectra with temperature to a change in a nontrivial length scale via the number,Ncorr,
of dynamically correlated particles [82–84]. Because the model does not predict
absolute values for |χ3|, only relative changes forNcorr(T ) can be obtained within the
framework of this model, which pertains to systems close to a critical point [82]. The
interest in Ncorr(T ) has prompted numerous measurements of cubic susceptibilities
on supercooled liquids in recent years [85–90].
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An alternative approach to rationalizing cubic susceptibilities rests on knowing
the steady-state levels of the field-induced change in the amplitude (�E�ε) and in the
relaxation time (�E lnτ ) from experiments, as well as their time-dependent structural
recovery as expressed in Eq. (11a, 11b) [91]. In order to quantify polarization under
these nonlinear conditions, we begin with a relation that provides the time-dependent
polarization, P(t), for a Debye-type mode for any time-dependent field E(t),

dPi (t)

dt
� ε0�εi (t) E (t)

τi (t)
− Pi (t)

τi (t)
, (13)

but with the parameters characterizing amplitude (�ε) and time constant (τ ) depend-
ing on time according to their link to P(t) as outlined in Eq. (11a, 11b). For the time-
dependent fields of present interest, an extra term is needed in Eq. (11a) to account for
the reduction of τ as a result of the sample absorbing energy from the field [92–95],
but well-tested models are available to quantify this contribution [68, 69, 96]. If the
values of �ε and τ in Eq. (13) were constant, then the linear response polarization
would be obtained for a given E(t). Thus, the nonlinear features are accounted for
by the changes of �ε and τ , in perfect analogy to the common models employed to
capture physical aging and related nonlinear phenomena in response to changes in
temperature [5].

The relaxation time dispersion observed for supercooled liquids can be accounted
for by expressing the frequency dependent part of the permittivity as a sum of
Debye modes, ε̂ (ω) − ε∞ � ∑

i �εi
/

(1 + iωτi ). Then, Eq. (13) would be applied
to each Debye contribution and solved separately for each mode ‘i’ using a field
E(t) � E0sin(ωt). The total polarization is obtained from the sum of the individ-
ual Pi(t), plus the instantaneous response, P (t) � P∞ + �P (t) with �P (t) �∑

i Pi (t). For each frequency ω, the numeric calculation of P(t) is continued until
stationary conditions are achieved, and subsequent periods of the oscillating P(t)
curve can be subjected to Fourier analysis to determine the desired susceptibility,
χ3(ω) [89, 97]. While this approach conforms to the heterogeneous nature of struc-
tural relaxation [68, 69], it should not be concluded that these nonlinear effects can
only be explained on the basis of heterogeneous dynamics.

For viscous glycerol, the cubic susceptibilities in terms of χ3E2 have been com-
puted on the basis of the approach outlined above. Interestingly, the results reflect the
experimental counterpart in an almost quantitative fashion [95], see the comparison
provided in Fig. 9a. Moreover, the model can be used to separate the three different
contributions to the cubic susceptibility: saturation, electrorheological effect, and
energy absorption, and the distinct contributions are included in Fig. 9b. Within the
framework of this model, it turns out that the electrorheological effect constitutes
the main contribution to the ‘hump’ in χ3E2, while the low-frequency plateau level
is determined solely by the saturation effect. One result of this agreement between
model and experimental data is that the main features of the |χ3(ω)| spectrum can
be explained without explicit involvement of a length scale. Other models have also
demonstrated that dynamical correlations need not be assumed to explain maxima
in cubic susceptibility spectra [98–100].
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Fig. 9 a Symbols represent experimental spectra of the third harmonic susceptibility for glycerol
at the three temperatures indicated, reported in terms of the quantity |χ3| E2

0 and using peak fields of
E0 � 135 kV cm−1. Solid lines are calculated steady state spectra of |χ3| E2

0 at E0 � 135 kV cm−1

using the model outlined in Sect. 5 with the parameters selected to represent glycerol at the three
temperatures indicated. b The solid curve reproduces the model calculation for T � 213 K from
panel (a), while dashed curves represent the distinct contributions to the T � 213 K case: saturation
(dash-dot), electrorheological effect (dash), and energy absorption (short dash). Adapted from Ref.
[62]

A very different andmodel-free way of demonstrating a close connection between
the cubic susceptibility and the dc-field induced change in permittivity at the funda-
mental frequency rests on representing both the quantities in the same fashion, i.e.,
as modulus of the complex susceptibility versus frequency. The AC-field results are
then quantified by |χ3|E2

0, while the DC-field results are cast into the form |χ (3,dc)
1 |E2

B,
see Eq. (6b). Based on permittivity data obtained at high (εhi) and zero (εlo) DC-field,
this quantity can be obtained using

∣∣∣χ̂ (3,dc)
1 (ω)

∣∣∣ E2
B �

√(
ε′
hi (ω) − ε′

lo (ω)
)2

+
(
ε′′
hi (ω) − ε′′

lo (ω)
)2

. (14)
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Fig. 10 Field-induced susceptibility change at the fundamental frequency, shown as |χ (3,dc)
1 |E2

B
versus fundamental frequency ν for vinyl ethylene carbonate (VEC) at the temperatures indicated.
The curves are measured using a small AC-field with peak value E0 � 35 kV/cm superimposed
onto a DC-bias field of EB � 250 kV/cm. The |χ3| spectrum for vinyl-PC at T � 180 K is shown
as crosses, rescaled to match the amplitude of |χ (3,dc)

1 |E2
B. Data from Ref. [57]

Spectra of |χ (3,dc)
1 |E2

B are shown for 4-vinyl-1,3-dioxolan-2-one (vinyl ethylene
carbonate, VEC) in Fig. 10, and their overall appearance is reminiscent of the |χ3|E2

0
spectra of Fig. 9a obtained for glycerol. A direct comparison with |χ3|E2

0 data is
provided for VEC at T � 180 K [57], shown as crosses in Fig. 10, supporting the
idea that third harmonic data obtained with high AC-fields can be modeled on the
basis of permittivity data measured in the presence of a strong DC-field.

6 Concluding Remarks

Dielectric saturation is a well-known phenomenon that occurs when high electric
fields are applied to a polar liquid. It is an immediate consequence of polarization
possessing an upper bound, which corresponds to an orientational distribution with
〈cos θ〉 ≤ 1. Much more recently, it has been recognized that a DC-field of sufficient
magnitude also modifies the relaxation times, thereby changing the glass transition
temperature and possibly viscosity. Dipole correlations that are important in polar
condensed systems prohibit a straightforward determination of the magnitude of
these effects for a given material and field. As a general trend, however, both features
become more pronounced with increasing dielectric constant of the material.

When the high DC-field is applied or removed, parameters characterizing the
relaxation amplitude (�ε) and time constants (τ ) gradually approachnewequilibrium
values.As in the case of physical aging, this structural recoveryprocess is governedby
the structural relaxation time of the system, but following P2(t) rather than P(t) itself
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regarding the time dependence. This quadratic dependence on the time-dependent
fictive field, Efic (t) � �P (t)

/
(ε0�ε), originates from the quadratic dependence

of the steady-state levels on the field. It explains the rise/decay asymmetry observed
for all nonlinear dielectric effects, which is also seen in the birefringence traces of
electro-optical Kerr effect studies. This time-dependent fictive field is also a critical
input to a model that links third-order susceptibilities measured with AC-fields to the
changes in permittivity obtained from DC-field experiments. The stationary levels
of the DC-field induced changes remain relatively small, but the high resolution of
dielectric spectroscopy facilitates recording the structural recovery processwith good
resolution. Therefore, the changes that occur in response to applying a large field
can serve as physical aging experiments with fast time resolution, because applying
or removing a field can be performed in a matter of microseconds.
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Nonresonant Spectral Hole Burning
in Liquids and Solids

Ralph V. Chamberlin, Roland Böhmer and Ranko Richert

Abstract A review of nonresonant spectral hole burning (NHB) is given. NHB
utilizes a large-amplitude, low-frequency pump oscillation in an externally applied
field to modify the response of a sample nonlinearly, then a small probe step is
applied to measure its modified response. When combined with other techniques,
NHB indicates that the non-exponential relaxation in most substances comes from
an ensemble of independently relaxing regions, with length scales on the order of
nanometers. Various models are presented, focusing on a “box” model that gives
excellent agreement with NHB measurements, often with no adjustable parameters.
The box model is based on energy absorption that changes the local “fictive” tem-
perature of slow degrees of freedom in spectrally selected regions, with a return to
equilibrium only after this excess energy flows into the heat bath. A physical foun-
dation for such thermodynamic heterogeneity is presented, based on concepts from
nanothermodynamics. Guided by this approach, a Landau-like theory and Ising-spin
model are described that yield several features found in glassforming liquids. Exam-
ples of results fromNHB are shown, with special emphasis on dielectric hole burning
(DHB) of liquids and magnetic hole burning (MHB) of solids.

1 Introduction

Although viscoelastic creep was already known to Robert Hooke in 1678 [1], Wil-
helm Weber was arguably the first person to attempt a physical interpretation of
measured non-exponential response in materials when he analyzed the mechan-
ical relaxation of silk fibers in 1835 [2]. In any case, it was Weber’s doctoral
student Friedrich Kohlrausch who first recognized that the measured relaxation
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of several types of materials, some crystalline and others amorphous, could be
characterized by an empirical formula [3, 4], now known as the Kohlrausch or
Kohlrausch–Williams–Watts law [5], or the stretched exponential function [6, 7].
Rudolph Kohlrausch, Friedrich’s father, had introduced this function in 1854 to
describe his measurements of electric charge as a function of time in a Leyden jar (a
glass-filled capacitor) [8], but Friedrich seems to have been the first to recognize its
ubiquity. The function can be written as

�(t) � �0 exp[−(t/τ )β]. (1)

Here �0 is an initial amplitude, τ a relaxation time, and β a parameter that governs
the effective width of the decay function. Empirically, it is often found that β varies
between 0.5–0.7 for liquids, and 0.2–0.4 for solids. Physically, it has long been a goal
to understand the fundamental mechanism that could cause such common response
in a wide range of diverse materials.

At least, since Newton introduced his law of cooling in 1701 [9], single-
exponential relaxation (β � 1) has been known to come from the simple differential
equation, d�(t)/dt � –�(t)/τ . Two distinct scenarios that yield net stretched expo-
nential relaxation are: a “homogeneous” picture, where the relaxation time itself is
time-dependent, τ (t), or a “heterogeneous” picture with a distribution of relaxation
times that are location-dependent, τ (x). The original interpretation used by Rudolph
Kohlrausch was to assume a homogeneous time dependence, τ (t) ∝ t1−β . This sce-
nario remained a common picture for interpreting the behavior through the 1970s
and 80s, when it was suggested that the dielectric correlation function may have [10]
“a natural non-exponential dependence upon time due to the cooperative nature of
the process, and may not be regarded … as arising from a distribution of relaxation
times, as is usually supposed,” a theme that also underlies Jonscher’s well-known
book on “Dielectric relaxation in solids” [11]. A contrasting picture with a history
that is equally prominent is that any measured response can be represented by a sum
of simple exponentials [12]. Indeed, a heterogeneous distribution of relaxation times
provides a versatile paradigm for interpreting stretched exponential relaxation and
other empirical formulas for the slow response of materials [13–25]. Figure 1 depicts
these two contrasting scenarios.

Over the past few decades, direct evidence to distinguish between these sce-
narios has finally become available. Specific approaches include measurements on
nanoscale systems [26], multidimensional nuclear magnetic resonance (NMR) [27],
a combination of optical absorbance and modulated calorimetry [28], which builds
on earlier work [29], time-dependent solvation [30] and photobleaching [31], as
well as scanning probe microscopy [32] and particle scattering techniques [33–35].
Indeed, spectrally selective methods capable of identifying specific sub-ensembles
in the net response have shown that most materials contain a heterogeneous distri-
bution of independently relaxing degrees of freedom [36–43]. Several of these tech-
niques demonstrate that the independent degrees of freedom are spatially localized
in independently relaxing “regions,” often on a length scale of 1–3 nm involving
10–1000 molecules, spins, or monomer units. Each region is defined by having a
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Fig. 1 Solid lines on the left
side show identical net
responses for the logarithm
of a relaxing quantity, log �,
as a function of time. Dashed
lines indicate that the net
response may come from
homogeneous response
throughout the sample (upper
frame) or a heterogeneous
distribution of independently
relaxing regions (lower
frame). Right side shows a
cartoon sketch of how each
type of response may occur
inside a bulk sample

distinct relaxation time for its local response, τ (x), typically yielding effectively
single-exponential relaxation.

Some measurement techniques establish that this dynamic heterogeneity is also
in the thermodynamics. The focus of the present chapter, nonresonant spectral hole
burning (NHB), is one of these techniques. A related approach is based on dynamic
specific-heat measurements [44, 45], which involves monitoring the temperature of
the thermal bath as heat flows slowly into the slow degrees of freedom. Thermody-
namics requires that net heat flow can occur only if the effective temperatures of the
slow degrees of freedom differ from that of the heat bath. NHB is essentially the
inverse process, monitoring the slow degrees of freedom as their excess energy flows
slowly into the heat bath. The versatility and power of NHB have facilitated char-
acterizing thermodynamic heterogeneity in many types of materials, see Sect. 1.2.
Indeed, NHB has shown that thermodynamic heterogeneity involves transient but
distinct variations in several thermodynamic quantities including energy, tempera-
ture, dielectric polarization, magnetic alignment, and/or mechanical stress. NHB has
found numerous applications for a wide range of materials including liquids, glasses,
spin glasses, polymers, and even high-quality single crystals.

1.1 Background to Development

In order to emphasize different parts of a presumed spectrum of different dielectric
relaxation times, a technique called pulsed dielectric spectroscopy was devised [46].
It is based on sequences of (relatively small) electrical fields and field steps. When
presenting first results from this technique at a meeting in Denmark, in early 1994,
Jeppe Dyre reminded us that without entering the nonlinear response regime, and
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thereby leaving the range in which Boltzmann’s superposition principle [47] applies,
one is not able to directly distinguish between homogeneous and heterogeneous
relaxation processes. Immediately thereafter, some of us started to discuss how to
implement suitable nonlinear excitation and detection schemes. One idea was to
continue with the process exploited in Ref. [46], but to increase the step size of
the electrical field until the response function would depend on the field strength.
A variant of this approach based on the nonlinear generalization of the Boltzmann
principle, the so-called Wiener–Volterra series [48], was eventually implemented
utilizing pseudo-stochastic multiple-pulse excitation [49]. The idea of increasing the
step size was not tested at the time, mainly because the basic NHB technique was
found to work beautifully [50, 51].

Nonresonant spectral hole burning utilizes a large-amplitude, low-frequency
pump oscillation to modify the dynamics of a sample on the timescale of the pump
frequency, then a small probe step is applied to measure the modified spectrum as
a function of time. The pump oscillation and probe step are often separated by a
variable recovery time, as sketched in Fig. 2. The pump and probe may be in any
applied field—e.g., electric, magnetic, or strain field—whenever sufficient energy
from this field can be absorbed by the sample. The original inspiration for NHB
came from the standard technique of spectral hole burning (SHB) that is normally
used to investigate broadened resonances. Although originally applied to NMR [52],
now SHB most often involves optical spectroscopy using narrow-bandwidth lasers
[53]. The usual goal of SHB is to determine the fundamental source of broadening
if the spectrum is broader than a simple Lorentzian. Typically, a sample is irradiated
with an intense laser beam at a chosen wavelength of light. The intense beam causes
“bleaching” of any response that absorbs significant energy from the light. Bleach-
ing involves eliminating the response from the spectrum by either saturating it or
displacing it to distant frequencies. If the spectrum is uniformly bleached at all fre-
quencies, the spectrum is homogeneously broadened. However, if the laser bleaches
a narrow “hole” in the spectrum that is roughly the width of a single Lorentzian, the
spectrum is inhomogeneously broadened. Most samples show this kind of heteroge-
neously broadened spectra so that resonance-based SHB facilitates investigating the
fundamental features of individual contributions to the full spectrum. Nonresonant
spectral hole burning relies on the same idea, but with several key differences:

(1) The spectra studied come from relaxation phenomena, not from resonances.
(2) The pump field frequencies are usually about 15 orders of magnitude slower,

e.g., 1 Hz instead of 500 THz.
(3) The mechanism usually involves shifting the response rate, not reducing the

magnitude of response.
(4) Because this response-rate-shift mechanism is found to be short-lived, it is

crucial to measure the entire modified spectrum rapidly, most suitably in a
single step using time-domain spectroscopy.

Another set of experiments that inspired the initial conception of NHB involves
dynamic specific heat. Although frequency-dependent heat capacity measurements
showed that slow degrees of freedom near the glass transition involve slow heat flow
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Fig. 2 Sketch of the general protocol of applied fields as a function of time for typical nonresonant
spectral hole burning experiments. The field pattern shown consists of a sequence of pump, recovery,
and probe periods. Inspired by phase cycles exploited in nuclear magnetic resonance (NMR),
undesired signal contributions (such as, e.g., the linear after effect generated by the pump cycle)
can be suppressed by suitable linear combination of the responses generated using the numbered
traces

[54, 55], it was the low-temperature time-dependent measurements of Meissner and
coworkers that provided a more direct picture of the universality of this phenomenon
[44, 56–58]. In these time-dependent measurements, a short heat pulse (~1 μs) is
applied to one side of a sample, while the temperature, T (t), is monitored as a func-
tion of time on the other side. Over several orders of magnitude in time, from the
end of the heat pulse until the excess energy flows out through the wires that con-
nect the sample to the cryostat, this measurement yields the specific heat, with heat
capacity inversely proportional to T (t). This T (t) is found to first increase rapidly
as the heat from the pulse travels across the sample and reaches the thermometer,
then the sample cools slowly in a non-exponential manner over intermediate times.
Because the sample is adiabatic until the timescale when heat starts to flow out of
the sample, such slow non-exponential relaxation must be due to the slow transfer
of heat from the heat bath to the slow degrees of freedom in the sample. According
to the laws of thermodynamics, this net heat flow can occur only if there is a tem-
perature difference, with the slow degrees of freedom having what is often called an
“effective temperature” that distinguishes it from the temperature of the heat bath,
similar to the concept of spin temperature known from magnetic resonance [59] or
fictive temperature from aging in glasses. Thus, such time-dependent specific-heat
measurements imply thermodynamic heterogeneity inside bulk samples. Because
the heat is injected into the heat bath, heat flow out of the bath could be into a single
slow system that is homogenous (but separate from the bath), or into an ensemble
of slow systems that are themselves heterogeneous. The inspiration leading to NHB
was to invert the process, so that extra energy is imparted directly into selected slow
degrees of freedom, chosen by their response frequency.
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An advantage of NHB is that it can yield direct evidence for thermodynamic
heterogeneity in the response, even using just the raw data, with no need for analysis,
modeling, or interpretation. Another advantage is that detailed agreement with the
experiment can be obtained with a simple “box” model, often with no adjustable
parameters. The basic idea of this model is that the sample contains independently
relaxing regions (the boxes), and that each box has its own time-dependent effective
temperature that is governed by a timescale for response of the box, the energy
it absorbs from the field, its heat capacity, and timescale for recovery by thermal
connection to the heat bath. It is assumed that the timescale for response and recovery
are identical, i.e., energy goes into and out of the box at the same rate, a feature that has
since been found to usually be the case [67]. For a quantitative connection between
the energy absorbed and change in effective temperature, it is assumed that all boxes
have the same specific heat, consistent with various measurements over at least four
orders of magnitude in frequency [60, 61]. This specific heat can often be deduced
from the change in heat capacity of the sample due to the slow degrees of freedom
that freeze at the glass transition. Additional details about this box model, including
improvements that make it extremely versatile and accurate, will be discussed in
Sect. 2.

The theoretical model for NHB in dielectric and magnetic response (a simplified
box model) was conceived in the summer of 1994 [50]. This model predicted not
only general NHB behavior but also several details that were confirmed by measure-
ments–– some at a quantitative level. The dielectric variant of the experiment was
implemented during the summer of 1995 in the laboratory of Alois Loidl, in Darm-
stadt, Germany. After Bernd Schiener, a talented student then in his lab, had learned
how to prepare samples that did not (always!) break through when large electrical
fields were applied, extensive measurements of dielectric hole burning (DHB) in
two glassforming liquids were made [51]. The remarkable similarity of the results to
the predictions confirmed, in particular, the model’s key ingredient: thermodynamic
heterogeneity. Some years after the development of DHB, magnetic hole burning
(MHB) experiments were successfully implemented [61]. NHB and the ideas on
which this method is based have since been applied to a variety of new techniques
to identify and investigate heterogeneous relaxation inside bulk materials.

1.2 Versatility of Nonresonant Hole Burning

Following the initial results showing heterogeneous response in the α-relaxation of
glassforming liquids, similar NHB techniques have been applied to a wide array of
liquids and solids with the goal of probing different relaxation processes involving
not only dielectric but also magnetic and shear fields. The DHB technique has been
successfully applied to investigations of primary and secondary relaxations as well as
the excesswingof neat andbinary glassforming liquids [50, 60, 62–67], themolecular
reorientation in a supercooled plastic crystal [68], the structurally decoupled motion
in an ion conductor [69, 70], and the dielectric response of relaxor ferroelectrics
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[71–74]. MHB has been applied to the study of spin glasses [61] and ferromagnets.
Mechanical hole burning has been applied to investigations of polymers [75, 76] and
polymer solutions [77, 78]. In all of these studies, evidence for spectral selectivity
was found, and thus based on a phenomenological criterion [37], it can be concluded
that heterogeneity exists in the dynamics of the studied liquids and solids. The relative
merits of mechanical hole burning as compared to other nonlinear techniques, e.g.,
those based on the application of large-amplitude oscillatory shear (LAOS) were
recently reviewed [78]. Therefore, mechanical hole burning is not further considered
in the present chapter. Details regarding LAOS experiments can be found in the
chapter by Wilhelm and Hyun in this volume [79].

About 10 years after the conception of the original pump-and-probe scheme inher-
ent in the early DHB experiment, it was suggested that a more easily implemented
sequence of small, large, and again small ac fields can serve a similar purpose, which
is to deposit energy and probe its consequences in a frequency selective manner [80].
A detailed overview of the results emerging from these insights was given recently
[81]. Questions regarding nonlinear response in supercooled liquids [82] can be
addressed particularly well using this alternative approach [67], with heterogeneity
deduced from the box model.

Another example of the versatility of the pump-and-probe scheme used for NHB
would be to generalize the technique to pump with one type of field, and then probe
with another. Specifically, one could exploit rheology for the nonlinear spectrally
selective excitation, and then apply dielectric spectroscopy for broadband linear-
response detection. Such an approach would generalize a related cross-technique,
rheodielectric spectroscopy, see for instance Refs. [83–85].

2 Box Model and Other Approaches for Characterizing
Nonresonant Hole Burning

2.1 Introduction

This section outlines a model that aims at providing a quantitative account of the
results expected for dielectric hole burning, with similar models applicable to related
measurements such as magnetic hole burning. For DHB, the fundamental idea is that
a polar liquid will absorb energy from a time-dependent external electric field [86].
The task is to quantify the influx of energy and determine how it might modify
the dielectric relaxation spectrum. Furthermore, it is important to clarify whether
adiabatic or isothermal conditions provide a more realistic approach to the experi-
mental situation. First, consider the hypothetical case of a dynamically homogeneous
system subject to a sinusoidal field of high amplitude. In this case, the qualitative out-
come expected for steady state is relatively straightforward. The energy irreversibly
transferred from the electric field (E) to the sample is proportional to E2. This energy
will eventually be converted to heat, which uniformly raises the bath temperature of
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the sample [87]. The field-induced changes of the dielectric relaxation behavior will
then be equivalent to heating the whole sample, yielding a reduction of dielectric
relaxation times, τD, and a miniscule change in the relaxation amplitude, �ε. In the
more common case of heterogeneity for the dynamics and thermodynamics [27, 39,
40], fast and slow modes are independent and thus differ in their energy uptake [51],
which is the situation addressed by the model outlined below.

It is important to realize that this model is not meant to capture all contributions
to nonlinear dielectric responses. Instead, the scope of this model is limited to ratio-
nalizing how the energy that is irreversibly transferred from the field to the sample
modifies the dielectric relaxation behavior.

2.2 General Relations

We start by assuming dynamic heterogeneity, implying that the net non-exponential
polarization response originates from a superposition of contributions from indepen-
dently relaxing regions.While othermodels can be envisioned, wewill adopt the case
for which each independently relaxing region contributes with a Debye type (single
exponential) behavior and that the overall response can be expressed as the sum of
these distinct local responses from the regions, weighted by their volume fractions.
For the net dielectric permittivity function, this results in the complex permittivity

ε̂(ω) − ε∞ � �ε

∞∫

0

g (τ )

1 + iωτ
dτ ≈

n∑
i�1

�εi

1 + iωτi
, (2)

where �εi ≈ �εg (τ ) dτ , with g(τ ) being the normalized probability density of
finding a mode with time constant τ in the interval dτ . While the integral over an
effectively continuous g(τ ) containing a very large number of time constants τ is
appropriate for describing bulk liquid behavior, the summation over a relatively small
number of regions n (labeled by subscript ‘i’) is convenient for numerical calcula-
tions. This model neglects all time-constant fluctuations, referred to as rate exchange
[88] or “lifetime of heterogeneity,” so that the values of the time constants τ are
assumed to remain time-invariant at low-field amplitudes. Because these fluctua-
tions are found to occur on timescales that are usually as slow (or slower) than the
average relaxation time, their omission is expected to be inconsequential for all but
the very slowest modes.

Similarly, as suggested by dynamic specific-heat measurements, the dynamic heat
capacity spectrum, Ĉ p (ω), is modeled as the sum of individual contributions with
Debye character

Ĉ p (ω) − Cp,∞ � �Cp

∞∫

0

g (τ )

1 + iωτ
dτ ≈

n∑
i�1

�Cp,i

1 + iωτi
, (3)
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where �Cp,i � �Cpg (τ ) dτ . The same probability density g(τ ) is employed for
describing both permittivity and dynamic heat capacity spectra [89]. This approach
to the dynamic heat capacity of the sample implies the assumption that Cp,i is pro-
portional to the volume fraction of each independently relaxing region, labeled ‘i’,
equivalent to a constant heat capacity per molecule. Consequently, each region is
assigned its individual enthalpy density increase, �hi, and thus its own increase in
fictive temperature,�Ti � �hi/(ρ�Cp,i). Direct enthalpy exchange among different
modes is neglected, and each mode is assigned the same time constant τ for both
dielectric and enthalpy response. This assumption is supported by evidence against
different time constants for dielectric relaxation and enthalpy recovery, as discussed
in the literature [90–92]. This picture implies that excess energy remains localized
for a relatively long time within a mode, consistent with the slow enthalpy relaxation
observed in calorimetry and aging experiments [93]. Because this energy is local-
ized for such long times it must be very weakly coupled to the heat bath, so that the
energy may have time to equilibrate among all localized degrees of freedom in the
region, thereby mimicking a local fictive temperature that is different from the bath
temperature. Thus, �Ti �� 0 has physical meaning.

In order to reflect reproducible initial conditions, it is assumed that each region
‘i’ is depolarized and at zero field prior to applying an external field at t � 0:

Pi (t ≤ 0) � 0, E (t ≤ 0) � 0

The subsequent polarization response of each mode is governed by the differential
equation

dPi (t)

dt
� ε0�εi (t) E (t)

τi (t)
− Pi (t)

τi (t)
. (4)

The overall polarizationP(t) involves the sumof an instantaneous (P∞) and a retarded
(�P) contribution with respect to the field E, as given by

P (t) � ε0 (ε∞ − 1) E (t) +
∑
i

Pi (t) � P∞ (t) + �P (t) . (5)

This relation yields the ordinary linear-response result for P(t) for a given time-
dependent field E(t) in the special case that all �εi and τ i remain time-invariant.
Allowing these quantities to change with fictive temperature Ti, and thus with time
represents the box model manner of incorporating nonlinear effects, whereas their
changes are negligible for sufficiently small fields.

For a given region ‘i’, the current density ji(t) � dPi(t)/dt creates an additional
enthalpy density per unit time, pi (t) � dhi (t)

/
dt , according to the power absorbed

pi (t) � j2i (t) τi (t)
/

(ε0�εi ), while the recovery of hi toward equilibrium is gov-
erned by the recovery time τ i of that particular region, leading to
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dhi (t)

dt
� pi (t) − hi (t) − heqi

τi (t)
�

(
dPi (t)

dt

)2
τi (t)

ε0�εi (t)
− hi (t) − heqi

τi (t)
. (6)

All enthalpy lost by a mode due to its recovery is added as heat to the bath with heat
capacity Cp,∞, i.e., it is assumed that no enthalpy is passed directly from one mode
to another. These enthalpy densities can be converted to fictive temperatures Ti via
dhi (t) � ρ�Cp,i dTi (t) and heqi � ρ�Cp,i T . Similar to the situation encountered
in the context of physical aging, the concept of a fictive or configurational temperature
is also used here to characterize the state of a nonequilibrium system in terms of the
value of Ti that would give rise to the same state if the system were in equilibrium
at a temperature T � Ti.

Finally, it needs to be specified how the fictive temperatures Ti impact the param-
eters that determine the relaxation behavior. Because field-induced changes in Ti are
small, only the relaxation time τ i is considered to be modified by external fields, as
the sensitivity of the amplitudes�εi to temperature is negligible by comparison. The
dependence of τ i on Ti is quantified by the nontrivial assumption that τ i(Ti) tracks
the overall equilibrium activation behavior τ α(T ) via

dτi
dTi

� − τα

T 2

(
d ln τα

d
(
1
/
T

)
)

. (7)

This relation couples Eqs. (4) and (6), i.e., the polarization response is modified by
the changes in mode-specific fictive temperatures.

Regarding the heat exchange with the surroundings, limited average power will
ensure that heat is transported effectively away from the sample toward a thermal
reservoir. In the situation in which a sample of thickness d is sandwiched between
twometal electrodes that can be considered isothermal, the field-induced temperature
increase can be estimated. The steady-state result for a spatially uniform average
power density, p � dq

/
dt , is obtained by solving ∂2�T

/
∂z2 � −p

/
κ , where z is

the spatial coordinate normal to the electrode surface and κ the thermal conductivity
of the sample [94, 95]. The average temperature increase is thus�Tavg � pd2

/
(12κ),

and the maximal effect at the center (z � d/2) amounts to �Tmax � 1.5�Tavg. If p
is sufficiently small and �Tmax is negligible compared with the fictive temperature
changes measured in DHB, isothermal conditions may be assumed for the sample
with the bath temperature T kept as a constant. The adiabatic limit, with no heat
transfer to the surroundings, is accounted for by having the enthalpy recovery from
all regions combined into an enthalpy increase of the bath, i.e.,

dT

dt
� 1

ρCp,∞

n∑
i�1

hi (t) − heqi
τi (t)

�
n∑

i�1

Ti (t) − T

τi (t)

ρ�Cp,i

ρCp,∞
. (8)

If the high-amplitude field is applied for a longer time, this may result in a significant
increase of the bath temperature T of the sample [92].
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2.3 Dielectric Hole Burning Protocol

The protocol of the pump-probe experiment is designed to demonstrate heterogeneity
regarding the dynamics by modifying the response of a subset of modes, while the
other modes remain unaffected. Accordingly, the narrowest possible power spectrum
of the field is desired, so that a sinusoidal field with frequency � is the pattern of
choice for the duration of the pump, usually an integer number np of complete cycles
during the pump time, tp, cf. Fig. 2. For a subsequent recovery time (tr) that separates
the pump from the probe cycle, the field is zero (or very small), allowing for the
recovery of the pump-induced effects over the recovery time. Thus, the overall field
sequence can be represented by

E
(
tp

) �

⎧⎪⎪⎨
⎪⎪⎩

0 , tp < 0

E0 sin
(
�tp

)
, 0 ≤ tp ≤ np2π/�

0 , np2π/� ≤ tp ≤ np2π/� + tr

. (9)

This field generates an influx of energy density per unit time, pi(t), to modes with
relaxation time τ i and dielectric amplitude �εi, according to [82, 96]

pi
(
tp

) � ε0E2
0�εi�

2τi(
1 + �2τ 2

i

)2

×
⎧⎨
⎩

[
�τi sin

(
�tp

)
+ cos

(
�tp

) − exp
(−tp

/
τi

)]2
, 0 ≤ tp ≤ np2π

/
�

[
1 − exp

(
np2π

/
�τi

)]2
exp

(−2tp
/

τi
)

, tp > np2π
/

�
.

(10)

An example of the time-dependent power for np � 2 is depicted in Fig. 3. The impact
of this power on the fictive temperature of mode ‘i’ is then determined by

dTi (t)

dt
� pi (t)

ρ�Cp,i
− Ti (t) − T

τi (t)
. (11)

This Ti(t) then modifies the relaxation parameters τ i (and possibly �εi) as outlined
above.

The amplitude of the probe step field, Eprobe � E0, applied at t � 0, where
tp � np2π

/
� + tr , is considered to be in the regime of linear response, so no

additional power is absorbed from this field and the polarization response to this
field step is proportional to Eprobe. However, unless tr is very long, the enhancement
of fictive temperatures will persist for times t > 0 and thus modify the polarization
response to this probe field. Because the pump field amplitude is much larger than
Eprobe, much of the polarization for t > 0 may originate from the pump field, while
the response to the probe step is small. In the experiment, a “phase cycle” is used to
remove the linear response to the pump field by taking the average of two polarization
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Fig. 3 Applied sinusoidal voltage V (t) � E(t)/d and the resulting polarization P(t) and dissipated
power p(t) in a singlemodewith τ � 1 s and� � 1 s−1. The curve forV (t) follows Eq. (9) for np � 2,
P(t) is derived from Eq. (4), p(t) is calculated according to Eq. (10). Note that some power remains
after V (t) has been turned off, i.e., for t > 4π /�, because a significant amount of polarization P is
present at t � 4π /�. The curves are scaled arbitrarily. The vertical line marks the end of the pump
process. Adapted from Ref. [96]

signals that differ only in the sign of E0, equivalent to a 180° phase shift of the pump
field, cf. Fig. 2. Within the model calculation, this “phase cycle” can be accounted
for by setting Pi(t) ≡ 0 for all times t < 0, i.e., disregarding all polarization prior to
the probe step. The final goal is to compare the overall step polarization response
following the pump process, P*(t), with that in the absence of the pump event,
P(t). The result is presented either as vertical difference, �VP(t) � P*(t) − P(t),
or its horizontal analog, �HP(t), which for sufficiently small differences can be
approximated by [60]

�HP(t) � − �VP(t)

dP(t)/d ln(t/s)
. (12)

Because the probe field Eprobe is time-invariant for times t > 0, the polarization
response to the probe step is linearly related to permittivity ε(t) in the time domain.
An alternative to probing the step response in a constant-field situation is to use
a displacement step, Dprobe, to polarize the system and then monitor the field as a
function of time [60, 80, 97, 98]. In this constant charge case, polarization is linearly
related to the field E(t) and to the electric modulus M(t), defined via the steady-
state relation M̂(ω) � 1/ε̂(ω). For a given system, the relaxation, M(t), is always
associated with a smaller time constant relative to the retardation, ε(t), with the
relation between the linear averages obeying 〈τM〉 / 〈τε〉 � ε∞/εs [99]. Within the
framework of the above model, this constant charge case can be realized by an initial
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Fig. 4 Dependence of the peak amplitude of vertical hole signals (at zero waiting time) on the
pump frequency�. The curve labeled�VPε,max refers to constant voltage detection with P(t) ~ ε(t)
while�VPM,max refers to constant charge detection with P(t) ~M(t). The comparison indicates the
advantage of using modulus type detection M(t) at high pump frequencies, here with � > 1 s−1.
The calculation is for glycerol at T � 187.3 K, with the arbitrarily scaled loss profile, ε′′(ω), shown
as dashed line. Adapted from Ref. [80]

probe field set to E(0) � Dprobe/(ε0ε∞), which will change with time according to
dE(t)/dt � − (d�P/dt)/(ε0ε∞). Constant charge conditions require D(t � 0) � D(t
→ ∞), thus implying a finite steady-state field E(t → ∞) � (ε∞/εs)E(0) for a
dielectric sample, and a subsequent decay to zero only in the case of dc conductivity
[98]. A model-based comparison of the two types of probing the polarization in time
domain, constant-field versus constant charge, is depicted in Fig. 4, which shows
the peak vertical difference �VPε,max and �VPM,max versus pump frequency �,
respectively. These data demonstrate that the constant charge case provides increased
sensitivity to the pump-inducedmodification at the higher pump frequencies, a direct
consequence of the 〈τM 〉 < 〈τε〉 feature.

Comparisons of predictions of the model discussed in the present section (or
variants thereof) with experimental data can be found in various reports [62, 64, 66,
69, 90–92, 94].

2.4 Other Applications of the Box Model

The general version of the box model, as outlined via Eq. (2) through Eq. (8), has
been applied to field protocols other than those exploited for dielectric hole burning.
Changes in fictive temperatures and the concomitant modifications of polarization
responses should be expected whenever a time-dependent field of sufficient magni-
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tude is applied to a sample with considerable dielectric loss, ε′′. The model reveals
that a high-field stepmodifies the polarization response relative to the low-field coun-
terpart, and the effects are larger than the DHB results for the same field amplitude
as the temporal separation between pump and probe is eliminated [80]. However,
the power spectrum of a field step is much wider than that of the DHB pump field,
and the spectral selectivity is diminished accordingly. For a field step of magnitude
E applied at time t � 0, the power density for a single mode ‘i’ is given by

pi (t) � ε0�εi (t) E2

τi (t)
exp

(
− 2t

τi (t)

)
. (13)

This term has been employed successfully to capture how field steps modify the
dielectric behavior of liquids [100].

Sinusoidal fields of high amplitudes E0 can lead to very prominent changes
in the dielectric behavior. For isothermal conditions and a field given by E (t) �
E0 sin (ωt), the steady-state fictive temperature for mode ‘i’ follows:

Ti � T +
ε0E2

0�ε

2ρ�Cp
× ω2τ 2

i

1 + ω2τ 2
i

, (14)

where the frequency-dependent term approaches unity for ω � τ i [67]. For an entire
typical loss spectrum, ε′′(ω), this modifies the high-frequency wing (ω > 10ωmax) as
if the temperature had increased by the amount ε0E2

0�ε
/(

2ρ�Cp
)
. For frequencies

not too far above the loss peak frequency ωmax, high-field impedance experiments
have demonstrated agreement with these predictions [90, 92, 101–103]. At very high
frequencies relative toωmax, the magnitude of this steady-state effect may be reduced
due to excess wing or secondary processes.

In order to explore how the fictive temperature approaches its steady-state value
as a function of time, the sinusoidal field technique has been supplemented with
amplitude steps. A typical protocol could consist of 32 periods of the sine wave
at low fields (within the linear response regime), followed by 64 periods with high-
field amplitude, after which another 32 periods of the low field are appended. Fourier
analysis of the voltage and current traces for each period facilitates studying the field-
induced modifications as a function of time after applying or removing the high field.
This protocol is best modeled with the general approach, Eq. (2) through Eq. (8),
with E(t) representing the amplitude-modulated sinusoidal field. For frequencies not
too far aboveωmax, the model captures the experimentally observed time dependence
with high fidelity [91, 92, 102, 104]. At higher frequencies, very fast modes adjust
their time constants or fictive temperatures on the timescale of the average structural
relaxation time (τ α) rather than τ i. Therefore, in the range ω > 100ωmax, it can take
many periods of a high field before steady state is reached [102, 103].

So far each mode ‘i’ is assumed to be single-exponential in time, or Debye-
like as a function of frequency, cf. Eq. (2). Thus, the shapes of the spectral holes are
relatively narrow. Similar assumptions underlie the “excitation profile” that was used
in the initial applications of the box model [50] and most of [105] its refinements
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in studies dealing primarily with supercooled liquids [51, 62]. The latter typically
display relatively narrow dielectric loss spectra. However, for disordered systems
featuring very broad loss spectra—such as relaxor ferroelectrics [73] and somebinary
mixtures of glass formers [66]—the effects of intrinsically non- or multi-exponential
responses are sometimes relevant, as was considered for the description of molecular
dynamics in other contexts [37, 106–108]. On a phenomenological basis, rather
than starting from exponential behavior, intrinsic nonexponentialities were typically
written akin to Eq. (1), for instance as

Pi ∝ exp[−(t/τi)
βin ]. (15)

If intrinsic nonexponentialities are present, it was suggested to expand the box
model [66]: In particular, the expression describing the change in field-energy density
per unit time, that is generated by the application of an external electrical (pump)
field, then comprises two parts. The one referring to the dissipative contribution
is given by that considered in Eq. (10). In addition, in the presence of intrinsic
nonexponentialities, a “reactive” contribution was found to arise which corresponds
to power “temporarily stored in the system” [66]. For further details and implications
of that approach the reader is referred to Ref. [66].

2.5 Asymmetric Double Wells and Other Approaches

Various other approaches can yield net behavior analogous to the box model. A
particularly appealing framework for many workers in the field is based on models
involving an asymmetric double-well potential (ADWP) [97, 105, 109]. The double
well may be viewed to refer to the potential describing two molecular orientations or
to two minima in a slice of a potential energy surface, with asymmetry needed to lift
the energetic degeneracy between the minima, as depicted in Fig. 5. The population
numbers of the two minima are given by q1 and q2 so that for a total of N dipoles
with moment μel, the (linear) polarization P(t) � μel cosθ n(t) arising in response to
a time-dependent electrical field E(t) can be obtained from the population difference

n (t) ≡ N [q1 (t)−q2 (t)] . (16)

The nonlinear response of ADWPs has been treated for external fields with
an arbitrary time dependence, see Eq. (14.21) in Ref. [68]. Its frequency-domain
response is further considered elsewhere in this volume [110]. Therefore, herewe just
summarize the main results of the calculations insofar as they refer to the NHB
protocol sketched in Fig. 2. Changes in the population difference are assumed to
be governed by the master equation, see Eq. (14.18) in Ref. [68]. In lowest order
(|e(t)| � 1) in the reduced electric field e(t) ≡ μelE(t)cosθ /(2kBT ) one has

ṅ (t) � τ−1[e (t) + δ]N−τ−1[1 + e (t) δ]n (t) . (17)
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Fig. 5 The solid line sketches an ADWP characterized by an asymmetry�. The dotted line depicts
a symmetric double-well potential with a barrier height V , e.g., with respect to some rotational
coordinate

Here, usewasmade of the reduced asymmetry δ ≡ tanh[�/(2kBT )] and the relaxation
rate

τ−1 ≡ 2Wcosh[�/ (2kBT )] (18)

with W denoting the transition rate for vanishing asymmetry, � � 0. The rate τ−1,
via W � ν0exp[–V /(kBT )], can in turn be related to the barrier height V and the
attempt frequency ν0 (typically on the order of about 1013 s−1).

It is important to point out that modeling of heterogeneous response requires
choosing suitable distributions for both the barrier heights Vi and asymmetries �i.
However, the distributions of Vi and �i cannot be chosen independent of each other,
but only in such a way that the resulting distribution of relaxation times τ i � τ (Vi,δi)
faithfully describes the response�iPi(t) induced by a small step in the external field.

In order to obtain the contributions of various polarization modes Pi(t) one has to
solve Eq. (17). Let us, therefore, start from an initial condition ni(0) � Nδi, which
simply refers to the equilibrium value for the population difference of a single ADWP
ni(t → ∞) � Nδi. Then, the linear response of an ADWP to a step field Eprobe (after
integration over the entire solid angle) gives Pi(t) � χADWP,i Eprobe [1 – exp(–t /τ i)]
with the static susceptibility χADWP,i � 1

6 Nμ2
el(1 – δ2i ) / (kBT ).

Next, let us assume that the sequence represented by Eq. (10) was implemented,
i.e., after np cycles of a sinusoidal pump field,E(t)�E0sin(�tp), and after a recovery
time tr , a probe field Eprobe is finally applied. For this sequence of fields and, like
before, using ni(0) � Nδi as the initial condition, Eq. (17) was solved to quadratic
order in e(t) during the pump period, and in linear order thereafter. Using the NHB
protocol including the phase cycling sketched in Fig. 2 for the vertical difference one
then obtains
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�VPADWP,i (t) � CADWP,i(δi, Eprobe)XSIN(�)
t

τi
exp

(
− t + tr

ti

)
. (19)

Here, CADWP,i(δi,Eprobe) ≡ Eprobe Nμ4
elδ

2
i (1 – δ2i )/[40(kBT )

3] � χADWP,i Eprobe
3
20 [μelδi/(kBT )]2 is a prefactor that tends to vanish for asymmetries δi → 0. The
so-called excitation profile referring to np pump cycles is given by XSIN(�) � 3

2
E2
0ε

′′(�tp)ε′′(2�tp){1 – exp[–2πnp/(�tp)]} and ε′′(k�tp)� k�tp/[1 + (k�tp)2] with
k � 1, 2. The profile is peaked at �τ i ≈ 1, which means that like for the box model,
a modification of the polarization is achieved in a frequency selective manner.

Note that the Eq. (19) can be interpreted to imply that the pump pro-
cess has shortened the relaxation time of polarization contribution ‘i’, so that
�ln(τ i/s)�– 3

20 [μelδi/(kBT )]2X(�). By virtue ofEq. (18) the reduced relaxation time
may be ascribed, e.g., to an increase in the local effective temperature due to devia-
tions from the equilibrium population difference. In the latter case, the pump process
has changed the effective occupation of the two wells of the ADWP, analogous to
the spin temperature in NMR.

If desired, based on Eq. (19) the horizontal difference �HPADWP,i(t) can be cal-
culated simply by applying the general relation given by Eq. (12). A representation
of this function specific for the ADWP was given in Appendix 2 of [68].

The ADWP is one of the simplest examples of a multi-state model. While it
is straightforward to formulate generalizations to more complex models [68], it is
interesting to point out that rather involved perturbative approaches were developed
and applied in connection with the NHB protocol as well. Such approaches include
descriptions of nonlinear dipolar response in terms of stochastic dynamics [105, 110]
and of spin models [111].

Yet another approach to address the issues of homogeneous versus heterogeneous
dynamics starts from Brownian dipole oscillators in harmonic potentials [112]. By
expanding, e.g., the dipole moments in terms of normal vibrational coordinates, and
retaining only terms referring to the lowest nontrivial order, the cubic response of an
ensemble of Brownian oscillators was calculated [112]. An interesting feature of the
results is that they can be applied to resonance as well as to relaxation phenomena. In
the underdamped case, these calculations may be useful for application in the field
of terahertz spectroscopy. In the overdamped case, response functions akin to those
referring to a relaxational scenario are recovered [112].

When expanding the polarizability αel rather than the dipole moment μel in terms
of the normal coordinates, applications in the areas of Raman or Kerr effect spectro-
scopies are conceivable. Then, the coupling of the responding system to the exter-
nal electrical field is described by a Hamiltonian H � −μel E(t) P1(cosθ ) − αel

E2(t) P2(cosθ ), where Pl(cosθ ) denotes a Legendre polynomial of rank l [113]. With
the goal to discriminate homogenous from heterogeneous scenarios, the P2(cosθ )
response was studied in the framework of the Brownian oscillators (also including
anharmonic potentials as a source of nonlinearity) [114] as well as in terms of a rota-
tional diffusion model for application to the slow dynamics of supercooled liquids
[113].
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3 Nanothermodynamics

3.1 Introduction

When combined with information from other experimental techniques, the basic
picture that emerges from NHB is that the primary response of most materials
involves thermodynamic heterogeneity from an ensemble of independently relax-
ing nanometer-sized regions. As described in Sect. 2, various models based on this
picture are used to characterize NHB, including the boxmodel. Despite its basic sim-
plicity, the box model provides excellent agreement with all essential features found
in NHB, and other measurements involving nonlinear response and dynamic hetero-
geneity, often with no adjustable parameters. Indeed, by an accidental coincidence of
names, the box model is a prime example of the aphorism introduced by George Box
[115], and used by statisticians: “All models are wrong, but some are useful.” Here,
we seek a more deeply-rooted foundation for the box model, not only with respect
to NHB experiments but also for a general understanding of how dynamic hetero-
geneity can occur in the equilibrium response of ostensibly homogenous liquids
and solids. Therefore, in the following, we will summarize some insights provided
by the theory of small-system thermodynamics, which was originally developed by
Terrell Hill to describe finite-size effects in ensembles of nanometer-sized systems
[116–118]. By analogy, this “nanothermodynamics” has been adapted to provide
a general framework for the description of heterogeneous samples that contain an
ensemble of independently relaxing nanometer-sized regions [23, 119, 120], as stud-
ied using NHB and other techniques. Nanothermodynamics provides a fundamental
physical foundation for the box model, ADWPs, Brownian dipole oscillators, and
other models proposed to describe the thermal and dynamic heterogeneity inside
bulk samples [24, 121–123].

3.2 Thermodynamic Heterogeneity in Bulk Samples

We start by assuming dynamic heterogeneity due to distinct spatial regions that are
effectively uncorrelated during their response. This assumption is supported by sev-
eral experimental techniques that identify dynamical correlation lengths of 1–3 nm
[26, 27, 32], including some that indicate decorrelation occurs abruptly across sub-
nanometer interfaces in glassforming liquids [102, 124] and in crystals [33–35]. Fur-
thermore, computer simulations have shown that correlations between regions due
to interactions cause serious deviations from the standard fluctuation–dissipation
relation for uniform specific heat [125, 126], so that decorrelation may be necessary
to justify using Boltzmann’s factor (e−�U/kBT ) for the probability that a fluctuation
increases the internal energy by an amount�U. Empirical evidence for uniform spe-
cific heat comes from measurements of NHB, especially in the high-frequency wing
of glassforming liquids showing that the specific heat is constant over two orders
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of magnitude in amplitude and four orders of magnitude in frequency [60], unlike
the size-dependent energy fluctuations found in simulations of interacting regions.
However, we also recognize that over long enough times, the dynamic heterogene-
ity exhibited by many samples becomes homogeneous, which generally involves
exchange of energy and particles, thereby mixing the relaxation rates. Our assump-
tion is that significant correlation between regions occurs only after the primary
response is essentially complete, consistent with most measurements, and models
used to describe them. Thus, we adopt one of the requirements given by Feynman
for Boltzmann’s factor to be valid [127]: “…if all the ‘fast’ things have happened
and all the ‘slow’ things not, the system is said to be in thermal equilibrium.”

In general, dynamic heterogeneity yields statistical independence, so that the net
probability from uncorrelated regions that fluctuate and relax, independently is the
product of their separate probabilities. Specifically, if system 1 hasW1 ways to yield
its response, and system 2 hasW2 ways to yield its response, statistical independence
yieldsW1W2 for the total number of ways that the combined system can give its net
response. Thus, dynamic heterogeneity implies thermodynamic heterogeneity, where
the entropy of the combined system is the sum of the two separate entropies: S1+2
� kB ln(W1W2) � kB [ln(W1) + ln(W2)] � S1 + S2. NHB is one of the techniques
that can measure this thermodynamic heterogeneity directly. Because standard ther-
modynamics is based on the assumption that each system is homogeneous, with a
total entropy that cannot be subdivided, thermodynamic heterogeneity places strict
constraints on the foundation of any theory proposed to explain the heterogeneity
inside bulk samples. The box model meets these criteria by simply assuming that
the sample can be modeled by an ensemble of independent boxes, each with its own
temperature that is governed by energy absorption, heat capacity, and heat flow to
the bath. As we will show, nanothermodynamics provides the theoretical foundation
for justifying such models based on thermodynamic heterogeneity. First, however,
we review some classical treatments of thermal fluctuations inside bulk materials,
and one way to make them heterogeneous.

Theoretical treatment of thermal fluctuations was pioneered by Einstein, culmi-
nating in his theory of critical opalescence inhomogeneous liquids [128]. Einstein’s
basic idea was to include a second-order term in the Taylor-series expansion in the
probability of finding specific states: p ∝ e�S/kB , where to second order, the change
in entropy is�S � (∂S′/∂E′)�E′ + 1

2 λ2(∂2S/∂λ2). Here, S is the total entropy, S′ and
E′ are the entropy and energy of the heat bath, and λ is an internal order parameter of
the system. Note that Boltzmann’s factor comes from the thermodynamic definition
∂S′/∂E′ � 1/T , while ∂2S/∂λ2 < 0 is needed for stable fluctuations. Extending this
idea, Landau added a quartic term in the Taylor-series expansion to obtain a unified
theory of phase transitions [129]. Both of these theories assume that λ is uniform
throughout the sample so that the theories are unable to accommodate heterogene-
ity. The Ginzburg–Landau theory for phase transitions improves on these ideas by
allowing local variations in λ. One way to implement this theory is to start with sep-
arate cells that have distinct values of λ, then couple the cells via an interface term
to obtain a homogeneous phase [130, 131]. Thermodynamic heterogeneity can be
achieved by simply eliminating the coupling between cells, yielding independently
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relaxing regions [132, 133].However, such spatial heterogeneity is incompatiblewith
standard thermodynamics, where it is assumed that each system is macroscopically
homogeneous in all of its thermal properties. Below, we use the thermodynamics of
small systems to provide a theoretical foundation for independently relaxing regions,
but first, a brief review of standard thermodynamics is provided.

The fundamental equation of thermodynamics, also known as Gibbs’ equation,
is the combined first and second laws. It is often written in terms of a differential in
the internal energy as

dU � T dS−p dV + μ dN . (20)

Here, the intensive environmental variables are temperature T , pressure p, and chem-
ical potentialμ; while the extensive parameters for the system are entropy S, volume
V , and number of particles N . Equation (20) is based on several assumptions. Basi-
cally, the system must be linear, homogeneous, and large. Large implies the ther-
modynamic limit, where N → ∞ with V /N finite, which may apply to equilibrium
properties of bulk samples when averaged over long enough times, but not to the pri-
mary response from independently relaxing regions that usually have length scales on
the order of nanometers. Homogeneous implies all thermodynamic variables are uni-
form throughout the sample, unlike systems exhibiting thermodynamic heterogeneity
investigated by NHB and other techniques. Linear implies that the intensive envi-
ronmental variables are the linear (first-order) derivatives of the internal energy with
respect to the extensive parameters; higher-order derivatives are neglected. Neglected
terms include fluctuations involving the heat capacity, e.g., ∂2(U – TS) / (∂T 2)|V ,N
� –CV/T , as well as the quadratic and quartic contributions introduced by Einstein
and Landau. The usual argument is that for macroscopic systems, fluctuations are
negligible compared to average properties, at least when far from any phase transi-
tions. For example, relative fluctuations in energy,

〈
�U 2

〉
/ 〈U 〉2 � kBT 2Cv/ 〈U 〉2 ,

are proportional to 1/N and hence negligible as N → ∞. However, energy changes
due to finite-size effects cannot be neglected in nanometer-sized systems, including
heterogeneous systems having local fluctuations that are independent of neighboring
fluctuations. Thus, nanothermodynamics provides the theoretical foundation neces-
sary for treating systems that show thermal and dynamic heterogeneity on the scale
of nanometers.

Finite-size effects alter the energy of nanometer-sized systems. In general, the
resulting internal energy can be written as

U � Nu + N 2/3a0 + N 1/3b0 + c0 + · · · . (21)

Here u is the bulk energy per particle, a0 governs the surface energy, b0 is a length-
dependent factor, c0 a fluctuation term, etc. Non-extensive contributions are always
present, but they are negligible if N → ∞. However, for finite-sized systems (or
fluctuations) the surface term is about 1% of the total energy when N ~ 106 particles,
while the fluctuation term is also significant forN ≤ 1000. Includingfinite-size effects
in U alters the left side of Eq. (20), so that if energy is to be conserved, something
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must change on the right side. In 1962, Terrell Hill introduced the theory of small-
system thermodynamics. His theory restores conservation of energy for finite-sized
systems by adding a new pair of conjugate variables, a subdivision potential ε and
the number of subdivisions η, so that Eq. (20) becomes [116–118]

dU � T dS−p dV + μ dN + ε dη. (22)

For bulk samples containing thermodynamic heterogeneity, the number of subdi-
visions (η) is essentially the number of independently relaxing regions, while the
subdivision potential (ε � U – TS + pV – μN) yields the residual free energy from
these regions after all linear and homogeneous contributions are removed.

Hill’s theorywas originally developed to treat separate small systems, such as indi-
vidualmolecules or independent nanoparticles, which he conceptually combined into
a macroscopic ensemble that is assumed to obey standard thermodynamics. Using a
“different approach to nanothermodynamics” [118] Hill’s ideas should also apply to
independently relaxingnanometer-sized regions,whichnaturally formamacroscopic
ensemble of small systems inside bulk samples. Indeed, nanothermodynamics facil-
itates a unique feature that is needed for conservation of energy in independently
relaxing regions. Specifically, although separate interface (a0) and/or length-scale
terms (b0) from static structures inside bulk samples could be added to any Hamilto-
nian, free energy changes due to independently-fluctuating nanometer-sized regions,
e.g., c0 in Eq. (21), cannot be accommodated by Eq. (20). Other non-Hamiltonian
contributions to free energy come from configurational entropy and single-particle
effects. In other words, although Eq. (20) is adequate for η � 1 (dη � 0) in the ther-
modynamic limit (N → ∞) of a homogeneous system with uniform correlations,
Eq. (22) provides a systematic way of treating independently relaxing regions that
have contributions from configurational entropy, and unrestricted fluctuations. These
corrections become increasingly important for small regions (N � 1000), where η

is very large, approaching the total number of particles in the sample. Thus, small-
system thermal effects are crucial for conservation of energy in theoretical treatments
of independently relaxing regions.

Because ε �U –TS +pV –μN yields the residual free energy after allmacroscopic
contributions have been removed, ε ≡ 0 is required by the Gibbs–Duhem relation
for linear and homogeneous systems in the thermodynamic limit—but ε is often
nonzero for finite-sized systems. The subdivision potential can be understood by
comparison to the chemical potential. μ is the partial differential of free energy with
respect to the number of particles in an infinite system, while ε involves discrete
differences when a single particle is added to finite-sized systems. Values of ε for
several models in their relevant ensembles are given on pages 101–102 in part II of
[117]. To emphasize various unique features in nanothermodynamics, wewill review
key steps in obtaining ε for an ideal gas of noninteracting point-like particles in two
distinct ensembles.
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3.3 Finite-Size Thermal Effects in Ideal Gases

First, consider an ideal gas in the canonical ensemble. Using the environmental vari-
ables (N , V , and T ) and thermal de Broglie wavelength Λ ∝ 1/

√
kBT , the canonical

partition function is QN � VN /(N!�3N ), see Eq. 15–59 in [117], and the Helmholtz
free energy is FN � –kBT ln(QN ). In standard thermodynamics of large systems, the
chemical potential comes from the derivative of FN with respect to N so that –μ/kBT
� ∂ln(QN )/∂N |T ,V � ln(V /N�3) – 1/(2 N) + 1/(12 N2) +···, see Eq. (15–62) in [117].
In nanothermodynamics of small systems, the derivative is replaced by a finite differ-
ence, which improves accuracy by treatingN as an integer, and by avoiding Stirling’s
approximation for the factorial, yielding –μN /kBT � ln(QN+1) – ln(QN )� ln(V /N�3)
– 1/N + 1/(2 N2) + ···. Thus, to lowest order, finite-size effects increase the chemical
potential by 1/(2N). Adding similar finite-size effects to the pressure, the subdivision
potential is found from εN /kBT � –ln(QN ) + N(1 – μN /kBT ) � N + ln[N!/(1 + N)N ]
(Eq. (15–64) in [117]). Indeed, even with no interactions, finite-size effects in an
ideal gas of N particles yield εN > 0, so that the free energy increases when the
sample is subdivided into independently relaxing regions. Thus, subdividing a bulk
sample into an ensemble of smaller systems is energetically unfavorable, at least in
the canonical ensemble, where the number of particles in each fluctuation is fixed at
N ; an unrealistic constraint that is often assumed in standard theoretical treatments.

Now consider the same ideal gas in the generalized (μ, p, T ) ensemble. Note
that this is the only ensemble that allows equilibrium fluctuations inside bulk sam-
ples, where nanometer-sized fluctuations should be unconstrained by fixed N , V , or
U. Hence it might be called the nanocanonical ensemble. Assuming independently-
fluctuating regions with an average size 〈N 〉, Eqs. (10–88) and (10–89) in [117]
yield the subdivision potential ε〈N 〉/kBT � −ln(1 + 〈N 〉). Now subdividing the
sample into independently relaxing regions decreases the free energy, opposite
to the canonical ensemble. This reduction in free energy is due to the increased
entropy from allowing unconstrained fluctuations in region size, which is unique to
nanothermodynamics. For a quantitative estimate,we integrate the subdivision poten-
tial over η(≈ 1/ 〈N 〉) , from the thermodynamic limit (η � 0) to 1/ 〈N 〉 , giving

�ε〈N 〉/kBT � −
1/〈N 〉∫
0

ln(1 + 1/η) dη � − (1 + 1/ 〈N 〉) [ln(〈N 〉) + ln(1 + 1/ 〈N 〉)].
Dividing this total (integrated) change in free energy by the macroscopic kinetic
energy of the ideal gas (3 〈N 〉 kBT/2) , the free energy per particle is decreased by
3.1% for 〈N 〉 � 100 , and decreased by 17% for 〈N 〉 � 10. Thus, even for a system of
ideal gas particles with no interactions, due to the increased configurational entropy
from regions with different sizes, the free energy is decreased by subdividing the
system. Because this configurational entropy is not in the Hamiltonian, it is usually
neglected in standard statistical mechanics. Furthermore, unlike standard thermody-
namics, where all ensembles are equivalent, if finite-size effects from fluctuations
are included, the free energy depends strikingly on the ensemble, with εN > 0 for
a fixed number of particles, while ε〈N 〉 < 0 if the number of particles is allowed
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to fluctuate. Standard thermodynamics does not include this significant reduction in
free energy, which drives the formation of independently relaxing regions.

