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Preface

About a decade has passed since the writing of the book “Relativistic Nonlinear
Electrodynamics.” On the one hand, this is a short time period for substantial
advancements in a science like physics, on the other hand, the unprecedented
development of laser technologies during the last decade, specifically, the imple-
mentation of ultrashort laser sources and subcycle pulses of relativistic intensities
exceeding the intra-atomic fields, have become real. This radically changes the
practical situation in high energy radiation-matter physics, related in particular to
the creation of superpower X-ray–γ-ray coherent sources, new type—laser–plasma
accelerators of enormous energies, laser-induced nuclear fusion, production of
antimatter from vacuum, etc. It is noteworthy the realization of relativistic
solid-plasma-targets/nanolayers under ultrashort superintense laser pulses, making
available the implementation of high brightness electron and ion beams of solid
densities and high energies. In turn, the emergence of such superstrong electro-
magnetic fields has rapidly initiated extensive fundamental investigations in the
area of Relativistic Nonlinear Electrodynamics, revealing various new nonlinear
phenomena in the fields approaching to Schwinger one for vacuum Quantum
Electrodynamics (QED).

Concerning the degree of nonlinearity in strong radiation–matter interaction
processes, it has been revealed that exotic cases of condensed matter possessing
huge electromagnetic nonlinearity at which nonlinear effects occur at rather small
intensities of exciting field compare to ordinary free–free or bound–bound transi-
tions. The best example of such type of matter is graphene. Thus, nonlinear exci-
tation of the Dirac sea in graphene occurs at a billion time smaller intensities of
external radiation field than it is necessary for excitation of the electron–positron
vacuum and, in general, for revealing of nonlinear effects in ordinary materials.
Therefore, the present book was completed with the new material regarding the
unique nonlinear properties of graphene in strong laser fields.

Besides, in this book we added new material concerning the relativistic quantum
theory of scattering on the arbitrary potential field beyond the Born and ordi-
nary eikonal approximations. Thus, we developed a new—Generalized Eikonal
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Approximation (GEA)—in both elastic and inelastic scattering theory for spinor
and scalar particles scattering on the short-range and long-range potential fields of
arbitrary form, as well as in the presence of superstrong laser radiation of arbitrary
intensities. The latter—Stimulated Bremsstrahlung (SB)—apart from its important
role in laser-induced processes of Above-Threshold Ionization (ATI) of atoms and
High Harmonic Generation (HHG), is considered here as a basic process for
nonlinear absorption of superpower electromagnetic radiation in plasma.

New material has been included devoted to relativistic atoms in strong laser
fields considering multiphoton excitation of atoms with high charge numbers and
highly charged ions, taking into account the fine structure of relativistic atoms–ions
with accompanying coherent effects; nonlinear acceleration of atoms by powerful
laser pulses, as well as relativistic theory of ATI of atoms/highly charged ions and
HHG on these quantum systems by laser radiation of relativistic intensities.

So, while the present book is introduced as a second edition of the monograph
“Relativistic Nonlinear Electrodynamics” published in 2006, this book includes
new material with five new chapters (Chaps. 10–14), a new paragraph (5.7), and
some numerical treatment of considered processes for actual nonplanar laser pulses.

Now let us introduce briefly the content of this book to the reader.
With the appearance of lasers have come real possibilities for revealing

numerous nonlinear phenomena of diverse nature resulting from the interaction of
strong electromagnetic field either with matter or with free charged particles. First
attempts of investigators, especially experimentalists, were directed toward study-
ing the processes of interaction of laser radiation with matter, which led to the rapid
formation of a new field—Nonlinear Optics. The numerous published books on this
subject are evidence of that. The situation regarding the processes of interaction of
laser radiation with free charged particles (free–free transitions) is different.
Whereas the experimental results on atomic systems frequently had preceded the
theoretical ones, the experimental investigations on free electrons began gathering
power only recently. It is enough to mention that the first experiments on the
observation of multiphoton exchange between free electrons and laser radiation
started in 1975 (the Cherenkov and bremsstrahlung processes), whereas due to the
progress of Nonlinear Optics, the precision laser spectroscopy of superhigh reso-
lution on atomic systems had already been established. This situation is explained
by two objective factors. While the experiments on atoms require only laser devices
in common laboratories, the experiments on free electron beams require accelera-
tors of charged particles and laser laboratories, i.e., this field is a synthesis of
Accelerator and Laser Physics. The second major factor is the smallness of the
photon–electron interaction cross section in comparison with the photon–atom one;
revealing nonlinear phenomena on free electrons, this requires laser fields of rela-
tivistic intensities (e.g., even the observation of the second harmonic in nonlinear
Compton scattering). Such superpower femtosecond laser sources have appeared
only recently. Hence, the time for experimental development of this branch of
Nonlinear Electrodynamics—covering interaction of charged particles with laser
fields of relativistic intensities—has come. In presenting the current state of the art
in this field and gathering up-to-date theoretical material in this book we have
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pursued the goal of stimulating the laser-driven experiments on relativistic electron
beams and comprehensive theoretical investigations of nonlinear electromagnetic
processes in currently available coherent radiation fields of relativistic intensities.

Increasing interest in free–free transitions is connected with the realization of the
two most important problems of modern physics, namely the creation of shortwave
coherent radiation sources—X-ray and γ-ray lasers—and small size laser-plasma
accelerators of superhigh energies. It is noteworthy that a great deal of the work on
free–free transitions are related to the Free Electron Laser (FEL) problem, i.e., to the
discussion of concrete schemes of relativistic electron beam radiation amplification
in coherent systems, such as the undulator, and to the search for their optimization.
A small number of monographs and a large number of reviews are devoted to this
problem in the linear regime of amplification. However, particularly for the
implementation of X-ray lasers, the most promising candidate of which at the
present time is still FEL devices, the need for nonlinear mechanisms of generation
of coherent radiation due to induced interaction of electron beam with strong laser
fields may be crucial, compared with the current undulator-based FELs in the linear
regime of amplification. On the other hand, the present FELs operate in the classical
regime where the electron wave packet size over the interaction length is less than a
wavelength of radiation. This means that the photon frequency shift due to the
electron quantum recoil must be less than the gain bandwidth. This condition is
satisfied for current FELs typically operating at optical or smaller frequencies. For
the X-ray photons in expected X-ray FELs, the downshifts in frequency as well as
other quantum effects become important. Thus, because of the absence of mirrors
(resonator) or other drivers operable at these wavelengths, FEL systems currently
under consideration for X-ray sources, operate in the so-called Self-Amplified
Spontaneous Emission (SASE) regime in which the initial shot noise on an electron
beam is amplified over the course of propagation through a long wiggler. In turn,
large pulse-to-pulse variations arise in both output power and radiation spectrum,
and quantum effects on the start-up from noise will be important.

Finally, the absence of resonators at X-ray wavelengths requires a single-pass
high-gain FEL, which in the linear regime will have an extremely large size. Hence,
to reach the required gain on distances much smaller than the coherent length in the
linear regime of amplification, which would reduce greatly the present size of
projected X-ray lasers (several kilometers), nonlinear quantum mechanisms of
generation due to laser-induced coherent interaction become of prime importance.
On the other hand, the inverse problem of laser-induced nonlinear FEL schemes is
the problem of creation of novel accelerators of charged particles of superhigh
energies—laser-plasma accelerators. Therefore, the nonlinear interaction of charged
particles with strong laser fields will be considered in general aspects from the point
of view of both nonlinear quantum FEL schemes and classical laser accelerator
problems. At the same time, we will not overload the material of this book, the
subject of which is nonlinear electromagnetic processes, with the consideration of
linear schemes of FELs taking also into account the existence of well-known books
by T. Marshall (1987), C. Brau (1990), H. Freund and T. Antonsen (1996), and
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E. Saldin, E. Schneidmiller, and M. Yurkov (1999) devoted especially to this
problem.

Besides the mentioned problems there is another important problem concerning
the quantum electrodynamic vacuum in superstrong laser fields. With the appear-
ance of superpower lasers of relativistic intensities in recent years, for which the
energy of an electron acquired at a wavelength of laser radiation exceeds the
electron rest energy, multiphoton excitation of the Dirac vacuum via nonlinear
channels becomes real and, consequently, electron–positron pair production
becomes available. It is a strongly nonlinear process in superintense laser fields,
which occurs inevitably in all processes where the conservation laws for the pair
production are permitted. Thus, while considering such nonlinear processes we will
give special consideration to the multiphoton electron–positron pair production
from superintense laser fields.

Among the considered processes and, in general, stimulated processes with the
charged particles, coherent processes like Cherenkov, Compton, and undulator
essentially differ due to a peculiarity that fundamentally changes the common
picture of electromagnetic processes in dielectric media, and in vacuum—the
presence of a second wave or an undulator. Because of the coherent character of the
corresponding spontaneous radiation process (the existence of certain coherence
condition for radiation) in the presence of an external electromagnetic wave a
critical value of the wave field exists above which a plane wave becomes a potential
barrier or well for a particle and specific threshold nonlinear phenomena arise. The
latter opens new possibilities for laser acceleration and FEL, since in these regimes
the induced process proceeds only in one direction: the inverse concurrent process
of radiation in acceleration regime, and absorption process for the FEL regime are
absent. Therefore, we expect that this book will help to direct the attention of
experimentalists to nonlinear phenomena of “reflection” and capture of charged
particles by a plane electromagnetic wave in Cherenkov, Compton, and undulator
processes, which have been left in the shadows for more than four decades. This
especially relates to the experiments on the induced Cherenkov process made at
SLAC by R. Pantell and collaborators since 1975, where the laser intensities were
left below the critical value for the induced nonlinear Cherenkov resonance. It was
necessary to increase the laser intensity slightly to reveal the existence of critical
intensity and electron shock acceleration due to the “reflection” phenomenon,
proving thereby the peculiarity of the induced Cherenkov process with its nonlinear
threshold nature.

It is worth emphasizing another threshold phenomenon of nonlinear cyclotron
resonance in an arbitrary dispersive medium—dielectric or plasma. That is so-called
electron hysteresis, which can serve as an actual mechanism for laser acceleration of
charged particle beams in plasma media where the use of superpower laser fields is
not restricted and significant acceleration may be reached.

As is known, the spontaneous radiation of relativistic electrons and positrons
channeled in a crystal is of great interest due to two major factors: the radiation is in
the X-ray and γ-ray domains, and its spectral intensity noticeably exceeds that of
other radiation sources in the short-wave range. Thus, induced channeling radiation
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in the presence of an external wave field becomes important as a potential source
for short-wave coherent radiation. On the other hand, due to the induced channeling
effect the inverse process—absorption of the wave photons by the particles—will
also take place leading the particles’ acceleration and other coherent classical and
quantum effects. As a periodic system with high coherency and having the same
character as a particle motion, the crystal channel may be compared with an
undulator—it is a “micro-undulator” with the space period much smaller than the
undulator one. We thus give consideration to the induced channeling process in
general aspects of coherent interaction of relativistic electrons and positrons with a
plane electromagnetic wave in a crystal.

Concerning the consideration of induced noncoherent processes, please note that
in this book we included only induced processes related to plasma media where
they provide actual energy conversion between the particles and transverse elec-
tromagnetic wave and, due to nonlinear interaction, one can reach the effective
outgrowth for the aforementioned problems having as origin the real energy
exchange between the particles and laser beams. From this point of view SB, being
an inevitable induced process in laser-plasma system, is the actual mechanism for
absorption of plane electromagnetic radiation by plasma electrons at the scattering
on the ions. So, it has a significant role in the problems of plasma heating,
laser-plasma accelerator, as well as HHG in atomic/ionic systems through the
continuum states in strong laser fields as an alternative means for implementation of
coherent VUV–X-ray sources, which has witnessed significant experimental
advancement in recent years. However, the consideration of these processes is
beyond the scope of this book. We will consider here the relativistic SB in strong
and superstrong radiation fields in regard to general aspects with nonlinear effects
(nonrelativistic SB in various approximations has been considered in many books).
We will also consider the case of coherent SB process in crystals, which is of
relativistic nature by itself, having in mind consideration of a high-gain X-ray FEL
scheme based on coherent bremsstrahlung in the crystals.

A separate chapter has been devoted to the so-called induced nonstationary
transition effect based on the spontaneous transition radiation effect in a medium at
the abrupt variation of its properties, to describe the nonlinear particle–strong wave
interaction processes in plasma. Such a situation takes place inevitably at the
interaction of superintense ultrashort laser pulses with any medium, which instantly
turns into plasma. It is thus of certain interest to study the nonlinear processes at the
formation of laser plasma. This process may also be of great interest in astrophysics
related to conversion of electromagnetic radiation frequencies in nonstationary
plasma, in particular formation of hard γ-quanta of relativistic energies, electron–
positron pair production, and other nonlinear processes at the abrupt variation of the
matter properties in high energy cosmic objects.

In order not to overload the reader, the references on a given subject are pre-
sented separately in each chapter. My apologies go to all authors whose works are
not covered in this book. We included only the ones that are most directly related to
this book.
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Indeed, the problems discussed in this book do not exhaust the frame of induced
nonlinear phenomena at the interaction of charged particles or condensed matter
with strong and superstrong electromagnetic radiation. By considering a certain
class of induced processes, we have aimed at revealing the principal features of
nonlinear behavior of a particle/matter–strong wave interaction in laser-induced
processes, which are of primary importance for the implementation of contempo-
rary problems, the most significant of which are creation of powerful X-ray–γ-ray
lasers, laser-plasma accelerators, and production of high density antimatter from
superintense laser fields of ultra-relativistic intensities. And if the presentation of
relativistic nonlinear theory of interaction of charged particles, QED vacuum,
condensed matter, and specific quantized systems with strong and superstrong
electromagnetic fields are helpful to specialists in this field, then the publication of
this book will be justified.

In closing, I would like to thank Dr. G. Mkrtchian for assistance in preparation
of the manuscript, and Dr. Tom Spicer, Senior Physics Editor, Springer-Verlag
New York, for his efforts in the publishing of this book.

Yerevan, Armenia Hamlet K. Avetissian
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Chapter 1
Interaction of a Charged Particle
with Strong Plane Electromagnetic
Wave in Vacuum

Abstract What can we expect from particle–strong wave interaction in vacuum? It
is well known that the radiation or absorption of photons by a free electron in vacuum
is forbidden by the energy and momentum conservation laws, which means that the
real energy exchange between a free electron and plane monochromatic wave in
vacuum is impossible, isn’t it? Then, is it worth considering the interaction of a free
electron with strong monochromatic wave in vacuum? In other words, what can we
expect from the strong wave fields in nonlinear theory with respect to the weak ones
described by the linear theory? For example, what are the changes in cross section of
the major electrodynamic process of electron–photon interaction, that is, Compton
effect (which in the one-photon approximation within quantum electrodynamics is
described by theKlein–Nishen formula) at a high density of incident photons? Lastly,
how strong should awave field be for revelation of nonlinear effects in vacuum?What
are the criteria of the strong field? To answer these questions one must first study
the dynamics of a charged particle in the field of a plane electromagnetic wave of
arbitrary high intensity in vacuum on the basis of the classical and quantum equations
of motion. Then, with the help of the classical trajectory of the particle and dynamic
wave function in the quantum description, the nonlinear radiation in the scope of the
classical and quantum theories—the Compton effect in the field of electromagnetic
wave of arbitrary high intensity—will be treated. We will start from the relativistic
equations, because in the field of a strongwave even a particle initially at rest becomes
relativistic. Then, the amplitude of a strong wave will be assumed invariable, i.e., the
radiation effects do not influence the magnitude of a given strong wave field.

1.1 Classical Dynamics of a Particle in the Field
of Strong Plane Electromagnetic Wave

Let a particle with a mass m and a charge e (let e > 0) interact with a plane
electromagnetic (EM) wave of arbitrary form and intensity propagating in vacuum
along a direction ν0 (|ν0| = 1). Then, for the electric (E) and magnetic (H) field
strengths we have

© Springer International Publishing Switzerland 2016
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Springer Series on Atomic, Optical, and Plasma Physics 88,
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2 1 Interaction of a Charged Particle with Strong Plane …

E(t, r) = E(t − ν0r/c); H(t, r) = H(t − ν0r/c); H = [ν0E] . (1.1)

Relativistic classical equation of motion of the particle in the field (1.1) will be
written in the form

dp
dt

= eE + e

c
[vH] , (1.2)

where p and v are the particle momentum and velocity in the field and c is the light
speed in vacuum.

For integration of the equation of motion (1.2) the latter should be written in
components:

ν0
dp
dt

= e

c
(vE), (1.3)

dp⊥
dt

= e
(
1 − vν0

c

)
E. (1.4)

Then the integration of (1.4) is very simple if one takes into account that E is the
function of the variable τ = t −ν0r/c and passes on the left-hand side of (1.4) from
the variable t to τ . So, for the transverse components of the particle momentum we
will have

p⊥ = p0⊥ + e

τ∫

τ0

E(τ )dτ , (1.5)

where p0⊥ is the particle initial transverse momentum at τ = τ0 when E(τ ) |τ=τ0=
H(τ ) |τ=τ0= 0 corresponding to the free particle state before the interaction. Such
definition of the particle free state at the finite moment τ0 at the interaction with
the EM wave is justified when we consider the general case of a plane wave of
arbitrary form, which actually corresponds to wave pulses of finite duration; let here
τ f − τ0. Then, the interaction will be automatically turned on at τ = τ0 and turned
off at τ = τ f , when E(τ ) |τ=τ f = H(τ ) |τ=τ f = 0 too, and the free particle states
before the interaction will correspond to τ ≤ τ0 and after the interaction to τ ≥ τ f .
Such approach also allows passing from the wave pulses of finite duration to quasi-
monochromatic or monochromatic waves by extending τ0 → −∞ and τ f → +∞.

The expressions (1.5) can be written in a simpler form through the vector potential
(A) of the field according to known relations with the electric and magnetic field
strengths for radiation field in the Lorentz gauge

E = −1

c

∂A
∂t

; H = rotA; divA = 0, (1.6)
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consequently

A(τ ) = −c

τ∫

τ0

E(τ )dτ . (1.7)

The condition divA = 0 in (1.6) is the condition of transversality of a plane
wave:ν0A(τ ) = 0.

So, the particle transverse momentum (1.5) can be represented in the form

p⊥ = p0⊥ − e

c
A(τ ), (1.8)

where A(τ ) |τ = τ0 = 0 according to (1.7) (A(τ ) |τ = τ f = 0 as well because of
E(τ ) |τ = τ f = H(τ ) |τ = τ f = 0).

Note that (1.8)may bewrittenwithout integration of the equation ofmotion taking
into account the space properties in this issue. Thus, the existence of a plane wave
does not violate the homogeneity of the space in the plane of the wave polarization.
Consequently, the corresponding transverse components of generalized momentum
are conserved: p⊥ + (e/c)A(τ ) = const and we come at once to (1.8).

For the integration of (1.3) for the longitudinal component of the particle momen-
tum we will use the additional equation for the particle energy variation in the field

dE
dt

= e (vE) . (1.9)

From (1.3) and (1.9) follows the integral of motion for the charged particle in the
field of a plane EM wave:

E − cpν0 = const ≡ Λ. (1.10)

Now we can define the particle momentum and energy in the field with the help
of (1.8) and (1.10), utilizing the dispersion law of the particle energy-momentum as
well:

E2 = p2c2 + m2c4. (1.11)

The following formulas in the field of a plane EM wave of arbitrary form and polar-
ization are obtained:

p = p0 − e

c
A(τ ) + ν0

e2 A2(τ ) − 2ec (p0A(τ ))

2c(E0 − cp0ν0)
, (1.12)

E = E0 + e2 A2(τ ) − 2ec (p0A(τ ))

2(E0 − cp0ν0)
, (1.13)
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where p0 and E0 are the initial momentum and energy of a free particle (Λ =
E0 − cp0ν0).

Then, to obtain the law of the particle motion r = r(t) one must integrate the
equation

dr(t)
dt

= v(t) =c2p(t)

E(t)
. (1.14)

However, since the general expressions of particle momentum and energy in the field
of a plane EM wave depend only on retarding time τ , the last equation allows exact
analytical solution in the parametric form r = r(τ ). Thus, passing in (1.14) from the
variable t to τ and taking into account the integral of motion (1.10) we obtain

dr(τ )

dτ
= c2p(τ )

E0 − cp0ν0
. (1.15)

Integration of (1.15) with the help of (1.12) gives

r(τ ) = r0 + c2p0

(E0 − cp0ν0)
(τ − τ0) + c

(E0 − cp0ν0)

×
τ∫

τ0

{
ν0

2(E0 − cp0ν0)

(
e2 A2(τ ′) − 2ecp0A(τ ′)

)− eA(τ ′)
}

dτ ′, (1.16)

where r0(x0, y0, z0) is the particle initial position at t = t0 (τ = τ0).

1.2 Intensity Effect. Mass Renormalization

Equations (1.12), (1.13), and (1.16) describe the particle motion in the field of a
strong plane EM wave of arbitrary form and polarization. They show that after the
interaction (τ ≥ τ f ) p = p0, E = E0, i.e., the particle remains with the initial energy-
momentum, which means that real energy exchange between a free charged particle
and a plane EM wave in vacuum is impossible. This result is in congruence with the
fact that the real absorption or emission of photons by a free electron in vacuum is
forbidden by the energy and momentum conservation laws, which will be discussed
in regard to the quantum consideration of this process. Nevertheless, in vacuum the
wave intensity effect in the field exists, for revealing of which it should be taken into
account the oscillating character of periodic wave field, for which A(τ ) = 0. Then,
averaging the expressions in (1.12) and (1.13) over time we obtain the following
formulas for the particle average momentum and energy in the field:

p = p0 + ν0
e2A2(τ )

2c(E0 − cp0ν0)
; E = E0 + e2A2(τ )

2(E0 − cp0ν0)
. (1.17)
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Taking into account the dispersion law of the particle energy-momentum (1.11)
for these average values we can introduce the “effective mass” of the particle due to
the intensity effect of strong wave:

m∗ = m
√
1 + ξ2(τ ). (1.18)

This formula describes the renormalization of the particle mass in the field. Here
we introduced a relativistic invariant dimensionless parameter of a plane EM wave
intensity

ξ2(τ ) =
(

eA(τ )

mc2

)2

. (1.19)

The parameter ξ is the basic characteristic of a strong radiation field at the interac-
tion with the charged particles, which represents the work of the field on the one
wavelength in the units of the particle rest energy, i.e., it is the energy (normalized)
acquired by the particle on a wavelength of a coherent radiation field.

As strong radiation fields actually relate to laser sources of high coherency, we
will consider the case of quasi-monochromatic or monochromatic wave fields (we
look aside from the actual intensity profiles of laser beams over space coordinates—
deviation from a plane wave because of their finite sizes).

Let us consider the case of a monochromatic wave. Without loss of generality
we will direct vector ν0 along the OX axis of a Cartesian coordinate system: ν0 =
{1, 0, 0}, then retarding wave coordinate: τ = t − x/c. In the general case of elliptic
polarization the vector potential of a monochromatic wave with a frequency ω0 and
amplitude A0 may be presented in the form

A(τ ) = {0, A0 cos(ω0τ ), gA0 sinω0τ }, (1.20)

where g is the parameter of ellipticity; g = 0 corresponds to a linear polarization,
while g = ±1 describes a wave of a circular polarization (right or left). Let g = 1
and the initial velocity of the particle is parallel to the wave propagation direction
(v0 = v0x ). In such geometry and circular polarization of the wave the intensity
effect becomes apparent (only the latter exists with invariable magnitude, because
p0A(τ ) = 0). In the future we will mainly consider this case of interaction at which
the energy and longitudinal velocity of the particle in the field are invariable, which
allows, first, a simpler picture of a particle–wave nonlinear interaction, and second,
exact solutions inmany processeswhere the existence of the particle initial transverse
momentum prevents obtaining exact analytical solutions.

Concerning the definition of the particle initial and final free states at the inter-
action with a monochromatic wave of infinite duration we will assume an arbi-
trarily small damping for the amplitude A0 to switch on adiabatically the wave at
τ = −∞ and switch off at τ = +∞, i.e., A(τ ) |τ=±∞ = 0 (according to the above-
mentioned conditions for a plane wave of finite duration τ f − τ0 it should be extended
to τ0 → −∞ and τ f → +∞). For a quasi-monochromatic wave (spectral width
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Δω 
 ω0) it should be A0 ⇒ A0(τ ), where A0(τ ) is a slowly varying amplitude
with respect to the phase oscillations over the ω0τ and the conditions of adiabatic
switching on and switching off will take place automatically.

Hence from (1.12) and (1.13) we have simple formulas for the particle momentum
and energy in the field of a monochromatic wave of circular polarization:

px = p0

[
1 + 1

2

c

v0

(
1 + v0

c

)
ξ20

]
, (1.21)

py = −mcξ0 cosω0τ , (1.22)

pz = −mcξ0 sinω0τ , (1.23)

E = E0
[
1 + 1

2

(
1 + v0

c

)
ξ20

]
, (1.24)

where the relativistic parameter of the wave intensity (1.19) ξ2(τ ) = ξ20 = const
and, consequently, one can represent it by the amplitude of the vector potential A0

or electric field strength E0:

ξ0 = eA0

mc2
= eE0

mcω0
. (1.25)

Equation (1.24) shows that for the significant energy change of a particle in the
field of a plane wave in vacuum the superpower laser beams of relativistic intensities
ξ0 � 1 are necessary. Such intensities corresponding to gigantic femtosecond laser
pulses became available in recent years.

To elucidate the law of particle motion in the field of a monochromatic wave we
will choose the frame of reference for the free particle initial position, in which the
coordinates r0 at the moment t = t0 correspond to r0 = v0t0. By that we exclude
the infinities in the expression r = r(τ ) connected with the initial infinity values
of the parameters t0 and r0, which have no physical meaning. Then one can extend
t0 → −∞ and, consequently, τ0 = (1 − v0x/c)t0 → −∞ in (1.16) providing
the particle free state before the interaction (t0 → −∞) at infinity (r0 → −∞)
with the adiabatic switching on the monochromatic (quasi-monochromatic) wave
due to A0(−∞) = 0. Hence, from (1.16) follows the particle law of motion in the
field (1.20) in parametric form. However, considering special cases it is analytically
available to represent directly the law of motion r = r(t) because of the invariability
of longitudinal velocity of the particle in the field

vx = v0
1 + 1

2
c
v0

(
1 + v0

c

)
ξ20

1 + 1
2

(
1 + v0

c

)
ξ20

, (1.26)

which is exposed only to permanent renormalization due to the intensity effect of
the strong wave. Then, with the help of (1.26) we have the following formulas for
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the particle law of motion:

x(t) = vx t, (1.27)

y(t) = − mc3ξ0
E0ω0

(
1 − v0

c

) sinω0

(
1 − vx

c

)
t, (1.28)

z(t) = mc3ξ0
E0ω0

(
1 − v0

c

) cosω0

(
1 − vx

c

)
t. (1.29)

Equations (1.27)–(1.29) show that the particle performs circular motion

y2(t) + z2(t) = const (1.30)

in the plane of the wave polarization (yz) with the radius

ρ⊥ = mc3ξ0
E0ω0(1 − v0

c )
(1.31)

and translational uniform motion along the wave propagation direction (OX axis),
i.e., performs a helical motion (Fig. 1.1). Consider now the case of linear polarization
of the wave

A(τ ) = {0, A0 cos(ω0τ ), 0}. (1.32)

From (1.12) and (1.13) for the particle momentum and energy in the field (1.32) we
have

Fig. 1.1 Trajectory of the particle (initially at rest) in the field of circularly polarized EM wave.
The relativistic parameter of intensity is taken to be ξ0 = 1
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px = p0

[
1 + 1

2

c

v0

(
1 + v0

c

)
ξ20 cos

2 (ω0τ )

]
, (1.33)

py = −mcξ0 cosω0τ , (1.34)

pz = 0, (1.35)

E = E0
[
1 + 1

2

(
1 + v0

c

)
ξ20 cos

2 (ω0τ )

]
. (1.36)

In contrast to the case of circular polarization, in the field of linearly polarized
wave the intensity effect has the oscillating character (at the second harmonic 2ω0,
as follows from (1.33) and (1.36)) and the representation of the particle trajectory
analytically is unavailable. The latter may be performed in parametric form with
the help of the particle law of motion r = r(τ ), which in the field (1.32) has the
following form:

x(τ ) =
[
1 + 1

4

c

v0

(
1 + v0

c

)
ξ20

]
v0τ

(1 − v0
c )

+ ρ� sin(2ω0τ ), (1.37)

y(τ ) = −ρ⊥ sin(ω0τ ), (1.38)

z = 0, (1.39)

where

ρ� = 1

8

c

ω0

1 + v0
c

1 − v0
c

ξ20 (1.40)

is the amplitude of longitudinal oscillations of the particle along thewave propagation
direction and ρ⊥ is given by the formula (1.31).

To determine the particle trajectory we pass to an inertial system of coordinates
connected with the uniformmotion of the particle along the axisOX with the velocity

V = v0
1 + 1

4
c
v0

(
1 + v0

c

)
ξ20

1 + 1
4

(
1 + v0

c

)
ξ20

, (1.41)

to exclude the uniform part of translational movement in the direction of the wave
propagation. After the Lorentz transformations for coordinates and wave frequency
we have the following law of motion in this system:

x
′
(τ ′) =1

8

c

ω′
ξ20

1 + ξ20
2

sin(2ω′τ ′), (1.42)
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y′(τ ′) = y(τ ) = − c

ω′
ξ0√
1 + ξ20

2

sin(ω′τ ′), (1.43)

z′ = 0, (1.44)

where

ω′ = ω0√
1 + ξ20

2

√
1 − v0

c

1 + v0
c

(1.45)

is the Doppler-shifted frequency of the wave in the system moving with the velocity
(1.41).

Now from (1.42) and (1.43) one can obtain the trajectory of the particle in the
plane XY

(
x ′

2ρ′
�

)2

=
(

y′

ρ⊥

)2

−
(

y′

ρ⊥

)4

(1.46)

with the parameters ρ′
�
and ρ⊥:

ρ′
�
= c

8ω′
ξ20

1 + ξ20
2

; ρ′
⊥ = ρ⊥ = c

ω′
ξ0√
1 + ξ20

2

. (1.47)

Equation (1.46) performs a symmetric 8-form figure with the longitudinal axis along
the OY (Fig. 1.2).

Fig. 1.2 Trajectory of the
particle in the field of
linearly polarized EM wave
(excluding the uniform part
of translational movement in
the direction of the wave
propagation) for the various
ξ0
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1.3 Radiation of a Particle in the Field of Strong
Monochromatic Wave

Let us now consider the radiation of a charged particle in the specified wave field
(1.20) of arbitrary high intensity in the scope of the classical theory. In the strong
wave field the radiation of a particle is of nonlinear nature—radiation of high
harmonics—which in quantum terminology means that the multiphoton absorp-
tion by the particle from the incident wave takes place with subsequent radiation
of the corresponding photon. Taking into account certain dependence of harmonics
radiation on the direction of particle motion with respect to the initial strong wave
propagation and its polarization we will consider the general case of a particle–wave
interaction geometry and arbitrary polarization of monochromatic wave (elliptic)

A(τ ) = A0{e1 cosω0τ + e2g sinω0τ }; (1.48)

τ = t − ν0r
c

; e1ν0 = e2ν0 = e1e2 = 0,

where e1,2 are the unit polarization vectors.
The energy radiated by a charged particle in the domain of solid angle d O and

interval of frequencies dω in the direction of the wave vector k (summed by all
possible polarizations) is given by the formula

dεk = e2

4π2c

∣∣∣∣∣∣

∞∫

−∞
[kv] ei(kr−ωt)dt

∣∣∣∣∣∣

2

dωd O, (1.49)

where v = v(t) and r = r(t) are the particle velocity and law of motion in the wave
field (1.20), which are determined by (1.12), (1.13), and (1.16) in parametric form.
The latter requires passing in (1.49) from the variable t to the wave coordinate τ .
Then the equation for the radiation energy will be written in the form

dεk = e2c3

4π2Λ2

∣∣∣∣∣∣

∞∫

−∞

[
kp (τ )

]
eiψ(τ )dτ

∣∣∣∣∣∣

2

dωd O, (1.50)

where

ψ(τ ) = ωτ + k(ν0 − ν)r(τ ) (1.51)

is the phase of radiated wave (kr − ωt) as a function of the incident strong wave
coordinate τ and the unit vector ν in (1.49) is ν = k/k.
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Using (1.12), (1.13) and introducing the functions

G0 =
∞∫

−∞
eiψ(τ )dτ ,

G1 =
∞∫

−∞
A(τ )eiψ(τ )dτ , (1.52)

G2 =
∞∫

−∞
A2(τ )eiψ(τ )dτ ,

after the long but straightforward transformations for the radiation energy we obtain

dεk = e2m2c3ω2

4π2Λ2

(
e2

m2c4
(|G1|2 − Re

(
G0G∗

2

))− |G0|2
)

dωd O. (1.53)

This is the general formula of the spectral-angular distribution of radiation energy
for the arbitrary plane EM wave field. Considering the case of monochromatic wave
(1.48) with the corresponding law of motion (1.16) for the phase of radiated wave
(1.51), which determines the functions (1.52) and, consequently, the energy of radi-
ation (1.53), we have

ψ(τ ) =
(
E − cνp

Λ

)
ωτ + α sin(ω0τ − ϕ) − β sin 2ω0τ , (1.54)

where the parameters α, β, and ϕ are

α = ρ⊥k

√(
νe1 + (ν˚0 − 1)

cp0e1
Λ

)2 + g2
(
νe2 + (νν0 − 1)

cp0e2
Λ

)2
,

β = (νν0 − 1)ρ�k, (1.55)

tanϕ = g
(
νe2 + (νν0 − 1) cp0e2

Λ

)

νe1 + (νν0 − 1) cp0e1
Λ

.

In these expressions the quantities ρ⊥ and ρ� are determined by the (1.31) and (1.40).
Here we have omitted the terms with r0 and τ0 as these terms (constant phase factor)
do not contribute to the single-particle radiation energy. All functions in (1.53) can be
expressed by the series of Bessel function production using the following expansion:
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eiα sin(ω0τ−ϕ)−iβ sin 2ω0τ =
∞∑

n,k=−∞
Jn(α)Jk(β)e−inϕei(n−2k)ω0τ .

The latter in turn can be expressed by the so-called generalized Bessel function
Gs(α,β,ϕ):

Gs(α,β,ϕ) =
∞∑

k=−∞
J2k−s(α)Jk(β)ei(s−2k)ϕ. (1.56)

Then the functions (1.52) will be written by the function Gs(α,β,ϕ) as follows:

G0 = 2π
∞∑

s=−∞
Gs(α,β,ϕ)δ

(
E − cνp

Λ
ω − sω0

)
,

G1 = πA0

∞∑
s=−∞

{e1 (Gs−1(α,β,ϕ) + Gs+1(α,β,ϕ))

+ e2ig (Gs−1(α,β,ϕ) − Gs+1(α,β,ϕ))} δ

(
E − cνp

Λ
ω − sω0

)
, (1.57)

G2 = A2
0

2
(1 + g2)G0 + πA2

0(1 − g2)

×
∞∑

s=−∞
(Gs−2(α,β,ϕ) + Gs+2(α,β,ϕ)) δ

(
E − cνp

Λ
ω − sω0

)
.

The function δ(x) in (1.57) is the Dirac δ-function expressing the resonance
condition between the particle oscillation frequency in the incident strong wave
field and radiation frequency (conservation law of the Compton effect in quantum
terminology). According to (1.57) the radiation energy (1.53) is proportional to the
δ2-function, which should be represented via particle–strong wave interaction time
Δt (in the wave coordinate Δτ = ΔtΛ/E)

δ

(
E − cνp

Λ
ω − sω0

)
δ

(
E − cνp

Λ
ω − s ′ω0

)

=
⎡
⎢⎣
0, if s 
= s ′,

Δτ
2π δ

(
E − cνp

Λ
ω − sω0

)
, if s = s ′.

(1.58)
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Then instead of the radiation energy (1.53) one can determine the radiation power

d Pk = dεk

Δt
.

Substituting (1.57) into (1.53) taking into account (1.58) for the radiation power we
obtain (from ω > 0 follows s > 0)

d Pk = e2m2c3ω2

2πΛE
∞∑

s=1

{
ξ20
4

[
(1 + g2)

(|Gs−1|2 + |Gs+1|2
)

+ 2(1 − g2)Re

(
G∗

s−1Gs+1 − 1

2
G∗

s (Gs−2 + Gs+2)

)]

−
(
1 + ξ20

2
(1 + g2)

)
|Gs |2

}
δ

(
E − cνp

Λ
ω − sω0

)
dωd O. (1.59)

In the case of the circular polarization of an incident strong wave (g = ±1)
the second argument of the generalized Bessel function Gs(α,β,ϕ) is zero and
|Gs |2 = J 2

s (α), so that for the radiation power we have

d Pk = e2m2c3ω2

2πΛE
∞∑

s=1

[
ξ20
2

(
J 2

s−1(α) + J 2
s+1(α)

)− (1 + ξ20
)

J 2
s (α)

]

× δ

(
E − cνp

Λ
ω − sω0

)
dωd O. (1.60)

Using the known recurrent relations for the Bessel functions

Js−1(α) + Js+1(α) = 2s

α
Js(α),

Js−1(α) − Js+1(α) = 2J ′
s(α),

Equation (1.60) can be represented in the following form:

d Pk = e2m2c3ω2

2πE(E − cνp)
ξ20

∞∑
s=1

[(
s2

α2
− 1 − ξ−2

0

)
J 2

s (α) + J ′2
s (α)

]

× δ

(
ω − sω0(E − cν0p)

E − cνp

)
dωd O. (1.61)
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For the linear polarization of an incident strong wave (g = 0) the third argument
of the generalized Bessel function Gs(α,β,ϕ) is zero and Gs functions become real.
Then for the radiation power in this case we have

d Pk = e2m2c3ω2

2πE(E − cνp)

∞∑
s=1

[
ξ20
4

(
(Gs−1 + Gs+1)

2 − Gs (Gs−2 + Gs+2)
)

−
(
1 + ξ20

2

)
G2

s

]
δ

(
ω − sω0(E − cν0p)

E − cνp

)
dωd O. (1.62)

1.4 Nonlinear Radiation Effects in Superstrong Wave Fields

Equations (1.59)–(1.62) for the radiation power of a charged particle show that as
a result of the particle–strong wave nonlinear interaction in vacuum, numerous har-
monics in the radiation spectrum arise, i.e., the radiation process is also nonlinear.
In quantum terminology this means that due to multiphoton absorption by a particle
from the strong wave the nonlinear Compton effect takes place. The power of har-
monics radiation nonlinearly depends on incident strong wave intensity and for its
considerable value, laser fields must have relativistic intensities ξ > 1.

Up until the last decade, such intensities were practically unachievable (even then
the strongest laser fields were ξ < 1) and to expect to reach high harmonics radiation
via nonlinear Compton channels in vacuum with laser fields of intensities ξ < 1
(or any other nonlinear effect at the charge particle–EMwave interaction in vacuum,
particularly laser acceleration,) as will be shown below, was unreal. For this reason,
actual interest in the nonlinear Compton effect until recently was only theoretical.
However, the rapid development of laser technology in the last decademade available
laser sources of supershort duration—femtosecond pulses, the intensity of which
today much exceeds its relativistic value in the optical domain: Irel ∼ 1018 W/cm2

(ξ ∼ 1), laser fields with ξ � 1 became available. The latter has provided the
necessary intensities for actual radiation of high harmonics in the Compton process.
Therefore, we will analyze the process of high harmonics radiation in the nonlinear
interaction of a charged particle with superstrong laser fields (ξ � 1) on the basis of
(1.59)–(1.62).

We will analyze the cases of circular and linear polarizations of the incident wave
taking into account the specific dependence of harmonics radiation on the strong
wave polarization and when the initial velocity of the particle is parallel to the wave
propagation direction. This case of particle–wave parallel propagation is of interest
since in this case the interaction length with actual laser beams (or, e.g., wiggler field,
which in relation to the relativistic particle is equivalent to a counterpropagating laser
field) ismaximal,which is especially important for the problemof free electron lasers.
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In the case of circular polarization of an incident strong wave (g = ±1) and
p0e1 = 0, p0e2 = 0, carrying out the integration over ω and turning to spherical
coordinates in (1.61) (O Z axis directed along the vectorp) for the angular distribution
of the radiation power for the sth harmonic we have

d P (s)

d O
= e2m2c3ω2

s

2πE2
(1 − v

c cosϑ)
ξ20

[(
s2

α2
s

− 1 − ξ−2
0

)
J 2

s (αs) + J ′2
s (αs)

]
, (1.63)

where

ωs = sω0
E − cν0p

E − cνp
= sω0

1 − v
c cosϑ0

1 − v
c cosϑ

(1.64)

is the radiated frequency and

αs = smc2

E (1 − v
c cosϑ

)ξ0 sin ϑ (1.65)

is the parameter characterizing nonlinear interaction with the strong EM wave. ϑ0

and ϑ are the incident and scattering angles of the strong and radiated waves with
respect to the direction of the particle mean velocity v = c2p/E .

For a weak EM wave: ξ0 
 1 (linear theory) the argument of the Bessel function
αs 
 1 and as is known for such values of the argument Js(αs) ∼ αs

s and P (s) ∼ ξ2s
0 .

Therefore, in the linear theory the main contribution to the radiation power gives the
first harmonic. In this case J 2

1 (α1) � α2
1/4, J ′2

1 (α1) � 1/4, E � E0, v � v0, and

d P (1)

d O
= e2m2c3ω2

1

8πE2
0 (1 − v0

c cosϑ)
ξ20

[
2 − α2

1

ξ20

]

= e2m2c3ω2
1

8πE2
0 (1 − v0

c cosϑ)
ξ20

[
2 −

(
mc2

E0

)2 sin2 ϑ(
1 − v0

c cosϑ
)2
]

. (1.66)

Particularly for the particle initially at rest we have the Thomson formula

d P (1)

d O
= e2ω2

0

8πc
ξ20
[
1 + cos2 ϑ

]
,

P (1) = e2ω2
0

4c
ξ20

1∫

−1

[
1 + cos2 ϑ

]
d cosϑ = 2e2ω2

0

3c
ξ20 . (1.67)

For the moderate relativistic intensities ξ0 ∼ 1 (moderate nonlinearity) the power
of the low harmonics (s ∼ 10) exceeds the radiation power of the fundamental
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frequency ω1. To show the dependence of the radiation power on the harmonics
number the relative differential power

P (s)
rel = d P (s)

d O
/

d P (1)

d O
=

s2
[(

s2

α2
s
− 1 − ξ−2

0

)
J 2

s (αs) + J ′2
s (αs)

]
(

1
α2
1
− 1 − ξ−2

0

)
J 2
1 (α1) + J ′2

1 (α1)
(1.68)

is displayed in Fig. 1.3 for the different harmonics. In Fig. 1.4 the relative differential
power is plotted as a function of radiation angle for various harmonics.

For the superstrong EM waves of relativistic intensities (strict nonlinearity):
ξ0 � 1 a relatively simple analytic formula for the radiation power can be obtained
utilizing the properties of the Bessel function. The argument of the latter in (1.63)
reaches its maximal value

Fig. 1.3 The envelope of the
relative differential power of
the radiation for the different
harmonics is plotted at the
ξ0 = 1 and ϑγ = 1
(γ = E/(m∗c2) = 10)

Fig. 1.4 The relative
differential power is plotted
as a function of radiation
angle for various harmonics.
The relativistic parameter of
intensity is taken to be
ξ0 = 2 and γ = 10
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αs max = ξ0√
1 + ξ20

s

at the angle cosϑm = v/c. Therefore, at ξ0 � 1 the harmonics with s ∼ αs � 1
furnish the main contribution to the radiation power. At the angle θ = θm we have
a peak in angular distribution of the radiation power. Besides, in this limit (always
αs < s) one can approximate the Bessel function by the Airy one

Js(αs) �
(
2

s

)1/3

Ai (Z) ; Z =
( s

2

)2/3 (
1 − α2

s

s2

)
, (1.69)

J ′
s � −

(
2

s

)2/3

Ai ′ (Z),

and taking into account that

E = m∗c2√
1 − v2

c2

for the angular distribution of the radiation power we have

d P (s)

d O
�

e2ω2
s

(
1 − v2

c2

)

2πc(1 − v
c cosϑ)

(
2

s

)4/3

×
[(

s2

α2
s

− 1 − ξ−2
0

)( s

2

)2/3
Ai2 (Z) + Ai ′2 (Z)

]
. (1.70)

As far as the Airy function exponentially decreasing with increasing of the argu-
ment, one can conclude that the cutoff harmonic sc is determined from the condition
Zmin ∼ 1, where

Zmin =
( s

2

)2/3 (
1 − α2

s max

s2

)
�
(

s

2ξ30

)2/3

,

which gives sc ∼ ξ30 .
Consider now the case of linear polarization of the incident strong EM wave.

Taking into account the recurrence relation in (1.62)

Gs−2(α,β) + Gs+2(α,β) = s

β
Gs(α,β) + α

2β

[
Gs−1(α,β) + Gs+1(α,β)

]
,
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the differential radiation power in this case can be represented in the form

d P (s)

d O
= e2m2c3ω2

s

8πE2
(1 − v

c cosϑ)
ξ20

×
[
(Gs−1 + Gs+1)

(
Gs−1 + Gs+1 − α

2β
Gs

)
−
(
2 + 4

ξ20
+ s

β

)
G2

s

]
.

(1.71)

The arguments of the generalized Bessel functions when p0e1 = 0 are

αs = smc2

E (1 − v
c cosϑ

)ξ0 |νe1| ,

βs = sξ20
8 + 4ξ20

1 − v2

c2

1 − v
c cosϑ0

cosϑr − 1

1 − v
c cosϑ

, (1.72)

where ϑr is the angle between the incident and radiated EM waves.
For the weak EM wave ξ0 
 1 the arguments of the generalized Bessel function

αs,βs 
 1 and P (s) ∼ ξ2s
0 , therefore, the main contribution to the radiation power

gives the first harmonic. In this case

d P (1)

d O
= e2m2c3ω2

1

8πE2
0 (1 − v0

c cosϑ)
ξ20

[
1 − α2

1

ξ20

]
. (1.73)

For the particle initially at rest we have the Thomson formula

d P (1)

d O
= e2ω2

0

8πc
ξ20
[
1 − (νe1)2

]
,

P (1) = e2ω2
0

3c
ξ20 . (1.74)

In contrast to the circular polarization of the strong wave, for the linear polar-
ization there is no azimuthal symmetry and the asymmetry upon the harmonics
parity appears. In particular, in the direction opposite to the strong wave propaga-
tion (νe1 = 0 and ϑr = π) only odd harmonics exist. This is a consequence of the
particle dynamics in the strong wave field considered in Sect. 1.2. For this case the
generalized Bessel function is reduced to the ordinary Bessel function and we have
a relatively simple formula. Thus,
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Fig. 1.5 The partial
differential power is shown
for on axis radiation as a
function of ξ0 for various
harmonics (γ = 10)

Gs(0,β, 0) =
∞∑

k=−∞
J2k−s(0)Jk(β)

=
∞∑

k=−∞
δ2k−s,0 Jk(β) =

[
0, if s odd
Js/2(β), if s even

(1.75)

and for the angular distribution of the radiation power we obtain

d P (s)

d O

∣∣∣∣
ϑr =π

= e2m2c3ω2
s ξ

2
0

8πE2
(1 − v

c cosϑ)

[
J s+1

2

(
sξ20

4 + 2ξ20

)
− J s−1

2

(
sξ20

4 + 2ξ20

)]2
.

(1.76)

At ξ0 � 1 the argument of the Bessel function tends to the value of the index and
as in the case of a wave circular polarization the high harmonics s � 1 give the main
contribution to the radiation power and the cutoff harmonic sc ∼ ξ30 . In Fig. 1.5 the
partial differential power is shown for on axis radiation. To show the dependence of
the process on the incident wave intensity the relative differential power is plotted as a
function of ξ0 for various harmonics. As we see, with increasing of the wave intensity
the power of harmonics well exceeds the power of the fundamental frequency.

1.5 Quantum Description. Volkov Solution of the Dirac
Equation

The description of the quantum dynamics of a spinor charged particle (say, electron)
in the field of a strong EMwave in vacuum in the scope of relativistic theory requires
solution of the Dirac equation, which in the field of arbitrary plane wave allows an
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exact solution, first obtained by Volkov (1933). This Volkov wave function has the
basic role in quantum description of diverse nonlinear electromagnetic processes
in superstrong laser fields in vacuum, in particular, major quantum electrodynamic
phenomena such as the Compton effect, stimulated bremsstrahlung, and electron–
positron pair production, which will be considered in this book. Therefore, this
section will be devoted to a description of relativistic wave function of a spinor
charged particle in the field of a plane EM wave of arbitrary form and intensity.

The Dirac equation for a spinor particle in a given plane EM wave with arbitrary
form of the vector potential A = A(τ ) (see (1.7)) is written as follows:

i�
∂Ψ

∂t
= [cαP̂+mc2β

]
Ψ, (1.77)

where

α =
(

σ 0
0 −σ

)
, β =

(
0 1
1 0

)
(1.78)

are the Dirac matrices in the spinor representation, σ = (
σx ,σy,σz

)
are the Pauli

matrices

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (1.79)

and

P̂ = p̂ − e

c
A

is the operator of the kineticmomentum (̂p = −i�∇ is the operator of the generalized
momentum).

Looking for the solution of (1.77) in the form

Ψ =
(

Ψ1

Ψ2

)
, (1.80)

for the spinor functions Ψ1,2 we obtain the equations

i�
∂Ψ1

∂t
− cσP̂Ψ1 = mc2Ψ2,

i�
∂Ψ2

∂t
+ cσP̂Ψ2 = mc2Ψ1. (1.81)

Then acting on the first equation by the operator i�∂/∂t + cσP̂ and taking into
account the relation
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(σa) (σb) = (ab) + iσ [ab]

we obtain the Dirac equation in quadratic form:

{
�
2 ∂2

∂t2
− �

2c2
(

ν0
∂

∂r

)2

+ c2P̂2
⊥ + m2c4 − ec�σ(H − iE)

}
Ψ1 = 0. (1.82)

A similar equation is obtained for Ψ2:

{
�
2 ∂2

∂t2
− �

2c2
(

ν0
∂

∂r

)2

+ c2P̂2
⊥ + m2c4 − ec�σ(H + iE)

}
Ψ2 = 0, (1.83)

where E and H are the electric and magnetic field strengths of the plane EM wave
determined by (1.6). The last terms in these equations σ(H ∓ iE) describe the spin
interaction (for the scalar particles (1.82), (1.83) without which these terms are
reduced to the Klein–Gordon equation.) To solve the problem it is more convenient
to pass to the retarding and advanced wave coordinates

τ = t − ν0r/c; η = t + ν0r/c,

then (1.82) is written as

{
4�

2 ∂2

∂τ∂η
+ c2P̂2

⊥ + m2c4 − ec�σ(H − iE)

}
Ψ1 = 0. (1.84)

As the existence of a plane wave does not violate the homogeneity of the space
in the plane of the wave polarization (r⊥) and the interaction Hamiltonian does not
depend on the wave advanced coordinate η, i.e., the variables r⊥, η are cyclic and
the corresponding components of generalized momentum p⊥ and pη are conserved.
Then the solution of (1.84) can be represented in the form

Ψ1
(
τ , η, r⊥

) = F1(τ ) exp

{
i

�
(p⊥r⊥ + pηη)

}
. (1.85)

From the initial condition A(τ = −∞) = 0 it follows that p⊥ is the free particle
initial transverse momentum and the quantity

pη = 1

2
(cpν0 − E) , (1.86)

where E and p are the free particle initial energy and momentum. Note that this
quantity coincides with the classical integral of motion (1.10) (with a coefficient).
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Substituting (1.85) into (1.84) for the function F1(τ ) yields the equation

{
∂

∂τ
− ic2

4�pη

[(
p⊥ − e

c
A
)2 + m2c2 − e�

c
σ(H − iE)

]}
F1(τ ) = 0. (1.87)

The solution of (1.87) can be written in the operator form

F1 = exp

{
ic2

4�pη

τ∫

−∞

[(
p⊥ − e

c
A
)2 + m2c2

]
dτ ′

+ e (σν0 + 1) σ A
4pη

}
w1, (1.88)

where w1 is an arbitrary spinor amplitude.
The operator in the exponent should be understood as a expansion into series

eĜ = 1 + Ĝ + Ĝ2

2! + · · ·.

Then it is easy to see that all powers greater than 1 of the operator (σν0 + 1) σ A in
(1.88) are zero because

[(σν0 + 1)σ A]2 = A2
(
1 − ν2

0

) = 0.

So, the spinor function (1.88) can be written in the form

F1(τ ) = exp

⎧⎨
⎩

ic2

4�pη

τ∫

−∞

[(
p⊥ − e

c
A
)2 + m2c2

]
dτ ′

⎫⎬
⎭

×
[
1 + e

4pη
(σν0 + 1) σA

]
w1. (1.89)

In the same way an analogical expression can be written for the spinor function
F2(τ ).

The spinor components of the bispinor wave function of a particle (1.77) will be
written as

Ψ1 = exp

{
i

�
S (r, t)

}[
1 + e

4pη
(σν0 + 1) σA

]
w1,

Ψ2 = exp

{
i

�
S (r, t)

}[
1 + e

4pη
(σν0 − 1) σA

]
w2, (1.90)

or the ultimate bispinor wave function can be represented via Dirac matrices α
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Ψ (r, t) = exp

{
i

�
S (r, t)

}[
1 + e

4pη
(αν0 + 1) αA

]
w. (1.91)

The scalar function S (r, t) in (1.90) and (1.91)

S (r, t) = c2

4pη

τ∫

−∞

[
e2

c2
A2(τ ′) − 2

e

c
pA(τ ′)

]
dτ ′ + pr − E t (1.92)

is the classical action of a charged particle in the plane EM wave field and

w =
(

w1

w2

)

is a constant bispinor, which should be defined from the condition of the particlewave
function normalization according to the above stated initial conditions. Namely, we
will demand that at τ = −∞ this wave function should be reduced to the free Dirac
equation solution and for a constant bispinor we will set

w = uσ√
2E ,

where uσ is the bispinor amplitude of a free Dirac particle with polarization σ. It is
assumed that

uu = 2mc3,

where u = u†β; u† denotes the transposition and complex conjugation of u (in what
follows we will set the volume of the normalization V = 1).

In future consideration of the quantum electrodynamic processes it will be reason-
able to use the four-dimensional presentation of theVolkovwave function. Therefore,
we will represent the wave function (1.91) in the equivalent four-dimensional form.
Here and in what follows for the four-component vectors we choose the metric
a ≡ aμ = (a0, a) and ab ≡ aμbμ for the relativistic scalar product. The vector
potential and the phase of the plane EM wave can be written as

A = (0, A); τ = t − ν0r/c = kμxμ

k0c
,

where
k = (k0,ν0k0)

is the four-vector with k2 = 0 and x = (ct, r) is the four-radius vector. Introducing
the known γμ = (γ0,γ) matrices
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γ = βα, γ0 = β

and taking into account that

pη = − c

2k0
pk; p =

(E
c
, p
)

,

e

4pη
(αν0 + 1) αA = e

2c(pk)
(γk) (γ A) ,

the Volkov wave function may be written as

Ψ (x) = exp

{
i

�
S (x)

}[
1 + e (γk) (γ A)

2c(pk)

]
u,

S (x) = −px − k0c

2pk

τ∫

−∞

[
2

e

c
p A(τ ′) − e2

c2
A2(τ ′)

]
dτ ′. (1.93)

Consider the Volkov wave function of a spinor particle in the field of the mono-
chromatic wave (1.48). The latter can be presented in the form

Ψpσ =
[
1 + e (γk) (γ A)

2c(kp)

]
uσ(p)√

2E exp

{
− i

�

[
Πx − eA0

c(pk)

×(e1p sinω0τ − ge2p cosω0τ ) + e2 A2
0

8c2(pk)
(1 − g2) sin(2ω0τ )

]}
, (1.94)

where k = (ω0/c, k0) is the four-wave vector and Π = (Π0/c,Π) is the average
four-kinetic momentum or “quasimomentum” of the particle in the periodic field,
which is determined via free particle four-momentum p = (E/c, p) and relativistic
invariant parameter of the wave intensity ξ0 by the equation

Π = p + k
m2c2

4kp
(1 + g2)ξ20 . (1.95)

From this equation it follows that

Π2 = m∗2c2; m∗ = m

(
1 + 1 + g2

2
ξ20

)1/2

, (1.96)

where m∗ is the effective mass of the particle in the monochromatic EM wave intro-
duced in Sect. 1.2 (see (1.18)). It is seen that quasimomentum� = p and quasienergy
Π0 = E according to (1.17). The notion of quasimomentum is connected with the
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space-time translational symmetry-periodicity of the plane wave field as for the elec-
tron states in the crystal lattice.

The states (1.94) are normalized by the condition

1

(2π�)3

∫
Ψ

†
p′σ′Ψpσdr = δ(p − p′)δσ,σ′,

where δσ,σ′ is the Kronecker symbol.
By the analogy of the electron states in the crystal lattice the state of a particle

in the monochromatic wave can be characterized by the quasimomentum � and
polarization σ as well:

1

(2π�)3

∫
Ψ

†
�′σ′Ψ�σdr = δ(� − �′)δσ,σ′ .

In this case the normalization constant should be changed as follows:

Ψ�σ =
√

E
Π0

Ψpσ. (1.97)

1.6 Nonlinear Compton Effect

With the help of the Volkovwave function (1.94) one can describe themajor quantum
process of electron scattering in the field of a strongmonochromaticwave—nonlinear
Compton effect—as a photon radiation by the electron due to the transitions between
the “stationary states” of different quasimomentum � and polarization σ. The spon-
taneous radiation of a photon by the electron may be considered by the perturbation
theory in the scope of quantum electrodynamics (QED). The first-order Feynman
diagram (Fig. 1.6) describes the electron–EM wave scattering process, where the
electron lines are described via dynamic wave functions in the strong wave field
(1.94) (dressed electron). The probability amplitude of transition from the state with
a definite quasimomentum and polarization Ψ�σ to the state Ψ�′σ′ with the emission
of a photon with the frequency ω′ and wave vector k′ is given by

Si f = − ie

�c2

∫
ji f (x)A∗

ph (x) d4x, (1.98)

where

Aμ
ph (x) =

√
2π�c2

ω′ εμe−ik ′x (1.99)
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Fig. 1.6 Feynman diagram
for nonlinear Compton effect

is the four-dimensional vector potential of quantized photon field (quantization vol-
ume V = 1), εμ is the four-dimensional polarization vector of the photon, and

jμ
i f = Ψ �′σ′γμΨ�σ

is the four-dimensional transition current (Ψ �′σ′ = Ψ
†
�′σ′γ0 and A∗ is the complex

conjugate of A).
Hence, for the probability amplitude we have

Si f = −ie

√
2π

�ω′c2

∫
Ψ �′σ′ ε̂∗Ψ�σeik ′x d4x . (1.100)

Here and in what follows for arbitrary four-component vector â = γμaμ. The prob-
ability amplitude can be expressed by the generalized Bessel functions Gs(α,β,ϕ)

introduced in Sect. 1.3. Thus, taking into account the properties of Dirac γ matrices
(̂kk̂ = 0 Âk̂ = −k̂ Â) and (1.94) one will obtain

Si f = −i
e

c

√
π

2�ω′Π0Π
′
0

∫
uσ′(p′)

[
ε̂∗ +

(
e Âk̂ε̂∗

2c(kp′)
+ eε̂∗k̂ Â

2c(kp)

)

− e2(kε∗)A2

2c2(kp′)(kp)
k̂

]
uσ(p)eiψ(x)d4x . (1.101)

Here

ψ(x) = 1

�

(
Π ′ − Π + �k ′) x + α sin(kx − ϕ) − β sin 2kx, (1.102)

and the parameters α, β, and ϕ are

α = eA0

�c

[(
e1p
pk

− e1p′

p′k

)2

+ g2
(

e2p
pk

− e2p′

p′k

)2
]1/2

, (1.103)
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β = e2 A2
0

8�c2
(1 − g2)

(
1

pk
− 1

p′k

)
, (1.104)

tanϕ =
g
(

e2p
pk − e2p′

p′k

)
(

e1p
pk − e1p′

p′k

) . (1.105)

After the integration the probability amplitude (1.101) can be represented in the form

Si f = −i
e

c
(2π�)4

√
π

2�ω′Π0Π
′
0

uσ′(p′)M̂i f uσ(p), (1.106)

where

M̂i f =
[
ε̂∗ Q0 +

(
eQ̂1k̂ε̂∗

2c(kp′)
+ eε̂∗k̂ Q̂1

2c(kp)

)
+ e2(kε∗)Q2

2c2(kp′)(kp)
k̂

]
(1.107)

with the functions Q0, Qμ
1 , and Q2:

Q0 =
∞∑

s=−∞
Gs(α,β,ϕ)δ

(
Π ′ − Π + �k ′ − s�k

)
, (1.108)

Qμ
1 = (0, Q1),

Q1 = A0

2

∞∑
s=−∞

{e1 (Gs−1(α,β,ϕ) + Gs+1(α,β,ϕ))

+ ie2g (Gs−1(α,β,ϕ) − Gs+1(α,β,ϕ))} δ
(
Π ′ − Π + �k ′ − s�k

)
,

(1.109)

Q2 = A2
0

2
(1 + g2)Q0 + A2

0

2
(1 − g2)

×
∞∑

s=−∞
(Gs−2(α,β,ϕ) + Gs+2(α,β,ϕ)) δ

(
Π ′ − Π + �k ′ − s�k

)
.

(1.110)

From the definition of the functions (1.108)–(1.110) follows the useful relation

E ′ − E + �ω′

ω
Q0 + e

c

(
p′ Q1

kp′ − pQ1

kp

)
+ e2

2c2

(
1

kp′ − 1

kp

)
Q2 = 0 (1.111)
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We will assume that the Dirac particle is nonpolarized and summation over the
final particle polarizations (photon and electron) will be made. Then we need to
calculate the sum

1

2

∑
σ′,σ,ε

∣∣Si f

∣∣2 = (2π�)8 πe2

4�ω′c2Π0Π
′
0

∑
σ′,σ,ε

∣∣uσ′(p′)M̂i f uσ(p)
∣∣2

= (2π�)8 πe2c2

4�ω′Π0Π
′
0

∑
ε

Sp
[
( p̂′ + mc)M̂i f ( p̂ + mc)M̂i f

]
, (1.112)

where
M̂i f = γ0M̂†

i f γ0.

Taking into account that spur of the product of odd number γ matrices is zero we
will obtain

1

2

∑
σ′,σ,ε

∣∣Si f

∣∣2 = (2π�)8 πe2c2

4�ω′Π0Π
′
0

∑
ε

{
Sp
[

p̂′M̂i f p̂M̂ i f

]
+ m2c2Sp

[
M̂i f M̂ i f

]}
.

The summation over the photon polarizations is equivalent to the replacements

ε∗
υεμ → −gυμ, ε̂∗âε̂ → 2̂a, ε̂∗âb̂ĉ̂ε → 2̂cb̂â, (1.113)

where gυμ is the metric tensor. So,

Sp
[

M̂i f M̂ i f

]
= −16 |Q0|2

and

Sp
[

p̂′M̂i f p̂M̂ i f

]
= 8(p′ p) |Q0|2

+ 8e

c

(
pk − p′k

)
Re

((
p′ Q1

kp′ − pQ1

kp

)
Q∗

0

)

− 4e2

c2

[
kp

kp′ + kp′

kp

]
|Q1|2 − 8e2

c2
Re
(
Q0Q∗

2

)
.

Then using the relation (1.111) we obtain

1

2

∑
σ′,σ,ε

∣∣Si f

∣∣2 = 2 (2π�)8 πe2c2

�ω′Π0Π
′
0

[
−m2c2 |Q0|2

− e2

c2

(
1 + �

2
(
kk ′)2

2 (pk) (p′k)

) (|Q1|2 + Re
(
Q0Q∗

2

))]
. (1.114)
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For the differential probability per unit time we have

dW = 1

2T

∑
σ′,σ,ε

∣∣Si f

∣∣2 d�′

(2π�)3
dk′

(2π)3
, (1.115)

where T is the interaction time. Then taking into account (1.108)–(1.110) and the
relation

δ
(
Π ′ − Π + �k ′ − s�k

)
δ
(
Π ′ − Π + �k ′ − s ′

�k
)

=
⎡
⎣
0, if s 
= s ′,

cT
(2π�)4

δ
(
Π ′ − Π + �k ′ − s�k

)
, if s = s ′,

(1.116)

for the differential probability of the nonlinear Compton effect we obtain

dW =
∞∑

s=1

W (s)δ
(
Π ′ − Π + �k ′ − s�k

)
d�′dk′, (1.117)

W (s) = e2m2c5

2πω′Π0Π
′
0

[
− |Gs |2 + ξ20

4

(
1 + �

2
(
kk ′)2

2 (pk) (p′k)

)

×
(

(1 + g2)
(|Gs−1|2 + |Gs+1|2 − 2 |Gs |2

)

+ (1 − g2)Re
[
2G∗

s−1Gs+1 − G∗
s (Gs−2 + Gs+2)

])]
. (1.118)

The four-dimensional δ-functions in (1.117) for differential probability express the
conservation laws for quasimomentum and quasienergy of the particle in the non-
linear Compton process. Different s correspond to partial scattering processes with
fixed photon numbers and W (s) are the partial probabilities of s-photon absorption
by the particle in the strong wave field.

The spectrumof emitted photons is determined from the conservation laws. Taking
into account (1.95) and (1.96) we will have the following expression for the radiated
frequency:

ω′ = sω
1 − v

c cosϑ0

1 − v
c cosϑ + s�ω

Π0
(1 − cosϑr )

, (1.119)

whereϑ0,ϑ are the incident and scattering angles of incident strongwave and radiated
photon with respect to the direction of the particle mean velocity v = c2�/Π0 and ϑr
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is the angle between the incident wave and radiated photon propagation directions.
The quantum conservation law of nonlinear Compton effect (1.119) differs from the
classical formula (1.64) by the last term in the denominator ∼s�ω/Π0, which is the
quantum recoil of emitted photon.

Making the integration over �′ in (1.117) and multiplying by the photon energy
we obtain the radiation power. In the case of circular polarization of an incident
strong wave (g = ±1) we have |Gs |2 = J 2

s (α) and the radiation power is

d P (s)
k′ = ω′2e2m2c3

2πΠ0Π
′
0

[
−J 2

s (α) + ξ20

(
1 + �

2
(
kk ′)2

2 (pk) (p′k)

)

×
[(

s2

α2
− 1

)
J 2

s (α) + J ′2
s (α)

]]
× δ

(
Π ′

0 − Π0

�
+ ω′ − sω

)
dω′d O,

where the Bessel function argument

α = eA0

�ω

∣∣∣∣
[

k
(

p
pk

− p′

p′k

)]∣∣∣∣ . (1.120)

Taking into account that

δ

(
Π ′

0 − Π0

�
+ ω′ − sω

)
dω′ →

∣∣∣∣
∂

∂ω′

(
Π ′

0

�
+ ω′

)∣∣∣∣
−1

= Π ′
0ω

′

c2 (Π ′k ′)
,

for the angular distribution of radiation power we obtain

d P (s)

d O
= ω′3e2m2c

2πΠ0 (Π ′k ′)

[
−J 2

s (α) + ξ20

(
1 + �

2
(
kk ′)2

2 (pk) (p′k)

)

×
((

s2

α2
− 1

)
J 2

s (α) + J ′2
s (α)

)]
. (1.121)

This formula differs from the classical one (1.63) only by the terms of quantum
recoil, which are of the order of �kk ′/

(
Π ′k

)
. The maximal value of this parameter

is 2s� (Πk) /m∗2c2 and if

2s� (Πk)

m∗2c2

 1,

one can omit the quantum recoil and taking into account that in this case

Π ′k ′ � Πk ′; α � αclassic; �
2
(
kk ′)2

2 (pk) (p′k)

 1,

from (1.121) we obtain the classical formula for radiation power.
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In the limit of weak EM wave when ξ0 
 1 (linear theory) the argument of the
Bessel function α 
 1 and the main contribution to the radiation power gives the
first harmonic (as in the classical theory). In this case J 2

1 (α1) � α2
1/4, J ′2

1 (α1) �
1/4, Π0 � E , Π ′

0 � E ′, and

d P

d O
= ω′3e2m2c

8πE (p′k ′)

[
−α2 + 2ξ20

(
1 + �

2
(
kk ′)2

2 (pk) (p′k)

)]
.

Then, using conservation laws, it is easy to see that

∣∣∣∣
[

k
(

p′

p′k
− p

pk

)]∣∣∣∣
2

= 2�
ω2

c2

(
1

p′k
− 1

pk

)
− ω2m2

(
1

pk
− 1

p′k

)2

,

(
1 + �

2
(
kk ′)2

2 (pk) (p′k)

)
= 1

2

[
pk

p′k
+ p′k

pk

]
,

and for the one-photon Compton effect we obtain

d P

d O
= ω′3e2m2c

8πE (p′k ′)
ξ20

[(
m2c2

� (p′k)
− m2c2

� (pk)

)2

− 2

(
m2c2

� (p′k)
− m2c2

� (pk)

)
+ pk

p′k
+ p′k

pk

]
. (1.122)

For the differential cross section

dσ

d O
= 1

�ω′ J
d P

d O

one should make the replacement

A2
0 → 4π�c2

ω
, (1.123)

corresponding to photon field quantization and

J = c3 pk

ωE
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is the initial flux density (quantization volume V = 1). Hence, for the differential
cross section of the one-photon Compton effect we obtain

dσ

d O
= ω′2e4

2c4 (pk)2

[(
m2c2

� (p′k)
− m2c2

� (pk)

)2

− 2

(
m2c2

� (p′k)
− m2c2

� (pk)

)
+ pk

p′k
+ p′k

pk

]
. (1.124)

For a particle initially at rest

pk = mω, pk ′ = mω′,
mc2

�ω′ − mc2

�ω
= 1 − cosϑr ,

and the differential cross section of the one-photon Compton effect may be written
in the known form of Klein and Nishina formula

dσ

d O
= r2e

2

(
ω′

ω

)2 [ ω

ω′ + ω′

ω
− sin2 ϑr

]
, (1.125)

where re = e2/mc2 is the classical radius of the electron.

Bibliography

D.M. Volkov, Z. Phys. 94, 250 (1935)
A. Vachaspati, Phys. Rev. 128, 664 (1962)
A. Vachaspati, Phys. Rev. 130, 2598 (1963)
A.A. Kolomensky, A.N. Lebedev, Zh. Éksp, Teor. Fiz. 44, 261 (1963)
R.H. Melburn, Phys. Rev. Lett. 10, 75 (1963)
F.R. Harutyunyan, I.I. Goldman, V.A. Tumanyan, Zh. Éksp, Teor. Fiz. 45, 312 (1963)
I.I. Goldman, Zh. Éksp, Teor. Fiz. 46, 1412 (1964)
L.S. Brown, T.W.B. Kibble, Phys. Rev. A 133, 705 (1964)
T.W.B. Kibble, Phys. Rev. B 138, 740 (1965)
L.S. Bartell, H.B. Thomson, R.R. Roskos, Phys. Rev. Lett. 14, 851 (1965)
F.V. Bunkin, M.V. Fedorov, Zh Éksp, Teor. Fiz. 49, 4 (1965)
J.J. Sanderson et al., Phys. Lett. 18, 114 (1965)
G. Toraldo di Francia, Nuovo Cimento 37, 1553 (1965)
T.W.B. Kibble, Phys. Lett. 20, 627 (1966)
J.H. Eberly, H.R. Reiss, Phys. Rev. 145, 1035 (1966)
V.Ya. Davidovski, E.M. Yakushev, Zh. Éksp. Teor. Fiz. 50, 1101 (1966)
N.D. Sengupta, Phys. Lett. 6, 642 (1966)
N.J. Philips, J.J. Sanderson, Phys. Lett. 21, 533 (1966)
J.F. Dawson, Z. Fried, Phys. Rev. Lett. 19, 467 (1967)
H. Prakash, Phys. Lett. A 24, 492 (1967)
J.H. Eberly, A. Sleeper, Phys. Rev. 176, 1570 (1968)
J.H. Eberly, Prog. Opt. 7, 359 (1969)
Y.W. Chan, Phys. Lett. A 32, 214 (1970)



Bibliography 33

A.I. Nikishov, V.I. Ritus, Usp. Fiz. Nauk 100, 724 (1970)
M.J. Feldman, R.Y. Chiao, Phys. Rev. A 4, 352 (1971)
H. Brehme, Phys. Rev. C 3, 837 (1971)
A.I. Nikishov, V.I. Ritus, Ann. Phys. (N.Y.) 69, 555 (1972)
V.L. Ritus, Tr. Fiz. Inst. Akad. Nauk SSSR 111, 141 (1979). (in Russian)
C.A. Brau, Modern Problems in Classical Electrodynamics (Oxford University Press, New York,
2004)



Chapter 2
Interaction of Charged Particles with Strong
Electromagnetic Wave in Dielectric Media.
Induced Nonlinear Cherenkov Process

Abstract What can we expect from particle–strong wave interaction in a medium
essentially different from that of a vacuum? It is well known that in a medium with
the refractive index n(ω) > 1 (dielectric media) the Cherenkov effect takes place—
charged particle moving with a velocity v = const radiates spontaneously transverse
EM wave of frequency ω at the angle θ satisfying the condition of coherency cosθ
= c/vn(ω). This means that in the presence of an external plane EM wave of the
same frequency ω propagating at this angle with respect to the particle motion the
spontaneous Cherenkov radiation of the particle will acquire induced character and
the inverse process of Cherenkov absorption from the incident wave by the particle
is possible as well. This is the general character of arbitrary type spontaneous radia-
tion process in corresponding induced one. However, in contrast to the noncoherent
process (e.g., bremsstrahlung), if the spontaneous process is of coherent nature, such
as the Cherenkov process, for the satisfaction of the condition of coherency the exter-
nal wave should be weak enough to not change considerably the particle initial veloc-
ity v and violate the mentioned condition of coherency of the spontaneous process.
Consequently, this explanation of formation of induced process with the charged
particles (induced free–free transitions in quantum terminology) corresponds to the
linear theory. The behavior of induced Cherenkov process in the strong EM wave
field is quite different from the mentioned one. The existence of the threshold value
of the particle velocity for the spontaneous Cherenkov radiation (v > c/n(ω)) stipu-
lates for the threshold value of the wave intensity essentially changing the character
of the dynamics of the particle–wave interaction in a medium and, consequently,
the character of electromagnetic processes in dielectriclike media, proceeding in the
presence of strong radiation fields. As we will see later, the peculiarities that arise at
the nonlinear interaction of charged particles with strong EM waves are the general
features of coherent processes like the Cherenkov one. To reveal the nonlinear behav-
ior and principal peculiarities of a particle–strong wave interaction in a medium, this
chapter will present the nonlinear classical theory of induced Cherenkov process.

© Springer International Publishing Switzerland 2016
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Springer Series on Atomic, Optical, and Plasma Physics 88,
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2.1 Particle Classical Motion in the Field of Strong Plane
EM Wave in a Medium

A plane quasi-monochromatic EMwave in a mediummay be described by the vector
potential A(t, r) = A(t − n0ν0r/c), where n0 ≡ n(ω0) is the refractive index of the
medium at the carrier frequency of the wave (actually laser radiation). For the electric
and magnetic fields we will have, respectively,

E(t, r) = E(t − n0ν0r/c); H(t, r) = H(t − n0ν0r/c); H = n0 [ν0E] . (2.1)

Hereafter we will assume that the frequency ω0 is far from the main resonance
transitions between the atomic levels of the medium to prohibit the wave absorption
and nonlinear optical effects in the medium and, consequently, n0 = √

ε0μ0 = const
will correspond to the linear refractive index of the medium (ε0 and μ0 are the
dielectric and magnetic permittivities of the medium, respectively).

Without loss of generality wewill direct vector ν0 along theOX axis of a Cartesian
coordinate system: ν0 = {1, 0, 0} and the relativistic classical equations of motion
of a charged particle in the field (2.1) will be written in the form

dpx

dt
= n0

e

c

[
vy Ey(τ ) + vz Ez(τ )

]
, (2.2)

dpy

dt
= e

(
1 − n0

vx

c

)
Ey(τ ); dpz

dt
= e

(
1 − n0

vx

c

)
Ez(τ ), (2.3)

where τ = t − n0x/c is the retarding wave coordinate of the quasi-monochromatic
plane EM wave in a medium.

