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To my family



Preface

The intention is to collect my lecture notes for the introduction to River
Engineering, a subject I have been teaching to master’s students in Environmental
and Land Engineering at the University of Trento since 1987. This course is divided
into two parts: the former is devoted to the fundamentals of river hydraulics, and the
latter deals with calculation and design tools used for river restoration. In full regard
to the location, the course especially focuses on mountain and piedmont streams
which are subject to intense sediment transport and continuous morphological
variations. This first volume contains the key topics of natural watercourse
hydraulics. I deliberately left out, and took for granted, the topics conventionally
dealt with in manuals of hydraulics, hydrodynamics and hydrology, as well as the
problem of unsteady river flows addressed with the traditional fixed-bed approach.
On the other hand, some hydraulics topics usually neglected in traditional text-
books, for example, vegetation and macro-roughness effects on flows, are consid-
ered in the first chapter, in that they are typical of several gravel bed rivers. The
other chapters are entirely devoted to mobile-bed river hydraulics. I also tried to
emphasize a few aspects which in the past may have been neglected for a limited
knowledge of phenomena but currently required to identify and solve some prob-
lems, for example, the effect of nonuniform sediments and mathematical modeling.
The structure of the book is the same as many river hydraulics or sediment transport
manuals, both classical like those by H. Walter Graf, M. Yalin, and Pieter Ph.
Jansen et al., and most recent like Pierre Julien’s; it also takes some important
internet contributions by Gary Parker into account. Sometimes, the formulation
of the problems may appear too analytical, which is undoubtedly helpful for
engineering students but rather complex for those who will use it as a reference
book for applications. In my opinion, however, the study of sediment transport and
fluvial morphology has always been too empirical, without any attempt to take a
theoretical look at the subject. Nowadays, such a method is outdated: as a matter of
fact, design choices demonstrated a reckless disregard of long-term consequences
on watercourse dynamics and, last but not least, hydraulic engineers were highly
competent in the fixed-bed hydraulics, but somewhat reluctant to replace their
conceptual frameworks inadequate for the study of natural water streams which are
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simply mobile-boundary flows. This book first appeared in Italian in 1999 under the
title Principi di idraulica fluviale (Principles of River Hydraulics); this is the
English version, revised and expanded. Special thanks are due to Giuseppina
Zummo for her professional competence and accuracy in the English translation.
I would like to thank Paolo Scarfiello for his valuable help with several graphs and
charts of the book. I am deeply grateful to my colleagues of the Department of Civil
and Environmental Engineering at the University of Trento for the precious
moments of discussion on nearly all the topics covered in the book, especially to
Michele Larcher, Giorgio Rosatti, and Luigi Fraccarollo. Finally, thank to Giulia
Rossi for her precious help in reviewing the page proofs of the book.

Trento, Italy Aronne Armanini
August 2017
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Chapter 1
Roughness in Fixed-Bed Streams

1.1 Introduction

The solid boundaries of a natural watercourse are usually composed of earth, sedi-
ments, and vegetation of different species, which together determine the resistance
to the flow of water. From a hydraulic point of view, these parameters are treated as
equivalent roughness. However, the hydraulic roughness is a major source of uncer-
tainty in predicting the hydraulic parameters (velocity and depth) of the stream. On
the other hand, the determination of hydrodynamic resistance of a natural stream is
a rather complex operation.

When dealing with a flow resistance formula, in fact, it is worth referring to a
uniform flow condition, i.e., a flow steady in time and homogeneous in the flow
direction, although an exact condition of uniform flow is quite unlikely to occur
in a natural stream, especially because of longitudinal variations in cross sections.
Therefore, useful results for hydraulic engineering can be achieved only after making
a number of sometimes significant simplifications.

In some cases in the natural watercourses, we can refer approximately to a quasi-
uniform condition as the conditionwhichwould take place if we considered a straight
prismatic channel with the same cross section as that in question.

Assuming that the fundamentals of the laminar and turbulent flow in cylindrical
pipes are known, in that they are usually dealt with in standard textbooks on hydraulic
or fluid mechanics, in this chapter we will summarize some results that can be used
as reference for uniform motion in channels with compact section and homogenous
roughness of small size compared to the water depth, and will focus some of the
most common uniform flow formulae.

In Sect. 1.3.2, we will deal with motion problems in channels with roughness
comparable to the water depth (low submergence).

We will then address the theme of the resistance due to vegetation, distinguishing
between herbaceous vegetation, submerged shrubs, and emerging arboreal vegetation
(Sect. 1.4).
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2 1 Roughness in Fixed-Bed Streams

In Sect. 1.5 we will describe how to treat compound channels and channels with
floodplains.

Finally, we will describe some methods for calculating channel resistance with
nonhomogeneous roughness along the perimeter (Sect. 1.6).

1.2 Uniform Flow in Circular Pipes

The conditions of uniform flow in a prismatic channel of any cross section are usually
obtained by referring to the uniform flow in circular pipes (Fig. 1.1).

In this case, like in the two-dimensional plane flow, the symmetry of the flow
allows to make considerable simplifications. Details of these topics can be found in
traditional fluid mechanics and hydraulics books. Table 1.1 shows the main char-
acteristics of the pipe flows: velocity distribution in the different regions and the
resistance relations.

In Table 1.1, es denotes the Nikuradse equivalent sand grain roughness. The
resistance law is thus obtained by integrating the velocity over the cross section.

The Darcy-Weisbach formula illustrated in Table 1.1 is the rational law of resis-
tance. The friction factor f is a function of the Reynolds number Re = U D/ν and
the relative equivalent roughness es/D. In addition to the rational formulae shown
in Table 1.1, such a dependence can be derived from the empirical Moody diagram.

1.3 Uniform Flow in Compact Cross-Sectional Channels

The formulae on resistance, illustrated in Table 1.1, are usually extended to prismatic
channels with a relatively compact cross section, that is, with cross sections whose
water depth has the same order of magnitude as the surface width and whose rough-
ness is more or less evenly distributed along the wetted perimeter. In these cases,
the effective hydraulic radius is at most modified by multiplying it by an appropriate
empirical shape coefficient (Marchi 1961) (Table 1.2) (Fig. 1.2).

Fig. 1.1 Scheme of velocity
and shear stress distributions
in a circular pipe
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Table 1.1 Velocity distributions and resistance law in a circular pipe in uniform flow condition. y
is the distance from the wall, and r is the radial distance from the center

smooth wall pipe

u
u∗

=
u∗ y
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u∗ y
ν
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κ
ln

u∗ y
ν
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rough wall pipe
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Fig. 1.2 Scheme of a channel in uniform flow

The velocity distribution and the formulae for resistance can also be applied to
wide rectangular channels (B >∼ 5), by simply substituting the radial distance r
with the distance from the wall y and the pipe diameter D with the hydraulic radius
Rh or often with the water depth h multiplied by 4. By definition, the hydraulic radius
is the ratio between the cross-sectional area A and the wetted perimeter Pe:

∫
Pe

τo dpe = τ0 Pe = g ρ A sin αb

τ0 = g ρ
A

Pe
sin αb = g ρ Rh sin αb

where αb denotes the slope angle of the bed, Pe the wetted perimeter, and Rh = A/Pe

the hydraulic radius of the cross section.
Along with the Darcy-Weisbach equation, which can be considered a rational

formula, empirical formulae are commonly used, which consider the resistance
coefficient as only dependent either on the absolute roughness (Gauckler-Strickler’s
and Manning formulae) or on the relative roughness (Chézy’s formula) (Table 1.2).
Notwithstanding their purely empirical derivation, these formulae canwell be applied
to natural watercourses in that, on the one hand, the established regime is generally
referred to a rough wall and, on the other, the uncertainty about determining the
equivalent roughness makes some conceptual sophistications on the subject virtu-
ally useless. Strickler’s formula can be converted into Chézy’s:

ks = χ R−1/6
h [m1/3s−1] (1.1)

and, similarly, into Darcy-Weisbach’s:
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Table 1.2 Uniform flow relations in compact cross section open channels. ib = tan αb � sin αb is
the slope of the bed
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Table 1.3 Gauckler-Strickler coefficients for natural streams (Chow 1959)

Strickler coefficient [m1/3s−1] Max. Norm. Min.

Natural streams:

Minor streams (h < 3.5m)

(a) Streams on plain

1. clean, straight, full stage, no rifts, or deep pools 40 33 30

2. same as above, but more stones and weeds 33 29 25

3. clean, winding, some pools, and shoals 30 25 22

4. same as 3, but some weeds and stones 29 22 20

5. same as 4, lower stages; more ineffective slopes,
sections

25 21 18

6. same as 4, but more stones 22 20 17

7. sluggish reaches, weedy, deep pools 20 14 12

8. very weedy reaches, deep pools, or floodways with
heavy stand of timber and underbrush

13 10 7

(b) Mountain watercourses, no vegetation in channel, bank usually steep, trees and brush
along banks submerged at high stages

1. bottom: gravels, cobbles, and few boulders 33 25 20

2. bottom: cobbles, large boulders 25 20 14

ks =
√
8 g

f
R−1/6

h [m1/3s−1] (1.2)

In English-speaking countries, the Manning formula is preferred to Gauckler-
Strickler’s. The Manning coefficient n is the reciprocal of the Strickler coefficient.
The Manning formula is often expressed in British metric units still today; in this
case, it is written as:

Q = A
kn

n
R2/3

h i1/2b (1.3)

where kn is a conversion factor: kn = 1.486 for English units and kn = 1.0 for SI
units.

There is no criterion which allows to establish that one formula is better than
another. However, in applications to channel flows, the recourse to Gauckler-
Strickler’s or to Manning formula is quite frequent, in that the respective coefficient
depends to a lesser extent on the hydraulic radius and thus, basically, on the absolute
roughness of the wall, at least under high submergence condition.

Tables 1.3 and 1.4 show some values of the Strickler coefficient for different
types of roughness taken from Chow (1959). Chow’s original tables are related to the
Manning coefficient n [m−1/3 s1], which has been converted to a Strickler coefficient
ks = 1/n [m1/3 s−1], whose values are truncated to the unit.
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Table 1.4 Gauckler-Strickler coefficients for artificial watercourses (Chow 1959)

Strickler coefficient [m1/3s−1] Max. Norm. Min.

Excavated or dredged channels

(a) Earth, straight and uniform

1. clean, recently completed 62 56 50

2. clean, after weathering 56 45 40

3. gravel, uniform section, clean 45 40 33

4. with short grass, few weeds 45 37 30

(b) Earth, winding and sluggish

1. no vegetation 43 40 33

2. grass, some weeds 40 33 30

3. dense weeds or aquatic plants in deep channel 33 29 25

4. earth bottom and rubble sides 36 33 29

5. stony bottom and weedy banks 40 29 25

6. cobble bottom and clean sides 33 25 20

(c) Excavated or dredged channels

1. no vegetation 40 36 30

2. light brush on banks 29 20 17

(d) Rock cuts

1. smooth and uniform 40 29 25

2. jagged and irregular 29 25 20

(e) Channels not maintained, weeds and brush uncut

1. dense weeds, high as flow depth 20 12 8

2. clean bottom, brush on sides 25 20 12

3. same, highest stage of flow 22 14 9

4. dense brush and high stage 12 10 7

1.3.1 Secondary Circulations

A particular aspect of flow in open channels is represented by secondary circulations
that appear in proximity to angles and to the free surface. One of the most evident
effects produced by these secondary circulations is the maximum velocity occurring
below the free surface. If, according to the Boussinesq diffusivemodel, the tangential
stresseswent to zero in proximity to the velocitymaxima, the longitudinal component
of the weight of the fluid volume comprised between the line connecting the velocity
maxima and the free surface (dotted area in Fig. 1.3) would not be balanced by any
force. This inconsistency is explained by the presence of a secondary circulation, in
other words by a positive net momentum flux across the line of maxima, as well as
by the fact that the Boussinesq diffusive model is likely to be inadequate in those
conditions.
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Fig. 1.3 Effect of secondary circulations in proximity to the free surface

1.3.2 Low Submergence Flow

One of the characteristics of mountain streams is the relatively elevated size of the
roughness elements. In some cases, roughness ke and water depth h are even nearly
the same size:

Y = h

ke
= O(1) (<∼ 4)

This is known as a situation of low submergence. In this case, in proximity to
the bed there is a macro-roughness layer, where the velocity distribution along the
depth tends to become more uniform than in case of high submergence. At the same
time, the Reynolds stress tends to be suppressed (Nakagawa et al. 1991), which is
accounted for by the existence of a series of secondary circulations generated by the
roughness elements.

A more convincing explanation (Nikora et al. 2001) is that in case of low sub-
mergence, the spatial heterogeneities due to roughness elements affect the flow field
so greatly that the flow cannot be considered any longer as homogeneous at the
depth scale, since the flow depth is of the same order of magnitude as the roughness
elements.

It is also convenient to perform a space average of the velocity over bed-parallel
planes (double averaging), in addition to the time average. This double average is
indicated with the symbol < u >.

The double-averaged velocity < u > follows a nearly linear distribution within
the macro-roughness layer and a logarithmic distribution in the layer immediately
above (Fig. 1.4).

< u >

u∗
= C1

y

δR
for 0 ≤ y ≤ δR (1.4)

while the logarithmic sub-layer is characterized by the following distribution:

< u >

u∗
= 1

κ
ln

y

δR
+ C1 for y ≥ δR (1.5)
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Fig. 1.4 Velocity
distribution in case of low
submergence, according to
Nikora et al. (2001)

where δR � δI represents the thickness of the macro-roughness layer, while δI

is the thickness of the interface sub-layer occupied by the grains, and C1 a constant
that takes values between 3 and 7.

As a result of the process of double averaging, in themomentumbalance additional
stresses appear: they are called dispersive stresses and, when added to the Reynolds
stresses, they lead to a triangular distribution of the total stress in uniform flow
conditions.

Under slightly larger submergence (∼ 10 > h/d85 >∼ 5), as afirst approximation
we can extend the validity of the logarithmic law to the entire water depth h:

u

u∗
= 1

κ
ln

y

ds
+ Br (1.6)

where ds is the size of bed grains. In case of low submergence, constant Br (Keule-
gan’s constant) was observed (Graf 1991) to assume lower values (Br = 3.26) than
8.5 which characterizes high submergence. However, we should remind that the
constant of the logarithmic law practically depends on the definition of equivalent
roughness: the above considerations are to be taken into account when we assume
the Nikuradse criterion to define the equivalent roughness.

The formula for bed uniform flow under these conditions is obtained by general-
izing the resistance law for circular pipes:

U

u∗
=

√
8

f
= A1 ln X + B1 (1.7)

In the literature, diverse numerical values and parameters have been suggested
for this expression. The most used are given in Table 1.5.

The diversity of the parameters used to express the relative roughness and of
the numerical values in the formulae is often due to the difference in operating
conditions used by authors, especially with regard to the different level of imbrication
or exposure of single particles, as well as to the uncertainty about defining the bed
level of reference. The logarithmic law is often substituted with a power law:
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Table 1.5 Parameter values of Eq. (1.7) proposed by various authors

A1 B1 X Range of
application

Authors

2.90 0.70
h

d50 2.2 ≤ h

d90
≤ 31 Bray (1982)

2.80 1.72
h

d65

2.49 3.02
h

d84
1 ≤ Rh

d65
≤ 14 Hey (1979)

2.457

(
1 − 0.1 ke

Rh

)
0 12

Rh

ke

h

d84
> 1.2 Thompson

and
Campbell
(1979)

(1)

2.43 2.15
Rh

d50
1 ≤ Rh

d50
≤ 200 Griffiths

(1981)

2.5 2.88
Rh

d84

(
hm

Rh

)0.314

0.3 ≤ Rh

d84
≤ 1 Bathurst

(2002)
(2)

2.48 3.1
Rh

d84

h

d50
> 1 Bray

(1979)

2.80
hm

M d84

h

d50
> 1 Colosimo

et al.
(1988)

(3)

3.28 2.43
Rh

d84
Gravel bed Limerinos

(1970)

2.5 3.25
Rh

d50
1 ≤ Rh

d50
≤ 50 Graf et al.

(1987)

(1) Authors suggest: ke = 4.5 d50
(2) hm = maximum water depth in the cross section;
(3) The formula suggested by Colosimo et al. (1988) also takes into account both cross-sectional
shape by means of parameter b and particle size composition of the material by means of parameter

M B1 = 1.12 (8.5 − 2.5(1 − b)) with b = ln(1 + 2
hm

w
− hm

w
); hm and w are, respectively,

the average water depth and the average cross-sectional width. M , the uniformity module of the
granulometric curve, is defined as M = (A1 + A2)/A2, where A1 and A2 are the areas subtended
by the particle size curve (Chap. 2)

U

u∗
=

√
8

f
= a Y b (1.8)

By comparing Eq. (1.8) with the Gauckler-Strickler formula (Table 1.2) with
the coefficient expressed by Eq. (1.2), we deduce that exponent b is equivalent to
1/6 � 0.167. On the other hand, the values observed experimentally have higher

http://dx.doi.org/10.1007/978-3-319-68101-6_2
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Table 1.6 Parameter values of the power formula (1.8) suggested by various authors

a b Y Validity field Authors

8.30 0.167
Rh

d90
gravel bed and
cobbled bed

Meyer-Peter and
Müller (1948)

6.74 0.167
Rh

d50
gravel bed and
cobbled bed

Strickler (1923)

3.85 0.281
h

d50
2.2 ≤ h

d90
≤ 31 Bray (1979)

4.19 0.277
h

d65
” ”

5.03 0.268
h

d90
” ”

5.4 0.26
Rh

d84

h

d50
> 1 Bray and Davar

(1987)

4.19 1.80
Rh

d84
i ∼ 0.06
step-pool

Lee and Ferguson
(2002)

3.84 0.547
Rh

d84
0.002 < i <

0.008
h

d84
< 11

Bathurst (2002)

3.10 0.93
Rh

d84
0.008 < i < 0.04

h

d84
< 11

Bathurst (2002)

exponents, as can be seen in the table below. Table 1.6 shows the literature values
for the parameters of Eq. (1.8).

Among those mentioned, some formulae were worked out in conditions of not
extremely low submergence, that is, in gravel beds and cobbled beds; they are also
widely used in fluvial beds, still nowadays. They are rewritten below with reference
to coefficient ks of the Gauckler-Strickler formula:

Q = A ks R2/3
h i1/2E

• Strickler formula (Strickler 1923), with reference to d50 of the bed material:

ks = 21.1

d1/6
50

[d50] = [m]; [ks] = [m1/3s−1] (1.9)

• Meyer-Peter and Müller formula (Meyer-Peter and Müller 1948), referred to d90,
diameter which best represents the roughness compared to d50:

ks = 26

d1/6
90

[d90] = [m]; [ks] = [m1/3s−1] (1.10)
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• Limerinos formula (Limerinos 1970), calibrated on a great number of Californian
watercourses:

ks =
1.16 + 0.86 ln

Rh

d84
0.113R1/6

h

[d84] = [m]; [ks] = [m1/3s−1] (1.11)

If, instead of Strickler’s, we used Chézy’s, according to Limerinos the Chézy
coefficient would become:

χ =
1.16 + 0.86 ln

Rh

d84
0.113

[m1/2s−1] (1.12)

1.4 Resistance Due to Vegetation

The resistance offered by vegetation needs to be dealt with specifically, in that this
roughness type is flexible and permeable.

The presence of vegetation on the wetted perimeter of a stream can imply a
considerable increase in the equivalent roughness, and thus an appreciable rise in
flow resistance, as is shown from the followingfigures concerningflexible herbaceous
vegetation.

In Fig. 1.5, the first part of the solid line (h ≤∼ 0.6m) corresponds to a flow
between the grass interstices, whereby the resistance to motion is very large. The
second part of the same curve (∼ 0.6 ≥ h ≤∼ 0.8m) corresponds to a flow par-
tially through the vegetation and partially above the vegetation. In the third section
(h ≥∼ 0.8m), water flows mainly above the grass, thus making the river bed wall
smoother.

Figure1.6 shows the same phenomenon in terms of equivalent roughness varia-
tion.

The technical literature on the subject is rather unsystematic. To deal systemat-
ically with the problem, we should distinguish between flexible grassy vegetation
and inflexible vegetation or bushy shrub type. We still need to discriminate between
completely submerged vegetation and emergent vegetation with respect to the free
surface.

1.4.1 Channels with Fully Submerged Flexible Vegetation

Also in case of fully submerged vegetation, a layer was observed close to the wall
and dominated by the roughness offered by vegetation (Fig. 1.7).
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Fig. 1.5 Bermudagrass
effect on the average velocity
in an agricultural drainage
channel. The continuous
curve represents the
vegetated channel, and the
dotted curve indicates the
same channel without
vegetation
(ks = 33 m1/3s−1)
(Przedwojski et al. 1995)

Fig. 1.6 Bermudagrass
effect (hveg = 0.2 m) on the
roughness coefficient as the
level varies (Przedwojski
et al. 1995)

In order to estimate effects of vegetation on flow resistance, it is worth referring
to the Darcy-Weisbach expression, by supposing the existence of a layer dominated
by wall turbulence, and consequently by a logarithmic resistance law.
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Fig. 1.7 Scheme of velocity profiles observed over flexible vegetation

√
1

f
= Av ln

h

kv

+ Bv (1.13)

Coefficients Av and Bv depend on the type and state of vegetation. Various para-
meter values have been suggested for agricultural drainage channels. The following
Table 1.7 shows some literature values for the roughness coefficient: kv denotes the
equivalent roughness due to vegetation. The choice for this parameter clearly affects
the value of constants (especially Bv). In fact, a possibility of defining vegetation
roughness is to assume the same vegetation height as kv value.

For wide channels, the ratio h/kv is equivalent to the ratio between the area of
the wetted cross section S and that occupied by vegetation Sv . Thus, (1.13) can be
rewritten as such: √

1

f
= A1v ln

S

Sv

+ B1v (1.14)

Kouwen (Kouwen and Unny 1973; Kouwen 1988) proposed a criterion for defining
the equivalent roughness, which takes vegetation flexibility into account; kv is made
dependent on vegetation stiffness by means of parameter MEI , which implicitly
considers the spatial vegetation density as well (Fig. 1.8):

kv = 0.14 hveg

⎛
⎜⎝

(
MEI
τo

)0.25

hveg

⎞
⎟⎠

1.59

(1.15)

hveg denotes the average plant height. As to the stiffness parameter MEI , for the
green vegetation we have:
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Table 1.7 Values of parameters of Eq. (1.13) proposed by various authors

Vegetation type Av Bv Authors

aquatic plants (alisma
plantago)

4.28 1.24 Keulegan (1938)

elodea (elodea
canadensis), cerastium
(callitriche), and algae

1.61 0.32 Plate and Quraishi
(1965)

grass-wrack pondweed
(potamogeton
compressus), aquatic
plants (alisma
plantago), algae
(cladophora), elodea

5.22 1.19 Keulegan (1938)

floating sweet grass
(glyceria fluitans),
curlyleaf pondweed
(potamogeton crispus)
and sago pondweed
(potagemon
pectinatus)

2.55 1.45 Plate and Quraishi
(1965)

floating sweet grass
(glyceria fluitans),
curlyleaf pondweed
(potamogetoncris-
pus)

2.09 0.70 Plate and Quraishi
(1965)

Table 1.8 Suggested values for the parameters in Eq. (1.14)

Vegetation type B1v A1v

Erect vegetation 0.15 1.85

Prone vegetation 2.69–3.50 0.20–0.29

MEI = 319 h3.3
veg [MEI] = [N/m2] ; [hveg] = [m] (1.16)

while for the dormant vegetation we have:

MEI = 25.4h2.26
veg [MEI] = [N/m2] ; [hveg] = [m] (1.17)

No indications being given on the state of vegetation, Kouwen (1988) suggested
the following expression averaging the two cases:

MEI = 233 h3.125
veg [MEI] = [N/m2] ; [hveg] = [m] (1.18)

The constants A1v and B1v of Eq. (1.13) basically depend on the fact that the
vegetation is erect or prone (Table1.8).
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Fig. 1.8 Stiffness parameter value as a function of vegetation height (Kouwen 1988)

Fig. 1.9 Scheme of the roughness calculation in the presence of rigid emergent stems

It is worth reminding that Kouwen’s formula cannot be applied to higher vegeta-
tion than the water depth.

1.4.2 Channels with Emergent Vegetation

In case of rigid plants or bushes, unevenly distributed along the watercourse wall,
the total resistance is worked out by analyzing the resistance provided by the single
plants.

Let then a stream section of length L be considered and the wetted perimeter be
denoted with Pe (Fig. 1.9).

In uniform flow, the component in the longitudinal direction of the weight of the
fluid contained in the control volume ρ gALiE is balanced by the stresses acting on
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Fig. 1.10 Scheme of a plant
section

the wetted perimeter τo Pe L , and by the sum of hydrodynamic resistances offered
by the plants present in the control volume

∑
Dpj :

ρ gALiE = τo Pe L +
∑

Dpj (1.19)

where ie = ib = tan αb � sin αb is the energy slope, which in uniform flow is parallel
to the bed slope (Fig. 1.10).

The resistance offered by a single plant can be expressed in function of the drag
coefficient CD , the average plant section Apj , and the averaged velocity on the cross
section U :

Dpj = CD ρ Apj
U 2

2
(1.20)

By substituting, we have:

ρ g A L iE = τo Pe L +
∑

CD ρ Apj
U 2

2

iE = τo

ρ g

Pe

A
+ 1

g A L

U 2

2

∑
CD Apj (1.21)

The energy slope iE is expressed by using the Strickler formula, in which an
equivalent friction coefficient kseq is introduced:

iE = U 2

k2
seq

R4/3
h

(1.22)

and, by means of the same formula, τo is expressed in function of Strickler’s coeffi-
cient for unvegetated bed:

τo

ρ g Rh
= U 2

k2
so R4/3

h

(1.23)
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Table 1.9 Typical geometric vegetation parameters as a function of type diversity (DVWK 1991)

Vegetation type Development
stage

dp [m] ax [m] ay [m]

Distributed vegetation

• reed bed 0.003–0.01 0.01–0.03 0.01–0.03

• shrubs 1 year 0.03 0.25–0.35 0.25–0.35

• willows more years 0.03–0.06 0.15–0.25 0.15–0.25

Trees

• birch (Betula
alba)

5 years 0.04–0.10 1.0–5.0 1.0–5.0

>5 0.15–0.50 3.0–10.0 3.0–10.0

only trunks 0.5–1.0 10.0–20.0 5.0–15.0

Isolated plants or groups of trees

• bushes more years 3.5 3.5–10.0 3.0–10.0

• groups of trees more years 1.0 10.0 10.0

By substituting Eqs. (1.22) and (1.23) into Eq. (1.21), we obtain:

U 2

k2
seq

R4/3
h

= U 2

k2
so R4/3

h

+ U 2

2 g

∑
CD

Apj

A L

1

k2
seq

= 1

k2
so

+ R4/3
h

1

2 g

∑
CD

Apj

A L
= 1

k2
so

+ 1

k2
s−veg

(1.24)

Thus, Eq. (1.24) defines the Strickler coefficient related to vegetation:

1

k2
s−veg

= R4/3
h

1

2 g

∑
CD

Apj

A L
= R4/3

h

1

2 g

∑
CD

Apj Pe

A L Pe

= R1/3
h

1

2 g

∑
CD

Apj

L Pe
(1.25)

In the last term of (1.25), the ratio (
∑

Apj/L Pe) represents the density of the
plants. For convenience’s sake, this definition usually includes the coefficient CD

which generally assumes values close to unit.

	v =
∑

CD
Apj

L Pe
= CD

h dp

ax ay
(1.26)

thus defines the density of vegetation. dp is the average diameter of the plant trunk,
and ax and ay are the averaged distances between plants in the longitudinal and
transverse directions, respectively. Recurring values of these parameters, specially
used in river renaturalization projects, are shown in the following table (Table1.9).
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In short, we have (Petryk and Bosmajian 1975; DVWK 1991):

kseq = kso√
1 + 1

2 g
CD

h dp

ax ay
k2

so R1/3
h

(1.27)

where:

dp average plant diameter [m];
CD =1.0–1.5 drag coefficient;
ax distance between plants in the flow direction;
az distance between plants in the transverse flow direction;
Rh hydraulic radius of the cross section;
kso Strickler coefficient of the bed [m1/3/s].
Planting shrubby vegetation alongwatercourse banks has recently become awide-

spread practice. This river restoration technique is included in most river renatural-
ization projects (Florineth 1982, 1993). The effect on total resistance increase is
particularly significant in minor watercourses, where the width can be compared
with the water depth. However, the problem must be faced by properly combin-
ing the roughness effects of both vegetated and non-vegetated parts of the wetted
perimeter, as will be explained below.

1.5 Compound Channels

Very often, natural watercourses have cross sections which greatly change as the
water depth increases: They are watercourses endowed with more or less wide flood-
plain expansion areas. In these cases, it is unrealistic to consider the cross section as
compact and directly apply the previous formulae to it. Instead, as a rule, the area
is divided by vertical lines into subareas, each then subjected to the uniform flow
formula (Fig. 1.11).

Assume that the free surface is horizontal and thus the energy slope iE is the same
for all subareas.We neglect the tangential stresses acting along the vertical separation
lines between subareas. The latter simplification involves amargin of error, in that this
condition occurs only on the lines normal to isotachs (line connecting the points of the
cross section with the same longitudinal velocity); therefore, it is these lines which
should be used to subdivide the cross section. If the horizontal width of subareas is
much greater than the water depth, any possible error is rather modest.

The total discharge turns out to be the sums of the discharges of each subarea:

Q =
N∑

j=1

Q j (1.28)
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Fig. 1.11 Scheme of division into subareas by vertical lines

Referring to global section values is useful, especially in 1Dmathematicalmodels,
in that it allows to define an equivalent resistance coefficient for the whole section.
For instance, theGauckler-Strickler formula allows to define the following equivalent
roughness coefficient:

kseq =
∑N

j=1 ks j A5/3
j P−2/3

e j

(
∑N

j=1 A j )5/3(
∑N

j=1 Pe j )−2/3
(1.29)

Equation (1.29) is based on the hypothesis that the hydraulic radius of the whole
section is given by the ratio between the total area and the total wetted perimeter
Rh = A/Pe = ∑N

j=1 A j/
∑N

j=1 Pe j (Lotter 1933).
A slightly different hypothesis about the total hydraulic radius of the whole cross

section, Rh =
(∑N

j=1 A3/2
j P−1/2

e j )
)2

/(
∑N

j=1 A j )
2, is on the basis of the formula

suggested by Engelund (1964) and Ida (1960), which leads to the following expres-
sion of the equivalent roughness coefficient of the whole section:

kseq =
(∑N

j=1 A j

)−1/3 ∑N
j=1 ks j A5/3

j P−2/3
e j(∑N

j=1 A j P−1/2
e j

)4/3 (1.30)

In this circumstance also, the kinetic term which appears in the energy balance
must be multiplied by the respective Coriolis momentum coefficient or Coriolis cor-
rection factor that, according to Lotter’s assumption, is:

αC =
(
∑N

j=1 A j )
2 ∑N

j=1

(
k3

s j
A3

j P−2
e j

)
(∑N

j=1 ks j A5/3
j P−2/3

e j

)3 (1.31)
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It goeswithout saying that the exponents need to be properlymodified if a different
butmonomial formula is used. It has recently been proved that the apparent resistance
of watercourses with floodplain expansion is higher than the estimates above would
suggest. A reason for this increase in resistance has been identified in the existence of
large secondary currents with a vertical axis transferring mass and momentum from
the central area (talweg) to floodplains and vice versa. These secondary circulations
have profound consequences also for the biology andwater quality of the river, in that
they foster interchange phenomena between talweg and floodplains, as schematized
in Fig. 1.12.

Townsend (1968) proposed the following formula (units in MKS) in order to
evaluate the dimensionless tangential stress along the separation lines between the
main channel and the floodplains:

βr = (�U )0.92

11.21 hmax iE

(
hg

hmax

)−1.129 (
Bg

Bc

)−0.514

[�U ] = [m/s]; [h] = [m]
(1.32)

where hg and hmax denote the water depth in the floodplains and the talweg, respec-
tively, Bg and Bc are the widths of the floodplains and the talweg, iE is the energy
slope of the channel, and �U is the velocity difference between floodplains and
talweg.

Roughness increase can be calculated in terms of increase (�A) in the liquid
cross section Ag due to floodplain expansions, along with a parallel reduction in the
liquid section Ac of the talweg. The areas of the floodplains and the talweg which
should then be used in calculations result to be, respectively:

A′
g = Ag + 2(�A) and A′

c = Ac − 2(�A) (1.33)

where the area variation (�A) is calculated in function of the tangential stress
(Eq.1.32) at the interface between floodplains and talweg:

�A = βr h2
max (1.34)

with βr calculated using expression (1.32). Resistance is then evaluated following
the procedure already described with Eqs. (1.28–1.31).

1.6 Channels with Composite Wall Roughness

Similar to the previous problem but referred to watercourses with relatively narrow
cross sections is the case when wall roughness significantly varies along the wetted
perimeter. This is the case of channels with concrete banks and gravel beds or sand
beds, or channels with rocky banks or with natural or planted vegetation, as often
adopted in the river restoration projects (Fig. 1.13).
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Fig. 1.12 Secondary circulations in channels with floodplain expansion according to Shiono and
Knight (1991)

Fig. 1.13 Scheme of a transverse cross section with different roughnesses
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Fig. 1.14 Distribution of isotachs lines, normalized to the average velocity U , (ux/U ), and of
the equal Reynolds stress lines, normalized to the average friction velocity u∗ (u′

x u′
z/u∗2), in the

presence of thick vegetation on the bank (Righetti and Armanini 1998)

In these circumstances, the velocity distribution can be so significantly influenced
by roughness differences that the previously described methods for dividing cross
sections by vertical lines can become rather unreliable.

Especially in the presence of dense vegetation on the bank of a relatively narrow
channel, the influence of bank roughness can greatly extend inside the central part of
the channel, and therefore the tangential stresses on the vertical lines can be compared
with those along the walls, which cannot be ignored any longer.

Figure1.14 illustrates equal velocity lines and equal Reynolds stress lines,
obtained in a laboratory channel (Righetti and Armanini 1998). A careful obser-
vation of the figure confirms that roughness due to vegetation not only translates the
discharge of subareas subtended from banks to zero contribution, but it also allows
to reduce the discharge in the central channel. Thus, the omission of the presence
of the triangular part created by the bank slope, as suggested by some authors, may
be insufficient. There are then several criteria for calculating the equivalent rough-
ness coefficient of these sections. In order to evaluate the equivalent resistance, it is
advisable to adopt the Gauckler-Strickler formula since the roughness coefficient of
this formula is known to be strongly dependent on the absolute, rather than relative
roughness.

1. Arithmetic mean In this hypothesis, the equivalent roughness coefficient is
assumed to be simply the arithmetic average of the coefficients of the single
parts of the wetted perimeter. Quite clearly, such a criterion does not take into
account the length of each boundary section whose roughness is referred to, and
consequently it can be applied only when these cross sections are the same length:

kseq =
∑N

j=1 ks j

N
(1.35)
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2. Weighted arithmetic mean The drawback suffered from the previous approach
can be overcome if the average is weighted on the single segments of the wetted
perimeter:

kseq =
∑N

j=1 ks j Pe j∑N
j=1 Pe j

(1.36)

As the relation between wetted perimeter and roughness coefficient is not linear,
the weighted mean should be adjusted to take nonlinearity into account.

3. Einstein-Horton’s criterion This criterion considers the above nonlinear feature
in equations. The cross section is assumed to be divided into N subareas, each
characterized by the same mean velocity U (Fig. 1.15):
The average velocity for a generic jth subarea is then evaluated by applying to it
the Gauckler-Strickler formula:

U = ks j R2/3
h j

√
iE (1.37)

Therefore, since iE is also constant in the various subareas, we have:

U√
iE

= ks j R2/3
h j

= const (1.38)

In other words,

Rh j = A j

Pe j
= k−3/2

s j

(
U√
iE

)3/2

(1.39)

An equivalent roughness coefficient kseq can be defined as:

U = kseq

√
iE R2/3

h (1.40)

From the previous relations, we obtain:

kseq = U√
iE

1

R2/3
h

= U√
iE

(∑N
j=1 Pe j∑N
j=1 A j

)2/3

= U√
iE

P2/3
e(∑N

j=1 Pe j Rh j

)2/3

(1.41)
By substituting (1.39) into (1.41), we have:

kseq = U√
iE

P2/3
e(∑N

j=1 Pe j k−3/2
s j ( U√

iE
)3/2

)2/3 = P2/3
e(∑N

j=1 Pe j k−3/2
s j

)2/3 (1.42)

This criterion turns out to be precautionary compared to those previously sug-
gested.
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Fig. 1.15 Scheme for Einstein-Horton’s criterion of subareas of equal velocity

1.6.1 Shear Stress on Each Portion of the Wetted Perimeter

The average tangential stress exerted on each portion of the wetted perimeter is
obtained by applying the uniform flow condition to each subarea:

τo j Pe j = ρ g A j iE (1.43)

but from (1.39) we have:

A j = Pe j k−3/2
s j

(
U√
iE

)3/2

(1.44)

After substituting (1.44) into (1.43), we get:

τo j Pe j = ρ g iE Pe j k−3/2
s j

(
U√
iE

)3/2

(1.45)

Given that from (1.40) it results:

(
U√
iE

)3/2

= k3/2
seq

A

Pe
, we then obtain:

τo j = ρ g iE k−3/2
s j

k3/2
seq

A

Pe
= ρ g Rh iE

(
kseq

ks j

)3/2

(1.46)

and in conclusion,

τo j = τo

(
kseq

ks j

)3/2

(1.47)
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1.6.2 Limits of Einstein-Horton’s Criterion

As previously observed, the vegetation effect on banks can be extremely high, espe-
cially in minor streams. In this case, the Einstein-Horton’s criterion seems to be
the right choice for total resistance calculation. Figure1.16 shows some significant
examples after applying such a method. It is evident that the presence of vegetation,
even on half the bank, leads to a reduction in discharge up to 60%.