From this simplified picture of an ideal gas in the nanocanonical ensemble, the
free energy decreasesmonotonicallywith decreasing system size, favoring individual
particles that are uncorrelated. For more realistic particles, inter-particle interactions
cause correlations that tend to favor larger regions due to the cost of interface energies.
Balancing these factors using the appropriate model should yield an equilibrium dis-
tribution about an average size that is consistent with experiments. A simpler model
that also yields an equilibrium distribution of finite-sized regions is for noninteract-
ing binary degrees of freedom (e.g., Ising-like spins or a binary alloy), where it is
found that the average size of independently relaxing regions in thermal equilibrium
is 〈N 〉 ≈ 11.07 [134]. Although this value is suggestively close to 〈N 〉 ≈ 10 for
the number of molecules in slow domains of glycerol as measured by multidimen-
sional NMR, it is much smaller than 〈N 〉 ≈ 76 molecules for ortho-terphenyl and
〈N 〉 ≈ 390 monomer units for poly(vinyl acetate) [41]. Furthermore, because this
model treats only noninteracting particles, it is too simple to capture details such as
the expected temperature dependence of 〈N 〉 [135]. Nevertheless, we emphasize that
nanothermodynamics provide a general paradigm for an equilibrium distribution of
independently relaxing regions, where the entropy of neighboring regions is additive
so that the dynamics is truly uncorrelated, and free energies of small regions can be
lowered by more than 10% due solely to increased configurational entropy. Thus,
nanothermodynamics provide a fundamental foundation for thermodynamic hetero-
geneity and a significant addition to any model that is proposed for describing NHB
and other measurements showing heterogeneity.

3.4 Landau-like Theory for Phase Transitions in Finite-Sized
Systems

If treated in the nanocanonical ensemble, Landau’s unified theory of phase transi-
tions provides a common explanation for several properties of supercooled liquids
[133]. The theory predicts a second-order phase transition at a critical temperature
Tc, super-Arrhenius activation rates that mimic the Vogel–Fulcher–Tammann (VFT)
law, and a distribution of system sizes yielding net non-exponential relaxation that
mimics the stretched exponential. The VFT law for a characteristic relaxation time
can be written as τ ∝ exp[DT 0/(T – T 0)], where T 0 is the Vogel temperature and
D the strength parameter. Mathematically, the VFT law can be attributed to activa-
tion energies that obey the Curie–Weiss law, which is a common feature of Landau’s
unified theory. Empirically, Tc is usually close to the Kauzmann temperature (TK ),
where the entropy of the liquid would become less than that of the solid if not for a
transition. Specifically for glycerol, TK � 135 K [136] and Tc � 131 K [133], both
far below the glass temperature Tg � 193 K. Thus, equilibrium behavior near Tc is
impossible to measure directly, at least in such strong glassforming liquids, where
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D > 10 (e.g. D ≈ 16 in glycerol [137]), so that Tc � Tg. However, various char-
acteristics of the transition can be deduced by extrapolating behavior from T > Tg.
In contrast, fragile glassforming liquids have Tc ≈ Tg (e.g. D ≈ 4.2 in propylene
carbonate), so that clear deviations from the VFT law around Tc can be attributed to
finite-size effects around the phase transition [23].

Here, we outline a Landau-like theory for phase transitions in small systems.
Because of nonlinear size dependences, it is useful to expand the free energy per
particle in a Taylor series, f (λ) � f 0 + f 2λ2 + f 4λ4, where λ is the intensive (per
particle) order parameter. As in the original Landau theory, the system is assumed
to have sufficient symmetry that the expansion has only even coefficients f 0, f 2, and
f 4. For binary degrees of freedom, the quadratic term can be written as f2 � 1

2 (kBT
– ε2), which contains a contribution from the entropy − 1

2 kBλ2, and a mean-field
interaction term − 1

2 ε2λ
2. A similar contribution from entropy for the quartic term

yields f 4 � 1
12 kBT . The canonical ensemble partition function for a system of N

particles is ZN � ∫ +∞
−∞ e−N f (λ)/kBT dλ. Here, the integral is extended to λ � ±∞, valid

at high temperatures (T �Tc), whereλ≈ 0, asmost systems are relatively disordered
(small systems often fluctuate to λ ≈ ±1 near Tc). At T � Tc the quartic term is also
negligible, yieldingGaussian integrals that can be evaluated to give an average energy
per particle of 〈εN 〉 � − ∫ +∞

−∞
1
2ε2λ

2e−N f (λ)/kBT dλ/ZN ≈ 1
2ε2kBT/ [N (kBT−ε2)].

Note the 1/N dependence, which explains why this energy is neglected above Tc

in standard Landau theory of large systems, and why subdividing the sample into
small systems lowers the energy per particle. Using the magnitude of the total energy
|N 〈εN 〉 | as an activation energy in the Arrhenius law yields the VFT law, with T 0

� ε2/kB as the Vogel temperature and D � 1
2 as the strength parameters––but this D

is too small for real substances.
Realistic strength parameters can be obtained using the nanocanonical ensemble

[133]. Specifically, assuming unrestricted sizes for the systems 1 ≤ N < ∞ yields
the partition function � � ∑ ∞

N�1 ZNeNμ/kBT , then unrestricted numbers of indistin-
guishable systems in a supersystem 1 ≤ n < ∞ yields U � ∑ ∞

n�1 �n/n!. Now using
the average energy of a supersystem (|〈E〉 |� kBT 2∂ln (Υ ) /∂T ) in the Arrhenius
law gives VFT-like behavior that matches measurements from various glassforming
liquids, as shown by the solid lines in Fig. 6. Including the quartic term to obtain
best fits to the glycerol and propylene glycol data yields constant values (f 0 –μ)/kBT
� 0.0349 and 0.0323, with ε2/kB � 131 and 112 K, respectively, which we now use
to deduce the average system size. Returning to the Gaussian approximation for the
integrals, the canonical partition function becomes ZN ≈ e−N f0/kBT

√
πkBT/(N f2).

The average size is 〈N 〉 ≈ ∑ ∞
N�1

√
N e−N ( f0−μ)/kBT /

∑ ∞
N�1[ e

−N ( f0−μ)/kBT /
√
N ]

�Li–½(e−( f0−μ)/kBT ) / Li½(e−( f0−μ)/kBT ), where Lis(z) is the polylogarithm.Using the
constant values deduced from the data for (f 0 – μ)/kBT , and evaluating the functions
numerically, yields 〈N 〉 ≈ 16.9 and 18.1 particles for glycerol and propylene glycol,
respectively. 〈N 〉 ≈ 16.9 is already too high for the measured value from multidi-
mensional NMR (10molecules), and the mathematical approximations become even
worse near Tg, where the measurements are made. Thus, this general theory does
not accurately describe such specific details. Nevertheless, a Landau-like theory for
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Fig. 6 Angell plot of logarithm of characteristic relaxation times versus inverse temperature from
measurements, theory, and computer simulations. Arrhenius behavior would be a straight line on
this plot, whereas curvature is indicative of the VFT law. Open symbols are from measurements of
the inverse frequency of the peak dielectric loss in propylene glycol and glycerol [139]. Lines come
from the activation energies of a Landau-like theory for phase transitions in finite-sized systems.
Solid triangles show the net relaxation time fromMonte Carlo simulations of the Ising model, with
a local configurational entropy term based on nanothermodynamics. Adapted from Ref. [133]

finite-sized systems exhibits several features characteristic of glassforming liquids,
including: average system sizes that are within a factor of two of measured sizes,
a phase transition near the Kauzmann temperature, VFT-like activation energies,
and energy reduction from subdividing into small systems that yields an equilib-
rium distribution of system sizes that mimics measured dielectric loss spectra [133].
Furthermore, the Landau-like theory also predicts entropy changes that agree with
measured nonlinear response, at least within a factor of two [138].

3.5 Toward a Microscopic Model for the Heterogeneous
Response in Complex Systems

The Landau-like theory for small systems in the nanocanonical ensemble yields
behavior that is consistent with several features in glassforming liquids, but the
theory is not microscopic so that its parameters are most accurately determined by
measurements. Still, because the theory is basedon thermodynamics, includingfinite-
size effects, these parameters are few and relatively fundamental, e.g., the chemical
potential and mean-field interaction energy. Models used to quantitatively simulate
NHB also require input from measurements, e.g., the VFT parameters, excess spe-
cific heat, and distribution of relaxation times in the box model. Although the notion
of ADWPs or Brownian dipole oscillators might suggest microscopic systems, these
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models require at least asmany empirical parameters to obtain agreement with exper-
iments. Furthermore, because NHB tells us nothing about the physical size of the
systems, they could be individual molecules, independent plane waves, or anything
in-between. Therefore, we rely on various other techniques to learn that typical inde-
pendently relaxing systems are spatial regions, with length scales of 1–3 nm [26, 27,
32]. Thus, a typical region studied by NHB contains at least ten interacting parti-
cles, with relaxation behavior that is effectively independent of neighboring regions.
Nanothermodynamics provides the fundamental foundation for allowing thermal and
dynamic heterogeneity from such nanometer-sized systems of particles. Moreover,
nanothermodynamics guides the development of microscopic models, with the goal
of predicting observed behavior without having to use input from measurements.

The ferromagnetic Isingmodel for interacting binary degrees of freedom (“spins”)
is a simplistic microscopic model that yields a thermodynamic phase transition. By
adding the configurational entropy from local regions in the sample, the Ising model
gives behavior similar to that found in glassforming liquids and shows evidence
that neighboring regions become de-correlated [35]. Although the Ising model was
originally developed for uniaxial magnetic spins, it maps directly to several other
interacting systems, including uniaxial electric dipoles, lattice gases, and binary
alloys. Furthermore, regions of Ising spins have two ground states separated by a
potential barrier, which may mimic an asymmetric double-well potential when acted
on by surrounding parts of the sample. In fact, when finite-size thermal effects from
nanothermodynamics are included, this Ising model provides accurate agreement
with the thermal and dynamic properties of many substances, including ferromag-
netic materials and critical fluids [119, 126, 140], and the ubiquitous low-frequency
fluctuations that yield 1/f -like noise [134, 141, 142].

Here, we present some results from Monte Carlo (MC) simulations of a large
system of Ising spins on a simple cubic lattice. The Hamiltonian is U � –J �<i,j>

σi σj, where σi and σj are spin alignments that may be up (+1) or down (–1), J is an
interaction energy, and the sum is over all six nearest-neighbor spins on the lattice.
This model is usually simulated in the canonical ensemble using the Metropolis
algorithm. Specifically, eachMC step involves choosing a spin at random, calculating
the change in interaction energy to invert the spin (�U), then accepting the new
configuration only if Boltzmann’s factor is greater than a random number uniformly
distributed between 0 and 1:

e−�U/kBT > [0, 1) . (23)

Thus, steps that decrease the energy are always accepted, whereas steps that increase
the energy are unlikely to occur at low temperatures. This standard Ising model on a
cubic lattice has a ferromagnetic transition at kBT /J � 4.51. However, theMetropolis
algorithmdoes not include energy changes from configurational entropy,which come
from finite-size effects in the thermodynamics, similar to the contributions to the
subdivision potential that cause the ideal gas to favor subdividing into independent
particles.
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Configurational entropy has long been recognized as an important contributor to
the behavior of glassforming liquids [121]. Configurational entropy for a system of
n noninteracting Ising-like spins, Sλ � kB ln(Wλ), is easily calculated from their
multiplicity given by the binomial coefficient:Wλ � n!/{[ 12 n(1 + λ)]! [ 12 n(1 – λ)]!}.
Here, the intensive order parameter is λ � M/n, where the net alignment (M) equals
the number of up spinsminus the number of down spins. Expanding in a Taylor series
of λ to quartic order gives Sλ � kBn[ln(2) – 1

2 λ2 – 1
12 λ4]. (Note these same entropy

termswere used in the free energy per particle for the Landau-like theory.) In general,
thermal averages of the intensive quantities have a size dependence of

〈
λ2

〉 ∝ 1/n
and

〈
λ4

〉 ∝ 1/n2, so that these fluctuation terms yield non-extensive contributions
to the energy that must be accommodated by the subdivision potential. For spins
in a field H, the nanocanonical ensemble has intensive environmental variable
μ, H, and T , so that the conjugate variables fluctuate about average values
〈n〉 , 〈M〉 , and 〈U 〉 . Now assume that n fluctuates more slowly thanM and U, con-
sistent with NHB and other measurements, at least above the α-peak in glassforming
liquids. Next, separate the system variables into time-averaged quantities 〈S〉 and
〈M〉 that depend on the interaction energy at fixed n, and time-dependent quantities
Sλ and Mλ that vary with the configurational entropy, but are independent of the
interaction energy under these conditions. Then, the subdivision potential for small
systemsmay be written as ε � 〈U 〉−T (Sλ+〈S〉)−H (Mλ+〈M〉)−μ 〈n〉. Recall that
ε � 0 in the nanocanonical ensemble when the sample contains a thermal equilibrium
distribution of independently relaxing regions, similar to how μ � 0 when a system
contains a thermal equilibrium distribution of phonons or photons. Balancing the
quantities that depend on interaction energy gives 〈U 〉−T 〈S〉−H 〈M〉−μ 〈n〉 � 0,
yielding the Gibbs–Duhem relation for macroscopic (time-averaged) behavior. The
remaining (time-varying) term is: HMλ + TSλ � 0. In zero applied field there is no
external work, but still, something must balance changes in Sλ during equilibrium
fluctuations if energy is to be conserved. Two possible mechanisms are: work done
against an internal field from neighboring regions, or work done on the thermal bath
when the configurational entropy changes. The second mechanism is analogous to
the work done on the thermal bath when an ideal polymer of noninteracting links
is straitened, which can be measured as an increase in temperature when a rubber
band is stretched [143]. In any case, some sort of internal work must be done during
equilibrium fluctuations to balance the change in entropy. The Metropolis criterion,
Eq. (23), comes from conservation of interaction energy. However, to ensure conser-
vation of total energy, including contributions from configurational entropy, a second
criterion is required. The second criterion can be written as

e(Sλ−S0)/kB > [0, 1) , (24)

where S0 � kBln{n!/[(n/2)!]2} is the maximum configurational entropy in the region.
Note that to facilitate faster dynamics in practical simulations, a Kronecker delta
function from the local energy is included in the exponent of Eq. (24) [35].

Equation (24) accommodates local configurational entropy in the Ising model and
yields VFT-like activation energies shown by the solid triangles in Fig. 6 that mimic
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Fig. 7 Semilogarithmic plot of magnetization as a function of time after removing an applied field,
at five temperatures given in the legend. Solid symbols come from MC simulations of the Ising
model with entropy from cube-shaped regions containing n � 4096 spins. Time is given in MC
sweeps (MCS), the unit of time for N attempted MC steps in a simulation of N spins. Solid lines
are fits to the simulations using the stretched exponential function, yielding stretching exponents
that range between β � 0.50 and 0.78

the behavior of glycerol. Although these simulations use the entropy from cube-
shaped regions containing n � 4096 spins, much larger than the value of 〈N 〉 ≈ 10
measured by NMR, this difference could be due to the inadequacy of binary spins
to simulate classical dipoles. As a function of time, Fig. 7 shows that this model
yields net relaxation that mimics the stretched exponential, with stretching expo-
nents of β � 0.5–0.8 that encompass the usual range found for supercooled liquids.
Moreover, Fig. 8 shows that individual regions in the microscopic model exhibit
large jumps when the configurational entropy is near its maximum value Sλ ≈ S0,
interspersed by small steps due to entropic trapping when Sλ � S0. Similar jumps
and steps for the rotation of individual dipoles in supercooled liquids are deduced
frommultidimensional NMR [144], as shown in the inset of Fig. 8. The Ising model,
with configurational entropy needed to conserve total energy, provides a simplified
but microscopic picture for measured thermal and dynamic response of glassform-
ing liquids. Indeed, using only microscopic parameters as input, simulations of this
model exhibit VFT-like activation energies as a function of temperature, and net
stretched exponential relaxation as a function of time, including jumps and steps in
the relaxation of individual regions that mimic measurements.
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Fig. 8 Semilogarithmic plot of normalized magnetization as a function of time after removing an
applied field, from simulations similar to those in Fig. 7, but at a single temperature of kBT /J � 4.8.
The solid line is the net response from 81 regions, each containing 4096 particles. The dashed line is
a fit to the net response yielding the stretched-exponential function given in the legend. The symbols
show the response from 10 of the 81 regions, showing that the net response hides many details in
the response of individual regions. The inset shows the behavior deduced from multidimensional
NMR for individual molecules in glassforming liquids [144], which also exhibit jumps and steps,
reminiscent of the simulations

4 Experimental Details

4.1 Dielectric Hole Burning

Although nonlinear response is required to distinguish between homogeneous and
heterogeneous scenarios, strong nonlinear effects can cause unwanted deviations
from equilibrium response. Hence, early in the development of NHB, it was recog-
nized that the technique should utilize minimal nonlinearity, involving the smallest-
order nonlinear terms in a suitable expansion of the response in powers of the pump
field. For DHB, the nonlinear dielectric relaxation of small-molecule liquids was
expected to be small [145] and thus for them, this constraint is easier to fulfill
than, e.g., for the highly polar relaxor ferroelectrics. Using typical values of dipole
moments, μel � 1 D, temperatures, T � 150 K, and electrical field strengths, E
� 1 kV/50 μm � 200 kV/cm, the ratio of dipolar to thermal energy, μelE/kBT ,
is only of the order of 0.032. Thus for supercooled liquids, only relatively small
DHB effects are to be expected. The considerations in Sect. 2 suggest that under
these challenging conditions, samples suitable to perform the dielectric variant of
this experiment should fulfill a number of conditions, which are as follows:

(i) In the studied temperature range, the dielectric loss, more precisely, the product
of loss and the square of the applied field, should be large to maximize the
energy absorption.
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(ii) Relaxation times should vary rapidlywith temperature to achieve large changes
in the dynamics from the moderate effective temperature change of the degrees
of freedom addressed by selective excitation.

(iii) The specific heat of those degrees of freedom should be small.

Thus, (i) high-loss and (ii) fragile supercooled liquids, such as propylene car-
bonate, were chosen for early implementations of DHB. For typical glass formers,
(iii) does not provide a particularly useful criterion for optimization, since near the
glass transition the configurational specific heat does not differ all that much from
liquid to liquid. Of course, for decoupled degrees of freedom such as those related to
β-relaxations or ionic motions that are typically addressed below the glass transition
temperature, the relevant specific heat will be much smaller. Furthermore, the appli-
cation of large electric fields can easily lead to effects of dielectric breakdown. Thus,
high-voltage-induced sample failure is often a limiting factor, even when using thor-
oughly polished electrodes and with edge effects carefully avoided. If only relatively
small nonlinear signals are available a number of issues become important not just
regarding the sample but also regarding the apparatus. For a successful implementa-
tion of DHB, careful consideration needs to be given to items such as

(i) The excitation profile of the pump should be substantially narrower than any
single-exponential contribution to the relaxation peak that has a full width at
half maximum of 1.14 decades.

(ii) Short persistence times of spectral holes require fast detection schemes.
(iii) The small nonlinear response will be overlaid by a large unwanted linear after-

effect of the pump.
(iv) A small increase in effective relaxation rate can be viewed to correspond to a

small increase in effective temperature. Yet an overall dielectric heating of the
sample is to be avoided.

(v) Large electrical fields can lead to an electrode spacing that due to effects of
electrostriction can change with time.

To address item (i), let us note that the sinusoidal excitation sketched in Fig. 2
provides optimum selectivity for a given pump length. If (ii), the persistence time
of the spectral holes is short, then a fast probing scheme is required. This can be
implemented by the field step illustrated in Fig. 2, which allows one to record the full
spectrum in single sweep. To eliminate unwanted polarization signals (iii), a phase
cycle inspired by NMR has proven indispensable. The field sequence and phase
cycling can be implemented using an arbitrary waveform generator in conjunction
with a sufficiently fast high-voltage amplifier. On the detection side, which was
implemented using a modified Sawyer-Tower circuit, it is mandatory to employ a
high-impedance electrometer amplifier.

Item (iv) is particularly demanding. It implies that one should keep the tem-
peratures stable over the extended timescales required to perform a full phase
cycle. With fictive temperature changes of the order of only a few millikelvin,
a temperature stability on the order of ~1 mK is advisable, which can be
maintained, e.g., using a well-regulated closed-cycle refrigerator. To minimize
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overall sample heating during the (local) energy input from the pump process
, it is necessary to keep the electrode separation relatively small (usually 10–50 μm)
[94]. As emphasized early on [50, 62], see also Sect. 1.1, it is important to ascertain
that the local energy input does not lead to a spatial modulation of the heat-bath tem-
peratures within the sample. Otherwise, subsequent to the pump process, effects of
thermal conductivity would lead to an equilibration on timescales much shorter than
typical hole persistence times. Conversely, onemay argue that successful observation
of spectral holes in the nonresonant dielectric response implies that such effects are
not necessary to consider in the present context [62].

The required small electrode spacing necessary to avoid extraneous heating effects
and to facilitate large pump fields is usually enforced by using rigid inserts, such
as rod-like fibers, micron-sized spheres, or thin insulator rings. Otherwise, in the
presence of large electric fields the electrodes, if not sufficiently rigid, can “breath”
or simply squeeze soft sample materials, during the ac excitation. Given the finite
mechanical modulus of the sandwiched sample, seemingly nonlinear contributions
to the polarization response may arise, which can be magnified by electrostrictive or
piezoelectric samples [62, 81].

4.2 Magnetic Hole Burning

Magnetic hole burning (MHB) provides another example of the versatility and power
of the NHB technique [61]. Like DHB, MHB involves a large-amplitude, low-
frequency pump oscillation followed by a small probe step, but the field is magnetic
instead of electric. A sketch depicting a typical set of field sequences is shown in
Fig. 9, which includes the phase cycling and background-removal processes. Mag-
netization as a function of time after the probe step is usually measured using a
high-speed SQUID magnetometer. To minimize background drift, it is best to have
the magnetization measured in zero applied field, so that the probe step is usually
from a small value to zero field, different from the situation in Fig. 2, where the step
is from zero to a small value. Specifically, each sequence in Fig. 9 includes a large
pump oscillation with the same amplitude and phase, but one has a small positive
initial offset, and the other has a small negative initial offset. The offset is abruptly
removed following a recovery time (tr) after the pump oscillation, so that subtract-
ing the two responses yields the linear response of a sample that had been modified
nonlinearly by the pump oscillation, then aged for a controlled recovery time.

One advantage of studying MHB is that the spin degrees of freedom in spin
glasses are found to have specific heats that are about a million times smaller than
those for dielectric degrees of freedom in glassforming liquids. Thus, a single pump
oscillation of 100 Oe can cause the local effective (spin) temperature to change by
2 K. Furthermore, spin-glass transition temperatures are often an order of magnitude
lower than liquid-glass freezing temperatures so that such large changes in spin
temperature have an even larger effect on the dynamics. Another advantage is that
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Fig. 9 Sketch of applied magnetic field as a function of time for magnetic hole burning. First,
the sample is equilibrated at the measurement temperature in a small field that is positive (upper
oscillation and constant offset) or negative (lower oscillation and constant offset). Solid lines show
a large pump oscillation, followed by a recovery time tr , then a small step to zero field. Dashed lines
show the field for measuring the response with no pump oscillation. Magnetization is measured as
a function of time for up to 9 orders of magnitude, from about 10−5 to 104 s after removing the
small field, using a high-speed SQUID magnetometer

there is no magnetic analog of dielectric breakdown so that much larger magnetic
fields can be applied without concern for sample survival.

4.3 Modulus Technique

For pump frequencies � that exceed the loss peak frequency (ωmax) of the system by
more than a factor of about 100, the sensitivity of a polarization response to a field
step, i.e., of ε(t), to pump-induced modifications is poor, because ε(t) is nearly time-
invariant for times that are short compared with the average response time. A remedy
to the resulting small hole amplitudes is to probe the dielectric behavior by a charge
step rather than using a field step, as relaxation M(t) after a charge step approaches
steady state more rapidly than retardation ε(t) after a field step [97, 98, 146]. Regard-
ing the linear averages of the relaxation (τM) and retardation (τ ε) times, in Sect. 2.3
it was already pointed out that the effect amounts to 〈τM 〉 / 〈τε〉 � ε∞/εs , and is
thus more pronounced for polar materials with εs � ε∞ [99]. The resulting polar-
ization under constant charge conditions is linearly related to the electric modulus,
M̂(ω) � 1/ε̂(ω), which can bemeasured directly in terms of the time-dependent field
while the charge or dielectric displacement remains unchanged. As shown in Fig. 4,
this detection method provides enhanced sensitivity to pump-induced modifications
at the higher pump frequencies [80].
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Fig. 10 Schematic representation of the circuit used for measuring DHB with the modulus type
detection of dielectric polarization. The relay connects the sample to the voltage source for applying
the burn voltage, for the duration of the waiting time, and for creating the charge step. Subsequently,
the sample is connected to the electrometer circuit which measures the voltage as a function of time,
ideally without loss of charge. Adapted from Ref. [60]

In order to realize measuring the time-domain modulus subsequent to a charge
step, a high-impedance relay is employed to connect the sample capacitor to the
voltage source during the pump and recovery cycle, see Fig. 10. Subsequently, a
voltage step is applied to the sample and the relay immediately disconnects the
sample from thevoltage source and connects it to a high input impedance electrometer
circuit. Due to the input characteristics of the operational amplifier (Rin � 1015 �,
Ibias ≤ 70 fA) and the high relay impedance (Roff > 1014 �), the capacitor charge
remains virtually constant for the duration of detecting the voltage across the sample
capacitor, 1 ms to 100 s [60, 82]. Voltage signal generation, relay action, as well as
recording the step response in quasi-logarithmic time steps is under software control,
such that data for entire phase cycles can be acquired in an automated fashion.

5 Dielectric Hole Burning

An extensive list of references describing experimental studies of DHB is given in
Sect. 1.2. Below, we focus on the primary dielectric relaxation and high-frequency
wing in two small-molecule glassforming liquids, propylene carbonate, and glycerol.
Figure 11a shows that the primary response of glycerol is relatively narrow, and the
same holds for many other glass formers such as propylene carbonate or 2-picoline.
As an example of a broader response, Fig. 11b features the dielectric loss spectrum
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Fig. 11 aDielectric loss ε′′(ω) and field normalized peak amplitudes of horizontal holes,�Hmax(tr
� 0), plotted against the reduced logarithmic frequency scale, log10(ωτHN). The dashed line is a
Havriliak–Negami (HN) fit with exponents α � 0.95 and γ � 0.58. Horizontal hole amplitudes
�Hmax(0) are normalized to a common reference field. The horizontal line represents an amplitude
of 0.095, the �Hmax(0) data are characterized by 0.095 ± 0.013 across the relative burn frequency
range 1 ≤ log10(ωτHN) ≤ 5.3. b Double-logarithmic representation of dielectric loss spectra of
glycerol [60] and of 50% picoline in tri-styrene. Adapted from Ref. [66]

of a binary mixture of 2-picoline (Tg � 132.7 K) in tri-styrene (molecular weight
Mn � 370 g/mol, Tg � 233 K) [66]. One recognizes that in comparison with pure
substances, the mixture is not only much broader but also characterized by a lower
amplitude of the maximum loss. It should be emphasized that the dielectric response
of this mixture is dominated by that of picoline (μel � 2.1 D) with the maximum loss
in pure tri-styrene about two decades smaller than in picoline [66]. The challenge
posed in DHB studies by low dielectric loss levels, and hence, low pump-induced
energy input, has to be dealt with not only in binary glass formers of the type referred
to in Fig. 11b but also when performing experiments far off the dielectric loss peak
in the regime of the so-called excess wing, as shown for glycerol in Fig. 11a.

The present section is structured with respect to various phenomena in order to
facilitate their comparisons in different glass formers or with respect to different
relaxation phenomena: In Sect. 5.1 results for vertical and horizontal spectral holes
are presented, then in Sect. 5.2 the amplitudes and the frequency positions the spectral
holes are dealt with, and in Sect. 5.3 their recovery is discussed.
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5.1 Horizontal and Vertical Spectral Holes

The supercooled liquids glycerol and propylene carbonate fulfill many of the require-
ments to achieve large DHB signals, see Sect. 4.1, and were the first liquids studied
using this technique [51]. Figure 12 depicts experimental results obtained for propy-
lene carbonate slightly above its calorimetric glass transition. In panel (a) we com-
pare the equilibrium step response together with a phase-cycled response recorded
subsequent to applying a single pump oscillation for three different pump frequen-
cies, �. The phase cycling scheme is necessary to cancel the undesired large linear
polarization aftereffect due to the pump so that at short and long measuring times
the equilibrium and modified responses agree. However, differences arise for suit-
ably chosen pump frequencies at intermediate times. The inset in Fig. 12a illustrates
how the horizontal and vertical differences are obtained, as displayed in Fig. 12b, c,
respectively. In panel (b), the amplitude of the vertical difference �Vε(t) is seen to
be strongly dependent on�while its position is less sensitive to the pump frequency.
This difference can be viewed as a direct demonstration of frequency selective input
of energy. Even more impressive are the horizontal holes, �Hε(t). One recognizes
that the spectrallymodified responses aremost pronounced for low pump frequencies
at long times and for high pump frequencies at short times. Thus, these data readily
reveal one of the basic hallmarks expected for heterogeneous response. Conversely,
in the presence of a homogeneous scenario a pump-induced energy input is expected
to shift the entire relaxation function ε(t) uniformly along the time axis to the left, i.e.,
to shorter times. Hence, for homogeneous relaxations a �Hε(t) pattern is expected
that is in contrast to the experimental observations. The �Hε(t) representation is
unique in enabling one to distinguish homogeneous from heterogeneous responses
directly on the basis of the raw data for a single pump frequency�.With the response
probed at several � such a model-free distinction is possible using �Vε(t) data as
well.

According to Eqs. (7) and (12) horizontal differences �Hε(t) may be expressed
in terms of changes in fictive temperature Ti. The maximum change in Ti that may
be inferred from the data in Fig. 12c is on the order of 60 mK which is much larger
than the typical temperature stability of a few millikelvin that was maintained in
these experiments. It has been emphasized that changes in Ti should not be confused
with effects of local heating in the thermal bath [94]. Estimates show that enhanced
local bath temperatures, implied within such a picture on nanoscopic length scales,
would readily equilibrate within timescales much shorter than microseconds [64].
None of the NHB experiments carried out in the last 25 years has accessed this time
regime. In other words, the observed NHB effects cannot be due to local heating
in the thermal bath but must be associated with extra energy in the slow degrees of
freedom. This notion is compatible with quantitative descriptions of the data such
as those shown in Fig. 12, in terms of a local fictive temperature for the box model
[51] and other approaches [105].

DHB in the range of the α-relaxation peak has also been performed for glyc-
erol and yielded data similar to those presented in Fig. 12 for propylene carbonate.
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Fig. 12 Dielectric function ε(t) of propylene carbonate: a Solid lines show the equilibrium
response, while dashed lines show the responses modified by a single pump oscillation, with the
lower and upper pair of curves offset (by ±5) for clarity. Symbol shape identifies the frequency
(given in the legend) of each pump oscillation of 900 V across a 50 μm thick sample. The inset in
(a) illustrates how the vertical and horizontal holes are calculated. The vertical holes,�εV(t) shown
in panel (b), are obtained from the modified amplitude minus the equilibrium amplitude at each
time. The horizontal holes, �εH(t) shown in panel (c), are obtained from the logarithmic difference
between the equilibrium and modified response times at each amplitude. Adapted from Ref. [51]

Rather than reproducing these data for glycerol here, we will now turn to the fre-
quency range above the α peak in which a pronounced excess wing is observed, see
Fig. 11a. In the corresponding frequency range, the dielectric losses are small and
in order to achieve a sufficient signal-to-noise ratio, the modulus technique detailed
in Sect. 4.3 was employed. An example for such a DHB measurement is depicted
in Fig. 13 for glycerol at T � 187.30 K, where the characteristic time constant of
the dielectric retardation is τHN � 285 s, as obtained from a Havriliak-Negami fit
to the low-field loss profile, ε′′(ω). The results are represented as both the vertical,
�M(t), and the horizontal,�H(t), hole for a pump frequency of� � 1.26 s−1, which
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Fig. 13 Vertical and horizontal dielectric holes in glycerol at T � 187.30 K, with the �H data
obtained from the �M(t) measurements using Eq. (12). The data were obtained using a pump field
Epump � 90 V/6.4 μm, a pump frequency � � 2π × 50.2 Hz, np � 6 pump cycles, and a recovery
time tr � 1 s. Adapted from Ref. [82]

is about 2.5 decades higher than the loss peak position, see red triangle in Fig. 11a
positioned at log10(�τHN) � 2.55. In this situation, Fig. 4 suggests that the effect
in terms of M(t) exceeds that of ε(t) by a factor of about 5. Clearly, the horizontal
‘hole’ signal �H(t) becomes very small at short and long times relative to the peak
at t � 1 s. This is a clear indication of spectral selectivity, as this feature had not been
forced by normalization. The lines in Fig. 13 demonstrate the favorable agreement
between experiment and the box model, as these have been calculated as outlined in
Sect. 2 with no adjustable parameter [82].

For the binary mixtures with their small dielectric losses, cf. Figure 11b, suf-
ficient signal-to-noise ratio was achieved by applying large fields of up to Epump

� 550 kV/cm without experiencing dielectric breakdown [66]. Following the stan-
dard phase cycle and adapting the voltage to optimize the signal quality, the spectral
holes shown in Fig. 14 were obtained. Pump frequencies were incremented in steps
of about half a decade and one recognizes that the times of maximum modification
tm, at which the minima in the spectral holes appear, follow this step size in �. This
directly demonstrates spectral selectivity and dynamic heterogeneity and was also
to be expected on the basis of the rather flat loss spectrum shown in Fig. 11.

Acloser look at the holewidths reveals that they are broader than those apparent for
neat liquids (cf. Figs. 12 and 13), indicating that these spectra contain a component
that is homogeneously broadened. This impression is confirmed quantitatively by
the data shown in Fig. 15. In addition to the experimental data, this figure features
calculations based on the assumption that each relaxation mode ‘i’ is characterized
(i) by an exponential relaxation Pi ∝ exp(–t/τ i) which does not fit the experimental
data or (ii) by an intrinsically stretched function Pi ∝ exp[−(t/τi)βin ], cf. Eq. (15),
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Fig. 14 Vertical spectral holes for amixture of 50%2-picoline in tri-styrenemeasured at T � 161K
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0.01 Hz. Here the data are inverted to make them look like “holes.” Lines represent calculations
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Fig. 15 Vertical hole of a
mixture of 2-picoline in
oligo-styrene (OS-2000: Mn
� 2140 g/mol, Tg � 325 K).
Calculations employing the
box model are shown as
dashed line (assuming
intrinsically exponential
behavior, cf. Eq. (15) with
β in � 1) and as solid line
(β in � 0.62). Adapted from
Ref. [66]. Courtesy of T.
Blochowicz
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with a Kohlrausch exponent β in � 0.62. The calculations based on the latter approach
are seen to capture the observed hole broadening much better [66].

5.2 Frequency-Dependent Amplitudes and Positions

After having dealt with the width of the spectral holes, let us now discuss their
amplitudes as a function of the pump frequency �. Horizontal holes referring to the
primary relaxation are shown in Fig. 12c and one recognize that their depth�Hεm(�)
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Fig. 16 Symbols represent pump-frequency-dependent vertical hole amplitudes�Vεm(�) normal-
ized by �Vεm(�/2π � 0.5 Hz) � 4.8 × 10−3 of glycerol as measured at 194.7 K with np � 1 and
Epump � 1.2 kV/50 μm. The dashed line represents the dielectric loss spectrum ε′′(ω) (in arbitrary
units) measured at the same temperature [147]

does not vary much with�. This feature, which is in accord with the box model, may
be assessed even better from, e.g., Fig. 10 in Ref. [64] and Fig. 3b in Ref. [92]. In
any case, near the maximum of the dielectric loss peak, the vertical hole amplitudes
are much more sensitive to �, as is evident for propylene carbonate from Fig. 12b.
For glycerol the hole amplitudes �Vεm(�) as measured near 195 K are shown in
Fig. 16 [147]. When comparing with the conventional dielectric loss spectrum ε′′(ν)
measured at the same temperature, one recognizes that �Vεm(�/2π) is peaked at a
frequency that is somewhat higher than that of ε′′(ν). Alternatively, one could say the
pattern somewhat resembles the later nonlinear work [67] which demonstrated that
under strong ac irradiation the resulting (nonlinear) dielectric loss is significantly
enhanced only on the high-frequency flank of the (linear) loss spectrum, ε′′. An
advantage of this experiment done purely in the frequency domain [67], which is now
highly developed [81], is that the modification is probed directly during irradiation,
while the early measurements of �Vεm(�) capture its effect only after a varying
amount of recovery has occurred.Quantitative amplitudes for�Vεm(�), including all
aftereffects, are still fully captured by the box model. In fact, in Fig. 4 corresponding
calculations are shown that refer to glycerol, but at a slightly lower temperature than
the one used for Fig. 16. A similar but broader �Vεm(�) pattern than the one shown
in Fig. 16 may be inferred from the data in Fig. 14.

Regarding the excess wing, the amplitudes of the horizontal holes (for an example
see the glycerol data in Fig. 13) are independent of �, see Fig. 11a. Intuition might
suggest that the amount of fictive temperature change (and thus the horizontal hole
amplitude) should decrease with increasing �, because the loss and power absorbed
are reduced. Over the frequency range of Fig. 11a, ε′′(ω) diminishes by two orders
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of magnitude while � increases by four orders of magnitude, yet no systematic
changes in �Hmax are observed. The explanation of this feature is part of the box
model, namely that Cp(ω) traces the frequency dependence of the dielectric loss,
leading to an increase of the fictive temperature that is largely independent of �.
This observation provides a strong validation of the box model assumption of a
constant heat capacity per molecule (in other words, each molecule contributes the
same amount to the local heat capacity of the slow degrees of freedom). By contrast,
vertical hole amplitudes will become smaller at higher pump frequency because
the slope dlogε′′/dlogω will eventually decline, see the dashed extrapolation of the
power-law behavior indicated in Fig. 11a.

Comparing the positions of the holes in Figs. 12b and 14, major differences
become apparent. In particular, this concerns the pump frequency variation of the
times of maximum modification, tm. To allow for a better comparison of the �-
dependent hole shifts, Fig. 17 shows the time of maximum modification tm as a
function of the pump time tp � 2π/� for several glass formers. The very small shift
of tm with tp seen there for propylene carbonate follows a power law, tm ∝ tαp , with
an exponent of only α � 0.3. The other end of the scale is set by the binary liquids
containing 50% picoline for which α � 1 was reported [66]. The same behavior,
tm � tp, is also found to describe the positions of the vertical holes pumped in the
excess wing of glycerol [60], while α � 0.4 characterizes the regime of the structural
relaxation in that glass former.

In fact, these differing exponents reflect the differing widths in the distributions
of relaxation times of the addressed degrees of freedom. If there is no distribution
(e.g., a Debye-type or homogeneous process prevails), the hole positions will not
depend on � at all. With the degrees of freedom responding (or being modified) on
the timescale on which they are perturbed, the exponent α � 1 becomes plausible in
the limit of very broad distribution widths.

An analogous tm(tp) pattern is evident also from DHB studies of solids. For
lanthanum-modified lead zirconate titanate (PLZT) the exponent is α � 0.5 [74].
For lead magnesium niobate based relaxor ferroelectric (PMN) α � 1 [71] and from
the data for Ca2+ doped strontium titanate (Sr0.998Ca0.002TiO3), a diluted relaxor [72],
a similar exponent can be inferred. An even more interesting behavior is displayed
by the calcium–potassium nitrate glass 2Ca(NO3)2·3KNO3 at T � 300 K, i.e., about
33 K below its glass transition temperature [69]. Here, a DHB study employing the
modulus technique yielded a power law with α � 0.5 on the high-frequency flank
of the dielectric loss peak, while for frequencies below the peak (a region mostly
masked by dc conductivity) the hole positions were found to be independent of �

(or tp) so that α � 0. This latter homogenous behavior was rationalized in terms of
a spatial averaging over the heterogeneity of local ion diffusivities that occurs if the
pump period is very long with respect to the ion hopping time. The latter can be
estimated to be close to the inverse loss peak frequency [69].
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(a) (b)

Fig. 17 Times of maximum modification tm at which vertical hole positions occur as a function of
the pump time tp � 2π/�. Examples include (a) the primary relaxation of propylene carbonate [51],
the main processes of glycerol and several binary mixtures [66], as well as (b) the high-frequency
wing of glycerol [60]. The lines represent tm ∝ �−α behaviors. In both frames the solid lines
indicate tm � �−1. Figure adapted from Refs. [60] and [66]

5.3 Hole Recovery

By increasing the time interleaved between pump and probe, cf. Fig. 2, during which
the external field is constant (typically it is set to zero), the spectral holeswill refill. As
an example in Fig. 18a we present horizontal spectral holes measured for propylene
carbonate using different recovery times tr . One recognizes that within experimental
uncertainty, the shape of the spectral holes does not change significantly during tr .
Analogous data were obtained for other pump frequencies and for other temperatures
[62, 64]. The hole depths were analyzed, with results collected in Fig. 19a, which
allow for several remarkable observations: (i) The recovery is pump frequency inde-
pendent which is plausible in view of the rather narrow distribution of relaxation
times characterizing this van der Waals liquid. (ii) The recovery takes place on the
timescale of the primary (α) relaxation (corresponding data are added to Fig. 19
as dashed line). This finding is plausible as well since the peak relaxation sets the
longest timescale relevant in (most) supercooled liquids and certainly in propylene
carbonate. (iii) The recovery of the horizontal holes is compatible with a single
exponential (solid lines), �Hεm(tr) ∝ exp(–tr /τ r), where τ r denotes a characteristic
recovery time, sometimes also called a refilling time or hole lifetime.
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Fig. 18 Time-dependent
modifications, �Hε(t), as
measured for different
recovery times tr in
propylene carbonate after a
single pump oscillation of
(a) 0.2 Hz at 157.6 K
(adapted from Ref. [51]) and
(b) 3.0 Hz at 161.0 K [147].
Arrows mark the inverse
pump frequencies 1/�. The
amplitudes in frame (b) are
normalized to that of the hole
measured at the shortest tr

(a)

(b)

A similar analysis was performed also for the vertical holes that are presented in
Fig. 18b and the tr dependence of the hole amplitudes is summarized in Fig. 19b.
Essentially, most observations for the vertical holes mimic those obtained from the
horizontal holes. In particular, there is no significant variation in the shape of the
holes during recovery. A difference in the behavior of the horizontal holes seems to
be that the vertical holes do not recover in an exponential fashion. The tr-dependent
hole depths�Vεm(tr) followmore closely the time dependence of the properly scaled
linear polarization response function.

For another quantitative comparison of hole recovery data and box model predic-
tion, we turn again to the DHB results obtained for glycerol using theM(t) technique
with pump frequencies that exceed the loss peak frequency considerably. Figure 20a
shows hole recovery data for various pump frequencies, and the timescale of recov-
ery clearly changes with �. The dependence of the characteristic recovery time τ r

on the reciprocal pump frequency (1/�) is compiled in Fig. 20b, showing that τ r

≈ 10tp. In both panels of Fig. 20, solid lines represent predictions of the box model
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Fig. 19 Comparison of
normalized linear dielectric
response �(t) (dashed line)
and recovery (symbols) for
several pump frequencies.
Panel (a) shows the refilling
of the horizontal holes
�Hεm(tr) (adapted from Ref.
[51]) and panel (b) shows the
refilling of the vertical holes
�Vεm(tr) [147]. The solid
lines are best
single-exponential fits to the
recovery data in panel (a).
Solid and dashed lines from
panel (a) are reproduced in
panel (b) for comparison
with the experimental data
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with no adjustable parameters. Consistent with the model, hole recovery is governed
by modes with time constants somewhat longer than 1/�.

It is instructive to compare these recovery results with those for liquids displaying
very broad dielectric loss peaks for which the binary mixture of 50% picoline in tri-
styrene is an example [66]. Figure 21 summarizes vertical holes for this liquid that
were recorded for a range of recovery times.One recognizes how, for increasing tr , the
position of the minima shifts to longer times. This behavior is expected on the basis
of the box model considering that modes appearing at shorter times should recover
faster. In fact, the solid lines in Fig. 21 were calculated using a variant of this model
in which intrinsically non-exponential behavior was included [66]. Furthermore,
in that reference, it was demonstrated explicitly that an additional significant hole
broadeningdoes not emerge during recovery. Thus, itwas concluded thatmechanisms
such as spectral diffusion are not operative in these experiments.

The tr-dependent depths of the vertical holes obtained from experiments carried
out at three different pump frequencies are summarized in Fig. 22. The experimental
data were found to be compatible with calculations using the box model including
intrinsic nonexponentiality (Eq. (15) with β in � 0.65) [66]. The hole depths them-
selves were described using a suitably adapted Kohlrausch function

�VPm(tr ,Ω) ∝ exp[−(tr/τr )
β], (25)
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Fig. 20 a Normalized peak hole amplitude, �Mmax(tw)/�Mmax(0), as a function of the recovery
time tr measured for glycerol at T � 187.30 K. In the order from top to bottom, different symbols
refer to different pump frequencies:�/2π � 0.02, 0.06, 0.2, 0.6, 2, and 6Hz. The lines are calculated
results from the box model. To improve clarity, symbols and lines are incrementally offset by +0.5.
bHole lifetimes τ r determined as the ‘1/e’ times from data in (a), plotted versus the pump frequency
�. The symbols are the experimental results, the solid line reflects the box model calculation. The
dashed line shows tm versus � to illustrate the relation τ r ≈ 10 tm. Adapted from Ref. [82]

Fig. 21 Recovery of vertical
holes in a binary glass
former. The solid lines are
calculations using the box
model including intrinsic
nonexponentiality. Adapted
from Ref. [66]. Courtesy of
T. Blochowicz
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Fig. 22 Recovery of vertical holes pumped at 0.1, 1, and 10 Hz in the response of a binary glass
former. Symbols were determined at the time ofmaximummodification. Thin dashed lines represent
recoveries as calculated using the box model with β in � 0.65, cf. Eq. (15). The calculations result
in stretched-exponential recovery functions with a Kohlrausch exponent of 0.56. For comparison
the very broad linear step response function is added as thick solid line. Adapted from Ref. [66].
Courtesy of T. Blochowicz

with a characteristic recovery time τ r ≈ 6/� and β � 0.56 (so that � 〈τr 〉 ≈ 10).
Also included in Fig. 22 is the almost logarithmically decaying linear response of
the binary glass former [66]. Interestingly, this comparison of broad linear response
and narrower recovery shows the finite excitation width of the pump process and that
the subsequent recovery only concerns the degrees of freedom that were selected by
the pump irradiation.

For the DHB data shown in Fig. 22 the hole depths were read out at their actual
minimumwhich is simple to determine experimentally. Alternatively, one may argue
the degrees of freedom modified most by a specific pump frequency are those which
give rise to the vertical holes at tr → 0 at their initial position tm � tm,0. In the absence
of a coupling of degrees of freedom referring to different spectral positions—or put
in terms of the box model: an absence of a cross-coupling of the boxes [64] which in
all modeling performed so far is found to be consistent with experimental data—it
may be preferable to read out the hole amplitude at tm,0 for all recovery times. For
liquids with a relatively narrow primary relaxation, this may not be an issue at all
since the holes do not show a significant shift with recovery time. This is obviously
different for the vertical holes depicted in Fig. 21 and was analogously observed
for some relaxor ferroelectrics [73, 74]. It appears, however, that �VPm(tr,tm) and
�VP(tr,tm,0) were quantitatively compared only for the PLZT [74] and PMN [73]
relaxor materials that both exhibit very broad polarization responses. For PLZT it
was found that the recovery measured (i) at constant time tm,0 proceeds about a factor
of two faster than when (ii) reading out at tm(tr); for PNM a slightly larger factor was
found [73]. On a qualitative level, such differences may be inferred directly from the
data in Fig. 21. A shift of the hole pattern to longer detection times together with
hole shapes that do not change with tr necessarily implies faster recovery in case (ii).
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Recovering horizontal holes were not reported for the binary mixtures, but were
studied for the relaxor PMN that is also characterized by a very broad response
[73]. Interestingly, for this example, a shift of the time tm of maximum modification
did not occur as tr progresses. Nevertheless, the characteristic recovery time τ r

assessed on the basis of �HP(tr,tm,0) data was found to agree with τ r determined
from�VPm(tr,tm). This observation seems to provide some justification for analyzing
recoveries also in terms of vertical holes.

Finally, it may be asked on which factors the characteristic recovery time may
depend. On the one hand, for propylene carbonate and glycerol, it is obvious from
Fig. 19 that tr is essentially given by the relaxation time corresponding to that of
the α peak. This consideration appears to apply to the supercooled plastic crystal
cyclooctanol as well [68]. On the other hand, for the binary glass former, below
Eq. (25) itwas stated that 〈τr 〉 ≈ 10/�or, expressed in termsof the pump time, 〈τr 〉 ≈
Rtp with R ≈ 10. Figure 23 shows that more or less the same factor characterizes
the recovery of holes pumped in the excess wing of glycerol [60]. At frequencies
that exceed the loss peak position by at least an order of magnitude, the probability
density g(τ ) of time constants becomes relatively flat. Furthermore, the actual g(τ )
profile is less important in this high-frequency regime. Then, the characteristic hole
recovery time is dominated by the time constants of those modes that are associated
with the largest changes in fictive temperature after a few pump cycles. While the
power spectrum peaks at �, the modes with τ somewhat larger than 1/� will absorb
less but retain the added energy for times longer than 1/�, implying that subsequent
cycles will add to the fictive temperature, specifically for modes slower than 1/�.
According to Fig. 23, this leads to a factor R of ≈10 for glycerol at np � 3, as
predicted by the box model.

The characteristic recovery times obtained for the relaxors were found to be rela-
tively long [71, 74]; R values even much larger than 10 were reported [73]. However,
these values can significantly depend on temperature and on the amplitude of the
pump field. These observations were interpreted in terms of a scenario involving the
motion and depinning of domain walls. Mechanisms of this kind are obviously not
applicable to supercooled liquids which are in the focus of this section.

6 Magnetic Hole Burning

The technique of magnetic hole burning (MHB) facilitates investigations of intrinsic
heterogeneity in the nonresonant relaxation of magnetic degrees of freedom in bulk
samples. Although the earliest application of resonant SHB investigated heterogene-
ity in (underdamped) NMR [52], with subsequent studies of spectral selection in
magnetic response involving resonances at low frequencies [148–151], MHB allows
investigations of nonresonant (overdamped) magnetic relaxation. Some general fea-
tures regarding the procedure are given in Sect. 4.2.

The upper panel of Fig. 24 shows time-dependent magnetization from a 5%Au:Fe
spin-glass sample. The measurements were made at a temperature of 18.8 K, some-
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Fig. 23 Characteristic recovery times (also called hole lifetimes) τ r as a function of the pump time
tp. Different symbols are for different temperatures as indicated. The T � 187.30 K data set spans
2.5 decades in � and is well approximated by the upper dashed line indicating τ r � 10�−1. The
star is the result of Schiener et al. [51], after shifting that T � 194.7 K result to match the present
T � 187.30 K case. The solid line is given by τ−1

r � �/10 + 〈τα〉−1 with 〈τα〉 � 170 s. Adapted
from Ref. [60]

what below the spin-glass transition temperature of Tsg � 21.6 K. The procedure was
to first cool the sample from 25 to 18.8 K in a small field of magnitude |h| � 8 Oe,
stabilize the temperature for about two minutes, modify the sample using a pump
oscillation of amplitude H0 � 96 Oe, then remove h and measure magnetization
as a function of time. Similar measurements were made with no pump oscillation
to characterize the equilibrium response. Data shown in Fig. 24 were obtained by
subtracting the magnetizations measured with h � –8 Oe from those with h � + 8
Oe, and subtracting a similar set of measurements with the sample in the other coil
of a first-order gradiometer flux transformer. Different symbols show the response
with no pump oscillation (black circles), and after a single pump oscillation at a
frequency of 30 Hz (blue), 1 Hz (green), or 30MHz (red). The lower panel of Fig. 24
shows amplitude differences between equilibrium and modified responses, using the
same symbols as in the upper panel. Note that the peak modification occurs near the
timescale corresponding to each pump frequency, as given by the arrows.

The solid line in the upper panel of Fig. 24, which mimics the measured equi-
librium response, comes from a model for independently relaxing regions with a
Gaussian distribution of energy levels, similar to that used for supercooled liquids
[20]. Solid lines in the lower panel of Fig. 24 come from simulations based on a sim-
plified box model, where the Gaussian distribution is modified by the average rate of
energy absorbed in each region integrated over the pump cycle. The only adjustable
parameter is the excess specific heat per spin, �Cp, an amplitude factor. The solid
lines in Fig. 24 yield�Cp/kB � 0.5× 10−6, six orders of magnitude smaller than the
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Fig. 24 Magnetization (upper panel) and its difference (lower panel) as a function of logarithm of
time after removing a small field, from measurements of magnetic hole burning on a 5% Au:Fe
spin-glass sample. The measurements are made at 18.8 K, about 3 K below the spin-glass transition
temperature of 21.6 K. Black circles show equilibrium response with no pump oscillation. Colored
symbols show response after a single pump oscillation of 30 Hz (blue), 1 Hz (green), and 30 MHz
(red), with differences between equilibrium and modified response shown in the bottom panel. The
arrows indicate the timescale corresponding to each pump frequency. The solid lines come from
simulations using a simplified box model, where average power is integrated over the pump cycle,
with specific heat (an amplitude factor) as the only adjustable parameter. Adapted from Ref. [61]

specific heat of the Au lattice at the spin-glass transition: Cp/kB � 8.35 × 10−5T sg

+ 5.3 × 10−5T 3
sg ≈ 0.54 [152]. This relatively small value of �Cp is consistent with

the very small changes inCp measured at the spin-glass transition, which can usually
be seen only by taking differences [153]. It is interesting to note that the relatively
large signal inMHB is a consequence of this small value for�Cp/kB. Indeed, smaller
values of �Cp/kB yield larger effective temperature changes, and hence larger hole
burning signals. Thus, NHB is an ideal technique for investigating the time- and
temperature-dependent specific heats of slow degrees of freedom that are difficult to
measure directly by other techniques.

Figure 25 showsMHBdifference spectra from5%Au:Fe at several recovery times
after a single pump oscillation of 1 Hz (upper panel) and 0.1 Hz (lower panel). Note
that the recovery rate is proportional to the pump frequency and that the modified
spectrum becomes narrower as the response recovers. The behavior is consistent
with the simplified box model (solid lines), where the recovery rate of each region
is assumed to match its response rate. The inset shows the normalized peak of the
spectral hole as a function of scaled recovery time for four different pump oscillation
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Fig. 25 Difference spectra from MHB of 5% Au:Fe at 19.6 K as a function of recovery time after
a pump oscillation of 1 Hz (upper panel) and 0.1 Hz (lower panel). Arrows mark the characteristic
time for each pump frequency. The solid curves are from the simplified box model, with thermal-
coupling rates equal to response rates. Note that the spectral holes recover first at the short-time side,
becoming narrower with increasing recovery time, consistent with the data. The inset shows the
normalized peak in the spectral hole as a function of scaled recovery time for four different pump
oscillation frequencies. A stretched exponential function (solid curve) characterizes the recovery.
Adapted from Ref. [61]

frequencies. A stretched-exponential function�M ∝ exp[−(trΩ/8)0.6] (solid curve
in the inset of Fig. 25), can be used to characterize the recovery.

Figure 26 shows magnetization as a function of time from the 5% Au:Fe sample
at two measurement temperatures after various pump amplitudes. Note that at the
lower temperature and smaller pump amplitudes the response exhibits a spectral
hole, while at the higher temperature or larger pump amplitudes the response shows
a “spectral step.” Spectral hole burning is identified by accelerated response over 1–2
decades in time, without changing the total magnitude of response (both the initial
and final magnetizations match). In contrast, spectral step burning has significant
response that is missing from the measurement window, so that the initial remanent
magnetization is reduced due to the pump oscillation. For materials that are deep
within their frozen phase (see Ref. [154]), this missing magnitude can be attributed
to high-field saturation of the response. However, a different mechanism is indicated
for Au:Fe, because of the sharp onset of spectral step burning with increasing pump
amplitude combined with the sharp onset with increasing temperature close to T sg.
The mechanism can be attributed to selected degrees of freedom that are heated by
the pump oscillation to above T sg, into the paramagnetic phase, where they have no
remanent magnetization and hence relax to zero before the start of the measurement
window. From Fig. 26 it can be deduced that a pump oscillation of 96 Oe causes
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Fig. 26 Time dependence of magnetization from the 5% Au:Fe spin-glass sample after a pump
oscillation of 0.1 Hz with several amplitudes H0 (given in legend), measured at two temperatures.
Note that at low temperatures and low pump amplitudes these data exhibit a spectral hole, where
the magnetization is shifted to shorter times over 1–2 decades in time while maintaining the total
magnitude of response. However, higher pump amplitudes and higher temperatures yield a spectral
step, where some of the response is completely absent from the time window. Adapted from Ref.
[61]

some degrees of freedom to respond as if they have an effective temperature that is at
least 2 K above the bath temperature, while a pump oscillation of 19 Oe causes some
degrees of freedom to respond as if they are at least 1 K above the bath temperature.

Figure 27 shows difference spectra from measurements of magnetization as a
function of time from a single-crystal whisker of iron. The difference spectra come
from the time-dependent remanent magnetization after a single pump oscillation of
5 Oe, minus the magnetization after no pump. The measurements are made at 4.2 K,
far below the Curie temperature of 1043 K. The differences exhibit pump-frequency-
dependent spectral steps, not spectral holes, indicating that the mechanism involves
selective saturation of the response due to the pump oscillation, not response-rate
acceleration.

7 Conclusions

Nonresonant spectral hole burning has become a versatile and powerful technique
for investigating the intrinsic response inside bulk materials. The original purpose
of NHB was to distinguish between the homogeneous and heterogeneous scenarios
for non-exponential relaxation behavior. The heterogeneous scenario is found for the
dielectric, magnetic, and mechanical response of all systems studied so far, which
include liquids, glasses [155], polymers, relaxor ferroelectrics, and spin glasses.
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Fig. 27 Difference spectra
from a single-crystal whisker
of iron at 4.2 K after a single
pump oscillation of 5 Oe at
four different frequencies, as
given in the legend
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Moreover, this dynamic heterogeneity is found to be thermodynamic in nature, com-
ing from a heterogeneous ensemble of independently relaxing regions that have dis-
tinct local energies as well as distinct fluctuations regarding temperatures, dielectric
polarizations, magnetic moments, and/or mechanical strains or stresses.

Several phenomenological models have been developed to describe NHB experi-
ments, as outlined in Sect. 2. The box model is one such model that shows excellent
agreement with most NHB measurements. The parameters in this model can usually
be determined by separate measurements so that this level of agreement is often
achieved with no adjustable parameters. In other cases, the box model has a single
adjustable parameter that yields the specific heat of the slow degrees of freedom,
some of them too small to be measured using other techniques. The box model is
based on independently relaxing regions (the boxes), each with its own local fictive
temperature that is selectively modified by a spatially uniform external field. The
box model describes several features in measurements of NHB, including both the
amplitude- and frequency dependence of the spectral holes, their dependence on the
number and amplitude of the pump oscillations, and their recovery as a function of
time after the end of the pump. In general, the response and recovery rates of each
region are found to be similar, indicating that energy is absorbed from the external
field at the same rate at which it flows from the local regions into the bath.

The theory of small-system thermodynamics developed in Sect. 3 provides a
fundamental foundation for the heterogeneous distribution of independently relax-
ing nanometer-sized regions. These regions are probed by NHB and several other
techniques, and characterized by the box model and other approaches for treating
heterogeneity. The basic idea of nanothermodynamics is that themacroscopic ensem-
ble of independently relaxing regions inside bulk samples must obey the laws of
thermodynamics for bulk systems, but the individual regions have behavior that is
unique to small systems. Specifically, because the independently relaxing regions are
statistically independent, their entropies should be additive. Similarly, their energies
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must be strictly conserved, including contributions from fluctuations and discrete-
particle effects that are neglected in the usual thermodynamic limit. For example,
nanothermodynamics includes a subdivision potential (ε) that is identically zero in
the thermodynamic limit, but often nonzero for finite-sized systems. In fact, for the
classical ideal gas of point-like particles it is found that εN > 0 in the canonical
ensemble with fixed number of particles for all fluctuations, while ε〈N 〉 < 0 in the
nanocanonical ensemble with variable N . Furthermore, nanothermodynamics facil-
itates the treatment of this nanocanonical ensemble, where the number of particles,
volume, and energy of individual regions may fluctuate without artificial constraints.
Because the nanocanonical ensemble lowers the total energy of the ideal gas, it pro-
vides a basic mechanism favoring the formation of an ensemble of independently
relaxing regions, even inside bulk samples. Using nanothermodynamics as a guide,
a Landau-like theory and Ising-spin model are described that mimic several features
in the behavior of supercooled liquids.