The integration of (2.2) and (2.3) is carried out as was done for (1.3) and (1.4)
and with (1.9) one can obtain the particle transverse momentum

py = p0y − e

c
Ay(τ ); pz = p0z − e

c
Az(τ ) (2.4)

and integral of motion

K ≡ E− c

n0
px = const, (2.5)

which together with the relation E2 = p2c2 + m2c4 determine the energy of the
particle in the field of strong quasi-monochromatic plane EM wave in a medium:

E = E0

n2
0 − 1

{
n2
0

(
1 − v0x

cn0

)
∓
[(

1 − n0
v0x

c

)2

−
(
n2
0 − 1

)

E2
0

(
e2A2 (τ ) − 2ecp0A (τ )

)]1/2
}

. (2.6)
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Here p0 = {
p0x , p0y, p0z

}
, E0, and v0x are the particle initial momentum, energy,

and longitudinal velocity, respectively, at τ = −∞ (A(τ ) |τ=−∞ = 0 according to
unique definition of the vector potential of the wave (1.7).

Equation (2.6) describes the energy exchange between the charged particle and
plane transverse EM wave of arbitrary intensity in a medium in the general case.
However, besides the formula of the energy for the description of the particle nonlin-
ear dynamics in this process we will need the formula for the longitudinal velocity
of the particle in the field—a major characteristic of the induced Cherenkov process.
The latter can be defined from the relation vx = c2 px/E within the expression for
the longitudinal momentum of the particle px , which is determined by the integral
of motion (2.5) and (2.6). Then for the longitudinal velocity of the particle we will
have

vx = cn0
1 − v0x/cn0 ∓ √

D

n2
0 (1 − v0x/cn0) ∓ √

D
, (2.7)

where

D ≡ (1 − n0v0x/c)2 − ((n2
0 − 1

)
/E2

0

) (
e2A2 (τ ) − 2ecp0A (τ )

)
. (2.8)

Further, for the consideration of radiation processes we will need the formulas for
transverse velocities of the particle, which can be defined from (2.4) and (2.6):

vy,z = c

E0

(
n2
0 − 1

) (
cp0y,z − eAy,z (τ )

)

n2
0 (1 − v0x/cn0) ∓ √

D
. (2.9)

As is seen from (2.6)–(2.9) the expressions determining the particle energy or
velocity in the wave field are, first, not single-valued and, second, may become
imaginary depending on particle and wave parameters. The peculiarity arising in the
induced Cherenkov process because of particle–strong wave nonlinear interaction is
connected with this fact. Hence, treatment of the particle dynamics in this process
should start by clarification of these questions.

2.2 Nonlinear Cherenkov Resonance and Critical Field.
Threshold Phenomenon of Particle “Reflection”

To consider the behavior of a particle upon nonlinear interaction with a strong wave
in amedium on the basis of (2.6) wewill analyze the case where the initial velocity of
the particle is directed along the wave propagation direction for which the picture of
the particle nonlinear dynamics is physicallymore evident. In this case (2.6) becomes

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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E = E0

n2
0 − 1

⎡
⎣n2

0

(
1 − v0

cn0

)

∓
√(

1 − n0
v0
c

)2 − (n2
0 − 1

) (mc2

E0

)2

ξ2 (τ )

⎤
⎦ , (2.10)

where ξ2 (τ ) is the relativistic invariant parameter of a plane EM wave intensity,
determined by (1.19).

As is seen, (2.10) is two valence and, at first, we shall provide the unique definition
of the particle energy in accordance with the initial condition. In the case of plasma
(n0 < 1) or vacuum (n0 = 1) the term under the root is always positive, hence, in
these cases one has to take before the root only the upper sign (−) to satisfy the
initial condition E (τ ) = E0 when ξ(τ ) = 0. In the case of a vacuum, (2.10) yields
results obtained in Chap.1 (see (1.13) or (1.24) and (1.36) for the circular and linear
polarizations of the wave).

Further investigation is devoted to the case of a medium with refractive index
n0 > 1. In this case the nature of the particle motion essentially depends on the
initial conditions and the value of the parameter ξ (τ ) as far as the expression under
the root in (2.10) may become negative, while the energy of the particle should be a
real quantity and uniquely defined as well. To solve this problem one needs to pass
the complex plane, according to which we represent (2.10) in the form of known
inverse Jukowski function (to determine also the sign before the root corresponding
to initial condition E (τ ) |τ=−∞ = E0 since at n0 > 1 the quantity 1− n0v0/c under
the root may be negative as well):

E = E0

n2
0 − 1

[
n2
0

(
1 − v0

cn0

)
∓
(
1 − n0

v0
c

)√
1 − ξ2 (τ )

ξ2cr

]
, (2.11)

where

ξcr ≡ E0

mc2
|1 − n0

v0
c |√

n2
0 − 1

. (2.12)

If ξmax < ξcr (ξmax is the maximum value of the parameter ξ(τ )) the expression
under the root in (2.11) is always positive and in front of the root one has to take the
upper sign (−) according to the initial condition. Then E = E0 after the interaction
(ξ(τ ) → 0) and the particle energy remains unchanged.

If ξmax > ξcr the particle is unable to penetrate into the wave, i.e., into the region
ξ > ξcr since at ξ > ξcr the root in (2.11) becomes a complex one. This complexity
now is bypassed via continuously passing from one Riemann sheet to another, which
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http://dx.doi.org/10.1007/978-3-319-26384-7_1
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corresponds to changing the inverse Jukowski function from “−” to “+” before the
root. Hence, the upper sign (−) in this case stands up to the value of thewave intensity
ξ(τ ) < ξcr , then at ξ (τ ) = ξcr the root changes its sign from “−” to “+”, providing
continuous value for the particle energy in the field. The intensity value ξ (τ ) = ξcr

of the wave is a turn point for the particle motion, so we call it the critical value.
Thus, when the maximum value of the wave intensity exceeds the critical value

a transverse plane EM wave in the medium becomes a potential barrier and the
“reflection” of the particle from the wave envelope (ξ(τ )) takes place. If now ξ(τ ) →
0, we obtain after the “reflection” for the particle energy

E = E0

[
1 + 2

1 − n0
v0
c

n2
0 − 1

]
. (2.13)

If the initial conditions are such that the wave pulse overtakes the particle (v0 <

c/n0), then after the “reflection” E > E0 and the particle is accelerated. But if the
particle overtakes the wave (v0 > c/n0), then E < E0 and particle deceleration takes
place.

This nonlinear threshold phenomenon is bounded on the stimulated Cherenkov
process. The coherent nature of the Cherenkov process is related to the existence of
the critical intensity of the wave ξcr . Indeed, from (2.7) it follows that when ξ = ξcr

the longitudinal velocity of the particle in the field becomes equal to the phase veloc-
ity of the wave: vx (ξ) |ξ=ξcr = c/n0 irrespective of its initial velocity v0. The latter
is the Cherenkov condition of coherency in a dielectric medium. Fulfillment of the
Cherenkov condition in the strong wave field leads to the nonlinear Cherenkov reso-
nance, at which the induced absorption or emission of Cherenkov photons becomes
essentially multiphoton. As a result, the particle velocity becomes greater or smaller
(depending on initial velocity v0) than the wave phase velocity and it leaves the
wave, i.e., the “reflection” from the wave front occurs. In addition, the energy lost
by the particle at the deceleration (v0 > c/n0) is coherently transferred to the wave
via induced Cherenkov radiation. As is seen from (2.13), for the initial “Cherenkov
velocity” v0 = c/n0 the energy of the particle after the “reflection” does not change:
E = E0 , which is in congruence with the critical value of the field: ξcr = 0 at the
initial Cherenkov velocity of the particle (see (2.7)). The latter confirms the nonlinear
character of Cherenkov resonance in the strong wave field. In this case the induced
Cherenkov effect will occur at vx = v0 = const, i.e., the wave field should not change
the particle initial velocity, which can take place approximately, only in the weak
fields—induced Cherenkov effect in the linear theory (in accordance with the initial
condition ξ(τ ) |τ=−∞= 0—the wave is turned on adiabatically—it is evident that in
this case the linear-induced Cherenkov effect is absent as well).

This threshold phenomenon of the particle “reflection” can be more clearly pre-
sented in the frame of reference connected with the wave. In this frame the elec-
tric field of the wave vanishes (E′ ≡ 0) and there is only the static magnetic field
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(
∣∣H′∣∣ = |H|

√
n2
0 − 1/n0). For not very large particle velocities in this frame the

magnetic field will turn the particle back—elastic reflection from the standing wave
barrier. In the opposite case the particle slips through the magnetic field. Such behav-
ior of the particle in the intrinsic frame of the wave corresponds to the cases ξ > ξcr

(large velocities close to the Cherenkov one at which ξcr is small and the condition
ξ > ξcr is achievable) and ξ < ξcr in the laboratory frame of reference, respectively
(see (2.7)). Note that because of the particle reflection from the standing barrier in the
frame of reference of the slowed wave we term the revealed nonlinear phenomenon
a “reflection” one.

Hence, the threshold-coherent nature of spontaneous Cherenkov effect over the
particle velocity (vth = c/n0) causes the threshold for the external wave intensity
(ξth ≡ ξcr ), which in turn causes the phenomenon of particle “reflection” from the
plane EM wave. It is worth emphasizing that the latter may be very small (ξcr → 0)
if the particle initial velocity is close to the wave phase velocity (v0 → c/n0),
which means that in this case the linear theory is not applicable even for very weak
wave fields (ξ → 0), since the nonlinear phenomenon of particle “reflection” will
take place (ξ > ξcr → 0). Also, it is important that due to this phenomenon the
induced process at ξ > ξcr proceeds strictly in a certain direction—either radiation
or absorption (inverse-induced process), which has a principal meaning for induced
free–free transitions related especially to problems of laser acceleration and free
electron lasers.

Let us estimate the particle energy change due to “reflection”.Note, at first, that the
latter does not depend on interaction length or magnitude of the field (it is necessary
only that ξ > ξcr ). It is a nonlinear acceleration/deceleration of the shock character,
which proceeds in short enough time—smaller than the wave pulse duration. As
is seen from (2.13), for a certain value of the refractive index of the medium the
stronger the initial velocity of the particle differs from the Cherenkov one and the
closer to 1 (n0 − 1 � 1), the larger is the energy change. As follows from (2.12)
in these cases the strong wave fields are necessary. However, as the medium is to
be dielectriclike (n0 > 1) the wave intensity is confined to the threshold ionization
of the medium. As is known in nonionized media a wave of intensity ξ2 < I/mc2,
where I is the first ionization energy of the medium atoms (for dielectrics, the width
of the forbidden zone), can propagate. In the opposite case a tunnel ionization of the
atoms can take place. Consequently, the region of intensities where the “reflection”
phenomenon in dielectriclike media can be applied is ξ2 < ξ2max < I/mc2. For
typical values I ∼ 10 eV we have ξmax ∼ 5 × 10−3. To such values of the wave
critical intensity correspond particle velocities near the Cherenkov one, which is
possible in the case of relativistic particles in the gases (n0 − 1 � 1), whereas for
nonrelativistic ones, in solids (n0 − 1 ∼ 1). However, in the last case the negative
effects of multiple scattering and ionization loss of the particle in solids can also
influence. Thus, this phenomenon can be realized in the gases for relatively low
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densities. The optimal values of the refractive index of the gaseous media for this
phenomenon are n0 − 1 ∼ 10−3 ÷ 10−5 (e.g., for CO2 and He at standard pressure
and temperature n0 − 1 ∼ 4.48 × 10−4 and ∼ 3.47 × 10−5, respectively).

As the application of large intensities is restricted with ionization threshold of the
medium, we express the particle energy change due to “reflection” through the wave
critical intensity. If n0 −1 ≡ μ1 � 1 and 1−v0/c ≡ μ2 � 1 from (2.12) and (2.13)
we have

ξcr 
 |μ1 − μ2|
2
√

μ1μ2
; |ΔE | 
 ξcr mc2

√
2

μ1
. (2.14)

Estimations show that an electron with initial energy E0 ∼ 10 MeV after the “re-
flection” from a laser pulse with ξ ∼ 5×10−4 (which corresponds to the neodymium
laser radiation strength E ∼ 107 V/cm) in a medium with n0 − 1 ∼ 10−3 acquires
(v0 < c/n0) or loses (v0 > c/n0) energy |ΔE | ∼ 10 keV.As the particle deceleration
occurs because of stimulated Cherenkov radiation in this case the wave amplification
takes place. Hence, as a result of the “reflection” of a beamwith electron total number
∼ 5 × 1014 an energy of ∼ 1 J coherently will be radiated into the wave.

The phenomenon of charged particle “reflection” from a plane EMwave may also
be used for themonochromatization of particle beams. The fact that above the critical
intensity value the induced Cherenkov process occurs in only one direction—either
emission or absorption—and for the initialCherenkovvelocity v0x = c/n0 the energy
of the particle after the “reflection” does not change, in principle enables conversion
of the energetic or angular spreads of charged particle beams due to “reflection.” The
latter requires considering the general case of interaction at the arbitrary direction of
particle initial motion with respect to wave propagation. So, without repeating the
analysis, which has been made in the case of particle–wave parallel propagation we
will present the ultimate results of the “reflection” phenomenon in the general case.

Thus, when the particle initial velocity is directed at an angle (ϑ) to the wave
propagation direction the energy of the particle is given by (2.6), which at the linear
polarization of the wave reads as

E (τ ) = E0

n2
0 − 1

{
n2
0

(
1 − v0

cn0
cosϑ

)
∓
[(

1 − n0
v0
c
cosϑ

)2 − (n2
0 − 1

)

×
(

mc2

E0

)2 [
ξ2 (τ ) cos2 ω0τ − 2

p0 sin ϑ

mc
ξ (τ ) cosω0τ

]]1/2}
(2.15)

(the wave is linearly polarized along the axis OY with vector potential Ay =
A(τ ) cosω0τ and one can assume p0 = {p0 cosϑ; p0 sin ϑ; 0}, as far as the coordi-
nate z is free). As is seen from (2.15), in this case the “reflection” occurs from certain
planes of equal phases but from the front of the wave intensity envelope as in the
case ϑ = 0. At the actual values of the parameters for induced Cherenkov process
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(ultrarelativistic particles in gaseous media with refractive index n0 − 1 � 1 and
not very small angles ϑ, as well as the wave intensity being confined to ionization
threshold of the medium) the second term under the root is much smaller than the
third one, that is, 2p0| sin ϑ|/mc � ξmax and for the critical field in this case we have

ξcr (ϑ) = c

2v0

E0

mc2

(
1 − n0

v0
c cosϑ

)2
(
n2
0 − 1

) | sin ϑ| ; ϑ �= 0 (2.16)

(in the case ϑ = 0, ξcr is determined by (2.12)).
If the maximal value of the wave intensity ξmax > ξcr (ϑ), then the particle energy

after the “reflection” is

E (ϑ) = E0

[
1 + 2

(
1 − n0

v0
c cosϑ

)

n2
0 − 1

]
. (2.17)

Let the charged particle beam with an initial energetic (Δ0) and angular (δ0)
spread interact with a plane transverse EM wave of intensity ξmax > ξcr (ϑ) in a
gaseous medium. To keep the mean energy E0 of the beam unchanged after the
interaction (at the adiabatic turning on and turning off of the wave) the axis of
the beam with mean velocity v0 must be pointed at the Cherenkov angle (ϑ0) to
the laser beam, i.e., n0(v0/c) cosϑ0 = 1. Under this condition the particles with
velocities v0 cosϑ < c/n0 will acquire an energy and the other particles for which
the longitudinal velocities exceed the phase velocity of the wave (v0 cosϑ > c/n0)
will have loss of energy according to (2.17). As a result the energies of the particles
E (ϑ) will approach close to the mean energy E0 of the beam (E (ϑ) → E0) and the
final energetic width of the beamwill become less than the initial one. As there is one
free parameter (for a specified velocity v0 the parameters ϑ0 and n0 are related by
Cherenkov condition) it is possible to use it to control the exchange in the energy of
the particles after the “reflection” (2.17) and to reach the minimal final energy spread
of the beamΔ � Δ0—monochromatization. Depending on the relation between the
initial energetic and angular spreads and mean energy of the beam, the opposite
process may occur, namely angular narrowing of the beam. Physically it is clear that
with the monochromatization the angular divergence of the beam will increase and
the opposite—the angular narrowing of the beam—leads to demonochromatization
(in accordance with Liouville’s theorem). More detailed consideration of this effect
with the quantitative results can be found in the bibliography of this chapter.

To illustrate the typical picture of nonlinear interaction of a charged particle with
a strong EMwave in a medium we present the graphics of numerical solutions of the
(2.2) and (2.3) for the laser pulse of finite duration, showing the behavior of particle
dynamics below and above critical intensity, with the effect of acceleration. At first
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Fig. 2.1 “Reflection” of the
particle. The energy versus
the position x is plotted
when the wave intensity is
above the critical point

wewill not take into account the dependence of the slowly varying intensity envelope
of a laser beam from the transverse coordinates. Thus, a laser beam may be modeled
as

Ex = 0, Ez = 0, Ey = E0

cosh
(

τ
δτ

) cosω0τ , (2.18)

where δτ characterizes the pulse duration. The particle initial energy is taken to be
E0 = 40 MeV and the initial velocity is directed at the angle ϑ = 9×10−3 rad to the
wave propagation direction (p0z = 0). The refractive index of the gaseous medium
for this calculation has been chosen to be n0 − 1 = 10−4. Figure2.1 illustrates the
evolution of the particle energy: the energy versus the position x is plotted for a
neodymium laser (�ω0 
 1.17 eV) with electric field strength E0 = 3 × 108 V/cm
and δτ = 4T ( T is the wave period). For these parameter values the wave intensity is
above the critical point and, as we see from this figure, the particle energy is abruptly
changed corresponding to the “reflection” phenomenon. Figure2.2a illustrates the
evolution of the energies of particles with different initial interaction angles. The
initial energies for all particles are E0 
 40 MeV. Figure2.2b illustrates the role of
initial conditions: the final energy versus the interaction angle is plotted. As follows
from (2.16) the critical intensity and also the final energy (2.17) depend on the initial
interaction angle and as a consequencewe have this picture.Note that the acceleration
rate neither depends on the field magnitude (only should be above threshold field)
nor on the interaction length.



44 2 Interaction of Charged Particles with Strong Electromagnetic Wave …

Fig. 2.2 “Reflection” of the
particles with different initial
interaction angles. Panel a
displays the evolution of the
energies of particles. In b the
final energy versus the
interaction angle is plotted

(a)

(b)

To demonstrate the dependence of the considered process on transverse profile of
the laser intensity for actual beams in Fig. 2.3 the evolution of the energies of particles
with various initial phases (with initial energies E0 
 40 MeV) is illustrated. The
laser beam transverse profile is modeled by the Gaussian function

Ey = E0 exp

(
− 4

d2

(
y2 + z2

)) cosω0τ

cosh
(

τ
δτ

) (2.19)

with d = 103λ, δτ = 50T . As we see from this figure the acceleration picture is
essentially changed depending on the entrance coordinates of the particles. This is
the manifestation of the threshold nature of the “reflection” phenomenon.
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Fig. 2.3 The evolution of
the energies of particles with
various initial phases are
shown for the laser beam
with transverse intensity
profile for the various
entrance coordinates: a
z = 0, b z = d/4, and c
z = d/2

(a)

(b)

(c)

2.3 Particle Capture by a Plane Electromagnetic Wave
in a Medium

If for the intensity exceeding the critical value a plane EMwave becomes a potential
barrier for the external particle (with respect to thewave), then for the particle initially
situated in the wave it may become a potential well and particle capture by the wave
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will take place. As the particle state in the wave depends on wave phases we will
assume in this case a certain polarization of a monochromatic wave. Let it be linearly
polarized with electric field strength along the axis OY:

Ey = E0 cosφ; φ = ω0

(
n0

x

c
− t
)

. (2.20)

The solution of equations of motion (2.2) and (2.3) in the field (2.20) may be
presented in the form

px (φ) = n0

n2
0 − 1

E0

c

{(
1 − v0x

cn0

)
∓
[(

1 − n0
v0x

c

)2 − (n2
0 − 1

) (mc2

E0

)2

× ξ20 (sin φ − sin φ0)

(
sin φ − sin φ0 − 2

p0y

mcξ0

)]1/2}
, (2.21)

py(φ) = p0y − mcξ0(sin φ − sin φ0),

E(φ) = c

n0
px (φ) + E0

(
1 − v0x

cn0

)
, (2.22)

where ξ0 = eE0/mcω0 is the intensity parameter of the monochromatic wave (see
(1.25)), φ0 = ω(n0x0/c − t0) is the initial phase of the particle in the wave. Here
without loss of generality it is assumed that the z component of the particle initial
momentum p0z = 0 as far as the coordinate z is free.

It is seen from (2.21) that the particle can be in the field region where

W (φ) ≡ (sin φ − sin φ0)

(
sin φ − sin φ0 − 2

p0y

mcξ0

)

≤
( E0

mc2

)2
(1 − n0v0x/c)2(

n2
0 − 1

)
ξ20

. (2.23)

If the maximum value of the function W (φ)

Wmax(φ) >

( E0

mc2

)2
(1 − n0v0x/c)2(

n2
0 − 1

)
ξ20

, (2.24)

then the region (2.23) will be a potential well for the particle and the capture of the
latter by the transverse EMwave will take place. The equilibrium phases of the wave
(φs) correspond to the extrema of the function W (φ):

sin φs = sin φ0 + p0y

mcξ0
; cosφs �= 0, (2.25)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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cosφs = 0; sin φs �= sin φ0 + p0y

mcξ0
. (2.26)

The particle moves with a Cherenkov velocity vxs = c/n0 when it is in the
equilibrium phases φs . Equation (2.22) together with (2.25) and (2.26) determine the
equilibrated values of the particle transverse momentum pys . In particular, pys = 0
corresponds to the case (2.25). The motion of the particle in these phases will be
stable when

| sin φ0 + p0y

mcξ0
| < 1. (2.27)

If the initial velocity of the particle is equal to theCherenkov one (v0x = c/n0 = vxs),
then from (2.24) we have the following condition for the particle capture by thewave:

p0y

mcξ0
< 1 + | sin φ0 + p0y

mcξ0
|. (2.28)

On fulfillment of (2.27) the condition of particle capture (2.28) always holds, and
therefore the condition of stable motion (2.27) determines the capture of the particle
in the considered regime. In particular, as is seen from (2.25) and (2.27), when
py0 = 0, thenφs = φ0 and any phase is equilibrated. In this case the phase cosφ0 = 0
(Ey = 0) is unstable. This is physically clear in the wave frame where the magnetic
field of the wave corresponding to this phase is zero: H′ = 0, while the stability
in the capture regime is due to particle rotation around the vector of the magnetic
field (when pys = 0). If the particle initial velocity differs from the Cherenkov value
v0x = v0 = c/n0 + Δv, then in the capture regime the particle will undergo stable
oscillations close to the equilibrated Cherenkov value. From (2.24) one can obtain
the following condition for the capture of such particle:

|Δv| <
c

n0

mc2

E0
ξ0

√(
n2 − 1

)
(1 + | sin φ0|) . (2.29)

The spread tolerances of the unequilibrated particle’s initial phase and velocity
can be defined from the condition (2.29) (Δv = (c/n0ω0)|dφ/dt |).

Note that the needed value of the field for the particle capture by the wave defined
from (2.29) is the critical value of the field (2.12) for the “reflection” of the external
particle (φ0 = 0).

Consider now the particle capture in equilibrium phases (2.26). With the help of
(2.22) and (2.23) one can show that the particle motion at the phases cosφ0 = 0 will
be stable when

pys sin φs > 0; φs = (2k + 1)π/2; k = 0;±1;±2; . . . . (2.30)
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For the capture of initial Cherenkov particle (v0x = c/n0) at the phases φs =
(2k + 1)π/2 from (2.24) one can obtain the following condition:

Wmax(φ) = 4| sin φ0 + p0y

mcξ0
| > 0,

which always holds. Therefore, the particle capture in this case is determined by
condition (2.30). If py0 sin φ0 > 0, the phase φ0 is an equilibrated one for any value
of the particle transverse momentum (p0y = pys). But if v0x = c/n0 + Δvx the
condition for capture is

|Δvx | <
2c

n0

√
n2 − 1

mc2

E0
ξ0| sin φ0 + p0y

mcξ0
|1/2. (2.31)

From (2.31) the critical value of the field can be defined for unequilibrated particle
“capture” at the wave phases φ0 = (2k + 1)π/2.

If cos φ0 �= 0 from (2.24) one can obtain that when p0y/mcξ0 > 2 the Cherenkov
particle capture is defined again by condition (2.30).

2.4 Laser Acceleration in Gaseous Media. Cherenkov
Accelerator

The phenomenon of charged particle “reflection” and capture by a transverse EM
wave can be used for particle acceleration in laser fields. As the application of large
intensities in this process is restricted because of the medium ionization the acceler-
ation owing to “reflection” in the medium with refractive index n0 = const—single
“reflection”—is relatively small. However, if the refractive index decreases along the
wave propagation direction in such a way that the condition of particle synchronous
motion with the wave vx (x) = c/n0(x) takes place continuously, the phase velocity
of the wave will increase all the time and the particle being in front of the wave
barrier (at ξ > ξcr ) will continuously be “reflected”, i.e., continuously accelerated.
The law n0 = n0(x) must have an adiabatic character not to allow the particle to
leave the wave after the single “reflection”. Such variation law of the refractive index
can be realized in a gaseous medium adiabatically decreasing the pressure.

For particle acceleration one can also use the capture regime. In this case in the
medium with n0 = const the particle energy does not change on average (particle
makes stable oscillations around the equilibrium phases in the wave moving with
average velocity < vx >= c/n0). However, if one decreases the refractive index
along the propagation direction of the wave, so that the particle does not leave the
equilibrium phases, then the wave will continuously accelerate the particle. Then, to
realize the capture regime (2.25) one needs p0y/mcξ0 < 2. For not very strong fields
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this is sufficiently strict confinement on the transverse momentum of the particle. On
the other hand, to accelerate the particle significantly large transverse momenta are
needed. Therefore, this regime can be used to pass the particles through the matter
and, also, to separate the particles by velocities (parameter ξ defines the region of
particle velocities captured by the wave (see (2.29)).

For particle acceleration by laser fields one can use the capture regime (2.26)
corresponding to large transverse momenta of the particle p0y/mcξ0 > 2. So, we
will consider the general case of particle capture with arbitrary initial momentum p0

and laser acceleration in gaseous medium with varying refractive index n0(x).
Wewill use the particle equations ofmotion (2.2) and (2.3) in the field (2.20)where

the refractive index n0 → n0(x) and consequently the wave phase is determined as
follows:

φ(x, t) = ω0

c

∫
n0(x)dx − ω0t. (2.32)

Then from the equations

dφs

dt
= 0,

d2φs

dt2
= 0 (2.33)

defining wave equilibrium phases we obtain the variation laws for equilibrium veloc-
ity of the particle and refractive index of the medium, respectively:

vxs(x) = c

n0(x)
, (2.34)

dn0(x)

dx
= −n3

0(x)

c2

(
dvx

dt

)

s

. (2.35)

From (2.2) and the equation for the particle energy variation

dE
dt

= evy E0 cosφ(x, t) (2.36)

one can obtain the acceleration of the particle in the longitudinal direction

dvx

dt
= ecn0(x)

E
[
1 − vx

cn0(x)

]
vy E0 cosφ(x, t). (2.37)

The equation of motion (2.3) determines in general for an arbitrary n0(x) the
integral of motion (2.5), fromwhich for the equilibrium transverse momentum of the
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particle we have (again without loss of generality it is assumed that the z component
of the particle initial momentum p0z = 0 since the coordinate z is free)

pys = p0y − mcξ0 (sin φs − sin φ0) . (2.38)

Defining within (2.38) the equilibrium transverse velocity of the particle vys(x) =
c2 pys/Es(x) and substituting together with (2.34) into (2.37) for the equilibrium
value of the particle longitudinal acceleration we obtain

(
dvx

dt

)

s

= cω0ξ0
pys

mc
cosφs

(
mc2

Es(x)

)2
n2
0(x) − 1

n0(x)
. (2.39)

Substituting (2.39) into (2.35) we will have the equation which determines the vari-
ation law of the medium refractive index:

dn0(x)

dx
= −ω0

c
ξ0

pys

mc
cosφs

(
mc2

Es(x)

)2

n2
0(x)

[
n2
0(x) − 1

]
. (2.40)

It is seen from this equation that for the particle acceleration in the capture
regime via decreasing refractive index of the medium (dn0(x)/dx < 0) one needs
pys cosφs > 0 (equilibrium transverse momentum of the particle must be directed
along the vector of the wave electric field). In the opposite case the continuous
deceleration of the particle will take place accompanied by induced Cherenkov
radiation (regime of continuous amplification of the wave by the particle beam at
dn0(x)/dx > 0).

The energy of equilibrium particle acquired on the distance x is defined by

E2
s (x) = n2

0(x)

n2
0(x) − 1

(
m2c4 + c2 p2

ys

)
. (2.41)

Integrating (2.40) within (2.41) the ultimate formula for the variation law of the
medium refractive index becomes

1

2

[
n0(0)

n2
0(0) − 1

− n0(x)

n2
0(x) − 1

]
+ 1

4
ln

[
n0(x) + 1

n0(x) − 1
· n0(0) − 1

n0(0) + 1

]

= −mc2ξ0ω0 pys cosφs

m2c4 + c2 p2
ys

x . (2.42)

Equation (2.41) in the general case defines the particle acceleration in the capture
regimewhen themedium refractive index falls along the wave propagation according
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to law (2.42). It defines the longitudinal dimension of such “Cherenkov accelerator”
as well. The transverse dimension of the latter is defined as

Es(y) = Es(0) + mcω0ξ0(y − y0) cosφs . (2.43)

Here Es(0) and y0 are the initial equilibrium values of the energy and transverse
coordinate of the particle (y− y0 is the transverse dimension of “Cherenkov accelera-
tor”).As is seen from (2.43) the particle acceleration takes place if (y−y0) cosφs > 0,
and in the opposite case deceleration occurs (Es(y) < Es(0)) in accordancewithwhat
was mentioned above. For relativistic particles, when n0(x) ∼ 1 and n0(x) − 1 �
n0(0) − 1, from (2.42) we have

n0(x) − 1 
 m2c4 + c2 p2
ys

4mc2ξ0ω0 pys cosφs

1

x
. (2.44)

As this formula is valid at the large variation of themedium refractive indexn0(x) − 1,
then according to (2.41) it corresponds to large acceleration of the particle: Es(x) �
Es(0). In particular, (2.41) determines the initial value of the refractive index n0(0)
as a function of the initial value of the equilibrium energy of the particle Es(0):

n0(0) − 1 =
Es(0) −

√
E2

s (0) − c2 p2
ys − m2c4

√
E2

s (0) − c2 p2
ys − m2c4

(2.45)

(since φs = const, then pys = const according to (2.38)). From the comparison of
(2.44) and (2.45) (n0(x) − 1 � n0(0) − 1; n0(0) ∼ 1) one can find the longitudinal
dimension of acceleration on which the decreasing law of refractive index (2.44) is
valid:

x � E2
s (0) − c2 p2

ys − m2c4

2mc2ξ0ω0 pys cosφs
. (2.46)

The energy of the equilibrium particle acquired on such distances is

Es(x) 

√
2mc2ξ0ω0|pys cosφs |x; Es(x) � Es(0). (2.47)

The estimations show that, for example, at electric field strengths of laser radiation
E ∼ 108 V/cm an electron with initial energy Es(0) ∼ 5 MeV acquires energy
Es(x) ∼ 50 MeV already at the distance x ∼ 1 cm. The transverse dimension
of acceleration y − y0 is of the order of a few millimeters and the longitudinal
dimension of the system is of the order of the transverse one (a few times larger).
At the distance x ∼ 1 m the particle energy gain is of the order of 1 GeV. Note that
because of multiple scattering on the atoms of the medium the particles can leave
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the regime of stable motion as a result of change of pys . The analysis shows that
the multiple scattering essentially falls in the above-mentioned gaseous media (see
Sect. 2.2) for laser field strengths E > 107 V/cm.

To illustrate the particle acceleration in the capture regime we will represent the
results of numerical solution of (2.2) and (2.3) in the field of an actual laser beam
with the electric field strength

Ey = E0 exp

(
− 4

d2

(
y2 + z2

)) cos
(

ω0
c

∫
n0(x)dx − ω0t + ϕ0

)

cosh
( 1

c

∫
n0(x)dx − t +ϕ0/ω0

δτ

) , (2.48)

Ex = 0, Ez = 0,

where δτ characterizes the pulse duration and ϕ0 is the initial phase. Simulations
have been made for neodymium laser (�ω0 
 1.17 eV) with electric field strength
E0 = 3 × 108 V/cm and δτ = 1000T, d = 5 × 103λ. The variation law for the
refractive index of the medium is defined in a self-consistent manner (see (2.35) and
(2.37)), which may be approximated by the function

n(x) = n0 + n f

2
+
(
n f − n0

)

2
tanh (κx) , (2.49)

where n0, nf are the initial and final values of the refractive index and κ characterizes
the decreasing rate.

Figure2.4 illustrates the evolution of the particle energy in the capture regime.
The particle initial energy is taken to be E0 = 50.5 MeV and the initial velocity is
directed at the angle ϑ = 9× 10−3 rad to the wave propagation direction (p0z = 0).
The initial value of the refractive index has been chosen to be n0 − 1 
 10−4. As we

Fig. 2.4 The evolution of
the particle energy in the
capture regime with variable
refractive index
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Fig. 2.5 Acceleration of the
particles in the capture
regime. Panel a displays the
evolution of the energies of
particles with various initial
phases. The initial entrance
coordinate is z = 0. In b the
final energy versus the initial
phase is plotted

(a)

(b)

see in the capture regimewith variable refractive index, one can achieve considerable
acceleration.

To show the role of initial conditions in Fig. 2.5a the evolution of the energies
of particles with the same initial energies E0 = 50.5 MeV (ϑ = 9 × 10−3 rad)
and various initial phases is illustrated. The initial entrance coordinate is z = 0.
Figure2.5b displays the role of initial conditions: the final energy versus the initial
phase is plotted. In Fig. 2.6 the parameters are the same as in Fig. 2.5a except the
initial entrance coordinate, which is taken to be z = 0.25 mm. As we see from
these figures the captured particles are accelerated, while the particles situated in the
unstable phases (or if the conditions for capture are not fulfilled) after the interaction
remain with the initial energy.
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Fig. 2.6 Acceleration of the
particles in the capture
regime. Panel a displays the
evolution of the energies of
particles with various initial
phases. The initial entrance
coordinate is z = 0.25 mm.
In b the final energy versus
the initial phase is plotted

(a)

(b)

2.5 Nonlinear Compton Scattering in a Medium

“Reflection” and capture phenomena are essentially changing the picture of Compton
scattering in a medium. The existence of the critical field in a mediumwith refractive
index n(ω) > 1 confines the intensity of external wave on which Compton scattering
of a charged particle proceeds. Therefore, one can consider the Compton effect in
dielectriclike media only if the wave intensity does not exceed the critical value. On
the other hand, as was mentioned above the multiphoton absorption and radiation
due to the nonlinear Cherenkov resonance in the field just occurs at wave intensities
close to the critical one. Hence, it is important to consider the nonlinear Compton
effect in a gaseous medium where the induced Cherenkov radiation will accompany
and interfere with the Compton radiation at external wave intensities close to the
critical value. At the latter the nonlinear Compton effect (high harmonic radiation)
will take place even in very weak wave fields (ξ � ξcr � 1) in contrast to nonlinear
Compton effect in vacuum where for the radiation already of the second harmonic
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with considerable intensity, superstrong fields (ξ > 1) are required, as has been
shown in Chap.1.

The energy radiated by a charged particle in a medium at a frequency ω in the
domain dω and solid angle dO is given as

dεk = e2n (ω)

4π2c3
ω2dωd O

∣∣∣∣∣∣

+∞∫

−∞
[νv] exp [ikr(t) − iωt] dt

∣∣∣∣∣∣

2

, (2.50)

where k = νn (ω)ω/c is the radiation wave vector in the medium (ν is a unit vector
along the radiation direction) and n (ω) is the refractive index of the medium at
frequency ω.

The particle law of motion r(t) in the plane monochromatic EM wave of circular
polarization is determined by analogy with (1.27)–(1.29) and is written as

x(t) = vx t,

y(t) = −ξ
c

ω0

mc2

E (1 − n0
vx
c

) cosω0

(
1 − n0

vx

c

)
t, (2.51)

z(t) = ξ
c

ω0

mc2

E (1 − n0
vx
c

) sinω0

(
1 − n0

vx

c

)
t.

Here it is assumed that the initial velocity of the particle is directed along the wave
propagation (v0 = v0x ) at which the particle longitudinal velocity vx and energy E do
not vary in time since it depends only on the wave intensity ξ2 (see (2.7) and (2.10))
and for the circular polarization of the wave ξ2 = const (the strong wave intensity
effect is responsible for permanent renormalization of these quantities in the field).
Then, in the equations for particle energy and velocity (2.7)–(2.10) one should take
only the sign minus before the root in accordance with the above discussion.

Substituting (2.7), (2.9), and (2.51) into (2.50) and integrating, the following
ultimate formula for the spectral power of the Compton radiation of the s-th harmonic
in a medium is obtained:

d P (s)
k = e2n (ω)

2πc

ω2

ω0
(
1 − n0

vx
c

)
{[

n (ω)
vx

c
− cos θ

]2 J 2
s (α)

n2 (ω) sin2 θ

+ ξ2
(

mc2

E
)2

J ′2
s (α)

}
δ

[
ω
1 − n(ω) vx

c cos θ

ω0
(
1 − n0

vx
c

) − s

]
dωd O, (2.52)

where θ is the angle between the radiation direction and axis OX, and the argument
of the Bessel function

α = ξ
mc2

E
ωn(ω) sin θ

ω0
(
1 − n0

vx
c

) . (2.53)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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The δ-function in (2.52) determines the conservation lawof theCompton radiation
process in a medium (radiation spectrum)

ω = sω0
1 − n0

vx
c

1 − n(ω) vx
c cos θ

. (2.54)

First, let us consider the cases of limit intensities of the wave ξ = 0 and ξ = ξcr .
If in (2.52) ξ → 0, then the radiation power will differ from zero only for the s = 0
harmonic. In that case, the conservation law of Compton process (2.54) becomes the
condition of Cherenkov radiation (vx → v0x = v0) and (2.52) after the integration
over θ passes to the Tamm–Frank formula

d P (0)
ω = e2v0

c2

(
1 − c2

n2(ω)v20

)
ωdω. (2.55)

In the other limit case of ξ = ξcr , the longitudinal velocity of the particle vx =
c/n0 and (2.54) allows the nonzero frequencies of radiation either for infinitely large
harmonics (s = ∞) or when the condition

1 − n(ω)
vx

c
cos θ = 0 (2.56)

is fulfilled. However, it is easy to see that at the satisfaction of condition (2.56) the
radiation power becomes zero. Hence, at the value of external wave intensity ξ = ξcr

only the harmonics s = ∞ are radiated the power of which differs from zero at the
value of the Bessel function argument α = s, which gives

1 − kvcr

ω
= 0; k = νn(ω)

ω

c
,

where

vcr =
⎧
⎨
⎩

c

n0
, 0, c

√
n2
0 − 1

1 − n0
v0
c

n2
0

(
1 − v0

cn0

)
⎫
⎬
⎭ .

In that case, (2.52) again passes to the Tamm–Frank formula (2.55) for a particle
moving with the velocity v0 = vcr > c/n(ω). In this case the radiation of funda-
mental frequency ω0 exists as well. So, only in limit cases ξ = 0 and ξ = ξcr does
Compton radiation fully turn into Cherenkov radiation and at the values of external
wave intensity 0 < ξ < ξcr the radiation of the particle involves superposition of
Compton and Cherenkov radiation.

The nonlinear scattering in laser fields of moderate intensities, that is, radiation
of high harmonics at ξ � 1, is of great interest. In considering this process it is
possible even at weak wave fields of intensities ξ ≈ ξcr � 1 due to the Cherenkov
resonance, i.e., when the radiation is close to the Cherenkov cone with the incident
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wave. In accordance with (2.52) significant nonlinearity in the radiation process
arises when the argument of the Bessel function α ∼ s (s � 1). As is seen from
(2.53) and (2.54) such large values of α can be reached due to vx → c/n0, i.e., if the
intensity of an incident wave is close to the critical value (ξ → ξcr ) and radiation is
close to the Cherenkov cone (1 − n(ω)(vx/c) cos θ → 0).

To determine the conditions and quantitative results for high harmonics (s � 1)
radiation, one should substitute into (2.53) the concrete expressions of the particle
longitudinal velocity vx and energy E in the field. From (2.7) and (2.10) we have

α = mc2

E0

n(ω)ω sin θ

ω0
(
1 − n0

v0
c

)√
1 − ξ2

ξ2cr

ξ. (2.57)

In (2.57), the radiation angle (sin θ) should be defined from the condition θ 
 θc,
where θc is the Cherenkov angle. At fundamental frequency ω0 the Cherenkov angle
θc � 1, whereas at other frequencies ω it may not be small depending on the
mediumdispersion and, consequently, the conditions of nonlinearitywill be different.
However, the number of harmonics at all frequencies is large enough. The harmonic
s = 0 at fundamental frequency ω0 cannot be radiated since vx < c/n0. The first
harmonic (s = 1) at frequency ω0 is radiated at the angle θ = 0. The negative
harmonics (s = −1, −2, ...) correspond to anomalous Compton scattering in a
medium with refractive index n(ω) > 1. At frequencies ω �= ω0 the harmonic s = 0
corresponds to Cherenkov radiation; however, the power of the radiation differs from
the Tamm–Frank formula because of the oscillatory character of the particle motion
in the wave field (influence of Compton effect).

2.6 Radiation of a Particle in Capture Regime. Cherenkov
Amplifier

Consider the radiation of the particle captured by a plane monochromatic wave in a
gaseous medium. We will assume that the particle initial velocity is directed along
the wave propagation and has a value close to the Cherenkov one:

v0 = v0x = c

n0
(1 + μ) ; μ � 1. (2.58)

From the equations of motion (2.2) and (2.3) it follows that at μ = 0

vx = vx0 = c

n0
, vy = 0 , x = x0 + c

n0
t, (2.59)

where x0, y0 = 0, z0 = 0 are the initial coordinates of the particle at the moment
t = 0 in the wave of linear polarization
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E = Ey = E0 cos
(
ω0n0

x

c
− ω0t

)
. (2.60)

The solution of (2.2) and (2.3) at μ � 1 can be represented as

vx (t) = c

n0
(1 + μux (t)) , vy(t) = cμuy(t) (2.61)

and after the linearization of these equations by parameter μ we have the following
set of equations for the functions ux (t) and uy(t):

dux

dt
= e

(
n2
0 − 1

)3/2
n2
0mc

E0 cosφ0 · uy,

duy

dt
= −e

(
n2
0 − 1

)1/2
mc

E0 cosφ0 · ux . (2.62)

Integrating this set of equations at the initial conditions ux0 = 1 and uy0 = 0 in
accordance with (2.59), for the particle velocity in the capture regime we obtain

vx (t) = c

n0
(1 + μ cosΩ0t) ,

vy(t) = − c(
n2
0 − 1

)1/2 μ sinΩ0t, (2.63)

Ω0 = e
(
n2
0 − 1

)
E0| cosφ0|

n0mc
. (2.64)

In the derivation of (2.63) and (2.64) the following approximation has been made
(due to the small parameter μ):

μ
ω0

Ω0
� 1, (2.65)

which is violated for the wave phase cosφ0 = 0. This is connected with the fact that
the stability in the capture regime is provided by the action of magnetic field H′ in
the frame of reference connected with the wave and H′ = 0 in the phase cosφ0 = 0,
so that this phase is unstable.

As is seen from (2.63) the particle velocity in the wave oscillates with the fre-
quency Ω0, which depends on the initial phase φ0. In the particle beam case the
various particles being initially in different phases of the wave well will have diverse
velocities and space bunching of the particles will occur as a result of which the cur-
rent density of the beamwill bemodulated.Equation (2.64) shows that themodulation
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frequency Ω0 
 ω0
(
n2
0 − 1

)
ξ| cosφ0| and as even for the strong laser fields ξ � 1

(and n2
0 − 1 � 1), then Ω0 � ω0.

To calculate the power of noncoherent radiation by (2.50) one needs the particle
law of motion r(t) in the capture regime. Defining the latter by integration of (2.63)
with the initial conditions x(t) |t = 0= x0, y(t) |t=0 = 0

x(t) = x0 + c

n0
t + μ

c

n0Ω0
sinΩ0t,

y(t) = −μ
c(

n2
0 − 1

)1/2
Ω0

(1 − cosΩ0t) (2.66)

and expanding the exponent of (2.50) into the series over the small parameter μ
(taking into account as well that μω/Ω0 � 1), after the calculations we will have
the following formula for differential power of noncoherent radiation in the capture
regime:

d Pk = d P (0)
k + d P (+)

k + d P (−)
k , (2.67)

d P (0)
k = e2n(ω)

2πcn2
0

ω2 sin2 θ · δ

[
ω

n(ω)

n0
cos θ − ω

]
dωd O, (2.68)

d P (±)
k = μ2 e2n(ω)

8πc

ω2

n0
(
n2
0 − 1

)δ
[
ω

n(ω)

n0
cos θ − ω ± Ω0

]

×
{[

n2
0 +

(
n2
0

2
− 1

)
sin2 θ

]
± 2

n(ω)

n0

(
n2
0

2
− 1

)
ω

Ω0
cos θ sin2 θ

+n2(ω)

n2
0

ω2

Ω2
0

sin2 θ

[
n2
0

2
+
(

n2
0

2
− 1

)
cos2 θ

]}
dωd O, (2.69)

where θ is the angle between the radiation direction and axis OX. The term d P (0)
k

corresponds to Cherenkov radiation by the particle moving with the velocity v =
c/n0 in the wave and the terms d P (±)

k determine the radiation due to oscillatory
motion of the particle. According to the δ-functions in (2.68) and (2.69) for the
radiation angles we have

cos θ0 = n0

n(ω)
, cos θ± = n0

n(ω)

(
1 ∓ Ω0

ω

)
. (2.70)
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Note that the approximation μω/Ω0 � 1 applied in the calculations is necessary
only to obtain ultimate analytical formulas (in the general case the particle velocity is
expressed by elliptic functions and analytical solution of the problem is complicated).

Integrating (2.68) and (2.69) over the solid angle for the spectral distribution of
the radiation we obtain

d P (0)
ω = e2

cn0

[
1 − n2

0

n2(ω)

]
ωdω, (2.71)

d P (±)
ω = μ2 e2

4c

1

n0
(
n2
0 − 1

)
{

n2
0 + n2

0 + n2(ω) − 2

2

×
[

ω2

Ω2
0

− n2
0

n2(ω)

(
1 ∓ Ω0

ω

)2
]}

ωdω. (2.72)

In (2.72)

ω = ± Ω0

1 − n(ω)

n0
cos θ

. (2.73)

As Ω0 depends on initial phase φ0 (see (2.64)), in the case of a particle beam
captured by a wave of linear polarization at a certain angle θ a whole spectrum of
frequencies will be radiated, in contrast to common Cherenkov radiation at which
only a definite frequency is radiated at that certain angle.

Let us compare the radiation at the fundamental frequency ω0 with the common
Cherenkov radiation at the same frequency (in the absence of the external wave). In
this case d P (0)

ω0
= 0 and for d P (−)

ω the conservation law for the radiation of frequency
ω0 is violated (see the second expression in (2.70)). From (2.72) at ω = ω0 we have

d P (+)
ω0

= e2

2cn0
μ2 ω0

Ω0
ω0dω. (2.74)

If one substitutes v = c(1 + μ)/n0 into the Tamm–Frank formula (2.55), then with
the linear approximation by parameter μ we will have

d Pω0 = 2e2

cn0
μω0dω. (2.75)

A comparison of (2.74) and (2.75) shows that the radiation of the particle at the
fundamental frequencyω0 in the capture regime ismuch smaller than the spontaneous
Cherenkov radiation (because of condition (2.65)). Such a decrease of radiation is
connected with the violation of coherency due to oscillation of particle velocity in
the wave field.
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The fundamental frequency ω0 in the capture regime is radiated at the angle
θ 
 √

2Ω0/ω0 (see (2.73)). The common Cherenkov angle is θc 
 √
μ/2 and as far

as μ � Ω0/ω0 then θ � θc, i.e., the radiation angle at the frequency of stimulating
wave in the capture regime is much larger than the spontaneous Cherenkov angle in
the absence of the external wave.

At the other frequencies ω �= ω0 the radiation is mainly determined by d P (0)
ω ,

which practically coincides with the Tamm–Frank formula.
Consider now the case of circular polarization of the incident wave

Ey = E0 cos
(ω0n0

c
x − ω0t

)
, Ez = E0 sin

(ω0n0

c
x − ω0t

)
. (2.76)

Linearizing the equations of motion (2.2) and (2.3) in the field (2.76) under the
condition (2.58) for the particle velocity in the capture regime we obtain

vx = c

n0

(
1 + μ cosΩ ′

0t
)
,

vy = −μ
c(

n2
0 − 1

)1/2 cosφ0 · sinΩ ′
0t, (2.77)

vz = −μ
c(

n2
0 − 1

)1/2 sin φ0 · sinΩ ′
0t,

where the oscillation frequency in the wave well Ω ′
0 does not depend on the initial

phase φ0 in contrast to the case of the linearly polarized wave. If we calculate the
radiation power by (2.77), then the same formulas (2.67)–(2.73) for the case of wave
linear polarization will be obtained. The only difference is that Ω ′

0 is constant for all
particles situated at the difference phases in the wave well, and at the certain angle
only one frequency will be radiated in this case.

Equations (2.63) and (2.77) show that the energy of the particle in the field

E = E0 + μ
E0

n2
0 − 1

cosΩ0t ; E0 = mc2n0(
n2
0 − 1

)1/2 (2.78)

oscillates between the values

Emin = E0

(
1 − μ

n2
0 − 1

)
; Emax = E0

(
1 + μ

n2
0 − 1

)
,

consequently the exchange of the energy is

ΔE =2� mc2n0(
n2
0 − 1

)3/2 . (2.79)
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According to (2.78) the particle captured by the wave periodically acquires and
loses such energy ΔE . Due to the induced Cherenkov effect the energy lost by
the particle is coherently radiated into the wave (particularly for this reason the
above-considered noncoherent radiation at the frequency of stimulating wave ω0 is
sufficiently suppressed) and the amplification of the initial wave will take place.
Hence, the particle capture phenomenon may in principle serve as a FELmechanism
(Cherenkov amplifier ). For the latter one needs to solve the self-consistent problem
on the basis of the set of Maxwell–Vlasov equations.

Let us now consider the amplitude of thewave field to be a slowly varying function
of the space-time coordinates (x , t) with respect to the phase. The problem will be
investigated first for the circular polarization of the wave

Ey(x, t) = E(x, t) cos
(ω0n0x

c
− ω0t

)
,

Ez(x, t) = E(x, t) sin
(ω0n0x

c
− ω0t

)
(2.80)

with the boundary conditions

Ey(0, t) = E0 cosω0t, Ez(0, t) = −E0 sinω0t. (2.81)

Related to particles we will assume that it crosses the boundary of the medium x = 0
at the moment t = t0 with the initial velocity (2.58). Linearizing the equations of
motion (2.2) and (2.3) in the field (2.80) for a single particle velocity in the field we
obtain

vy = − c(
n2
0 − 1

)1/2 μ cos(ω0t0) sin

⎡
⎣e
(
n2
0 − 1

)

mcn0

t∫

t0

E(t ′, x)dt ′
⎤
⎦ ,

vz = c(
n2
0 − 1

)1/2 μ sin(ω0t0) sin

⎡
⎣e
(
n2
0 − 1

)

mcn0

t∫

t0

E(t ′, x)dt ′
⎤
⎦ . (2.82)

To define the electric current of the particle stream we assume that the space is
continuouslyfilledwith the chargedparticles. Then at themoment t0 in the point x will
be situated only the particles for which t0 = t− n0x/c (with accuracy μω0/Ω0 � 1).
Hence, for the electric current of the particle stream we will have

jy(x, t) = −μ
ecρ0(

n2
0 − 1

)1/2 cos
(ω0n0x

c
− ω0t

)
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× sin

⎡
⎢⎣e
(
n2
0 − 1

)

mcn0

t∫

t−n0x/c

E(t ′,
c

n0
(t ′ − t) + x)dt ′

⎤
⎥⎦ , (2.83)

jz(x, t) = −μ
ecρ0(

n2
0 − 1

)1/2 sin
(ω0n0x

c
− ω0t

)

× sin

⎡
⎢⎣e
(
n2
0 − 1

)

mcn0

t∫

t−n0x/c

E(t ′,
c

n0
(t ′ − t) + x)dt ′

⎤
⎥⎦ ,

where ρ0 is the mean density of the particles in the initial stream, which will be
assumed constant (since μ � 1 the variation ρ0 is small and can be neglected).

Because we are investigating the induced radiation, the field of the scalar potential
and longitudinal radiation field along the axis OX will not be considered here. Sub-
stituting (2.83) into the Maxwell equation and taking into account the slow variation
of the radiation field amplitude:

∣∣∣∣
∂E

∂t

∣∣∣∣� ω0|E |,
∣∣∣∣
∂E

∂x

∣∣∣∣�
ω0n0

c
|E |,

we obtain the equation of the self-consistent field:

∂E

∂x
+ n0

c

∂E

∂t
= 2πeρ0

n0
(
n2
0 − 1

)1/2 μ

× sin

⎡
⎢⎣e
(
n2
0 − 1

)

mcn0

t∫

t−n0x/c

E(t ′,
c

n0
(t ′ − t) + x)dt ′

⎤
⎥⎦ . (2.84)

Equation (2.84) has a simpler form over wave coordinates τ = t − n0x/c, η = x .
Then, for the field amplitude E(t, x) = f (τ , η) we have

∂

∂η
f (τ , η) = 2πeρ0

n0
(
n2
0 − 1

)1/2 μ sin

⎡
⎣e
(
n2
0 − 1

)

mc2

η∫

0

f (τ , η′)dη′
⎤
⎦ . (2.85)

The simple analytic solution can be received at the incident monochromatic wave:
f (τ , 0) = E0. In this case, it follows from (2.84) that f (τ , η) does not depend on τ ,
i.e., f (τ , η) = f (η), and for the quantity
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ϕ = e
(
n2
0 − 1

)

mc2

η∫

0

f (η′)dη′ (2.86)

we have the nonlinear equation of anharmonic oscillator

ϕ′′ = 2πe2ρ0
(
n2
0 − 1

)1/2
mc2n0

μ sinϕ, (2.87)

the general solution of which is the incomplete elliptic integral of the first kind

1

2

(
n2
0 − 1

) eE0x

mc2
=

ϕ/2∫

0

dz√
1 + ζ2 sin2 z

,

ζ2 = 8πμ

n0
(
n2
0 − 1

)3/2
mc2ρ0

E2
0

. (2.88)

In the linear case when ϕ � 1 from (2.88) we have

E(x) = E0

⎡
⎣ cosh

(
x
lc

)
, μ > 0,

cos
(

x
lc

)
, μ < 0.

(2.89)

Hence, for μ > 0, which corresponds to particles’ initial velocity v0 > c/n0, expo-
nential amplification of the incident wave occurs. For μ < 0, that is, v0 < c/n0, the
amplification vanishes on average. The quantity in (2.89)

lc =
(

mc2n0

2πe2μρ0
(
n2
0 − 1

)1/2
)1/2

(2.90)

is the coherent length of amplification. Equation (2.85) is an analog of the equation
of the quantum amplifier. The role of inverse population in atomic systems here
performs detuning of the Cherenkov resonance v0 − c/n0 (parameter μ).

Analysis of the obtained formulas shows that the linear regime takes place at the
electric field strengths of amplifying radiation

E � eλ0ρ0

(
mc2

E0

)3
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(λ0 is the wavelength of incident wave) and at the coherent length of amplification

lc � mc2

e2λ0ρ0

( E0

mc2

)2

.

In the saturation regime from (2.85) we have

E(x) = E0 + μ
2πmc2ρ0

n0
(
n2
0 − 1

)3/2
1

E0

{
1 − cos

[(
n2
0 − 1

) eE0x

mc2

]}
. (2.91)

The wave energy gain found from (2.91) corresponds to the particle energy
exchange in the capture regime (in a unit volume) according to (2.79):

ΔW = ρ0ΔE = 2μρ0E0

n2
0 − 1

. (2.92)

The saturation regime and (2.91) is valid when the electric field strengths of
amplifying radiation

E � eλ0ρ0
E0

mc2
.

Consider now the case of linear polarization of incident wave

Ey = E(x, t) cos
(ω0n0x

c
− ω0t

)
. (2.93)

By analogy with the previous case for the velocity of a single particle in the field
(2.93) we obtain

vx = c

n0

⎛
⎝1 + μ cos

⎡
⎣

t∫

t0

Ω0(t
′, x)dt ′

⎤
⎦
⎞
⎠ ,

vy = − c(
n2
0 − 1

)1/2 μ sin

⎡
⎣

t∫

t0

Ω0(t
′, x)dt ′

⎤
⎦ , (2.94)

where the modulation frequency

Ω0(t, x) = e
(
n2
0 − 1

)

mcn0
E(x, t) cosω0t0 (2.95)

already depends on initial phase φ0 = ω0t0. Therefore, in the particle beam case,
all harmonics will be radiated in contrast to circular polarization of the wave. By
calculating the electric current of the particle stream and expanding into series over
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Bessel functions we find that the induced radiation stipulated by the y component of
the current (coherent radiation) will include only the odd harmonics and the nonco-
herent part of the radiation stipulated by the x component of the current (longitudinal
field along the axis OX) will include only the even harmonics. As in the previous
case we will consider the coherent radiation. Then, substituting y component of the
current

jy(x, t) = −μ
ecρ0(

n2
0 − 1

)1/2
+∞∑

s=−∞
i s−1 Js(α) exp

[
isω0

(n0x

c
− t
)]

,

s = 2k − 1; k = 0,±1,±2, . . . ,

α(x, t) = e
(
n2
0 − 1

)

mcn0

t∫

t−n0x/c

E(t ′,
c

n0
(t ′ − t) + x)dt ′ (2.96)

into the Maxwell equation for the slowly varying amplitude of the self-consistent
field we will have the equation

2isω0

(
n0

c

∂Es

∂x
+ n2

s

c2
∂Es

∂t

)
+ s2ω2

0

c2
(
n2

s − n2
0

)
Es

= i s 4πeρ0sω0

c
(
n2
0 − 1

)1/2 μJs(α), (2.97)

where ns is the medium refractive index at the s-th harmonic of the fundamental
frequency ω0 (ns ≡ n(sω0)).

Consider (2.97) with regard to the presence and absence of synchronism. In the
last case, when ns �= n0 taking into account the slow variation of the field amplitude
from (2.97) we obtain

Es = i sμ
4πecρ0(

n2
0 − 1

)1/2
1

sω0

1

n2
s − n2

0

Js(α). (2.98)

As is seen from this formula in the absence of synchronism, there is a weak depen-
dence of radiation field on harmonics’ number.

In the case of synchronism (ns = n0), (2.97) becomes

∂Es

∂x
+ n0

c

∂Es

∂t
= i s−1μ

2πeρ0

n0
(
n2
0 − 1

)1/2 Js(α). (2.99)

For the first harmonic (fundamental coherent radiation) the results repeat almost
exactly the case of wave circular polarization ((2.88)–(2.90)), the only difference
being that the coherence length in this case is

√
2lc.
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To determine the radiation on the other harmonics in the case of synchronism
consider the problem in the given field. Then, for large x when

e
(
n2
0 − 1

)
E0x

mc2
� 1

for the harmonics’ amplitudes we have

Es = i s−1μ
2πmc2ρ0

n0
(
n2
0 − 1

)3/2
1

E0
. (2.100)

Hence, the radiation intensity on the harmonics

Is = c

8π
|Es |2 
 e2c

(λ3
0ρ0)

2

λ4
0

( E0

mc2

)2

. (2.101)

Equation (2.101) as well as (2.92) and estimation formulas are obtained when
μ ∼ ξ(mc2/E0)

2, which is defined from the condition of particle capture. As in
the linear regime the coherence length increases as energy squared, and the losses
of the particles in the medium depend on energy logarithmically, then the energy
increase for amplification of weak signals does not give an essential advantage. The
optimal energy is E0 ∼ mc2. Then lc ∼ (r0λ0ρ0)

−1, where r0 = e2/mc2 is the
electron classical radius. The estimations show that for the amplification of optical
radiation in the capture regime with n0 = const, electron beams of large densities
are necessary. The situation will be considerably improved if media with varying
refractive index n0(x) are used. Then along the direction of increase of n0(x) the
particles will be continuously decelerated, and the wave continuously amplified (a
regime inverse to the one considered in Sect. 2.4).
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Chapter 3
Quantum Theory of Induced Multiphoton
Cherenkov Process

Abstract The existence of critical intensity in the induced Cherenkov process at
which nonlinear resonance with a given coherent radiation field takes place lead-
ing to threshold phenomena of particle “reflection” and capture, in the quantum
description, corresponds to multiphoton absorption/radiation of the particle at free–
free transitions. Hence, first it is important to determine the probabilities of induced
Cherenkov radiation and absorption below the critical value and close to this one
when these probabilities considerably increase.As a result of themultiphoton absorp-
tion/radiation the particle quantum state is modulated at the wave harmonics. Then,
one should elucidate the role of particle spin in these phenomena since in dielectri-
clikemedia thewave periodic electromagnetic field in the intrinsic frame of reference
becomes a static magnetic field and spin interaction with such a field should resem-
ble the Zeeman effect. What other quantum effects may be expected in induced
Cherenkov process taking into account that spontaneous Cherenkov effect is of clas-
sical nature and has no quantum peculiarity? The particle “reflection” effect from
the wave envelope is also of classical nature, but the quantum state of the reflected
particle after the interaction becomes modulated at X-ray frequencies. The classical
phenomenon of particle capture by thewave leads to quantum effect of zone structure
of particle states like the particle states in a crystal lattice. The inelastic diffraction
scattering of the particles on the traveling EM wave of intensity below the critical
value in induced Cherenkov process takes place like Bragg diffraction (elastic) on
a crystal lattice. The consideration of these quantum problems is the subject of this
chapter.

3.1 Quantum Description of Induced Cherenkov Process
in Strong Wave Field

The multiphoton interaction of a charged spinor particle with a plane EM wave in
induced Cherenkov process should be described in general by the Dirac equation.
As will be shown below, the exact solution of the Dirac equation can be obtained
only for the particular case when the particle initial velocity is parallel to the wave
propagation direction, which is monochromatic and is of circular polarization. In
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other cases, the quantum equations of motions (both nonrelativistic and relativistic)
are reduced to ordinary differential equations of the second order of Hill or Mathieu
type, the exact solution of which are unknown. In these cases one needs to develop
adequate approximations for the quantum description of particle–wave nonlinear
interaction.

The Dirac equation for the spinor particle in the given coherent radiation field in
a medium is written as

i�
∂Ψ

∂t
=
[
cα̂(̂p − e

c
A(t − n0x/c)) + β̂mc2

]
Ψ. (3.1)

In contrast to the case of interaction in a vacuum where the Dirac equation has been
solved in the spinor representation (see (1.78) and (1.78)) here it is convenient to
solve the problem in the standard representation with the Dirac matrices

α̂ =
(
0 σ
σ 0

)
; β̂ =

(
I 0
0 −I

)
. (3.2)

Here, σ = (σx ,σy,σz) are the Pauli matrices (1.78), and I is a two-dimensional unit
matrix. In (3.1) A = A(t −n0x/c) is the vector potential of a linearly polarized plane
quasi-monochromatic EM wave propagating in the OX direction in a medium

A = {0, A0(τ ) cosω0τ , 0} ; τ = t − n0x/c. (3.3)

As in previous considerations, we shall assume that the EM wave is adiabatically
switched on at τ = −∞ and switched off at τ = +∞.

To solve (3.1) it is more straightforward to pass to the frame of reference of the
rest of the wave (R frame moving with velocity V = c/n). As has been shown in
Chap.2, in the R frame there is only the static magnetic field that will be described
according to (3.3) by the following vector potential:

AR = {
0, A0(x ′) cos k ′x ′, 0

}
, (3.4)

where

k ′ = ω0

c

√
n2
0 − 1. (3.5)

The wave function of a particle in the R frame is connected with the wave function
in the laboratory frame L by the Lorentz transformation of the bispinors

Ψ = Ŝ(ϑ)ΨR, (3.6)

where the transformation operator

Ŝ(ϑ) = ch
ϑ

2
+ αx sh

ϑ

2
; thϑ = V

c
= 1

n
. (3.7)
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For ΨR we have the equation

i�
∂ΨR

∂t ′ =
[
cα̂(̂p′ − e

c
AR(x′)) + β̂mc2

]
ΨR . (3.8)

Since the interaction Hamiltonian does not depend on the time and transverse (to the
direction of the wave propagation) coordinates the eigenvalues of the operators Ĥ ′,
p̂′

y , p̂′
z are conserved: E ′ = const, p′

y = const, p′
z = const and the solution of (3.8)

can be represented in the form of a linear combination of free solutions of the Dirac
equation with amplitudes ai (x ′) depending only on x ′:

ΨR(r′,t ′) =
4∑

i=1

ai (x ′)Ψ (0)
i . (3.9)

Here

Ψ
(0)
1,2 =

√
E ′ + mc2

2E ′

⎡
⎣

ϕ1,2

σx cp′
x +σy cp′

y

E ′+mc2 ϕ1,2

⎤
⎦

× exp

[
i

�
(p′

x x ′ + p′
y y′−E ′t)

]
,

Ψ
(0)
3,4 =

√
E ′ + mc2

2E ′

⎡
⎣

ϕ1,2

−σx cp′
x +σy cp′

y

E ′+mc2 ϕ1,2

⎤
⎦

× exp

[
i

�
(−p′

x x ′ + p′
y y′−E ′t)

]
, (3.10)

where

p′
x =

(
E ′2

c2
− p

′2
y − m2c2

) 1
2

, ϕ1 =
(
1
0

)
, ϕ2 =

(
0
1

)
. (3.11)

The solution of (3.8) in the form (3.9) corresponds to the expansion of the wave
function in a complete set of the wave functions of a particle with certain energy and
transverse momentum p′

y (with longitudinal momenta ±(E ′2/c2 − p
′2
y − m2c2)1/2

and spin projections Sz = ±1/2). The latter are normalized to one particle per unit
volume. Since there is symmetry with respect to the direction AR (the OY axis), we
have taken, without loss of generality, the vector p′ in the XY plane (p′

z = 0).
According to (3.9) and (3.10) the induced Cherenkov effect in the R frame cor-

responds to elastic scattering process by which the reflection of the particle from
the wave field occurs: p′

x → −p′
x . However, in contrast to classical reflection when



72 3 Quantum Theory of Induced Multiphoton Cherenkov Process

the periodic wave field becomes a potential barrier for the particle at the intensity
ξ > ξcr , this quantum above-barrier reflection takes place regardless of how weak
the wave field is. Hence, the probability of multiphoton absorption/radiation of the
incident wave photons by the particle in the L frame, that is, induced Cherenkov
effect, will be determined by the probability of particle elastic reflection in the R
frame.

Substituting (3.9) into (3.8) and then multiplying by the Hermitian conjugate
functions and taking into account (3.10) and (3.2) we obtain a set of differential
equations for the unknown functions ai (x ′). The equations for a1, a3 and a2, a4 are
separated and for these amplitudes we have the following set of equations:

p′
x

da1(x ′)
dx ′ = iep′

y

�c
Ay(x ′)a1(x ′)

−e
(

p′
x − i p′

y

)

�c
Ay(x ′) exp

(
−2i

�
p′

x x ′
)

a3(x ′),

p′
x

da3(x ′)
dx ′ = − ie

�c
p′

y Ay(x ′)a3(x ′)

− e
(

p′
x + i p′

y

)

�c
Ay(x ′) exp

(
2i

�
p′

x x ′
)

a1(x ′). (3.12)

A similar set of equations is also obtained for the amplitudes a2(x ′) and a4(x ′). For
simplicity we shall assume that before the interaction there are only particles with
specified longitudinal momentum and spin state, i.e.,

|a1(−∞)|2 = 1, |a3(+∞)|2 = 0, |a2(−∞)|2 = 0, |a4(+∞)|2 = 0. (3.13)

From the condition of conservation of the norm we have

∣∣a1(x ′)
∣∣2 − ∣∣a3(x ′)

∣∣2 = const (3.14)

and the probability of reflection is
∣∣a3,4(−∞)

∣∣2.
The application of the unitarian transformation

a1(x ′) = b1(x ′) exp

⎛
⎝i

ep′
y

�cp′
x

x ′∫

−∞
Ay(η)dη − i

ϑ′

2

⎞
⎠ ,

a3(x ′) = b3(x ′) exp

⎛
⎝−i

ep′
y

�cp′
x

x ′∫

−∞
Ay(η)dη + i

ϑ′

2

⎞
⎠ (3.15)
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simplifies (3.12). Here, ϑ′ is the angle between the particle momentum and the direc-
tion of the wave propagation in the R frame. The new amplitudes b1(x ′) and b3(x ′)
satisfy the same initial conditions: |b1(−∞)|2 = 1, |b3(+∞)|2 = 0, according to
(3.13).

From (3.12) and (3.15) for b1(x ′) and b3(x ′) we obtain the following set of equa-
tions:

db1(x ′)
dx ′ = − f (x ′)b3(x ′),

db3(x ′)
dx ′ = − f ∗(x ′)b3(x ′), (3.16)

where

f (x ′) = eAy(t)p′

�cp′
x

exp

⎛
⎝−2i

�
p′

x x ′ − i
2epy

�cp′
x

x ′∫

−∞
Ay(η)dη

⎞
⎠ , (3.17)

p′ =
√

p′2
y + p′2

x .

Using the following expansion by the Bessel functions

exp
(−iα sin k ′x ′) =

∞∑
N=−∞

JN (α) exp
(−i Nk ′x ′) ,

we can reduce (3.16) to the form

db1(x ′)
dx ′ = −

∞∑
N=−∞

fN exp

[
− i

�
(2p′

x − N�k ′)x ′
]

b3(x ′),

db3(x ′)
dx ′ = −

∞∑
N=−∞

fN exp

[
i

�
(2p′

x − N�k ′)x ′
]

b1(x ′), (3.18)

where

fN = p′

2p′
y

Nk ′ JN

(
2ξ

mc

p′
x

p′
y

�k ′

)
. (3.19)

Because of conservation of particle energy and transversemomentum (in R frame)
the real transitions in the field will occur from a p′

x state to the −p′
x one and, con-

sequently, the probabilities of multiphoton scattering will have maximal values for
the resonant transitions

2p′
x = s�k ′ (s = ±1,±2...). (3.20)
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The latter expresses the condition of exact resonance between the particle de Broglie
wave and the incident “wave lattice”. In the L frame the inelastic scattering of the
particle on the moving phase lattice takes place and (3.20) corresponds to the known
Cherenkov conservation law

2E0(1 − n0
v0
c cosϑ)

(n2
0 − 1)

= s�ω0, (3.21)

where ϑ is the angle between the particle momentum and the wave propagation
direction (the Cherenkov angle), and v0 and E0 are the particle initial velocity and
energy in the L frame.

So, we can utilize the resonant approximation keeping only resonant terms
in (3.18). Generally, in this approximation, at the detuning of resonance |δs | =∣∣∣2 p′

x
�

− sk ′
∣∣∣ � k ′, we have the following set of equations for the particular s-photon

transition amplitudes b(s)
1 (x ′) and b(s)

3 (x ′):

db(s)
1 (x ′)
dx ′ = − fs exp

[−iδs x ′] b(s)
3 (x ′),

db(s)
3 (x ′)
dx ′ = − fs exp

[
iδs x ′] b(s)

1 (x ′). (3.22)

This resonant approximation is valid for the slow varying functions b(s)
1 (x ′) and

b(s)
3 (x ′), i.e., by the condition

∣∣∣∣∣
db(s)

1,3(x ′)
dx ′

∣∣∣∣∣ �
∣∣∣b(s)

1,3(x ′)
∣∣∣ · k ′. (3.23)

First, we shall solve the case of exact resonance (δs = 0). According to the boundary
conditions (3.14), we have the following solutions for the amplitudes

b(s)
1 (x ′) = cosh

[∫∞
x ′ fsdη

]

cosh
[∫∞

−∞ fsdη
] , b(s)

3 (x ′) = sinh
[∫∞

x ′ fsdη
]

cosh
[∫∞

−∞ fsdη
] (3.24)

and for the reflection coefficient

R(s) =
∣∣∣b(s)

3 (−∞)

∣∣∣
2 = tanh2

[
fs�x ′] , (3.25)

where �x ′ is the coherent interaction length. The reflection coefficient in the labo-
ratory frame of reference is the probability of absorption at v0 < c/n0 or emission
at v0 > c/n0. The latter can be obtained expressing the quantities fs and �x ′ by the
quantities in this frame since the reflection coefficient is Lorentz invariant. So

R(s) = tanh2 [Fs�τ ] , (3.26)
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where

Fs =
[

(1 − n0
v0
c cosϑ)2

n2
0 − 1

+ v20
c2

sin2 ϑ

]1/2

× sω0c

2v0 sin ϑ
Js

(
ξ

2mv0c sin ϑ

�ω0(1 − n0
v0
c cosϑ)

)
(3.27)

and �τ for actual cases is the laser pulse duration in the L frame. The condition of
applicability of this resonant approximation (3.23) is equivalent to the condition

|Fs | � ω0, (3.28)

which restricts the intensity of the wave as well as the Cherenkov angle. Besides, to
satisfy condition (3.28)wemust take into account the very sensitivity of the parameter
Fs toward the argument of Bessel the function, according to (3.27). For the wave
intensities when Fs�τ � 1 the reflection coefficient is of the order of one that can
occur for a large number of photons s � 1 for the argument of the Bessel function
α ∼ s � 1 in (3.27) (according to the asymptotic behavior of Bessel function Js(α)

at α 
 s � 1).
For the off resonant solution, when δs �= 0, but f 2s > δ2s /4 from (3.22) we obtain

the following expression for R(s):

R(s) = f 2s
Ω2

s

sinh2[Ωs�x ′]
1 + f 2s

Ω2
s
sinh2[Ωs�x ′]

; Ωs =
√

f 2s − δ2s /4, (3.29)

which has the same behavior as in the case of exact resonance. In the opposite case,
when f 2s ≤ δ2s /4 the reflection coefficient is an oscillating function of interaction
length.

3.2 Quantum Description of “Reflection” Phenomenon.
Particle Beam Quantum Modulation at X-Ray
Frequencies

Though the phenomenon of particle “reflection” from the front of a plane EM wave
is of classical nature, which means that quantum effects of tunnel passage and above-
barrier reflection should be small enough, nevertheless the quantum consideration
of this phenomenon is worthy of note in relation to the appearance of an important
coherent quantum effect as a result of classical “reflection” of particles. The influ-
ence of spin interaction is not essential here; on the other hand, it is quantitatively
small enough in the induced Cherenkov process (for optical frequencies) and may be
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neglected. The qualitative aspect of spin effects in the induced Cherenkov process
will be considered below.