By comparing the previous figures, we can observe that the vegetation effect is
much more visible in the narrow channel. The reason is rather obvious: being the
vegetation concentrated on banks, the lower the portion of wetted perimeter affected
by vegetation, the higher the channel width.

In these cases, however, Einstein’s criterion turns out to be too precautionary, as
is shown in Fig. 1.17, which shows the results of an accurate investigation conducted
with artificial vegetation in a laboratory channel.

Among the different hypotheses considered in Einstein-Horton’s criterion, the
least acceptable is that one on the same velocity for each subarea referred to each
segment of the wetted perimeter with different roughness.

As clearly shown in Fig. 1.14, the average velocity of the vegetated subarea is
very low and extremely lower than the average velocity of the whole section. We can
deduce that the suggested criterion can be applied only when the different rough-
nesses are the same size.

Such limits of the Einstein-Horton’s criterion can be overcome, at least for nearly
trapezoidal section with thick vegetation along banks, by supposing that the cross
section can be subdivided into subareas by vertical lines passing through the foot of
banks.

The section is then subdivided into three subareas: the central quasi-rectangular
part, plus two lateral quasi-triangular subareas, formed by either bank, and by vertical
lines passing through their foot (Fig. 1.18).

The central subarea resistance is calculated by applying on the vertical segments a
shear stress, which is proportional to the average stress acting on the bank, through an
appropriate proportionality coefficient n (Righetti and Armanini 1998). The equiva-
lent roughness coefficient of such a subarea is then calculated by applying Einstein-
Horton’s method:

ksc =

⎛
⎜⎜⎜⎝

2 + Bc

h
Bc

h k3/2
sc

+
(

n

ksl

)3/2

+
(

n

ksr

)3/2

⎞
⎟⎟⎟⎠

2/3

(1.48)

In (1.48), ksc, ksl , and ksr are, respectively, the equivalent bed roughness coeffi-
cients of the central area, and the left and right banks according toGauckler-Strickler.
Ac � Bc h is the area of the central subarea and Bc its average width.

Thus, the discharge flowing into the central subarea turns out to be:
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Fig. 1.16 Effect of bank vegetation on the rating curve, calculated with Einstein-Horton’s criterion

Qc = ksc Ac

(
Ac

Bc + 2h

)2/3
i1/2E

=

⎛
⎜⎜⎜⎜⎝

Bc

Bc

h k3/2sc

+
(

n

ksl

)3/2
+

(
n

ksr

)3/2

⎞
⎟⎟⎟⎟⎠

2/3

h Bc i1/2E (1.49)
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Fig. 1.17 Strickler coefficient in function of the dimensionless water depth scaled by the average
distance between plants. Laboratory data obtained by simulating vegetation with cylindrical rods
evenly distributed along a 45◦ inclined slope (Righetti and Armanini 1998)

Fig. 1.18 Subarea division scheme for channels with thickly vegetated banks (Righetti and
Armanini 1998)

Through each of the lateral subareas, there flows a discharge equal to:

Q j = ks j A j B j
2/3i1/2E = ks j

h B j cosα j

2
B2/3

j i1/2E j = 1, 2 (1.50)

where B j is the length of each bank and A j is the respective area.
The total equivalent roughness is calculated by adding the three discharges and

by applying Lotter’s method for vertical subareas (Eq. 1.29):
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Fig. 1.19 Strickler coefficient in function of the water depth, obtained in laboratory by simulating
vegetationwith cylindrical rods, evenly distributed on a 45◦ inclined bank andwith a value calculated
according to Eq. (1.51) (Righetti and Armanini 1998). ax and ay are the averaged distances between
plants in the longitudinal and transverse directions, respectively

ks−eq =

⎛
⎜⎜⎜⎜⎜⎝

Bc

h
Bc

hk3/2
so

+
2∑

j=1

(
n

ks j

)3/2

⎞
⎟⎟⎟⎟⎟⎠

2/3

+
2∑

j=1

ks j
B j

Bc

(cosαs j

2

)5/3

⎛
⎝1 +

2∑
j=1

B j

Bc

cosαs j

2

⎞
⎠

5/3

⎛
⎝1 +

2∑
j=1

B j

Bc

⎞
⎠

2/3

(1.51)

If we put n = 0 in the previous formulae, the method coincides with the Lotter’s
Eq. (1.29); if we assume n = 1, we hypothesize that bank roughness is totally
transferred into the central subarea.

Laboratory measurements (Righetti and Armanini 1998) have shown that n is
comprised between 0.3 and 0.5, typically n = 0.4 (Fig. 1.19). Moreover, it is also
worth observing that if Bc/h >> (0.4 kso/ks j )

3/2, i.e., if the central subarea is
sufficiently wide or the bank is not very rough, the method tends to coincide with
Lotter’s (Eq.1.29).
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Chapter 2
Introduction to Sediment Transport

2.1 Introduction

This chapter analyzes watercourses as mobile bed flows, that is, liquid flowing on
boundaries that evolve over time under the action of the current.

The river engineering works are almost always made to control morphological
processes, either erosion or sedimentation. Also liquid floods due to overflow are
often intrinsically due to solid overfeeding. As a matter of fact, dealing with hydro-
dynamics of natural water streams may sometimes lead to very unfortunate results
if we neglect the morphological variations developing simultaneously.

The analysis of these processes will end in Chaps. 7 and 8. But first the following
topics need to be addressed in succession:

• initiation of sediment movement;
• evaluation of solid transport rate;
• sediment effects on flow resistance;
• morphological variations in river courses;
• localized effects, like excavations and erosions.

Although these phenomena are closely interrelated, they will be dealt with sepa-
rately to make the exposition much clearer.

We will first illustrate how to define the characteristics of the particles that make
up amobile riverbed from the qualitative and quantitative points of view, in particular
how to define the particle shape with a reduced number of parameters.

In Sect. 2.3, we will outline some key concepts useful to categorize the solid trans-
port modes, that is to say, we will introduce the concepts of bedload and suspended
load, and in particular the concept ofwash load. These conceptswill then be analyzed
in detail in Chaps. 5 and 6, respectively.

Finally, in Sect. 2.5 we will detail the main features of the bed forms observed in
river beds: ripples, dunes, and antidunes. This topic will also be discussed later in
Chap.4, devoted to the effect of bed forms on flow resistance.

© Springer International Publishing AG 2018
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The aspects related to the so-called massive sediment transport (i.e., debris flows
and mudflows) will not be dealt with here.

These types of transport, whose knowledge requires tools other than those used in
the study of lowland rivers, concern the mountain streams especially during parox-
ysmal phenomena of particularly high intensity.

2.2 Characterization of Solid Particles

The sediments that compose the bed of a natural water course are very different
in form, composition, and arrangement. They are generally transported where they
are by the water flow, but in some cases also deposited on site manually or by
geomechanical phenomena. However, the bed composition is continuously changing
by erosion and deposition processes.

Typically, the natural river beds are composed of cohesive and loose sediments.
Loose sediments are materials that do not show physical–chemical interactions
between them. For sake of simplicity, in this book we will refer to loose sediments,
without considering, unless otherwise indicated, the effects of the cohesion that usu-
ally emerges in the presence of clayey particles.

2.2.1 Sediment Density

By definition, the density of a particle is the ratio between its mass ms and volume
∀s , e.g.,

ρs = ms

∀s
(2.1)

The density of the particle depends on its mineral composition, but the majority of
the particles are composed of quartz with a density of nearly 2600–2700 [ kg/m3] or
of calcareous material with a density of ∼ 2900 [ kg/m3]. In practical calculations,
the sediment density is given as a value of 2650 [ kg/m3]. Very often, many sediment
transport equations adopt the relative submerged density Δ, defined as the ratio of
the difference between the material density ρs and the water density ρ, divided by
the water density:

Δ = ρs − ρ

ρ
(2.2)

which usually takes the value of 1.65.
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2.2.2 Geometric Classification

Size, shape, and density are the typical key parameters of a solid particle. In fact,
natural particles are never regular in shape, so more than one dimension is required
to define them geometrically.

Referring to the textbooks of geotechnics and geomorphology for detail, here it
suffices to recall some criteria for defining the representative dimension of a particle,
as follows:

• Triaxial diameter: Dt = d1 + d2 + d3
3

, where (Fig. 2.1) d1, d2, and d3 are, respec-

tively, the longest, intermediate, and shortest dimension of the particle, measured
along three mutually perpendicular axes.

• Nominal diameter: it is the diameter of a sphere with equal volume. Although
rarely and hardly ever used in practice, this parameter is suitable to define the
dimension of particular particles.

Fig. 2.1 Parameters defining the triaxial diameter

Fig. 2.2 Example of granulometric curve of natural bed material
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Fig. 2.3 Cumulative granulometric curve and index φ. On the right, the cumulative curve is drawn
on a probability scale (concentration of median values and expansion of extreme percentage values)

• Sieve diameter: the smallest sieve size through which a particle can pass. In this
case, the particle size can be determined by sieving. For practical reasons, such
a definition cannot be applied to particles of very small dimensions (less than
around 100 µm), or to those with extremely large diameters (more than some
centimeters).
There are several particle size classifications. Probably themostwell known are the
Udden-Wentworth scale (Wentworth scale) and theBritish StandardClassification.
In the Udden-Wentworth scale, sediments are scaled by grades and class terms as
indicated in Table2.1.

Table 2.1 Solid particle classification by Udden-Wentworth (1922)

Very fine clay 0.24–0.50 µm Very coarse sand 1–2 mm

Fine clay 0.50–1 µm Very fine gravel 2–4 mm

Medium clay 1–2 µm Fine gravel 4–8 mm

Coarse clay 2–4 µm Coarse grave 8–16 mm

Very fine silt 4–8 µm Very coarse gravel 16–32 mm

Fine silt 8–16 µm Small cobbles 32–64 mm

Medium silt 16–31 µm Medium cobbles 64–128 mm

Coarse silt 31–62 µm Coarse cobbles 128–256 mm

Very fine sand 62–125 µm Small boulders 256–512 mm

Fine sand 125–250 µm Medium boulders 512–1024 mm

Medium sand 250–500 µm Coarse boulders 1024–2048 mm

Coarse sand 0.5–1.0 mm Very large boulders 2048–4096 mm
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In particular, dn is the sieve diameter corresponding to n% finer in the particle
size distribution. d50 is often called geometric mean diameter (or mean value of
the grain size distribution) dg (Fig. 2.2). In the hypothesis, although not always
verified, that the grain size distribution follows a lognormal law, the geometric
mean diameter and the geometric standard deviation turn out to be:

dg � √
d84.1 d15.9 and σg = 1

2

(
d84.1
d50

+ d50
d15.9

)
(2.3)

Mean diameter, which is obtained by dividing the granulometric curve into N
classes. Denoted with d j and d j+1 the diameters defining the jth class and with p j

the percentage of material present in the granulometric class, we have:

d̄ =
∑N

j=1
1
2 (d j + d j+1) p j
∑N

j=1 p j

(2.4)

However, the granulometric distribution of streams does not generally follow the
Gaussian law, even if in floodplain streams (i.e., far from localized sediment
intakes) the grain size distribution downstream tends to be lognormal. In order
to express the sediment dimension, the following index φ is often used, especially
by geomorphologists (Fig. 2.3):

φ = − log2 d[mm] = − log d

log 2
= − ln d

ln 2
(2.5)

• Sedimentological diameter: it is the diameter of the sphere with the same density
ρs and the same fall velocity in still water ws as the particle in question. This
parameter is often used to compare the effects of particles with different density,
as happens, for instance, in hydraulic mobile-bed models.
The fall velocity in still waterws is the velocity gained by the particle when, letting
it fall in still water, it reaches a uniform velocity, that is, when the hydrodynamic
resistance is balanced by the submerged weight of the particle:

CD α2 d
2 ρ

w2
s

2
= α3 g (ρs − ρ) d3 (2.6)

From this expression it follows:

ws =
√
2

α3

α2 CD

√
gΔ d (2.7)

beingΔ = (ρs −ρ)/ρ the reduced relative density of the particles. d is the particle
size; α2 and α2 are appropriate shape coefficients. In case of the sphere: α2 = π/4
and α3 = π/6, and thus, 2α3/α2 = 4/3.
CD is the drag coefficient, a function of the Reynolds number Rew = ws d/ν and
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Fig. 2.4 Drag coefficient CD in function of the shape factor (Rew = 45) (from Helley (1969))

of the particle shape:

CD = f (
ws d

ν
, shape ) (2.8)

As for a spherical particle falling in a laminar flow regime (Stokes’ law), we have
CD = 24/Rew.
In order to characterize the particle shape, various parameters and criteria have
been proposed in the literature. Among these, it is worth mentioning the shape
factor, defined as follows:

SF = d3√
d1 d2

The shape factor has a remarkable influence on the fall velocity of particles.
Figure2.4 shows this effect for a constant value of the Reynolds number, Rew,
referred to the fall velocity in still water (Helley 1969).
Coefficient C ′

D = 0.75CD represents that in the sphere α2/2α3 = 3/4.
Natural particles have an average shape factor of around 0.7.
On the other hand, the next figure represents the dependence of the drag coeffi-
cient CD on the Reynolds number for various values of the shape factor. Highly
appreciable is the shape factor effect on CD in coarser materials, whose Reynolds
number for the fall velocity is higher (Figs. 2.5 and 2.6).

Other parameters used to characterize the particle shape are sphericity and round-
ness.

spherici t y = Ss f
Sp
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Fig. 2.5 Dependence of the hydrodynamic drag coefficient of a particle on the Reynolds number,
scaled by various values of the shape factor (from Albertson (1953))

Ss f is the surface of the sphere with equal volume. Sp is the particle surface.

roundness = Rp

Rcm

Rp is the average radius of curvature of the particle surface and Rcm is the radius of the
maximum circle which can be inscribed within the surface of maximum projection
of the particle. The cube is very spherical and little round; a cylinder is little spherical
and very round.

From Eq. (2.7), we obtain the following definition of the sedimentological diam-
eter ds :

ds = 1

2

w2
s

gΔ

α2

α3
CD (2.9)

2.2.3 Empirical Formulae for the Fall Velocity in Still Water

The method based on the shape factor cannot be easily applied in real conditions
since the high geometric variability of natural particles would imply great operational
difficulties for defining the shape factor. Alternatively, we can use some empirical
relations of fall velocity deduced by experimental observations on natural particles.
Some of these empirical relations are shown in Table2.2, where the fall velocity
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Fig. 2.6 Fall velocity in still water with different shape factor as a function of the sieve diameter
and the water temperature (from Colby (1957))

in still water is expressed as the sediment Reynolds number Rew = ws dn/ν con-
cerning the particle dimension dn in function of the dimensionless particle diameter
D∗ = dn

3
√
gΔ/ν2 (Bonnefille 1963).
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Table 2.2 Empirical formulae for assessing fall velocity in still water for natural particles, with
D∗ = dn

3
√
gΔ/ν2

Dimensionless fall velocity Range of validity Authors

ws dn
ν

= D3∗
18

D∗ < 3.42; (Stokes’ law)

ws dn
ν

= D2.1∗
6

3.42 < D∗ < 21.54;
natural sand

Hallermeier (1981)

ws dn
ν

= 1.05 D1.5∗ D∗ > 21.54; natural sand
and gravel

ws dn
ν

= C1 D
3∗ + C2 D1.5∗ 3.42 < D∗ < 21.54;

C1 = 0.055 tanh
(
12 D1.77∗ e−0.0004D3∗

)
Natural sand Ahrens (2000)

C2 = 1.060 tanh
(
0.016 D1.5∗ e−120/D3∗

)

ws dn
ν

= 1.05 D1.5∗
(
1 − e−0.08D1.2∗

)
Natural sand and pebbles She et al. (2005)

ws dn
ν

= 1.05 D1.5∗
(
1 − e−0.315D0.765∗

)
Natural sand and pebbles She et al. (2005)

The last two formulae are practically equivalent

2.3 Sediment Transport Capacity, Solid Discharge,
Wash Load, and Bed Material

The sediment transport capacity of a stream fluid is the maximum quantity of a
particular sediment aggregation transported by the flow in equilibrium condition
(e.g., uniform flow condition).

This means that in order to reach the transport capacity a great quantity of such
material needs to be available. Otherwise, the flow would carry all the sediments
available: in these conditions, the real solid discharge does not coincide with the
transport capacity.

Generally in a watercourse, in the presence of variations in hydrodynamic char-
acteristics, the solid discharge tends to the transport capacity. For instance, in the
presence of abrupt hydrodynamic variations, we can observe that the coarsest sedi-
ments rapidly match the transport capacity, while the finest material is less suitable
to quick hydrodynamic variations. Moreover, when the stream velocity increases,
the finest bed material may not be enough to satisfy the requirements of the transport
capacity: in this case, the corresponding solid discharge can be significantly less than
the transport capacity.

The solid discharge of the very fine fraction is thus independent of hydrodynamic
conditions. In this case, the solid transport is termed wash load, i.e., distinct from
the bed-material load which instead represents the solid discharge of the material
fraction, which is present on the river bed. For the bedmaterial, it thenmakes sense to
speak of transport capacity and solid transport formula, meant as the relation linking
the potential solid discharge to the hydrodynamic conditions and characteristics of
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particles. The wash load depends, on the contrary, on the quantity of this material
coming from upstream.

In a stream, the material transported as bed material is then of the same type as
the bed-forming material: it is a material with a continuous exchange between bed
and stream. However, it is worth remembering that also in the bed material the grain
size distribution of the transported material is generally different from that of the
bed-forming material and that a variation in the quantity of the transported material
usually implies a variation in the granulometric curve of the bed and vice versa.

Generally the mean diameter of the transported material is less than the mean
diameter of the bed-forming material.

2.4 Sediment Transport Mechanisms: Bed Transport
and Suspended Transport

The bed material of a stream sets into motion when the hydrodynamic forces (drag
and lift) prevail on the forces opposing motion: weight and interparticle friction
(interaction with the surrounding particles). As a matter of fact, it would be more
appropriate to refer to moments of forces; however, from the viewpoint of the dimen-
sional analysis it suffices to consider the balance of forces.

Once in motion, the material can continue its flowing according to two basically
different modes (Fig. 2.7):

1. bedload by rolling or saltation. One particle moves by rolling over the other
particles, or by alternating small jumps (of the order of the dimension of the
particle) slightly lifting from the bed.

2. suspended load. From the bed, the particle is lifted up to a height of the order of
the water depth, and before returning to the bed it flows along a trajectory, the
length of which can be compared to the water depth (and is often many times
higher).

With reference to Fig. 2.8, in terms of moments of forces in play, there is motion
when the moments of the destabilizing forces (drag D and lift L) around the pivot
point M exceed the moments of the stabilizing forces (submerged weight G − B).

If the lift is small, (L ≤ G−B), then it is the hydrodynamic drag to be responsible
for the motion and the material tends to flow by rolling. Vice versa, if L ≥ G − B,
then the material moves by saltation or in suspension.

The liftL is a conservative force and depends on the circuitation around the grain,
while the drag is an essentially dissipative force due to the stresses on the particles
and the flow wake; in a turbulent flow both the lift and the drag continuously change
in intensity and, consequently, the turbulent fluctuations produce the suspended load.
According to some researchers, the suspended load can occur only if:

ws < 0.8u∗ (2.10)
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Fig. 2.7 Scheme of bed transport and suspended transport

Fig. 2.8 Scheme of the
forces acting on a streambed
particle

where ws is the fall velocity of the particle in still water and u∗ = √
τ0/ρ is the

friction velocity of the stream.

2.5 Bed Forms: Ripples, Dunes, and Antidunes

A plane bed, composed of loose particles, run by a water stream, turns out to be
unstable. The solid transport, bed or suspended load, induces on the bed surface
some organized structures which have relatively regular shapes and depend on the
stream regime.

One of the most evident consequences of this phenomenon is the increase in
resistance in natural mobile beds as the averaged velocity rises, which is much more
remarkable than in fixed beds characterized by the same grain roughness, as well
shown in Fig. 2.9.

This increase can be accounted for by the fact that the increasing stream velocity
develops the bed forms producing an equivalent roughness which then adds to the
roughness produced by the single grains.
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Fig. 2.9 Trend of the bed
shear stress as a function of
the depth-averaged velocities

2.5.1 Classification of Bed Forms

Figure2.10 shows a schematization of the organized bed forms usually taken on by
a natural bed. These are the major bed forms observed both in laboratory (Simons
and Richardson 1966) and in nature.

2.5.1.1 Ripples

The forms observed in conditions near to the incipient motion of fine sand particles
look like small quasi-triangular waves, more or less regular. These waves, known as
ripples, usually develop in the presence of a viscous sub-layer, i.e., when the virtual
thickness of the viscous sub-layer δ′ is higher than the grain size:

δ′ � 11.6 ν

u∗
≥ d (2.11)

Ripples usually have a two-dimensional structure, but three-dimensional ripples
have been observed as well. Their length is generally less than 60 cm and their height
less than 6 cm (Engelund and Fredsøe 1982). However, the ripple length seems to
be independent of the water depth.

In coarse sand beds with average material diameter higher than about 0.5 mm,
ripples do not develop.
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Fig. 2.10 Schematic classification of bed forms in function of water stream conditions (Allen 1968)

2.5.1.2 Dunes

In fluvial sand beds, when the bed turns out to be hydraulically rough, bed forms
have much more considerable dimensions than ripples, but also triangular-shaped
with a gently inclined slope and a steep front. These forms are associated with the
Froude number less than unity, that is, subcritical flows. These forms are called
dunes, because of their great similarity to sand desert dunes.

Just in correspondence to the dune ridge, the outer boundary layer tends to separate
and to create a wake, characterized by low velocities and highly intense turbulence.
The particles are eroded from the dune ridge and start to slide over each other; once
they reach the ridge top, the particles tend to drop into the separation area and settle
there, thus allowing the dune to migrate downward (Fig. 2.11).
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Fig. 2.11 Mechanism of
downstream dune migration

Apparently the dune wavelength ranges from a few to around tens of meters. As
a matter of fact, the length scale of dunes basically depends on the water depth. The
stream being subcritical, the free surface is slightly affected by bed alterations and,
in any case, the changes result to be in phase opposition to bed perturbations.

In coarse-grained beds with an average material diameter higher than about
5–6 mm, dunes do not develop.

In gravel or pebble beds, dunes generally do not form, on the contrary there
develop planimetric bed forms like bars, scaled by the section width.

2.5.1.3 Plane Bed

Whenever the stream velocity rises, the dunes first tend to increase in size and, in
case of higher velocity, to be washed out. In such conditions, the bed appears to be
flat and the global roughness decreases up to the single grain roughness. This occurs
when the stream values of the Froude number are near unity.

2.5.1.4 Antidunes

A further increase in stream power leads to the formation of another type of bed
forms called antidunes. Their shape appears to be more symmetrical than dunes
and their trend looks rather sinusoidal. The free surface of the flow is significantly
altered in the presence of antidunes and its variations are more accentuated and in
phase with the bed perturbations, as easily explained by the hypothesis of constant
specific energy.When the Froude number increases, the free surface becomes steeper
and steeper until it breaks up. On breaking-up, antidunes tend to elongate, disappear,
reshape, and lead to a new breaking-up of the free surface by means of a continuous,
definitely non-stationary, and highly dissipative process.

As will be shown later, the name antidune indicates that the dune form tends to
move upstream, even if the single particles naturally flow downward.
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Fig. 2.12 Scheme of a
step-pool formation
(Egashira and Ashida 1991)

2.5.1.5 Steps and Pools

This type of bed form appears only in torrents with steep slopes (0.1 > ib > 0.075).
It is a bed layout with large steps, with greater boulders forming the downstream
perimeter of the step. Downstream from these boulders, the bed has a leap, while
between the two steps the bedhas a lower slope than average (pool). Thegranulometry
in the pool is on average thinner than the dimension of boulder steps (Whittaker and
Jaeggi 1982) (Fig. 2.12).
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Chapter 3
Initiation of Sediment Motion

3.1 Introduction

The incipient motion condition is the hydrodynamic condition, i.e., of velocity and
flow depth, whereby the particles lying on a streambed start to move under the
action of fluid. But this condition also depends on the particle properties, such as
size, density, shape, as well as on the position of each particle with respect to the
surrounding particles.

To simplify the analysis, wewill initially assume a uniformflow, that is, withwater
depth and depth-averaged velocity constant over time and in the flow direction. As
shown in this chapter, in a turbulent water stream, the action of the water capable
of moving the particle is basically determined by turbulence fluctuations and by
the degree of particle exposure, conditions which are both randomly distributed.
Therefore, although a probabilistic approach would be preferable, we will follow the
deterministic theory proposed by Shields in 1936.

Our choice is motivated by theoretical as well as practical reasons: the Shields
theory is actually the first rational approach to the problem, and the yielded result is
extremely simple and useful for a variety of river engineering problems.

Following Shields’s analysis (Sects. 3.1 and 3.2), we will initially make quite
restrictive hypotheses, in that we assume homogeneous-sized material and quasi-
horizontal and -straight bed, and thewater depthmuch bigger than the grain size (high
submergence). In the next sections, these hypotheses will be removed to introduce
the effect of the longitudinal slope of the bed on the threshold condition (Sect. 3.3.2),
the effect of side slope (Sect. 3.3.3), and the effect of low submergence (Sect. 3.3.4).

We will then address the problem of incipient motion in the presence of non-
uniform-sized grains, distinguishing between hiding and armoring (Sects. 3.3.5 and
3.3.6) in Sect. 3.5. Finally, wewill introduce some other criteria to define the incipient
motion condition.

Under this procedure, we will be able to apply the superposition of the effects to
different aspects.

© Springer International Publishing AG 2018
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3.2 The Shields Theory

The thresholdmotion condition of the particles (or incipientmotion condition), which
constitute the bed of a water stream, can be determined by imposing the balance
between the forces tending to move particles and the forces contrasting their motion.

The approach here considered derives from the classical theory originally pro-
posed by Shields (1936) under the hypothesis of homogeneous, non-cohesive parti-
cles resting on a quasi-horizontal and -straight bed.

With reference to Fig. 3.1, each particle is subject to the following forces: the lift
force L and the hydrodynamic drag force D in the vertical and horizontal direction,
respectively;G and B are respectively weight and buoyancy, and F is the streamwise
component of the friction force. The last represents the resultant of contact actions
between the particle in question and the surrounding particles. The friction is assumed
to be proportional to the resultant of the normal components of other forces acting
on the particle, by means of a proper friction coefficient μf which depends on the
nature and form of particles. At the beginning of the particle motion, the coefficient
of friction μf equals the value of the tangent of the friction angle ϕ: μf = tan ϕ.

At the very moment of initiation of the particle movement, the hydrodynamic
drag force results to be equal and opposite to the friction:

D = −F (3.1)

The forces involved are determined by means of the following relations:

D = ês CD α2d
2 ρ

u2

2
(3.2)

L = ên CL α2d
2 ρ

u2

2
(3.3)

G − B = −ên g (ρs − ρ) α3d
3 (3.4)

where α2d2 represents the projected area of the particle, α2 being an appropriate
shape coefficient. Similarly,α3d3 is the volumeof the particle;α3 is a shape coefficient

Fig. 3.1 Scheme of the
forces acting on a particle on
a streambed. Particles are
thought to be
size-homogeneous and
non-cohesive, and the bed is
assumed to be
quasi-horizontal
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as well. CD and CL are, respectively, hydrodynamic drag and lift coefficients. ês and
ên are the unit vectors (versors) in the flow and normal directions, respectively.

The force equilibrium in the flow direction gives:

F = −ês tan ϕ |G − B − L| (3.5)

After replacing the respective expressions, we obtain:

CD α2d
2 ρ

u2d
2

(
1 + CL

CD
tan ϕ

)
= tan ϕ g (ρs − ρ) α3d

3 (3.6)

The velocity ud in Eq. (3.6) is the flow velocity at the particle; it can be expressed
in function of the friction velocity u∗ = √

τo/ρ, assuming that the local distribution
of velocities follows the logarithmic distribution:

ud
u∗

= 1

κ
ln

y

ke
+ B(

ke u∗
ν

) (3.7)

ke is the equivalent bed roughness that can be reasonably assumed as proportional to
the particle diameter: ke = αk d. Besides, the reference velocity may be calculated
at a distance y = αd d, where αk and αd are suitable shape coefficients of order of
magnitude 1.

Equation (3.7) is written in a general form, valid both for the smooth bed (in
this case B = func(u∗d/ν)) and for the hydraulically rough bed (B = const) (e.g.,
Table1.1 at page 4). We thus obtain:

ud
u∗

= fu(αk, αd,
du∗
ν

) (3.8)

The hydrodynamic drag coefficient CD depends on the particle shape through an
appropriate shape coefficient αsf , and on the local Reynolds number (dud/ν):

CD = fD

(
αsf ,

d ud
ν

)
(3.9)

According to Eq. (3.8), the local velocity ud can be expressed through the friction
velocity u∗, giving for the drag coefficient the following relation:

CD = fD(αsf , αk, αd,
du∗
ν

) (3.10)

In addition, the ratio CL/CD can be assumed as constant with values ranging
between 0.8 and 1.3, even if some authors do not consider the lift force by assuming
CL = 0.

http://dx.doi.org/10.1007/978-3-319-68101-6_1
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By replacing Eqs. (3.8) and (3.10) into (3.6), we obtain that at the threshold
condition:

u2∗

g
ρs − ρ

ρ
d

= 2
α3

α2

tan ϕ

1 + CL

CD
tan ϕ

1

fD f 2u
(3.11)

that is, according to Eqs. (3.8) and (3.10):

u2∗

g
ρs − ρ

ρ
d

= func

(
d u∗
ν

)
(3.12)

In (3.12), the shape coefficients α2, α3, αf , αk, αd do not appear, in that they are
assumed to be more or less constant for natural particles. For the same reason, we
assume constant tan ϕ and the ratio CL/CD.

The parameter on the left of Eq. (3.12) is called the Shields mobility parameter,
and it is usually denoted with the Greek letter θ , that is:

θ = u2∗

g
ρs − ρ

ρ
d

= u2∗
gΔ d

(3.13)

where Δ = (ρs − ρ)/ρ denotes the relative density of immersed grains.
The second dimensionless parameter highlighted by the analysis is the Reynolds

grain number:

Re∗ = du∗
ν

(3.14)

The Shields analysis shows, therefore, that at threshold condition the mobility
parameter θ takes the critical value of incipient motion, which results to be a function
of the particle shape and of the Reynolds grain number.

We denote the threshold value of the Shields mobility parameter (critical Shields
mobility parameter) as θco = u2∗c/(gΔ d). Since in the next sections we will calcu-
late the critical mobility parameter also in conditions other than those assumed by
Shields, the suffix ( o ) in the above definition refers to the critical mobility parameter
calculated in the conditions assumed in the above Shields procedure, i.e., homoge-
neous material, quasi-horizontal straight bed, and high submergence.

In other words, Eq. (3.12) at the critical incipient motion condition can be more
conveniently rewritten as:

θco = func(Re∗) (3.15)

The above relation was experimentally determined by Shields and is shown in
Fig. 3.2.

As said above, in Eq. (3.12) we neglected the dependence on the shape, in that we
assumed natural particles to have sensibly constant shape factors. However, in case
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Fig. 3.2 The Shields diagram

(natural or artificial) particles have a particular shape, also this parameter should be
properly considered.

The curve in Fig. 3.2 separates the mobility from the immobility area of the par-
ticles: for the points lying below the curve (θ ≤ θco), the flow is not able to move
the particles, while the points above the curve represent the conditions of sediment
transport.

The curve representing the particle incipient motion (θ = θco) can be divided into
three parts.

The first part of the curve (Re∗ ≤∼ 2) is represented by a linear segment in the
bi-logarithmic graph; the second part (∼ 2 ≤ Re∗ ≤∼ 200) by a curve with a relative
minimum, and the third (∼ 2 ≤ Re∗ ≤∼ 200) by a constant trend.

According to Shields, the first part of the curve (for Re∗ ≤∼ 200) is described by
the following expression:

u2∗c
gΔ d

= 0.12
ν

u∗c d
u3∗c = 0.12g Δ ν (3.16)

According to Eq. (3.16), the critical particle velocity is independent of the particle
diameters, but it depends on the fluid viscosity. This result does not surprise because,
even when Re∗ → 0, the friction coefficient between grains remains finite and thus
the critical velocity remains finite. This implies that, when theReynolds grain number
tends to zero, there may be particle motion only if the particle diameter is sufficiently
small. In this case, the bed tends to be covered by a mixture of very fine material,
where the single grain loses its individuality. This leads to an essentially viscous flow
in this range.
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It is useful to remember that Shields did not experiment at Re∗ < 6, but suggested
the hyperbolic trend expressed by Eq. (3.16). Other authors have obtained rather
different trends. For example, (Grass 1970) and (White 1970) found that for Re∗ ≤∼
2, the curve is flatter than 45◦. It should also be noted that the experiments in this
range are very delicate, and often the accuracy of the measurements is not enough
to draw any definitive conclusions.

In the third section of the Shields curve, for Re∗ ≥∼ 200, the mobility parameter
assumes nearly constant values:

θco = u2∗c
gΔ d

	 0.057 (3.17)

In this case, themobility condition is independent of the flow viscosity: the regime
is therefore that of the turbulent flow on a hydraulically rough wall.

In the middle section, for ∼ 2 ≤ Re∗ ≤∼ 200, the flow condition depends on
both grain size and flow viscosity. In this section, the curve presents its minimum
(θc)min 	 0.03 ∼ 0.04 at Re∗ = u∗ d/ν 	 8 ∼ 10.

3.3 Limits and Extensions of the Shields Theory

The Shields diagram has the peculiarity that the friction velocity appears both in
abscissae and ordinates. This may be a limitation, because some applications may
require to proceedwith an iterativemethod. This problem can be overcome by replac-
ing the variable Re∗ with one that can be obtained by a proper combination between
it and the variable θ , so as to eliminate the friction velocity, i.e.,

Re2∗ θ−1 =
(
u∗ d

ν

)2 gΔ d

u2∗
= gΔ d3

ν2
(3.18)

The parameter on the right-hand side of Eq. (3.18), raised to the 1/3 power, can be
interpreted (Yalin 1977) as a dimensionless particle diameter D∗ (Bonnefille 1963)
(see Sect. 2.2.3):

D∗ = d

(
gΔ

ν2

)1/3

(3.19)

The diagram on the incipient motion condition as a function of the dimensionless
diameter D∗, reported in Fig. 3.3, is similar to the Shields diagram. The figure also
shows the following analytical approximation of the incipient motion condition,
proposed by Brownlie (1981):

θco = 0.22D−0.9
∗ + 0.06 e−17.73D−0.9

∗ (3.20)

http://dx.doi.org/10.1007/978-3-319-68101-6_2
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Fig. 3.3 The Shields diagram as a function of the dimensionless diameter (Yalin 1977)

An expression slightly different from the previous one was proposed by Soulsby
et al. (1997):

θco = 0.24D−1
∗ + 0.055

(
1 − e−0.02D∗

)
(3.21)

From the figure, we also deduce that in uniform flow a particle with a certain
diameter can have one and only one critical condition, corresponding to a specific
hydrodynamic condition. Moreover, for natural materials, with immersed relative
density Δ 	 1.67, the rough bed condition (D∗ 	 200 ∼ 300) is reached by
particles of dimension equal to 8 ∼ 16 mm, while the smooth bed condition occurs
with particles whose size is less than 120µm.

3.3.1 Definition of the Incipient Motion Condition

Although the Shields theory is seemingly simple, the practical definition of incip-
ient motion condition in a streambed cannot be taken for granted. Quite evidently,
the most exposed grains will tend to be moved as easily as higher is their exposure
degree. Some grains move at bed shear stress values significantly lower than those
reported in the Shields theory. Even if the concept of critical shear stress, or critical
Shields parameter, is deeply rooted in the scientific and technical literature on sed-
iment transport, it is worth underlining that there are some transport theories which
disregard these concepts like, for instance, the (Einstein 1950) theory about bedload,
which will be detailed in Sect. 5.2.

The incipient motion condition can be experimentally determined by extrapolat-
ing the relationship between solid discharge and hydrodynamic conditions toward

http://dx.doi.org/10.1007/978-3-319-68101-6_5
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zero discharge. Consequently, the incipientmotion condition is experimentally deter-
mined as that hydrodynamic condition corresponding asymptotically to a nil solid
discharge. From the practical point of view, the method appears to be somewhat
unreliable and imprecise. Better results can be obtained by correlating the incipient
motion condition to some statistical parameters, such as the distribution of lift and
drag forces (Graf et al. 1987) and the distribution of the particle exposure.

As a matter of fact, some authors suggest defining the incipient motion condition
as that under which a given percentage of the particles per unit of time lifts off from a
unit bed surface, e.g., 1% according to Suszka (1991) and 5% according to Tsuchiya
(1969).

3.3.2 Effect of the Streamline Bed Slope

Should the bed slope be steep, in order to balance the forces in the direction ofmotion,
also the effect of the weight and buoyance forces need to be introduced (Fig. 3.4).

In this case, the Archimedes force results to be normal to the undisturbed stream-
lines, and its module (B = g ρα3d3 cosαb) depends on the longitudinal slope of the
bed, where αb is the bed slope angle.

However, also the hydrodynamic drag is affected by the tangential stresses caused
by bed inclination. In this case, it isD = CD α2d2ρu2/2−g ρα3d3 sin αb; this second
term is induced by tangential stresses around the particle,which in the absence of the
particle are balanced by the weight of a water volume equal to that of the particle.