Measurements of dielectric hole burning permit investigations of the intrinsic
dielectric response inside bulk samples. Systems studied to date using DHB include
supercooled liquids, relaxor ferroelectrics, a plastic crystal, and an ion conductor.
Dynamics investigated include the primary (α) response, both near the peak and in
the excess wing, secondary (β) relaxations, and the structurally decoupled motion
of ions in the ionic conductor. Similarly, measurements of magnetic hole burning
facilitate investigations of intrinsic magnetic response inside bulk samples. MHB
has been used to investigate the slow magnetic relaxation of spin glasses and single-
crystal ferromagnets. Furthermore, measurements of rheological hole burning facil-
itate investigations of intrinsic mechanical responses inside bulk samples, such as
the slow relaxation of stress or strain in polymers.

In summary, these manymeasurements of nonresonant spectral hole burning indi-
cate that the net non-exponential response of most materials involves dynamic and
thermodynamic heterogeneity. Although NHB gives no direct information about the
length scale of this heterogeneity, which in-principle could involve any length scale
between individual molecules and independent plane waves, other measurements
show that this heterogeneity usually involves a distribution of independently relax-
ing regions with characteristic length scales on the order 1–3 nm. The box model
provides a way to quantitatively characterize the linear and low-order nonlinear
parts of the measured response, sometimes with no adjustable parameters. While
the box model is a phenomenological approach, nanothermodynamics provides a
fundamental physical foundation for the measured thermodynamics heterogeneity,
as well as for the box model and other models proposed to describe net relaxation
from an ensemble of independently relaxing regions. Thus, nonresonant spectral
hole burning represents a versatile, powerful, and direct technique for studying the
thermodynamic heterogeneity that is found in the response of most materials.
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Nonlinear Dielectric Effect in Critical
Liquids

Sylwester J. Rzoska, Aleksandra Drozd-Rzoska and Szymon Starzonek

Abstract The nonlinear dielectric effect (NDE) describes changes of dielectric con-
stant under the strong electric field,with themetric defined (ε (E) − ε (E → 0)) /E2.
This contribution discusses (i) miscibility, (ii) the isotropic phase of nematic liquid
crystals, and (iii) the supercooled nitrobenzene. For comparison, the precritical evo-
lution of ε � ε (E → 0) is also presented. The discussion is extended for dynamic
issues related to the “linear” and “nonlinear” relaxation times. Finally, basic problems
of the dual-field NDE experimental technique are briefly presented.

1 Introduction

At the beginning of the twentieth century, a number of new and revolutionary
technologies and inventions appeared, changing the world around. The emergence
of the radio technique associated with discoveries of Marconi and Armstrong is
of particular importance for this work [1]. New technologies make it also pos-
sible to reach very low temperatures, very high pressures, strong magnetic or
electric fields, etc. These extraordinary conditions often led to great fundamental
discoveries [1]. All these could influence Herweg’s decision to study the influ-
ence of the strong electric field on dielectric constant (ε) in liquids, particularly
in diethyl ether (DEE) [2, 3]. He discovered that ε (E) < ε (E → 0) and intro-
duced the magnitude �εE/E2 � [

ε (E) − ε (E → 0) /E2
]

< 0 as the metric for
the new phenomenon: it was later called dielectric saturation or nonlinear dielectric
effect (NDE) [2, 3]. It turned out that this result can be interpreted within the Her-
weg–Debye–Langevin model describing the orientation of noninteracting or weakly
interacting permanent dipole moments coupled to DEE molecules. Its key output is
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Fig. 1 The evolution of dielectric polarization on increasing the intensity of the electric field in
isotropic liquid dielectrics. The thick (black) solid curve is for Eq. (1) with correlation factors
RP � 1 and RS � 1 Eq. (1), leading to NDE < 0. The thin and green curve is for the “anomalous”
NDE > 0. The dielectric constant is defined as χ � ε −1 � dP (E) /dE : it is shown as the dashed-
dotted (magenta) line for E → 0 and via the slope of the dashed (blue) line for E >> 0. The
concept of Piekara’s “scissors” [7–10] to explain the positive NDE in nitrobenzene is also sketched

the relation describing the behavior of the dielectric polarization under the strong
electric field [3, 4]:

P (E) � F1
Nμ

3kB T
RP E − F3

Nμ4

45kB T 3
RS E3 + · · · (1)

where F1 and F3 are the local field factors, N is the number of permanent dipole
moments in a unit volume,μ is the permanent dipolemoment, E denotes the intensity
of the electric field, RP and RS stand for correlation factors. For liquids and isotropic
dielectrics, the term∼ E2 is absent. Dielectric constant is for the real part of dielectric
permittivity ε∗ ( f ) � ε′ ( f )− iε′′ ( f ) in the “static” frequency domain where ε′ ( f )

value is (almost) frequency independent: for DEE, this is (kHz–MHz) region. For
Eq. (1) and Fig. 1, ε′ − 1 � ε − 1 � χ � dP/dE , where χ denotes the electric
susceptibility.

The factor RS in Eq. (1) was introduced by Piekara in the mid of the 30s to
explain the anomalous positive NDE (ε (E) > ε (E > 0), which he discovered in
nitrobenzene [5–10]. Piekara linked the phenomenon to the intermolecular coupling
of nitrobenzene molecules causing the dipole–dipole “scissor-like” arrangement of
permanent dipole moments, as shown in Fig. 1. Under the strong electric field, this
leads to the increase of the effective dipole moment [7–10].



Nonlinear Dielectric Effect in Critical Liquids 189

Fig. 2 The NDE in mixtures of a dipolar component in a non-dipolar solvent (CCl4, hexane): the
isothermal, concentration-related dependence. Results are for the near room temperature (20 °C).
For nitrobenzene–hexane mixture, results are related to the homogeneous phase just above the
critical consolute temperature TC ≈ 19.5 ◦C [11]

Figure 2 shows the sensitivity of NDE to different molecular mechanisms (for
the review see refs. [10, 12]): (i) in nitropropane mixtures, the behavior predicted by
Eq. (1) for RS ≈ 1 (no relevant intermolecular coupling) and −�εE/E2 ∝ N takes
place; (ii) the same occurs in nitrobenzene and nitrotoluene mixtures in CCl4 for
small concentrations of dipolar components; when increasing their concentrations,
the intermolecular coupling and �εE/E2 > 0 appears; (iii) in mixtures of veratrole,
NDE detects the intramolecular rotation—this contribution is small, “positive” and
�εE/E2 ∼ x (x ∼ N ); (iv) the unique case constitutes the nitrobenzene–hexane
mixture where the additional strong and positive NDE contribution appears in the
vicinity of the critical concentration, x ≈ 0.43 mole fraction of nitrobenzene.

In the 30s, Piekara discovered two more unique phenomena [5–8]. He car-
ried out temperature-related measurements of dielectric constant and its strong
electric field related counterpart—NDE on approaching the critical consolute tem-
perature in nitrobenzene–hexane mixture, the system of limited miscibility for
T < TC ≈ 19.5 ◦C (Fig. 3). In the homogeneous phase well above the critical
consolute temperature (TC ), the dielectric constant first increased linearly on cooling
but in the immediate vicinity of TC it slightly bent down (decreases) below such
extrapolated dependence [12]. In similar studies for NDE, Piekara reported a very
strong increase toward positive values [5, 6]. Surprisingly, attempts to describe evo-
lutions of ε′ (T → TC) and �εE/E2 (T → TC) remained puzzling for the next five
decades [10, 15–23].
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Fig. 3 The coexistence curve (binodal) in the nitrobenzene–hexane mixture of limited miscibility
(solid circles and the curve in blue) [11]. It has been determined by the authors using the “catheto-
metric method” described in ref. [13]. The red curve below the binodal shows the spinodal curve
determined viaNDE measurements inmixtures of noncritical concentration, using the “pseudospin-
odal” analysis as in ref. [14]. The critical concentration: xC � 0.43 mole fraction of nitrobenzene
and the critical consolute temperature TC � 19.5 ◦C

This contribution first resumes the problem of dielectric constant in critical mix-
tures. Subsequently, the behavior of the nonlinear dielectric effect (NDE) in critical
mixtures and in liquid crystals is discussed. This is supplemented by the evidence for
the possible critical origins of the anomalous positive NDE in nitrobenzene. Some
issues related toNDE-related dynamics, i.e., theNDE extension toward the nonlinear
dielectric spectroscopy (NDS), are also discussed. Basic problems of the dual-field
nonlinear dielectric technique are given. The contribution is based on the authors
earlier but reanalyzed results and on yet unpublished new evidence.
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2 Dielectric Constant in Critical Mixtures

Studies of dielectric permittivity in binary critical mixtures of limited miscibility,
which followed Piekara’s findings [12], were continued from the 50s [15–23], but
results were puzzling. Most often no pretransitional anomaly or the pretransitional
bending up or even a very strong pretransitional increase from the linear behav-
ior remote from the critical temperature were observed [15, 23]. Only in the late
80s, Thoen et al. [24] discovered the key reason of such scatter: the necessity of
taking into account the applied measurement frequency. For benzonitrile–isooc-
tane, nitroethane–cyclohexane, and nitrobenzene–isooctane critical mixtures the
pretransitional “bending down” for ε (T → TC) was observed for f > 100 kHz
and the obtained precritical “anomalies” were portrayed via the model related to
Eq. (2). For lower frequencies, the parasitic impact of the ionic Maxwell–Wag-
ner effect caused the recalled above problems. Such behavior illustrates Fig. 4 for
the critical behavior of dielectric constant in nitrobenzene–hexane critical mixture
for few frequencies [11]. The model for the parameterization of the anomalous,
pretransitional behavior of dielectric constant was proposed by Goulon, Greffe and
Oxtoby (GGO, 1979) [25] using the “critical” droplet model and Sengers et al. (1980,
[26]) basing on the thermodynamic scaling analysis within the theory of critical phe-
nomena:

Fig. 4 The temperature behavior of dielectric constant on approaching the critical point in nitroben-
zene–hexane mixture of critical concentration. Note the bending down in the immediate vicinity of
the critical temperature for the measurement frequency f � 1MHz. This is related to the precritical
effect, portrayed via Eq. (2). The dashed curve is for Eq. (2) when neglecting the correction-to-
scaling term. Already for f � 1 kHz no pretransitional is visible, due to the Maxwell–Wagner
effect [11]
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Fig. 5 The evolution of dielectric constant in nitrobenzene–decane critical mixture for the isother-
mal, pressure-related approach to the critical point. Solid curves are for Eq. (3). Note that for the
pressure paths correction-to-scaling terms can be neglected and the MW ionic-related parasitic
contribution is absent, even for f � 100 Hz (!). Note that dTC/dP > 0 for this mixture. The plot
prepared basing on results from ref. [27]

ε (T ) � εC + a (T − TC) + A (T − TC)1−α
[
1 + (T − TC)� + · · ·] , P � const

(2)

where the critical exponent α ≈ 0.115 is for the specific heat critical anomaly: the
value is for d � 3 (the dimension of space) and n � 1 (the dimension of the order
parameter) universality class. The exponent � ≈ 0.5 is for the first correction-to-
scaling term, important when moving away from TC [25, 26, 29].

In ref. [27], the pressure counterpart of the above relation was introduced:

ε (P) � εC + a P |P − PC | + AP |P − PC |1−α (3)

For the pressure path, there are no correction-to-scaling terms, and no impact of the
MW effect even for as low frequency as f � 100 Hz on the critical effect is observed,
as shown in Fig. 5.Moreover, the pretransitional anomaly ismuch “stronger” than for
the isobaric, temperature path: compare results presented in Figs. 4 and 5. All these
show notable advantages of high-pressure studies of the pretransitional anomaly
of dielectric constant. The form of the pretransitional anomaly and the sign of the
amplitude AP in Eq. (3) depend on the path of approaching the critical point and the
sign of dTC/dP , as shown in Fig. 6.

Regarding possible reasons of the long-standing puzzles for the pretransitional
anomaly ε (T → TC) [15–23], it is worth stressing that they were obtained mainly
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Fig. 6 The pressure-related, isothermal behavior of dielectric constant for nitrobenzene–hexane
critical mixture when approaching the critical consolute point under atmospheric pressure: TC �
19.5 ◦C, P � 0.1MPa.Solid curves are portrayedviaEq. (3).Note that for this systemdTC/dP < 0,
as shown in the inset where the pressure evolution of the critical temperature is presented. Based
on results from ref. [28]

using the standardWheatstone bridge apparatus for frequencies between DC and few
kHz. In the 80s, new HP impedance analyzers appeared: they enabled the frequency
scan up to few MHz and introduced the sampling way of measurements. This was
the key for the success in explaining ε (T ) mystery in critical mixtures. The ques-
tion arises, in which way Piekara [12] obtained the “correct” pattern of the critical
anomaly for ε (T ) already in the early 30s? This can be associated with the way
of measurements he applied: Piekara used the resonant circuit which was switched
on for a short period of time (“by hand”). The system operated in the near—MHz
domain. In fact all these resembled the “modern” way of measurements.

3 Nonlinear Dielectric Effect in Critical Mixtures of
Limited Miscibility

The nonlinear dielectric effect (NDE) can be recognized as the “nonlinear” coun-
terpart of dielectric constant [see Fig. 1; Eq. (1)]. It was clear from the late 70s
that in the homogeneous phase of critical, binary, mixtures NDE follows the pattern
characteristic for critical phenomena [10, 30 and refs therein]:

�εE

E2
∝ (T − TC)−ψ (4)
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Following the physics of critical phenomena one can expect the same value of
the NDE-related critical exponent for any critical mixture: surprisingly, the scatter
0.2 < ψ < 0.8 was observed [10 and refs. therein]. Such behavior is unusual
for strong precritical anomalies [29]. Only in 1986, it was shown that qualitative
discrepancies between experimental results were associated with poor estimations
of the noncritical (molecular) background effect, namely [30]:

�εE

E2
�

(
�εE

E2

)

bckg

+

(
�εE

E2

)

Crit.

�
(

�εE

E2

)

bckg

+ A′
N DE (T − TC)−ψ (5)

Examples of “background” contributions are shown in Fig. 2. For mixtures of
limited miscibility composed of a dipolar component and a non-dipolar solvent, the
optimalmethod isNDE measurements in a reference solution of unlimitedmiscibility
[30]: taking into account the concentration in the volume fraction and the properly
selecting the non-dipolar solvent [30]. In refs. [30, 31] the universal value ψ ≈ 0.37
for T → TC andψ ≈ 0.4when tests are for the extended temperature range T −TC >

10K [30, 31] were obtained. It was suggested that the latter is associatedwith the lack
of correction-to-scaling terms. In 1979,Oxtoby et al. [25] developed so-called droplet
model and linked the critical effect in binary mixtures of limited miscibility to the
elongation under the strong electric field of initially spherical fluctuations—droplets.
The following “universal” relation was obtained:

(
�εE

E2

)elong.

crit.

� AN DE (T − TC)γ−2β , i.e. the critical exponentψ � γ − 2β

(6)

where the critical amplitude AN DE ∝ (ε1 − ε2)
4 /ε2S , ε1 and ε2 are dielectric

constants of component of the binary mixture, and εS is for the mixture (solu-
tion). The exponent γ ≈ 1.23 is for the order parameter-related susceptibil-
ity: χT � χ0 (T − TC)−γ ; the exponent β ≈ 0.325 is for the order parameter:
M � B0 (TC − T )β . Values of exponents are for the d � 3 and n � 1 universality
class [29].

It was also indicated that the “universal” electrostriction contribution, i.e., the
change of the volume of fluctuations droplets due to the strong electric field, also
appears [25]:

(
�εE

E2

)el.strict.

crit.

∝ (T − TC)2β−1 (7)

However, this contribution is qualitatively smaller than the one related to the
elongation of critical fluctuations. Hence, the precritical anomaly of NDE should be
described only by the critical exponentψ � γ −2β ≈ 0.59 [25]. The same functional
form for the pretransitional behavior was obtained by Hoye and Stell [32] when
studying the strong electric field-induced distortion on the orientationally averaged
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particle–particle correlation function and by Onuki and Doi [33] when considering
the structure factor and dipolar interactions induced in critical fluctuations under the
strong electric field. All mentioned model predicted the same behavior for NDE and
the electro-optic Kerr effect (EKE). Hence, theoretical models led to the following
conclusion [25, 32, 33]:

ψN DE (exp .) � ψ (theor.) � ψE K E (exp .) (8)

However, existing experimental evidences yielded [30, 31, 34]:

ψN DE (exp .) ≈ 0.37 < ψ (theor.) < ψE K E (exp .) ≈ 0.85 (9)

It was shown in ref. [35] that both Eqs. (8) and (9) can be valid (!). The proposed
explanation took into account changes of the form of the correlation length under
the strong electric field:

ξ (E → 0) � ξo (T − TC)−ν → ξ (E) � (
ξ||, ξ⊥, ξ⊥

)
(10)

where the correlation length ξ (T ) � ξ 0 (T − TC)−ν , the critical exponent ν �
ν|| � ν (nonclassical) ≈ 0.63 [the value for (d � 3, n � 1) universality class], and
the exponent ν⊥ � ν (classical) � 1/2, i.e., ξ⊥ is described within the mean-field
approximation which takes place for the dimensionality d > 4 or equivalently for
the large enough range of interactions [29]. The latter is possible for ξ (E) due to
the rod-like elongation which can increase the number of neighbors. Using scaling
relations introduced by Fisher [37], one can show that the basic output relation of
models [25, 32, 33] for NDE and EKE can be presented as follows [35]:

(11)

�εE

E2
,
�n

E2
� ACχT (T )

〈
�M2〉

V

∝ ACχ0 (T − TC )
−γ �M0 (T − TC )

2β

� C (T − TC )
γ−2β

and alternatively

�εE

E2
,
�n

E2
� χT (T )

〈
�M2

〉
V � ξ dχ2 (12)

Hence ψ � γ − 2β � dν − 2γ . Regarding amplitudes, for NDE: AC ∝
(ε1 − ε2)

4 /ε2S and for EKE: AC ∝ (ε1 − ε2)
2 (n1 − n2) /εSnS , where n stands

for the refractive index [36]. Recalling the classical–non-classical asymmetry
of the correlation length, taking into account difference in definitions of NDE(
�εE/E2 � (ε (E) − ε) /E2 � (

ε|| − ε
)
/E2

)
, and�nE/E2 � (

n‖‖ − n⊥
)
/E2 for

EKE and taking into account the Fisher’s scaling [37], one obtains [35]:
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ψ (E K E) � 2γ − (
ν|| + 2ν⊥

) ≈ 2 × 1.24 − (0.63 + 2 × 0.5) � 0.85 (13)

ψ (N DE) � γ nonclassical + γ classical − dν � 1.24 + 1.02 − 3 × 0.63 � 0.37 (14)

or alternatively

ψ (N DE) � γ classical − 2β � 1.02 − 2 × 0.325 � 0.37 (15)

where the critical exponent γ ≈ 1.02 denotes the susceptibility exponent within
the mean-field approximation but with the logarithmic correction (0.02), important
near the classical–non-classical crossover [29]. Values in relations (13–15) are in
fair agreement with NDE experimental results for T → TC [31]. For NDE, local
(critical) fluctuations of the order parameter

〈
�M2

〉
V in the homogeneous phase are

associated with one of the susceptibilities (compressibility χT ) in Eq. (11) and with
the volume of critical fluctuations ξ d . Critical exponents describing their behavior
are non-classical, as in the “normal” critical mixture, i.e., β ≈ 0.325 (order parame-
ter), γ ≈ 1.24 (susceptibility related to the order parameter changes), and ν ≈ 0.63
(the correlation length). Under the strong electric field, critical fluctuations are elon-
gated and oriented along lines of the strong electric field, for εfluct. > εSolution. On
fluctuations acts the force, which is perpendicular to the lines of the electric field.
This process is described the second susceptibility in Eq. (11), related to the per-
pendicular direction, which shows the classical, mean-field, behavior: with power
exponents for the susceptibility γ � 1, for the order parameter β � 1/2, and for
the correlation length ν � 1/2. One can conclude that for critical anomalies of NDE
and EKE essential is the non-symmetric deformation of fluctuations leading to the
“mixed” criticality [35].

The important issue in the analysis of the critical effect of NDE is the precise
estimation of the noncritical, purely molecular, background effect. The “reference
solution” method, described above, is possible only if the background effect is asso-
ciated with one of the components of the critical mixture, for instance, the dipolar
one in nitrobenzene–hexane mixture. This method cannot be applied if both compo-
nents significantly contribute to the background effect or for the gas–liquid critical
point. In studies on critical systems, the background effect is often determined via
the extrapolation of the behavior from the high-temperature region, well above TC

[29]. However, such approach cannot be applied for the critical anomaly of NDE,
since for this method the impact of critical fluctuations can be significant even 50 K
above TC [30]. In ref. [38], the derivative-based analysis for estimating the critical
contribution without a knowledge of the background effect in prior was proposed.
The molecular background generally [see Eq. (11); Fig. 2] can be well approximated
via the linear temperature dependence in the limited range of temperatures occurring
for experimental data.

Hence, taking into account the experimental error, one can obtain the following
relations:



Nonlinear Dielectric Effect in Critical Liquids 197

(
�εE/E2

)
(T ) ≈

[
AN DE

T − TC

]

critical

+ [(a + bT )]background (16)

d
(
�εE/E2

)

dT
� −φ A (T − TC)−ψ−1 + b (17)

and subsequently

(18)

d2
(
�εE/E2

)

dT 2
� −ψ (−ψ − 1)) AN DE (T − TC )

−ψ−2

� ψ (ψ + 1) AN DE (T − TC )
−ψ (T − TC )

−2

After the rearrangement, one defines the plot via
(T − T ∗)2 log10

(
d2

(
�εE/E2

)
/dT 2

)
versus log10 (T − TC) at which for NDE

critical effect a linear dependence with the slope b � −ψ and the interception
a � log10 [ψ (ψ + 1) L0]: ψ (ψ + 1) L0 � 10a should appear. The critical contribu-
tion and the total measured NDE obtained in this way make it possible to estimate
(calculate) also the background effect. Such analysis was applied for results pre-
sented in Fig. 7, showing the behavior of the critical effect in the homogeneous phase
of a critical mixture. Figure 7 shows also the impact of the measurement frequency,
which is discussed at the end of this paragraph. Figure 8 presents that the form of
the critical NDE pretransitional effect in a critical mixture is the same (isomorphic)
for the pressure and temperature paths. However, Fig. 8 shows the unique case of
nitrobenzene–hexane critical mixture tested above the critical consolute temperature
under atmospheric pressure: in the formally exclusively homogeneous region. The
observed anomaly is due to the critical point hidden in the negative pressures domain
[40] and located on the extension of TC(P) curve into this region. The critical effect
is well portrayed by the relation

(
�εE/E2

)
cri t

� AN DE/ (P − PC)ψ : in this case
PC < 0, yielding the possibility of estimating hidden TC (P) location.

Piekara discovered the strong pretransitional increase of NDE when cooling
toward the critical consolute temperature. He also observed the impact of the
vicinity of the critical consolute point in isothermal, concentrational studies (Fig. 2)
[5–7]. Figure 9 presents first results of such behavior for few isotherms, including
the path located in immediate vicinity of the critical consolute temperature, from
T � TC + 10K to T � TC + 0.02K [11].

Figure 10 presents the analysis of the critical behavior for the isotherm T �
TC + 0.02K, basing on data from Fig. 9. Linking relations for the temperature-
relatedNDE critical anomaly�εE/E2 � A (T − T C)−ψ and for the order parameter
M � Bo |xC − x |, where x denotes the concentration along the coexistence curve
for x > xC and x < xC branches, one obtains

�εE

E2
∝ |xC − x |−ψ/β (19)
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Fig. 7 The temperature evolution of NDE on approaching the critical consolute point in the homo-
geneous phase of nitrobenzene–hexanemixture. Results are for few selectedmeasuring frequencies,
indicated in the figure. For the applied scale, the critical behavior is visualized via the linear depen-
dence: the slope is related to the critical exponent. Based on reanalyzed results from ref. [11]; see
also ref. [39]

Fig. 8 The NDE pretransitional effect in the homogeneous phase of nitrobenzene–hexane critical
mixture for the isotherm T � TC +0.5K. Results are for the pressure path. The pressure counterpart
of Eq. (5) was used for the parameterization. Critical exponents are the same for temperature and
pressure paths of approaching the critical point, according to the isomorphism of critical phenomena
[29]. Note that for the given mixture dT C/dP < 0. The pretransitional effect is due to the critical
point hidden in negative pressure’s domain. Based on results from ref. [28]
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Fig. 9 The isothermal, “concentrational” behavior of nonlinear dielectric effect in the isotropic
phase of nitrobenzene–hexane critical mixture (T C � 19.5 ◦C and xC � 0.43m. f. of nitrobenzene)
for selected isotherms in the homogeneous liquid phase, above TC . The dashed arrow shows the
“propagation” of the maximal impact of the critical point into the homogeneous phase. [11]

Fig. 10 The critical part of NDE for the isotherm T � TC + 0.02K in the log–log scale to show
the validity of parameterization via Eq. (19) [11]

Taking ψ � 0.39 and β � 0.33, i.e., effective values of critical exponent when
neglecting the correction-to-scaling term one obtainsψ/β ≈ 1.18—in the fair agree-
ment with results presented in Fig. 9.
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Fig. 11 The inset shows the primary (“structural”) relaxation time in the homogeneous phase of
a critical mixture of limited miscibility (nitrobenzene–dodecane mixture). The solid (blue line)
shows the simple Arrhenius evolution, whereas the distortion from such dependence shows the
Super-Arrhenius behavior. The critical effects manifest as a distortion in the immediate vicinity of
TC . The main part of the figure shows the “nonlinear” relaxation time obtained from frequency-
related NDE studies, well portrayed via Eq. (20). The vertical arrow indicates the critical consolute
temperature [11]

The analysis of the NDE critical behavior in Fig. 7 reveals two “critical” domains,
associated with different values of the critical exponent: (i) in the immediate vicinity
of TC : ψ ≈ 0.39 and (ii) remote from TC : ψ ≈ 0.6. The latter one is in agreement
with theoretical predictions from refs. [25, 32, 33], where the “mixed critical” is
absent. The temperature of the crossover between domains (i) and (ii) depends on
the frequency of the weak measuring field. To explain such phenomenon, one should
take into account the presence of two timescales in the dual-field NDE studies on
critical liquids. The first one is the “sampling” timescale which can be estimated as
τmeas. � 1/ fmeas. In practice, the convenient range of frequency is between 20 kHz
and 20 MHz, and then the timescale: 50 ns < τmeas. < 50µs. The lifetime of critical
fluctuation defines the system timescale [29]:

τfluct � τ0

(T − TC)zν ∝ 1

(T − TC)1.9
(20)

where z � 3 is the dynamic (critical) exponent for the non-conservedorder parameter,
and the exponent for the correlation length ν ≈ 0.63 (the effective value when
neglecting correction-to-scaling). Then, for critical mixtures the exponent zν ≈ 1.9
[29, 40].
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The system timescale extends between τflukt. → ∞ for T → TC and sub-
nanosecond values for ... For τmeas./τfluct./ < 1, the sampling time is much faster
than the lifetime of fluctuations. Consequently, one can detect the “mixed critical-
ity” of fluctuations related to the exponent ψ ≈ 0.37 ÷ 0.4. For τmeas./τfluct. > 1,
several fluctuations appear and disappear during the measurement cycle and one
cannot detect their specific features. Consequently, NDE measurements detect the
average from several fluctuations, what “masks” the mixed criticality and yields the
non-classical critical exponent ψ ≈ 0.57÷0.6. Figure 11 shows the evolution of the
lifetime of critical fluctuation in nitrobenzene–hexane critical mixture determined
from crossover condition T (τmeas./τfluct � 1) in frequency-related NDE studies. In
agreement with Eq. (20), τ f luct. → ∞ for T → TC .

When testing dynamics via the evolution of the primary (structural, alpha) relax-
ation time, i.e., estimated from the peak frequency of the primary loss curve ε′′ ( f )

via τ � 1/2π fpeak, the largest value of the primary relaxation τ (TC) ∝ 4 ns is
reached. Above TC , the evolution is clearly Super-Arrhenius (SA) [40], with weak
distortion in the immediate vicinity TC . Hence, the qualitative difference between
the “linear” (τ (T → TC) ≈ 5 ns) and “nonlinear” (τflukt. (T → TC) → ∞) takes
place. It results from the fact that NDE is directly coupled to critical fluctuations,
i.e., “heterogeneities” which sizes and lifetimes grow up infinitely on cooling toward
the critical point. The primary (“linear”) relaxation time is linked to the relaxation
of a dipole moment of single molecules in the surrounding gradually modified by
developing critical fluctuations.

The application of the dual-field NDE experimental technique enables addressing
one of the most basic problems regarding the dynamics of critical fluctuations: is it
homogeneous or heterogeneous?

Figures 12 and 13 present the preliminary evidence supporting the heterogeneous
picture. It is worth recalling that in critical mixtures the decay after switching-off the
strong electric field is stretched exponential and universal as shown in ref. [34] for
EKE:

R (t) ∝ exp

[
−

(
t

τfluct.

)x]
, (21)

where the normalized decay after switching-off the strong electric field: R (t) �[(
�εE/E2

)
(t)

]
/
[
�ε2/E2

]
saturation, t is the elapse time after switching-off the

electric field, the universal stretched exponent (SE) x � (2 − η) / (5 − η) and
η ≈ 0.04 is the critical exponent for the correlation length. For the relaxation time
τflukt. ∝ ξ z ∝ (T − TC)−zν ≈ (T − TC)−1.9, in agreement with Eq. (20) [34].

The result presented in Fig. 12 clearly confirms the universal, system independent,
and stretched-exponential pattern of the NDE decay after switch of the DC strong
electric field pulse, in agreement with the evidence given in refs. [34, 40]. However,
for the selective excitation of critical fluctuations within the homogeneous critical
mixture in the immediate vicinity of the critical point via the sine-wave pulse with
the given frequency of the strong electric field, one obtains the single exponential
decay. It is associated only with one relaxation time. Such behavior is clearly present
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Fig. 12 The decay of NDE signal after switching-off the DC pulse of the strong electric field,
in nitrobenzene–dodecane critical mixture. Tests for the pressure path of approaching the critical
consolute point: the presented result is for the isotherm T � TC (P � 0.1MPa) and for P �
PC −1 M Pa. The decay is described via the response functionEq. (21)with the universal “stretching
exponent” (SE) x � 0.4 ± 0.02. The dashed (red) line shows the “reference” simple Arrhenius
behavior [11]

in Fig. 13. In the opinion of the author, Figs. 12 and 13 can be considered as the
evidence for the heterogeneous dynamics of critical fluctuations.

Results presented in Figs. 12 and 13 were obtained for the pressure path of
approaching the critical consolute point. For the temperature approaching under
atmospheric pressure, reaching similar (long) values of the decay time are possible
only extremely close to the critical point: T −TC < 0.02K. Additionally, such exper-
iment requires also extraordinary temperature stabilization. The situation becomes
experimentally convenient for the pressure path, due to the fact that for nitroben-
zene–decane mixture dTC/dP � 0.003K

/
MPa. Consequently, for the pressure

path, one can much easier reach the very immediate vicinity of (TC , PC ). It is notable
that one can change pressure in 0.1 MPa steps, what is the equivalent of 0.003 K (!)
[41].

4 Nonlinear Dielectric Effect in Supercooled Nitrobenzene

Results presented above-recalled topics originating from the first experimental evi-
dences by Arkadiusz Piekara in the 30s [5–10]. Piekara also noted the “inverse”
NDE > 0 in nitrobenzene and developed the successful molecular explanation of this
phenomenon, as indicated in Figs. 1 and 2 [10]. New factors which can influence
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Fig. 13 The decay of NDE after switching the AC pulse of the strong electric fields in the imme-
diate vicinity of the critical consolute point in nitrobenzene–decane mixture for the isotherm
T � TC (P � 0.1MPa) and for �P � 1MPa as the distance from the critical point. The strong
electric field was applied as the AC pulse, in the form of the sinusoidal wave with the frequency
f � 600Hz. In the semi-log scale, the line (in red) indicates the single exponential decay, i.e.,
x � 1 in Eq. (21) [11]

this phenomenon have been noted only recently [38]. This was possible due to NDE
studies in the broad range temperature, including the supercooled region of nitroben-
zene. One should stress that nitrobenzene most easily crystallizes at Tm ≈ 6.5 ◦C
and its supercooling requires (very) careful cleaning, degassing, and using a specially
prepared measurement capacitor. Figure 14 presents results obtained in temperature-
related NDE studies.

Five decades ago, Hanus [42] developed the semi-phenomenological mean-field
model suggesting that for molecular liquids which do not exhibit a liquid crystalline
polymorphism a phase transition to a partially aligned nematic-like mesophase may
occur under a strong electric field. The possible appearance of such phenomenon
was suggested for molecular liquids with interacting molecules and a relatively high
melting temperature, such as nitrobenzene [42]. Although ref. [42] focused on the
Kerr effect, the parallel relation for NDE can be easily derived, namely:

�n

E2
,
�εE

E2
∝ F ′ (ε) C

�α�α′

T − T ∗ , T > T 1
m (22)

where F ′ (ε) is the local field factor, for NDE C � 16π/45k B , �α and �α′ are
anisotropies dielectric polarizabilities linked to the strong electric field inducing
anisotropy (yielding the “prolate”, uniaxial structure) and the weak measuring field,
respectively. T ∗ denotes the lowest temperature to which the liquid can be hypothet-
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ically supercooled and T 1
m is the one-dimensional freezing/melting temperature at

which a discontinuous transition occurs.
Soon after the report of Hanus [42], de Gennes [43, 44] published results of the

Kerr effect and the Cotton–Mouton effect studies in the isotropic phase of a rod-like
liquid crystalline material, MBBA, for which he noted:

�nE

E2
,
�nE

H 2
∝ �n�m

T − T ∗ � A

T − T ∗ , T > T C � T ∗ + �T (23)

where �n is the molecular anisotropy of the refractive index and �m � �ε for
the Kerr effect, �ε is the molecular anisotropy of the dielectric constant, �m �
�χH is the molecular anisotropy of the magnetic susceptibility, relevant for the
Cotton–Mouton effect. T ∗ is the temperature of the hypothetical continuous phase
transition, i.e., the temperature to which the isotropic liquid can be supercooled. T C

is the clearing temperature, i.e., the temperature of isotropic–nematic (I–N) weakly
discontinuous phase transition at which freezing associated with one-dimensional
orientation takes place.

The inspiration of above experimental results led to the formulation of the Lan-
dau–de Gennes (LdG) model [44], one of the key theoretical tools in the physics
of liquid crystals [45] and in the soft matter physics [46]. Stinson and Litster [47]
linked to the pattern of Eq. (23) the intensity of the scattered light on approaching
the I–N transition: in this case, the amplitude A ∝ �n2. In 1992, Rzoska et al.

Fig. 14 Temperature behavior of the nonlinear dielectric effect in the liquid, supercooled, and solid
states of nitrobenzene. The form of nitrobenzene molecule is shown. The crystallization took place
at TL−S ≈ 267.1 K. The straight line shows the possibility of portrayal via the linear dependence
above the melting temperature. Based on results from ref. [38]
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[48] applied the Landau–de Gennes model for obtaining the parallel of Eq. (23) also
for NDE. In this case, the amplitude A ∝ �ε f �ε, where �ε f is the anisotropy of
dielectric permittivity for the measurement radio frequency and�ε is the anisotropy
of dielectric constant, related to the strong electric field. Notable is the striking simi-
larity of relations (23) and (22), although the latter was focused on the impact of the
strong electric field on non-mesogenic liquids. It is notable that estimations of the
intensity of the electric field which can already induce the quasi-nematic structure in
nitrobenzene given by Hanus [42] coincide with intensities applied in NDE studies
based on the dual-field principle: E ∼ 10 kV/cm. For such liquid as CS2, Hanus [42]
suggested the necessity of one decade higher intensities of the electric field to induce
similar phenomena. For anisotropic rod-like molecules, for which the orientational
freezing in the nematic phase is the inherent feature, the pretransitional behavior
predicted by Eqs. (22) and (23) occurs at arbitrary intensity of the strong field (elec-
tric, magnetic). The problem which remains is the description of the quasi-critical
increasing of NDE in the supercooled nitrobenzene. The derivative-based analysis
(Eqs. 16–18) of results from Fig. 14 showed that [38]:

�εE

E2
� A

(T − T ∗)1/2
+ [a + bT ]bckg (24)

Hence, for nitrobenzene ψ ≈ 1
/
2, instead ψ � γ � 1 as in Eqs. (22) and (23).

It is notable that such value can be obtained from the dependence defining the NDE
behavior on approaching the critical consolute point, assuming the dimensionality d
� 3 and the mean-field, tricritical, values of critical exponents:

ψ � dν − γ � 3 × 0.5 − 1 � 1/2 andψ � γ − 2β � 1 − 2 × 0.5 � 1/2 (25)

where the value β � 1/4 is the order parameter exponent for the tricritical case
(TCP), for which d � 3 is the border dimensionality between the non-classical and
classical descriptions.

5 Nonlinear Dielectric Effect in Liquid Crystals

The first evidence for the pretransitional behavior of NDE in a liquid crystalline (LC)
materialwas obtained byMałecki andZioło [49] for the isotropic phase ofMBBA[N-
(4-methoxybenzylidene)-4-butylaniline]. This is one of the oldest “classical” liquid
crystalline materials with the isotropic—(320 K)–nematic—(295 K)–Solid meso-
morphism, and the transverse dipole μ ≈ 2.2D [45]. Figure 15 presents the authors’
measurements directly recalling ref. [49].

The same plot contains also results of the next classical rod-like
compound: 5CB (4- n-pentyl-4’-cyanobiphenyl) also with the isotrop-
ic—(308 K)–nematic—(297)–solid mesomorphism, but with the longitudinal
dipole moment μ ≈ 4D [45]. The inset in Fig. 15 shows reciprocals of results
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Fig. 15 NDE in the isotropic phase of liquid crystalline MBBA and 5CB: results are for the mea-
surement frequency f � 1MHz. The inset shows reciprocals of experimental data from the main
part of the plot: dashed arrows show the isotropic–nematic (I–N) discontinuous transition and the
solid ones the extrapolation indicating the hypothetical continuous phase transition. Discontinuities
of the I–N transitions: �T � TI N − T ∗ ≈ 1.1K for MBBA and �T � TI N − T ∗ ≈ 1.2K for
5CB [11]

from the main part of the plot, confirming the validity of Eq. (23). It is visible
that the form of pretransitional effects is the same for both compounds. However,
the evolution of dielectric constant in the isotropic phase of MBBA and 5CB is
qualitatively different. For the latter, the change from dε/dT < 0 → dTC/dT > 0
for T → T C occurs, as shown in Fig. 16. The pretransitional anomaly can be well
portrayed by the relation resembling the one known for the homogeneous phase of
critical, binary mixtures [50]:

ε (T ) � ε∗ + a
(
T − T ∗) + A

(
T − T ∗)1−α

, for T > TI−N (26)

where the exponent α � 1/2 is the exponent for the specific heat, and the internal
energy, pretransitional behavior. (ε∗, T ∗) denote the extrapolated location of the
hypothetical continuous phase transition and T ∗ � TI−N − �T where �T is the
measure of the I–N phase transition discontinuity. TI−N is for the I–N transition
temperature: it is also known as the clearing temperature T C which is generally
related to the isotropic–mesophase transition.

This behavior can be associated with the growing number of 5CB molecules in
prenematic fluctuations, which have to exhibit such basic feature of the nematic phase
as the nematic/orientational ordering of rod-likemolecules and the equivalence of−→n
and−−→n directors [45], leading to the cancellation of dipolemoments within fluctua-
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Fig. 16 The behavior of dielectric constant (measurement frequency f � 100 kHz) in the isotropic
phase of MBBA and 5CB, for T → TI−N . Note the lack of the pretransitional effect for MBBA
and the notable pretransitional effect in 5CB, portrayed by Eq. (26). Based on reanalyzed results
from ref. [51]

tions. The latter causes that for 5CB the dielectric constant of prenematic fluctuations
is notably smaller than for the “isotropic, fluidlike” surrounding: consequently, the
total value of dielectric constant decreases on cooling toward TC . For MBBA, with
the transverse dipolemoment suchmechanism is absent and the dielectric constant of
prenematic fluctuations and their fluidlike surrounding are the same. Consequently,
for MBBA, there is no pretransitional anomaly for ε (T → TC) due to the lack of the
contrast factor between fluctuations and the fluidlike surrounding. Regarding NDE,
it is directly coupled to fluctuations and consequently pretransitional effects for both
5CB and MBBA are strong and have the same form.

Regarding dynamics in the isotropic phase of liquid crystalline materials, there
is the qualitative difference between the “linear” (i.e., related to BDS studies:
ε′ ( f ) , ε′′ ( f ) and the primary relaxation time) and the “nonlinear” (NDE, EKE) case.
Figure 17 presents the temperature evolution of the primary relaxation time, deter-
mined from the peak frequency of dielectric loss curves from BDS

(
ε′ ( f ) , ε′′ ( f )

)

studies. The obtained Super-Arrhenius (SA) behavior can be effectively described
by the Vogel–Fulcher–Tammann dependence [40], but the optimal parameterization
yields the quasi-critical function [53–55]:

τ (T ) � τo (T − TX )−φ (27)

with the exponent φ ≈ 2.3 and the singular temperature TX ≈ TI−N − 26K.
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Fig. 17 The temperature evolution of the relaxation time from the BDS measurements in isotropic
9CB: “the linear case”. Apart from the primary relaxation time (in blue, the upper plot), the behavior
in themodulus (M) representation giving the direct insight into translation-related processes is given.
In each case, the SA behavior takes place [11]

The evolution of relaxation time determined from NDE measurement is directly
coupled to prenematic fluctuations, i.e., internally ordered heterogeneities in the
isotropic surrounding, which is given by [40, 45]

τfluct. � τ0
(
T − T ∗)−y � τ0

T − T ∗ (28)

where y � zν � 1; z � 2 is the dynamic exponent for the conserved order parameter
and the “classical” value of the correlation length exponent ν � 1/2. For this relation,
the singular temperature T ∗ � TI−N −�T and�T ≈ 1.2K (for 5CB) and�T ≈ 3K
for 9CB.

Experimentally, the pretransitional behavior associated with Eq. (28) can be
directly detected from NDE measurements via the “crossover” analysis comparing
the measurement timescale and the system timescale, as in the case of critical, binary
mixtures described above. The obtained in this way evidence, in fair agreement with
Eq. (28), is presented in Fig. 18.

Figure 19 shows the pretransitional effect in the isotropic phase of 5CB and its
chiral isomer 5 * CB (isopentylcyanbiphenyl). Structures of both compounds are
given in Fig. 17. Both 5CB and 5 * CB have the same permanent dipole moments
and according to the output relation resulted from the basic implementation of the
Landau–deGennesmodel, their pretransitional effects on approaching the I–N (5CB)
and the I–N* (5 * CB) transitions should be the same [40]:
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Fig. 18 The “nonlinear” relaxation time resulted fromNDE measurements, directly linked to pren-
ematic fluctuations. The inset shows the reciprocal of experimental data from the main part of the
plot showing the validity of Eq. (28) with the power exponent y � 1 [11]. Results for the isotropic
phase of nonylcyanobiphenyl (9CB)

�εE

E2
� Cχ0

�ε0�ε f

T − T ∗ � AN DE

T − T ∗ (29)

where C is the model constant, χ0 is the amplitude of compressibility, �ε0 is the
molecular anisotropy of dielectric constant in the zero-frequency limit (related to the
strong electric field), and �ε f is the molecular anisotropy of dielectric constant in
the zero-frequency limit (related to the weak, measuring electric field).

When discussing the qualitative difference of NDE pretransitional effect in 5CB
and 5 * CB, one should indicate that the experimentally measured largest value of
the relaxation time related to fluctuations in 5CB: τflict. (TI−N ) ∼ 1µs. Similar value
can be expected for 5 * CB. Hence, when changing the NDE measurement fre-
quency from 30 kHz to 12 MHz, as in Fig. 17, the clear crossover from the domain
(A) tmeas./τfluct > 1 (remote from T C ) to domain (B) tmeas./τfluct < 1 (close to
T C ) occurs. The arrangement of molecules in premesomorphic fluctuation can be
expected as shown schematically in Fig. 19. For 5CB, one can expect the prene-
matic ordering, with weak distortion from the “ideal” nematic arrangement due to
the relative high temperatures (T > T C ) and large susceptibility to perturbations.
Notwithstanding, the “cancellation” of permanent dipole moment within fluctua-
tions, as described above, can be expected. For 5 * CB, such cancellation is not
possible. The “steric” restriction causes that for molecules within fluctuations there
are two notable components of the dipole moment with respect to the direction of
the director −→n : μ � μ|| + μ⊥. Only the parallel can be cancelled within the fluc-
tuations. Consequently, the negative dielectric anisotropy of the premesomorphic
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Fig. 19 Nonlinear dielectric effect in the isotropic phase of pentylcyanobiphenyl (5CB) and
isopentylcyanobiphenyl (5 * CB), on approaching the clearing point, i.e., I → N and I →
N∗(N*—chiral nematic) phase transitions, respectively. Results are for few frequencies of the weak
measuring field given in the figure. The inset shows schematically the structure of 5CB and 5 * CB
molecules and its consequence on properties on prenematic fluctuations. Based on reanalyzed and
supplemented results from ref. [52]

fluctuations appears. For T → T ∗, the appearance and disappearance of prenematic
fluctuations are described by τfluct as the system timescale takes place. In domain
(A), the system timescale is much faster than the measurement process (tmeas) and
specific features of a single fluctuation cannot be detected. This happens for any
applied measurement frequency well above the clearing temperature. For the lowest
frequency (f � 30 kHz), such condition occurs at any temperature, even T � TC .
Under such conditions, NDE is positive and described by the mean-field dependence
with AN DE ∝ (

�ε0
)2
. Heuristically, one can claim that the “ideal” mean-field LdG

model behavior is reached due to the applied “detection timescale”. However, for
higher measurement frequencies (~MHz), the crossover to the domain (B) is possi-
ble. The detection process may be faster than the lifetime of fluctuations and their
specific features can be directly observed: in the case of 5 * CB this means the detec-
tion of the negative dielectric anisotropy of fluctuations. All these can lead to the
indication of the alternative way of description of the pretransitional effect in the
isotropic phase resulting from Eq. (3):

�εE

E2
� Cχ0

〈
�M0

〉 〈
�M f

〉

T − T ∗ (30)
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Fig. 20 Results of
measurement of dielectric
constant (f � 10 kHz) for
rodlike nematogenes’ mixure
under two different biasing
DC electric fields, as given in
the figure. Arrows indicated
subsequent phase transitions
[11]

Such relation takes as the reference the averaged local fluctuations of the order
parameter, which can coincide with the LdG based on Eq. (29) for the ratio of
timescale as in the domain (A).

It is notable that for decades the orientation of permanent dipolemoment described
by theHerweg–Debyemodel (Eq. 1)was considered as the only source of the negative
sign contribution to NDE [10]. The above discussion shows the new source of the
negative sign contribution to NDE—beyond this paradigm.

Finally, we would like to address the question of the impact of the strong electric
field on the pretransitional effect and structured mesoscale heterogeneities—fluc-
tuations. Figure 20 shows the behavior of dielectric constant in a rod-like liquid
crystalline sample of hexylcyanobiphenyl (6CB), from the same homologous group
as 5CB. Measurement was carried out under different biasing fields. We noted the
notable change in the form of the pretransitional anomaly when increasing the inten-
sity of the electric field well above 10 kVcm1. For the highest applied DC electric
field, the impact on dielectric constant of the tested sample was dramatic: it can
notably change the form of pretransitional effect and then also the form of hetero-
geneities—fluctuations. Moreover, in the solid phase, a clear pretransitional effect
appeared, absent when EBias → 0 emerges. Notable is the shift of phase transition
temperatures. Properties of 5CB and 6CB liquid crystalline materials can be consid-
ered as complex fluids in which properties are strongly influenced by pretransitional
fluctuations/heterogeneities resulted from theweakly discontinuous nature of the I–N
transitions. It seems that above some threshold value of the electric field, slightly
lower than 40 kV/cm in the given case, one should consider rather the new state
induced by the electric field than NDE associated with a relatively weak distribution
for which �εE ∝ E2.
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6 Conclusions

After theWorldWar II, Arkadiusz Piekara continued studies on the nonlinear dielec-
tric effect, first at the University in Poznań (nowadays AdamMickiewicz University,
Poznań, Poland) and since 1964 at the Warsaw University (Warsaw, Poland) [7].
In the late 70, one of his former key students, August Chełkowski, moved to the
University of Silesia (Katowice) which was just organized. He was accompanied by
the young assistant Jerzy Zioło, who continued NDE studies in Katowice. Since the
mid-80s, the NDE lab in Katowice was developed by Sylwester J. Rzoska, former
student of Zioło, investigating mainly on critical mixtures. In the mid of the 90s to
the staff joined Aleksandra Drozd-Rzoska who focused on liquid crystals. In the last
decade Szymon Starzonek joined to the team. From several years, the authors of
this report have continued NDE, NDS, and EKE/TEB studies in the Institute of High
Pressure Physics PAS in Warsaw.

This contribution shows the progress in studies on various types of critical liquids,
returning finally to the basic case of nitrobenzene where the “anomalous, positive”
value of NDE also can be associated with the critical-like pretransitional behav-
ior. It is shown that NDE-related phenomena in the homogeneous phase of critical
mixtures and in nitrobenzene, as well as in the isotropic phase of rod-like liquid crys-
tal, can be described in a synergic and coherent way when taking into account the
impact of pretransitional fluctuations associated with continuous or weakly discon-
tinuous phase transitions. Nonlinear dielectric studies started from the insight into
variety of molecular processes in “normal” liquid dielectrics: they are summarized
in the monograph by August Chełkowski [10]. From the early 80s, grown up the evi-
dence related to critical mixtures and later to liquid crystals. These studies explored
and developed the classical NDE/NDS measurement concept which recalls classical
studies by Herweg and Piekara [1–10]. It is based on the application of two electric
fields: the weak, measuring, with radio frequency and the intensity Emeas. ∼ 1 kV/m
and the strong one E ∼ 1MV

/
m. The latter means the voltage U � 1 kV for

the often used gap of the flat-parallel capacitor d � 1mm. The notable feature of
the dual-field method is the large sensitivity making it possible to detect effect as
small as�εE/E2 ∼ 10−19

(
m2/V2

)
, even for the mentioned above “bulk” gap of the

capacitor. It is notable that the dual-field NDE/NDS can be considered as the clear
counterpart of the electro-optic Kerr effect (transient electric birefringence: TEB,
EKE) but for radio frequencies (kHz–MHz domain). The current state-of-the-art of
the dual-field nonlinear dielectric spectroscopy is presented in the appendix.

Nowadays, the key focus of the nonlinear dielectric is located within the domain
of the glass transition and in this case mainly single-field NDS techniques of mea-
surements are developed. These issues are broadly discussed in other chapters of
this book. Results related to the dual-field NDE/NDS in glassforming liquids can be
found in ref. [56]. The nonlinear dielectric spectroscopy and the nonlinear dielectric
effect seem to the natural extension of BDS. The latter yields the direct insight to
single-molecular processes. NDE/NDS can directly detect multimolecular species
and processes.
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Appendix

The Dual-Field NDE Experimental Technique
There are few principles for measuring changes of dielectric properties under

strong electric. This chapter is associated with the dual-field technique which recalls
classical experiments by Herweg (1920/1922) [2, 3] and Piekara (1932/1937). Those
studies focused onmolecular liquids, such as diethyl ether (DEE) or solutions [5–10]
nitrobenzene, with the relatively small dielectric constant. Herweg used the resonant
circuit to detect very small changes of the electric capacitance �C (E) /C ∼ 10−6

induced by the strong electric field. Piekara developed the concept toward the appli-
cation of the superheterodyne-like design [6–10]. The sensitivity of the apparatus
made it possible to detect the smallest known NDE values in liquids, associated with
statistical fluctuations of polarization. Such effects are the only source of NDE in
nonpolar solvents, such as carbon tetrachloride or benzene [10, 57]:

�εE

E2
≈ C

(
�P +

〈
�M2

〉)2
χ (31)

where �P � P − 〈P〉 is for statistical fluctuations of polarizability and � M2 �
M2 − 〈

M2
〉
is related to fluctuations of the (induced) dipole moment, χT denotes the

isothermal compressibility
Notable is the coherence of Eq. (3) for critical fluctuations and Eq. (30) for sta-

tistical fluctuations. The contribution from statistical fluctuations is always positive,
what is also the case of critical fluctuations in binary mixtures, although for some
liquid crystals the negative sign of the fluctuations-related effect is also possible
(for instance in 5 * CB). Statistical fluctuations are related to the smallest known
values of NDE: ~10−19 m2/V2. Molecular mechanisms (the orientation of dipole
moments, intermolecular couplings, associates, intramolecular rotation, etc.) usually
yield NDE in the range from 10−18 m2/V2 to 10−16 m2/V2. Pretransitional fluctua-
tions led to the contribution from 10−18 m2/V2 (isotropic MBBA, critical mixtures
where ε1 − ε2 < 5, etc.) to even 10−14 m2/V2 [10]. The superheterodyne-type (with
two generators) design of NDE apparatus in practice appeared to be (very) sensitive
to parasitic distortions such as the electromagnetic “noise” and “imperfections” of
the power supply. Moreover, it requires the perfect grounding what is difficult for the
“naturally scattered design”. The source of a notable systematic biasing error was
also the problem with the scaling of the obtained experimentally values of electric
capacitance �C (E) to estimate the required value of �εE . Figure 21 shows the
new scheme of the apparatus for the single-generator dual-field NDE apparatus. The
compact design of the NDE front “measuring” module, from which signal is directly
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HV Pulse Booster Timing controller

LF sine wave 
generatorHV Amplifier

Calibrating
device

Front end module

RS 232

GPIB

Modulation domain analyzer

Main computer

Sample
RF signal

Synchro

Calibration control

Fig. 21 Single generator dual-field apparatus for NDE/NDS measurements applying the modula-
tion domain analyzer enabling the detection of frequency versus time changes of the output signal.
In the first version of the apparatus, the MDA (HP) 53310A was used. The strong electric field can
be applied in the form of DC pulses, U < 1200 V lasting from �t � 0.5ms to several minutes.
Additional possibility was the train of sinusoidal E (t) changes: frequencies f < 20 kHz, voltage
Upeak−peak < 1000V: the pulse length depends on the frequency usually it contained ~10 cycles.
The apparatusmade it possible to detectNDE for selectedmeasurement frequencies from ca. 20 kHz
to 20 MHz. The NDE versus time profile, both in the DC and AC modes of the strong electric field,
could be scanned. Such feature shifted the basic NDE toward the nonlinear dielectric spectroscopy
(NDS). The scanned NDE versus time outputs are cumulated to increase the signal-to-noise ratio
in the final step of the measurement process

directed to them modulation domain analyzer and the “hard” separation of modules,
solved the key grounding problem.

The next issue was the new design of the calibration unit, which now can be per-
manently linked to the resonant circuit, alsowhen applying the high voltage (Fig. 22).
The calibration unit is based on the reed delay switch mounted on a copper jacket.
One of its contacts sticks out about 1 mm outside the copper coat. The switching
on/off results in the change of the capacitance between the stick and the copper sur-
rounding. It can be located directly within the generator due to small dimensions
(10 mm diameter and 30 mm length).

The next important issue is the design of measurement capacitors, with the tested
liquid dielectric. The high sensitivity of the dual-field NDE apparatus requires inten-
sities of the electric field only EStrong < 10 kV/cm (often Estrong ∼ 2 kV/cm is
satisfactorily NDE registration) and for the weak measuring field EWeak < 10V/cm.
These enable the usage of macro-gaps of the measurement capacitor ranging from
50 µm to 1 mm.
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poliethylene

copper
foil

coil
teflon brass

reed switch

C
copper
coat

tube tube isolation

Fig. 22 The facility for scaling direct experimental �C (E) values of capacitance to determine
related values of �εE , necessary to calculate NDE. The magnetic field from the coil close/open
reed switch, introducing well-defined changes of the electric capacitance. For the NDE facility of
the authors �Ccalib. � 4.7femtoF and the duration �t � 1ms [58]

Such gaps help to avoid gas bubbles which can distort/destroy experimental result.
The design of such capacitor, ready also for high-pressure measurements, is shown
in Fig. 23.

Apart from the high sensitivity, the nice feature of the dual-field NDE technique is
the fact that the strong electric field is applied in the form of well-defined pulses. This
enables “online” detection of parasitic artifacts: for instance, heating of the sample
during the measurement process causes the horizontal shift of the baseline after the
application of the strong electric field; gas bubbles cause characteristic “deformation”
of the NDE output signal. All these enable online detection of experimental prob-
lems associated with samples and experimental preparations. The dual-field NDE,
briefly described above, can be considered as the direct parallel of the “dynamic”
electro-optic Kerr effect, but for radio frequencies. Recent years open the possibility
of dual-field NDE/NDS measurements using only a single generator, and the new
generation of modulation domain analyzers has emerged. It offers the possibility of
the simultaneous detection of both �ε′E

(real) and �ε′′E
(imaginary) components,

in the DC and AC modes of the “pulsing” strong electric field with changing fre-
quency. This can be supplemented by the controlled scan of frequencies of the weak
measuring field.
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Fig. 23 The measurement capacitor uses for high-pressure studies. The diameter 2r � 16mm;
the distance between plates of the capacitor d: from 50 µm to 1 mm. As the spacer the ring
made from quartz is used. Pressure is transmitted to the tested liquid via the deformation of the
specially prepared Teflon film. For the given design of the capacitor, there is no possibility of the
contact between the pressurized medium and the measured liquid and pressure can be increased
and decreased without a risk such that parasitic interaction appears. The undesired gas appearance
of gas bubbles can be easily detected
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Third and Fifth Harmonic Responses
in Viscous Liquids

S. Albert, M. Michl, P. Lunkenheimer, A. Loidl, P. M. Déjardin and F. Ladieu

Abstract We review the works devoted to third and fifth harmonic susceptibilities
in glasses, namely χ

(3)
3 and χ

(5)
5 . We explain why these nonlinear responses are

especially well adapted to test whether or not some amorphous correlations develop
uponcooling.We show that the experimental frequency and temperature dependences
of χ

(3)
3 and of χ

(5)
5 have anomalous features, since their behavior is qualitatively

different to that of an ideal gas, which is the high-temperature limit of a fluid. Most
of the works have interpreted this anomalous behavior as reflecting the growth, upon
cooling, of amorphously ordered domains, as predicted by the general framework
of Bouchaud and Biroli (BB). We explain why most—if not all—of the challenging
interpretations can be recast in a way which is consistent with that of Bouchaud and
Biroli. Finally, the comparison of the anomalous features of χ

(5)
5 and of χ

(3)
3 shows

that the amorphously ordered domains are compact, i.e., the fractal dimension df is
close to the dimension d of space. This suggests that the glass transition of molecular
liquids corresponds to a new universality class of critical phenomena.
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1 Why Measuring Harmonic Susceptibilities? Some Facts
and an Oversimplified Argument

Most of our everyday materials are glasses, from window glasses to plastic bottles,
and from colloids to pastes and granular materials. Yet the formation of the glassy
state is still a conundrum and the most basic questions about the nature of the glassy
state remain unsolved, e.g., it is still hotly debated whether glasses are genuine solids
or merely hyperviscous liquids.

Over the past three decades, the notion evolved that higher order harmonic suscep-
tibilities are especially well suited to unveil the very peculiar correlations governing
the glass formation, yielding information that cannot be accessed by monitoring the
linear response. This is illustrated in Fig. 1 displaying the third harmonic cubic sus-
ceptibility χ

(3)
3 —defined in Sect. 2.1—for four very different kinds of glasses [1–6].

In the case of spin glasses [1, 7]—see Fig. 1a— it was discovered in the 80s that
χ

(3)
3 diverges at the spin glass transition temperature TSG , revealing the long-range

nature of the spin glass amorphous order emerging around TSG . Here the expres-
sion “amorphous order” corresponds to a minimum of the free energy realized by a
configuration which is not spatially periodic. Similar nonlinear susceptibility experi-
ments have been performed by Hemberger et al. [2] on an orientational glass former.
In orientational glasses, electric dipolar or quadrupolar degrees of freedom undergo
a cooperative freezing process without long-range orientational order [8]. As illus-
trated in Fig. 1b, the divergence of |χ(3)

3 | is not accompanied by any divergence of
the linear susceptibility |χ1|.