Neglecting the spin interaction, the Dirac equation in quadratic form becomes the
Klein–Gordon equation, so we will consider the problem on the basis of the equation

− �
2 ∂2Ψ

∂t2
=
{

c2
[
−i�
 − e

c
A(t − n0

x

c
)
]2 + m2c4

}
Ψ. (3.30)

Equation (3.30) over wave coordinates τ = t − n0x/c and η = t + n0x/c is written
as

�
2 (n2

0 − 1
) ∂2Ψ

∂τ 2
− 2�

2 (n2
0 + 1

) ∂2Ψ

∂τ∂η
+ �

2 (n2
0 − 1

) ∂2Ψ

∂η2

= c2
[
−i�
 − e

c
A(τ )

]2
Ψ + m2c4Ψ. (3.31)

As the coordinateη is cyclic (as the transverse coordinates r⊥), then the corresponding
component of generalized momentum pη is conserved

pη = 1

2

(
c

n0
px − E

)
= const, (3.32)

which coincides (with a coefficient) with the classical integral of motion (2.5).
Hence, the solution of (3.30) may be sought in the form

Ψ (τ , η, r⊥) = Φ (τ ) exp

[
i

�
p⊥0r⊥ + i

�
pηη

]
, (3.33)

where p⊥0 is the initial transverse momentum of the particle in the plane of wave
polarization. Then for Φ (τ ) we have the equation

�
2
(
n2
0 − 1

) d2Φ

dτ 2
− 2i�pη

(
n2
0 + 1

) dΦ

dτ
− p2

η

(
n2
0 − 1

)
Φ

= c2
[
p⊥0 − e

c
A(τ )

]2
Φ + m2c4Φ, (3.34)

which within the transformation

Φ (τ ) = U (τ ) exp

(
i

�

n2
0 + 1

n2
0 − 1

pητ

)
(3.35)

turns into the one-dimensional Schrödinger equation for the introduced new function
U (τ )

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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d2U

dτ 2
+ 1

�2

1(
n2
0 − 1

)2
{
4n2

0 p2
η − (

n2
0 − 1

)
c2
[
p⊥0 − e

c
A(τ )

]2

− (
n2
0 − 1

)
m2c4

}
U = 0. (3.36)

The exact solution of (3.36) can be obtained when the particle initial velocity is
parallel to the wave propagation direction (p⊥0 = 0) and the latter is monochromatic
of circular polarization (A2(τ ) =const):

U (τ ) = C1 exp

⎡
⎣iτ

E0
�
(
n2
0 − 1

)
√(

1−n0
v0
c

)2 − (
n2
0 − 1

) (mc2

E0

)2

ξ2

⎤
⎦

+ C2 exp

⎡
⎣−iτ

E0
�
(
n2
0 − 1

)
√(

1−n0
v0
c

)2 − (
n2
0 − 1

) (mc2

E0

)2

ξ2

⎤
⎦ , (3.37)

One can define constants C1 and C2 by introducing an envelope for the monochro-
matic wave.

Equations (3.33), (3.35), and (3.37) determine the complete wave function of the
particle

Ψ (τ , η) = exp

[
−i

E0
2�

(
1− v0

cn0

)(
η + n2

0 + 1

n2
0 − 1

τ

)]

×
⎧
⎨
⎩C1 exp

⎡
⎣iτ

E0
�
(
n2
0 − 1

)
√(

1−n0
v0
c

)2 − (
n2
0 − 1

) (mc2

E0

)2

ξ2

⎤
⎦

+ C2 exp

⎡
⎣−iτ

E0
�
(
n2
0 − 1

)
√(

1−n0
v0
c

)2 − (
n2
0 − 1

) (mc2

E0

)2

ξ2

⎤
⎦
⎫⎬
⎭ , (3.38)

that is the superposition of two waves—incident and reflected—with the different
energy values. If one moves from coordinates τ , η to t , x , these two values of
particle energy will coincide with the classical expressions (2.10) that comprise the
“reflection” phenomenon, where the sign “+” before the root corresponds to an
incident particle, and the sign “−” to a reflected one.

To calculate the probability of reflection from the wave barrier one needs to con-
sider an EM pulse with the envelope of intensity damped asymptotically at infinity.
Let it have the form

ξ2 (τ ) = ξ20
cosh2 τ

τ0

, (3.39)

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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where ξ20 is the maximal value of intensity and τ0 is the half-width of the pulse.
Thewave function of the particle at the interactionwith thefield (3.39) is expressed

by the hypergeometric function and for the passage coefficient we obtain

D = sinh2
(

π
2 Ω̃τ0

)

sinh2
(

π
2 Ω̃τ0

)+ cos2
(

π
2

√
1 − (

Ω̃τ0
)2 ξ20

ξ2cr

) if Ω̃τ0
ξ0

ξcr
< 1,

D = sinh2
(

π
2 Ω̃τ0

)

sinh2
(

π
2 Ω̃τ0

)+ cosh2
(

π
2

√(
Ω̃τ0

)2 ξ20
ξ2cr

− 1

) if Ω̃τ0
ξ0

ξcr
> 1. (3.40)

Here

Ω̃ = 2
E0

�
(
n2
0 − 1

)
∣∣∣1 − n0

v0
c

∣∣∣ (3.41)

is the quantum frequency corresponding to particle classical energy change due to
“reflection” (see (2.13)) and ξcr is the classical value of critical intensity (2.12).

The major quantity Ω̃τ0 in (3.40) Ω̃τ0 � 1 (for actual parameters of electron
and laser beams in a medium with refractive index n0 − 1 ∼ 10−4 the parameter
Ω̃τ0 ∼ 1015 ÷ 1011 for laser pulse duration τ0 ∼ 10−8 ÷ 10−12 s), hence at ξ0 > ξcr

for the coefficient of reflection we have

R =
exp

[
πΩ̃τ0

(
ξ0
ξcr

− 1
)]

1 + exp
[
πΩ̃τ0

(
ξ0
ξcr

− 1
)] . (3.42)

This equation shows that R = 1with great accuracy (the coefficient of tunnel passage
in this case is of the order exp[(−1015) ÷ (−1011)]). If ξ0 < ξcr then the coefficient
of reflection R = 0 with the same accuracy, i.e., the above barrier reflection is
negligibly small in this case. Thus, the quantum effects of tunnel passage and above-
barrier reflection do not impact on the classical phenomenon of particle “reflection”
from the plane EM wave. This is physically clear since the Compton wavelength
of a particle (electron) is much smaller than the space size of actual EM pulses.
Nevertheless, due to the particle quantum feature as a result of classical reflection
the coherent effect of quantum modulation of the free particle probability density
and, consequently, electric current density occurs because of superposition of an
incident and reflected particle’s waves.

Thus, the particle free state after the reflection (ξ (τ ) = 0) will be described by
the asymptotic expression of (3.38), that is,

Ψ (x, t) = C1

{
exp

[
i

�
(p0x − E0t)

]

http://dx.doi.org/10.1007/978-3-319-26384-7_2
http://dx.doi.org/10.1007/978-3-319-26384-7_2
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+ exp

[
i

�

(
p0 ± n0�Ω̃

c

)
x − i

�

(E0 ± �Ω̃
)

t + iϕ0

]}
. (3.43)

Here, we have taken into account that the coefficient of reflection R = |C2|2 / |C1|2 =
1 and the constant phase ϕ0 = arg (C2/C1); constant C1 is determined by the nor-
malization condition. The signs (±) in the exponent correspond to cases v0 < c/n0

and v0 > c/n0, respectively.
The density of electric current of the particle beam defined by (3.43) is modulated

at frequency Ω̃

J(x, t) = J0
{
1 + cos

[
Ω̃
(

t − n0
x

c

)
− ϕ0

]}
, (3.44)

where J0 = const is the electric current density of the initially homogeneous and
monochromatic particle beam. The modulation frequency Ω̃ in actual cases lies in
the X-ray domain as follows from the estimation of particle classical energy change
due to “reflection” ΔE in Chap.2 (Ω̃ = ΔE /�).

Note that quantummodulation in contrast to classical modulation is exceptionally
the feature of a single particle and so is conserved after the interaction.

3.3 Exact Solution of the Dirac Equation for Induced
Cherenkov Process

Consider, the nonlinear quantum dynamics of a spinor particle in the field of a plane
monochromatic EMwave in a medium. The exact solution of the Dirac equation can
be found for the above-considered case when the particle initial velocity is parallel
to the wave propagation direction and the latter is of circular polarization:

Ay = A0 sinω0

(
t − n0

x

c

)
; Az = A0 cosω0

(
t − n0

x

c

)
. (3.45)

The Dirac equation in quadratic form for the spinor wave function

f =
⎛
⎝

f1

f2

⎞
⎠

in the field (3.45) is written as

{
�
2 ∂2

∂t2
+ c2

(
p̂ − e

c
A
)2 − �ecσ (H + iE) + m2c4

}
f = 0. (3.46)

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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The complete wave function of the particle is determined by the spinor f as follows:

Ψ = 1

mc2

[
i�β̂

∂

∂t
− cβ̂α̂

(
p̂−e

c
A
)

+ mc2
]⎛
⎝

f

− f

⎞
⎠ , (3.47)

where α̂, β̂ are the Dirac matrices in the standard representation (3.2).
Equation (3.46) is a set of two differential equations of the second order for

the spinor components f1 and f2. Passing from variables x , t to wave coordinates
τ = t − n0x/c, η = t + n0x/c and looking for the solution of (3.46) in the form

f = e
i
�

pηη

⎛
⎝

f1(τ )eiω0τ

f2(τ )

⎞
⎠ (3.48)

(the quantity pη = const is given by (3.32)), then the variables τ , η are separated
and we obtain the following set of equations for f1 and f2:

d2 f1
dτ 2

+ 2i

(
ω0 − pη

�

n2
0 + 1

n2
0 − 1

)
d f1
dτ

−
[
ω2
0 − 2ω0

pη

�

n2
0 + 1

n2
0 − 1

+
(
n2
0 − 1

)
p2

η + e2 A2
0 + m2c4

�2
(
n2
0 − 1

)
]

f1 = − iecH0

�n0 (n0 + 1)
f2, (3.49)

d2 f2
dτ 2

− 2i
pη

�

n2
0 + 1

n2
0 − 1

d f2
dτ

−
(
n2
0 − 1

)
p2

η + e2 A2
0 + m2c4

�2
(
n2
0 − 1

) f2 = iecH0

�n0 (n0 − 1)
f1.

Here, H0 is the amplitude of the wave magnetic field strength: H0 = n0ω0 A0/c.
This set of differential equations of the second order is equivalent to one differen-

tial equation of the fourth order the characteristic equation of which may be reduced
to a biquadratic algebraic equation. The roots of the latter are

Ω1,2,3,4 = −ω0

2
+ pη

�

n2
0 + 1

n2
0 − 1

± E0
�
(
n2
0 − 1

)

×
√[

1 − n0
v0
c

± �ω0

2E0
(
n2
0 − 1

)]2 − (
n2
0 − 1

) (mc2

E0

)2

ξ2, (3.50)

where the signs “±” before the root correspond to an incident and reflected parti-
cle analogously to (3.38). However, due to relativistic quantum effects (spin–field
interaction and quantum recoil of photons) two different values of Ω arise as for
the incident particle (Ω1,2) as well as for the reflected one (Ω3,4) corresponding to
the signs “±” under the root. Consequently, two critical values of intensity appear
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here corresponding to different initial spin projections along the direction of particle
motion:

ξ2cr1,2 =
( E0

mc2

)2

[
1 − n0

v0
c ± �ω0

2E0

(
n2
0 − 1

)]2
(
n2
0 − 1

) . (3.51)

From (3.47), within (3.48) and (3.50) we obtain the complete wave function of a
spinor particle. We present the ultimate equations for spin projections−1/2 and 1/2.
If the particle spin before the interaction is directed opposite to axis OX (σx = −1)
we have

Ψ1 (x, t) = C1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(a1 + a2) eiω0(t−n0
x
c )

a3 + 1

(a1 − a2) eiω0(t−n0
x
c )

a3 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
i
�

(p1x−E1t), (3.52)

where

E1 = E0 + E0
n2
0 − 1

(
1 − n0

v0
c

+ �ω0

2E0
(
n2
0 − 1

))(
1 −

√
1 − ξ20

ξ2cr1

)
, (3.53)

and p1 is determined by E1 via conserved quantity pη. The quantities in the bispinor
(3.52) are

a1 = a2
n0 + 1

n0 − 1

E0 − cp0

mc2
; a2 = i (n0 − 1)

E1 − E0
mc2ξ0

; a3 = E0 − cp0

mc2

and the coefficient of normalization (one particle in the unit volume)

C1 = 1√
2

(
1 + |a1|2 + |a2|2 + |a3|2

)−1/2
.

In the case of σx = +1 we have

Ψ2 (x, t) = C2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b3 + 1

(b1 + b2) e−iω0(t−n0
x
c )

b3 − 1

(b1 − b2) e−iω0(t−n0
x
c )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
i
�

(p2x−E2t), (3.54)
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where

E2 = E0 + E0
n2
0 − 1

(
1 − n0

v0
c

− �ω0

2E0
(
n2
0 − 1

))(
1 −

√
1 − ξ20

ξ2cr2

)
. (3.55)

The bispinor (3.54) is determined by the quantities

b1 = b2
n0 − 1

n0 + 1

E0 + cp0

mc2
; b2 = i (n0 + 1)

E2 − E0
mc2ξ0

; b3 = E0 + cp0

mc2
,

and the normalization coefficient

C2 = 1√
2

(
1 + |b1|2 + |b2|2 + |b3|2

)−1/2
.

The wave functions of reflected particles Ψ3 and Ψ4 corresponding to spin pro-
jections σx = +1 and σx = −1, respectively, are obtained from the expressions Ψ2

and Ψ1 by the replacement Ω2 → Ω3 and Ω1 → Ω4 and for E3,4 we have

E3,4 = ∓�ω0 + E0 + E0
n2
0 − 1

(
1 − n0

v0
c

± �ω0

2E0
(
n2
0 − 1

))

×
(
1 +

√
1 − ξ20

ξ2cr1,2

)
(3.56)

In particular, from this equation it follows that in (3.51) ξcr2 corresponds to a particle
with the spin directed along the axis OX , while ξcr1 corresponds to the opposite one.
The normalization coefficients can be defined by introducing the wave envelope as
was stated in Sect. 3.2.

The expressions of particle–wave functions show that the degeneration of particle
states over the spin projection that takes place in vacuum (Volkov states) vanishes in a
dielectriclikemedium. In that case, thewave functionΨ1 corresponds to superposition
statewith energies E1 and E1−�ω0, whileΨ2 corresponds to energies E2 and E2+�ω0.
The removal of degeneration of Volkov states is related to the fact that in a medium
with refractive index n0 > 1 in the intrinsic frame of reference of the wave there is
only a static magnetic field and the spin interaction with such a field results in the
splitting of the particle states as by the Zeeman effect. The splitting value (ΔE =
|E1 − E2| = |E4 − E3|) is

ΔE = E0
n2
0 − 1

∣∣∣∣∣
(
1 − n0

v0
c

+ �ω0

2E0
(
n2
0 − 1

))(
1 −

√
1 − ξ20

ξ2cr1

)
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−
(
1 − n0

v0
c

− �ω0

2E0
(
n2
0 − 1

))(
1 −

√
1 − ξ20

ξ2cr2

)∣∣∣∣∣ . (3.57)

As is seen from (3.52) to (3.55), in vacuum this splitting vanishes and the wave
functions Ψ1 and Ψ2 pass into Volkov wave function (1.93).

The spin interaction in a medium within the nonlinear threshold phenomenon of
particle “reflection” may lead to particle beam polarization since the critical intensity
(3.51) depends on spin projection along the direction of particle motion. Thus, if the
condition ξ2cr2 < ξ2 < ξ2cr1 holds, then only the particles with certain direction of the
spin (along the axis OX) will be reflected. Since the velocities of reflected particles
are different from the nonreflected ones, then by separating the particles after the
interaction a polarized beam may be obtained.

3.4 Secular Perturbation at Nonlinear Cherenkov
Resonance

The multiphoton-induced Cherenkov interaction in the capture regime correspond-
ing to transitions between the particle bound states occurs at the nonzero initial
angles of particle motion with respect to the wave propagation direction, at which, as
mentioned above, the Dirac or Klein–Gordon equations are of Hill or Mathieu type
and unable to solve it exactly. However, as was shown in the quantum description of
“reflection” phenomenon (free–free transitions), the interaction at the arbitrary initial
angle resonantly connects two states of the particle (in the intrinsic frame of refer-
ence of the wave the states with longitudinal momenta px of the incident particle and
px + s�k of the scattered particle; s is the number of absorbed or radiated photons
with a wave vector k), which makes available the application of resonant approxi-
mation to determine the multiphoton probabilities of free–free transitions in induced
nonlinear Cherenkov process. Concerning the quantum description of the particle’s
bound states in the capture regime one must take into account the degeneration of
initial states of free particles in the “longitudinal momentum”. Therefore, regardless
of how weak the field of the wave is, the usual perturbation theory in stimulated
Cherenkov process is not applicable because of such degeneration of the states and
the interaction near the resonance is needed for description by the secular equation.
The latter, in particular, reveals the zone structure of the particle states in the field of
a transverse EM wave in a dielectriclike medium. Note that in contrast to the zone
structure for the energy of electron states in a crystal lattice, the zone structure in
this process holds for the conserved quantity pη, as the energy could not be quantum
characteristic of the state in the nonstationary field of the wave.

First, we will solve the Klein–Gordon equation for a scalar particle (3.30) in the
given coherent radiation field in a medium (3.45) or the equivalent one-dimensional
equation of the Schrödinger type (3.36) in the wave coordinate τ .

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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Within (3.30) the state parameter pη can be expressed by the initial parameters of
a free particle:

4n2
0 p2

η − (n2
0 − 1)(p2

⊥0c2 + m2c4) = E2
0

(
1 − n0

v0
c
cosϑ

)2

and for the circular polarization of the wave (3.45), (3.36) may be represented in the
form

d2U (τ )

dτ 2
+ E2

0

�2(n2
0 − 1)2

[(
1 − n

v0
c
cosϑ

)2 + 2(n2
0 − 1)

×
(

mc2

E0

)2
p0

mc
ξ0 sin ϑ cosωτ − (n2

0 − 1)

(
mc2

E0

)2

ξ20

]
U (τ ) = 0. (3.58)

(E0, p0, v0 are the initial values of energy, momentum, and velocity of a free particle,
ϑ is the angle between the initial momentum of a particle and the wave vector of the
wave; due to the azimuthal symmetry in the direction of the wave propagation OX,
without loss of generality, the initial momentum of the particle is chosen in the plane
X Z .)

According to Floquet’s theorem the solution of (3.58) is sought in the form

U (τ ) = ei pτ
�

τ
∞∑

s=−∞
Φse−isω0τ , (3.59)

where

p2
τ ≡ E2

0

(n2
0 − 1)2

[(
1 − n0

v0
c
cosϑ

)2 − (n2
0 − 1)

(
mc2

E0

)2

ξ20

]
(3.60)

is the major quantity in the induced nonlinear Cherenkov process, which is the
renormalized (because of intensity effect) generalized momentum of the particle
in the laboratory frame conjugate to wave coordinate τ . It connects the “width of
initial Cherenkov resonance” 1− n0v0/c and wave intensity (ξ20) as the main relation
between the physical quantities of this process determining also the condition of
nonlinear resonance (see Chap.2; vx (ξ) |ξ=ξcr = c/n0). In the intrinsic frame of
reference of the wave pτ corresponds to longitudinal momentum px of the particle
on which the degeneration exists.

From (3.58) and (3.59) for the coefficients Φs we obtain the recurrent equation

(s2�2ω2
0 − 2s�ω0 pτ )Φs = mc3 p0ξ0 sin ϑ

(n2
0 − 1)

[
Φs−1 + Φs+1

]
, (3.61)

which can be solved in approximation of the perturbation theory by thewave function:

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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|Φ1| � |Φ0| , |Φ2| � |Φ1| , . . . . (3.62)

Then from (3.61)wefind the amplitudes of the particle–wave function, corresponding
to an s-photon process. But for condition (3.62) to hold, it is necessary that

∣∣s2�2ω2
0 − 2s�ω0 pτ

∣∣ �
∣∣∣∣

mc3

(n2
0 − 1)

p0ξ0 sin ϑ

∣∣∣∣ . (3.63)

Regarding those values pτ for which condition (3.63) does not hold, the usual
perturbation theory is already not applicable. In particular, if the expression on the
left-hand side of this condition is zero, i.e., at s = 0 and s = � (� = 1, 2, 3, ...),
when

2
pτ

�
= �ω0, (3.64)

from (3.58) and (3.59) it is evident that we already have two statesΦ0 andΦ�, which
are degenerated in the “longitudinal momentum” pτ , since p2

τ = (pτ − ��ω0)
2.

Because of this double degeneration in the state parameter pτ for the definite pη

of the initial unperturbed system it is necessary to use perturbation theory for the
degenerated states on the basis of the secular equation.

Thus, under condition (3.64), (3.58) within perturbation theory should be solved
on the basis of the secular equation, according to which we search the solution in the
form

U (τ ) = ei pτ
�

τ
(
Φ0 + Φ�e−i�ω0τ

) = Φ0ei �ω0
2 τ + Φ�e−i �ω0

2 τ (3.65)

and the conserved quantity pη = p(0)
η + p(1)

η , where p(0)
η is the value corresponding

to the Bragg resonance condition (3.64).
In the case of one-photon interaction (� = 1), substituting (3.65) in (3.58), we

obtain
ΔτΦ0ei ω0

2 τ + ΔτΦ1e
−i ω0

2 τ + 2α1Φ0ei ω0
2 τ cosω0τ

+ 2α1Φ1e
−i ω0

2 τ cosω0τ = 0, (3.66)

where Δτ is the correction to the value p2
τ at the fulfillment of condition (3.64) for

� = 1:

Δτ ≡ 8n2
0 p(0)

η

(n2
0 − 1)2

p(1)
η ; α1 ≡ mc3 p0ξ0 sin ϑ

(n2
0 − 1)

. (3.67)

By the standard method from (3.67) one can obtain the following set of equations
for the amplitudes Φ0 and Φ1:

⎧⎨
⎩

ΔτΦ0 + α1Φ1 = 0,

ΔτΦ1 + α1Φ0 = 0.
(3.68)
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From the compatibility of (3.68) we have Δτ = ±α1. The signs “+” and “−” relate
to p2

τ > �
2ω2

0/4 and 0 < p2
τ < �

2ω2
0/4, respectively. Thus, at the fulfillment of

condition (3.64) we have a jump in the value of p2
τ , which is equal to 2α1, i.e.,

E2
0

(n2
0 − 1)2

{(
1 − n0

v0
c
cosϑ

)2 − (n2
0 − 1)

(
mc2

E0

)2

ξ20

}
≥ �

2ω2
0

4
+ α1,

0 ≤ E2
0

(n2
0 − 1)2

{(
1 − n0
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c
cosϑ

)2 − (n2
0 − 1)

(
mc2

E0

)2

ξ20

}

≤ �
2ω2

0

4
− α1. (3.69)

For � = 1 the matrix element of transition from state Φ0 to state Φ1 (here we
note the state without a phase) is equal to α1, which is also evident from (3.68). For
large � (� ≥ 2) the matrix element of transition Φ0 ←→ Φ� is equal to zero in the
first order of perturbation theory. In this case, it makes sense to take into account the
transitions to the states with other energies in higher order. For example, for � = 2
it is necessary to consider the transitions Φ0 → Φ1 and Φ0 → Φ2. For arbitrary �

the matrix element of transition is defined by

α� = α�
1

((� − 1)!)2 (�ω0)
2(�−1)

. (3.70)

It should be noted that here it is also necessary to take into account the corrections
to the energy eigenvalue of state Φ0 in the appropriate order, however, the latter are
only of quantitative character, unlike the qualitative corrections (3.70), and will be
omitted.

As is seen from (3.69), the permitted and forbidden zones arise for the particle
states in the wave. The widths of permitted zones in the general case of �-photon
resonance are defined from the condition

�2�2ω2
0

4
+ α� ≤ E2

0

(n2
0 − 1)2

{(
1 − n0

v0
c
cosϑ

)2 − (n2
0 − 1)

(
mc2

E0

)2

ξ20

}

≤ (� + 1)2�2ω2
0

4
− α�+1. (3.71)

Such zone structure for the particle states in the wave arises in dielectriclike media
because of particle capture by the wave and periodic character of the field—quantum
influence of infinite “potential” wells on the particle states similar to zone structure
of electron states in a crystal lattice.
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To investigate the particle–wave functions on the edges of the forbidden zones
we turn to the set of equations (3.68). The latter has two solutions and, hence, from
(3.65) we obtain two wave functions corresponding to the top and bottom borders of
the forbidden zone (3.71). Thus, for Δτ = α1 we obtain

U+(τ ) = 2iΦ0 sin
ω0

2
τ , (3.72)

and at Δτ = −α1

U−(τ ) = 2Φ0 cos
ω0

2
τ . (3.73)

With the help of (3.72) and (3.73) the particle–wave function is determined by

Ψ±(r, t) = U± (τ ) exp

[
i

�
p⊥0r + i

�
pηη + i

�

n2
0 + 1

n2
0 − 1

pητ

]
. (3.74)

The condition at which secular perturbation theory is valid taking into account
the above-stated degeneration, is α1 � �

2ω2
0/4, or

4mc3 p0ξ0 sin ϑ

�2ω2
0(n

2
0 − 1)

� 1. (3.75)

Thus, it can be concluded that in the induced Cherenkov process there exists zone
structure for the quantum parameters pη, p⊥0 (or quantity pτ (3.60) corresponding
to multiphoton “Bragg resonance” (3.64)) of the particle state in the wave. The
permitted zones for this quantity are determined by condition (3.71).

Consider now the case of spinor particles. Proceeding from the Dirac equation,
the wave function of a particle can be presented in the form

Ψ = 1

mc2

[
i�β̂

∂

∂t
− cβ̂α̂(̂p − e

c
A) + mc2

]⎛
⎝
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⎞
⎠

× exp

[
i

�
p⊥0r + i

�
pηη + i

�

n2
0 + 1

n2
0 − 1

pητ

]
, (3.76)

where α̂, β̂ are the Dirac matrices (3.2) in the standard representation. The spinor
function Uσ satisfies the equation

d2Uσ (τ )

dτ 2
+ 1

�2(n2
0 − 1)2

[
4n2

0 p2
η − (n2

0 − 1)c2
(

p⊥0 − e

c
A(ø)

)2

− (n2
0 − 1)m2c4 + (n2

0 − 1)�ecσ(H + iE)

]
Uσ (τ ) = 0, (3.77)
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where E = −∂A/c∂t and H = rotA are the electric and magnetic field strengths
of the wave. In the case of a linearly polarized wave ((3.45) at Az = 0), with the
help of a unitarian transformation of spinor wave function it is possible to obtain
a system of two independent equations of second order for the components of new
spinor function from (3.77). For the other polarizations of the wave, in particular,
circular polarization, the components of spinor function are not separated and (3.77)
is equivalent to a differential equation of fourth order (it is related to the absence of
a definite field direction, for which the spin projection could have a definite value, as
occurs for linear polarization). The above-stated spinor transformation, in the case
of a linearly polarized wave, is

Uσ (τ ) =
(
cosh

δ

2
− σx sinh

δ

2

)⎛
⎝

V1 (τ )

V2 (τ )

⎞
⎠ ; tanh δ = E

H
= 1

n0
, (3.78)

which represents the transformation of the spinor in four-dimensional space (r,t) at a
rotation by angle δ. The latter has a simple physical interpretation. It corresponds to
theLorentz transformation in a systemof referencemovingwith a velocityV = c/n0,
where the wave electric field E

′ = 0 and there is only a static magnetic field H
′
,

directed along the axis Z and the spin projection on it has a definite value, since in
the chosen representation the matrix σz is diagonal.

Thus, after the transformation (3.78), (3.77) will be transformed into the following
independent equations for the spinor components V1, V2:

d2V1 (τ )

dτ 2
+ 1

�2(n2
0 − 1)2

{
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η − (n2
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}
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√
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V1 (τ ) = 0, (3.79)
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dτ 2
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}
V2 (τ ) − ecH

�n0

√
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0 − 1

V2 (τ ) = 0. (3.80)

The solution of (3.79) (or (3.80)) is sought in the form

V1(τ ) = ei pτ
�

τ
∞∑

s=−∞
Kse−isω0τ , (3.81)
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where

pτ ≡ E0
(n2

0 − 1)

[(
1 − n0

v0
c
cosϑ

)2 − 1

2
(n2

0 − 1)

(
mc2

E0

)2

ξ20

] 1
2

is the particle “longitudinal momentum” in the wave of linear polarization.
Repeating the procedure as in the case of scalar particles, we obtain the Bragg

condition (3.64), at which it is necessary to use the secular perturbation theory for
degenerated states. At � = 1 we obtain the following system of equations for coef-
ficients K0 and K1: ⎧⎨

⎩
Δτ K0 + (−iα1 + 1

2μ
)

K1 = 0,

(
iα1 + 1

2μ
)

K0 + Δτ K1 = 0,
(3.82)

where

μ = �ecH

n0

√
n2
0 − 1

. (3.83)

From (3.82) for the correction to p2
τ we obtain

Δτ = ±
(
1

4
μ2 + α2

1

) 1
2

. (3.84)

It is easy to see that K1 = ∓K0eiϕ, where tgϕ = 2α1/μ. Hence, each spinor
component of particle–wave function has two values corresponding to the top and
bottom borders of the first forbidden zone:

V +
1 (τ ) = K0

(
ei ω0

2 τ − e−i ω0
2 τ+iϕ

)
,

V −
1 (τ ) = K0

(
ei ω0

2 τ + e−i ω0
2 τ+iϕ

)
. (3.85)

For V2 (τ ) we have the same expressions as (3.85), where it is only necessary to
replace ϕ by −ϕ.

At � = 2, we have already two channels for the transition from state K0 to state
K2. The first is the result of the interaction described by a term quadratic in the field
(∼ A2), the matrix element of which at � = 2 is equal to

(
mc2

)2
ξ20/4�

2(n2
0 − 1),

and the second channel proceeds both in the case of scalar particles via transitions
K0 → K1 and K0 → K2, stipulated by the charge interaction ∼ pA, as well as
for the spin interaction, the matrix elements of which at each transition are equal to
−iα1 and μ/2, respectively. Therefore, for two-photon transition
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Δτ = ± 1
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[(
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0(mc2)2ξ20
4(n2
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)2

+ α2
1μ

2

] 1
2

(3.86)

and on the borders of the second forbidden zone for the component of spinor function
V we obtain (for top and bottom borders accordingly)

V +
1,2 = K0

(
eiω0τ − eiω0τ±iϕ

) ; V −
1,2 = K0

(
eiω0τ + e−iω0τ±iϕ

)
, (3.87)

where
tgϕ = α1μ

1
4μ

2 − α2
1 + �

2ω2
0(mc2)

2
ξ20

4(n2
0−1)

. (3.88)

The obtained results for spinor particles are valid at the fulfillment of the condition

|Δτ | � �
2ω2

4
. (3.89)

Thus, the quantum picture of induced Cherenkov interaction for charged spinor
particles does not differ qualitatively from the case of scalar particles, i.e., the spin
interaction results only in quantitative corrections to the quantities describing the
process. However, in the absence of charge interaction (pA = 0) in the first order in
the field, i.e., for one-photon interaction, the first forbidden zone (� = 1 ) does not
exist for scalar particles, but exists for spinor particles due to the spin interaction.

3.5 Inelastic Diffraction Scattering on a Traveling Wave

Up to now, we have considered the nonlinear phenomena in induced Cherenkov
process at the external wave intensities exceeding the critical one—the threshold
value of nonlinear Cherenkov resonance in the strong EM radiation field. However,
purely quantum effects at the wave intensities under the critical value in induced
Cherenkov process exist. Those are the inelastic diffraction scattering of charged
particles on a traveling wave in dielectriclike media and quantum modulation of
particle beams at the wave fundamental frequency and its harmonics. This and the
next section of the present chapter will consider these effects.

Consider first, the diffraction of particles on the phase lattice of a slowed traveling
wave in a dielectriclike medium. Neglecting the spin interaction, the Dirac equation
in quadratic form is written as the Klein–Gordon equation for the particle in the field
of a plane EM wave with vector potential A(τ ):

−�
2 ∂2Ψ

∂t2
= {−�

2c2
2 + m2c4 + 2ie�cA(τ )
 + e2 A2 (τ )
}
Ψ. (3.90)
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Equation (3.90) will be solved in the eikonal approximation by particle–wave func-
tion

Ψ (r, t) =
√

N0

2E0 f (x, t) exp

[
i

�
(p0r−E0t)

]
, (3.91)

according to which f (x, t) is a slowly varying function with respect to free–particle–
wave function (the latter is normalized on N0 particles per unit volume):

∣∣∣∣
∂ f

∂t

∣∣∣∣ � E0
�

| f | ;
∣∣∣∣
∂ f

∂x

∣∣∣∣ � p0x

�
| f | . (3.92)

Choosing a concrete polarization of the wave (assume a linear one along the axis
OY) and taking into account (3.90) for f (x, t) we will have a differential equation
of the first order:

∂ f

∂t
+ v0 cosϑ0

∂ f

∂x

= i

2�E0
[
2ecp0 sin ϑ0 · A0(τ ) cosω0τ − e2 A2

0(τ ) cos2 ω0τ
]

f (x, t), (3.93)

where A0(τ ) is a slowly varying amplitude of the vector potential of quasi-
monochromatic wave and ϑ0 is the angle between the particle velocity and wave
propagation direction. As ξmax < ξcr � 1, then for actual values of parameters
p0 sin ϑ0/mc � ξmax and the last term ∼ A2

0 in (3.93) will be neglected. Changing
to characteristic coordinates τ ′ = t − x/v0 cosϑ0 and η′ = t , it will be obvious that
at the fulfillment of the induced Cherenkov condition v0 cosϑ0 = c/n0 the traveling
wave in this frame of coordinates becomes a diffraction lattice over the coordinate
τ ′ and for the scattered amplitude of the particle–wave function from (3.93) we have

f (τ ′) = exp

⎧⎨
⎩

iecp0 sin ϑ0

�E0 cosω0τ
′

η2∫

η1

A(η′)dη′

⎫⎬
⎭ , (3.94)

where η1 and η2 are the moments of the particle entrance into the wave and exit,
respectively. If one returns to coordinates x and t and expands the exponential (3.94)
into a series by Bessel functions for the total wave function (3.91) we will have

Ψ (r, t) =
√

N0

2E0 exp
(

i

�
yp0 sin ϑ0

)

×
+∞∑

s=−∞
i s Js(α) exp

(
i

�

[
p0 cosϑ0 − sn0�ω0

c

]
x − i

�
[E0 − s�ω0] t

)
, (3.95)

where the argument of the Bessel function
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α = ev0 sin ϑ0

�ω0

t2∫

t1

E(η′)dη′, (3.96)

and E is the amplitude of the wave electric field strength. The wave function (3.95)
describes inelastic diffraction scattering of the particles on the slowed traveling wave
in a dielectriclike medium. The particles’ energy and momentum after the scattering
are

E = E0 − s�ω0; px = p0 cosϑ0 − sn0�ω0

c
; py = const; s = 0, ±1, . . . . (3.97)

The probability of this process

Ws = J 2
s

⎡
⎣ec2 p0 sin ϑ0

�ω0E0

t2∫

t1

E(η′)dη′
⎤
⎦ . (3.98)

The condition of the applied eikonal approximation (3.92) with (3.94) is equivalent
to the conditions |px−p0x | � p0x and |E − E0| � E0, which with (3.97) gives:
|s| n0�ω0/c � p0.

In the case of a monochromatic wave from (3.98) we have

Ws = J 2
s

(
ξ

mc2

�

cp0 sin ϑ0

E0 t0

)
, (3.99)

where t0 = t2 − t1 is the duration of the particle motion in the wave.
As is seen from (3.99) for the actual values of the parameters α � 1, i.e., the

process is essentially multiphoton. The most probable number of absorbed/emitted
Cherenkov photons is

s 
 ξ
mc2

�

v0
c
sin ϑ0 · t0. (3.100)

The energetic width of the main diffraction maximums Γ (s) 
 s1/3�ω0 and since
s � 1 then Γ (s) � |E − E0|.

The scattering angles of the s-photon Cherenkov diffraction are determined by
(3.97):

tan ϑs = sn0�ω0 sin ϑ0

cp0 + sn0�ω0 cosϑ0
. (3.101)

From (3.101) it follows that at the inelastic diffraction there is an asymmetry in the
angular distribution of the scattered particle: |ϑ−s | > ϑs , i.e., the main diffraction
maximums are situated at different angles with respect to the direction of particle
initial motion. However, in accordance with the condition |s| n0�ω0/c � p0 of
the eikonal approximation this asymmetry is negligibly small and for the scattering
angles of the main diffraction maximums from (3.101) we have ϑ−s 
 −ϑs . Hence,
the main diffraction maximums will be situated at the angles
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ϑ±s = ±s
n0�ω0

cp0
sin ϑ0 (3.102)

with respect to the direction of the particle initial motion.

3.6 Quantum Modulation of Charged Particles

Coherent interaction of charged particles with a plane EM wave of intensity smaller
than the critical one in the induced Cherenkov process leads to quantum modulation
of the particles’ probability density and, consequently, current density after the inter-
action at the wave fundamental frequency and its harmonics. In contrast to classical
modulation of particles’ current density proceeding in the free drift region after the
interaction and conserving for short distances, the quantum modulation, being quan-
tum feature of a single particle, is conserved after the interaction unlimitedly long. To
reveal this quantum coherent effect it is necessary to take into account the quantum
character of particle–wave interaction entirely in contrast to the above-developed
eikonal approximation for particle–wave function. The mathematical point of view
requires taking into account in (3.90) the second-order derivatives of the wave func-
tion as well, which have been neglected in the description of the diffraction effect.

To describe the effect of particle quantum modulation with regard to the wave
harmonics we will solve (3.90) by perturbation theory in the field of monochromatic
wave (A(τ ) = {0, A0 cosω0τ , A0 sinω0τ }) of intensity ξ0 < ξcr � 1 at which one
can neglect again the constant term ∼ A2

0. Then we look for the solution of (3.90) in
the form

Ψ (r, t) =
√

N0

2E0 exp
[

i

�
(p0x x − E0t) + i

�
p0y y

]

+∞∑
s=−∞

Ψs exp
[
isω0

(
t − n0

x

c

)]
, (3.103)

where N0 = const is the density of initially uniform particle beam. Substituting
(3.103) into (3.90) we obtain the recurrent equation

[(
n2
0 − 1

)
�
2s2ω2

0 + 2E0s�ω0

(
1 − n0

v0x

c

)]
Ψs

= ecp0y A0
[
Ψs−1 + Ψs+1

]
, (3.104)

which will be solved in the approximation of perturbation theory by wave function:

|Ψ±1| � |Ψ0| ; |Ψ±2| � |Ψ±1| , . . . .
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Thus, for the amplitude of the particle–wave function corresponding to s-photon
induced radiation (s > 0) we obtain

Ψs = 1

s!
bs

(μ + ��) (μ + 2��) · · · (μ + s�)
, (3.105)

and for s-photon absorption

Ψ−s = (−1)s

s!
bs

(μ − ��) (μ − 2��) · · · (μ − s�)
. (3.106)

Here the dimensionless parameter of one-photon interaction

b = 1

2

eA0

�ω0

v0
c
sin ϑ0 (3.107)

is the small parameter of perturbation theory: |b| � 1 and

μ = 1 − n0
v0
c
cosϑ0; �� = (

n2
0 − 1

) �ω0

2E0 (3.108)

are the dimensionless Cherenkov resonance width and quantum recoil parameter,
respectively. Hence, for total wave function of the particle after the interaction we
have

Ψ (r, t) =
√

N0

2E0

{
1 +

∞∑
s=1

bs

s!
[

eisω0(t−n0x/c)

(μ + Δ�) (μ + 2��) · · · (μ + sΔ�)

+ (−1)s e−isω0(t−n0x/c)

(μ − Δ�) (μ − 2��) · · · (μ − sΔ�)

]}
e

i
�

(p0r−E0t). (3.109)

The current density of the particles after the interaction corresponding to obtained
wave function will be expressed by

j(t, x) = j0

{
1 + 2

∞∑
s=1

bs

s!
[

1

(μ + Δ�) · · · (μ + sΔ�)

+ (−1)s

(μ − Δ�) · · · (μ − sΔ�)

]
cos sω0 (t − n0x/c)

+ 2
∞∑

s=1

∞∑
s ′=1

(−1)s ′ bs+s ′

s!s ′! cos
[(

s + s ′)ω0 (t − n0x/c)
]
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× 1

(μ + Δ�) · · · (μ + sΔ�) · (μ − Δ�) · · · (μ − s ′Δ�)

}
, (3.110)

where j0 = const is the current density of initially uniform particle beam. As is seen
from (3.110) as a result of direct and inverse induced Cherenkov effect the current
density of initially uniform particle beam is modulated at the wave fundamental fre-
quency and its harmonics. This is a result of coherent superposition of particle states
with various energy and momentum due to absorbed and emitted photons in the radi-
ation field that remains after the interaction unlimitedly long (for a monochromatic
beam).

We present in explicit form the expression of modulated current density for the
first three harmonics

j(t, x) = j0

[
1 − B cosω0 (t − n0x/c) + 3

4
B2 μ2 − Δ2

�

μ2 − 4Δ2
�

cos 2ω0 (t − n0x/c)

− 5

8
B3

(
μ2 − Δ2

�

)2
(
μ2 − 4Δ2

�

) (
μ2 − 9Δ2

�

) cos 3ω0 (t − n0x/c) + · · · , (3.111)

where the modulation depth at the fundamental frequency of stimulating wave

B = eA

E0
v0
c (n2

0 − 1) sin ϑ0(
1 − n0

v0
c cosϑ0

)2 − (n2
0 − 1)�

2ω2
0

4E2
0

. (3.112)

The denominators in (3.110)–(3.112) becomes zero at the fulfillment of exact
quantum conservation law for multiphoton Cherenkov process (3.21). In this case,
perturbation theory is not applicable and the consideration in the scope of above-
developed secular perturbation is required. However, in actual cases because of non-
monochromaticity of particle beams the width of Cherenkov resonance is rather
larger than quantum recoil (Δ� � μ) and one can neglect the latter in (3.111)–
(3.112). Then, the modulation depth at the wave fundamental frequency (3.112) is
expressed via critical intensity (2.16):

B = 1

2

ξ

ξcr (ϑ)
(3.113)

and the current density of modulated beam (3.111) will be represented by the para-
meter of critical field

j(t, x) = j0

[
1 − 1

2

ξ

ξcr (ϑ)
cosω0 (t − n0x/c) + 3

16

(
ξ

ξcr (ϑ)

)2

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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× cos 2ω0 (t − n0x/c) − 5

64

(
ξ

ξcr (ϑ)

)3

cos 3ω0 (t − n0x/c) + · · ·
]

. (3.114)

The equation for particle modulation being expressed in this form shows that the
effect of quantum modulation at the stimulating wave harmonics proceeds at inten-
sities smaller than the critical one when the induced Cherenkov interaction of the
particles with the periodic wave field (photons) occurs. In the opposite case, the
interaction proceeds with the potential barrier, i.e., the particle does not “feel” pho-
tons (periodic wave field). Note that in the last case the above-considered quantum
modulation of the particles due to “reflection” phenomenon (see Sect. 3.2) occurs
at the frequency (actually X-ray) corresponding to particles’ energy exchange as a
result of the interaction with the moving barrier. It is clear that a modulated particle
beam is a coherent source of EM radiation.
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Chapter 4
Cyclotron Resonance at the Particle–Strong
Wave Interaction

Abstract In this chapter wewill consider a charged particle interactionwith a strong
EM wave in the presence of a uniform magnetic field along the wave propagation
direction when the resonant effect of the wave on the particle rotational motion in
the static magnetic field is possible. In vacuum, as a result of the interaction of a
charged particle with a monochromatic EM wave and uniform magnetic field the
resonance created at the initial moment for the free-particle velocity automatically
holds throughout the interaction process due to the equalDoppler shifts of the Larmor
and wave frequencies in the field. This phenomenon is known as “Autoresonance”.
This property of cyclotron resonance in vacuum makes possible the creation of a
generator of coherent radioemission by an electron beam, namely a cyclotron res-
onance maser (CRM). From the point of view of quantum theory the relativistic
nonequidistant Landau levels of the particle in the wave field become equidistant
in the autoresonance due to the quantum recoil at the absorption/emission of pho-
tons by the particle. In addition, the dynamic Stark effect of the wave electric field
on the transverse bound states of the particle does not violate the equidistance of
Landau levels in the autoresonance. Then the inverse process, that is, multiphoton
resonant excitation of Landau levels by strong EM wave and, consequently, the par-
ticle acceleration in vacuum due to cyclotron resonance, in principle, is possible.
In a medium with arbitrary refractive properties (dielectric or plasma) because of
the different Doppler shifts of the Larmor and wave frequencies in the interaction
process the autoresonance is violated. However, the threshold (by the wave inten-
sity) phenomenon of electron hysteresis in a medium due to the nonlinear cyclotron
resonance in the field of strong monochromatic EM wave takes place. In contrast
to autoresonance, the nonlinear cyclotron resonance in a medium proceeds with
a large enough resonant width. This so-called phenomenon of electron hysteresis
leads to a significant acceleration of particles, especially in the plasmalike media
where the superstrong laser fields of relativistic intensities can be applied. The use
of dielectriclike (gaseous) media makes it possible to realize cyclotron resonance in
the optical domain (with laser radiation) due to an arbitrarily small Doppler shift of
a wave frequency close to the Cherenkov cone, in contrast to the vacuum case where
the cyclotron resonance for the existing maximal powerful static magnetic fields is
possible only in the radio-frequency domain.

© Springer International Publishing Switzerland 2016
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4.1 Autoresonance in the Uniform Magnetic Field in
Vacuum

Let a charged particle move in the field of a plane EM wave in the presence of a
homogeneous static magnetic field directed along the wave propagation direction
ν0 = {1, 0, 0}:

H0 = ν0H0. (4.1)

Relativistic classical equation of motion of the particle in the fields (1.1), (4.1) will
be written in the form

dp
dt

= eE (τ ) + e

c
[vH (τ )] + eH0

c

[
v˚0

]
. (4.2)

For the integration of the equation of motion (4.2) the latter should be written in
components:

ν0
dp
dt

= e

c
(vE (τ )), (4.3)

dp⊥
dt

= e
(
1 − vν0

c

)
E (τ ) +eH0

c

[
v⊥˚0

]
, (4.4)

where p⊥ = {
0, py, pz

}
and v⊥ = {

0, vy, vz
}
are the transverse momentum and

velocity of the particle in the field.
As we see from (4.3) the existence of the uniform magnetic field (4.1) does not

change the equation for the longitudinal momentum of the particle in the field of a
plane EM wave (1.3), nor does the equation for particle energy (1.9) change. Hence,
in the considered process the integral of motion Λ = E − cpν0 for a charged particle
in the field of a plane EM wave in vacuum (1.10) survives.

For integration of the equation for particle transverse momentum (4.4) we pass
from the variable t to wave coordinate τ = t − ν0r/c. Then (4.4) becomes

dp⊥
dτ

+ Ω

1 − vν0
c

[
ν0 p⊥

] = eE (τ ) , (4.5)

where

Ω = ecH0

E (4.6)

is the Larmor frequency for a relativistic particle in the uniform magnetic field.
From the integral ofmotionΛ = E−cpν0 follows the conservation of the quantity

in (4.5)
Ω

1 − vν0
c

= const ≡ Ω ′. (4.7)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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The set of equations (4.5) for the transverse components of the particlemomentum
{py, pz} is equivalent to the equation

d p̃

dτ
+ iΩ ′ p̃ = eẼ (τ ) . (4.8)

Here we have introduced the complex quantities related to particle momentum and
EM field:

p̃ (τ ) = py (τ ) + i pz (τ ) , (4.9)

Ẽ (τ ) = Ey (τ ) + i Ez (τ ) . (4.10)

The solution of (4.8) will be

p̃ = p̃0e−iΩ ′(τ−τ0) + e

τ∫

τ0

Ẽ
(
τ ′) e−iΩ ′(τ−τ ′)dτ ′, (4.11)

where p̃0 = p0y + i p0z is defined according to initial condition

p̃ |τ=τ0= p̃0. (4.12)

Separating the real and imagenary parts of the solution (4.11)we obtain the transverse
momentum of the particle:

py = p0y cosΩ ′ (τ − τ0) + p0z sinΩ ′ (τ − τ0)

+ e

τ∫

τ0

[
Ey

(
τ ′) cosΩ ′ (τ − τ ′) + Ez

(
τ ′) sinΩ ′ (τ − τ ′)] dτ ′, (4.13)

pz = p0z cosΩ ′ (τ − τ0) − p0y sinΩ ′ (τ − τ0)

+ e

τ∫

τ0

[
Ez

(
τ ′) cosΩ ′ (τ − τ ′) − Ey

(
τ ′) sinΩ ′ (τ − τ ′)] dτ ′. (4.14)

Now we can define the particle longitudinal momentum (px ) and energy with the
help of (4.11) utilizing the dispersion law of the particle energy-momentum and the
integral of motion Λ. We obtain the following equations in the field of a plane EM
wave of arbitrary form and polarization:

px = p0x + c
| p̃|2 − | p̃0|2

2Λ
, (4.15)
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E = E0 + c2
| p̃|2 − | p̃0|2

2Λ
, (4.16)

where p0x and E0 are the initial longitudinal momentum and energy of the free
particle.

Let us consider the case of a monochromatic wave (1.20) of circular polarization
(right- or left-hand) and when the initial velocity of the particle is parallel to the wave
propagation direction. For the field (1.20), when g = ±1 we have

Ẽ (τ ) = −igE0eigω0τ . (4.17)

Substituting (4.17) into (4.11) and assuming an arbitrarily small damping for the
amplitude E0 to switch on adiabatically the wave at τ0 = −∞, we obtain

p̃ = −geE0

Ω ′ + gω0
eigω0τ (4.18)

and by the components

py = −geE0

Ω ′ + gω0
cosω0τ , (4.19)

pz = −eE0

Ω ′ + gω0
sinω0τ . (4.20)

As we see, for the left-hand circular polarization when g = −1 in (4.19) and (4.20)
a resonant effect of the wave on the particle motion is possible when Ω ′ = ω0, or
taking into account (4.7):

Ω

1 − vν0
c

= ω0. (4.21)

Condition (4.21) performs the equality of the Larmor and Doppler-shifted wave
frequency ω

′
:

Ω = ω′; ω′ = ω0

(
1 − vν0

c

)
. (4.22)

The latter means that the particle and the wave electric field rotate in the same
direction with the same frequency and as a result coherent energy exchange between
the particle and the wave takes place. In addition, the energy exchange does not
violate the resonance condition as the ratio of the Doppler-shifted wave frequency
to the Larmor frequency of the particle is conserved:

ω
′

Ω
= ω0Λ

ecH0
= const (4.23)

and the resonance created at the initial moment automatically holds throughout the
interaction. This is the phenomenon referred to as “Autoresonance”.

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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According to (4.15) and (4.16) the longitudinal momentum and energy of the
particle in this case are given by

px = p0x + m2c3

2Λ

ξ20(
1 − Ω

ω′
)2 , (4.24)

E = E0 + m2c4

2Λ

ξ20(
1 − Ω

ω′
)2 . (4.25)

By analogy of the renormalization of the particle mass in the field of a plane EM
wave for these values of energy and momentum (the average transverse momentum
p⊥ = 0 in accordance with (4.19) and (4.20)) one can introduce the “effective
mass”of the particle due to the intensity and resonant effects of the strong wave:

m∗ = m

√√√√1 + ξ20(
1 − Ω

ω′
)2 . (4.26)

The comparison of (4.26) with the analogous formula (1.18) in the absence of a static
magnetic field shows that instead of the parameter of nonlinearity ξ20 in the strong
wave field the effective nonlinearity in this process is determined by the resonant
parameter ξ20/

(
1 − Ω

ω′
)2 � ξ20 .

At the exact resonance the solutions (4.19), (4.20) are not applicable. In this case
taking into account the resonance condition before the integration in (4.11) we have

py = eE0τ sinω0τ , (4.27)

pz = eE0τ cosω0τ (4.28)

and for the particle longitudinal momentum and energy we obtain

px = p0x + e2E2
0c

2Λ
τ 2, (4.29)

E = E0 + e2E2
0c2

2Λ
τ 2. (4.30)

It is seen that at the resonance the energy of the particle monotonically increases.
Then, taking into account (1.15) for the lawof the particlemotion in the parametric

form r = r(τ ) we obtain

y(τ ) = c2eE0

Λω2
0

(sinω0τ − ω0τ cosω0τ ) , (4.31)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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Fig. 4.1 Trajectory of the particle (initially at rest) in the field of circularly polarized EMwave and
uniform magnetic field at the cyclotron resonance. The relativistic parameter of intensity is taken
to be ξ0 = 1

z(τ )=c2eE0

Λω2
0

(cosω0τ + ω0τ sinω0τ ) , (4.32)

y2(τ ) + z2(τ ) =
(

c2eE0

Λω2
0

)2 (
1 + ω2

0τ
2) , (4.33)

x(τ ) = c2

Λ
p0xτ + e2E2

0c3τ 3

6Λ2
. (4.34)

Equations (4.31)–(4.34) show that the particle performs helical-like motion (see
Fig. 4.1) with increasing radius (in the plane of the wave polarization) and increasing
step along the wave propagation direction.

4.2 Exact Solution of the Dirac Equation for Cyclotron
Resonance

The quantum description of the dynamics of cyclotron resonance in vacuum in the
scope of relativistic theory requires solution of the Dirac equation. The configuration
of EM fields when a uniform magnetic field is directed along the axis of propagation
of a transverse EMwave is one of those specific cases for which exact solution of the
Dirac equation in vacuum has succeeded. The latter has the basic role for quantum
description of diverse nonlinear electromagnetic processes in superstrong laser and
magnetic fields.

Let a charged particle move in the field of a plane EMwave and uniformmagnetic
field along the wave propagation direction (OX axis). The vector potential of this
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configuration of EM fields can be represented in the form

A (r, t) = AH (y) + Aw (τ ) , (4.35)

where
AH (y) = (0, 0, y H0) (4.36)

is the vector potential of uniform magnetic field with the strength H0 (4.1) and

Aw (τ ) =
{
0, Ay

(
t − x

c

)
, Az

(
t − x

c

)}
(4.37)

is the vector potential of a plane transverse EM wave (1.1). The Dirac equation in
the field (4.35) is written as

i�
∂Ψ

∂t
=
{

c
(
−i�� − e

c
AH (y) − e

c
Aw (τ )

)
+βmc2

}
Ψ. (4.38)

Hereα, β are the Dirac matrices in the standard representation (3.2). As the magnetic
field is directed along the X axis for the Pauli matrices we will assume the σx to be
diagonal:

σx =
(
1 0
0 −1

)
, σy =

(
0 1
1 0

)
, σz =

(
0 −i
i 0

)
. (4.39)

Looking for the solution of (4.38) in the form

Ψ = 1√
2

⎛
⎝

ϕ + χ

ϕ − χ

⎞
⎠ (4.40)

and eliminating the spinor ϕ from the equation for χ and passing to the retarding
and advanced wave coordinates

τ = t − x

c
; η = t + x

c
,

we obtain the Dirac equation in the quadratic form for spinor function χ

{
4�

2 ∂2

∂τ∂η
+ c2

[
P̂⊥ − e

c
Aw (τ )

]2 + m2c4

− ec�σ(H0 + H + iE)

}
χ = 0, (4.41)

where

P̂⊥ = −i��⊥ − e

c
AH (y) ; �⊥ =

{
0,

∂

∂y
,

∂

∂z

}
. (4.42)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_3
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The spinor function ϕ will be defined via χ as follows:

ϕ (r, t) = 1

mc2

{
i�

∂

∂t
− σ (ic�� + eA (r, t))

}
χ (r, t) . (4.43)

The particle quantum motion at t → −∞ when Aw(τ = −∞) = 0 and only the
uniformmagnetic field exists is separated into the cyclotron (y, z) and the longitudinal
(x) degrees of freedom. Since the coordinate z is a cyclic in this issue (also in the
presence of a plane EM wave) the cyclotron motion will be described by the set
of quantum characteristics of the state {l, pz}, where by the number l we indicate
the Landau levels and by pz , the z component of the generalized momentum. Then
the longitudinal motion at t → −∞ will be described by the x component of the
particle initial momentum px . Concerning the particle transverse initial state we will
assume that at t → −∞ the particle is situated in the l = s Landau level. In addition,
there is a fourth quantum number σ which describes the polarization of the particle:
σ = ± 1

2 (spin projections Sz = ± 1
2 on the direction of magnetic field H0). So, the

wave function of the particle at t → −∞ will be given by the equation

ψs,σ,px ,pz (r, t) = ψs,σe
i
�

(px x+pz z−Es (px )t), (4.44)

where the bispinors ψs,σ , describing the states with the different spin polarizations,
are

ψs,1/2 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Es(px ) + mc2)Φs(y)

0

cpxΦs(y)

−i
√
2sc�eHΦs−1(y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.45)

ψs,−1/2 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

(Es(px ) + mc2)Φs−1(y)

i
√
2sc�eHΦs(y)

−cpxΦs−1(y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.46)

and

N = 1

2π�
√
2Es(px )(Es(px ) + mc2)

(4.47)
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is the normalization constant. Here

Φs(y) =
√

a

2ss!√π
exp

[
−
(

ay − pz

�a

)2]
Us

(
ay − pz

�a

)
,

a =
√

eH0

c�

are the Hermit functions and the dispersion law for the particle energy-momentum is

E2
s (px ) = m2c4 + p2

x c2 + 2ec�H0s. (4.48)

For the spin projection σ = 1/2 the quantum numbers for s are s = 0, 1, 2, . . .,
while for σ = −1/2 : s = 1, 2, . . ..

Due to the existence of a definite direction of the wave propagation the variable
η becomes a cyclic and the conjugate to coordinate η momentum is conserved. This
is the known integral of motion (1.10). Hence, the spinor function χ(r, t) can be
sought in the form

χ(r, t) = N f exp

{
− i

2�
(p+τ + Λη)

}
χ0(x⊥, τ ), (4.49)

where
p+ = Es(px ) + cpx ; x⊥ = {0, y, z}. (4.50)

Taking into account the dispersion law (4.48) for the spinor function χ0(x⊥, τ ) we
obtain the equation

{
2i

�Λ

c2
∂

∂τ
−
[
P̂⊥ − e

c
Aw (τ )

]2 + 2
e

c
�H0s

+e�

c
σ(H0 + H + iE)

}
χ0(x⊥, τ ) = 0. (4.51)

In (4.51) the transverse and longitudinal motions are not separated. But after the
unitarian transformation for the transformed function the variables are separated.
The corresponding unitarian transformation operator is

Û = e
i
�

K(τ )P̂⊥, (4.52)

where the vector function

K(τ ) = {0, Ky(τ ), Kz(τ )} (4.53)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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will be chosen to separate the cyclotron and longitudinal motions and to satisfy the
initial condition. Taking into account that for the Hermitian operator F̂ = F̂†

ei F̂ L̂e−i F̂ = L̂ + i
[
F̂, L̂

] − 1

2

[
F̂,

[
F̂, L̂

]] + · · · , (4.54)

for the transformed operators in (4.51) we will obtain

Û P̂⊥Û † = P̂⊥ + e

c
[KH0],

Û
∂

∂τ
Û † = ∂

∂τ
− i

�

(
dK
dτ

P̂⊥
)

+ i
e

2c�

(
H0

[
K

dK
dτ

])
.

Let us choose the function K(τ ) in such a form that the coefficient of the term ∼ P̂⊥
in the equation for transformed function

χ′
0 = Ûχ0(x⊥, τ )

becomes zero. Then for the function K(τ ) we will obtain the classical equation of
motion for transverse coordinates describing stimulated cyclotron rotation in the EM
wave field (see (4.5)):

dK
dτ

+ Ω ′ [ν0K ] = −ce

Λ
Aw (τ ) , (4.55)

where Ω ′ is the Doppler-shifted Larmor frequency (4.7). The solution of (4.55) can
be written with the help of the complex quantities

K̃ = Ky + i Kz; Ã = Ay + i Az (4.56)

as follows:

K̃ = − exp
{−iΩ ′τ

} ec

Λ

τ∫

−∞
Ã
(
τ ′) exp {iΩ ′τ ′} dτ ′. (4.57)

In (4.57) we have taken into account the initial condition

Ky(−∞) = Kz(−∞) = 0.

Hence, for the transformed spinor function χ′
0 we obtain

{
2i

�Λ

c2
∂

∂τ
− P̂2

⊥ + 2
e

c
�H0s + eΛ

c3

(
dK
dτ

Aw

)
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+e�

c
σ(H0 + H + iE)

}
χ′
0 = 0. (4.58)

Looking for the solution of (4.58) in the form

χ′
0 =

⎛
⎝

χ1(x⊥, τ )

χ2(x⊥, τ )

⎞
⎠, (4.59)

we obtain the set of equations for the functions χ1 and χ2 :

{
2i

�Λ

c2
∂

∂τ
− P̂2

⊥ + (2s + 1)
e

c
�H0 + eΛ

c3

(
dK
dτ

Aw

)}
χ1 = 0, (4.60)

{
2i

�Λ

c2
∂

∂τ
− P̂2

⊥ + (2s − 1)
e

c
�H0 + eΛ

c3

(
dK
dτ

Aw

)}
χ2

+ 2i
e�

c

(
Ey(τ ) + i Ez(τ )

)
χ1 = 0. (4.61)

Now in (4.60) the variables are separated and the solution can be written as

χ1 (x⊥, τ ) = N (σ)
1 Ts(x⊥) exp

⎡
⎣i

e

2�c

τ∫

−∞

(
dK
dτ ′ Aw

(
τ ′)

)
dτ ′

⎤
⎦, (4.62)

where
Ts(x⊥) = Φs(y)e

i
�

pz z

describes the free cyclotron motion of the particle. The solution for the second func-
tion χ2 can be obtained in the same way (adding the particular solution of the non-
homogeneous equation). Hence, for the spinor function χ′

0 we obtain

χ′
0 =

⎛
⎝

N (σ)
1 Ts (x⊥)

N (σ)
2 Ts−1 (x⊥) − N (σ)

1
1
c

d K̃
dτ

Ts (x⊥)

⎞
⎠

× exp

⎡
⎣i

e

2�c

τ∫

−∞

(
dK
dτ ′ Aw

(
τ ′)

)
dτ ′

⎤
⎦. (4.63)
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The coefficients N (σ)
1 , N (σ)

2 will be chosen to satisfy the initial condition. Thus, for
the different initial polarization states (σ = ± 1

2 ) we have

N (1/2)
1 = Λ + mc2

2mc2
; N (1/2)

2 = i
√
2sc�eH0

2mc2
, (4.64)

N (−1/2)
1 = − i

√
2sc�eH0

2mc2
; N (−1/2)

2 = p+ + mc2

2mc2
. (4.65)

Using inverse transformation χ0 = Û †χ′
0(x⊥, τ ), with the help of the relation

eF̂+L̂ = e− 1
2 [F̂,L̂]eF̂ eL̂ (4.66)

we obtain the solution of the initial equation (4.41) (taking into account (4.49)):

χ (r, t) = N f exp

[
i

�
(px x − Es(px )t)

+ i
e

2�c

τ∫

−∞

(
dK
dτ ′ Aw

(
τ ′)

)
dτ ′ + i

e

�c
H0Kz

(
y − 1

2
Ky

)]

×
⎛
⎝

N (σ)
1 Ts (x⊥ − K)

N (σ)
2 Ts−1 (x⊥ − K) − N (σ)

1
1
c

d K̃
dτ

Ts (x⊥ − K)

⎞
⎠. (4.67)

Finally, with the help of (4.43) the solution of (4.38) for spinor particle wave function
can be written as

Ψs,σ,px ,pz (r, t) = N f exp

[
i

�
(px x − Es(px )t)

+i
e

2�c

τ∫

−∞

(
dK
dτ ′ Aw

(
τ ′)

)
dτ ′ + i

e

�c
H0Kz

(
y − 1

2
Ky

)]

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
N (σ)
1

(
p+ + mc2

) + i N (σ)
2

√
2sc�eH0

)
Ts (x⊥ − K)

(
N (σ)
2

(
Λ + mc2

) − i N (σ)
1

√
2sc�eH0

)
Ts−1 (x⊥ − K)

(
N (σ)
1

(
p+ − mc2

) + i N (σ)
2

√
2sc�eH0

)
Ts (x⊥ − K)

(
N (σ)
2

(
Λ − mc2

) − i N (σ)
1

√
2sc�eH0

)
Ts−1 (x⊥ − K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
N (σ)
2 Λ − i N (σ)

1

√
2sc�eH0

)
1
c

d K̃ ∗
dτ

Ts−1 (x⊥ − K)

−N (σ)
1 mc d K̃

dτ
Ts (x⊥ − K)

(
N (σ)
2 Λ − i N (σ)

1

√
2sc�eH0

)
1
c

d K̃ ∗
dτ

Ts−1 (x⊥ − K)

N (σ)
1 mc d K̃

dτ
Ts (x⊥ − K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.68)

In particular, for the state with the spin projection σ = 1/2 from (4.68) and (4.64)
we have

Ψs,1/2,px ,pz (r, t) = N f exp

[
i

�
(px x − Es(px )t)

+ i
e

2�c

τ∫

−∞

(
dK
dτ ′ Aw

(
τ ′)

)
dτ ′ + i

e

�c
H0Kz

(
y − 1

2
Ky

)]

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
mc2 + Es(px )

)
Ts (x⊥ − K) − i

√
s�eH0
2c

d K̃ ∗
dτ

Ts−1 (x⊥ − K)

−Λ+mc2

2c
d K̃
dτ

Ts (x⊥ − K)

cpx Ts (x⊥ − K) − i
√

s�eH0
2c

d K̃ ∗
dτ

Ts−1 (x⊥ − K)

−i
√
2sc�eH0Ts−1 (x⊥ − K) + Λ+mc2

2c
d K̃
dτ

Ts (x⊥ − K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.69)

For a quasi-monochromatic EM wave the states (4.68) can be normalized by the
condition

∫
Ψ

†
s ′,σ′,p′

x ,p′
z
Ψs,σ,px ,pz dr = δ

(
p′

z − pz
)
δ
(

p′
x − px

)
δσ,σ′δs,s ′ ,

where δl,l ′ is the Kronecker symbol. Then for the normalization constant we will
have

N f = 1

2π�

√
2E s(px )(Es(px ) + mc2)

,

where

E s(px ) = Es(px ) + Λ

2c2

∣∣∣∣
d K̃

dτ

∣∣∣∣
2

is the average energy of the particle in the field (4.35).
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4.3 Multiphoton Excitation of Landau Levels
by Strong EM Wave

On the basis of the obtained wave function consider the possibility of multipho-
ton excitation of Landau levels by a strong quasi-monochromatic EM wave at the
cyclotron resonance in vacuum. We will consider the concrete case of circularly
polarized EM wave (1.20) with g = −1. For a quasi-monochromatic wave it should
be A0 ⇒ A0(τ ), where A0(τ ) is a slowly varying amplitude with respect to the phase
oscillations over the ω0τ and the conditions of adiabatic switching on and switching
off will take place automatically.

To determine the probabilities of the multiphoton-induced transitions between the
Landau levels one must first define the function K(τ ). After the interaction with the
wave (t → +∞) from (4.57) at the resonance condition (4.21) we have

K̃ = −ecA0T

Λ
e−iω0τ , (4.70)

where T is the coherent interaction time (for actual laser radiation T is the pulse
duration) and A0 is the average value of the slowly varied envelope. Substituting
(4.70) into the expression for the wave function (4.68) and expanding the latter in
terms of the full basis of the particle eigenstates (4.44)

Ψs,σ,px ,pz (r, t) =
∫

dp′
x dp′

z

∑
s ′,σ′

Cσσ′
ss ′ (p′

x , p′
z)ψs ′,σ′,p′

x ,p′
z
(r, t) , (4.71)

we will find the probabilities of the multiphoton-induced transitions between the
Landau levels (we expand only by positive energy solutions as in this case the Dirac
vacuum is not excited). To calculate the expansion coefficients

Cσσ′
ss ′ (p′

x , p′
z) =

∫
ψ†

s ′,σ′,p′
x ,p′

z
(r, t) Ψs,σ,px ,pz (r, t) dr, (4.72)

we will take into account the result of the following integration:

∫
exp(−ikx)Φs(a

−1x + ab)Φs ′(a−1x + ab′)dx

= exp
{
iμ + i(s − s ′)λ

}
Iss ′ (α), (4.73)

where Iss ′(α) is the Lagger function and defined via generalized Lagger polynomials
Ll

n (α) as follows:

Is,s ′ (α) =
√

s ′!
s! e− α

2 α
s−s′
2 Ls−s ′

s ′ (α),

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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Ll
n (α) = 1

n!eαα−l dn

dαn

(
e−ααn+l

)
. (4.74)

The characteristic parameters μ, λ, and α are determined by the expressions

μ = ka2(b + b′)
2

; λ = tan−1 k

b′ − b
; α = a2 k2 + (b − b′)2

2
. (4.75)

Taking into account (4.68), (4.70), (4.72), and (4.73) we get the following expansion
coefficients:

Cσσ′
ss ′ (p′

x , p′
z) = wσσ′

ss ′ (p′
x , p′

z) exp

{
i

�
(Es ′(p′

x ) − Es(px ) − �ω0(s
′ − s))t

}

× δ(p′
z − pz)δ(p′

x − px − �
ω0

c
(s ′ − s)). (4.76)

Here the Dirac δ-functions express the momentum conservation law. The transition
amplitudes wσσ′

ss ′ (p′
x , p′

z) for the spin projection of the particle σ = 1/2 are defined
as follows:

w
1/2,1/2
ss ′ (p′

x , p′
z) = N f N ′ (2π�)2

[{
c2 px p′

x + (Es(px ) + mc2
)

× (Es ′(p′
x ) + mc2

)}
Is,s ′ (α) − Q

(
p′

+ + mc2
)√

2sc�eH0 Is−1,s ′ (α)

+ 2c�eH0

√
ss ′ Is−1,s ′−1 (α) − Q

(
Λ + mc2

)√
2s ′c�eH0 Is,s ′−1 (α)

]
, (4.77)

and the transition amplitudes with the spin flip 1/2 → −1/2 are

w
1/2,−1/2
ss ′ (p′

x , p′
z) = −i N f N ′ (2π�)2

[
Q
(

p′
+ + mc2

)

× (
Λ + mc2

)
Is,s ′−1 (α) − cp′

x

√
2sc�eH0 Is−1,s ′−1 (α)

+ √
2s ′c�eH0cpx Is,s ′ (α) − 2c�eH0Q

√
s ′s Is−1,s ′ (α)

]
. (4.78)

The analogous formula is obtained for σ = −1/2 :

w
−1/2,−1/2
ss ′ (p′

x , p′
z) = N f N ′ (2π�)2

[{
c2 px p′

x + (Es(px ) + mc2
)

× (Es ′(p′
x ) + mc2

)}
Is−1,s ′−1 (α) − Q

(
p′

+ + mc2
)√

2sc�eH0 Is,s ′−1 (α)

+ 2c�eH0

√
ss ′ Is,s ′ (α) − Q

√
2s ′c�eH0

(
Λ + mc2

)
Is−1,s ′ (α)

]
, (4.79)



112 4 Cyclotron Resonance at the Particle–Strong Wave Interaction

and the transition amplitudes with the spin flip −1/2 → 1/2 are

w
−1/2,1/2
ss ′ (p′

x , p′
z) = −i N f N ′ (2π�)2

[
Q
(

p′
+ + mc2

)

× (
Λ + mc2

)
Is−1,s ′ (α) − cp′

x

√
2sc�eH0 Is,s ′ (α)

+ √
2s ′c�eH0cpx Is−1,s ′−1 (α) − 2Qc�eH0

√
ss ′ Is,s ′−1 (α)

]
. (4.80)

Here the parameter

Q ≡ ω0eA0T

2Λ
(4.81)

and the argument of the Lagger function is

α ≡ ceH0

2�

(
eA0T

Λ

)2

. (4.82)

According to (4.76) the transition of the particle from an initial state {s,σ, px , pz}
to a state {s ′,σ′, p′

x , p′
z} is accompanied by the emission or absorption of s − s ′

number of photons. Consequently, substituting (4.76) into (4.71) and integrating
over the momentum we can rewrite the particle wave function as

Ψs,σ,px ,pz (r, t) =
∞∑

s ′=0

w
σ,1/2
ss ′ exp

[
i

�
δSss ′ (r, t)

]
ψs ′,1/2

+
∞∑

s ′=1

w
σ,−1/2
ss ′ exp

[
i

�
δSss ′ (r, t)

]
ψs ′,−1/2, (4.83)

where

δSss ′ (r, t) = pzz + (px + �ω0

c
(s ′ − s))x − (Es(px ) + �ω0(s

′ − s))t. (4.84)

Using (4.77)–(4.80) and the momentum conservation law, and taking into consider-
ation the recurrent relations for the Lagger function

Is,s ′−1 (α) =
√

α

s ′

(
s − s ′ − α

2α
Is,s ′ (α) − I ′

s,s ′ (α)

)
,

Is−1,s ′ (α) =
√

α

s

(
s − s ′ + α

2α
Is,s ′ (α) + I ′

s,s ′ (α)

)
,
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Is−1,s ′−1 (α) = α√
ss ′

(
s + s ′ − α

2α
Is,s ′ (α) − I ′

s,s ′ (α)

)
,

the transition amplitudes wσσ′
ss ′ (p′

x , p′
z) can be written in the compact form

w
1/2,1/2
ss ′ = Nss ′

{
Is,s ′ (α) +

√
ζs ′�ω0

Es ′(p′
x ) + mc2

Is,s ′−1 (α)

}
, (4.85)

w
1/2,−1/2
ss ′ = −i Nss ′

(
Λ + mc2

)

Es ′(p′
x ) + mc2

√
�ω0

2Λ
αIs,s ′−1 (α) (4.86)

and

w
−1/2,−1/2
ss ′ = Nss ′

{
Is−1,s ′−1 (α) +

√
ζs ′�ω0

Es ′(p′
x ) + mc2

Is−1,s ′ (α)

}
, (4.87)

w
−1/2,1/2
ss ′ = −i Nss ′

(
Λ + mc2

)

Es ′(p′
x ) + mc2

√
�ω0

2Λ
αIs−1,s ′ (α) , (4.88)

where

Nss ′ ≡
√
Es ′(p′

x )
(Es ′(p′

x ) + mc2
)

E s(px )(Es(px ) + mc2)
. (4.89)

Now let us consider the concrete case of initial spin polarization σ = 1/2. The
probability of the induced transition s → s ′ between the Landau levels is ultimately
defined by (4.85) and (4.86):

Wss ′ =
∣∣∣w1/2,1/2

ss ′

∣∣∣
2 +

∣∣∣w1/2,−1/2
ss ′

∣∣∣
2

= Es ′(p′
x )

E s(px )

[
I 2s,s ′ (α) + s�ω0

Es(px ) + mc2
(
I 2s−1,s ′−1 (α) − I 2s,s ′ (α)

)]
. (4.90)

For the particle initially situated in the ground state the Lagger function

I 20,s ′ (α) = αs ′

s ′! e−α,

and consequently for the probability of the induced transition 0 → s ′ we have

W0s ′ = E0(px ) + �ω0s ′

E0(px ) + �ω0α

αs ′

s ′! e−α. (4.91)
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If �ω0 
 E0(px ) this is the well-known Poisson distribution:

W0s ′ (α) = αs ′

s ′! e−α,

at which the mean value of s ′ is s ′ = α and there is a maximum at α = s ′. The latter
shows that the most probable transitions are

�ω0s ′ = �Ecl = E0(px ) − E0(px ), (4.92)

i.e., the energy change corresponds to classical dynamics. This is a consequence of the
fact that the Poisson distribution describes the coherent state of harmonic oscillator
which can be created from the ground state s = 0 (a special case of coherent state). In
the coherent state the probability distribution in space retains its shape, and its center
follows the trajectory of a classical particle in a harmonic well (in the considered
case the static magnetic field is equivalent to a harmonic well).

Let us now estimate the average number of emitted (absorbed) photons by the
electron at the cyclotron resonance for the high excited Landau levels (s � 1) and
for the strong EM wave. In this case the most probable number of photons in the
strong EM wave field corresponds to the quasiclassical limit (

∣∣s − s ′∣∣ � 1) when
multiphoton processes dominate and the nature of the interaction process is very
close to the classical one. In this case the argument of the Lagger function can be
represented as

α ≡ 1

4s

(
ecA0 p⊥T

�Λ

)2

, (4.93)

where p⊥ � √
2e�H0s/c is the particle mean transverse momentum. The Lagger

function is maximal at α → α0 =
(√

s ′ − √
s
)2
, exponentially falling beyond α0.