The balance of forces in the direction of motion at the incipient motion condition
is therefore:

D + G sin αb = tan ϕ |G cosαb − L − B | (3.22)

which, after replacing the respective expressions of the different forces, leads to the
following relation for the critical mobility parameter θcb for a sloping bed:

Fig. 3.4 Scheme of the forces acting on a particle on a sloped streambed
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Fig. 3.5 Friction angle of different material types according to Lane (1953)

θc b = u2∗c
gΔ d

= θco

(
cosαb − sin αb

tan ϕ

)
(3.23)

where αb is the bed slope, and ϕ is the friction angle of the bed material (Fig. 3.5). θco
denotes the critical Shields mobility parameter estimated in the hypothesis of quasi-
horizontal straight bed, uniform grain size, and high submergence (as in Fig. 3.2 or
Fig. 3.3).

In other words, the critical mobility parameter θco of the Shields diagram needs
to be corrected with the factor (cosαb − sin αb/ tan ϕ) to take the longitudinal bed
slope into account (Fig. 3.6).

3.3.3 Effect of Side Slopes

In case of material resting on sloped banks, lift, buoyancy, and weight forces result
in a further component also on the plane of the bank.

In this case, the resultant of the forces on the plane of the bank are not aligned
with the flow direction. In the incipient motion condition, the balance between forces
leads to the following expression (Fig. 3.7):

√
D2 + (G − B)2 sin2 αsb = tan ϕ |(G − B) cosαsb − L| (3.24)

αsb is the inclination angle of the bank.
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Fig. 3.6 Effect of the longitudinal bed slope on the mobility parameter (Chiew and Parker 1994).
θco denotes the critical Shields mobility parameter estimated in the hypothesis of quasi-horizontal
straight bed (original Shields value, Fig. 3.2 or Fig. 3.3)

Fig. 3.7 Scheme of the forces acting on a particle on the sloped bank

Equation (3.24) can be solved with regard to the ratio θl/θo between the critical
mobility parameter on the bank θcb and the critical Shields mobility parameter on a
horizontal straight bed θco.

By substituting the definitions of the different forces (Eqs. 3.2–3.4), we obtain:

Ab

(
θc sb

θco

)2

− 2Bb

(
θc sb

θco

)
− 1 = 0 (3.25)

where θc sb is the critical mobility parameter on a side bank, and where:
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Fig. 3.8 Effect of the river bank slope on the parameter of critical mobility; for CL/CD = 1.2 and
for CL/CD = 0 in accordance with Lane (1953). θco denotes the critical Shields mobility parameter
estimated in the hypothesis of quasi-horizontal straight bed

Ab =
1 − CL

CD
tan ϕ

(1 + CL

CD
tan ϕ)

(
1 − sin2 αsb

sin2 ϕ

) (3.26)

Bb = cosαsb

−CL

CD
tan ϕ

(1 + CL

CD
tan ϕ)

(
1 − sin2 αb

sin2 ϕ

) (3.27)

and therefore:

θc sb

θco
=

Bb +
√
B2
b + Ab

Ab
(3.28)

where θco is the critical Shields mobility parameter estimated in the hypothesis of
horizontal bed (original Shields value, Fig. 3.2 or Fig. 3.3).

The solution of Eq. (3.25) is represented in the graph of Fig. 3.8 forCL/CD = 1.2.
Supposing that this ratio is negligible, Lane (1953) obtained the stability condition
in an explicit simple form:

u2∗c
gΔ d

= θco

√
1 − sin2 αsb

sin2 ϕ
(3.29)

where θco denotes the critical Shields mobility parameter estimated in the hypothesis
of quasi-horizontal straight bed (Fig. 3.2, or Fig. 3.3). Figure3.8 also illustratesLane’s
solution.
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Lane’s solution is less precautionary since the lift force turns out to be destabilizing
at the initial particle motion.

3.3.4 Effect of the Relative Submergence

According to the Shields theory, the relative roughness of the bed is assumed suffi-
ciently small, i.e., so small to admit the presence of a layer of wall turbulence sub-
jected to the logarithmic law (Eq.3.7). However, the grain size is often the same order
of size as the water depth h. This is a typical situation of low relative submergence
h/d, as already described in Sect. 1.3.2. In such conditions, there is the formation of a
mixing layer near the bed (macro-roughness layer according to Nikora et al. (2001)),
which is dominated by the wakes created by the roughness elements and is δR thick,
comparable to the water depth (Fig. 3.9).

In such situations, the grain mobility decreases significantly. Since it is a case of
turbulent flow over a rough wall, the critical mobility parameter θc is independent of
the Reynolds grain number.

The following empirical relation (Armanini 1999) well suits to low submergence
conditions:

θc−ls

cosαb − sin αb

tan φ

= 0.06

(
1 + 0.67

(
d

h

)0.5
)

(3.30)

where αb is the slope angle of the bed in the streamwise direction (Fig. 3.10).

Fig. 3.9 Wake-dominated mixing layer in the presence of low submergence

http://dx.doi.org/10.1007/978-3-319-68101-6_1
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Fig. 3.10 Effect of the relative submergence on the incipient motion condition (Armanini 1999)

3.3.5 Effect of Size Heterogeneity of Bed Material

Natural streambeds are hardly composed of homogenous materials. In this case, the
incipient motion condition of the single particle is significantly influenced by the
non-uniformity of material size. In beds composed by non-homogeneous material,
less sized particles are protected by those of higher dimension (hiding or sheltering
effect), and this reduces their individual mobility. On the other hand, higher-sized
particles tend to emerge, and bemore exposed than finer particles and be set inmotion
with smaller shear stresses, thus increasing in mobility (Fig. 3.11).

In order to evaluate the hiding effect, different methods have been suggested. Gen-
erally speaking, the critical shear stress concerning each grain size class is assumed
to be modified by an appropriate hiding factor ξj:

θcj = θc uξj (3.31)

Fig. 3.11 Hiding effect in beds composed of non-uniform grain size mixtures



62 3 Initiation of Sediment Motion

where θc u is the critical mobility parameter related to the representative diameter du
of the distribution (as a rule, the average geometric diameter d or the d50 of the grain
size distribution).

The hiding factor ξj is expressed in function of the ratio between the diameter of
the j-th fraction dj and the representative diameter du of the distribution (usually the
average diameter d of the mixture).1

One of the first expressions to calculate the hiding factor was proposed by
Egiazaroff (1965) in the following form:

ξj =

⎛
⎜⎜⎝ log10 19

log10 19
dj

d

⎞
⎟⎟⎠

2

(3.32)

Ashida and Michiue (1971) observed that Eq. (3.32) overestimates the mobility
of finer particles. Such authors thus confirmed Eq. (3.32) for coarser particles (dj ≥
0.4 d), while they suggested a linear relation for smaller particles (dj < 0.4 d):

ξj = 0.85
d

dj
for

dj

d
< 0.4

ξj =

⎛
⎜⎜⎝ log10 19

log10 19
dj

d

⎞
⎟⎟⎠

2

for
dj

d
≥ 0.4

(3.33)

There are other expressions for the hiding factor, which have no general valid-
ity, since their application has been confined to some specific sediment transport
formulae.

More in general, the hiding factor can be expressed by a monomial relation of the
type:

ξj =
(
dj

d

)−n

(3.34)

According to Andrews (1983), the exponent is 	 0.6 ≤ n ≤∼ 1 (Fig. 3.12).
On the basis of Eq. (3.34), the incipient motion condition for each grain size class

can then be written as follows:

θj = θcdξj

u2∗c
g Δ dj

= θcd

(
d

dj

)n

(3.35)

1Alternatively, the mobility of the single grain size class θc j can be calculated with reference to the
expected mobility as if the material were uniform, with the same granulometry as that in question
andmultiplied by a hiding factor as well. Of course in the presence of rough wall, the two definitions
coincide in all grain size classes.
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Fig. 3.12 The hiding factor in function of the relative diameter according to Egiazaroff (1965), to
Ashida and Michiue (1971), and to the monomial expression (3.34)

where θcd is the mobility parameter for the average diameter.
The exponent n must be <1. In fact, should n be equal to 1, the incipient motion

condition expressed by (3.35)would be independent of the diameter dj , representative
of the single grain size class: that is to say, the mobility condition would be the same
for all the grain size fractions. Quite unlikely to occur in a real context, this case is
defined as equimobility condition. According to Parker et al. (1982), n 	 0.905 can
be assumed for natural grain size mixtures, on average sorted out into gravel and
sand beds.

3.3.6 Effect of Bed Armoring

Another phenomenon linked to the non-uniformity of bedmaterial is the static armor-
ing.

Static armoring denotes a situation occurringwhen the solid sediment supply from
upstream tends to dissolve and the particles with smaller diameters (i.e., endowed
with higher mobility than the critical mobility) are easily washed out by the flow
little by little. Thus, the bed surface is enriched with particles of higher diameter
(i.e., provided with lower mobility) (Fig. 3.13).

Such a layer, with an average diameter higher than that of the underlying material,
is generally from one to three times as thick as the diameter of the greatest particles.

In this case, the incipient motion condition depends on the characteristics of the
particles actually present on the surface.
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Fig. 3.13 Scheme of static
armoring

Relying on the protective capacity of the armoring layer can be dangerous in that,
when the water discharge exceeds the value which has determined the formation
of the armoring layer, the latter can break up thus showing a bed with an average
diameter sensibly smaller than that on surface. Sometimes it can even lead to seriously
erosive phenomena.

The armoring phenomenon frequently occurs in gravel-bed streams with quite
roughly sized bedmaterial (coarse gravel or pebbles) when the solid sediment supply
is reduced, especially during the recession limb of the floods.

Very likely, it also takes place in beds composed of even very small-sizedmaterial.
It is reasonably believed (Armanini 1989) that it, for instance, occurs in the Nile
bed, downstream Aswan dam, where the average particle diameter is of the order
of some hundreds of micron. In that case, however, the discharge regime strictly
follows the dam outflow regime, and the regularity of themaximum discharge creates
an armoring layer, composed of sandy material with diameter of the order of the
millimeter and thickness of about two or three grains.

It is worth remembering that this type of static armoring is basically different from
the dynamic armoring, in which the average diameter of the transported material is
systematically lower than the average diameter of the bed material, as will be better
explained in Sec. 5.6.1.

3.4 Effect of the Section Form on the Incipient Motion
Condition

In engineering applications of the incipient motion theories, and particularly in
assessing the stability of protection with loosematerial, themobility parameter needs
to be evaluated with regard to the maximum tangential stress acting on the wetted
perimeter.

In other words, it should be considered that the shear stress distribution on the bed
and banks is not constant, even in uniform flow condition, and that the maximum
shear stress is generally higher than the average value calculated as:

τo = g ρ Rh iE (3.36)

http://dx.doi.org/10.1007/978-3-319-68101-6_5
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Fig. 3.14 Shear stress distribution on the bed and banks of a laboratory trapezoidal channel with
base B = 20 cm (Leutheusser 1963)

The ratio between the maximum stress and the average stress basically depends
on the section form and on the Reynolds number, even if the dependence on the
latter becomes negligible in the presence of sufficiently high values of this parameter
(Re > 104 ∼ 105).

Figures 3.14 and 3.15 show the shear stress distributions for differently shaped
cross sections.
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Fig. 3.15 Shear stress distribution on the bed and sidewalls of a rectangular channel (Leutheusser
1963)

3.5 Incipient Motion Condition in Channel Bends

Another casewhich results in a local increase of the shear stress on the bed, compared
to the average value, is near the stream curves. The presence of bends in a stream
determines the surface twist and consequently an increased velocity compared to
the average values, but it also triggers secondary circular flows inducing tangential
stresses along the river banks which are likely to influence the stability of the banks
themselves. As a rule, the first effect is highly perceived on the inner bank stability.
However, if the streambed is sufficiently mobile, it tends to be attenuated and often
overcome by sedimentation phenomena due to the secondary circular flows. In the
former case, there is an increase in the maximum shear stress on the bed. In the latter,
there is a reduction in the critical mobility parameter and the effect, on the contrary,
is more serious on the outer bank since it adds up to the gravity effect.

3.5.1 Critical Mobility Reduction in Bends Induced by
Secondary Circular Flows

In curved channels, a secondary circular flow generates shear stresses on the bed in
the radial direction; these stresses tend to reduce the critical mobility parameter on
the outer bank. To evaluate the intensity of this stress, we refer to a curve with a
constant radius of curvature in a rectangular channel (Fig. 3.16).



3.5 Incipient Motion Condition in Channel Bends 67

Fig. 3.16 Scheme of
secondary circular flows in a
curved channel

By adopting the simplified approach suggested by Rozovskii (1957), the radial
shear stress on the bed can be expressed as follows:

τor = −2
( n
κ

)2 1

(2 + n)(3 + n)
ρ u2∗x

h

rm
= −Aτ ρ u2∗x

h

rm
(3.37)

where rm is the average channel radius of curvature. n = 7 ∼ 11 is the power
law exponent for vertical velocity component distribution (ux = u∗ x (n/κ) (y/h)1/n)
(higher values of n correspond to higher roughness); κ is the von Kármán constant.

In (3.37), we also define:

Aτ = 2
( n
κ

)2 1

(2 + n)(3 + n)
(3.38)

The following table shows the values of coefficient Aτ for some values of the
power law exponent n:

n 7 8 9 10 11 12
Aτ 6.48 6.92 7.30 7.63 7.91 8.16

Equation (3.37) can be used to estimate the radial component of the shear stress
to the bed which generates along the outer bank in a trapezoidal channel. It is then
possible to repeat the analysis carried out for non-cohesive particles on the banks of
a rectilinear channel in Sect. 3.3.3.

The stability condition is thus expressed by the following relation (Fig. 3.17):

D2 +|(G − B) sin αcb + Tr cosαcb|2 ≤ tan2 ϕ |(G − B) cosαcb − P − Tr sin αcb|2
(3.39)

where αcb is the slope angle of the curved bend, and
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Tr = . τorα2d
2 = Aτ ρ u2∗x

h

rm
α2 d

2 (3.40)

represents the force exerted on the grain from the shear stress τo r , as a product of the
stress (3.37) and of the projected surface of the particle (α2 d2).

The incipient motion condition is obtained by imposing the equilibrium of the
forces in relation (3.39). By properly rearranging it, we get the following expression:

A1

(
θccb

θco

)2

− 2B1

(
θccb

θco

)
− 1 = 0 (3.41)

in which the mobility parameter of the curved bank is dimensionless versus the
critical Shields mobility parameter on a quasi-horizontal straight bed θco. We thus
have:

θccb = θco

⎛
⎝B1 +

√
B2
1 + A1

A1

⎞
⎠ (3.42)

where θco denotes the critical Shields mobility parameter estimated in the hypothesis
of quasi-horizontal straight bed (Fig. 3.2 or Fig. 3.3), and

A1 =
1 −

(
CL

CD

)2

tan2 ϕ − m2 tan2 ϕ

(
1 − cos2 αcb

sin2 ϕ

)
− 2m

CL

CD
tan2 ϕ sin αcb

(
1 + CL

CD
tan ϕ

)2 (
1 − sin2 αcb

sin2 ϕ

)

(3.43)

B1 = − cosαcb

m
sin αcb

sin ϕ cosϕ
+ CL

CD
tan ϕ

(
1 + CL

CD
tan ϕ

) (
1 − sin2 αcb

sin2 ϕ

) (3.44)

m = h

rm
Aτ

α2

α3 tan ϕ

(
1 + CL

CD
tan ϕ

)
θo (3.45)

It is easy to verify that Eq. (3.42) coincides with the corresponding Lane equa-
tion (3.29), if we set rm → ∞ and CL = 0.

The solutions of Eq. (3.42) are given in Fig. 3.18; α3/α2 = 0.75 is set as value
corresponding to spherical particles. CL/CD = 1.2 was assumed precautionarily.
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Fig. 3.17 Scheme of the forces acting on a particle resting on the sloped bank of a curved channel

Fig. 3.18 Effect of the stream curvature on the mobility parameter, calculated with Eq. (3.42), with
α3/α2 = 0.75, tan ϕ = 0.78, and CL/CD = 1.2

3.5.2 Effects on the Inner Bank Due to the Drop of the Free
Surface

In the channel bends, there is an elevation of the free surface at the outer bank and a
drop at the inner bank due to different components in the flow acceleration. The dif-
ference in level between extrados and intrados can be assessed, at first approximation,
as:

Δh 	 U 2

g

B

rm
(3.46)

whereU = Q/A is the average velocity, B is the section width, and rm is the average
curvature radius (Fig. 3.19).
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Fig. 3.19 Scheme and symbols of the elevation in channel bends

In case of subcritical flows the effect due to the elevation is relativelymodest,while
in supercritical flows this effect is muchmore remarkable. In this case, the maximum
free surface drop at the intrados can be then evaluated, at first approximation, asGhetti
(1984):

Δh 	 2
U 2

g

B

rm
(3.47)

The maximum velocity occurs at the minimum water depth:

hmin = h − Δh

2
	 h − U 2

g

B

rm
(3.48)

The corresponding increase in velocity can be evaluated in the hypothesis of constant
specific energy H = h +U 2/(2g) along the radial direction:

h − Δh

2
+ (U + ΔUmax)

2

2 g
= h + U 2

2 g

ΔUmax =
√
U 2 + gΔh −U (3.49)

The value obtained is then added up to the value of the average velocity:

Umax = U + ΔUmax =
√
U 2 + gΔh (3.50)

and from (3.47):

Umax = U

√
1 + 2

B

rm
(3.51)

The corresponding friction velocity can be therefore calculated by means of a
uniform formula, like Chézy’s formula:
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(u∗)max = Umax
√
g

χ
	 U

√
1 + 2

B

rm

√
g

χ
= (u∗)

√
1 + 2

B

rm
(3.52)

The maximum mobility parameter is thus the following:

θmax 	 (u∗)2max
gΔ d

	 θ(1 + 2
B

rm
) (3.53)

In the previous relations, (u∗) and θ have respectively denoted the average friction
velocity and average mobility parameter of the section (i.e., the undisturbed).

3.6 Other Criteria for Defining the Incipient Motion
Condition

Although the Shields theory—if necessarymodified tomeet the parameters described
in the previous sections—is the rational criterion to determine the incipient motion
condition in a stream, in the literature there are other criteria that can be properly
traced back to the Shields criterion and often represent the same condition but under
more restrictive hypotheses.

A comparison between the different methods can bemade bymeans of the dimen-
sional analysis. In general,we can affirm that the parameters influencing the condition
of incipient motion are: depth-average velocity U , water depth h, average particle
diameter d, bed shear stress τ0, water density ρ and particle density ρs, water viscos-
ity μ, gravity acceleration g and, if necessary, a significant parameter of the grain
size distribution (e.g., its variance σg). That is, we have:

f (U, h, d, τ0, ρs, ρ, μ, g, σg) = 0 (3.54)

The dimensional analysis allows to reduce relation (3.54) among nine parameters to
a relation among the following six dimensionless groups:

f

(
u2∗

g Δ d
,

ρu∗ d

μ
,
h

d
,
U

u∗
,

U√
g h

, σg

)
= 0 (3.55)

where u2∗ = τo/ρ and Δ = (ρs − ρ)/ρ.
The first two groups θ = u2∗/(g Δ d) and R∗ = ρu∗ d/μ are the two parameters

already pointed out in the Shields analysis.
The third parameter is the relative submergence (h/d) (the reciprocal of the rel-

ative roughness), the fourth parameter U/u∗ represents the friction coefficient (e.g.,
U/u∗ = χ/

√
g according to the Chézy formula), which in uniform flow condition of
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rough wall depends on the relative roughness, i.e., on the previous parameter, and as
such it can be replaced by it. The fifth group is the Froude number Fr = U/(

√
g h).

It is evident that each of these parameters can be combined with the others;
the condition searched for can then depend on dimensionless groups, which are
combinations of the above-listed groups.

3.6.1 Critical Slope

Among the other criteria for determining the condition of incipientmotion in a stream,
the critical slope is still used today especially in the mountain stream restoration
practices.

Should the Reynolds grain number be sufficiently high (Re∗ ≥∼ 200), then we
have:

θc = u2∗c
g Δ d

	 0.057 (3.56)

In case of uniform flow, it can be also written:

u2∗c = gRhib 	 ghib (3.57)

where ib denotes the bed slope.
By replacing (3.57) into (3.56), we have:

h ib
Δ d

	 0.057 (3.58)

From which it follows:

(ib)cr = 0.057Δ
d

h
(3.59)

Considering that for the siliceous material Δ 	 1.65, Eq. (3.59) becomes:

(ib)cr 	 0.09
d

h
(3.60)

Equation (3.60) was already suggested by Valentini (1912) on the basis of the data
on some streams in Valtellina, Italy.

The channel slope (in uniform motion) can be easily expressed as a combination
of the friction coefficient and the Froude number:

ib =
(√

g h ib
U

U√
g h

)2

=
(u∗
U

Fr
)2

(3.61)

The latter criterion can be used only in condition of uniform flow.
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3.6.2 Critical Discharge

A still widespread criterion for establishing the incipient motion condition is the crit-
ical discharge (Schoklitsch 1962). Some authors even prefer it, in that the discharge
can be measured more easily than the friction velocity (i.e., the bed shear stress).
In this case, the parameter denoting the (critical) liquid discharge qcr per unit width
properly adimensionalized is used:

q∗
cr = qcr

d
√
g d

(3.62)

Experimental observations show that the critical dimensionless discharge basi-
cally depends on the bed slope (Fig. 3.20). In case of mountain streams with het-
erogeneous grain size bed sediment, Bathurst et al. (1987) suggested the d16 of the
surface material as the characteristic diameter, since the smallest fraction tends to be
moved first. So the d16 of the surface material corresponds to the d50 of the substrate
material in the presence of surface-layer armoring:

q∗
cr = qcr

d16
√
gd16

= 0.21 i−1.12
b (3.63)

However, this criterion has no general validity. Its limits can be seen by properly
manipulating the parameter of Eq. (3.62). This leads to an expression similar to
(3.63):

q∗ = U h

d
√
g d

= U h

d
√
g d

u2∗
u2∗

	 U

u∗
u3∗

(g Δ d)1.5
Δ1.5i−1

b

q∗
cr =

(
U

u∗

)
cr

θ1.5
c Δ1.5 (ib)

−1
cr (3.64)

The ratioU/u∗ represents the dimensionless friction coefficient which, on a rough
bed, essentially depends on the relative roughness d/h. In its turn, this can be due to
the slope ib in the incipient motion condition (see Eq.3.59), which explains relation
(3.63).

3.6.3 Critical Froude Number and Critical Velocity

Other authors suggest the critical Froude number as a key parameter for the incipient
motion condition:

Frcr = Ucr√
gh

==
(
U

u∗

)
θ0.5
c

√
Δ

(
d

h

)0.5

(3.65)
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Fig. 3.20 Critical discharge in function of the slope (Tsujimoto 1991)

Fig. 3.21 Critical Froude number in function of the relative submergence according to Bartnik
(1991)

As previously said, the first right-hand ratio U/u∗c represents the friction coeffi-
cient, which depends on the relative roughness. In short, the critical Froude number
can be ascribed directly to the relative roughness. On the basis of experimental obser-
vations, Bartnik (1991) proposed the following relation (Fig. 3.21):

Frcr = 1.35

(
h

d

)−0.35

(3.66)
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This criterion has the same limits as the previous criteria: more precisely, it is
based on the hypothesis of stream in uniform flow condition. At present, formulae
of this type are not well corroborated by experimental data.

Equation (3.66) shows that the critical velocity depends on the relative roughness
d/h. The critical velocity, as criterion for the condition of initial motion, maintains
the same limits as non-dimensionless relations.
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Chapter 4
Resistance to Flow in Mobile-Bed Channels

4.1 Introduction

As mentioned in Sect. 2.5, the organized bed forms, such as ripples, dunes, and
antidunes, developing in a mobile bed induce a flow resistance, which adds to that
induced by the roughness reduced by the grains on the bed surface.

From an applicative point of view, the precise calculation of this increase in
resistance is crucial. But the problem cannot easily be solved because the bed forms
essentially depend on the hydrodynamic regime of the stream (especially on the
Froude number) that, in its turn, is dependent on flow resistance. In other words, it
is a typical implicit problem to be dealt with.

A widely used approach in this case is based on the idea that the bed stress is
partitioned in a shear stress induced by grain roughness τ ′

o, in a stress induced by
bed forms τ ′′

o , and in a possible shear stress τ ′′′
o , induced by interaction among the

grains. Thus, the same partition may be applied to the shear stress distributions, as
shown in Fig. 4.1.

Since the stress due to grains interaction can be neglected in the fluvial sediment
transport, for the bed shear stress, we can write:

τo = τ ′
o + τ ′′

o (4.1)

Equation (4.1) can be divided by the water density ρ and expressed in terms of
friction velocity:

u2∗ = (u′
∗)

2 + (u′′
∗)

2 (4.2)

and, because of the uniform flow hypothesis,

Rh iE = (Rh iE )′ + (Rh iE )′′ (4.3)

By dividing Eq. (4.2) by U 2, it can be rewritten in function of the friction coeffi-
cients, e.g.,
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Fig. 4.1 Distribution of different contributions to the tangential shear stress: contribution due to
grain roughness τ ′

o; contribution due to bed form roughness τ ′′
o ; contribution due to interactions

between grains τ ′′′
o

f = f ′ + f ′′ (4.4)

or:
1

χ2
= 1

(χ ′)2
+ 1

(χ ′′)2
(4.5)

where f and χ are the resultant global friction coefficients according to Darcy-
Weisbach and Chézy, respectively, and f ′ and χ ′ and f ′′ and χ ′′ the corresponding
equivalent roughness coefficients of grain and bedforms (Sect. 1.2, p. 3).

There are basically three criteria to evaluate the bed-form resistance. The first,
proposed by Meyer-Peter and Müller (1948) and revised by Engelund (1964), con-
siders the superimposition in terms of the energy line slope, keeping the value of the
hydraulic radius Rh constant in (4.3), that is:

iE = i ′E + i ′′E (4.6)

The second criterion (Einstein 1950) refers to a single value of the energy line
slope, while the effects in terms of hydraulic radius or flow depth are summed up,
e.g.,

h = h′ + h′′ and Rh = R′
h + R′′

h (4.7)

The last and latest method (Van Rijn 1984) is based on the idea of transforming
the flow resistance due to bed forms into an equivalent roughness kΔ to be summed
to the grain roughness ko, so that the global equivalent roughness ke results:

ke = ko + kΔ (4.8)

http://dx.doi.org/10.1007/978-3-319-68101-6_1
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4.2 Einstein’s Criterion

Einstein’s criterion is based on an experimental graph, which provides the value of
the friction velocity u′′∗ , due to bed forms in function of the water depth induced by
the grain roughness:

U

u′′∗
= f unc(

Δ d35
h′ iE

) (4.9)

The ratio Δ d35/(h′ iE ) = �35 represents the Einstein’s flow intensity parameter
expressed as a function of the d35. This parameter is the reciprocal of the Shields
mobility parameter θ . The graph is reported in Fig. 4.2.

The graph in Fig. 4.3 represents a modification of Einstein and Barbarossa’s orig-
inal graph (Einstein et al. 1951), proposed by Shen (1962), which contains a second
parameter ws d35/v, representing a Reynolds grain number. Shen’s graph extends
Einstein’s method to rivers with a hydrodynamic regime dependent on viscosity.

In order to determine the water depth corresponding to a given discharge and a
given bed slope ib according to Einstein’s method, we calculate the value of the grain
hydraulic radius R′

h and the value of the grain friction coefficient (f
′ or χ ′), by using,

e.g., in case of Chézy’s formula, one of the following expressions:

χ ′ = 18 log
12 R′

h

3 d90
or : χ ′

√
g

= 7.66

(
R′
h

d65

)1/6

(4.10)

Fig. 4.2 Einstein–Barbarossa’s graph (Einstein et al. 1951) for shape drag. Inapplicable in presence
of ripples
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Fig. 4.3 Shen’s (1962) graph for bed form resistance. �35 = Δd35/R′
h iE e λ′ = 7.12 for

(ws d35/v > 100) and λ′ = √
ws d35/v for (1 < ws d35/v < 100)

along with the corresponding Chézy uniform flow equation:

Q = A′χ ′
√
R′
h ib (4.11)

From (4.11) and from either of (4.10), we calculate the hydraulic radius R′
h and

then the friction velocity u′∗ = √
g R′

h ib corresponding to the grain roughness.
The value of u′′∗ is therefore determined by Fig. 4.3, by assuming the value U =

Q/A′ as first approximation.
The total hydraulic radius is then obtained from the sum of the two contributions:

Rh = R′
h + R′′

h = u′∗
2

g ib
+ u′′∗

2

g ib
(4.12)

From u′′∗, we thus obtain χ ′′ = √
g U/u′′∗. From relation (4.5) we have χ , with

which we also calculate the velocity U of second approximation, as U = χ
√
Rh ib.

4.3 Engelund’s Criterion

According to Engelund (1966), the energy dissipation due to a single bed form can be
calculated as a Borda–Carnot formula for a sudden section enlargement, occurring
downstream a bed form (Fig. 4.4):
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Fig. 4.4 Engelund’s scheme for the resistance due to a dune

Ec − Et = 1

2g
(Uc −Ut )

2 (4.13)

where Ec and Uc, and Et and Ut are the kinetic energy (for unit weight) and the
velocity in the crest and the trough of the dune, respectively.

In addition, from the continuity equation, we have:

Uh � Uc

(
h − ΔD

2

)
= Ut

(
h + ΔD

2

)
(4.14)

with U and h denoting the average values of water depth and velocity, and with ΔD

the average dune height.
By inserting Eq. (4.14) into Eq. (4.13), we have:

Ec − Et = 1

2g
U 2h2

(
ΔD

h2 − (ΔD/2)2

)2

� 1

2g
U 2

(
ΔD

h

)2

(4.15)

More in general, the energy dissipation per unit length due to the dune results as
follows:

i ′′E = ΔE

ΛD
= αD

(
ΔD

h

)2 1

ΛD

U 2

2 g
(4.16)

where αD is a suitable coefficient andΛD the average dune length. Considering that:

iE = τo

g ρ h
(4.17)

according to Eq. (4.1), we have:

τo

g ρ h
= τ ′

o

g ρ h
+ αD

(
ΔD

h

)2 1

ΛD

U 2

2 g
(4.18)
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In other words,

τo = τ ′
o + τ ′′

o = τ ′
o + αDρ

U 2

2

(
ΔD

h

)2 h

ΛD
(4.19)

Equation (4.19) can be rewritten in function of the Shields mobility parameter,
after dividing each of its terms by g ρ Δ d:

τo

g ρ Δ d
= τ ′

o

g ρ Δ d
+ τ ′′

o

g ρ Δ d
(4.20)

and
θ = θ ′ + θ ′′ (4.21)

where, according to Eq. (4.19), we put:

θ ′′ = τ ′′
o

g ρ Δ d
= αD

U 2

2 gΔ d

(
ΔD

h

)2 h

ΛD
= αD

2

u2∗
gΔ d

(
U

u∗

)2 (
Δ2

D

hΛD

)
(4.22)

Confining the analysis to those cases whose dependence on the Reynolds grain
number can be negligible (thus excluding ripples), the mobility parameter of bed
forms θ ′′ depends then on the total mobility parameter of the stream (θ = u2∗/gΔ d),
on the shape geometry and global resistance coefficient.

The bed form geometry essentially depends on the solid discharge, which in its
turnmainly depends on the grainmobility parameter, as already observed by Einstein
et al. (1951). By introducing such notions into (4.19), the shape mobility parameter
proves to depend basically on the total mobility parameter and the grain mobility
parameter, that is, θ ′′ = f unc(θ, θ ′). In other words, θ = f unc(θ ′).

This hypothesis has been empirically confirmed through a series of experiments
summarized in Fig. 4.5.

The points in the graph can be fitted by three different relations valid for three
bed form types: dunes, flat bed, and antidunes.1

θ ′ = 0.06 + 0.3 θ1.5 for θ ′ ∼< 0.5 subcritical regime
θ ′ = θ for ∼ 0.5 < θ ′ <∼ 0.75 transcritical regime

θ ′ = 1.8 − 1

θ2
for θ ′ >∼ 0.75 supercritical regime

(4.23)

Moreover, Engelund suggests the following expression to calculate the grain resis-
tance:

U√
g h i ′E

= q

h
√
g h i ′E

= 0.06 + 2.5 ln
h

2 d65
(4.24)

where q = Q/B is the discharge per unit width.

1In a previous work, Engelund suggested for the subcritical regime the following relation θ ′ =
0.06 + 0.4 θ2 instead of the first of Eq. (4.22).
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Fig. 4.5 Relation between the total mobility parameter θ and the grain mobility parameter θ ′,
according to Engelund (1965)

Assuming that the discharge per unit width q and the depth h are assigned, the
global resistance can thus be calculated with the following procedure:

1. from Eq. (4.24), we first calculate the energy slope due to grain resistance i ′E .
2. then we calculate θ ′ = h i ′

E/(Δ d50), with which through the graph (Fig. 4.5) or
through one of Eq. (4.23) we calculate the global θ ;

3. then we calculate the total energy slope iE as iE = θ Δ d50/h.

If, instead, we assign the flow rate and the total slope (for example as occurs in
uniform motion conditions, in which iE = ib) and wish to know the flow depth h,
we adopt an iterative process:

1. we first calculate the water depth of first approximation h(1) from Eq. (4.24) in
which we put iE = ib;

2. with these values of i ′E
(1) and h(1), we calculate θ ′ = h(1) i ′E

(1)
/(Δ d50), which we

insert into the graph (Fig. 4.5) or into one of Eq. (4.23) and calculate the global
θ(1) of first attempt;

3. we then calculate the h(2) of second attempt, as h(2) = θ(1)Δ d50/ iE ;
4. if necessary, we iterate the process, by inserting h(2) into Eq. (4.24) at point (2).
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4.4 Van Rijn’s Criterion

Later Van Rijn (1984) proposed a new criterion for evaluating the drag due to dunes
and ripples in a more exhaustive manner. Compared to the previous methods, such
a criterion has the advantage of being adjusted on an extremely great number of
experimental data and, above all, on field rather than laboratory data. This criterion
is not applied in supercritical flows, in presence of antidunes.

Van Rijn’s criterion is based on the idea that it is possible to sum up the grain
roughness, ko = 3d90, and the equivalent roughness induced by the bed forms, kD ,
which he assumed to depend on the bed form geometry:

kΔ = 1.1ΔD(1 − e−25 (ΔD/ΛD)) (4.25)

in which δD and ΛD are, respectively, the average height and length of the dunes.
The global equivalent roughness is:

ke = 3 d90 + 1.1ΔD(1 − e−25 (ΔD/ΛD)) (4.26)

The dune geometry is given by the flowing expressions:

• dune height
ΔD

h
= 0.11

(
d50
h

)0.3

(25 − T )
(
1 − e−0.5 T

)
(4.27)

• dune slope
ΔD

ΛD
= 0.015

(
d50
h

)0.3

(25 − T )
(
1 − e−0.5 T

)
(4.28)

with:

T = u2∗ − u2∗c
u2∗c

(4.29)

u∗ = U
√
g

χ
(4.30)

χ√
g

= 5.75 log

(
12

Rh

ke

)
(4.31)

where T denotes the transport stage parameter. The value of u∗c is obtained from
the Shields diagram, modified in function of the dimensionless particle diameter
D∗ = d50

(
Δg/v2

)1/3
, or from Brownlie’s formula (Eq.3.20 at p. 66):

θc = 0.22 D−1
∗ + 0.06 e−17.77 D−1

∗ (3.20)

Note that from the ratio between (4.27) and (4.27), we obtain:

http://dx.doi.org/10.1007/978-3-319-68101-6_3
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ΛD = 7.3 h (4.32)

The iterative procedure to calculate the global drag according to Van Rijn follows
as such:

1. calculate the critical friction velocity u∗c in function of the dimensionless particle
diameter d

(
Δ g/v2

)1/3
, e.g., by using Eq. (3.20);

2. calculate the transport stage parameter T = (u2∗ − u2∗c)/u
2
∗c of first approximation

by using formulas (4.29)–(4.31) and as Chézy coefficient the first approximation
value χ = 18 log(12Rh/(3 d90)) (i.e., by assuming as first approximation the
total roughness equal to the grain roughness ke � 3 d90);

3. calculate ΔD and ΛD by means of formulas (4.27) and (4.28);
4. calculate ke with (4.26);
5. calculate χ with (4.31);
6. iterate, if required.
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Chapter 5
Bedload Transport

5.1 Introduction

The bedload transport in a stream refers to the transport of sediment by rolling
and sliding, sometimes making short hops (Einstein 1950). In the former case, the
mean lift force acting on particles is generally of the same order as the submerged
weight (or even lower); in the latter, the lift force acting on the particle exceeds the
submerged weight. In this case, while the particle moves upwards, the lift force tends
to decrease as long as the particle begins to fall down and to re-deposit onto the bed
after traveling a relatively short distance, i.e. of the same order of magnitude as its
diameter.

If, on the contrary, the lift continues to prevail on the gravity forces and the particle
hop distance is of the same order as the water depth, the particle moves in suspension
with mechanisms essentially controlled by turbulence fluctuations. The distinction
between suspended load and bedload is not sharp, especially as regards the transport
by saltation. For example, according to Kalinske (1942), the transport by saltation
that characterizes sediment transport by wind, is negligible in water. Today, however,
also the transport by saltation tends to be included in bedload mechanisms (Van Rijn
1984a).

Since the lift force depends on the square of the flow velocity, it is scaled by
the friction velocity u∗ and, since the submerged gravity force can be expressed
through the fall velocity in still water ws (Sect. 2.2.2 at page 45), the transport mode
is dependent on the ratio between fall velocity and friction velocity of the stream:

6 >
ws

u∗
> 2 bedload transport: rolling

2 >
ws

u∗
> 0.8 bedload transport: saltation

0.8 >
ws

u∗
> 0 suspended transport
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In order to calculate the bedload rate, a great number of formulae and different the-
ories are available. The existing theories for bedload transport include those based
on a Coulomb-like approach which can be referred to the Du Boys (1879) model,
probabilistic/stochastic theories among which Einstein’s (1950) represents the mile-
stone, particle-based deterministic models, numerical models of particle dynamics,
and theories based on the concept of grain interactions.