We shall show in Eqs. (1) and (2) that this is intimately related to the very notion
of amorphous ordering. For structural glasses, e.g., glycerol, it was discovered [3, 4]
less than 10 years ago that |χ(3)

3 (ω, T )| has a hump close to theα relaxation frequency
fα , and that the height of this hump is increasing anomalously upon cooling. A hump
of |χ(3)

3 | has also been recently discovered in a colloidal glass [5, 6], in the vicinity
of the β relaxation frequency fβ , revealing that any shear strain connects the system
to a nonequilibrium steady state—see [5, 6]. Of course, as detailed balance does not
hold in colloids, the comparison of colloidal glasses with spin glasses, orientational
glasses, and structural glasses cannot be quantitative.However, the four very different
kinds of glasses of Fig. 1 have the common qualitative property that nonlinear cubic
responses unveil new information about the glassy state formation.

Let us now give an oversimplified argument explaining why nonlinear responses
should unveil the correlations developing in glasses. We shall adopt the dielectric
language adapted to this review devoted to supercooled liquids—where detailed bal-
ance holds— and consider a static electric field Est applied onto molecules carrying
a dipole moment μdip. At high temperature T , the system behaves as an ideal gas
and its polarization P is given by
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(a) (c)

(b) (d)

Fig. 1 Third Harmonic susceptibilities of very different types of glasses approaching their glass
transition. a In the Ag:Mn spin glass [1], the static value of χ

(3)
3 diverges when approaching the

critical temperature Tc � 2.94 K [1]. b Similar arguments are used to rationalize the third harmonic
dielectric susceptibility of an orientational glass [2]. c In glycerol [3, 4], the modulus of the—
dimensionless—cubic susceptibility X (3)

3 has a peak as function of frequency, which increases
anomalously upon cooling. d Strain–stress experiment in the colloidal system studied in Refs. [5,
6]. When increasing the volumic density φ, the increasing peak of Q0 = |χ(3)

3 /χ1| reveals that any
shear strain connects the system to a non-equilibrium steady state—see [5, 6]. In all these four
examples, χ(3)

3 unveils informations about the nature of the glassy state that cannot be obtained by
studying the linear susceptibility χ1. From Refs. [1–3, 6]

P = μdip
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� 1
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(
μdipEst

kBT

)5

+ · · ·
(1)

where ad is the molecular d-dimensional volume,Ld is the suitable Langevin func-
tion expressing the thermal equilibrium of a single dipole in dimension d, and where
the numerical prefactors of the linear-, third-, and fifth-order responses correspond
to the case d = 3. Assume now that upon cooling some correlations develop over a
characteristic lengthscale �, i.e., molecules are correlated within groups containing
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Ncorr = (�/a)df molecules, with df the fractal dimension characterizing the corre-
lated regions. Because these domains are independent from each other, one can use
Eq. (1), provided that we change the elementary volume ad by that of a domain—
namely ad(�/a)d—aswell as the molecular dipoleμdip by that of a domain—namely
μdip(�/a)(df /2). Here, the exponent df /2 expresses the amorphous ordering within
the correlated regions, i.e., the fact that the orientation of the correlated molecules
looks random in space. We obtain

P

μdip/ad
� 1

3

(
�

a

)df −d (
μdipEst

kBT

)
− 1

45

(
�

a

)2df −d (
μdipEst

kBT

)3

+

+ 2

945

(
�

a

)3df −d (
μdipEst

kBT

)5

+ · · · (2)

which shows that the larger the order k of the response, the stronger the increase
of the response when � increases. As df ≤ d, Eq. (2) shows that the linear response
never diverges with �: it is always, for any �, of the order of μ2

dip/(a
dkBT ). This

can be seen directly in Eq. (2) in the case df = d ; while for df < d one must add
to Eq. (2) the polarization arising from the uncorrelated molecules not belonging to
any correlated region. This insensitivity of the linear response to � directly comes
from the amorphous nature of orientations that we have assumed when rescaling
the net dipole of a domain—by using the power df /2. By contrast, in a standard
para–ferro transition one would use instead a power df to rescale the moment of
a domain, and we would find that the linear response diverges with � as soon as
df > d/2—which is the standard result close to a second-order phase transition. For
amorphous ordering, the cubic response is thus the lowest order response diverging
with �, as soon as df > d/2. This is why cubic responses—as well as higher order
responses—are ideally suited to test whether or not amorphous order develops in
supercooled liquids upon cooling.

For spin glasses, the above purely thermodynamic argument is enough to relate
the divergence of the static value of χ

(3)
3 —see Fig. 1a—to the divergence of the

amorphous order correlation length �. For structural glasses this argument must be
complemented by some dynamical argument, since we have seen on Fig. 1c that the
anomalous behavior of χ

(3)
3 takes place around the relaxation frequency fα . This

has been done, on very general grounds, by the predictions of Bouchaud and Biroli,
who anticipated [9] the main features reported in Fig. 1c. BB’s predictions will be
explained in Sect. 3. Before, we shall review in Sect. 2 themain experimental features
of third and fifth harmonic susceptibilities. Because of the generality of Eq. (2) and of
BB’s framework, we anticipate that χ3 and χ5 have common anomalous features that
can be interpreted as reflecting the evolution of �—and thus of Ncorr—upon cooling.
The end of the chapter, Sect. 4, will be devoted to more specific approaches to the
cubic response of glassforming liquids. Beyond their apparent diversity, we shall
show that they can be unified by the fact that in all of them, Ncorr is a key parameter—
even though it is sometimes implicit. TheAppendix contains someadditionalmaterial
for the readers aiming at deepening their understanding of this field of high harmonic
responses.
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2 Experimental Behavior of Third and Fifth Harmonic
Susceptibilities

2.1 Definitions

When submitted to an electric field E(t)dependingon time t , themost general expres-
sion of the polarization P(t) of a dielectric medium is given by a series expansion
as follows :

P(t) =
∞∑

m=0

P2m+1(t), (3)

where because of the E → −E symmetry, the sum contains only odd terms, and the
(2m + 1)-order polarization P2m+1(t) is proportional to E2m+1. The most general
expression of P2m+1(t) is given by

P2m+1(t)

ε0
=

∞∫
−∞

. . .

∞∫
−∞

χ2m+1(t − t ′1, . . . , t − t ′2m+1)E(t ′1) . . . E(t ′2m+1)dt
′
1 . . . dt ′2m+1.

(4)

Because of causality, χ2m+1 ≡ 0 whenever one of its arguments is negative. For
a field E(t) = E cos(ωt) of frequency ω and of amplitude E , it is convenient to
replace χ2m+1 by its (2m + 1)-fold Fourier transform and to integrate first over
t ′1, . . . , t ′2m+1. Defining the onefold Fourier transform φ(ω) of any function φ(t)
by φ(ω) = ∫

φ(t)e−iωt dt (with i2 = −1) and using
∫
e−i(ω1−ω)t dt = 2πδ(ω1 − ω),

where δ is the Dirac delta function, one obtains the expression of P2m+1(t). This
expression can be simplified by using two properties: (a) the fact that the var-
ious frequencies ωλ play the same role, which implies χ2m+1(−ω,ω, . . . , ω) =
χ2m+1(ω,−ω, . . . , ω); (b) the fact that χ2m+1 is real in the time domain implying
that χ2m+1(−ω, . . . ,−ω) is the complex conjugate of χ2m+1(ω, . . . , ω). By using
these two properties, we obtain the expression of all the P2m+1(t), and in the case of
the third-order polarization this yields the following:

P3(t)

ε0
= 1

4
E3|χ(3)

3 (ω)| cos(3ωt − δ
(3)
3 (ω)) + 3

4
E3|χ(1)

3 (ω)| cos(ωt − δ
(1)
3 (ω)),

(5)
where we have set χ3(ω, ω, ω) = |χ(3)

3 (ω)|e−iδ(3)
3 (ω), and χ3(ω, ω,−ω) = |χ(1)

3 (ω)|
e−iδ(1)

3 (ω).
Similarly, for the fifth-order polarization, we obtain
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P5(t)

ε0
= 1

16
E5|χ(5)

5 (ω)| cos(5ωt − δ
(5)
5 (ω)) + 5

16
E5|χ(3)

5 (ω)| cos(3ωt − δ
(3)
5 (ω)) +

+10

16
E5|χ(1)

5 (ω)| cos(ωt − δ
(1)
5 (ω)), (6)

where,wehave setχ5(ω, ω, ω, ω, ω) = |χ(5)
5 (ω)|e−iδ(5)

5 (ω), and similarlyχ5(ω, ω, ω,

ω,−ω) = |χ(3)
5 (ω)|e−iδ(3)

5 (ω) as well as χ5(ω, ω, ω,−ω,−ω) = |χ(1)
5 (ω)|e−iδ(1)

5 (ω).
For completeness, we recall that the expression of the linear polarization P1(t) is

P1(t)/ε0 = E |χ1(ω)| cos(ωt − δ1(ω)) where we have set χ1(ω) = |χ1(ω)|e−iδ1(ω).
In the linear case, we often drop the exponent indicating the harmonic, since the
linear response P1(t) is by design at the fundamental angular frequency ω. The only
exception to this simplification is in Fig. 11 (see below), where for convenience the
linear susceptibility is denoted χ

(1)
1 .

Up to now, we have only considered nonlinear responses induced by a pure AC
field E , allowing to define the third harmonic cubic susceptibility χ

(3)
3 and/or the fifth

harmonic fifth-order susceptibility χ
(5)
5 to which this chapter is devoted. In Sect. 2.3

and Figs. 8 and 9, we shall briefly compare χ
(3)
3 with other cubic susceptibilities,

namely χ
(1)
3 already defined in Eq. (5) as well as χ

(1)
2;1 that we introduce now.

This supplementary cubic susceptibility is one of the new terms arising when a
static field Est is superimposed on top of E . Because of Est , new cubic responses arise,
both for even and odd harmonics. For brevity,we shallwrite only the expression of the
first harmonic part P (1)

3 of the cubic polarization, which now contains the following
two terms:

P (1)
3 (t)

ε0
= 3

4
|χ(1)

3 (ω)|E3 cos (ωt − δ
(1)
3 (ω)) + 3|χ(1)

2;1(ω)|E2
stE cos (ωt − δ

(1)
2;1(ω)),

(7)
where we have defined |χ(1)

2;1(ω)| exp (−iδ(1)
2;1(ω)) = χ3(0, 0, ω).

For any cubic susceptibility—generically noted χ3—or for any fifth-order
susceptibility—generically noted χ5—the corresponding dimensionless susceptibil-
ity X3 or X5 is defined as

X3 ≡ kBT

ε0Δχ2
1 a

3
χ3, X5 ≡ (kBT )2

ε20Δχ3
1a

6
χ5, (8)

where Δχ1 is the “dielectric strength”, i.e., Δχ1 = χlin(0) − χlin(∞) where χlin(0)
is the linear susceptibility at zero frequency and χlin(∞) is the linear susceptibility at
a-high-frequency,where the orientationalmechanismhas ceased to operate.Note that
X3 as well as X5 have the great advantage to be both dimensionless and independent
of the field amplitude.
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2.2 Frequency and Temperature Dependence of Third
Harmonic Susceptibility

In this section, we review the characteristic features of χ
(3)
3 both as a function of

frequency and temperature. We separate the effects at equilibrium above Tg and
those recorded below Tg in the out-of-equilibrium regime.

2.2.1 Above Tg

In the α regime:

Figure2 shows the modulus |χ(3)
3 | for propylene carbonate [10]. It is an archetypical

example of what has been measured in glassforming liquids close to Tg. For a given
temperature, one distinguishes two domains:

1. For very low frequencies, f/ fα ≤ 0.05, a plateau is observed as indicated by the
shaded area in Fig. 2, i.e., |χ(3)

3 | does not depend on frequency. This is reminis-
cent of the behavior of an ideal gas of dipoles where each dipole experiences a
Brownian motion without any correlation with other dipoles. In such an ideal
gas, |χ(3)

3 | has a plateau below the relaxation frequency and monotonously falls
to zero as one increases the frequency. Because the observed plateau in Fig. 2
is reminiscent to the ideal gas case, it has sometimes [3, 4] been called the
“trivial” regime. What is meant here is not that the analytical expressions of the
various χ3 are “simple”—see Appendix 2— but that the glassy correlations do
not change qualitatively the shape of χ

(3)
3 in this range. Physically, an ideal gas

of dipoles corresponds to the high-T limit of a fluid. This is why it is a useful
benchmark which allows to distinguish the “trivial” features and those involving
glassy correlations.

2. When rising the frequency above 0.05 fα , one observes for |χ(3)
3 | a hump for a

frequency fpeak/ fα � c where the constant c does not depend on T and weakly

Fig. 2 Third-order
harmonic component of the
dielectric susceptibility of
propylene carbonate [10].
Spectra of |χ(3)

3 |E2 are
shown for various
temperatures measured at a
field of 225 kV/cm. The
yellow-shaded plane
indicates the plateau arising
in the trivial regime
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depends on the liquid (e.g., c � 0.22 for glycerol and c � 0.3 for propylene car-
bonate). This hump is followed by a power law decrease |χ(3)

3 | ∼ f −β3 where
β3 < 1 is close [3] to the exponent governing the decrease of |χ1| above fα .
Qualitatively, this hump is important since it exists neither in the cubic suscep-
tibility of an ideal gas of dipoles nor in the modulus of the linear response |χ1|
of the supercooled liquids. This is why this hump has been termed the “glassy
contribution” to χ3. On amore quantitative basis, the proportionality of fpeak and
of fα has been observed for fα ranging from 0.01 Hz to 10 kHz—above 10 kHz
the measurement of χ

(3)
3 is obscured by heating issues, see [11] and Sect. 5.

The consistency of the above considerations can be checked by comparing the third-
order susceptibility of canonical glass formers to that of monohydroxy alcohols.
The linear dielectric response of the latter is often dominated by a Debye relax-
ation process, which is commonly ascribed to the fact that part of the molecules are
forming chain-like hydrogen-bonded molecule clusters with relatively high dipolar
moments [12]. This process represents an idealized Debye relaxation case as it lacks
the heterogeneity-related broadening found for other glass formers. Moreover, cor-
relations or cooperativity should not play a significant role for this process, because
cluster–cluster interactions can be expected to be rare compared to the intermolecular
interactions governing the α relaxation in most canonical glass formers [13]. Thus,
this relaxation process arising from rather isolated dipolar clusters distributed in a
liquid matrix can be expected to represent a good approximation of the “ideal dipole
gas” case mentioned above. The monohydroxy alcohol 1-propanol is especially well
suited to check this notion because here transitions between different chain topolo-
gies, as found in several other alcohols affecting the nonlinear response [14, 15],
do not seem to play a role [15]. Figure3a shows the frequency-dependent modulus,
real, and imaginary part of χ

(3)
3 E2 for 1-propanol at 120 K [13, 16]. Indeed, no

hump is observed in |χ(3)
3 |(ν) as predicted for a noncooperative Debye relaxation.

The solid lines were calculated according to Ref. [17], accounting for the expected
trivial polarization-saturation effect. Indeed, the spectra of all three quantities are
reasonably described in this way. In the calculation, for the molecular volume an
additional factor of 2.9 had to be applied to match the experimental data, which
is well consistent with the notion that the Debye relaxation in the monohydroxy
alcohols arises from the dynamics of clusters formed by several molecules.

In marked contrast to this dipole-gas-like behavior of the Debye relaxation of 1-
propanol, the χ

(3)
3 spectra related to the conventional α relaxation of canonical glass

formers exhibit strong deviations from the trivial response, just as expected in the
presence of molecular correlations. As an example, Fig. 3b shows the modulus, real,
and imaginary part of χ

(3)
3 E2 of glycerol at 204 K. Again the lines were calculated

assuming the trivial nonlinear saturation effect only [17]. Obviously, this approach
is insufficient to provide a reasonable description of the experimental data. Only
the detection of plateaus in the spectra arising at low frequencies agrees with the
calculated trivial response. This mirrors the fact that, on long time scales, the liquid
flow smoothes out any glassy correlations.
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Fig. 3 a Modulus, real, and
imaginary part of the
third-order dielectric
susceptibility χ

(3)
3 (times

E2) of 1-propanol at 120K
as measured with a field of
468 kV/cm [16]. The solid
lines were calculated
according to Ref. [17]. b
Same for glycerol at 204K
and 354 kV/cm [16]

(a)

(b)

When varying the temperature, two very different behaviors of χ
(3)
3 are observed:

1. In the plateau region, the weak temperature dependence of χ(3)
3 is easily captured

by convertingχ
(3)
3 into its dimensionless form X (3)

3 by usingEq. (8): one observes
[3, 4] that in the plateau region X (3)

3 does not depend at all on the temperature.
Qualitatively this is important since in an ideal gas of dipoles X (3)

3 does also
not depend on temperature, once plotted as a function of f/ fα . This reinforces
the “trivial” nature of the plateau region, i.e., the fact that it is not qualitatively
affected by glassy correlations.

2. In the hump region, |X (3)
3 ( f/ fα)| increases upon cooling, again emphasizing

the “anomalous”—or “non trivial”—behavior of the glassy contribution to χ
(3)
3 .

This increase of the hump of |X (3)
3 | has been related to that of the apparent

activation energy Eact(T ) ≡ ∂ ln τα/∂(1/T )—see Refs. [10, 18]—as well as
to TχT ≡ |∂ ln τα/∂ ln T | [3, 4, 19, 20]. Note that because the experimental
temperature interval is not so large, the temperature behavior of Eact and of
TχT is extremely similar. Both quantities are physically appealing since they are
related to the number Ncorr(T ) of correlatedmolecules: the line of thought where
Eact ∼ Ncorr(T ) dates back to the work of Adam and Gibbs [21]; while another
series of papers [22, 23] proposed a decade ago that Ncorr ∝ TχT . Figure4
illustrates how good is the correlation between the increase of the hump of
|X (3)

3 |—left axis—and Eact(T ). This correlation holds for five glass formers,
of extremely different fragilities, including a plastic crystal, where only the
orientational degrees of freedom experience the glass transition [24].
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Fig. 4 For several glass formers, Ncorr(T ) as extracted from the hump of |X (3)
3 | (left axis) closely

follows Eact(T ), deduced from the temperature dependence of the α-relaxation time [10] (right
axis). The abbreviations stand for propylene carbonate (PCA), 3-fluoroaniline (FAN), 2-ethyl-1-
hexanol (2E1H), cyclo-octanol (c-oct), and a mixture of 60% succinonitrile and 40% glutaronitrile
(SNGN). From Ref. [18]

In the excess wing regime:
In the dielectric-loss spectra of various glass formers, at high frequencies the

excess wing shows up, corresponding to a second, shallower power law at the right
flank of the α peak [25]. Figure5a shows loss spectra of glycerol, measured at low
and high fields up to 671 kV/cm [26, 27], where the excess wing is indicated by
the dashed lines (It should be noted that the difference of these loss curves for high
and low fields is directly related to the cubic susceptibility χ

(1)
3 , defined in Eq. (5)

[16]). As already reported in the seminal paper by Richert and Weinstein [28], in
Fig. 5a at the right flank of the α-relaxation peak a strong field-induced increase of
the dielectric loss is foundwhile no significant field dependence is detected at its low-
frequency flank. In Ref. [28] it was pointed out that these findings are well consistent
with the heterogeneity-based box model (see Sect. 4.3). However, as revealed by
Fig. 5a, remarkably in the region of the excess wing no significant nonlinear effect
is detected. Time-resolved measurements, later on reported by Samanta and Richert
[29], revealed nonlinearity effects in the excess wing region when applying the high
field for extended times of up to several 10,000 cycles. Anyhow, the nonlinearity in
this region seems to be clearly weaker than for the main relaxation and the nonlinear
behavior of the excess wing differs from that of the α relaxation.

To checkwhether weaker nonlinearity in the excess wing region is also revealed in
higher harmonic susceptibilitymeasurements, Fig. 5b directly compares themodulus
of the linear dielectric susceptibility of glycerol at 191K to the third-order suscep-
tibility |χ(3)

3 | (multiplied by E2) [30] (We show |χ1| corrected for χ1,∞ = ε∞ − 1
caused by the ionic and electronic polarizability, whose contribution to the modulus
strongly superimposes the excess wing). While the linear response exhibits a clear
signature of the excess wing above about 100 Hz (dashed line), no trace of this
spectral feature is found in |χ(3)

3 (ν)|. Thus, we conclude that possible nonlinearity
contributions arising from the excess wing, if present at all, must be significantly
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Fig. 5 a Dielectric loss of glycerol measured at fields of 14 kV/cm (open symbols) and 671 kV/cm
(closed symbols) shown for four temperatures [27]. The solid lines were measured with 0.2 kV/cm
[26]. The dashed lines indicate the excess wing. b Open triangles: Absolute values of χ1 (corrected
for χ1,∞ = ε∞ − 1) at 14 kV/cm for glycerol at 191 K. Closed triangles: χ

(3)
3 E2 at 565 kV/cm

[30]. The solid lines indicate similar power laws above the peak frequency for both quantities. The
dashed line indicates the excess wing in the linear susceptibility at high frequencies, which has no
corresponding feature in χ

(3)
3 (ν)

weaker than the known power law decay of the third-order susceptibility at high
frequencies, ascribed to the nonlinearity of the α relaxation.

The excess wing is often regarded as the manifestation of a secondary relaxation
process, partly superimposed by the dominating α-relaxation [31, 32]. Thus, the
weaker nonlinearity of the excess wing seems to support long-standing assumptions
of the absence of cooperativity in the molecular motions that lead to secondary
relaxation processes [33, 34]. Moreover, in a recent work [35] it was pointed out
that the small or even absent nonlinear effects in the excess wing region can also be
consistently explained within the framework of the coupling model [34], where the
excess wing is identified with the so-called “nearly constant loss” caused by caged
molecular motions.
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2.2.2 Below Tg

Below Tg, the physical properties are aging, i.e., they depend on the time ta elapsed
since the material has fallen out of equilibrium, i.e., since the glass transition tem-
perature Tg has been crossed. The mechanism of aging is still a matter of controversy
[36–40], owing to the enormous theoretical and numerical difficulties inherent to out-
of-equilibrium processes. Experimentally, a few clear-cut results have been obtained
in spin glasses [41] where it was shown, by using nonlinear techniques, that the
increase of the relaxation time τα with the aging time ta can be rather convincingly
attributed to the growth of the number Ncorr of correlated spins with ta. Very recently
extremely sophisticated numerical simulations have been carried out by the so called
Janus international collaboration, yielding, amongmanyother results, a strongmicro-
scopic support [42] to the interpretation given previously in the experiments of Ref.
[41].

In structural glasses, the aging properties of the linear response have been reported
more than one decade ago [44, 45]. More recently, the aging properties of χ

(3)
3

were reported in glycerol [43] and its main outputs are summarized in Figs. 6 and
7. A glycerol sample previously well equilibrated at Tg + 8 K was quenched to a
working temperature Tw = Tg − 8 K and its third harmonic cubic susceptibility was
continuously monitored as a function of ta. The dominant effect is the increase of
the relaxation time τα with ta. In Ref. [43] τα increases by a factor �6 between
the arrival at Tw—i.e., ta = 0—and the finally equilibrated situation reached for
ta 
 τα,eq where τα is equal to its equilibrium value τα,eq—and no longer evolves
with ta. This variation of τα with the aging time ta can be very accurately deduced
from the shift that it produces on the imaginary part of the linear response χ ′′( f, ta).

Fig. 6 During the aging of glycerol—at Tg − 8K—the increase of τα with the aging time ta is
measured by rescaling the aging data—symbols—of χ ′′

1—right axis onto the equilibrium data—

solid black line. The corresponding scaling fails for X (3)
3 ( f, ta)—left axis—revealing the increase

of Ncorr during aging. See [43] for details about the quantity z(ta)/z(T ) which is involved in the
left axis but varies by less than 2% during aging. From [43]
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This is summarized in Fig. 6 for 5 different frequencies: when plotted as a function of
f/ fα(ta) ≡ 2π f τα(ta), the aging values of χ ′′( f, ta)—symbols—are nicely rescaled
onto the equilibriumvaluesχ ′′( f, eq)—continuous line—measuredwhen ta 
 τα,eq .
The most important experimental result is that this scaling fails for |X (3)

3 ( f, ta)| as
shown by the left axis of Fig. 6: For short aging times, the difference between aging
data (symbols) and equilibrium values (continuous line) is largest. This has been
interpreted as an increase of Ncorr with the aging time ta. This increase of Ncorr(ta)
toward its equilibrated value Ncorr(eq) is illustrated in Fig. 7 where the variation of
δ = Ncorr(ta)/Ncorr(eq) is plotted as a function of ta. It turns out to be independent
of the measuring frequency, which is a very important self-consistency check.

The increase of Ncorr during aging can be rather well captured by extrapolating
the Ncorr(T ) variation obtained from the growth of the hump of |χ(3)

3 | measured at
equilibrium above Tg and by translating the τα(ta) in terms of a fictive temperature
Tfict(ta) which decreases during aging, finally reaching Tw when ta 
 τα,eq. This
yields the continuous line in Fig. 7, which fairly well captures the data drawn from
the aging of χ

(3)
3 . Because this extrapolation roughly agrees with the aging data,

one can estimate that the quench from Tg + 8 K to Tw = Tg − 8 K corresponds to
a doubling of Ncorr,eq. The approximately 10% increase reported in Fig. 7 is thus
the long time tail of this increase, while the first 90% increase cannot be measured
because it takes place during the quench.

Beyond the qualitative result that Ncorr increases during aging, these χ
(3)
3 (ta) data

can be used to test quantitatively some theories about the emergence of the glassy
state. By gathering, in the inset of Fig. 7, the equilibrium data—symbols lying in
the [1; 1.3] interval of the horizontal axis—and the aging data translated in terms of
Tfict(ta)—symbols lying in the [2; 2.3] interval—one extends considerably the exper-
imental temperature interval, which puts strong constraints onto theories. Summariz-
ing two different predictions by ln(τα/τ0) = Y Nψ/3

corr /(kBT ) with Y ∼ T ;ψ = 3/2
for Random First- Order Transition Theory (RFOT) [46] while Y ∼ 1;ψ = 1 for the
numerical approach of Ref. [47], Fig. 7 is designed to test these two predictions, see

Fig. 7 The values of
δ = Ncorr(ta)/Ncorr(eq)
extracted from Fig. 6 show
the increase of Ncorr during
aging. Inset: different
theories are tested gathering
equilibrium and aging
experiments. From [43]
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Ref. [43] for details: it shows that both of them are consistent with experiments—
contrary to another prediction relying onto a critical relation τα ∝ Nz

corr, yielding an
unrealistic large value of z ∼ 20 to account for the experiments.

2.3 Strong Similarities Between Third and First Cubic
Susceptibilities

We now come back to equilibrium measurements, i.e., above Tg—and compare the
behavior of the third harmonic cubic susceptibility χ

(3)
3 as well as the first harmonic

cubic susceptibilities χ
(1)
3 and χ

(1)
2;1 introduced in Eq. (7). We remind that χ(1)

2;1 corre-
sponds to the case, where a static field Est is superimposed to the AC field E cos(ωt).

Figures8 and 9 show themodulus and the phases of the three cubic susceptibilities
for glycerol and for propylene carbonate.

Fig. 8 For glycerol and
fα � 2 Hz, modulus—top
panel—and phase—bottom
panel—of the three cubic
susceptibilities defined in
Eqs. (5) and (7). The salient
features of the three cubic
susceptibilities are similar,
which strongly suggests a
common physical
origin—see text. Dotted lines
are Arg[X (1)

2;1] + π or +2π
and support Eqs. (9) and
(10). From [48]
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Fig. 9 Same representation
as in Fig. 8 but for propylene
carbonate. From [48]
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1. For the modulus: At a fixed temperature, the main features of the frequency
dependence of |χ(1)

3 | and of |χ(1)
2;1| are the same as those of |χ(3)

3 |: when increasing
the frequency, one first observes a low-frequency plateau, followed by a hump in
the vicinity of fα and then by a power law decrease ∼ f −β3 . The most important
differences between the three cubic susceptibilities are the precise location of the
hump and the absolute value of the height of the hump. As for the temperature
dependence, one recovers for |χ(1)

3 | and for |χ(1)
2;1| what we have already seen for

|χ(3)
3 |: once put into their dimensionless forms X3 the three cubic susceptibilities

do not depend on T in the plateau region, at variance with the region of the hump
where they increase upon cooling typically as Eact(T ) ≡ ∂ ln τα/∂(1/T ) which
in this T range is very close to TχT ≡ |∂ ln τα/∂ ln T | [3, 4, 10, 19, 20, 48].

2. The phases of the three cubic susceptibilities basically do not depend explicitly
on temperature, but only on u = f/ fα , through a master curve that depends only
on the precise cubic susceptibility under consideration. These master curves
have the same qualitative shape as a function of u in both glycerol and propy-
lene carbonate. We note that the phases of the three cubic susceptibilities are
related to each other. In the plateau region all the phases are equal, which is
expected because at low frequency the systems responds adiabatically to the
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field. At higher frequencies, we note that for both glycerol and propylene car-
bonate (expressing the phases in radians):

Arg
[
X (1)
3

]
≈ Arg

[
X (1)
2;1
]

+ π for f/ fα ≥ 0.5; (9)

Arg
[
X (1)
3

]
≈ Arg

[
X (3)
3

]
for f/ fα ≥ 5 (10)

which are quite nontrivial relations.
3. In the phase ofχ(1)

3 of propylene carbonate (Fig. 9), a jumpofπ is observedwhich
is accompanied by the indication of a spikelike minimum in the modulus—see
[48] for more details. A similar jump may also be present in glycerol (Fig. 8).
This jump in the phase happens at the crossover between the T -independent
“plateau” and the strongly T -dependent hump. More precisely in the “plateau”
region, one observes a reduction of the real part of the dielectric constant χ ′

1,
while around the humpχ ′

1 is enhanced. At the frequency of the jump, both effects
compensate and this coincides with a very low value of the imaginary part of
X (1)
3 .

2.4 Frequency and Temperature Dependence of Fifth
Harmonic Susceptibility

In this section, we first explain why measuring χ
(5)
5 is interesting for a better under-

standing of the glass transition. We then see the characteristic features of χ
(5)
5 as a

function of frequency and temperature.

2.4.1 Interest in the Fifth-Order Susceptibility

In the previous sections, we have seen that the increase of the hump of |X3| upon
cooling has been interpreted as reflecting that of the correlation volume Ncorra3.
However in practice, this increase of Ncorr remainsmodest—typically it is an increase
by a factor 1.5—in the range 0.01 Hz≤ fα ≤ 10 kHz, where the experiments are
typically performed. Physically, this may be interpreted by the fact that an increase
of Ncorr changes the activation energy, yielding an exponentially large increase of
the relaxation time τα . Now if one demands, as in standard critical phenomena, to
see at least a factor of 10 of increase of |X3| to be able to conclude on criticality,
one is lead to astronomical values of τα: extrapolating the above result, e.g., |X3| ∝
|∂ ln τα/∂ ln T | and assuming a VFT law for τα , one concludes that the experimental
characteristic times corresponding to an increase of |X3| by one order of magnitude
is 0.1 ms ≤ τα ≤ 1018 s. This means experiments lasting longer than the age of the
universe.
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This issue of astronomical timescales can be circumvented by using a less com-
monly exploited but very general property of phase transitions: close to a critical point
all the responses diverge together [49], since the common cause of all these diver-
gences is the growth of the same correlation length. Showing that all the responses
of order k behave as a power law of the first diverging susceptibility is another
way of establishing criticality. For glasses, we have seen in Eq. (2) that, apart from
χ1 which is blind to glassy correlations, all other responses χk≥3 grow as power
laws with the amorphous ordering length �: χ3 ∝ (l/a)2df −d and χ5 ∝ (l/a)3df −d .
Therefore, assuming that the main cause for the singular responses appearing in the
system is the development of correlations, there should be a scaling relation between
the third- and fifth-order responses, namely one should observe χ5 ∝ χ

μ(df )
3 where

μ(df ) = (3df − d)/(2df − d).
Measuring χ5 is, of course, extremely difficult, because, for the experimentally

available electric fields, one has the hierarchy |χ1|E 
 |χ3|E3 
 |χ5|E5. However,
this was done in Ref. [50] and we shall now briefly review the corresponding results.

2.4.2 Characteristic Features of the Fifth-Order Susceptibility

The modulus |χ(5)
5 | of glycerol and propylene carbonate [50] can be seen in Fig. 10

as a function of frequency and temperature. Similarly to what has been seen in
Sect. 2.2 on |χ(3)

3 |, the frequency dependence can be separated in two domains (see
also Fig. 11):

1. For very low reduced frequencies ( f/ fα ≤ 0.05), there is a plateau (indicated by
the yellow-shaded planes in Fig. 10), where the reduced response X (5)

5 depends
neither on frequency nor on temperature. In this plateau, the behavior of the
supercooled liquid cannot be qualitatively distinguished from the behavior
expected from a high-temperature liquid of dipoles, depicted by the “trivial”
X (k)
k curves represented as dotted lines in Fig. 11.

2. At higher frequencies, we can observe a hump of |X (5)
5 | that remarkably occurs

at the same peak frequency fpeak as in |χ(3)
3 | in both glycerol and propylene

carbonate. Again one finds that, for the five temperatures where the peak is
studied, fpeak/ fα = c, where the constant c does not depend on T and weakly
changes with the liquid. This peak is much sharper for |X (5)

5 | than for |X (3)
3 |:

this is clearly evidenced by Fig. 11 where the linear-, cubic-, and fifth-order
susceptibilities are compared, after normalization to their low-frequency value.
This shows that the anomalous features in the frequency dependence are stronger
in |X (5)

5 | than in |X (3)
3 |: This may be regarded as a sign of criticality since close to

a critical point, the larger the order k of the response, the stronger the anomalous
features of Xk .

A second, and more quantitative indication of incipient criticality is obtained by
studying the temperature dependence of |X (5)

5 | and by comparing it with that of
|X (3)

3 |:
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Fig. 10 Measured values of |χ(5)
5 | for glycerol—upper panel—and propylene carbonate—lower

panel—(the spheres and cubes in the upper panel indicate results from two different experimental
setups). The hump lies at the same frequency as for |χ(3)

3 | and has significantly stronger variations
in frequency and in temperature, see Figs. 11 and 12. The arrows indicate the peak positions fα in
the dielectric loss. The yellow-shaded planes indicate the plateau arising in the trivial regime. From
Ref. [50]

1. In the plateau region at f/ fα ≤ 0.05, the value of |X (5)
5 | does not depend on

the temperature. This shows that the factor involved in the calculation of the
dimensionless X (5)

5 from χ
(5)
5 —see Eq. (8)—is extremely efficient to remove all

trivial temperature dependences. As the trivial behavior depends on frequency—
see the dashed lines of Fig. 11— the “singular” parts of X3 and of X5 are obtained
as follows:
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Fig. 11 For glycerol,
comparison of the fifth, third
and linear
susceptibilities—the latter is
noted |χ(1)

1 |. The hump for

|χ(5)
5 | is much stronger than

that of |χ(3)
3 |. The dashed

lines are the trivial
contribution—see [50] for
details. From Ref. [50]
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Fig. 12 Temperature
evolution of the singular
parts of fifth-and third-order
responses. All quantities are
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exponent μ relating |X5| and
|X3|μ and to conclude that
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domains are compact —see
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represent the uncertainty on
μ. From Ref. [50]
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X (3)
3,sing. ≡ X (3)

3 − X (3)
3,trivial, X (5)

5,sing. ≡ X (5)
5 − X (5)

5,trivial (11)

which correspond in Fig. 11 to a complex subtraction between the measured
data—symbols— and the trivial behavior—dashed lines.

2. Around the hump, the temperature behavior of |X (5)
5,sing.( fpeak)| is compared to that

of |X (3)
3,sing.( fpeak)|μ where μ is an exponent, that is, determined experimentally

by looking for the best overlap of the two series of data in Fig. 12—see [50] for
details. This leads us to values of μ = 2.2 ± 0.5 in glycerol and μ = 1.7 ± 0.4
in propylene carbonate. Therefore, within experimental uncertainties, results for
|X (3)

3 | and |X (5)
5 | would seem to advocate a value of μ ≈ 2. With μ = (3df −

d)/(2df − d) as seen in Eq. (2)—see also Eq. (13) below—this corresponds to
a fractal dimensions of df ≈ 3.

3 Testing Bouchaud–Biroli’s Predictions as well as the
General Theories of the Glass Transition

Having shown the experimental data for the nonlinear responses, we now move to
the interpretation part and start with Bouchaud–Biroli’s approach (BB), which is
the most general one. The more specific and/or phenomenological approaches of
nonlinear responses will be detailed in Sect. 4.

3.1 Bouchaud–Biroli’s Predictions

3.1.1 General Considerations About χ2k+1

To illustrate the general relations existing between the susceptibility χ2k+1 and
the correlation function of order 2k + 2—with k ≥ 0—in a system at thermal
equilibrium, let us consider a sample, submitted to a constant and uniform mag-
netic field h, containing N spins with an Hamiltonian H that depends on the
spin configuration “c”. The elementary relations of statistical physics yield the
magnetization M ≡ ∑

i <Si>/(Na3), where a3 is the elementary volume and
where the thermal average <Si> is obtained with the help of the partition
function Z = ∑

c exp (−βH + βh
∑

k Sk)bywriting<Si> = ∑
c Si exp (−βH +

βh
∑

k Sk)/Z with β = 1/(kBT ). The linear response χ1 ≡ (∂M/∂h)h=0 is readily
obtained as follows:

Na3χ1 = 1

βZ

(
∂2Z

∂h2

)
h=0

− 1

β

(
∂Z

Z∂h

)2

h=0
= β

⎛
⎜⎝∑
i1;i2

<Si1Si2> −
⎛
⎝∑

i1

<Si1>

⎞
⎠
2
⎞
⎟⎠ ,

(12)
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which shows that the linear response is related to the connected two-point cor-
relation function. Repeating the argument for higher order responses—e.g., χ3 ∝
(∂3M/∂h3)h=0—one obtains that χ2k+1 is connected to the (2k + 2) points correla-
tion function -e.g.,χ3 is connected to a sum combining<Si1Si2Si3Si4>,<Si1Si2Si3>
<Si4>, <Si1Si2><Si3Si4>, etc.

3.1.2 The Spin Glass Case

Spin glasses are characterized by the fact that there is frozen disorder, i.e., the set of
the interaction constants {Ji; j } between two given spins Si and Sj is fixed once and
for all, and has a random sign—half of the pairs of spins are coupled ferromagneti-
cally, the other half antiferromagnetically. Despite the fact that the system is neither
a ferromagnet, nor an antiferromagnet, upon cooling it freezes, below a critical tem-
perature TSG , into a solid—long-range ordered—state called a spin glass state. This
amorphous ordering is not detected by χ1 which does not diverge at TSG : this is
because the various terms of

∑
i1;i2 <Si1Si2> cancel since half of them are positive

and the other half are negative. By contrast, the cubic susceptibilityχ3 contains a term∑
i1;i2 <Si1Si2>2, which does diverge since all its components are strictly positive:

this comes from the fact that the influence <Si1Si2> of the polarization of spin Si1
on spin Si2 may be either positive or negative, but it has the same sign as the reverse
influence <Si2Si1> of spin Si2 on spin Si1. This is why the amorphous ordering is
directly elicited by the divergence of the static value of χ3 when decreasing T toward
TSG , as already illustrated in Fig. 1a. By adding a standard scaling assumption close
to TSG , one can account for the behavior of χ3 at finite frequencies, i.e., one easily
explains that χ3 is frequency independent for ωτα ≤ 1, and smoothly tends to zero
at higher frequencies. Finally, similar scaling arguments about correlation functions
easily explain the fact that the stronger k ≥ 1 the more violent the divergence of
χ2k+1 in spin glasses, as observed experimentally by Lévy [51].

3.1.3 The Glassforming Liquids Case

The case of glassforming liquids is, of course, different from that of spin glasses for
some obvious reasons (e.g., molecules have both translational and rotational degrees
of freedom). As it has been well established that rotational and translational degrees
of freedom are well coupled in most of liquids, it is tempting to attempt a mapping
between spin glasses and glassforming liquids by replacing the spins Si by the local
fluctuations of density δρi or by the dielectric polarization pi . As far as nonlinear
responses are concerned, this mapping requires a grain of salt because (a) there is
no frozen-in disorder in glassforming liquids, and (b) there is a nonzero value of the
molecular configurational entropy Sc around Tg.

The main physical idea of BB’s work [9] is that these difficulties have an effect
which is important at low frequencies and negligible at high enough frequencies:
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1. Provided f ≥ fα , i.e., for processes faster than the relaxation time, one can-
not distinguish between a truly frozen glass and a still flowing liquid. If some
amorphous order is present in the glassforming system, then nontrivial spatial
correlations should be present and lead to anomalously high values of nonlinear
susceptibilities: this holds for very general reasons—e.g., the Langevin equation
for continuous spins which is used in Ref. [9] needs not to specify the detailed
Hamiltonian of the system—and comes from an analysis of the most diverg-
ing term in the four terms contributing to χ3(ω). If the amorphous correlations
extend far enough to be in the scaling regime, one can neglect the subleading
terms and one predicts that the nonlinear susceptibilities are dominated by the
glassy correlations and given by [9, 50]:

Xglass
2k+1( f, T ) = [Ncorr(T )]αk × Hk

(
f

fα

)
with αk = (k + 1) − d/df , (13)

where the scaling functions Hk do not explicitly depend on temperature, but
depend on the kind of susceptibility that is considered, i.e., X (1)

3 , X (3)
3 , or X (1)

2,1
in the third-order case k = 1. We emphasize that in Ref. [9] the amorphously
ordered domains were assumed to be compact, i.e., df = d, yielding α1 = 1, i.e.,
X3 ∝ Ncorr. The possibility of having a fractal dimension df lower than the spatial
dimension d was considered in Ref. [50] where the fifth-order response was
studied. As already shown in Sect. 2.4.2, the experimental results were consistent
with df = d, i.e., X5 ∝ N 2

corr.
2. In the low-frequency regime f 
 fα , relaxation has happened everywhere in the

system, destroying amorphous order [52] and the associated anomalous response
to the external field and Hk(0) = 0. In other words, in this very-low-frequency
regime, every molecule behaves independently of others and X2k+1 is dominated
by the “trivial” response of effectively independent molecules.

Due to the definition adopted in Eq. (8), the trivial contribution to X2k+1 should
not depend on temperature (or very weakly) . Hence, provided Ncorr increases upon
cooling, there will be a regime where the glassy contribution Xglass

2k+1 should exceed
the trivial contribution, leading to hump-shaped nonlinear susceptibilities, peaking
at fpeak ∼ fα , where the scaling function Hk reaches its maximum.

3.2 Experimentally Testing BB’s Predictions

We now briefly recall why all the experimental features reported in Sect. 2 are well
accounted for by BB’s prediction:

1. The modulus of both the third- order susceptibilities |χ(3)
3 |, |χ(1)

3 |, |χ(1)
2;1| and of

|χ(5)
5 | have a humped shape in frequency, contrary to |χ1|.
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2. Due to the fact that Hk does not depend explicitly on T , the value of f peak/ fα
should not depend on temperature, consistent with the experimental behavior.

3. Because of the dominant role played by the glassy response for f ≥ fpeak, the
T -dependence of |X2k+1| will be much stronger above fpeak than in the trivial
low-frequency region.

4. Finally, because nonlinear susceptibilities are expressed in terms of scaling func-
tions, it is natural that the behavior of their moduli and phases are quantita-
tively related especially at high frequency where the “trivial” contribution can
be neglected, consistent with Eqs. (9) and (10)—see below for a more quantita-
tive argument in the context of the so-called “Toy model” [53].

Having shown that BB’s prediction is consistent with experiments, the temperature
variation of Ncorr can be drawn from the increase of the hump of X3 upon cooling. It
has been found [3, 4, 10, 19, 20] that the temperature dependence of Ncorr inferred
from the height of the humps of the three X3s are compatible with one another, and
closely related to the temperature dependence of TχT , which was proposed in Refs.
[22, 23] as a simplified estimator of Ncorr in supercooled liquids. The convergence
of these different estimates, that rely on general, model-free theoretical arguments,
is a strong hint that the underlying physical phenomenon is indeed the growth of
collective effects in glassy systems—aconclusion thatwill be reinforcedby analyzing
other approaches in Sect. 4.

Let us again emphasize that the BB prediction relies on a scaling argument, where
the correlation length � of amorphously ordered domains is (much) larger than the
molecular size a. This naturally explains the similarities of the cubic responses in
microscopically very different liquids such as glycerol and propylene carbonate, as
well as many other liquids [10, 20]. Indeed, the microscopic differences are likely
to be wiped out for large � ∝ N

1/df
corr , much like in usual phase transitions.

3.3 Static Versus Dynamic Length Scale? χ3 and χ5 as Tests
of the Theories of the Glass Transition

We now shortly discuss whether Ncorr, as extracted from the hump of |X3|, must
be regarded as a purely dynamical correlation volume, or as a static correlation
volume. This ambiguity arises because theorems relating (in a strict sense) nonlinear
responses to high-order correlation functions only exist in the static case, and that
supplementary arguments are needed to interpret the humped shape of X3 (and of
X5) observed experimentally. In the original BB’s work [9], it was clearly stated that
Ncorr was a dynamical correlation volume since it was related to a four-point time-
dependent correlation function. This question was revisited in Ref. [50] where it was
argued that the experimental results could be accounted for only when assuming
that Ncorr is driven by static correlations. This statement comes from an inspection
of the various theories of the glass transition [50]: as we now briefly explain, only
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the theories where the underlying static correlation volume is driving the dynamical
correlation volume are consistent with the observed features of nonlinear responses.

As afirst example, the case of the family of kinetically constrainedmodels (KCMs)
[54] is especially interesting since dynamical correlations, revealed by, e.g., four-
point correlation functions, exist even in the absence of a static correlation length.
However in the KCM family, one does not expect any humped shape for nonlinear
responses [50]. This is not the case for theories (such as RFOT [46] or Frustration
theories [55]) where a nontrivial thermodynamic critical point drives the glass tran-
sition: in this case, the incipient amorphous order allows to account [50] for the
observed features of X3 and X5. This is why it was argued in [48, 50] that, in order
for X3 and X5 to grow, some incipient amorphous order is needed, and that dynam-
ical correlations in strongly supercooled liquids are driven by static (“point-to-set”)
correlations [56] —this statement will be reinforced in Sect. 4.2.

4 More Specific Models for Harmonic Susceptibilities

We now review the various other approaches that have been elaborated for the non-
linear responses of glassforming liquids. We shall see that most of them—if not
all—are consistent with BB’s approach since they involve Ncorr as a key—implicit
or explicit— parameter.

4.1 Toy and Pragmatical Models

The “Toy model” has been proposed in Refs. [19, 57] as a simple incarnation of the
BBmechanism, while the “Pragmatical model” is more recent [58, 59]. Both models
start with the same assumptions: (i) each amorphously ordered domain is compact
and contains Ncorr molecules, which yields a dipolemoment∝ √

Ncorr and leads to an
anomalous contribution to the cubic response Xglass

3 ∝ Ncorr; (ii) there is a crossover
at low frequencies toward a trivial cubic susceptibility contribution X triv

3 which does
not depend on Ncorr. More precisely, in the “Toy model”, each amorphously ordered
domain is supposed to live in a simplified energy landscape, namely an asymmetric
double-well potential with a dimensionless asymmetry δ, favoring one well over the
other. The most important difference between the Toy and the Pragmatical model
comes from the description of the low-frequency crossover, see Refs. [57, 59] for
more details.

On top of Ncorr and δ, the Toy model uses a third adjustable parameter, namely
the frequency f ∗ below which the trivial contribution becomes dominant. In Ref.
[57], both the modulus and the phase of X (3)

3 (ω, T ) and of X (1)
3 (ω, T ) in glycerol

were well fitted by using f ∗ � fα/7, δ = 0.6 and, for T = 204 K, Ncorr = 5 for X (3)
3

and Ncorr = 15 for X (1)
3 . Figure13 gives an example of the Toy model prediction for
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Fig. 13 Fit of the values of
X (3)
3 measured in

glycerol—symbols—at
204 K by using the Toy
model with Ncorr = 5,
δ = 0.6 and f ∗ � fα/7. The
prediction of the Toy model
is given by the two thick
solid lines (main panel for
the modulus of X (3)

3 and inset
for its phase). From Ref. [57]

X (3)
3 in glycerol. Besides, in Ref. [19], the behavior of X (1)

2,1(ω, T ) in glycerol was
fitted with the same values of δ and of f ∗ but with Ncorr = 10 (at a slightly different
temperature T = 202 K). Of course, the fact that a different value of Ncorr must be
used for the three cubic susceptibilities reveals that the Toy model is oversimplified,
as expected. However, keeping inmind that the precise value of Ncorr does not change
the behavior of the phases, we note that the fit of the three experimental phases is
achieved [19, 57] by using the very same values of f ∗/ fα and of δ. This means that
Eqs. (9) and (10) are well accounted for by the Toy model by choosing two free
parameters. This is a quantitative illustration of how the BB general framework does
indeed lead to strong relations between the various nonlinear susceptibilities, such
as those contained in Eqs. (9) and (10).

Let us mention briefly the Asymmetric Double-Well Potential (ADWP) model
[60], which is also about species living in a double well of asymmetry energy Δ,
excepted that two key assumptions of the Toy and Pragmatical models are not made:
the value of Ncorr is not introduced, and the crossover to trivial cubic response is not
enforced at low frequencies. As a result, the hump for |X (3)

3 | is predicted [60, 61] only
when the reduced asymmetry δ = tanh(Δ/(2kBT )) is close to a very specific value,
namely δc = √

1/3, where X3 vanishes at zero frequency due to the compensation
of its several terms. However, at the fifth order [61], this compensation happens for
two values of δ very different from δc: as a result, the model cannot predict a hump
happening both for the third and for the fifth order in the same parametric regime,
contrarily to the experimental results of Ref. [50]. This very recent calculation of
fifth-order susceptibility [61] reinforces the point of view of the Toy and Pragmatical
models, which do predict a hump occurring at the same frequency and temperature
due to their two key assumptions (Ncorr and crossover to trivial nonlinear responses
at low frequencies). This can be understood qualitatively: because the Toy model
predicts [57] an anomalous contribution Xglass

2k+1 ∼ [Ncorr]k , provided that Ncorr is
large enough, the magnitude of this contribution is much larger than that of the small
trivial contribution X triv.

2k+1 ∼ 1, and the left side of the peak of |X2k+1| arises just
because the Toy model enforces a crossover from the large anomalous response to
the small trivial response at low frequencies f 
 fα . As for the right side of the
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peak, it comes from the fact that |X2k+1| → 0 when f 
 fα for the simple reason
that the supercooled liquid does not respond to the field at very large frequencies.

4.2 Entropic Effects

A contribution to nonlinear responses was recently calculated by Johari in Refs. [62,
63] in the case where a static field Est drives the supercooled liquid in the nonlinear
regime. Johari’s idea was positively tested in the corresponding χ

(1)
2;1 experiments in

Refs. [64–67]—see however Ref. [68] for a case where the agreement is not as good.
It was then extended to pure ac experiments—and thus to χ

(3)
3 —in Refs. [69, 70].

The relation between Johari’s idea and Ncorr was made in Ref. [48].

4.2.1 When a Static Field Est is applied

Let us start with the case of χ
(1)
2;1 experiments, i.e., with the case where a static field

Est is superimposed onto an AC field E cos(ωt). In this case, there is a well-defined
variation of entropy [δS]Est

induced by Est, which, for small Est and a fixed T , is
given by

[δS]Est
≈ 1

2
ε0

∂Δχ1

∂T
E2
sta

3, (14)

where a3 is the molecular volume. Equation (14) holds generically for any material.
However, in the specific case of supercooled liquids close enough to their glass
transition temperature Tg, a special relation exists between the molecular relaxation
time τα and the configurational contribution to the entropy Sc. This relation, first
anticipated by Adam and Gibbs [21], can be written as

ln
τα(T )

τ0
= Δ0

T Sc(T )
, (15)

where τ0 is a microscopic time, and Δ0 is an effective energy barrier for a molecule.
The temperature dependence of T Sc(T ) quite well captures the temperature variation
of ln(τα), at least for a large class of supercooled liquids [71].

Following Johari [62, 63] let us now assume that [δS]Est
is dominated by the

dependence of Sc on field—see the Appendix of Ref. [48] for a further discussion of
this important physical assumption. Combining Eqs. (14) and (15), one finds that a
static field Est produces a shift of ln(τα/τ0) given by

[δ ln τα]Est
= − Δ0

T S2c
[δS]Est

. (16)
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As shown in Ref. [48] this entropic effect gives a contribution to X (1)
2;1, which we call

J (1)
2;1 after Johari. Introducing x = ωτα , the most general and model-free expression

of J (1)
2;1 reads

J (1)
2;1 = −kBΔ0

6S2c

[
∂ ln (Δχ1)

∂T

][
∂

χlin

Δχ1

∂ ln x

]
∝ 1

S2c
, (17)

where χlin is the complex linear susceptibility.
Equation (17) deserves three comments:

1. |J (1)
2;1 | has a humped shaped in frequency with a maximum in the region of

ωτα � 1, because of the frequency dependence of the factor ∝ ∂χlin/∂ ln x in
Eq. (17).

2. The temperature variation of J (1)
2;1 is overwhelmingly dominated by that of S−1

c
because Sc ∝ (T − TK ) with TK the Kauzmann temperature.

3. The smaller Sc, the largermust be the size of the amorphously ordered domains—
in the hypothetical limit where Sc would vanish, the whole sample would be
trapped in a single amorphously ordered sate and Ncorr would diverge. In other
words, there is a relation between S−1

c and Ncorr, which yields [48]:

J (1)
2;1 ∝ Nq

corr, (18)

where it was in shown in Ref. [48] that:

a. the exponent q lies in the [2/3; 2] interval when one combines the Adam–
Gibbs original argument with general constraints about boundary conditions
[48].

b. the exponent q lies in the [1/3; 3/2] interval [48] when one uses the RFOT
and plays with its two critical exponents Ψ and θ . Notably, taking the “rec-
ommended RFOT values”—Ψ = θ = 3/2 for d = 3—gives q = 1, which
precisely corresponds to BB’s prediction. In this case, entropic effects are
a physically motivated picture of BB’s mechanism—see [48] for a refined
discussion.

4.2.2 When a Pure AC Field E cos(ωt) is applied

Motivated by several works [64–67] showing that Johari’s reduction of entropy fairly
well captures the measured χ

(1)
2;1 in various liquids, an extension of this idea was

proposed in Refs. [69, 70] for pure ac experiments, i.e., for χ
(3)
3 and χ

(1)
3 . This has

given rise to the phenomenological model elaborated in Refs. [69, 70] where the
entropy reduction depends on time, which is nevertheless acceptable in the region
ωτα ≤ 1 where the model is used. Figure 14 shows the calculated values for |χ(3)

3 |
at three temperatures for glycerol. The calculation fairly well reproduces the hump
of the modulus observed experimentally—the phase has not been calculated. As



246 S. Albert et al.

Fig. 14 The model elaborated in Refs. [69, 70] includes three contributions—entropy reduction,
Boxmodel, and trivial. It predicts for |χ(3)

3 | the solid lines which account very well for the measured

values in glycerol in frequency and in temperature. The peak of |χ(3)
3 | arises because of the entropy

reduction effect (noticed “sing. Tfic.”) which completely dominates the two other contributions in
the peak region, as shown by the inset. From Ref. [70]

very clearly explained in Ref. [70], the hump displayed in Fig. 14 comes directly
from the entropic contribution and not from the two other contributions included in
the model (namely the “trivial”—or “saturation”—contribution, and the Box model
contribution—see Sect. 4.3 below).

Summarizing this section about entropy effects, we remind the two main assump-
tions made by Johari: (i) the field-induced entropy variation mainly goes into the
configurational part of the entropy; (ii) its effects can be calculated by using the
Adam–Gibbs relation. Once combined, these two assumptions give a contribution to
χ

(1)
2;1 reasonably well in agreement with the measured values in several liquids [64–

67]. An extension to χ
(3)
3 is even possible, at least in the region ωτα ≤ 1 and fairly

well accounts for the measured hump of |χ(3)
3 | in glycerol [69, 70]—a figure similar

to Fig. 11 for |χ(5)
5 (ω)/χ

(5)
5 (0)| is even obtained in Ref. [70]. As shown in Eq. (18),

this entropy contribution to cubic responses is related to Ncorr, which is consistent
with the general prediction of BB. Additionally, because Sc is a static quantity, Eq.
(18) supports the interpretation that the various cubic susceptibilities χ3 are related
to static amorphous correlations, as discussed in Sect. 3.3.

4.3 Box Model

4.3.1 Are Nonlinear Effects Related to Energy Absorption?

The “Box model” is historically the first model of nonlinear response in supercooled
liquids, designed to account for the Nonresonant Hole Burning (NHB) experiments
[72]. When these pioneering experiments were carried out, a central question was
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whether the dynamics in supercooled liquids is homogeneous or heterogeneous. In
the seminalRef. [72] itwas reported thatwhen applying a strongACfield E of angular
frequency ω, the changes in the dielectric spectrum are localized close to ω and that
they last a time of the order of 1/ω. These two findings yield a strong qualitative
support to the heterogeneous character of the dynamics, and the Box model was
designed to provide a quantitative description of these results. Accordingly, the Box
model assumes that the dielectric response comes from “domains”—that will be later
called Dynamical Heterogeneities (DH)— each domain being characterized by its
dielectric relaxation time τ and obeying the Debye dynamics. The distribution of the
various τ ’s is chosen to recover the measured non Debye spectrum by adding the
various linearDebye susceptibilitiesχ1,dh = Δχ1/(1 − iωτ) of the various domains.
For the nonlinear response, the Box model assumes that it is given by the Debye
linear equation in which τ(T ) is replaced by τ(T f ) where the fictive temperature
T f = T + δT f is governed by the constitutive equation—see e.g., [28, 73]:

cdh
∂(δT f )

∂t
+ κδT f = 1

2
ε0χ

′′
1,dhωE2 (19)

with cdh the volumic specific heat of the DH under consideration, κ the thermal
conductance (divided by the DH volume v) between the DH and the phonon bath,
τtherm = c/κ the corresponding thermal relaxation time. In Eq. (19), only the constant
part of the dissipated power has been written, omitting its component at 2ω which is
important only for χ

(3)
3 —see e.g., [73]. From Eq. (19) one easily finds the stationary

value δT �
f of δT f which reads as follows:

δT �
f = τtherm

τ

ε0Δχ1E2

2cdh

ω2τ 2

1 + ω2τ 2
. (20)

As very clearly stated in the seminal Ref. [72] because the DH size is smaller than
5nm, the typical value of τtherm is at most in the nanoseconds range: this yields, close
to Tg, a vanishingly small value of τtherm/τ , which, because of Eq. (20), gives fully
negligible values for δT �

f . The choice of the Box model is to increase τtherm by orders
of magnitude by setting τtherm = τ , expanding onto the intuition that this is a way
to model the “energy storage” in the domains. The main justification of this choice
is its efficiency: it allows to account reasonably well for the NHB experiments [72]
and thus to bring a strong support to the heterogeneous character of the dynamics
in supercooled liquids. Since the seminal Ref. [72], some other works have shown
[28, 74–76] that the Box model efficiently accounts for the measured χ

(1)
3 ( f > fα)

in many glassforming liquids. It was shown also [73] that the Box model is not able
to fit quantitatively the measured X (3)

3 (even though some qualitative features are
accounted for), and that the Box model only provides a vanishing contribution to
X (1)
2,1—see [19].
The key choice τtherm = τ made by the Box model has two important conse-

quences for cubic susceptibilities: it implies (a) that χ
(1)
3 mainly comes from the

energy absorption (since the source term in Eq. (19) is the dissipated power) and
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(b) that χ(1)
3 does not explicitly depend on the volume v = Ncorra3 of the DH’s (see

[28, 73]). However, alternative models of nonlinear responses are now available [57,
59] where, instead of choosing τtherm, one directly resolves the microscopic popula-
tion equations, which is a molecular physics approach, and not a macroscopic law
transferred tomicroscopics. The population equations approach is equivalent to solv-
ing the relevant multidimensional Fokker–Planck equation describing the collective
tumbling dynamics of the system at times longer than the time between two molec-
ular collisions (called τc in Appendix 3). By using this molecular physics approach
one obtains that χ

(1)
3 is governed by Ncorr and not by energy absorption. For χ

(1)
3 ,

writing loosely P (1)
3 ≈ ∂P1/(∂ ln τ)δ ln τ , one sees that the pivotal quantity is the

field-induced shift of the relaxation time δ ln τ . Comparing the Box model (BM)
and, e.g., the Toy model (TM), one gets respectively:

δ ln τBM � −1

2
χT

ε0Δχ1E2

cdh
; δ ln τT M � −3

2

Ncorr

T

ε0Δχ1E2

kB/a3
(21)

where we remind our definition χT = |∂ ln τα/∂T | and where the limit ωτ 
 1,
relevant for the χ

(1)
3 ( f > fα) was taken in the Box model, while the simplest case

(symmetric double well with a net dipole parallel to the field) was considered for the
Toy model. Equation (21) deserves two comments:

1. One sees that the two values of δ ln τ are similar provided Ncorr and TχT are
proportional—which is a reasonable assumption as explained above and in Refs.
[4, 22, 23]. Taking reasonable values of this proportionality factor, it was shown
in Ref. [48] that χ(1)

3 ( f > fα) is the same in the two models. This sheds a new
light on the efficiency of the Box model and on consequence (b).