Hence, for the transition s → s ′ and when
∣∣s − s ′∣∣ 
 s we have

α0 �
(
s ′ − s

)2
4s

. (4.94)

The energy change of the particle according to classical perturbation theory (when
eA0ω0T/c 
 p⊥) is

�Ecl = ecp⊥ A0ω0T

Λ
. (4.95)

The comparisonof this expressionwith (4.93) and (4.94) shows that themost probable
transitions are ∣∣s − s ′∣∣ � �Ecl

�ω0
, (4.96)

in accordance with the correspondence principle.
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4.4 Cyclotron Resonance in a Medium. Nonlinear
Threshold Phenomenon of “Electron Hysteresis”

Consider now the dynamics of cyclotron resonance in the field of a strong EM wave
in a medium. In this case the problem can be solved analytically only for the circular
polarization of monochromatic wave and if the initial velocity of the particle is
directed along the axis of the wave propagation. The particle equations of motion in
components in this process are written as

dpx

dt
= n0

e

c

[
vy Ey(τ ) + vz Ez(τ )

]
, (4.97)

dpy

dt
= e

(
1 − n0

vx

c

)
Ey(τ ) + e

vz

c
H0, (4.98)

dpz

dt
= e

(
1 − n0

vx

c

)
Ez(τ ) − e

vy

c
H0. (4.99)

As long as the equation for the particle longitudinal momentum (4.97) is not changed
in the presence of a uniformmagnetic field with respect to (2.2) in the field of a plane
EM wave in a medium, and the equation for the particle energy change in the field
(1.9) remains unchanged, then we have the same integral of motion (2.5) in this
process. Hence, with the help of the latter one can represent the particle longitudinal
velocity

vx = cn0

(
1 − v0

cn0

)
− (

1 − n0
v0
c

) [
1 ∓ p2⊥(τ )

(mcζ)2

]1/2

n2
0

(
1 − v0

cn0

)
− (

1 − n0
v0
c

) [
1 ∓ p2⊥(τ )

(mcζ)2

]1/2 (4.100)

and energy

E = E0
n2
0 − 1

{
n2
0

(
1 − v0

cn0

)
−
(
1 − n0

v0
c

) [
1 ∓ p2

⊥(τ )

(mcζ)2

]1/2}
(4.101)

via the transverse momentum p⊥(τ ) = {
0, py(τ ), pz(τ )

}
in the field. Here the

parameter ζ is

ζ ≡ E0
mc2

∣∣1 − n0
v0
c

∣∣
√∣∣n2

0 − 1
∣∣ . (4.102)

Note that ζ is the critical value of the wave intensity (2.10) (at n0 > 1) for the
particle “reflection” phenomenon in the absence of a static magnetic field (H0 = 0).
The sign “− ” under the roots in (4.100), (4.101) corresponds to the case of the
interaction in dielectriclike media with n0 > 1 and the sign “+”, plasmalike media
with n0 < 1. Note that in contrast to the case H0 = 0 (induced Cherenkov process) in

http://dx.doi.org/10.1007/978-3-319-26384-7_2
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_2
http://dx.doi.org/10.1007/978-3-319-26384-7_2
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(4.100), (4.101) before the root, only the sign “−” is taken (in accordance with the
initial conditions vx = v0 and E = E0 of the free particle) since, as will be shown
below, in this case the expression under the root is always positive and consequently
the root cannot change its sign. Formally, (4.100) and (4.101) have the same form
as the analogous equations (2.7) and (2.9) if p2

⊥(τ )/m2c2 → ξ2(τ ). However, there
is a principal difference between these equations because of the above-mentioned
fact. In particular, in the presence of a static magnetic field the particle “reflec-
tion” and capture phenomena vanish—the particle longitudinal velocity cannot reach
the phase velocity of the wave (threshold value for nonlinear Cherenkov resonance
in the wave field) due to the particle transverse rotation in the uniform magnetic
field.

Now the considered problem reduces to definition of the particle transverse
momentum p⊥(τ ). To integrate (4.98) and (4.99) it is convenient to pass from the
variable t to wave coordinate τ = t− n0x/c. Then taking into account (4.100) and
(4.101) for the particle transverse momentum we will have the equations

dpy

dτ
= eEy(τ ) + ecH0

E0
(
1 − n0

v0
c

) [
1 ∓ p2⊥(τ )

(mcζ)2

]1/2 pz(τ ),

dpz

dτ
= eEz(τ ) − ecH0

E0
(
1 − n0

v0
c

) [
1 ∓ p2⊥(τ )

(mcζ)2

]1/2 py(τ ). (4.103)

From the set of (4.103) one can obtain the equation for the complex quantity

Z (τ ) = py(τ ) + i pz(τ )

mc
(4.104)

related to the dimensionless parameter of the particle transverse momentum. It is
written as

d Z (τ )

dτ
= eE(τ )

mc
− i

Ω0

(
1 − n0

v0
c

) [
1 ∓ |Z(τ )|2

ζ2

]1/2 Z (τ ) , (4.105)

where
E(τ ) = Ey(τ ) + i Ez(τ )

and

Ω0 = ecH0

E0
is the Larmor frequency for the initial velocity of the particle.

For an arbitrary plane EM wave (4.105) is a nonlinear equation the exact solu-
tion of which cannot be found. However, for the monochromatic wave of circular
polarization when

http://dx.doi.org/10.1007/978-3-319-26384-7_2
http://dx.doi.org/10.1007/978-3-319-26384-7_2
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E(τ ) = E0e−iω0τ , (4.106)

one can find the exact solution of (4.105). The latter is sought in the form

Z(τ ) = Z0e−iω0τ (4.107)

and for the transverse momentum of the particle we obtain the following algebraic
equation: (

1 − Ω0

ω0
(
1 − n0

v0
c

)√
1 ∓ β2

)
β = X, (4.108)

where the quantities E0, Z0 are expressed in the scale of the parameter ζ:

Z0

ζ
≡ iβ; eE0

mcω0ζ
= ξ0

ζ
≡ X. (4.109)

We will not represent here the exact solution of (4.108) for β. An interesting
nonlinear phenomenon exists in this process which can be found out through the
graphical solution of (4.108). Thus, depending on the ratio of the Larmor and wave
frequencies aswell as on the initial velocity of the particle (in the case of dielectriclike
medium where v0 ≶ c/n0) the solution of (4.108) is a single-valued or multivalent
that essentially changes the interaction behavior of the particle with a strong EM
wave at the nonlinear cyclotron resonance in a medium. Hence, we will consider
separately the cases Ω0 ≥ ω′

0 and Ω0 < ω′
0 at v0 < c/n0 where

ω′
0 = ω0

(
1 − n0

v0
c

)
(4.110)

is the Doppler-shifted frequency of the wave for the initial velocity of the particle.
If v0 > c/n0 the effects considered here will take place with the opposite circular
polarization of the wave (ω0 → −ω0) or in the opposite direction of the uniform
magnetic field (H0 → −H0).

Consider first the case of a medium with refractive index n0 > 1 (sign “−” under
the root) in (4.108). We will turn on the EMwave adiabatically and draw the graphic
of dependence of the particle transverse momentum on the wave intensity β(X). For
the caseΩ0 � ω′

0 the latter is illustrated in Fig. 4.2a. As is seen from this graphic with
the increase of the wave intensity the transverse momentum of the particle increases
in the field (consequently the energy as well) and vice versa: with the decrease of the
wave intensity it decreases in the field and after the passing of the wave (X = 0) the
transverse momentum becomes zero (β = 0), i.e., the particle momentum-energy
remain unchanged: p = p0 and E = E0.

With the increase of the transverse momentum the longitudinal velocity of the
particle increases as well, but in contrast to the case H0 = 0 it always remains
smaller than the wave phase velocity if initially the wave overtakes the particle
(v0 < c/n0) and larger if the particle overtakes the wave (v0 > c/n0). For this
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reason the particle “reflection” phenomenon vanishes in the presence of a uniform
magnetic field. Indeed, as is seen from (4.108) for an arbitrary finite value of X
we have β < 1 and from (4.100) it follows that the longitudinal velocity of the
particle in the field vx < c/n0 if v0 < c/n0 and vx > c/n0 if v0 > c/n0. The value
β = 1 may be reached only at X = ∞ when the root in (4.100) becomes zero and
vx = c/n0. So, the expression under the roots in (4.100), (4.101) cannot become
zero for finite intensities of the EM wave and, consequently, the root cannot change
its sign. According to the latter in (4.100), (4.101) before the roots only the sign “−”
has been taken so as to satisfy the initial condition.

Consider now the case Ω0 < ω′
0. The graphic of dependence of the particle trans-

verse momentum on the wave intensity β(X) in this case is illustrated in Fig. 4.2b. As
is seen from this graphic β(X) is already a multivalent function: for wave intensities
smaller than the value corresponding to the maximum point of the curve β(X) three

Fig. 4.2 Dependence of
normalized transverse
momentum β on the
normalized EM wave
amplitude X at n0 > 1

(b)

(a)
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values of the particle transverse momentum exist for each value of the wave intensity.
At the maximum point, which will be called a critical one, the wave intensity has the
value

Xcr =
[
1 −

(
Ω0

ω′
0

)2/3
]3/2

. (4.111)

There are two values β′
cr and β′′

cr which correspond to critical intensity (4.111). The
first one, β′

cr , is the value of the parameter β corresponding to particle transverse
momentum at the maximum point of the curve β(X). From the extremum condition
of (4.108) for β′

cr we have

β′
cr =

[
1 −

(
Ω0

ω′
0

)2/3
]1/2

. (4.112)

The second critical value for the parameter β corresponding to critical intensity Xcr

is situated on the left-hand side branch of the curve β(X). To determine its value one
needs the analytic solution β = β(X) of (4.108), but there is no necessity here to
present the bulk expression for β′′

cr .
We shall decide on that branch of the curve β(X) which corresponds to real

motion of the particle. Up to the critical point the particle transverse momentum can
be changed on that branch which corresponds to initial condition β = 0 at X = 0. On
this branch the particle momentum increases with the increase of the wave intensity
and vice versa. It is evident that with further increase of the field the particle cannot
be situated on the right-hand side from the critical point. Hence, it should pass to the
left-hand side branch of the curve β(X). Indeed, it is easy to see that the critical point
is an unstable state for the particle, while all states on the left-hand side branch of the
curve β(X) are stable and at the critical point the particle changes instantaneously
its transverse momentum and passes by jumping to that branch. The further variation
of the particle transverse momentum occurs already on this branch. Note that the
instantaneity here is related to the fact that the solution of (4.105) has been found
for the monochromatic wave. It is clear that the momentum change actually occurs
during finite time. This jump variation of the particle momentum (energy) is due to
the induced resonant absorption of energy from the wave at the critical point because
of which the particle state at this point becomes unstable and it leaves the resonance
point for a stable state that corresponds to the transverse momentum β′′

cr on the left-
hand side branch of the curve β(X). Indeed, if one draws a graphic of the dependence
of the particle transverse momentum on the ratio of the Larmor and wave frequencies
Ω0/ω

′
0 for a certain intensity of the wave (Fig. 4.3), it will be seen from the graphic

β(Ω0/ω
′
0) that the cyclotron resonance in the strong EMwave field takes place at the

critical point with the satisfaction of the condition Ω0 < ω′
0. The latter means that to

reach the cyclotron resonance in a medium, in contrast to vacuum autoresonance it is
necessary to be initially under the resonance condition, since due to the effect of the
strong wave field in a medium with refractive index n0 > 1 the Larmor frequency
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Fig. 4.3 Dependence of
normalized transverse
momentum on parameter
Ω0/ω

′
0 < 1 at n0 > 1

increases in the field and then reaches the resonance value. In vacuum the cyclotron
resonance proceeds at Ω0 = ω′

0 which survives infinitely, because of which the
energy of the particle turns to infinity. Thus, from (4.108) in this case (n0 = 1) for
the particle transverse momentum we have

β = X

1 − Ω0
ω′
0

, (4.113)

which diverges (consequently the energy as well) at Ω0 = ω′
0. As is seen from

Fig. 4.3 this divergence vanishes in a medium.
With the further increase of the field (X > Xcr ) the transverse momentum of the

particle will continuously increase on the left-hand side branch of the curve β(X) and
tend to value−1 at X → ∞. With the decrease of the field the transverse momentum
decreases on this branch and at X = Xcr already has only the value β′′

cr since the
value β′

cr corresponds to the unstable state at the resonance point and now there is
no reason for inverse transition from the stable state to the unstable one. With the
further decrease of the field the transverse momentum decreases, but as is seen from
Fig. 4.2 after the interaction (X = 0) the particle does not return to the initial state
(β = 0 at X = 0) and remains with the final transverse momentum

βF = −
[
1 −

(
Ω0

ω′
0

)2
]1/2

. (4.114)

This is a nonlinear phenomenon of charged particle hysteresis in the cyclotron res-
onance with a strong EM wave in a medium at intensities exceeding the threshold
value (4.111).

The longitudinal velocity of the particle corresponding to the value βF (4.114) is
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vx = cn0

1 − v0
cn0

− (
1 − n0

v0
c

)
Ω0
ω′
0

n2
0

(
1 − v0

cn0

)
− (

1 − n0
v0
c

)
Ω0
ω′
0

. (4.115)

The energy acquired by the particle due to hysteresis is given by

E = E0

⎡
⎣1 +

(
1 − n0

v0
c

) (
1 − Ω0

ω′
0

)

n2
0 − 1

⎤
⎦ . (4.116)

If thewave intensity is smaller than the critical value (4.111) the energy of the particle
oscillates in the field and after the interaction remains unchanged.

Equation (4.116) determines the particle acceleration due to a strong transverse
EM wave at the cyclotron resonance with the powerful static magnetic field in a
gaseous medium (n0 − 1 
 1). Because of the latter one can achieve the cyclotron
resonance using optical (laser) radiation in amediumwith the refractive indexn0 > 1,
since the Doppler shift for a wave frequency 1 − n0v0/c (see (4.110)) in this case
may be arbitrarily small in contrast to vacuum, where the cyclotron resonance for
the existing powerful static magnetic fields is possible only in the radio-frequency
domain. On the other hand, the application of powerful laser radiation for large
acceleration of the particles in gaseous media is confined by the ionization threshold
of the medium.

Consider now the case of a plasmousmedium (n0 < 1). In (4.108) this case should
take the sign “+” under the root at which the confinement for the particle transverse
momentum, existing in a dielectriclike medium, vanishes. In addition, the above-
considered behavior of the cyclotron resonance in a plasmous medium takes place
with the inverse relation between the initial Larmor and wave frequencies Ω0/ω

′
0.

Thus, at Ω0 � ω′
0 with the increase of the wave intensity the transverse momentum

of the particle increases in the field and vice versa: with the decrease of the wave
intensity it decreases in the field and after the passing of the wave (X = 0) the
transverse momentum becomes zero ( β = 0), i.e., the particle momentum-energy
remain unchanged: p = p0 and E = E0. The nonlinear phenomenon of particle
hysteresis in a plasmous medium takes place at Ω0 > ω′

0, since in a medium with
refractive index n0 < 1 the Larmor frequency decreases in the field and then becomes
equal to the resonance value. The graphic of dependence of the particle transverse
momentum on the wave intensity β(X) in this case is illustrated in Fig. 4.4. As is
seen from this graphic, in contrast to the case of dielectriclike media the parameter β
in the plasmas increases with no limit at the increase of the field. The latter allows the
large acceleration of the particles achieved by the current superstrong laser fields of
relativistic intensities (ξ > 1) due to this phenomenon of hysteresis in the plasmas.
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Fig. 4.4 Dependence of
normalized transverse
momentum β on the
normalized EM wave
amplitude X at n0 < 1

(a)

(b)

The final transverse momentum of the particle as a result of the hysteresis in this
case is

βF =
[(

Ω0

ω′
0

)2

− 1

]1/2

, (4.117)

the final energy of which will be determined by the same equation (4.116) since both
the numerator and denominator of the fraction in the expression analogous to (4.116)
for the particle energy in a plasma change sign.

Note an interesting effect at the cyclotron resonance in a medium as well. At
Ω0 = ω′

0 no matter how weak the EM wave field is — ξ0 
 ζ (that is, ξ0 
 1 even
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for ζ ∼ 1)—from (4.108) it follows that

|β| �
(
2ξ0
ζ

)1/3

, (4.118)

that is, an essential nonlinearity (∼ ξ
1/3
0 � ξ0) arises in a case where one would

expect a linear dependence on the field according to linear theory. It is the conse-
quence of nonlinear cyclotron resonance the width of which is large enough in this
case:

�ω � 2−1/3 ·
(

ξ0

ζ

)2/3

ω′
0. (4.119)

4.5 High Harmonics Radiation at Cyclotron Resonance

The considered phenomena at the cyclotron resonance in vacuum and in a medium
will resonantly enhance the efficiency of charged particle radiation in the presence of
a uniform magnetic field with respect to Compton radiation in the strong wave field.
Hence, here wewill consider the radiation of a charged particle in the field of a strong
monochromatic EM wave in the presence of a uniform magnetic field directed along
the wave propagation direction in the scope of the classical theory. We will analyze
the case of circular polarization of the incident wave and when the initial velocity of
the particle is parallel to the wave propagation direction. This case of particle–wave
parallel propagation is of certain interest since in this case the interaction length with
the actual laser beams is maximal, which is especially important for the problem of
high harmonic generation.

To determine the radiation energy at the cyclotron resonance in vacuum and in a
medium we will consider the general case of radiation in a medium and then we will
move to the vacuumcase substituting the refractive indexof amediumn0 = n(ω) = 1
in the ultimate equation for radiation energy. The latter is given by (2.50) where the
kinematic quantities v (t) and r = r (t) for the cyclotron resonance in a medium will
be defined by (4.100), (4.101), and (4.108). If in the considered case

p2
y(τ ) + p2

z (τ ) = p2
⊥ = const,

then the longitudinal velocity and the energy of the particle in the field

vx = const; E = const, (4.120)

and from (4.104), (4.107), and (4.109) for the transverse components of the particle
momentum we will have

vy (t) = mc3ζβ

E sinω0

(
1 − n0

vx

c

)
t,

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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vz (t) = mc3ζβ

E cosω0

(
1 − n0

vx

c

)
t. (4.121)

The particle law of motion r = r (t) corresponding to (4.120) and (4.121) is

x (t) = vx t,

y (t) = − mc3ζβ

Eω0
(
1 − n0

vx
c

) cosω0

(
1 − n0

vx

c

)
t, (4.122)

z (t) = mc3ζβ

Eω0
(
1 − n0

vx
c

) sinω0

(
1 − n0

vx

c

)
t.

Substituting (4.120)–(4.122) into (2.50) and integrating over t , the following ulti-
mate equation for the spectral power of the particle radiation at the cyclotron reso-
nance in a medium is obtained:

d Pk = e2n(ω)ω2

2πc3
v2⊥

∞∑
s=−∞

δ
(
ω
(
1 − n(ω)

vx

c
cosϑ

)
− sω0

(
1 − n0

vx

c

))

×
[(

n2(ω)v2x − c2

n2(ω)v2⊥
+
( s

α

)2)
J 2

s (α) + J ′2
s (α)

]
dωdO. (4.123)

Here

v⊥ = mc3ζβ

E (4.124)

is the amplitude of the transverse velocity of the particle in the field, and the argument
of the Bessel function α is

α = n(ω)
mc2ωζβ

Eω0
(
1 − n0

vx
c

) sin ϑ. (4.125)

Noting that
n2(ω)v2 − c2

n2(ω)v2⊥
= − 1

(ζβ)2

[
1 − E2

m2c4
n2(ω) − 1

n2(ω)

]

Equation (4.123) may be written in the form

d Pk = e2n(ω)ω2

2πc
∣∣1 − n(ω) vx

c cosϑ
∣∣
(

ζβ
mc2

E
)2

×
∞∑

s=−∞

{[( s

α

)2 − 1 − 1

(ζβ)2

(
1 − E2

m2c4
n2(ω) − 1

n2(ω)

)]
J 2

s (α) + J ′2
s (α)

}

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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× δ

(
ω − sω0

1 − n0
vx
c

1 − n(ω) vx
c cosϑ

)
dωdO. (4.126)

Consider first the case of vacuum. If n0 = n(ω) = 1 when the autoresonance
phenomenon takes place, parameters (4.124) and (4.125) become

v⊥ = mc3

E
ξ0

1 − Ω0
ω′
0

, α = ωmc2

ω0Λ

ξ0

1 − Ω0
ω′
0

sin ϑ,

where Λ is the integral of motion in vacuum (1.10) and ω′
0 = ω0 (1 − v0/c) is the

Doppler-shifted frequency of the incident strong wave for the initial velocity of the
particle. Then from (4.126) for the radiation power in vacuum we obtain

d Pk = e2

2πc

(
mc2

E
)2

ω2

1 − vx
c cosϑ

ξ20(
1 − Ω0

ω′
0

)2
∞∑

s=1

δ

(
ω − sω0

1 − vx
c

1 − vx
c cosϑ

)

×
⎡
⎢⎣

⎧
⎪⎨
⎪⎩
( s

α

)2 − 1 −
(
1 − Ω0

ω′
0

)2

ξ20

⎫
⎪⎬
⎪⎭

J 2
s (α) + J ′2

s (α)

⎤
⎥⎦ dωdO. (4.127)

Note that in (4.127) the term s = 0 corresponds to ω = 0 (according to the
δ-function) for which the radiation power is zero, so that the summation proceeds
from s = 1. The s = 0 harmonic arises in a dielectriclikemediumwhich corresponds
to Cherenkov radiation. Concerning the terms with the negative s in the sum (4.127),
then they are zero in vacuum according to the argument of the δ-function taking into
account that ω0,ω > 0.

In the absence of a static magnetic field (Ω0 = 0) (4.127) coincides with the
equation for the spectral power of nonlinear Compton radiation (1.61). Comparison
of (4.127) with the latter shows that the radiation power at the cyclotron resonance
in vacuum resonantly enhances with the parameter of nonlinearity ξ0/

(
1 − Ω0/ω

′
0

)
instead of the parameter of nonlinearity ξ0 for nonlinear Compton radiation. Hence,
we will not repeat the analysis of the conditions for revelation of nonlinearities in
the considered process that is the radiation of high harmonics, which has been done
for nonlinear Compton radiation and the substitution of the strong wave intensity
parameter ξ0 → ξ0/

(
1 − Ω0/ω

′
0

)
only should be made.

Consider now the radiation in a medium at the nonlinear cyclotron resonance. In
this case the Doppler factor 1 − n0v0/c may be as positive as well as negative—
anomalous Doppler effect at n0 > 1. However, as has been shown in the previous
section, for the anomalous Doppler effect the considered process of cyclotron reso-
nance will take place at the opposite circular polarization of the incident strong wave.
Hence, we also assume here v0 < c/n0 at which (4.110) has a meaning. In addition,
since for v0 < c/n0 the longitudinal velocity in the field always remains smaller

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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than the wave phase velocity (vx < c/n0), then the Doppler factor 1 − n0vx/c > 0
as well.

Taking into account (4.124), (4.125), and (4.102) as well as using the δ-function,
which expresses the radiation spectrum of the process, the equation for radiation
power (4.123) may be written in the form

d Pk = e2n(ω)ω2

2πc

1∣∣1 − n(ω) vx
c cosϑ

∣∣
∞∑

s=−∞
δ

(
ω − sω0

1 − n0
vx
c

1 − n(ω) vx
c cosϑ

)

×
[(

n(ω) vx
c − cosϑ

n(ω) sin ϑ

)2

J 2
s (α) + v2⊥

c2
J ′2

s (α)

]
dωdO, (4.128)

where the argument of the Bessel function is

α = n(ω)
ω

ω0

sin ϑ√∣∣n2
0 − 1

∣∣
β√

1 ∓ β2
. (4.129)

Concerning the terms with the negative s in (4.128), note that according to the argu-
ment of the δ function the harmonicswith s < 0 correspond to the anomalousDoppler
effect for radiated frequencies (as for the fundamental frequency 1 − n0vx/c > 0)
which is possible due to the dispersion of the medium, if

1 − n(ω)
vx

c
cosϑ < 0,

i.e., the harmonics with s < 0 may be radiated inside the Cherenkov cone.
Arising from (4.108) one can express the argument of the Bessel function via the

parameter of the cyclotron resonance Ω0/ω
′
0

α = n(ω)
ω

ω′
0

mc2

E0
ξ0√

1 ∓ β2 − Ω0
ω′
0

sin ϑ, (4.130)

which evidences the resonant enhancement of the parameter of nonlinearity and,
consequently, the intensity of high harmonics radiation (α ∼ s � 1). If β2 

1, which corresponds to linear cyclotron resonance, from (4.130) we see that the
radiation power in a medium resonantly enhances with the parameter of nonlinearity
ξ0/

(
1 − Ω0/ω

′
0

)
as in the case of vacuum.

The radiation of high harmonics at the nonlinear cyclotron resonance in a medium
arises for thewave intensities in the area close to the critical value for electron hystere-
sis phenomenon (4.111). Corresponding to this intensity the transverse momentum
of the particleβ in (4.130) should be substituted by the critical valueβ′

cr from (4.112).
In the other case of particle–wave nonlinear interaction at the cyclotron resonance
in a medium that takes place at Ω0 = ω′

0 and ξ0 
 ζ (see (4.118)), the transverse
momentum of the particle β in (4.130) should be substituted from (4.118).
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Chapter 5
Nonlinear Dynamics of Induced Compton
and Undulator Processes

Abstract In this chapter, we will consider the interaction of charged particles with
superstrong radiation fields of relativistic intensities in induced coherent processes
in vacuum where there is no restriction on the field intensity taking place at the
inducedCherenkov interaction in dielectric-likemedia. Those are the inducedComp-
ton and undulator processes. In the presence of a second wave of different frequency,
the Compton scattering, as well as spontaneous undulator radiation in the exter-
nal EM wave field acquire induced character. Because of its coherent nature (as
the Cherenkov one) these induced processes have the same peculiarity and, con-
sequently, the nonlinear interaction of charged particles with the mentioned fields
leads to analogous threshold phenomena of particle “reflection” and capture by the
plane EMwaves in vacuum. On the other hand, it is clear that the second wave in the
induced Compton process or the undulator field perform the role of the third body
for the real radiation/absorption of photons by the free electrons in vacuum. Hence,
irrespective of revelation of new phenomena the consideration of nonlinear dynamics
of induced Compton and undulator processes in current superstrong laser fields is
of great interest, especially from the point of view of FEL and laser accelerators.
Further, the significance of the undulator (wiggler) is great enough as the unique
version of the current FEL and expected X-ray laser due to its large coherent length
and effective power of the static magnetic field for relativistic particles. To achieve
relatively large coherent lengths in the induced Compton process we will consider
the case of counterpropagating waves. Then, taking into account the significance of
heavy particles/ions acceleration problem, specifically toward the interaction with
the matter at extreme conditions in ultrashort space–time scales (that have attracted
broad interest over the last years conditioned by a number of important applications,
such as generation and probing of high energy density matter, inertial confinement
fusion, isotope production, hadron therapy, etc.), we will study laser acceleration of
ions/nuclei from nanoscale-solid-plasma targets with counterpropagating ultrashort
laser pulses on the base of the particle “reflection” phenomenon.

© Springer International Publishing Switzerland 2016
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5.1 Interaction of Charged Particles with Superstrong
Counterpropagating Waves of Different Frequencies

Consider the classical dynamics of a charged particle at the interaction with two
counterpropagating (along the axis OX) plane EM waves having arbitrary electric
field strengths E1

(
t − x

c

)
and E2

(
t + x

c

)
in vacuum. The relativistic equation of

motion in components is written as

dpx

dt
= e

c
(vE1 − vE2) , (5.1)

dpy

dt
= e

(
1 − vx

c

)
E1y + e

(
1 + vx

c

)
E2y,

dpz

dt
= e

(
1 − vx

c

)
E1z + e

(
1 + vx

c

)
E2z. (5.2)

This set of equations allows exact solutionwhen the particle initial velocity is directed
along the axis OX and the waves are monochromatic with circular polarization:

E1 (x, t) =
{
0, E1 cosω1

(
t − x

c

)
, E1 sinω1

(
t − x

c

)}
,

E2 (x, t) =
{
0, E2 cosω2

(
t + x

c

)
, E2 sinω2

(
t + x

c

)}
. (5.3)

From (5.2) in the field (5.3), we obtain

py = eE1

ω1
sinω1

(
t − x

c

)
+ eE2

ω2
sinω2

(
t + x

c

)
,

pz = −eE1

ω1
cosω1

(
t − x

c

)
− eE2

ω2
cosω2

(
t + x

c

)
(5.4)

(the waves are turned on and turned off adiabatically at t → ∓∞).
For the integration of (5.1) we will use the equation for the particle energy

exchange in the field
dE
dt

= e (vE1 + vE2) . (5.5)

Thus, defining the particle transverse velocity in the field by (5.4), from (5.1) and
(5.5) we obtain the following integral of motion in the induced Compton process:

E − c
ω1 − ω2

ω1 + ω2
px = const. (5.6)
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The latter together with (5.4) determines the particle energy in the field

E = E0
n2
1 − 1

{
n2
1

(
1 − v0

cn1

)
∓
[(

1 − n1
v0
c

)2 − (
n2
1 − 1

) (mc2

E0

)2

×
[
ξ21 + ξ22 + 2ξ1ξ2 cos (ω1 − ω2)

(
t − n1

x

c

)]]1/2 }
. (5.7)

The parameter n1 included in (5.7) is

n1 = ω1 + ω2

|ω1 − ω2| , (5.8)

and the parameters ξ1,2 ≡ eE1,2/mcω1,2.
As is seen from (5.7) due to the effective interaction of the particle with the

counterpropagating waves a slowed traveling wave in vacuum arises. The parameter
n1 denotes the refractive index of this interference wave and since n1 > 1 (see
(5.8)) the phase velocity of the effective traveling wave vph = c/n1 < c. Then the
expressionunder the root in (5.7) evidences the peculiarity in the interactiondynamics
like the induced Cherenkov one that causes the analogous threshold phenomena of
particle “reflection” and capture by the interference wave in the induced Compton
process. Hence, omitting the same procedure related to bypass the multivalence and
complexity of (5.7), which has been made in detail for the analogous expression
in the Cherenkov process, we will present the final results for particle “reflection”
and capture by the effective interference wave in the induced Compton process. The
threshold value of the “reflection” phenomenon or the critical field for nonlinear
Compton resonance is

ξcr
(
ω1,2

) ≡ (ξ1 + ξ2)cr = E0
mc2

∣∣ω1
(
1 − v0

c

)− ω2
(
1 + v0

c

)∣∣
2
√

ω1ω2
. (5.9)

If one knows the longitudinal velocity vx of the particle in the field, then it is easy
to see that ξcr

(
ω1,2

)
is the value of the total intensity of counterpropagating waves

at which vx becomes equal to the phase velocity of the effective interference wave:
vx = vph = c/n1 irrespective of the magnitude of particle initial velocity v0. The
latter is the condition of coherency of induced Compton process

ω1

(
1 − vx

c

)
= ω2

(
1 + vx

c

)
. (5.10)

Under condition (5.10), the nonlinear resonance in the field of counterpropagat-
ing waves of different frequencies occurs and because of induced Compton radia-
tion/absorption the particle velocity becomes smaller or larger than the phase velocity
of the interference wave and the particle leaves the slowed effective wave. In the rest
frame of the latter the particle swoops on themotionless barrier (if ξ1+ξ2 > ξcr(ω1,2))
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and the elastic reflection occurs. In the laboratory frame it corresponds to inelastic
“reflection” and from (5.7) for particle energy after the “reflection” (ξ1,2 → 0 adia-
batically at t → +∞) we have

E = E0
ω2
1

(
1 − v0

c

)+ ω2
2

(
1 + v0

c

)

2ω1ω2
. (5.11)

From this equation it follows that the energy of the particle with the initial velocity
v0 = c |ω1 − ω2|/(ω1 + ω2) corresponding to the resonance value of the induced
Compton process does not change after the interaction (E = E0). For such particle
ξcr
(
ω1,2

) = 0, i.e., it cannot enter the field: ξ1 = ξ2 = 0. The particle with the initial
velocity v0 > c |ω1 − ω2|/(ω1 + ω2) after the “reflection” is decelerated, while at
v0 < c |ω1 − ω2|/(ω1 + ω2) it is accelerated because of direct and inverse induced
Compton processes. At the acceleration the particle absorbs photons from the wave
of frequency ω1 and coherently radiates into the wave of frequency ω2 if ω1 > ω2 and
at the deceleration the inverse process takes place. Hence, at the particle acceleration
the amplification of the wave of a smaller frequency holds, while at the deceleration
the wave of a larger frequency is amplified.

In the case of ω1 = ω2 ≡ ω the refractive index of the interference wave n1 = ∞
and nonlinear interaction of the particle with the strong standing wave occurs. It is
evident that in this case the process is elastic: E = E0 = const (see (5.11)) and for
the longitudinal momentum of the particle in the field we have

px = ±
√

p20 − m2c2
(

ξ21 + ξ22 + 2ξ1ξ2 cos
2ω

c
x

)
. (5.12)

From this equation it is seen that at ξ1 + ξ2 > ξcr (ω) = |p0| /mc the standing wave
becomes a potential barrier for the particle and elastic reflection occurs: the root
changes its sign and px = −p0 (if ξ1 + ξ2 < ξcr (ω) we have px = p0).

Consider now the nonlinear dynamics of a particle with the arbitrary direction of
velocity v0 initially situated in the field of counterpropagating waves (internal parti-
cle). It is clear that at the wave intensities ξ1+ξ2 > ξcr

(
ω1,2

)
when the “reflection” of

an external particle from the slowed traveling wave holds, an internal particle under
the specified conditions may be captured by the such slowed wave. Consequently,
one needs to define the conditions for the particle capture by the effective field in the
induced Compton process.

Let a particle with velocity v0 be situated in the initial phases φ10 = ω1(t0 −x0/c)
and φ20 = ω2(t0 + x0/c) of linearly polarized along the axis OY counterpropagating
waves (in (5.3) E1z = E2z = 0, so the coordinate z is free and one can assume
v0z = 0). The solution of (5.1) and (5.2) under these initial conditions for the particle
momentum in the field is given as

px = p0x + n2
1

n2
1 − 1

E0
c

{
1 − n1

v0x

c
∓
[(

1 − n1
v0x

c

)2
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− (n2
1 − 1

) (mc2

E0

)2 [1
2

(
ξ21 + ξ22

)+ (ξ1 sin φ10 + ξ2 sin φ20)

(
ξ1 sin φ10

+ ξ2 sin φ20 − 2
P0y

mc

)
+ ξ1ξ2 cos (φ1 − φ2)

]]1/2}
, (5.13)

py = p0y + mcξ1 (sin φ1 − sin φ10) + mcξ2 (sin φ2 − sin φ20) , (5.14)

where
φ1 − φ2 = (ω1 − ω2)

(
t − n1

x

c

)
.

In the derivation of (5.13) the averaging over fast oscillations of separate waves with
respect to the interferencewave (in the intrinsic frame of which only a staticmagnetic
field acts on the particle) in (5.1) and (5.5) has beenmade. Physically, it corresponds to
time averaging of noncoherent interaction with separate waves in relation to coherent
interaction due to induced Compton resonance. In this approximation the integral
of motion (5.6) remains applicable and with (5.13) it determines the energy of the
particle at the coherent interaction with the counterpropagating waves of different
frequencies.

The equilibrated phases for the particle capture in this process correspond to
extrema of the interference wave and the motion of the particle is stable in the phases

(φ1 − φ2)s = (ω1 − ω2)
(

t − n1
x

c

)
s
= π (2k + 1) ; k = 0,±1, . . . . (5.15)

Equation (5.15) shows that the particle situated in the equilibrated phases moves with
the velocity

vxs = c (ω1 − ω2) / (ω1 + ω2) .

Let the particle initial longitudinal velocity be equilibrated: v0x = vxs. If p0y = 0
as well, then the analysis of (5.13) shows that the capture of such particle is possible
at ξ1 = ξ2 (eE1/ω1 = eE2/ω2, i.e., the waves should transfer to the particle equal
momenta) and (φ1 − φ2)0 = π (2k + 1) = (φ1 − φ2)s. From (5.14) for equilibrated
transverse momentum in this case we have pys = p0y = 0. If v0x = vxs+ �v and
p0y = 0, then we have the following condition for the particle capture:

|�v| <
c

n1

mc2

E0 ξ
√(

n2
1 − 1

) [
2 + (sin φ10 + sin φ20)

2] , (5.16)

fromwhich one can define the tolerance for divergences of initial phases and velocity
of a nonequilibriumparticle. On the other hand, condition (5.16) defines the threshold
value of the wave intensities for the capture of a nonequilibrium particle, which
coincides with the critical intensity for the “reflection” of an external particle (5.9)
at ξ1 = ξ2 ≡ ξ and φ10 = φ20 = 0 (coefficient

√
2 arises because of different

polarization of the waves).
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Now let v0x = vxs but p0y �= 0. If (φ1 − φ2)0 �= π (2k + 1), then the motion of
the particle will be stable at the condition

p0y (sin φ10 + sin φ20) > 0;
∣∣p0y

∣∣
mcξ

> 1. (5.17)

The condition for the capture in this case is
∣∣p0y

∣∣ /mcξ < 3/2, which with the
condition of stability (5.17) strictly restricts the transverse momentum of the particle.
Meanwhile the conditions of stability and capture in theminimums of the interference
wave (φ1 − φ2)0 = π (2k + 1) are automatically satisfied. Hence, these phases are
equilibrated at the arbitrary transverse momentum of the particle (p0y = pys).

If the particle initial velocity differs from the equilibrated one (v0x �= vxs) and
p0y �= 0, the tolerance for the capture of a nonequilibrium particle is defined analo-
gously to condition (5.16).

To illustrate the particles acceleration by the actual nonplane laser pulses in the
result of the “reflection” phenomenon in the induced Compton process, we need
the numerical simulations of particle equations of motion (5.1)–(5.2) with nonplane
counterpropagating laser pulses of finite space–time envelopes. For analytic descrip-
tion of such pulses of circular polarization we will approximate corresponding elec-
tromagnetic fields by the formulas:

E1x = E10g1 (τ )
λ1w

2
10e−r2⊥/w2

1(x)

πw4
1 (x)

{[
−2

xy

x1R
+
(
1 − x2

x21R

)
z

]

× cos τ ′ +
[(

1 − x2

x21R

)
y + 2

xz

x1R

]
sin τ ′

}
,

E1y = E10g1 (τ )
w2

10e−r2⊥/w2
1(x)

w2
1 (x)

{
cos τ ′ + x

x1R
sin τ ′

}
,

E1z = −E10g1 (τ )
w2

10e−r2⊥/w2
1(x)

w2
1 (x)

{
− x

x1R
cos τ ′ + sin τ ′

}
, (5.18)

H1x = E10g1 (τ )
λ1w

2
10e−r2⊥/w2

1(x)

πw4
1 (x)

{[
−2

xz

x1R
−
(
1 − x2

x21R

)
y

]
.

× cos τ ′ +
[(

1 − x2

x21R

)
z − 2

xy

x1R

]
sin τ ′

}
,

H1y = −E1z; H1z = E1y,
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where τ ′ = τ + r2⊥x/
(
x1Rw2

1 (x)
)
, r2⊥ = y2 + z2, w1 (x) = w10

√
1 + x2/x21R, x1R =

πw2
10/λ1 is the Rayleigh length for high frequency (of wavelength λ1 = 2πc/ω1)

focused laser pulse with the waist w10 in the focal plane x = 0, and g1 (τ ) =
1/ cosh (τ/τ0).

For electric and magnetic fields of low frequency (of wavelength λ2 = 2πc/ω2)
focused laser pulse propagating in opposite direction to high frequency pulse, we
have:

E2x = −E20g2 (η)
λ2w

2
20e−r2⊥/w2

2(x)

πw4
2 (x)

{[
2

xy

x2R
+
(
1 − x2

x22R

)
z

]

× cos η′ −
[(

1 − x2

x22R

)
y − 2

xz

x2R

]
sin η′

}
,

E2y = E20g2 (η)
w2

20e−r2⊥/w2
2(x)

w2
2 (x)

{
cos η′ + x

x2R
sin η′

}
,

E2z = −E20g2 (η)
w2

20e−r2⊥/w2
2(x)

w2
2 (x)

{
x

x2R
cos η′ − sin η′

}
, (5.19)

H2x = E20g2 (η)
λ2w

2
20e−r2⊥/w2

2(x)

πw4
2 (x)

{[
2

xz

x2R
−
(
1 − x2

x22R

)
y

]
.

× cos η′ −
[(

1 − x2

x22R

)
z + 2

xy

x2R

]
sin η′

}
,

H2y = E2z; H2z = −E2y,

where η′ = η + r2⊥x/
(
x2Rw2

2 (x)
)
, w2 (x) = w20

√
1 + x2/x22R , x2R = πw2

20/λ2 is the
Rayleigh length for a focused pulse with the waist w20 (in the focal plane x = 0),
and g2 (η) = 1/ cosh (η/η0).

The results of numerical integration of particle equations of motion in the fields
(5.18), (5.19) are presented in Fig. 5.1. As is seen from Fig. 5.1, numerical results
justify the particles reflection–capture phenomena for real nonplane laser pulses
with the transverse space sizes in the focal plane (pulses’ waists) w10 = 100λ1 and
w20 = 200λ1 for high and low frequency lasers, respectively (w20 in scale of λ2 are:
w20 = 20λ2 for the case ω1/ω2 = 10 and w20 = 100λ2 for ω1/ω2 = 2).
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(a) (b)

Fig. 5.1 Reflection of the particles from the nonplane counterpropagating laser pulses at different
initial longitudinal positions x0 (y0 = z0 = 0): a x0 ∈ [−λ1; λ1] (with the step 0.5λ1) for ω1ω2 =
10, and b x0 ∈ [−0.4λ1; 0.4λ1] (with the step 0.2λ1) for ω1/ω2 = 2

5.2 Interaction of Charged Particles with Superstrong
Wave in a Wiggler

Consider the nonlinear dynamics of a charged particle at the interaction with a strong
EM wave in a magnetic undulator. Let a particle with an initial velocity v0 = v0x

enter into a magnetic undulator with circularly polarized field

H(x) =
{
0,−H cos

2π

l
x, H sin

2π

l
x

}
(5.20)

(l is the space period or step of an undulator) along the axis of which propagates a
planemonochromatic EMwave of circular polarizationwith the electric field strength

E(x, t) =
{
0, E0 sinω0

(
t − x

c

)
, E0 cosω0

(
t − x

c

)}
. (5.21)

The equation of motion of the particle in the fields (5.20) and (5.21) in components
is written as

dpx

dt
= e

c
E0

[
vy sinω0

(
t − x

c

)
+ vz cosω0

(
t − x

c

)]

+ e

c
H

[
vy sin

2π

l
x + vz cos

2π

l
x

]
, (5.22)

dpy

dt
= eE0

(
1 − vx

c

)
sinω0

(
t − x

c

)
− e

vx

c
H sin
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l
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= eE0
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c

)
cosω0

(
t − x

c

)
− e

vx

c
H cos

2π

l
x. (5.23)
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Integration of (5.23) under the assumed initial conditions (at t = −∞ the particle
has only longitudinal velocity, i.e., p0y = p0z = 0) gives

py = −eE0

ω0
cosω0

(
t − x

c

)
+ elH

2πc
cos

2π

l
x,

pz = eE0

ω0
sinω0

(
t − x

c

)
− elH

2πc
sin

2π

l
x. (5.24)

The integration of (5.22) is made analogously to the integration of (5.1). Using the
equation for the particle energy exchange in the field

dE
dt

= eE0

[
vy sinω0

(
t − x

c

)
+ vz cosω0

(
t − x

c

)]
, (5.25)

with the help of (5.1), (5.24), and (5.25) we obtain the integral of motion in the
induced undulator process

E − c

1 + λ
l

px = const. (5.26)

Equations (5.24) and (5.26) determine the particle energy

E = E0
n2
2 − 1

{
n2
2

(
1 − v0

cn2

)
∓
[(

1 − n2
v0
c

)2 − (
n2
2 − 1

) (mc2

E0

)2

×
[
ξ20 + ξ2H − 2ξ0ξH cosω0

(
t − n2

x

c

)]]1/2}
(5.27)

in the field of a strong EM wave in the magnetic undulator, which is characterized
by relativistic parameter

ξH = elH

2πmc2
(5.28)

(for large magnitudes of undulator field strength H and space period l when ξH > 1
such undulator is called a wiggler).

From (5.27) it follows that at the particle–wave nonlinear resonance interaction in
the undulator an effective slowed travelingwave is formed as in the inducedCompton
process. The parameter

n2 = 1 + λ

l
(5.29)

is the refractive index of this slowed wave, which causes the analogous threshold
phenomenon of particle “reflection”% in the induced undulator process. The effective
critical field at which the nonlinear resonance and then the particle “reflection” take
place in the undulator is
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ξcr

(
λ

l

)
≡ (ξ0 + ξH)cr =

∣∣1 − (
1 + λ

l

) v0
c

∣∣
√

2λ
l

(
1 + λ

2l

)
E0

mc2
. (5.30)

At this value of the resulting field the longitudinal velocity of the particle vx reaches
the resonant value in the field at which the condition of coherency in the undulator

2π

l
vx = ω0

(
1 − vx

c

)
(5.31)

is satisfied. The latter has a simple physical explanation in the intrinsic frame of the
particle. In this frame of reference the staticmagnetic field (5.20) becomes a traveling
EM wave with the frequency

ω = 2π

l

vx√
1 − v2x

c2

and phase velocity vph = vx. For coherent interaction process this frequency must
coincide with the Doppler-shifted frequency of stimulated wave.

The energy of the particle after the “reflection” (in (5.27) ξ0 = ξH = 0 at the sign
“+” before the root) is

E = E0

[
1 + 1 − (

1 + λ
l

) v0
c

λ
l

(
1 + λ

2l

)
]

. (5.32)

From this equation, it follows that the particle with the initial velocity v0 < c/(1 +
λ/l) after the “reflection” accelerates,while at v0 > c/(1+λ/l) it decelerates because
of induced undulator radiation.

If a particle is initially situated in the field, under the certain conditions it may
be captured by the slowed-in-the-undulator effective wave. We shall define those
conditions.

Let a particle with the velocity v0 be situated in the initial phases φ10 = ω0(t0 −
x0/c) and φ20 = 2πx0/l of a linearly polarized EM wave and undulator field

Ey(x, t) = −E0 cosω0(t − x

c
); Hz(x) = H cos

2π

l
x. (5.33)

The solution of (5.1) and (5.2) under these initial conditions for the particle momen-
tum in the field gives

px = p0x + n2
n2
2 − 1

E0
c

{
1 − n2

v0x

c
∓
[(

1 − n2
v0x

c

)2
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− (n2
2 − 1

) (mc2
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)2 [1
2

(
ξ20 + ξ2H
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×
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ξ0 sin φ10 + ξH sin φ20 − 2
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)
+ ξ0ξH cosω0

(
t − n2

x

c

)]]1/2}
, (5.34)

py = p0y + mcξ0
[
sinω0(t − x

c
) − sin φ10

]

+ mcξH

(
sin

2π

l
x − sin φ20

)
. (5.35)

Note that at the derivation of (5.34) in (5.22) and (5.25) the time averaging of nonco-
herent interaction with respect to coherent interaction has been made. In this approx-
imation the integral of motion (5.26) remains applicable and with (5.34) determines
the energy of the particle at the coherent interaction with the strong EM wave in a
wiggler.

The equilibrated phases for the particle capture correspond to extrema of slowed-
in-the-undulator effective wave and the motion of the particle is stable in the phases

φs = ω0

[
t −

(
1 + λ

l

)
x

c

]

s

= π (2k + 1) ; k = 0,±1, . . . . (5.36)

From (5.36) one can define the particle velocity in the equilibrated phase: vxs =
c/(1+λ/l). If the initial velocity of the particle v0x = vxs and p0y = 0 the capture of
such particle is possible at ξ0 = ξH , that is, λE0 = lH; the strong wave and wiggler
field should transfer to the particle equal momenta and φ10 − φ20 = φs (at that
pys = 0). If the initial velocity of the particle differs from the equilibrated one (v0x �=
vxs) and p0y = 0 the tolerance for the capture of nonequilibrium particles is defined
analogously to condition (5.16) in the induced Compton process. If p0y �= 0, then as
in the case of counterpropagating waves the phases φ0 = π (2k + 1) automatically
are equilibrated for the arbitrary p0y (p0y = pys). In the other cases the conditions for
particle capture by the effective slowed wave in the regime of stable motion in the
wiggler are defined as for those in the induced Compton interaction.

The “reflection” phenomenon of charged particles from a plane EM wave, as
was shown in the induced Cherenkov process, may be used for monochromatization
of the particle beams. Note that the considered vacuum versions of this phenom-
enon are more preferable for this goal taking into account the influence of negative
effects of the multiple scattering and ionization losses in a medium. On the other
hand, the refractive index of the effective slowed waves in vacuum n1 or n2 in cor-
responding induced Compton and undulator processes may be varied choosing the
appropriate frequencies of counterpropagating waves or wiggler step. In particular,
for monochromatization of particle beams with moderate or low energies via the
induced Cherenkov process one needs a refractive index of a medium n0 − 1 ∼ 1
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that corresponds to solid states. Meanwhile, such values of effective refractive index
may be reached in the induced Compton process at the frequencies ω1 ∼ ω2 of the
counterpropagating waves. However, we will not consider here the possibility of par-
ticle beam monochromatization on the basis of the vacuum versions of “reflection”
phenomenon since the principle of conversion of energetic or angular spreads is the
same. To study the subject in more detail we refer the reader to original papers listed
in the bibliography of this chapter.

5.3 Inelastic Diffraction Scattering on a Moving
Phase Lattice

Consider now the quantum dynamics of a particle coherent interaction with the
counterpropagating waves of different frequencies in the induced Compton process.
Neglecting the spin interaction (with the same justification that has been made in
the above-considered processes) we will derive from the Klein–Gordon equation in
the field of quasimonochromatic waves with the vector potentials A1(t − x/c) and
A2(t + x/c) which is written as

−�
2 ∂2Ψ

∂t2
=
{
−�

2c2
2 + m2c4 + e2
[
A1

(
t − x

c

)
+ A2

(
t + x

c

)]2

+ 2ie�c
[
A1

(
t − x

c

)
+ A2

(
t + x

c

)]


}
Ψ. (5.37)

As we saw in the classical consideration of the dynamics of the induced Compton
process the effective interaction occurs with the slowed interference wave. At the
intensities of the waves ξ1 + ξ2 < ξcr

(
ω1,2

)
when the particle can penetrate into

the interference wave the latter will stand for a phase lattice for the particle (at
the satisfaction of the condition of coherency (5.10)) and the coherent scattering
will occur as for the diffraction effect on a crystal lattice. However, in contrast to
diffraction on a motionless lattice (elastic scattering) the diffraction scattering on the
moving phase lattice has inelastic character. To determine this quantum effect we
will solve (5.37) in the eikonal approximation by the particle wave function (3.91)
corresponding tomultiphoton processes in strong fields. In accordancewith the latter,
the solution of (5.37) for the waves of linear polarizations (along the axis OY ),

A1(t − x/c) = A1(t) cosω1(t − x/c),

A2(t + x/c) = A2(t) cosω2(t + x/c)

http://dx.doi.org/10.1007/978-3-319-26384-7_3
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we look for in the form (3.91) and for the slowly varying function f (x, t) (see (3.92))
we obtain the following equation:

∂f
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+ v0x

∂f

∂x
=
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− ie2
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c
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(
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x

c
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+A1(t)A2(t) cos(ω1 − ω2)

(
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+ iecp0y

�E0
[
A1(t) cosω1(t − x

c
) + A2(t) cosω2(t + x

c
)
]}

f (x, t). (5.38)

As is seen from (5.38) at the interaction with the counterpropagating waves of dif-
ferent frequencies two interference waves are formed—third and fourth terms on the
right-hand side—which propagate with the phase velocities

vph = c
ω1 + ω2

|ω1 − ω2| > c

and

vph = c
|ω1 − ω2|
ω1 + ω2

< c,

respectively. It is clear that the interaction of the particle with the wave propagating
with the phase velocity vph > c, as well as with the incident separate waves propagat-
ing in the vacuum with the phase velocity c (remaining four terms on the right-hand
side of (5.38)), cannot be coherent. These terms correspond to noncoherent scattering
of the particle in the separate wave fields which vanish after the interaction. Coherent
interaction in this process occurs with the slowed interference wave (fourth term), in
accordance with the classical results (see (5.8) and (5.10)).

For the integration of (5.38) we will pass to characteristic coordinates τ ′ =
t − x/v0x and η′ = t. Then, if one directs the particle velocity v0 at the angle
ϑ0 with respect to the waves’ propagation axis providing the condition of coherency
of the induced Compton process (resonance between the waves’ Doppler-shifted
frequencies) for the free-particle velocity

v0 cosϑ0 = c
|ω1 − ω2|
ω1 + ω2

, (5.39)

the traveling interference wave in this frame of coordinates becomes a standing phase
lattice over the coordinate τ ′ and diffraction scattering of the particle occurs. From
(5.38) for the amplitude of the scattered particle wave function, we obtain

http://dx.doi.org/10.1007/978-3-319-26384-7_3
http://dx.doi.org/10.1007/978-3-319-26384-7_3
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f (τ ′) = exp

⎧⎨
⎩− ie2

2�E0 cos(ω1 − ω2)τ
′

η2∫

η1

A1(η
′)A2(η

′)dη′

⎫⎬
⎭ , (5.40)

where η1 and η2 are the moments of the particle entrance into the field and exit,
respectively.

If one expands the exponential (5.40) into a series by Bessel functions and returns
again to coordinates x, t with the help of (3.91) for the total wave function we will
have

Ψ (r, t) =
√

N0

2E0 exp
[

i

�
(p0 sin ϑ0) y

] +∞∑
s=−∞

(−i)sJs(α)

× exp

{
i

�

[
p0 cosϑ0 + s�

ω1 + ω2

c

]
x − i

�
[E0 + s� (ω1 − ω2)] t

}
, (5.41)

where the argument of the Bessel function is

α = e2c2

2�E0ω1ω2

t2∫

t1

E1(η
′)E2(η

′)dη′ (5.42)

(E1 and E2 are the amplitudes of the waves’ electric field strengths).
Equation (5.41) shows that the diffraction scattering of the particles in the field

of counterpropagating waves of different frequencies is inelastic. Due to the induced
Compton effect the particle absorbs s photons from the one wave and coherently
radiates s photons into the otherwave and vice versa (resonance between theDoppler-
shifted frequencies in the intrinsic frame of the particle), i.e., the conservation of
the number of photons in the induced Compton process takes place in contrast to
spontaneous Compton effect in the strong wave field where after the multiphoton
absorption a single photon is emitted. However, because of the different photon
energies the scattering process is inelastic. From (5.41) for the change of the particle
energy–momentum, we have

ΔE = s� (ω1 − ω2); Δpx = s� (ω1 + ω2) /c; Δpy = 0; s = 0,±1, . . . . (5.43)

The probability of inelastic diffraction scattering is

Ws = J2
s

⎡
⎣ e2c2

2�ω1ω2E0

t2∫

t1

E1(η
′)E2(η

′)dη′
⎤
⎦ . (5.44)

According to the condition of eikonal approximation (3.92): |Δp| � p0 and
|ΔE | � E0 from (5.43) we have the condition of applicability of the obtained results:
|s| � (ω1 + ω2) /c � p0.

http://dx.doi.org/10.1007/978-3-319-26384-7_3
http://dx.doi.org/10.1007/978-3-319-26384-7_3
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In the case of monochromatic waves

Ws = J2
s

(
e2c2E1E2t0
2�E0ω1ω2

)
, (5.45)

where t0 = t2 − t1 is the time duration of the particle motion in the interference
wave (lc = v0t0 cosϑ0 is the coherent length of the process). For the actual values of
the parameters including in (5.45) the argument of the Bessel function α � 1, and
consequently the most probable number of absorbed/radiated photons is

s � 1

2
ξ1ξ2

mc2

E0
mc2

�
t0. (5.46)

The energetic width of the main diffraction maximums is

Γ (s) � s1/3� (ω1 − ω2)

and since s � 1 then
Γ (s) � |E − E0| .

The scattering angles of s-photon diffraction on the counterpropagating waves are

tan ϑs = s� (ω1 + ω2) sin ϑ0

cp0 + s� (ω1 + ω2) cosϑ0
; s = 0,±1, . . . . (5.47)

As in the Cherenkov process at the inelastic diffraction there is an asymmetry in the
angular distribution of the scattered particle: |ϑ−s| > ϑs, i.e., the main diffraction
maximums are situated at the different angles with respect to the direction of par-
ticle initial motion. However, since |s| � (ω1 + ω2) /c � p0 this asymmetry can be
neglected, i.e., |ϑ−s| � ϑs and the scattering angles of themain diffractionmaximums
will be determined by the equation

ϑ±s = ±s
� (ω1 + ω2)

cp0
sin ϑ0. (5.48)

In the case of counterpropagating waves of equal frequencies (ω1 = ω2 ≡ ω) the
phase velocity of the interference wave vph = 0 and the coherent scattering on the
motionless phase lattice takes place, which is elastic: ΔE = 0 and Δpx = 2s�ω/c.
This is the known Kapitza–Dirac effect for electron diffraction on a standing wave
(in the one-photon approximation for the weak waves). As follows from (5.39), the
coherent scattering in this case is possible at the incident angle ϑ0 = π/2, i.e., the
particle velocity is perpendicular to the axis of waves’ propagation, to exclude the
Doppler shift of waves frequencies because of its counterpropagation (a longitudinal
component of the particle velocitywill result in differentDoppler shifts of equal labo-
ratory frequencies because of different wave vectors k and−k of counterpropagating
waves and, consequently, will violate the resonance between the waves).



144 5 Nonlinear Dynamics of Induced Compton and Undulator Processes

5.4 Inelastic Diffraction Scattering on a Traveling
Wave in an Undulator

Charged particles diffraction scattering is also possible on a plane EM wave propa-
gating in vacuum if the interaction proceeds in an undulator. As the diffraction effect
is the result of particle coherent interaction with the periodic wave field the effec-
tive field in the undulator should be smaller than the threshold value of “reflection”
phenomenon: ξ0 + ξH < ξcr (λ/l) (to prohibit the nonlinear resonance in the field at
which the periodic EM field becomes a potential barrier for the particle and coherent
interaction with the periodic wave field impossible). Under this condition we will
solve the relativistic quantum equation of motion

−�
2 ∂2Ψ

∂t2
=
{
−�

2c2
2 + m2c4 + e2
[
A1(t − x

c
) + A2(x)

]2

+ 2ie�c
[
A1(t − x

c
) + A2(x)

]


}
Ψ, (5.49)

where A1(t − x/c) is the vector potential of the quasimonochromatic EM wave and
A2(x) is the vector potential of the undulator magnetic field. For the linear undulator

Hz(x) = H cos
2π

l
x

the vector potential will be described by the equation

A2y(x) = lH

2π
sin

2π

l
x,

and correspondingly the EM wave will be assumed linearly polarized along the axis
OY

A1y(t − x/c) = A(t) sinω0(t − x/c).

To determine the multiphoton diffraction effect (5.49) will be solved again in the
eikonal approximation. In accordance with the latter we present the solution of (5.49)
in the form of (3.91). Then taking into account the condition (3.92) for the slowly
varying function f (x, t) we obtain the equation
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http://dx.doi.org/10.1007/978-3-319-26384-7_3
http://dx.doi.org/10.1007/978-3-319-26384-7_3
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+ iecp0y

�E0

[
A(t) sinω0(t − x

c
) + lH

2π
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l
x

]}
f (x, t). (5.50)

As is seen from (5.50) under the induced interaction in the undulator, traveling
waves propagating with the phase velocities vph = c/ (1 + λ/l) < c and vph =
c/ (1 − λ/l) > c arise. We will not repeat here the analogous interpretation of
the terms in (5.50) which correspond to interaction of the particle with the waves
propagating with the phase velocities vph � c that has been done for the above-
considered induced Compton process. Note only that coherent interaction in this
process occurswith the slowed interferencewave propagatingwith the phase velocity
vph = c/ (1 + λ/l) < c (third term on the right-hand side of (5.50)), in accordance
with the classical results for the induced interaction in the magnetic undulator (see
(5.29) and (5.31)).

The integration of (5.50) is simple if we pass to characteristic coordinates τ ′ =
t − x/v0x and η′ = t. Then, if one directs the particle velocity v0 at the angle ϑ0

with respect to the wave propagation direction (undulator axis) thus providing the
condition of coherency in the undulator for the free-particle velocity

v0 cosϑ0 = c

1 + λ
l

, (5.51)

the slowed traveling wave in this frame of coordinates becomes a motionless phase
lattice (over the coordinate τ ′) and diffraction scattering of the particle occurs. For
the amplitude of the scattered particle wave function we obtain

f (τ ′) = exp

⎧⎨
⎩− ie2lH
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η2∫
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⎫⎬
⎭ , (5.52)

where η1 and η2 are the moments of the particle entrance into the undulator and exit,
respectively.

Expanding the exponential in (5.52) into a series by Bessel functions with the
help of (3.91) for the final wave function of the scattered particle we will have
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√
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2E0 exp
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where the argument of the Bessel function is

α = e2lH

4π�E0

t2∫

t1

A(η′)dη′. (5.54)

http://dx.doi.org/10.1007/978-3-319-26384-7_3
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The expression for the particle wave function (5.53) shows that the initial plane
wave of the free particle as a result of the induced undulator effect is expanded
into the envelope of plane waves with all possible numbers of absorbed and emitted
photons—the inelastic diffraction scattering occurs. The energy and momentum of
the particle after the scattering are

E = E0 + s�ω0; px = p0 cosϑ0 +
(
1 + λ

l

)
s�ω0

c
;

py = const; s = 0,±1, . . . . (5.55)

According to the condition of eikonal approximation (3.92) s�ω0 � E0.
The probability of inelastic diffraction scattering in the undulator is

Ws = J2
s

⎡
⎣ e2lH

4π�E0
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⎤
⎦ . (5.56)

If the incident strong EM wave is monochromatic, the probability of this process is

Ws = J2
s

(
e2cE0lH

4π�ω0E0 t0

)
, (5.57)

where t0 = t2 − t1 is the time duration of the particle motion in the undulator, and
E0 is the amplitude of the electric field strength of stimulating wave.

For the actual values of the parameters the argument of the Bessel functionα � 1,
consequently the inelastic diffraction scattering in the undulator is essentially multi-
photon as in the Cherenkov andCompton processes. Themain diffractionmaximums
correspond to the most probable number of absorbed/radiated photons

s � ξ0
mc2

E0
elH

4π�
t0 (5.58)

with the energetic width Γ (s) � s1/3�ω0.
The scattering angles of s-photon diffraction in the undulator are

tan ϑs = s�ω0
(
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l

)
sin ϑ0

cp0 + s�ω0
(
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)
cosϑ0

; s = 0,±1, . . . . (5.59)

The main diffraction maximums are situated at the angles (taking into account the
condition of applied eikonal approximation)

ϑ±s = ±
(
1 + λ

l

)
s�ω0

cp0
sin ϑ0, (5.60)

with respect to the direction of the particle initial motion.

http://dx.doi.org/10.1007/978-3-319-26384-7_3
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5.5 Quantum Modulation of Particle Beam in Induced
Compton Process

Consider the effect of a particle beam quantummodulation at the interaction with the
counterpropagating waves of different frequencies and intensities smaller than the
threshold value for nonlinear Compton resonance or the critical value of the particle
“reflection” phenomenon (5.9) (since the quantum modulation of the particle state is
the result of coherent interaction with the periodic wave field, while at values larger
than the critical one the latter becomes a potential barrier for the particle).

Neglecting the spin interaction the quantum equation of motion (5.37) for the
plane waves of circular polarization
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may be presented in the form
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Ψ. (5.61)

If the initial velocity of the particle is directed along the axis of wave propagation
(p0⊥ = 0) the noncoherent interaction with the separate waves ∼A1 and A2 vanishes
and we have the equation

�
2c2ΔΨ − �

2 ∂2Ψ

∂t2
=
{

e2
(
A2
1 + A2

2

)+ m2c4

+ 2e2A1A2 cos (ω1 − ω2)

(
t − ω1 + ω2

ω1 − ω2

x

c

)}
Ψ, (5.62)

which describes the coherent interaction with the slowed interference wave of fre-
quencyω1−ω2 (corresponding to Compton resonance between the counterpropagat-
ing waves) and constant renormalization of the particle mass in the field because of
the intensity effect of strong waves ∼ A2

1 + A2
2. To determine the effect of quantum

modulation at the harmonics of the fundamental frequency ω1 −ω2 the problem will
be solved in the approximation of perturbation theory (besides, the wave intensities
should be smaller than the critical value in the induced Compton process). It is found
that, this renormalization in the field is rather small and since it vanishes after the
interaction as well, we will omit this term. Then one needs to take into account the
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quantum recoil which has been vanished by consideration of the diffraction effect
on the basis of eikonal-type wave function, when the second-order derivatives of the
wave function have been neglected. Hence, we will keep the second-order deriva-
tives in (5.61) and solve it within perturbation theory by the wave function. Then the
solution of (5.62) is sought by the series of harmonics of the fundamental frequency
ω1 − ω2:

Ψ (r, t) =
√

N0

2E0 exp
[

i

�
(p0x − E0t)

]

×
+∞∑

s=−∞
Ψs exp

[
is(ω1 − ω2)

(
t − ω1 + ω2

ω1 − ω2

x

c

)]
. (5.63)

(forN0 particles per unit volume) corresponding to s-photon absorption by the particle
from the wave of frequency ω2 and s-photon coherent radiation into the wave of
frequency ω1 and vice versa (induced Compton effect with the conservation of the
number of interacting photons). Substituting the wave function (5.63) into (5.62) we
obtain the following recurrent equation for the amplitudes Ψs:

[
4�

2s2ω1ω2 + 2E0s�
(
ω1 − ω2 − (ω1 + ω2)

v0
c

)]
Ψs

= −e2A1A2
[
Ψs−1 + Ψs+1

]
. (5.64)

Equation (5.64) will be solved in the approximation of perturbation theory by the
wave function:

|Ψ±1| � |Ψ0| ; |Ψ±2| � |Ψ±1| , . . . .

Thus, for the amplitude of the particles’ wave function corresponding to absorption
of s photons of frequency ω2 and induced radiation of s photons of frequency ω1 we
obtain

Ψs = (−1)s

s!
(

e2A1A2

2�E0

)s s∏
s1=1

1

ω1 − ω2 − (ω1 + ω2)
v0
c + 2s1

�ω1ω2
E0

, (5.65)

and for the inverse process (absorption of s photons of frequency ω1 and induced
radiation of s photons of frequency ω2):

Ψ−s = 1

s!
(

e2A1A2

2�E0

)s s∏
s1=1

1

ω1 − ω2 − (ω1 + ω2)
v0
c − 2s1

�ω1ω2
E0

. (5.66)
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Hence, for the total wave function of the particles after the interaction we have the
equation

Ψ (r, t) =
√

N0

2E0

{
1 +

∞∑
s=1

1

s!
(

e2A1A2

2�E0

)s

×
⎡
⎣

s∏
s1=1

(−1)s exp
[
is(ω1 − ω2)

(
t − ω1+ω2

ω1 −ω2

x
c

)]

ω1 − ω2 − (ω1 + ω2)
v0
c + 2s1

�ω1ω2
E0

+
s∏

s1=1

exp
[
−is(ω1 − ω2)

(
t − ω1+ω2

ω1−ω2

x
c

)]

ω1 − ω2 − (ω1 + ω2)
v0
c − 2s1

�ω1ω2
E0

⎤
⎦
⎫⎬
⎭ e

i
�

(p0x−E0t). (5.67)

Here, the dimensionless parameter of one-photon absorption–radiation is the small
parameter of applied perturbation theory

e2A1A2

2�E0
∣∣∣ω1 − ω2 − (ω1 + ω2)

v0
c ± 2�ω1ω2

E0

∣∣∣
� 1. (5.68)

Thedenominators in (5.67) becomezero at the fulfillment of exact resonance (with the
quantum recoil 2�ω1ω2/ E0) corresponding to the conservation law for the induced
Compton process

ω1 = ω2
1 + v0

c

1 − v0
c ± 2s �ω2

E0

. (5.69)

In this case, perturbation theory is not applicable and consideration must be given to
secular perturbation theory.

Corresponding to wave function (5.67) the current density of the particles after
the interaction will be expressed by the equation

j(t, x) = j0

{
1 + 2

∞∑
s=1

1

s!
(

e2A1A2

2�E0

)s

×
[

s∏
s1=1

(−1)s

ω1 − ω2 − (ω1 + ω2)
v0
c + 2s1

�ω1ω2
E0

+
s∏

s1=1

1

ω1 − ω2 − (ω1 + ω2)
v0
c − 2s1

�ω1ω2
E0

]

× cos

[
s(ω1 − ω2)

(
t − ω1 + ω2

ω1 − ω2

x

c

)]
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+ 2
∞∑

s=1

∞∑
s′=1

(−1)s

s!s′!
(

e2A1A2

2�E0

)s+s′

cos

[(
s + s′) (ω1 − ω2)

(
t − ω1 + ω2

ω1 − ω2

x

c

)]

×
s∏

s1=1

s′∏
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1

ω1 − ω2 − (ω1 + ω2)
v0
c + 2s1

�ω1ω2
E0

× 1

ω1 − ω2 − (ω1 + ω2)
v0
c − 2s2

�ω1ω2
E0

}
, (5.70)

where j0 = const is the initial current density of the particles.
We present in explicit form the expression of modulated current density of the

particles for the first three harmonics

j(t, x) = j0

{
1 + B

(
ω1,2

)
cos (ω1 − ω2)

(
t − ω1 + ω2

ω1 − ω2

x

c

)

+3

4
B2
(
ω1,2

)
cos 2 (ω1 − ω2)

(
t − ω1 + ω2

ω1 − ω2

x

c

)

+ 5

8
B3 (ω1,2

)
cos 3 (ω1 − ω2)

(
t − ω1 + ω2

ω1 − ω2

x

c

)
+ · · · , (5.71)

where the modulation depth at the fundamental frequency ω1 − ω2

B
(
ω1,2

) = ξ1ξ2

ξ2cr

(
ω1,2

) (5.72)

is represented by the parameter of critical field (5.9) in the induced Compton process.
Aswasmentioned above for quantummodulationof the particle state at the harmonics
of interference wave, the intensity of the latter should be smaller than the threshold
value of nonlinear resonance in the field or the critical value in the induced Compton
process. Equation (5.72) shows that this requirement (ξ1ξ2 < ξ2cr(ω1,2)) holds in
any case since in accordance with perturbation theory (condition (5.68)) ξ1ξ2 �
ξ2cr

(
ω1,2

)
. Note that for the representation of modulation depth in the form of (5.72)

it was assumed that the quantum recoil is smaller than the Compton resonance width
because of nonmonochromaticity of actual particle beams.

5.6 Quantum Modulation of Particle Beam in the Undulator

If in the induced Compton process the particles’ quantum modulation takes place at
the difference of frequencies (and harmonics) of two waves, the induced interaction
in the undulator leads to particles’ quantum modulation at the stimulating wave
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frequency and its harmonics. The latter is similar to Cherenkov modulation, but it is
important that in this case the modulation takes place in the vacuum.

The quantum equation of motion of the particle (5.49) in the undulator with
circular polarization of the magnetic field in the presence of a plane monochromatic
EM wave of circular polarization with vector potentials, respectively,

A2(x) =
{
0,− lH

2π
cos

2π

l
x,

lH

2π
sin

2π

l
x

}
,

A1(x, t) =
{
0, A0 cosω0

(
t − x

c

)
,−A0 sinω0

(
t − x

c

)}

is written as

�
2c2ΔΨ − �

2 ∂2Ψ

∂t2
=
{

e2
(

A2
0 + l2H2

4π2

)
+ m2c4 + 2ie�c

[
A1

(
t − x

c

)

+ A2 (x)
]

 − e2

lH

π
A0 cosω0

(
t −

(
1 + λ

l

)
x

c

)}
Ψ. (5.73)

The coherent interaction in this processwhich leads to particles’ quantummodulation
proceeds with the effective slowed wave ∼HA0 (last term on the right-hand side
of (5.73)). If the free-particle initial velocity is directed along the undulator axis
(p0⊥ = 0) the noncoherent interaction with the EM wave ∼A1 and magnetic field of
the undulator ∼A2 vanishes and we have the equation

�
2c2ΔΨ − �

2 ∂2Ψ

∂t2
=
{

e2
(

A2
0 + l2H2

4π2

)
+ m2c4

− e2
lH

π
A0 cosω0

(
t −

(
1 + λ

l

)
x

c

)}
Ψ, (5.74)

which describes the particle coherent interaction with the effective slowed wave in
the undulator and constant renormalization of the particle mass in the field due to
the intensity effect of strong wave ∼A2

0 and powerful magnetic field of the wiggler
∼H2l2.With the same justificationmade at the solution of this problem in the induced
Compton process these constant terms will be neglected and the solution of (5.74)
will be sought in the form

Ψ (r, t) =
√

N0

2E0 exp
[

i

�
(p0x − E0t)

]

×
+∞∑

s=−∞
Ψs exp

[
isω0

(
t −

(
1 + λ

l

)
x

c

)]
. (5.75)
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Substituting the wave function (5.75) into (5.74) we obtain the recurrent equation
for the amplitudes Ψs corresponding to s-photon induced absorption by the particle
from the effective slowed wave (s < 0) and induced undulator radiation (s > 0)

[
2πc�

lE0

(
1 + λ

2l

)
s2 + s

(
1 −

(
1 + λ

l

)
v0
c

)]
Ψs

= e2lHA0

4πE0�ω0

[
Ψs−1 + Ψs+1

]
, (5.76)

which will be solved in the approximation of perturbation theory by the wave func-
tion:

|Ψ±1| � |Ψ0| ; |Ψ±2| � |Ψ±1| , . . . .

For the amplitude of the particle wave function corresponding to s-photon induced
radiation we obtain

Ψs = 1

s!
(

e2lHA0

4πE0�ω0

)s s∏
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1

1 − (
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πc�

lE0

(
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2l

) , (5.77)

and for s-photon absorption

Ψ−s = (−1)s

s!
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) . (5.78)

Hence, for total wave function of the particles after the interaction we have

Ψ (r, t) =
√
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2E0
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(p0x−E0t). (5.79)

The small parameter of applied perturbation theory (dimensionless parameter of
induced one-photon absorption–radiation in the undulator) is

e2lHA0

4πE0�ω0

∣∣∣1 − (
1 + λ

l

) v0
c ± 2 πc�

lE0

(
1 + λ

2l

)∣∣∣
� 1. (5.80)
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The denominators in (5.79) become zero at the fulfillment of exact resonance (with
the quantum recoil) between the EM wave and undulator fields

λ

l
= c

v0
− 1 ± 2s

π�c2

lE0v0

(
1 + λ

2l

)
, (5.81)

for which the perturbation theory is not applicable and the consideration should be
made in the scope of secular perturbation theory.

With the help of the wave function (5.79) for the current density of the particles
after the interaction we obtain the equation
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. (5.82)

From (5.82) for the modulation at the fundamental frequency of the stimulating wave
we have

j1(t, x) = j0

{
1 − B(λ/l) cosω0

(
t −

(
1 + λ

l

)
x

c

)}
, (5.83)

where the modulation depth is

B(λ/l) = 2ξ0ξH
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The depth of quantum modulation can be represented by the parameter of critical
field (5.30) in the induced undulator process. As the resonance width because of
nonmonochromaticity of actual particle beams is rather larger than the quantum
recoil, then neglecting the latter, for the modulation depth we will have

B(λ/l) = ξ0ξH

ξ2cr(λ/l)
. (5.85)

In accordance with perturbation theory the modulation depth B(λ/l) � 1 (condition
(5.80)) and (5.85) shows that ξ0ξH < ξ2cr(λ/l), i.e., the effective field in the undu-
lator for the considered regime of coherent interaction holds under the threshold
of nonlinear resonance or critical value in the undulator (above which the quantum
modulation of particles, as well as the above-considered diffraction scattering, do
not proceed).

5.7 Nonlinear Acceleration of Ions by Counterpropagating
Laser Pulses: Generation of Ion/Nuclei Bunches
from Nanotargets

The state-of-the-art laser systems are capable of generating electromagnetic pulses
with intensities exceeding on several orders of the threshold of relativism for elec-
trons. For heavier particles, laser intensities, atwhich an ionwith atomicmass number
A and charge number Z becomes relativistic, are defined by the condition Ξ � 1,
where

Ξ = ZeEλ̄

Amuc2

is the relativistic dimensionless parameter of a wave–particle interaction (mu is the
atomic mass unit: mu � 1.66 × 10−24g) and represents the work of the field with
electric strength E on a wavelength λ (λ̄ = λ/2π) in the units of particle rest
energy. Laser intensities, at which relativistic effects become important for an ion
(Ξ = 1 -threshold value) can be estimated as:

Ir = Ξ 2A2Z−2 × 4.55 × 1024 W cm−2 (λ/µm)−2.