None of them are, however, considered sufficiently exhaustive of the whole
process. For this reason, empirical formulae are still widely used often preferred
to rational, but less effective, formulations.

For clarity’s sake, in this chapter we will introduce Einstein’s theory first, whose
exposition helps to better understand some of the physical mechanisms underlying
the sediment transport in a stream and especially the bedload, and we will try also
to highlight some limits of this theory as well.

In order to overcome some restrictions of Einstein’s theory, we will then illustrate
a semi-probabilistic approach inspired to the theory.

We will successively present the approach of Du Boys, even if it was developed
about 70years before Einstein’s theory. The Du Boys approach is based on some
rather simplified physical assumptions, but has the advantage of leading to a very
simple mathematical formulation, according to which the solid transport is propor-
tional to the difference between the actual bed shear stress and the critical bed shear
stress (the stress in incipient motion condition). Some of the most successful bedload
formulae are structured on this assumption, e.g. Meyer-Peter and Müller’s formula
(1948) and the latest Van Rijn’s formulation (1984a) among the others.

Finally, we will tackle some problems related to non-uniformity of particle size
(e.g. hiding and armoring).

5.2 Einstein’s Bedload Theory

Einstein’s theory (1950) represents one of the first attempts to develop a theoretical
framework for the bedload on a probabilistic basis. However, this theory has some-
what limiting conceptual assumptions which will be illustrated in the next sections.
The final formulation is rather cumbersome and cannot predict the experimental data
with sufficient accuracy, especially at high solid flow rates.

Even so, this theory should be described for its rational characteristics and numer-
ous theoretical suggestions. In the following pages, however, we refer to Yalin’s ver-
sion of the theory (Yalin 1977), which appears to be significantly clearer than the
original formulation.

Consider a two-dimensional channel flow in steady uniform condition. For sim-
plicity’s sake, we made the further hypothesis that the sediment transport consists
of a uniform particle, even if in Einstein’s original theory, this hypothesis is not
considered. We will then extend the results to non-uniform particle size transport.
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Fig. 5.1 Einstein’s layout of average particle jumps (after Yalin 1977)

The particle flow thus occurs when the instantaneous value of the lift force1 L
exceeds the submerged weight of the particle G − B = g(ρs − ρ)α3d3; α3 is, as
usual, a suitable shape factor, so that α3d3 represents the particle volume:

L ≥ G − B = g(ρs − ρ)α3d
3 (5.1)

L is subject to turbulence fluctuations and is consequently a random function of
time.

Moreover, suppose that particles move with small jumps with an average length
equal to L p, whose value is of the order of magnitude of the particle diameter.

In order to quantify the bedload, Einstein divided the bed surface into strips of
unit width and length L p (Fig. 5.1).

The number of particles constituting every strip is thus:

1 L p

α2d2
(5.2)

where α2 is a shape factor, such that α2d2 is the projected frontal area of the
particle.

Be now pn the probability for a single grain to be detached from the bed at least n
times in a time Tp, sufficiently long with regard to the duration of the average jump.

Since each detachment corresponds to a jump, pn also denotes the probability for
a particle to make n jumps of length L p, that is to have covered a distance at least
equal to nL p.

The number of the particles (Fig. 5.2), which in time Tp are detached from each
strip and cover at least a distance equal to nL p, is therefore:

1In this chapter, we will use the bold notation for some forces, e.g. B for the particle buoyancy, G
for the particle weight, L for the hydrodynamic lift acting on the particles. This is a mere choice
of notation. Weight and buoyancy are vertical forces, the lift is a force normal to the bed, that in
riverbeds, with a moderate inclination, can be considered vertical as well.

In order to avoid additional symbols or any possibile misunderstanding, we will use the bold
notation also for the modules of such forces.
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Fig. 5.2 The volume discharge crossing section A is given by all the particles detaching from every
strip and able to cover, in a time Tp , a length equal to the distance between the initial point and the
section A in question

pn
1 L p

α2d2
(5.3)

The average number of the particles that, leaving from a distance nL p upstream
of the generic vertical section A, cross the section in the unit time is:

pn
L p

Tp α2d2
(5.4)

The total number of the particles crossing area A in an average unit time is thus:

∞∑

n=1

pn
L p

Tp α2d2
(5.5)

The volumetric bedload discharge per unitwidthqb can be obtained bymultiplying
formula (5.5) by the volume of each particle:

qb = α3 d
3

∞∑

n=1

pn
L p

Tp α2d2
= α3

α2

L p

Tp
d

∞∑

n=1

pn (5.6)

The time Tp, exchange time of bedload particle according to Einstein, was
assumed as the necessary averaged time for a grain replacement, that is the average
time passing between the moment of the particle detachment from a given posi-
tion and the moment when another particle replaces the vacuum left by the former.
According to Einstein this time depends on the properties of the particle and on the
step length L p. However, it is reasonable to assume that the ratio L p/Tp represents
a velocity scale of the phenomenon that Einstein, even if with a different reasoning,
assumed to be proportional to particle fall velocity ws :

L p

Tp
= α6ws = αw

√
g�d (5.7)
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Fig. 5.3 Eistein’s staircase
function of the probability
pn of crossing the vertical
section A of a particle
leaving from the strip L p ,
located at distance nL p from
the section

By replacing Eq. (5.7) into Eq. (5.6) it results:

qb = α3αw

α2

√
g�d d

∞∑

n=1

pn (5.8)

A further assumption of Einstein is that each particle jump is independent of the
other jumps, that is:

pn = pn1 (5.9)

where p1 is the probability of a particle being eroded at least once from the bed
during Tp (Fig. 5.3).

The sum in Eq. (5.8) results as such:

∞∑

i=1

pi =
∞∑

i=1

pi1 = p1
1 − p1

(5.10)

After substituting (5.10) into (5.8), with some steps we obtain:

qb√
g�d d

= α3αw

α2

p1
1 − p1

= 1

A∗
p1

1 − p1
(5.11)

which includes the different coefficients α in a single coefficient A∗ = α2/(α3/αw).
The left-hand group of Eq. (5.11) represents the dimensionless solid discharge. In
order to denote this parameter, Einstein adopted the symbol �.

� = qb√
g�d d

(5.12)

By taking (5.12) into account, Eq. (5.11) can also be rewritten as follows:
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p1 = A∗ �

1 + A∗ �
(5.13)

and

� = 1

A∗
p1

1 − p1
(5.14)

where the parameter p1 is still to be determined.

Determination of the Probability p1
p1 represents then the probability for a particle to be eroded at least once in the

time Tp. Such a probability can reasonably be dependent on the ratio between the
lift force L and the submerged weight force (G − B):

p1 = f unc

(
L

G − B

)
= f unc

(
CLα2d2ρ u2

g(ρs − ρ) α3d3

)
(5.15)

Following the Shields analysis, already described to define the conditions of incip-
ientmotion, it is easy to observe that the relationship between brackets is proportional
to the mobility parameter:

p1 = f unc (θ) (5.16)

where θ is just the Shields mobility parameter.
The lift force L depends on the turbulence structure of the flow and assumes

random values in time. Einstein assumed that the dimensionless lift force r = L/L
(where L is the time averaged lift), should follow a Gaussian distribution:

f (r) = 1

σ
√
2π

e− (r−1)2

2σ2 (5.17)

where σ is the variance of the distribution (Fig. 5.4).
Be a the threshold value of r , which causes the particle detachment, we have

a = (G − B)/L.

Fig. 5.4 Layout of the time behavior of the lift force
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The detachment is possible only if r > a. The probability that r < a (probability
of non-detachment) then results:

Pr =
∫ a−1

−∞
f (r)dr (5.18)

The detachment probability p1 is therefore equal to 1 − Pr , that is:

p1 = 1 − Pr = 1 −
∫ a−1

−∞
f (r)dr = 1 − 1

σ
√
2π

∫ a−1

−∞
e− (r−1)2

2σ2 dr (5.19)

Einstein however changed the lower limit of the integral from −∞ to −(a + 1),
thus identifying the non-detachment condition as |L| < G−B and not asL < G−B,
condition that corresponds to |r | < a, that is:

for r > 0 it results r < a and r − 1 < a − 1 (upper limit)
for r < 0 it results r > −a and r − 1 > −a − 1 = −(a + 1) (lower limit)

In short, according to Einstein:

p1 = 1 − Pr = 1 − 1√
π

∫ (a−1)√
2 σ

− (a+1)√
2 σ

e
−

(
r−1√
2σ

)2

d

(
r − 1√
2σ

)
(5.20)

The detachment threshold value a = (G−B)/L can be determined by expressing
the forcesG,B andL in function of the particle and flow characteristics. This analysis
has already been made about the Shields theory on the incipient motion (page 61);
by repeating the same procedure, the detachment threshold a is found to be inversely
proportional to the Shieldsmobility parameter θ . For this purposeEinstein introduced
the parameter 	 = g�/u2∗ called flow intensity parameter, which coincides with
the reciprocal of the Shields mobility parameter.

The upper integration limit thus becomes:

(a − 1)√
2σ

= B∗	 − 1

η0
(5.21)

where B∗ and η0 are two constants to be determined experimentally.
Similar procedure is adopted for the lower limit of the integral of Eq. (5.20). By

replacing Eq. (5.21) into Eq. (5.20) we obtain:

p1 = 1 − 1√
π

B∗	− 1
η0∫

−(B∗	+ 1
η0

)

e−ξ 2
dξ (5.22)
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where ξ is an integration variable.
As regards the numerical values of the experimental constants, Einstein proposed

the following set:

A∗ = 43.15 ; B∗ = 0.143 ; η0 = 0.5 (5.23)

which, substituted into (5.22) and (5.14), yields:

� = 1

43.13

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1

1√
π

+0.143	−2∫

−0.143	−2

e−ξ 2
dξ

− 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(5.24)

According to Einstein the sediment bedload does not depend on the roughness
induced by bed forms, therefore the u∗ to consider in calculating 	 is only referred
to the grain roughness, i.e. a u‘∗ with the notation given in Sect. 4.1 at page 95. In
case of mixtures of non-homogeneous granulometry, it can be calculated in function
of d65 according to the following expression:

U

u‘∗
= 5.75 log10

(
12.27

Rh

d65
χE

)
(5.25)

The parameter χE depends on the relative roughness thought as relationship
between d65 and virtual thickness of the viscose substrate δ′ = 11.6ν/u∗. Its trend
is illustrated in the following graph (Fig. 5.5), for the reader’s convenience directly
in function of the grain Reynolds number R∗65 = u∗d65/ν.

Fig. 5.5 Einstein’s correction to the friction factor

http://dx.doi.org/10.1007/978-3-319-68101-6_4
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Fig. 5.6 Comparison between Einstein’s bedload formula and experimental data (after Yalin 1977)

Agood curve approximation of the graph inFig. 5.5 is represented by the following
relation:

χE = 1 + 0.921 e−0.027R1.275
∗65 ln(0.3028 R∗65) (5.26)
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5.2.1 Limits of Einstein’s Approach

By comparing the predictions of Einstein’s theory (Fig. 5.6) and experimental data,
Einstein’s formula turns out to be in good agreement with them except for the highest
values of sediment transport rate.

Several authors have revised Einstein’s theory in order to overcome the weakest
assumptions of his formulation and obtain a more convincing approach. Especially
Yalin (1977) listed the following points of the theory:

• the length of the average jump is treated as proportional to the grain size, but the
intuition and some experimental evidences indicate that this length also depends
on the flow intensity;

• also the period Tp should depend on turbulence intensity, i.e. on u∗, and not only
on the settling velocity ws .

• the hypothesis that pn = pn1 , i.e. the hypothesis that the events (particle hops) are
independent of each other, seems acceptable only if the jumps are infrequent, in
other words only for low sediment transport;

• the change of the lower integration limit of the probability integral of Eq. (5.20)
introduced by Einstein is rather doubtful.

Among the previous items, the most limiting assumptions are probably the first
two. The two inconsistencies could be solved by observing that the ratio L p/Tp is
the scale velocity of the phenomenon, which reasonably depends not only on the fall
velocity, as virtually Einstein assumed, but also on the flow intensity, i.e.

L p

Tp
∝ √

g� d �n (5.27)

where the exponent n , by comparison with the experimental data, results to be equal
to 0.5. By introducing only this change and with a suitable revision of constants,
Einstein’s formula well matches the experimental data (Armanini et al. 2015). The
resulting equation is:

� = 	1/2

A∗1

⎡

⎣

⎛

⎝ 1√
π

∫ B∗1	− 1
η0

−
(
B∗1	+ 1

η0

) e−ξ 2
dξ

⎞

⎠
−1

− 1

⎤

⎦ (5.28)

and the constant η0 = 0.5; A∗1 = 15; B∗1 = 0.214.

5.2.2 Einstein’s Equation for qb → ∞

In conditions of high mobility, there is θ → ∞ (	 → 0). In this case, the sediment
transport is particularly intense (φ 	 1). For low 	 values the integral at the second
member of (5.22) can be expanded in Taylor’s series (Yalin 1977):
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+0.143	−2∫

−0.143	−2

e−ξ 2
dξ = I (	) 
 I (	 = 0) +

(
∂ I

∂	

)

	=0

	 + O(	2)


 B∗
(
e−( 1

η0
)2 + e−( 1

η0
)2

)
	 = 2 B∗ 	 e−( 1

η0
)2

which replaced into (5.24) yields:

A∗�
1 + A∗�

= 1 − 2√
π
e−( 1

η0
)2 B∗	 (5.29)

Considering that in this case A∗ � 	 1, after some manipulations from (5.29) we
have

�	 = 7.84 (5.30)

according to which the relationship between � and 	 is hyperbolic, as also appears
from Fig. 5.6.

5.2.3 Einstein’s Equation for qb → 0

Einstein’s theory is based on the assumption that the probability distribution for the
particle detachment is Gaussian type. In other words, there is no lower limit for
the particle motion. This hypothesis overtly contrasts with Shields’s theory of the
incipient motion, which rather implies a threshold shear stress value for the particle
entrainment. In the next sections, we will describe some bedload transport theo-
ries and formulae which consider, on the contrary, the threshold shear stress value.
Under low mobility close to the incipient motion, Einstein’s expression (5.22) vir-
tually lacks precision. However, it is worth pointing out that in these conditions
the sediment discharge is so low that such approximations seem to have negligible
practical consequences. When the sediment discharge tends to zero, that is in dimen-
sionless terms � → 0 and A∗� � 1, the term on the right of the expression (5.13)
becomes:

A∗ �

1 + A∗ �
→ A∗ � (5.31)

The parameter 	 gets bigger and the integral of the second member of (5.22) can
be approximated with an expression of the type:

2√
π

∫ B∗ 	−1/ηo

0
e−x2dx 
 1 − 1

(1 + a1 (B∗ 	 − 1/ηo))k
(5.32)

with k 	 1. In these conditions the sediment transport formula can be represented
with a hyperbolic relationship whose exponential k is much higher than 1:
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� 
 const
1

	k
(5.33)

The use of monomial expressions without a threshold value for very low solid
discharges has some undoubted advantages in mathematical elaborations, even in
numericalmodels, so some researchers prefer them to formulations implying a thresh-
old shear stress value and dealt with in the next paragraphs.

5.2.4 Effect of Material Non-uniformity

From the very beginning of his theory Einstein assumed that the particle size was
not uniform. Such hypothesis can be easily introduced at this point of the argument.

To this end, it is worth subdividing the particle size curve of the bed material into
N classes of percentage β j , each characterized by the mean diameter d j (Fig. 5.7).
It clearly follows

∑N
j=1 β j = 1.

Einstein’s theory can then be iterated for each particle size class, starting from the
specific surface area covered with particles belonging to the same class inside the
strip L pj :

A j = β j L pj 1 (5.34)

Table 5.1 illustrates how to reach the conclusion without iterating the steps pre-
viously indicated.

Fig. 5.7 Sediment transport layout of non-uniform grain size mixtures
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Table 5.1 Conceptual scheme of Einstein’s theory: comparison between uniform particle size
material and non-uniform particle size mixtures

Uniform particle size Non-uniform particle size for
every single class

Number of grains per surface unit
L p

α2d2
β j

L pj

α2d2j

Number of grains separating in time
Tp and covering distance nL p

pn
L p

α2d2
pn β j

L pj

α2d2j

Idem per unit time pn
L p

Tp

1

α2d2
(pn) jβ j

(
L p

Tp

)

j

1

α2d2j

Solid discharge for single size class
crossing the generic section

∞∑

n=1

pn
L p

Tp

α3d3

α2d2

∞∑

n=1

(pn) jβ j

(
L p

Tp

)

j

α3 d3j
α2d2j

Idem qb = p1
1 − p1

1

A∗
d
√
g�d qbj =(

p1
1 − p1

)

j
β j

1

A∗
d j

√
g�d j

If the solid discharge per unit of width related to the j-th grain size class is denoted
with qbj , it follows:

� j = qbj
d j

√
g�d j

= β j
1

A∗

(
p1

1 − p1

)

j

(5.35)

We can generally write:
qbj = β j q

∗
bj (5.36)

whereq∗
bj is the transport capacity related to particle sized j , that is the solid discharge

assessed as if, in the same hydrodynamic conditions, the bed material had a uniform
grain size with the diameter equal to the j-th class.

As already observed with the incipient motion, the presence of particles with
different diameter involves a hiding effect, which has repercussions on the erosion
probability p1 that, consequently, needs to be properly modified.

The procedure introduced by Einstein to consider the mutual interaction between
classes is somewhat more complex than that described in Sect. 3.3.5 at page 74,
where we introduced the hiding effects on the incipient motion of a particle. Here
we will present a synthesis of the consequences of Einstein’s method.

In brief, Einstein proposed to modify the flow intensity parameter with three
different coefficients:

	∗
j = 	 j ξE jYE

⎛

⎜⎜⎝
log10 10.6

log10 10.6
XE

d65

⎞

⎟⎟⎠

2

(5.37)

http://dx.doi.org/10.1007/978-3-319-68101-6_3
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Fig. 5.8 Hiding functions according to Einstein

where the hiding coefficient ξE j is a function of the ratio d j/XE as depicted in the
graph a) of Fig. 5.8.

The parameter YE takes into account the effect of material non-uniformity on the
lift force and is a function of the ratio d65/δ′ between the grain roughness d65 and
the potential thickness of the viscous sublayer δ′ = 11.6ν/u‘∗, even if in Fig. 5.8b,
for the reader’s convenience, the parameter YE is directly expressed in function of
the grain Reynolds number u∗d65/ν.

The parameter XE considers the influence of the material non-homogeneity on
the equivalent roughness and is expressed by the following relations:

XE = 0.77
d65
χE

for
d65 u∗

ν
> 20.9χE and XE = 1.39δ′ for

d65 u∗
ν

< 20.9χE

(5.38)
where d65/χE represents the equivalent roughness. The factor χE = f unc(d65 u∗/ν)

has already been defined in Fig. 5.5, and is well approximated by Eq. (5.26).
In short,

qbj√
d � d j d j

= β j
1

43.13

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1√
π

+0.143	∗
j −2∫

−0.143	∗
j −2

e−x2dx

− 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.39)

where 	∗
j is calculated with expression (5.37) to consider the different effects of the

particle size range.
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5.3 Ballistic Approach

Starting fromEinstein’s framework but rejecting the least convincing hypotheses, we
can obtain a semi-probabilistic model that may offer also an easier final formulation.
The model, called ballistic model (Armanini et al. 2015), is based on the observation
that in a stationary condition the solid discharge is due to all the grains crossing, in
a unit time, the generic cross section of a channel (A in Fig. 5.9). The infinitesimal
contribution to the bedload dqs of the infinitesimal strip dx per unit width, located
in the generic position x upstream of the section A, is given only by the particles
that, once detached from the bed, are able to jump from x to the section A, i.e. the
particle with a probability Pj of having a range longer than x . That is:

dqs = usα2d
2 dx

α2d2
Pj P0 (5.40)

where us is the longitudinal component of the particle velocity when it crosses the
section A; α2d2 is the projected frontal area of the particle, and the ratio dx/α2d2

expresses the number of particles contained in the surface element dx of unit width.
P0 is the particle detachment probability.

Note that in Eq. (5.40) the two probabilities P0 and Pj are supposed to be inde-
pendent. In addition, we assume that both have a gamma distribution, that is:

Pj = P

(
ld
ld

>
x

ld

)
=

∫ ∞

x/ld

ξe−ξ dξ =
(
1 + x

ld

)
e−x/ld , (5.41)

and

P0 =
∫ ∞

η∗ lim
ζe−ζdζ = (1 + η∗ lim) e−η∗ lim , (5.42)

where x is between 0 and ∞. ld is the effective distance jumped by the particle
(particle range), ld is the average jump of particles contributing to the bedload. ξ

and ζ are two variables of integration.

Fig. 5.9 The infinitesimal solid discharge dqs consists of all the grains contained in strip dx with
a certain probability of crossing the reference vertical section A
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η∗ lim represents the average value of the ratio between the lift force and the
submerged weight, at which the particle detachment occurs. According to Einstein
(1950), η∗ lim is proportional to the flow intensity parameter 	=g� d/u2∗, that is,
η∗ lim = B∗A	 − 1/η0A, with B∗A and η0A being two parameters to be determined
by experiment. Hence:

P0 =
∫ ∞

B∗A	−1/η0A

ζe−ζdζ = (1 + B∗A	 − 1/η0A)e−B∗A	+1/η0A (5.43)

Finally, it is assumed that us (Eq. 5.40) depends on the shear velocity and on the
mobility parameter, that is:

us = Au
u∗
	n

= Au

√
g�d

	n+1/2
(5.44)

where Au is an experimental constant. By substituting all the relative expressions
into Eq. (5.40), we obtain:

dqs =
√
g� d2Au

	 n+1/2

(
1 + x

ld

)
e−x/ld

ld
d

(1 + B∗A	 − 1/η∗A)e−B∗A	+1/η0A , (5.45)

which, integrated in x between 0 and ∞, gives:

qs
d

√
g� d

= 2Au

	 n+1/2

ld
d

(1 + B∗A	 − 1/η∗A)e−B∗A	+1/η0A (5.46)

The left hand ratio of Eq. (5.46) represents the dimensionless sediment transport
rate �.

Finally the average particle jump is expressed through a hyperbolic function of
the flow intensity parameter 	:

ld
d

= 100

1 + 4	
(5.47)

Notice that at high values of sediment transport rate (	 <∼ 10−2), the average
particle jump tends to be 100 times the particle diameter, as suggested by Einstein.
As the grain mobility decreases - thus increasing 	 - the relative particle range, as
expected, decreases with hyperbolic trend.

By substituting Eq. (5.47) into Eq. (5.40), we obtain:

� = 200Au

	n+1/2 (1 + 4	)
(1 + B∗A	 − 1/η0A) e

−B∗A	+1/η0A (5.48)

On the basis of a comparison with a large number of experimental data, the
following set of constants for their model can be assumed Au = 0.3; B∗A = 0.25;
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Fig. 5.10 Comparison between experimental data and results of Eq. (5.49)

η0A = 0.0.2 The final form of the formula is therefore:

� = 60
1 + 0.25	

	 (1 + 4	)
e−0.25	 (5.49)

Figure5.10 shows a comparison between the prediction of the ballistic model
(Eq.5.49) and some experimental data.

Note that in Fig. 5.10 the experimental data that mostly deviate from Eq.5.49 are
those relating to light materials, which could reflect the presence of a non-negligible
component of suspended load.

5.4 Sediment Transport Formulae Implying a Critical
Threshold for the Incipient Motion

Einstein’s theory is based on the particle detachment probability ranging from 1 to 0:
for this reason no threshold is introduced to define the absolute absence of transport.
Most of bedload transport formulae that have preceded or followed Einstein’s theory
are based, on the contrary, on the concept of the critical value of incipient motion

2In their original paper Armanini et al. (2015) suggested the following values of the constants
Au = 0.25; B∗A = 0.25; η0A = 0.5, but a more careful analysis of the data has given the above
set of constants.
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introduced in Chap.3. Many of these formulae are purely empirical, i.e. deduced
from a series of experimental observations carried out in a laboratory or in the field.

The most commonly used formulae will be illustrated below in a dimensionless
form,more specifically theywill be described by using Einstein’s dimensionless vari-
ables, rather than by means of the original variables suggested by different authors.

5.4.1 Du Boys Bedload Approach

The formula of Du Boys dating back to 1879 was widely used in the past, especially
in the European countries, but rarely today. However, it has a remarkable historical
importance, in that it is considered the first rational approach of the solid bedload
transport and used as a reference for many later formulae (Graf 1984).

Du Boys assumes that the bedload transport occurs in stratified layers, each ε

thick, put in motion by the bed shear stress due to the water motion: τo = g ρ h ib
where ib denotes the bed slope.

The top layer sets the next in motion by exerting a friction stress, which is propor-
tional to the weight of the layer itself, through a friction coefficient μ f , and balances
the tangential stress τo exercised by the water on it:

τo = μ f ε g (ρs − ρ) (5.50)

In addition, Du Boys assumed that the stress τo (active stress) is transmitted
unaltered from the top layer to the subsequent layers, neglecting, in fact, the possible
contribution of the longitudinal component of the weight of solid material and that
of water.

Since the weight of the overlying material increases in the following layers, the
friction stress between layers increases as well, and consequently the velocity of the
underlying layers gets slower and slower. Du Boys hypothesized that the velocity of
layers decreases linearly up to be annulled when the stress between layers reaches
the critical threshold condition. If we assume all the layers as equal in thickness ε,
vs is the difference in velocity between two successive layers.

Layer 1 is the top layer. Be the layer number n the first immobile layer, i.e. above
which the friction stress equals the critical value. n − 1 are then the layers in motion
(Fig. 5.11).

From the momentum balance, applied to the control volume consisting of the
n layers considered, the active tangential stress τo, which acts on the top layer, in
uniformmotion is balanced by the passive shear stress acting on the interface between
the layer n and the underlying layer. Such a stress is assumed to be Coulomb-type,
that is proportional to the submerged weight of the superimposed solid material
n ε g (ρs − ρ), by means of the friction coefficient μ f :

τo = μ f n ε g (ρs − ρ) (5.51)

http://dx.doi.org/10.1007/978-3-319-68101-6_3
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Fig. 5.11 Du Boys layout for the bedload transport. On the left are the distributions of active and
passive stresses; on the right is the trend of the particle velocity

Note that in critical condition of incipient motion, that is when τo = τc, we have
that n = 1; in this condition Eq. (5.51) becomes:

τc = μ f ε g (ρs − ρ) (5.52)

and therefore from the ratio between Eqs. (5.51) and (5.52) we have:

n = τo

τc
(5.53)

Since velocity has been supposed to vary linearly, the average velocity of the
solid phase is 1/2 (n−1)vs , while the depth of the bedload layer is n ε, thus the solid
discharge results:

qb = (n − 1)

2
vsnε (5.54)

By replacing the previous relation into Eq. (5.53), we have:

qb =
(

ε vs
2 τ 2

c

)
τo (τo − τc) (5.55)

According to Du Boys, the parameter ε vs/(2 τ 2
c ) basically depends on the particle

diameter, while Schoklitsch (1914) suggested:

ε vs
2 τ 2

c

= 0.54
1

g(ρs − ρ)
(5.56)
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The above relations are evidently metric: in fact, forces are measured in [kp],
lengths in [m].

Finally, dividing both sides of Eq. (5.55) by d
√
g� d, we obtain:

qs
d
√
g� d

= ε

d

vs√
g� d

τo

ρ g� d

(
τo

ρ g� d
− τc

ρ g� d

) (
ρ g� d

τc

)2

(5.57)

In (5.57) we can assume that ε ∝ d and vs ∝ u∗, from which you have:

� ∝ θ1.5(θ − θc) (5.58)

in which we have assumed a rough wall, that is θc = cost . Equation (5.58) may be
generalized in the following form:

� ∝ θα(θ − θc)
β (5.59)

where α and β are two suitable coefficients to be determined by experiments.

5.4.2 Meyer-Peter and Müller Formula

Still todayMeyer-Peter andMüller’s (1948) formula is verywidespread. The formula
was obtained from a great number of experimental tests carried out in the hydraulics
laboratory of the Polytechnic of Zürich (Eidgenössische Technische Hochschule),
thereby it is also called ETH or Swiss formula. Also this formula was originally
given in metric form:

0.4
g2/3s

d
= g2/3 ib

d
− 17 (5.60)

where g and gs are the weight transport rates per unit width [kps−1m−1] of water
and solid sediment respectively.

Successive experiments have allowed to generalize the formula and rewrite it
preferably in function of Einstein’s dimensionless solid discharge and the Shields
mobility parameter:

� = 8(θ ‘ − θc)
1.5 (5.61)

where θ ‘ = (u‘∗)2/(g� d) is the mobility parameter whose assessment only refers
to the grain resistance, that is, neglecting any contribution to resistance due to bed
forms. Referring only to the grain resistance has the advantage that the knowledge of
neither bed form types nor their resistance is required in applications. In fact, some
authors (e.g. Einstein 1950) believe that the bedload transport is not substantially
influenced by bed forms. However, since in the literature and in many applications
the reference to the global resistance is found very frequently, the formula can then
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be adjusted in this respect by introducing the ratio between the respective roughness
coefficients:

θ ‘ =
(
k‘s
ks

)−1.5
u2∗

g� d
(5.62)

where k‘s represents the Strickler coefficient for grain roughness and ks denotes the
global one. Notice that Meyer-Peter andMüller’s formula coincides with the general
Eq. (5.59) if we set α = 0 and β = 1.5.

In its original form Meyer-Peter and Müller’s formula sets θc = 0.047. The
formula was calibrated for materials with quite rough diameter (0.4 ∼ 29mm) in
a laboratory channel and is suggested for gravel-bed streams with slopes up to 2%.
For steeper slopes the formula underestimates the sediment discharge (Smart 1984).

5.4.3 Smart and Jäggi Formula

Smart and Jäggi’s (1983) formula represents the extension of Meyer-Peter and
Müller’s to channels with steep slope (3% < ib < 20%). The formula was obtained
in the E.T.H. laboratory in Zürich by using the same type of material as Meyer-Peter
and Müller did.

� = 4

(
d90
d30

)0.2

i0.6b θ0.5(θ − θc)

(
U

u∗

)
(5.63)

in the formula the ratio (d90/d30)
0.2 can be replaced by the number 1.05, a value of

first approximation which takes into account the dependence on the non-uniformity
of natural material. The authors suggest θc = 0.05. Moreover, it should be noted
that this formula employs the total value of the Shields parameter θ , i.e. inclusive
of form resistance that in this case can be antidunes, instead of θ ‘ as in Meyer-Peter
and Müller’s formula.

5.4.4 Van Rijn Bedload Formula

Van Rijn (1984a) and (1984b) suggested two empirical formulae, one for the sus-
pended load transport and the other for the bedload transport. The Van Rijn bedload
formula was achieved at the Hydraulic Laboratory in Delft and was calibrated by
analyzing a great quantity of experimental data:

qb
d
√
g� d

= 0.053

[
θ ‘ − θc

θc

]2.1

D−0.3
∗ (5.64)
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Table 5.2 Formulae for bedload transport, structurally similar to the Du Boys formula and more
commonly used in the literature

Authors Formula Range of validity

Meyer-Peter and Müller
(1948)

� = 8(θ ‘ − θc)
1.5 ib ≤ 0.02

Shields (1936) � = 10 (θ − θc)θ
1.5 ρ

ρs

U

u∗

Ashida and Michiue
(1971)

� = 17 (θ ‘)1.5(1 − θc

θ
)(1 −

√
θc

θ
) 0.3mm ≤ d50 ≤ 7mm

Suszka and Graf (1978) � = 10.4 θ1.5(1 − 0.045

θ
)2.5 for � ≤ 10−2

� = 10.4 θ2.5 for � > 10−2

Smart and Jaeggi (1983) � = 4

(
d90
d30

)0.2

i0.6b θ0.5(θ − θc)

(
u

u∗

)
0.03 ≤ ib ≤ 0.20

where θ ‘ = (u‘∗)2/(g� d) represents the mobility parameter calculated only on the
grain resistance:

u‘∗ = U
1

5.75 log

(
12 Rh

3 d90

) (5.65)

Such a distinction becomes crucial when the ratio T = (θ ‘ − θc)/θc (transport
stage parameter) is higher than 25. Rh is the hydraulic radius. D∗ = d50(g�/ν2)

1/3

is the dimensionless particle diameter (Sect. 3.1 at page 59).
Van Rijn’s bedload formula was calibrated for particle diameters ranging between

200µm and 2mm.

5.4.5 Other Formulae Structurally Similar to the Du Boys
Formula

Other formulae, similar in structure to the Du Boys formula, are given in Table5.2.

5.5 Bedload Formulae Explicitly Depending on the Liquid
Discharge or on the Stream Velocity

Some of the bedload formulae were originally written in function of the flow veloc-
ity; only later they were rewritten in function of the mobility parameter and of the
critical mobility parameter. Some formulae, however, have been written intention-
ally in function of flow velocity and velocity in critical conditions, possibly made

http://dx.doi.org/10.1007/978-3-319-68101-6_3
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dimensionless. Such formulae could also be rewritten in function of the mobility
parameter. It is however preferable to give at least one of these expressions in the
original form for its historical importance.

In this expression the sediment discharge is directly dependent on the liquid
discharge and the critical liquid discharge (of incipient motion), already defined in
Sect. 3.6.2. According to the proponent authors, these expressions have the advantage
of depending on easily measurable parameters both in the field and in laboratory;
more specifically, they do not require defining the critical velocity, a parameter hardly
measurable in some cases.

5.5.1 Schoklitsch’s Formula

The formula proposed by Schoklitsch (1914) was based on measurements in gravel-
bed streams. Also this formula is here rewritten in dimensionless form:

� = 2.5

� + 1
i1.5b

q − qc
d

√
g�d

(5.66)

According to Takahashi (1987) this formula works if 0.05 < ib < 0.09; beyond this
interval it underestimates the discharge.

5.6 Sediment Transport of Non-uniform Size Mixtures

From Meyer-Peter and Müller’s formula (Eq. 5.61):

� = qb
d

√
g� d

= 8

(
(u‘∗)2

g�d
− θc

)1.5

derives the following expression for the solid discharge:

qb = 8
√
g�d d

(
(u‘∗)2

g� d
− θc

)1.5

= 8
√
g�

(
(u‘∗)2

g�
− d θc

)1.5

(5.67)

In high mobility conditions, i.e. when for θ 	 θc, the second term in the paren-
thesis can be neglected compared to the first; thus we have:

qb 
 8
√
g�

(
(u‘∗)2

g�

)1.5

(5.68)

http://dx.doi.org/10.1007/978-3-319-68101-6_3
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Fig. 5.12 Grain size distributions of transported, surface and sublayer (sub-pavement) materials
observed in the stream Harris Creek in the presence of bars (Church et al. 1991)

According to Eq. (5.68) the sediment transport rate is independent of the particle
diameter, in other words there would be equimobility conditions.

However, the equimobility condition hardly occurs in nature since a sufficiently
large particle size fraction close to the critical mobility is very likely to be present,
even if in very modest amounts. During the erosion process and bed motion, a grain
size sorting naturally occurs: the finest grain sizes are easily removed, so that larger
sized material tends to concentrate on the bed surface and creates a phenomenon
named dynamic armoring, no matter how small the percentage of fractions with
larger diameter (Fig. 5.12). This phenomenon will be described in Sect. 5.6.1 at
page 137.

However, in applying the formulae to mixtures of non-uniform particle sizes, it is
also necessary to consider the hiding effect already described in Sect. 3.3.5 at page 74
with regard to the conditions of incipient motion.

Also in the presence of grainmovement, higher-sized particles protect the smaller-
sized ones which consequently reduce their individual mobility and show a greater
mobility than in case of uniform grain size.

Thehiding effect can be considered in sediment transport formulae, bymultiplying
either the stress of particles of every class or the critical shear stress (provided it is
in the formula) by an adequate hiding factor.

The first method is used in formulae neglecting the critical condition. In this case
the mobility parameter of each grain size class is written as follows (Church et al.
1991):

θ j = u2∗
g � d j

G j (5.69)

http://dx.doi.org/10.1007/978-3-319-68101-6_3
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where G j is an adequate hiding coefficient, function of the ratio (d̄/d j ) between the
diameter d j of the single class and the average diameter d̄ of the mixture.3

The latter criterion is applied to Du Boys-like formulae which explicitly con-
tain the critical mobility parameter. For instance, with reference to Meyer-Peter
and Müller’s formula, the sediment discharge related to the single grain size class
(Eqs. 5.36 and 5.67) is written as follows:

qbj = 8d j

√
g� d j β j

(
θ j − ξ jθcd̄

)1.5
(5.70)

where ξ j is the hiding coefficient related to the single grain size class, which is
function of the ratio (d̄/d j ). θcd̄ is the critical mobility parameter related to the mean
diameter.

According to other authors, this case canuse aswell theShieldsmobility parameter
of each grain size class, calculated as if the material had a uniform diameter equal
to the grain size of the class in question.

In particular, Meyer-Peter and Müller’s formula is usually combined with Egia-
zaroff’s (1965) hiding coefficient, already introduced in Sect. 3.32 at page 75:

ξ j =

⎛

⎜⎜⎝
log10 19

log10 19
d j

d

⎞

⎟⎟⎠

2

(5.71)

Generally speaking, it is also possible to use the monomial expression (3.34) (on
page 76):

ξ j =
(
d j

d

)−n

(5.72)

In this case, according toMeyer-Peter andMüller’ formula (Eq.5.70) the sediment
discharge related to the single grain size class becomes:

qbj
d j

√
g � d j

= 8β j

(
u2∗

g � d j
− θcd̄

(
d̄

d j

)n
)1.5

(5.73)

Clearly if we set n = 1, we obtain the same sediment discharge for all the grain
size classes. The situation is similar to the equimobility described above in Sect. 3.3.5
at page 74, a very unlikely situation, as previously said. The exponent n is generally
lower than the unity. A reliable value for n is 
 0.9.