2. Let us shortly discuss consequence (a). In the Toymodel, δ ln τ directly expresses
the field-induced modification of the energy of each of the two wells modeling
a given DH. It comes from the work produced by E onto the DH and this is
why it involves Ncorr: the larger this number, the larger the work produced by
the field because the net dipole of a DH is ∝ √

Ncorr and thus increases with
Ncorr. It is easy to show that the dissipation—i.e., the “energy absorption”—is
not involved in δ ln τ because dissipation depends only on χ ′′

1 , which in the
Toy model does not depend on Ncorr. In the Toy model, as in the Pragmatical
model [59] and the Diezemann model [60], the heating is neglected because at
the scale of a given DH it is vanishingly small as shown above when discussing
τtherm. Of course, at the scale of the whole sample, some global heating arises
for thick samples and/or high frequencies because the dissipated power has to
travel to the electrodes which are the actual heat sinks in dielectric experiments
[11]. This purely exogenous effect can be precisely calculated by solving the
heat propagation equation, see e.g., Ref. [11] and Appendix 2, and must not be
confused with what was discussed in this section.
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4.3.2 Gathering the Three Measured Cubic Susceptibilities

As explained above, in Refs. [69, 70], the three experimental cubic susceptibilities
have been argued to result from a superposition of an entropic contribution and
of an energy absorption contribution coming from the Box model (plus a trivial
contribution playing aminor role around the peaks of the cubic susceptibilities).More
precisely, the hump of |X (1)

2,1| and of |X (3)
3 |would be mainly due to the entropy effect,

contrarily to the hump of |X (1)
3 | which would be due to the Box model contribution.

As noted in Ref. [48], this means that very different physical mechanisms would
conspire to give contributions of the same order of magnitude, with phases that have
no reason to match as they do empirically, see Eqs. (9) and (10): why should X (1)

3

and X (3)
3 have the same phase at high frequencies if their physical origin is different?

This is why it was emphasized in Ref. [48] that there is no reason for such a
similarity if the growth of X (1)

3 and X (3)
3 are due to independent mechanisms. Because

entropic effects have been related to the increase of Ncorr—see Eqs. (17) and (18)—
everything becomes instead very natural if the Box model is recast in a framework
where X (1)

3 is related to the glassy correlation volume. As evoked above, a first step in
this directionwas done in Ref. [48] where it was shown that the Boxmodel prediction
for X (1)

3 at high frequencies is identical to the above Toy model prediction, provided
Ncorr and TχT are proportional. In all, it is argued in Ref. [48] that the only reasonable
way to account for the similarity of all three cubic susceptibilities, demonstrated
experimentally in Figs. 8 and 9, is to invoke a common physical mechanism. As
all the other existing approaches, previously reviewed, relate cubic responses to the
growth of the glassy correlation volume, reformulating the Box model along the
same line seems to be a necessity.

5 Conclusions

We have reviewed in this chapter the salient features reported for the third and fifth
harmonic susceptibilities close to the glass transition. This is a three decades long
story, which has started in the mid-80s as a decisive tool to evidence the solid, long
range ordered, nature of the spin glass phase. The question of whether this notion
of “amorphous order” was just a curiosity restricted to the—somehow exotic—case
of spin glasses remained mostly theoretical until the seminal work of BB in 2005.
This work took a lot from the spin glass physics, and by taking into account the
necessary modifications relevant for glass forming liquids, it has anticipated all the
salient features discovered in the last decade for the three cubic susceptibilities X3.
This is why, in most of the works, the increase of the hump of X3 upon cooling
has been interpreted as reflecting that of the glassy correlation volume. Challenging
alternative and more specific interpretations have been proposed, but we have seen
that most—if not all—of them can be recasted into the framework of BB. The avenue
opened by BB’s prediction was also used to circumvent the issue of exponentially
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long timescales—which are the reason why the nature of the glass transition is still
debated: this is how the idea of comparing the anomalous features of X3 and of X5

has arisen. The experimental findings are finally consistent with the existence of an
underlying thermodynamic critical point, which drives the formation of amorphously
ordered compact domains, the size of which increases upon cooling. Last we note
that this field of nonlinear responses in supercooled liquids has been inspiring both
theoretically [5, 77] and experimentally, e.g., for colloidal glasses: the very recent
experiments [6] have shed a new light on the colloidal glass transition and shown
interesting differences with glassforming liquids.

All these progress open several routes of research. On the purely theoretical side,
any prediction of nonlinear responses in one of the models belonging to the Kinet-
ically Constrained Model family will be extremely welcome to go beyond the gen-
eral arguments given in Ref. [50]. Moreover, it would be very interesting to access
χ3 (and χ5) in molecular liquids at higher temperatures, closer to the Mode Cou-
pling Transition temperature TMCT, and/or for frequencies close to the fast β process
where more complex, fractal structures with df < d may be anticipated [78, 79].
This will require a joined effort of experimentalists—to avoid heating issues—and
of theorists—to elicit the nature of nonlinear responses close to TMCT. Additionally,
one could revisit the vast field of polymers by monitoring their nonlinear responses,
which should shed new light onto the temperature evolution of the correlations in
these systems. Therefore, there is likely much room to deepen our understanding of
the glass transition by carrying out new experiments about nonlinear susceptibilities.
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Appendix 1: Making Sure that Exogenous Effects Are
Negligible

We briefly explain how the nonlinear effects reported here have been shown to be—
mainly—free of exogenous effects:

1. The global homogeneous heating of the samples by the dielectric energy dissi-
pated by the application of the strong ac field E was shown to be fully negligible
for X (3)

3 as long as the inverse of the relaxation time fα is≤ 1 kHz, see Ref. [11].
Note that these homogeneous heating effects contribute much more to X (1)

3 : to
minimize them, one can either keep fα below 10 Hz [4], and/or severely limit
the number n of periods during which the electric field is applied—see, e.g., [28,
80]).
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2. The contribution of electrostriction was demonstrated to be safely negligible in
Refs. [4, 74], both by using theoretical estimates and by showing that changing
the geometry of spacers does not affect X (3)

3 .
3. As for the small ionic impurities present inmost of liquids, we briefly explain that

they have a negligible role, except at zero frequency where the ion contribution
might explain why the three X3s are not strictly equal, contrarily to what is
expected on general grounds—see e.g., Figs. 8 and 9. On the one hand, it was
shown that the ion heating contribution is fully negligible in X (1)

2,1 (see Ref. [19]),
on the other hand it is well known that ions affect the linear response χ1 at very
low frequencies (say f/ fα ≤ 0.05): this yields an upturn on the out-of-phase
linear response χ ′′

1 , which diverges as 1/ω instead of vanishing asω in an ideally
pure liquid containing only molecular dipoles. This may be the reason why most
of the χ3 measurements are reported above 0.01 fα: at lower frequencies the
nonlinear responses are likely to be dominated by the ionic contribution.

Appendix 2: Trivial Third and Fifth Harmonic
Susceptibilities

As explained in the main text, in the long time limit—i.e., for f/ fα 
 1—the liquid
flow destroys the glassy correlations, making each molecule effectively independent
of others. This is why we briefly recall what the nonlinear responses of an ideal gas
of dipoles are, where each dipole is independent of others, and undergoes a Brownian
rotationalmotion—of characteristic time τD—due to the underlying thermal reservoir
at temperature T . The linear susceptibility of such an ideal gas of dipoles is given by
the Debye susceptibility Δχ1/(1 − iωτD), hence the subscript “Debye” in the Eq.
(22) below. By using Refs. [17], and following the definitions given in the main text,
as well as Eqs. (5)–(8) above, one gets for the dimensionless nonlinear responses of
such an ideal gas, setting for brevity x = ωτD:

X (3)
3,Debye =

(−3

5

)
3 − 17x2 + i x(14 − 6x2)

(1 + x2)(9 + 4x2)(1 + 9x2)

X (5)
5,Debye = 432(72 − 2377x2 − 1979x4 + 2990x6)

1680(1 + x2)(4 + x2)(9 + 4x2)(1 + 9x2)(9 + 16x2)(1 + 25x2)

+i
432x(246 − 737x2 − 1623x4 + 200x6)

560(1 + x2)(4 + x2)(9 + 4x2)(1 + 9x2)(9 + 16x2)(1 + 25x2)
. (22)

In Ref. [50] the trivial response combined the above X (k)
k,Debye with a distribution

G (τ ) of relaxation times τ chosen to account for the linear susceptibility of the
supercooled liquid of interest. In Refs. [19, 57] a slightly different modelization was
used since G (τ ) was replaced by the Dirac delta function δ(τ − τα), i.e., τD was
simply replaced by τα for the cubic trivial susceptibilities.
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Appendix 3: Derivation of the Toy model from
Langevin–Fokker–Planck Considerations

In this section, we shall rederive the phenomenological Toy model of Ladieu et al.
[57] starting from the Langevin–Fokker–Planck equation, which is the starting point
ofBBwhen they illustrate their general theoretical ideas in the last part of Ref. [9].We
shall idealize the supercooled state of a liquid as follows. At high temperatures, the
liquid ismade ofmolecules the interactions betweenwhich are completely negligible.
On cooling, the molecules arrange themselves in groups, called “dynamical hetero-
geneities” (DH), between which there are no interactions. Inside a typical group,
specific intermolecular interactions manifest themselves dynamically, by which we
mean that in a time larger than a characteristic time τα , such interactions lose their
coherence and the typical behavior of the liquid is that of an ideal gas. Before and
around τα , these interactions manifest themselves in a frequency range ω ≈ 1/τα .
Thus, sensu stricto, our modeling of this specific process pertains to the behavior of
the various dielectric responses of a DH, linear and nonlinear, near this frequency
range. This indeed implies that information regarding the “ideal gas” phase must
be added to fit experimental data. It may be shown on fairly general grounds that
either for linear and nonlinear responses, such extra information simply superposes
onto the specific behavior that has been alluded to above [81]. Now, we consider that
(a) a given DH has a given size at temperature T , (b) that a DH is made of certain
mobile elements that do interact between themselves, (c) that there are no interac-
tions between DHs, (d) that the dipole moment of a DH is μd = μ

√
Ncorr, and (e)

that all constituents of a DH are subjected to Brownian motion.
In order to translate the above assumptions inmathematical language, we assign to

each constituent of a DH a generalized coordinate qi(t), so that each DH is described
by a set of generalized coordinates q at temperature T, viz.,

q (t) = {q1 (t) , . . . , qn (t)} .

Inside each DH, each elementary constituent is assumed to interact via a multidi-
mensional interaction potential Vint(q) that possesses a double-well structure with
minima at qA and qB, and are sensitive both to external stresses and thermal agitation.
The equations of motion may be described by overdamped Langevin equations with
additive noise, viz.,

q̇i = −1

ζ

∂VT

∂qi
(q, t) + �i (t) (23)

where ζ is a generalized friction coefficient, VT = Vint + Vext, Vext is the potential
energy of externally applied forces and the generalized forces �i (t) have Gaussian
white noise properties, namely

�i (t) = 0, �i (t)� j (t ′) = 2kT

ζ
δi jδ

(
t − t ′

)
. (24)
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Thus, the dynamics of a DH is represented by the stochastic differential equations
(23) and (24), which are in effect the starting point of the Bouchaud–Biroli theory,
as stated above. A totally equivalent representation of these stochastic dynamics is
obtained bywriting down the Fokker–Planck equation [82] for the probability density
W (q, t) to find the system in state q at time t which corresponds to Eqs. (23) and
(24), namely

∂W

∂t
(q, t) = 1

2τc
∇ · [∇W (q, t) + βW (q, t) ∇VT (q, t)

]
= LFP (q, t)W (q, t) (25)

where 2τc = ζ/ (kT ) is the characteristic time of fluctuations, ∇ is the del operator
in q space, and LFP (q, t) is the Fokker–Planck operator. We notice that Eq. (25) may
also be written as follows:

∂W

∂t
(q, t) = 1

2τc
∇ · {e−βVT (q,t)∇ [

W (q, t) eβVT (q,t)
]}

. (26)

Now, we use the transformation [83]

φ (q, t) = W (q, t) eβVT (q,t) (27)

so that Eq. (26) becomes

∂φ

∂t
(q, t) − β

∂VT

∂t
(q, t) φ (q, t) = 1

2τc
eβVT (q,t)∇ · {e−βVT (q,t)∇φ (q, t)

}
= L†

FP (q, t) φ (q, t) (28)

where L†
FP (q, t) is the adjoint Fokker–Planck operator [82].

Next, we make the first approximation in our derivation, namely, we assume that
the time variation of VT is small with respect to that of W. If the time dependence
of VT is contained in, say, the application of a time-varying uniform AC field only,
this implies immediately that neglecting the second term in the left hand side of Eq.
(28) means thatW is near its equilibrium value, so restricting further calculations to
low frequencies, ωτc 
 1 (quasi-stationary condition). Hence, Eq. (28) now reads

∂φ

∂t
(q, t) ≈ L†

FP (q, t) φ (q, t) (29)

Now, the interpretation of the Fokker–Planck equation (25) [or equally well the
Langevin equations (23)] with time-dependent potential in terms of usual population
equations with time-dependent rate coefficients has a meaning, since now Eq. (27)
means detailed balancing. The polarization of an assembly of noninteracting DH in
the direction of the applied field may then be defined as
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P (t) = ρ0μd

∫
cosϑ (q)W (q, t) dq, (30)

where ρ0 is the number of DH per unit volume, and ϑ (q) is the angle a DH dipole
makes with the externally applied electric field. Because of the double-well structure
of the interaction potential, we may equally well write Eq. (30)

P (t) = ρ0μd

⎡
⎣ ∫
well A

cosϑ (q)W (q, t) dq +
∫

well B

cosϑ (q)W (q, t) dq

⎤
⎦ . (31)

Now, it is known from the Kramers theory of chemical reaction rates [83] that at
sufficiently large energy barriers, most of the contributions of the integrands come
from the minima of the wells, therefore, we have

P (t) ≈ ρ0μd

⎡
⎣cosϑ (qA)

∫
well A

W (q, t) dq + cosϑ (qB)

∫
well B

W (q, t) dq

⎤
⎦ .(32)

Now, the integrals represent the relative populations xi (t) = ni (t) /N , i = A, B
in each well (we assume that W (q, t) is normalized to unity), where ni (t) is the
number of DH states in well i, and N the total number of DH. At any time t, we have
the conservation law

xA (t) + xB (t) = 1. (33)

Thus, Eq. (32) reads

P (t) ≈ ρ0μd
[
cosϑ (qA) xA (t) + cosϑ (qB) xB (t)

]
. (34)

We assume now for simplicity that ϑ (qB) = π − ϑ (qA), so that

P (t) ≈ ρ0μd cosϑ (qA) [xA (t) − xB (t)] (35)

Finally, since ρ0 = N/V where V is the volume of the polar substance made of DH
only, we obtain

P (t) ≈ μd cosϑ (qA)

NυDH
[nA (t) − nB (t)] (36)

where υDH is the volume of a DH. This is the definition of the polarization in the Toy
model.

In order to determine the polarization (36), we need to calculate the dynamics of
ni (t). From the conservation law—Eq. (33)—we have
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ẋ A (t) = −ẋB (t) =
∫

well A

∂W

∂t
(q, t) dq (37)

By using the Fokker–Planck equation (26) and limitingwellA to a closed generalized
bounding surface constituting the saddle region ∂A, we have by Gauss’s theorem

ẋ A (t) = −ẋB (t) = 1

2τc

∮
∂A

e−βVT (q,t)∇φ (q, t) · νqdSq (38)

where νq is the outward normal to the bounding surface and dSq is a generalized
surface element of the bounding surface, and where we have used Eq. (27). Now, we
follow closely Coffey et al. [84] and introduce the crossover function Δ(q, t) via
the equation

φ (q, t) = φA (t) + [φB (t) − φA (t)]Δ(q, t) (39)

whereΔ(q, t) = 0 ifq ∈ well AwhileΔ(q, t) = 1 ifq ∈ well B and exhibits strong
gradients in the saddle region ∂A allowing the crossing fromA toB (and vice versa) by
thermally activated escape. By combining Eqs. (38) and (39), we have immediately

ẋ A (t) = −ẋB (t) = φB (t) − φA (t)

2τc

∮
∂A

e−βVT (q,t)∇ [
Δ(q, t)

] · νqdSq. (40)

Now,

xi (t) = φi (t) x
s
i (t) , xsi (t) =

∫
well i

Ws (q, t) dq (41)

where Ws (q, t) is a normalized solution of the Fokker–Planck equation

LFP (q, t)Ws (q, t) = 2τc
∂Ws

∂t
(q, t) ≈ 0 (42)

because the frequencies we are concerned with are very small with respect to the
inverse thermal fluctuation time τc and because the time-dependent part of the poten-
tial VT is much smaller than other terms in it at any time. We have

xsA (t) + xsB (t) = 1. (43)

Using Eqs. (41) and (43), we may easily show that [84]

φB (t) − φA (t) =
(

1

xsA (t)
+ 1

xsB (t)

) [
xB (t) xsA (t) − xA (t) xsB (t)

]
. (44)
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By combining Eqs. (38) and (44), we readily obtain

ẋ A (t) = −ẋB (t) = Γ (t)
(
xB (t) xsA (t) − xA (t) xsB (t)

)
. (45)

where the overall time-dependent escape rate Γ (t) is given by [84]

Γ (t) = 1

2τc

(
1

xsA (t)
+ 1

xsB (t)

)∮
∂A

e−βVT (q,t)∇φ (q, t) · νqdSq. (46)

Finally, by setting

ΠAB (t) = Γ (t) xsB (t) , ΠBA (t) = Γ (t) xsA (t) , (47)

we arrive at the population equations

ṅ A (t) = −ṅB (t) = −ΠAB (t) nA (t) + ΠBA (t) nB (t) . (48)

The obtaining of a more explicit formula for the various rates involved in Eq. (47)
is not possible, due to the impossibility to calculate the surface integral in Eq. (46)
explicitly, in turn due to the fact that VT is not known explicitly. Then, the rates in
Eqs. (47) and (48) are estimated using Arrhenius’s formula. All subsequent deriva-
tions regarding the Toy model of Ladieu et al. [57] follow immediately and will not
be repeated here due to lack of room and straightforward but laborious algebra.
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Dynamic Correlation Under
Isochronal Conditions

C. M. Roland and D. Fragiadakis

Abstract Results of various methods of evaluating the dynamic correlation vol-
ume in glassforming liquids and polymers are summarized. Most studies indicate
that this correlation volume depends only on the α-relaxation time; that is, at state
points associated with the same value of τα , the extent of the correlation among
local motions is equivalent. Nonlinear dielectric spectroscopy was used to measure
the third-order susceptibility. Its amplitude, a measure of the dynamic correlation
volume, is constant for isochronal state points, which supports the interpretation of
the magnitude of the nonlinear susceptibility in terms of dynamic correlation. More
broadly, it serves to establish that for non-associated materials, the cooperativity of
molecular motions is connected to their timescale.

1 Introduction

Among the many interesting features of glass formation is that it takes place without
obvious structural changes on the molecular level. The static structure factor (vari-
ance in the density ρ) reflecting short-range correlations is essentially the same above
and below the glass transition temperature, T g [1, 2]. The only apparent effects of
vitrification on structure come from changes in volume. For this reason, the glass
transition is usually regarded as a dynamic phenomenon. Translational and rotational
motions become drastically slower due to their cooperative nature, as molecules can-
not move independently. As shown by various experiments [3–7], this has two related
consequences: dynamic heterogeneity, referring to the coexistence of fast- and slow-
moving molecules, with the mobility variations persisting for times commensurate
with (or longer than [8]) the primary (α) relaxation time, τα; and dynamic corre-
lation, which refers to the mutual interdependence that extends over some length
scale. Molecular dynamics (MD) simulations show that these two properties are cor-
related for a givenmaterial, but not generally (Fig. 1; [9]). Characteristics of the glass
transition result from these many-body effects, including the distribution of mobili-
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Fig. 1 Comparison of dynamic correlation and the distribution of relaxation times, both reflections
of dynamic heterogeneity: (top) MD simulations of the Kob-Andersen binary mixture of Lennard-
Jones particles; (bottom) experimental data for different glassforming materials [9]

ties reflected in the breadth of the relaxation dispersion (non-Debye relaxation) and
the non-Arrhenius temperature dependence; unsurprisingly, these two properties are
connected [10, 11].

Heterogeneous dynamics defines a length scale, ξ , or relatedly the number of
dynamically correlated molecules (or polymer segments)

Nc ≤ 4πρNA

3m
ξ 3 (1)

where M is the molecular weight (of the repeat unit for polymers) and NA is Avo-
gadro’s number. Dynamic heterogeneity can be observed directly in colloids [12] and
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granular systems [13], although formolecular liquids it is difficult tomeasure because
both spatial and temporal correlations are involved. Nevertheless, such information is
a prerequisite for “solving” the glass transition problem. If τα is coupled to a dynamic
correlation length, theoretical models that address τα are making predictions, explic-
itly or otherwise, for ξ . It is for this reason among others that dynamic correlations
are an essential component of theoretical efforts [14–18]. Our purpose herein is to
review the available data on the connection, if any, between τα and ξ or Nc.

2 Determination of Dynamic Correlation Volume

Avariety ofmethods have been used to estimate ξ orNc. One approach is confinement
of the material to spatial dimensions on the order of ξ . Nanoscale confinement can
be imposed in one dimension as in supported or freestanding thin films, in two
dimensions, e.g., porous glasses, or three dimensions for nano-sized droplets. It is
well established that in the absence of adhesion to the walls [19–21], such geometric
confinement of supercooled liquids accelerates their dynamics. One interpretation is
that the speeding up of local motions occurs when confinement dimensions are on the
order of the cooperative length scale. Experiments along these lines yield estimates
of ξ in the range of 2–10 nm; that is, several intermolecular distances, increasing
with decreasing temperature [22–26].

Using computer simulations, ξ can be estimated in a similar but more rigorous
way using a so-called point-to-set construction [27–31]. Typically, in this method a
subset of particles froman equilibriumconfiguration is frozen, forming an amorphous
wall, and ξ is defined as the length over which the effect of the wall on liquid
dynamics propagates into the liquid. Alternatively, the particles may be frozen to
form geometries of a frozen spherical cavity, a thin film of liquid confined between
frozen walls, or a set of randomly pinned particles, thus imposing a confining length
scale on the system (size of the cavity, film thickness, and distance between pinned
particles, respectively), with ξ determined by the dependence of dynamics on the
confining length, mirroring experiments on dynamics in confinement. This method
has also been experimentally realized on colloidal glasses for the wall and random
pinning geometries [32, 33]. The dynamic length scale obtained in this way generally
grows on cooling. For some systems in amorphous wall geometries, however, a
nonmonotonic temperature dependence of ξ is observed [30, 31]. It is unclearwhether
this is an intrinsic property of the liquid related perhaps to change in the shape of
cooperative rearranging regions with temperature [30], or an effect arising from
particularities of dynamics near a wall [34].

Another method relies on structural length scales that are not imposed externally
but already exist within the liquid. Polymer chains provide such a length scale: the
end-to-end distance (coil size) with a corresponding timescale, the normal mode
relaxation. Using the argument that relaxation times and dynamic length scales are
correlated, if two processes have the same relaxation time at a temperature T , at
this temperature the spatial extent of the molecular motions corresponding to the
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relaxation will be the same. This line of reasoning leads to the supposition that
segmental relaxation times and (extrapolated) relaxation times for the normal mode
(end-to-end relaxation) of a polymer are equal at state points for which ξ equals the
chain coil size [35]. For polypropylene and polyisoprene near T g, the method yields
Nc ~20, increasing to Nc >200 for temperatures a few degrees below T g [6, 36, 37].

The above methods of determining dynamic length scales are indirect; Spiess and
coworkers pioneered the use of multidimensional 13C solid-state exchange NMR to
directly determine the length scale of dynamic heterogeneities [38–40]. Combining
two 2-D spin-echo pulse sequences, the experiment measures the fluctuations within
the distribution of relaxation rates. Values of ξ in the range 1–4 nm were obtained at
temperatures slightly above T g [38, 39, 41].

Dynamic heterogeneity reflects spontaneous fluctuations about the average
dynamics. By relating fluctuations in the entropy to fluctuations of temperature,
Donth and coworkers [42, 43] derived a formula for the number of dynamically
correlated molecules in terms of the breadth of the calorimetric glass transition tem-
perature

Nc � kBNA

M
�c−1

p

(
T

δT

)2

(2)

In this equation, kB is the Boltzmann’s constant, Δcp is the isobaric heat capacity
change at T g, and δT is the half-width of the glass transition in temperature units. A
slightly different expression is used by Saiter et al. [44]

Nc � kBNA

M
�

(
c−1
p

) (
T

δT

)2

(3)

with a different way of taking into account the heat capacity; there is therefore a
certain degree of arbitrariness in the values computed by these methods. Assuming
a spherical correlation volume, values of ξ at T g in the range 1–3 nm have been
reported [45].

Linear two-time correlation functions describe only the average dynamics and
higher order correlation functions, characterizing fluctuations of dynamics about the
mean, are used to probe cooperative motions. The multidimensional NMR experi-
ment described above is a four-time correlationmethod. The spatial extent of dynamic
correlations over the timescale t can be quantified more thoroughly through the use
of two-time, two-point functions. An example is for the spatial decay of the temporal
correlation of the local density [46, 47]

C4(r, t) � 〈δρ(0, 0)δρ(0, t)δρ(r, 0)δρ(r, t)〉 − 〈δρ(0, 0)δρ(0, t)〉 〈δρ(r, 0)δρ(r, t)〉
(4)

where δρ(r, t) is the deviation from themean density.C4(r, t) or its Fourier transform,
the dynamic susceptibility, can be measured on colloids [12] and granular systems
[13]; however, spontaneous fluctuations of molecular liquids are not directly acces-
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sible. Berthier and coworkers [42, 48] have shown that the underlying dynamic
heterogeneity can be quantified by analyzing induced fluctuations. If the forcing
quantity is temperature [49],

Nc � max

[
NA

M

kB
�cp

T 2
(
χNPT
T (t)

)2
+ χNPH

4 (t)

]
(5)

The dynamical susceptibility has a maximum as a function of time around t=τα ,
which grows inmagnitude on approach to the glass transition. FromMD simulations,
the contribution of various terms to the dynamic fluctuations can be evaluated, which
led to the conclusion thatχNPH

4 , representing fluctuations in the isoenthalpic–isobaric
ensemble, is negligible at lower temperatures approaching T g [44, 50]. This enables
the number of correlating molecules to be expressed in terms of experimentally
accessible quantities [51]

Nc ≈ NA

M

kB
�cp

T 2

(
∂φ(t)

∂T

∣∣∣∣
p

)2

(6)

In Eq. (6), φ(t) is a linear susceptibility, such as the dielectric relaxation function,
ε(t). Figure 1 shows a comparison ofNc from Eqs. (5) and (6); the agreement is good
at longer τα . Capaccioli et al. [52] used Eq. (6) to analyze data for a large number
of liquids, obtaining values of Nc in the range 100–800 at T g.

Considering other factors such as the density or enthalpy that contribute to
dynamic heterogeneity leads to alternatives for Eq. (5), e.g., [44]

Nc � max

[
NA

M

kB
�cV

T 2
(
χNVT
T (t)

)2
+
NA

M
kBT κTρ3

(
χNPT

ρ (t)
)2

+ χNVE
4 (t)

]
(7)

in which ΔcV is the isochoric heat capacity change at T g, and κT is the isothermal
compressibility. Assuming fluctuations in the microcanonical (NVE) ensemble are
small (MD simulations provide support for χNVE

4 (t) becoming smaller with decreas-
ing T [53])

Nc ≈ NA

M

kB
�cV

T 2

(
∂φ(t)

∂T

∣∣∣∣
V

)2

+
NA

M
kBT κTρ3

(
∂φ(t)

∂ρ

∣∣∣∣
T

)2

(8)

The first term on the rhs of Eq. (8) represents fluctuations in the NVT ensemble,
with the second term the additional contributions from density fluctuations.

The accuracy of the approximate Eqs. (6) and (8) can be tested by comparing to
results using the full Eqs. (5) and (7). As shown in Fig. 1, MD simulations support
the underlying assumption that χNPH

4 (t) and χNVE
4 (t) are negligible. However, Nc

for several liquids computed using both Eqs. (6) and (8) differ by as much as 40%
(representative results are displayed in Fig. 2) [54]; that is, the difference between
two putatively small contributions is an appreciable amount of the total χ4(t). This
opens to question both absolute values of the correlation volume extracted from the
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Fig. 2 Number of
dynamically correlated
molecules calculated
assuming contribution from
χNPH
4 (t) (down triangles) or

from χNVE
4 (t) (triangles) is

negligible. From Ref. [49]
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approximate equations, andmore significantly, comparisons ofNc made for different
state points.

3 Dynamic Correlation Volume at Constant τα

If measurements are carried out as a function of temperature and pressure, a deter-
mination is possible of any variation of Nc for state points for which τα is constant.
This approach is not easily applied to confinement experiments, since it is difficult
to achieve hydrostatic conditions for materials in pores or very thin films. However,
if the confining geometry is used to vary τα , a comparison can be made of isochronal
Nc at different temperatures and ambient pressures. Koppensteiner et al. [21] con-
fined salol to porous silica, with T g differing by 8 K for pore sizes=2.4 and 4.8 nm.
They found that Nc from Eq. (6) varied significantly with temperature; however, at
temperatures for which the respective τα in the different pores were constant, Nc

was essentially constant (±~5%). An analogous study of multilayered films of poly-
methylmethacrylate also found that isochronal Nc was the same for film thicknesses
varying from 4 nm up to bulk dimensions (Fig. 3) [55].

Compared to experimental confinement studies, using molecular dynamics simu-
lations, it is muchmore straightforward to use confinement or a point-to-set construc-
tion to determinewhetherNc is constant under isochronal conditions. For amolecular
liquid in a thin film geometry between confining walls [56], the wall induces a slow-
ing down of dynamics which propagates into the liquid a distance ξ . Although the
dependence of dynamics on the distance from the wall was not reported, the spa-
tially averaged dynamics of the film was found to be constant at several different
state points with the same bulk τα , suggesting that ξ defined in this way must also
be constant.
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Fig. 3 Number of
dynamically correlated
segments for
polymethylmethacrylate
coextruded multilayers.
Confinement alters the
segmental relaxation time
(inset), but Nc from Eq. (6)
remains a function of τα .
From Ref. [50]

-2 -1 0 1

100

200

300

400

500

bulk
25 nm
8 nm
4nm

N
c  [

ar
b.

 u
ni

ts
]

log (τα /s)

PMMA

2.48 2.52 2.56

100

200

300

400  Nc

1000/T [K-1] 

Fig. 4 Relaxation time as a
function of confining length
L =c1/3 of Kob-Andersen
Lennard-Jones mixture, with
fraction c of pinned particles,
simulated at the indicated
state points. Each pair of
state points is chosen to have
the same bulk (unpinned) τα

2 4 6

2

4

6

8

τα

confining length

ρ=1.2        ρ=1.4
T=0.45 T=0.97
T=0.5   T=1.08
T=0.6   T=1.28

Dynamic correlations can also be investigated using random pinning: pinning a
fraction c of atoms or molecules is essentially equivalent to imposing a “confining
length scale” equal to the distance between pinned particles L~c1/3. With increasing
pinning fraction, as the confining length scale impinges on ξ , dynamic correlations
cause the dynamics of the remaining, mobile particles to increasingly slow down
relative to the unconfined bulk liquid. Figure 4 shows new results on random pinning
in a Kob-Andersen Lennard-Jones mixture (N=5000 particles), at three pairs of state
points, each pair chosen to share the same bulk τα . The α relaxation time increases
with increasing pinning fraction (decreasing confining length L), and for state points
with higher bulk τα , the decrease begins at a larger L reflecting a larger value of ξ .
For state points with the same bulk τα , the dependence of τα on confining length is
identical, and therefore ξ is constant at constant τα .
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Fig. 5 Constancy of isochronal Nc calculated using Eq. (6) for four liquids. Adapted from Ref.
[51]

The merging of the segmental and normal modes in polyisoprene measured at
various pressures corresponded to fixed τα [32]. If the dynamic correlation volume
is equal to the chain coil size at the state point associated with the merging, this result
is consistent with constant Nc at fixed τα , since the change in the chain radius of
gyration with T and P is small (<0.3% based on the measured dielectric strength of
the normal mode) [32].

An analysis was carried out on four molecular liquids for which τα had been
measured as a function of temperature and pressure [57]. As shown in Fig. 5, for
a given material, the dynamic correlation volume, evaluated using the approximate
Eq. (6), depends on the relaxation time, invariant to T , P, and ρ at fixed τα . However,
the results in Fig. 5 are at odds with two other studies. Koperwas et al. [54] analyzed
dielectric data for three liquids using Eq. (6), and determined that the isochronal
Nc for each decreases by as much as 50% for pressures up to a couple hundred
MPa. Results for phenylphthalein dimethylether are shown in Fig. 2. Diametrically
opposite results were reported by Alba-Simionesco et al. [58], who found that Nc

for dibutyl phthalate increased with pressure at constant τα =1 s (Fig. 6). Thus, from
measurements on eight liquids, it was concluded that Nc is constant [51], increases
[49], or decreases [52]with increasing pressure at constant τα . The disparate results of
these three studies are not because the behavior of differentmaterials can qualitatively
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Fig. 6 Number of
dynamically correlated
molecules calculated using
the indicated approximation
[52]
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Fig. 7 Number of
dynamically correlated
particles calculated using
Eq. (5) (open symbols) and
Eq. (6) (solid symbols) at the
indicated densities. From
data in [9]
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differ, but rather such results cast aspersions on the analysis using the approximate
formula for χ4(t).

One way to circumvent the ambiguity and inaccuracies in the application of
Eqs. (6) and (8) is to obtain the full χ4(t), which is possible using computer simu-
lations. It is more convenient to calculate this multipoint dynamic susceptibility as
the variance of the self-intermediate scattering function Fs(k, t)

χ4 � NA
[〈
f 2s (k, t)

〉 − F2
s (k, t)

]
(9)

where fs(k, t) is the instantaneous value such that 〈 fs(k, t)〉 � Fs(k, t). Results
are shown for a binary LJ liquid calculated in the NVT ensemble [which omits the
second term on the rhs of Eq. (7)] in Fig. 7 [9]. The dynamic correlation volume is to
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good approximation invariant at fixed α-relaxation time. Likewise, MD simulations
of diatomic molecules indicated constant isochronal Nc (4% variation in the NVT
ensemble; 8% in the NPT) [59].

4 Isochronal Nc from Nonlinear Dielectric Susceptibility

From both MD simulations [9, 51, 53] and the application of approximations to
estimate χ4(t) from experimental data [19, 32, 50], the conclusion seems to be that
Nc is constant for fixed τα , independent of T , P, or ρ. However, there are scattered
results to the contrary [49, 52], and the reliability of the estimates of Nc might be
questioned. Accordingly, an alternative method is desirable.

Bouchaud and Biroli [60] proposed that the nonlinear dielectric susceptibility can
be used to measure dynamic correlations in glassforming liquids, specifically that
the peak height of the nonlinear susceptibility of glassforming materials increases in
proportion to Nc:

Nc ∝ |χ3| kT

ε0a3 (�χ1)
2 (10)

where ε0 is the permittivity of free space, a is the molecular volume, �χ1 is the
linear dielectric strength, and |χ3| is the modulus of the third-order susceptibility
corresponding to polarization cubic in the applied field. The connection between
χ3 and Nc is supported by good agreement of the calculated Nc with the effective
activation energy in glassforming liquids [61, 62], and plastic crystals [63]:

d ln τ

dT−1

∣∣∣∣
P

� ANc (11)

where A is a constant. This analysis has also been extended to the fifth-order sus-
ceptibility χ5, and results consistent with this analysis are obtained for glycerol and
propylene carbonate [64]. The derivation of Eq. (10) is not rigorous, and grow-
ing nonlinear susceptibility with similar features to those observed experimentally
also appear in mean-field models that lack length scales [65, 66]. An alternative
phenomenological model of nonlinear dielectric response that lacks dynamic cor-
relations also produces a growth of the peak in χ3 proportionally to the apparent
activation energy [67, 68]. It is not clear whether these different pictures of nonlinear
relaxation are in conflict: based on a careful analysis of the behavior of the three
different third-order susceptibilities, it has been suggested that in fact the models of
Refs. [67, 68] are consistent with the interpretation leading to Eq. (10), i.e., relating
the growth of χ3 to the growth of cooperatively rearranging regions [69].

Equation (10) provides a method of testing whether Nc is constant under
isochronal conditions, by measuring the third-order dielectric susceptibility at ele-
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Fig. 8 Representative third-order harmonic spectra of propylene carbonate (top) and propylene
glycol (bottom) at the indicated temperature and pressures, the latter increasing from right to left.
From Ref. [59]

vated pressures. This was done for two liquids: propylene carbonate and propylene
glycol [59].

Propylene carbonate is a non-associated liquid, conforming to isochronal super-
position,meaning that its relaxation spectrum is constant for constant relaxation time.
For the hydrogen-bonded propylene glycol, the relaxation spectrumbecomes broader
at for higher pressure and temperature at constant τ . Figure 8 presents |χ3| spectra
obtained at various pressures. For both liquids, the peak in nonlinear susceptibility
grows with decrease in peak frequency, consistent with growth in the correlation
volume as the relaxation time becomes longer.

To quantify the dynamic correlations, it is required that the contribution to |χ3|
from saturation of the dipole orientation be removed from the spectra; this was done
following Brun et al. [70] who have shown that |χ3| at a frequency 2.5 times the
frequency of the maximum in the linear dielectric loss provides a measure of Nc

unaffected by dipole saturation. In Fig. 9, Nc for the two liquids are plotted as a
function of the linear relaxation frequency. The data for propylene carbonate show
the two regimes expected for dynamic correlations—power-law dependences with
a steeper slope at higher frequencies [71]. This supports the interpretation of the
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Fig. 9 Number of dynamically correlated molecules (arbitrary units) calculated using Eq. (10) for
propylene carbonate (top) and propylene glycol (bottom) as a function of the frequency of the loss
peak in the linear spectrum. From Ref. [59]

peak in the nonlinear susceptibility in terms of dynamic correlations. Within the
experimental scatter (ca. 15%), the number of dynamically correlated molecules for
propylene carbonate depends mainly on the relaxation time; there is no systematic
variation inNc withT orP. For propylene glycol, the large concentration of hydrogen
bonds changes with thermodynamic conditions, resulting in liquid structure which is
not constant at constant τ ; indeed, the variety of scaling properties found for simple
liquids are absent in associated materials [72]. This is also reflected in substantial
variations (exceeding 50%) in Nc for a given τ , specifically a systematic increase in
dynamic correlations with increasing temperature or pressure at constant τ .

When high pressures are considered, the values ofNc deviate from the proportion-
ality with effective activation energywhich holds at ambient pressure (Fig. 10). Thus,
the parameter A in Eq. 10 is pressure dependent. For the case of non-associated liq-
uids such as propylene carbonate, which conform to density scaling, it can be shown
that the apparent activation energy is not a constant at constant τ [59]. Since Nc is
constant (to good approximation), the deviation from strict proportionality of the two
quantities can be understood. For associated liquids such as propylene glycol, the
decoupling is stronger, additionally reflecting the change in structure at constant τ .
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5 Summary

Approximate analyses of experimental data and molecular dynamic simulations,
which of course entail inherent approximations, indicate that ξ and Nc are constant
under isochronal conditions. Such results are consistent with nonlinear dielectric
measurements interpreting the modulus of the susceptibility as a measure of the
dynamic correlation volume. This consistency supports the interpretation of the non-
linear response in terms of dynamic correlation, but more importantly establishes the
centrality of dynamic heterogeneity to the glass transition phenomenon.
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Abstract This article summarizes ongoing experimental efforts on nonlinear dielec-
tric spectroscopy on plastic crystals. In plastic crystals, the relevant dipolar orienta-
tional degrees of freedom are fixed on a crystalline lattice with perfect translational
symmetry. However, while they can reorient freely in the high-temperature plas-
tic phase, they often undergo glassy freezing at low temperatures. Hence, plastic
crystals are often considered as model systems for structural glass formers. It is
well known that plastic crystals reveal striking similarities with phenomena of con-
ventional supercooled liquids. However, in most cases, they can be characterized
as rather strong glass formers. Nonlinear dielectric spectroscopy is an ideal tool to
study glass-transition phenomena, providing insight into cooperative phenomena or
hidden phase transitions, undetectable by purely linear spectroscopy. In the present
article, we discuss dielectric experiments using large electric ac fields probing the
nonlinear 1ω and the third-order harmonic 3ω susceptibility. In the 1ω experiments,
we find striking differences compared with observations on conventional structural
glass formers: at low frequencies plastic crystals do not approach the trivial response,
but reveal strong additional nonlinearity. These phenomena document the importance
of entropic effects in this class of glassy materials. The harmonic third-order suscep-
tibility reveals a hump-like shape, similar to observations in canonical glass formers,
indicating the importance of cooperativity dominating the glass transition. In the
frequency regime of the secondary relaxations, only minor nonlinear effects can be
detected, supporting arguments in favor of the non-cooperative nature of these faster
dynamics processes. Based on a model by Bouchaud and Biroli, from the hump
observed in the 3ω susceptibility spectra, the temperature dependence of the number
of correlated particles can be determined. We document that the results in plastic
crystals perfectly well scale with the results derived from measurements on conven-
tional glass formers, providing evidence that in plastic crystals the non-Arrhenius
behavior of the relaxation times also arises from a temperature dependence of the
energy barriers due to growing cooperative clusters.
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1 Introduction

Plastic crystals (PCs) are often considered as model systems for structural glass for-
mers. While in PCs the centers of mass of the molecules are fixed on a crystalline
lattice with translational symmetry, their orientational degrees of freedom more or
less freely fluctuate at high temperatures and often show glassy freezing at low tem-
peratures (Fig. 1) [1]. The molecules of most PCs have rather globular shape and
relatively weak mutual interactions, providing little steric hindrance for reorienta-
tional processes. This often leads to high plasticity, thus explaining the term “plastic
crystal” first introduced by Timmermans [2] many decades ago. The reorientational
relaxation dynamics of PCs, as detected, e.g., by dielectric spectroscopy, in many
respects resembles the dynamics of structural glass formers [1, 3, 4]. Especially,
often complete orientational ordering at low temperatures can be avoided by super-
cooling the high-temperature dynamically disordered state. Just as for glassforming
liquids, this leads to a continuous slowing down of molecular dynamics over many
orders of magnitude, which can be nicely followed by monitoring the reorientational
relaxation dynamics by broadband dielectric spectroscopy [1]. For low temperatures,
finally a static orientationally disordered state is reached which sometimes is called
“glassy crystal” (Fig. 1) [5]. Correspondingly, an “orientational-glass temperature”
T o
g can be defined. It should be mentioned, however, that the term “orientational

glass” for this glassy state may be ambiguous because it is often used to exclusively
denote the orientationally disordered state of mixed crystals, believed to arise from
frustrated interactions due to substitutional disorder [6, 7]. In contrast, the glassy
crystal state in PCs is non-ergodic and represents a true analog of the structurally
disordered glassy state of conventional glass formers.

The freezing of the molecular dynamics of PCs exhibits many of the puzzling
characteristics of canonical (i.e., structural) glass formers. This especially includes
the non-exponentiality of the time dependence and the non-Arrhenius behavior of the
temperature dependence of this dynamics, both hallmark features of the glassy state
of matter [8–12]. Therefore, investigating and understanding the glassy freezing
in PCs is an important step on the way to a better understanding of glassforming
liquids and the glass transition in general. Indeed, in literature there are various
examples for such studies, many of them employing dielectric spectroscopy, which
directly senses the reorientationalmotions [1, 13–17]. Such investigations are usually
performed by detecting the linear dielectric response of the sample material to an
applied ac electrical field of moderate amplitude (typical voltages are of the order
of 1 V). However, in recent years it has become clear that the nonlinear response
of glassforming matter, detected under high fields of up to several 100 kV/cm, can
reveal a lot of valuable additional information about glassy freezing [18–27] (see
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Fig. 1 Schematic representation of the possible transitions of a liquid of dipolar molecules
(represented by asymmetric dumbbells) into a structural glass, an ordered crystal, or a glassy
crystal [1]

also the other chapters of the present book). Thus, it seemed natural to apply such
methods to PCs, too, which indeed was done in several recent works [28–31]. The
present chapter will provide an overview of such nonlinear dielectric investigations
of PCs.

Among the pioneering nonlinear experiments on structural glass formers were
dielectric hole-burning experiments, which provided the first experimental verifica-
tion that the non-exponentiality of the relaxation dynamics in these materials arises
from its heterogeneity [32]. Later on, measurements of the field-induced variation of
the dielectric permittivity revealed further valuable information on this phenomenon
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[20, 33] and on the nonlinear behavior of secondary relaxation effects [25] like the
Johari–Goldstein relaxation [34] or the excess wing [11, 35]. Moreover, high-field
measurements recently have also provided important hints at the origin of the char-
acteristic non-Arrhenius temperature dependence of glassy dynamics. Particularly,
based on a model by Bouchaud, Biroli, and co-workers [36, 37], measurements of
the higher order harmonic susceptibilities χ3 and χ5 seem to indicate that this phe-
nomenon arises from an increase of molecular cooperativity when approaching Tg

at low temperatures [23, 26, 27] (see also the chapter by Albert et al. in the present
book). In this way, important clues about the true nature of the glass transition were
obtained, which seems to be due to an underlying thermodynamic phase transition
[23, 26, 27, 38]. Finally, Johari has recently demonstrated [39, 40] that nonlin-
ear dielectric effects can also arise from the reduction of configurational entropy
induced by the external field, leading to an increase of the α relaxation time and,
thus, a field-induced rise of the viscosity.

Nonlinear measurements on plastic crystals should be able to reveal analogous
information on the role of heterogeneity, cooperativity, and entropy in this class of
disordered materials. However, it is not self-evident that the results should be similar
to those in structural glass formers: For example, in a material exhibiting transla-
tional symmetry, heterogeneity can be expected to be of different nature and, indeed,
it was suggested that the dynamics of single molecules in PCs may be intrinsically
non-exponential and heterogeneity alone cannot explain the experimental observa-
tions [41, 42]. Moreover, the intermolecular interactions that lead to cooperativity
also should be influenced by the fact that the molecules are located on fixed lattice
positions. Indeed, the deviations of glassy dynamics from thermally activated Arrhe-
nius behavior, often ascribed to cooperativity [8, 43, 44], are generally weaker for
PCs than for canonical glass formers [1, 45]. Within Angell’s strong-fragile classifi-
cation scheme [46], this implies that PCs are rather strong glass formers (despite also
exceptions are known [47–49]). This is demonstrated in Fig. 2, showing Angell plots
of the α-relaxation times τα of a number of supercooled liquids [frame (a)] and PCs
(b) measured in our group [1, 11, 47–51]. In this type of Tg-scaled Arrhenius plot
[52], simple thermally activated behavior, τ ∝ exp(E/T ) (with E the energy barrier
in K), leads to a straight line with a slope of about 16 (dashed line) characterized
as “strong” dynamics. In contrast, “fragile” glass formers exhibit pronounced curva-
ture in this plot and, consequently, a steep slope m close to Tg. The latter parameter
is commonly used to parameterize the deviations from Arrhenius behavior of glass
formers [53, 54]; an example for very large fragility withm � 170 is shown as dotted
line in Fig. 2. Comparing frames (a) and (b) in Fig. 2 nicely reveals that, in general,
PCs indeed tend to be stronger in the strong/fragile classification scheme than most
canonical supercooled liquids [1, 45]. Note also the interesting case of ethanol, which
can be prepared both in a supercooled liquid and a PC state and is clearly stronger in
the latter phase [1, 55, 56]. For three of the PC systems included in Fig. 2b (indicated
by closed symbols), nonlinear dielectric spectroscopy results will be discussed in the
present work.
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Fig. 2 Angell plot of the α-relaxation times of various supercooled liquids (a) [11, 50, 51] and PCs
(b) [1, 47, 48]. The dashed lines demonstrate maximally strong behavior; the dotted lines indicate
extremely high fragility. In b, the data for the PCs treated in the present work are shown as closed
symbols

In Ref. [1], we suggested that the strong behavior of PCs can be understood when
considering the proposed relation of fragility and of the energy landscape in con-
figuration space [57, 58]. Based on the inverse proportionality of effective energy
barrier and configurational entropy assumedwithin the Adam–Gibbs theory [59], the
material-dependent variation of fragility of glass formers can be rationalized assum-
ing that higher fragility arises from a higher density ofminima in the potential-energy
landscape [57, 58]. Within this framework, the overall lower fragility of PCs com-
pared to supercooled liquids may be explained by their additional order due to the
existence of a crystalline lattice, which leads to a reduced density of energy minima
[1]. As discussed in Refs. [47, 48], the only exceptions are Freon112 and mixtures
of succinonitrile and glutaronitrile, where additional conformational and/or substi-
tutional disorder leads to a more complex energy landscape and, thus, more fragile
behavior. It is an interesting question how this energy-landscape picture is related
to the explanation of non-Arrhenius behavior by increasing molecular cooperativity
(causing an increasing effective energy barrier experienced by themolecules; Fig. 3),
when a supercooled liquid or PC is cooled towards its Tg. The more complex energy
landscape of fragile glass formers as depicted, e.g., in Ref. [57] implies that at high
temperatures many different configurational states can be exploited by the system
while at lower temperatures only few, low-energy states are accessible. Within the
cooperativity framework mentioned above, this may well correspond to the many,
relatively small cooperatively rearranging regions (CRRs) [59] assumed to exist on
a rather short timescale at high temperatures while close to Tg there are much less,
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Fig. 3 A possible explanation of the non-Arrhenius behavior of PCs. Left: Schematic Arrhenius
representation of the temperature-dependent relaxation time of PCs for Vogel–Fulcher–Tammann
behavior (solid line). A temperature-dependent apparent activation energyE (inset) can be estimated
from the slope in this plot (indicated for three temperatures by the dashed lines). This increase of E
may be ascribed to an increase of the size of CRRs (schematically indicated by molecules of same
color at the right)

much larger, and more stable CRRs as schematically indicated in Fig. 3. In contrast,
in strong glass formers the variation of accessible states within the less complex
energy landscape should be less pronounced, corresponding to a weaker variation of
the size and number of the CRRs when approaching Tg. Dielectric measurements of
higher harmonic susceptibilities, being able to test possible temperature-dependent
variations of the number of dynamically correlatedmolecules, can give a clue if these
variations indeed are rather weak in the strong PCs, which would corroborate the
discussed analogy of energy-landscape and cooperativity scenario.

There are various ways to perform nonlinear dielectric measurements of glass-
forming materials [18, 19] (see also the other chapters in the present book). In the
following, we mainly discuss two different types of experiments applied to PCs: (i)
The detection of the complex dielectric permittivity ε* under high ac fields and its
comparison to ε*measured in the linear regime [28, 29, 31]. (ii) The measurement of
higher harmonics of the dielectric susceptibility, especially of the 3ω component χ3,
performed under high ac fields, too [28, 31]. In addition, PCs were also investigated
by simultaneously applying a small ac and a high dc bias field [30]. Details on the
experimental techniques applied to detect the nonlinear dielectric response can be
found, e.g., in [18, 19].
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2 Nonlinear Measurements of the Dielectric Permittivity

2.1 Main Relaxation Process

To our knowledge, the first nonlinear dielectric measurements of a plastic-crystalline
material reported in literature were performed on cyclo-octanol [28]. It is a typical
PC, well characterized by linear dielectric spectroscopy [13, 60]. Its plastic state
is most easily investigated by first supercooling the transitions into two different
orientationally ordered states, known to occur at 265 and 220 K [61–63], and then
performingmeasurements under heating. T o

g of cyclo-octanol is about 168 K [60]. Its
linear dielectric response in the PC phase is shown by the open symbols in Fig. 4 for
four temperatures [28]. The steplike decrease in the dielectric constant ε′(ν) and the
peak in the loss ε′′(ν), both shifting to higher frequencieswith increasing temperature,
reveal the typical signatures of a relaxational process. The latter was identified with
the main reorientational motion of the molecules, assigned as α relaxation [13, 60],
which exhibits glassy freezing, non-exponentiality, and rather mild non-Arrhenius
behavior. In fact, with a fragility parameter m ≈ 33 [13, 60], cyclo-octanol can be
classified as a rather strong glass former (cf. Fig. 2).

The plusses in Fig. 4 represent the spectra obtained for a high electric field of
375 kV/cm. In the region of the α relaxation, a small but significant difference of
the high-field and low-field spectra is revealed (see also right insets of Fig. 4). In
Fig. 5, the difference of the high- and low-field spectra is plotted. A common way to
represent such data is plotting the quantity� ln ε � ln εhi−ln εlo for ε � ε’ or ε � ε”
[20, 25] where εhi and εlo denote the results for high and low fields, respectively. The
arrows indicate the α-peak positions να at low fields (cf. Fig. 4b). Obviously,� ln ε”
exhibits a “V-shaped” behavior with the tip of the “V” in the region of the α-peak
frequency. Correspondingly, � ln ε’ shows a zero-crossing close to να with negative
and positive peaks at ν < να and ν > να , respectively. Especially at low frequencies,
these difference spectra qualitatively differ from those observed in canonical glass
formers, which usually only exhibit a weak nonlinear effect at ν < να [20, 25].

This overall behavior seems to be a common motif in nonlinear differ-
ence spectra of PCs [28, 29, 31]. An example from Richert and co-workers
is provided in Fig. 6. It shows the relative difference of high- and low-
field loss spectra of a plastic-crystalline mixture of neopentylglycol and
cyclo-hexanol [29] (T o

g ≈ 155 K [64]). Here, the quantity (ε′′
hi − ε′′

lo)/ε
′′
lo

is shown, which is comparable to � ln ε′′ if the factor (ε′′
hi/ε

′′
lo − 1)

is small. Again the V-shape shows up rather close to να , indicated by an arrow in
Fig. 6. This is the case for spectra collected at different applied high fields, which can
be scaled onto each other as demonstrated in Fig. 6. In Ref. [29], qualitatively sim-
ilar difference spectra were also reported for plastic-crystalline cyanocyclohexane.
Thus, it seems that, especially concerning the pronounced field-induced increase
of ε′′ at low frequencies and the corresponding decrease of ε′, PCs seem to exhibit
qualitatively different nonlinear behaviors than canonical glass formers [20, 25, 33].
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Fig. 4 Dielectric constant
(a) and loss spectra (b) of
plastic-crystalline
cyclo-octanol measured at
various temperatures and at
low and high ac fields as
indicated in the figure [28].
The insets provide magnified
views demonstrating the
field dependence in the
α-peak region (right insets)
and the lack of significant
field-induced variation at
higher frequencies (lower
left inset). The lines are
guides to the eyes
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As further examples of this quite general nonlinear behavior of PCs, Fig. 7 shows
� ln ε′′ for amixture of 60% succinonitrile and 40%glutaronitrile (60SN-40GN) [31]
and for ortho-carborane [28, 31], both well-established PCs with orientational-glass
temperatures T o

g ≈ 144 and 120 K, respectively [48, 65, 66]. While ortho-carborane
exhibits very strong glassforming characteristics (m ≈ 20 [65]), 60SN-40GN was
shown [48] to be exceptionally fragile (m≈ 62) when compared with most other PCs
[1] (cf. Fig. 2b). Irrespective of this difference, just as for the other PCs (Figs. 5 and 6)
for both materials, a V-shaped behavior of � ln ε′′ is observed, too. In contrast to the
other compounds, for 60SN-40GN� ln ε′′ does not approach zero at theminimum. In
Ref. [31], this was ascribed to additional contributions from field-induced transitions
between different molecular conformations in this material.

The case of ortho-carborane illustrates an experimental problem that one may
encounterwhen performing nonlinearmeasurements of PCs:As the nonlinear dielec-
tric response commonly is much smaller than the linear one, usually very high elec-
trical fields E are necessary to enable its detection. Therefore, accounting for the
relation E ~ 1/d, the sample thickness d should be as thin as possible. This can be
much more easily achieved when the investigated material is liquid during prepara-
tion, enabling the use of capacitors with thin spacers (e.g., glass fibers, Teflon foils, or
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Fig. 5 Difference of the logarithmic high- and low-field dielectric spectra of plastic-crystalline
cyclo-octanol as measured for high fields of 375 kV/cm and for various temperatures (cf. Fig. 4)
[28]. The arrows indicate the α-peak frequencies. The lines are drawn to guide the eyes. The
inset schematically indicates a field-induced broadening, which would lead to qualitatively similar
difference spectra as in the main frames

Fig. 6 Relative difference of
high- and low-field loss
spectra as measured in a
mixture of neopentylglycol
and cyclo-hexanol [29].
Curves for different high
fields are shown which were
scaled onto each other. The
smooth solid line was
calculated according to the
box model (see [29] for
details) Reprinted from [29]
with the permission of AIP
Publishing

silica microspheres [20, 25, 26, 29–31]). However, in contrast to supercooled liquids,
manymaterials exhibiting a PC phase are not liquid at room temperature. Fortunately,
often they can be easily melted at only moderately enhanced temperatures, enabling



286 P. Lunkenheimer et al.

-2 0 2 4
0.0

0.1

0.2

60SN-40GN

160K 167K

146K
150K

154K

1 2 3
0.0

0.2

0.4
ortho-carborane

183 K

181 K

 log10 [ν(Hz)]

Δ
ln

ε"

(a) (b)

Fig. 7 Difference of the logarithmic dielectric-loss spectra of plastic-crystalline 60SN-40GN and
ortho-carborane as measured for high fields of 357 and 90 kV/cm, respectively, and for various
temperatures [28, 31]. The arrows indicate the α-peak positions. The lines in a are drawn to guide
the eyes

their filling into capacitors. This is, however, not the case for ortho-carborane, which
tends to sublimate at elevated temperatures [65]. This material instead has to be pre-
pared from powder, pressing a thin platelet between polished stainless-steel plates
that serve as electrodes [28]. The minimum thickness achieved in this way was of
the order of 100 μm, much larger than the few μm thickness that can be reached for
liquid samples. Consequently, higher fields had to be applied to compensate for this
effect, which only was possible in a limited frequency range (Fig. 7b).

It should be noted that the common nonlinear behavior of PCs around the α-
peak frequency as documented in Figs. 5, 6, and 7 is consistent with a field-induced
broadening of the observed relaxation features. This becomes clear by a comparison
with the inset of Fig. 5, which schematically indicates such a scenario with somewhat
exaggeratedfield-induced effects for clarity reasons [28]. The behavior shown there is
well consistent with the experimental data. Remarkably, this broadening also occurs
at the low-frequency flank of theα peak, causing thementioned increase of� ln ε′′(ν)
at low frequencies (Figs. 5b, 6, and 7). Thus, the high-field spectra can no longer
be described by the Cole–Davidson (CD) function [67], for which ε′′(ν) increases
linearly (i.e., with a slope one in the log–log plot) at the left flank of the loss peak.
The CD function is found to reasonably fit the α relaxation of many glass formers
[11] and plastic crystals [1], including cyclo-octanol [60]. Usually, peak broadening
observed in the relaxation dynamics of glassy matter is ascribed to heterogeneity
arising from the disorder in the material, which induces a distribution of relaxation
times [9, 10]. However, as discussed inRef. [28], it is not clearwhy a high field should
increase heterogeneity and such an explanation of this field-induced broadening
seems unlikely.

In contrast to the low-frequency behavior, the field-induced increase of ε′′ and ε′ at
frequencies, ν > να , found in PCs (Figs. 5, 6 and 7) [28, 29, 31] resembles the behavior
in structural glass formers [20, 25, 33]. Within the framework of the box model,
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considering the dynamic heterogeneity of glassymatter [32, 68], this nonlinear effect
was ascribed to a selective transfer of field energy into the heterogeneous regions,
accelerating their dynamics and leading to an effective broadening at the right flank
of the α relaxation peak (and a corresponding effect in ε′) [18, 20, 29, 33]. However,
the continuous increase of� ln ε′′(ν) found at ν < να in PCs cannot be accounted for
in this way. This discrepancy is also revealed by the solid line shown in Fig. 6, which
was calculated according to the boxmodel [29].Obviously,within thismodel the field
effects in ε′′ are expected to approach zero for low frequencies, in agreement with
the behavior in most supercooled liquids but in marked contrast with the findings
in the PCs. In contrast, at ν > να , a positive field effect with the correct order of
magnitude is predicted. In Ref. [29], the deviations in this region were ascribed to
the suggested intrinsic non-exponentiality of PCs [41, 42]. This notion implies that,
in contrast to canonical glass formers, in PCs only part of their non-exponential
relaxation behavior arises from heterogeneity.

It should also be noted that the negative values of � ln ε′ detected at ν < να

(Fig. 5a) again are at variance with the box model as developed for supercooled
liquids. In principle, negative values of � ln ε′, corresponding to a reduction of
the low-frequency dielectric constant, may be explained by saturation effects of the
polarization [69–71]. However, instead of the minimum revealed by Fig. 5a, in this
case a low-frequency plateau in� ln ε′(ν) is expected as found, e.g., in glassforming
1-propanol [72].