At first we consider nonlinear classical dynamics of an ion at the interaction in
vacuum with the two counterpropagating ultrastrong plane waves of carrier frequen-
cies ω1, ω2 (let ω1 > ω2), wavenumbers k1 = {ω1/c, 0, 0}, k2 = {−ω2/c, 0, 0}, and
slowly varying electric field amplitudes E1 (τ1) , E2 (τ2) (τ1 = t −x/c, τ2 = t +x/c).
Both waves are assumed to be linearly polarized along the OY direction:

E1,2 (x, t) = {
0, E1,2

(
τ1,2
)
cosω1,2τ1,2, 0

}
. (5.86)
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Dynamics of an ion in the resulting electric E = E1 + E2 and magnetic H = x̂ ×
(E1 − E2) fields is governed by the equations:

d�

dt
= eZ

Amuc

(
E + � × H

γ

)
,

dγ

dt
= eZ

Amuc

� · E
γ

. (5.87)

Here, we have introduced normalized momentum � = p/(Amuc) and energy
γ =

√
1 + �2 (Lorentz factor) of an ion in the field. When the ion initial transverse

momentum is zero, and the waves are turned on/off adiabatically at t → ∓∞, from
(5.87) for transverse momentum in the field one can obtain (coordinate z is cyclic,
so Πz = const ≡ 0):

Πy (Ξ1, Ξ2) = Ξ1 (τ1) sinω1τ1 + Ξ2 (τ2) sinω2τ2. (5.88)

With the help of (5.88), one can obtain equations for longitudinal momentum and
energy in the field, which include four nonlinear interaction terms: two of them
are proportional to Ξ 2

1,2

(
τ1,2
)
sin 2ω1,2τ1,2 and describe interaction with the sepa-

rate waves that cannot provide real energy change for ion. The term proportional
to Ξ1 (τ1) Ξ2 (τ2) sin (ω1τ1 + ω2τ2) describes interaction with the fast interference
wave making no contribution to the real energy exchange too. This term is respon-
sible for particle–antiparticle pair production from Dirac vacuum. The resonant
interaction of the ion for acceleration is governed by the slowed interference wave
Ξ1 (τ1) Ξ2 (τ2) sin ω̃

(
t − x/cβph

)
, where ω̃ = ω1 − ω2 andβph = ω̃/ (ω1 + ω2) < 1

are the frequency and normalized phase velocity of the slowed wave. Hence, keeping
only this resonant term, one can obtain the following integral of motion in average:

γ − βphΠx � γ0 − βphΠ0x. (5.89)

From (5.89), (5.88), and dispersion relation γ =
√
1 + �2 one can see that for the

certain values of Ξ1,2 (which we call critical: Ξcr) the following relation for an ion
average transverse momentum in the field may be satisfied:

√
Π2

y (Ξ1, Ξ2) > γ0

∣∣βph − β0x

∣∣
√
1 − β2

ph

, (5.90)

(β0x = v0x/c, where v0x is the initial longitudinal volocity of the ion) at which the
slowed interferencewave becomes a potential barrier causing ion reflection from such
moving wave barrier—accelerating or decelerating the ion if Ξeff > Ξcr . The latter
occurs since atΞeff = Ξcr the particle longitudinal velocity in the field becomes equal
to phase velocity of the effective slowed wave, irrespective of its initial value v0x:

vx(t, Ξ1,2)
∣∣
x=x(t) = vph ≡ c

|ω1 − ω2|
ω1 + ω2

, (5.91)
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which is the classical condition (without quantum recoil) of induced Compton reso-
nance with counterpropagating waves. Since vx(t, Ξ1,2) is determined by the expres-
sion depended on the intensities of strong waves (see, Chap. 2 for induced Cherenkov
process) and Compton resonance becomes accessible in the field due to the waves’
intensities effect (initially the particle is off resonance), then this resonance is of
nonlinear and threshold nature. Hence, in this critical point nonlinear Compton reso-
nance occurs, in the result of which the ion volocity becomes greater (induced inverse
Compton effect at v0x < vph) or smaller (induced direct Compton effect v0x > vph)
than the wave phase volocity and in both cases ion leaves the wave. So, atΞeff > Ξcr

the ion acceleration or deceleration in the result of the reflection from the wave
barrier occurs. Because of impact character of the particle–barrier interaction, the
energy of the reflected particle depends neither on the waves’ fields magnitudes nor
the interaction length (only the threshold condition: Ξeff > Ξcr must be satisfied).

After the interaction (Ξ1,2 = 0) for the reflected ion final energy we have:

γf � γ0 + 2γ0βph
βph − β0x

1 − β2
ph

. (5.92)

Formula (5.92) proves the aforementioned feature of considering phenomenon, i.e.,
ion acceleration effect does not depend on the interaction parameters. Namely, this
feature of reflection phenomenon is used here for generation of monoenergetic and
low emittance ions/nuclei bunches of ultrashort durations from the nanolayers-solid-
plasma targets by femtosecond laser pulses of ultrarelativistic intensities.

Then for actual strongly nonplane and supershort ultrarelativistic laser pulses of
certain configurations the problem is solved with the help of PIC simulations. Here,
we represent the results of the 2D3V PIC simulations of counterpropagating waves
interaction with nanolayers. We have used the code XOOPIC, which is a relativistic
code based on PIC method. Then we consider fully ionized carbon 12C6+ target. The
simulation box size is 40λ1 × 20λ1 in xy plane. Number of cells are 4000 × 200.
The total number of macroparticles is about 2.4 × 105. Target is assumed to be
fully ionized. This is justified since the intensity for full ionization of carbon is about
1019W/cm2,whileweuse in simulation intensities at least of fiveorders ofmagnitude
larger. So the target will become fully ionized well before the arrival of the pulses’
peaks. Electrons and ions are assumed to be cold in the target, Te = Ti = 0. The laser
pulses have profiles sin2

(
πt/T1,2

)
with pulse durations T1 = 5λ1/c, T2 = 3λ2/c

and Gaussian transverse profiles: exp(−r2/w2
1,2), with the waists w1 = 6λ1 and

w2 = 3λ2. The carrier-envelope phase of the lasers is set to zero, so that the electric
fields’ maximums are at the pulses’ centers. The first laser (ω1) is introduced at the
left boundary and propagates along the x-axis from left to right, is focused at the
target layer. The second laser (ω2) is introduced at the right boundary and is also
focused at the target layer. We consider case λ1 = λ2/2 when λ2 = 800 nm, which
for the phase velocity of the slowed wave gives: βph = 1/3 and according to (5.92)
for reflected particle normalized kinetic energy gives: γf − 1 ≈ 0.25. In numerical
simulations, for laser intensities it is assumed: Ξ1 = 0.6, Ξ2 = 0.3, at which the

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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Fig. 5.2 The final-scaled
kinetic energy versus the
initial position of the ion x0
in units of wavelength λ1.
The arrow shows position of
the target layer
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intensity of effective slowed wave is above the critical point. Before PIC simulations
we have cleared up the role of initial conditions. For this goal, in Fig. 5.2 we display
the role of initial conditions: the final energy versus the initial position x0 of an ion for
plane waves, at v0 = 0. In case of waves adiabatic turn on/off, the energy of reflected
particles should be independent on the initial position x0. However, for short laser
pulses depending on the initial position of an ion, reflection will take place with
various velocities, since before overlapping of laser pulses (for the formation of a
slowed interference wave in vacuum responsible for reflection phenomenon) due to
short rise time of laser profiles, ions will acquire various velocities depending on
its initial positions. As is seen from Fig. 5.2, there are plateaus where one would
have reflection independent on the ion initial position. Hence, the arrow in Fig. 5.2
(which corresponds to relative position of the target layer) shows the position of
such plateau. Numerical results show that this model is almost accurate in predicting
the final energies of reflected particles: γf − 1 ≈ 0.25. Thus, taking into account
this result, for PIC simulations the target layer is placed at the distance of 15.2λ1

from the left boundary, and the first laser is introduced with time delay to start pulse:
tdel = 10λ1/c for economy of computational time. The simulation box size in the
propagation direction have been taken to be 40λ1. Without time delay for the box
size, one should take 50λ1 selecting the position of a nanolayer at the distance 25.2λ1

from the left boundary (with the additional 10λ1 one would describe only the free
propagation of the first laser beam, which is eliminated choosing the appropriate
time delay).

The results of PIC simulations for carbon foil of density ne = 80nc and 4 nm
thickness are shown in Figs. 5.3, 5.4, and 5.5. Here as a measure of density we take
critical plasma density nc = 1.74×1021 cm−3 calculated for 800 nm laser. Note that
electrons are escaped from the target before the arrival of the pulses’ peaks. After the
time period 21T2 the ions are already free. The final kinetic energy Ek and angular
φ = tan−1

(
Πx/Πy

)
distributions of accelerated ions versus the transverse position,

are shown in Figs. 5.3 and 5.4, respectively. The number density of ions is displayed
in Fig. 5.5.
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Fig. 5.3 (Color online) The
final kinetic energy
distribution of carbon ions
versus the transverse
position y
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Fig. 5.4 (Color online) The
angular distribution of
accelerated carbon ions
versus the transverse
position y
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Fig. 5.5 (Color online)
Density distribution for
carbon ions at instant 21T2
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To estimate emittances of the ions bunchwewill consider the effective area limited
to the central zone between 3.5 µm < y < 4.5 µm. Estimations for transverse (εt)
and longitudinal (εl) emittances of the ions bunch show that for carbon ions εt <

0.1π mm mrad and εl < 10−7 eV s. These results are on several orders of magnitude
smaller than their counterparts in conventional ion accelerators. The corresponding
energy spreads are: δE/E ∼ 10−2.
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Thus because of impact feature of the particle–wave–barrier interaction at the
extremely short lengths, the generation of fast ions/nuclei bunches based on the
nonlinear threshold phenomenon allows to generate high brightness particle bunches
of solid densities fromnonrelativistic to relativistic energies due to variation of lasers’
frequencies ratio in the wide range.
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Chapter 6
Induced Nonstationary Transition Process

Abstract Howwill the nonstationarity of amedium reflect on the process of charged
particle interaction with strong laser radiation? In the current laser fields of ultrashort
pulse duration and relativistic intensities, any medium turns instantaneously (on a
time span much smaller than one wave cycle) into a plasma, that is, abrupt change of
the medium properties, particularly the dielectric permittivity, occurs in time. On the
other hand, with the abrupt change in time of the dielectric permittivity of a medium,
charged particle radiation occurs similar to transition radiation on the boundary of
two media with different dielectric permittivity. In the presence of an external EM
radiation field, this nonstationary transition process acquires induced character and
the inverse process of radiation absorption by a charged particle is actualized, partic-
ularly in plasmas where in the stationary states the radiation or absorption of quanta
of a transverse EM radiation field (monochromatic radiation such as a laser one)
by a free particle cannot proceed. With the abrupt change in time of the medium
dielectric permittivity, the production of hard quanta of relativistic energies from
the laser radiation is possible and, consequently, electron–positron pair creation in
nonstationary plasma of common densities is available. Meanwhile, for electron–
positron pair production in a stationary plasma (a medium should be plasmalike for
this process) by a γ—quantum, a superdense plasma with electron densities greater
than 1034 cm−3 is necessary. Such superdense matter exists in astrophysical objects
(in the core of neutron stars—pulsars), leading to special interest in the processes
of electron–positron pair production and annihilation in superdense plasma. On the
other hand, the matter in the astrophysical objects may also be in a strongly non-
stationary state. Hence, it is important to study the induced nonstationary transition
process in the strong EM radiation field in a medium with an arbitrary dielectric
permittivity changing abruptly in time.

© Springer International Publishing Switzerland 2016
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6.1 Effect of Abrupt Temporal Variation of Dielectric
Permittivity of a Medium

In the investigation of a charged particle interaction with strong EM radiation in a
medium, overall it was supposed that the electromagnetic properties of the latter,
i.e., the dielectric (ε0) and magnetic (μ0) permittivities and, consequently, refractive
index n0, are not changed in the field and the medium being initially in the stationary
state maintains its electromagnetic characteristics n0 = √

ε0μ0 = const.
Consider now how the nonstationarity of a medium will reflect on the process

of charged particle interaction with strong EM radiation. From the physical point
of view, it is clear that the effects that arise here because of the nonstationarity of a
medium will be essential at the abrupt temporal change of the dielectric permittivity
(as it is generally assumed the magnetic permittivity of the medium will be taken
as μ0 = 1). Under the abrupt change of ε here, we mean its change at the time
Δt � 2π/ω, where ω is the characteristic frequency because of the nonstationarity
of a medium (then radiation frequency by a charged particle in this process). Such
abrupt change of the dielectric permittivity occurs with the propagation of ultrashort
laser pulses of relativistic intensities in a medium when the tunneling ionization of
atoms on a time span smaller than a few femtoseconds/attoseconds occurs and the
medium instantaneously becomes a plasma.

Let a charged particle with constant initial velocity v0 move in a spatially homo-
geneous and isotropic medium whose dielectric permittivity ε changes abruptly at
the time from a value ε1 to ε2

ε =
⎧⎨
⎩

ε1, t < 0,

ε2, t > 0,
(6.1)

and let a strong EM wave propagate in this medium. To determine the electromag-
netic field in that type of nonstationary medium, one should solve the macroscopic
Maxwell equations

rotH (r, t) = 1

c

∂D (r, t)

∂t
+ 4π

c
J (r, t) , (6.2)

rotE (r, t) = −1

c

∂B (r, t)

∂t
(6.3)

for t < 0 and for t > 0, then the obtained solutions should be laced at the instant of
time t = 0. At the discontinuity of the dielectric permittivity (in general, properties
of the medium) only the derivatives of the physical quantities can have large values.
Hence, the conditions of the lacing can be obtained by the integration of theMaxwell
equations (6.2) and (6.3) over t in the arbitrary small region including the instant of
time t = 0 at which the stepwise discontinuity of the dielectric permittivity (6.1)
occurs. The latter means that the integration should be made between the moments
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t1 = −Δt and t2 = Δt and then one should take the limit Δt → 0. Taking into
account that the quantities rotH, rotE, and J are finite, after this procedure, we obtain

D (r, t)|t=−0 = D (r, t)|t=+0 ,

B (r, t)|t=−0 = B (r, t)|t=+0 .

These equations can be written in terms of electric and magnetic field strengths with
the help of the constitutive equations

D (r, t) = ε (t) E (r, t) ; B (r, t) = H (r, t) ,

which yield to “boundary conditions”

ε1 E (r, t)|t=−0 = ε2 E (r, t)|t=+0 , (6.4)

H (r, t)|t=−0 = H (r, t)|t=+0 . (6.5)

Under the conditions (6.4) and (6.5) the charged particle radiation will occur in
the nonstationary medium similar to transition radiation on the boundary of two
media with different dielectric permittivity. This spontaneous radiation field can be
obtained from the Maxwell equations (6.2), (6.3) with the corresponding current
density of a charged particle J (r, t) under the conditions (6.4) and (6.5). However,
we will not describe here the spontaneous nonstationary transition radiation effect
and refer the reader interested in this process to the original work presented in the
bibliography of this chapter. We will consider the induced nonstationary transition
process in the external EM wave field. For the latter one needs also to clear up the
question of how the change of the dielectric permittivity (6.1) of the medium affects
the external monochromatic wave.

If a plane monochromatic wave of frequencyω0, wave vector k0, and electric field
amplitude E0 propagates in a medium with the mentioned properties, then at t < 0
when ε = ε1

E (r, t) = E0ei(ω0t−k0r) + c.c.; t < 0 (6.6)

and at t > 0 when ε = ε2 there are two waves—transmitted and reflected:

E (r, t) = E1ei(ω1t−k1r) + E2ei(−ω2t−k2r) + c.c.; t > 0. (6.7)

Here ω1, k1, E1 and ω2, k2, E2 are the frequencies, wave vectors, and amplitudes
of the electric fields of the transmitted and reflected waves, respectively. Since the
medium is assumed to be spatially homogeneous, for the wave vectors the condition
takes place:

k0 = k1 = k2 = const, (6.8)
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and the nonstationarity of the medium leads to a change of frequency. From the
condition for the wave vectors (6.8) follows the relations between the frequencies of
the incident, transmitted, and reflected waves:

ω0
√

ε1 = ω1
√

ε2 = ω2
√

ε2. (6.9)

Let the wave propagate along the axis O X with the vector of electric field ampli-
tude E0 directed along the OY axis. Then using conditions (6.4) and (6.5) and
Maxwell equations (6.2) and (6.3) for the field (6.6), (6.7) in the case of the wave
linear polarization, for the amplitudes of the electric field of the transmitted and
reflected waves, we obtain

E1 =
√

ε1(
√

ε1 + √
ε2)

2ε2
E0, (6.10)

E2 =
√

ε1(
√

ε1 − √
ε2)

2ε2
E0. (6.11)

Equations (6.10) and (6.11) with the analogous equations for the magnetic strengths,
and (6.8), (6.9) determine the electromagnetic fields of the transmitted and reflected
waves at the propagation of a plane monochromatic EM wave in a medium the
dielectric permittivity of which changes abruptly at the time.

6.2 Classical Description of Induced Nonstationary
Transition Process

As mentioned above in the presence of an external EM radiation field, the nonsta-
tionary transition process acquires induced character and the interaction of a charged
particle with the incident plane monochromatic wave in a medium will proceed with
the actual energy change and the acceleration of the particles or induced coherent
radiation will take place. It is of special interest, in particular, in plasmas where
for the stationary states the real energy change between a charged particle and a
transverse EMwave cannot proceed because of the violation of the conservation law
of energy-momentum for the absorption/emission of quanta in the field of a plane
monochromatic wave by a free charged particle. Hence, we will study the classical
and quantum dynamics of the induced nonstationary transition process in the external
wave field on the basis of relativistic equations of motion for a charged particle.

Consider first the classical dynamics of the particle–wave interaction in a medium
with the abrupt temporal change of the dielectric permittivity. Then, the initial mono-
chromatic wave is transformed into a continuous wave spectrum (in general, finite
since the change of ε actually occurs in finite time). This spectrum of frequencies
(ω) depends on the time during which the electromagnetic properties of the medium
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are changed. If the characteristic time τ � 2π/ω, then the abrupt temporal change
of the dielectric permittivity can be described by the stepwise function ε (6.1).

With the stepwise discontinuity of the dielectric permittivity (6.1), the initial
monochromatic wave (of linear polarization) is transformed into a spectrum that can
be found via Fourier transformation over t

Ey (x,t) =
∞∫

−∞
Ey (x,ω) eiωt dω. (6.12)

Then for the fields (6.6) and (6.7), the Fourier transform Ey (x,ω) may be presented
in the form

Ey (x,ω) = e−ik0x

2π

⎧⎨
⎩E0

0∫

−∞
eεt ei(ω0−ω)t dt + E1

∞∫

0

e−εt ei(ω1−ω)t dt

+ E2

∞∫

0

e−εt e−i(ω1+ω)t dt

⎫
⎬
⎭+ eik0x

2π

⎧
⎨
⎩E0

0∫

−∞
eεt e−i(ω0+ω)t dt

+ E1

∞∫

0

e−εt e−i(ω1+ω)t dt + E2

∞∫

0

e−εt ei(ω1−ω)t dt

⎫
⎬
⎭ , (6.13)

where we have introduced an arbitrarily small damping factor ε → 0 to switch
on/off adiabatically the wave at t = ∓∞. After the integration in (6.13) for the
Fourier transform of the field, we obtain

Ey (x, ω) = e−ik0x

2π i

{
E2

ω + ω1 − iε
+ E1

ω − ω1 − iε
− E0

ω − ω0 + iε

}

+ eik0x

2π i

{
E2

ω − ω1 − iε
+ E1

ω + ω1 − iε
− E0

ω + ω0 + iε

}
. (6.14)

The infinitesimal quantity iε in the poles of (6.14) indicates the path that should
be chosen at the integration over ω (at the inverse Fourier transformation as well).
Taking into account (6.9), (6.10), and (6.11) for the Ey (x,ω), we will have

Ey (x,ω) = E(ω)e−ik0x − E(−ω)eik0x , (6.15)

where

E(ω) = E0

2π i

(
ε1

ε2
− 1

)
ω2

(ω − ω0)
(
ω2 − ω2

0
ε1
ε2

) . (6.16)
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Herewe have omitted the infinitesimal iε bearing inmind the role of the poles bypass.
The analogous equations can be obtained for the magnetic field strength:

Hz (x, ω) = H(ω)e−ik0x − H(−ω)eik0x , (6.17)

H(ω) =
√

ε1ω0

ω
E(ω).

Now the problem of the particle–wave interaction in a nonstationary medium
with the abrupt temporal change of the dielectric permittivity reduces to the parti-
cle interaction with the EM field possesing the spectral components (6.15), (6.17).
Consequently, the relativistic classical equations of motion of the particle take the
form

dpx

dt
= e

c
vy

∞∫

−∞

[
H(ω)e−ik0x − H(−ω)eik0x

]
eiωt dω, (6.18)

dpy

dt
= e

∞∫

−∞

[
E(ω)e−ik0x − E(−ω)eik0x

]
eiωt dω

− e

c
vx

∞∫

−∞

[
H(ω)e−ik0x − H(−ω)eik0x

]
eiωt dω, (6.19)

dpz

dt
= 0. (6.20)

The energy change of the particle is given by the equation

dE
dt

= evy

∞∫

−∞

[
E(ω)e−ik0x − E(−ω)eik0x

]
eiωt dω. (6.21)

The equations of motion (6.18)–(6.20) can be presented in the form

dpx

dt
= −i

e

c
k0

∞∫

−∞
vy F(ω, x, t)dω, (6.22)

dpy

dt
= i

e

c

∞∫

−∞
(k0vx − ω) F(ω, x, t)dω, (6.23)
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dpz

dt
= 0, (6.24)

where the kernel in the integrals (6.22), (6.23)

F(ω, x, t) = A (ω) exp [i (ωt − k0x)] − A∗ (ω) exp [−i (ωt − k0x)] ,

and

A (ω) = cE0

2π

(
ε1

ε2
− 1

)
ω

(ω − ω0)
(
ω2 − ω2

0
ε1
ε2

) (6.25)

is the spectral amplitude of the vector potential of the field (6.12).
We shall solve the set of equations (6.22)–(6.24) in the approximation of the

perturbation theory by the field. The parameter of the perturbation theory is ξ0 =
eE0/mcω0 � 1. As long as the particle motion along the z axis remains free, we can
choose the initial velocity of the particle in the xy plane: v0 = {v0 cos θ, v0 sin θ, 0}.
According to perturbation theory

p = p0 + Δp; |Δp| � |p0| ,

and from the (6.22), (6.23) in first-order approximation by ξ0 (keeping only the
uniform part of motion x(t) = x0 + v0x t on the right-hand side of the equations) for
the changes of the particle momentum in the field Δp we will obtain the following
equations:

dΔpx

dt
= −i

e

c
k0

∞∫

−∞
v0y F(ω, x0 + v0x t, t)dω, (6.26)

dΔpy

dt
= i

e

c

∞∫

−∞
(k0v0x − ω) F(ω, x0 + v0x t, t)dω. (6.27)

Integrating (6.26) and (6.27) over t from −∞ to +∞, we obtain in first-order
approximation by ξ0 the following expressions for the particle momentum change
after the interaction:

Δpx = −i
2πek0

c
v0y

∞∫

−∞

[
A (ω) e−ik0x0

−A∗ (ω) eik0x0
]
δ (ω − k0v0x ) dω, (6.28)



168 6 Induced Nonstationary Transition Process

Δpy = i
2πe

c

∞∫

−∞
(k0v0x − ω)

[
A (ω) e−ik0x0

− A∗ (ω) eik0x0
]
δ (ω − k0v0x ) dω. (6.29)

The δ-function in these expressions defines the condition of induced radiation/
absorption by a free charged particle in the field of a transverse monochromatic
EM wave under the nonstationary transition process:

ω − k0v0 = 0. (6.30)

Integrating in the same way (6.21) and taking into account (6.30) for the particle
momentum and energy changes after the interaction,we obtain the following ultimate
formulas:

� py = �pz = 0, �px = �E
v0 cos θ

, (6.31)

�E = 2mc2ξ0
v30
c3

(ε1 − ε2)
sin θ cos2 θ

(
1 − √

ε1
v0
c cos θ

) (
1 − ε2

v20
c2 cos

2 θ
)

× sin

(
ω0

√
ε1
v0 cos θ

c
t0

)
. (6.32)

Here t0 is the instant of time corresponding to the initial phase of the particle in
the external EM wave. Note that (6.32) besides the induced nonstationary transition
process describes generally the induced Cherenkov effect as well (see the denomi-
nator) if a medium initially (at t < 0) was dielectriclike (in principle, it includes also
the Cherenkov effect at t > 0 if ε2 > 1, but for actual physical cases we assume that
the stepwise discontinuity of ε (6.1) may be realistic at the abrupt transformation of
a dielectric-like medium into a plasma for which ε2 < 1 and the induced Cherenkov
effect is excluded).

As is seen from (6.32) depending on the initial phase

Φ0 = ω0t0
√

ε1 (v0/c) cos θ

the particle is either accelerated after the interaction or is decelerated radiating coher-
ently into the wave. This real energy exchange is due to the direct and inverse induced
nonstationary transition effect. In the case of a particle beam, various particles situ-
ated initially in the diverse phases Φ0 will acquire or lose different energies in the
field and the particles’ free drift after the interaction will result in bunching of an
initially homogeneous particle beam.



6.3 Quantum Description of Multiphoton Interaction 169

6.3 Quantum Description of Multiphoton Interaction

Consider now the quantum dynamics of the induced nonstationary transition process.
Quantitative analysis of (6.31) and (6.32) shows that the classical energy exchange
of a particle with strong EM radiation in a nonstationary medium as a result of the
induced nonstationary transition effect corresponds to absorption and emission of
a large number of photons. On the basis of the quantum theory such multiphoton
process can be described by the quasiclassical-type wave function neglecting, in
fact, the quantum recoil at the absorption/emission of photons by the particle. The
latter corresponds to a slowly varying wave function for which the derivatives of the
second order of the particle wave function can be neglected with respect to the first
order ones that have been made in the consideration of the multiphoton processes
in the previous chapters. The role of the particle spin is inessential here, hence by
neglecting the spin interaction the Dirac equation in quadratic form is written as the
Klein–Gordon equation (3.30) for the particle in the specified EM field. Assuming
the same geometry as in Sect. 6.1, the latter takes the form

− �
2 ∂2Ψ

∂t2
= [−�

2c2	2 + 2iec� 	y Ay(x, t) + e2 A2
y(x, t) + m2c4

]
Ψ, (6.33)

where

Ay(x, t) =
∞∫

−∞

[
A(ω)e−ik0x + A(−ω)eik0x

]
eiωt dω (6.34)

is the vector potential of the field (6.12) expressed via the spectral amplitude A(ω)

(6.25).
Equation (6.33) will be solved in the mentioned approximation by the particle

wave function

Ψ (r, t) =
√

N0

2E0 f (x, t) exp

[
i

�
(p0r−E0t)

]
, (6.35)

where f (x, t) is a slowly varying function with respect to the free-particle wave
function (see Sect. 3.5). Taking into account the conditions (3.92) and (6.35) from
(6.33) for f (x, t), we will obtain the differential equation of the first order:

∂ f

∂t
+ v0x

∂ f

∂x
= i

2�E0
[
2ecp0y Ay(x, t) + e2 A2(x, t)

]
f (x, t). (6.36)

The conditions (3.92) correspond to a small change of the momentum and energy
of the electron in the field compared with the initial values �p � p0 and �E � E0,
that is, the approximation made in the classical consideration, where the intensity
of the EM wave is restricted by the condition ξ0 � 1. Then for actual values of
parameters p0y/mc 
 ξ0 and the last term ∼ A2 in (6.36) will be neglected.

http://dx.doi.org/10.1007/978-3-319-26384-7_3
http://dx.doi.org/10.1007/978-3-319-26384-7_3
http://dx.doi.org/10.1007/978-3-319-26384-7_3
http://dx.doi.org/10.1007/978-3-319-26384-7_3
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Passing from x, t to characteristic coordinates τ ′ = t − x/v0x , η′ = t and inte-
grating (6.36), we obtain

f
(
τ ′, η′) = exp

⎧⎨
⎩

iev0y

�c

η′∫

−∞
Ay(v0x

(
η′′ − τ ′) , η′′)dη′′

⎫⎬
⎭ . (6.37)

Then after the interaction (η′ → +∞) taking into account (6.34), we obtain

f (τ ) = exp

{
i4πev0y

�c
A
(
ω0

√
ε1
v0x

c

)
cos

(
ω0

√
ε1
v0x

c
τ
)}

. (6.38)

The spectral amplitude in (6.38) is determined by (6.25):

A
(
ω0

√
ε1
v0x

c

)
= E0

2πω2
0

ε1 − ε2√
ε1

v0 cos θ
(√

ε1
v0
c cos θ − 1

) (
ε2

v20
c2 cos

2 θ − 1
) . (6.39)

Returning to coordinates x, t and expanding the exponential (6.38) into a series
by the Bessel functions and taking into account (6.39) for the total wave function
(6.35) we will have

Ψ (r, t) =
√

N0

2E0 exp
[

i

�
p0y y

] +∞∑
s=−∞

i s Js (α)

× exp

{
i

�

[
p0x − s�

√
ε1

ω0

c

]
x − i

�

[
E0 − s�ω0

√
ε1
v0
c
cos θ

]
t

}
, (6.40)

where the argument of the Bessel function is

α = 2ξ0
mv20
�ω0

ε1 − ε2√
ε1

sin θ cos θ
(
1 − √

ε1
v0
c cos θ

) (
1 − ε2

v20
c2 cos

2 θ
) . (6.41)

As is seen from (6.40), due to the induced nonstationary transition effect, the
particle absorbs or emits s photons as a result of which the momentum and energy
after the interaction are changed as follows:

�px = s�
ω0

c

√
ε1, �py = 0, �E = s�ω0

√
ε1
v0
c
cos θ. (6.42)

The probability of the induced s-photon process is

Ws = J 2
s

⎛
⎝ 2ξ0mv20 (ε1 − ε2) sin θ cos θ

�ω0
√

ε1
(
1 − √

ε1
v0
c cos θ

) (
1 − ε2

v20
c2 cos

2 θ
)
⎞
⎠ . (6.43)
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The comparison of the expression for α with the amplitude of the classical change
of the particle momentum (�px )max (6.31) and energy (�E)max (6.32) shows that

α = (�px )max

�k0
, (6.44)

in accordance with the correspondence principle (s ∼ α 
 1).
At the small value of α or small number of photons s when the interaction has

entirely quantum character it is necessary to take into account the quantum recoil
as well. It is especially important in this process, because at the abrupt temporal
variation of the dielectric permittivity, the hard quanta in the spectrum of the initial
radiation arise.Wewill solve for this purpose (6.33) keeping also the derivatives of the
second order of the particlewave function for a single-photon absorption or emission.
Correspondingly, in first-order approximation of the perturbation theory from (6.33)
we have the following equation for the particle wave function at the single-photon
interaction with the field (6.35) in the nonstationary transition process:

∂2Ψ1

∂x2
− 1

c2
∂2Ψ1

∂t2
− 1

�2c2
(
m2c4 + c2 p2

0y

)
Ψ1

= −2
ep0y

c�2

[
Ay (t) e−ik0x + A∗

y (t) eik0x
]
Ψ0, (6.45)

where

Ψ0 (r, t) =
√

N0

2E0 exp
[

i

�
(p0r − E0t)

]
(6.46)

is the initial wave function of the particle (normalized on N0 particles per unit vol-
ume). The solution of (6.45) is sought in the form

Ψ1 (r, t) = [
Φ1(t)e

−ik0x + Φ2(t)e
ik0x
]
exp

[
i

�
(p0r − E0t)

]
. (6.47)

Substituting (6.47) in (6.45) for the functions Φ1(t) and Φ2(t), we obtain the equa-
tions:

d2Φ1

dt2
− 2i

E0
�

dΦ1

dt
− c2k0

(
2

p0x

�
− k0

)
Φ1 = 2

√
N0

E0
ecp0y

�2
Ay (t) , (6.48)

d2Φ2

dt2
− 2i

E0
�

dΦ2

dt
+ c2k0

(
2

p0x

�
+ k0

)
Φ2 = 2

√
N0

E0
ecp0y

�2
A∗

y (t) . (6.49)
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The solution of (6.48) is

Φ1(t) = −2i

√
N0

E0
ecp0y

�2 (Ω1 − Ω2)

×
⎡
⎣eiΩ1t

t∫

−∞
e−iΩ1t ′

Ay
(
t ′) dt ′ − eiΩ2t

t∫

−∞
e−iΩ2t ′

Ay
(
t ′) dt ′

⎤
⎦ , (6.50)

where the characteristic frequencies Ω1 and Ω2 are given by the expressions

Ω1,2 = E0
�

∓
[(E0

�
− ω0

√
ε1
v0x

c

)2

+ ω2
0ε1

(
1 − v20x

c2

)]1/2

(6.51)

with the signs “∓” correspondingly.
Passing from Ay (t) to the Fourier component of the field, we obtain for Φ1(t)

after the interaction (t → +∞)

Φ1(t) = −4i

√
N0

E0
πecp0y

�2 (Ω1 − Ω2)

[
A (Ω1) eiΩ1t − A (Ω2) eiΩ2t

]
, (6.52)

where the spectral amplitudes of the wave vector potential A (Ω1) and A (Ω2) are
determined by (6.25).

Solving (6.49) in an analogous way for the function Φ2(t), we obtain

Φ2(t) = −4i

√
N0

E0
πecp0y

�2
(
Ω ′

1 − Ω ′
2

)
[

A∗ (−Ω ′
1

)
eiΩ ′

1t − A∗ (−Ω ′
2

)
eiΩ ′

2t
]
, (6.53)

with the characteristic frequencies

Ω ′
1,2 = E0

�
∓
[(E0

�
+ ω0

√
ε1
v0x

c

)2

+ ω2
0ε1

(
1 − v20x

c2

)]1/2

. (6.54)

Equations (6.51) and (6.54) correspond to the energy-momentum conservation
law for a particle in the induced nonstationary transition process: the particle can
emit only the photons with frequencies Ω1,2 and absorb photons with frequencies
Ω ′

1,2. As long as E0/� 
 ω0
√

ε1v0x/c for the frequencies of a strong coherent
radiation field, we expand the square roots in (6.51), (6.54) in a series and retain only
the small terms of first order. We then obtain for the radiation frequencies:

Ω1 
 ω0
√

ε1
v0x

c
− ε1

�ω2
0

2E0

(
1 − v20x

c2

)
,
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Ω2 
 2
E0
�

− ω0
√

ε1
v0x

c
+ ε1

�ω2
0

2E0

(
1 − v20x

c2

)
(6.55)

and for the absorption frequencies:

Ω ′
1 
 −ω0

√
ε1
v0x

c
− ε1

�ω2
0

2E0

(
1 − v20x

c2

)
,

Ω ′
2 
 2

E0
�

+ ω0
√

ε1
v0x

c
+ ε1

�ω2
0

2E0

(
1 − v20x

c2

)
. (6.56)

These expressions show that the emission of a photon with frequency Ω2 and
absorption with frequency Ω ′

2 has a clearly quantum character, and its probability,
as is seen from (6.25), depends on the change of the dielectric permittivity of the
medium ε1 − ε2. We therefore consider two cases: ε1/ε2 � 1 and ε1/ε2 
 1.

If ε1/ε2 � 1 we get from (6.25)

A (Ω2) 
 A

(
2
E0
�

)
� A (Ω1) 
 A

(
ω0

√
ε1
v0x

c

)
, (6.57)

so that in this case we can neglect in (6.52) and (6.53) the pure quantum process of
emission and absorption of hard quanta Ω2 
 2E0/�. Then for the amplitudes of the
particle wave function Φ1(t) and Φ2(t), we will have correspondingly

Φ1,2(t) = i

√
N0

E0
ev20E0

�ω2
0c

ε1 − ε2√
ε1

sin θ cos θ
(
1 − √

ε1
v0
c cos θ

) (
1 − ε2

v20
c2 cos

2 θ
)

× exp

{
iω0

[
±√

ε1
v0
c
cos θ − ε1�ω0

2E0

(
1 − v20

c2
cos2 θ

)]
t

}
(6.58)

with the signs “±” correspondingly. Equation (6.58) with (6.47) determines the
particle’s wave function after the single-photon interaction with the field (6.35) in
the nonstationary transition process. In this case (ε1/ε2 � 1), we obtain for the
current density (∼ |Ψ0 + Ψ1|2) of the particles after the interaction

j(x, t) = j0

{
1 + 2α sin

[
ε1

�ω2
0

2E0

(
1 − v20

c2
cos2 θ

)
t

]

× cos

[
ω0

√
ε1
v0 cos θ

c

(
t − x

v0 cos θ

)]}
, (6.59)

where j0 = const is the particle’s initial current density and α is defined by (6.41) or
(6.44). As is seen from (6.59) as a result of the stimulated absorption and emission
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of the photons of frequency

Ω1 = ω0
√

ε1
v0
c
cos θ

the quantum modulation of the particle’s probability density and, consequently, cur-
rent density at this frequency occurs with a depth Γ1 = 2α. Also, in contrast to the
effect of quantum modulation in coherent processes considered in previous chap-
ters, the pure temporal modulation here takes place as well that is caused by the
nonstationarity of the medium. The period of this temporal modulation is

T1 = 4πE0
�ω2

0ε1

(
1 − v20

c2 cos
2 θ
) .

If we derive the particle’s wave function in the next orders of perturbation theory,
then we obtain the modulation at higher harmonics of the wave frequency. The
modulation depth at the s-th harmonic will be Γs ∼ Γ s

1 .
For ε1/ε2 
 1, it is necessary to also take into account in (6.52), (6.53) the

pure quantum process of emission and absorption of hard quanta Ω2 
 2E0/�. The
spectral amplitude of the wave vector potential A (Ω2) at such frequencies is

A (Ω2) 
 cE0

8π

ε1

ε2

(E2
0

�2
− ε1

ε2

ω2
0

4

)−1

. (6.60)

In an analogous way for the particles current density after the interaction, we will
have

j(x, t) = j0

{
1 + Γ1 sin

[
ε1

�ω2
0

2E0

(
1 − v20

c2
cos2 θ

)
t

]

× cos

[
ω0

√
ε1
v0 cos θ

c

(
t − x

v0 cos θ

)]

+Γ2 sin

(
2
E0
�

t

)
cos

[
ω0

√
ε1
v0 cos θ

c

(
t + x

v0 cos θ

)]}
, (6.61)

where Γ1 = 2α, and the modulation depth Γ2 due to the absorption-emission of hard
quanta Ω2 is

Γ2 = ξ
mv0c�ω0

E2
0

ε1

ε2

sin θ

1 − ε1
ε2

(
�ω
2E0

)2 . (6.62)

The period of temporal modulation in this case is T2 = π�/E0.
As the modulated particle beam radiates coherently, this mechanism can be of

interest in astrophysics where the radiating matter may be in a strongly nonstationary
state.
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6.4 Electron–Positron Pair Production by a γ -Quantum
in a Medium

The formation of hard γ -quanta of frequencies ∼ E0/� in the spectrum of a strong
monochromatic EM wave propagating in a nonstationary medium, the dielectric
permittivity of which abruptly changes in time, makes available the single-photon
production of electron–positron (e−, e+) pairs from the intense light fields in a
nonstationary medium.

In general, the single-photon reaction γ → e− + e+ as well as the inverse
reaction of the electron–positron annihilation Electron–positron pair annihilation
(e− + e+ → γ ) can proceed in a medium that must be plasmalike (for the satisfac-
tion of conservation laws for these reactions one needs n(ω) < 1). However, as will
be shown below, excessively large densities of the plasma in this case are required.
Meanwhile, the single-photon production of e−, e+ pairs in a nonstationary plasma
is possible at ordinary densities. Moreover, this process can proceed in the strong
light fields in an arbitrary medium turning abruptly into a plasma (with the tempo-
ral variation law of ε (6.1)). Hence, we will consider both single-photon reactions
γ � e− + e+ in a stationary plasma and the production of e−, e+ pairs from the
intense light beam in a nonstationary medium.

Consider first the production of electron–positron pairs by a γ -quantum and its
annihilation in a stationary medium. It is easy to see from the conservation laws of
the energy and momentum for the single-photon reactions γ � e− + e+

�k = p1 + p2; �ω = E1 + E2 (6.63)

(ω, k are the γ -quantum frequency and wave vector, |k| = n(ω)ω/c, p1,2 and E1,2
are the momenta and energies of the electron and positron, respectively) that the
phase velocity of a γ -quantum vph = c/n(ω) must be larger than c, i.e., a medium
for these processes must be plasmalike: n(ω) < 1. The latter restricts the energy
of a γ -quantum because of the dispersive properties of a medium. Indeed, for the
macroscopic meaning of the refractive index of a medium for a γ -quantum at least
one particlewithin a distance of the order ofλ/2 is required (λ is thewavelength of the
γ -quantum), that is, the condition λ/2 � l must be satisfied, where l is the distance
between the electrons in a plasma. Therefore, besides the threshold condition that
follows from the conservation laws (6.63):

�ω >
2mc2√

1 − n2(ω)
, (6.64)

for the reactions γ � e− +e+ in a medium the following requirement on the plasma
density N/V for a specified frequency ω of a γ -quantum arises:

ω � π

(
N

V

)1/3

≡ ωlim. (6.65)
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Hence, condition (6.65) determines the lower bound for the density of the medium or
the upper bound for the energy of the γ -quantum, while threshold condition (6.64)
determines the lower bound for the energy of the γ -quantum to cause the reactions
γ � e− + e+ to proceed in a medium.

From the standpoint of single-photon pair creation and annihilation in plasma,
the latter must compensate the longitudinal momentum �p = [1 − n(ω)]�ω/c
transferred in these processes. Consequently, the characteristic length in the macro-
scopic description of the dispersion of the medium is the wavelength �/�p, which
corresponds to the transferred momentum, and the condition necessary for this is
�/�p > (V/N )1/3. Since n(ω) < 1, this condition is satisfied automatically when
condition (6.65) is satisfied.

The plasma densities satisfying conditions (6.64) and (6.65) are at least: N/V >

1033 cm−3. Such superdense matter exists only in astrophysical objects, particularly
in the core of the neutron stars (pulsars). At these densities the electron compo-
nent of the superdense plasma is highly degenerate (the dispersion of the transverse
electromagnetic waves is determined by electrons). Actually, the degeneracy tem-
perature of the electron component of such plasma is TF > 1010 K. On the other
hand, because of neutrino energy losses, the physically attainable temperatures in an
equilibrium system are much lower than this: T � TF and the superdense plasma is
fully degenerate.

Since the Fermi energy at the densities N/V > 1033 cm−3 is EF > mc2 we
need the dispersion law of the fully degenerate relativistic plasma. To determine
the dispersion relation n = n (ω) of the latter, we shall solve the self-consistent set
of Maxwell–Vlasov equations for the transverse monochromatic EM wave in the
relativistic collisionless plasma with the distribution function f (p, r, t) (we will not
consider the ions’ motion).

The characteristic equations of f (p, r, t) coincide with the single particle equa-
tion of motion. The latter has been solved for an arbitrary medium in Sect. 2.1 and in
the case of plasma, we have the following solutions in the wave field with the vector
potential A ={0, A0 cos (ωt − n (ω) ωx/c) , 0}:

px = p0x − n (ω)

c
(
1 − n2 (ω)

)
{
E0 − n (ω) cp0x

−
√

(E0 − n (ω) cp0x )
2 + (

1 − n2 (ω)
) [

e2 A2
y − 2ecp0y Ay

]}
, (6.66)

py = p0y − e

c
Ay; pz = p0z, (6.67)

and for the energy of the particle in the field:

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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E = E0 − 1

1 − n2 (ω)

{
E0 − n (ω) cp0x

−
√

(E0 − n (ω) cp0x )
2 + (

1 − n2 (ω)
) [

e2 A2
y − 2ecp0y Ay

]}
. (6.68)

The density of the electric current induced in the plasma can be defined by the
equation

j (r, t) = e
∫

v f (p, r, t) dp, (6.69)

where v =c2p/E is the velocity of the electrons with the distribution function in the
field f (p, r, t). According to the Liouville theorem for the collisionless plasma, we
have

f (p, r, t) = f0 (p0, r0, t0) = f0 (p0) , (6.70)

since the electrons before the interaction were distributed stationary, uniformly and
isotropic.

Defining from (6.66)–(6.68) the velocity of the electrons as a function of the
p0, r, and t and then passing from the integration over p to integration over
p0 (taking into account (6.70)), (6.69) may be presented in the form

j (r, t) = ec2
∫

p (p0, r, t)

E (p0, r, t)
f0 (p0) J (p0, r, t)dp0, (6.71)

where

J (p0, r, t) = ∂(px , py, pz)

∂(p0x , p0y, p0z)

is the Jacobian of transformation. From (6.66), (6.67) for the latter we have

J (p0, r, t) = 1 − n (ω)

1 − n2 (ω)

(
cp0x

E0 − n (ω)

)

×
⎡
⎣1 − E0 − n (ω) cp0x√

(E0 − n (ω) cp0x )
2 + (

1 − n2 (ω)
) [

e2 A2
y − 2ecp0y Ay

]

⎤
⎦ . (6.72)

In the linear approximation by a weak wave field (since it will be applied for a
γ -quantum), (6.72) can be written as follows:

J (p0, r, t) = 1 + n (ω)

(E0 − n (ω) cp0x )
2

(
cp0x

E0 − n (ω)

)
ecp0y Ay . (6.73)
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The components of the electric current density (6.71) in this linear regime of inter-
action can be expressed in the form

jy (r, t) = ec2
∫ {

p0y

E0

(
1 +

(
1 − n2 (ω)

)
cp0yeAy

(E0 − n (ω) cp0x )
2

)
− eAy

E0

}

× f0 (p0) dp0, (6.74)

jx = jz = 0. (6.75)

Then turning to spherical coordinates in (6.71)

p0x = p0 cos θ; p0y = p0 sin θ cosϕ; p0z = p0 sin θ sin ϕ,

and taking into account that the initial distribution of the electrons in a plasma is
isotropic, after the integration in the equation

jy (r, t) = −e2cAy

∫ {
1 −

(
1 − n2 (ω)

)
c2 p20y

(E0 − n (ω) cp0x )
2

}
× f0 (p0) p20

E0
sin θdθdϕdp0 (6.76)

by the angles, for the electric current density induced by a wave field in the plasma
we will have

jy (r, t) = −4πe2cAy

n2 (ω)

∫
f (p0)p2

0

E0

×
{
1 − E0

(
1 − n2 (ω)

)

2n (ω) cp0
ln

{E0 + n (ω) cp0

E0 − n (ω) cp0

}}
dp0. (6.77)

The Maxwell equation for the vector potential

[
	2 − 1

c2
∂2

∂t2

]
Ay (r, t) = −4π

c
jy (r, t) (6.78)

with the current density (6.77) gives the following equation for the refractive index
of a relativistic plasma:

n2 (ω) = 1 − 16π2e2c2

n2 (ω) ω2

∫
f (p0)p2

0

E0

×
{
1 − E0

(
1 − n2 (ω)

)

2n (ω) cp0
ln

{E0 + n (ω) cp0

E0 − n (ω) cp0

}}
dp0. (6.79)

Equation (6.79) describes, in general, the dispersion law of a relativistic plasma for
an arbitrary electron distribution function. In principle, it is also valid for a nonde-
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generate (relativistic and Maxwellian) electron plasma if an equilibrium distribution
with temperature T � TF can be realized in nature.

Now consider the production of electron–positron pairs by a γ -quantum in a
stationary medium (homogeneous and isotropic) with a refractive index n(ω) < 1
(6.79). As this process is a QED effect of the first order, then using the general rules
for constructing the matrix element of a single-vertex γ → e− + e+ diagram in a
dispersive medium the probability amplitude will be written in the form

Si f = −e

√
1

2ωaωn2 (ω)

∫
ψ 1̂ε

(λ)eikxψ2d4x . (6.80)

Here

aω = 1 + ω

n (ω)

dn (ω)

dω
,

ki (ω, k) is the 4D wave vector of the photon, quantization volume V = 1, ε(λ) is the
4D polarization vector of the photon (̂ε(λ) = ε(λ)

μ γ μ), and

ψ1 = u1 (p1) ei(p1r−E1t); ψ2 = u2 (−p2) e−i(p2r−E2t) (6.81)

are the free electron and positron wave functions. Here the units � = c = 1 are used.
Performing integration in (6.80) with the wave functions (6.81) by the standard

method for the differential probability of the γ → e− + e+ process per unit time
and unit space volume (in the momentum volumes dp1/ (2π)3 of the electrons and
dp2/ (2π)3 of the positrons, respectively) we will have

dW = e2

8π2ωaωn2 (ω)

∣∣u1 (p1) ε̂(λ)u2 (−p2)
∣∣2 δ (ω − E1 − E2)

× δ (k − p1 − p2) dp1dp2. (6.82)

We will assume that the γ -quantum is nonpolarized and perform averaging by the
polarization states of the γ -quantum and summation over the electron and positron
spin projections. Then the probability of the e−, e+ pair production per unit time is
given by the expression

W = e2

8π2aωωn2(ω)

∫ E1E2 + m2 − p1 p2 cosϑ1 cosϑ2

E1E2 δ (ω − E1 − E2)

× δ (k − p1 − p2) dp1dp2, (6.83)

where ϑ1,2 is the angle between the vectors k and p1,2, respectively.
Integrating (6.83) over the positronmomentump2,weobtain the following expres-

sion for the pair production probability:



180 6 Induced Nonstationary Transition Process

W = e2

8π2aωωn2(ω)

∫ ⎛
⎝1 + m2 + p1 cosϑ1 (p1 cosϑ1 − k)

E1
√
E2
1 + k2 + kp1 cosϑ1

⎞
⎠

× δ

(
ω − E1 −

√
E2
1 + k2 + kp1 cosϑ1

)
dp1. (6.84)

For the integration over the electron momentum p1 note that because of azimuthal
symmetry

dp1 = 2πp1E1dE1 sin ϑ1dϑ1

and the integration over ϑ1 reduces formally to the following replacement in (6.84):

δ

(
ω − E1 −

√
E2
1 + k2 + kp1 cosϑ1

)
sin ϑ1dϑ1

→ ω − E1
kp1

[H (E1 − Emin(ω)) − H (E1 − Emax(ω))] ,

where H(x) is the Heaviside function

H(x) =
⎧
⎨
⎩
1, x ≥ 0,

0, x < 0.

After the integration over ϑ1, (6.84) becomes

W = e2

4πaωω2n5(ω)

Emax(ω)∫

Emin(ω)

[ (
1 − n2(ω)

) (E2
1 − ωE1

)+ n2(ω)m2

+ 1 − n4(ω)

4
ω2

]
dE1. (6.85)

The limits of integration over E1 ∈ [Emin, Emax] in (6.85)

Emin,max(ω) = ω

2
∓ n(ω)

2

[
ω2 − 4m2

1 − n2(ω)

]1/2
(6.86)

are determined by the conservation laws for the γ � e− +e+ processes in a medium
(6.63) with the threshold value (6.64). Taking into account (6.86) after the integration
over the electron energy in (6.85) we obtain the total probability for the single-photon
e−, e+ pair production in a plasma:
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W = e2m2

6πω2aωn2(ω)

[
ω2 − 4m2

1 − n2(ω)

]1/2

×
{
1

2

(ω

m

)2 [
1 − n2(ω)

]+ 1

}
. (6.87)

Equation (6.86) with the dispersion law (6.79) of a relativistic plasma for an arbi-
trary electron distribution function determine the probability of the electron–positron
pair production by a γ -quantum.As the electron component the of superdense plasma
required for this process is fully degenerate the Pauli principle must also be taken
into account that imposes an additional restriction on the γ → e− +e+ reaction. The
general picture of this process taking into account the conditions (6.64), (6.65) and
the Pauli principle will be analyzed together with the electron–positron annihilation
process in the next section.

6.5 Annihilation of Electron–Positron Pairs in a Medium

Now we will consider the inverse process of a single-photon annihilation of an
electron–positron pair in a stationary plasma. This process is also a QED effect of
the first order and the matrix element of a single-vertex e− + e+ → γ diagram is the
complex conjugate to the γ → e− + e diagram matrix element:

S′
i f = −e

√
1

2ωaωn2 (ω)

∫
ψ2ε̂

(λ)e−ikxψ1d4x . (6.88)

The differential probability of the annihilation process per unit time and unit space
volume, summed by the polarization states of the created γ -quantum in the momen-
tum volume dk/ (2π)3, is given by the expression

dWγ = πe2

2ωaωn2(ω)

E1E2 + m2 − p1 p2 cosϑ1 cosϑ2

E1E2
× δ (ω − E1 − E2) δ (k − p1 − p2) dk. (6.89)

Equation (6.89) determines the annihilation probability for a single e−, e+ pair in
plasma. To obtain the total probability of annihilation of an initial positron with
the plasma electrons, one must define the probability of annihilation of a positron
of specified energy E2 with the electrons of the medium in the momentum range
p1, p1 + dp1:

Wγ = πe2

2ωaωn2(ω)

∫
f (p1)

E1E2 + m2 − p1 p2 cosϑ1 cosϑ2

E1E2
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× δ (ω − E1 − E2) δ (k − p1 − p2) dkdp1, (6.90)

where f (p1) is the distribution function of the plasma electrons. We first integrate
over k in (6.90) and then over p1 taking into account that dp1 = 2πp1E1dE1 sin ϑdϑ ,
where ϑ is the angle between the vectors p1 and p2. The integration over ϑ reduces
formally to the following replacement in (6.90):

δ (ω − E1 − E2) sin ϑdϑ

→ ωaωn2(ω)

p1 p2
[H (E1 − Emin(ω)) − H (E1 − Emax(ω))] ,

where the quantitiesEmin(max)(ω) are givenby (6.86) andωmust be replacedbyE1+E2
according to conservation law (6.63). Then for the probability of annihilation of a
positron (with an energy E2) with the electrons of the medium we will have

Wγ = πe2

p2E2

∫
f (p1)

{
m2 + (E1 + E2)2 1 − n4(ω)

4n2(ω)
− 1 − n2(ω)

n2(ω)
E1E2

}

× [H (E1 − Emin(ω)) − H (E1 − Emax(ω))] dE1. (6.91)

In contrast to the pair production process (its probability can be obtained without
resorting to the explicit form of n(ω)), here we must have the explicit form of the
function n = n(ω) in order to be able to integrate over the electron energy E1 (ω is
now a function of E1, since ω = E1 + E2).

As the considered processes γ � e− + e+ are possible in the superdense plasma
where the electrons are fully degenerate, then the dispersion law of such relativis-
tic plasma can be obtained substituting the Fermi distribution function for a fully
degenerate electron gas

f (p1) =
⎧
⎨
⎩

1
4π3 , p1 ≤ pF

0, p1 > pF

(6.92)

in (6.79), describing in general the dispersion law of a relativistic plasma for an
arbitrary distribution function of electrons f (p0). Here pF is the boundary Fermi
momentum:

pF = (
3π2ρe

)1/3
, (6.93)

and ρe is the electron density of a degenerate Fermi gas.
Integrating in (6.79) with the distribution function (6.92) over the electron

momenta, we obtain the following dispersion law of a relativistic degenerate plasma:

n2 (ω) = 1 − 2e2

n2 (ω) πω2
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×
{

pFEF − E2
F − n2 (ω) p2

F

2n (ω)
ln

{EF + n (ω) pF

EF − n (ω) pF

}}
, (6.94)

where EF is the relativistic Fermi energy corresponding to boundary momentum
(6.93). Inserting the dimensionless parameter

β = n (ω) pF

EF

Equation (6.94) can be written in the form

n2 (ω) = 1 − 2e2 pFEF

n2 (ω) πω2

{
1 − 1 − β2

2β
ln

{
1 + β

1 − β

}}
, (6.95)

or in the form more convenient for further investigation

n2 (ω) = 1 − 2e2 p3
F

ω2πEF
φ (β) , (6.96)

where the function φ (β) is

φ (β) = 1

β2

{
1 − 1 − β2

2β
ln

1 + β

1 − β

}
. (6.97)

By analogy with the usual determination of a plasma frequency, from the equation
n
(
ωp
) = 0, we obtain the plasma frequency for a relativistic degenerate one

ωp =
√
4e2 p3

F

3πEF
. (6.98)

The frequency range corresponding to transverse waves that can propagate in a
superdense relativistic degenerate plasma—ωp ≤ ω < ∞—can then be obtained
by varying the refractive index in the range 0 ≤ n < 1. Therefore, we present the
dispersion relation (6.96) in the inverted form ω = ω(n):

ω2 = 2e2

π

p3
F

EF

1

1 − n2
φ (β) . (6.99)

The parameter β in (6.99) then varies in the range 0 � β < pF/EF . The analysis
of the function φ (β), which can be expressed in the form

φ (β) = 2
∞∑

s=1

β2s−2

4s2 − 1
,
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shows that throughout the physically admissible range 0 ≤ β < 1 (for superdense
ultrarelativistic plasma pF/EF ∼ 1) the functionφ (β) variesmonotonically between
the values 2/3 and 1.

The problemnow reduces to the determination of the range of variation of the ener-
gies of electrons that actually participate in the annihilation process taking account
of conditions (6.64), (6.65) and E1 ≤ EF for the annihilation process. The situation
may be clarified by defining this region graphically. Figure6.1 shows the Emin(max)(ω)

curves and the lines corresponding to frequencies ω = ωlim = (π/3)1/3 pF (see
(6.65)) and ω = ωmax = EF + E2. The energies of the particles and γ -quantum can
vary within the region ABC A, and the limits of integration with respect to the elec-
tron energy E1min and E1max are determined by the points at which the E1 = ω − E2
line cuts the boundaries of this region.

Evaluating the integral in (6.91) with the dispersion law (6.99), we obtain a bulky
expression for the total probability of the annihilation process. However, for the
admissible values of n(ω) and electron density ρe with a great accuracy for the
function φ (β) we have: φ(npF/EF ) ≈ 2/3 and the ultimate expression for the
probability of the e−+e+ → γ process is rather simplified. The points of intersection
of the line E1 = ω − E2 and the boundaries of the region ABC A then correspond to

ω1 = ωp

2m2

[
ωpE2 − p2

(
ω2

p − 4m2
)1/2]

,

ω2 =

⎧⎪⎨
⎪⎩

ωp

2m2

[
ωpE2 + p2

(
ω2

p − 4m2
)1/2]

, E2 ≤ Emin (ω = ωlim) ,

ωlim, Emin (ω = ωlim) < E2 < Emax (ω = ωlim) .

(6.100)

Fig. 6.1 Curves of Emin(ω),
Emax(ω) and the lines
corresponding to frequencies
ω = ωlim = (π/3)1/3 pF and
ω = ωmax = EF + E2. The
energies of the particles and
γ -quantum can vary within
the region ABC A, and the
limits of integration with
respect to the electron energy
E1min and E1max are
determined by the points at
which the E1 = ω − E2 line
cuts the boundaries of this
region
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Finally, the total probability of the annihilation process is

Wγ = e2

4πp2E2

[(
m2 + ω2

p

2

)
(ω2 − ω1) + 1

2
ωp

(
E2
2 + ω2

p

4

)

× ln

(
ω2 − ωp

) (
ω1 + ωp

)
(
ω2 + ωp

) (
ω1 − ωp

) − E2ω2
p

2
ln

(
ω2 − ωp

) (
ω2 + ωp

)
(
ω1 − ωp

) (
ω1 + ωp

)
]

. (6.101)

The lower limit for the density of the medium, above which pair annihilation is possi-
ble, can be defined from the reaction threshold condition (6.64) and the dispersion law
(6.96). Thus,we obtainωp > 2m, which is equivalent toEF >

√
3πm/e ≈ 36m. The

electron density of the plasma corresponding to this value of EF is ρe > p3
F/3π2 ≈

3 · 1034 cm−3.
For a nonrelativistic positron annihilation in an electron plasma, we have a simple

formula for the total probability:

Wγ = e2ω3
p

8πm3

(
ω2

p − 4m2)1/2 , p2 � m. (6.102)

Let us now analyze the results for the electron–positron pair production in a super-
dense relativistic degenerate plasma with the dispersion law (6.96). The Pauli prin-
ciple in this case demands the satisfaction of the condition E1 > EF which together
with conditions (6.64) and (6.65) substantially reduces the range of parameter values
for this process to proceed even in the required superdense plasma. The range of
integration with respect to E1 in (6.85) shrinks to a point and the probability of the
process γ → e− + e+ tends practically to zero. With the increase of the electron
density when EF � 150m (Emax(ωlim) > EF , see Fig. 6.1), a narrow region appears
and (6.65), (6.100) show that the creation of a pair by a γ -quantum with energy
ω1(E2 = EF ) < ω < ωlim becomes possible in this region. As a result, the lower
bound of the energy of a created electron instead of Emin (ω) should be EF and from
(6.85), we obtain

W = e2 (Emax(ω) − EF )

4πaωω2n5(ω)

{
1 − n2(ω)

3

(E2
max (ω) + EFEmax(ω) + E2

F

)

−1 − n2(ω)

2
ω (Emax(ω) + EF ) + n2(ω)m2 + 1 − n4(ω)

4
ω2

}
. (6.103)

However, it is important to recall that this region ω 
 ωlim lies at the limit of validity
of the macroscopic concept for a refractive index of a medium (one particle within
the length λ/2).
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6.6 Electron–Positron Pair Production by Strong EM Wave
in Nonstationary Medium

As the probability of the single-quantum production of an electron–positron pair in a
stationary plasma, as amacroscopic dispersivemedium, practically equals zero (even
at the required superdensities of electrons) it is reasonable to consider an exclusive
possibility for a single-photon pair production in a nonstationarymedium of ordinary
densities by strong light fields. Namely, we assume the abrupt temporal change of the
dielectric permittivity of a mediumwhich may be described by the stepwise function
ε (6.1).

In order to describe pair production in the field (6.6), (6.7) we shall employ the
Dirac model (all negative-energy states of the vacuum are filled with electrons). The
Dirac equation in the field (6.6), (6.7) has the form (� = c = 1)

i
∂Ψ

∂t
= [̂

α(p − eA) + β̂m
]
Ψ, (6.104)

where

A(r, t) =
⎧⎨
⎩

i E0
ω0

ei(ω0t−k0r) + c.c., t < 0

i E1
ω1

eiω1t−k0r − i E2
ω1

e−iω1t−k0r + c.c., t � 0
(6.105)

is the vector potential of the EM field and α̂, β̂ are the Dirac matrices in the standard
representation (3.2).

We solve (6.104) by perturbing in the field of the wave. This method is valid if

[
1 +

(
ε1

ε2

)1/2
]

ξ0 � 1, ξ0 = eE0

mω0
. (6.106)

We expand the perturbed first-order wave function Ψ1(r, t) in a complete set of
orthonormalized wave functions of the electrons (positrons) with momenta p − k0

and p + k0:
Ψ1(r, t) = Ψ

(−)
1 (t)ei(p−k0)r + Ψ

(+)
1 (t)ei(p+k0)r,

Ψ
(−)
1 (t) =

4∑
l=1

al(t)ul (p − k0, t) , (6.107)

Ψ
(+)
1 (t) =

4∑
j=1

b j (t)u j (p + k0, t) .

http://dx.doi.org/10.1007/978-3-319-26384-7_3
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Here al(t) and b j (t) are unknown functions and ui
(
p′, t

)
are orthonormal-

ized bispinor functions which describe the particle states with energies ±E ′ =
±√p′2 + m2:

u1,2
(
p′, t

) =
(E ′ + m

2E ′

)1/2
⎛
⎝

ϕ1,2

σp′
E ′+m ϕ1,2

⎞
⎠ exp

(−iE ′t
)
, (6.108)

u3,4
(
p′, t

) =
(E ′ + m

2E ′

)1/2
⎛
⎝

−σp′
E ′+m χ3,4

χ3,4

⎞
⎠ exp

(
iE ′t

)
. (6.109)

These functions are normalized to one particle per unit volume: u+
i u j = δi j ; the

constant spinors ϕ1,2 and χ3,4 are

ϕ1 = χ3 =
(
1
0

)
, ϕ2 = χ4 =

(
0
1

)
.

Under the transformations (6.107)–(6.109) the Dirac equation for the perturbed wave
function Ψ = Ψ0 + Ψ1 + · · · , (|Ψ1| � |Ψ0|):

(
i

∂

∂t
− α̂p − β̂m

)
Ψ1 = −eα̂AΨ0 (6.110)

transforms into a system of 16 equations for the unknown functions al(t) and b j (t):

(
i

∂

∂t
− α̂p − β̂m

)[ 4∑
l=1

al(t)ul (p − k0, t) ei(p−k0)r

+
4∑

j=1

b j (t)u j (p + k0, t) ei(p+k0)r
]

= −eα̂
[
A(−)(t)e

−ik0r + A(+)(t)e
ik0r] us (p, t) eipr, (6.111)

where s = 3, 4 and

A(−)(t) =
⎧⎨
⎩

i E0
ω0

eiω0t , t < 0,

i E1
ω1

eiω1t − i E2
ω1

e−iω1t , t � 0,
A(+)(t) = A∗

(−)(t). (6.112)

The bispinor functions us (p, t) in (6.111) correspond to the unperturbed states
of the Dirac vacuum (they are determined by (6.109) with s = 3 and s = 4, where
p′ = p and E ′ = E are the momenta and energies of the free vacuum electrons).
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According to this model, a pair is produced because of the interaction of the external
field with the electrons of negative energies of the Dirac vacuum. In the first-order
perturbation theory in the field this leads to electron states in the region of positive
energies with the values

E(−) =
√

(p − k0)
2 + m2, E(+) =

√
(p + k0)

2 + m2.

The probabilities of these transitions are determined by the amplitudes a1,2 and b1,2,
respectively (the indices 1 and 2 correspond to two different spin states). Therefore
the problem reduces to determining the functions a1,2(t) and b1,2(t) by integrating
the set of (6.111). From the latter, we obtain the following set of equations:

4∑
l=1

i
dal

dt
ul (p − k0, t) = −eα̂A(−)(t)us (p, t) , (6.113)

4∑
j=1

i
db j

dt
u j (p + k0, t) = −eα̂A(+)(t)us (p, t) . (6.114)

Multiplying (6.113) on the left by u†
l (p − k0, t) and (6.114) by u†

j (p + k0, t) and

taking into account that the bispinors are orthonormal (u†
l um = δlm), we obtain eight

equations for the transitions amplitudes al(t) and b j (t) for a given spinor state s of
a vacuum electron (s = 3 or s = 4):

dal(t)

dt
= ieu†

l (p − k0, t) α̂A(−)(t)us (p, t) , l = 1, ..., 4, (6.115)

db j (t)

dt
= ieu†

j (p + k0, t) α̂A(+)(t)us (p, t) , j = 1, ..., 4. (6.116)

Orienting the z axis parallel to the electric field E0 of the wave and the x axis parallel
to the wave vector k0, we obtain for the amplitudes a1,2 and b1,2

a1,2(t) = ieu†
1,2 (p − k0) αzus (p)

t∫

−∞
A(−)(t

′)ei(E+E(−))t ′
dt ′, (6.117)

b1,2(t) = ieu†
1,2 (p + k0) αzus (p)

t∫

−∞
A(+)(t

′)ei(E+E(+))t ′
dt ′, (6.118)

where u†
1,2 (p ∓ k0) and us (p) are constant bispinors determined by (6.108) and

(6.109) (preexponential factors in (6.108), (6.109)).
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The probability of electron production from a definite vacuum state p, s is deter-
mined by the quantity |a1(t)|2 + |a2(t)|2 + |b1(t)|2 + |b2(t)|2 (the probability of the
production of a positron with a momentum p in a definite spinor state s). The differ-
ential probability of pair production, summed over the initial spin states of the Dirac
vacuum, in an element of the phase volume dp/(2π)3 (the spatial normalization
volume V = 1), is

dW = 2
[|a1(t)|2 + |a2(t)|2 + |b1(t)|2 + |b2(t)|2

] |t→+∞
dp

(2π)3
. (6.119)

Integrating (6.117) and (6.118) over time with (6.112) and assuming that the
EM wave is switched on and switched off adiabatically: E0(t = −∞) = E1(t =
+∞) = E2(t = +∞) = 0 (the amplitudes of the incident, transmitted, and reflected
waves are assumed to be slowly varying functions of time), we obtain the following
expressions for the amplitudes a1,2 and b1,2 after the wave interaction with the Dirac
vacuum:

a1,2(t = +∞) = ieE0 (ε1 − ε2)
(E + E(−)

)

ε2
(E + E(−) + ω0

) ((E + E(−)

)2 − ω2
0

ε1
ε2

)

×
[
u†
1,2 (p − k0) αzus (p)

]
, (6.120)

b1,2(t = +∞) = ieE0 (ε1 − ε2)
(E + E(+)

)

ε2
(E + E(+) − ω0

) ((E + E(+)

)2 − ω2
0

ε1
ε2

)

×
[
u†
1,2 (p + k0) αzus (p)

]
. (6.121)

Evaluating the transition matrix elements in (6.120), (6.121), we obtain with the
help of (6.119) the differential probability of pair production by a strong EM wave
in a nonstationary medium:

dW = e2

(2π)3
E2
0

E
(

ε1

ε2
− 1

)2

×

⎧⎪⎨
⎪⎩

(E + E(−)

)2 [EE (−) + m2 + px (px − k0) + p2
y − p2

z

]

E(−)

(E + E(−) + ω0
)2 [(E + E(−)

)2 − ω2
0

ε1
ε2

]2

+
(E + E(+)

)2 [EE (+) + m2 + px (px + k0) + p2
y − p2

z

]

E(+)

(E + E(+) − ω0
)2 [(E + E(+)

)2 − ω2
0

ε1
ε2

]2

⎫⎪⎬
⎪⎭

dp. (6.122)
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As one can see from (6.122), the process exhibits azimuthal asymmetry with respect
to the direction of propagation of the wave. Orienting the polar axis in this direction
(dp = pEdE sin θdθdϕ, where θ is the angle between the vectors p and k0 and ϕ

is the azimuthal angle relative to the direction of polarization of the wave) and inte-
grating over the energy, we obtain the angular distribution of the produced electrons
(positrons). As the case of physical interest is an EM wave of frequencies ω � m,
(6.122) simplifies greatly and takes the form

dW = e2E2
0

2π3

(
ε1

ε2
− 1

)2 √E2 − m2

E

× m2 sin2 θ cos2 ϕ + E2
(
1 − sin2 θ cos2 ϕ

)
(
4E2 − ω2

0
ε1
ε2

)2 sin θdθdϕdE . (6.123)

Integrating (6.123) over the energy, we obtain the number of pairs produced in
the element of solid angle do = sin θdθdϕ:

dW (θ, ϕ) = e2E2
0

128π2m

(
ε1

ε2
− 1

)2 [
F

(
2; 1

2
; 2; ω2

0ε1

4m2ε2

)

× (1 − sin2 θ cos2 ϕ
)+ 1

4
F

(
2; 3

2
; 3; ω2

0ε1

4m2ε2

)
sin2 θ cos2 ϕ

]
do, (6.124)

where F(ν;μ; λ; z) is the hypergeometric function.
For the energy distribution of the produced electrons (positrons) we have

dW (E) = 2e2E2
0

3π2

(
ε1

ε2
− 1

)2
√E2 − m2

(
2E2 + m2

)
(
4E2 − ω2

0
ε1
ε2

)2 dE . (6.125)

Integrating (6.124) over the angles θ and ϕ (or (6.125) over the energy), we
obtain the total number of electron–positron pairs produced by a strong EM wave in
a nonstationary medium:

W = 2e2E2
0

48πm

(
ε1

ε2
− 1

)2 [
F

(
2; 1

2
; 2; ω2

0ε1

4m2ε2

)

+ 1

8
F

(
2; 3

2
; 3; ω2

0ε1

4m2ε2

)]
. (6.126)

Note that in (6.123) and (6.125) the denominators become zero for ω0
√

ε1/ε2 =
2E . This is the conservation law for the single-photon pair production by awave of the
frequencyω1 = ω0

√
ε1/ε2 (by the transmitted and reflected waves) in amediumwith
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the index of refraction n2 = √
ε2 < 1 (plasma). Since (6.123)–(6.126) correspond

to the case ω � m, the pole in (6.123) can be reached, i.e., the conservation laws of
energy and momentum for the process γ → e− +e+ can be satisfied only if ε1/ε2 

1.Actually this is possible if ε2 � 1, in agreementwith the fact that pair productionby
a photon field requires a plasmalike medium. It is obvious from (6.126) that the total
probability of the process diverges when ω2

0ε1/4m2ε2 = 1. The latter is associated
with the fact that these probabilities were determined for an infinitely long interaction
time. In perturbation theory probabilities are proportional to the interaction time
(under stationary conditions) and diverge as t → ∞. Thus, this divergence is not
associated with the process studied here, which is governed by the time dependence
of the medium, and it can be eliminated by assuming ω2

0ε1/ε2 < 4m2. Moreover,
for laser frequencies and realistic values of the dielectric permittivities ω0

√
ε1/ε2 �

2E and from (6.126), we obtain the following expression for the total number of e−,
e+ pairs produced in the volume V due only to the medium nonstationary properties:

W = 3e2E2
0V

128πm

(
1 − ε1

ε2

)2

. (6.127)

In the general case, for arbitrary frequency of EMwave and temporal variation of
the dielectric permittivity of the medium ε1/ε2 from (6.122), the following formula
for the pair’s probability distribution over the total energy Et = Ee− +Ee+ of the
produced particles can be derived:

dW

dEt
= e2E2

0

6π2

(
1 − ε1

ε2

)2 (
1 − 4m2

E2
t − k2

0

)1/2

× E2
t

(E2
t + ω2

0

) (E2
t + 2m2 − k2

0

)
(E2

t − ω2
0

) (E2
t − ω2

0
ε1
ε2

)2 . (6.128)
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Chapter 7
Induced Channeling Process in a Crystal

Abstract It is known that due to the relativisticmotion of a charged particle in a crys-
tal, an exotic situation takes place when the effective potential of the crystal planes or
axes becomes a potential well for the particle in the transverse direction with respect
to its initial motion, and so-called channeling of the particle occurs accompanied by
spontaneous channeling radiation. The channeling radiation of ultrarelativistic elec-
trons and positrons in a crystal is of great interest for twomajor reasons: the radiation
is in the shortwave region (X-ray and γ-ray domains) and its spectral intensity con-
siderably exceeds that of the other types of radiation in this range of frequencies.
Induced channeling radiation in the presence of an external coherent radiation field
becomes important as a potential source for shortwave coherent radiation, which
may be considered as a version of a free electron laser. As a periodic system with
high coherency and owing to the similar periodic character of particle motion, the
crystal channel may be compared with an undulator—it is a “micro-undulator” with
the space period much smaller than that of an undulator. On the other hand, the
particle–external coherent EM wave interaction process in the channel of a crystal
proceeds with the inverse stimulated effect reducing the particle acceleration and
other classical and quantum coherent effects. Hence, this chapter will consider the
induced channeling process with regard to general aspects of coherent interaction of
relativistic electrons and positrons with a plane transverse EM wave in a crystal.

7.1 Positron–Strong Wave Interaction at the Planar
Channeling in a Crystal

If a charged particle with relativistic velocity enters a crystal at the angle with respect
to a crystal plane or crystallographic axis smaller than some specified angle (Lindhard
angle)

θα =
√
2U0

E , (7.1)
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194 7 Induced Channeling Process in a Crystal

then the effective electrostatic field of the crystal becomes a transverse potential
well related to the particle motion and the latter moves in the crystal channel—the
channeling of the particle occurs. Here U0 is the depth of the potential well and E
is the particle energy. In the most interesting case of ultrarelativistic energies for
channeling phenomenon, the transverse de Broglie wavelength of the particle

λD = �c√
2U0E

(7.2)

is much smaller than the interplanar or interaxial distance d in a crystal (U0 is of
the order of the kinetic energy of the particle transverse motion) and consequently
d/λD � 1. On the other hand, the quantity d/λD with the coefficient coincides with
the number of bound states l of the particle transverse motion in the crystal channel.
Hence, in the most important region of energies l � 1 and the particle motion at the
channeling can be described classically.

We will study the induced interaction of a charged particle channeled in a crystal
with the external coherent radiation field within the scope of the classical theory. In
this section, the case of the planar channeling will be considered.