Similar procedure is carried out for the other sediment transport formulae.

3In this case it is worth remembering that hiding factors suggested in the literature are applied after
making the sediment discharge dimensionless with regard to the friction velocity, so that in the
resulting parameter �/θ1.5 the particle diameter does not appear explicitly.

http://dx.doi.org/10.1007/978-3-319-68101-6_3
http://dx.doi.org/10.1007/978-3-319-68101-6_3
http://dx.doi.org/10.1007/978-3-319-68101-6_3
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5.6.1 Dynamic Armoring

It is worth pointing out that there is a difference between the grain size distribution
of the bed and the distribution of the transported material.

With reference to Fig. 5.13, on the top left-hand graph the continuous line repre-
sents a possible grain size distribution of material on the bed (β j = f unc(d j )).

Consider a formula for the transport capacity for each grain size fraction, that is
the sediment transport formula in function of the diameter, represented by the dotted
curve in the same graph. This relation is a monotonically decreasing function of the
diameter of type:

q∗
bj ∝

(
d j

d

)−m

(5.74)

with m 
 0.1 ∼ 0.4 (Lanzoni and Tubino 1999).
According to Einstein (Eq.5.36), the sediment discharge of every single grain size

class is given by multiplying the transport capacity q∗
bj by the percentage β j of the

grain size of class on the bed.
qbj = β j q

∗
bj (5.75)

(a)

(b)

(c)

Fig. 5.13 Layout illustrating the existence of the dynamic armoring. a β j represents the grain
size distribution of the surface layer; q∗

bj = f unc(d j ) the transport capacity related to the generic
diameter d j (Eq.5.74); b β j q∗

bj = qs j represents distribution of the transported material; c the

curve of Graph (b), rescaled with regard to the total sediment discharge
∑N

j=1 β j q∗
bj represents

the grain size distribution of the transported material. dtr is the mean diameter of the transported
material and db is the mean diameter of the bed material
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The curve corresponding to this product is represented in the graph of Fig. 5.13,
on the lower left-hand side.

It is worth observing that, as the grain size distribution tends to be null at the
extremes of the interval, also the curve representing the product of the two functions
will tend to null at the extremes.

Properly normalized, this curve represents then the grain size distribution α j of
the transported material (dotted line in graph on the right-hand side in Fig. 5.13):

α j = β j q∗
bj∑N

j=1 β j q∗
bj

(5.76)

In the same graph also the grain size distribution of the bed material β j is reported
by comparison.

The sediment discharge function (e.g. Eq.5.74) being decreasing at grain size
increasing, the distribution of the transported material results to have the barycenter
towards left (the thinnest diameters) and to be steeper than the grain size distribution
β j . The mean diameter of the transported material dtr is then thinner than that of
the bed material db. This effect is known as dynamic armoring, in that it concerns
material in motion and is different from the static armoring which, on the other hand,
regards the immobile material.
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Chapter 6
Suspended Transport and Total Transport

6.1 Introduction

As previously stated (Sects. 2.4 and 5.1), sediments are transported by suspension
when the fluctuating lift force prevails over the gravity force in the balance of the
forces acting on the particles, and the trajectories covered by the particles are at least
of the same size order as the water depth.

However, the distinction between bedload and suspended load is not straightfor-
ward, in that it is associated to the lift forces subject to turbulent fluctuations. As the
lift forces are scaled by the friction velocity u∗, we can assume that particles with
a certain diameter and density are characterized by a critical friction velocity value
which causes them to be on average transported in suspension.

In dimensionless terms, i.e., looking at the relationship between submergedweight
and hydrodynamic lift, we can define a significant mobility parameter value for the
suspended transport, e.g., the initiation of the suspended load can be represented on
the Shields diagram (Figs. 3.2 or 3.1).

According to Bagnold (1966), the particle is transported by suspension when its
terminal fall velocityws is lower than the local turbulence intensity. Since this latter is
scaled by the friction velocity, the parameter indicative of the initiation of suspension
is a mobility index expressed in function of the fall velocity: (θc)ss = w2

s /(gΔ d50).
Similar observations led Engelund and Fredsøe (1976) to the conclusion that the
initiation of suspension occurs for (θc)ss = 0.0625w2

s /(gΔ d50).
Figure6.1, suggested byVanRijn (1984b), shows these criteria graphically.Unlike

the critical threshold of the initial motion, the initiation of the suspended transport is
more difficult to define and more susceptible to the subjective interpretations of the
authors who proposed it.

According to Van Rijn (1984b), the threshold of suspended load can conveniently
be made dependent on the dimensional diameter (Sect. 3.1) D∗ = d(gΔ/ν2)1/3 for
values lower than 40–100; while it is independent of it at higher values. In this case,
the threshold value ranges from 0.15 to 0.25 (according toVanRijn) to 1.2 (according
to Bagnold).

© Springer International Publishing AG 2018
A. Armanini, Principles of River Hydraulics,
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Fig. 6.1 Initial conditions for suspended transport suggested by Van Rijn (1984b)

In the generally acceptable hypothesis that the particle concentration is sufficiently
small, the suspended transport can be studied with the same criteria as those adopted
for studying the diffusion of a scalar in turbulent flows.

6.2 Flow Equations

With reference to an infinitesimal control volume ∀, the instantaneous volume con-
centration of solid material c̃ is defined as follows:

c̃ = ∀s

∀ = ∀s

∀s + ∀w

(6.1)

where ∀s and ∀w are, respectively, the volumes of the solid and liquid phases, and
∀ = ∀s + ∀w. In a natural watercourse, it is usually 0 ≤ c̃ � 1.

The continuity equation of the solid phase for a Cartesian reference frame can be
written as follows:

∂

∂t
(ρs c̃) + ∂

∂xi
(ρs c̃(̃us)i ) = 0 (6.2)

where (̃us)i are the Eulerian components of the velocity vector of the solid phase. In
case of sedimentable particles, it is generally acknowledged that the vector difference
between the liquid phase velocity ũ and the solid phase velocity ũs is given by the
terminal fall velocity vector ws of the particle itself:
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(̃us)i = ũi + (ws)i (6.3)

If then, we assume a system in a horizontal plane (x, z) and the vertical axis y as
positive along the upward vertical, we have:

(̃us)x = ũx ; (̃us)y = ũ y − ws ; (̃us)z = ũz (6.4)

Moreover, if we consider that the particle density ρs is constant, we obtain:

∂c̃

∂t
+ ∂

∂x
ũx c̃ + ∂

∂y
ũy c̃ − ∂

∂y
ws c̃ + ∂

∂z
ũz c̃ = 0 (6.5)

where (˜ ) denotes the instantaneous values of the above variables.
Should the flowbe turbulent, theReynolds decomposition can be applied to instan-

taneous values of velocity and solid concentration:

ũi = ui + u′
i and c̃ = c + c′ (6.6)

where ui = lim
T→∞

1

T

∫ t+T/2

t−T/2
ũi (τ , x) dτ and c = lim

T→∞
1

T

∫ t+T/2

t−T/2
c̃(τ , x) dτ represent

the time average values, and u′ and c′ the fluctuating components of velocity and
concentration in the hypothesis of statistically stationary turbulence. We then obtain:

∂ui
∂t

= 0 ; u′
i = lim

T→∞
1

T

∫ t+T/2

t−T/2
u′
i (τ , x) dτ = 0

∂c

∂t
= 0 ; c′ = lim

T→∞
1

T

∫ t+T/2

t−T/2
c′(τ , x) dτ = 0 (6.7)

The above hypothesis of statistically stationary turbulence cannot be applied to
natural streams, where it is advisable to choose an integration interval T much longer
than the average period of vortices containing the turbulent energy. In this case, we

may well assume
∂ui
∂t

	= 0 and
∂c

∂t
	= 0.

After introducing Eq. (6.6) into (6.5) and averaging the equation over the time T ,
we obtain:

∂c

∂t
+ ∂ux c

∂x
+ ∂

∂x
u′
xc

′ + ∂uy c

∂y
− ∂ws c

∂y
+ ∂

∂y
u′
yc

′ + ∂uz c

∂z
+ ∂

∂z
u′
zc

′ = 0 (6.8)

If we make the hypothesis that the flow is quasi-unidirectional in x (e.g., channel
flow), we can assume that:
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uz 
 0 , uy 
 0 and
∂

∂z

 0 (6.9)

Equation (6.8) reduces to the following:

∂c

∂t
+ ∂ux c

∂x
− ∂ws c

∂y
= − ∂

∂x
u′
xc

′ − ∂

∂y
u′
yc

′ (6.10)

The terms on the left of Eq. (6.10) represent the convective transport of the
solid phase, the terms on the right represent the turbulent diffusion of the same
phase. In the quasi-two-dimensional flows, the diffusive term in the flow direction
can be neglected with respect to the convective term in the same direction, i.e.,
∂(ux c)/∂x � ∂u′

xc
′/∂x . Thus, we obtain:

∂c

∂t
+ ∂ux c

∂x
= ∂

∂y
(ws c − u′

yc
′) (6.11)

Similarly to the Reynolds stress tensor, the diffusive term can be expressed by
means of the diffusive Boussinesq model (Rouse 1937):

− u′
yc

′ = εs
∂c

∂y
(6.12)

With a good approximation, we can assume that the turbulent diffusion coefficient
of the solid phase εs is proportional to the turbulent diffusion coefficient of the
momentum ε, defined as ε = −u′

xu
′
y/(∂ux/∂y):

εs = βε ε (6.13)

where βε is a suitable coefficient of order 1.
The continuity equation finally assumes the following form:

∂c

∂t
+ ∂ux c

∂x
= ∂

∂y
(ws c + βεε

∂c

∂y
) (6.14)

The term between brackets represents the vertical net flow:ws c denotes the down-
ward flow due to the particle tendency to sediment, while βεε(∂c/∂y) represents the
upward flow due to the turbulent diffusion.

6.3 Distribution of Suspended Concentrations in
Equilibrium Channels

Equation (6.14) can be integrated in the hypothesis of stationary uniform channel
flow. In this case, the two terms in the first member vanish and the equation becomes:



6.3 Distribution of Suspended Concentrations in Equilibrium Channels 119

ws c + βεε
∂c

∂y
= cost (6.15)

The constant can be calculated by considering that it represents the vertical net
flux of the solid phase and that this flux at the free surface must be zero. In other
words:

ws c + βεε
∂c

∂y
= 0 (6.16)

In order to integrate (6.15), it is necessary to assign an appropriate expression to
the turbulent diffusion coefficient. In general, we can write:

ε = u∗h f (
y

h
) (6.17)

where f (y/h) is a function to be defined, denoting the dimensionless vertical dis-
tribution of the turbulent diffusion coefficient. By inserting (6.17) into (6.16), after
a few steps, we obtain:

c + βε
u∗
ws

f (η)
dc

dη
= 0 (6.18)

where η = y/h.

6.3.1 The Rouse Solution

In 1937, Rouse proposed a solution of Eq. (6.18) by neglecting the average viscous
shear stress, thus assuming τyx 
 −u′

xu
′
y , so that themomentum diffusion coefficient

results:

ε = −u′
xu

′
y

dux

dy

=
τyx

ρ
dux

dy

(6.19)

In a uniform channel flow, the shear stress distribution is of a triangular type with
the bed value τo, that is:

τyx

τo
= h − y

h
(6.20)

Moreover, by assuming a logarithmic velocity distribution:

ux

u∗
= 1

κ
ln

y

yo
(6.21)

and by taking the derivative:
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dux

dy
= u∗

κy
(6.22)

Regarding the constant y0, in a hydraulically rough bed, experimentally, it has
been found that (Jansen et al. 1979):

yo 
 k

33
(6.23)

where k [L] is the roughness of the bed.
After substituting (6.20) and (6.22) into (6.19), we obtain a parabolic distribution

of the turbulent diffusion coefficient:

ε = τo

ρ

h − y

h

κ y

u∗
= κ u∗ h

y

h
(1 − y

h
) (6.24)

in which κ 
 0.4 is the von Kármán constant. In other words, f (η) = κη(1 − η)

(Fig. 6.2), which replaced into (6.18) yields:

c + βε
u∗
ws

κ η(1 − η)
dc

dη
= 0 (6.25)

By separating the variables of (6.25), we obtain:

dc

c
= − ws

βε u∗ κ

dη

η(1 − η)
(6.26)

The solution of which is:

ln
c

ca
= ln

(

η

1 − η

1 − ηa

ηa

)Z

(6.27)

where Z = ws/βε u∗ κ.
Since, if η → 0, the concentration c → ∞, the boundary condition was not

set on the bed, but at a reference distance a from it where the suspended transport
supposedly initiates. Within the layer a, the transport is assumed to occur as bedload.
Equation (6.27) can, therefore, be rewritten in the following form:

c

ca
=

(

η

1 − η

1 − ηa

ηa

)Z

(6.28)

Rouse proposed to assume βε 
 1. Moreover, he suggested to set ηa = 0.05.
Rouse’s law has been verified experimentally by various scholars, e.g., Vanoni (1946)
first among others (Fig. 6.3).
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6.3.2 The Lane Solution

It is also worth mentioning how Lane and Kalinske (1941) solved Eq. (6.18) in case
of constant distribution of the dimensionless turbulent diffusion coefficient f (η):

βεε = u∗ h
15

(6.29)

Figure6.2 shows a comparison between the diffusion coefficient calculated
according to Eq. (6.29) and the parabolic distribution proposed by Rouse (Eq.6.24).

Equation (6.29), inserted into (6.18), yields:

c + u∗
15ws

dc

dη
= 0 (6.30)

The solution of (6.30) is:

ln
c

ca
= −15

ws

u∗
(η − ηa) = −15

ws

u∗
y − a

h
(6.31)

Equation (6.31) can then be rewritten in the following form (Lane’s solution):

c = ca e
−15

ws

u∗
y − a

h (6.32)

Fig. 6.2 Distribution of the
turbulent diffusion
coefficient according to
Rouse (Eq.6.24) and to Lane
(Eq.6.29) described below
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According to Lane’s solution, on the free surface (y = h), the concentration is
different from 0:

c(h) = ca e
−15

ws

u∗
h − a

h (6.33)

This result contrasts with the necessity to set the surface concentration equal to
zero, since there is no flux of sediments across the free surface. Such a drawback is
not present in Rouse’s solution (Eq.6.28).

6.3.3 The Reference Concentration ca

We still have to specify the concentration value ca at the reference height y =
a (bedload layer thickness or saltation layer thickness). As previously observed,
in the presence of mobile bed, it is rather difficult to give an exact definition of
bed level. Even more uncertain is then how to establish the reference height a as
suitable for setting the boundary conditions for suspended transport, while defining
the parameters for quantifying the suspended solid discharge is clearly fundamental.
The solution to this problem has been suggested by various theories which practically
depend on the same definition of the layer a. Fairly widespread are those by Brown
(1950), Engelund and Fredsøe (1976), and more recently Van Rijn (1984b).

According to Einstein, the reference concentration ca is the solid phase concen-
tration in the bedload layer, in which the solid transport occurs almost exclusively as
bedload, i.e., through the mechanisms of saltation or rolling dealt with in Sect. 5.2.
According to Einstein, the thickness of this layer is proportional to the average height
of the particle jumps and is assumed to be around twice the diameter of the largest
particles (Fig. 6.4):

a ∝ δb 
 2 d90

The sediment concentration distribution in the bedload layer is supposed to be
uniformand, in any case, equivalent to the reference concentration ca of the suspended
solid transport. That is, we have:

qb = cbubδb = A ca ua a (6.34)

where qb is the bedload per unit width, ub is the average longitudinal velocity com-
ponent of the bedload in the saltation layer and ua the average value in the presence
of bed forms; A is an appropriate proportionality coefficient.

On the assumption that ub ∝ ua ∝ u∗, Einstein reached the following expression:

ca = 1

11.6

qb
a u∗

(6.35)

http://dx.doi.org/10.1007/978-3-319-68101-6_5


6.3 Distribution of Suspended Concentrations in Equilibrium Channels 123

Fig. 6.3 Distribution of suspended particle concentration (A.S.C.E. Vanoni (1946))

Fig. 6.4 Distribution of the concentration. δb denotes the average height of particle jumps (Van
Rijn 1984b)

TheEngelund andHansen (1967) scheme, latermodifiedbyEngelund andFredsøe
(1976), refers to Bagnold’s sediment transport theory (Bagnold 1956). Like Rouse,
Engelund and Hansen assumed the reference level a as proportional to the water
depth (a = 0.05 h). The concentration ca is essentially dependent on the Shields
mobility parameter:



124 6 Suspended Transport and Total Transport

Fig. 6.5 Concentration ca in
function of the Shields
mobility parameter
according to Engelund and
Hansen (1967)

θ= u2∗
gΔ d

The relation between ca and θ is graphically shown in the next Fig. 6.5. It should be
noted that the bed concentration tends to an asymptotic value equal to around 0.32.

More recently, Van Rijn (1984a, b) developed an analytical expression, based
both on the grain mobility parameter θ‘ and on the dimensionless grain size
D∗ =d50

(

Δ g/ν2
)1/3

:

ca = 0.015
d50
a

(

θ‘ − θc

θc

)1.5

D−0.3
∗ (6.36)

in which the author proposes to assume a = 0.015 h in case of plane bed and
a = 0.5 Hdune in the presence of bed forms (dunes). θc and θ‘ are, respectively,
the critical mobility parameter and the mobility parameter referred to the grain
roughness.

The expression is valid for 0.1 < d50 < 0.5 [mm].Notice thatVanRijn’s supposed
β 	= 1, as it will be explained in Sect. 6.4.

6.4 Suspended Load

Since the vertical velocity distribution and the vertical concentration distribution are
known, the suspended solid discharge can be calculated by integrating the product
of these two distributions on the water depth. The suspended sediment discharge per
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unit width qss is then:

qss =
∫ h

a
c u dy (6.37)

Inserting (6.21) and (6.28) into (6.37), we obtain:

qss = u∗ ca
κ

(

a

h − a

)− ws

u∗ κ
∫ h

a

(

h − y

y

)− ws

u∗ κ ln
y

y0
dy (6.38)

where yo depends on the roughness of the bed (Eq.6.23).
There is no knowledge of a closed-form expression for the integral in Eq. (6.38).

It can be calculated by a series expansion of the functions to integrate, or it can be
calculated numerically. ca is, on the other hand, given by (6.35) or by (6.36).

Van Rijn (1984b) suggested the following exemplified expression of Eq. (6.38):

qss = F U h ca (6.39)

where:

F =
(a

h

)Z ′
−

(a

h

)1.2

(

1 − a

h

)Z ′
(1.2 − Z ′)

(6.40)

and

Z ′ = ws

βε u∗ κ
+ 2.5

(

ws

u∗

)0.8( ca
C∗

)0.4

(6.41)

Figure6.6 shows the behavior of the function F versus the exponent Z ′ for dif-
ferent value of the relative thickness of the bedload layer a/h.

The coefficient βε can be calculated with the following expression:

βε = 1 + 2

(

ws

u∗

)2

, for
ws

u∗
< 1 (6.42)

The parameter Z ′ is the same as defined in Sect. 6.3.1 on p. 150, modified to
consider some secondary effects neglected in the Rouse theory. C∗ represents the
maximum volumetric concentration at the bed, i.e., the random packing concentra-
tion, which, according to the author, can be assumed to be equal to 0.65 for natural
particles. According to Van Rijn (1984b), Eq. (6.39) along with (6.40) approximate
the original relation (6.38) with a precision higher than 75% for 0.3 ≤ Z ′ ≤ 3 and
0.01 ≤ a/h ≤ 0.1.
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Fig. 6.6 F factor of suspended load (Eq.6.40) in function of the exponent Z ′, parameterized with
respect to ratio a/h, according to Van Rijn (1984b)

6.5 Total Solid Discharge

Several transport formulae mentioned in the previous chapter are explicitly referred
to the bedload transport. In other formulae, the particle diameter interval may lead
to the conclusion that they may be valid only for the bedload. In many other cases,
formulae were calibrated specifically for the total transport.

For some formulae, it is expressly said that the total sediment transport rate qs
is given by the sum of the bed sediment discharge qb and the suspended sediment
discharge qss :

qs = qb + qss (6.43)

This is the case of Einstein’s and Van Rijn’s formulae, both already mentioned in the
previous chapter (Eq.5.24) and (Eq.5.64).

As already said, the relation between bed and suspended sediment discharges
essentially depends on the relation between the friction velocity u∗ and the fall
velocity in still water ws .

According to Van Rijn (1984b), in Eq. (6.43), the bed sediment discharge can be
assessed with an expression which is quite analogous to (6.34) on p. 152, where the
bed concentration ca is calculated with the previous Eq. (6.36):

qb = ca δb ub = ca a ua (6.44)

where ua is the effective velocity of the bedload particles.
By using Eqs. (6.39) and (6.40), we obtain the ratio between the suspended load

and the total sediment transport:

http://dx.doi.org/10.1007/978-3-319-68101-6_5
http://dx.doi.org/10.1007/978-3-319-68101-6_5
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Fig. 6.7 Behavior of the ratio between suspended load qss and total load qs in function of ratio
u∗/ws between shear velocity and particle fall velocity, according to Van Rijn (1984b)

qss
qs

= qss
qb + qss

=
F
U

ua

h

a

1 + F
U

ua

h

a

(6.45)

According to Van Rijn (1984b), the ratio ua/U varies from about 0.4 to 0.8. The
former limit concerns the large, steep bed forms in the subcritical regime, while the
latter is relevant to flat beds and supercritical regime (Fig. 6.6).

Figure6.7, reused by Van Rijn (1984b), shows such a dependence, parameter-
ized with respect to the ratio ub/U between bed layer and average velocities. The
figure compares the prediction of Eq.6.45 against experimental data provided by
Guy et al. (1966). The ratio ub/U varies from 0.4 for beds with dunes to 0.8 for
plane beds (transcritical regime).

6.5.1 Monomial Formulae

Einstein’s bedload formula clearly shows how it may be approximated, within a
certain mobility parameter range, with an adequate monomial formula of the type:

Φ = αΦθn (6.46)

Among the numerous formulae of the type (6.46) suggested in the literature, it is
worth remembering:

• Einstein and Brown (1950)
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Φ =
⎛

⎝

√

2

3
+ 36 ν2

gΔd3
−

√

36 ν2

gΔd3

⎞

⎠ 40 θ3 (6.47)

• Engelund and Hansen (1967)

Φ = 0.084 θ2.5 (6.48)

This formula gives good results if applied in water streams with beds consisted of
fine sand (d > 0.190mm), by utilizing d50 as the characteristic material diameter.

As previously said, the parameter diversity in these formulae, and especially the
difference between the values assumed by the exponent, is not surprising at all.
The latter tends to assume very high values near the conditions of incipient motion
(n = 17.7 according to Parker (1990)), while it tends to the exponent n = 1.5 of
Meyer-Peter and Müller’s formula when the mobility parameter is much higher than
the critical value. Other formulae for sediment transport are given in Table6.1.

Table 6.1 Some formulae of sediment transport frequently used in the literature
Authors Formula Range of validity

Ashida and Michiue (1971) Φ =
17 (θ‘)1.5

(

1 − θc

θ

)

(

1 −
√

θc

θ

)

Brown (1950)
43.13Φ

1 + 43.13Φ
=

1 − 1√
π

+0.143�−2
∫

−0.143�−2

e−ξ2 dξ

� = 1/θ;
bedload

Einstein and Brown (1950) Φ =
40 θ3

⎛

⎝

√

2

3
+ 36 ν2

gΔd3
−

√

36 ν2

gΔd3

⎞

⎠

Engelund and Hansen (1967) Φ = 0.084 θ2.5 d50 ≥ 190 ¯m

Graf and Suszka (1987) Φ = 10.4 θ1.5
(

1 − 0.045

θ

)2.5

Φ = 10.4 θ2.5

for Φ ≤ 10−2

for Φ > 10−2

Meyer-Peter and Müller (1948) Φ = 8 (θ‘ − θc)
1.5 i f ≤ 0.02;

prevailing bedload
transport

Parker (1990) G = ξ14.20 for ξ0 < 1

G =
e

(

14.2(ξ0 − 1) − 9.28(ξ0 − 1)2
)

for 1 ≤ ξ0 ≤ 1.59

G = 5474

(

1 − 0.853

ξ0

)4.5
for ξ0 > 1.59

with: Φ =G(ξo) 0.00218 θ1.5

and ξ0= θ

0.0386

Shields (1936) Φ = 10 (θ − θc)θ
1.5 ρ

ρs

U

u∗
Smart and Jaeggi (1983) Φ =

4

(

d90
d30

)0.2
i0.6f θ0.5(θ − θc)

(

u

u∗

)

0.03 ≤ i f ≤ 0.20
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Chapter 7
Mathematical Models of Riverbed Evolution

7.1 Introduction

Mobile-bed mathematical models are powerful complex tools, suitable to analyze
the condition of a river under some hydrological and geometrical assumptions and
to simulate their spatial and temporal evolution. More generally, these models are
suitable to predict the evolution of riverbeds and are also necessary to predict the
evolution in space and time of the modifications induced by interventions of river
engineering and river restoration.

Nowadays, mathematical models are tools indispensable for designing river
works. Particularly, in a first step, it is convenient to use simplified solutions, while
complete mathematical models become fundamental in the phase of efficiency veri-
fication of the designed works.

In general, the mathematical models of riverbed evolution consist of a system of
differential equations in the time-space domain, initial and boundary conditions, a
discretization scheme and a numerical scheme for solving discretized equations.

The category of river numerical models is very broad, mainly depending on the
equations that they are intended to solve. In this chapter, we will make special ref-
erence to models integrated on the water depth or on the cross section, in which
the longitudinal scale is predominant with respect to the transverse or normal scale,
according to the shallow water hypothesis.

In short, we will treat only 1Dmodels, which support the hypothesis of the hydro-
static distribution of pressures along the vertical direction. In these mobile-bed mod-
els, the bed elevation is a dependent variable of the problem. The analysis will be
confined to river models, in which the average concentration of the sediments, C, is
much less than unit. The features of the 2D depth-integrated models with the same
characteristics can be easily obtained from the 1D models.

From Sects. 7.2 and 7.3 we will derive the equations of mass and momentum con-
servation of the liquid phase and the sediments, in a two-phase approach. However,
since in the fluvial environment the depth-average sediment concentration is very

© Springer International Publishing AG 2018
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small, the momentum conservation equations for the liquid phase coincide with that
for the total mixture (isokinetic models).

We will, then, clarify also the question of the closure relations, which represents
another important issue of river models. The resulting system of equations will be
analyzed with the method of characteristics (Sect. 7.4), focusing the issues related
to the assignment of boundary conditions. We will then analyze some stationary
solutions (Sect. 7.5), which involve widening and narrowing of the cross section.

In Sect. 7.6 we will describe some simplified solutions, namely the so-called
kinematic model and parabolic model, which can be useful for the design phase
of the first approximations of some river works.

In the next section we will illustrate two specific problems of river modeling
which, however, are assuming greater space especially in the commercial codes:
more precisely, the adaptive models (Sect. 7.7) - which hypothesize that local solid
discharge (and/or concentration) is always equal to the equilibrium solid discharge
(transport capacity) - and the non-uniform size models (Sect. 7.8) - which will be
used to simulate the time and space evolution of the particle size distribution.

7.2 Mass Conservation Equations

The morphological evolution of an erodible bed channel can be conveniently
described by adopting a two-phase approach, that is, treating separately the liq-
uid and solid phases. The liquid phase generally consists of water, a Newtonian fluid
governed by the Navier–Stokes equations, while the solid phase, composed of the
sediment, can be treated as a granular fluid, the rheology of which is rather complex
(Campbell 1990; Drew 1983) and will not be addressed in this chapter.

In this context, we just say that the (Eulerian) velocity of the granular phase−→u s is represented by the average of the velocities of the individual particles (
−→u p)k

contained inside an infinitesimal control volume dx1 dx2 dx3, namely (Fig. 7.1):

usi =
∑np

k=1(upi)k
np

(i = 1, 3) (7.1)

where np is the number of particles inside the control volume.
The volume concentration c of granular phase is defined as the volume ∀s of all

solid particles contained in the control volume, divided by the total volume:

c = np∀p

dx1 dx2 dx3
= ∀s

dx1 dx2 dx3
(7.2)

where ∀p is the volume of the single particle.
These definitions are problematic when the volume of a particle is of the same

order as the control volume. The problem is still unresolved, but for simplicity,
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Fig. 7.1 Granular flow
notation

we adopt this approach, assuming that c = func(t, x) and (us)i = func(t, x) are
continuous functions of space and time within the flow field.

The conservation equation of themass of each phasewith respect to a finite control
volume ∀c is:

0 = ∂

∂t

∫

∀c

ρβ cβ d∀ +
∮

�c

ρβ cβ (
−→u β ·d−→

A ) (7.3)

where β represents both the liquid and granular phases. ρβ , cβ , and
−→u β are the

material density, the concentration, and the velocity of the generic phase, respectively.
It is worth noting that if c is the volume concentration of the solid phase, (1 − c) is
the concentration of the liquid phase, as a consequence of the incompressibility of
both materials (solid and liquid).

7.2.1 Equation of Conservation of Solid Mass

Let us consider a quasi-rectangular channel of width B (Fig. 7.2), in which the
control volume is composed of two cross sections at an infinitesimal distance dx, the
free surface and a suitable portion of the bed. We first apply the mass conservation
equation to the solid phase, e.g., β = s in Eq. (7.3), which becomes:

∂

∂t

(
C A + BC∗zb

)+ ∂Qs

∂x
= 0 (7.4)

where A is the area of the cross section and C = (
∫
h c dz)/h the depth-averaged

concentration (c is the local concentration and z is normal to the bed). C∗ represents
the concentration of the material on the bed (random packing concentration), com-
plement to one of the bed material porosity p, that is, (C∗ = 1 − p). zb is the bed
elevation.
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Fig. 7.2 Mass balance of the solid phase

Qs = ∫
h c us dz is the discharge of the solid phase, where us is the longitudinal

component of the local velocity of the solid phase.
Notice that, according to the shallow water assumption, in Eq. (7.4), we neglected

the possible diffusive fluxes across the cross sections.
By inserting an adequate correction coefficient for the concentration, the sediment

concentration can be expressed in function of the solid discharge:

C A = C B h = Qs

αcu Us
(7.5)

where C = (

∫

h
c dz) and Us = (

∫

h
us dz)/h are the depth-average solid concen-

tration and velocity, respectively. αcu = (

∫

h
c us dz)/(C h Us) is the correction

coefficient for the concentration; Us = (

∫

h
us dz)/h. Thus, Eq. (7.4) becomes:

∂

∂t

(
Qs

αcuUs
+ BC∗ zb

)

+ ∂Qs

∂x
= 0 (7.6)

The first term inside the parenthesis refers to the variation of sediment mass
inside the flow, and the second term denotes it inside the bed. The third term is the
net sediment flux through the cross sections.
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7.2.1.1 The Exner Equation

Often in Eq. (7.4), the term CA is considered negligible with respect to BC∗zb, since
C = O(10−3) and C∗ = O(1). In addition, if we assume the bed width constant,
according to the hypothesis of large quasi-rectangular cross sections, we reach the
following simplified expression of the sediment mass balance, known as the Exner
equation (Exner 1925):

∂qs
∂x

= −C∗ ∂zb
∂t

(7.7)

where qs = Qs/B is the solid discharge per unit width. The term C∗, denoting
the complement to one of the material porosity, is often incorporated into the solid
discharge, so it does not always appear in the Exner equation. From a physical point
of view, the Exner equation can be easily interpreted, in that when ∂qs/∂x > 0 (the
solid discharge increases to the detriment of the bed sediment), the bed is being
eroded (∂zb/∂t < 0).

When ∂qs/∂x < 0, the bed is in deposit (∂zb/∂t > 0) (the solid discharge
decreases by increasing the volume of sediment deposited).

The Exner equationmakes it possible to understand how a bed perturbationmoves
downstream or upstream depending on the fact that the flow is, respectively, subcrit-
ical (Fr <∼ 0.9) or supercritical (Fr >∼ 1.1).

Should the flow be subcritical, the bed rise leads to a lowering of the free surface,
even if rather limited, in phase opposition with the bed (Fig. 7.3a). On the upstream
slope of the dune, the water depth tends to decrease in the flow direction (∂h/∂x<0),
and consequently, the velocity tends to increase; the solid discharge increases as well
(∂qs/∂x>0). Thus, on the basis of the Exner Eq. (7.7), it follows that (∂zb/∂x<0),
that is, the upstream slope of the dune is subject to erosion.

Just the reverse occurs on the downstream slope of the dune: the water depth h
increases in the flow direction (∂h/∂x > 0), with consequent decrease in velocity
and in solid discharge (∂qs/∂x < 0). Therefore, there is a sediment deposition in
the downstream slope of (∂zb/∂x > 0). The result is that the dune shape migrates
downward.

Just the reverse is observed in supercritical flows, as schematized in Fig. 7.3b.
In conditions of near-critical flows (∼ 0.9<Fr <∼ 1.1), the observations made

so far can fail by defect, in that they also require assessing any change in the hydro-
dynamic conditions induced by morphological variations.

7.2.2 Mass Conservation of the Liquid Phase

With the same procedure as described in Sect. 7.2.1, we obtain the equation of mass
conservation of the liquid phase. It is sufficient to replace the concentrations of the
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Fig. 7.3 Layout of the propagation of a bed perturbation a in a subcritical channel flow:Fr <∼ 0.9;
b in a supercritical channel flow: Fr >∼ 1.1 with n � 3 ∼ 5

solid phaseC andC∗ with those of the liquid phase (1−C) and (1−C∗), respectively,
and the solid discharge Qs with the liquid discharge Q into Eq. (7.4):

∂

∂t

(
(1 − C)A + B (1 − C∗)zb

)+ ∂Q

∂x
= 0 (7.8)

The physical meaning of Eq. (7.8) is analogous to that of Eq. (7.4). The first term
(after the parenthesis) denotes the liquid volume variation inside the flow, and the
second term the liquid volume variation inside the bed. The third term refers to the
net volume flux through the two cross sections.
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7.2.3 Total Mass Conservation

If we add term by term the mass conservation equations of the two phases (Eqs. 7.4
and 7.8), we obtain:

∂

∂t
(A + Bzb) + ∂

∂x
(Qs + Q) = 0 (7.9)

Since in fluvial environments the liquid discharge is generally much bigger than
the solid one, that is, Q >> Qs, Eq. (7.9) becomes:

∂

∂t
(A + Bzb) + ∂Q

∂x
= 0 (7.10)

7.3 Momentum Conservation Equations

The application of the Reynolds theorem to the momentum conservation of the
generic phase β with respect to a finite control volume ∀c gives:

−→
Feβ = ∂

∂t

∫

∀c

ρβ cβ
−→u β d∀ +

∮

�c

ρβ cβ
−→u β(−→u β · d−→

A ) (7.11)

where β may be either the liquid or the solid phase.
The left term is the resultant of the external forces acting on the phase β, such

as weight force and surface forces acting on the control surface. This term also
includes the interphase forces exerted on the phase β by the other phase.

The first term on the right represents the variation in time of momentum of the
phase β within the control volume, and the second term on the right is the net flux
of momentum of the phase β through the control surface �c.

We apply Eq. (7.11) to the same control volume as above, in the longitudinal flow
direction.

Note that in this case, we placed the lower limit of the control volume on the
bed surface, since there is no momentum variation within the bed and since we have
assumed that the contribution of the masses flowing through the bed surface to the
momentum balance in the longitudinal direction is null, given that the longitudinal
velocity components of both phases are zero.

7.3.1 Momentum Conservation Equation of the Liquid Phase

With reference to Fig. 7.4, the external forces in the longitudinal direction are:

• the longitudinal component of the resultant of hydrostatic pressure Sx on the cross
sections of the flow;
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Fig. 7.4 External forces acting on the liquid phase. Sx is the longitudinal component of hydrostatic
pressure forces, W the weight force, Fl the interphase force, τo B dx the shear stress forces on the
bed

• the longitudinal component of the weight of the liquid phase, e.g.,

Wx = −ρ(1 − C) g B h
∂zb
∂x

dx ; (7.12)

• the resultant of the shear stresses on the bed: τo B dx;
• the component of the resultant of interphase forces. In this case, it is the resultant
of the forces exerted on the liquid phase by the solid phase Fl in the longitudinal
direction. Typically, this force can be decomposed in a drag, due to the difference
between the velocities of the two phases, and in a buoyancy force, independent of
the velocity difference between the two phases.

The time variation of momentum of the liquid phase within the control volume
is:

∂

∂t
(ρ(1 − Cαcu)UBh) dx (7.13)

where αcu = (

∫

h
c us dz)/(C hUs) is the correction coefficient for the concentration.

The net flux of momentum of the liquid phase through the control surface is:

∂

∂x

(
ρ(β2 − βc2 C )U 2B h

)
dx (7.14)
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where β2 = (

∫

h
u2dz)/(hU 2) and βc2 = (

∫

h
c u2dz)/(C hU 2) are two correction

coefficients for momentum.
We remind that, since the longitudinal velocity on the bed is assumed to be zero

(Newtonian fluid), there is no longitudinal momentum entrainment from the bed
surface. Finally, we obtain:

∂

∂t
ρ(1 − αucC)UA + ∂

∂x

(

ρβ2(1 − βc2

β2
C )U 2A

)

+∂Sx
∂x

+ ρ(1 − C) g A
∂zb
∂x

= −τo B + Fl (7.15)

where the last term on the right represents the depth-integrated forces exerted by the
solid phase on the liquid phase.

7.3.2 Momentum Conservation of the Solid Phase

The momentum equation of the solid phase is formally similar to the previous
Eq. (7.15):

∂

∂t
ρsαuc CUsA + ∂

∂x

(
ρβc2 CU

2
s A
)+ ∂Sx

∂x
+ ρs CgA

∂zb
∂x

= −τos B − Fl (7.16)

The meaning of the different terms is similar to the corresponding terms of liquid
momentum equation (7.15). In particular, Ssx represents the longitudinal gradient of
the solid pressure due to the interparticle interaction, which is very infrequent with a
small concentration as in this case. −Fl represents the forces per unit length exerted
by the water on the particles (e.g., drag and buoyancy forces) in the longitudinal
direction, which on the basis of reciprocity principles is the contrary of the forces
exerted by the solid phase on water Fl.