An explanation for the puzzling low-frequency nonlinear properties of PCs dis-
cussed above was provided in Ref. [29], based on recent theoretical considerations
by Johari [39, 40]. Within this framework, the high external field is assumed to result
in a reduction of configurational entropy. Via the relation of entropy and relaxation
time that is assumed within the Adam–Gibbs theory of the glass transition [59], this
should induce an increase of the relaxation time, resulting in a slight increase of
the glass temperature. This entropy effect should, however, only lead to significant
nonlinear contributions at low frequencies, ν < να , because the molecular rearrange-
ments associated with the entropy reduction are too slow to follow the ac field at
high frequencies [29]. This is in good accordance with the experimental findings at
low frequencies documented in Figs. 5, 6, and 7, which cannot easily be explained
by other contributions as discussed above.

Entropy contributions to nonlinear dielectric properties have also been found for
various structural glass formers, mostly by performing measurements under a strong
bias field [30, 73–75]. However, it seems that entropy-driven nonlinearity effects in
PCs are generally stronger than those detected in such supercooled liquids [30, 31].
In Johari’s model [39], the impact of a high electrical field on the reorientational
degrees of freedomof themolecules is considered. It indeed seems reasonable that the
field may diminish the reorientational disorder of dipolar molecules and thus influ-
ence the entropy of the system. However, while in PCs there is only reorientational
disorder, in structural glass formers also translational disorder exists, which should
be less influenced by the field. In contrast to structural glass formers, for the overall
entropy of PCs molecular reorientations are the main source of entropy. Therefore,
one may speculate that for PCs the field-induced variation of reorientational disorder
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is of more importance than for canonical glass formers and that this is the reason
for the different low-frequency nonlinear behavior of these two classes of glassy
matter [31]. However, in a recent work [40], Johari pointed out that for cyclo-octanol
intramolecular degrees of freedom also strongly contribute to its overall entropy.

As noted, e.g., in Ref. [19], from the field-induced variation of the complex dielec-
tric permittivity, the cubic susceptibility χ

(1)
3 can be calculated. It is defined via the

following relation for the time-dependent polarizationP(t), resulting from an applied
time-dependent electrical field E(t) � Eac cos(ωt) [27, 38]:
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Here, the lower indices of χ correspond to the exponent of the electrical-field
dependence (which defines χ

(1)
3 as cubic susceptibility) while the upper ones signal

theω factor. The higher order harmonic susceptibilities χ
(3)
3 and χ

(5)
5 are often simply

denoted as χ3 and χ5, respectively. It should be noted that χ
(1)
3 contains essentially

the same information as � ln ε′(ν) and � ln ε′′(ν) plotted in Figs. 5, 6, and 7 and
can be directly calculated from the measured low- and high-field permittivities via
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lo and �ε′′ � ε′′
hi − ε′′

lo [19].
Figure 8 shows spectra of the modulus and phase of χ

(1)
3 for plastic-crystalline

cyclo-octanol. This should be compared to the corresponding results for two super-
cooled liquids (glycerol and propylene carbonate), recently published in Ref. [76].
The findings in this work were interpreted along similar lines as the higher har-
monic susceptibilities reported, e.g., in [23, 26, 27], namely within the theoretical
framework by Bouchaud and Biroli [36] assuming molecular cooperativity leading
to “amorphous order” that grows when the glass temperature is approached. The
humped shape observed in the modulus spectra of various cubic susceptibilities in
the region of να can be well understood within this framework. As pointed out in
Ref. [76], several common features (e.g., the hump and the similar phase behavior)
found in the spectra of different nonlinear susceptibilities point to a common phys-
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Fig. 8 Modulus (a) and
phase (b) of the cubic
susceptibility χ

(1)
3 of

plastic-crystalline
cyclo-octanol, measured at
various temperatures for a
field of 375 kV/cm. The lines
are guides to the eyes

10-3

10-2

10-1

10 0

168K
172K

178K

cyclo-octanol

|χ
(1

)
3

|E
2

182K

-3 -2 -1 0 1 2 3
-100

0

100

200

300

168
K

172
K

182
K

178
K

log10 [ν(Hz)]

(a)

(b)
ph

as
e
(°
)

ical origin, dominated by cooperativity effects. Nonlinear entropy contributions as
discussed in Johari’s model [39] were shown to be consistent with this view.

An inspection of the χ
(1)
3 spectra of cyclo-octanol in Fig. 8 reveals some similar-

ities to those in the supercooled liquids [76]: Just as for the latter, a hump shows up
in the modulus spectra about half a decade above the α-peak frequency να (Fig. 8a).

Moreover,
∣
∣
∣χ

(1)
3

∣
∣
∣ (ν) exhibits a spikelike minimum where it seems to approach zero.

Just as for the canonical glass formers, this minimum is accompanied by a strong
jump in the phase (Fig. 8b). (In Fig. 2 of Ref. [76], the phase becomes negative at
low frequencies but it is a matter of definition if angles above 180° are represented
as positive or negative values.) However, Fig. 8 also reveals some differences to the
behavior in the supercooled liquids: In plastic-crystalline cyclo-octanol, the mini-
mum in themodulus and the jump in the phase occur at higher frequency, namely just
at να , while in Ref. [76] it was found at least a factor of three below να . This effect
seems to impede the full formation of the hump in the modulus of the PC. Moreover,
the phase at frequencies below the jump is still strongly frequency dependent, while
it is nearly constant in the supercooled liquids. In Ref. [76] the anomalies in the χ

(1)
3

spectrawere ascribed to a transition from the “trivial” saturation response dominating
at low frequencies [69–71] to the correlation-dominated regime at higher frequen-
cies. Especially, the saturation effect leads to a reduction of ε′, while correlations
seem to enhance it. At the frequency of the anomalies, both effects seem to compen-
sate. In the present case of plastic-crystalline cyclo-octanol, similar arguments can
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be used when assuming a transition from correlation-dominated behavior at ν > να to
entropy-dominated nonlinearity at ν < να . Nonlinear saturation and entropy effects
are both expected to be most pronounced at low frequencies. In the χ

(1)
3 spectra

(and thus probably also in the other cubic susceptibilities [76]), their main difference
seems to be the essentially frequency-independent behavior of the first compared to
the frequency-dependent nonlinear response of the latter. The comparison of the χ

(1)
3

results on a PC (Fig. 8) and those on supercooled liquids in Ref. [76] seem to corrob-
orate the notion that entropy effects mainly dominate the low-frequency nonlinear
response in PCs, in contrast to saturation effects in supercooled liquids.

2.2 Secondary Relaxations

Just as found for many supercooled liquids, plastic crystals are known to exhibit
secondary relaxation processes, termed β relaxations, which are faster than the main
reorientational process, usually denoted as α relaxation [1]. As shown by Johari and
Goldstein [34], β relaxations seem to be an inherent property of the glassy state
of matter. To distinguish such processes from relaxations arising from more trivial
effects as, e.g., intramolecular motions, they are nowadays commonly denoted as
Johari–Goldstein (JG) relaxations. The microscopic origin of JG relaxations is still
controversially discussed. For example, they were ascribed to motions of molecules
within “islands of mobility” [34], small-scale motions within a fine structure of the
energy landscape experienced by the molecules [77–79], or various other mecha-
nisms (e.g., [80–83]).

The shoulders observed at the high-frequency flanks of the peaks in the loss
spectra of cyclo-octanol, shown in Fig. 4b, indicate the presence of two faster sec-
ondary processes. Examining data covering a broader temperature and frequency
range indeed reveals clear evidence for these processes, which were termed β and
γ relaxations [60]. By applying a universal criterion, valid for different classes of
glass formers, strong hints were obtained that the β relaxation of cyclo-octanol is a
genuine JG relaxation process [83, 84]. As seen in the left inset of Fig. 4, there is no
significant difference of the high- and low-field results for the loss in the region of
the β relaxation. Obviously, the field-induced variation of ε′′ is small in this region
and, consequently, the difference spectra shown in Fig. 5 strongly decrease at high
frequencies. This is also the case for 60SN-40GN (Fig. 7a) where the nonlinear-
ity also becomes weaker in the regime of its secondary relaxations [31]. For the
neopentylglycol/cyclo-hexanol mixture shown in Fig. 6 and for cyanocyclohexane,
a decrease of the difference spectra at high frequencies was also observed, which,
however, seems to be more gradual than for the other PCs [29].

The weaker nonlinearity of PCs in the regime of their secondary relaxations
resembles the corresponding effect found for the excess-wing region of supercooled
liquids like glycerol [25, 72]. The excess wing shows up as a second, more shallow
power law at the high-frequency flank of the α peak of some glass formers [11,
35, 85]. In various works, it was suggested to be caused by a JG relaxation peak
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that is partly submerged under the dominating α peak (e.g., [86–88]). Therefore, the
reduction or even absence of a nonlinear effect at high frequencies in the PCs may
well have the same origin as the negligible nonlinearity in the excess-wing region
of the supercooled liquids [25, 72]. As discussed, e.g., in Ref. [25], this finding is
consistent with the relation of nonlinearity and molecular cooperativity suggested
in Ref. [36] if having in mind that secondary relaxations are often assumed to be of
non-cooperative nature [81, 89, 90]. However, it should be noted that in the region
of the very strong secondary relaxation of glassforming sorbitol, well-pronounced
nonlinear effects were found [19, 91], a fact that could be explained within the
framework of the coupling model [92].

As discussed in Ref. [93], based on time-resolved measurements, the number of
high-field cycles applied to the sample may play a crucial role in the detection of
equilibrium values for the nonlinearity. For example, the degree of nonlinearity in the
high-frequency region of supercooled liquids seems to clearly depend on the number
of applied cycles [93] and similar behavior was also reported for PCs [29]. However,
experiments with different cycle numbers performed for 60SN-40GN did not reveal
any differences [31]. While the details of this behavior are not finally clarified, in any
case, the nonlinearity in the regime of high-frequency processes seems to be smaller
than for the main relaxation in most glasslike materials investigated until now.

Further information on the secondary relaxations in cyclo-octanol can be obtained
by transferring the sample into an (at least partly) orientationally ordered state
[60–63], which was achieved by heating the sample to 227 K after supercooling
and keeping it there for 10 min. As shown in Ref. [60], the secondary relaxations
persist in thismore ordered state and can be investigatedwithout interference from the
dominating α relaxation. Figure 9 shows the results for the loss at 168 K, measured
at low and high fields. Above about 1 Hz, in the region of the β and γ relaxations,
within experimental resolution no field-induced variation is observed. This finding
is in good agreement with those obtained for the plastic-crystalline phase in the
secondary relaxation region, discussed above (Figs. 4 and 5). The field dependence
observed at the lowest frequencies may be ascribed to the α relaxation arising from
residual amounts of the plastic-crystalline phase or to contributions from ionic con-
ductivity, due to small amounts of impurities within the sample. Nonlinearities of
ionic conductivity are well-known effects and are discussed in detail by Roling and
co-workers (see, e.g., Ref. [94] and the chapter by B. Roling in the present book).

3 Third-Order Harmonic Susceptibility

Another prominent way to detect the nonlinear dielectric response of a material is
the measurement of higher harmonics of the dielectric susceptibility: At low fields,
the polarization P and field E should be proportional to each other. Therefore, the
application of a sinus ac field E(t) results in a sinus polarization P(t) with the same
frequency. However, at high fields, P no longer is proportional to E and, thus, an
applied sinus field with frequency ω can result in higher harmonics with frequency
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Fig. 9 Dielectric loss
spectra of cyclo-octanol in
the orientationally ordered
state at 168 K, measured at
low and high field
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3ω, 5ω, etc., which are quantified by the higher order harmonic susceptibilities χ3,
χ5, etc. as defined in Eq. (1). The even harmonics 2ω, 4ω, etc. should be zero because
P(E) should be equal to −P(−E).

Figure 10 shows the modulus of χ3E2 for the PCs cyclo-octanol [28] and 60SN-
40GN [31]. In both cases, a hump is observed at a frequency somewhat below να ,
indicated by the arrows in Fig. 10. As mentioned in the introduction, such a humped
shape of the χ3 spectra is predicted within the model by Biroli and co-workers [36,
37], to arise from molecular cooperativity, which is often assumed to be typical for
glassforming systems [8, 43, 44, 59]. Qualitatively, similar spectral shapes of χ3(ν)
were also found for various structural glass formers [19, 23, 26, 73]. Within the
theoretical frameworkofBouchaud andBiroli [36, 37], the detection of a hump inPCs
as documented in Fig. 10 indicates that the glassy freezing in PCs is also governed
by molecular cooperativity [28]. A possible mechanism for generating molecular
correlations in PCs could be lattice strains that reduce the hindering barriers for
reorientational motions of neighboring molecules [28]. However, it should be noted
that a hump in |χ3|(ν) can also be explained within the framework of other models
[73, 95–99].

About one decade below the hump frequencies, the |χ3|E2 spectra of 60SN-40GN
(Fig. 10b) reveal weak shoulders. In Ref. [31] it was speculated that these spectral
features arise from an additional slow relaxation process, for which indications were
found in the linear dielectric spectra [48]. The microscopic origin of this process is
unknown until now.

In Fig. 11, for cyclo-octanol in addition to the modulus shown in Fig. 10a, the
real and imaginary parts of the third-order harmonic susceptibility (times E2) are
presented. This should be compared to the corresponding spectra as found for the
supercooled liquids glycerol and 1-propanol [19]. In the latter, the spectra of both
quantities could be well described by exclusively considering saturation effects of
the polarization at high fields [71], as already treated in very early works on nonlinear
dielectric spectroscopy [69, 70]. In 1-propanol, cooperativity seems to be absent for
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Fig. 10 Modulus of the
third-order harmonic
component of the dielectric
susceptibility (times E2) of
cyclo-octanol (a) [28] and
60SN-40GN (b) [31],
measured at various
temperatures. The applied
fields were 375 and
357 kV/cm, respectively. The
arrows indicate the
corresponding α-peak
frequencies. The lines are
guides for the eyes
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the main relaxation process due to the well-known peculiarities of the relaxational
dynamics of most monohydroxy alcohols [100, 101]. However, in glycerol, the real
and imaginary parts of χ3 showed clear qualitative deviations from the behavior
predicted for entirely saturation-induced nonlinearity, which was ascribed to cooper-
ativity effects [19]. For cyclo-octanol, the spectra of Fig. 11 inmany respects resemble
those of glycerol and also clearly do not follow the behavior predicted for a purely
saturation-dominated system such as 1-propanol. Especially, just as for glycerol, the
well-pronounced negativeminima, occurring in both the real and the imaginary parts,
not far from να , together generate the hump observed in themodulus of χ3 (Fig. 10a),
which is taken as signature for cooperative glassy dynamics [28]. The negative real
part of χ3 found at low frequencies (Fig. 11a) can be assumed to arise from the
entropy effects [39] discussed above, in contrast to the saturation effect dominating
the low-frequency response in glycerol. At low frequencies, i.e., on long timescales,
the liquid flow (directly related to the α relaxation) should destroy glassy correlations
[27], leaving room for additional nonlinear contributions becoming dominant, which
in the PCs predominantly seem to be entropy effects.
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Fig. 11 Real and imaginary
parts of χ3E2 of
cyclo-octanol at four
temperatures measured for a
field of 375 kV/cm. The
arrows indicate the α-peak
frequencies. The lines are
guides for the eyes
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Within the model by Bouchaud and Biroli [36, 37], a hump observed in the third-
order susceptibility χ3, as documented for the PCs cyclo-octanol and 60SN-40GN
in Fig. 10, should be related to the number of correlated molecules Ncorr. Especially,
the dimensionless quantity X (3)

3 , defined by [23]

X (3)
3 � kBT

ε0 (�χ1)
2 a3

χ
(3)
3 ,

which corrects χ3 for trivial temperature dependences, should be directly propor-
tional to Ncorr. (In this equation, �χ1 is the dielectric strength and a3 the volume
taken up by a single molecule.) Figure 12b presents the temperature dependence of
the peak value of this quantity for three supercooled liquids [26] and for the two
PCs for which χ3 data are available (symbols; left scale) [28, 31]. At the peak, X (3)

3
should be dominated by the cooperativity contribution to χ3 and thus correspond to
Ncorr(T ) in arbitrary units. As revealed by Fig. 12b [26, 28, 31], for all these sys-
tems, Ncorr increases with decreasing temperature, implying a growth of correlation
length scales. This is in accord with the notion that the glass transition is related to
an underlying thermodynamic phase transition [43, 59].

The temperature dependence of Ncorr for the three PCs, shown in Fig. 12b (closed
symbols), fully matches the general scenario found for the supercooled liquids [26]
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Fig. 12 a Temperature-dependent average α-relaxation times of three glassforming liquids and two
PCs [48, 50, 60, 89] shown in anAngell plot [52]. The lines arefitswith theVogel–Fulcher–Tammann
(VFT) function [50]. b Comparison of the effective activation energies H (lines; right scale) with
the number of correlated moleculesNcorr (symbols; left scale) for the samematerials as in frame (a)
[26, 28, 31]. H was determined from the derivatives of the VFT fits of the temperature-dependent
relaxation times shown in frame (a).Ncorr, shown in arbitrary numbers,was determined fromχ3 (see
text). Tomatch theH(T ) curves,Ncorr wasmultiplied by separate factors for eachmaterial (glycerol:
1.15, propylene carbonate (PCA): 0.72, 3-fluoroaniline (FAN): 1.30, cyclo-octanol: 0.19, 60SN-
40GN (SNGN): 1.05). Note that both ordinates start from zero, implying direct proportionality of
both quantities

(open symbols): Simply spoken, themore fragile thematerial, the stronger is the tem-
perature dependence of its Ncorr. To illustrate their significantly different fragilities,
Fig. 12a shows an Angell plot of the relaxation times τ of the same materials as in
Fig. 12b. As discussed above, the fragility of a glass former quantifies the degree of
deviation of its temperature-dependent relaxation time from Arrhenius behavior. In
Fig. 12a, these deviations are revealed to be weakest for glycerol and strongest for the
two other glassforming liquids. Indeed, with fragility parameters m ≈ 53 (glycerol
[102]), 90 (3-fluoroaniline), and 104 (propylene carbonate [102]), the supercooled
liquids in this plot vary considerably between intermediate and high fragility. Corre-
spondingly, glycerol has significantly weaker temperature dependence of Ncorr than
the other two glass formers (Fig. 12b). As pointed out in Ref. [26], this finding well
corroborates the notion that the non-Arrhenius behavior of supercooled liquids arises
from increasing molecular cooperativity at low temperatures.

Concerning the PC results included in Fig. 12, cyclo-octanol is known to be a
rather strong glass former (m≈ 33), which is quite common for this class of glasslike
materials [1, 45]. In Fig. 12a, this immediately becomes obvious from the fact that
its τ curve is only weakly bended and, for T > Tg, lies above the data points of
all the other shown materials. Figure 12b reveals that, just as for the supercooled
liquids, this strong dynamics of cyclo-octanol is nicely mirrored by the very weak
temperature dependence of its Ncorr as determined from the χ3 measurements. Thus,
it seems that, for this PC, a temperature-dependent variation of cooperativity also
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is the main factor determining its non-Arrhenius behavior. A crucial test to support
this idea is provided by the results on 60SN-40GN. This is one of the very few
examples [45, 47, 48], where a relatively high fragility (m ≈ 62) is realized in a
PC. Indeed, in Fig. 12a, its τ (T ) curve is similarly bended as for the intermediately
fragile glycerol. Therefore, for 60SN-40GN the number of correlated molecules
should increase significantly stronger than for cyclo-octanol. In fact, this is observed
in Fig. 12b. Within the theoretical framework by Bouchaud and Biroli [36, 37], these
results allow to conclude that the origin of the non-Arrhenius behavior in PCs is
the same as for structural glass former, namely an increase of cooperativity when
approaching the glass transition under cooling.

In Ref. [26], it was demonstrated that, in addition to the qualitative connection
of the temperature variations of the α-relaxation time and Ncorr discussed above,
there also seems to be a quantitative relation of both quantities: Let us consider
the explanation of the non-Arrhenius behavior of τ (T ) by a temperature-dependent
effective energy-barrier H governing molecular motion, as schematically indicated
in Fig. 3 [12, 44, 103]. Within this framework, fragile and strong dynamics imply
strong or weak temperature dependence of H(T ), respectively. Within the time-
honored Adam–Gibbs theory [59], it is assumed that the temperature-dependent
energybarrier is proportional to the number ofmoleculeswithin aCRR, i.e.,H ~Ncorr.
As indicated in Fig. 3, H(T ) can be estimated by the derivative of the log τ

(

1
/

T
)

curves in the Arrhenius representation, H � d(lnτ )/ d(1/T ). (To avoid excessive
data scatter, usually arising when differentiating experimental curves, derivatives of
the fit curves of τ (T ) instead of the experimental data points can be used.) For the
materials covered by Fig. 12, the results for H(T ) are indicated by the lines shown
in frame (b) (right scale). As demonstrated in Ref. [26] for the supercooled liquids,
the Ncorr(T ) data (in arbitrary units) can be reasonably scaled onto the H(T ) curves
obtained in this way. This obviously is also well fulfilled for the two PCs [28, 31].
It should be noted that both ordinates in Fig. 12 start at zero implying that, indeed,
H(T ) and τ (T ) are directly proportional to each other. Finally, we want to mention
that the scaling factors, applied to match the Ncorr(T ) to the H(T ) curves are of the
order of one for the three supercooled liquids and for plastic-crystalline 60SN-40GN
(see caption of Fig. 12 for the values). However, for cyclo-octanol, this factor is
0.19 and, thus, significantly smaller. The reason for this difference is not clear at
present; seemingly, for the latter compound, the molecular motions are less impeded
by a high Ncorr than in the others. Further nonlinear investigations of canonical PCs
are necessary to check if this deviation is a common property of this material class.
60SN-40GN may be suspected to be a special case, due to its strong substitutional
disorder.

4 Summary and Conclusions

In the present overview, we have demonstrated a rich variety of nonlinear dielectric
phenomena occurring in PCs.We have concentrated on two typical ways of perform-



Nonlinear Dielectric Response of Plastic Crystals 297

ing nonlinear dielectric experiments, namely the measurement of the 1ω and of the
3ω components of the dielectric susceptibility, both performed under high ac fields.
In many respects, PCs reveal similar behavior as found for structural glass formers.
Especially, high ac fields lead to an enhancement of the dielectric permittivity at
frequencies ν > να , just as commonly found for supercooled liquids. Therefore, it
seems natural to explain this phenomenon in a similar way. Just as for the latter, cur-
rently two seemingly different explanations of the nonlinear response at ν > να can
be invoked, namely a selective transfer of field energy into the heterogeneous regions
as considered in the box model [18, 20, 29, 32, 68] or a cooperativity-related origin
implying increasing length scales and “amorphous order” when approaching Tg as
treated in the model by Bouchaud and Biroli [23, 26, 27, 31, 36, 37, 76]. It should
be noted, however, that in a recent work it was proposed that these two approaches
even may be compatible [76].

At low frequencies, ν < να , the nonlinear 1ω response of PCs and supercooled
liquids seems to differ markedly. While the latter exhibit only weak nonlinearity
in this frequency range, PCs probably are dominated by entropy effects [29] as
considered in Johari’s theory [39]. To explain this finding, we have speculated about
the different relative importance of reorientational degrees of freedom for the entropy
in PCs compared to canonical glasses [31] but this issue is still far from clarified.

When approaching high frequencies, in the region of secondary processes as the
excesswing or the JG relaxation, for PCs, just as for the supercooled liquids, a gradual
reduction of nonlinearity is observed. Within the cooperativity-related framework,
this implies less cooperative motions as often assumed for such processes [81, 89,
90].

Of special interest are the results concerning the third-order harmonic suscepti-
bility, characterizing the 3ω dielectric response [28, 31]. For the two PCs for which
this quantity was investigated until now, a spectral shape as predicted by the model
by Biroli and Bouchaud is found. In this respect, the PCs behave very similar as
various supercooled liquids [23, 26, 73]. The results seem to imply that a growth
of molecular cooperativity and the approach of amorphous order under cooling is
the origin of the non-Arrhenius behavior, not only in supercooled liquids [23, 26,
27] but also in PCs. As discussed in Sect. 1, an energy-landscape scenario [57, 58]
was previously invoked to rationalize the commonly less fragile relaxation dynamics
of PCs compared to structural glass formers [1, 45, 47, 48]. The found indications
for growing length scales when approaching Tg in PCs, based on χ3 measurements,
seem to imply that there must be a relation of this energy-landscape scenario to the
cooperativity scenario. A possible rationalization of such a relation was discussed in
Sect. 1.

The present work makes clear that quite far-reaching conclusions can be drawn
from nonlinear dielectric measurements of PCs, not only concerning this special
class of glasslike systems but also concerning the glass transition and glassy state
of matter in general. Nevertheless, one should be aware that until now only rather
few PC systems have been investigated by nonlinear techniques. Clearly, a broader
database is highly desirable to reveal universalities and further help enlightening our
understanding of the role of cooperativity and heterogeneity in glassy systems.
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Nonlinear Ionic Conductivity of Solid
Electrolytes and Supercooled Ionic
Liquids

B. Roling, L. N. Patro and O. Burghaus

Abstract In this chapter, we present experimental and theoretical results for the
nonlinear ionic conductivity of solid electrolytes and of supercooled ionic liquids at
large electric fields exceeding 100 kV/cm. The nonlinear conductivity was measured
by nonlinear ac impedance spectroscopy, i.e., by applying large ac electric fields and
analyzing the measured current density spectra, in particular, higher harmonics in
the current density spectra. We first review the first and second Wien effect found
in classical strong and weak electrolyte solutions as well as the strong nonlinear ion
transport effects observed for inorganic ionic glasses and for polymer electrolytes.
Then we present models describing the nonlinear ion conductivity of classical elec-
trolyte solutions, ionic glasses, and polymer electrolytes. Finally, recent results are
presented for the nonlinear ionic conductivity and permittivity of supercooled ionic
liquids. We show that supercooled ionic liquids exhibit anomalous Wien effects,
which are clearly distinct from the classical Wien effects. Some ionic liquids exhibit
a very strong nonlinearity of the ionic conductivity, manifesting even in seventh-
order harmonic currents. We also discuss the frequency dependence of higher-order
conductivity and permittivity spectra of these supercooled liquids.

Keywords Ionic conductivity · Solid electrolytes
Ionic liquids · Nonlinear ac impedance spectroscopy · Higher harmonics

1 Introduction

Solid electrolytes are usually single-ion conductors with mobile alkali ions moving
in a rigid crystalline or amorphous matrix [1, 2]. Classical liquid electrolytes are
composed of a salt dissolved in water or in an organic solvent [3, 4]. For instance,
in commercial Li-ion batteries, the electrolyte consists of LiPF6 dissolved in a mix-
ture of organic carbonates. These electrolytes exhibit a high vapor pressure and are,
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therefore, flammable, leading to safety concerns with Li-ion batteries [5]. Conse-
quently, the replacement of conventional electrolytes by nonvolatile ones, like solid
electrolytes or ionic liquid-based electrolytes, would improve battery safety tremen-
dously. Currently, large research efforts are devoted to developing such alternative
electrolytes and to characterizing the ion transport mechanisms.

A common method for measuring the ionic conductivity of an electrolyte is ac
impedance spectroscopy. In the case of solid electrolytes, not only the total ionic
conductivity can be determined, but also different ion transport mechanisms can
be distinguished, such as transport across crystalline grains, transport across grain
boundaries, as well as Maxwell–Wagner effects due to the existence of different
phases with different ionic conductivities [6, 7]. Impedance spectroscopy on liquid
and solid electrolytes is usually carried out at low electric field strengths, at which
the relation between current density and electric field is linear [8, 9].

Additional information about ion transport mechanism can be obtained from non-
linear ionic conductivitymeasurements at high electric fields. In the 1920s and 1930s,
such measurements were done on classical diluted electrolyte solution and have
tremendously contributed to a better understanding of ion transport mechanisms in
these solutions [10]. The applied electric fields exceeded 50–100 kV/cm. The results
revealed the so-called first Wien effect for strong electrolytes (electrolytes with com-
plete dissociation of the ions in the solvent) and the so-called second Wien effect
for weak electrolytes (electrolytes with weak dissociation of salt in the solvent).
Theories by Falkenhagen [11], Wilson [12], and Onsager [13] explained these Wien
effects and provided new insights into the ion transport mechanisms.

Starting in the 1940s, nonlinear ionic conductivitymeasurementswere also carried
out on alkali ion conducting glasses [14–20]. It was found that the increase of the
current density with the electric field can be described by a hyperbolic sine function.
Different theoretical approaches were suggested to explain this kind of behavior.
However, a generally accepted theory does not yet exist.

In recent years, the first nonlinear ionic conductivity measurements on super-
cooled ionic liquids were carried out [21–24]. These studies will hopefully contribute
to a better understanding of ion transport mechanisms in ionic liquids, analogous to
the Wien effect studies on diluted electrolyte solutions.

In the first part of this chapter, we start with an overview of the nonlinear ionic
conductivity of classical diluted electrolyte solutions, ion conducting glasses, and
polymer electrolytes. By using nonlinear ac impedance spectroscopy over broad
frequency range, not only the nonlinearity of the long-range ion transport can be
studied, but also the frequency-dependent nonlinear effects can be studied related to
subdiffusive movements of ions. We also present models for nonlinear ion transport
in classical electrolyte solutions, in glasses and in polymer electrolytes. In the sec-
ond part of the chapter, we summarize the main results obtained for the nonlinear
ionic conductivity of supercooled ionic liquids. We discuss anomalous Wien effects
observed in the field dependence of the dc ionic conductivity as well as the frequency
dependence of higher-order conductivity and permittivity coefficients.



Nonlinear Ionic Conductivity of Solid Electrolytes … 303

2 Nonlinear Ion Transport in Classical Liquid Electrolytes
and in Solid Electrolytes

2.1 Classical Wien Effects in Diluted Electrolyte Solutions

Classical liquid electrolytes are solutions of metal salts in water or in organic sol-
vents, like acetonitrile. This class of electrolytes is subdivided into strong and weak
electrolytes. Strong electrolytes are characterized by a complete dissociation of the
dissolved salt and the formation of solvated cations and anions. Due to the large
number density of dissociated ions, the ionic conductivity σion of strong electrolytes
is relatively high. The molar conductivity � � σion/csalt, with csalt denoting the con-
centration of the dissolved salt, is a measure for the average mobility of the ions in
the solution. For strong electrolytes, the molar conductivity decreases weakly with
increasing salt concentration due to the weak Coulomb interactions between the sol-
vated ions, see Fig. 1a. Consequently, the molar conductivity of strong electrolytes
is only slightly lower than the molar conductivity at infinite dilution, �∞. The weak
Coulomb interactions lead to a weak ion atmosphere effect, i.e., cations are pref-
erentially surrounded by anions and vice versa. In contrast, weak electrolytes are
characterized by an incomplete dissociation of the salt. The major part of the ions
formpairs or larger aggregates in the solvents, and only a small fraction of dissociated
ions are present in the solution, which contribute to the ionic conductivity. Conse-
quently, the ionic conductivity of weak electrolytes is relatively low. The degree
of salt dissociation of weak electrolytes depends strongly on the salt concentration,
and the molar conductivity decreases with increasing salt concentration according
to � ∝ 1/

√
csalt, see Fig. 1a. Consequently, strong and weak electrolytes can be

easily distinguished by analyzing the dependence of the molar conductivity on the
salt concentration.

(a) (b)

Fig. 1 Dependence of the molar conductivity � of classical strong and weak electrolytes on a the
salt concentration csalt and b the electric field E (schematic illustration)
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Furthermore, strong and weak electrolytes exhibit a clearly distinct field depen-
dence of the ion conductivity. In the case of strong electrolytes, a strong electric
field leads to an enhancement of the molar conductivity, with the molar conductivity
approaching the infinite-dilution limit�∞ at very strong fields, see Fig. 1b. This is the
so-called first Wien effect. For instance, in the case of a 2.3×10−4 M KCl solution
in water, the ionic conductivity enhancement at an electric field of 180 kV/cm, with
respect to the low-field ion conductivity, is only about 0.45% [25, 26]. At intermedi-
ate electric fields, the nonlinear effect increases quadratically with the electric field.
The origin of the first Wien effect is the mitigation of the resistance contribution of
the ionic atmosphere (ions with opposite charge) around an ion by the strong field. In
contrast, weak electrolytes exhibit a much stronger field dependence of the ionic con-
ductivity, see Fig. 1b. This is termed the second Wien effect. For example, the ionic
conductivity enhancement of a 7.4×10−4 M acetic acid solution in water is 11% at
180 kV/cm [27]. The origin of this effect is a field dependence of the equilibrium
constant for the dissociation of ion pairs into free ions. The degree of dissociation
and thus the number of free ions increases with increasing field strength. In classical
measurements with field strength up to about 200 kV/cm, the conductivity increases
with the field in a linear fashion [27].

2.2 Nonlinear DC Ion Transport in Inorganic Glasses and in
Polymer Electrolytes

A number of field-dependent ionic conductivity studies were carried out on ion
conducting inorganic glasses [14–20]. In these studies, dc electric fields Edc were
applied, and the resulting dc currents densities jdc were determined. In general, the
obtained jdc(Edc) curves could be fitted by a hyperbolic sine function:

jdc ∝ sinh

(
q aapp Edc

2 kBT

)
(1)

Here, q denotes the charge of the mobile ions, while kB and T are Boltzmann’s
constant and the temperature, respectively. The quantity aapp has the unit of a distance
and has been termed as an “apparent jump distance”. Equation (1) can be derived
theoretically in the framework of a random walk theory with mobile ions carrying
out thermally activated hops in a periodic potential landscape, see Sect. 2.4.2. In
this framework, aapp is identical to the actual jump distance of the mobile ions, i.e.,
to the distance between neighboring sites. However, the apparent jump distances
derived from fits of experimental data using Eq. (1) are generally between 15 and
30 Å [14–20]. Thus, aapp is much larger than typical distances between neighboring
ionic sites in glasses, a. In molecular dynamics simulations, these typical distances
were found to be about a ≈ 2.5 − 3 Å [28, 29]. The physical origin of the large
values for aapp is most likely related to the amorphous structure of the matrix the
ions are moving in. This amorphous structure results in a highly disordered potential
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Fig. 2 Apparent jump distance of different Li–Na aluminosilcate glasses with composition
(Li2O)1−x * (Na2O)x * Al2O3 * 4SiO2 plotted versus inverse temperature. The inverse temper-
ature scale is normalized by the activation energy of the low-field ionic conductivity, Ea . The
numbers in the legend are given by x * 100. Reprinted with permission from [30]. Copyright 2010
by De Gruyter

landscape with spatially varying site energies and barriers, in contrast to the periodic
potential landscape considered in random walk theory. We will come back to this
point in Sect. 2.4.2.

The temperature dependence of the apparent jump distance for ionic glasses was
analyzed in detail by our group [30]. As a representative example, we show in Fig. 2
the apparent jumpdistance ofLi–Na aluminosilicate glasses plotted versus the inverse
temperature. The inverse temperature scale is normalized by the activation energy
of the low-field ion conductivity, Ea . Remarkably, the apparent jump distance of all
glasses exhibits a similar temperature dependence, i.e., aapp increaseswith decreasing
temperature. In a first approximation, the temperature dependence of aapp is given
by:

aapp
a

≈ Ea

2 kBT
(2)

A theoretical explanation for this empirical relation does not yet exist.
In the 1990s, Tajitsu studied the nonlinear ion conductivity of a number of polymer

electrolytes [31–34]. These polymer electrolytes consisted of alkali salts, mostly
lithium salts, dissolved in a polymermatrix, like polyethylene oxide. In homogeneous
polymers, the apparent jump distance was found to be in a range 40–50 Å, i.e,
similar to the apparent jump distance values of inorganic glasses. However, in a
phase-separated polymer electrolyte containing rubber particles with diameter of
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about 80 nm, Tajitsu obtained very large apparent jump distances of the order of the
particle diameter [34].

2.3 Nonlinear AC Ionic Conductivity of Inorganic Glasses

When a dc electric field Edc is applied to an ionic conductor, and the stationary
current density jdc(Edc) is measured in the weak nonlinear regime, jdc(Edc) can be
expressed by an odd power series of the electric field:

jdc � σ1,dc · Edc + σ3,dc · (Edc)
3 + σ5,dc · (Edc)

5 + · · · (3)

Here, σ1,dc is the linear dc conductivity, while σn,dc with n �3, 5, etc. denotes the
nth-order dc conductivity coefficient. A Taylor expansion of Eq. (1) into a power
series of the electric field implies that all higher-order dc conductivity coefficients
σn,dc with n ≥ 3 are positive.

When an ac electric field E(t) � E0 · cos(ωt) is applied, the current density
being in phase with electric field, jreal, can be written as follows [22, 23]:

jreal � σ11,real · E0 · cos(ωt) +
(
3

4
σ13,real · (E0)3 · cos(ωt) + 1

4
σ33,real · (E0)3 · cos(3ωt)

)

+

(
10

16
σ15,real · (E0)5 · cos(ωt) + 5

16
σ35,real · (E0)5 · cos(3ωt) + 1

16
σ55,real · (E0)5 · cos(5ωt)

)
+ · · · (4)

The lower indexm of the conductivity coefficient σ n
m refers to the field dependence

of the respective current density term, while the upper index n refers to the number of
the harmonic (n�1: base current density; n≥3: nth-order harmonic current density).
The third-order conductivity spectrum σ 3

3,real can be determined by considering the
Fourier components of the current density at 3ω in Eq. (4). Rearrangement yields:

4 jreal(3ω)

E0
� σ 3

3,real · E2
0 +

5
4σ

3
5,real · E4

0 + · · · (5)

According to Eq. (5), a plot of 4 jreal(3ω)/E0 versus E2
0 yields a straight line with

a slope of σ 3
3,real, if the second term on the right-hand side of Eq. (5) is negligible.

σ 3
3,real spectra of various ion conducting inorganic glasses were obtained by our

group. As an example, Fig. 3a shows a plot of 4 jreal(3ω)/E0 versus E2
0 for a Li–Na

aluminosilicate glass with composition (Li2O)0.8 * (Na2O)0.2 * Al2O3 * 4 SiO2 at
two different frequencies of the applied ac voltage [35]. At 150 MHz, the data are
indeed on a straight line with a slope of σ 3

3,real. In contrast, at a higher frequency of
46 Hz, the data exhibit a curvature and were consequently fitted with a second-order
polynomial. In this case, σ 3

3,real was derived from the linear term.
Typical isotherms of the low-field conductivity spectra σ1

1,real(ν) and of
the higher-order conductivity spectrum σ 3

3,real(ν) for the glass are shown in
Fig. 3b [30, 35] At low frequencies, both the σ 1

1,real(ν) spectra and the σ 3
3,real(ν)
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Fig. 3 a Plot of 4 jreal(3ν)/E0 versus E2
0 for a (Li2O)0.8 * (Na2O)0.2 * Al2O3 * 4SiO2 glass at

273 K and at two different frequencies. Empty symbols denote negative values at high frequencies.
The solid lines are second-order polynomial fits. b Low-field conductivity spectra σ 1

1,real(ν) and

modulus of higher-order conductivity spectra
∣∣∣σ 3

3,real(ν)

∣∣∣ of the glass at different temperatures.

Empty symbols denote negative values and filled symbols positive values, respectively. Reprinted
with permission from [35]. Copyright 2010 by the American Physical Society

spectra are characterized by dc plateaus originating from long-range ion transport.
At higher frequencies, the σ 1

1,real(ν) spectra pass over in the well-known dispersive
regime reflecting subdiffusive ion dynamics [9]. In the same frequency range,
σ 3
3,real(ν) changes its sign from positive values in the dc regime to negative values

in the dispersive regime. Consequently, in the log–log representation shown in
Fig. 3b, we have plotted the modulus of σ 3

3,real(ν). In both spectra, σ 1
1,real(ν) and

σ 3
3,real(ν), the transition from the dc regime to the dispersive regime shifts to higher

frequencies, when the temperature is increased. Remarkably, the slope in the
dispersive part of the σ 3

3,real(ν) spectra p3 � d log
∣∣σ 3

3,real(ν)
∣∣/d log ν ≈ 0.85 − 0.9
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is significantly larger than the slope in the dispersive part of the σ 1
1,real(ν) spectra,

p1 � d log
∣∣σ 1

1,real(ν)
∣∣/d log ν ≈ 0.70.

2.4 Models for Nonlinear Ion Transport

2.4.1 Models for Ion Transport in Diluted Electrolyte Solutions

The field dependence of the molar conductivity of strong electrolytes was explained
in the well-known theories by Falkenhagen and Wilson [11, 12] At low electric
fields, each ion is surrounded by an ion atmosphere with opposite charge exhibiting

an average thickness given by the Debye length LD �
√

ε0 εr kBT/
(
2NA csalt · e2

)
.

Here, ε0, εr , e and NA denote the vacuum permittivity, the relative permittivity of the
electrolyte, the elementary charge, and the Avogadro constant, respectively. At high
electric fields, the drift velocity of the ions is so high that the ions travel across many
thicknesses of the low-field ion atmosphere within the timescale of the experiment.
Consequently, under the influence of a high field, the low-field ion atmosphere, which
suppresses ion mobility, is not formed, and the ion mobility is higher than at low
fields. Falkenhagen derived the following expression for the field dependence of the
molar conductivity:

� � �∞
(
1 − e y

4π ε0εr (LD)2E

)
(6)

with y � w/2−(
w2 − 1

)
/4 · ln((w + 1)/(w − 1)) andw2 � 1+(2 kbT/(e E LD))2.

Since for very highfield E → ∞, the quantity y approaches½, themolar conductivity
approaches the molar conductivity at infinite dilution, �∞. Since in diluted solution,
the molar conductivity is only slightly lower than �∞, the field dependence of the
molar conductivity is weak.

The much stronger field dependence of the molar conductivity of strong elec-
trolytes was explained by Onsager [13]. He considered the field-dependent equilib-
rium between free ions and ion pairs. Ion pairs are defined as two ions with a separa-
tion distance shorter than the Bjerrum length LB � e2/(4πε0εr kBT ). Onsager calcu-
lated the kinetics of dissociation and recombination of ion pairs under the influence of
a strong field in the framework of Brownian dynamics. In this framework, the kinetics
of the dissociation of ion pairs is increased by a strong field, while the kinetics of the
recombination of ions is not influenced by the field. This leads to a field-dependent
equilibrium constant for the reaction: Cation - anion pair � free cation+ free anion:

K (E)

K (E → 0)
�

I1
(√

8x
)

√
2x

� 1 + x + O
(
x2

)
(7)
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with x � e3E/
(
8πε0εr (kBT )2

)
and I1 denoting a modified Bessel function. In a

weak electrolyte with K 	 1, the concentration of free ions and thus the molar
conductivity is proportional to

√
K . Thus, in the weak nonlinear regime with x 	 1,

the molar conductivity should be given by:

�

�(E → 0)
� 1 +

1

2
x + O

(
x2

)
(8)

In experiments, a linear increase of the molar conductivity with increasing field
was indeed observed [26]. Recently, the predictions of the Onsager theory were
essentially confirmed by Coulomb lattice gas simulations [36].

2.4.2 Models for Nonlinear Ion Transport in Inorganic Glasses and
Polymers

The simplest model for nonlinear ion transport in solid materials consists of nonin-
teracting ions carrying out thermally activated hops in a periodic potential landscape
under the influence of an electric field E , see Fig. 4. In this model, the current density
is given by: j ∝ sinh(qaE/(2kBT )) with a denoting the jump distance of the ion,
i.e., the distance between two neighboring sites in the landscape. If real ion conduc-
tors could be described by this model, the field-dependent current density would give
direct information about the jump distance.

However, in glasses and in polymers, the ionsmove in a highly disordered potential
landscape. In this case, the simplest theoretical approach are single-ion hoppingmod-
els with a distribution of site energies and/or hopping barriers. For three-dimensional
hopping models, analytical expressions for the field dependence of the current den-
sity can usually not be derived, but numerical results can be obtained by solving rate
equations or by carrying out molecular dynamics or Monte Carlo simulations.

Fig. 4 Hopping of an ion in
a periodic potential
landscape under the
influence of a strong electric
field E

Potential
energy
of ion

(without
field)

a = jump distance Space coordinate x

Electric field E
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It was found that the field dependence of the ionic current density depends strongly
on the nature of the disorder. One interesting example are hopping models with
random site energy disorder. If the distribution of the site energies is a box function,
then third-order dc conductivity σ3,dc is negative, whereas σ3,dc is positive in the case
of a Gaussian distribution of site energies [37]. A negative value for σ3,dc has also
been obtained in Monte Carlo simulations of a random barrier model with a box
distribution of hopping barriers [38]. In [38], the negative sign of σ3,dc was explained
by the structure of the ion transport pathways in the random barrier landscape. There
are only a few percolating pathways and many pathways with dead ends. Particles
moving along the percolating pathwaysmigrate preferentially into field direction and
give a positive contribution to σ3,dc. However, ions are often forced by the electric
field to move into dead ends and are then trapped in these dead ends for a certain
amount of time. This trapping effect gives a negative contribution to σ3,dc, which
overcompensates the positive contribution of the ions on the continuous pathways.
Such a trapping effect is also responsible for the negative σ3,dc values in the random
energy model with box distribution of site energies [37, 39]. On the other hand, in
a random energy model with a Gaussian distribution of site energies, a completely
different effect is dominant. In this case, a small number of low-energy sites exists,
in which the ions are trapped for most of the time. A strong field shuffles ions from
these low-energy sites to higher-energy sites, so that these ions become mobile [39].
This effect leads to a positive nonlinear effect σ3,dc > 0 and is reminiscent of the
Poole–Frenkel effect for nonlinear electron transport in disordered solids [40].

The results presented in [37–39] show that the experimental features σ3,dc > 0 and
aapp � 15−50 Å, observed for ionic glasses and for polymer electrolytes are by no
means easily reproduced in the framework of ion hopping models. On the contrary,
in many disordered potential landscapes, one finds either aapp ≈ a or even σ3,dc < 0.
Thus, the results of nonlinear conductivity measurements put severe constraints on
theoretical models for ion transport in disordered materials.

3 Experimental Setup for Nonlinear AC Impedance
Spectroscopy and Derivation of Higher-Order
Conductivity and Permittivity Spectra

In the case of solid electrolytes, the nonlinear ac impedance measurements were
carried out on thin samples with thicknesses in the range of 50–100 μm [41]. Bulk
samples of the solid electrolyte were first cut into cylindrical slices with a thickness
in the range of 1mm using a high-precision cutting machine. Then, the thickness was
further reduced by high-precision grinding using a lapping machine. This resulted
in a maximum error in the thickness over the faces of a sample of about 2 μm. The
thin sample was then attached to a highly resistive quartz glass tube by means of
a high-voltage resistant Araldite glue (Vantico). The quartz glass tube was placed
inside a quartz glass container, see Fig. 5a [41]. Both the quartz glass tube and the
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quartz glass container were filled with a 1 M aqueous NaCl solution. Platinum wires
connected to the high-voltage measurement system were then dipped into the NaCl
solution. Since the ionic resistance of the NaCl solution is many orders of magnitude
lower than the ionic resistance of the sample, the NaCl solution acts as an ionode
with virtually no voltage drop over the solution. This implies that the voltage applied
to the platinum wires drops completely over the sample.

The home-made sample cell for nonlinear ac impedance measurements on super-
cooled ionic liquids is illustrated in Fig. 5b [22]. In this cell, the ionic liquid is placed
between two fine-polished brass electrodes. The distance between these electrodes
can be adjusted by the fine rotation of a rotatable top electrode. This rotation is con-
trolled by means of a fine pitch thread (0.35 mm/turn), which is driven by a worn and
a bevel gear directly attached inside the sample cell with a reduction factor of 36. A
revolution counter, giving a further reduction of 10, on top of the probe head, is con-
nected by a rod to the bevel gear. Overall, one turn of the revolution counter changes
the distance between the electrodes by 0.97 μm. The typical distance between the
electrodes during the measurements was in the range of 50–60 μm.

Ac electric fields with amplitudes up to about 200 kV/cmwere applied to samples,
and the resulting current density in phase with the electric fields was analyzed by
means of Eqs. (4) and (5). Analogous expressions can be written down for the out-
of-phase current density jimag:

jimag � σ11,imag · E0 · sin(ωt) +
(
3

4
σ13,imag · (E0)3 · sin(ωt) + 1

4
σ33,imag · (E0)3 · sin(3ωt)

)

+

(
10

16
σ15,imag · (E0)5 · sin(ωt) + 5

16
σ35,imag · (E0)5 · sin(3ωt) + 1

16
σ55,imag · (E0)5 · sin(5ωt)

)
+ · · · (9)

From the real and imaginary parts of the third-order conductivity coefficients in
Eqs. (4) and (9), real and imaginary parts of third-order permittivity coefficients were
calculated by using the following relations:

ε33,real � σ 3
3,imag

3ωε0
and ε33,imag � σ 3

3,real

3ωε0
(10)

4 Nonlinear AC Impedance Measurements on Supercooled
Ionic Liquids

Nonlinear ac impedance measurements on supercooled ionic liquids are rare in the
literature. To our knowledge, the first nonlinear measurements were carried out in
2009 byHuang andRichert [21]. They found that the dielectric loss of the ionic liquid
1-butyl-3-methylimidazolium hexafluorophosphate in the 1 kHz regime increases
when the electric field is changed from 77.4 to 387 kV/cm.

In our group, we carried out nonlinear impedance measurements on
the following supercooled ionic liquids consisting of monovalent or
divalent cations and monovalent anions: 1-hexyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide [C6mim][NTf2]; 1-hexyl-3-methyl-imidazolium
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~~
AC voltage

AC current

Pt
wires

Highly resistive
quartz glass

Aqueous NaCl solution (1 mol/l)

Thin solid electrolyte sample

Araldite glue 
(high-voltage resistant)

(a)

(b)

Fig. 5 a Schematic illustration of the experimental setup for nonlinear ac impedance measure-
ments on thin solid electrolyte samples. Reprinted from [41]. Copyright (2005), with permission
from Elsevier. b Left: Photograph of the home-made sample cell for nonlinear ac impedance mea-
surements on supercooled ionic liquids (marked by red circle). The sample cell was integrated in a
Novocontrol sample holder BDS 1200. Right: Cross sectional sketch of the sample cell. Reprinted
from [22] with the permission of AIP Publishing

chloride [C6mim][Cl]; Trihexyl(tetradecyl)-phosphonium chloride [P6,6,6,14][Cl];
1,10-bis(2,3-dimethylimidazolium)decane di-bis(trifluoromethanesulfonyl)imide
[(M2I)2C102Im] [NTf2]2, and 1,10-bis(3-methylimidazolium)decane di-
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Fig. 6 Walden plot of
several monocationic and
dicationic ILs. The reference
line was calculated by
combining the
Nernst–Einstein and the
Stokes–Einstein relations for
strong electrolytes.
Reprinted with permission
from [23]. Copyright 2016
by the American Physical
Society
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bis(trifluoromethanesulfonyl)imide [(MI)2C102Im][NTf2]2. These ionic liquids
were commercially available and were used after drying under high vacuum
conditions (about 10−6 mbar) at a temperature of 373 K in order to remove traces
of water and of other molecular impurities [23]. In these liquids, the dynamics of
cations and anions takes place on the same timescale (no significant decoupling
effects). In addition, we carried out viscosity measurements in order to analyze
molar conductivity/viscosity relations in a Walden plot [23].

4.1 Nonlinear DC Conductivity of Monocationic and
Dicationic Liquids

In Fig. 6, we show a Walden plot for all liquids. The plot contains a reference
line, which was calculated by combining the Nernst–Einstein and the Stokes–E-
instein relations for strong electrolytes [23]. As seen from the plot, the exper-
imental data of four ILs are close to the reference line. These are the mono-
cationic ILs [C6mim][NTf2] and [C6mim][Cl], as well as the dicationic ILs
[(M2I)2C102Im][NTf2]2 and [(MI)2C102Im][NTf2]2. Thus, these “strong” ILs behave
like classical strong electrolytes in the sense that ion association effects, which are
not taken into account in the Nernst–Einstein and Stokes–Einstein relations, do not
seem to play a significant role. In contrast, the experimental molar conductivity val-
ues for the ionic liquid [P6,6,6,14][Cl] are about one order of magnitude below the
reference line. This point to significant ion association effects in this “weak” IL, like
in classical weak electrolytes.

In Fig. 7, we show exemplary results of the nonlinear conductivity spectra of the
supercooled dicationic liquid [(M2I)2C102Im] [NTf2]2 at a temperature of 226 K
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Fig. 7 Real part of
frequency-dependent base
current density and of
frequency-dependent
nth-order harmonic current
densities, all normalized by
the field amplitude E0 at
different electric fields for
the IL
[(M2I)2C102Im][NTf2]2 at
226 K. Reprinted with
permission from [23].
Copyright 2016 by the
American Physical Society
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(T g �224 K) [23]. The nonlinearity of the ionic conductivity at about 180 kV/cm
is so strong, that even seventh-order harmonic currents can be detected. The strong
nonlinearity manifests also in a strong increase of the base current density measured
at ω with increasing field amplitude E0. By dividing the base current density jreal
in the low-frequency plateau regime by the field amplitude E0, we obtain a field-
dependent dc conductivity σdc(E0), which is given by the sum of all cos(ωt) terms
in Eq. (4).

As shown in Fig. 8, the nonlinearity of the ionic conductivity is stronger for
the two “strong” divalent ILs [(M2I)2C102Im][NTf2]2 and [(MI)2C102Im][NTf2]2 as
compared to the two “strong” monocationic ILs [C6mim][NTf2] and [C6mim][Cl].
This result is expected, since also in the case of classical strong electrolytes, the
nonlinearity increases with increasing charge number of cations and anions [25, 26].
For instance, a 2.3×10−4 M KCl solution in water exhibits a relative conductivity
enhancement of about 0.45% at 180 kV/cm, while the conductivity enhancement
for a 1.7×10−4 M CdCl2 solution in water is about 1% [25, 26]. This finding is
understandable, since the force acting on ions at a specific field strength increases
with increasing charge number. However, in comparison to these classical strong
electrolytes, the “strong” ILs show a much larger nonlinear effect. At 180 kV/cm,
the conductivity enhancement is 62% for the IL [C6mim][NTf2] and 110% for the
dicationic IL [(M2I)2C102Im] [NTf2]2. In contrast, the “weak” IL [P6,6,6,14][Cl] shows
a much weaker nonlinearity. At 180 kV/cm, the relative conductivity enhancement
is only about 9%. This strength of the nonlinear effect is comparable to that found
for the classical weak electrolyte acetic acid. However, in contrast to acetic acid,
the nonlinearity increases in a quadratic fashion with the electric field. Thus, the
nonlinear effect in [P6,6,6,14][Cl] is at variance with the Onsager theory for classical
weak electrolytes.

In summary, we found that both “strong” and “weak” ILs show anomalous Wien
effects when compared to classical electrolytes: (i) “Strong” ILs show a much
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Fig. 8 Electric field
amplitude-dependent relative
conductivity enhancement of
monocationic and dicationic
ILs with respect to the
conductivity value measured
at E0 �12 kV/cm. Reprinted
with permission from [23].
Copyright 2016 by the
American Physical Society
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stronger nonlinear effect than classical strong electrolytes; In the case of “strong”
dicationic ILs, even seventh-order harmonic currents could be detected at ac elec-
tric field amplitudes of 180 kV/cm. (ii) The “weak” ionic liquid [P6,6,6,14][Cl] shows
a nonlinear effect similar to that of classical weak electrolytes. However, the field
dependence of the nonlinear effects is clearly distinct from classic weak electrolytes
(quadratic vs. linear). (iii) The “strong” ILs show a much stronger nonlinearity than
the “weak” IL.

4.2 Frequency Dependence of Nonlinear Permittivity Spectra

The frequency dependence of the third-order permittivity ε33 � ε33,real + iε33,imag
[see Eq. (10)] was recently studied for supercooled molecular liquids, like glycerol
[42–46]. It was shown that the modulus of the third-order permittivity,

∣∣ε33∣∣, exhibits
a pronounced maximum at frequencies slightly below the α-peak frequency. This
maximum was termed as “hump” [42, 43]. The increasing height of the “hump”
with decreasing temperature was interpreted as a signature for strongly correlated
dynamics of molecules close to the glass transition [42–44, 46]. Richert and cowork-
ers provided an alternative explanation for the “hump” based on the field dependence
of the entropy of the supercooled liquids [45]. Diezemann showed that a “hump” is
also predicted for the relaxation dynamics of independent molecules in an asym-
metric double-well potential, but not for the relaxation dynamics in a symmetric
double-well potential [47].

In order to compare the nonlinear permittivity spectra of supercooled
ionic liquids to those of supercooled molecular liquids, we subtracted
the third-order dc conductivity contribution, which reflects long-range
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Fig. 9 Third-order
permittivity spectra of the
monocationic liquid
[C6mim][NTf2] at
temperatures close to the
glass transition temperature
(189 K): a Frequency
dependence of the real and
the imaginary part of the
corrected third-order
permittivity coefficient,
ε33,real and ε33,imag,corr; b
Frequency dependence of the
modulus

∣∣ε33∣∣ �√(
ε33,real

)2
+

(
ε33,imag,corr

)2
.

Reprinted from [24] with the
permission of AIP
Publishing
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ion transport, from the imaginary part of third-order permittivity [24]. Thus,
we define a corrected imaginary part of the third-order permittivity by ε33,imag,corr �
ε33,imag − σ 3

3,dc/(3ωε0) and used this correct imaginary part to calculate the modulus

of the third-order permittivity
∣∣ε33∣∣ �

√
(ε33,real)

2 +
(
ε33,imag − σ3,dc/(3ωε0)

)2
. In

Fig. 9a, b we show spectra of ε33,real, ε
3
3,imag,corr, and

∣∣ε33∣∣ for the monocationic liquid
[C6mim][NTf2] at temperatures close to the glass transition temperature T g �189 K
[24]. As seen from Fig. 9b, a “hump” is clearly visible at 191 and 192 K. This hump
is caused by a pronounced minimum in the ε33,imag,corr spectra, which becomes more
pronounced with decreasing temperature, see Fig. 9a.

These experimental spectra were compared to model spectra for the relaxation
dynamics in asymmetric double-well potentials (ADWP) [24].As alreadymentioned,
such model spectra do show a “hump” in the modulus of

∣∣ε33∣∣. However, in ADPW,
the “hump” is caused by peaks in both the real part and the imaginary part of ε33.
The height of both peaks increases with decreasing temperature. This is clearly at
variance with the experimental spectra. Based on these results we argue that both the
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real and the imaginary part of the third-order permittivity should be analyzed when
comparing experimental data with theoretical predictions.

In addition, the physical meaning of ε33,imag,corr � ε33,imag − σ 3
3,dc/(3ωε0), in the

case of ionic conductors should be considered in more detail. Even in the framework
of simple hoppingmodels of non-dipolar ions, the quantity ε33,imag,corr does not simply
reflect local hopping movements of the ions, but a nontrivial influence of the long-
range transport on this quantity was observed [48]. In addition, the ionic liquids
studied here consist of ions with nonzero dipole moments, so that reorientational
movements of the ions also contribute to ε33,imag,corr.

5 Summary and Conclusions

In this chapter, we have reviewed the classical Wien effects observed for diluted
strong and weak electrolyte solutions as well as the nonlinear ion transport properties
of inorganic glasses and polymer electrolytes. The classicalWien effects observed for
diluted electrolyte solutions have provided new insights into short-range and long-
range interactions and the resulting ion transportmechanisms. In the case of inorganic
glasses and polymer electrolytes, strong nonlinear ion transport effects have been
found, which are characterized by positive third-order dc conductivities σ3,dc > 0
and by apparent jump distances in the range aapp � 15−50 Å. In the framework of
ion hopping models, such strong effects are only observed for disordered potential
landscapes with special features, in particular, for landscapes with a small number of
low-energy sites, from which trapped ions can be shuffled to high-energy sites by a
strong electric field. Themobile ions on the high-energy sites lead to a strong increase
of the ionic conductivity. Thus, the results of nonlinear conductivity measurements
put severe constraints on ion hopping models.

In the last 10–15 years, a large number of nonlinear ac impedance measurements
over broad frequency ranges have been carried out. In these measurements, high
ac electric fields were applied, and the field dependence of the base-wave current
density and of higher harmonics in the current density were analyzed. We have
described experimental setups for carrying out suchmeasurements on solid and liquid
electrolytes, and we have explained the derivation of higher-order conductivity and
permittivity spectra from these measurements.