As is known for a positron planar channeling, the effective electrostatic potential
of the crystal planes within the channel is well enough described by the parabolic
law

U (x) = 4
U0

d2
x2, (7.3)

where d is the distance between the crystal planes, and the transverse coordinate x
is evaluated from the median plane. The classical relativistic equation of motion for
a positron in the fields (7.3) and an external plane monochromatic EM wave

E = E0 cos (ω0t − k0r); k0 = ν
n0ω0

c
(7.4)

(n0 = n0(ω0) is the refractive index of the crystal on the wave frequency) is written
as

dp
dt

= eE + e

c
[vH] − ∇U (x). (7.5)

As for the permitted maximal values of the wave intensities in the dielectric media,
the characteristic interaction parameter ξ0 = eE0/mcω0 � 1 (see Sect. 2.2), then for
the ultrarelativistic energies of the channeled particles the interaction with the EM
wave in a crystal with great accuracy can be described by the classical perturbation
theory over the field (7.4). Consequently, in the zero order over the EM wave field
from (7.5) we have the equations

dpx

dt
= −dU (x)

dx
, (7.6)

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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dpy

dt
= 0; dpz

dt
= 0. (7.7)

Choosing the axis z along the initial motion of the particle from (7.6) and (7.7) for
the particle energy and momentum, we obtain respectively

E = mc2√
1 − (v2x + v2z

)
/c2

+ U (x), (7.8)

py = 0; pz = mvz√
1 − (v2x + v2z

)
/c2

. (7.9)

For the transverse velocity of the particle from (7.8) and (7.9), we have

v2x = c2
[E−U (x)]2 − E2

�

[E−U (x)]2
, (7.10)

where

E� = c
√

p2
�
+ m2c2 (7.11)

is the energy of the longitudinal motion. Equation (7.10) is the exact equation for
the particle transverse motion. One can make some simplification of this equation
taking into account the smallness of the potential energy related to the energy of the
ultrarelativistic particle:

Umax (x) � E .

Representing the particle energy in the form

E = E� + E⊥,

where E⊥ is the energy of the transverse motion, and taking into account that for the
channeled particles

E⊥ � Umax (x) � E�,

then the equation for the particle transverse motion (7.10) with the accuracy of the
small quantity E⊥/E� � 1 will take the form

v2x = 2c2

E�

[E⊥ − U (x)]. (7.12)

Formally (7.10) has a nonrelativistic character where instead of particle rest mass,
the relativistic mass mrel � E�/mc2 stands.
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The longitudinal velocity of the particle is determined from (7.9) and has the form

vz (t) � c

{
1 − 1

2

[
v2x
c2

+
(

mc2

E�

)2
]}

. (7.13)

In the case of planar channeling of a positron when the effective electrostatic
potential of the crystal may be approximated by (7.3), the integration of (7.12) gives
the following law for the transverse motion:

x (t) = xm sin [Ω (t − t0) + ϕ] . (7.14)

Here

Ω = 2c

d

√
2U0

E�

(7.15)

is the frequency of the positron transverse oscillations in the potential well of the
crystal channel,

xm = d

2

√
E⊥
U0

(7.16)

is the amplitude and ϕ is the phase of the transverse oscillations at the moment t0
when the positron enters into the crystal. Corresponding to (7.14), the transverse
velocity of the positron is

vx (t) = vxm cos [Ω (t − t0) + ϕ] , (7.17)

where

vxm = dΩ

2

√
E⊥
U0

(7.18)

is themaximal velocity of the transversemotion of the positron in the crystal channel.
Then using (7.17) after the integration of (7.13), we will have

z (t) = vz t − zm sin [2Ω (t − t0) + 2ϕ] + zm sin 2ϕ, (7.19)

where

vz = c

{
1 − 1

2

[(
mc2

E�

)2

+ E⊥
E�

]}
(7.20)

is themean longitudinal velocity of the positron, and the amplitude of the longitudinal
oscillations zm is

zm = cE⊥
4ΩE�

. (7.21)
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Now we can evaluate the induced channeling effect in the field of an external EM
wave, by the classical perturbation theory in the first order over the field (7.4). The
energy change of the channeled positron at the interaction with the plane transverse
EM wave is given by

ΔE = e

t2∫

t1

E(t − νrn0/c)v(t)dt, (7.22)

where the law of motion r = r(t) and velocity v(t) of the positron in the crystal
channel are determined by (7.14), (7.19) and (7.13), (7.17), respectively. The induced
interaction timeΔt = t2− t1 actually will be determined by the length of the channel
(t1and t2 are correspondingly the moments of the wave entrance in the crystal and
exit from the channel).

For the concreteness and evaluation of the energy change (7.22), we introduce a
new Cartesian coordinate system x ′, y′, z′ and assume that a quasimonochromatic
EM wave linearly polarized along the axis x ′ propagates along the axis z′, at a small
angle with respect to a crystal plane (see (7.1)). The coordinate system x ′, y′, z′ is
related to the system x , y, z via Eulerian angles α, β, γ as follows:

⎛
⎝

x ′
y′
z′

⎞
⎠ =

⎛
⎝
cos γ sin γ 0
− sin γ cos γ 0
0 0 1

⎞
⎠
⎛
⎝
cosβ 0 − sin β
0 1 0
sin β 0 cosβ

⎞
⎠

×
⎛
⎝
1 0 0
0 cosα sinα
0 − sinα cosα

⎞
⎠
⎛
⎝

x
y
z

⎞
⎠. (7.23)

At themotion of the positron in the crystal channel by the trajectory (7.14), (7.19),
the wave phase in (7.22) corresponding to induced interaction is

φ = ω0t − k0r = ωt − κ1 sin [Ω (t − t0) + ϕ]

+ κ2 sin 2 [Ω (t − t0) + ϕ] + ψ, (7.24)

where

ω = ω0

(
1 − n0vz

c
cosα cosβ

)
(7.25)

is the Doppler-shifted wave frequency, and the parameters κ1, κ2, ψ are

κ1 = n0ω0
xm

c
sin β; κ2 = n0ω0

zm

c
cosα cosβ,

ψ = −n0
ω0

c
cosα cosβ (zm sin 2ϕ − vz t0). (7.26)

Substituting (7.24) as well as (7.13) and (7.17) in (7.22) for the energy change of the
positron due to the induced channeling effect, in the first order by the wave field, we
will have
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ΔE =
∞∑

s=−∞

e

ω − sΩ
{E0xvxm A1 (s, κ1, κ2) + E0z (vz + vzm) A0 (s, κ1, κ2)

− 2E0zvzm A2 (s, κ1, κ2)} {sin [(ω − sΩ) t2 + sΩt0 − sϕ + ψ]

− sin [(ω − sΩ) t1 + sΩt0 − sϕ + ψ]} , (7.27)

where

An (s,α,β) = 1

2π

π∫

−π

cosn ϕ′ei(α sinϕ′−β sin 2ϕ′−sϕ′)dϕ′

is the generalized Bessel function with the definitions

A0 (s,α,β) =
∞∑

k=−∞
Js+2k (α) Jk (β),

A1 (s,α,β) = 1

2
[A0 (s − 1,α,β) + A0 (s + 1,α,β)],

A2 (s,α,β) = 1

4
[A0 (s − 2,α,β) + 2A0 (s,α,β) + A0 (s + 2,α,β)],

and

vzm = cE⊥
2E�

(7.28)

is the amplitude of the positron longitudinal velocity oscillations.
Equation (7.27) shows that the energy change of the positron after the interaction

differs from zero (will have nonoscillating character in the time) if the condition

ω0

(
1 − n0

vz

c
cosα cosβ

)
= sΩ; s = 0,±1,±2,... (7.29)

is satisfied for a specified s. The latter is the condition of the resonance between the
transverse oscillations of the positron in the potential well of the crystal channel and
EMwave. Only at the fulfillment of this condition does the coherent energy exchange
of the channeled positron with the monochromatic wave become real. Then for the
energy change of the positron after the interaction, we have

ΔE = eE0Δt {vxm cosβ cos γ A1 (s, κ1, κ2) + (sinα sin γ − cosα sin β cos γ)

× [
(vz + vzm) A0 (s, κ1, κ2) − 2vzm A2 (s, κ1, κ2)

]}

× cos
[
sΩt0 − sϕ + n0

ω0

c
cosα cosβ (vz t0 − zm sin 2ϕ)

]
. (7.30)
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Expressing the functions A0,1,2 (s, κ1, κ2) via the ordinary Bessel functions, (7.30)
can be presented in the form

ΔE = eE0Δt
∞∑

k=−∞

{
1

2
vxm cosβ cos γ

[
Js−1+2k (κ1) + Js+1+2k (κ1)

]

+ vz (sinα sin γ − cosα sin β cos γ) Js+2k (κ1)

− vzm (sinα sin γ − cosα sin β cos γ)
[
Js−2+2k (κ1) + Js+2+2k (κ1)

]}
Jk (κ2)

× cos
[
sΩt0 − sϕ + n0

ω0

c
(vz t0 − zm sin 2ϕ) cosα cosβ

]
. (7.31)

For theX-ray and γ-ray frequencieswhen n0 (ω0) � 1 the resonance condition (7.29)
corresponds to the normalDoppler effect at which the energy absorption from the EM
wave is accompanied by enhancement of the transverse oscillations of the positron
(in these cases s > 0 in (7.31)). For the optical frequencies when n0 (ω0) > 1 the
anomalous Doppler effect is possible as well:

1 − n0
vz

c
cosα cosβ < 0, (7.32)

which corresponds to enhancement of transverse oscillations of the positron at the
induced radiation (in (7.31) in this case s < 0). Under the condition

1 − n0
vz

c
cosα cosβ = 0, (7.33)

that is, the Cherenkov condition in the crystal channel corresponding to s = 0,
(7.29) expresses the real energy exchange at the positron–wave induced Cherenkov
interaction.

Equation (7.31) for the general geometry of the positron planar channeling at
the arbitrary propagation and polarization directions of the wave is very bulky. It
can be simplified in the case of a particular geometry of the induced interaction—if
the EM wave propagates along the direction of the positron motion in the channel
(axis z) with the electric field directed along the axis x—and the positron energy
E� � m2c4/E⊥. Then, for the number of harmonic s we have: s = 0, ±1 (for the
coherent accumulation of energy exchange), and for the frequencies satisfying the
resonance condition (7.29) one can suppose n0 (ω0) � 1. The latter excepts the
possibility of the induced Cherenkov effect (s = 0) and the anomalous Doppler
effect (s = −1) as well. Thus, for the induced energy exchange, we have a simple
formula

ΔE = eE0vxm

2
Δt cos

[(
Ω + ω0

vz

c

)
t0 − ϕ

]
. (7.34)
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As is seen from (7.31) and (7.34) depending on the initial conditions—a moment t0
when the positron enters into the crystal and a phaseϕ of the transverse oscillations—
either the direct or the inverse induced channeling effect occurs, i.e., positron deceler-
ation or acceleration, respectively. Hence, at the interaction of the channeled positron
beam with the monochromatic EM wave, the diverse particles entering into a crystal
at the different moments and in the different oscillation phases will acquire or lose
different energies. As a result, the modulation of the particles’ velocities will take
place leading to beam bunching if the longitudinal size of the latter lz > πvz/ω0.

7.2 Induced Interaction of Electrons with Strong EM Wave
at the Axial Channeling

As is known, for an electron axial channeling the effective electrostatic potential of the
atomic chain along the crystal axis is well enough described by the two-dimensional
Coulomb potential

U (ρ) = −αc

ρ
, (7.35)

where αc is a constant depending on the type of crystal and the particular geometry,
and ρ is the distance from the crystal axis. The transverse motion of the electron in
the field (7.35) with a nonzero momentum occurs by the Keplerian elliptic trajectory.
If one directs the coordinate axes OX and OY correspondingly along the major and
minor semiaxes of the ellipse and the axis OZ along the crystal axis, and if at the
moment t = t0 the electron is situated in the perihelion of the orbit of the transverse
motion with the coordinate z = z0, then the electron trajectory may be presented in
the known parametric form

x = a (cos ζ − ε) ; y = (−1)s ′
b sin ζ,

z = vz (t − t0) − a2 εΩ

c
sin ζ + z0, (7.36)

t = ζ − ε sin ζ

Ω
+ t0,

where for a full rotation of the electron by the elliptic orbit the parameter ζ varies
from zero to 2π. Here the parameters

a = αc

2 |E⊥| ; b = a
√
1 − ε2 (7.37)
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are the major and minor semiaxes of the ellipse,

ε =
√
1 − 2 |E⊥| M2

z c2

E�α2
c

(7.38)

is the eccentricity (Mz is the z-component of the orbital moment),

Ω = c
(2 |E⊥|) 3

2

αc

√E�

(7.39)

is the rotation frequency, and

vz = c

(
1 − m2c4

2E2
�

)
− c |E⊥|

E�

(7.40)

is themean longitudinal velocity of the electron.Theparameter s ′ in (7.36) determines
the right-hand or left-hand rotation of the electron by the elliptic orbit:

s ′ =

⎧⎪⎨
⎪⎩

0, Mz

|Mz | > 0,

1, Mz

|Mz | < 0.
(7.41)

As the electron trajectory at the axial channeling is of helical type from the point
of view of the symmetry in this issue, we will suppose that an EMwave has a circular
polarization:

Ex ′ = E0 cos (ω0t − k0r); Ey′ = E0 (−1)s ′′
sin (ω0t − k0r) (7.42)

correspondingly with the left-hand and right-hand rotations:

s ′′ =
{
0,
1,

left-hand,
right-hand.

The coordinate system x ′y′z′ relates to the xyz one in accordance with (7.23) and
in the case of the wave circular polarization one can assume that the Eulerian angle
γ = 0.

We will evaluate the induced effect at the axial channeling by (7.22) again in the
first order by the EM wave field. As far as the particle velocity and law of motion in
the channel in this case are determined in parametric form (7.36), it is necessary to
pass in (7.22) from the variable t to ζ. Then the induced energy exchange between
the channeled electron and EM wave will be written in the form
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ΔE = e

ζ(t2)∫

ζ(t1)

E(φ (ζ))
dr(ζ)

dζ
dζ, (7.43)

where Δt = t2 − t1 is the duration of electron–wave coherent interaction at the axial
channeling. In the first-order approximation for the wave phase in the integral (7.43)
with the help of (7.36 )–(7.41), we have

φ (ζ) = ω0t − k0r = ω0 − k0zvz

Ω
ζ − κ1 sin ζ − κ2 cos ζ + ψ, (7.44)

where
k0 = n0

ω0

c
(sin β,− sinα cosβ, cosα cosβ) ,

and the parameters κ1, κ2, ψ in this case are

κ1 = ε

Ω
(ω0 − k0zvz) + (−1)s ′

k0yb − k0za
2ε

Ω

c
; κ2 = ak0x ,

ψ = ω0t0 + k0x aε − k0z z0.

Performing integration in (7.43) with the help of (7.36) and (7.44), we obtain the
following ultimate equation for the coherent energy exchange between the electron
and external strong EM wave at the axial channeling:

ΔE = −eE0ΩΔt

{
Js (κ)

[
(−1)s ′′

sinα sinϕ − cosα sin β cosϕ
] vz

Ω

+ s

κ
Js (κ)

[
a cosβ sinϕ1 cosϕ + (−1)s ′

b sinα sin β cosϕ cosϕ1

+ (−1)s ′+s ′′
b cosα sinϕ cosϕ1 +

(
1 + 2c |E⊥|

vzE�

)
εvz

Ω
(
cosα sin β cosϕ cosϕ1 − (−1)s ′′

sinα sinϕ cosϕ1

)]

+ J ′
s (κ)

[
a cosβ sinϕ cosϕ1 + (−1)s ′

b sinα sin β sinϕ sinϕ1

+ (−1)s ′+s ′′
b cosα cosϕ sinϕ1 −

(
1 + 2c |E⊥|

vzE�

)
εvz

Ω

×
(
cosα sin β sinϕ sinϕ1 + (−1)s ′′

sinα sinϕ1 cosϕ
)]}

, (7.45)

where the parameters κ, ϕ1, and ϕ are

κ =
√

κ
2
1 + κ

2
2,
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ϕ1 = κ1

|κ1| arcsin
κ2

κ
, (7.46)

ϕ = ω0t0 − n0
ω0

c
z0 cosα cosβ + aεn0

ω0

c
sin β − sϕ1.

The physical analysis of (7.45) is the same as was made for the positron planar chan-
neling. So, we will not repeat the analogous analysis, noting only that the condition
of resonance at the axial channeling for coherent energy exchange (7.45) is given by
(7.29), where the frequency of transverse oscillationsΩ of the electron is determined
by (7.39).

Equation (7.46) corresponding to general geometry of the electron axial chan-
neling in the arbitrary propagation and polarization directions of the wave is very
bulky. It is rather simplified if the wave propagates along the direction of the elec-
tron motion in the channel (axis z) with the components of the electric field strength
directed along the axes x and y , as well as the electron energy should not exceed the
value m2c4/E⊥. For the induced energy exchange, we have the following ultimate
equation:

ΔE = −eE0ΩΔt
{

a J ′
s (κ) + b (−1)s ′+s ′′ s

κ
Js (κ)

}

× sin
(
ω0t0 − n0

ω0

c
z0
)

. (7.47)

The existence of diverse harmonics in (7.47) is related to the anharmonic character
of the electron transverse oscillations in the field (7.35) (in contrast to (7.34) for the
planar channeling, at which the positron is a harmonic oscillator in the channel).

In addition, note that (7.45) and (7.47), due to their coherent dependence on the
interaction phase, lead to the electron beam classical modulation and bunching after
the interaction with the stimulating wave at the axial channeling analogously to the
positron beam bunching at the planar channeling.

7.3 Quantum Description of the Induced Planar
Channeling Effect

Consider the interaction of the particles channeled in a crystal and a plane mono-
chromatic EM wave in the scope of the quantum theory. First, we will study the case
of a weak wave when the one-photon absorption and emission processes dominate
and the induced channeling effect may be described within the quantum perturbation
theory by the particle wave function in the linear over the field approximation with
respect to the initial state in the potential field of the crystal channel. It means that
the latter should be described exactly.

We will start from the Dirac equation which in the case of the planar channeling
of a positron in the field of an external EM wave is written as
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i�
∂Ψ

∂t
= (Ĥ0 + V̂

)
Ψ, (7.48)

Ĥ0 = cα̂p̂ + β̂mc2 + U (x) ; V̂ = −eα̂A, (7.49)

where α̂, β̂ are the Dirac matrices in the standard representation (3.2). According to
perturbation theory, we seek the solution of (7.49) in the form

Ψ = Ψ0 + Ψ1 + · · ·; |Ψ1| � |Ψ0| ,...,

where Ψ0 satisfies the following equation for the positron in the electrostatic field of
the crystal channel:

i�
∂Ψ0

∂t
= [cα̂p̂ + β̂mc2 + U (x)

]
Ψ0 (7.50)

with the effective potential U (x) (7.3). The particular solution of (7.50) may be
presented in the form

Ψ0 (r, t) = b

⎛
⎝

ϕ

χ

⎞
⎠ e− i

�
E t , (7.51)

where ϕ and χ are spinor functions, E is the total energy of the positron in the
potential field of the channel, and b is the normalization coefficient. From (7.50) for
the spinor functions ϕ and χ, we obtain the following set of equations:

Eϕ = c (σp̂)χ + mc2ϕ + U (x) ϕ,

Eχ = c (σp̂)ϕ − mc2χ + U (x) χ, (7.52)

where σ = (σx ,σy,σz) are the Pauli matrices (1.79). Eliminating χ from the first
equation (7.52):

χ = cσp̂
E + mc2 − U (x)

ϕ, (7.53)

for the spinor function ϕ, we obtain a differential equation of the second order:

Δϕ + 1

�2c2
(
[E − U (x)]2 − m2c4

)
ϕ + σ∇U (x)

E + mc2 − U (x)
(σ∇) ϕ = 0. (7.54)

The solution of (7.54) is sought in the form

ϕ = wψ (x) e
i
�

p�r =
⎛
⎝

w1

w2

⎞
⎠ψ (x) e

i
�

p�r, (7.55)

http://dx.doi.org/10.1007/978-3-319-26384-7_3
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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where ψ (x) is the positron wave function corresponding to the transverse motion in
the potential well of the channel, and w is a constant spinor which should be defined
from the wave function normalization condition

w†w = w∗
1w1 + w∗

2w2 = 1.

Neglecting the small terms of the order Umax/E � 1 (or E⊥/E � 1) in (7.54), for
the positron wave function describing the transverse motion in the crystal channel,
we obtain a one-dimensional Schrödinger equation in the potential field U (x)

d2ψ (x)

dx2
+ 2mef f

�2
[E⊥ − U (x)]ψ (x) = 0, (7.56)

with the effectivemassmef f corresponding to the energyE� of relativistic longitudinal
motion

mef f = E�

c2
=
√

p2
�

c2
+ m2. (7.57)

In (7.56) E⊥ = E − E� is the energy of transverse motion, which parametrically
depends on the energy of longitudinal motion E⊥ = E⊥

(E�

)
. In the case of pla-

nar channeling of positrons with the harmonic potential (7.3), (7.56) describes the
quantum harmonic oscillator the solution of which is given by

ψn (x) =
( E�Ω

π�c2

) 1
4 1√

2nn!e− E�Ω

2�c2
x2Hn

(√
E�Ω

�c2
x

)
, (7.58)

where

Hn (ξ) = (−1)n eξ2 dne−ξ2

dξn
(7.59)

are the Hermit polynomials, and the quantization law for the positron transverse
energy is

E⊥
(
n, E�

) =
(

n + 1

2

)
�Ω, (7.60)

where Ω is given by (7.15).
Finally, with the help of (7.55) and (7.51), the solution of (7.48) for the positron

wave function with the longitudinal momentum p� in the n-th bound state of the
transverse motion and spin state σ can be written as

Ψp�,n,σ (r, t) =
√
E� + mc2

2E�

⎛
⎝

ϕσ

cσp̂
E+mc2−U (x)

ϕσ

⎞
⎠ψn (x) e

i
� (p�r−E t), (7.61)
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where ϕσ are the spinors (3.11), and the total energy E is given by the relation

E (p�, n
) =

√
c2p2

�
+ m2c4 +

(
n + 1

2

)
�Ω. (7.62)

Now we can evaluate the wave function of the channeled positron at the induced
interactionwith an external EMwave in the first approximation of perturbation theory
(Ψ1) on the basis of (7.61), (7.62) for unperturbed (by the wave) state in the crystal
channel (Ψ0).

Before the interaction with a plane monochromatic EM wave assume that a
positron with an initial longitudinal momentum p� = (0, py, pz) is situated in the
bound state of the crystal channel characterized by the quantum numbers n,σ, that
is, the initial state is described by the wave function

Ψ0 (r, t) = Ψp�,n,σ (r, t) . (7.63)

The positron wave function Ψ1 perturbed by the EM wave will be expanded in terms
of the full basis of the eigenstates (7.63) with (7.61), (7.62):

Ψ1 (r, t) =
∑

p′
�
,n′,σ′

ap′
�
,n′,σ′ (t) Ψp′

�
,n′,σ′ (r, t) , (7.64)

whereap′
�
,n′,σ′ (t) are unknown functions, and the summation ismade over all possible

states of the positron transverse motion in the potential well corresponding to planar
channeling. Substituting the wave function Ψ = Ψ0 + Ψ1 with (7.63) and (7.64)
in the Dirac equation (7.48) and neglecting the small terms of the second order by
the quantity ∼ eα̂AΨ1 (in accordance with the perturbation theory), we obtain the
following differential equation for the expansion coefficients ap′

�
,n′,σ′ :

∑
p′

�
,n′,σ′′

�
∂ap′

�
,n′,σ′

∂t
Ψp′

�
,n′,σ′ (r, t) = ieα̂A (r, t) Ψp�,n,σ (r, t) . (7.65)

Multiplying (7.65) on the left-hand side by Ψ
†
p′

�
,n′,σ′ (r, t) and integrating over drdt

one can present the solution of (7.65) in the form

ap′
�
,n′,σ′ = i

eA0

4

√
2�Ω

E�

δσ′σ

[√
nδn′+1,n − √

n + 1δn′−1,n

]

×
[
δ

p′
�

,p�+�k0

e− i
� (E(p�,n)−E(p′

�
,n′)+�ω0)t

E (p�, n
)− E (p′

�
, n′)+ �ω0

+ δ
p′
�

,p�−�k0

e− i
� (E(p�,n)−E(p′

�
,n′)−�ω0)t

E (p�, n
)− E (p′

�
, n′)− �ω0

]
. (7.66)

http://dx.doi.org/10.1007/978-3-319-26384-7_3


7.3 Quantum Description of the Induced Planar Channeling Effect 207

In (7.66) it was assumed that the wave propagates in the plane yz with the vector
potential directed along the axis x :

Ax = A0 cos (ω0t − k0r) ,

andwas taken into account that for actual cases�ω0/E� � 1 and the positron energies
E < m2c4/U0 as well.

As is seen from (7.66) only the following expansion coefficients differ from zero

ap�+�k0,n−1,σ (t) = D√
n

e−i(ω+Ω)t

ω + Ω
,

ap�+�k0,n+1,σ (t) = −D√
n + 1

e−i(ω−Ω)t

ω − Ω
,

ap�−�k0,n−1,σ (t) = −D√
n

ei(ω−Ω)t

ω − Ω
, (7.67)

ap�−�k0,n+1,σ (t) = D√
n + 1

ei(ω+Ω)t

ω + Ω
,

where the quantity D is

D = i
eA0

2�

√
�Ω

2E�

, (7.68)

and the Doppler-shifted wave frequency ω is

ω = ω0 − k0v�; v� = c2p�

E�

. (7.69)

The expressions in (7.67) show that the second and third coefficients have a resonance
character due to which the induced channeling effect occurs—resonance absorption
of thewave photons by a channeled particle and coherent emission of the photons into
the wave. Hence, neglecting in (7.64) the small terms with nonresonant expansion
coefficients (first and fourth ones in (7.67)) of the perturbed wave function for the
probability density of the positron at the planar channeling we will have

W (r, t) = ϕ2
n (x) + eA0

� (ω − Ω)

√
�Ω

2E ϕn (x)

×
[√

n + 1ϕn+1 (x) − √
nϕn−1 (x)

]
sin (k0r − ω0t). (7.70)

In the case of the exact resonance (ω = Ω) (7.70) is not applicable. In this case the
solution of (7.65) for the probability density of the positron gives



208 7 Induced Channeling Process in a Crystal

W (r, t) = ϕ2
n (x) + eA0

�

√
�Ω

2E ϕn (x)

×
[√

nϕn−1 (x) − √
n + 1ϕn+1 (x)

]
Δt cos (k0r − ω0t), (7.71)

where Δt is the period of channeled positron interaction with EM wave.
As is seen from the (7.70) and (7.71) the probability density of the positron due to

the induced channeling effect is modulated at the stimulating wave frequency (in the
one-photon approximation; in the next orders of perturbation theory, we will obtain
modulation at the harmonics of the wave fundamental frequency).

The condition of validity of the perturbation theory at which the obtained formulas
are applicable can be obtained from (7.71):

eE0vxmΔt

�ω0
� 1, (7.72)

where vxm is the maximal velocity of transverse motion of the positron in the channel
of the crystal (see (7.18)):

vxm = c

√
2n�Ω

E�

= c

√
2E⊥
E�

. (7.73)

7.4 Quantum Description of the Induced Axial
Channeling Effect

At the axial channeling the state of the electron is characterized by the projection
of the momentum pz on the crystal axis z, and due to the axial symmetry of the
effective electrostatic potential of an atomic chain within the channel the projection
of the orbital moment of the electron on the same axis is conserved.

The Dirac equation for an electron at the axial channeling is written in the form
(7.48) with the Hamiltonian

Ĥ0 = cα̂p̂ + β̂mc2 + U (ρ), (7.74)

where U (ρ) is given by (7.35). The interaction of the electron with the external
EM wave will again be taken into account by perturbation theory (in the one-photon
approximation):

Ψ = Ψ0 + Ψ1; |Ψ1| � |Ψ0|,

where Ψ0 is the electron wave function in a crystal at the axial channeling, which
satisfies the equation
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i�
∂Ψ0

∂t
= [cα̂p̂ + β̂mc2 + U (ρ)

]
Ψ0. (7.75)

The solution of (7.75) may be presented in the form

Ψ0 (r, t) = b

(
Φ

χ

)
e

i
�

(pz z−E t), (7.76)

where E is the total energy of the electron and b is the normalization coefficient. The
bispinors Φ and χ are connected by the relation

χ = cpzσz + ĉpσ

E + mc2 − U (ρ)
Φ. (7.77)

From (7.75) for the wave function of the electron transverse motion in the channel
with the accuracy of a small term ∼ U0/E , we obtain the equation

Δρ,ϕΦ (ρ,ϕ) + 2E�

�2c2
[E⊥ − U (ρ)]Φ (ρ,ϕ) = 0, (7.78)

where

Δρ,ϕ = 1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2
∂2

∂ϕ2

is the two-dimensional Laplacian,

E� =
√

c2 p2
z + m2c4

is the energy of the electron longitudinal motion, and E⊥ = E−E� is the transverse
one.

As is seen from (7.78) for wave function Φ (ρ,ϕ) the variables are separated and
the eigenvalue of the operator

L̂ z = −i�
∂

∂ϕ

—the projection of the orbital moment of the electron on the z axis is conserved.
Then the wave function Φ (ρ,ϕ) can be represented in the form

Φ (ρ,ϕ) = Φ (ρ) eimϕ; m = 0,±1,±2, ..., (7.79)

where m is the azimuthal quantum number, and from (7.78) for the function

R (ρ) = Φ (ρ)√
ρ

, (7.80)
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we obtain the equation

R′′ + 2

ρ
R′ +

[
2E�

�2c2

(
E⊥ + αc

ρ

)
− m2 − 1/4

ρ2

]
R = 0. (7.81)

For the solution of (7.81) we pass from ρ to a new variable

r = 2

�c

√
2E�

|E⊥|ρ, (7.82)

and making a notation

n = αc

�c

√
E�

2 |E⊥| , (7.83)

then introducing the function R (r) in the form

R (r) = r |m|−1/2e−r/2w (r) , (7.84)

for the new function w (r), we obtain the equation

rw′′ +
[
2

(
|m| − 1

2

)
+ 2 − r

]
w′ +

(
n − |m| − 1

2

)
w = 0. (7.85)

The solution of (7.85) should not diverge at infinity more quickly than a limited
power r and must be confined at r = 0. The function satisfying the second condition
is the degenerated hypergeometric function

w (r) = F

(
−n + |m| + 1

2
, 2 |m| + 1, r

)
, (7.86)

and the solution satisfying the first condition at infinity will be obtained only at the
integer negative (or equal to zero) values of the argument −n + |m| + 1/2 when
the function (7.86) turns to polynomial with the power n − |m| − 1/2. Otherwise it
diverges at infinity as er . Hence, the number n must be a positive half-integer, and
at the specified number m it is necessary that

n ≥ |m| + 1

2
; n = |m| + 1

2
+ nρ; nρ = 0, 1, 2, . . . . (7.87)

These conditions determine the quantization law of the electron transverse motion
in the potential well of the crystal at the axial channeling. Thus, from (7.83) for the
spectrum of the transverse energy eigenvalues of the electron bound states in the
potential field (7.35), we obtain
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E⊥ = − α2
cE�

2�2c2n2
. (7.88)

With the help of (7.77), (7.79), (7.84) and (7.86) for the wave function of the chan-
neled electron (7.76), normalized for one particle per unit volume, we will have the
equation

Ψ0 (r, t) = Ψpz ,n,m,σ (r, t) =
√
E� + mc2

2E�

⎛
⎝

ϕσ

cσ p
E+mc2−U (ρ)

ϕσ

⎞
⎠

×
√

ρ

2π
Rn,|m|−1/2 (ρ) eimϕe

i
�

(pz z−E t), (7.89)

where ϕσ is a constant spinor determined in (7.61), and the function Rn,|m|−1/2 (ρ) is

Rn,|m|−1/2 (ρ) =
(E�αc

�2c2

)3/2 4

n|m|+3/2

√
2 (n + |m| − 1/2)!
(n − |m| − 1/2)!

(
4E�αcρ

�2c2

)|m|−1/2

× exp

{
−2E�αc

n�2c2
ρ

}
F

(
−n + |m| + 1/2, 2 |m| + 1,

4E�αc

n�2c2
ρ

)
.

(7.90)

The total energy E in (7.89) is given by the relation

E (pz, n) =
√

c2 p2
z + m2c4 − 2α2

cE�

�2c2n2
. (7.91)

To determine the electron wave function Ψ1 perturbed by the EM wave in the next
approximation of perturbation theory, one needs the concrete form of the wave vector
potential. Let it have the form

Ax = A0 cos (ω0t − k0z),

Ay = A0 sin (ω0t − k0z). (7.92)

Expanding Ψ1 in terms of the full basis of the eigenstates (7.89)

Ψ1 (r, t) =
∑

p′
z ,n

′,m ′,σ′
cp′

z ,n
′,m′,σ′ (t) Ψp′

z ,n
′,m′σ′ (r, t), (7.93)

and substituting the wave function in the first approximation of perturbation theory
Ψ0+Ψ1 into (7.48)with (7.89)–(7.92), then after the solution of the obtained equation
for unknown expansion coefficients cp′

z ,n
′,m′ (t) we will have
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cp′
z ,n

′,m′,σ′ = −i
eA0

2c
Ωn′nDm′m

n′n δσσ′

{
e− i

� (E(pz ,n)−E(p′
z ,n

′)+�ω0)t

E (pz, n) − E (p′
z, n′)+ �ω0

δm′,m+1

× δp′
z ,pz+�k0 + e− i

� (E(pz ,n)−E(p′
z ,n

′)−�ω0)t

E (pz, n) − E (p′
z, n′)− �ω0

δm′,m−1δpz ,pz−�k0

}
,

(7.94)

where

Dm′m
n′n =

∞∫

0

ρ3Rn′,|m′|−1/2 (ρ) Rn,|m|−1/2 (ρ) dρ, (7.95)

and

Ωn′n = E⊥n′ − E⊥n

�
= − 2E�α

2
c

�3c2n′2n2

(
n′ + n

) (
n′ − n

)
(7.96)

is the transition frequency between the initial and excited states of the transverse
motion of the electron in the crystal channel.

Equations (7.93) and (7.94) determine the wave function of the one-photon
induced axial channeling effect. With the help of the latter, the probability density
(Ψ +Ψ ) of the electron after the interaction can be presented in the form

W = ρ

2π
R2

n,|m|−1/2 (ρ) + eA0ρ

2π�
Rn,|m|−1/2 (ρ)

×
⎧⎨
⎩

∑
n′�|m+1|+1/2

Ωn′n
Rn,|m+1|−1/2 (ρ)

ω − Ωn′n
Dm+1m

n′n

+
∑

n′�|m−1|+1/2

Ωn′n
Rn′,|m−1|−1/2 (ρ)

ω + Ωn′n
Dm−1m

n′n

⎫⎬
⎭ sin (k0z − ω0t + ϕ), (7.97)

where the Doppler-shifted wave frequency ω is

ω = ω0

(
1 − n0

cpz

E�

)
. (7.98)

As in the case of the planar channeling the electron probability density is modu-
lated at the wave frequency. Consequently, the electric current density in the case of
an electron beam will be modulated at the stimulating wave frequency and its har-
monics (corresponding equations for the modulation at the harmonics can be found
in the next approximation of perturbation theory). Equation (7.97) is complicated
enough for general forms of the functions Rn,m (ρ) and Dm′m

n′n . It is rather simpli-
fied for resonant transitions of the electron from the initial bound state of transverse
motion to the neighbor ones. Thus, from (7.88), (7.95), and (7.96), we obtain that in
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the expression of the modulation depth quantity Ωn′nDm′m
n′n ∼ √E⊥/E�. The latter is

the amplitude of the velocity of the electron transverse motion in the channel v⊥m .
Besides, the resonant denominators in (7.97) define the period of coherent interaction
of the electron with the EM wave in the channel: (ω − Ωn′n)

−1 → Δt . Hence, the
modulation depth ∼ eE0v⊥mΔt/ω � 1 in accordance with the perturbation theory.

Note that in general the functionDm′m
n′n determined by (7.95) may be presented in

the form

Dm′m
n′n = �

2c2

E�αc

2|m| + |m′|
n|m|+3/2n′|m′|+3/2 (2 |m|)! (2 |m′|)!

×
√

(n + |m| − 1/2)! (n′ + |m′| − 1/2)!
(n − |m| − 1/2)! (n′ − |m′| − 1/2)!

∞∫

0

z|m|+|m′|+2e−(1/n′+1/n)z

× F

(
−n + |m| + 1

2
, 2 |m| + 1,

2z

n

)
F

(
−n′ + ∣∣m′∣∣+ 1

2
, 2
∣∣m′∣∣+ 1,

2z

n′

)
dz.

(7.99)

In (7.95) integral is known as a function

J sp
γ

(
α,α′) =

∞∫

0

e− κ+κ
′

2 z zγ−1+s F (α, γ, κz) F
(
α′, γ − p, κ

′z
)

dz,

which is expressed via J 00
γ

(
α,α′) by the recurrent relations.

7.5 Multiphoton Induced Channeling Effect

In the quantum description of the induced channeling effect in the previous two
sections, the wave field was a weak enough so that the interaction process hadmainly
one-photon character. The coherent (resonant) interaction of the channeled particles
with a strong EM wave from the quantum point of view has multiphoton character.
Here we will consider the induced channeling effect in the strong wave fields in the
scope of quantum theory, that is, we will solve the quantum equations of motion for
channeled electrons or positrons in the strong plane EM wave field.

We will assume that the wave propagates in the yz plane of a crystal and is
polarized in the xy plane with the vector potential

A =
{

Ax

(
t − n0

z

c

)
, Ay

(
t − n0

z

c

)
, 0
}
, (7.100)

where n0 ≡ n(ω0) is the refractive index of the medium at the carrier frequency of
the wave.Wewill consider the case when averaged potential of the crystal for a plane
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channeled particle is satisfactorily described by the harmonic potential

U (x) = κ
x2

2
. (7.101)

For the positron at the planar channeling

κ = 8U0

d2
(7.102)

(see the potential (7.3)), while for the electrons the approximate potential of the
channel is actually not harmonic and described by the potential

U (x) = − U0

cosh2
(

x
b

) . (7.103)

Nevertheless, for the high energies it can be approximated by the harmonic potential
(7.101). As we saw in previous sections, for the channeled particles the depth of
the potential hole U0 � E , where E is the particle energy. The spin interaction,
which is ∼ �U (x), is again less than E . For this reason, the transverse motion of the
channeled particle is described by the Schrödinger equation (7.56) with the effective
mass mef f = E�/c2. On the other hand, the spin interaction can play a role in the
particle–wave interaction process at the energy of the photon comparable with the
particle one: �ω0 ∼ E . If the particle energy is not high enough, i.e., E � m2c4/E⊥
(optimal cases for the channeling), then the resonant interaction of the channeled
particles with an external EM wave takes place at �ω0 � E and the spin effects are
not essential. Hence, one may ignore the spin interaction and instead of the Dirac
equation solve the Klein–Gordon equation

[
i�

∂

∂t
− U (x)

]2
Ψ =

[
c2
(

p̂ − e

c
A
(

t − n0
z

c

))2 + m2c4
]

Ψ. (7.104)

As we saw in Sect. 7.3 the channeled particle initial motion (before the interaction
with EM wave) is separated into longitudinal (y, z) and transverse (x) degrees of
freedom. For the longitudinal motion, we assume an initial state with a momentum
p� = {

0, py, pz
}
, while for the transverse motion we assume a quantum state {n},

where by n we indicate the energy levels in the harmonic potential (7.101). As the
plane wave field depends only on the retarding coordinate τ = t − n0z/c, then using
the problem symmetry the wave function of a channeled particle can be sought in
the form

Ψ (r, t) = f (x, τ )e
i
� (p�r−E t). (7.105)

The multiphoton interaction of the charged particles with a strong EM wave, in
general, as was shown in diverse processes is well enough described by the eikonal-
type wave function corresponding to a slowly varying function f (x, τ ) on the wave
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coordinate τ . Hence, neglecting the second derivatives of this function compared
with the first-order ones in accordance with the conditions (3.92) for the function
f (x, τ ) we will obtain the equation

[
�
2 ∂2

∂x2
+ 2E�

c2
(E⊥ − U (x)) + 2i

p̃�

c

∂

∂τ
− 2i

e�

c
Ax (τ )

∂

∂x

+ 2
e

c
py Ay (τ ) − e2

c2
A2 (τ )

]
f (x, τ ) = 0, (7.106)

where

p̃ = 1

c

(E� − n0cpz
)
. (7.107)

In (7.106), the transverse and longitudinal motions are not separated. But after
the definite unitarian transformation for the transformed function, the variables are
separated. The corresponding unitarian transformation operator is

Ŝ = e
i
�

{g1(τ )x−g2(τ ) p̂x }, (7.108)

where the functions g1(τ ), g2(τ ) will be chosen to separate the transverse and lon-
gitudinal motions and to satisfy the initial condition. Taking into account (4.54) for
transformed function

Φ(x, τ ) = Ŝ f (x, τ ), (7.109)

we obtain the equation

[
�
2 ∂2

∂x2
+ 2E�

c2
(E⊥ − U (x)) + 2i�

(
p̃

c

dg2 (τ )

dτ
− g1(τ ) − e

c
Ax (τ )

)
∂

∂x

+ 2

c

(
p̃

dg1 (τ )

dτ
+ E�κ

c
g2(τ )

)
x + 2i p̃�

c

∂

∂τ
+ Q (τ )

]
Φ(x, τ ) = 0, (7.110)

where

Q (τ ) = p̃

c

(
dg2 (τ )

dτ
g1(τ ) − dg1 (τ )

dτ
g2(τ )

)
− g21(τ ) − E�κ

c2
g22(τ )

− 2e

c
Ax (τ ) g1(τ ) + 2e

c
py Ay (τ ) − e2

c2
A2 (τ ) . (7.111)

Let us choose g1(τ ) and g2(τ ) in such a form that the coefficients of x and ∂/∂x
in (7.110) become zero. Then for the functions g1(τ ) and g2(τ ), we will obtain
a classical equation of motion describing stimulated oscillations in the harmonic
potential:

dg1 (τ )

dτ
= −E�κ

c p̃
g2(τ ), (7.112)

http://dx.doi.org/10.1007/978-3-319-26384-7_3
http://dx.doi.org/10.1007/978-3-319-26384-7_4
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dg2 (τ )

dτ
= c

p̃
g1(τ ) + e

p̃
Ax (τ ) . (7.113)

The solutions of (7.112) and (7.113) can be written as

g1 (τ ) = eΩ ′

c
Im

⎡
⎣e−iΩ ′τ

τ∫

−∞
Ax (τ ) eiΩ ′τ ′

dτ ′
⎤
⎦ , (7.114)

g2 (τ ) = e

p̃
Re

⎡
⎣e−iΩ ′τ

τ∫

−∞
Ax (τ ) eiΩ ′τ ′

dτ ′
⎤
⎦ , (7.115)

where

Ω ′ = Ω

1 − n0
vz

c

; Ω = c
√

κ/E�. (7.116)

In (7.114) and (7.115) we have taken into account the initial condition

g1(−∞) = g2(−∞) = 0.

After the unitarian transformation (7.109) for the function Φ(x, τ ) the following
equation is obtained:

[
�
2 ∂2

∂x2
+ 2E�

c2
(E⊥ − U (x)) + 2i p̃�

c

∂

∂τ
+ Q (τ )

]
Φ(x, τ ) = 0. (7.117)

Now in (7.117) the variables are separated and the solution can be written as follows:

Φ(x, τ ) = Nϕn (x) exp

⎧
⎨
⎩i

c

2� p̃

τ∫

−∞
Q (τ ) dτ ′

⎫
⎬
⎭ , (7.118)

where ϕn (x) coincides with the harmonic oscillator wave function (7.58) and
N = 1/

√
L y Lz is the normalization constant (L y and Lz are the quantization lengths).

By inverse transformation

f (x, τ ) = Ŝ†Φ(x, τ ),

with the help of (4.66), we obtain the solution of the initial equation (7.104) (taking
into account (7.105)):

http://dx.doi.org/10.1007/978-3-319-26384-7_4
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Ψ (r, t) = N exp

{
i

�

(
p�r−E t

)}
ϕn (x + g2 (τ ))

× exp

⎧⎨
⎩

i

�

⎡
⎣ c

2 p̃

τ∫

−∞
Q (τ ) dτ ′ − 1

2
g1(τ )g2 (τ ) − g1(τ )x

⎤
⎦
⎫⎬
⎭ , (7.119)

where the function Q (τ ) can be represented in the form

Q (τ ) = 2e

c
py Ay (τ ) − e

c
Ax (τ ) g1(τ ) − e2

c2
A2 (τ ) . (7.120)

This wave function describes themultiphoton interaction of the channeled particle
with the strong EM radiation field. Thus, for a monochromatic wave

A = {A0 cos (ω0t − k0z) , 0, 0} ,

from (7.114) and (7.115) for the functions g1(τ ) and g2(τ ), we obtain

g1 (τ ) = e

c
A0

Ω ′2

Δ
cosω0τ ,

g2 (τ ) = eA0

p̃

ω0

Δ
sinω0τ , (7.121)

and we will have the following wave function for the particle in the field of a strong
EM wave at the planar channeling:

Ψ (r, t) = N exp

{
i

�

(
p�r−E t − e2 A2

0ω
2
0

4c p̃Δ
τ

)}
ϕn

(
x + eA0ω0

p̃Δ
sinω0τ

)

× exp

{
− i

�

[
eA0Ω

′2

cΔ
x cosω0τ + e2 A2

0ω0
(
ω2
0 + Ω ′2)

8c p̃Δ2
sin (2ω0τ )

]}
,

(7.122)

where
Δ = ω2

0 − Ω ′2

is the resonance detuning.
On the basis of the obtained wave function (7.119) consider the possibility of

multiphoton excitation of transverse levels by the strong EM wave at the resonance

ω0 � Ω∣∣1 − n0
vz

c

∣∣ . (7.123)

The Doppler factor 1 − n0vz/c may be positive as well as negative—anomalous
Doppler effect at n0 > 1. We will consider the actual case of a quasimonochromatic
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EMwave with a slowly varying amplitude A0(τ ). After the interaction with the wave
(t → +∞) from (7.114) and (7.115) at the resonance condition (7.123), we have

g1 (τ ) = eA0T Ω ′

2c
sinω0τ , (7.124)

g2 (τ ) = eA0T

2 p̃
cosω0τ , (7.125)

where T is the coherent interaction time (for actual laser radiation T is the pulse
duration) and A0 is the average value of the slowly varied envelope. Substituting
(7.124) and (7.125) into the expression for the wave function (7.119) and expanding
the latter in terms of the full basis of the particle eigenstates

Ψ (r, t) =
∑
p′

�
,n′

ap′
�
,n′ (t) Ψp′

�
,n′ (r, t), (7.126)

we find the probabilities of the multiphoton induced transitions between the trans-
verse levels. To calculate the expansion coefficients

ap′
�
,n′ (t) =

∫
Ψ ∗

p′
�
,n′ (r, t) Ψ (r, t) dr, (7.127)

we will take into account the result of the integration (4.73). Taking into account
(7.124), (7.125), (7.119), and (7.127), we get the following expansion coefficients:

ap′
�
,n′ (t) = In,n′ (α) δp′

y ,py δp′
z ,pz + μ�k0(n′−n)

× exp

{
i

�
(E(p′

�
, n′) − E(p�, n) − μ�ω0(n

′ − n))t + iφ

}
, (7.128)

where

μ = 1 − n0
vz

c∣∣1 − n0
vz

c

∣∣ ,

and

φ ≡ c

2� p̃

∞∫

−∞
Q (τ ) dτ ′

is the constant phase. Here the argument of the Lagger function In,n′ (α) is

α = e2 A
2
0T 2

8�

Ω ′

c p̃
. (7.129)

http://dx.doi.org/10.1007/978-3-319-26384-7_4
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According to (7.128) the transition of the particle from an initial state {py, pz, n}
to a state {p′

y, p′
z, n′} is accompanied by the emission or absorption of

∣∣n − n′∣∣
number of photons. Consequently, substituting (7.128) into (7.126), we can rewrite
the particle wave function in the form

Ψ (r, t) = N
∞∑

n′=0

In,n′ (α) exp

{
i

�

(
py y + (pz + μ�k0(n

′ − n))z
)}

× exp

{
− i

�

(E(p�, n) + μ�ω0(n
′ − n)

)
t + iφ

}
ϕn′ (x) . (7.130)

Hence, the probability of the induced transitions n → n′ between the energy levels
of the particle transverse motion in the channel finally is defined from (7.130):

Wn,n′ = I 2n,n′

(
e2 A

2
0T 2Ω ′

8�c p̃

)
. (7.131)

Equation (7.130) shows that in the field of a strong EMwave the transverse levels
are excited at the absorption of the wave quanta if 1 − n0vz/c > 0 and μ = 1,
corresponding to the normal Doppler effect, while in the case 1 − n0vz/c < 0 and
μ = −1 the transverse levels are excited at the emission of coherent quanta due to
the anomalous Doppler effect.

Let us now estimate the average number of emitted (absorbed) photons by the
particle at the resonance for the high excited levels (n � 1) and for the strong EM
wave. In this case, the most probable number of photons in the strong wave field
corresponds to the quasiclassical limit (

∣∣n − n′∣∣ � 1) when multiphoton processes
dominate and the nature of the interaction process is very close to the classical one.
In this case, the argument of the Lagger function can be represented as

α = 1

4n

(�Ecl

�ω0

)2

, (7.132)

where

�Ecl = eE0T

2

v⊥∣∣1 − n0
vz

c

∣∣

is themaximal energy change of the particle according to classical perturbation theory
(E0 is the amplitude of the electric field strength of the EMwave, v⊥ � c

√
2n�Ω/E�

is the particle mean transverse velocity). Note that according to conditions (3.92) of
the considered eikonal approximation ΔE � E .

The Lagger function is maximal at α → α0 =
(√

n′ − √
n
)2
, exponentially

falling beyond α0. Hence, for the transition n → n′ and when
∣∣n − n′∣∣� n we have

http://dx.doi.org/10.1007/978-3-319-26384-7_3
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α0 �
(
n′ − n

)2
4n

.

The comparison of this expression with (7.132) shows that the most probable tran-
sitions are ∣∣n − n′∣∣ � �Ecl

�ω0
,

in accordance with the correspondence principle.
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Chapter 8
Nonlinear Mechanisms of Free
Electron Laser

Abstract The problem of creation of shortwave coherent EM radiation sources in
general aspects reduces to the implementation of free electron lasers (FEL). The prin-
cipal advantage of a FEL with respect to traditional quantum generators operating
on discrete transitions in atomic/molecular systems is that the radiation frequency is
continuously Doppler upshifted due to high relativism of electron beams, providing
rapid tunability over a broad range of frequencies up to γ-ray. Among the diverse ver-
sions of FEL at present the undulator scheme is being actively developed. Although
the amplifying frequencies are still far from X-ray, the main hopes for an efficient
X-ray FEL remain associated with the undulator scheme based on the accumula-
tion of coherent radiation of ultrarelativistic electron beams in the Self-Amplified
Spontaneous Emission (SASE) regime, in which the initial shot noise on the electron
beam is amplified over the course of propagation through a long wiggler. For that
it is required that the lengths are on the order of several ten to hundred meters. The
recent experimental success shows the feasibility of construction of such facilities.
Nevertheless, because there are no drivers or mirrors operable at X-ray wavelengths
the problem reduces to amplification/generation of coherent radiation in the single-
pass regime. It is clear that the latter can be achieved with more efficiency via the
nonlinear schemes of FEL induced by strong pump EM fields. The latter will con-
siderably abbreviate the amplification length as well and one can expect small setup
FEL devices. On the other hand, as the photon wavelength moves into the deep UV
and X-ray regions the interaction becomes quantummechanical, i.e., quantum recoil
becomes comparable to or larger than the gain bandwidth and quantum effects play
an essential role. The quantum effects are also essential if one considers the FEL
versions where one or two degrees of freedom of the charged particles are quantized
and the resonant enhancement of electron–photon interaction cross section holds.
This takes place for the X-ray laser schemes based on the electron/positron beam
channeling radiation in crystals. The smallness of the electron–photon interaction
cross section can also be compensated and the quality of the output X-ray radiation
can be enhanced in the hybrid schemes of FEL and atomic laser. It can be achieved
by means of fast high-density ion beam interaction with a strong counterpropagating
pump laser field or with a crystal periodic electrostatic potential. Investigation of the
nonlinear schemes and quantum aspects of FEL on the basis of a self-consistent set
of Maxwell and quantum kinetic equations is the subject of the present chapter.
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222 8 Nonlinear Mechanisms of Free Electron Laser

8.1 Self-consistent Maxwell and Relativistic Quantum
Kinetic Equations for Compton FEL with Strong Pump
Laser Field

In contrast to conventional laser devices in atomic systems, the FEL is usually
regarded as a classical device that also exhibits non-Poissonian photon statistics.
But this is not a universal property of FELs as in some cases quantum effects may
play a significant role. In the quantum description the small signal gain of the FEL
is usually represented as a convolution integral of the electron beam momentum dis-
tribution with the difference between the probability distributions of emission and
absorption per photon. Since the electron recoils in opposite direction depending
on whether it emits or absorbs photons with the same wave vector k′, the resonant
momenta of an electron for emission pe and absorption pa are different. Hence, the
probability distributions of emission and absorption are centered at pe and pa , and
when these distributions are much narrower than the spread of the electron beam
distributions f (p), the small signal gain is proportional to the so-called “popula-
tion inversion” f (pe) − f (pa). In the quasiclassical limit when photon energy �ω′
satisfies the condition

�ω′ � max
{
Δεγ,Δεϑ,ΔεL

}
(8.1)

(Δεγ and Δεϑ are the resonance widths due to energetic and angular spreads, and
ΔεL is the resonance width caused by the finite interaction length), the quantum
expression for the gain coincides with its classical counterpart, being antisymmetric
about the classical resonant momentum pc = (pe + pa)/2 and proportional to
the derivative of the momentum distribution d f (p)/dp at resonant value pc. The
result is that amplification takes place only if the initial momentum distribution
is centered above pc as the electrons whose momenta are above pc contribute on
average to the small signal gain, and the electrons whose momenta are below pc

contribute on average to the corresponding loss. This severely limits the FEL gain
performance at short wavelengths. In the more conventional undulator devices, to
achieve the X-ray frequency domain one should increase the electron energies up to
several gigaelectron volts, which in turn significantly reduces the small signal gain
(∼γ−3

L ). To achieve the X-ray domain with moderate relativistic electron beams
(energy of electrons ≤ 50MeV), the frequency of electron self-oscillation should be
high enough∼1014 ÷1015s−1 (in undulator 1010s−1). The latter can be realized, e.g.,
in the Compton backscattering scheme suggested over 40years ago.

Another way to increase the efficiency of a FEL is to achieve the quantum regime
of generation

�ω′ ≥ max
{
Δεγ,Δεϑ,ΔεL

}
, (8.2)

as in this case the absorption and emission line shapes are separated and the simulta-
neous absorption of a probe wave is excluded. From this point of view, the scheme of
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an X-ray Compton laser has an advantage with respect to the conventional undulator
devices connected with the satisfaction of condition (8.2) for the quantum regime of
generation. To achieve this condition for current FEL devices operating in undula-
tors is problematic as it presumes severe restrictions on the beam spread. Thus, the
scheme of an X-ray Compton laser in the quantum regime of generation is prefer-
able, since it requires considerably lower energies of the electron beam andmoderate
restrictions on the beam spreads.

Consider a scheme of X-ray coherent radiation generation in the nonlinear quan-
tum regime by means of a mildly relativistic high-density electron beam and a strong
pump laser field. This makes it possible to achieve the quantum regime of generation
at X-ray frequencies as well, due to radiation of high harmonics of Doppler-shifted
pump frequencies in the strong laser field. In addition, concerning the further process
of X-ray radiation amplification it is necessary to realize a single-pass FEL, as long
as the construction of resonators in the X-ray domain is problematic. In the linear
regime this demands very long interaction lengths. Here the main emphasis is on the
nonlinear regime of generation. The consideration is based on a self-consistent set
of Maxwell and quantum kinetic equations. Because the energy–momentum levels
are not equidistant, the probe wave resonantly couples only two Volkov states, and
the coupled equations will be solved in the slowly varying envelope approximation.

Wewill consider given pumpEMwavewith four-wave vector k ≡ (ω/c, k)which
is described by the four-vector potential

Aμ = (0, A), (8.3)

where A is defined by (1.48). As we saw in Sect. 1.4 the Dirac equation allows
the exact solution in the field of a plane EM wave (Volkov solution). Although the
Volkov states are not stationary, as there are no real transitions in the monochromatic
EM wave (due to violation of energy and momentum conservation laws), the state
of a particle in an EM wave can be characterized by the quasimomentum � and
polarization σ and the particle state in the field (8.3) is given by the wave function
(1.94).

We assume the probe EMwave to be linearly polarized with the carrier frequency
ω′ and four-vector potential

Aw = ε

2

{
Ae(t, r)e−ik ′x + c.c.

}
, (8.4)

where Ae(t, r) is a slowly varying envelope, k ′ = (ω′/c, k′) is the four-wave vector,
ε is the unit polarization four vector εk ′ = 0, and x = (ct, r) is the four-component
radius vector.

Cast in the second quantization formalism, the Hamiltonian is

Ĥ =
∫

Ψ̂ + Ĥ0Ψ̂ dr+Ĥint , (8.5)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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where Ψ̂ is the fermionic field operator, Ĥ0 is the one-particle Hamiltonian in the
plane EM wave (8.3), and the interaction Hamiltonian is

Ĥint = 1

c

∫
ĵ Awdr, (8.6)

with the current density operator

ĵ = eΨ̂ +γ0γΨ̂ . (8.7)

We pass to the Furry representation and write the Heisenberg field operator of the
electron in the form of an expansion in the quasistationary Volkov states (1.97)

Ψ̂ (r, t) =
∑
�,σ

â�,σ(t)Ψ�σ(r, t), (8.8)

where we have excluded the antiparticle operators, since the contribution of particle–
antiparticle intermediate states will lead only to small corrections to the processes
considered. The creation and annihilation operators, â+

�,σ(t) and â�,σ(t), associated
with positive energy solutions satisfy the anticommutation rules at equal times

{̂a†
�,σ(t), â�′,σ′(t ′)}t=t ′ = δ�,�′δσ,σ′ , (8.9)

{̂a†
�,σ(t), â†

�′,σ′(t
′)}t=t ′ = {̂a�,σ(t), â�′,σ′(t ′)}t=t ′ = 0. (8.10)

Taking into account (8.8), (8.7), (8.6), and (1.97), the second quantized interaction
Hamiltonian can be expressed in the form

Ĥint =
∞∑

s=−∞

∑
�,σ,σ′

{
eAe

2c
M (−s)

(
�,σ;� − �k′ + s�k,σ′) e−iΔ(s,�)t

×â†
�,σ(t )̂a�−�k′+s�k,σ′(t) + eA∗

e

2c
M (s)

(
� − �k′ + s�k,σ′;�,σ

)
eiΔ(s,�)t

× â†
�−�k′+s�k,σ′(t )̂a�,σ(t)

}
. (8.11)

Here,

M (s)
(
�′,σ′;�,σ

) = 1

2
√

Π ′
0Π0

uσ′(p′)
{

e2(kε)Q2s(α,β,ϕ)

2c2(kp′)(kp)
k̂

+
(

eQ̂1s(α,β,ϕ)̂k ε̂

2c(kp′)
+ êε̂k Q̂1s(α,β,ϕ)

2c(kp)

)
+ ε̂Q0s(α,β,ϕ)

}
uσ(p), (8.12)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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where the vector functions Qμ
1s = (0, Q1s) and scalar functions Q0s , Q2s are

expressed via generalized Bessel functions Gs(α,β,ϕ):

Q0s = Gs(α,β,ϕ), (8.13)

Q1s = A0

2
{e1 (Gs−1(α,β,ϕ) + Gs+1(α,β,ϕ))

+ie2g (Gs−1(α,β,ϕ) − Gs+1(α,β,ϕ))} , (8.14)

Q2s = A2
0
(1 + g2)

2
Gs(α,β,ϕ)

+ A2
0
(1 − g2)

2
(Gs−2(α,β,ϕ) + Gs+2(α,β,ϕ)) . (8.15)

The definition of argumentsα,β,ϕ are the same as in (1.103)–(1.105). The resonance
detuning in (8.11) is

�Δ (s,�) =
√

c2 (� − �k′ + s�k)2 + m∗2c4 + �ω′

−
√

c2�2 + m∗2c4 − s�ω. (8.16)

Wewill use Heisenberg representation, where evolution of the operators are given
by the equation

i�
∂ L̂

∂t
= [

L̂, Ĥ
]
, (8.17)

and expectation values are determined by the initial density matrix D̂

〈L̂〉 = Sp
(
D̂ L̂

)
. (8.18)

Equation (8.17) should be supplemented by the Maxwell equation for Ae which is
reduced to

∂ Ae

∂t
+ c2k′

ω′
∂ Ae

∂r
= −i

4πc

ω′ < ε ĵ > exp(ik ′x), (8.19)

where the bar denotes averaging over time and space much larger than (1/ω′, 1/k ′)
and

〈ε ĵ〉 = Sp
(
ε ĵ D̂

)
. (8.20)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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Taking into account (8.7) and (8.8) we obtain

ε ĵ exp(ik ′x) = e
∞∑

s=−∞

∑
�′,�,σ′,σ

{
â+

�′,σ′(t )̂a�,σ(t)

×M (s)
(
�′,σ′;�,σ

)
e

1
� (Π ′−Π−s�k+�k ′)x

}
. (8.21)

As we are interested in amplification of the wave with a certain ω′, k′, then we can
keep only resonant terms in (8.21) with �′ = � − �k′+s�k. In principle, because
of the electron beam energy and angular spreads different harmonics may contribute
to the process considered, but in the quantum regime (see below (8.44), (8.45)) we
can keep only one harmonic s = s0. For the resonant current amplitude, we will have
the expression

− i(ε ĵ) exp(ik ′x) =
∫

Ĵ (�, t)d�, (8.22)

where

Ĵ (�, t) = − ie

(2π�)3

∑
σ′,σ

â+
� f ,σ′(t )̂a�,σ(t)M (s0)

(
� f ,σ

′;�,σ
)

eiΔ(s0,�)t (8.23)

and the summation over � has been replaced by integration according to

∑
�

→ 1

(2π�)3

∫
d�.

Here, we have introduced the notation

� f = � −�k′+s0�k. (8.24)

The physical meaning of (8.23) with (8.24) is obvious: it describes the process where
a particle with quasimomentum � is annihilated and is created in the state with
quasimomentum � − �k′+s0�k with the emission of a photon with the frequency
ω′ and momentum k′.

Taking into account (8.11), (8.17), (8.9), and (8.10) for the operator Ĵ (�, t) we
obtain the equation

∂ Ĵ (�, t)

∂t
− iΔ(s0,�) Ĵ (�, t) = e2 Ae

2c�(2π�)3

×
∑

σ′,σ,σ1

{
M (s0)

(
� f ,σ

′;�,σ
)

M (−s0)
(
�,σ1;� f ,σ

′) â†
�,σ1

(t )̂a�,σ(t)

−M (s0)
(
� f ,σ

′;�,σ
)

M (−s0)
(
�,σ;� f ,σ1

)
â+

� f ,σ′(t )̂a� f ,σ1(t)
}

, (8.25)
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where we have kept only resonant terms. These terms are predominant in near-
resonant emission/absorption, since their detuning is much smaller than that of non-
resonant terms, which are detuned from resonance by ω 
 |Δ(s0,�)|.

We will assume that the electron beam is nonpolarized. This means that the initial
single-particle density matrix in momentum space is

ρσ1σ2(�1,�2, 0) = 〈̂a+
�2,σ2

(0)̂a�1,σ1(0)〉 = ρ0(�1,�2)δσ1,σ2 . (8.26)

Here ρ0(�,�) is connected to the classical momentum distribution function F(�)

by the equation

ρ0(�,�) = (2π�)3

2
F0(�). (8.27)

For the expectation value of Ĵ (�, t) from (8.25) we have

∂ J (�, t)

∂t
− iΔ(s0,�) J (�, t) = e2M2

4�c
Ae

(
F(�, t) − F(� f , t)

)
, (8.28)

where

F(�1, t) = 2

(2π�)3
〈̂a�1,σ1(t )̂a�1,σ1(t)〉, (8.29)

M2 =
∑
σ′,σ

M (s0)
(
� f ,σ

′;�,σ
)

M (−s0)
(
�,σ;� f ,σ

′) . (8.30)

The M2 is reduced to the usual calculation of a trace (see (1.112), where summation
over the photon polarizations should not be made), and in our notations we have

M2 = 2c4

Π f 0Π0

{∣∣∣
[(

pε′) Q0s − e

c

(
Q1sε

′)]∣∣∣
2

− e2

4c2
(�k ′k)2

(kp′)(kp)

[|Q1s |2 + Re
(
Q2s Q∗

0s

)]}
, (8.31)

where

ε′ = ε − k
′
(

kε

kk ′

)
. (8.32)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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In (8.31) one can neglect the terms on the order of (�k ′k/(kp))2 � 1 as for a FEL
this condition is always satisfied. Taking into account (8.11), (8.17), (8.9), (8.10),
and (8.29) for F(�, t) and F(� f , t) we obtain

∂F(�, t)

∂t
= − 1

2�c

(
A∗

e J (�, t) + Ae J ∗(�, t)
)
, (8.33)

∂F(� f , t)

∂t
= 1

2�c

(
A∗

e J (�, t) + Ae J ∗(�, t)
)
. (8.34)

To take into account the pulse propagation effects we can replace the time derivatives
by the following expression:

∂

∂t
→ ∂

∂t
+ v

∂

∂r
,

where v = c2�/Π0 is the mean velocity of the electron beam and the convectional
part of the derivative expresses the pulse propagation effects. Introducing the new
quantity

δF(�, t) = F(�, t) − F(� f , t), (8.35)

which physically expresses population inversion in momentum space, from (8.19),
(8.22), (8.28), (8.33), and (8.34) we obtain the self-consistent set of equations:

∂ J (�)

∂t
+ v

∂ J (�)

∂r
− iΔ(s0,�) J (�) = e2M2

4�c
AeδF (�) ,

∂δF (�)

∂t
+ v

∂δF (�)

∂r
= − 1

�c

(
A∗

e J (�) + Ae J ∗ (�)
)
, (8.36)

∂ Ae

∂t
+ c2k′

ω′
∂ Ae

∂r
= 4πc

ω′

∫
J (�) d�.

These equations yield the conservation laws for the energy of the system and particle
number:

∂ |Ae|2
∂t

+ c2k′

ω′
∂ |Ae|2

∂r
= −4π�c2

ω′

∫ (
∂

∂t
+ v

∂

∂r

)
δF (�) d�, (8.37)

(
∂

∂t
+ v

∂

∂r

)(
(δF (�))2 + 8

e2M2
|J (�)|2

)
= 0. (8.38)
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Note that from the set of (8.36) one can obtain a small signal gain passing into
perturbation theory which in the quasiclassical limit will coincide with the classical
one (the latter will be done for a wiggler).

8.2 Nonlinear Quantum Regime of X-Ray Compton
Backscattering Laser

In the quantum regime the emission and absorption are characterized by the widths

Δe = Δ(s0,�) = ω′(1 − v

c
cos θ)

− s0ω(1 − v

c
cosϑ0) + s0�ωω′

Π0
(1 − cos θr ), (8.39)

Δa = Δ
(
s0,� + �k′ − s0�k

) = Δe − 2s0�ωω′

Π0
(1 − cos θr ), (8.40)

where ϑ0, ϑ are the incident and scattering angles of the pump and probe photons
with respect to the direction of the particle mean velocity v, and ϑr is the angle
between the propagation directions of the pump and probe photons.

The quantum regime assumes that

Δe − Δa = 2s0�ωω′

Π0
(1 − cos θ0)

> max

{∣∣∣∣
∂Δe

∂ηi
δηi + ∂2Δe

∂η2
i

(δηi )
2

∣∣∣∣ ,
ω

Nω

}
, (8.41)

where by ηi we denote the set of quantities characterizing the electron beam and
pump field and by δηi their spreads. The second term in the curly brackets of (8.41)
expresses the resonance width caused by the finite interaction length and Nω is the
number of periods of the pump field. In particular, for the energetic (ΔE) and angular
(Δϑ) spreads from (8.41) (for θr = θ0 � π, θ � 1) we will have

ΔE < �ω′, (8.42)

∣∣∣∣θΔϑ + Δϑ2

2

∣∣∣∣ <
4s0�ω

E . (8.43)
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The conditions for keeping only one harmonic s = s0 in the resonant current are

ΔE
E � 1

s0
, (8.44)

∣∣∣∣θΔϑ + Δϑ2

2

∣∣∣∣ � ω

ω′ . (8.45)

As we see, for not very high harmonics the conditions (8.44) and (8.45) are weaker
than the conditions in the quantum regime (8.42), (8.43), or (8.2) and are well enough
satisfied for current accelerator beams.

Our goal is to determine the conditions under which we will have nonlinear
amplification. We assume steady-state operation, i.e., dropping of all partial time
derivatives in (8.36). The considered setup is either a single-pass amplifier for which
an injected input signal is necessary, or self-amplified coherent spontaneous emis-
sion for which a modulated beam is necessary. In addition, we will consider the
case of exact resonance neglecting detuning in (8.36) assuming that electron beam
momentum distribution is centered at Δe = 0, i.e.,

J (r, t,�) = J (r, t) δ(� − �e), (8.46)

δF (r, t,�) = F (r, t) δ(� − �e), (8.47)

where for �e

Δe = Δ(s0,�e) = 0.

To achievemaximalDoppler shift and optimal conditions of amplification,wewill
assume counterpropagating electron and pump photon beams (X -axis, θr = θ0 = π).
In this case the optimal condition for the linearly polarized pump wave is θ = 0,
while for the circular wave θ ∼ ξ/γL (θ � 1). For the on-axis radiation we have the
following known formula for the radiation wavelengths

λ′ = 1

4

λ

s0γ2
L

(
1 + 1 + g2

2
ξ20

)
, (8.48)

where λ is the wavelength of the pump wave. For both cases, we will assume that the
envelope of the probewave depends only on x . Then the set of (8.36) and conservation
laws (8.37), (8.38) are reduced to

d J

dx
= e2M2

4�cv
Ae F,

d F

dx
= − 2

�cv
Ae J , (8.49)
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d Ae

dx
= 4π

ω′ J ,

F2 + 8

e2M2

∣∣J ∣∣2 = N 2
0 ,

W = W0 + �ω′v
2

(F0 − F) ,

where N0 is the electron beam density, W is the probe wave intensity, and W0 is the
initial one. From (8.49) we have the following expressions for J and F :

F = N0 cos

⎧⎨
⎩

e |M |
21/2�cv

x∫

0

Aedx ′ + ϕ0

⎫⎬
⎭ , (8.50)

J = e |M |
23/2

N0 sin

⎧⎨
⎩

e |M |
21/2�cv

x∫

0

Aedx ′ + ϕ0

⎫⎬
⎭ , (8.51)

where ϕ0 is determined by boundary conditions. Denoting

ϕ = e |M |
21/2�cv

x∫

0

Aedx ′ + ϕ0, (8.52)

we arrive at the nonlinear pendulum equation

d2ϕ

dx2
= χ2 sinϕ, (8.53)

where

χ2 = πe2M2N0

�ω′cv
(8.54)

is the main characteristic parameter of amplification: Lc = 1/χ is the characteristic
length of amplification. For the linearly polarized pump wave from (8.13), (8.14),
(8.15), and (8.31) we have

χL = ξ0 |Λ1(0,β, s0)|
2γ2

L

√
α0

cλ

s0v
N0(1 + ξ20/2). (8.55)
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Here α0 is the fine structure constant and the function Λ1(0,β, s) is expressed by
the ordinary Bessel functions:

Λ1(0,β, s0) � 1

2

{
J s0−1

2

(
s0ξ20

4 + 2ξ20

)
− J s0+1

2

(
s0ξ20

4 + 2ξ20

)}
. (8.56)

In this case only odd harmonics are possible. For the circularly polarized pumpwave,
we have

χc = ξ0

2γ2
L

(
θγL

ξ0
+ s0

α

) ∣∣Js0 (α)
∣∣
√

α0
cλ

s0v
N0(1 + ξ20 + θ2γ2

L), (8.57)

and the argument of the Bessel function is

α � 2s0ξ0θγL

1 + ξ20 + θ2γ2
L

. (8.58)

We will consider two regimes of amplification which are determined by initial con-
ditions. For the first regime the initial macroscopic transition current of the electron
beam is zero and it is necessary to have a seeding electromagnetic wave. In this case
the following boundary conditions are imposed:

F |x=0 = N0; J |x=0 = 0; W |x=0 = W0. (8.59)

The solution for the probe wave intensity in this case is written as

W (x) = W0dn−2
(χ

κ
x;κ

)
, (8.60)

κ =
(
1 + W0

N0�ω′v

)− 1
2

, (8.61)

where dn (x,κ) is the elliptic function of Jacobi and κ its module.
As is known, dn (x,κ) is the periodic functionwith the period 2K (κ), where K (κ)

is the complete elliptic integral of first order. At the distances L = (2r +1)κK (κ)/χ
(r = 0, 1, 2, ...) the wave intensity reaches its maximal value which equals

Wmax = W0 + N0�ω′v. (8.62)

For the short interaction length x � Lc from (8.60) we have

W (x) = W0
(
1 + χ2x2

)
,
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and the wave gain is rather small. To extract maximal energy from the electron beam
the interaction length should be at least on the order of half the spatial period of
the wave envelope variation—κK (κ)/χ. Under this condition the intensity value
Wmax = W0 + N�ω′v is achieved, because all electrons make a contribution in the
radiation field. Taking into account that seed power is much smaller than Wmax and
if 1 − κ � 1

K (κ) → 1

2
ln

[
16

1 − κ2

]
,

for amplification length we will have

L � Lc ln

(
4

Wmax

W0

)
. (8.63)

Let us now consider the other regime of wave amplification when the electron beam
is modulated—“macroscopic transition current” J differs from zero. This regime
can operate without any initial seeding power (W0 = 0). Thus, we will consider the
optimal case with the following initial conditions:

J |x=0 = J0; F |x=0 = δN0; W |x=0 = 0. (8.64)

Then the wave intensity is expressed by

W (x) = N0�ω′v
2

(
1 − δN0

N0

)[
1

dn2(χx; k)
− 1

]
, (8.65)

and module κ of Jacobi elliptic function is determined by

κ = 1

2
(1 + δN0

N0
). (8.66)

As is seen from (8.65) in this case the intensity varies periodically with the distances
as well, with the maximal value of intensity

W ′
max = N0�ω′v

2

(
1 + δN0

N0

)
. (8.67)

The second regime is more interesting. It is the regime of amplification without
initial seeding power and has superradiant nature. For the short interaction length
x � Lc according to (8.65)

W (x) = N0�ω′vχ2x2

4

(
1 − δN0

N0

)
. (8.68)
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The intensity is scaled as N 2
0 (χ2 ∼ N0) which means that we have a superradiation.

The radiation intensity in this regime reaches a significant value even at x � Lc.
The coherent interaction time of electrons with probe radiation is confined by the

several relaxation processes. To be more precise in the self-consistent set of (8.36)
we should add the terms describing spontaneous transitions and other relaxation
processes. Since we have not taken into account the relaxation processes, this con-
sideration is correct only for the distances L � cτmin, where τmin is the minimum of
all relaxation times. Due to spontaneous radiation electrons will lose energy ∼�ω′
at the distances

Ls � c
�ω′

Ws
= 3

2π

s0λ

α0(1 + ξ20/2)ξ
2
0

, (8.69)

where Ws is the intensity of spontaneous radiation (for linearly polarized pump
wave; for circularly polarized wave one should replace ξ20 → 2 ξ20). Although the
cutoff harmonic increases with the increase of ξ0 ( sc ∼ ξ30 ), for the high laser
intensities ξ0 � 1 the role of spontaneous radiation increases as Ls ∼ ξ−4

0 and
the above-mentioned regimes will be interrupted. Therefore, the obtained solutions
are correct at the distances ∼Ls . At ξ0 � 1 for the high harmonics Lc decreases
and simultaneously the quantum recoil �ω′/E increases, but Ls ∼ Lc. The first
regime will effectively work as a single-pass amplifier if Lc � 10Ls (see (8.63):
Wmax � eL/Lc W0/4).

The second regimemay be more promising as it allows considerable output inten-
sities even for the small interaction lengths (8.68). It is expected that the effects of
energy and angular spreads will not have a significant influence on this regime as it is
governed by the initial current and only Doppler dephasing and spontaneous lifetime
may interrupt the superradiation process. Note that necessary for the second regime
initially quantum modulation of the particle beam at the above optical frequencies
can be obtained through multiphoton transitions in the laser field at the presence of
a “third body”. The possibilities of quantum modulation at hard X-ray frequencies
in the induced Compton, undulator, and Cherenkov processes have been studied in
Chaps. 3 and 5.