7.3.3 Momentum Conservation of the Mixture

By adding Eqs. (7.15) and (7.16) term by term, we obtain the total momentum equa-
tion. Since all the terms of the Eq. (7.16) are proportional to the average concentration
C that in the fluvial environment is always much less than one, in the resultant equa-
tion all these terms can be neglected, and the interphase forces cancel each other. So
that the total momentum conservation equation results as:
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∂UA

∂t
+ ∂

∂x

(
β2 AU 2

)+ ∂Sx/ρ

∂x
+ g A

∂zb
∂x

= −τo

ρ
B (7.17)

According to the shallow water hypothesis (hydrostatic pressure distribution) and
since we assumed that the bed slope is sufficiently small to consider the pressure
distribution hydrostatic indifferently along the normal or vertical direction, we have:

∂Sx
∂x

= ∂

∂x

(
1

2
ρ g Bh2

)

= ρ g Bh
∂h

∂x
(7.18)

and again according to the shallow water hypotheses (i.e., the bed shear stress in
unsteady and non-uniform flow is the same as in steady uniform condition under the
same hydrodynamic condition):

τo

ρ
= g Rh iE (7.19)

where Rh is the hydraulic radius of the cross section, and iE is the slope of the energy
line, that is, the energy dissipated per unit weight and length.

Finally, we obtain:

∂UA

∂t
+ ∂

∂x

(
β2 AU 2)+ Bhg

∂

∂x
(h + zb) = −g A iE (7.20)

7.4 Water-Sediment Coupling

CombiningEqs. (7.4), (7.10), and (7.17),weobtain the systemof equations governing
the flow and the bed evolution:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂A

∂t
+ ∂UA

∂x
+ B

∂zb
∂t

= 0

∂UA

∂t
+ ∂

∂x

(
β2U

2 A
)+ g A

∂

∂x
(h + zb) = −g A iE

∂ CA

∂t
+ ∂Qs

∂x
+ BC∗ ∂zb

∂t
= 0

(7.21)

The first two equations of the system coincide with the Saint-Venant equations
of the fixed-bed case, with the only exception of the new term B(∂zb/∂t) in the first
equation of the system.

By considering that the area A can be expressed in function of the water depth,
the system (7.21) contains the following dependent variables:

Qs ; C ; U ; h ; zb ; iE .
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Since the system (7.21) is composed of three equations only, its solution requires
three other equations (closure relations) in addition to the initial and boundary con-
ditions. The closure equations are usually based on local equilibrium hypotheses:

1. the slope of energy line is calculated with a uniform flow formula, that is, as if
the flow were locally uniform under the same hydrodynamic conditions: same
velocity and same depth. For instance, by adopting the Chézy formula, it is:

iE = U 2

χ2 Rh
= Q2

A2 χ2 Rh

2. the solid discharge is evaluated as if the sediment transport were locally in equi-
librium, that is, as if locally the flowwere steady and uniform, therefore by means
of an appropriate sediment transport formula:

Qs = fs(Q, h,B, χ, d, . . . )

At this stage, it is worth making a further simplifying hypothesis by assuming
that the sediment size distribution is uniform or that it may be represented with
a proper equivalent diameter d. We will show later how such hypothesis may be
removed;

3. the same approximation (local equilibrium) can be made for the sediment con-
centration C:

C = fc(Q, h,B, χ, d, . . . )

Moreover, it is worth expressing the concentration in function of the solid
discharge (Eq.7.5), although, as already stated, the term referring to the break
concentration—the first term of the third equation of the system—can be
neglected, as will be generally assumed below without loss of generality.

Should the variablesU and h be continuous, that is, without hydraulic jumps in the
examined stretch of the channel, we obtain a hyperbolic system of partial differential
equations, which was studied with the method of characteristics by Korteweg and de
Vries (1965).

In the further hypothesis of wide rectangular channel, the equations of the system
(7.21) can be rewritten per unit width. Moreover, we can observe that the solid
discharge per unit width qs = Qs/B essentially depends on two dependent variables
of the system: velocity and water depth, i.e., qs = func(U, h). Thus, we have:

∂qs
∂x

= ∂qs
∂U

∂U

∂x
+ ∂qs

∂h

∂h

∂x

In addition, for simplicity, wewill set β2 = 1 in the second equation of the system.
We thus obtain the following system of equations, here given in the matrix form:

∂U
∂t

+ AU
∂U
∂x

+ SU = 0 (7.22)
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where:

U =
⎡

⎣
h
U
zb

⎤

⎦ AU =

⎡

⎢
⎢
⎣

U h 0
g U g

1

C∗
∂qs
∂h

1

C∗
∂qs
∂U

0

⎤

⎥
⎥
⎦ SU =

⎡

⎣
0
g iE
0

⎤

⎦ (7.23)

are, respectively, the vector of the dependent variables, the matrix of coefficients,
and the vector of known terms. The eigenvalues (λ1, λ2, λ3) of the matrix AU are
obtained by solving the following equation:

det(AU − λI) = 0 (7.24)

where I is the identity matrix (or unit matrix or elementary matrix). This is a square
matrix, inwhich all the elements of the principal diagonal are one and all non-diagonal
terms are zero. Equation (7.24) leads to the following characteristic polynomial equa-
tion:

p(λ) = −λ3 + 2Uλ2 +
(

gh −U 2 + gh
1

C∗h
∂qs
∂U

)

λ

−ghU

(
1

C∗h
∂qs
∂U

− 1

C∗U
∂qs
∂h

)

= 0 (7.25)

By dividing Eq. (7.25) by (gh)1.5, we turn it into dimensionless:

λ̃3 − 2̃λ2Fr + λ̃
(
F2
r − 1 − Aλ

)+ Fr(Aλ − Bλ) = 0 (7.26)

where:

λ̃ = λ/
√
gh Fr = U/

√
gh

Aλ = 1

C∗h
∂qs
∂U

= 1

C∗
U

q

∂qs
∂U

Bλ = 1

C∗U
∂qs
∂h

= 1

C∗
h

q

∂qs
∂h

with q = U h.
The eigenvalues λi also represent the directions of the characteristic lines. The

characteristic lines are the lines of equation λi = dx/dt with (i = 1, 3), along
which discontinuities (the infinitesimal perturbations of the system variables) can
propagate.

Figure7.5 shows the dimensionless characteristics of the system in function of
the Froude number in the hypothesis, suggested for analytical simplicity, that the
solid discharge qs can be expressed as a power of the water depth and of the velocity:
(qs = as Um hn). The curves are parameterized by the ratio qs/q, which represents the
solid transport concentration. We can observe that when the transport concentration
decreases, the characteristic curves of the mobile-bed system tend to fail in those of
the fixed-bed system (λ1,2 = U ± √

gh).
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Fig. 7.5 Dimensionless characteristics of system (7.22) in function of the Froude number, for
different parameter values qs/q, assuming for the sediment transport the following power formula
qs/q = as U2 h−1

Here,we propose an explicit formof the solution of Eq. (7.25)which approximates
very well the exact solution and which, with respect to the de Vries solution, is also
suitable for the trans-critical condition (Fr = 1) and for relatively elevated transport
concentration:

λ̃1 = 1

2

(
Fr + 1 +

√
(Fr + 1)2 + 2(Aλ + Fr Bλ)

)

λ̃2 = 1

2

(
Fr − 1 +

√
(Fr − 1)2 − 2(Aλ − Fr Bλ)

)
(7.27)

λ̃3 = 1

2

(

Fr − 1 −
√

(Fr − 1)2 + 4Fr

Fr + 1
(Aλ − Bλ)

)

where λ̃i = λi/
√
gh (i = 1, 2, 3) are the characteristics written in dimensionless

form.
Indeed, when the Froude number is sufficiently different from 1 and the ratio

qs/q (transport concentration) and consequently the depth-averaged concentration C
are much lower than 1, the characteristics can be approximated with the following
expressions, as suggested by de Vries (1965):
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Fr < 1 Fr > 1
λ1 = U +√g h + O(C) λ1 = U +√g h + O(C)

λ2 = U −√g h + O(C) λ2 = U

1 − F2
r

(Aλ − Bλ)

λ3 = U

1 − F2
r

(Aλ − Bλ) λ3 = U −√g h + O(C)

(7.28)

This solution fails atFr = 1,where it yields (λ2 → 0 andλ3 → ∞) and (λ2 → ∞
and λ3 → 0), respectively. If the solid concentration is not very high, we can assume:

λ3 	 λ1, λ2 for Fr <∼ 0.85

λ2 	 λ1, λ3 for Fr >∼ 1.15

Such expressions confirm that the small bed perturbationsmigrate down- or upstream
depending on the flow regime (subcritical or supercritical, respectively), as seen in
the previous sections.

7.4.1 System in Normal Form

As said in Sect. 7.2.1.1, by neglecting the storage term (∂(Ch)/∂t) in the equation
of sediment mass conservation and the bed variation term (∂zb/∂t) in the total mass
conservation equation, the system (7.22) takes on a particularly simple form, as the
matrix of the terms of temporal variation is unitary (main diagonal terms are one and
off-diagonal terms zero), and consequently, the system can be rewritten in function
of the variables U, in the following form:

T
(

∂U
∂t

+ 

∂U
∂x

)

+ T SU = 0 (7.29)

where 
 is a diagonal matrix whose elements are the eigenvalues of the original
system:


 =
⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ (7.30)

The system (7.29) is said to be written in canonical form. The new matrix T has
been shown (Toro 2013) to be the matrix of the right eigenvectors, deriving from the
original matrix AU, by means of the following transformation:

T (AU − 
I) = 0 (7.31)
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where I is the identity matrix. In the observed case, after a series of steps, we have:

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 +UBλ λ1
λ1 −U

g
λ1 −U

λ2 +UBλ λ2
λ2 −U

g
λ2 −U

λ3 +UBλ λ3
λ3 −U

g
λ3 −U

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.32)

Thus, the system becomes:

(λk +UBλ)
D

Dkt
h + λk

λk −U

g

D

Dkt
U + (λk −U )

D

Dkt
zb = b′

k

with :
D

Dkt
= ∂

∂t
+ λk

∂

∂x
k = 1, 2, 3 (7.33)

Quite interesting is the form assumed by the system (7.33) when the eigenvalues
are approximated according to de Vries’s scheme (7.28):

Fr < 0.8

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ1 � U +√g h

λ2 � U −√g h

λ3 � U

1 − F2
r

(Aλ − Bλ)

Fr > 1.2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ1 � U +√g h

λ2 � U

1 − F2
r

(Aλ − Bλ)

λ3 � U −√g h

(7.34)

Consider the first case on mild streams (Fr < 0.8) (Fig. 7.6).

Along the characteristic λ1, of equation (
dx

dt
� U +√g h ), we have:

(
(U +√g h ) +UBλ

)(∂h

∂t
+ (U +√g h )

∂h

∂x

)

+(U +√g h )

√
g h

g

(
∂U

∂t
+ (U +√g h )

∂U

∂x

)

+
(√

g h
)(∂zb

∂t
+ (U +√g h )

∂zb
∂x

)

= b′
1 (7.35)

Along the characteristic λ2, of equation (
dx

dt
� U −√g h ), we have:

(
(U −√g h ) +UBλ

)(∂h

∂t
+ (U −√g h )

∂h

∂x

)

+(U −√g h )
−√g h

g

(
∂U

∂t
+ (U −√g h )

∂U

∂x

)
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−
(√

g h
)(∂zb

∂t
+ (U −√g h )

∂zb
∂x

)

= b′
2 (7.36)

Along the characteristic λ3, of equation

(
dx

dt
� U

1 − F2
r

(Aλ − Bλ)

)

, we have:

(
U (Aλ − Bλ)

1 − F2
r

)(
∂h

∂t
+
(
U (Aλ − Bλ)

1 − F2
r

)
∂h

∂x

)

+U (Aλ − Bλ)

g(1 − F2
r )

(
U (Aλ − Bλ)

1 − F2
r

−U

)(
∂U

∂t
+ U (Aλ − Bλ)

1 − F2
r

∂U

∂x

)

+
(
U (Aλ − Bλ)

1 − F2
r

−U

)(
∂zb
∂t

+
(
U (Aλ − Bλ)

1 − F2
r

)
∂zb
∂x

)

= b′
3 (7.37)

If in Eqs. (7.35), (7.36), and (7.37) we neglect the terms of order of concentration
C = O(10−3)with respect to those of higher order, as well as the term (∂zb/∂t)with
respect to h (∂U/∂x) following the Exner Eq. (7.7), the system (7.35–7.37) becomes:

along λ1

(
∂

∂t
+ (U +√g h )

∂

∂x

)(
U + 2

√
g h
)

= iE − ∂zb
∂x

along λ2

(
∂

∂t
+ (U −√g h )

∂

∂x

)(
U − 2

√
g h
)

= iE − ∂zb
∂x

along λ3
∂zb
∂t

+ U

1 − F2
r

(Aλ − Bλ)
∂zb
∂x

= 0 (7.38)

In this uncoupled model, the first two characteristic lines λ1,2 � U ± √
g h

coincide with those in the fixed-bed case, thus driving the perturbations of the hydro-
dynamic variables dU and dh. The corresponding bed perturbation associated with
them is of a lower order.

Vice versa, the third characteristic λ3 � U/(1−F2
r )(Aλ −Bλ) seems to drive the

bed perturbation dzb, while the free surface variation dh associated with it results
to be lower. The same behavior is maintained by supercritical flows with Fr > 1.2
(Fig. 7.7).

7.4.2 Boundary Conditions

In order to choose the right boundary conditions, the problem should be well posed at
boundaries. If the problem is properly set, the boundary conditions can be determined
by the characteristics entering the calculation domain.

By solving the characteristic polynomial Eq. (7.25) (see also Fig. 7.5), two of the
three characteristics appear to be always positive and one negative: two entering from
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Fig. 7.6 Layout of the three perturbation waves and their respective lengths for relatively slow
streams, Fr <∼ 0.8, according to Eqs. (7.35), (7.36), and (7.37) (Rosatti et al. 2004)

Fig. 7.7 Layout of the three perturbation waves and their respective lengths for relatively fast
streams, Fr >∼ 1.2, according to Eqs. (7.35), (7.36), and (7.37) (Rosatti et al. 2004)

upstream cross section, one entering from downstream cross section. Therefore, two
conditions are then set upstream, one downstream (Fig. 7.8).

In principle, these conditions can be given on any dependent variable (U, h, zb)
or on any of their combinations. However, such a system considers some conditions
as more appropriate than others (Sieben 1997). Intuitively, this conclusion can be
drawn from the inferences about the simplified compatibility Eqs. (7.38). The most
appropriate conditions are summarized in the following table proposed by Sieben
(1997).

The table shows that the downstreamcondition is suggested on thewater depth h or
on the velocityU in subcritical or trans-critical regime, and on the bed elevation zb in
supercritical conditions. Regarding upstream conditions with low Froude numbers,
the conditions are better on the velocity and on bed elevation, while the velocity and
water depth should be given in supercritical or trans-critical conditions.

Very often, however, the variable combinations are preferred: for instance, the
free surface elevation zb + h, or the liquid discharge q = U/h, or the solid discharge
qs = func(U, h).

Assigning the free surface elevation downstream gives good results in both sub-
critical and supercritical regimes, in that substantially the water depth is imposed in
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Fig. 7.8 Layout of the characteristics entering upstream and downstream

Upstream Downstream conditions
conditions h U zb

Fr < 1.2 Fr < 1.2 Fr > 1.2
U, zb Fr < 0.8

Fr < 0.8
h, zb
h,U 0.8 < Fr < 1.2 Fr > 1.2

Fr > 0.8

the former case, while this imposition especially influences the bed elevation in the
latter. Similarly, the assignment of the liquid and solid discharges upstream allows
the velocity U and the bed elevation zb to be imposed in subcritical flows, and it is
the same as imposing h and U in trans-critical and supercritical regimes.

7.5 Stationary Solutions: Section Enlargements
and Contractions

The analysis of the system (7.21) shows that the asymptotic stationary solution in a
prismatic channel coincides with the uniform flow profile. In stationary condition, in
fact, all the time derivatives of the system (7.21) vanish, so the twomass conservation
equations reduce to:

∂UA

∂x
= 0 (7.39)

∂Qs

∂x
= 0 (7.40)
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For solid discharge, we may assume, in all generality, the following relationship,
represented by a two-sided relation between the dimensionless sediment transport
rate � = Qs/(Bd

√
gΔ d) and the mobility parameter θ = τo/(ρgΔ d):

Qs = Bd
√
gΔ d Fθ (7.41)

where Fθ = func (τo/(ρgΔ d)) is a general function representing any type of bed-
load formula, so that Eqs. (7.39) and (7.40) become:

U h
∂B

∂x
+ B

∂Uh

∂x
= 0 (7.42)

Qs

B

∂B

∂x
+ Bd

√
gΔ d

∂Fθ

∂θ

∂θ

∂x
= 0 (7.43)

If we assume a quasi-rectangular prismatic channel (B = const), the above equa-
tions become, respectively:

U
∂h

∂x
+ h

∂U

∂x
= 0 (7.44)

∂Fθ

∂θ

∂θ

∂x
= 0 (7.45)

With reference to a generic uniform flow formula, like the Gauckler-Strickler one
(e.g., Eqs. (1.9) and (1.10), at page 14), where the bed roughness is represented by
a characteristic grain size d and the friction coefficient is inversely proportional to
d1/6, we have:

U = Kf

(
h

d

)1/6√
g Rh iE = Kf

(
h

d

)1/6 (
τo

ρ

)1/2

(7.46)

By inserting into the definition of the mobility parameter θ the above equation,
we have:

θ = 1

K2
f

U 2

gΔ d

(
d

h

)1/3

(7.47)

Equation (7.47) can be generalized as:

θ = 1

K2
f

U 2

gΔ d

(
d

h

)1/m

(7.48)

with m > 1 (see Table1.6 at page 13). By differentiating Eq. (7.48) with respect to
U and h, we obtain:

∂θ

∂U
= 2

θ

U
and

∂θ

∂h
= − 1

m

θ

h
(7.49)

http://dx.doi.org/10.1007/978-3-319-68101-6_1
http://dx.doi.org/10.1007/978-3-319-68101-6_1
http://dx.doi.org/10.1007/978-3-319-68101-6_1
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So that we obtain:

∂θ

∂x
= ∂θ

∂U

∂U

∂x
+ ∂θ

∂h

∂h

∂x
= 2

θ

U

∂U

∂x
− 1

m

θ

h

∂h

∂x
(7.50)

and, because of (7.44), we may conclude that:

∂θ

∂x
= θ

U

∂U

∂x

(

1 + 1

2m

)

(7.51)

which, inserted into Eq. (7.45), gives:

∂Fθ

∂θ

θ

U

∂U

∂x

(

1 + 1

2m

)

= 0 (7.52)

and
∂Qs/B

∂x
= 2d

√
gΔ d θ

∂Fθ

∂θ

θ

U

(

1 + 1

2m

)
∂U

∂x
= 0 (7.53)

Since ∂Fθ /∂θ �= 0, otherwise there is no sediment transport, the only possibility
is:

∂U

∂x
= 0 (7.54)

that is, the only possible solution of steady flow in a prismatic mobile-bed channel
is the uniform flow.

This conclusion is valid for any sediment transport formula and for any uniform
flow formula, in which the flow rate is inversely proportional to the flow depth. Since
a different situation in case of natural grain roughness is not realistic, the conclusion
can be taken to be valid in general.

Different solutions are possible only in non-prismatic channels (section enlarge-
ments or contractions). It is worth keeping in mind that in a mobile-bed channel, the
water surface profiles of gradually varied flows, which lead to the profile classifica-
tionM and S, cannot be applied.

However, the results of this theory can be utilized for short periods and modest
distances. In these conditions, the bed is considered as fixed and the terms of time
variation in the equation of water continuity and momentum as negligible. These
considerations can be applied, for instance, to analyze situations concerning channel
width variations. Simplified balances must be done with great care. As a matter
of fact, if the time interval is long enough, the altimetric variations of the bed can
decisively influence the behavior of the free surface.

In order to investigate the stationary solution of a long contraction, consider a
channel with a large rectangular section as schematized in Fig. 7.9 composed of two
stretches of different width. Let B1 be the width of a rectangular channel upstream of
the contraction and B2 the width of the downstream section (e.g., B2 < B1). Assume
that the channel is fed by liquid and solid discharges constant in time, denoted withQ
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andQs, respectively, and that the channel is sufficiently long. In stationary condition
(∂/∂t = 0), the flow is uniform upstream and downstream of the transit to the
restricted section.

In this case, the conservation of the liquid and solid masses can be imposed near
the width variation by assuming a power expression of the type Qs = csBUn for the
solid discharge, where cs is a suitable parameter not depending on U and h:

Q = h1 B1U1 = h2 B2U2

Qs = cs B1U
n
1 = cs B2U

n
2

from which we obtain:

h2 = h1

(
B1

B2

)(1−1/n)

= h1 R(n−1)/n (7.55)

U2 = U1 R1/n (7.56)

with R = B1/B2 (contraction ratio).
The asymptotic solution tends to a situation, in which the uniform flow establishes

upstream and downstream of the contraction but there is discontinuity between the
free and bed surfaces near the contraction with:

Δzb + h1 = h2 + Δh (7.57)

The value of these discontinuities can be calculated with the momentum balance
applied to the control volume of Fig. 7.9:

Fig. 7.9 Layout of a section contraction in a rectangular mobile-bed channel. The dotted red lines
represent boundary of the control volume
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Fig. 7.10 Variation in bed
and free surface near a
section contraction in a
rectangular mobile-bed
channel

B2 ρ g

[
1

2
h21 + Δzb

(
h2 + h1 + Δzb

2
− Δzb

2

)

− h22
2

]

= ρ B2 h2U2 (U2 −U1)

(7.58)

By inserting (7.55) and (7.56) into (7.58), we obtain:

Δzb
h1

= R1−1/n − 1 + 2F2
r1 R

R1/n − 1

R1−1/n + 1
(7.59)

where Fr1 = U1/
√
g h1 is the Froude number of the upstream reach. By inserting

Eq. (7.59) into (7.57), we obtain also the variation of the free surface level (Fig. 7.10):

Δh

h1
= 2F2

r1 R
R1/n − 1

R1−1/n + 1
(7.60)

In general, Δzb results to be bigger than Δh.
Within the limits of the one-dimensional approach, the resulting relations are also

suitable to section enlargements. In this case, of course, the variations change sign.
In general, the most critical hypothesis of this approach concerns the force against
the wall of the transition section. Moreover, independently of the Froude number,
we observe erosion and free surface lowering in contractions, but elevation of bed
and free surface in enlargements.
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If the problem had been faced with a fixed-bed scheme in a mild slope channel,
there would have been an upstream backwater profile. On the contrary, the asymp-
totic solution of the mobile-bed approach does not involve any gradually varied free
surface profile, but only a succession of two profiles of uniform flow with discon-
tinuity on the bed and on the free surface through the width change. In practice,
however, flood events often have an insufficient duration to the achievement of an
equilibrium profile of the bed. An additional phenomenon which tends to further
complicate the situation is the non-uniformity of the material, in that the grain size
sorting and armoring can further slow down the adjustment process of the bed.

Moreover, it is worth considering also the effect of the secondary circulations,
occurring in proximity of width variations, responsible for the formation of bars and
pools which, unlike one-dimensional schemes, cause local erosion or deposit values
significantly different from the average values.

7.6 Simplified Models

The time variation terms of the first two equations of the system (7.21) can be
neglected in first approximation compared to the respective terms of spatial variation:

∂U

∂t
	 g

∂h

∂x
and

∂h

∂t
	 U

∂h

∂x
(7.61)

Besides, for the reasons repeatedly expressed so far, in the third equation of the
same system, the time variation term of the concentration inside the volume control,
∂(CA)/∂t, can be neglected as well. In other words, we adopt a decoupled scheme.
Moreover, we can assume that the solid discharge only depends on the velocity, that
is:

∂qs
∂x

� dqs
dU

∂U

∂x
(7.62)

Should there be no discontinuity in variables U , h, and zb, we have:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h
∂U

∂x
+U

∂h

∂x
= 0

U
∂U

∂x
+ g

∂h

∂x
+ g

∂zb
∂x

= −g iE

dqs
dU

∂U

∂x
+ C∗

∂zb
∂t

= 0

(7.63)

After explicating ∂U/∂x from thefirst equation of the systemand after substituting
it into the two other equations of (7.63), we obtain:
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⎧
⎪⎪⎨

⎪⎪⎩

(

−U 2

g h
+ 1

)
∂h

∂x
+ ∂zb

∂x
= −iE

dqs
dU

(

−U

h

)
∂h

∂x
= −C∗

∂zb
∂t

(7.64)

We will apply the simplified system (7.64) to two particular solutions: the simple
wave model and the parabolic model.

7.6.1 The Simple Wave Model

Following Vreugdenhil and Vries (1973), we obtain a solution in the simple wave
form of the system; we neglect the term iE in the first equation of the system (7.64),
and thus, we retrieve:

∂h

∂x
= − 1

1 − U 2

g h

∂zb
∂x

(7.65)

which, substituted into (7.64), yields:

∂zb
∂x

⎛

⎜
⎜
⎝
dqs
dU

U

h

1

(1 − U 2

g h
)

⎞

⎟
⎟
⎠ = −C∗

∂zb
∂t

(7.66)

Equation (7.66) can be written as:

∂zb
∂t

+ cZ
∂zb
∂x

= 0 (7.67)

Equation (7.67) represents the equation of a simple wave moving with celerity:

cZ = dqs
dU

1

C∗
U

h

1

(1 − F2
r )

(7.68)

where we set Fr = U/
√
gh . Equation (7.68) coincides with λ3, already calculated

by de Vries with the method of characteristics (Eq.7.38 on page 181).
Having neglected the resistance term, the possibility of applying this procedure

is limited only to small distances and short time intervals.
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7.6.2 The Parabolic Model

The equation system is still (7.63). But here, we hypothesize that the flow can be
considered as locally uniform, which is less restrictive than the hypothesis on the
simple wave model. We thus obtain:

iE = if = −∂zb
∂x

(7.69)

The first term of Eq. (7.69) can be expressed with a uniform flow formula (e.g.,
Chézy’s), in which the water depth can be written in function of the solid discharge
per unit width and of the velocity (h = q/U ):

− ∂zb
∂x

= U 2

χ2 h
= U 3

χ2 q
(7.70)

Equation (7.70) is then differentiated with respect to the variable x:

∂

∂x

∂zb
∂x

= −3
U 2

χ2 q

∂U

∂x
(7.71)

The expression of ∂U/∂x derived from the above equation is inserted into the
second equation of the system (7.64), thus obtaining:

dqs
dU

(

− χ2 q

3C∗ U 2

)
∂

∂x

∂zb
∂x

= −∂zb
∂t

(7.72)

Equation (7.72) is usually written as:

∂zb
∂t

− κZ
∂2zb
∂x2

= 0 with : κZ = χ2 q

3C∗ U 2

dqs
dU

(7.73)

which represents the parabolic model. This model gives reliable results only for
elevated values of x and t. In other words, according toVreugdenhil andVries (1973),
the model is applied for x > 3 h/i. Since no time differentiations have been done in
deriving the model, all parameters can be made dependent on time. In particular, the
time dependence of the discharge (q = q(t), the flood hydrograph) can be inserted
in the diffusion coefficient κZ(t) .

7.6.2.1 Application

The solution of the parabolic model was employed by de Vries (1965) to define the
morphological scale of rivers.



156 7 Mathematical Models of Riverbed Evolution

Fig. 7.11 Layout of the morphological scale of a stream

Consider a stream flowing into a reservoir and suppose it initially in equilibrium
(uniform flow with constant liquid and solid discharges) (Fig. 7.11).

Suppose to lower the free surface of the reservoir by a quantity Δzo; the same
variation is imposed on the bed surface of the outflow section (x = 0). Since the
liquid and solid discharges are kept constant, the whole bed will tend asymptotically
to lower by the same quantity Δzo and become parallel to the initial position.

If the problem is dealt with a parabolic model, we can obtain the spatial and
temporal evolution of the bed lowering Δzb:

Δzb(x, t) = Δzo

(

1 − 2√
π

∫ Y

0
e−ξ 2

dξ

)

(7.74)

with:
Y = x

2

√∫ t

0
κZ(t) dt

(7.75)

For example, we can calculate how long a reduction of the levelΔzo in the outflow
section takes to produce a lowering which is equal to half the initial one, in a section
at the distance Lm from the outflow. That is:

Δzb(Lm,T0.5) = 1

2
Δzo

With a few simple steps, we obtain the time T0.5:
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T0.5 = L2
m

Ym
T [years]

with:

Ym =
∫ 1 year

0
k(t) dt � 1

3

b

i

∫ 1 year

0
qs(t) dt (7.76)

where qs represents the solid discharge proportional to the velocity by means of a
power law exponent b: qs = a Ub.

7.6.3 Complete Hyperbolic Model

In addition, we can obtain a complete hyperbolic model by combining the hypothesis
of the two models previously described:

∂zb
∂t

− κZ
∂2zb
∂x2

− κZ

cZ

∂2zb
∂t ∂x

= 0. (7.77)

with the same meaning of symbols.

7.7 Adaptive Models

In some cases, especially in the processes dominated by suspended load where the
transported material is very fine, it is advisable to leave out the hypothesis that
the solid discharge Qs coincides with the transport capacity Q∗

s , whereby transport
capacity is meant the solid discharge in equilibrium with the local hydrodynamic
conditions (uniform flow with no erosion or deposition). The actual transport rate
could be either higher or lower than the transport capacity, depending on the upstream
condition. In this case, the solid discharge becomes a dependent variable problem,
depending not only on the local hydrodynamic conditions but also on the initial and
boundary conditions. In other words, the solid discharge is then dependent on the
transport capacity by means of a differential equation. By approximately integrat-
ing the two-dimensional differential equations for the suspended sediment transport
(Eq. 6.14), we can show (Armanini and Silvio 1982) that the solid discharge Qs can
be linked to the transport capacity Q∗

s , by means of a first-order reaction equation:

Qs = Q∗
s − L∗ ∂Qs

∂x
− τ ∗ ∂Qs

∂t
(7.78)

The transport capacity is a function of the characteristics of the sediment and the
local hydrodynamic conditions: Q∗

s = func(U, h,B, d, . . . ). It is a relation provided

http://dx.doi.org/10.1007/978-3-319-68101-6_6
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Fig. 7.12 Adaptation length

by a proper formula for the sediment transport.L∗ represents the characteristic length
of the adaptation process.

Figure7.12 shows how the finer particles fail to adapt immediately to changes
of the hydrodynamic conditions that occur along the flow. The adaptation length
represents the distance necessary for the transport to adapt to the new hydrodynamic
conditions: the coarser particles will tend to adjust more rapidly than those with finer
diameter.

Analogous reasoning can be made for the time variations of the solid discharge.
The reaction tends to be more or less delayed based on whether particles are light
or not, respectively. The adaptation time τ∗ represents the characteristic time of the
process.

Rational expressions for adaptation length and time were obtained by an approxi-
mated integration of Eq. (6.14) (Galappatti 1983). A simplified expression, in explicit
form, was proposed by Armanini and Silvio (1988):

L∗ ws

h U
= a

h
+
(
1 − a

h

)
exp

(

−1.5 (
a

h
)−1/6 ws

u∗

)

(7.79)

where ws is the particle fall velocity; h is the water depth; a is the thickness of the
bedload layer. In (7.79), we can set a = 0.05 h (Fig. 7.13).

In a first approximation, we can assume that the adaptation time is directly pro-
portional to the L∗ and inversely to the depth-average velocity U , e.g.,

τ ∗ = ατ

L∗

U
(7.80)

where ατ = O(1).
FromEqs. (7.78) and (7.80), we can see that when L∗ →0 (and therefore, τ ∗ →0),

the solid discharge tends to the transport capacity: Qs →Q∗
s , which usually occurs

in the bedload transport. Vice versa, when L∗ → ∞, since Qs �= 0, from (7.78), we
have that ∂Qs/∂x→0, that is, the solid discharge remains constant: this is the case of

http://dx.doi.org/10.1007/978-3-319-68101-6_6
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Fig. 7.13 Adaptation length according to Armanini and Silvio (1988)

(a)

(b)

Fig. 7.14 Filling process of a trench for various particle sizes according to Armanini and Silvio
(1988): a immediate adaptation conditions (L∗ = 0); b accounting for the adaptive hypothesis

wash load, in which the solid discharge is constant and independent of hydrodynamic
conditions.

Equation (7.78) together with the equations of system (7.21) forms a system of
partial differential equations in the dependent variables U , Qs, h, and zb, which still
requires two closure relations, one for iE and the other for Q∗

s . The system can be
solved numerically.

Figure7.14 shows the simulation of the filling process of a trench dug across a
wide rectangular channel. The simulation was made by assuming a uniform-sized
material according to two particle size hypotheses: coarse material with a 0.300mm
diameter, or fine material with a diameter d = 0.075mm. The channel is fed with
constant solid and liquid discharges up to the complete filling of the trench.



160 7 Mathematical Models of Riverbed Evolution

Figure7.14a illustrates the results of the simulation performed under the hypothe-
sis of immediate adaptation, that is, with L∗ =τ ∗ =0. Figure7.14b shows the results
of the simulation carried out by taking the adaptation process into account, where
the adaptation length and time were calculated with Eqs. (7.79) and (7.80).

The figure shows that the two simulations with the coarse material (L∗/h � 0)
are basically the same: the filling process occurs by forming a delta which migrates
downstream, while the downstream edge of the trench in the meantime is subject to
erosion and the trench elongates downstream.

Different results occur with the fine material. In the adaptation hypothesis, the
filling process (Fig. 7.14b; graph on the right) occurs quite uniformly on the whole
length of the trench, whose bed thus appears to fill up nearly horizontally. In case
of immediate adaptation (Fig. 7.14b; graph on the left), instead, the filling process
of the fine material virtually occurs the same way as with the coarse material by the
delta formation.

7.8 Non-uniform Sediment Models

In the previous chapters, we have often underlined how insufficient it may be to
consider the transported sediment as made up of uniform particle sizes. In order to
overcome this simplification, it is advisable to subdivide the grain size curve of the
bed material (which is different than the size distribution of the transported material)
in a discrete number N of classes and write the conservation equations for the solid
mass of each class:

∂

∂t

∫

∀c

ρs cj d∀ +
∮

�c

ρs cj (
−→u s j · d−→

A ) = 0 (7.81)

With reference to the control volume and parameters given in Fig. 7.15, Eq. (7.81)
becomes:

∂h Cj

∂t
+ ∂qsj

∂x
+ C∗βj

∂zb
∂t

= 0 (7.82)

The term C∗ βj ∂zb/∂t of Eq. (7.82) represents the net flux per unit width through
the bed surface of the j-th class, written in agreement with Einstein’s hypothesis,
under which this flux is just proportional to the percentage βj of the class on the bed.

qsj and Cj are, respectively, the solid discharge and the concentration of the j-th
class. These two variables can be related to the transport capacity of the class, always
on the basis of Einstein’s hypothesis:

qsj = βj q
∗
sj and Cj = qsj

αcuUh
= βj

q∗
sj

αcuUh
(7.83)
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Fig. 7.15 Layout of the mass balance for the j-th particle size class sediments referring to the
control volume indicated by the dotted red line

where q∗
sj = func(U, h, dj, ρ, ρs, ...) is the transport capacity of the single class,

that is, the solid discharge which would form if the material were of uniform size
with diameter dj, hydrodynamic conditions being equal, and possibly including the
hiding factor. Such an expression corresponds to one of the solid transport formulae
previously described, properly adjusted to consider the hiding factor (Sect. 5.6, page
137).

By inserting Eq. (7.83) into Eq. (7.82), we obtain:

∂

∂t

(

βj

q∗
sj

αcuU

)

+ ∂

∂x

(
βj q

∗
sj

)+ C∗ βj
∂zb
∂t

= 0 (7.84)

Equation (7.84) is valid for both the suspended and bedloads.
Thus, we obtain so many differential equations as many grain size classes consid-

ered which, together with the conservation equations for momentum, for total solid
mass, and for water mass (system 7.21), form a system ofN+3 hyperbolic equations
that can be solved with proper numerical methods.

It is worth observing that the system will be properly set after correctly assigning
the closure relations (a uniform flow formula for the bed shear stress and a suit-
able sediment transport formula for the transport capacity), and the initial and the
boundary conditions. No other assumption is required, in principle.

However,most, ormaybe all, of the applications in the literature enlarge the control
volume of the mass balance of each size fraction by including a further layer, set
below the surface, called mixing layer or active layer, introduced by Hirano (1971)
(Fig. 7.16).

More precisely, Hirano’s model hypothesizes that there is a finite thickness layer,
δ, in which all classes mix instantaneously. Themixing layer is introduced tomediate
the bed surface irregularities and the particle size mixing induced by the bed form
migration.

http://dx.doi.org/10.1007/978-3-319-68101-6_5
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Fig. 7.16 Layout of the mixing layer and (bed and suspended) transport layers (Armanini and
Silvio 1989)

The extension of the control volume to this layer involves the addition of a further
term in the equation to represent the mass variations of each class in the layer itself.
The continuity equation (7.82) of the single size class is then rewritten as:

∂

∂t

(
Cj h + C∗ βj δ

)+ ∂qsj
∂x

+ C∗ β∗
j

∂

∂t
(zb − δ) = 0 (7.85)

Compared to Eqs. (7.82), (7.85) adds the second term and modifies the last. The
second term (C∗ βj δ) represents the variation in the j-th class material in the mix-
ing layer. The last term represents the net flux entraining from the lower surface
of the new control volume, that is, at the level (zb − δ). In this term, then, β∗

j is
equal to βj in deposit processes, while in erosion processes, β∗

j is set as equal to the
material percentage, (βj)subpv , of the j-th class below the mixing layer
(sub-pavement), a percentage which must be, however, known (as boundary
condition), i.e., β∗

j = (βj)subpv .
The thickness δ of the mixing layer is the most uncertain parameter of this

approach, while its dimension is of utmost importance for the time evolution of
the bed and its composition. The mentioned models usually assume (δ � 2 ∼ 3 d90)
in plane beds, while they assume (δ = 0.5 ΔD) in duned beds, where ΔD is the
average height of the bed forms.