Finally, we have presented recent results for the nonlinear ionic conductivity and
permittivity of supercooled ionic liquids. These are monocationic and dicationic liq-
uids. The nonlinear ionic conductivity of these liquids shows anomalousWien effects,
which are clearly distinct from the classical Wien effects. In particular, “strong” ILs
show a much stronger nonlinear effect than classical strong electrolytes. In nonlinear
ac impedance measurements, this manifests in harmonic currents up to the seventh
order. We have also analyzed the third-order permittivity spectra of supercooled
ionic liquids after subtracting the third-order dc conductivity caused by long-range
ion transport. Like observed formolecular liquids, themodulus of the corrected third-
order permittivity,

∣∣ε33∣∣, close to the glass transition temperature shows a “hump”,
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which is caused by a pronounced minimum in the ε33,imag,corr spectra. We show that
although asymmetric double-well potential (ADWP) models predict a hump in

∣∣ε33∣∣,
the origin of the hump in ADWP spectra is clearly distinct from the origin in the
experimental spectra. Consequently, further theoretical work is needed to understand
the origin of the “hump” for supercooled ionic liquids.
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Nonlinear Oscillatory Shear Mechanical
Responses

Kyu Hyun and Manfred Wilhelm

Abstract Mechanical dynamic oscillatory shear test is generally used to character-
ize and investigate mechanical properties of complex fluids or soft matters. Espe-
cially, small amplitude oscillatory shear (SAOS) tests are the canonical method for
probing the linear viscoelastic properties of complex fluids because of the firm the-
oretical background and the ease of implementing suitable test protocols. Material
functions of SAOS tests are analogous with dielectric functions from dielectric spec-
troscopy. However, recently nonlinear responses under large amplitude oscillatory
shear (LAOS) flows are also under the spotlight due to usefulness to character-
ize complex fluids. In this chapter, LAOS tests are reviewed. The key to successful
LAOS test is the analysis and fundamental understanding of the nonlinearmechanical
responses. To analyze nonlinear responses, there are several analyzing methods and
various nonlinear material functions suggested by several researchers. Among the
several methods available, FT (Fourier transform)-rheology is intensively reviewed.
Finally, several applications to investigate complex fluids (polymer melt and solu-
tion, polymer composite and blend, emulsion and block copolymer, and so on) are
introduced.

Keywords SAOS · LAOS · FT-rheology

1 Introduction

Rheology is the study of the relationship between mechanical deformation and stress
ofmaterials. In this context,materials refer to “softmater” or “complex fluids”. These
complex fluids possess mechanical properties that are intermediate between ordinary
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liquid and solids, e.g., polymer melts and solutions, block copolymers, biological
macromolecules, polyelectrolytes, surfactants, suspensions, emulsions and beyond
[1]. From an experimental point of view, deformation can generally be divided into
two categories: (1) shear flow and (2) extensional (or elongational) flow. These two
characteristic flows may be thought of as the classical flow used in rheological mea-
surements. Shear flow test can be further subdivided into steady and unsteady shear
test. From steady shear tests, well-defined material functions, i.e., viscosity, can be
measured. In unsteady shear tests, there are several kinds of test methods, e.g., shear
stress growth, shear stress decay, shear creep, step shear strain, dynamic oscillatory
shear tests, and so on [2]. Among unsteady shear flow tests, dynamic oscillatory shear
tests are well-known characterization method to investigate viscoelastic properties
of complex fluids [2]. Dynamic oscillatory shear tests are performed by subjecting a
material to a sinusoidal shear deformation and measuring the resulting mechanical
response as a function of time. Oscillatory shear input (γ (t) � γ 0 sin ωt, stress input
is also possible, however, the focus in this chapter would only be on the shear defor-
mation input) is very similar to oscillatory electric field input (E(t) � E0 sin ωt) for
dielectric spectroscopy (see Fig. 1). Oscillatory shear tests can be divided into two
regimes. One regime is a linear viscoelastic response (small amplitude oscillatory
shear, SAOS), and the second regime is nonlinear material response (large amplitude
oscillatory shear, LAOS). As the applied amplitude (of strain or stress) is increased
from small to large at a fixed frequency, a transition between the linear and nonlinear
regimes can appear [3]. Figure 2 schematically illustrates an oscillatory strain sweep
test inwhich the frequency is fixed and the applied strain amplitude is varied. In Fig. 2,
the viscoelastic response is quantified by two material functions, namely, the elastic
storage modulus G′(ω) and the viscous loss modulus G′′(ω). In the linear regime, the
strain amplitude is sufficiently small that both viscoelastic moduli are independent
of the strain amplitude and the oscillatory stress response is sinusoidal. The strain
amplitudes used in linear oscillatory shear tests are generally very small, often on the
order of γ 0 ≈ 10−2 – 10−1 for homopolymer melts and polymer solutions. For some
dispersed systems (emulsions, suspensions, and polymer nanocomposite) or block
copolymer solutions, the linear regime is limited to even smaller strain amplitudes,
γ 0 < 10−2.With increasing strain amplitude, the nonlinear regime can appear beyond
SAOS. In the nonlinear regime, the storage or loss moduli are a function of strain
amplitude [G′(γ 0) and G′′(γ 0)] and the resulting periodic stress waveform becomes
distorted and deviates from a sinusoidal wave (see Fig. 2). This nonlinear regime
becomes apparent at larger strain amplitude; therefore, the nonlinear dynamic test is
typically referred to as large amplitude oscillatory shear (LAOS) test [3].

2 Small Amplitude Oscillatory Shear (SAOS)

As SAOS test assumes that the material response is in the linear regime within the
accuracy of the rheometer and therefore the material functions, e.g., storage mod-
ulus G′ and loss modulus G′′ as a function of frequency fully describe the material
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Fig. 1 Schematic illustration of amechanical oscillatory shear measurement and b dielectric mea-
surements. Other geometries are also used for both measurements. Just for comparison purposes,
parallel disk types are introduced for both cases

response. Since linear viscoelasticity is based on a rigorous theoretical foundation
[1, 2, 4–7], SAOS tests provide very useful and convenient the rheological charac-
terization of complex fluids or soft materials.

The sinusoidal shear strain (or shear strain rate) is applied to complex fluid as
follows:

γ (t) � γ0 sinωt or γ̇ (t) � ωγ0 cosωt. (1)

Here, γ0 is strain amplitude and ω is the angular frequency. The strain amplitude
refers to the absolute deformation normalized to the distance between the gaps (see
Fig. 1a).When the strain amplitude is small enough (we discuss later about the degree
of “small” amplitude in Sect. 4.5), the linear response of complex fluids to this input
deformation is between ideal viscous and elastic behavior as follows:

σ (t) � σ0 sin (ωt + δ) , (2)

where δ is phase angle, i.e., δ is 0° for pure elastic solid and 90° for viscous liquids,
and δ of viscoelastic materials show between 0° and 90°. From simple mathematical
calculation,

σ (t) � σ0 sin (ωt + δ)

� σ0 (sinωt cos δ + cosωt sin δ)

� (σ0 cos δ) sinωt + (σ0 sin δ) cosωt (3)

By splitting up the shear stress in this way, we see that there is a portion of the
stress wave that is in phase with the imposed shear strain (i.e., proportional to sinωt;
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Fig. 2 Schematic illustration of the strain sweep test at a fixed frequency. This sweep test can be
used for determining the linear and nonlinear viscoelastic region. In the linear region, the storage
(G′) and loss (G′′) modulus are independent of the applied strain amplitude at a fixed frequency,
and the resulting stress is a sinusoidal wave. However, in the nonlinear region, the storage and loss
moduli become a function of the strain amplitude [G′(γ 0) and G′′(γ 0)] at a fixed frequency, and the
resulting stress waveforms are distorted from sinusoidal waves. In the linear region, the oscillatory
shear test is called SAOS (small amplitude oscillatory shear), and the application of LAOS (large
amplitude oscillatory shear) results in a nonlinear material response. Reproduced by permission of
Hyun et al. [3], copyright (2011) of Elsevier

Hooke’s law of elasticity) and a portion of the stress wave that is in phase with the
imposed shear strain rate (proportional to cosωt; Newton’s law for viscosity). Thus,
the SAOS tests are ideal for probing viscoelastic materials, defined as materials that
show both viscous and elastic properties [2]. Thematerial functions for SAOS are the
storage modulus G′(ω) and the loss modulus G′′(ω), and they are defined as follows:

σ (t)

γ0
� σ0 cos δ

γ0
sinωt +

σ0 sin δ

γ0
cosωt

� G ′ sinωt + G ′′ cosωt
. (4)
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Fig. 3 The storage and loss modus for a solid-like materials and b liquid-like materials

The storage modulus G′ represent “solid-like” behavior and loss modulus G′′ repre-
sent “liquid-like” behavior. Figure 3 shows the typical frequency-dependent storage
and loss modulus. For the “solid-like” fluid, G′ � G′′, and G′ is nearly frequency
independent (Fig. 3a). For the “liquid-like” fluid, the storagemodulus ismuch smaller
than loss modulus, and they scale at low frequency, G′ ∝ ω2 and G′′ ∝ ω1, respec-
tively (Fig. 3b) [1]. This behavior can be described by aMaxwell constitutive model.
It is a mechanical model in which a Hookean spring and a Newtonian dashpot are
connected in series.

Figure 4 shows schematically the storage and loss modulus for linear homopoly-
mer melts with entanglements. At low-frequency region, polymer melts behavior
like liquid (G′ is smaller than G′′, G′ ∝ ω2, and G′′ ∝ ω1). The low-frequency region
called terminal zone. With increasing frequency, G′ become larger, cross over G′′
and then larger than G′′. The quantity G′ displays a plateau due to entanglements and
minimum is observed in G′′. The modulus level of the G′ plateau, called the rubbery
plateau, is also known as the plateau modulus G0

N having a typical value of about
105–106 Pa. It is inversely proportional to the molecular weight between entangle-
ments (Me) and the breadth of the rubbery plateau is proportional to the molecular
weight. At high frequency, all homopolymers show a glassy modulus (glassy region)
of typically 1–3 GPa [2].

2.1 Complex Notation

An alternative way of expressing a periodic function is to use a complex notation.
Applied sinusoidal strain can be written as γ (t) � γ 0 exp(iωt), and the complex
modulus is defined as follows:

G∗(ω) � G ′ + iG ′′, (5)
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Fig. 4 The storage and loss modus as a function of frequency for linear homopolymer melt with
entanglements (Polystyrene Mw � 460 kg/mol) at reference temperature 160 °C. The data obtained
with several geometries and various temperatures. The data is shifted with time-temperature super-
position (TTS) principle

where G′ and G′′ have the same definitions before. The complex viscosity η∗(ω) and
the complex compliance J∗(ω) are defined as follows:

η∗(ω) � G∗

iω
� η′(ω) − iη′′(ω), (6)

J ∗(ω) � 1

G∗ � J ′(ω) − i J ′′(ω). (7)

Using the complex notation, we see that the material functions in SAOS are defined
analogously to other shear material functions. The complex viscosity is the ratio
of shear stress to shear rate, complex modulus is the ratio of shear stress to shear
strain, and complex compliance is the ratio of shear strain to shear stress [2]. The
magnitudes of complex quantities are found by multiplying a complex number by
its complex conjugate and taking the square root

∣
∣G∗∣∣ � √

G ′2 + G ′′2. (8)

This complex notation is very similar to the dielectric function. In an applied periodic
electric field as E(t) � E0exp (iωt), the complex dielectric function ε*(ω) and the
complex electric modulus M*(ω) are defined as follows [8]:

ε∗(ω) � ε′(ω) − iε′′(ω), (9)

M∗(ω) � 1

ε∗ � M ′(ω) + i M ′′(ω), (10)
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where ε′(ω) is proportional to the energy stored reversibly in the system per period
and the imaginary part ε′′(ω) is proportional to the energy which is dissipated per
period. The definition of linear rheological functions and dielectric functions has
similarity.

2.2 Boltzmann Superposition Principle

Strain is presumed to be a linear function of stress, so the total effect of applying
several stresses is the sum of the effects of applying each one separately. Ludwig
Boltzmann generalized this to give the response to a continuously varying shear
deformation,

σ (t) � t∫
−∞

G
(

t − t ′) dγ
(

t ′) � t∫
−∞

G
(

t − t ′) γ̇
(

t ′) dt ′, (11)

where dγ
(

t ′) is the shear strain that occurs between t ′ and dt ′, and γ̇ is the shear
rate during this period, G(t) is the relaxation modulus. Equation (11) is the special
form of the Boltzmann superposition principle for simple shearing deformations.
The Boltzmann superposition principle is valid for very small deformations, but it is
also valid for a very slow deformation, even if it is large [9].

In Eq. (11), we can apply sinusoidal shear strain rate (Eq. 1),

σ (t) �
∞∫

0

G (s) γ0ω cos (ω [t − s]) ds with s � t − t ′

� γ0

⎡

⎣ω

∞∫

0

G (s) sin (ωs) d

⎤

⎦ sin (ωt) + γ0

⎡

⎣ω

∞∫

0

G (s) cos (ωs) ds

⎤

⎦ cos (ωt) .

(12)

From previous definitions, we can calculate storage and loss modulus from the relax-
ation modulus as follows:

G ′ � ω
∞∫
0

G (s) sin (ωs) ds and G ′′ � ω
∞∫
0

G (s) cos (ωs) ds. (13)

A primitive and simple model to describe viscoelastic behavior of materials is the
Maxwellmodel, the relaxationmodulus ofMaxwellmodel isG (t) � G0

N exp (−t/τ)
where G0

N is the plateau modulus and τ is relaxation time. Applied this modulus in
Eq. (13),

G ′ � G0
N (ωτ)2

1 + (ωτ)2
and G ′′ � G0

N (ωτ)

1 + (ωτ)2
. (14)
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Table 1 The comparison between dielectric and oscillatory shear measurements

Dielectric test Oscillatory shear test

Input E(t) � E0sin ωt or
E(t) � E0exp(i ωt)

γ (t) � γ 0sin ωt or
γ (t) � γ 0exp(i ωt)

Response Polarization, P Stress, σ

Material functions ε*(ω), ε’, and ε′′
or M*(ω), M’, and M”

J∗(ω), J’, and J”
or G*(ω), G′, and G′′

Simple relaxation model Debye model with single
relaxation time (τD)

Maxwell model with single
relaxation time (τ)

ε′ (ω) − ε∞ � �ε

1+(ωτD )2
G ′ � G0

N (ωτ)2

1+(ωτ)2

ε′′ � �ε(ωτD )

1+(ωτD)2
G ′′ � G0

N (ωτ)

1+(ωτ)2

�ε � εs − ε∞ is the dielectric
relaxation strength

G0
N is plateau modulus

Nonlinear response (see
Sect. 3)

χ3, χ5 … higher order
susceptibilities
(odd contributions due to
P[−E(t)] � −P[E(t)])

I3, I5,… higher harmonic
intensities
(odd contributions due to
σ [−γ (t)] � −σ [γ (t)])

The two limiting types of behavior are separated by the intermediate crossover
region where the system can be regarded typically as viscoelastic. The point at which
G′ and G′′ cross each other determines the place which is related to the relaxation
time of the structural units constituting the system (τ � 1/ω).

In dielectric spectroscopy, the Debye relaxation equation has a similarity (single
exponential relaxation with a relaxation time, τD) and it can be used to calculate
dielectric functions as follows [8]:

ε′ (ω) − ε∞ � �ε

1 + (ωτD)2
and ε′′ � �ε (ωτD)

1 + (ωτD)2
, (15)

where �ε � εs − ε∞ is the dielectric relaxation strength. The Debye relaxation
time τD is related to the maximum of ε′′ similar to the Maxwell relaxation time τ. In
Table 1, the linear rheological material functions under dynamics oscillatory shear
and dielectric functions are compared and summarized.

As mentioned above, SAOS tests are the canonical method for probing the linear
viscoelastic properties of complex fluids because of the firm theoretical background
and the ease of implementing suitable test protocols. Linear viscoelastic properties
are well related with theoretical background. Linear viscoelastic properties have a
resemblance to dielectric properties. However, in most processing operations the
deformations can be large and rapid, therefore, it is necessary to investigate nonlin-
ear material properties that control the system response. Nonlinear response under
oscillatory shear can give other material characteristic difference with linear vis-
coelasticity from SAOS test [3].
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3 Large Amplitude Oscillatory Shear (LAOS)

It was noted that linear viscoelastic behavior is observed only in deformations that
are very small (e.g., γ 0 < 0.01 for polymer melts) or very slow. The response of a
complex fluid to large, rapid deformations is very often nonlinear, which means that
viscosity (or modulus) is not a constant any more but the stress response depends on
the magnitude, the rate, and the kinematics of the deformation. Thus, the Boltzmann
superposition principle is no longer valid, and consequently nonlinear viscoelastic
behavior cannot be predicted from linear properties. There exists no general model,
i.e., no universal constitutive equation or rheological equation of state that describes
all nonlinear behavior [9]. As strain amplitude become large in dynamic oscillatory
shear flow, the stress response also transfers from linear to nonlinear regime. It means
that stress data should be function of deformation (strain or strain rate). Therefore,
nonlinear response can be explained by polynomial or Taylor expansion with respect
to the shear strain and strain rate:

σ (t) �
∑

i�0

∑

j�0

Ci jγ
i (t)γ̇ j (t). (16)

Here, Cij are mathematical constants for expansion of nonlinear stress. But these
values are relatedwithmaterial functions at the nonlinear regime.A similar expansion
is used to describe nonlinear optics [10]. Nonlinear responses, on the other hand,
are well known for the electromagnetic case at much higher, optical frequencies.
The stronger electric fields during intense laser irradiation can lead to nonlinear
aspects involving optical second and third harmonic generation. The emitted optical
radiation of a molecule is directly proportional to the polarization P of a sample.
The polarization P can be expressed in a Taylor series with respect to the applied
oscillatory E-field (E(t) � E0sin ωt) as follows:

P � χ1E + χ2E2 + χ3E3 + · · · . (17)

where χ1, χ2, χ3, … are higher order susceptibilities. If electric field strengths are
higher than 106 V/m, nonlinear effects may take place like Eq. (17) [8]. In Eq. (16),
we put applied oscillatory shear strain and strain rate in Eq. (2). The stress response of
viscoelastic material is typically independent of the shear direction, i.e., it is assumed
that the sign of the shear stress changes as the sign of shearing changes, and therefore,
the shear stress must be an odd function of the direction of shearing deformations
(σ [−γ (t),−γ̇ (t)] � −σ [γ (t), γ̇ (t)]). Therefore, we may write the shear stress as a
function of the odd higher order terms in the nonlinear regime as follows:

σ (t) �
∑

p,odd

p
∑

q,odd

γ
q
0

[

apq sin qωt + bpq cos qωt
]

, (18)
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σ (t) � γ0 [a11 sinωt + b11 cosωt] + γ 3
0 [a31 sinωt + b31 cosωt

+ a33 sin 3ωt + b33 cos 3ωt] + O(γ 5
0 ) + · · · , (19)

where a11 � G′(ω) and b11 � G′′(ω) in the linear regime. Under these assumptions,
therefore, the shear stresswaveform contains only odd higher harmonic contributions
for LAOS (large strain amplitude oscillatory shear) deformations. The polarization P
also must be odd function of electric field (P[−E(t)] � −P[E(t)]), thus odd higher
contributions in nonlinear electric field (P � χ1E + χ3E3 + χ5E5 + · · ·. The coeffi-
cients χ are called higher order susceptibilities) [8]. By contrast, the normal stress
differences do not change sign if the shearing direction changes. This means that the
normal stress differences must be exclusively even functions of shear deformations
(i.e., N1,2[−γ (t),−γ̇ (t)] � N1,2[γ (t), γ̇ (t)], where N1,2 denotes either the first or
second normal stress difference). Thus, the normal stress differences measured under
LAOS deformations have only even higher terms of the excitation frequency. Fol-
lowing from Eq. (18), a different notation is also possible for the nonlinear stress,
written in terms of amplitude and phase angle. The total nonlinear viscoelastic stress
can be expanded as a linear viscoelastic stress characterized by a stress amplitude
and phase shift plus the odd higher harmonic contributions (higher stress amplitude
and phase shift), consequently, the stress can be represented as

σ (t) �
∑

n�1,odd

σn sin(nωt + δn), (20)

where the harmonic magnitude σ n(ω, γ0) and the phase angle δn(ω, γ0) depend on
both the strain amplitude γ 0 and the excitation frequency ω. This Eq. (20) clari-
fies the starting point of “Fourier transform” rheology (FT-rheology) [3]. Note that
Eqs. (18) and (20) describe the same nonlinear phenomena using different mathemat-
ical descriptions. Giacomin and Dealy [11] referred to Eq. (18) as a power series and
Eq. (20) as a Fourier series. One can rewrite each Fourier component fromEq. (20) as
components which are in-phase and out-of-phase with the strain input, and factoring
out the strain amplitude (γ 0) define a set of nonlinear viscoelastic moduli [11]:

σ (t) � γ0
∑

n,odd

[G ′
n(ω, γ0) sin(nωt) + G ′′

n(ω, γ0) cos(nωt)]. (21)

Equation (18) can be rewritten as

σ (t) �
∑

n,odd

n
∑

m,odd

γ n
0

[

G ′
nm(ω) sin(mωt) + G ′′

nm(ω) cos(mωt)
]

, (22)

which nicely separates the strain dependence from the frequency dependence, there-
fore being distinct from Eq. (21). Giacomin and Dealy [11] reported that the terms
of this power series are not simply related to those of the Fourier series. However,
either mathematical description can be used to argue for a leading order nonlinear
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coefficient. The complex mathematics is one of the reasons why there are many ways
to interpret the complex nonlinear response under dynamic oscillatory shear.

3.1 G′(γ0) and G′′(γ0)

As mentioned in the introduction, LAOS tests are typically applied as a strain ampli-
tude sweep at fixed frequency (see Fig. 2). The storage modulus G′ and the loss
modulus G′′ are strictly defined only in the linear viscoelastic regime, and there-
fore, their values at large strain amplitude may have ambiguous physical meaning.
However, the measurements of G′ (γ 0) and G′′ (γ 0) at a fixed frequency can pro-
vide meaningful information. The generic notation G′ and G′′ will refer to the first
harmonic moduli G′

1 and G′′
1 [Eq. (21)] which is the most common option for calcu-

lating viscoelastic moduli from a non-sinusoidal response and is the typical output of
commercial rheometer software.Before quantifying the non-sinusoidalwaveformsof
LAOS stress responses, we first discuss the interpretation of the amplitude-dependent
leading order description of a nonlinear response, i.e., G′(γ 0) and G′′(γ0). Typical
LAOS studies include the results of G′(γ0) and G′′(γ0) since this information can
be obtained from commercial rheometers even when raw oscillatory data is unavail-
able. The higher harmonic contributions, e.g., third harmonic contribution I(3ω) at
3ω, describing the extent of distortion away from a linear sinusoidal stress response
are normally not large if compared with the amplitude of the first harmonic (typ-
ically I(3ω)/I(ω) < 20%). Therefore, the moduli obtained from the first harmonic
via Fourier transform analysis are relevant for a leading order description of the
viscoelastic properties.

Equating the representation ofFourier series [Eq. (21)] andpower series [Eq. (22)],
the first harmonic contribution can be calculated as

1st term � [G ′
11γ0 + G ′

31γ
3
0 + O(γ 5

0 ) + · · ·] sinωt + [G ′′
11γ0 + G ′′

31γ
3
0 + O(γ 5

0 ) + · · ·] cosωt

� G ′
1(ω, γ0) sinωt + G ′′

1(ω, γ0) cosωt
,

(23)

which shows that G1
′ (ω,γ0) and G1

′′ (ω,γ0) consist of odd polynomials of the
strain amplitude (γ0) with nonlinear coefficients of frequency (ω). Therefore, we can
observe the LAOS behavior of the first term as a function of strain amplitude at a fixed
frequency. The nonlinear coefficients from the power series [e.g., G11

′(ω), G31
′(ω),

… and G11
′′(ω), G31

′′(ω), …] in Eq. (23) determine the leading order amplitude
dependence of G1

′(γ0) and G1
′′(γ0). The relaxation processes which represent the

viscoelasticity of the materials are connected with the nonlinear coefficients that
are only a function of frequency [G11

′(ω), G31
′(ω), … and G11

′′(ω), G31
′′(ω), …].

Wyss et al. [12] introduced a technique called strain rate frequency superposition
(SRFS) for probing the nonlinear structural relaxation of metastable soft materials.
However, the SRFS is a controversial method due to the fact that it significantly
overestimates the rate of terminal relaxation and failure of the Kramers–Kronig
relations. Additionally, the SRFS master curves only plot the first harmonic of the
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Fig. 5 The four archetypes of LAOS behavior as outlined by Hyun et al. [14]: a strain thinning, b
strain hardening, cweak strain overshoot, and d strong strain overshoot. Reproduced by permission
of Hyun et al. [14], copyright (2002) of Elsevier

storage modulus G1
′ and the loss modulus G1

′′ from the nonlinear stress data [13].
That is the reason why we carefully investigated nonlinear stress under LAOS flow.
Nonetheless, the leading order LAOS behavior is very useful to characterize complex
fluids. Hyun et al. [14] observed that the leading order LAOS behavior [G′(γ0) andG′′
(γ0)] of complex fluids could be classified by at least four types of strain amplitude
dependence: type I, strain thinning (G′ and G′′ decreasing); type II, strain hardening
(G′ and G′′ increasing); type III, weak strain overshoot (G′ decreasing, G′′ increasing
followed by decreasing); and type IV, strong strain overshoot (G′ and G′′ increasing
followed by decreasing). The four types of LAOS behavior are schematically shown
in Fig. 5 andHyun et al. [14] documented each class of LAOS behavior from different
complex fluids with different microstructures.

3.2 Nonlinear Stress Curve

The viscoelasticmoduliG′ (γ0) andG′′ (γ0) provide only a leading order character-
ization of amaterial (i.e., the first harmonic contribution). Higher order contributions,
and nonlinear stress waveforms, can be used to further distinguish and investigate
viscoelastic materials. Figure 6 shows an example of how the raw oscillatory stress
waveforms can distinguish two commercial polypropylene (PP) melts: one with a
linear polymer chain topology and the other consisting of branched polymer chains
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Fig. 6 The viscoelastic moduli G′(γ0) and G′′ (γ0) atω � 1 rad/s and T � 180 °C for two different
polypropylene (PP) samples are shown: a linear PP and b branched PP. Both linear PP and branched
PP display LAOS type I behavior (strain thinning). However, the stress waveform shapes of the
linear PP and branched PP samples are different. c The oscillatory stress for linear and branched
PP at strain amplitude, γ 0 � 7.19. Both stress shapes are distorted from a single sinusoidal shape.
d Magnified view of the stress data: linear PP displays a “forward tilted stress” shape whereas the
branched PP displays a “backward tilted stress” shape [16]. This difference in the shape of the
waveform corresponds to different polymer topology, i.e., linear versus branched chain structure
[15]. Reproduced by permission of Hyun et al. [3], copyright (2002) of Elsevier

[15]. Both linear and branched PP display strain thinning behavior when represented
simply in terms of G′(γ0) and G′′ (γ0), i.e., LAOS type I (Fig. 6a and b). However,
the nonlinear stress waveforms of the molten linear PP and branched PP samples
are different (Fig. 6c and d). The linear PP melt displays a “forward tilted stress”
shape whereas the branched PP melt displays a “backward tilted stress” shape [15,
16]. The “forward tilted stress” shape was observed in the case of polymer melts and
solutions with a linear chain structure whereas the “backward tilted stress” shape was
observed for suspensions and polymer melts with branched chains [16]. From this
simple example, it is clear that analyzing the shape of the nonlinear stress response
provides more structural insight than simply considering the leading order charac-
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Fig. 7 Stress curves (●) and applied strain curves (—) as a function of time for various complex
fluids at large strain amplitude and frequency 1 rad/s. a Xanthan gum 4 wt% aqueous solution at
strain amplitude γ 0 � 10. b Hyaluronic acid 1% aqueous solution at strain amplitude γ 0 � 7.2. c
Soft gel of PEO-PPO-PEO triblock 20wt% aqueous solution at strain amplitude γ 0 � 10. dHard gel
of PEO-PPO-PEO triblock 20% aqueous solution at strain amplitude γ 0 � 4. e Polypropylene (PP)
melt at strain amplitude γ 0 � 10. f Polystyrene (PS) melt at strain amplitude γ 0 � 10. Reproduced
by permission of Hyun et al. [3], copyright (2002) of Elsevier

terization G′(γ0) and G′′ (γ0). This is because the moduli G′(γ0) and G′′ (γ0) reflect
only the first harmonic contribution from Eqs. (21) and (22). Of course, a wide array
of waveform shapes can be observed with LAOS.

Experimental examples of LAOS shear stress responses are now described and
shown in Fig. 7. Many classes of complex fluids exhibit nonlinear and distorted
stress waveforms under LAOS, for example: polymer melts, polymer blends, poly-
mer solutions, block copolymer solutions, block copolymer melts, suspensions, ER
materials, MR (magnetorheological) fluids, biological materials, wormlike micelle
solutions, and food products [3]. In Fig. 7, several distorted, non-sinusoidal shear
stress waveforms are shown as a function of time for different complex fluids under
LAOS, including polymer and block copolymer solutions and polymer melts. A rep-
resentation of the data that is more amenable to rapid qualitative evaluation is the
use of a closed loop plot of stress versus strain (Lissajous curves) or stress versus the
rate of strain [7]. The Lissajous curves (stress vs. strain) of various complex fluids
subjected to LAOS with a range of strain amplitudes are also displayed in Fig. 8.

From an experimental point of view, the aim of nonlinear oscillatory experiments
is to investigate the progressive evolution of the nonlinear response with increas-
ing deformation and to quantify the nonlinear material functions that characterize
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Fig. 8 The Lissajous curves [stress (y axis) versus strain (x axis)] (●) of various complex fluids,
arranged from small strain amplitude to large strain amplitude at a fixed frequency, 1 rad/s a xanthan
gum 4% aqueous solution, b hyaluronic acid 1% aqueous solution, c soft gel of PEO-PPO-PEO
triblock 20% aqueous solution, and d hard gel of PEO-PPO-PEO triblock 20% aqueous solution.
Reproduced by permission of Hyun et al. [3], copyright (2012) of Elsevier

the material nonlinearity. Furthermore, it is desirable to correlate these nonlinear
functions with physical changes in the microstructure or polymer topology. The
descriptions of G1

′ (γ0) and G1
′′ (γ0) presented so far have focused only on the

evolution in the first harmonic terms and are thus the simplest quantitative method.
However, such rankings discard information about the nonlinear stress shape which
arises from the higher order odd harmonic terms, for example, the third harmonic
contribution. Therefore, several quantitativemethods have been proposed for analyz-
ing non-sinusoidal waveforms of shear stresses. For example, (1) Fourier transform
[10] (2) decomposition into characteristic waveforms [17] (3) generalized “storage”
and “loss” modulus when decomposing the nonlinear stress data [18] (4) Chebyshev
polynomials using decomposing stress data [19] and further development of Cheby-
shev polynomials by Yu et al. [20]. These quantitative methods are well summarized
by Hyun et al. [3]. In this chapter, FT-rheology will be reviewed among the several
methods.
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4 FT-Rheology

4.1 Transform from Time to Frequency Domain

A Fourier transformation (FT) represents the inherent periodic contributions of a
time-dependent signal and displays the corresponding amplitudes and phases (or real
and imaginary part) as a function of frequency. The experimental setup for a high-
performance FT-rheology experiment is based on the modification and extension
of a commercial strain-controlled rheometer. In these parallel configurations, the
absolute values of the rheometer output signals must be calibrated with respect to
the magnitude, phase, and frequency behavior and must also capture the nonlinear
contributions introduced by the instrument itself [10]. To avoid such calibration
issues, the signal can be normalized to the fundamental frequency, which changes
the absolute intensity (an extensive, additive quantity) to a relative intensity (an
intensive, nonadditive quantity). The relative intensity ismuch less vulnerable to non-
systematic errors. The reproducibility has been tested and reported to be typically in
the range of 0.1% for the intensity of the higher harmonics relative to the intensity
of the response at the fundamental frequency In/I1.

A typical FT-rheology spectrum is shown in Fig. 9 (nonlinear stress curve and
FT-spectrum). With such a large signal-to-noise ratio, FT-rheology can detect very
low levels of nonlinearity in the FT-spectrum. For example, from Fig. 9b, the time-
dependent stress curve at an excitation frequency of ω1 � 1 rad/s and a strain ampli-
tude of γ0 � 0.37 appears as a single sinusoid. However, a substantial peak in the
Fourier spectra at 3ω1 can be quantified even at this small intensity (I3/I1 < 10−2).
High-performance FT-rheology setups not only have a high sensitivity with respect
to the signal-to-noise ratio, but can also quantify the system response up to very high
multiples of the input signal. Currently, spectra have been recorded spanning up to
the 289th harmonic for beer foam (Fig. 10) [21]. Obviously, such a large amount of
higher harmonic contributions can lead to a rather complex interpretation. Among
the higher harmonics, the relative intensity of the third harmonic [I3/1 ≡ I(3ω)/I(ω),
where ω is the excitation frequency] is generally the most intense.

4.2 Even Harmonics Within the Shear Stress

As discussed in Sect. 3, only odd harmonics of shear stress are expected for typical
and idealizedmaterial responses to LAOS.However, even harmonics can be observed
experimentally, e.g., Figure 9 shows the small peaks in the even higher harmonics
of the Fourier transformed shear stress. These even harmonics are relatively small
compared with the odd higher harmonics. The occurrence of even higher harmonics
within the shear stress in the response signal is often considered as an experimental
artifact and the peaks are neglected [22].
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Fig. 9 The stress curve and FT-spectrum of Hyaluronic acid 1% aqueous solution at frequency, ω1
� 1 rad/s. aNormalized stress and FT-spectrum at strain amplitude γ 0 � 10. A non-sinusoidal shape
is observed, and the FT-method quantifies the extent of the nonlinear response via the magnitude
(and phase) of the odd higher harmonics. bNormalized stress and FT-spectrum at a strain amplitude
γ 0 � 0.37, which corresponds to intermediate strain amplitude. To a naked eye, the time-dependent
stress is similar to a perfect sinusoid. However, the presence of a third harmonic is clearly shown
by the Fourier spectra. Reproduced by permission of Hyun et al. [3], copyright (2012) of Elsevier

However, even harmonics can be reproducibly generated and quantified using the
FT-rheology technique [17]. Wall slip is expected to be one of the main reasons for
the occurrence of even harmonic contributions [23–28].Wilhelm et al. [29] explained
the appearance of even harmonics arising from a time-dependent memory effect or
a nonlinear elastic contribution in the system. Yosick et al. [30] reported that inertia
does not create even harmonics using the upper convected Maxwell (UCM) model
supplemented with a kinetic rate equation. Mas and Magnin [31] have argued that a
finite yield stress can also be a reason for the occurrence of even harmonics. Yu et al.
[20] report that the yield stress is not a sufficient condition to cause even harmonics
from the Bingham model even though they observed some even harmonic contribu-
tions at the lower limits of their experimental resolution. As we have noted above,
it is difficult to accurately measure the relatively small even harmonic contributions
compared with the high intensity odd harmonic contributions to the shear stress.
For completeness, we note that the Fourier spectrum of the strain only (for a strain-
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Fig. 10 LAOSmeasurements on a commercialw/o-emulsionwithmethodA. aMeasurement of the
frequency spectrumwith theARESG1 yielded amaximumof 147 higher harmonics.bComparative
measurement to (a) with the more sensitive ARES G2 as specified by the manufacturer, method B.
The excitation frequency is 0.1 Hz, and the strain amplitude γ0 � 870. The cone-plate geometry
spanned50mmindiameter. The sampling ratewas 50points/s, and the shear stresswas recordedover
10 cycles. The number ofmaximumhigher harmonicswas increased from147 to 189 overtones. In c,
the new record of higher harmonicswasmeasuredwith theARESG2.Here, the strain amplitudewas
maximized to γ0 � 3000 in absolute values resulting in 289 overtones. Reproduced by permission
of Reinheimer et al. [21], copyright (2012) of Oldenbourg Wissenschaftsverlag, München

controlled test) should not show higher harmonic contributions. However, there are
always technical limits to producing perfect sinusoidal signals [32]. These defects
which come from non-sinusoidal strain can affect the stress curve itself. Therefore,
imperfect excitation can also create even higher harmonics.

We conclude that analysis of even harmonics in the shear stress can give some
additional information for microstructured materials (e.g., orientation) or macro-
scopic changes in materials but care must be taken to avoid systematic experimental
artifacts (e.g., fluid inertia, imperfect excitation, or misalignment). For example,
defects in polymer solid sample during fatigue test could make anisotropic behavior.
As a result, even harmonics can develop. Hirschberg et al. [33] investigated fatigue
behavior of polystyrene (PS) and concluded the normalized second harmonic [I2/1
≡ I(2ω)/I(ω), where ω is the excitation frequency] is sensitive toward the appear-
ance of a crack. This might open up to use this technique from the original purpose
to quantify molecular nonlinearities in polymer melts toward solid polymer fatigue
testing as a structural nonlinearity.

4.3 Nonlinear Quantitative Coefficient, Q from FT-Rheology

If a strain sweep is performed at a fixed frequency, twomain regimes can generally be
observed. One is the linear regime at small amplitude (SAOS, small amplitude oscil-
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latory shear) in which the rheological properties do not depend on the strain ampli-
tude—at least not in an observable way. This is followed by a nonlinear regime in
which viscoelastic properties depend systematically on the strain amplitude (LAOS,
large amplitude oscillatory shear) (see also Fig. 2). Hyun et al. [34] subdivided the
nonlinear region into two subregions: MAOS (medium amplitude oscillatory shear)
and LAOS. MAOS is defined as an intermediate region (between SAOS and LAOS),
where a particular scaling behavior is observed for the intensity of third harmonic
contribution as a function of strain amplitude. From the series expansions discussed
before, the Fourier intensities of the n-th harmonics growwith the corresponding odd
powers of the strain amplitude (In ∝ γ n

0 , n � 1, 3, 5 . . .) in the small and interme-
diate strain amplitude range, e.g., Equation (22) (note that each of decomposed sine
and cosine components, G′

nm and G′′
nm, also scale according to odd powers of the

strain amplitude). Therefore, the total intensity of the third harmonic normalized by
the first harmonic should be expected to initially scale quadratically with the strain
amplitude (I3/1 ≡ I3/I1 ∝ γ 3

0 /γ 1
0 � γ 2

0 ). This quadratic relation at the MAOS
region was observed from the experiment and simulation results. Thus, Hyun et al.
[35] proposed a new nonlinear coefficient Q, defined as

Q ≡ I3/1/γ
2
0 . (24)

By convention, the absolute strain amplitude value is used in Eq. (24), not the %
strain amplitude. This new nonlinear coefficient provides insight into how a material
response develops and transitions from the linear to nonlinear regime. This new non-
linear material coefficient Q(ω, γ0) characterizes FT-rheology and will be a function
of both strain amplitude (γ 0) and frequency (ω). This parameter might be seen in
analogy to the nonlinear optical susceptibility. We can define the nonlinear zero-
strain value, Q0, as the asymptotic limiting constant value achieved at low strain
amplitude,

Q0(ω) � lim
γ0→0

Q(ω, γ0). (25)

Using this coefficientQ0, we can quantify the intrinsic nonlinearity of complex fluids
as a function of frequency.

As already mentioned the underlying mathematics of oscillatory shear deforma-
tion is very similar to dielectric spectroscopy in which a sinusoidal electric field
is applied and the resulting current is quantified with respect to the dielectric stor-
age ε′ and loss ε′′. Increasing the magnitude of the electric field leads to detectable
dielectric nonlinearities as quantified via higher order susceptibilities. These sus-
ceptibilities are material constants independent of the electric field. The rheological
nonlinear coefficient Q is analogous to the nonlinear dielectric coefficient χ3 [10].
As is the case for the nonlinear optical coefficients, the Q coefficient does not vanish
but rather approaches a constant value in the limit of zero-strain amplitude. Conse-
quently, this material coefficient reflects the inherent and normalized leading order
nonlinear mechanical properties of the material under investigation.
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The meaning of the nonlinear coefficient Q can be explored mathematically using
the Fourier series [Eq. (20)] and power series [Eq. (22)] with odd higher terms. As
a modification to Eq. (20), the shear stress under nonlinear oscillatory shear from
FT-rheology can be written as

σ (t) � σ1 sin(ωt + δ1) + σ3 sin(3ωt + δ3) + · · ·
� σ1 cos δ1 sinωt + σ1 sin δ1 cosωt + σ3 cos δ3 sin 3ωt + σ3 sin δ3 cos 3ωt + · · ·

(26)

From the above equation, we can calculate the relative intensity of third harmonic
from FT-rheology as

I3/1 � I3
I1

� σ3

σ1
�

√

(σ3 cos δ3)2 + (σ3 sin δ3)2
√

(σ1 cos δ1)2 + (σ1 sin δ1)2
. (27)

For the power series [Eq. (22)] of the shear stress waveform,

1stnonlinearterm � [G ′
11γ0 + G ′

31γ
3
0 + O(γ 5

0 ) + · · ·] sinωt

+ [G ′′
11γ0 + G ′′

31γ
3
0 + O(γ 5

0 ) + · · ·] cosωt (28)

3rdnonlinearterm � [G ′
33γ

3
0 + G ′

53γ
5
0 + O(γ 7

0 ) + · · ·] sin 3ωt

+ [G ′′
33γ

3
0 + G ′′

53γ
5
0 + O(γ 7

0 ) + · · ·] cos 3ωt. (29)

These two distinct representations [i.e., Fourier series from Eq. (20) and power series
from Eq. (22)] describe the same nonlinear phenomena; therefore, we can define new
nonlinear material function Q coefficient by inserting Eqs. (27) and (28) into (26),

I3
I1

�
√

(G ′
33γ

3
0 + G ′

53γ
5
0 + · · ·)2 + (G ′′

33γ
3
0 + G ′′

53γ
5
0 + · · ·)2

√

(G ′
11γ0 + G ′

31γ
3
0 + · · ·)2 + (G ′′

11γ0 + G ′′
31γ

3
0 + · · ·)2

�
√

G ′2
33γ

6
0 + G ′′2

33γ
6
0 + O(γ 8

0 ) · · ·
√

G ′2
11γ

2
0 + G ′′2

11γ
2
0 + O(γ 4

0 ) · · ·

�
√

G ′2
33 + G ′′2

33 + O(γ 2
0 ) · · ·

√

G ′2
11 + G ′′2

11 + O(γ 2
0 ) · · ·

× γ 3
0

γ0
� Q(ω, γ0) · γ 2

0

. (30)

In the limit of the small strain amplitudes, we thus obtain the zero-strain nonlin-
earity, Q0(ω)
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Q0(ω) � lim
γ0→0

Q(ω, γ0) � lim
γ0→0

√

G ′2
33 + G ′′2

33 + O(γ 2
0 ) · · ·

√

G ′2
11 + G ′′2

11 + O(γ 2
0 ) · · ·

�
√

G ′2
33(ω) + G ′′2

33(ω)
√

G ′2
11(ω) + G ′′2

11(ω)
�

∣
∣G∗

33(ω)
∣
∣

∣
∣G∗

11(ω)
∣
∣

. (31)

FromEq. (31), it can be seen thatQ0(ω) is the normalized third nonlinear complex
modulus (third nonlinear term) divided by the linear complexmodulus (first nonlinear
term). The magnitude of this intrinsic nonlinearity can be evaluated for any complex
fluid, as with any other rheological properties. Ironically, Q0(ω) is measured by
LAOS test; however, this value is not a function of strain amplitude but a function
of frequency. Thus, this new nonlinear material functions Q0(ω) can be used to
investigate relaxation process such as dielectric material functions.

4.4 Q0 from Various Constitutive Equations

Nonlinear stress behavior can be predicted by numerical simulation using various
constitutive equations, but it is not easy to obtain analytical solutions by constitu-
tive equations. However, Q0 can be calculated analytically with various constitutive
equations. In Table 2, a variety ofQ0 obtained from various constitutive equations are
summarized. From all the results, it is observed Q0 ∝ ω2 at limiting low frequency.
The scaling law (Q0 ∝ ωk) at limiting high frequency depends on constitutive equa-
tions, i.e., k � −1.0 for the Pom–Pom model [36] and Giesekus model [37], k � 0
for the rigid dumbbell model [38], DE IA [39], MSF [40, 41], corotational Maxwell
model [42], and k � 1.0 for the White–Metzner model [43]. From experimental
observations, Cziep et al. [44] founded k � −0.35 for various monodisperse linear
homopolymer melts, and Song et al. [45] observed k � 0 for diluted monodisperse
polystyrene (PS) solutions and k � −0.23 for concentrated PS solutions and PS
melts. Figure 11 shows Q0 as a function of De (≡ ωτ , τ is relaxation time, Debora
number)with various constitutive equations. From a variety ofQ0 calculated with the
aid of several constitutive equations which represent various non-Newtonian fluids,
Q0 can be a good candidate for nonlinear material functions to characterize various
complex fluids.

4.5 Definition of “Small” Strain Amplitude for a Linear
Regime

The higher harmonic contributions in LAOS emerge according to the quadratic
scaling behavior discussed in the previous Sect. (4.3), but eventually deviate from
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this leading order dependence. As the strain amplitude (γo) increases, the variation
in the higher harmonics, e.g., I3/1(γo) is often observed to be a sigmoidal function.
Non-sigmoidal behavior has also been observed for I3/1(γo). For example, with
dispersed systems, the sigmoidal behavior of I3/1 has shown a “bump” or “overshoot”
at intermediate strain amplitude due to the disperse phase [46]. This non-sigmoidal
behavior is obtained for systems in which strong interactions occur between a
viscoelastic matrix and a dispersed phase, e.g., the major volume phase and carbon
black. Nonlinearity, therefore, reflects the superposition of two responses: (1)
qualitatively common to all “pure” (unfilled) polymers and (2) related to the “filler”
response [47]. Any suitable functional form of I3/1(γo), whether sigmoidal or
non-monotonic, must be continuous and differentiable. These functions describe
an asymptotic transition from the linear (SAOS) to the nonlinear regimes (MAOS
and LAOS) and the deviation from the limiting value is a measure of the limit of
the linear response. This result is striking, since it suggests that any improvement
in instrumentation could affect the apparent limit of the linear regime for a spe-
cific sample. Within the concept of the Q coefficient and the high sensitivity of
FT-rheology a linear regime is only the asymptotic approximation for vanishing
nonlinearities. For example, where Q0 � 0.01 with a strain amplitude of γ 0 � 0.01
the expected nonlinearity of the third harmonic is I3/1 � 10−6. This value is outside
the detection range of any current commercial rheometer, but is evidently nonzero.

This whole argument is recognition that the linear response is only achieved for
vanishing deformations, and therefore never precisely achieved in any real experi-
ment. Nevertheless, it is commonly accepted that the linear response can accurately
describe the limiting mechanical response. An alternative definition of the linear
viscoelastic regime in oscillatory shear might be the regime in which the experi-
mental response obeys the leading order nonlinear scaling and can be extrapolated
to the limit of zero-strain amplitude. Additionally, one may define a criteria that the
nonlinearity in the signal response must be smaller than a critical threshold, e.g.,
I3/1 < 0.05% (5 × 10−4) as determined from FT-rheology, in which case the linear

Fig. 11 Analytical Q0 for
the various models in
Table 2. In the Pom–Pom
model and semiempirical
model, Z is the number of
entanglements in the
backbone
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Fig. 12 The G′, G′′, and I3/1 as a function of strain amplitude. a Monodisperse polystyrene (PS)
with Mw � 300 kg/mol in DOP solution with 40 wt% at a frequency of 5 rad/s at 80 °C. It shows
type I (strain thinning) b PEO-PPO-PEO triblock copolymer solution at frequency 1 rad/s at 27 °C.
It shows type III (weak strain overshoot)

response (i.e., the moduli G′ or G′′, or the intensity I1) would describe the overall
response by 99.95%. Figure 12 shows the strain sweep results for two different sam-
ples: one is monodisperse polystyrene (PS) solution [PS in dioctyl phthalate (DOP)],
and the other is PEO-PPO-PEO triblock copolymer aqueous solution. ThePS solution
shows strain thinning (type I) and the block copolymer solution weak strain over-
shoot (type III). Depending on the materials (monodisperse polymer solution and
triblock copolymer solution), the linear regime begins at different strain amplitudes.
From new definition with I3/1 < 0.05% (which is very close to current instrument
limitations), monodisperse polymer solution shows linear regime by strain amplitude
0.25 (25%), and triblock copolymer solution shows linear regime by 0.0017 (0.17%).
At SAOS regime, I3 value is lower than noise level; thus, I3 shows a constant noise
value. From the I3/1 plot, the SAOS region with I3/1 ≡ I3/I1 ∝ γ 0

0 /γ 1
0 � γ −1

0 is
observed (however there are a lot of noise). At theMAOS regime, quadratic behavior
of I3/1 (I3/1 ≡ I3/I1 ∝ γ 3

0 /γ 1
0 � γ 2

0 ) is observed and then deviation from quadratic
behavior of I3/1 is observed. From this strain amplitude, the LAOS regime is defined.
This new definition of the linear regime under oscillatory conditions may be helpful
in the unambiguous determination of the limit of a linear response in a clear and
reproducible way that is independent of the instrumentation [3].

5 Applications

We have reviewed FT-rheology to analyze the nonlinear response of materials under-
going large amplitude oscillatory shear flow. FT-rheology can be applied to a wide
range of different material systems. Because the nonlinear response of each subclass
of complex fluids (e.g., polymer solution or melt, polymer composite and blend,
dispersed system, and block copolymer) can be very different, each approach has
its own merits and disadvantages. Hyun et al. [3] introduced many applications to
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investigate complex fluids with nonlinear material functions under LAOS flow. In
this chapter, several recently published LAOS investigations with FT-rheology of
different complex fluids are surveyed.

5.1 Polymer Melt and Solution

5.1.1 Entangled Polymer Melt

FT-rheology under LAOS is now recognized as a very sensitive characterization
method for detecting long chain branching (LCB)—or more generally to distin-
guish different polymer topologies. Experiment results have shown that the ratio
I3/1 and the phase angle of the third harmonic (Φ3) are sensitive to macromolec-
ular architecture, specifically the molecular weight distribution (MWD), number
of branches, and their length [48–51]. However, these early publications did not
systematically explore LAOS using a well-defined, entangled homopolymer to pro-
vide a baseline for our rheological understanding of the influence of excitation fre-
quency, temperature, or molecular weight. Therefore, Cziep et al. [44] systemically
investigated the effect of molecular weight, polydispersity, and monomer of lin-
ear homopolymer melts on intrinsic nonlinearity Q0. They used linear polystyrene
(PS), poly(p-methylstyrene) (PpMS), polyisoprene (PI), poly(methyl methacrylate)
(PMMA), poly(2-vinylpyridine) (P2VP), poly(ethylene oxide) (PEO), and HDPE
(high density polyethylene) samples. The general procedure to obtain nonlinear mas-
ter curves (Q0(ω)) is illustrated schematically in Fig. 13. The raw stress time data of
an oscillating shear experiment are recorded and transformed into a frequency spec-
trum via Fourier transformation (Fig. 13, schemes 1 and 2). The I3/1 is calculated
and plotted against the strain amplitude γ 0 (Fig. 13, scheme 3). This procedure is
repeated for different frequencies and/or different temperatures to cover a maximum
experimental range in the Q0(ω) frequency space. From each I3/1 plot as a function
of strain amplitude, and the parameter Q(ω, γ0) � I3/1/γ 2

0 is calculated. In a Q(γ 0)
plot, a plateau can be identified, where the average value is extrapolated to infinitely
small strain amplitudes, and eventually yields limγ0→0 Q ≡ Q0 (Fig. 13, scheme 4).
Each Q0(ω) value is plotted against the applied frequency, and a nonlinear master
curve is obtained via the TTS (time-temperature superposition) principle (Fig. 13,
scheme 5).

From these processes, they plot nonlinearmater curve as a function ofDe (Fig. 14).
With nonlinear mater curve and constitutive equation research (Pom–Pom and MSF
model in Table 2), Cziep et al. [44] suggested semiempirical equations for entangled
monodisperse linear polymer melt as follows:

Q0 (De) � 0.32

Z1/2

De2

1 + 33.75Z−1De2+0.35
, (32)



346 K. Hyun and M. Wilhelm

Fig. 13 Scheme of a five-step procedure from raw data (1) to nonlinear master curve (5). (1)
Nonlinear stress time data of an oscillatory shear experiment. (2) After Fourier transformation of
the time data, a magnitude frequency spectrum with odd higher harmonics can be obtained. (3)
The ratio I3/1(γ 0, ω) of the first and third harmonic is proportional to γ 2

0 in the MAOS region.
(4) Extrapolation of Q(γ 0, ω) to small amplitudes gives the intrinsic nonlinearity Q0(ω). (5) A
nonlinear master curve can be created by plotting several values of different excitation frequencies,
which are shifted to a reference temperature, utilizing the TTS principle. Reproduced by permission
of Cziep et al. [44], copyright (2016) of American Chemical Society

Fig. 14 Nonlinear master curves of monodisperse (PDI ≤ 1.07) linear melts and related fits via
equation in figure. Reproduced by permission of Cziep et al. [44], copyright (2016) of American
Chemical Society

where Z � M/Me is the number of entanglements. At low frequency, Q0(ω) scales
quadratically with frequency [Q0 (ω) ∝ ω2 ]. It is confirmed by several constitutive
equations (Sect. 4.4). For high frequencies, it was experimentally found that Q0 (ω)

v scales with Q0 (ω) ∝ ωk , with k � −0.35, which is in between the values predicted
by the two constitutive models that forecast either a behavior with a scaling of −1
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(Pom–Pom) or 0 (MSF). Experimentally, the maximum Q0 (≡ Q0, max) is observed
and corresponds to the longest relaxation time. This semiempirical equation is very
helpful for nonlinear behavior of entangled polymer melt and can lead to new devel-
opments in constitutive modeling and computer simulations, especially molecular
dynamic simulations of polymer melts.

Additionally, Hyun andWilhelm [34] investigated the effect of polymer topology
on the Q0(ω) values. They used anionically synthesized monodisperse linear and
comb polystyrenes (PS). The correlation of the rheological properties with the comb
topology is of special interest for the determination of the degree of branching.
The PS comb series consists of a linear backbone with weight-average molecular
weight of the backbone Mb � 275 kg/mol, and approximately q � 25–30 linear
branches of varying molecular weight arms with Ma varying from 11.7 to 47 kg/mol
(Table 3). In Fig. 15, the values of Q0 for the linear and comb PS samples are
plotted at a reference temperature of T ref � 190 °C. The data for the monodisperse
linear PS as a function of frequency displays a single local peak value and terminal
quadratic behavior (Q0 ∝ ω2) at low frequencies (Fig. 15b). As the molecular weight
increases, the transition to terminal behavior shifts to lower frequencies (analogous to
the familiar frequency shift observed in conventional linear viscoelastic properties),
and the peak becomes increasingly broad. In the case of the comb PS sample with
unentangled branch chains (C622 in Table 3), Q0(ω) displays a similar shape as a
function of frequency (with one maximum value and a terminal regime (Q0 ∝ ω2).
In contrast to the linear samples, however, the maximum value of Q0 is lower than
for the linear monodisperse PS melts. The authors conjectured that this might result
from the dynamic tube dilution (DTD) induced by the side branches. For the comb
PS with entangled side branches (C632 and C642 in Table 3), Q0(ω) has two peak
values: one corresponding to the branches’ disentanglement at higher frequencies
and the second arising from backbone relaxation at lower frequencies (see Fig. 15a).
As a consequence of having entangled branches, the maximum value of Q0 can be
associated with the backbone relaxation (Q0,b) and is much lower than that of the
comb PS with unentangled branches. As the entangled branch chain length becomes
longer, the value of Q0,b drops progressively and the frequency dependence becomes
narrower and sharper (see Fig. 15b). In the case of the comb PS series, the volume
fraction of the backbone chain decreases as the side branch length increases. From the
viewpoint of dynamic tube dilution, the fully relaxed side branches act as an effective
solvent for the unrelaxed backbone chain. The increasing length of the side branches
has a similar effect to decreasing the concentration of the main backbone chain in
a viscous solvent. Quantitative measurement of Q0(ω) can thus effectively probe
frequency dependence in the relaxation processes associated with disentanglement
for a range of polymer melts.

Kempf et al. [52] further investigated comb PS and PpMS. They founded that
various relaxation times (reptation time, Rouse time of the backbone, and the branch
relaxation time) were directly extracted from the corresponding maxima and mini-
mum in Q0 curve (Fig. 16). It was also found that the reptation time extracted from
the nonlinear master curve did not correspond to the crossover point of G′ and G′′
in the linear master curve in the case of branched polymers. The correspondence
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Table 3 Molecular characteristics of the samples used

Sample Mb
(kg/mol)
backbone

Ma
(kg/mol)
branch

Q
(branches/
backbone)

Mtotal
(kg/mol)

〈τG〉w (s)a

at 190 °C
Molecular
structure

PS 76 k 75.9 – – 75.9 0.05 Linear

PS 100 k 100 – – 100 0.14 Linear

PS 220 k 214 – – 214 2.66 Linear

PS 330 k 330 – – 330 12.44 Linear

C622-PS 275 11.7 30 624 11.63 Comb

C632-PS 275 25.7 25 913 28.59 Comb

C642-PS 275 47 29 1630 102.06 Comb

aThe terminal relaxation time was evaluated from linear moduli data at 190 °C.

Fig. 15 a Frequency
dependence of the
zero-strain nonlinearity Q0
for linear PS chains (PS 76,
100, 220, 330 K) and PS
combs (C622, C632, and
C642) at T ref � 190 °C.
With increasing molecular
weight of the branched chain
(Ma), the maximum
corresponding backbone
chain (Q0,b) is decreasing. b
For clear comparison, the
coefficient Q0 is plotted
against Deborah number (De
� aT ω <τ>) of linear PS
330 K and comb PS (C622,
C632 and C642) at T ref
� 190 °C. Reproduced by
permission of Hyun et al.
[34], copyright (2009) of
American Chemical Society

of the reptation time with the maximum Qmax,bb(ω) was confirmed via Pom–Pom
model simulations for branched polymers. It can be concluded that the reptation time
can be extracted from the nonlinear master curve in contrast to the values obtained
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Fig. 16 Comparison between a the linear and b the intrinsic nonlinear LAOS master curve
(Tref � 180 °C) for PpMS197 k-14-42 k (backbone molecular weight of 197 kg/mol with a total of
14 arms with a molecular weight of 42 kg/mol). The maxima and minima present in the intrinsic
nonlinear master curve corresponded to relaxation times observed in the linear master curve and,
thus, experimentally determined relaxation times. The following points are of interest: a reptation
time τ d, b backbone Rouse time τR,bb, and plateau modulus GN,bb, and c branch relaxation time τbr.
Reproduced by permission of Kempf et al. [52], copyright (2013) of American Chemical Society

from the linear measurement data. Therefore, reptation times and relaxation times
(Rouse time, branch relaxation time) can be obtained using the nonlinear master
curve, even if those times are not accessible from the SAOS data. The experimental
accessibility of relaxation times clears the way for a better physical understanding
of the underlying relaxation processes and can also be used to improve linear and
nonlinear rheological modeling. Using the maximum Qmax,bb(ω) in the nonlinear
master curve, even branched polymers with a small number of branches (here in the
case of two branches) could be distinguished from the linear polymer topology. A
linear dependency of the Qmax,bb(ω) value with the number of branches was found
for comb polymers with similar molecular weight of the branches and, respectively,
for the molecular weight of the branches for combs with similar number of branches.
Comparing the different rheological measurement techniques, it can be concluded
that this technique is highly sensitive to determine even low degrees of branching
and qualitative correlations can be established.
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5.1.2 Polymer Solution

Song et al. [45] investigated intrinsic nonlinearity Q0 for monodisperse polystyrene
(PS) solutions at various concentrations, which were classified as unentangled or
entangled solution in a semi-dilute regime. These two types of PS solutions dis-
played different shapes when Q0 was plotted as a function of frequency (ω). Unen-
tangled solutions showed increases of Q0 with frequency at low-frequency regions
and plateau behavior at high-frequency region. On the contrary, entangled solutions
showed an increase of Q0 before the MAOS terminal relaxation time and a subse-
quent decrease, which is similar to that observed for entangled linear polymer melts
(Fig. 17). The Q0(ω) curves of each group were superposed in a dimensionless coor-
dinate (Q0/Q0,max vs. De), so that transition from the plateau of Q0 to decreasing
Q0 at high-frequency region might indicate the onset of entanglement in polymer
solution. In particular, all unentangled solutions had the same Q0,max value (0.006)
regardless of polymer concentration and molecular weight, because Q0 responds to
Rouse-like relaxation process only, which is featured as no interchain interaction and
chain stretching. However, the Q0,max values of entangled solutions were dependent
on the number of entanglements (Z). The master curve of Q0,max as a function of Z
showed that Q0,max was constant at low entanglement numbers (few or virtually no
entanglements), and then increased with the beginning of entanglement to approach
a limiting value at high entanglement numbers, where reptation is the dominant lin-
ear relaxation process. From the master curve, the experimental line fitting can be
described as follows:

Q0,max �

⎧

⎪⎨

⎪⎩

0.006 at Z sol < 1
0.026

1+3.59
(

Zsol
)−1.01 at Z sol ≥ 1 (33)

Figure 18 shows that the data sets obtained for melts and solutions of linear
homopolymers superposed on themaster curvewithin experimental error. TheQ0,max

predicted by DE IA (Doi–Edwards with independent alignment assumption) was
indicated as 0.040. This deviation is removed when stretching effect of chains is
introduced in the model as MSF (molecular stress function) model. The Q0,max pre-
dicted by MSF model is 0.023 which is the same as the prediction of Eq. (31) at
infinite Zsol. The MSF model introduces two parameters for predicting intrinsic non-
linear behavior in the MAOS region. The strain measure of DE IA model for linear
polymers resulted in a constant value α � 5/21, which explains the affine orientation
of network strands. TheMSFmodel considers an additional contribution of isotropic
strand extension using stretching parameter β. By definition, the β value is fixed as 1
for linear chains. Thus, two parameters remain constant duringMAOSmeasurements
for linear chains.