8.3 Quantum Description of FEL Nonlinear Dynamics
in a Wiggler

To evaluate the nonlinear gain of a FEL in a wiggler on the basis of quantum theory
we need the relativistic wave function of an electron in a wiggler. We will consider
linear (LW) as well as helical wigglers (HW). The magnetic field of a wiggler is
described by the following vector potential:

AH = {0, A0 cos(k0r), gA0 sin(k0r)} , (8.70)

http://dx.doi.org/10.1007/978-3-319-26384-7_3
http://dx.doi.org/10.1007/978-3-319-26384-7_5
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where

k0 ≡
{
2π

�
, 0, 0

}
, (8.71)

with thewiggler step �. In (8.70) g = ±1 correspond toHW,while g = 0 corresponds
to LW.

The quantum dynamics of an electron in a wiggler will be described by the Dirac
equation which in the quadratic form (see (1.82), (1.83)), taking into account the
specified field configuration (8.70), can be represented in the form

{
�
2 ∂2

∂t2
+ c2p̂2 − 2ceAH p̂ + e2A2

H + m2c4 − ec��̂H
}

Ψ = 0, (8.72)

where

�̂ =
(

σ 0
0 σ

)
(8.73)

is the spin operator with the σ̂ Pauli matrices and

H = rotAH (8.74)

is the magnetic field of a wiggler.
As the magnetic field depends only on the φ = k0r, then raising from the sym-

metry, we seek a solution of (8.72) in the form

Ψ (r, t) = F(φ)e
i
�

(pr−E t), (8.75)

where E and p are the energy and momentum of a free electron.
To solve (8.72) we will consider F(φ) as a slowly varying bispinor function of

φ (on the scale of pk0/(�k2
0)) and neglect the second derivative compared with the

first order, which restricts the magnetic field strength by the condition

ξH ≡ eA0

mc2
= eH0�

2πmc2
� γL . (8.76)

Here, γL = E/mc2 is the Lorentz factor (ξH is the so-called wiggler parameter
(5.28)).

Hence, from (8.72) and (8.75) for F(φ) we will have the following equation:

{
2i�

(
pk0

) d

dφ
+ 2

e

c
pAH − e2

c2
A2

H + e�

c
�̂H

}
F(φ) = 0. (8.77)

The solution of (8.77) can be written in the operator form

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_5
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F(φ) = exp

⎧
⎨
⎩

i

2�pk0

φ∫

−∞

(
2e

c
pAH − e2

c2
A2

H

)
dφ′

⎫
⎬
⎭

× exp

{
ie

2cpk0
�̂ [k0AH ]

}
uσ√
2E , (8.78)

where uσ is the bispinor amplitude of a free electronwith polarizationσ (it is assumed
adiabatic entry of the electron into the wiggler—H (−∞) = 0).

Then taking into account the property of spin operator

exp
[
�̂a

] = 1

2
(exp(a) + exp(−a)) + �̂a

1

2a
(exp(a) − exp(−a)),

and taking into account the condition (8.76), which in this case restricts the parameter
a � 1, for the wave function (8.75) we will have the expression

Ψ (r, t) =
(
1 + ie

2c
(
pk0

) �̂ [k0AH ]

)
uσ√
2E

× exp

⎧⎨
⎩

i

�

⎡
⎣pr−E t + 1

2
(
pk0

)
φ∫

−∞

(
2

e

c
pAH − e2

c2
A2

H

)
dφ′

⎤
⎦
⎫⎬
⎭ . (8.79)

Thewave function (8.77) is an analogy of the Volkovwave function (1.93). There-
fore, it is reasonable to represent the wave function in the four-dimensional notation
making analogy more evident. Introducing four-dimensional vector potential and
“wave vector”

AH = (0, AH ); k ≡ (0,−2π

�
, 0, 0),

and taking into account that
�̂ [k0AH ] = i k̂ ÂH ,

the wave function (8.77) can be written as

Ψ (r, t) =
(
1 + e

2c (pk)
k̂ ÂH

)
uσ√
2E

× exp

⎧⎨
⎩− i

�

⎡
⎣px + 1

2 (pk)

φ∫

−∞

(
2

e

c
p AH − e2

c2
A2

H

)
dφ′

⎤
⎦
⎫⎬
⎭ . (8.80)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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Here p = (E/c, p) is the four-momentum of a free electron and â = aμγμ. As we
see this wave function by the form coincides with the Volkov wave function (1.93).
Hence, we will not repeat all calculations which have been done for the Compton
effect and use the obtained results for spontaneous as well as for induced undulator
radiation. The main difference in this case is that k2 �= 0 but taking into account
(8.76) we can neglect the terms which come from k2 �= 0 (quantum recoil). This will
be more evident in theWeizsäcker–Williams approach, when in the frame concerned
with electrons the wiggler field is well enough described by a plane EM wave field.

Performing integration in (8.80), taking into account (8.70), for the electron wave
function we will have

Ψ�σ =
[
1 + êk ÂH

2c(kp)

]
uσ(p)√
2�0

exp

[
− i

�
�x − i

�

e2 A2
0

8c2 (pk)

(
1 − g2

)
sin (2k0r)

]

× exp

[
i

�

eA0

c (pk)

(
py sin k0r − pzg cos k0r

)]
, (8.81)

where by further analogy with the Volkov states we have introduced four-quasi-
momentum

Π = p + k
m2c2

4kp
(1 + g2)ξ2H . (8.82)

Hence, the state of an electron in the wiggler field (8.70) is characterized by the
quasimomentum � and polarization σ and the wave function (8.81) is normalized
by the condition

1

(2π�)3

∫
Ψ

†
�′σ′Ψ�σdr = δ(� − �′)δσ,σ′ .

The FEL dynamics in the wiggler will be described by the same self-consistent
set of (8.36) with

M2 = 2c4

E2

∣∣∣
[(

pε′) Q0s(α,β,ϕ) − e

c

(
Q1s(α,β,ϕ)ε′)]∣∣∣

2
, (8.83)

and the parameters α, β, and ϕ are

α = eA0

�c

⎡
⎣
(

py

pk0
− p′

y

p′k0

)2

+ g2

((
pz

pk0
− p′

z

p′k0

)2
)2

⎤
⎦

1/2

,

β = e2 A2
0

8c2
(g2 − 1)

k′k0(
pk0

)2 , (8.84)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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tanϕ =
g
(

pz

pk0
− p′

z

p′k0

)2
(

py

pk0
− p′

y

p′k0

) .

The resonance detuning for the wiggler is

�Δ(s0,�) =
√

c2 (� − �k′ − s0�k0)
2 + m∗2c4

−
√

c2�2 + m∗2c4 + �ω′. (8.85)

The spectrum of emitted photons is determined from the conservation laws
Δ(s0,�) = 0:

ω′ = s0
2π
�
v cosϑ0

1 − v
c cos θ + 2πc�s0

E�
cos θr

, (8.86)

where θ and θr are the scattering angles of probe photons with respect to the electron
beam direction of motion and undulator axis, respectively, and ϑ0 is the angle of the
electron beam direction of motion with respect to undulator axis. The last term in
the denominator is the quantum recoil. Neglecting the latter for the on-axis radiation
θ = ϑ0 we obtain the following known formula for the radiation wavelengths

λ′ = 1

2

�

s0γ2
L

(
1 + 1 + g2

2
ξ2H

)
. (8.87)

Note that the spectrum (8.87) coincides with the spectrum of Compton effect (8.48)
with the factor 1/4 instead of 1/2. As has been mentioned, the scheme of an X-ray
Compton laser has an advantage with respect to the conventional undulator devices
concerned with the satisfaction of condition (8.2) for the quantum regime of gener-
ation. To achieve this condition for current FEL devices operating in undulators is
problematic as it presumes severe restrictions on the beam spreads.

8.4 High-Gain Regime of FEL

Nowwewill solve the self-consistent set of (8.36) for FEL at an arbitrary detuning of
resonance. As the most effective case the hydrodynamic instability of a cold electron
beam will be considered and the criteria will be obtained showing that either high-
gain or quantum regime of generation takes place depending on the beam parameters
and amplifying photon energy.

We assume steady-state operation of FEL at which one can drop all partial time
derivatives in (8.36). To achieve maximal Doppler shift and optimal conditions of
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amplification we will assume that the electron beam propagates along the wiggler
axis (O X ) (or counterpropagating electron and pump photon beams). Consequently,
the electron beam dynamics will be considered one dimensional.

Our goal is to determine the conditions under which we will have collective
instability, which causes exponential growth of the probe wave. Hence, we will
assume a small density perturbation for the electron beam and seek the solution of
(8.36) in the form

δF = δF0 (Πx ) + δF1 (Πx , x) .

Then in the first order by the field wewill obtain the following set of linear equations:

v
d J (x,Πx )

dx
− iΔ(s0,Πx ) J (x,Πx ) = e2M2

4�c
δF0 (Πx ) Ae (x) , (8.88)

d Ae (x)

dx
= 4π

ω′

∫
J (x,Πx )d�x , (8.89)

where

δF0 (Πx) = F0 (Πx ) − F0
(
Πx − �k ′ − s0�k0

)
(8.90)

is defined via initial distribution function F0 (Πx ).
Performing Laplace transformation

f (q) =
∞∫

0

f (x)e−qx dx (8.91)

for the functions J (q,Πx ) and Ae (q), we obtain

(vq − iΔ(s0,Πx )) J (q,Πx ) = e2M2

4�c
δF0 (Πx ) Ae (q) , (8.92)

q Ae (q) = 4π

ω′

∫
J (q,Πx )dΠx . (8.93)

From these equations, we arrive at the following characteristic equation for variable
q:

q = πe2M2

�ω′c

∫
δF0 (Πx )

vq − iΔ(s0,Πx )
dΠx . (8.94)

For the initial cold electron beam with the distribution function
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F0 (Πx ) = N0δ (Πx − Π0x ) (8.95)

from (8.94) one can obtain the equation

q = χ2

[
1

q − i Δe
v

− 1

q − i Δa
v

]
, (8.96)

where

Δe = Δ(s0,Π0x ) ,

Δa = Δ
(
s0,Π0x + �k ′ + s0�k0

)

are the resonance widths for the emission and absorption and χ is the main char-
acteristic parameter of amplification in the quantum regime (see (8.54)). Equation
(8.96) is the cubic equation known in the FEL theory, but it is more generalized and
includes the quantum effects. We will solve the latter in the opposite limits, which
characterize the quantum and classical high-gain regimes.

In the quantum regimewhen the electron beammomentumdistribution is centered
at Δe = 0 and

|χ| � |Δa|
v

, (8.97)

the second term in the square brackets of (8.96) can be neglected and we obtain

q = ±χ,

whence the exponential growth rate in the quantum regime will be

Gq = χ. (8.98)

This result is predictable from the nonlinear solutions (8.54) and (8.65) for the short
interaction lengths.

In the classical limit the quantum recoil can be neglected and since in this limit
Δa = −Δe (classical resonance), (8.96) under the condition

|q|2 
 Δ2
e

v2
(8.99)

can be rewritten as

q3 = 2iχ2 Δe

v
, (8.100)
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whence the unstable root defines the classical result for exponential growth rate:

Gcl ≡
√
3

2

(
2χ2 Δe

v

)1/3

. (8.101)

For joint consideration of Compton and undulator FELs the resonance widths
(8.39) and (8.85) at the classical resonance for the emission/absorption can bewritten
as

Δe = ε
�ω′

E
2πcs0

λ
, (8.102)

where the factor ε = 2 for Compton FEL and ε = 1 for undulator FEL, and λ is the
wavelength of the pump wave or wiggler step. Recalling the definition (8.54) for the
parameter χ and using (8.102) the classical exponential growth rate can be written
as

Gcl ≡
√
3

2

(
4εs0

π2e2M2N0

v2Eλ

)1/3

. (8.103)

In particular, at the linear polarization of the pump field for the on-axis radiation
from (8.31) and (8.83) we have

M2 = c2
ξ2p

2γ2
L

Λ2,

where

Λ = J s0+1
2

(
s0ξ2p

4 + 2ξ2p

)
− J s0−1

2

(
s0ξ2p

4 + 2ξ2p

)
,

and ξp = ξ0 and ξp = ξH for Compton and undulator FELs, respectively. Then for
the classical exponential growth rate (8.103) we obtain the known equation

Gcl ≡
√
3

2

(
2εs0π2c2re N0Λ

2

v2λ

ξ2p

γ3
L

)1/3

. (8.104)

Finally, we note that the condition (8.99) for the classical high-gain regime can be
written as

χ 
 Δe

v
, (8.105)

which is opposite to the condition for the quantum regime (8.97).
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8.5 Quantum SASE Regime of FEL

In the previous sections, we have described the FEL dynamics by the universal self-
consistent set of (8.36) which were derived in detail to reveal the FEL dynamics in
general. In particular, it has been solved in the steady-state regime neglecting the
dependence on time. This is appropriate for the FEL when slippage due to the differ-
ence between the light and electron velocities is neglected. Here we describe the FEL
dynamics in the Self-Amplified Spontaneous Emission (SASE) regime taking into
account the propagation effects. Thus, we will not consider diffraction or saturation
effects and the FEL dynamics will be considered to be one dimensional. Taking into
account the mentioned fact and keeping the time derivatives in (8.36), in a similar
way as was done with respect to (8.88) and (8.89) we will obtain the following set
of linear equations:

∂ J (x, t,Πx )

∂t
+ v

∂ J (x, t,Πx )

∂x
− iΔ(s0,Π) J (x, t,Πx )

= e2M2

4�c
δF0 (Πx ) Ae (x, t) , (8.106)

∂ Ae (x, t)

∂t
+ c

∂ Ae (x, t)

∂x
= 4πc

ω′

∫
J (x, t,Πx )dΠx , (8.107)

where δF0 (Πx ) is defined again by (8.90) via initial distribution function of the
electron beam.

By Fourier transformation for slowly varying envelopes of the probe EM wave
and electric current density

Ae(x, t) =
∞∫

−∞
A�(x)ei�t d�, (8.108)

J (x, t,Πx ) =
∞∫

−∞
J�(x,Πx )e

i�t d�, (8.109)

Equations (8.106) and (8.107) are reduced to the equations

∂ J�(x,Πx )

∂x
− iΘ� (Πx ) J�(x,Πx ) = e2M2

4�cv
A�(x)δF0 (Πx ) , (8.110)

∂ A�(x)

∂x
+ i

�

c
A�(x) = 4π

ω′

∫
J�(x,Πx )dΠx , (8.111)
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where

Θ� (Πx ) = Δ(s0,Πx ) − �

v
. (8.112)

The solution of (8.110) can be written as

J�(x,Πx ) = J�(0,Πx )e
iΘ�(Πx )x

+ e2M2

4�cv

x∫

0

eiΘ�(Πx )(x−x ′) A�(x ′)δF0 (Πx ) dx ′. (8.113)

Here, it is assumed that

J�(0,Πx ) = J�δ(Πx − Π0x ), (8.114)

where J� characterizes the shot noise in the electron beam or modulation depth for
the initially modulated beam. Substituting (8.113) into (8.111) we obtain an integro-
differential equation for the phase transformed amplitude Ã�(x) of the amplifying
wave field:

∂ Ã�(x)

∂x
+ i

(�

c
+ Θ� (Π0x )

)
Ã�(x) = 4π

ω′ J�,

+ πe2M2

�ω′cv

∫ x∫

0

ei(Θ�(Πx )−Θ�(Π0x ))(x−x ′) Ã�(x ′)δF0 (Πx ) dx ′dΠx , (8.115)

where
Ã�(x) = A�(x)e−iΘ�(Π0x )x . (8.116)

In the quantum regime, when condition (8.97) holds one can neglect the second term
in (8.90) (which is equivalent to neglecting the absorption probability compared with
the emission one) and put

δF0 (Πx ) � N0δ(Πx − Π0x ); Δ(s0,Π0x ) = 0 (8.117)

in (8.115). Then we will obtain

∂ Ã�(x)

∂x
− i

(
1 − v

c

)
�

v
Ã�(x) = 4π

ω′ J� + χ2

x∫

0

Ã�(x ′)dx ′. (8.118)
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Performing Laplace transformation (8.91) on (8.118) we arrive at the following
characteristic equation for variable q:

q2 − i

(
1 − v

c

)
�

v
q − χ2 = 0, (8.119)

and the solution of (8.118) can be written as

Ã�(x) = 1

2iπ

∮
q Ã�(0) + 4π

ω′ J�

(q − q1) (q − q2)
eqx dq, (8.120)

where Ã�(0) characterizes a coherent input signal. The contour integration in (8.120)
is the result of the inverse Laplace transformation and encloses the poles which are
the solutions of the characteristic equation (8.119):

q1 = i

2

(
1 − v

c

)
�

v
+ χ

√
1 −

(
1 − v

c

)2
4χ2

�2

v2
, (8.121)

q2 = i

2

(
1 − v

c

)
�

v
− χ

√
1 −

(
1 − v

c

)2
4χ2

�2

v2
. (8.122)

In (8.120) the term proportional to Ã�(0) describes the amplification of the coher-
ent input signal,while the second termproportional to J � describes either the amplifi-
cation of the shot noise or coherent spontaneous emission (for the initially modulated
electron beam). Since the main propose of this section is to study the amplification
process without initial seed the first term will not be considered further. Hence, at
Ã�(0) = 0, (8.120) yields

Ã�(x) = 4π

ω′
J�

q1 − q2
eq1x + 4π

ω′
J�

q2 − q1
eq2x . (8.123)

The root q1 has a positive real part that gives rise to an exponentially growing term in
the radiation intensity. Keeping only this term and taking into account that q1 −q2 �
2χ, we have

Ã�(x) = 2π

ω′χ
J�eq1z . (8.124)

The spectral property of output radiation is defined by the dependence of q1 on �
and from (8.121) we obtain

Req1 � χ −
(
1 − v

c

)2
8χ

�2

v2
. (8.125)
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For the average spectral intensity

I�(x) = c

8π

〈
|E�(x)|2

〉
= ω′2

8πc

〈∣∣ Ã�(x)
∣∣2〉 (8.126)

with the help of (8.124) and (8.125) we will have

Iω(x) = π

2cχ2

〈∣∣J�

∣∣2〉 exp
[
−
(
ω − ω′)2
2Δ2

q (x)

]
e2χx , (8.127)

where ω′ is the resonant frequency (� → ω − ω′) and the spectral width in the
quantum SASE regime is defined as follows:

Δq (x) =
√
2χ

x

v

1 − v
c

. (8.128)

In the classical regime when condition (8.105) holds the electrons have almost
the same probability of absorption or emission of a photon and the net gain factor is
proportional to the derivative of themomentum distribution function F0(Πx ). Hence,
from (8.90) one can put

δF0 (Πx ) � ∂F0(Πx )

∂Πx

�ω′

c
. (8.129)

For the initial cold electron beam (8.95) from (8.115) in this case we obtain

∂ Ã�(x)

∂x
− i

(
1 − v

c

)
�

v
Ã�(x) = 4π

ω′ J�

+ iG3
cl

x∫

0

(
x − x ′) Ã�(x ′)dx ′, (8.130)

where Gcl is the classical exponential growth rate (8.101). Without initial seed the
solution of (8.130) is given as

Ã�(x) = −i
2

ω′

∮
J�qeqx

(q − q1) (q − q2) (q − q3)
dq, (8.131)

where q1,2,3 are the solutions of the characteristic equation

q3 − i

(
1 − v

c

)
�

v
q2 − iG3

cl = 0. (8.132)

The unstable solution (suppose Req1 > 1) in this case is given as
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Ã�(x) = 4π

ω′ J�
q1

(q1 − q2) (q1 − q3)
eq1x , (8.133)

where one can put

Req1 � Gcl −
(
1 − v

c

)2
12Gcl

�2

v2
, (8.134)

∣∣∣∣
q1

(q1 − q2)(q1 − q3)

∣∣∣∣
2

� 1

12G2
cl

. (8.135)

Hence, for the average spectral intensity (8.126) we have

I�(x) = π

6cG2
cl

〈∣∣J�

∣∣2〉 exp
[
−
(
ω − ω′)2
2Δ2

cl(x)

]
e2Gcl x . (8.136)

The spectral width in the classical SASE regime is defined as follows:

Δcl(x) =
√
3Gcl

x

v

1 − v
c

. (8.137)

Comparing (8.136) with its quantum counterpart (8.127) one can see that for the
same initial shot noise in the quantum regime the start-up intensity is enhanced by
the factor G2

cl/χ
2 
 1 (see conditions (8.97), (8.99)) and the spectrum of the SASE

intensity is narrowed by the factor
√
2χ/3Gcl � 1, while for the quantum SASE

regime a longer amplification length is required.

8.6 High-Gain FEL on the Coherent Bremsstrahlung
in a Crystal

To achieve the condition of coherency for generation of shortwave radiation by
electron beams of considerably lower energies, in the problem of X-ray FEL it may
be reasonable to consider other versions of stimulated radiation in the crystals, based
on the coherent bremsstrahlung of charged particles on the periodic ionic lattice. It
is clear that the coherent length in this scheme is confined by the multiple scattering
of electrons in a crystal. The latter drastically increases the lasing threshold for the
beam density. To compensate it we will consider the case when the electron beam
current density is initially modulated.

Thus, we will investigate the lasing in the X-ray domain due to the coherent
bremsstrahlung in a crystal, in the high-gain regime, when the electron beam moves
close to the crystal lattice plane or axis. To avoid the channeling effect in a crystal
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we assume that the incident angle θ of an electron with respect to a crystalline plane
or axis is larger than the Lindhard angle θL = √

2U0/E , whereU0 is the height of the
barrier of a crystal plane (axis) potential, and E is the energy of an electron. In this
case, when the radiation coherence length lc ∼ γ2v/ω (γ being the Lorentz factor,
v the electron velocity, and ω the radiation frequency) exceeds the crystal lattice
periods: lc 
 di , the bremsstrahlung emitted from the various centers interfere with
each other and the enhancement of radiation occurs, which is referred to as coherent
bremsstrahlung. The trajectory of a particle can be considered as quasilinear and the
trajectory period will be determined by the space period of the crystal potential. In
this respect the coherent bremsstrahlung is close to the undulator radiation, where
the trajectory period is determined by the space period of the magnetic field. We will
assume that

Nc Zae2/�v 
 1; lc > R/θ, (8.138)

where Za is the nuclear charge number of the crystal atoms, R is the radius of
screening, Nc is the number of atoms on the radiation coherence length lc, and θ � 1.
In this case one can treat the particlemotion by the classical theory (the first condition
is contrary to the Born one) and approximate the interaction of the particle with the
crystal by the continuous potential (second condition of (8.138)) of atomic planes or
strings, i.e., the atomic potential is averaged over the given crystallographic plane or
axis, which is oriented at a small angle to the incident beam. For the concreteness
we will consider the case of the atomic plane, then the generalization for the crystal
axis will be obvious. The potential of the atomic plane, which governs the particle
motion, can be represented as a superposition of the potentials

U (x) =
∑

l

Up(x − ld1),

Up(x) = 1

d2d3

∫
u(r)dydz, (8.139)

where u(r) is the single atomic potential. Considering U (x) as a perturbation, from
the classical equations ofmotion one can obtain the perturbed velocity of the electron,
which is responsible for the coherent bremsstrahlung. The latter can be expressed in
the form

v′
x �

∑
n

un

mvθγ
exp

[
i
2π

d1
nvθt

]
, (8.140)

where

un = 4πNa Zae2(
2πn
d1

)2 + 1
R2

(8.141)
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is the Fourier component of the potential Up(x) (8.139). Here Na is the atomic con-
centration in the crystal and for the single atomic potential we have taken a screening
Coulomb potential. We will consider the more reasonable case of amplification of
forward radiation of the electrons. Ignoring space charge effects, the probe EMwave
can be treated as transverse, propagating parallel to the electron beam. We assume
the probe wave to be linearly polarized with the carrier frequency ω, wave vector k,
and electric field strength

E = E0(t, zl)e
i(kzl−ωt) + c.c., (8.142)

where E0(t, zl) is a slowly varying envelope and zl is the coordinate along the electron
beam propagation. Taking into account (8.140), the rate of energy exchange between
the electrons and probe wave can be expressed in the form

dE
dzl

�
∑

n

uneE0(t, zl)

m2vθγ
exp [iΨn] + c.c., (8.143)

where

Ψn = kzl − ωt + 2π

d1
nvθt. (8.144)

Then, the coherence condition, at which the bremsstrahlung emitted from various
crystal centers along the electron path interfere constructively, is the following:

dΨn

dzl
= 0; ω = 2πnvθ

d1(1 − v
c )

, (8.145)

which represents the general resonance condition for the forward radiation. Though
the consideration can be easily generalized to higher harmonics, we will consider
the fundamental resonance and keep only the resonant term (n = 1) in (8.143).
For the formulation of the Maxwell–Vlasov equations it is convenient to change the
independent variables from (zl, t) to (zl , Ψ1 ≡ ψ) and the conjugate variable to ψ
will be

χ = (γ − γ0)/γ0, (8.146)

where mc2γ0 is the electron resonant energy defined from (8.145). From (8.143) and
(8.144) one can obtain the equations for (ψ,χ), generally known as the pendulum
equations in the conventional undulator version of FEL:

dψ

dzl
= 4π

d1
θχ, (8.147)

dχ

dzl
= eξcb

2mcvγ2
0

E0(ψ, zl)e
iψ + c.c., (8.148)
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where by further analogy with the undulator or Compton FEL we have introduced
the effective interaction parameter ξcb for coherent bremsstrahlung

ξcb = 8πcNa Zare R2

vθ
, (8.149)

which has the same physical meaning as the usual ξH parameter for conventional
undulators (re is the electron classical radius). Hence, taking into account (8.147)
and (8.148) the Vlasov equation for the phase space distribution function F(zl,ψ,χ)

will be

∂F

∂zl
+ 4πθχ

d1

∂F

∂ψ
+ eξcb

2mcvγ2
0

× (
E0(t, zl)e

iψ + c.c.
) ∂F

∂χ
= 0. (8.150)

The Maxwell equation for the slowly varying envelope of the probe wave can be
written as

∂E0

∂zl
+ 2πθ

d1

∂E0

∂ψ
+ μE0 = −πe

ξcb

γ0
e−iψ

∫
Fdχ, (8.151)

where the bar denotes averaging over time and space much larger than (1/ω, 1/k),
and to take into account the probewave damping because of absorption and scattering
in the crystal, we have introduced absorption coefficient μ. Equations (8.150) and
(8.151) are the self-consistent set of equations for the considered scheme of FEL. The
main impending factor in the coherent bremsstrahlung process, which we have not
taken into account in (8.150), is the multiple scattering of electrons in a crystal. The
latter will not violate the electron coupling with the radiation field and, consequently,
will not have essential bearing on the amplification process, if the detuning of the
phase ψ due to multiple scattering is less than π. For the forward radiation we have
the condition Lδϑ2

ms/2 < λ (where λ is the wavelength of the amplifying wave),
which restricts the effective interaction length of the electrons in a crystal

L < Lms = (
8πr2e Z2

a Nad−1θ ln 183Z−1/3
a

)−1/2
, (8.152)

where Lms and ϑms are the characteristic length and angle of multiple scattering.
We shall determine the conditions under which the collective instability develops

in the coherent bremsstrahlung process causing the exponential growth of the probe
wave. Correspondingly, we will assume steady-state operation and a small density
perturbation for the electron beam and seek the solution of (8.150) in the form

F = F0 + F1eiψ + c.c.,
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dropping all partial derivatives with respect to ψ in the equations for F1 and E0. For
the initial cold electron beam at the exact resonance with distribution function

F0(χ) = N0δ(χ)

(N0 is the mean density of the electron beam) from (8.150) and (8.151) one can
obtain the integro-differential equation for the slowly varying envelope E0:

d E0

dzl
+ μE0 = −πeξcbδN0

γ0
+ iαg

z∫

0

(z − z′)E0(z
′)dz′. (8.153)

Here, we introduced the gain parameter

αg = 2π2creξ
2
cb N0θ

vγ3
0d1

, (8.154)

and for the initially modulated electron beam, it was assumed that

F1(z = 0,χ) = δN0δ(χ),

where δN0/N0 is the modulation depth. Performing Laplace transformation (8.91)
on (8.153), we obtain the following characteristic equation:

q3 + μq2 − iαg = 0, (8.155)

which for the values αg > μ gives the exponential growth rate for coherent
bremsstrahlung

G =
√
3

2

(
2π2creξ

2
cb N0θ

vγ3
0d1

)1/3

. (8.156)

For the high-gain regime the growth rate (8.156) is required to be larger than the
characteristic ones for the impending effects of radiation absorption and multiple
scattering of electrons in the crystal: G > max{μ, L−1

ms }.
For the electron beam low currents G � {μ, L−1

ms } and for the initially modulated
current densities (δN0 �= 0), with no input signal, the solution of (8.153) gives

E0 � πeξcbδN0

γ0μ

(
e− μ

2 z − 1
)

. (8.157)

In (8.157) the amplification length z is restricted by the length of the multiple scat-
tering of electrons in the crystal Lms . At the large absorption of amplifying radiation
in the crystal, when μ 
 1/Lms , for the maximal power of output radiation, which
has a superradiant nature, we have
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I � c

2π

[
πeξcbδN0

γ0μ

]2
. (8.158)

In the inverse case of small absorption μ � 1/Lms from (8.157) we have

I � c

8π

[
πeξcbδN0

γ0
Lms

]2
. (8.159)

Although the regimes (8.158) and (8.159) require low electron beam currents,
they nevertheless may provide considerable output intensities for coherent X-ray.
Hence, the considered setup of coherent bremsstrahlung in a crystal may serve as
a powerful mechanism for prebunched electron beam superradiation, at moderate
relativistic energies of electron beams.

8.7 Nonlinear Scheme of X-Ray FEL on the Channeling
Particle Beam in a Crystal

As the channeling radiation of ultrarelativistic electrons and positrons lies in the
X-ray and γ-ray domain, and its spectral intensity exceeds that of other radiation
sources in this frequency range, the stimulated channeling radiation of charged
particles is of certain interest as a potential FEL in the short wavelength domain.
As the absorption coefficients of X-rays and γ-rays in crystals are very high
(∼102 ÷ 103cm−1) and the construction of mirrors in this domain is very prob-
lematic, it is necessary to study the possibilities of realization of the single-pass
nonlinear regimes of X-ray amplification.

To obtain coherent radiation in the crystal channel it is most appropriate to use
electron beams with comparatively low energies (E � 50 MeV for planar channeled
electrons and E � 10MeV for axial ones). First, the states of channeled electrons are
most stable in this energy region, i.e., the scattering of channeled particles on atomic
electrons and nuclei of the lattice is suppressed. Then, at these energies a few discrete
energy levels in the transverse potential well of the channeled electron are formed
that are not equidistant. In this case by means of varying the angle of incidence
of the electron beam to the crystal an inverted population of electron states in the
transverse potential can be reached. In addition, at low energies it is possible to use
electron beams with high densities and increase the population inversion. Because
the energy levels are not equidistant the stimulating EM wave resonantly couples
only two energy levels, and the physical processes in the above-mentioned case of
the channeling are similar to those of a two-level atom (two dimensional “atom” in
the case of axial channeling, and one dimensional in the case of planar channeling)
moving with relativistic velocity.
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The problem concernedwith controlling the overpopulation of channeled particles
can be overcome by two component laser-assisted schemes. In particular, the stimu-
lated Compton scattering by channeled particles is of certain interest as the necessity
of inverse population of transverse levels for lasing vanishes and the cross section of
the considered process is resonantly enhanced by several orders with respect to the
Compton process on free electrons.

For the description of a FEL operating in the crystal, where transverse degrees of
freedom of the particles are fully quantized, we will begin from the second quanti-
zation formalism. The second quantized Hamiltonian is

Ĥ =
∫

Ψ̂ + Ĥ0Ψ̂ dr + Ĥint , (8.160)

where Ψ̂ is the fermionic field operator, Ĥ0 is the one-particle Hamiltonian in the
channel of the crystal (along the axis O Z) with average electrostatic potential U (ρ)

(ρ ≡ x in case of a planar channeling and ρ ≡ √
x2 + y2 for the axial one), and Ĥint

is the interaction Hamiltonian:

Ĥint = −1

c

∫
ĵ (Ae + A) dr. (8.161)

Here, ĵ = eΨ̂ +̂Ψ̂ is the current density operator (̂ is the Dirac matrix) and Ae, A
are the vector potentials of the probe and pump EM waves, respectively. To achieve
maximal Doppler shift and optimal conditions of amplification, we will assume a
co-propagating probe EMwave and channeled particle beam and counterpropagating
pump EM wave. We will consider a linearly polarized (along O X ) pump EM wave
with the frequency ω and wave vector k that is described by the vector potential

A = x̂
A0

2

{
ei(ωt+kz) + c.c.

}
. (8.162)

We assume the probe wave to be linearly polarized with the carrier frequency ω′,
wave vector k ′, and vector potential

Ae = x̂
1

2

{
Ae(t, z)ei(ω′t−k ′z) + c.c.

}
, (8.163)

where Ae(t, z) is a slowly varying envelope.
As in Sect. 8.1 we write the Heisenberg field operator of the particles in the form

of an expansion in the stationary states

Ψ̂ (r, t) =
∑
μ,pz

âμ,pz (t)e
− i

�
Eμ(pz)tψμ,pz . (8.164)
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The creation and annihilation operators â+
μ,pz

(t) and âμ,pz (t), associated with positive
energyEμ(pz) solutions of theDirac equation, satisfy the usual anticommutation rules
at equal times (see (8.9), (8.10)). Hereμ, pz are the complete set of quantum numbers
μ = {

py, n,σ
}
for the planar channeling and μ = {m, n,σ} for the axial one, n is

the main quantum number and m is the magnetic quantum number, σ characterizes
spin polarization and py, pz are the components of particle momentum, ψμ,pz are
the normalized eigenvectors of channeled particle corresponding to the given set of
quantum numbers. We will assume that probe and pump waves resonantly couple
only two transverse levels, which will be labeled (0) and (1). It is also assumed that
the particle beam is nonpolarized and the probability of transitions with the spin
flip is negligible (this imposes a restriction on the wave frequency �ω′ � Eμ(pz)).
As a result, taking into account (8.161)–(8.164) and keeping only the resonant terms
(Rotating FrameApproximation) the Hamiltonian (8.160) can be reduced to the form

Ĥ =
∑

pz

[
E0(pz )̂a

+
0,pz

â0,pz + E1(pz )̂a
+
1,pz

â1,pz

]
+ Ĥint (8.165)

with the interaction Hamiltonian:

Ĥint =
∑

pz

[
β⊥
2c

{
ieA0â+

0,pz+�k â1,pz e
iΓ (pz+�k,pz ,ω)t

+ ieAeâ+
0,pz−�k ′ â1,pz e

iΓ (pz−�k ′,pz ,ω
′)t + h.c.

}]
. (8.166)

Included in (8.166) the resonance detuning Γ
(

p, p′,�
)
as a function of any three

parameters has the following definition:

Γ
(

p, p′,�
) = E0(p) − E1(p′) + ��

�
, (8.167)

and β⊥ is the transition matrix element for the transverse velocity operator:

β⊥ = Ωnn′ xμμ′ , (8.168)

where

Ωnn′ = E⊥n′ − E⊥n

�
(8.169)

is the transition frequency between the initial and excited states of the transverse
motion of the particle in the crystal channel. The resonant frequencies of the probe
and pump waves for resonant coupling of the two transverse levels are defined from
the conditions
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Γ (pz + �k, pz,ω) = 0, Γ
(

pz − �k ′, pz,ω
′) = 0

and are written as

ω = Ω01

1 + n (ω)
vz

c

, (8.170)

ω′ = Ω01

1 − n (ω′) vz

c

. (8.171)

Here vz is the electrons’ mean longitudinal velocity in the beam and n (�) is the
index of refraction of a crystal medium (n

(
ω′) � 1 for the frequency region under

consideration).
The energy spectrum of the planar channeled electron in the potential well (7.103)

has the form

E⊥n = − �
2

2b2mγ
[s − n]2 ; n = 0, 1, . . . , [s] , (8.172)

where

s = −1

2
+
√
1

4
+ 2b2mγU0

�2
,

and for the axial channeled electron in the potential (7.35):

ε⊥n = −mγα2

2�2

1(
n + 1

2

)2 ; n = 0, 1, 2, . . . . (8.173)

The selection rules for transitions are determined by the matrix element of dipole
momentum and for the axial channeling are: Δm = ±1 . For the planar channeling,
xμμ′ differs from zero between the states having different parities. For the axial
channeling there is degeneracy by the magnetic quantum number and in the case of
the wave of linear polarization both of the states m = ±1 will have a contribution
in the resonant interaction process. Because β⊥ depends on |m| for Δm = ±1
transitions, the m = ±1 states are equally populated if the initial populations are
also equal.

In the channeling potential (7.103) for the μ0 = {0, 0} −→ μ = {0, 1} transition
we have

β⊥ = �

2bmγ
(2s − 1)

(
s − 1

2

) 1
2 Γ 2

(
s − 1

2

)

Γ 2 (s)
, (8.174)

http://dx.doi.org/10.1007/978-3-319-26384-7_7
http://dx.doi.org/10.1007/978-3-319-26384-7_7
http://dx.doi.org/10.1007/978-3-319-26384-7_7
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where Γ (s) is the Euler gamma function. In the potential (7.35) for the transition
μ0 = {0, 0} −→ μ = {±1, 1} we have

β⊥ = √
2
αc

�

√
3

32
, (8.175)

where the factor
√
2 is related to the degeneracy for axial channeling.

For the determination of the self-consistent field, we need the evolution equation
for the single-particle density matrix

ρi j (p, p′, t) = 〈̂a+
j,p′ âi,p〉. (8.176)

From the Heisenberg equation (8.17) in the interaction representation we obtain
the following equations for the populations of ground and excited states:

∂ρ00(pz, p′
z, t)

∂t
= e

2�c
β⊥

[
A0ρ01(pz, p′

z − �k, t)e−iΓ (p′
z ,p′

z−�k,ω)t

+A0ρ10(pz − �k, p′
z, t)eiΓ (pz ,pz−�k,ω)t

+A∗
eρ01(pz, p′

z + �k ′, t)e−iΓ (p′
z ,p′

z+�k ′,ω′)t

+Aeρ10(pz + �k ′, p′
z, t)eiΓ (pz ,pz+�k ′,ω′)t

]
, (8.177)

∂ρ11(pz, p′
z, t)

∂t
= − e

2�c
β⊥

[
A0ρ10(pz, p′

z + �k, t)eiΓ (p′
z+�k,p′

z ,ω)t

+Aeρ10(pz, p′
z − �k ′, t)eiΓ (p′

z−�k ′,p′
z ,ω

′)t

+A0ρ01(pz + �k, p′
z, t)e−iΓ (pz+�k,pz ,ω)t

+A∗
eρ01(pz − �k ′, p′

z, t)e−iΓ (pz−�k ′,pz ,ω
′)t
]
, (8.178)

and for the nondiagonal elements we have

∂ρ01(pz, p′
z, t)

∂t
= − e

2�c
β⊥

[
A0ρ00(pz, p′

z + �k, t)eiΓ (p′
z+�k,p′

z ,ω)t

+Aeρ00(pz, p′
z − �k ′, t)eiΓ (p′

z−�k ′,p′
z ,ω

′)t

−A0ρ11(pz − �k, p′
z, t)eiΓ (pz ,pz−�k,ω)t

http://dx.doi.org/10.1007/978-3-319-26384-7_7
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−Aeρ11(pz + �k ′, p′
z, t)eiΓ (pz ,pz+�k ′,ω′)t

]
, (8.179)

ρ10(pz, p′
z, t) = ρ∗

01(p′
z, pz, t). (8.180)

This set of equations should be supplemented by the Maxwell equation, which is
reduced to

∂ Ae

∂t
+ c

∂ Ae

∂z
= 4πce

ω′ β⊥
∑

pz

ρ01(pz, pz + �k ′)e−iΓ (pz ,pz+�k ′,ω′)t . (8.181)

Equations (8.177)–(8.181) define the FEL dynamics in the crystal channel with the
pump EM wave.

First, we consider the case when there is no pump field (A0 = 0). In this case
for the X-ray generation process it is necessary to have an inverted population of
the energy levels in transverse potential or one should have an initial macroscopic
dipole momentum, i.e., the electrons should be in the coherent superposition state of
transverse levels.

If A0 = 0 from (8.177)–(8.180) one can find the closed set of equations for the
density matrix elements ρ00(pz, pz, t), ρ11(pz + �k ′, pz + �k ′, t), and ρ01(pz, pz +
�k ′, t):

∂ρ00(pz, pz, t)

∂t
= e

2�c
β⊥

[
A∗

eρ01(pz, pz + �k ′, t)e−iΓ (pz ,pz+�k ′,ω′)t

+Aeρ
∗
01(pz, pz + �k ′, t)eiΓ (pz ,pz+�k ′,ω′)t

]
, (8.182)

∂ρ11(pz + �k ′, pz + �k ′, t)

∂t
= −∂ρ00(pz, pz, t)

∂t
, (8.183)

and
∂ρ01(pz, pz + �k ′, t)

∂t
= e

2�c
β⊥ AeeiΓ (pz ,pz+�k ′,ω′)t

× [
ρ11(pz + �k ′, pz + �k ′, t) − ρ00(pz, pz, t)

]
. (8.184)

Introducing the new quantities

ρ11(pz + �k ′, pz + �k ′, t) − ρ00(pz, pz, t) = 2π�δF (pz) ,

J (pz) = eβ⊥
2π�

ρ01(pz, pz + �k ′, t)e−iΓ (pz ,pz+�k ′,ω′)t

and replacing the time derivatives ∂/∂t → ∂/∂t + vz∂/∂z, we obtain
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∂δF (pz)

∂t
+ vz

∂δF (pz)

∂z
= − e

�c

(
A∗

e J (pz) + Ae J ∗ (pz)
)
,

∂ J (pz)

∂t
+ vz

∂ J (pz)

∂z
+ iΓ

(
pz − �k ′, pz,ω

′) J (pz) = e2β2
⊥

2�c
AeδF (pz) ,

∂ Ae

∂t
+ c

∂ Ae(t, z)

∂z
= 4πc

ω′

∫
J (pz) dpz . (8.185)

This set of equations is equivalent to the set (8.36) for the Compton and undulator
FELs. One should make only the replacement in (8.36)

M2 → 2β2
⊥. (8.186)

Hence, wewill not repeat all calculationswhich have done for Compton and undu-
lator FELs and will use the obtained results. In particular, for steady-state regimes
we have the same solutions (8.60), (8.65), where the main characteristic parameter
of amplification (the characteristic length of amplification) will be

Lch = 1

χch
; χch =

√
2πβ2

⊥e2N0

�ω′cvz
. (8.187)

The coherent interaction time of channeled particleswith EM radiation is confined
by the lifetime of eigenstates of channeled particles and dechanneling effects. For
the axial channeling of mildly relativistic electrons, the eigenstate width is of order
of 1 eV (at �ω′ ∼ 1 keV) which corresponds to relaxation length Lr ∼ 1 µm.
For planar channeling this length is a little large. To fulfill the condition Lch � Lr

one needs high electron currents. However, the maximal current that can be used in
this process is strongly restricted because of the effects of damaging the crystal as
well as increasing the beam divergence and the strong bremsstrahlung background.
As we saw in Sect. 8.2 the regime of wave amplification when the electron beam
is modulated —“macroscopic transition current” differs from zero—may operate
without any initial seeding power, and radiation intensity in this regime reaches a
significant value even for small interaction lengths. In the considered case initially
electrons should be in the coherent superposition state of transverse levels and the
maximal intensity that can be extracted here is

W ∼ N0�ω′vz

(
Lr

Lch

)2

,

which for allowable electron currents at the frequency �ω′ ∼ 1 keV is of order of
1 kW/cm2.
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8.8 Compton FEL on the Channeling Particle Beam

Consider the scheme of X-ray coherent radiation generation by means of mildly rel-
ativistic high-density channeled particle beam and strong counterpropagating pump
laser field. In this case the necessity of inverse population of transverse levels for
lasing vanishes and as we will see the exponential growth rate of the considered
process is resonantly enhanced by several orders with respect to the Compton FEL.
Wewill assume that the pump laser field is not too strong (the Rabi frequency is small
compared with resonance detuning) and, consequently, the population of transverse
excited state remains small. The main terms responsible for the wave amplification
in this case are ρ00(pz, pz + �k ′ + �k, t) and ρ01(pz, pz + �k ′, t). Hence, from the
set of (8.177)–(8.180) in the first order by the fields when

ρi j (pz, p′
z, t) = ρ(0)

i j (pz, p′
z, t) + ρ(1)

i j (pz, p′
z, t)

and keeping only the resonant terms, we will obtain

∂ρ(1)
00 (pz, pz + �k ′ + �k, t)

∂t
= eβ⊥

2�c

[
Aeρ

(0)
10 (pz + �k ′, pz + �k ′ + �k, t)

×eiΓ (pz ,pz+�k ′,ω′)t + A0ρ
(0)
01 (pz, pz + �k ′, t)

×e−iΓ (pz+�k ′+�k,pz+�k ′,ω)t
]
, (8.188)

∂ρ(1)
01 (pz, pz + �k ′, t)

∂t
= −eA0β⊥

2�c
ρ(1)
00 (pz, pz + �k ′ + �k, t)eiΓ (p′

z+�k,p′
z ,ω)t ,

(8.189)
and

∂ρ(0)
01 (pz, p′

z, t)

∂t
= −eβ⊥

2�c

[
A0ρ

(0)
00 (pz, p′

z + �k, t)eiΓ (p′
z+�k,p′

z ,ω)t

+Aeρ
(0)
00 (pz, p′

z − �k ′, t)eiΓ (p′
z−�k ′,p′

z ,ω
′)t
]
. (8.190)

The Maxwell equation (8.181) for this process is

∂ Ae

∂t
= 4πce

ω′ β⊥

×
∑

pz

[
ρ(0)
01 (pz, pz + �k ′) + ρ(1)

01 (pz, pz + �k ′)
]

e−iΓ (pz ,pz+�k ′,ω′)t . (8.191)
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Here, we will consider the probe wave amplification in time at which the spatial
dependence of the quantities will be neglected. It is also assumed that the initial
electron beam is uniform and, consequently,

ρ(0)
00 (pz, p′

z, t) = 2π�F0

(
pz + p′

z

2

)
δpz p′

z
, (8.192)

where F(pz) is the classical momentum distribution function of electrons.
Taking into account (8.192), the solution of (8.190) for the first-order nondiagonal

elements of the electrons’ density matrix is

ρ(0)
01 (pz, pz + �k ′, t) = i

πβ⊥
c

eAe F0 (pz)
eiΓ (pz ,pz+�k ′,ω′)t

Γ (pz, pz + �k ′,ω′)
, (8.193)

ρ(0)
10 (pz + �k ′, pz + �k ′ + �k, t) = −i

πβ⊥
c

eA0F0
(

pz + �k ′ + �k
)

× e−iΓ (pz+�k ′+�k,pz+�k ′,ω)t

Γ (pz + �k ′ + �k, pz + �k ′,ω)
. (8.194)

Substituting (8.193) and (8.194) into (8.188) and (8.191) and taking into account
that

Γ
(

pz, pz + �k ′,ω′) − Γ
(

pz + �k ′ + �k, pz + �k ′,ω
) = Γ0pz

(see the definition (8.167)), where

Γ0pz = E0(pz) − E0(pz + �k ′ + �k) + �ω′ − �ω

�
(8.195)

is the resonance detuning for the Compton scattering, we obtain the self-consistent
set of equations which determines the evolution and dynamics of the considered
FEL:

d Ae

dt
= iΔAe + 4πc

ω′

∫
e−iΓ (pz ,pz+�k ′,ω′)t J (pz, t)dpz, (8.196)

d J

dt
= − A0e2β2

⊥
2�c

eiΓ (pz+�k ′+�k,pz+�k ′,ω)tδn(pz, t), (8.197)

dδn

dt
= i

A0 Aee2β2
⊥

4�2c2
eiΓ0pz t

[
F0(pz)

Γ (pz, pz + �k ′,ω′)

− F0(pz + �k ′ + �k)

Γ (pz + �k ′ + �k, pz + �k ′,ω)

]
. (8.198)

Here for convenience we have introduced new quantities
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δn(pz, t) ≡ 1

2π�
ρ(1)
00 (pz, pz + �k ′ + �k, t),

J (pz, t) ≡ eβ⊥
2π�

ρ(1)
01 (pz, pz + �k ′, t),

and the summation is replaced by integration. Then

Δ = 2πe2β2
⊥

�ω′

∫
dpz

F0(pz)

Γ (pz, pz + �k ′,ω′)
(8.199)

is the frequency shift due to the particle beam polarization (induced dipole moment).
Performing Laplace transformation on (8.196), (8.197), and (8.198) we arrive at

the following characteristic equation:

q − iΔ = −i
πe4β4

⊥ A2
0

2�3c2ω′

∫
dpz(

q + iΓ0pz

) (
q + iΓpz ,pz+�k ′,ω′

)

×
[

F0(pz)

Γpz ,pz+�k ′,ω′
− F0(pz + �k ′ + �k)

Γpz+�k ′+�k,pz+�k ′,ω

]
. (8.200)

This is a transcendental equation that allows one to determine the small signal gain in
various regimes. For the cold electron beam (8.95), taking into account the condition
|q| 
 ∣∣Γ0pz

∣∣ , |Δ| (high-gain regime) andneglecting thequantumrecoil, from (8.200)
one can obtain the exponential growth rate:

G =
√
3

2

[
4πre

λc

mc

�Ω01γ

ξ20
δ2

β4
⊥N0

]1/3
. (8.201)

Here λc = �/mc is the particle Compton wavelength, re is the electron classical
radius, and

δ = |ω + vzk − Ω01|
Ω01

is the relative detuning of the resonance.
Equation (8.201) defines the exponential growth rate of X-rays in the crystal at

“Compton” scattering of a strong pump laser radiation on the channeled particle
beam at the resonance. Instead of ξ20 in the Compton effect on the free electrons
the effective interaction parameter in the channeling process is determined by the
resonance parameter ξ20/δ

2. For the high-gain regime it is necessary that GLr/c > 1,
where Lr is the relaxation length in the crystal.

The obtained results are also applicable for positron beams channeled in the
zeolite crystals containing hollow channels with the diameter R ∼ 10 ÷ 100 Å.
In this case, main time channeled particles move in the hollow channel and atomic
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electrons are disposed in the thin layer of the internal surface of the channel and
the scattering processes are suppressed and the relaxation time is much larger than
in the monocrystals (Lr ∼ 0.1 cm). Besides, if λ < R (λ is the wavelength of
amplifying radiation) the X-ray absorption and scattering process is also suppressed,
which in turn reduces the threshold currents and the considered setup will be more
preferable. In this case, the potential of the channel can be approximated by the
potentialU (ρ) = 0, if ρ < R; and∞, if ρ ≥ R. Then the resonance can be achieved
by the infrared pump lasers as �Ω01 ∼ 0.1 eV and one can consider the SASE regime
as a small setup single-pass soft X-ray FEL.

8.9 Nonlinear Scheme of X-Ray Laser on the Ion and Pump
Laser Beams

As an alternative version of FELwewill consider the problem of generation of coher-
ent shortwave radiation by relativistic ion beams when due to the existence of bound
states, the ion–photon interaction cross section resonantly increases with respect to
the electron–photon scattering one. From this point of view, stimulated radiation
from relativistic ion beams is a synthesis of conventional quantum generators and
FELs in the X-ray domain.

We consider as our model a relativistic beam of two-level ions, co-propagating (Z
axis) probe EMwave with a frequency ω and wave vector k, and counterpropagating
strong pump EM wave of frequency ω0 and wave vector k0. The EM waves are
treated as classical fields and the total electrical field is given by

E(r, t) = 1

2
ε0E0eiω0t−ik0r + 1

2
εEe(t, r)eiωt−ikr + c.c.. (8.202)

The probe wave is characterized by slowly varying amplitude Ee(t, r) and unit polar-
ization vector ε, while a pump wave is characterized by a given amplitude E0 and
polarization vector ε0 (both waves are linearly polarized).We assume that an internal
ionic electron is nonrelativistic and the transition takes place from an S state to a P
state. The Hamiltonian governing the evolution of the ion beam in the field (8.202)
takes the following second quantized form in the resonant approximation:

Ĥ �
∑

p,s=1,2

Es(p)̂a+
s,p âs,p +

∑
p

[
�Ω0peiω0t â+

1,p−�k0
â2,p

+ �Ωp(r, t)eiωt â+
1,p−�k â2,p + h.c.

]
. (8.203)

Here,
Es(p) =

√
c2p2 + (mi c2 + ws)2; s = 1, 2 (8.204)
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is the total energy of the ion with the momentum p of the center-of-mass motion
and w1, w2 are the binding energies of the internal ionic electron in the ground
and excited states, respectively (mi is the ion mass). Then â+

s,p, âs,p denote ionic
creation and annihilation operators for the internal states s = 1, 2 with center-of-
mass momentum p. These operators satisfy the usual either bosonic or fermionic
type equal time commutation rules. The couplings

Ω0p = E0ε0d12

2�

(
1 − vk0

ω0

)
, (8.205)

Ωp(r, t) = Ee(t, r)εd12

2�

(
1 − vk

ω

)
(8.206)

take into account the dipole interaction as well as the interaction ofmagnetic moment
[d12 × v] /c (because of moving electric dipole) with themagnetic field of the waves.
In (8.206) v = p/miγ is the ion velocity, γ is the Lorentz factor, and d12 is the ionic
transition dipole moment.

We will use again the Heisenberg representation where evolution of the operators
are given by (8.17) and expectation values are determined by the initial densitymatrix
of the ion beam (see (8.18)). Then the Heisenberg equations should be supplemented
by theMaxwell equation for slowly varying amplitude Ee(t, r) analogously to (8.19).
The resonant current for ion beam is defined by the nondiagonal element of the single-
particle density matrix

ρ12(p, p + �k, t) = 〈̂a+
2,p+�kâ1,p〉. (8.207)

We will assume that initially ions are in the ground state and the pump laser field is
not so strong or it is far off resonance and consequently, the excited state population
remains small. In analogy with the previous section introducing the functions

ρ11(p, p + �k − �k0, t) = ρ(0)
11 (p, p + �k − �k0) + (2π�)3ei(ω−ω0)tδn(p, t),

(8.208)
ρ12(p, p + �k, t) = ρ(0)

12 (p, p + �k) + (2π�)3eiωt J (p, t) (8.209)

from the Heisenberg and Maxwell equations one can obtain the self-consistent set of
equations which determines the evolution and dynamics of the considered system:

∂Ee

∂t
+ c2k

ω

∂Ee

∂r
− iΔEe = 4πiωεd∗

12

∫ (
1 − vk

ω

)
J (p, t)dp, (8.210)

∂ J

∂t
+ v0

∂ J

∂r
+ iΓ1(p)J = iΩ0pδn(p, t), (8.211)

∂δn

∂t
+ v0

∂δn

∂r
+ iΓ0(p)δn = iΩ∗

0pΩp
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×
[

F0 (p + �k − �k0)

Γ1(p) − Γ0(p)
− F0 (p)

Γ1(p)

]
. (8.212)

To take into account the pulse propagation effects we have replaced the time deriva-
tives ∂/∂t → ∂/∂t + v0∂/∂r, where v0 is the mean velocity of the ion beam. Here,
it is assumed that the initial beam is uniform and consequently

ρ11(p, p′, 0) = (2π�)3F0

(
p + p′

2

)
δp,p′ , (8.213)

where F0 (p) is the ions’ classical center-of-mass momentum distribution function
and δp,p′ is the Kronecker symbol (summation is replaced by integration). Then

Δ = 2πω |εd12|2
�

∫
dp

(
1 − vk

ω

)2
F0 (p)

Γ1(p)
(8.214)

is the frequency shift because of the ion beam polarization (refractive index caused
by ion beam) and

Γ0(p) = E1(p) − E1(p + �k − �k0) + �ω − �ω0

�
(8.215)

is the resonance detuning for the Compton scattering of the strong wave on ions,
while

Γ1(p) = E1(p) + �ω − E2 (p + �k)

�
(8.216)

is the resonance detuning for absorption/emission of the probe wave’s quanta.
To determine the conditions under which we will have collective instability and

consequently the exponential growth of the probewave, one should perform the same
procedure aswasmade for the high-gain regime of amplification on an electron beam.
We will assume again the steady-state operation at which one can drop all partial
time derivatives in (8.210), (8.211), and (8.212). Performing Laplace transforma-
tion (8.91) on (8.210), (8.211), and (8.212) we arrive at the following characteristic
equation for variable q:

q − iΔ =
∫

K (p)dp
(q + iΓ0(p)) (q + iΓ1(p))

, (8.217)

where

K (p) = 2πiω |εd12|2
∣∣Ω0p

∣∣2
�v20zc

(
1 − vk

ω

)2
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×
[

F0 (p)

Γ1(p)
− F0 (p + �k − �k0)

Γ1(p) − Γ0(p)

]
. (8.218)

This is the transcendental equation which allows one to determine a small signal gain
in various regimes.

For initially cold ion beam

F0 (p) = Ni0δ(p − p0)

(Ni0 is the beamdensity) taking into account (8.215), (8.216), aswell as the conditions
|q| 
 |Γ0(p0)| , |Δ| (high-gain regime), and |q| � |Γ1(p0)| and neglecting the
quantum recoil, from (8.217) one can obtain the exponential growth rate of the probe
X-ray:

G =
√
3

2

[
Ω2

r

δ2
2πω3 |εd12|2
v20zγ

5
0
mi c3

Ni0

]1/3

. (8.219)

Here,

Ωr = E0ε0d12

2�
(8.220)

is the Rabi frequency associated with the pump wave,

δ = ω12 − ω0γ0

(
1 + v0z

c

)
(8.221)

is the resonance detuning, and

ω12 = w2 − w1

�

is the transition frequency for internal ionic electron.
Equation (8.219) defines the exponential growth rate of X-rays at the induced

“Compton” scattering of a strong pump laser radiation on the ion beam, which is
resonantly enhanced with respect to the Compton laser on free electrons.

8.10 Crystal Potential as a Pump Field for Generation
of Coherent X-Ray

Consider now thepossibility of coherentX-ray radiationgenerationby a fast,multiply
charged, channeled ion beam in a crystal without a pump laser field. In the proposed
process the X-ray transitions involving the K or L shell electrons in ions can be
resonantly excited by the periodic crystal potential seen by fast channeled ions. The
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emission frequencies in this case are determined by the discrete spectrum of the
electron states in ions and by the Doppler shift due to the ion center-of-mass motion.
With respect to moving ions, the crystal electrostatic potential plays the role of an
effective pumping field with the Rabi frequency corresponding to a high power “X-
ray laser”. By varying the crystal thickness, one can obtain diverse equivalent “X-ray
pulses” leading to various coherent superposition states, from which one can obtain
coherent X-ray radiation from the ion beam spontaneous superradiation.

Below we will consider superradiant coherent X-ray generation when an ion
beammoves close to the crystal lattice axis. This radiation is predicted by the second
quantized Maxwell and quantum equations governing the motion of an ion beam in
a crystal.

For channeling an ion beam in a crystal, we assume that the incident angle of ions
(with a charge number of the nucleus Zi ) with respect to a crystalline axis (O Z )
is smaller than the Lindhard angle. Then the potential of the atomic chain, which
governs the ion motion, can be represented in the form

V (z, r⊥) =
∑

n

Vn(r⊥) exp

[
i
2πn

d
z

]
, (8.222)

where d is the crystal lattice period along the channel axis, Vn(r⊥) is defined by
the single atomic potential of the crystal, which is given by the screening Coulomb
potential with the radius of screening R and a charge number of the nucleus Zc that
has the form

Vn(r⊥) = 2eZc

d
K0 (r⊥qn) ,

qn =
√

1

R2
+
(
2πn

d

)2

, (8.223)

where K0 is a modified Bessel function.
The potential (8.222) acts on the internal electron as well as on the ion center-of-

mass motion, providing channeling. The center of mass of the ion represents slow
oscillations in the transverse direction (r⊥) and free motion (on average) along the
crystalline axis. For the ionic electron the atomic chain potential acts as an exciting
field. The latter is obvious in the rest frame of reference of the ion (neglecting trans-
verse oscillations) where there is an oscillating time/space electromagnetic field with
a fundamental frequency 2πγvz/d (γ is the Lorentz factor, vz is the ion longitudinal
velocity). If one of the harmonics (n) of this frequency is close to the frequency ω12

associated with the energy difference of the ionic electron levels

2πnγvz

d
� ω12, (8.224)
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we can expect resonant excitation of ions. The latter represents the conservation law
for the total energy (neglecting quantum recoil) in the laboratory frame of reference.

As the physical picture of the considered process is more evident in the frame
of reference connected with the ion beam and the problem becomes nonrelativistic
in this frame, then it is more convenient to pass to the rest frame of the ion beam
(moving with the mean velocity v0 of the beam). If the resonance condition (8.224)
holds, we can keep only the resonant harmonic in the potential (8.222) and the
Hamiltonian describing the quantum kinetics of the channeled ion beam takes the
following second quantized form in the resonant approximation:

Ĥic �
∑

p,s=1,2

Es(p)̂a+
s,p âs,p +

∑
p

[
�Ωceiωct â+

1,p−�gn
â2,p + h.c.

]
. (8.225)

Here, we have introduced the lattice vector

gn =
(
0, 0,−2πnγ0

d

)
,

where γ0 = (1 − v20/c2)−1/2, and â+
s,p , âs,p denote ionic creation and annihilation

operators for the states s = 1, 2 with center-of-mass momentum p and energy

Es(p) = p2

2mi
+ ws

(ws is the binding energy of the ionic electron). These operators satisfy either the
usual bosonic or fermionic type equal time commutation rules. The coupling is

Ωc = 2eZcγ0

�d

{
− ign fz K0

(
r⊥qn

)
+ fr⊥

r⊥
qn K1 (r⊥qn)

}
, (8.226)

where f is the ionic transition dipole moment, which represents the Rabi frequency,
with the assumption that the crystal potential acts as a quasimonochromatic wave
with the frequency

ωc = v0gn; gn = 2πnγ0

d
. (8.227)

In (8.226) we have neglected the ion transverse oscillations, since they are much
slower than the frequency of collisions of ions with the atoms of the crystalline axis.
Here r⊥ is the ion mean transverse displacement.

The full Hamiltonian describing also the radiation processes will be

Ĥ = Ĥic +
∑

k,μ=1,2

�ωĉ+
k,μĉk,μ
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+
∑
p,k,μ

[
�Ωk,μâ+

1,p−�k â2,pĉk,μ + h.c.
]
, (8.228)

where the second term is the Hamiltonian of the photon field with the creation and
annihilation operators ĉ+

k,μ, ĉk,μ of photons with momentum �k and linear polariza-
tion εμ (μ = 1, 2). The last term is the Hamiltonian of interaction of the ions with
the photon field and

Ωk,μ = √
2π�ω

(
εμf

)
(8.229)

is the Rabi frequency for the quantized photon field (the quantization volume is taken
to be V = 1).

If the effective Rabi frequency is large enough and the crystal length is short
enough, the spontaneous emission and the relaxation processes may be neglected
during the time of interaction of ions with the crystal. In this case, the Heisenberg
equation (8.17) for the operators âs,p may be solved analytically. This gives the
following solution:

â1,p = e− i
�
E1(p)t e−i 1

2 δvz τ

{
cosΩτ + i

δvz

2Ω
sinΩτ

}
â(0)
1,p,

â2,p = −ie− i
�
E2(p)t ei 1

2 δvz τ sinΩτ
Ωc

Ω
â(0)
1,p−�gn

. (8.230)

Here â(0)
1,p is the initial operator, τ is the ion interaction time with the crystal,

δvz = ω12 − ωc − gnvz (8.231)

is the resonance detuning, and

Ω =
√

|Ωc|2 + δ2vz

4
(8.232)

is the effective Rabi frequency. We assume that initially ions are in the ground state,
so that in (8.230) we have not written the terms with the operator â(0)

2,p. As we see,
the population of electrons oscillates coherently between the states depending on
the crystal length Lc � vzτ . If |Ωc| 
 ∣∣δvz

∣∣ and the crystal length corresponds to
“pulse area” |Ωc| τ = jπ/4 ( j = 1, 2, ...), the ion beam will then have the maximal
polarization (macroscopic dipole moment).

To investigate the properties of ion beam radiation (in free space) we come back
to the full Hamiltonian and perturbatively calculate the photonic operators ĉk,μ(t):

ĉk,μ(t) = −iπ�Ωk,μ

∑
p

â+
1,p−�k â2,p
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× δ(�ω + E1(p − �k) − E2(p)). (8.233)

The output spectrum consists of coherent and incoherent radiation. The coherent
superradiation is defined by the mean value of the photonic operators 〈̂ckμ(t)〉, i.e., it
is proportional to the Fourier transform of the mean ion polarization 〈̂a+

1,p−�k â2,p〉.
To determine the intensity of coherent radiationwewill assume that themean number
of photons is much smaller than the total number of ions: Nph � Ni . In accordance
with this assumption, one can neglect the retro radiation effects. Otherwise, ions
would respond collectively, and as is known the N -particle spontaneous emission rate
might be much larger than a single-particle spontaneous emission rate, consequently
the considered equations for the photon and ion operators should be solved self-
consistently.

From (8.233) we obtain the following equation for the total number of emitted
photons with momentum �k and polarization μ per unit time:

∂N (coh)
kμ

∂t
= 2π�

∣∣Ωk,μ

∣∣2∑
p1,p

Re {ρ12 (p1 − �k, p1)

× ρ21 (p, p − �k) δ (�ω + E1(p − �k) − E2(p))} , (8.234)

where ρ12(p, p′, t) = 〈̂a+
2,p′ â1,p〉 is the nondiagonal element of the single-particle

densitymatrix definedby theoperators (8.230).By summingover photonpolarization
and integrating over frequencyone canobtain the following expression for the angular
distribution of superradiant power per unit solid angle (d O):

d Icoh

d O
= N 2

i I1(̂k)

∣∣∣G
(̂

k
ω12

c
− gn

)∣∣∣
2

×
∣∣∣∣
∫

exp

(
i
k̂v
c

ω12t

)
P(vz)F(v)dv

∣∣∣∣
2

, (8.235)

where

G(q) = 1

Ni

∫
n(r)eiqrdr (8.236)

is the beam form factor with n(r) being the ion beam density function, F(v) is the
velocity distribution function of ions, I1(̂k) is the single ion radiation power with the
unit vector k̂ in the radiation direction, and

P(vz) = Ωc

Ω
sinΩτ

{
cosΩτ + i

δvz

2Ω
sinΩτ

}
exp (−ignvzτ ) . (8.237)
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For the beam spatial and velocity distributions we will assume Gaussian functions
with isotropic transverse distributions. Then, from (8.235) for the differential power
of the ion beam superradiation we obtain

d Icoh

d O
= N 2

i I1(̂k) exp

[
−δv2⊥

c2
ω2
12t2 sin2 ϑ

]
|P(t,ϑ)|2

× exp

[
− l2⊥ω2

12

c2
sin2 ϑ − l2z g

2
n(1 + ω12

cgn
cosϑ)2

]
, (8.238)

where

P(t,ϑ) =
∫

P(vz) exp

[
i
vz cosϑ

c
ω12t − v2z

2δv2z

]
dvz√
2πδvz

. (8.239)

Here l⊥, lz are the transverse and longitudinal bunch sizes of the beam with the
transverse and longitudinal velocity spreads δv⊥, δvz . As is seen from (8.238), if
the observed wavelengths are much smaller than the transverse size of an ion beam,
the superradiation from the ion beam will occur primarily along the Z axis and will
cover only a tiny solid angle, which will be defined by the transverse size of the ion
beam

ΔO � π
c2

l2⊥ω2
12

. (8.240)

The superradiant pulse duration depends on velocity spreads of the beam and will
be defined by the function P(t,ϑ). The analysis of (8.238) shows the existence of
two superradiant regimes of X-ray generation. For the first regime when the phase
matching condition holds

ω12 = cgn, (8.241)

the superradiation from the ion beam may occur primarily in the backward direction
and the longitudinal bunch size lz of the ion beam should not be smaller than the
wavelength of superradiation. On the other hand, for the resonant excitation the
condition |δ0| � ω12 should be fulfilled. Then taking into account the phasematching
condition (8.241), for the detuning (8.231) we have

δ0 � ω12

(
1 − v0

c

)
. (8.242)

The latter means that for the backward superradiation it is necessary for a relativistic
ion beam to satisfy the resonance condition δ0 � ω12/2γ2

0 � ω12.
For the mean power of backward superradiation from (8.238) one can obtain the

following approximate formula:

Imean � N 2 I1 |P(0,π)|2 ΔO. (8.243)
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In the opposite case when the resonance condition holds: ω12 = ωc = v0gn , one
can easily fulfill the condition for maximal dipole moment |Ωc| 
 δ0 for the light
ion beams (Zi < 10, γ0 � 1), but since the phase matching condition (8.241) is
violated: ω12 < cgn , the superradiation will take place if the longitudinal bunch size
of the ion beam is smaller than the crystal lattice period d.

Bibliography

V.L. Ginzburg, Dokl. Akad. Nauk SSSR 56, 145 (1947)
R.H. Pantell, G. Soncini, H.E. Puthoff, IEEE J. Quantum Electron. 4, 905 (1968)
J.M.J. Madey, J. Appl. Phys. 42, 1906 (1971)
M.L. Ter-Mikaelian, High-Energy Electromagnetic Processes in Condensed Media (Wiley-
Interscience, New York, 1972)

L.R. Elias et al., Phys. Rev. Lett. 36, 771 (1976)
D.A. Deacon et al., Phys. Rev. Lett. 38, 892 (1977)
P. Sprangle, C.M. Tang, W.M. Manheimer, Phys. Rev. Lett. 43, 1932 (1979)
A.M. Kondratenko, E.L. Saldin, Part. Accel. 10, 207 (1980)
G. Dattoli, A. Renieri, Nuovo Cimento B 59, 1 (1980)
C.M. Tang, P. Sprangle, J. Appl. Phys. 53, 831 (1981)
H. Haus, IEEE J. Quantum Electron. QE-17, 1427 (1981)
S.F. Jacobs, H.S. Pilloff, M. Sargent III, M.O. Scully, R. Spitzer, Free-Electron Generators of
Coherent Radiation. Physics of Quantum Electronics, vols. 5, 7-9 (Addison-Wesley, Reading,
1982)

P. Sprangle, C.M. Tang, I. Bernstein, Phys. Rev. A 28, 2300 (1983)
P. Dobiasch, P. Meystre, M.O. Scully, IEEE J. Quantum Electron. 19, 1812 (1983)
R. Bonifacio, C. Pellegrini, L.M. Narducci, Opt. Commun. 50, 373 (1984)
T.C. Marshall, Free Electron Lasers (MacMillan, New York, 1985)
E. Jerby, A. Gover, IEEE J. Quantum Electron. QE 21, 1041 (1985)
J.B. Murphy, C. Pellegrini, Nucl. Instrum. Methods A 237, 159 (1985)
Kwang-Je Kim, Phys. Rev. Lett. 57, 1871 (1986)
K.J. Kim, Nucl. Instrum. Methods A 250, 396 (1986)
J.M. Wang, L.H. Yu, Nucl. Instrum. Methods A 250, 484 (1986)
S. Krinsky, L.H. Yu, Phys. Rev. A 35, 3406 (1987)
J. Gea-Banacloche, G.T. Moore, R.R. Schlichter et al., IEEE J. Quantum Electron. 23, 1558 (1987)
A. Friedman et al., Rev. Mod. Phys. 60, 471 (1988)
G. Dattoli et al., Phys. Rev. A 37, 4334 (1988)
A. Yariv, Quantum Electron., 3rd edn. (Wiley, New York, 1989)
H.K. Avetissian, A.K. Avetissian, K.Z. Hatsagortsian, Phys. Lett. A 137, 463 (1989)
C.A. Brau, Free-Electron Lasers (Academic Press, New York, 1990)
P. Luchini, H. Motz, Undulators and Free-Electron Lasers (Oxford Science Publications, Oxford,
1990)

W.B. Colson, C. Pellegrini, A. Renieri, Laser Handbook, vol. 6 (North-Holland, Amsterdam, 1990)
Proceedings of the Annual International Free Electron Laser Conferences published in Nucl.
Instrum. Methods, Vol. A528, A507, A483, A475, A445, A407, A358, A341, A331, A318,
A304

M. Xie, D.A.G. Deacon, J.M.J. Madey, Phys. Rev. A 41, 1662 (1990)
G. Dattoli, A. Renieri, A. Torre, Lectures on the Free Electron Laser Theory and Related Topics
(World Scientific, London, 1993)

P.G. O’Shea et al., Phys. Rev. Lett. 71, 3661 (1993)
G. Kurizki, M.O. Scully, C. Keitel, Phys. Rev. Lett. 70, 1433 (1993)



Bibliography 271

E.M. Belenov et al., Zh. Éksp. Teor. Fiz. 105, 808 (1994)
R. Bonifacio et al., Phys. Rev. Lett. 73, 70 (1994)
H.P. Freund, Phys. Rev. E 52, 5401 (1995)
H.P. Freund, T.M. Antonsen Jr, Principles of Free-Electron Lasers (Chapman and Hall, London,
1996)

H.K. Avetissian et al., Phys. Rev. A 56, 4121 (1997)
R. Brinkmann, G. Materlik, J. Rossbach, A. Wagner (eds.), DESY Report No. 1997-048
J. Arthur et al., LCLS-Design Study Report No. SLAC-R-521, 1998
K.Z. Hatsagortsian, A.L. Khachatryan, Opt. Commun. 146, 114 (1998)
E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, The Physics Of Free Electron Lasers (Springer,
Berlin, 2000)

S.V. Milton et al., Phys. Rev. Lett. 85, 988 (2000)
J. Andruszkow et al., Phys. Rev. Lett. 85, 3825 (2000)
P.G. O’Shea, H.P. Freund, Science 292, 1853 (2001)
S.V. Milton et al., Science 292, 2037 (2001)
H.K. Avetissian, G.F. Mkrtchian, Phys. Rev. E 65, 046505 (2002)
H.K. Avetissian, G.F. Mkrtchian, Nucl. Instrum. Methods A 483, 548 (2002)
V. Ayvazyan et al., Phys. Rev. Lett. 88, 104802 (2002)
V. Ayvazyan et al., Eur. Phys. J. D 20, 149 (2002)
H.K. Avetissian, A.L. Khachatryan, G.F. Mkrtchian, Nucl. Instrum. Methods A 507, 31 (2003)
H.K. Avetissian, G.F. Mkrtchian, Nucl. Instrum. Methods A 507, 479 (2003)
H.K. Avetissian, G.F. Mkrtchian, Nucl. Instrum. Methods A 528, 530 (2004)
H.K. Avetissian, G.F. Mkrtchian, Nucl. Instrum. Methods A 528, 534 (2004)
C.A. Brau, Phys. Rev. ST Accel. Beams 7, 020701 (2004)
H.K. Avetissian, G.F. Mkrtchian, Phys. Rev. ST AB 10, 030703 (2007)



Chapter 9
Electron–Positron Pair Production
in Superstrong Laser Fields

Abstract Considering the interaction of charged particles with strong radiation
fields in vacuum, we looked at the non-quantum electrodynamic (QED) properties of
electromagnetic vacuum. At such consideration, vacuum stipulates only the classical
dispersion properties of EMwaves propagatingwith the speed of light c. However, the
latter is valid for radiation fields that are not superstrong (ξ0 < 1), otherwise the exci-
tation of QED vacuum and production of electron–positron pairs becomes possible.
As follows from the physical meaning of the wave intensity parameter ξ0, at values of
ξ0 > 1 the energy acquired by an electron over a wavelength of a coherent radiation
field exceeds the electron rest energy mc2. On the other hand, the energetic width of
the vacuum gap or the threshold value for the electron–positron pair production is
2mc2. This means that electrons of the Dirac vacuum acquiring the energy E > 2mc2

at the interaction with the wave field of intensity ξ0 > 1 will pass from negative-
energy states to positive ones (excitation of the Dirac vacuum) and electron–positron
pair production becomes a fact (with the presence of a third body for the satisfaction
of the conservation laws for this process). The production of electron–positron pairs
by plane EM waves of relativistic intensities (ξ0 � 1) is essentially a multipho-
ton process, which principally differs from the known “Klein paradox”—production
of electron–positron pairs in stationary and homogeneous electric field proceeding
over the electron Compton wavelength. The latter corresponds to the tunnel effect
through the effective energetic barrier of finite width formed from the vacuum gap
of infinite width by the presence of a uniform electric field (Schwinger mechanism).
The physical mechanisms are similar to two different limits of the above-threshold
ionization of atoms in strong radiation fields—multiphoton and tunnel ionization.
This chapter considers the excitation of the Dirac vacuum in superstrong EM fields
and the electron–positron pair production process in the presence of a diverse-type
third body.