Hirano’s formulation has some intrinsic limits later focused by different authors:
first among the others, the arbitrariness of the layer thickness (Armanini 1995; Rib-
berink 1987; Di Silvio 1992).

The complete equation system governing the phenomenon and written per unit
width appears as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂h

∂t
+ ∂

∂x
(hU ) + ∂zb

∂t
= 0

∂

∂t
(Uh) + ∂

∂x
(hU 2) + gh

∂h

∂x
+ gh

∂zb
∂x

= −τo

ρ

∂

∂t

⎛

⎝
N∑

j=1

βj

q∗
sj

αcuU

⎞

⎠+ ∂

∂x

⎛

⎝
N∑

j=1

βj q
∗
sj

⎞

⎠+ C∗ ∂zb
∂t

= 0

∂

∂t

(

βj

q∗
sj

αcuU
+ C∗ βj δ

)

+ ∂

∂x

(
βj q

∗
sj

)+ C∗ β∗
j

∂

∂t
(zb − δ) = 0

for (j = 1, . . . ,N)

(7.86)

in which the total solid discharge and total sediment concentration were calculated
by means of the hypotheses (7.83):

qs =
N∑

j=1

qsj =
N∑

j=1

βjq
∗
sj and C =

N∑

j=1

Cj =
N∑

j=1

qsj
αcUh

= βj

q∗
sj

αcUh
(7.87)

The first equation of the system (7.86) represents the conservation of the total
volume (liquid and solid), the second equation themomentumbalance of themixture,
the third equation the conservation of the total solid volume, and the following N
equations represent the mass conservation of each size class. It is also worth noting
that the third equation is the sum of theN successive equations (if β∗

j = βj, in deposit

processes) and that the equation
∑N

j=1 βj = 1 could be written in place of the third
equation.

In the system (7.86), the bed shear stress τo/ρ = func(U, es, h, . . . ) can be
expressed by means of a suitable uniform flow formula, while q∗

sj = func(U, h,
wsj, . . . ) can be expressed by means of an adequate solid transport formula.

The solution to the system is a remarkably complex operation, in that it is a system
of partial differential equations, in which the hydrodynamic equations and the sedi-
ment transport equations cannot always be decoupled. The system is usually solved
with the finite difference or the finite volume method. In some cases, the decoupling
between hydrodynamics and solid transport can be justified; sometimes, it is even
possible to calculate the hydrodynamic conditions as a succession of permanent flow
profiles. The decision whether to adopt or not these simplifications depends on the
type of problem to be solved.

Alternatively, the N equations of mass conservation of each size class can be
replaced by the conservation equations of themoments of the particle size distribution
βj (method of moments of the distribution) (Armanini 1989, 2002).

If we limit this approach to the first-order moment equation, and consider the
superior order moments as invariable, we obtain a system of four differential equa-
tions, whose first three coincide with the first three of the system (7.86), while the
fourth represents the spatial and temporal variation of the average diameter (Armanini
2002). The resulting four system characteristics are shown in Fig. 7.17.
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Fig. 7.17 Behavior of the characteristics in non-uniform sediment models. Equations were written
with the method of moments. The characteristic λ4 can be seen as referred to the average diameter
of the particle size distribution βj of the bed material. The average transport concentration is here
extremely high qs/q = 0.01 (Armanini 2002)

The first three characteristics (λ1, λ2, λ3) correspond to those of the system with
homogeneousmaterial (Eq. 7.27, on page 177). The fourth is specific to the process of
grain size selection. It can be associated with a particle size variation (also induced
by a variation in the water depth and velocity) which, however, always migrates
downward with the same transport velocity as the solid particles.

In conclusion, we can observe that:

• for sufficiently low concentration, the trend of the first three characteristics follows
that of the characteristics of the homogeneously sized mobile-bed channels. The
characteristics of the two cases coincide when the moment of the second order of
the particle size distribution vanishes;

• the fourth characteristic is always positive;
• the celerity of this characteristic essentially depends on the transport velocity of
the solid material and to some extent also on the mixing layer thickness;

• the fourth characteristic is the sameorder as the characteristics of the hydrodynamic
part; in other words, the grain size sorting effects can be studied also without
considering the variation in the bed elevation.

7.8.1 Physical Meaning of the Mixing Layer

As previously said, the hypotheses on the mixing layer are not convincing: The
determination of its thickness seems to be rather arbitrary; the immediate mixing
between size classes and the intrinsic layout hypothesis about a discontinuity of
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Fig. 7.18 Layout of different variable decompositions in the average and fluctuating components
(Armanini 1995)

the grain size distribution between the mixing layer and the underlying bed (sub-
pavement) are still dubious ideas.

A more convincing explanation of the process can be obtained (Armanini 1995)
by considering the instantaneous mass balance of the single class j in the control
volume indicated in Fig. 7.16:

∂C̃j h̃

∂t
+ ∂ q̃sj

∂x
+ C∗ β̃j

∂ z̃b
∂t

= 0 (7.88)

in which the mark (̃ ) was introduced to indicate instantaneous values or values
integrated on a period (e.g., on the time macro-scale of turbulence) much shorter
than the timescale of the morphological variations.

All the variables in Eq. (7.88) (solid discharge q̃sj, bed surface composition β̃j,
bed elevation z̃b, etc.) are instantaneous quantities subject to disordered fluctuations
induced by the bed surface fluctuation, due to macro-vortices and especially to the
migration of bed forms.

With reference to Fig. 7.18, we can divide these instantaneous variables into aver-
age and fluctuating components. In order to take into account the non-stationarity
at large timescale, for instance, the non-stationarity due to erosion and deposition
processes during a flood passage, it is advisable to refer to ensemble averages, that
is, to the arithmetic means on a great number of realizations, just as the case of turbu-
lence in non-stationary processes at large timescale. Below, the unmarked symbols
will be referred to ensemble average values, while the fluctuating components (with
respect to this average) will be denoted with the symbol prime ( ′).

β̃j(t, x) = βj + β ′
j

q̃sj(t, x) = qsj + q′
sj

C̃j(t, x) = Cj + C′
j

z̃b(t, x) = zb + z′b (7.89)
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in which the averages of the fluctuating components are equal to zero.
By inserting the variable decompositions (7.89) into Eq. (7.88) and after averaging

the obtained equation on a great number of realizations, we have:

∂Cjh

∂t
+ ∂qsj

∂x
= C∗

(

−(β0)j
∂zb
∂t

− (β0)
′
j

∂z′b
∂t

)

(7.90)

The last term in Eq. (7.90) represents the average of the products of the fluctuating
components of the size composition of the class j-th and of the displacement velocity
of the bed surface (∂zb/∂t). This term is generally different fromzero and its definition
represents a typical closure problem. One possible solution is to express this term
with a Boussinesq diffusive model.

(β0)
′
j

∂z′b
∂t

= εz

(
∂βj

∂y

)

y=zb

(7.91)

where εz is a suitable diffusion coefficient and y is the vertical axis (y ≤ zb) positive
downward. βj, the percentage of the class j-th on the bed, is here function of the
vertical coordinate y: βj = βj(x, y, t), while (β0)j = βj(x, y = zb, t) is its average
value on the surface (y = zb).

By integrating Eq. (7.91) on a finite thickness δ, we obtain an equation similar to
Hirano’s, but with the addition of the diffusive term.

Equation (7.91) shows that the mixing process on the bed is a continuous, non-
instantaneous fluctuating process which cannot be confined to a finite thickness layer
as, on the contrary, is assumed in themixing layer process. Such an observation shows
the limits of Hirano’s mixing layer theory, especially for the arbitrariness about the
layer thickness which, as a matter of fact, results to be function of the spatial and
temporal integration phase of the mathematical model employed.

Hirano’smixing layer equation,moreover, lacks in diffusive terms and thus cannot
describe the particle size selection processes below this layer. Such processes are, in
some cases, very important.

The models based on the mixing layer are, however, the only complete tools
today available to describe morphological and granulometric evolution processes in
streams. The observationsmade so far lead to the conclusion that in field applications,
the mixing layer thickness must be significantly higher than that indicated by the
relations previously provided for to evaluate the thickness.

7.8.2 Non-uniform Sediment Adaptive Models

The adaptive scheme, introduced in Sect. 7.7, can be always included in non-uniform
sediment models.
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The non-immediate adaptation scheme assumes a certain importance in presence
of spatial or temporal variations of hydrodynamic properties of the stream in presence
of suspended load. What is required is to modify the closure relations (Eq.7.83) on
page 199, by substituting themwith somanydifferential relations similar toEq. (7.78)
on page 194; e.g.,

qsj = βj q
∗
sj − L∗

j

∂qsj
∂x

− τ ∗
j

∂qsj
∂t

(7.92)

and similarly for the concentrations, for which we can set:

Cj � qsj
αcuUh

(7.93)

where L∗
j and τ ∗

j are the adaptation length and adaptation time which can be calcu-
lated with Eqs. (7.79) and (7.80), respectively. Thus, the resulting equation system
is as follows:

⎧
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∂x
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∂zb
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= −g iE

∂
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j=1

qsj
αcu U

) + ∂

∂x
(

N∑

j=1

qsj) + C∗ ∂zb
∂t

= 0

∂

∂t

(
qsj

αcu U
+ C∗ βjδ

)

+ ∂

∂x
qsj + C∗ β∗

j

∂

∂t
(zb − δ) (j = 1, . . . ,N)

qsj = βj q∗
sj − L∗

j

∂qsj
∂x

− τ ∗
j

∂qsj
∂t

(j = 1, . . . ,N)

(7.94)

in which q∗
sj = func(U, h, dj, ρ, ρs, ....) is the transport capacity of the single size

class, including any hiding effect, and thus, in principle, function of the complete
particle size distribution curve (βj, j = 1,N) of the bed material.

7.8.3 Two-Dimensional Depth-Integrated Models

The approach adopted to derive the one-dimensional depth-integrated models can be
easily applied to two-dimensional depth-integrated models. In this case, in addition
to the conservation equations of the total (liquid + solid) mass (Eq.7.95) and of
solid mass (Eq.7.96), it is necessary to write the momentum balance equations,
respectively, in the two horizontal directions x1 and x2 (Eqs. 7.97 and 7.98):

∂

∂t
(h + zb) + ∂hU1

∂x1
+ ∂hU2

∂x2
= 0 (7.95)

∂

∂t
(Ch + C∗ zb) + ∂(qs)1

∂x1
+ ∂(qs)2

∂x2
= 0 (7.96)
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∂hU1

∂t
+ ∂hU1U1

∂x
+ ∂hU1U2

∂x2
+ g

∂h + zb
∂x1

= −τo1

ρ
(7.97)

∂hU2

∂t
+ ∂hU1U2

∂x1
+ ∂hU2U2

∂x2
+ g

∂h + zb
∂x2

= −τo2

ρ
(7.98)

(qs)1 =∫h cu1dy and (qs)2 =∫h cu2dy represent the sediment fluxes in the directions
x1 and x2, respectively, where y is the vertical direction, and c is the local value of
the solid concentration.

U1 andU2 are the depth-integrated velocities, and τo1 and τo2 the bed shear stress
components in the horizontal directions x1 and x2. C is the depth-averaged solid
concentration.

The system (7.95–7.98) contains only the horizontal components of the velocity
(U1 andU2), that is, it does not contain the vertical velocity components and, as such,
it cannot simulate the secondary circulations with horizontal axis, which instead are
also composed of the vertical component of the velocity vector.

In river environment, however, the secondary circulations are extremely important,
as they are responsible, for example, of bar formation and local scours.

One of the most important consequences of the secondary circulations is repre-
sented by a different orientation of the bed shear stress with respect to the orientation
of the streamline of the depth-average velocity. In particular in the presence of a cur-
vature of the streamline, the secondary circulations induce a component of the bed
shear stress τon in direction normal to the streamline of the depth-averaged velocity
vector, which in turn determines a normal component of the solid discharge. This
situation is sketched in Fig. 7.19.

In two-dimensional depth-integrated models (2DH models), this effect can be
simulated by adding a normal component of the bed shear stress as a function of the
curvature of the streamline.

The normal component of the bed shear stress can be calculated in different ways
(Odgaard 1989). An expression suitable for this purpose has already been introduced
in Sect. 3.5.1 at page 81, by adopting a simplified approach suggested by Rozovskii
(1957):

τon = 2
( n

κ

)2 1

(2 + n)(3 + n)
ρ u2∗x

h

rm
= Aτ ρ u2∗x

h

rm
(7.99)

where rm is the radius of curvature of the streamline of the depth-averaged veloc-
ity. n is the power law exponent for the vertical distribution of velocity (ui =
u∗ i (n/κ) (z/h)1/n); it assumes values ranging between 7 and 11 depending on the
roughness of the bed, higher values of n correspond to higher roughness. κ = 0.41
is the von Kármán constant.

The parameter Aτ depends on n and κ according to the following expression:

Aτ = 2
( n

κ

)2 1

(2 + n)(3 + n)
(7.100)

http://dx.doi.org/10.1007/978-3-319-68101-6_3
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Fig. 7.19 The normal
component of the bed shear
stress in a curve streamline

The next table shows the values of coefficient Aτ for some values of the power
law exponent n:

n 7 8 9 10 11 12
Aτ 6.48 6.92 7.30 7.63 7.91 8.16

The radius of curvature rm of the streamline can be expressed in function of the
components of the depth-averaged velocity vector, U1 and U2, and their gradients:

rl =
(
U 2

1 +U 2
2

)3/2

U 2
1

∂U2

∂x1
−U 2

2
∂U1

∂x2
−U1U2

∂U2

∂x2
+U1U2

∂U1

∂x1

(7.101)

The sign of the above expression is taken as positive if the rotation of the particle
is clockwise, negative when it is counterclockwise.

In order to properly simulate the effect of the secondary circulation, it is necessary
(Parker 1984) to include a parameter that explicitly takes into account the slope of
the bed in the expression of the solid flow rate (Fig. 7.19):

(qb)s = qb
√

1 +
(

αr√
θ

∂zb
∂n

)2
and (qb)n = qb h

αr√
θ

∂zb
∂n

(7.102)
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where αr is a suitable parameter of order unity.

∂h

∂n
= sign

(
1

rl

)(
∂zb
∂x1

sin βo − ∂zb
∂x2

cosβo

)

(7.103)

and βo is the sloping angle of the bed. As a consequence, the solid flow rate does not
follow the direction of the bed shear stress.

7.8.4 Two-Dimensional Models in a Vertical Plane

The depth-integrated models, under shallow water assumptions, are not suitable to
simulate the diffusive effects due to turbulence, in particular when the suspended
load is important. In this case, we have to resort to complete three-dimensional
models. These models are rather complex, because they also have to include suitable
sophisticated turbulence closure models, capable to correctly simulate the water-
particle interactions.

In some applications, however, it is possible to make use of simplified two-
dimensional models in the vertical plane.

In this case, it is useful to include the possible effect of particle size sorting.
For this purpose, the scheme for simulating the morphological processes by taking
into account the non-uniformity of the particle size can be also extended to two-
dimensional models in the vertical plane, especially for the suspended sediment
transport. It needs to numerically integrate the conservation equation for the solid
volume, expressed in concentration terms, i.e., Eq. (6.14) on page 147, rewritten for
the volume concentration of the generic j-th class:

∂cj
∂t

+ ∂ux cj
∂x

= ∂

∂y
(wsj cj + βεε

∂cj
∂y

) (j = 1,N) (7.104)

In this case, the effect of particle size interaction between classes is introduced in
the boundary condition. The downward flux (deposit) for the single class can be set
as equal to wsjcj (Fig. 7.20), while the upward flux (erosion) can be assumed to be
proportional to the concentration βj of the bed class, that is, equal to βjε∂cj/∂y.

The net flux at the level (y = a) is:

(

wsjcj + βjε
∂cj
∂y

)

y=a

(7.105)

As a boundary condition on the lower boundary (y=a), we can hypothesize that
the bed concentration value is locally the same as in the equilibrium condition:

(cj)y=a = c∗
aj (7.106)

http://dx.doi.org/10.1007/978-3-319-68101-6_6
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Fig. 7.20 Bed boundary
conditions for two- or
three-dimensional schemes
of non-uniform sediment
models (Armanini and Silvio
1989)

or, alternatively, that the erosive flux (upward) assumes the same value as in equilib-
rium condition; in this case, we have:

(

ε
∂cj
∂y

)

y=a

= −wsjc
∗
aj (7.107)

where c∗
aj represents the equilibrium concentration at the reference level (y = a) for

every j-th class. It is a function of the local hydrodynamic variables, which can be
calculated with the methods explained in Sect. 6.3.3 on page 152.

Equation (7.104), written for each grain size class, must be coupled with a mass
balance equation for every class in the mixing layer δ, similar to the last N equations
of the system (7.86), in which the net flux on the upper boundary of the mixing layer
is represented by (7.105):

∂

∂t

(
C∗ βjδ

)+ C∗ β∗
j

∂

∂t
(zb − δ) =

(

wsjcj + βjε
∂cj
∂y

)

y=a

(7.108)

In (7.108), β∗
j is equal to βj in the deposition stages, while during the erosion

stages, β∗
j is set as equal to the percentage (βj)subpv of the j-th size class of the

material below the mixing layer (sub-pavement) β∗
j = (βj)subpv , a percentage that,

however, must be known a priori.
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Chapter 8
Local Scours

8.1 Introduction

The suspended sediment and bedload transport in a turbulent channel flow are
basically governed by the turbulence generated by the bed (wall turbulence). How-
ever, there are situations where the bed experiences the effects of free turbulence
phenomena, such as boundary layer separation and secondary circulations induced
by hydraulic structures inserted in the channel. These secondary vortices interact
with the bed and lead to local scour phenomena, which in their turn reinforce and
heighten the original secondary circulations which generated them. These phenom-
ena that typically appear near somehydraulic structures cannot be easily systematized
since their explanation requires a complete three-dimensional approach. However,
their main characteristics can be quantified by means of empirical formulae, which
are also useful for dimensioning the relevant hydraulic works. The main parame-
ters responsible for localized scours can also be conveniently identified through the
dimensional analysis which is not only particularly useful to understand whether all
the variables of the phenomena have been included in the empirical formulae, but
also suitable for designing the works and verifying their stability. In order to get a
general framework for local scours, we should first consider a width contraction due
to hydraulic structures inserted into the river. To this end, the case of a local width
contraction in an erodible-bed stream, seen from a one-dimensional perspective of a
mobile-bed channel, may be of help.

8.2 Contraction Scour: A One-Dimensional Analysis

Consider a large quasi-rectangular channel of width Bo, in which a contraction of
width, Br , is inserted, as shown in Fig. 8.1.

Under constant liquid and solid discharges, the asymptotic solution (∂/∂t = 0)
leads to uniform flow conditions upstream and downstream of the restriction with

© Springer International Publishing AG 2018
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Fig. 8.1 Layout and notation of scour at width contraction

constant flow depth ho and depth average velocity Uo, as explained in Sect. 7.5
(page 148), while across the contraction a local excavation takes place, as illustrated
in Fig. 8.1. Be hu = ho and hd = ho the water depths upstream and downstream of
the contraction, after the two- and three-dimensional effects have been exhausted,
and be hr the water depth inside the contraction.

Through the width variation, the conservation of the solid and liquid volume rates
can be imposed. If, for simplicity, we assume a power law formula to express the
sediment transport rate, e.g., Qs = cs BUmh−n with cs ,m = 3 ∼ 5 and n = 0 ∼ 0.5
as suitable parameters independent of the velocity and the depth, we have:

http://dx.doi.org/10.1007/978-3-319-68101-6_7
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Q = hoBoUo = hr BrUr (8.1)

Qs = cs BoU
m
o h

−n
o = cs BrU

m
r h−n

r (8.2)

which yield:

Ur = Uo
ho
hr

Bo

Br
= UoR

ho
hr

(8.3)

hr = ho

(
Bo

Br

)(−1/n) (
Ur

Uo

)(−m/n)

= hoR
(−1/n)

(
Ur

Uo

)(−m/n)

(8.4)

with R = Bo/Br , the width contraction ratio.
Combining Eqs. (8.3) and (8.4), it follows:

Ur = UoR( 1+n
m+n ) (8.5)

hr = hoR( m−1
m+n ) (8.6)

With the above-mentioned values of the exponents of the transport law (e.g.,
m = 3 ∼ 5 and n = 0 ∼ 0.5), we, respectively, obtain:

Ur = UoR
(0.43∼0.20) (8.7)

hr = hoR
(0.57∼0.80) (8.8)

If we hypothesize that downstream of the contraction a localized energy loss,
ΔEd (per unit weight), occurs as a consequence of a sudden enlargement, the energy
balance gives:

Hd = Hr − ysd − ΔEd (8.9)

Hu = Hr − ysu (8.10)

where Hu , Hd , Hr denote the specific energy H = h + U 2/(2g) upstream, down-
stream, and inside the contraction, respectively, while ysd denotes the variation of
the bed elevation between the downstream reach and the contraction, and ysu the
difference in bed elevation between the upstream reach and the contraction. Given
that in the steady condition Hu = Hd , by comparing (8.9) and (8.10) we have:

ysu = ysd + ΔEd (8.11)

By replacing (8.5) and (8.6) into (8.10), we have:

ysu
ho

= R( m−1
m+n ) − 1 + F2

ro

2

(
R2( 1+n

m+n ) − 1
)

(8.12)
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that is,
ysu
ho

= R(0.80∼0.57) − 1 + F2
ro

2

(
R(0.40∼0.86) − 1

)
(8.13)

Fro = Uo/
√
gho is the Froude number of the undisturbed flow. The third right-hand

term in Eq. (8.13) containing this parameter is negligible when the flow ismoderately
mild (Fro << 1). However, generally, ysu turns out to have an absolute value higher
than, or atmost equivalent to the difference between thewater depths in the restriction
and in the undisturbed section (Δh = hr − ho).

8.2.1 Two- and Three-Dimensional Effects

The application of the one-dimensional theory generally leads to underestimate the
maximum scour depth at width contractions. This underestimation can first be justi-
fied by the fact that the velocity in the contraction is non-uniformly distributed along
the width, especially in the large cross section (small depth/width ratios). As a matter
of fact, the velocity of the contraction close to the lateral walls is generally higher
than the average velocity assumed in the one-dimensional approach. Moreover, the
spatial acceleration close to the contraction is also the cause for the vortex stretching
experienced by the secondary circulations in the transverse plane (Fig. 8.2).

The vorticity strengthening leads to an increase in the transverse bed shear stress,
which induces a local scour near the constriction head. Under these conditions, the
local scour tends to increase and modify the bed channel, as well as reinforces and
stabilizes the secondary circulation, until the local equilibrium is achieved between
the entrainment force induced by the bed shear stress and the gravity force, which
tends to bring the grains back onto the scour bed.

Fig. 8.2 Layout of vortex stretching close to a localized section constriction



8.2 Contraction Scour: A One-Dimensional Analysis 177

8.2.2 Clear-Water Scours and Live-Bed Scours

The one-dimensional balance previously shown has also the limit to adopt a power
law monomial formula for the sediment transport rate. This type of formulation
is generally acceptable in conditions of high mobility. However, a larger validity
estimation of these phenomena can be obtained by adopting a binomial formula that
includes the Shields critical mobility parameter θc, like the Meyer-Peter and Müller
formula (Eq. (5.61) at page 112):

Qs = 8 Bd
√
gΔd (θo − θc)

3/2 (8.14)

In this case, instead of (8.6) we obtain the following relation between the depth hr
in the constriction and the undisturbed flow depth ho:

hr = ho
R4/7

(
1 − θc

θo
(1 − R−2/3)

)3/7 (8.15)

where θo denotes the mobility parameter of the undisturbed flow. With a procedure
analogous to that of Sect. 8.2 (page 173), we finally obtain:

ysm
ho

= R4/7

(
1 − θc

θo
(1 − R−2/3)

)3/7 − 1

+ F2
ro

2

(
R6/7

(
1 − θc

θo
(1 − R−2/3)

)6/7

− 1

)
(8.16)

A similar result was achieved by Laursen (1962) on the basis of a previous work
of Straub (1940). Moreover, it is worth observing that in the restricted section an
erosion can also occur even if the mobility in the upstream section is lower than the
critical one (θo ≤ θc). The erosion proceeds until the incipient motion condition is
achieved inside the constriction. The prediction of the maximum excavation carried
out with the 1D theory given by Eq. (8.16) must, however, be completed by adding
the effect of the secondary circulations. The excavation process that occurs when the
mobility parameter of the undisturbed flow is less than the critical one is identified
as clear-water scour. If this is the case, by neglecting the kinematic effects (the third
term of Eq. (8.16)), e.g., if Fro<<1, the equation becomes:

ysm
ho

= R6/7

(
θo

θc

)3/7

− 1 (8.17)

We easily realize that the scour extent in this condition can be higher than that
occurring when, other parameters being equal, the mobility of the upstream flow

http://dx.doi.org/10.1007/978-3-319-68101-6_5
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Fig. 8.3 Maximum scour value normalized to the undisturbed water depth ho in function of the
ratio between mobility and critical parameters of the undisturbed flow, for different values of the
width contraction ratio R, according to the one-dimensional theory

Fig. 8.4 Typical time development of a local scour in clear-water and live-bed conditions

exceeds the critical mobility because, in the latter condition, the solidmaterial carried
from upstream by the incoming flow feeds the excavation and reduces its maximum
value (live-bed scour) (Fig. 8.3).

The scour development is observed to have a gradual, quite monotonous trend in
clear-water conditions, while it can show an oscillatory behavior in live-bed condi-
tions (Fig. 8.4).
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Table 8.1 Types of abutments in Hoffmans’ formula (Eq.8.18) (Hoffmans and Verheij 1997)

Types of artefacts Acronym b/l α Kb

Circular pier CP 1.5

Semicircular pier SCP <3 1.5

Semicircular end SCE1 <3 1.5

SCE2 3−5 2.25

SCE3 >5 3.0

Vertical wall
abutment

VWA 3.0

Streamlined
wing-wall
abutment

WWS1 0.2 45◦ 0.75

WWS2 0.2 35−45◦ 1.25

Blunt wing-wall
abutment

WWB1 0.5−1.5 30◦ 1.5

WWB2 1.5−2.5 30◦ 2.0

Triangular
abutment

TS 45◦ 1.0

Spill-through
abutment (1.5:1)

ST1 0.2 0.75

Spill-through
abutment (1:1)

ST2 0.2 1.0

Spill-through
abutment (1:1)

ST2 0.5−1.5 1.5

8.2.3 Empirical Formulae for the Maximum Scour Depth
at Section Contractions

The maximum scour depth also depends on the shape of the structure forming the
constriction, usually a bridge abutment or some other artifacts, or provisional works
built during the construction phase of complex hydraulic structures.

The effect of secondary circulations on the maximum scour depth can be hardly
deduced analytically, soweneed to adopt empirical approaches. In the literature, there
are different empirical formulae to quantify themaximumerosion near a constriction:
many also have a non-dimensionally correct structure and therefore are valid only
under specific conditions, insomuch that they do not take some generally important
parameters into consideration.

Among them, Hoffmans’ formula (Hoffmans andVerheij 1997) seems to be struc-
tured in a rather complete manner:

ysm
ho

= R2/3 − 1 + Kb
(Bo − Br )

ho
tanh

ho
Bo − Br

for Uo > Ucr (8.18)
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Fig. 8.5 Types of abutments in Hoffmans’ formula (Eq.8.18) (Hoffmans and Verheij 1997)
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where ysm is the maximum scour depth and Kb is a coefficient which basically
depends on the form of the abutment (Table8.1). Equation (8.18) is valid in live-bed
conditions (Uo>Ucr ). Quite interestingly, the first two terms in (8.18) coincide with
the scour in the one-dimensional approach (Eq.8.13) by assigning the value 0.667 to
the exponent and neglecting the kinematic effect of the flow (Fr �1); the third term
of Eq. (8.18) represents the secondary effects. The formula is valid for quite long
restrictions. For relatively high depths (ho> Bo − Br ), the formula is reduced to:

ysm
ho

� Kb
(Bo − Br )

ho
(8.19)

while for low depths we have:
ysm
ho

� Kb (8.20)

Table8.1 shows the values of the form coefficient Kb. The acronyms correspond to
the types described in Fig. 8.5.

8.2.4 Particle Size Effect

The observations so far show that the influence of particle size on the maximum
scour depth is not significant, unless in the case of the flow velocity close to that of
incipient motion, as also appears from Eq. (8.17) by using Meyer-Peter and Müller’s
formula. According to Melville (1992) and Graf and Altinakar (1998), the particle
size effect becomes important when the ratio b/d50 between the contraction width b
and the material d50 exceeds 50, that is:

ysm � 2b for b/d50>50 (8.21)

8.3 Scour at Bridge Piers

The bridge pier placed in a stream can be seen as a width reduction in the middle
of the flow, rather than on lateral walls. Thus, the approach to this problem will be
closely analogous to that adopted for the section contraction. The scour at bridge piers
is a topic of great importance, widely and deeply analyzed, even with sophisticated
mathematical models, nonetheless the approach based on empirical formulations
turns out to be still the most diffused and reliable. The scour starts laterally to the
pier, in the region of maximum longitudinal acceleration, to migrate to the front and
rear of the pier. Particularly interesting is the fact that as the local scour develops, the
secondary vortices strengthen at both lateral sides of the pier, thus creating a single
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Fig. 8.6 Layout of a longitudinal scour profile localized near a bridge pier

Fig. 8.7 Layout of the horseshoe vortex near the localized scour of a bridge pier

horseshoe vortex (Chabert and Engeldinger 1956; Raudkivi and Sutherland 1981)
(Figs. 8.6 and 8.7).

The wake vortices downstream of the pier also contribute to the scour; they are
due to the separation of the boundary layer whose characteristics are often typical
of the von Kármán shedding with Strouhal numbers St = fS Dp/Uo � 0.19 ∼ 0.21
for circular-shaped piers, where S f is the vortex frequency.

8.3.1 Maximum Scour at Bridge Piers

In bridge piers, the effects of the flow contraction, analyzedwith the one-dimensional
theory, can often be neglected, in that the pier width is modest compared to the stream
width. However, in the literature this effect is sometimes neglected even if, strictly
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speaking, it should not be; so this aspect needs to be considered before applying
formulae that do not take this effect into account.

The different effects and parameters, which contribute to determine the maximum
scour depth, can be assessed by the dimensional analysis. Generally speaking, the
parameters influencing the maximum scour entity ysm at a bridge pier are: the undis-
turbed flow velocity Uo, the water depth ho, the undisturbed bed width Bo, the bed
shear stress τo, the water density ρ, the bed-material density ρs , the water viscosity
μ, the gravity acceleration g, the longitudinal dimension of the pier Dp, or the diam-
eter in circular piers, the pier shape which can be expressed by means of a proper
shape factor S f p, the mean bed-material diameter d and, if necessary, a significant
parameter of the particle size distribution (for instance, its relative variance σg). In
other words, we have:

f1(ysm,Uo, ho, Bo, τo, ρs, ρ,μ, g, Dp, S f p, d,σg) = 0 (8.22)

The dimensional analysis makes it possible to reduce the thirteen parameters
which appear in the previous relation into the following ten dimensionless groups:

ysm
Dp

= f2

(
u2∗

g Δ d
,

ρu∗ d

μ
,

Bo

Dp
,

ho
Dp

,
d

Dp
,
Uo

u∗
,

Uo√
g ho

, S f p, σg

)
(8.23)

where we set u2∗ = τo/ρ and Δ = (ρs − ρ)/ρ.
The left-hand group represents the maximum scour non-dimensionalized with

respect to the pier width. This parameter, being apparently the most significant, is
usually chosen to non-dimensionalize the maximum scour and replaces the flow
depth used in the one-dimensional approach.

The first two groups on the right-hand side of the equals sign,
(
θ = u2∗/(g Δ d)

)
and (R∗ = ρu∗ d/μ), are respectively the flow mobility parameter and the grain
Reynolds number, two parameters already highlighted by the Shields analysis on
incipient motion. They especially influence the incoming undisturbed flow, in the
sense that they determine the undisturbed sediment transport rate and bed forms.

The third parameter (Bo/Dp) is the relative pier width, already focused by the
one-dimensional theory of contractions: such a parameter is especially significant
when one or more piers produce a considerable reduction in the flow width.

The fourth parameter (ho/Dp) represents the encumbrance of the pier with regard
to the water depth, while (d/Dp) denotes the grain size compared to the pier dimen-
sion. The ratio between these two parameters (ho/d) represents the relative grain
submergence, the last being a crucial element in itself in case of low submergence
and deeply affecting the following sixth parameter. The sixth parameter represents
the friction coefficient (e.g., U/u∗ = χ/

√
g according to Chézy’s formula) which

usually depends on the relative roughness (e.g., the ratio ho/d between the previ-
ous two parameters) and on the mobility parameter in case of roughness due to bed
forms and grain Reynolds number; both dimensionless groups can then replace this
parameter.
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The seventh group is the Froude number of the undisturbed flow (Fro =
Uo/

√
gho), a parametermainly affecting themorphodynamic conditions of the undis-

turbed flow. Obviously, should the parameter be rather high, it can influence espe-
cially the scour in front of the pier, since this parameter is a decisive factor for the
growth of the free surface on the pier front.

The eighth and the ninth parameters denote the pier form and the particle size
gradation of the bed material, respectively.

Quite clearly, these parameters can each be combined with the others, and there-
fore, the maximum scour depth can be expressed in function of dimensionless
groups which are combinations of those previously mentioned.1 The problem can be
approached with the scheme used for width contractions, that is, by considering the
scour as a combination of one- (Eq. 8.16) and two- or three-dimensional effects:

ysm
Dp

= ho
Dp

[
R4/7

(
1 − θc

θo
(1 − R−2/3)

)3/7 − 1

+ F2
ro

2

(
R6/7

(
1 − θc

θo
(1 − R−2/3)

)6/7

− 1

) ]

+KFr (Fro)Kh(
ho
Dp

)Kd(
d

Dp
)KSf (S f p)Kσ(σg) (8.27)

where KFr (Fro), Kh(ho/Dp), Kd(d/Dp), KSf (S f p), Kσ(σg) denote the two- or
three- dimensional effects which are induced by the parameters indicated between
brackets. This simplified approach makes it possible to separate the effects of the

1In the literature, especially that developed at the University of Auckland (Raudkivi and Ettema
1977; Raudkivi and Sutherland 1981; Melville 1992) but also by Graf and Altinakar (1998), the
flow velocity is not directly included among the parameters which determine the maximum scour
depth. In fact, the parameters identified by these authors are:

f3(ysm , ho, u∗(or τo), ρs , ρ, ν, g, Dp, S f p, d,σg) = 0 (8.24)

The dimensional analysis allows Eq. (8.24) with eleven parameters to move to the relation with
the following seven dimensionless groups:

f4

(
ysm
Dp

,
u2∗
gΔd

,
u∗ d

ν
,

ho
Dp

,
d

Dp
,

ρs − ρ

ρ
, S f p, σg

)
= 0 (8.25)

Here, we consider the hypothesis of the uniform flow upstream of the pier, and thus, we assume
that the ratio (U/u∗) is assigned a priori and is equal to the dimensionless friction coefficient, for
instance, (U = u∗χ/

√
g), being χ = func(θ, d/ho, R∗) the Chézy friction coefficient. The Froude

number, instead, appears in Eq. (8.23) and is replaced by a combination of other parameters to
obtain the reduced relative density of the material or vice versa, e.g.,

Δ
u2∗
gΔd

d

ho

(
U

u∗

)2

= U2

gh
= F2

r (8.26)

.
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Table 8.2 Shape coefficients for different pier types

single parameters. In most applications, such effects are prevailing over the contrac-
tion effects. Therefore, the 1D effects are either neglected or, if minor, included in
K parameters concerning the two- or three-dimensional effects. In other words, the
maximum scour depth is frequently expressed as follows:

ysm
ho

= KSf KθKFr KhKdKσ (8.28)

In the next subsections, we are going to examine the influence on the maximum
scour of some of the most important parameters involved in the previous relations.

8.3.1.1 Effects Due to the Pier Form

Most laboratory tests concern the scours at cylindrical piers with circular cross sec-
tions. If we then assume this pier type as reference, the values related to differently
shaped piers can be obtained by multiplying the maximum scour depth of the cir-
cular pier by a shape factor (KSf ), whose values for different pier shapes are given
in Table 8.2.

For example, quite understandably, a square-section pierwill create a recirculating
area lateral to the pier, larger than the square side, thus causing a deeper scour than
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that produced by a circular pier with a diameter equal to the square side. Another
parameter affecting the scour is the pier alignment. In case of obliquely aligned piers,
the pierwidth is representedby its projectionnormal to theflowdirection.Anelongate
pier nonaligned with the flow causes an encumbrance significantly higher than that
produced by an aligned pier. The effects are, however, much more complicated than
it appears at first sight, especially in the presence of marked pier asymmetries in
the direction of flow. Studies on this effect were made by Tison (1940) and later by
Laursen and Toch (1956), who produced an experimental graph widely mentioned
and completely convincing. We suggest Froehlich’s (1988) relation, valid for angles
30◦:

Kα =
(
cosα + l

b
sinα

)0.62

(8.29)

The parameter Kα is a factor which multiplies the KSf in order to consider the effect
of the pier nonalignment to the flow.