In addition, the master curve of Q0,max as a function of Z was used to quantify
the degree of tube dilation based on the dynamic tube dilution (DTD) theory. Direct
comparison of the Q0,max values of semi-dilute solutions and melts showed that they
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Fig. 17 Dimensionless plots
of normalized intrinsic
nonlinearity as a function of
De (= aT ωτL). a
Unentangled solutions show
plateau behavior at De > 0.4,
whereas b entangled
solutions show a decrease of
Q0 with a constant average
slope of −0.23 at De > 1.
Reproduced by permission
of Song et al. [45], copyright
(2017) of American
Chemical Society

followed the same molecular dynamics in MAOS flow like SAOS (small amplitude
oscillatory shear) flow. Comparison between static and dynamic dilutions using the
Q0,max master curve suggested that this curve could characterize the effective number
of entanglements per backbone chain for branched polymers. Because it was con-
firmed again that Q0(ω) is highly sensitive to various relaxation processes, MAOS
tests may provide a new means of investigating molecular dynamics.

The intrinsic nonlinearity Q0(ω) seems to be highly sensitive to the characteristic
relaxation processes of polymers and can be regarded a parameter that maximizes
delicate changes observed in linear viscoelastic moduli. Thus, the nonlinear response
under MAOS shear flow can cast light on unsolved problems about relaxation pro-
cesses, such as reptation, contour length fluctuation (CLF), and constraint release
(CR). To this end, the nonlinear behaviors of various well-defined polymers with
different topologies (star, H-shaped, comb-shaped, and so on) need to be further
investigated from a molecular dynamics perspective.
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Fig. 18 The master curve of Q0,max as a function of Zsol and Zb from recent polymer solution and
melt data. Zb represents the entanglement numbers of backbone chains inmelts and Zsol the solution
entanglement number. For unentangled solutions,Q0,max is constant at ~0.006. It increases gradually
from Zsol � 1 and seems to reach a limiting value. The resultant logistic-type fitting equation for the
Q0,max of entangled solutions is shown in the plot (solid line). For comparison, several predictions
obtained by Doi–Edwards (DE IA), molecular stress function (MSF), and semiempirical equation
(from Cziep et al. 29) are plotted together. All data sets on a master curve follow Eq. (34) within
acceptable deviations. Reproduced by permission of Song et al. [45], copyright (2017) of American
Chemical Society

5.2 Polymer Composites

Lim et al. [53] investigated the nonlinear viscoelastic responses of polymer
composite systems containing different shaped nanoparticles, e.g., polycaprolac-
tone (PCL)/MWNT (multiwall carbon nanotube, 1-D thread shape), PCL/OMMT
(organo-modified montmorillonite, 2-D plate shape with high aspect ratio), and
PCL/PCC (precipitated calcium carbonate, 3-D cubic shape). They evaluated the
PCL/MWNT composites using several analyzingmethods, including Lissajous anal-
ysis, stress decomposition, and FT-rheology. Themicrostructure of PCL/MWNTwas
estimated using TEM images, the conductivity, and linear viscoelastic properties.
An electrical percolation threshold was observed in DC conductivity and the storage
modulus at low frequency rapidly changed near the electrical percolation threshold.
The stress signals were distorted with increasing MWNT concentration and strain
amplitudes. The shape of the elastic stress in the stress decomposition changed from
sinusoidal to triangular under LAOS flow as the MWNT concentration increased.
In FT-rheology, I3/1 increased with strain amplitude and showed a maximum. It was
related with the change of microstructure as evidence by the measurement of DC
conductivity. The maximum peak of I3/1 was also observed in PCL/OMMT, but
was not observed in PCL/PCC. As to the particle shape, I3/1 in the polymer com-
posites containing the particles of high aspect ratio (MWNT, OMMT) dramatically
increased with particle concentration. They calculated the nonlinear parameter Q0

from the fitting results of Q (≡ (I3/1)/γ 2
0 ) by a mathematical model that was similar

to the “Carreau–Yasuda” viscosity equation as follows:
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Fig. 19 Nonlinearity of PCL/MWNT composites as a function of strain at 1 rad/s and 130 °C: a
relative intensity of the third harmonic (I3/1) and b coefficient Q evaluated from the I3/1. The dotted
lines are the fitted results (—) with Eq. (34). Reproduced by permission of Lim et al. [53], copyright
(2013) of AIP

Q � Q0

(

1 + (C1γ0)
C2

)(C3−1)/ C2
, (34)

where Q0 is the zero-strain Q parameter (Q0), C1 is the inverse of critical strain
amplitude (γ 0c), and C3 is degree of strain thinning (C3). Figure 19a shows that the
I3/1 of the composites increased with increasing MWNT concentration at the same
strain amplitude, and Fig. 19b shows Q as a function of strain amplitude fitted with
Eq. (34).

In the cases of MWNT and OMMT, which had a high aspect ratio, Q0 increased
with particle concentration, whereas Q0 of PCC increased slightly with an increase
of particle concentration. They compared linear and nonlinear viscoelastic properties
of polymer composites and a PVA/Borax system to understand the effect of inter-
nal structure on the amplification of viscoelastic properties. For better comparison
between linear and nonlinear viscoelastic properties, they defined a new parameter,
the nonlinear–linear viscoelastic ratio (NLR) as follows:

NLR � Q0(ϕ)/Q0(0)

G∗(ϕ)/G∗(0)
. (35)

In the case of NLR � 1, the effect of nonlinear viscoelasticity is the same
as the effect of linear viscoelasticity with the increase in concentration. In the
case of NLR > 1, the nonlinear parameter is amplified more than the linear
parameter due to the internal structure. In the case of NLR < 1, the nonlin-
ear parameter is amplified less than the linear parameter. As the concentration
of particles and that of borax increased, the NLR deviated from one. The NLR
might depend on the internal structure of the polymeric systems. They calcu-
lated NLR, and the results are shown in Fig. 20. As the concentration increased,
the NLR increased and reached a plateau (see guidelines in Fig. 20), which
was roughly NLR (PCL/OMMT) ≈ 2205 > NLR (PCL/MWNT) ≈ 934 > NLR
(PCL/PCC) ≈ 1.46 > NLR � 1 > NLR (PVA/Borax) ≈ 0.18. In the case of poly-
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Fig. 20 NLR
(nonlinear–linear
viscoelastic ratio) of
PCL/MWNT ( ),
PCL/OMMT ( ),
PCL/OMMT ( )
composites, and PVA/Borax
( ) as function of
concentration (ϕ ). The lines
are added for visual
simplification. Reproduced
by permission of Lim et al.
[53], copyright (2013) of AIP

mer composites, the NLR was larger than one. In contrast, the NLR of the polymer
network (PVA/Borax) was smaller than one. This might be due to the difference
in the internal structure of polymer composite (heterogeneous phase) and polymer
network system (homogeneous phase). In the case of PVA/Borax system, a strong
network structure enhanced the first stress contribution among the higher harmonics;
in contrast, the network structure suppressed the distortion of the stress. Therefore,
the NLR value of PVA/Borax was less than one. In the case of polymer composites,
the well-dispersed PCL/OMMT had a larger NLR than the other nanocomposites. It
might be inferred that the surface area of PCL/OMMTwas larger than the other com-
posites. The larger surface area might increase the interaction between the particles
and polymer chains. Based on these results, it could be suggested that the NLR be
used as a quantitative parameter to explain the effect of nanoparticles on the polymer
composites, including the assessment of dispersion quality or internal structure.

Schwab et al. [54] investigated styrene butadiene rubber (SBR) filled with carbon
black (CB) under large amplitude oscillatory shear (LAOS), inwhich they analyzed it
in termsof the nonlinear parameter I3/1.Rubbermaterials filledwith reinforcingfillers
display nonlinear rheological behavior at small strain amplitudes below γ0 < 0.1.
Nevertheless, rheological data are analyzed mostly in terms of linear parameters,
such as shear moduli (G′, G′′), which lose their physical meaning in the nonlinear
regime. They used three different CB grades and the filler load was varied between 0
and 70 phr (parts per hundred rubber; relative mass contribution of CB normalized to
the rubber content as generally used concentration in rubber industry). The influence
of the CB volume fraction ϕ on the rheological behavior of unvulcanized rubber
compounds in terms of nonlinear rheological parameters was investigated. Figure 21
shows the relative third higher harmonic contribution I3/1(γ 0). Here, four different
regions can be identified. Region I is below the instrument’s sensitivity as illustrated
in Fig. 13 (3). Region II is dominated by a broad peak in I3/1(γ0). Its origin has
not yet been clarified, but measurements with linear homopolymer melts indicate
that the peak is due to instrumental problems, because they also show this peak
only when measured at the SIS V50 rheometer but it does not occur with open
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Fig. 21 Relative third higher harmonic contribution I3/1(γ 0) of samples filled with
different amounts of N339 carbon black. Four different zones can be identified. In region I (below γ0
� 10 −2), the higher harmonic contribution I (3ω) is below the sensitivity limit of the rheometer and
is therefore dominated by random noise. As a consequence I3/1(γ0) is decreasing. Region II (10−2

< γ0 < 10−1) is dominated by a broad peak of I3/1(γ 0), which is most probably due to instrumental
limitations. The nonlinear contribution is changing with increasing filler content ϕ in region III,
most pronounced at γ0 � 0.32. At very high strain amplitudes (region IV, γ0 > 4), the curves merge
(T � 80 °C, ω/2π � 0.2 Hz). Reproduced by permission of Schwab et al. [54], copyright (2013)
of WILEY-VCH

cavity rheometers (ARES G2, TA Instruments). Since both Regions I and II are
dominated by instrumental limitations, all samples showed similar behavior. In region
III, I3/1(γ0) increased with increasing strain amplitude. For the sample without CB,
the increase of I3/1(γ0) was nearly linear on the log–log scale. For the N339 samples
at 80 °C, the scaling exponent α of I3/1 as function of strain amplitude, I3/1(γ0) ∝ γα

0,
is remarkably lower (α � 0.5–1.2) depending on the CB content. The smaller slope
than one of polymer melt and solution (α � 2.0) as mentioned before is due to the
additives. These organic and inorganic additives are added in quantities as high as
13.35 phr and act partly as plasticizers. They are increasing polymer mobility and
thereby may affect the nonlinear behavior. Additionally, not all additives might be
soluble in the rubber matrix and different phases can be present in the compound.
Therefore, the compounds morphology could also be changed by the mechanical
force applied during the LAOS experiment. The presence of CB results in a higher
value for I3/1 in region III similar to polymer composites and scales with CB loading.
This filler effect is most pronounced at amplitudes around γ0 � 0.32. In region IV, the
filler N339 (CB) is almost inactive in the sense that the nonlinear parameter I3/1(γ0)
of the filled systems approaches that of the sample without CB. This indicates a
severe destruction of the physical network structure in the compound.

With previous results, I3/1 at γ0 � 0.32 is used to investigating CB grade effect.
Thus, the nonlinear parameter I3/1(γ0 � 0.32) of all samples tested is plotted in
Fig. 22 as a function of the internal surface accessible for polymer–filler interactions.
The internal surface (in milliliter adsorbed oil per 100 g of rubber) was calculated
by the OAN (oil adsorption number) times the weight fraction (Φw) of CB in the
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Fig. 22 Third higher harmonic contribution I3/1 at a strain amplitude of γ 0 � 0.32 as a function of
the internal surface between CB and the polymer. This internal surface was calculated as the product
of the oil adsorption number (OAN) and the weight fraction of CB in the respective compound. The
results of all three filler grades fall on one line. This demonstrates the importance of the interface area
on the nonlinear contribution (γ0 � 0.32, T � 80 °C, ω/2 π � 0.2 Hz). Reproduced by permission
of Schwab et al. [54], copyright (2013) of WILEY-VCH

respective compound. All compounds fall on one line independent of the filler grade,
so the assumption that the nonlinear contribution is correlated to the amount of
polymer–filler interactions seems to be true. With this relation, it is also possible to
get information about the size of the internal surface in a CB filled rubber compound
by measuring the nonlinear parameter I3/1 at a strain amplitude of γ0 � 0.32.

Nonlinear contributions to the rheological behavior of filled rubber systems are
significant even at low strain amplitudes and understanding the nonlinear behavior
can lead to more insights into these compounds.

5.3 Emulsion and Polymer Blends

5.3.1 Emulsion

Small amplitude oscillatory shear tests are a reliableway of extracting a characteristic
droplet size for emulsions [55]. Carotenuto et al. [56] proposed using LAOS to
determine not only the characteristic dimension of an immiscible polymer blend but
also to infer the size distribution of the drops. The principal idea is that even an
emulsion formed from two immiscible Newtonian fluids will exhibit a viscoelastic
response due to the interfacial tension, and this response will become nonlinear when
sufficiently large amplitude shear is applied to the emulsion droplets. Consequently,
the droplet size and the size distribution will drastically affect the intensity and phase
of the different higher harmonics in the FT-rheology spectra. Reinheimer et al. [57,
58] investigated emulsion system with I5/3 instead of I3/1. They suggested that as the
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fundamental peak I1 is mainly determined by the Newtonian behavior of the neat
Newtonianmatrix and the dispersed phase, i.e., the viscosity of the two single phases.
It was not useful in characterizing the interfacial tension or size and distribution of
the included phase and was, therefore, excluded in their analysis. They used intrinsic
nonlinearity 5/3Q0 calculated using I3 and I5 as follows:

5/3Q0 �
5Q0
3Q0

� lim
γ0→0

I5/I1
γ 4
0

I3/I1
γ 2
0

� lim
γ0→0

I5/I3
γ 2
0

. (36)

Furthermore, they also defined 7/5Q0 with same way. Because concentrated emul-
sions can produce a very large number of overtones which means a large number of
higher harmonic intensities In/1 with n > 7 are present in the frequency spectrum.
They found a relationship between intrinsic nonlinear ratio 5/3Q0 and 7/5Q0 as well as
the emulsion properties, i.e., ηm is matrix viscosity and ηd dispersed phase viscosity,
λ � ηd/ηm, Γ is the interfacial tension, and R is the droplet size, which is expressed
as follows:

5/3Q0

ω2
� 0.64λ1.63 η2

m 〈R〉24,3
Γ 2

and
7/5Q0

ω2
� 0.64λ1.63 η2

m 〈R〉25,4
Γ 2

. (37)

It is determined simulation and experimental results from LAOS test. They con-
cluded that nonlinear oscillatory shear experiments combined with numerical simu-
lations represent a new approach for characterizing the volume average droplet size
and the width of the droplet size distribution.

5.3.2 Polymer Blends

From previous results, the droplet size in an immiscible blend relates to the mechan-
ical nonlinearity. Reinheimer et al. [57, 58] excluded I1 value in their analysis due
to investigating the neat Newtonian matrix and the dispersed phase (for example,
5/3Q0 calculated using I3 and I5 see previous section). In immiscible polymer blend,
however, normalized third harmonic I3/1 still has a meaning because the polymer
already shows non-Newtonian behavior (e.g., shear thinning). Reza et al. [59–61]
investigated PP (polypropylene)/PS (polystyrene) blend with inorganic compatibi-
lizer (silica and clay) using I3/1. They used NLR value [Eq. (35)] similar to polymer
composite. Reza et al. [59] investigated the relationship between NLR value and
PS droplet size in the PP matrix domain. From the TEM images, clay was located
mostly at the interface or partially inside the PS drops (see TEM picture in Fig. 23),
thereby reinforcing the compatibilization effect. Therefore, clay increased the dis-
persion morphologies of the PP/PS blends. In contrast, fumed silica was located
mostly inside the PS droplets, which means the morphologies of PP/PS blends were
not improved (TEM picture in Fig. 23). Linear viscoelasticity of both PP/PS/Clay
and PP/PS/Silica increased with increasing particle concentrations. NLR values for
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Fig. 23 Comparison ofNLRvalues of PP/PS/C20AandPP/PS/Silica blends as a function ofweight
fraction of the particles. TEM images of the PP/PS/clay and PP/PS/Silica. Clay is located at the
interface between PP and PS phase, in contrast silica particles is located in the PS phase. Reproduced
by permission of Reza et al. [59], copyright (2014) of American Chemical Society

the PP/PS/Clay blends were larger than 1 (NLR > 1), whereas NLR values for the
PP/PS/Silica blends were less than 1 (NLR < 1). Therefore, NLR could be classified
into two categories depending on the morphology. Based on these results, NLR can
be used to distinguish between the effects of two different types of nanoparticles on
the morphologies of PP/PS blends. Furthermore, Reza et al. [60, 61] investigated the
effect various silica (hydrophobic and hydrophilic) and clays (clay hydrophobicity)
on the NLR value.

They show how the inverse of droplet size (1/Rn) varies as a function of NLR for
PP/PS (80/20) blends filled with different clays and silicas at different concentrations
in Fig. 24. For fitting the experimental results, they suggest the following empirical
equation:

1

R
� 1

R0
+ a

[

1 − exp (−b × N L R)
]

, (38)

where R0 is the minimal droplet size and a and b are fitting parameters. As can
be seen in Fig. 24, 1/Rn increases when nanoparticles (silica and clay) were added
and the NLR values approached their maxima when the droplet size approached
R0. Interestingly, with the exception of D17 (hydrophobic silica nanoparticle)-filled
blends, all blends exhibited an exponential relationship between the inverse of the
droplet size and NLR, indicating that droplet sizes at particular concentrations can
be predicted from NLR values, which are determined by extrapolation. However, in
case of PP/PS/D17, different trends were observed, indicating a rapid reduction in
droplet size and the importance of droplet size for determining NLR values in this
blend, in which the interface is completely covered with D17 particles. This is in



Nonlinear Oscillatory Shear Mechanical Responses 359

Fig. 24 Inverse droplet radii (1/Rn) of PP/PS (80/20) blends containing different clays and silicas
at different concentrations as a function of NLR values. Data were fitted using the three parameter
exponential equation shown in Figure.1/R0 � 0.43, a � 0.4 and b � 0.02 for the universal curve
(except for D17), respectively. For D17, the obtained parameters were: 1

R0
� 0.75, a � 0.91 and

b � 0.01. Reproduced by permission of Reza et al. [61], copyright (2016) of American Chemical
Society

accordance with the fact that the best compatibilization is obtainedwhen particles are
absorbed onto phase interfaces. Therefore, according to our results, D17 is the best
compatibilizer, among those examined, for (80/20) PP/PS blends because it inhibits
droplet coalescence. Ock et al. [62] investigated NLR values of poly(lactic acid)
(PLA) and natural rubber (NR) blends compatibilized with organoclay according to
clay contents, mixing conditions, and types of clay. They also found that the NLR
value displayed a similar trend as the drop size reduction and was related to the
inverse of the drop size for all variables (clay concentration, mixing condition, and
types of clay).

5.4 Block Copolymers and Liquid Crystals

Certain types of soft matter, such as liquid crystals, amphiphiles, and block copoly-
mers, self-assemble into nanostructured morphologies below their order–disorder
transition temperature (TODT) as a way to minimize highly unfavorable enthalpic
contributions to the free energy. Self-assembly usually leads to a polydomain struc-
ture with locally anisotropic ordered domains (grains) that are randomly orientated
throughout thewhole sample, resulting in amacroscopically isotropicmaterial. How-
ever, many practical applications including functional membranes, anisotropically
chargedmaterials, and photon conductors require that the finalmaterial ismacroscop-
ically anisotropic. Application of an external stimulus, such as an electric, magnetic,
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or mechanical field, can then be used to obtain the preferred macroscopic align-
ment [63]. Among the mechanical fields, LAOS flow has been used to study the
orientation/reorientation processes in microphase-separated lamellar structure. The
alignment kinetics can be studied in detail via online monitoring of the degree of
mechanical nonlinearity exhibited during the orientation process—as determined via
I3/1 in FT-rheology as a function of time. Oelschlaeger et al. [64] investigated PS-b-
PI diblock copolymers as well as in diblock and triblock copolymers of styrene and
butadiene (PS-PB; PS-PB-PS) under LAOS flow. The evolution of themicrostructure
during the flow alignment process can be easily quantified using the FT-rheology. For
di- and triblocks, parallel alignment is achieved at low frequency and temperatures
below the order/disorder transition temperature TODT . The kinetics of orientation can
be quantified by the intensity of the third harmonic I3/1(t). I3/1(t) can be described
by a stretched exponential function with a characteristic relaxation time τ .

I3/1 � y0 + A exp
[−(t/τ )β

]

, (39)

where y0 is the I3/1 value at infinite times, A is the decay amplitude, τ is the rep-
resentative alignment time for lamellar layers, and β is related to the width of the
distribution. For di- and triblock copolymers, the kinetics of orientation strongly
depend on the strain amplitude, and the time constant varies with a scaling exponent:
τ ∝ γ −4

0 for the diblock and τ ∝ γ −2.85
0 for the triblock. This scaling exponent greatly

exceeds the expected scaling of τ ∝ γ −1
0 which corresponds to a physical process

in which the total applied deformation is responsible for the observed orientation.
The larger scaling exponent might be explained by the cooperative nature of the
underlying processes. Analysis of the time-dependent variation in the phase differ-
ence related to the third harmonic (δ3(t)) enables further differentiation between the
diblock and triblock for the PS-PB and PS-PB-PS model systems. However, Meins
et al. [63] found a different scaling exponent τ ∝ γ −2

0 for a PS-PI diblock copolymer.
While Oelschlaeger et al. [64] investigated parallel orientation near TODT, Meins
et al. [63] investigated a perpendicular orientation of a PS-PI system. The different
orientation evolution is reflected by the different scaling of alignment time.

Lee et al. [65] investigated liquid crystal (8CB, 4-4’-n-octyl-cyanobiphenyl) in
lamellar smectic A phase under LAOS flow. The storage modulus G′(t) and loss
modulus G′′(t) from the conventional rheometer program under various LAOS flow
conditions (different strain amplitude and frequency) decreased and reached equi-
librium as a function of time [Fig. 25, normalized modulus can be fitted with Eq.
(39)]. This could be attributed to shear alignment of the lamellar smectic A structure.
On the contrary, with G′(t) and G′′(t), the nonlinearity I3/1(t) showed three different
behaviors depending on the magnitude of strain amplitude (Fig. 25): (1) region I (γ0

< 0.6): increased (increased and reached equilibrium), (2) region II (0.6 < γ0 < 2.0):
increased and decreased (showed maximum value; decreased and reached equilib-
rium), and (3) region III (γ0 > 2.0): decreased (decreased and reached equilibrium)
as a function of time. These three different time-dependent behaviors of nonlinearity
[I3/1(t)] were shown to be related with the alignment behavior of the lamellar struc-
ture. The reduction of I3/1(t) was observed during the 10 h ofmacroscopic orientation
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in both SB (PS-PB; polystyrene–polybutadiene) block copolymers and SBS (PS-PB-
PS) triblock copolymers under LAOS flow. The alignment time differed according
to molecular size (alignment time of 8CB ~1 h faster than that of block copolymers,
~10 h). Both the SB and SBS samples aligned from a disoriented to parallel align-
ment. However, in case of Lee et al.’s experimental results, this behavior for the
nonlinearity I3/1(t) was observed only at large strain amplitude (region III). Struth
et al. [66] reported lamellar domain formation with three distinct order directions at
a frequency of ω/2π �1 Hz and a strain amplitude of γ0 � 1.0 from six reflections
in the X-ray scattering pattern, which was in contrast with the two reflections under
steady shear flow. Compared to steady shear flow, oscillatory shear flow periodically
increased and decreased the strain (and the shear rate) as well as it changed direc-
tion. Therefore, smaller strain amplitude shear flow did not result in a well-oriented
lamellar structure compared with steady shear flow. Thus, three different lamellar
clusters showed various microscopic stress levels, especially at the grain boundary
(boundary at domains), under dynamic oscillatory shear flow. Thus, macroscopic
stress curves were more distorted than at large strain amplitude. Thus, the nonlinear-
ity may become larger with time. In the case of block copolymers, the nonlinearity
(I3/1) increases upon reorientation from parallel to perpendicular alignment [64]. By
changing the parallel layer microstructure to a perpendicular one, several oriented
domains can be made, resulting in distortion of the macroscopic stress curves. In
their results [65], the nonlinearity (I3/1) at smaller strain amplitude, e.g., from strain
amplitudes of γ0 � 0.3 to 0.6 and frequency of ω/2π � 1 Hz (see Fig. 26a). With
an equilibrium value of 3600 s, the G′, G′′, and nonlinearity (I3/1) were plotted as a
function of strain amplitude, γ 0. Interestingly, I3/1 (γ 0) increased and then decreased
(maximum) even though G′ (γ 0) and G′′ (γ 0) only decreased with increasing strain
amplitude (Fig. 26d). From these results, it can be concluded that LAOS analysis of
nonlinear stress, especially I3/1 from FT-rheology, is more sensitive tomicrostructure
and the related change than storage modulus G′ and loss modulus G′′.

5.5 Solid Polymers (Fatigue Test)

Typically, FT-rheology is used to quantify the nonlinear response of polymer melts
resulting from molecular dynamics. To expand FT-rheology in the solid regime, first
one has to realize that a solid polymer is dominated by elastic response. The elastic
response is much better described by a simple Hookean spring model, and conse-
quently, the amount and intensity of higher harmonics are low. Nevertheless, this
method opens up to quantify the evolution of structural nonlinearities. Hirschberg
et al. [33] investigated the fatigue behavior of polystyrene (PS) in a strain-controlled
torsion rectangular oscillatory tests via FT-rheology. Most data in the literature on
mechanical fatigue are based on stress—number of cycle (S-N) or so-called Wöh-
ler curves—only the conditions for complete part failure under a certain load can
be found with high experimental uncertainties. Therefore, the prediction of failure
onset is highly important. The tests were performed under large amplitude oscillatory
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Fig. 25 The normalized G′ data [≡ G′/G′(time � 0)] from time sweep test of 8CB at a fixed
frequency of ω � 1 Hz and various strain amplitudes for 3600 s with 50-mm parallel plates. With
increasing strain amplitude, the normalized G′ data decreased very quickly and then reached a
plateau value. Reproduced by permission of Lee et al. [65], copyright (2015) of AIP

Fig. 26 Nonlinearity I3/1 from FT-rheology at various strain amplitudes for 8CB at a fixed fre-
quency of ω � 1 Hz and 25 °C. a Increase in I3/1 at a strain amplitude from 0.3 to 0.6. b Increasing
and then decreasing (transition region) of I3/1 at strain amplitude from 0.7 to 1.0. c Decreasing of
I3/1 at strain amplitude 2.0 and 3.7. The I3/1 at strain amplitude 1.0 is added for comparison. d The
nonlinearity (I3/1) at 60 min (3600 s) as a function of strain amplitude. Reproduced by permission
of Lee et al. [65], copyright (2015) of AIP

shear (LAOS), so the stress response was no longer perfectly sinusoidal, and higher
harmonics could be detected and quantified in the FT spectra as function of time or
number of cycles N , respectively. In Fig. 27, linear parameter such as the storage
modulus (G′) was analyzed, as well as nonlinear parameters like the normalized sec-
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ond (I2/1) and third (I3/1) harmonics as a function of number of cycles N . Most of
nonlinear response, odd higher harmonics are important. Even though even harmon-
ics could be detected, the value is usually substantially smaller than odd harmonics.
Even harmonics means nonhomogeneous deformation or anisotropic response of
materials, usually, they are considered experimental errors. Interestingly Hirschberg
et al. investigated even harmonics on purpose. In Fig. 27a, the G′(N) decreases rela-
tively rapidly for about the first 100 cycles, then decreases more slowly for about 600
cycles (from the 100th to the 700th cycle) with a constant slope, dG′/dN � constant.
In contrast, the nonlinear parameter I3/1(N) increases for about the first 100 cycles
and still increases with a smaller constant slope until about the 700th cycle. Then, a
crack occurred (Fig. 27c picture 2) producing a substantial change in the slope of both
curves. This is followed by a period of crack propagation up to a point (around 1300
cycles) where the sample is totally broken (complete failure). In this case, the growth
of a sidewise crack, as seen in Fig. 27c picture 4 and 5, was observed after about 900
cycles. When the first macroscopic crack occurs in the sample (around 700 cycles),
the intensity of I2/1 rises abruptly and rises further when the crack propagates. The
nonlinear parameter I2/1(N) is very low for undamaged samples, but its intensity was
found to increase when defects are created in the structure to a point where cracks
became visible in the sample. Figure 28 shows other results. In this figure, I2/1(N)
is very sensitive than other rheological properties (G′ and G′′, and I3/1). However,
when a crack appeared (see video picture in the figure), I2/1(N) began to increase. As
mentioned before (Sect. 4.2), even harmonics are the result of an asymmetry in the
deformation flow. This can be attributed to sample anisotropy due to the presence
of cracks. Consequently, the even harmonics increase, and especially I2/1, can be
explained by crack initiation and propagation in the sample. Both parameters I2/1(N)
and I3/1(N) are proposed as new criteria to detect the onset of a part failure under the
conditions tested and can be used as safety limits for partial damage.

6 Conclusions

In this chapter, the mechanical nonlinear responses of complex fluids under large
amplitude oscillatory shear (LAOS)floware presented and reviewed. Linear response
under small amplitude oscillatory shear (SAOS) flow is well known and has its anal-
ogy is behavior of dielectric response. It is very useful to characterize complex fluids
with firm theoretical background. LAOS tests are substantially more complex rheo-
logical probes than SAOS tests because of the nonlinear responses. The complexity
of the material response to LAOS is both the strength and weakness of the technique.
The additional information obtained can help characterize and quantify the response
of complex fluids to nonlinear deformation, but it also makes the results more dif-
ficult to interpret. To analyze the nonlinear response, several quantitative methods
have been suggested. Among the methods mentioned, in this chapter, FT-rheology is
intensively reviewed. We also introduced applications for investigating various com-
plex fluids (polymer melts and solutions, polymer composite and blends, emulsions,
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Fig. 27 Storage modulus (G′) and the intensities of the higher harmonics (I2/1 and I3/1) during a
fatigue test at ω/2π � 1 Hz and γ0 � 0.012 (left) or 0.014 (right), and room temperature (RT). The
pictures below are taken from a video of the fatigue test and failure of the sample as labeled in the
plot a) above. Reproduced by permission of Hirschberg et al. [33], copyright (2017) of Elsevier

Fig. 28 Storage modulus (G′) and loss modulus (G′′) and the intensities of the higher harmonics
(I2/1 and I3/1) during a fatigue test at ω/2π � 1 Hz and γ0 � 0.02 and room temperature (RT).
Clearly, at the point where the first crack starts to appear, the second harmonic I2/1 increases its
value from 10−5 relative contribution

and block copolymers and liquid crystals). From these results, it confirmed that non-
linear material functions under LAOS flow are a very powerful tool to characterize
complex fluids. However, the theoretical underpinnings of the nonlinear responses
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observed under LAOS flow are still poorly understood. Thus, the physical interpre-
tation of nonlinear responses is still developing. We hope to encourage the exchange
of idea between nonlinear dielectric spectroscopy and the mechanical measurement.
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Notes
Substantial parts (especially Sect. 3 and 4) of this chapter are taken from a rheological review [3]
where rheological nonlinearities are explained in more detail but might not be read by scientists
with a background in dielectric spectroscopy. Consequently, this chapter will be very helpful for
the reader with a dielectric background to envision the similar concepts of both methodologies.

References

1. R.G. Larson, The structure and rheology of complex fluids (Oxford University Press, New
York, 1999)

2. F.A. Morrison, Understanding Rheology (Oxford University Press, New York, 2001)
3. K. Hyun, M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt,

G.H. McKinley, A review of nonlinear oscillatory shear tests: Analysis and application of large
amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 36, 1697–1753 (2011)

4. J.D. Ferry, Viscoelastic Properties of Polymers (Wiley, NY, 1980)
5. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric Liquids, vol. 1 (Wiley, NY,

1987)
6. N.W. Tschoegl, The phenomenological theory of linear viscoelastic behavior: an introduction

(Springer-Verlag, NY, 1989)
7. J.M. Dealy, K.F. Wissbrun, Melt rheology and its role in plastics processing: theory and

applications (VNR, NY, 1990)
8. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003)
9. Dealy J.M., Larson R.G. Structure and rheology of molten polymers (2006)
10. M. Wilhelm, Fourier-transform rheology. Macromol. Mater. Eng. 287, 83–105 (2002)
11. A.J. Giacomin, J.M. Dealy, Large-amplitude oscillatory shear, in Techniques in Rheological

Measurements, Chapter 4, ed. by A.A. Collyer (Chapman and Hall, London, 1993)
12. H.M. Wyss, K. Miyazaki, J. Mattsson, Z. Hu, D.R. Reichmann, D.A. Weitz, Strain-Rate Fre-

quency Superposition: A Rheological Probe of Structural Relaxation in Soft Materials. Phys.
Rev. Lett. 98, 238303 (2007)

13. Y.H.Wen, J.L. Schaefer, L.A. Archer, Dynamics and Rheology of Soft Colloidal Glasses. ACS
Macro Lett. 4(1), 119–123 (2015)

14. K. Hyun, S.H. Kim, K.H. Ahn, S.J. Lee, Large amplitude oscillatory shear as a way to classify
the complex. J. Non-newtonian Fluid Mech. 107, 51–65 (2002)

15. M. Sugimoto, Y. Suzuki, K. Hyun, K.H. Ahn, T. Ushioda, A. Nishioka, T. Taniguchi, K.
Koyama,Melt rheology of long-chain-branched polypropylenes. Rheol. Acta 46, 33–44 (2006)

16. K. Hyun, J.G. Nam, M. Wilhelm, K.H. Ahn, S.J. Lee, Nonlinear response of complex fluids
under LAOS (large amplitude oscillatory shear) flow. Korea-Australia Rheology J 15, 97–105
(2003)

17. O.C.Klein,H.W.Spiess,A.Calin,C.Balan,M.Wilhelm,Separation of the nonlinear oscillatory
response into a superposition of linear, strain hardening, strain softening, andwall slip response.
Macromolecules 40, 4250–4259 (2007)

18. K.S. Cho, K. Hyun, K.H. Ahn, S.J. Lee, A geometrical interpretation of large amplitude oscil-
latory shear response. J. Rheol. 49, 747–758 (2005)



366 K. Hyun and M. Wilhelm

19. R.H. Ewoldt, A.E. Hosoi, G.H. McKinley, New measures for characterizing nonlinear vis-
coelasticity in large amplitude oscillatory shear. J. Rheol. 52, 1427–1458 (2008)

20. W. Yu, P. Wang, C. Zhou, General stress decomposition in nonlinear oscillatory shear flow. J.
Rheol. 53, 215–238 (2009)

21. K. Reinheimer, J. Kübel, M. Wilhelm, Optimizing the sensitivity of FT-Rheology to quantify
and differentiate for the first time the nonlinear mechanical response of dispersed beer foams
of light and dark beer. Z. Phys. Chem. 226, 547–567 (2012)

22. S. Onogi, T. Masuda, T. Matsumoto, Nonlinear behavior of viscoelastic materials. I. Disperse
systems of polystyrene solution and carbon black. Trans. Soc. Rheol. 14, 275–294 (1970)

23. S.G. Hatzikiriakos, J.M. Dealy, Wall slip of molten high density polyethylene. I. Sliding plate
rheometer studies. J. Rheol. 35, 497–523 (1991)

24. S.G. Hatzikiriakos, J.M. Dealy, Role of slip and fracture in the oscillating flow of HDPE in a
capillary. J. Rheol. 36, 845–884 (1992)

25. M.D. Graham,Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows.
J. Rheol. 39, 697–712 (1995)

26. D.W. Adrian, A.J. Giacomin, The quasi-periodic nature of a polyurethane melt in oscillatory
shear. J. Rheol. 36, 1227–1243 (1992)

27. A.S. Yoshimura, R.K. Prud’homme, Wall slip effects on dynamic oscillatory measurements. J.
Rheol. 32, 575–584 (1988)

28. K. Atalık, R. Keunings, On the occurrence of even harmonics in the shear stress response of
viscoelastic fluids in large amplitude oscillatory shear. J. Non-newtonian Fluid. Mech. 122,
107–116 (2004)

29. M. Wilhelm, D. Maring, H.W. Spiess, Fourier-transform rheology. Rheol. Acta. 37, 399–405
(1998)

30. J.A. Yosick, A.J. Giacomin, W.E. Stewart, F. Ding, Fluid inertia in large amplitude oscillatory
shear. Rheol. Acta 37, 365–373 (1998)

31. R. Mas, A. Magnin, Experimental validation of steady shear and dynamic viscosity relation
for yield stress fluids. Rheol. Acta 36, 49–55 (1997)

32. J.L. Leblanc, Investigating the nonlinear viscoelastic behavior of rubber materials through
Fourier transform rheometry. J. Appl. Polym. Sci. 95, 90–106 (2005)

33. V. Hirschberg, M. Wilhelm, D. Rodrigue, Fatigue Behavior of Polystyrene (PS) analyzed from
the Fourier Transform (FT) of its Stress Response: First evidence of I2/1(N) and I3/1(N) as new
fingerprints. Polym. Test. 60, 343–350 (2017)

34. K. Hyun, E.S. Baik, K.H. Ahn, S.J. Lee, M. Sugimoto, K. Koyama, Fourier-transform rheology
under medium amplitude oscillatory shear for linear and branched polymer melts. J. Rheol. 51,
1319–1342 (2007)

35. K. Hyun, M. Wilhelm, Establishing a New Mechanical Nonlinear coefficient Q from FT-
Rheology: first investigation on entangled linear and comb polymer model systems. Macro-
molecules 42, 411–422 (2009)

36. D.M. Holye, D. Auhl, O.G. Harlen, V.C. Barroso, M. Wilhelm, T.C.B. McLeish, Large ampli-
tude oscillatory shear and Fourier transform rheology analysis of branched polymer melts. J.
Rheol. 58, 969–997 (2014)

37. A.K. Gurnon, N.J. Wagner, Large amplitude oscillatory shear (LAOS) measurements to obtain
constitutive equation model parameter: giesekus model of banding and nonbanding wormlike
micelles. J. Rheol. 56, 333–351 (2012)

38. R.B. Bird, A.J. Giacomin, A.M. Schmalzer, C. Aumnate, Dilute rigid dumbbell suspensions
in large-amplitude oscillatory shear flow: shear stress response. J. Chem. Phys. 140, 074904
(2014)

39. D.S. Pearson, W.E. Rochefort, Behavior of concentrated polystyrene solutions in large-
amplitude oscillating shear fields. J. Polym. Sci. Polym. Phys. Ed. 20, 83–98 (1982)

40. M.H. Wagner, V.H. Rolón-Garrido, K. Hyun, M. Wilhelm, Analysis of medium amplitude
oscillatory shear data of entangled linear and model comb polymers. J. Rheol. 55, 495–516
(2011)



Nonlinear Oscillatory Shear Mechanical Responses 367

41. M. Abbasi, N.G. Ebrahimi, M. Wilhelm, Investigation of the rheological behavior of industrial
tubular and autoclave LDPEs under SAOS, LAOS, and transient shear, and elongational flows
compared with predictions from the MSF theory. J. Rheol. 57, 1693–1714 (2013)

42. A.J. Giacomin, R.B. Bird, L.M. Johnson, A.W. Mix, Large-amplitude oscillatory shear flow
from the corotational Maxwell model. J. Non-Newt. Fluid Mech. 166, 1081–1099 (2011)

43. D. Merger, M. Abbasi, J. Merger, A.J. Giacomin, Ch. Saengow, M. Wilhelm, Simple scalar
model for large amplitude oscillatory shear. Appl. Rheol. 26, 53809 (2016)

44. M.A. Cziep, M. Abbasi, M. Heck, L. Arens, M. Wilhelm, Effect of molecular weight, poly-
dispersity and monomer of linear homopolymer melts on the intrinsic mechanical nonlinearity
3Q0(w) in MAOS. Macromolecules 49, 3566–3579 (2016)

45. H.Y. Song, S.J. Park, K. Hyun, Characterization of Dilution Effect of Semi-dilute Polymer
Solution on Intrinsic Nonlinearity Q0 via FT-rheology. Macromolecules 50, 6238–6254 (2017)

46. J.L. Leblanc, Large amplitude oscillatory shear experiments to investigate the nonlinear vis-
coelastic properties of highly loaded carbon black rubber compounds without curatives. J.
Appl. Poly. Sci. 109, 1271–1293 (2008)

47. J.L. Leblanc, Non-linear viscoelastic characterization of natural rubber gum through large
amplitude harmonic experiments. J. Rubber. Res. 10, 63–88 (2007)

48. G. Fleury, G. Schlatter, R. Muller, Nonlinear rheology for long chain branching characteri-
zation, comparison of two methodologies: fourier Transform rheology and relaxation. Rheol.
Acta 44, 174–187 (2004)

49. G. Schlatter, G. Fleury, R. Muller, Fourier transform rheology of branched polyethylene:
experiments and models for assessing the macromolecular architecture. Macromolecules 38,
6492–6503 (2005)

50. I. Vittorias, M. Parkinson, K. Klimke, B. Debbaut, M. Wilhelm, Detection and quantification
of industrial polyethylene branching topologies via Fourier-transform rheology. NMR and
simulation using the Pom-pom model Rheol. Acta 46, 321–340 (2007)

51. T. Neidhöfer, S. Sioula, N. Hadjichristidis, M. Wilhelm, Distinguishing linear from star-
branched polystyrene solutions with Fourier-Transform rheology. Macromol. Rapid Commun.
25, 1921–1926 (2004)

52. M.Kempf,D.Ahirwal,M.Cziep,M.Wilhelm,Synthesis and linear andnonlinearmelt rheology
of well-defined comb architectures of PS and PpMS with a low and controlled degree of long-
chain branching. Macromolecules 46, 4978–4994 (2013)

53. H.T. Lim,K.H. Ahn, J.S. Hong, K. Hyun, Nonlinear viscoelasticity of polymer nanocomposites
under large amplitude oscillatory shear flow. J. Rheol. 57, 767–789 (2013)

54. L. Schwab, N. Hojdis, J. Lacayo-Pineda, M. Wilhelm, Fourier-Transform rheology of unvul-
canized, carbon black filled styrene butadiene rubber. Macromol. Mat. Eng. 301, 457–468
(2016)

55. W. Yu, M. Bousmina, C. Zhou, Note on morphology determination in emulsions via rheology.
J. Non-newtonian Fluid. Mech. 133, 57–62 (2006)

56. C. Carotenuto, M. Gross, P.L. Maffetone, Fourier transform rheology of dilute immiscible
polymer blends: a novel procedure to probe blendmorphology.Macromolecules 41, 4492–4500
(2008)

57. K. Reinheimer, M. Grosso, F. Hetzel, J. Kübel, M. Wilhelm, Fourier Transform Rheology as
a universal non-linear mechanical characterization of droplet size and interfacial tension of
dilute monodisperse emulsions. J. Colloid Interface Sci. 360, 818–825 (2011)

58. K. Reinheimer, M. Grosso, F. Hetzel, J. Kübel, M.Wilhelm, Fourier Transform Rheology as an
innovative morphological characterization technique for the emulsion volume average radius
and its distribution. J. Colloid Interface Sci. 380, 201–212 (2012)

59. R. Salehiyan, Y. Yoo, W.J. Choi, K. Hyun, Characterization of morphologies of compatibilized
polypropylene/polystyrene blends with nanoparticles via nonlinear rheological properties from
FT-rheology. Macromolecules 47, 4066–4076 (2014)

60. R. Salehiyan, H.Y. Song,W.J. Choi, K. Hyun, Characterization of effects of silica nanoparticles
on (80/20) PP/PS blends via nonlinear rheological properties from fourier transform rheology.
Macromolecules 48, 4669–4679 (2015)



368 K. Hyun and M. Wilhelm

61. R. Salehiyan, H.Y. Song, M. Kim, W.J. Choi, K. Hyun, Morphological evaluation of pp/ps
blends filled with different types of clays by nonlinear rheological analysis. Macromolecules
49, 3148–3160 (2016)

62. H.G. Ock, K.H. Ahn, S.J. Lee, K. Hyun, Characterization of compatibilizing effect of organ-
oclay in poly(lactic acid) and natural rubber blends by FT-rheology. Macromolecules 49,
2832–2842 (2016)

63. T. Meins, N. Dingenouts, J. Kübel, M.Wilhelm, In-situ Rheo-Dielectric, ex-situ 2D-SAXS and
FT-Rheology investigations of the shear induced alignment of Poly(styrene-b-1,4-isoprene)
diblock copolymer melts. Macromolecules 45, 7206–7219 (2012)

64. C. Oelschlaeger, J.S. Gutmann, M. Wolkenauer, H.W. Spiess, K. Knoll, M. Wilhelm, Kinetics
of shear microphase orientation and reorientation in lamellar diblock and triblock copolymer
melts as detected via FT-Rheology and 2D-SAXS. Macromol. Chem. Phys. 208, 1719–1729
(2007)

65. S.H. Lee, H.Y. Song, K. Hyun, Lee JH. Nonlinearity from FT-rheology for liquid crystal 8CB
under large amplitude oscillatory shear (LAOS) flow. J. Rheol. 59, 1–19 (2015)

66. B. Struth, K. Hyun, E. Kats, T. Meins, M. Walther, M. Wilhelm, G. Grübel, Observation of
New States of Liquid Crystal 8CB under Nonlinear Shear Conditions as Observed via a Novel
and Unique Rheology/Small-Angle X-ray Scattering Combination. Langmuir 27, 2880–2887
(2011)



Index

A
Ac impedance, 301, 302, 310–312, 317
Activation energy, 227
Adam–Gibbs (AG) approach, 112
Adam–Gibbs theory, 281
Adiabatic calorimetry, 114
Aging, 230
Amorphous order, 220
Anomalous Wien effects, 301, 302
Apparent jump distances, 304, 306, 317
Asymmetric Double-Well Potential (ADWP),

48, 80, 141

B
Bjerrum length, 308
Block copolymers, 359
Boltzmann’s factor, 144
Boltzmann’s superposition principle, 130, 327
Box model, 132, 228, 246, 287
Brownian motion, 37
Brownian oscillators, 143
Brownian rotational diffusion, 19

C
Cavity susceptibility, 19
Chemical effect, v, 109–112, 116
Complex compliance, 326
Complex fluids, 323
Complex modulus, 325
Conductivity spectra, 306, 307, 313
Configurational entropy, 28, 114, 147, 280,

287
Configurational temperature, 136
Constant charge conditions, 158
Constitutive equations, 341
Cooperative length scale, 263
Cooperatively Rearranging Regions (CRRs),

281
Correlated regions, 222

Correlation length, 222
Correlation length scales, 294
Correlation volume, 234
Cotton–Mouton effect, 204
Critical concentration, 189
Critical consolute temperature, 189
Critical exponent, 192
Critical fluctuations, 194
Critical mixtures, 190
Critical phenomena, 191
Critical point, 235
Cubic polarization, 39
Cubic polarization response, 49
Cubic responses, 222
Cubic susceptibility, 91, 220, 249, 288
Curie temperature, 176
Curie–Weiss law, 149

D
Debye length, 308
Debye lineshape, 87
Debye–Lorentz equation, 57
Debye relaxation time, 37
Depolarizing field, 55
Detailed balance, 89
Dielectric displacement, 5, 101
Dielectric Hole Burning (DHB), 132
Dielectric response, 77
Dielectric saturation, 109, 187
Dielectric strength, 103
Dielectric susceptibility, 101
Differential-recurrence relations, 38
Dimensionless susceptibility, 224
Dipolar fluctuations, 16
Dipolar hard spheres, 14, 24
Distorted stress waveforms, 334
Dynamical Heterogeneities (DH), 247
Dynamically correlated molecules, 262
Dynamically correlated particles, 117, 269

© Springer International Publishing AG, part of Springer Nature 2018
R. Richert (ed.), Nonlinear Dielectric Spectroscopy, Advances in Dielectrics,
https://doi.org/10.1007/978-3-319-77574-6

369



Dynamical susceptibility, 265
Dynamic correlation length, 263
Dynamic correlation volume, 268
Dynamic heterogeneity, 129, 261
Dynamic Kerr effect, 44
Dynamic oscillatory shear, 322
Dynamic specific-heat, 134

E
Electric modulus, 138
Electrolyte, vi, 12, 301
Electrocaloric effect, 103
Electrode polarization, 103
Electronic polarizability, 106
Electro-Optical Kerr Effect (EOKE), 116, 195
Electrorheological effect, 111
Electrostrictive force, 103
Emulsions, 356
End-to-end distance, 263
Entangled polymer melt, 345
Enthalpy density, 135
Entropic effect, 245
Entropy, 5
Entropy density, 103
Equilibrium population, 79
Even higher harmonics, 336
Excess entropy, 114
Excess wing, 228, 290

F
Fictive field, 115
Fictive temperature, 131
Fifth-order responses, 221
Finite-size effects, 146
Fluctuation–Dissipation Theorem (FDT), 14,

77
Fluctuation–dissipation relation, 37
Fokker–Planck equation, 37, 77
Fourier analysis, 105
Fourier components, 108
Fourier transform, 223
Fourier transform rheology, 321, 330
Fractal dimension, 222
Fragility, 280
Free energy density, 18

G
Gaussian trap model, 81
Gibbs–Duhem relation, 147
Gibb's equation, 146
Ginzburg–Landau theory, 145
Glassforming liquids, 239
Glass transition, 26, 130, 242, 261
Glassy correlations, 225, 293

Green's function, 77

H
Heat capacity, 131, 264
Helmholtz free energy, 4, 148
Heterogeneous dynamics, 115, 202
Higher harmonics, 336
Higher harmonic susceptibilities, 282
Higher order susceptibilities, 329
Hooke’s law, 324
Hopping models, 309, 310, 317
Hopping rate, 80
Hump, 88, 220, 288
Hydrogen bonds, 110

I
Ideal dipole gas, 226
Ideal gas of dipoles, 51
Independently relaxing regions, 134
Intermolecular correlations, 68
Intermolecular interactions, 44
Intrinsic nonexponentiality, 169
Ionic conductivity, 291, 301–306, 314, 317
Ionic liquids, vi, 301, 302, 311–313, 315–318
Ising model, 152
Isochronal conditions, 266
Isotropic–mesophase transition, 206

J
Johari–Goldstein (JG) relaxations, 290
Joule heating, 103

K
Kauzmann temperature, 29, 112
Kerr effect, 110, 204
Kinetically Constrained Models (KCMs), 242
Kirkwood correlation factor, 63, 110
Kirkwood factor, 10
Kirkwood–Fröhlich equation, 15, 63, 110
Kirkwood–Onsager equation, 9
Kohlrausch–Williams–Watts, 128
Kramers–Kronig, 87
Kramers–Kronig relations, 64
Kubo relation, 66

L
Landau–de Gennes model, 205
Langevin–Debye equation, 55
Langevin function, 41, 108, 221
Langevin model, 19
Large Amplitude Oscillatory Shear (LAOS),

133, 322
Legendre polynomials, 38
Linear response, 42, 87, 222

370 Index



Liquid crystals, 190, 359
Lissajous curves, 334
Lorentz cavity, 26

M
Magnetic Hole Burning (MHB), 132
Markov process, 77
Master-Equation (ME), 77
Master-operator, 78
Material failure, 103
Material nonlinearity, 335
Maxwell equation, 67
Maxwell field, 4, 55
Maxwell–Wagner effect, 191
MD simulations, 265
Mean-field theory, 19
Mechanical fatigue, 361
Metropolis algorithm, 152
Molar conductivity, 303, 304, 308, 309, 313
Molecular cooperativity, 280, 292
Monohydroxy alcohols, 110, 293
Multidimensional NMR, 264

N
Nanoscale confinement, 263
Nanothermodynamics, 144
Nonlinear Debye theory, 39
Nonlinear Dielectric Effect (NDE), 104, 187
Nonlinear dielectric response, 9, 291
Nonlinear Dielectric Spectroscopy (NDS), 190
Nonlinear material coefficient, 339
Nonlinear regime, 329
Nonlinear response, 78, 220
Nonlinear stress waveforms, 332
Nonlinear susceptibility, 220, 270
Nonlinear viscoelastic behavior, 329
Non-Newtonian fluids, 341
Nonresonant spectral Hole Burning (NHB),

129
Nyquist theorem, 14

O
Orientational glasses, 220
Orientational-glass temperature, 278
Orientational pair distribution function, 50
Orientational polarizability, 106
Ornstein–Uhlenbeck process, 80
Oscillatory electric field, 322

P
Partition function, 59
Periodic potential, 304, 309
Permanent dipole moments, 188

Perturbation expansion, 23, 40
Perturbation theory, 83
Physical aging, 104
Piekara coefficient, 4
Piekara factor, 108
Piekara–Kielich correlation factor, 69
Plastic Crystals (PCs), 278
Poisson equation, 30, 50
Polymer blend, 357
Polymer composite, 352
Polymer electrolytes, 301, 302, 304, 305, 311,

317
Polymer solution, 350
Power spectrum, 137
Prenematic fluctuations, 207
Pretransitional anomaly, 191
Pulse-response functions, 84

Q
Quadratic nonlinear response, 49

R
Random jump model, 86
Random walk theory, 304, 305
Rate exchange, 134
Reaction field, 57, 58, 60, 66, 69
Recovery time, 137
Reinforcing fillers, 354
Relaxation dispersion, 262
Relaxation dynamics, 47
Reorientational motion, 79
Rise/decay asymmetry, 116
Rotational correlation functions, 80
Rotational diffusion, 79
Rubber, 354
Rubbery plateau, 325

S
Saturation effect, 226, 287, 289
Secondary relaxation processes, 290
Signal-to-noise ratio, 336
Small Amplitude Oscillatory Shear (SAOS),

322
Smoluchowski equation, 37
Spherical harmonics, 79
Spin glasses, 220
Static correlations, 241
Static structure factor, 261
Stochastic dynamics, 77
Stokes-Einstein relation, 313
Strain amplitude, 322
Strong-fragile classification, 280
Structural glasses, 220

Index 371



Structural glass formers, 278
Structural recovery, 104
Structural relaxation time, 112
Subdivision potential, 148
Substitutional disorder, 281
Supercooled liquids, 79, 156

T
Thermal conductivity, 103, 136
Thermal fluctuations, 145
Thermodynamic entropy, 112
Thermodynamic heterogeneity, 129
Third-order conductivity spectrum, 306
Third-order permittivity, 311, 315–317

Third-order response, 75, 76, 87, 95, 237
Third-order susceptibility, 270
Toy model, 242
Translational symmetry, 278
Trapping effect, 310

V
Viscoelastic response, 322

W
Walden plot, 313
Wien effect, 301–304, 317

372 Index


	Preface
	Contents
	Nonlinear Dielectric Response of Polar Liquids
	1 Introduction
	2 Thermodynamic and Statistical Relations
	3 Linear Response
	4 Molecular Polarizability
	5 Non-Gaussian Fluctuations of the Macroscopic Dipole
	6 Nonlinear Dielectric Response
	7 Perturbation Theories of Polar Liquids
	8 Effect of the Electric Field on Glass Transition
	9 Conclusions
	References

	Nonlinear Dielectric Relaxation in AC and DC Electric Fields
	1 Introduction
	2 Nonlinear Dielectric Response of Noninteracting Polar Molecules to a Strong AC Electric Field
	3 Nonlinear Dielectric Response in Superimposed AC and DC Electric Fields
	4 Account of Interactions via a Mean Field Potential
	5 Dynamical Mean Field Effects in the Nonlinear Dielectric Response
	6 Depolarizing Field and Internal Field
	7 A Perspective: The Dean-Kawasaki Approach
	8 Conclusion
	References

	Stochastic Models of Higher Order Dielectric Responses
	1 Introduction
	2 Markovian Stochastic Dynamics
	3 Nonlinear Response Theory for Markov Processes
	4 Results for Simple Models
	4.1 Reorientation Models
	4.2 ADWP Model
	4.3 Gaussian Trap Model

	5 Conclusions
	References

	Effects of Strong Static Fields on the Dielectric Relaxation of Supercooled Liquids
	1 Introduction
	2 Experimental Approaches
	2.1 Observations in the Stationary Limit
	2.2 Time-Resolved Experiments

	3 Nonlinear Effects in the Stationary Limit
	3.1 Field-Induced Changes in Relaxation Amplitude
	3.2 Field-Induced Changes in Relaxation Times

	4 Field-Induced Structural Recovery
	5 Relation to Cubic Susceptibilities
	6 Concluding Remarks
	References

	Nonresonant Spectral Hole Burning in Liquids and Solids
	1 Introduction
	1.1 Background to Development
	1.2 Versatility of Nonresonant Hole Burning

	2 Box Model and Other Approaches for Characterizing Nonresonant Hole Burning
	2.1 Introduction
	2.2 General Relations
	2.3 Dielectric Hole Burning Protocol
	2.4 Other Applications of the Box Model
	2.5 Asymmetric Double Wells and Other Approaches

	3 Nanothermodynamics
	3.1 Introduction
	3.2 Thermodynamic Heterogeneity in Bulk Samples
	3.3 Finite-Size Thermal Effects in Ideal Gases
	3.4 Landau-like Theory for Phase Transitions in Finite-Sized Systems
	3.5 Toward a Microscopic Model for the Heterogeneous Response in Complex Systems

	4 Experimental Details
	4.1 Dielectric Hole Burning
	4.2 Magnetic Hole Burning
	4.3 Modulus Technique

	5 Dielectric Hole Burning
	5.1 Horizontal and Vertical Spectral Holes
	5.2 Frequency-Dependent Amplitudes and Positions
	5.3 Hole Recovery

	6 Magnetic Hole Burning
	7 Conclusions
	References

	Nonlinear Dielectric Effect in Critical Liquids
	1 Introduction
	2 Dielectric Constant in Critical Mixtures
	3 Nonlinear Dielectric Effect in Critical Mixtures of Limited Miscibility
	4 Nonlinear Dielectric Effect in Supercooled Nitrobenzene
	5 Nonlinear Dielectric Effect in Liquid Crystals
	6 Conclusions
	Appendix
	References

	Third and Fifth Harmonic Responses  in Viscous Liquids
	1 Why Measuring Harmonic Susceptibilities? Some Facts and an Oversimplified Argument
	2 Experimental Behavior of Third and Fifth Harmonic Susceptibilities
	2.1 Definitions
	2.2 Frequency and Temperature Dependence of Third Harmonic Susceptibility
	2.3 Strong Similarities Between Third and First Cubic Susceptibilities
	2.4 Frequency and Temperature Dependence of Fifth Harmonic Susceptibility

	3 Testing Bouchaud–Biroli's Predictions as well as the General Theories of the Glass Transition
	3.1 Bouchaud–Biroli's Predictions
	3.2 Experimentally Testing BB's Predictions
	3.3 Static Versus Dynamic Length Scale? χ3 and χ5 as Tests of the Theories of the Glass Transition

	4 More Specific Models for Harmonic Susceptibilities
	4.1 Toy and Pragmatical Models
	4.2 Entropic Effects
	4.3 Box Model

	5 Conclusions
	References

	Dynamic Correlation Under Isochronal Conditions
	1 Introduction
	2 Determination of Dynamic Correlation Volume
	3 Dynamic Correlation Volume at Constant τα
	4 Isochronal Nc from Nonlinear Dielectric Susceptibility
	5 Summary
	References

	Nonlinear Dielectric Response of Plastic Crystals
	1 Introduction
	2 Nonlinear Measurements of the Dielectric Permittivity
	2.1 Main Relaxation Process
	2.2 Secondary Relaxations

	3 Third-Order Harmonic Susceptibility
	4 Summary and Conclusions
	References

	Nonlinear Ionic Conductivity of Solid Electrolytes and Supercooled Ionic Liquids
	1 Introduction
	2 Nonlinear Ion Transport in Classical Liquid Electrolytes and in Solid Electrolytes
	2.1 Classical Wien Effects in Diluted Electrolyte Solutions
	2.2 Nonlinear DC Ion Transport in Inorganic Glasses and in Polymer Electrolytes
	2.3 Nonlinear AC Ionic Conductivity of Inorganic Glasses
	2.4 Models for Nonlinear Ion Transport

	3 Experimental Setup for Nonlinear AC Impedance Spectroscopy and Derivation of Higher-Order Conductivity and Permittivity Spectra
	4 Nonlinear AC Impedance Measurements on Supercooled Ionic Liquids
	4.1 Nonlinear DC Conductivity of Monocationic and Dicationic Liquids
	4.2 Frequency Dependence of Nonlinear Permittivity Spectra

	5 Summary and Conclusions
	References

	Nonlinear Oscillatory Shear Mechanical Responses
	1 Introduction
	2 Small Amplitude Oscillatory Shear (SAOS)
	2.1 Complex Notation
	2.2 Boltzmann Superposition Principle

	3 Large Amplitude Oscillatory Shear (LAOS)
	3.1 G′(γ0) and G″(γ0)
	3.2 Nonlinear Stress Curve

	4 FT-Rheology
	4.1 Transform from Time to Frequency Domain
	4.2 Even Harmonics Within the Shear Stress
	4.3 Nonlinear Quantitative Coefficient, Q from FT-Rheology
	4.4 Q0 from Various Constitutive Equations
	4.5 Definition of “Small” Strain Amplitude for a Linear Regime

	5 Applications
	5.1 Polymer Melt and Solution
	5.2 Polymer Composites
	5.3 Emulsion and Polymer Blends
	5.4 Block Copolymers and Liquid Crystals
	5.5 Solid Polymers (Fatigue Test)

	6 Conclusions
	References

	Index