8.3.1.2 Influence of the Flow Mobility Parameter

In general, the direct dependence of the maximum scour depth on the flow mobility
parameter alone is not frequently focused in the literature. However, the distinc-
tion between clear-water and live-bed scour conditions, pointed out in the previous
section, is of paramount importance. The previous considerations (Sect. 8.2.2) are
also worth for the scour around bridge piers.

In case of a clear-water scour near a pier, the longitudinal vortex stretching leads
to a lateral scour which soon moves to the upward pier. In that region, the scour is
reinforcedwith the downward flow along the upstream face of the pier. The scour then
migrates downward (Graf and Altinakar 1998). In equilibrium condition, along the
scour sides there occurs a balance between the gravity force which moves particles
toward the scour bed and the shear stress which, induced by the secondary vortex,
pushes them in the opposite direction. The scour slope at the upper pier is steeper
than the lower slope: therefore, the scour appears to be elongated downwards.

Breusers et al. (1977) observed, and later Raudkivi and Ettema (1977) confirmed
after an accurate survey, that:

• for (θo/θc ≤ 0.5), there is virtually no scour;
• for (0.5 ≤ θo/θc ≤ 1 (clear-water scour condition), the scour depth was observed
to extend when the ratio (θo/θc) increases until the maximum value at (θo/θc � 1);

• for (θo > θc) (live-bed, that is sediment transport fed from upstream), a balance
occurs between the incoming load and the sediment load flowing inside the scour.
The maximum scour depth stops increasing with (θo/θc). The maximum scour
depth fluctuates with time and is, on the average, 10−30% lower than the mean
scour determined in clear-water conditions, the other parameters being equal (Shen
et al. 1969).
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Fig. 8.8 Behavior of the maximum scour with the mobility parameter (Raudkivi and Ettema 1977)
and comparison with the formula (8.30) of Breusers et al. (1977)

The dependence of the maximum scour depth on the mobility parameter has never
been quantified precisely; it is mostly perceived in the interval (0.5 ≤ θo/θc ≤ 1).
According to Breusers et al. (1977), the dimensionless maximum scour is linearly
proportional to themobility parameter which, however, includes also the dependence
on the ratio (ho/Dp):

ysm
Dp

= 2KSf

(
2
θo

θc
− 1

)
tanh

ho
Dp

(8.30)

Figure8.8 illustrates some experimental laboratory results obtained by Raud-
kivi and Ettema (1977). The same figure also shows the comparison with the for-
mula (8.30) of Breusers et al. (1977) that sets (KSf = 1) since the piers are circular.

This relation appears to underestimate the scour in some cases and, as a matter
of fact, in a more recent work, among whose authors is Breusers himself (Breusers
1965), the formula is no more mentioned. And indeed, with regard to applications,
it is advisable to refer to the maximum scour depth in conditions of incipient motion
(θo/θc � 1) in the undisturbed section, expressed as follows:

ysm
Dp

� 2.45 (8.31)

This result is, however, influenced also by the sediment particle size distribution,
as will be explained in the next Sect. 8.3.1.5. The maximum scour depth occurs
when in the incoming flow the velocity is close to the incipient motion velocity,
provided there are no bed forms (ripples). In this case, themaximumdepth is given by
Eq. (8.31). The relative maximum scour depth reduces until it reaches the minimum
value for (θo/θc � 2.2 ∼ 2.6), and then it increases again when the undisturbed
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Fig. 8.9 Maximum scour depth at a circular pier when the relative velocity varies with high relative
submergence values. Laboratory data by Chee (1982) (revised by Breusers and Raudkivi (1991),
page 77)

velocity rises. The curve expressing the relative maximum depth in function of the
velocity related to the incipient motion velocity shows two peaks, as illustrated by
Fig. 8.9, parameterized to the velocity and not to the mobility parameter (consider
θo/θc ∝ (Uo/Ucr )

2).
The figure also shows the behavior in the presence of ripples in the incoming flow.

The relative scour is significantly lower. The double peak remains but the former,
corresponding to the condition of incipient motion, results extremely lower than the
latter. This can be accounted for by the fact that near the latter peak the flow is at
near-critical conditions (Fr � 1) and therefore with no bed forms.

8.3.1.3 Influence of the Froude Number

Some empirical formulae link the maximum scour depth directly to the Froude
number of the flow, e.g., the following formula from Colorado State University
(Johnson 1992):

ysm
Dp

= 2F0.43
r

(
ho
Dp

)0.65

(8.32)

It should be pointed out that the effects of the Froude number cannot be always
separated by those of the mobility parameter. Indeed, if the tests do not use material
with different density, the two effects cannot be separated, as easily verified with the
undisturbed flow (near-uniform flow):

F2
r = U 2

gh
= U 2

u2∗

u2∗
gΔd

Δ
d

ho
= χ2

g
θΔ

d

ho
(8.33)
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Fig. 8.10 Behavior of the maximum scour with the water depth of undisturbed flow (Basak et al.
1977) and comparison with Neill (1964) formula

We can see that with constant material density Δ, the Froude number Fr and
the mobility parameter θ only differ by the effect of the relative roughness d/h that
intuitively has scarce influence on the localized scour.

Therefore, Eq. (8.32) and other similar formulae containing the parameter Fr are,
more than often, simple expressions equivalent to those with the mobility parameter
previouslymentioned, e.g., Eq. (8.30). Unlike the latter, which leads to underestimate
the scour depth, Eq. (8.32) tends, on the contrary, to overestimate a scour.

8.3.1.4 Influence of the Flow Depth

As already said, the scour near a pier is basically governed by secondary circulations
and especially by the horseshoe vortex (Raudkivi and Ettema 1977) in asymptotic
conditions with constant solid and liquid discharges; the influence of water depth is
thus important only if it is relatively small.

Figure8.10 illustrates some results on the influence of the relative flowdepth (non-
dimensionalized by the pier size) obtained by Basak et al. (1977) for (θo/θc > 1),
showing that when (ho/Dp) increases, the relative maximum scour (ysm/Dp) tends
to the asymptotic value 2.1.

In case of circular piers, the Bonasoundas (1973) experiments show a slightly
lower asymptotic value, equal to 1.75. According to Neill (1964) for a circular pier,
we have:

ysm
Dp

= 1.5

(
ho
Dp

)0.3

(8.34)
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Fig. 8.11 Variation of the maximum scour with the material diameter for θo/θc = 0.90 (Raudkivi
and Ettema 1977)

A similar relation was suggested by Breusers et al. (1977):

ysm
Dp

= 1.35

(
ho
Dp

)0.3

(8.35)

In case of the dune regime in the incoming flow (live-bed condition), the scour
calculated by means of (8.34) should, according to the authors, be increased by a
factor equal to 0.5HDune.

The fact that both the flow velocity and the material diameter are not present
in Eq. (8.34) may suggest that it can be applied only in the presence of sediment
transport in the undisturbed flow.

8.3.1.5 Particle Size Influence

The effect of the material size on the maximum scour was also studied by Raudkivi
and Ettema (1977). Figures8.11 and 8.12 show the values of the relative maximum
scour in equilibrium conditions in function of the relative particle-grain size, d,
non-dimensionalized by the pier diameter Dp for θo/θc = 0.90 and θo/θc = 0.95,
respectively.

The first distinction concerns the presence or absence of ripples (d ≤ 0.70mm),
which significantly reduces the scour depth. In case of absence of ripples, the scour
peak occurs in the interval 130 ≥ Dp/d ≥ 30 where we obtain ysm/Dp � 2.45.

If the sediment size is large enough compared to the pier diameter (Dp/d ≤ 30),
the maximum scour systematically decreases at decreasing particle size.

Moreover, the two figures confirm that the maximum scour occurs at conditions
very close to the incipient motion in the incoming flow.
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Fig. 8.12 Variation of the maximum scour with the material diameter for θo/θc = 0.95 (Raudkivi
and Ettema 1977)

The particle sorting is proved to be an extremely decisive parameter especially
when the bed tends to get armored. The local armoring can even represent a system
for reducing the erosion depth. Such an effect was studied by Raudkivi and Ettema
(1977) in slightly lower conditions than those of the incipient motion in the incoming
flow. The next figure shows the survey results, expressed in function of the parameter
Kσ , a multiplier of the other effects according to Eq. (8.28). The parameter Kσ in
the figure is thus defined as:

ysm(σg)

Dp
= Kσ

ysm(σg = 1)

Dp
(8.36)

where ysm(σg = 1) denotes the scour with uniform material and particle-grain size
equal to the d50 of the mixture.

Also in this case, two performances can be seen with or without the development
of ripples (d50 ≤ 0.7mm). For the material mobility corresponding to d50 very close
to the critical mobility (1>θo/θc ≥ 0.8), in the presence of ripples for the uniform
material (d50 ≤ 0.7mm), the maximum scour occurs with non-uniform materials
characterized by particle size curves whose standard deviations σg range between
1.5 and 2. In this case, the non-uniformity of the material can suppress the ripples in
the upstream section, without any visible armoring effects in the scour (Fig. 8.13).

If the undisturbed flow mobility θo is lower than the critical one (θo < 0.8 θc),
the bed upstream the pier remains flat and the effect of the sediment non-uniformity,
compared to the homogeneous material, tends to form an armoring effect in the
scour which reduces its depth: the parameter Kσ tends to decrease monotonically
when the sediment non-uniformity increases (standard deviation σg of the particle
size curve), whether or not the ripples occur in the undisturbed section. When the
standard deviation increases, the coefficient Kσ tends to values of around 0.15.
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Fig. 8.13 Variation of coefficient Kσ with the standard geometric deviation of the particle-size
curve of the material (Raudkivi and Ettema 1977)

Very often in order to reduce the scour depth, the bed is armored artificially
around the pier. Should this be the case, Raudkivi and Ettema (1977) suggest to
calculate the material size through the Shields criterion with regard to a bed shear
stress τmax , assessed with reference to the undisturbed value τo, with the following
simple expression:

τmax = 4τo (8.37)

The thickness of the armoring layer must be at least equal to 2d50, even if a thicker
armoring layer is more suitable. It is not advisable to rely only on the armoring layer
without checking if the upstream or downstream conditions are able to undermine
it. In order to reduce the secondary circulations, and therefore the scour, also some
flow-altering countermeasures have been proposed. The installation of a collar with
a 3Dp diameter attached to the pier was considered as especially effective (Chabert
and Engeldinger 1956; Raudkivi and Sutherland 1981; Hoffmans and Verheij 1997)
around 0.4Dp high from the bed. According to the authors, such a device would be
able to reduce the scour by 60%.

Special attention must be paid to the case of a localized erosion when the armor-
ing layer is broken by the localized effects around the pier. The case was studied in
detail by Raudkivi and Ettema (1977), with reference to the collapse of the Rangitikei
Bridge, at Bulls, in New Zealand in 1973. Ettema observed that the most dangerous
case occurs when the breakage of the armoring layer initiates in the sections down-
stream the bridge, in particular if the breakage is not confined to a limited region
around the pier but rather affects the whole transverse section. In this case, the bed
downstream of the pier becomes mobile, while the bed upstream of the pier cannot
be eroded thanks to the armoring layer.

Such a condition leads to the bed lowering ys1−2 (Fig. 8.14), assessable bymeans of
the one-dimensional theory by imposing the liquidmass andmomentumconservation
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Fig. 8.14 Scour layout in the presence of armoring upstream of the pier (Raudkivi and Ettema
1977)

together with the incipient motion condition calculated with reference to the sub-
layer grain size (i.e., the sediment below the armoring layer) in the downstream
reach:

U1h1 = U2h2
1

2
ρgh21 + 1

2
ρgys1−2 (h1 + h2) + ρh1U

2
1 = 1

2
ρgh22 + ρh2U

2
2

θ2 = θc (8.38)

Given that the downstream velocity can be expressed, in uniform flow, by means
of the Chézy formula, (U2 = u∗2χ/

√
g), the system provides the following solution:

ys1−2

h1
= Fr1Aθ2 − 1 + 2

Fr1
Aθ2

1 − Fr1Aθ2

1 + Fr1Aθ2
(8.39)

where Fr1 = U1/
√
gh1 represents the Froude number of the undisturbed flow and

Aθ2 = √
g/χ

√
h1/dΔθc is a parameter which considers the hydrodynamic and

morphodynamic conditions of the downstream part. The value ys1−2 must be further
increased with the scour produced by the secondary effects.

8.3.2 Local Scour at Pile Groups

Often the bridges are supported by two ormultiple piles, more or less alignedwith the
flow direction. Although this case can be led to the previous one, some observations
are to be added (Raudkivi and Sutherland 1981).

In general, the scour hole deepens in front of the upstream pier. The maximum
scour depth (around 1.2 times the scour of a single pier) takes placewhen the distance
between the two piers is around three times the diameter Dp of the single pile. The
presence of the upstream pier produces a hiding effect on the downstream pier, thus
reducing its upstream scour. The effect is also perceived downstream of the second
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Fig. 8.15 Relative maximum scour depth for two in-line piles in function of the dimensionless pile
spacing (Raudkivi and Sutherland 1981)

Fig. 8.16 Relative maximum scour depth for two in-line piles in function of the angle of attack
(Raudkivi and Sutherland 1981)

pier, where the scour proves to be 20% lower than observed with a single pier (Fig.
8.15).

If the axis of the two piers is not aligned with the flow, each pier develops its
own horseshoe vortex. Should the distance between the two piles be modest, the two
internal arms of the vortex tend to be compressed, thus increasing their vorticity and
consequently the erosive capacity.

The experiments carried out by Raudkivi and Sutherland (1981) on a pair of piles
set at a distance as = 5Dp show that the scour in front of the upstream pier varies
very little with the hook angle when the maximum depth values are slightly higher
(10−15%) than those observed in an isolated pier (Fig. 8.16).
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Fig. 8.17 Relative maximum scour depth for two in-line piles as a function of the dimensionless
pile spacing and comparison with the equivalent solid pier (Raudkivi and Sutherland 1981)

The scour behind the second pier—which in aligned piers is slightly lower than
the isolated pier—proves to increase as the attack angle increases and to reach its
maximum value, equal to around 1.2 times the isolated pier, for (α = 45◦).

Still referring to themisalignment effect, Fig. 8.17 shows the comparison between
two piers and one single pier occupying the same space as the two piers.

In case of misalignment to the flow direction, the front scour is slightly lower
than that observed in the two in-line piles, while the rear scour is significantly more
modest, 0.3 times the equivalent solid pier.

As the attack angle increases, there is an increase of both the front and rear scours,
the latter even becomes larger with attack angles of around 8◦ and is 1.6 times larger
than the scour of the solid pier with 15◦ attack angles.

8.3.3 Time Evolution of Scour

For safety’s sake, applications are usually referred to the maximum scour depth
in equilibrium conditions. However, in the cases characterized by small sediment
mobility the time required to reach equilibrium conditions is much longer than the
duration of the design flood. Consequently, the knowledge of the time evolution of
the scour is particularly important (Froehlich 1988).

The observations on the time evolution of a local scour derive almost exclusively
from laboratory experiments which, often being affected by scale effects, are less
reliable when they are transferred into prototypes.

The scouring process can be described by the following relation (Hoffmans and
Verheij 1997):

ys(t)

ysm
= 1 − e

ln

(
1 − λz

ysm

) (
t

tλ

)γ

(8.40)
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in which ys(t) denotes the scour depth at time t ; ysm , the equilibrium scour depth
(t → ∞); λz , a reference length; and tλ, the time when the scour reaches the value
λ, that is (ys(tλ) = λz). As for the exponent of Eq. (8.40), the authors suggest to set
γ = 0.2 ∼ 0.4.

The scour then proceeds with an exponential law, sometimes for very long periods
of time. In the initial phase of the process (t < tλ), Eq. (8.40) can be reduced to the
following:

ys(t)

ysm
=

(
t

tλ

)γ

(8.41)

The authors suggest to assume as reference time tλ the time required by themaximum
scour to reach a value equal to the pier diameter:

tλ = 29.2
b√
2Uo

( √
gΔd50√

2Uo −Uc

)3 (
b

d50

)1.9

(8.42)

in which Uo and Uc are, respectively, the average velocity and the critical velocity
of incipient motion of the undisturbed flow.

More complete than that is the expression, valid in the absence of upstream sedi-
ment transport (clear water), suggested by Oliveto and Hager (2002):

ys(t)

LR
= 0.068K ′

S f σ
−1/2
g

(
Uo√
gΔd

)1.5

log

(
t
√
gΔd

LR

)
(8.43)

Equation (8.43) can also be applied to bridge abutments and the like. LR is a suit-
able reference scale, usually represented by the pier diameter Dp or by the abutment
width b and, less frequently, by the water depth ho or by a combination of these sizes
with a length dimension:

LR = Dα
ph

β
o and LR = bαhβ

o with α + β = 1

The authors suggest to set α = 2/3 and β = 1/3. K ′
S f is a shape factor: K

′
S f = 1

for circular piers and K ′
S f = 1.25 for rectangular piers or for abutments.

8.3.4 Design Considerations

As previously pointed out, the topic of local scours is still debated. From a design
point of view, it is, therefore, advisable to see to themost disadvantageous conditions,
which can be summed up as follows:

• the clear-water situation;
• the reduction effect in case of consistent reduction of the flow section;
• the effect of grain sorting to be neglected unless clearly evident;
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Fig. 8.18 Layout of the morphological process upstream of a dam

• as a precaution, the assumption of the value:

ysm = (2.4 ∼ 2.5)Dp (8.44)

• the shape effect on the basis of Table8.2, especially for rectangular piers;
• the effect of any pier misalignment on multiple or non-circular piers;
• the sediment dimension assigned to the artificial armoring, if any, to be calculated
with the Shields criterion applied to a bed shear stress τmax , evaluated as:

τmax = 4τo (8.45)

8.4 Local Scour Downstream of Structures

In general, falling jets downstream of some hydraulic structures (drops, check dams,
sills, overfalls, spillways) or horizontal jets parallel to the bed (outflows downstream
an open sluice gate, or an apron) induce extensive localized excavations caused by
at least three mechanisms.

The first mechanism consists in the fact that very often upstream of these works
the flow is so slowed to lose its transport capacity: the outgoing solid discharge is
very small, or even null. This situation often occurs on the fluvial dams and barrages,
in which the structures cause a backwater profile upstream of them. As schematically
depicted in Fig. 8.18, and as it results from the analysis of the equation of conservation
of the solid mass (Eq.7.7 on page 135), these conditions induce a deposition process
which, due to the reduced transport capacity of the incoming flow, evolves very
slowly. In this case, the bed configuration upstream of the structure can be assumed
as quasi-permanent within relatively long time intervals.

On the contrary, downstream of the structure the flow generally has a higher
velocity and consequently a higher erosive capacity, thus triggering scour phenomena
which tend to evolve over time if not inhibited, or be greatly slowed by possible self-
armoring phenomena (see Sect. 3.3.6).

http://dx.doi.org/10.1007/978-3-319-68101-6_7
http://dx.doi.org/10.1007/978-3-319-68101-6_3
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Fig. 8.19 Layout of the morphological process upstream of a check dam

A second mechanism triggering the local scour downstream a weir or a low-head
dam or a drop is determined by the geometry of the flow field, represented by a
plunging jet inclined with respect to the horizontal bed, as schematized in Fig. 8.19.

This is also the case of a check dam in mountain streams. Unlike the previous
case, the morphologic adjustment processes are much faster, because of the more
intense sediment transport rate.

In these cases, the morphological equilibrium is often rapidly achieved, especially
during the single flood events. It means that the sediment flow rate is almost constant
in the flow direction: we can assume the flow as a succession of uniform flows with
the free surface almost parallel to the bed. The solid flow rate discharged by the
structure in these conditions is significant (Armanini and Larcher 2001).

The third mechanism generating local scours occurs downstream a sluice gate
or downstream an apron, induced either by the roughness variation or by strong
velocity gradients like for jets issued from the vertical gate. In this situation, an
erosion occurs immediately downstream of the apron. The initial erosion causes the
flow direction to shift and deepen the scour up to an equilibrium condition. The flow
field in equilibrium condition generally shows an extended region of flow separation
with an intense recirculation area (Fig. 8.21).

8.4.1 Scour Produced by an Overfall Jet

Aspreviously underlined, the impact of a jet overflowing a drop structure or a spillway
tends to cause a localized erosion on the bed downstream of the structure.

Also in this case, a precise analytical prediction of the maximum scour is rather
complicated. Instead, there are empirical formulae, beginning from the pioneering
Schoklitsch (1932) equation that is widely used still today:

ysm = 4.75
(hu − hd)0.2q0.57

d0.32
90

− hd (8.46)
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Fig. 8.20 Layout of the erosion downstream of a drop or a check dam

Table 8.3 Coefficients and exponents to utilize in Eq. (8.47) according to different authors. The
different sizes (including d90) are expressed in [MKS]; thus, cw is in m(1+m3−m1−2m2−m4) s−m2 ]

cw m1 m2 m3 m4

Schoklitsch
(1932)

0.52 0.2 0.57 0.32 0

Veronese
(1937)

0.2 0.225 0.54 0.42 0

Müller and
Eggenberger
(1944)

1.44 0.5 0.6 0.40 0

Mason and
Arumugam
(1985)

3.27 0.05 0.6 0.40(*) 0.15

(*) It refers to the mean diameter d, and not to d90

In the non-dimensionless relation, whose symbols are defined in Fig.8.20, the
height is expressed in meters, the bed sediment diameter, d90, in [mm], the capacity
per width unit q in [m3/s/m].

The height difference between the upstream and downstream free surface levels
(hu − hd ) is often replaced by the head difference, thus comprising the difference
between the kinetic loads.

Other relations similar to Schoklitsch’s have been proposed, e.g., by Veronese
(1937), Müller and Eggenberger (1944), and Mason and Arumugam (1985):

ysm = cw

(hu − hd)m1qm2

dm3
90

hm4
d − hd (8.47)

whose exponents and coefficients are shown in Table 8.3.
While the other formulae of Table8.3 have been obtained from reduced-scale

model tests, Mason and Arumugam (1985) verified their formula also on a prototype
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Fig. 8.21 Layout of erosion downstream of an outflow discharge

and found that the coefficient is better expressed as (cw = 6.42 − 3.1(hu − hd)0.1).
The authors regard it as valid also for scours under jets, such as issues from a free
dam, and flip buckets. Particularly, Meyer-Peter and Müller (1948) formula can be
rewritten in a dimensionless form:

ysm
hd

= −1 + 3.6

Δ4/9

(
Ud

gd90

)0.3 (
hu
hd

− 1

)0.5 (
hd
d90

)0.1

(8.48)

When the erosion formulae are applied downstream of dams, the maximum scour
should be increased of 0.5−0.6m as a factor of safety.

8.4.2 Erosion Downstream of a Sluice Gate Opening

A type of erosion similar to the previous one is that induced by a horizontal jet issuing
from a sluice gate opening on a mobile bed. The situation is sketched in Fig. 8.21. As
depicted in the figure, in order to reduce the erosion, a non-erodible-bed protection
is often inserted immediately downstream the gate to smooth the transition between
the non-erodible and movable bed of the channel.

In this case, it is worth distinguishing between submerged jets and free jets, the
latter situation being much more dangerous. In both cases, the scour is initially
induced by the modified conditions between the non-erodible bottom and the mobile
bed, mostly by the acceleration below the gate which makes the actual sediment
transport rate of the outgoing flow much less than the sediment transport capacity of
the whole flow. However, also the change of the roughness between the protection
and the erodible bed has a certain influence on the erosion process.
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Table 8.4 Coefficients and exponents to utilize in Eq. (8.49) according to various authors. The
lengths (including d90) are in [m], q in [m2s−1], cw in [m(1+m3−m1−2m2−m4)s−m2 ]

cw m1 m2 m3 m4

Submerged jet

Müller and
Eggenberger
(1944)

0.65 0.5 0.6 0.40 0

Mason and
Arumugam
(1985)

3.27 0.05 0.6 0.40(*) 0.15

Qayoum
(1960)

2.78 0.22 0.4 0.22 0.4

Free jet

Müller and
Eggenberger
(1944)

0.97 0.5 0.6 0.40 0

(*) It refers to the mean diameter d, and not to d90

The scour initiates immediately downstream the bed protection and rapidly devel-
ops up to form a flow separation region with kinematic characteristics more similar
to the free turbulence (two-dimensional wall jet) than to the wall turbulence (Adami
1979).

Also in this case, there are a good number of detailed numerical analyses of
the phenomenon, but they are quite complex tools and the results provided are not
synthetic enough to be used in the design phase of the structures. In order to estimate
the maximum scour depth, also in this case, expressions similar to (8.47) valid in the
absence of the apron, are often adopted:

ysm = cw

(hu − hd)m1qm2

dm3
90

hm4
d − hd (8.49)

The exponents and coefficients suggested by different authors are shown in
Table 8.4.

For its historical value, it is worth mentioning one formula of Schoklitsch (1932)
expressed in MKS, which does not include the sediment diameter:

ysm = 2.15a + 0.378(hu − hd)
0.5q0.35 (8.50)

a denotes the difference between the elevation of the downstream bed and that of the
apron. In case of submerged jets, Graf and Altinakar (1998) suggested the following
expressions for the longitudinal dimension of the scour, experimented in the absence
of the apron:

L ′
s � 3(ysm + hd) and Ls � (5 ∼ 7)(ysm + hd) (8.51)
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Fig. 8.22 Layout of erosion
downstream of the combined
effect of a headflow and an
outflow jet

By analyzing the phenomenon, Adami (1979) observed that the asymptotic con-
figuration of the scour profile upstreamof themaximum scour section shows a similar
geometry independently of the kinematic parameters. The scour shape downstream
of the maximum depth point can have two layouts:

• if themobility of the undisturbedflowdownstream the reach is lower than the incip-
ient critical mobility, the scour ends with a dune (Fig. 8.22) whose height depends
on the difference between the undisturbed velocity and the incipient motion veloc-
ity;

• if, on the contrary, the water velocity is higher than that of incipient motion,
downstream of the maximum depth point, the bed tends to increase monotonically
up to the downstream undisturbed bed elevation. It goes without saying that in
this case equilibrium conditions can be reached only in the presence of upstream
sediment supply.

8.4.3 Combined Overflow and Underflow from a Gate
Opening

Very often downstream of weirs or at low dams, especially in flood conditions, we
find the combined effect of head- and outflow.

Such a complex case was studied by Müller (1944), who thought Eq. (8.49) by
Müller and Eggenberger (1944) to be also suitable for this configuration:

ysm = cw

(hu − hd)0.5q0.6

d0.4
90

− hd (8.52)

in which the coefficient cw is made dependent on the relationship between the out-
flowing discharge qw f and the head overflow qg f , according to Table 8.5.

Here, the d90 is expressed in [mm] and the discharge per width unit q is expressed
in [m3/s/m].
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Table 8.5 Values of the coefficient cw in Eq. (8.52), as a function of the ratio qw f /qg f between
the headflow and outflow discharges

qg f /qw f 2 3 4 ∞
cw 6.3 6.9 7.7 10.4

8.5 Groyne Head Scours

The groynes are riverbank structures that project into the river, inclined with respect
to the flow direction, which are built to protect the riverbank from erosion or to
improve the river navigability.

The distance between two successive groynes must be such as to generate a sec-
ondary circulation with vertical axis between the two groynes (Fig. 8.23), which pre-
vents the main flow of the river (the thalweg) from impacting the bank. The reduction
in velocity in these areas (groyne fields) tends to favor the sedimentation of the finest
material arriving there through a mechanism of lateral turbulent diffusion.

Quite clearly, in order to protect a riverbank the groynes must be placed at least
in pairs, but more frequently they are in groups of more than two.

Groynes can be seen as constrictions of the transverse section, and consequently,
they accelerate the flow and concentrate the main flow triggering a local erosion.

Groynes are, therefore, structures that cause the bed to deepen near the main flow
bed, associated with a local scour near their heads. These local scours are similar to
those produced by the bridge abutments described in Sect. 8.2.3.

The parameters that mostly affect the local scour near to the groyne heads are
the orientation of the groyne with respect to the main flow direction (e.g., normal,
convergent ordeflecting groynes as sketched inFigs. 8.23 and 8.24), the groyne shape,
and especially the inclination of the side slope of the groyne head. The curvature of
the bend and the groynes’ position inside the curve also influence the maximum
excavation, even if to a lesser extent.

The same methodologies applied to the bridge abutment can be used for the
scouring mechanisms induced by groynes on the bed, that is, the action due to the

Fig. 8.23 Layout of flow
near groynes, oriented
normally to the riverbank
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Fig. 8.24 Layouts of various groynes. Left: divergent groynes, pointing upstream. Right: deflecting
groynes, pointing downstream

Fig. 8.25 Definition sketch of groyne scours

section contraction treated with Eq. (8.16) or (8.17) on page 177, and the action
concentrated on the groyne head mainly imputable to secondary circulations.

Systematic studies on the local scour at the groyne head have been carried out
since the 1950s (Inglis 1949; Ahmad 1953; Laursen 1962; Laursen et al. 1963;
Richardson et al. 1975). All these formulations are basically empirical. Studies based
on the numerical integration of the differential equations of the flow, together with
the application of two-equation turbulence models, have been proposed in the last
few years.

However, their complexity makes these schemes unsuitable for the design of
proper structures. Therefore, the empirical formulations are still the most valid for
immediate use. Following Ahmad (1953), we can write (Fig. 8.25):

ysm + ho = Kg

(
Q

Bo − Bg

)2/3

(8.53)

in which the lengths are expressed in [m] and the discharge in [m3/s]. Kg proves to
depend on the slope angle αg and shape of the groyne, as well as on its position to
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Table 8.6 Parameter K1 in formulae (8.53) and (8.54), concerning the orientation of the groyne
with respect to the flow direction

αg 30◦ 45◦ 60◦ 90◦ 120◦ 150◦

K1 0.8 0.9 0.95 1.00 1.05 1.1

Table 8.7 Parameter K2 in formulae (8.53) and (8.54) concerning the effect of the inclination of
the side slope of the groyne head

Groyne shape K2

Vertical side walls 1.0

45◦ sloped side walls 0.85

Table 8.8 Parameter K3 in formulae (8.53) and (8.54) concerning the effect of the inclination of
the side slope of the groyne head

Groyne position in the bend K3

In rectilinear channels 1.0

On the concave bank 1.1

On the convex bank 0.8

On the concave bank toward the end of the bends: 1.1

• in moderately wide bends 1.1

• in narrow bends 1.4

the flow axis. It then results by multiplying three parameters:

Kg = 2K1K2K3 (8.54)

K1, K2, and K3 are specified in Tables 8.6, 8.7, and 8.8, respectively.
Analogous to Ahmad’s formulation is the expression proposed by Richardson

et al. (1975) regarding the local scour near the groyne head, which is to be added to
the constriction increase assessable with Eq. (8.16) or Eq. (8.13):

ysm = 1.1 ho

(
Bg

ho

)0.4

F1/3
ro for

Bg

ho
<25

(8.55)

ysm = 4 hoF
1/3
ro for

Bg

ho
>25
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Fig. 8.26 Layout of local scours at the outer riverbank

8.6 Bend Scour

As previously said, in a channel flow bendwe can observe the formation of secondary
circulations, triggering shear stresses to the bed in the radial direction (Eq.3.37 on
page 67). These radial stresses induce a sediment transport in the radial direction
from the outer bank toward the inner. In stationary conditions, an equilibrium bed
configuration is then reached with a channel deepening near the outer bank.

In the literature, various expressions have been proposed to estimate themaximum
scour depth in bends. Among these, the empirical formula proposed by Thorne et al.
(1995) is of some use. This formula, however, does not make the scour directly
dependent on either the grain size or on the kinematic conditions of the flow

ysm
h

= 1.07 − log
(rm
B

− 2
)

(8.56)

The symbols are defined in Fig. 8.26.
The formulation is valid for 2< rm/B <22 and has been verified for grain sizes

ranging between 0.3 and 17mm and water depths up to 17m.
An analogous relation was proposed by Maynord (1996). It is thought to be

suitable for sandy beds, but it tends to overestimate the scour in gravel river beds.

ysm
h

= 0.8 − 0.051
rm
B

+ 0.0084
B

h
(8.57)

The formulation was inferred by field observations on erosions due to floods with
a return period less than 5years. It is valid for 1.5<rm/B<10 and 20< B/h<125.

An analytical expression of the maximum scour in a bend can also be obtained by
applying the equilibrium theory of a particle on the outer bank of a curve (NEDECO
1959), already dealt with in Sect. 3.5.1 on the incipient motion (page 66). In this case,
the bank slope is written as its local gradient, sinαl = −∂h/∂r . By integrating the

http://dx.doi.org/10.1007/978-3-319-68101-6_3
http://dx.doi.org/10.1007/978-3-319-68101-6_3
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Fig. 8.27 Function f1 of formula (8.60) for the maximum scour depth in curve (Seminara and
Tubino 1989)

ensuing differential equation we obtain the bed profile in the bend:

1

h
− 1

he
=

(
1

r
− 1

re

)
1.5Aτ

iere
Δd

(8.58)

h and he, respectively, denote (see Fig. 8.26) the water depths in the generic point
and at the extrados; r and re the curvature radii of the curve in the generic point
and at the extrados; and ie is the longitudinal bed slope at the extrados. The authors
assume that the product ir r = ie re is constant along the radial direction. According
to this hypothesis, the maximum scour at the extrados can be obtained from (8.58)
as follows

ysm
h

= 3Aτ
B

rm
θ

1
4rm + 2B

rm
− 3Aτ

B

rm
θ

(8.59)

where θ = u2∗/(gΔd) is the mobility parameter of the undisturbed flow. The para-
meter Aτ assumes values ranging between 7.30 and 8.16 for channel flows with
sufficiently high Reynolds numbers, as underlined in Sect. 3.5.1 on page 67.

A similar expression, again inferred theoretically and valid for channels with a
modest curvature and for uniform particle sizes, was proposed by Seminara and
Tubino (1989):

ysm
h

= B

rm
θ0.5 f1 (8.60)

the function f1 depending on the relative roughness d/h is illustrated in Fig. 8.27.
The function f1 can be approximated with the following expression:

f1 = 12.716 − 65.658

(
6 + 2.5 ln

h

2.5d

)−1.2

(8.61)

http://dx.doi.org/10.1007/978-3-319-68101-6_3
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Fig. 8.28 Layout of an alternate bar (Ikeda 1984)

According to Seminara and Tubino (1989), should the curvature radius not be
constant, the value of the maximum scour can be of an order of magnitude higher
than that obtained with formulae (8.60) and (8.59) based on the local value of the
curvature radius. The maximum scour depends on the intrinsic wavelength of the
meander: the highest scour values are obtained with meanders of length between 10
and 15 times the channel width.

8.7 Bar Scours

The alternate bars are planar bed forms, which can be observed in sand or gravel bed
rivers in their whole length.

In rectilinear or quasi-rectilinear channels, bars can slowly migrate downwards.
Bars are planar forms with a vaguely semi-parabolic shape, as schematized in
Fig. 8.28, with a steep front and a shallow-water lobe downstream. In the region
near the bar tail, opposite the front, we can identify the area where the maximum
scour depth is reached. Bars are quite important from the ecological viewpoint espe-
cially in low water conditions, in that the main wave flows along sections with a
relatively high velocity (chuts or riffles), followed by others characterized by lower
velocity (pools), thus favoring the habitat diversity and biodiversity.

The problem of the existence of river bars was theoretically dealt with by Colom-
bini et al. (1987), by utilizing a perturbation technique for the weakly nonlinear flow
equations. They showed the existence of stable perturbation modes in the river bed
which can be assimilated to alternate bars.

According to this criterion, the conditions for incipient bar formation depend on
the Shields mobility parameter θ = u2∗/(gΔd) and on the relative roughness d/h.
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Fig. 8.29 Threshold level βc of the semi-aspect ratio β = B/2h for the existence of alternate bars
in a rectangular channel (Colombini et al. 1987)

The parameter is the ratio β = B/2h (semi-aspect ratio) between the half channel
width B/2 and the water depth h. The existence condition is shown in Fig. 8.29 where
βc denotes the critical minimum value of the ratio B/2h below which bars do not
form.

The calculation of themaximum scour at the bar pool can bemade through a series
of experimental expressions provided by Ikeda (1984) concerning bar dimensions:

ΛB = 5

(
B h

c f

)0.5

for Fr <0.8 (8.62)

ΛB

B
= 181c f

(
B

h

)0.55

for Fr >0.8 and 4<
B

h
<70 (8.63)

HB

h
= 0.0442

(
B

h

)1.45 (
h

d50

)−0.45

= 0.0442

(
B

d50

)−0.45 (
B

h

)1.9

(8.64)

ysm = 0.75 HB (8.65)

where ΛB and Hb denote the wavelength and total height of the bar, and c f is the
friction coefficient to be calculated through an adequate uniform flow formula. For
instance,

c f = ghi

U 2
= g

χ2
(8.66)

in function of the Chézy friction coefficient. Alternatively, Ikeda (1983) also suggests
the following logarithmic expression:

c f =
(
1

κ
ln(11

h

2 d90
)

)−2

valid for
h

d90
� 1 (8.67)

Equation (8.67) can be approximated by the following:
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Fig. 8.30 Values of coefficients b1 and b2 to be inserted into Eq. (8.69) (Colombini et al. 1987)

c f � 0.0293

(
h

d90

)−0.45

(8.68)

Always according to Ikeda (1983), the presence of alternate bars produces an
increase in the friction coefficient by about 20%, compared to the coefficient assessed
with expression (8.67) or (8.68).

Also Colombini et al. (1987) proposed a theoretical expression for the maximum
scour depth at a bar:

HB = h

(
b1

(
β − βc

βc

)1/2

+ b2

(
β − βc

βc

))
(8.69)

where b1 and b2 are two coefficients depending on the mobility parameter θ and the
relative roughness d/h after Fig. 8.30.

The maximum scour depth results to be:

ysm = 0.57 HB (8.70)

For very large beds (B >∼ 35h), Ikeda (1984) observed the formation of multiple
bars, which can be interpreted as a precursor to braiding.
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