© Springer International Publishing Switzerland 2016
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9.1 Vacuum in Superstrong Electromagnetic Fields. Klein
Paradox

It has long been well known that in the background of a stationary and homoge-
neous electric fields the QED vacuum is unstable and electron–positron (e−, e+)
pair production from the vacuum occurs (this mechanism is often referred to as the
Schwinger mechanism). However, a measurable rate for pair production requires
extraordinarily strong electric field strengths comparable to the critical vacuum field
strength

Ec = m2c3

e�
, (9.1)

the work of which on an electron over the Compton wavelength λc = �/mc equals
the electron rest energy. We will see that the probability of this process reaches the
optimal values when

ζ = E0

Ec
� 1, (9.2)

where E0 is the magnitude of a uniform electric field strength.
Fortunately, it seems possible to produce EM fields with electric field strengths

of the order of the Schwinger critical field in the focus of expected X-ray FEL
and consideration of this problem is theoretically important, since it requires one to
go beyond perturbation theory, and its experimental observation would verify the
validity of theory in the domain of strong fields.

To solve the problem of e−, e+ pair production in the given electric field, we
shall make use of the Dirac model—all vacuum negative-energy states are filled with
electrons and e−, e+ pair production by the electric field occurs when the vacuum
electrons with initial negative energies E0 < 0 due to “acceleration” pass to the final
states with positive energies E > 0. To distinguish the free particle states, we will
switch on and switch off the electric field elaborating on a model which retains the
main features of the spatially uniform electric field and allows one to obtain an exact
solution for the Dirac equation and final expressions for the pair production rate in
closed form. Thus, we will assume an electric field of the form

E(t) = E0

cosh2
(

t
T

) ẑ, (9.3)

where T is the characteristic period of the field and ẑ is the unit vector along the
field strength. The vector potential corresponding to this field may be written as

A(t) = −c

t∫

−∞
E(t)dt = −cE0T ẑ

[
tanh

(
t

T

)
+ 1

]
. (9.4)
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We will solve the Dirac equation in the spinor representation (see (1.77), (1.78)).
Since the interaction Hamiltonian does not depend on the space coordinates, the gen-
eralizedmomentump0 is conserved.Hence, the solution of (1.77)may be represented
in the form

Ψ (r,t) = Ψp0 (t) e
i
�

p0r, (9.5)

and from (1.77) for the function Ψp0(t) we obtain the following equation:

i�
dΨp0

dt
=
[
cα

(
p0+e

c
A (t)

)
+mc2β

]
Ψp0 . (9.6)

In this section the electron charge will be assumed to be −e. Since A(−∞) = 0 the
solution of (9.6) at t → −∞ should be superposition of the free particle solutions
ψ(κ)

p0,σ
with negative (κ = −1) and positive (κ = 1) energies and polarizations

σ = ± 1
2 (spin projections Sz = ± 1

2 in the rest frame of the particle):

ψ(κ)
p0,1/2 =

√
1

2E0 (E0 − κcp0z)

⎛
⎝

κmc2w(1/2)

(E0 − κcσp0) w(1/2)

⎞
⎠ e− i

�
κE0t , (9.7)

ψ(κ)
p0,−1/2 =

√
1

2E0 (E0 + κcp0z)

⎛
⎝

(E0 + κcσp0) w(−1/2)

κmc2w(−1/2)

⎞
⎠ e− i

�
κE0t , (9.8)

where E0 =
√

c2p2
0 + m2c4, œ are Pauli matrices, and the spinors w(±1/2)are

w(1/2) =
(
1
0

)
; w(−1/2) =

(
0
1

)
.

At t → ∞, the electric field E(∞) = 0 but

A(∞) = −2cE0T ẑ, (9.9)

and the solution of (9.6) at t → ∞ should be superposition of the free particle
solutions (9.7), (9.8) where the “final momentum”

p = p0 − e

∞∫

−∞
E(t)dt = p0 + e

c
A(∞) (9.10)

stands for p0. Equation (9.6) in the quadratic form (see (1.82), (1.83)) for the bispinor
components

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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Ψp0 (t) =

⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ (9.11)

gives the following set of equations:

{
�
2 d2

dt2
+ E2

0 + e2 A2(t) + 2ecp0z A (t) ∓ iec�E(t)

}
f1,2 = 0, (9.12)

{
�
2 d2

dt2
+ E2

0 + e2 A2(t) + 2ecp0z A (t) ± iec�E(t)

}
f3,4 = 0. (9.13)

Thus, solving the equation

{
�
2 d2

dt2
+ E2

0 + e2 A2(t) + 2ecp0z A (t) − δiec�E(t)

}
Φ = 0 (9.14)

with δ = ±1 one can construct the whole bispinor (9.11). Passing in (9.14) to the
new variable

z = −e2
t
T ,

and seeking the solution in the form

Φ (t) = (−z)i E0T
2� (1 − z)iδ eE0T 2c

� F(z), (9.15)

we obtain the equation for hypergeometric function F (α,β, γ, z):

z (1 − z) F ′′ + (γ − (α + β + 1) z) F ′ − αβF = 0. (9.16)

The parameters α,β, γ are defined as follows:

α (E0, δ) = i
E0 + E + 2iδeE0cT

2�
T,

β (E0, δ) = i
E0 − E + 2iδeE0cT

2�
T, (9.17)

γ (E0) = 1 + i
E0
�

T,

where according to (9.10) and (9.9)

E =
√

c2 (p0 − 2eE0T ẑ)2 + m2c4.
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The general solution for hypergeometric equation (9.16) is

F(z) = F (α,β, γ, z) + z1−γ F (α − γ + 1,β − γ + 1, 2 − γ, z). (9.18)

Taking into account the relations

α (E0, δ) − γ (E0) + 1 = α (−E0, δ),

β (E0, δ) − γ (E0) + 1 = β (−E0, δ),

2 − γ = γ (−E0) ,

i
E0
2�

T + 1 − γ (E0) = −i
E0
2�

T,

the general solution for bispinor Ψp0 (t) can be written as follows:

Ψp0 (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1Φ (E0, 1; z) + A2Φ (−E0, 1; z)

B1Φ (E0,−1; z) + B2Φ (−E0,−1; z)

C1Φ (E0,−1; z) + C2Φ (−E0,−1; z)

D1Φ (E0, 1; z) + D2Φ (−E0, 1; z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9.19)

where

Φ (E0, δ; z) = (−z)i E0
2�

T (1 − z)iδ eE0c
�

T 2

× F (α (E0, δ),β (E0, δ), γ (E0) , z), (9.20)

and the coefficients A1,2, B1,2,C1,2, D1,2 should be defined from the initial condition.
To determine the probability of e−, e+ pair productionwe use the initial condition:

at t → −∞ when A(−∞) = 0 this wave function must turn into the free Dirac
equation solution with negative energy in accordance with the Dirac model. Then
taking into account that at

t → −∞; z → 0,

Φ (E0, δ; z → 0) = (−z)i E0
2�

T = e
i
�
E0t ,
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we obtain

Ψ
(−1)
p0,1/2 =

√
1

2E0 (E0 + cp0z)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−mc2Φ (E0, 1; z)

0

(E0 + cp0z)Φ (E0,−1; z)

(
cp0x + icp0y

)
Φ (E0, 1; z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9.21)

Ψ
(−1)
p0,−1/2 =

√
1

2E0 (E0 − cp0z)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−cp0x + icp0y
)
Φ (E0, 1; z)

(E0 + cp0z)Φ (E0,−1; z)

0

−mc2Φ (E0, 1; z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.22)

After the interaction at t → +∞; z → −∞ these wave functions become the
superposition of the free Dirac equation solutions. To determine the asymptotes of
these functions we will use the following property of the hypergeometric function:

F (α,β, γ, z) = Γ (γ) Γ (β − α)

Γ (β) Γ (γ − α)
(−z)−α F

(
α,α + 1 − γ,α + 1 − β,

1

z

)

+ Γ (γ) Γ (α − β)

Γ (α) Γ (γ − β)
(−z)−β F

(
β,β + 1 − γ,β + 1 − α,

1

z

)
.

(9.23)

Hence, for the function Φ we obtain

Φ (E0, δ; z → −∞) = e− i
�
E t Γ (γ (E0)) Γ (β (E0, δ) − α (E0, δ))

Γ (β (E0, δ)) Γ (γ (E0) − α (E0, δ))
+ e

i
�
E t Γ (γ (E0)) Γ (α (E0, δ) − β (E0, δ))

Γ (α (E0, δ)) Γ (γ (E0) − β (E0, δ)) . (9.24)

Taking into account the relations

E − E0 + 2eE0cT

E0 − E + 2eE0cT
= E − cpz

E0 + cp0z
,

p0z − pz = 2eE0T,

for the bispinor wave function (9.21) we obtain
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Ψ
(−1)
p0,1/2 (t → +∞) = C (E)ψ(1)

p,1/2 + C (−E) ψ(−1)
p,1/2, (9.25)

where

C (E) =
√

EE0

(E0 − E + 2eE0cT ) (E − E0 + 2eE0cT )

× 2Γ
(
i E0

�
T
)
Γ
(−i E

�
T
)

Γ
(
i E0 −E + 2eE0cT

2�
T
)
Γ
(
i E0 −E − 2eE0cT

2�
T
) . (9.26)

The probability of the e−, e+ pair production summed over the spin states is

W (E) = 2 |C (E)|2 . (9.27)

Taking into account that

|Γ (iy)|2 = π

y sin πiy
,

for the probability (9.27) we obtain

W (E) = 2
cosh

(
π 2eE0cT 2

�

)
− cosh

(
π E −E0

�
T
)

cosh
(
π E +E0

�
T
)− cosh

(
π E −E0

�
T
) . (9.28)

The number of created e−, e+ pairs per unit space volume is

N =
∫

W (E)
dp0

(2π�)3
,

which with (9.28) is written as

N = 2

(2π�)3

∫ cosh
(
π 2eE0cT 2

�

)
− cosh

(
π E −E0

�
T
)

cosh
(
π E +E0

�
T
)− cosh

(
π E −E0

�
T
) dp0zdp0x dp0y . (9.29)

The probability (9.28) has amaximum at p0z = eE0T (the electrons and positrons
are createdwith the same energy, i.e., pz = −eE0T ). In the limit T → ∞ the electric
field (9.3) tends to a constant one: E(t) → E0̂z and from (9.28) one can obtain the
probability of the e−, e+ pair production in the static, spatially uniform electric field.
In this case in the integral (9.29) over p0z the main contribution gives the maximum
point with the width δ p0z ≈ eE0T . Hence, at

(ceE0T )2 � m2c4 + c2 p2
0⊥; p0⊥ =

√
p2
0x + p2

0y,
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we have

E0 ≈ E ≈ ceE0T + m2c4 + c2 p2
0⊥

2ceE0T
,

and for the number of e−, e+ pairs created per unit time and unit space volume we
obtain

N

T
≈ 2

(2π�)3
eE0

∫
exp

[
−π

m2c4 + c2 p2
0⊥

ceE0�

]
dp0x dp0y . (9.30)

Integrating in (9.30) over transverse momentum, we obtain the Schwinger formula:

NSch

T
= e2E2

0

4π3�2c
exp

[
−π

m2c3

e�E0

]
, (9.31)

or in the terms of critical field

NSch

T
= ζ2

4π3λ3
c

mc2

�
exp

[
−π

ζ

]
. (9.32)

If ζ 	 1 the probability of pair production is exponentially suppressed and reaches
the optimal values when ζ � 1 at which

NSch

T
� 1049 cm−3c−1.

9.2 Electron–Positron Pair Production by Superstrong
Laser Field and γ-Quantum

The electron–positron pair production by superstrong laser fields of relativistic inten-
sities as a third body for the satisfaction of conservation laws in physically more
interesting cases can serve a γ-quantum or a nucleus/ion.

The e−, e+ pair production process by a plane monochromatic radiation field and
a γ-quantum in the scope of QED is described by the first-order Feynman diagram
(Fig. 9.1) where wave functions (1.94) correspond to electron/positron lines. As in
the QED the production of electron and positron with quasimomentums Π− and
Π+, respectively, is interpreted as a transition of an electron from the vacuum state
“−Π+” to state Π−. The Feynman diagram is topologically equivalent to that of
the Compton effect. Hence, the S-matrix amplitude of this process can be obtained
from the Compton-effect S-matrix amplitude (1.114) by the substitutions ε∗

μ → εμ,
k ′ → −k ′, Π → −Π+, Π ′ → Π−:

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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Fig. 9.1 Feynman diagram
for electron–positron pair
production by laser field and
γ-quantum

S f i = −i (2π�)4
√

πα0

2ω′cΠ0+Π0−V 3
uσ′(p−)

× M̂ (Compton)

f i

(
ε∗ → ε, k ′ → −k ′,Π → −Π+,Π ′ → Π−

)
uσ(−p+).

(9.33)

Wewill assume that the γ-quantum is nonpolarized and corresponding summation
over the electron and positron polarizations will be made. Taking into account that at
the summation over the positron polarizations one should replace u(−p+)u(−p+)

by c2( p̂+ − mc) one can see that

1

2

∑
σ′,σ,ε

∣∣S f i

∣∣2 = −1

2

∑
σ′,σ,ε,ε

∣∣S f i

∣∣2
(Compton)

(
k ′ → −k ′,Π → −Π+,Π ′ → Π−

)
.

(9.34)

For the differential probability of e−, e+ pair production per unit time we have

dW = 1

2Δt

∑
σ′,σ,ε

∣∣S f i

∣∣2 V
d�−

(2π�)3
V

d�+
(2π�)3

. (9.35)

Hence, using (1.114) for the Compton effect and taking into account relation (9.34)
for the differential probability (9.35) we obtain

dW =
∞∑

s>sm

W (s)δ
(
Π− + Π+ − �k ′ − s�k

)
d�−d�+, (9.36)

http://dx.doi.org/10.1007/978-3-319-26384-7_1


282 9 Electron–Positron Pair Production in Superstrong Laser Fields

where

W (s) = α0m2c6

2πω′�2Π0+Π0−

[
|Gs |2 −

(
1 − �

2
(
kk ′)2

2 (p+k) (p−k)

)

×
(

(1 + g2)ξ20
4

(|Gs−1|2 + |Gs+1|2 − 2 |Gs |2
)

+ (1 − g2)ξ20
4

Re
[
2G∗

s−1Gs+1 − G∗
s (Gs−2 + Gs+2)

])
]

. (9.37)

The arguments of the functions Gs (α,β,ϕ) in this case are

α = eA0

�c

[(
e1p−
p−k

− e1p+
p+k

)2

+ g2
(

e2p−
p−k

− e2p+
p+k

)2
]1/2

, (9.38)

β = −e2 A2
0

8�c2
(1 − g2)

(
1

p+k
+ 1

p−k

)
, (9.39)

tanϕ =
g
(

e2p−
p−k − e2p+

p+k

)
(

e1p−
p−k − e1p+

p+k

) . (9.40)

Since the pair production is a threshold effect, the number of photons absorbed from
the strong wave must exceed the threshold value

sm = 2m∗2c2

�2 (k ′k)
, (9.41)

which follows from the conservation law of this process expressed by the δ-function
in (9.36) and the dispersion law for quasimomentum (1.96). Note that in (9.41) the
effectivemass appearswhich depends on the laser intensity. If sm > 1 (for low photon
energies), production of the electron–positron pair may only proceed by nonlinear
channels (even for ξ0 	 1). Besides, this process does not have a classical limit and
the quantum recoil is always essential.

For the concreteness we will investigate the case of circular polarization of the
incident wave (g = ±1). In this case |Gs |2 = J 2

s (α) and from (9.37) for the partial
probabilities we have

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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W (s) = e2m2c5

2πω′�3Π0+Π0−

[
J 2

s (α) − ξ20

(
1 − �

2
(
kk ′)2

2 (p+k) (p−k)

)

×
((

s2

α2
− 1

)
J 2

s (α) + J ′2
s (α)

)]
. (9.42)

Taking into account the conservation laws, as well as the relations p−k = Π−k and
p+k = Π+k, the argument of the Bessel function can be written as

α = ξ0
mc2

�ω

∣∣∣∣
[

k
(

p−
p−k

− p+
p+k

)]∣∣∣∣

= ξ0
mc

�

[
2s�

(
1

Π−k
+ 1

Π+k

)
− m2

∗c2
(

1

Π−k
+ 1

Π+k

)2
]1/2

. (9.43)

For a weak EMwave, ξ0 	 1 and sm < 1 (linear theory), the argument of the Bessel
function α 	 1 and the main contribution to the probability of the pair production
is the one-photon process. In this case J 2

1 (α1) � α2
1/4, J ′2

1 (α1) � 1/4, Π0+ � E+,
Π0− � E− and taking into account that

1 −
(
kk ′)2

2 (p+k) (p−k)
= −1

2

[
p−k

p+k
+ p+k

p−k

]
,

we obtain the G. Breit, A. Wheeler formula:

W (1) = e2m2c5

8πω′�3E+E−
ξ20

[
2

(
m2c2

�p−k
+ m2c2

�p+k

)

−
(

m2c2

�p−k
+ m2c2

�p+k

)2

+
[

p−k

p+k
+ p+k

p−k

]]
. (9.44)

For a strong EM wave, it is more convenient to choose the quantum recoil para-
meter as an integration variable:

ρ = �
2
(
kk ′)2

2 (p+k) (p−k)
= �

2
(
kk ′)2

2 (Π+k) (Π−k)
. (9.45)

Taking into account the azimuthal symmetry with respect to the wave propagation
direction one can make the following replacement:

δ
(
Π− + Π+ − �k ′ − s�k

) d�−d�+
Π0+Π0−

=>
2π

c2
1

ρ
√

ρ2 − 2ρ
dρ, (9.46)

and we obtain
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W = e2m2c3

ω′�3

∞∑
s>sm

2s/sm∫

2

[
J 2

s (αs (ρ)) + ξ20 (ρ − 1)

×
((

s2

α2
s (ρ)

− 1

)
J 2

s (αs (ρ)) + J ′2
s (αs (ρ))

)]
dρ

ρ
√

ρ2 − 2ρ
, (9.47)

where the argument of the Bessel function is

αs (ρ) = ξ0√
1 + ξ20

sm

[
2s

sm
ρ − ρ2

]1/2
. (9.48)

The latter reaches its maximal value

αs max = ξ0√
1 + ξ20

s (9.49)

at ρ = s/sm . This value is in the integration range when s > 2sm . If sm � 1, which
is possible for not so hard γ-quantum, and at ξ0 � 1 one can approximate the Bessel
function by the Airy one (see (1.69) for Compton effect) and for the probability of
the pair production we obtain

W � e2m2c3

ω′�3

∞∑
s>sm

2s/sm∫

2

{[
1 + ξ20 (ρ − 1)

(
s2

α2 (ρ)
− 1

)](
2

s

)2/3

Ai2 (Z)

+ ξ20 (ρ − 1) Ai ′2 (Z)

(
2

s

)4/3
}

dρ

ρ
√

ρ2 − 2ρ
, (9.50)

where

Z = 1

1 + ξ20

( s

2

)2/3 (
1 + ξ20

(
1 − sm

s
ρ
)2)

. (9.51)

As far as the Airy function exponentially decreases with increasing of the argu-
ment, one can conclude that the optimal parameters for the pair production process
are determined from the condition Zmin ∼ 1, where

Zmin =
( s

2

)2/3 (
1 − α2

s max

s2

)
�
(

s

2ξ30

)2/3

,

which gives
2ξ30 � sm .

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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For ξ0 � 1, sm � 2m2c2ξ20/(�
2k ′k) we obtain

ζ = �
2k ′k

m2c2
ξ0 � 1. (9.52)

The latter means that in the rest frame of created electron the electric field strength
of the EM wave exceeds the critical vacuum field (9.1). Hence, ζ is the quantum
parameter of interaction in the scale of the critical vacuum field.

For Zmin � 1 or ζ 	 1 (so-called tunneling regime of the pair production
process), one can use the following asymptotic formula for the Airy function:

Ai(Z) � 1

2
√

π
Z−1/4 exp

(
−2Z3/2

3

)
.

Hence, the probability of the electron–positron pair production

W ∝ exp

(
− 4

3ζ

)
(9.53)

is exponentially suppressed.
For the moderate relativistic intensities ξ0 ∼ 1 to show the dependence of the

probability on the wave intensity and quantum parameter of interaction ζ the nor-
malized probability

W̃ = ω′
�
3

e2m2c3
W (9.54)

is displayed in Fig. 9.2 as a function of ξ0 for various ζ.

Fig. 9.2 The normalized
probability
W̃ = �

3ω′W/(e2m2c3) as a
function of relativistic
parameter of intensity ξ0 for
various ζ
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9.3 Pair Production via Superstrong Laser Beam Scattering
on a Nucleus

The electron–positron pair production via superstrong laser beam scattering on a
nucleus can be described again by the first-order Feynman diagram (Fig. 9.3) where
wave functions (1.94) correspond to electron/positron lines. The Feynman diagram
is topologically equivalent to that of the stimulated bremsstrahlung (SB) effect. As
in the previous section the S-matrix amplitude of this process can be obtained from
the S-matrix amplitude of SB (10.58) by the substitutions Π → −Π+, Π ′ → Π−:

S f i = −iπe

V c
√

Π0+Π0−
uσ′(p−)M̂ (SB)

f i

(
Π → −Π+,Π ′ → Π−

)
uσ(−p+). (9.55)

Making the summation over the electron and positron polarizations one can see that

∑
σ′,σ

∣∣S f i

∣∣2 =
∑
σ′,σ

∣∣S f i

∣∣2
SB

(
Π → −Π+,Π ′ → Π−

)
. (9.56)

The differential probability of e−, e+ pair production per unit time is written as

dW = 1

Δt

∑
σ′,σ

∣∣S f i

∣∣2 V
d�−

(2π�)3
V

d�+
(2π�)3

. (9.57)

Hence, using (10.59) for the SB process and taking into account (9.56) for the dif-
ferential probability of pair production per unit time, we obtain

dW =
∞∑

s>sm

W (s)δ (Π0+ + Π0− − s�ω) d�−d�+, (9.58)

Fig. 9.3 Feynman diagram
for electron–positron pair
production via laser beam
scattering on a nucleus

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_10
http://dx.doi.org/10.1007/978-3-319-26384-7_10
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where

W (s) = 4π

Π0+Π0−
e2 |ϕ (qs)|2
(2π�)6 �

{
�
2q2

s c2

4
|Bs |2 + e2�2

[
kqs

]2
4(kp−)(kp+)

× [|B1s |2 − ReB2s B∗
s

]−
∣∣∣∣E+ Bs + e (p+B1s) ω

(kp+) c
+ e2ω

2c2(kp+)
B2s

∣∣∣∣
2
}

,

(9.59)

and
�qs = �− + �+ − s�k.

The threshold value of the photon number for this process is defined as follows:

sm = 2m∗c2

�ω
. (9.60)

The arguments α,β,ϕ of the functions Bs , B1s , B2s are defined according to
(9.38)–(9.40).

In the case of circular polarization of an incident strong wave (g = 1) we have

Gs(α, 0,ϕ) = (−1)s Js(α)eisϕ.

Taking into account the azimuthal symmetry with respect to the wave propagation
direction one can make the following replacement:

δ (Π0+ + Π0− − s�ω) d�−d�+ → 2πm∗ Π0− |�−| Π0+ |�+|
c2

× sin θ+ sin θ−dθ−dθ+dφdγ+, (9.61)

where γ+ = Π0+/(m∗c2), θ+, θ− are the scattering angles of positron and electron
with respect to the EM wave propagation direction and φ is the angle between the
planes formed by �−, k and �+, k. Hence, for the differential probability of e−, e+
pair production per unit time we have

dW = 2π2α0m∗

(2π�)6 c

∞∑
s>sm

|�−| |�+| |ϕ(qs)|2

×
⎧⎨
⎩

⎡
⎣�

2q2
s c2 − 4

(
Π0+ − s�ω

(kp+)

κ
[
kp+

]

κ2

)2
⎤
⎦ J 2

s (αs)
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+ �
2e2 A2

0

(kp−)(kp+)

[
kqs

]2 [( s2

α2
s

− 1

)
J 2

s (αs) + J ′2
s (αs)

]

− 4e2 A2
0

(kp+)2

[
κ
[
kp+

]]2
κ2

J ′2
s (αs)

}
sin θ+ sin θ−dθ−dθ+dφdγ+. (9.62)

In this equation the electron quasienergy and quasimomentum are defined via Π0+
according to conservation law and

κ =
[
kp+

]

p+k
−
[
kp−

]

p−k
. (9.63)

The Bessel function argument in (9.62)

αs = eA0

�ω
|κ|

can be represented in the form

αs = ξ0sm

2
√
1 + ξ20

[
β2+ sin2 θ+

(1 − β+ cos θ+)2
+ β2− sin2 θ−

(1 − β− cos θ−)2

− 2
β−β+ sin θ+ sin θ− cosφ

(1 − β+ cos θ+) (1 − β− cos θ−)

]1/2
, (9.64)

where

β± = c |�±|
Π0±

; Π0− = s�ω − Π0+.

In this particular case we utilize (9.62) in order to obtain the electron–positron pair
production probability on the Coulomb potential for which the Fourier transform is

ϕ (qs)=4πZae

q2
s

. (9.65)

Then taking into account (9.65) for the differential probability of e−, e+ pair pro-
duction by a strong plane monochromatic wave per unit time at the scattering on the
Coulomb field we will have

dW = α2
0

Z2
am∗

2π2�

∞∑
s>sm

|�−| |�+|
�4q4

s⎧⎨
⎩

⎡
⎣�

2q2
s c2 − 4

κ4

(
κ

(
Π0−

[
k�+

]

Π+k
+ Π0+

[
k�−

]

Π−k

))2
⎤
⎦ J 2

s (αs)
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− 4e2 A2
0

κ2

([[
k�−

] [
k�+

]]

(kΠ−) (kΠ+)

)2

J ′2
s (αs) + e2 A2

0

(kΠ−) (kΠ+)

[
k (�− + �+)

]2

×
[(

s2

α2
s

− 1

)
J 2

s (αs) + J ′2
s (αs)

]⎫⎬
⎭ sin θ+ sin θ−dφdθ−dθ+dγ+. (9.66)

For a weak EM wave the main contribution in this process is the one-photon
process. Dividing the differential probability (9.66) by the initial flux density

J = 1

�ω

c

4π
E2
0

we obtain the H.A. Bethe, W. Heitler formula:

dσ = α3
0

Z2
a

2π

|p−| |p+|
�4q4

1

1

�ω3

×
{

�
2q2

1c2
([

kp+
]

p+k
−
[
kp−

]

p−k

)2

− 4

(
E−

[
kp+

]

p+k
+ E+

[
kp−

]

p−k

)2

+ 2�
2ω2

(kp−) (kp+)

[
k (p− + p+)

]2}
sin θ+ sin θ−dφdθ−dθ+dE+. (9.67)

In general the expression for the differential probability of e−, e+ pair produc-
tion by strong radiation field (9.66) is very complicated (one should perform
four-dimensional integration and summation over photon numbers) but without
integration one canmake conclusions about optimal values of laser parameters for the
measurable pair production probability using the properties of the Bessel function.
The Bessel function argument in (9.66) αs(γ+, θ+, θ−,φ) as a function of θ+, θ−,φ
reaches its maximal value at

cos θ+ = β+, cos θ− = β−, cosφ = −1,

and is equal to

αs (γ+) = ξ0sm

2
√
1 + ξ20

⎛
⎝
√

γ2+ − 1 +
√(

2s

sm
− γ+

)2

− 1

⎞
⎠ . (9.68)

The latter is always small comparedwith theBessel function index. Indeed, as follows
from the conservation law

1 ≤ γ+ ≤ 2s

sm
− 1,
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and in this range αs (γ+) reaches its maximal value

αs max = ξ0√
1 + ξ20

√
s2 − s2m < s (9.69)

at the γ+ = s/sm . Hence, for ξ0 � 1 and sm � 1 the main contribution to the
differential probability will give the number of photons s � sm and as in the previous
section one can approximate the Bessel function by the Airy one (1.69). The Airy
function argument for α � αs max will be

Z(s) � 1

22/3ξ20
s2/3

(
1 + ξ20

s2m
s2

)
. (9.70)

As the Airy function exponentially decreases with increasing of the argument,
one can conclude that the optimal parameters for the pair production process are
determined from the condition Zmin ∼ 1, Zmin being the minimum value of Z(s).
The latter corresponds to the number of photons s = √

2ξ0sm at which

Zmin = Z
(√

2ξ0sm

)
= 3

(
Ec

2E0

)2/3

, (9.71)

where Ec is the vacuum critical field strength (9.1). Hence, at ξ ≥ 1 the probability
reaches optimal values when ζ ≡ E0/Ec ≥ 1 (at ξ0 	 1 quantum effects are optimal
when ζ ∼ ξ0, which corresponds to linear theory, that is, the perturbation theory of
QED). When ζ 	 1 according to (9.53) the probability is exponentially suppressed:

W ∝ exp(−2
√
3/ζ), (9.72)

as in the Schwingermechanism for e−, e+ pair production in the uniform electrostatic
field, where W ∝ exp(−π/ζ). For the available superstrong optical lasers ζ ∼ 10−4,
which practically does not allow for measurable pair creation probability. As was
argued, one can achieve ζ ∼ 10−1 at the focus of expectedX-rayFEL facilities,which
will allow for measurable pair creation probability by the Schwinger mechanism.

Note that in the considered process of pair production on a nucleus one can achieve
the condition ζ ≥ 1 (even ζ � 1) in the scheme of counterpropagating nucleus beam
andX-ray FEL. Then, in the rest frame of the nucleus wewill have ζ � 2ζLγL , where
γL is the Lorenz factor of nucleus and ζL is the field parameter in the laboratory frame.
Since ξ0 is the Lorenz invariant, then if ξ0 ≥ 1 and γL > Ec/2E0 in the laboratory
frame, the probability of multiphoton e−, e+ pair production reaches its optimal
value.

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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9.4 Nonlinear e−, e+ Pair Production in Plasma by Strong
EM Wave

As shown in Chap.6 for electron–positron pair production by a γ-quantum or a
plane monochromatic EM wave, a macroscopic medium with a refractive index
n0(ω0) < 1 may serve as a third body for the satisfaction of conservation laws. In
such a plasma-like medium, the multiphoton production of e−, e+ pairs by a strong
laser radiation field is possible at ordinary densities of plasma, in contrast to single-
photon production γ → e− + e+, which is only accessible in a superdense plasma
with the electron density ρ � 3 · 1034 cm−3.

In laser fields with ξ0 ∼ 1 when the energy of the interaction of an electron (of the
Dirac vacuum) with the field over a wavelength becomes comparable to the electron
rest energy (eE0λ0 ∼ mc2) the multiphoton pair production process goes in through
nonlinear channels. At such intensities, in general, the dispersion law of a plasma
becomes nonlinear, too, i.e., the refractive index depends on the wave intensity:
n0 = n0(ω0, ξ

2
0). As is known, because of the intensity effect, the transparency range

of a plasma widens and the dispersion law n0(ω0, ξ
2
0) < 1, which is necessary for the

production of e−, e+ pairs, holds all the more. However, the intensities required for
the appearance of a real nonlinearity in dispersion become essential when ξ0 � 1.
Hence, in considering fields ξ0 ∼ 1 the dispersion law of a plasma can be regarded
as linear (n2

0(ω0) = 1 − 4πρe2/mω2
0).

Let a plane transverse linearly polarized EM wave with frequency ω0 and vector
potential

A (r, t) = A0 cos (ω0t − k0r); |k0| = n0
ω0

c
(9.73)

propagate in a plasma. The multiphoton degree s for the e−, e+ pair production in
the light fields is defined by thecondition (reaction threshold)

s�ω0 � 2mc2√
1 − n2

0

. (9.74)

To determine the multiphoton probabilities of this process, it is convenient to solve
the problem in the center-of-mass frame of the produced pair (C frame), in which
the wave vector of the photons is k′ = 0 (the refractive index of the plasma in this
frame is n′ = 0). The velocity of the C frame with respect to the laboratory frame
(L frame) is v = cn0. The traveling EM wave is transformed in the C frame into a
varying electric field (the magnetic field H ′ = 0) with a vector potential

A′ (t ′) = A0

2
[exp(iω′t ′) + exp(−iω′t ′)], ω′ = ω0

√
1 − n2

0. (9.75)

It is easily noted that with (9.75) taken into account the reaction threshold condi-
tion (9.74) is obtained from the laws of the conservation of energy E ′− + E ′+ = s�ω′

http://dx.doi.org/10.1007/978-3-319-26384-7_6
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and momentum p′− + p′+ = s�k′ = 0 in the C frame (E ′−, p′− and E ′+, p′+ are the
energy and momentum of the electron and positron, respectively, in the C frame).

To solve the problemof s-photonproductionof an e−, e+ pair in the given radiation
field (9.73), we shall make use of the Dirac model (all vacuum negative-energy states
are filled with electrons and the interaction of the external field proceeds only with
this vacuum: on the other hand, the interaction with the plasma electrons reduces to
a refraction of the wave only).

The Dirac equation in the field (9.75) has the form

i�
∂Ψ

∂t
= [

cα̂
(
p′ − eA′ (t ′))+ β̂mc2

]
Ψ, (9.76)

where the Dirac matrices α̂, β̂ will be chosen in the standard representation, with σ
the Pauli matrices. Since in the C frame the interaction Hamiltonian does not depend
on the space coordinates, the solution of (9.76) can be represented in the form of
a linear combination of free solutions of the Dirac equation with amplitudes ai (t ′)
depending only on time:

Ψp′
(
r′, t ′) =

4∑
i=1

ai (t
′)Ψ (0)

i

(
r′, t ′). (9.77)

Here

Ψ
(0)
1,2

(
r′, t ′) =

√
E ′ + mc2

2E ′

⎛
⎝

ϕ1,2

cσp′
E ′ + mc2 ϕ1,2

⎞
⎠ e

i
� (p′r′−E ′t ′),

Ψ
(0)
3,4

(
r′, t ′) =

√
E ′ + mc2

2E ′

⎛
⎝

−cσp′
E ′ + mc2 χ3,4

χ3,4

⎞
⎠ e

i
� (p′r′+E ′t ′), (9.78)

where

E ′ =
√

c2p′2 + m2c4, ϕ1 = χ3 =
(
1
0

)
, ϕ2 = χ4 =

(
0
1

)
. (9.79)

The solution of (9.76) in the form (9.77) corresponds to an expansion of the wave
function in a complete set of orthonormal functions of the electrons (positrons) with
specified momentum (with energies E ′ = ±√c2p′2 + m2c4 and spin projections
Sz = ±1/2). The latter are normalized to one particle per unit volume. According to
the assumed model, only the Dirac vacuum is present prior to the turning on of the
field, i.e.,

|a3(−∞)|2 = |a4(−∞)|2 = 1, |a1(−∞)|2 = |a2(−∞)|2 (9.80)
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(the field is turned on adiabatically at t = −∞). From the condition of conservation
of the norm we have

4∑
i=1

∣∣ai (t
′)
∣∣2 = 2, (9.81)

which expresses the equality of the number of created electrons and positrons, whose
creation probabilities are, respectively,

∣∣a1,2(t ′)
∣∣2 and 1 − ∣∣a3,4(t ′)

∣∣2.
Substituting (9.77) into (9.76), multiplying by the Hermitian conjugate functions

Ψ
(0)†

i

(
r′, t ′), and taking into account orthogonality of the eigenfunctions (9.78) and

(9.79), we obtain a set of differential equations for the unknown functions ai (t ′).
Since in the C frame there is symmetry with respect to the direction A′

0 (the OY
axis), we can take, without loss of generality, the vector p′ to lie in the x ′y′ plane
(p′

z = 0). Further, having introduced, to simplify the notation, the new symbols

a1(t
′) ≡ b1(t

′),

a4(t
′) ≡ b4(t

′)

[
1 − c2 p′2

y

E ′2

]−1/2 [
c2 p′

x p′
y

E ′(E ′ + mc2)

+ i

(
1 − c2 p′2

y

E ′(E ′ + mc2)

)]
, (9.82)

we obtain for the amplitudes b1(t ′) and b4(t ′) (
∣∣b4(t ′)

∣∣ = ∣∣a4(t ′)
∣∣) the following set

of equations:

db1(t ′)
dt ′ = i

ecp′
y A′

y(t
′)

�E ′ b1(t
′)

+ i
eA′

y(t
′)

�

√
1 − c2 p′2

y

E ′2 b4(t
′) exp

(
2iE ′t ′

�

)
,

db4(t ′)
dt ′ = −i

ecp′
y A′

y(t
′)

�E ′ b4(t
′)

+ i
eA′

y(t
′)

�

√
1 − c2 p′2

y

E ′2 b1(t
′) exp

(
−2iE ′t ′

�

)
. (9.83)

A similar set of equations is also obtained for the amplitudes b2(t ′) and b3(t ′). To
solve the system (9.83), we make the transformations

b1(t
′) = c1(t

′) exp

⎡
⎣i

ecp′
y

�E ′

t ′∫

−∞
A′

y(η)dη

⎤
⎦ ,



294 9 Electron–Positron Pair Production in Superstrong Laser Fields

b4(t
′) = c4(t

′) exp

⎡
⎣−i

ecp′
y

�E ′

t ′∫

−∞
Ay(η)dη

⎤
⎦ , (9.84)

where c1(t ′) and c4(t ′) satisfy the initial conditions, according to (9.80) and (9.82),
|c1(−∞)| = 0 and |c4(−∞)| = 0.

For the new amplitudes c1(t ′) and c4(t ′) from (9.83), we obtain the set of equations

dc1(t ′)
dt ′ = f (t ′)c4(t ′),

dc4(t ′)
dt ′ = − f ∗(t ′)c1(t ′), (9.85)

where

f (t ′) = i
e

�
A′

y(t
′)

√
1 − c2 p′2

y

E2
exp

⎡
⎣2i

�
E ′t ′ − 2iecp′

y

�E ′

t ′∫

−∞
A′

y(η)dη

⎤
⎦ . (9.86)

We can obtain the solution of (9.83), which satisfies the initial conditions of the
problem (9.80), with the help of successive approximations, if

∣∣∣∣∣∣

t ′∫

−∞
f (τ )dτ

∣∣∣∣∣∣
	 1. (9.87)

Then, for the transition amplitude c1(t ′), we have

c1(t
′) =

∞∑
j=0

B2 j+1(t
′), (9.88)

where

B2 j+1(t
′) = (−1) j

t ′∫

−∞
f (τ1)dτ1

τ1∫

−∞
f ∗(τ2)dτ2

τ2∫

−∞
f ∗(τ3)dτ3 · · ·

×
τ2 j−1∫

−∞
f ∗(τ2 j )dτ2 j

τ2 j∫

−∞
f ∗(τ2 j+1)dτ2 j+1. (9.89)

We are interested in nonlinear pair production process in the strong wave field.
For this let us calculate the first term of the sum (9.88):
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B1(t
′) =

t ′∫

−∞
f (τ1)dτ1,

substituting the concrete form of the wave vector potential A′
y(η) from (9.75) into

(9.86) and carrying out the integration. Then for B1(t ′) we obtain

B1(t
′) = E ′

2cp′
y

(
1 − c2 p′2

y

E ′2

)1/2 +∞∑
l=−∞

l�ω′

2E ′ − l�ω′ Jl(α)e
i
� (2E ′−l�ω′)t ′

, (9.90)

where Js(z) is the Bessel function,

α ≡ 2ξ0
mc2

E ′
cp′

y

�ω′ , ξ0 = eE ′
0

mcω′ , E ′
0 = ω′

c
A0.

As ξ0 is a relativistic invariant parameter, in (9.90) ξ0 = eE0/mcω0, where ω0

and E0 are the frequency and amplitude of the electric field of the wave in the L
frame.

For the considered fields, when ξ0 � 1, condition (9.87) always satisfies∣∣B1(t ′)
∣∣ 	 1, but the latter is not enough, yet, in order to be confined to that term

in determination of the amplitude c1(t ′). As the resonant term l = s = 2E ′/
(
�ω′)

(s � 1) gives a real contribution in the multiphoton pair production process and in
(9.90), the maximal value of the Bessel function can be shifted from the resonant
value. Since s � 1, that shift will be as small and negligible as possible when the
argument of the Bessel function is α ∼ s � 1. Thus, the condition, when the pair
production process will have an essential nonlinear character, is

α = 2ξ0
mc2

E ′
cp′

y

�ω′ � 1. (9.91)

If condition (9.91) is satisfied, we can be restricted to the first term of the sum (9.88)
for the amplitude c1(t ′):

c1(t
′) = B1(t

′). (9.92)

The obtained approximate solution of the Dirac equation is thus applicable with such
intensities of EM wave, when conditions (9.87) and (9.91) are satisfied simultane-
ously:

1

s
	 ξ0 � 1. (9.93)

According to (9.82) and (9.84), for the transition amplitude of the electron from
the Dirac vacuum to the state with positive energy (in a definite spinor state) in the
wave field, we have ∣∣a1(t

′)
∣∣2 = ∣∣b1(t ′)

∣∣2 = ∣∣c1(t ′)
∣∣2 .
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To obtain the probability amplitude for the production of electrons and positrons
after the wave has been turned off, we introduce a small detuning of the resonance
in (9.90), corresponding to an s-photon transition: 2E ′ = s�ω′ + �Γ (Γ 	 ω′).

The production probability of the e−, e+ pair, summed over the spin states, is
determined by the quantity

∣∣a1(t
′)
∣∣2 + ∣∣a2(t

′)
∣∣2 = 2

∣∣a1(t
′)
∣∣2 ≡ 2

∣∣C1(t
′)
∣∣2 .

The differential probability of the s-photon process per unit time and phase-space
volume dp′/(2π�)3 (the normalization volume V = 1) in the center-of-mass frame
of the produced particles is given by

dwC
s = dW C

s (t ′)
t ′ = 2 lim

t ′→∞

∣∣c1(t ′)
∣∣2

t ′
dp′

(2π�)3
. (9.94)

Substituting (9.90) into (9.94) and making use of the definition of the δ-function in
the form

lim
t ′→∞

sin2 Γ t ′

πΓ 2t ′ = δ (Γ ) = �δ
(
2E ′ − s�ω′),

we obtain

dwC
s = s2ω′2 (E ′2 − c2 p′2

y

)

16π2�2c2 p′2
y

J 2
s

(
2eA0cp′

y

�ω′E ′

)
δ

(
E ′ − s�ω′

2

)
dp′. (9.95)

Integrating (9.95) over dp′, we obtain the total probability of the s-photon e−, e+
pair production in a plasma by the strong EM wave:

wC
s = �s5ω′5

32πc4 p′

{[
2α2

s

4s2 − 1
− 1

]
J 2

s (αs) + α2
s J 2

s−1 (αs)

2s(2s − 1)

+ α2
s J 2

s+1 (αs)

2s(2s + 1)
− 4c2 p′2

s2�2ω′2
α2s

s

22s(2s + 1) (s!)2

×2F3

(
s + 1

2
, s + 1

2
, s + 1, 2s + 1, s + 3

2
;−α2

s

)}
, (9.96)

where 2F3
(
s + 1

2 , s + 1
2 , s + 1, 2s + 1, s + 3

2 ;−α2
s

)
is the generalized hypergeo-

metric function and

αs = 2mc2ξ0
�ω′

(
1 − 4m2c4

s2�2ω′2

)1/2

.
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As is seen from (9.95), the pair production probability decreases highly in the
directions perpendicular to the field (p′

y = 0), and the obtained approximate non-
linear solution describes the process behavior well at the angles not too close to π/2.
Thus, (9.96), which is a result of integration over all angles, does not contain a large
error.

The quantity Ws is a relativistic invariant, and so (9.96) defines the pair production
probability in the L frame as well. As for the angular distribution of the probability
of s-photon pair production in the L frame, it can be obtained from the expression
dW C

s (t ′) for the differential probability in the C frame by a Lorentz transformation.
Here the quantitymultiplyingdp′ is the expressionofdW C

s (t ′) (see (9.94)) transforms
like the time component of the current density four-vector of the electrons in the
Dirac vacuum (E ′ < 0). One must here take into account that the momentum of
real electrons coincides with the momentum of the vacuum electron p′, while the
momentum of a positron equals −p′ and the vacuum phase-space volume element
dp′/(2π�)3 (in unit volume) goes over correspondingly into the volume element in
momentum space of electrons and positrons. Further, transforming the quantities in
(9.95) from the C frame to the L frame, we obtain the differential probability of
s-photon pair production per unit time in the L frame:

dwL
s = dW L

s (t)

t
= s2ω2

0

(
1 − n2

0

)
(E − n0cpx )

16π2�2c2 p2
yE

[
(E − n0cpx )

2

1 − n2
0

− c2 p2
y

]

× J 2
s

(
2eA0cpy

�ω0 (E − n0cpx )

)
δ

(
E − n0cpx − s�ω0

(
1 − n2

0

)

2

)
dp′, (9.97)

where E and p are the energy and momentum of the produced electron or positron.
Integrating (9.97) over the electron (positron) energy, we obtain the angular distrib-
ution of the probability of the s-photon production of electrons (positrons) per solid
angle element, do = sin ϑdϑdϕ (the azimuthal asymmetry of the probability in the L
frame is due to the linear polarization of the wave: in the case of circular polarization
the probability distribution has azimuthal symmetry):

dwL
s =

2∑
v=1

s3ω3
0

(
1 − n2

0

)2
32π2�c3 (cpv − n0Ev cosϑ) sin ϑ cos2 ϕ

×
[

s2�2ω2
0

(
1 − n2

0

)

4
− c2 p2

v sin
2 ϑ cos2 ϕ

]

× J 2
s

[
4mc3ξ0 pv sin ϑ cosϕ

s�2ω2
0

(
1 − n2

0

)
]

dϑdϕ, (9.98)
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where

p1,2 = 1

2c
(
1 − n2

0 cos
2 ϑ
)
{

sn0�ω0
(
1 − n2

0

)
cosϑ

±
[
s2�2ω2

0

(
1 − n2

0

)2 − 4m2c4
(
1 − n2

0 cos
2 ϑ
)]1/2}

,

E1,2 = 1

2
(
1 − n2

0 cos
2 ϑ
)
{

s�ω0
(
1 − n2

0

)

± n0 cosϑ
[
s2�2ω2

0

(
1 − n2

0

)2 − 4m2c4
(
1 − n2

0 cos
2 ϑ
)]1/2}

. (9.99)

The angleϕ varies from0 to 2π, whileϑ varies from0 toϑmax,which is determined
from the energy and momentum conservation laws (9.99). Further, depending on the
value of the plasma refractive index n0, the electron (positron) production at the
given angle is possible for a particular momentum or for one of the two momenta
with different magnitudes. For values

n0 <

√
1 − 2mc2

s�ω0

(in this case the threshold condition (9.74) for the process is certainly satisfied),
we should take in (9.99) only the upper sign, corresponding to the fact that in the
probability (9.98) only ν = 1 (p1) remains and ϑmax = π, i.e., particles are produced
in all directions for the given angle ϑ with definite momentum. In the opposite case,
wemust also take into account the reaction threshold condition in the region of values
of the index of refraction,

√
1 − 2mc2

s�ω0
< n0 <

√
1 − 4m2c4

s2�2ω2
0

,

and an electron (positron) is produced in a given directionwith one of the twodifferent
values of momentum p1 and p2 in a cone, opened forward, whose opening angle is

ϑmax = arcsin
{[(

1 − n2
0

) (
s2�2ω2

0

(
1 − n2

0

)− 4m2c4
)]1/2

/2mc2n0

}
.

The problem of e−, e+ pair production by the photon field is solved in theC frame
and the probability expressions (9.94)–(9.96) in that frame are adduced with express
purpose. This is of independent physical interest, since (9.94)–(9.96) describe the
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process of pair production in vacuum by a uniform periodic electric field (electric
undulator)

E(t) = E0 cosω0t, (9.100)

with the reaction threshold (see (9.74) when n′ = 0)

s�ω0 � 2mc2. (9.101)

By integrating over the electron (positron) energy, we obtain the angular distribu-
tion of the nonlinear production of electrons (positrons) in the periodic electric field
(in contrast to the pair production by the photon field (9.98), here there is azimuthal
symmetry):

dws = s3ω3
0

32π�c3
4m2c4 cos2 ϑ + �

2s2ω2
0 sin

2 ϑ(
�2s2ω2

0 − 4m2c4
)1/2

cos2 ϑ

× J 2
s

[
2ceE0

(
�
2s2ω2

0 − 4m2c4
)1/2

cosϑ

s�2ω3
0

]
sin ϑdϑ, (9.102)

where ϑ is the angle between the directions of the momentum of produced electrons
(positrons) and the electric field.

Finally, we consider the case of weak fields, eA/ (�ω0) 	 1 (ξ0 	 1/s), when
perturbation theory is applicable. In this case, as was noted above, we cannot be
confined to the first term of the sum (9.88), since every term B2l+1(t ′) of the sum at
α 	 1 (see (9.90) for the expression of α) includes a resonant multiplier ∼ ξs

0 (at
2l + 1 � s) in the lowest order of perturbation theory. Then from (9.88) we obtain
the formula of perturbation theory for the pair production probability in the C frame,
which has a more compact analytical form (here we could get free of the sum of
unwieldy products):

dwC
s = 2π�Φ2δ

(
2E ′ − s�ω′) dp′

(2π�)3
, (9.103)

where

Φ = β
(α

2

)s
ω′
[

1

(s − 1)! +
[(s−1)/2]∑

K=1

s−2K∑
S1=1

...

s−1−(S1+...+Sj−1)−2K+ j∑
Sj =1

...

s−1−(S1+...+S2K−1)∑
S2K =1

(9.104)
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{
(−1)S2+S4+...+S2K

(s − S1) (S1 + S2) ...
[
s − (S1 + S2 + ... + S2K−1)

]
(S1 + S2 + ... + S2K )

× β2K

(S1 − 1)! (S2 − 1)!... (S2K − 1)! [s − 1 − (S1 + S2 + ... + S2K )]!
}]

.

Here s � 3, and parameters

β = E ′

2cp′
y

(
1 − c2 p′2

y

E ′2

)1/2

, α = sξ0
mc3 p′

y

E ′2 ; ξ0 	 1

s
.

9.5 Pair Production by Superstrong EM Waves in Vacuum

As we saw in the previous section, the conservation laws for the pair production in
the field of a plane monochromatic wave can be satisfied in a plasma-like medium
where EM waves propagate with a phase velocity larger than the speed of light in
vacuum. In this case

ω2

c2
− k2 > 0, (9.105)

which means that we have a “photon with nonzero rest mass” providing the creation
of the particles with the rest masses. The satisfaction of conservation laws for the
e−, e+ pair production process in the EM field is equivalent to the satisfaction of the
condition

E2 − H2 > 0, (9.106)

where E and H are the electric and magnetic strengths of the field. The latter is
obvious in the frame of reference where there is only an electric field that provides
the pair creation (in the opposite casewewould have only amagnetic field that cannot
produce a pair). The condition (9.106) can be satisfied in the stationary maxima of a
standingwave being formedby two counterpropagatingwaves (opposite laser beams)
of the same frequencies. It can also be satisfied in the field of a plane monochromatic
wave in awiggler. Thus, these processes ofmultiphoton pair production via nonlinear
channels in vacuum by superstrong laser fields are of special interest.

Let plane transverse linearly polarized EMwaves with frequencyω and amplitude
of vector potential A0

A1 = A0 cos(ωt − kr), A2 = A0 cos(ωt + kr), (9.107)

propagate in opposite directions in vacuum. To solve the problem of s-photon pro-
duction of an e−, e+ pair in the given radiation fields (9.107), we shall make use
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of the Dirac model for electron–positron vacuum. The Dirac equation in the field
(9.107) has the form

i�
∂Ψ

∂t
=
[
cα̂(̂p − e

c
A0 cos(ωt − kr)−e

c
A0 cos(ωt + kr)) + β̂mc2

]
Ψ. (9.108)

Then we have stationary maxima of a standing wave and (9.108) may be rewritten
in the form

i�
∂Ψ

∂t
=
[
cα̂(̂p − 2

e

c
A0 cos kr cosωt) + β̂mc2

]
Ψ. (9.109)

According to the Dirac model, the electron–positron pair production by the EM
wavefield occurswhen the vacuumelectronswith initial negative energiesE0 < 0due
to s-photon absorption pass to the final states with positive energies E = E0 + s�ω >

0. Since we study the case of superstrong laser fields in which the pairs are essentially
produced at the length l 	 λ (λ is the wavelength of laser radiation) and on the
other hand the Hamiltonian of the interaction Hint ∼ p(A1 + A2), the significant
contribution in the process of e−, e+ pair creation will be conditioned by the areas
of stationary maxima in the direction along the electric field strength of the standing
wave. Consequently, we can neglect the inhomogeneity of the field in the considered
problem, i.e., (9.109) will reduce to the following equation:

i�
∂Ψ

∂t
=
[
cα̂(̂p − 2

e

c
A0 cosωt) + β̂mc2

]
Ψ. (9.110)

In this approximation the magnetic fields of the counterpropagating waves cancel
each other. In the case of e−, e+ pair production in a plasmawe had a similar equation
in the center-of-mass frame of created particles (9.76). Thus, we will follow the
approach developed in the previous section. Since the interaction Hamiltonian does
not depend on the space coordinates, the solution of (9.110) can be represented in the
form of a linear combination of free solutions of the Dirac equation with amplitudes
ai (t) depending only on time (9.77). The application of the unitarian transformations
(9.82) and (9.84) yields the set of equations

dc1(t)

dt
= f (t)c4(t), (9.111)

dc4(t)

dt
= − f ∗(t)c1(t). (9.112)

Here the function f (t) (see (9.86)) is expanded into series

f (t) = i
∞∑

s ′=−∞
fs ′ exp

[
i

�
(2E − s ′

�ω)t

]
, (9.113)
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where

fs ′ = E
2cpy

(
1 − c2 p2

y

E2

) 1
2

s ′ωJs ′

(
4ξ0

mc2

E
pyc

�ω

)
, (9.114)

and Js is the ordinary Bessel function. The new amplitudes c1(t) and c4(t) satisfy
the initial conditions

|c1(−∞)| = 0, |c4(−∞)| = 1.

Because of space homogeneity, the generalized momentum of a particle is con-
served so that the real transitions in the field occur from a −E negative-energy level
to positive +E energy level (in the assumed approximation) and, consequently, the
multiphoton probabilities of e−, e+ pair production will have maximal values for the
resonant transitions 2E � s�ω. The latter is just the conservation law of the pair pro-
duction process at which both electrons and positrons will be created back-to-back
according to zero total momentum: pe− + pe+ = 0, since the considered field is only
time dependent. Thus, we can utilize the resonant approximation, as in a two-level
atomic system in the monochromatic wave field.

The probabilities of multiphoton e−, e+ pair production will have maximal values
for the resonant transitions

2E − s�ω � 0. (9.115)

In this case the function f (t) can be represented in the following form:

f (t) = Fs + Φ(t), (9.116)

where
Fs = i fseiδs t (9.117)

is the slowly varying function on the scale of the wave period and

Φ(t) = ieiδs t
∞∑

s ′ �=s,s ′=−∞
fs ′ei(s−s ′)ωt (9.118)

is the rapidly oscillating function. Here we have introduced resonance detuning

�δs = 2E − s�ω. (9.119)

As a consequence of this separation, the probability amplitudes can be represented
in the form

c1(t) = c(s)
1 (t) + β1(t), (9.120)

c4(t) = c(s)
4 (t) + β4(t), (9.121)
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where c(s)
1 (t) and c(s)

4 (t) are the slowly varying amplitudes corresponding to c1(t) and
c4(t). The functions β1(t) and β4(t) are rapidly oscillating functions. Substituting
(9.120), (9.121) into (9.111), (9.112) and separating slow and rapid oscillations,
taking into account (9.116), we will obtain the following set of equations for the
slowly varying amplitudes c(s)

1,4(t):

dc(s)
1

dt
= Fsc(s)

4 + Φ (t)β4(t), (9.122)

dc(s)
4

dt
= −Fsc(s)

1 − Φ∗ (t)β1(t), (9.123)

and for the rapidly oscillating functions β1,4:

dβ1

dt
= Φ (t) c(s)

4 , (9.124)

dβ4

dt
= −Φ∗ (t) c(s)

1 . (9.125)

In (9.122) and (9.123) the bar denotes averaging over time much larger than wave
period. In the set of (9.124) and (9.125) we have neglected the terms∼Fs β1,4(t) due
to the rapid oscillations

∣∣Fsβη(t)
∣∣ 	

∣∣∣∣
dβ1

dt

∣∣∣∣ . (9.126)

Solving the set of (9.124) and (9.125), taking into account that c(s)
1,4 are slowly varying

functions, we obtain

β1 = c(s)
4

t∫

0

Φ
(
t ′) dt ′,

β4 = −c(s)
1

t∫

0

Φ∗ (t ′) dt ′.

Then substituting β1,4(t) into (9.122) and (9.123), we will have the following equa-
tions for the functions c(s)

1,4:

dc(s)
1

dt
= Fsc(s)

4 − i
δ f

2
c(s)
1 , (9.127)
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dc(s)
4

dt
= −Fsc(s)

1 + i
δ f

2
c(s)
4 , (9.128)

where

δ f = −2iΦ (t)

t∫

0

Φ∗ (t ′) dt ′ = 2

ω

∞∑
s ′ �=s,s ′=−∞

| fs ′ |2
s − s ′ . (9.129)

The set of (9.127) and (9.128) can be solved in the general case of arbitrary wave
envelope A0(t) only numerically. However, it admits an exact solution for a mono-
chromatic wave describing “Rabi oscillations” of the Dirac vacuum. In this case the
set of (9.127) and (9.128) for the phase transformed amplitudes c(s)

1 exp (−iδs t/2)
and c(s)

4 exp (iδs t/2) is a set of ordinary linear differential equations with fixed coef-
ficients. The general solution of the latter is given by a superposition of two linearly
independent solutions which with the initial condition is

c(s)
1 (t) = i

| fs |
Ωs

ei δs
2 t sin (Ωs t), (9.130)

c(s)
4 = e−i δs

2 t

[
cos (Ωs t) + iΔs

2Ωs
sin (Ωs t)

]
, (9.131)

where
Δs = δ f + δs (9.132)

is the resulting detuning and

Ωs =
√

| fs |2 + Δ2
s

4
(9.133)

is the “Rabi frequency” of the Dirac vacuum at the interaction with a periodic EM
field. As is seen from (9.130) with this frequency, the probability amplitude of e−, e+
pair production oscillates in the standingwave field during the whole interaction time
similar to Rabi oscillations in the two-level atomic systems. In this case, the “Rabi
frequency” has a nonlinear dependence on the amplitudes of the opposite EM wave
fields. Considerable number of electron–positron pairs can be produced by a proper
choice of intensity and duration of laser pulses.

The set of (9.127) and (9.128) has been derived using the assumption that
the amplitudes c(s)

1,4(t) are slowly varying functions on the scale of the EM wave
period, i.e., ∣∣∣∣∣

dc(s)
1,4(t)

dt

∣∣∣∣∣ 	
∣∣∣c(s)

1,4(t)
∣∣∣ω. (9.134)
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These conditions with (9.126) define the condition of applicability of the applied
resonant approximation which is equivalent to the condition

Ωs 	 ω. (9.135)

The probability of the s-photon e−, e+ pair production with the certain energy E ,
summed over the spin states, is

Ws = 2
∣∣∣c(s)

1 (t)
∣∣∣
2 = 2 | fs |2

Ω2
s

sin2(Ωs t). (9.136)

Hence, from (9.114) we have

Ws = s2ω2
(

p2 sin2 ϑ + m2c2
)

2p2 cos2 ϑ
J 2

s

(
4ξ0

mc3 p cosϑ

�ωE
)
sin2(Ωs t)

Ω2
s

, (9.137)

where ϑ is the angle between the directions of the momentum of produced electrons
(positrons) and the amplitude of the total field electric strength.

Let us consider the case of short interaction time when

Ωs t 	 1. (9.138)

In this case, we can determine a probability of multiphoton pair production per unit
time according to the following definition of the Dirac δ-function:

sin2(Ωs t)

Ω2
s

→ 2π�tδ(2E − s�ω).

The differential probability of an s-photon e−, e+ pair production process per unit
time and unit space volume, summed over the spin states, is given by the following
formula:

dws = s2ω2(p2 sin2 ϑ + m2c2)

16�2π2 p2 cos2 ϑ

× J 2
s

(
4ξ0

mc3 p cosϑ

�ωE
)

δ

(
E − s�ω

2

)
dp. (9.139)

By integrating over the electron (positron) energy, we obtain the angular distribu-
tion of the s-photon differential probability density of created electrons (positrons):

dws

do
= s3ω3

64π2�c3
4m2c4 + �

2s2ω2 tan2 ϑ(
�2s2ω2 − 4m2c4

)1/2
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× J 2
s

(
4ceE0

(
�
2s2ω2 − 4m2c4

)1/2
cosϑ

s�2ω3

)
, (9.140)

where do = sin ϑdϑdϕ is the differential solid angle.
Analogously, one can describe the multiphoton pair production process in a wig-

gler by a superstrong laser pulse of relativistic intensities. Thus, as we saw in Sect. 5.4
at the induced interaction of a charged particle with a plane EM wave in an undula-
tor, or with the counterpropagating waves of different frequencies (Sect. 5.3), the two
interference waves are formed which propagate with the phase velocities vph > c
and vph < c. According to the conditions (9.105) and (9.106) the wave propagating
with the phase velocity vph > c will be responsible for the pair production process.
By the appropriate transformations, the processes of e−, e+ pair production in these
EM field configurations can be reduced to the considered pair production process
(as in the case of plasma) in this section, namely, one should solve the problem in
the center-of-mass frame of the produced pair moving with respect to the laboratory
frame with the velocity v = c2/vph .
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Chapter 10
Relativistic Quantum Theory of Scattering
on Arbitrary Electrostatic Potential
and Stimulated Bremsstrahlung

Abstract It is well known that in relativistic quantum theory there is not exact ana-
lytical formula for cross section of a charged particle elastic scattering on arbitrary
electrostatic potential ϕ(r). Even in case of Coulomb field for which the exact solu-
tion ofDirac equation is known, relativistic “Coulombwave functions”, nevertheless,
because of its complex character it is impossible to obtain exact analytical expression
for scattering cross section via these wave functions. The elastic scattering in rela-
tivistic domain is mainly described in approximations when the scattering potential
can be considered as a perturbation (in opposite limits). These are the well-known
Born and eikonal approximations corresponding to quantum perturbation theory by
particlewave function (when the condition |U | � �v/a is satisfied;U is the potential
energy, a is the space size of the range of effective scattering, v is the particle initial
velocity), and high-momentum approximation (if potential energy in the scattering
field is much less than the particle initial energy: |U | � pv), respectively. In case
of Coulomb field there is also an approximation of large impact parameters (large
momenta)—Farry-Sommerfeld-Maue (FSM) approximation, which describes well
enough the scattering at the small angles. It is also known that the wave function in
the eikonal approximation describes the particle state only in a limited space range of
the scattering process (z � pa2/�; z is the coordinate along the direction of particle
initial momentum), i.e., the eikonal solution is not valid at large distances. The wave
function of the Born approximation, in contrast to the eikonal one, describes the
particle state at arbitrary point in the scattering range, particularly at asymptotically
large distances. Nevertheless, the common region where both approximations under
consideration are valid is very restricted. On the other hand, within the (small) poten-
tial range where both approximations are applicable, these wave functions describe
the scattering by different accuracies. Practically, these wave functions describe the
scattering at the opposite conditions: the eikonal wave function describes the par-
ticle state when the opposite condition of the Born approximation holds (e.g., for
Coulomb field with a charge Zae—at the condition: Zae2/�v � 1). In these cir-
cumstances a natural question arises—is it possible to find out such an approximate
solution of Dirac equation beyond the scope both perturbation theory and eikonal
approximation—corresponding to more general wave function being applicable in
both quantum and quasiclassical limits for relativistic potential scattering (including
in particular the Born and eikonal approximations in corresponding limits—under

© Springer International Publishing Switzerland 2016
H.K. Avetissian, Relativistic Nonlinear Electrodynamics,
Springer Series on Atomic, Optical, and Plasma Physics 88,
DOI 10.1007/978-3-319-26384-7_10

309



310 10 Relativistic Quantum Theory of Scattering . . .

its conditions of applicability)? Here we will try to derive such an approximate
solution of the Dirac equation which satisfies the formulated requests. We will call
it generalized eikonal approximation (GEA) for a spinor particle scattering on the
arbitrary short-range or long-range electrostatic potential. Then we will clear up the
relationship of this approximation to the known ones for electron elastic scatter-
ing on the short-range (Born and eikonal approximations) and long-range Coulomb
potentials (Born, eikonal, and Farry-Sommerfeld-Maue approximations). This GEA
approximation is developed for electron inelastic scattering process too—to describe
the relativistic stimulated bremsstrahlung in the field of strong and superstrong laser
radiation with electrostatic potential fields of arbitrary form and finite or infinite
effective radiuses (atoms, ions, etc.). The significance of GEA type wave function
for description of such laser-assisted electron–atom–ion scattering processes, apart
from the known restrictions of mentioned above approximations, is also conditioned
with the fact that the wave functions in known approximations describe the parti-
cle state factorized by elastic scattering and induced radiation-absorption processes.
In the result, we lose the phase relations at the description of electron quantum
dynamics interacting with the both fields simultaneously, which have important role
for induced process, in particular, for coherent part of interaction. Therefore, for
description of strong and superstrong laser–matter (plasma) interaction processes,
we need the electron wave function that takes into account the simultaneous influ-
ence of both scattering and radiation fields including dynamic phase relations. This
induced GEA wave function may be applied specifically for the description of the
above-threshold ionization (ATI) process of atoms/ions by superstrong laser fields
in relativistic theory taking into account the photoelectron rescattering effect on the
atomic remainder because of the action of long-range Coulomb field of atomic ion
on the photoelectron final state (this process is considered in the next chapter of this
book).

10.1 Relativistic Wave Function of Spinor Particle Elastic
Scattering on Arbitrary Electrostatic Potential
in Generalized Eikonal Approximation

To answer the formulated above question, we will derive the more general approx-
imate solution of the Dirac equation for a spinor-charged particle elastic scattering
in the electrostatic field of arbitrary form (in general, with different longitudinal and
transverse effective sizes of scattering) which is available to describe the scattering
process with the more accuracy and wider conditions of applicability than the known
approximate solutions (including those as different boundary cases).

Dirac equation for a charged particle with spin s = 1/2 in an external electrostatic
field described by the scalar potential ϕ(r) reads (� = c = 1):

{[E − U (r)] γ0 + iγ∇ − m}Ψ (r) = 0, (10.1)
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where m is the mass, E the energy, U (r) = eϕ(r) is the potential energy of the
particle, and γ0,γ

γ0 =
(

I 0
0 −I

)
; γk =

(
0 σk

−σk 0

)
, k = 1, 2, 3.

are the Dirac matrices in the standard representation.
Let us note at first that the consideration in the scope of a single particle approach

on the base of the Dirac equation (10.1) is justified if the condition

|U | � mc2 (10.2)

holds to except the excitation of the Dirac vacuum and production of electron–
positron pairs.

Introducing a bispinor function Φ (r) connected with the wave function Ψ (r) by
the relation

Ψ (r) = 1

2m
{[E − U (r)] γ0 + iγ∇ + m}Φ (r), (10.3)

we will have the following equation (quadratic form of the Dirac equation) for the
new bispinor function Φ (r):

{
[E − U (r)]2 + Δ − m2 + iγ0γ∇U (r)

}
Φ (r) = 0. (10.4)

where Δ is the Laplace operator.
We seek the solution of (10.4) in the form

Φ (r) = f (r) exp [i S (r)] , (10.5)

where exp [i S (r)] is the solution of Klein–Gordon equation for a charged scalar par-
ticle in a static field (S1 (r)—is the classical action of the electron in the electrostatic
field): {

[E − U (r)]2 + Δ − m2
}
exp [i S (r)] = 0, (10.6)

and f (r) is a bispinor function.
Substituting (10.5) into (10.4) we get for f (r) and S (r) the set of equations:

iΔS + [E − U (r)]2 − (∇S)2 − m2 = 0, (10.7)

iΔ f − 2∇S∇ f − γ0 [γ∇U (r)] f = 0, (10.8)

where (10.7) is the Klein–Gordon equation (cf. with (10.6) that describes the scat-
tering of a charged particle without spin, whereas (10.8) describes the spinor part of
the particle wave function in scattering process. We will solve the set of (10.7) and



312 10 Relativistic Quantum Theory of Scattering . . .

(10.8) in assumption that the scattering field is not strong and we can seek a solution
of the following form:

S (r) = pr + S1 (r), f (r) = u + f1 (r),

where u is the Dirac bispinor for the free particle. As a result (10.7) and (10.8) turn
into a new set of equations for the scalar function S1 (r) and bispinor function f1 (r):

iΔS1 − 2p∇S1 = 2EU (r) − U 2(r) + (∇S1)
2 , (10.9)

iΔ f1 − 2p∇ f1 = γ0γ∇U (r)u + 2∇S1∇ f1 + γ0γ∇U (r) f1. (10.10)

Within the assumption of potential weakness the last two terms on the right-hand
sides of (10.9) and (10.10) are small compared to the first one and can be neglected.
So instead of (10.9) and (10.10) we can now write the set of equations

iΔS1 − 2p∇S1 = 2EU (r), (10.11)

iΔ f1 − 2p∇ f1 = γ0γ∇U (r)u. (10.12)

This set can be solved by carrying out a Fourier transformation in (10.11) and (10.12)
and taking into account that for a finite-range potential the following boundary con-
ditions are true:

S1 (r) = 0, ∇S1 (r) = 0; f1 (r) = 0, ∇ f1 (r) = 0, (10.13)

when pr < 0, |r| → ∞. As a result, the solutions of (10.11) and (10.12) may be
written as

S1 (r) = iE
4π3

∫
Ũ (q) exp(iqr)
q2 + 2pq − i0

dq,

f1 (r) = γ0γ∇S1 (r) u

2E , (10.14)

where Ũ (q) = ∫ U (r) exp(−iqr)dr is the Fourier transform of the potential energy,
i0 is an imaginary infinitesimal, and the path around the pole in the integral is chosen
according to boundary conditions (10.13).

As far as at the derivation of (10.14) we replaced the exact equations (10.9) and
(10.10) by the approximate equations (10.11) and (10.12) within the assumption
of potential weakness; consequently, this approximation is valid if the following
conditions are satisfied:

|U (r)| � 2E, |∇S1|2 � 2E |U (r)| , (10.15)
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and

2 |∇S1∇ f1| � |γ0γ∇U (r)u| , |γ0γ∇U (r) f1| � |γ0γ∇U (r)u| . (10.16)

As is seen, the first of the conditions (10.15) is weaker than the general condi-
tion (10.2), and the other two in (10.16) follow from the conditions (10.15), which
becomes evident by the evaluation of explicit expressions for S1 (r) and f1 (r) in
(10.14). Hence, for considering GEA approximation we have a single condition—
the second condition in (10.15). Using the explicit expression in (10.14) for S1 (r),
the condition of GEA approximation can be written as

2E
∣∣∣∣
∫

qŨ (q) exp(iqr)
q2 + 2pq − i0

dq

(2π)3

∣∣∣∣
2

� |U (r)| . (10.17)

To the integral in the last expression (10.17), because of the oscillating factor exp(iqr)
the main contribution gives the region where qr ∼= 1. Hence, the condition (10.17)
can be written as

2E q2
e f(

q2
e f + 2pqe f

)2 |U | � 1. (10.18)

Finally, defining
∣∣qe f

∣∣
z = 1/z ,

∣∣qe f

∣∣⊥ = 1/ρ, from the last relation we can write the
conditions (10.15) when the approximate equations (10.11) and (10.12) are applica-
ble in the following form:

|U | � 2pv

(
ρ√

ρ2 + z2
+ 1

2p

√
1

ρ2
+ 1

z2

)2

. (10.19)

Here the initial momentum of the particle is directed along the z axis, and z, ρ are
the longitudinal and transverse dimensions of the domain, respectively, where the
interaction of the particle with the potential is the most effective and, consequently,
gives the main contribution to the integral defining S1 (r) in (10.14).

So (10.19) is the condition of developed approximation GEA in general case of
arbitrary non-spherically symmetric potential.

Using (10.14), the approximate solution of (10.4) may be written as

Φ (r) = eipr
[
1 − iγ0γ∇

2E
]

ei S1(r) up√
2E . (10.20)

Inserting the expression for Φ (r) into (10.3) and keeping terms to first order of
the potential, after simple but long calculations we obtain the solution of the Dirac
equation in the applied approximation
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Ψ (r) = eipr
[
1 − iγ0γ∇

2E
]

ei S1(r) up√
2E . (10.21)

The wave function (10.21) is normalized for one particle in the unit volume and
upup = 2m, where up = u†

pγ0. Comparing (10.20) and (10.21), one can see that
Φ (r) = Ψ (r). Thus, within the approximation equation (10.15) the solution (10.20)
of the (10.4) coincides with the solution (10.21) of the Dirac equation (10.1), i.e., the
obtained solution of the second-order Dirac equation in the developed approximation
GEA is the solution of the initial first-order Dirac equation too.

Now let us clarify the relation of the obtained wave function (10.21) with the
Born and the eikonal approximation wave functions, respectively. If |S1 (r)| � 1,
then expanding the exponent in (10.21) into the series and keeping only terms to first
order in U , we obtain

ΨB(r) =
[
1 − 1

(2π)3

∫
2E + γ0γq

q2 + 2pq − i0
Ũ (q)eiqrdq

]
upeipr

√
2E , (10.22)

i.e., the wave function of the Born approximation.
The criterion for the condition |S1 (r)| � 1 can be found using (10.14) and eval-

uating the integral in a similar way, as done above. As a result we get

|U | � pv

(
1

pz
+ 1

2 (pz)2
+ 1

2 (pρ)2

)
. (10.23)

This criterion generalizes the well-known Born criterion for elastic scattering. It
includes both weak (|U | � v/z) and strong (|U | � 1/Ea2, where a = max {z, ρ})
conditions of the Born approximation for fast (pz 	 1 and pρ 	 1) and slow
(pa � 1) particles, respectively.

To obtain the wave function in common eikonal approximation from GEA wave
function (10.21), it is necessary to neglect with the second derivatives of S1 (r) in
(10.11), which is equivalent to remove the term q2 in the denominator of the integral
in the first equation of (10.14). Then passing in this expression fromFourier transform
Ũ (q) to potential energy U (r′) and integrating over transverse scattering momenta
q⊥ and coordinates r′

⊥, the integral is reduced to Cauchy’s integral over qz , after
calculation of which we obtain

SE
1 (r) = − 1

v

z∫

−∞
U (ρ, z′)dz′, (10.24)

where ρ ≡ {x, y} and ρ has a meaning of impact parameter in quantum scattering
theory.Afterward,within the expression (10.24) from theGEAwave function (10.21)
we obtain the wave function of the eikonal approximation:
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Ψ E (r) = eipr
[
1 − iγ0γ∇

2E
]
exp

⎛
⎝− i

v

z∫

−∞
U (ρ, z′)dz′

⎞
⎠ up√

2E . (10.25)

The dropping of the term q2 with respect to the 2pq in (10.14) gives the condition
z � pa2 that is the aforementioned known restriction of longitudinal scattering
distances in the eikonal approximation.

Thus, the obtained GEA wave function (10.21) in particular cases under corre-
sponding conditions turns to the wave functions of the Born and eikonal approxima-
tions.

Concluding, this newapproximatewave function in developedgeneralized eikonal
approximation has an advantage with respect to known approximations in quantum
theory for description of a charged spinor particle scattering in arbitrary short-range
or long-range electrostatic fields. First, it allows to describe the scattering process
in considerably stronger potential fields (larger S1 (r)) than the Born approximation
permits. Second, it eliminates the known restriction of scattering distances in the
eikonal approximation z � pa2 and allows to determine the scattering cross section
via asymptotic wave function in GEA.

10.2 Spinor Particle Scattering in the Coulomb Field
by Generalized Eikonal Approximation

Thewave function (10.21) obtained above describes the particle scattering in a finite-
range potential where the boundary conditions (10.13) are hold. For infinite-range
potential, as the Coulomb field is, in general, the conditions (10.13) break down and,
as a result, the states of a particle at infinity cannot strictly be described by a plane
wave. Specifically, in the case of the Coulomb potential the particle wave function
at infinity contains the well-known logarithmic divergent phase, which cannot be
defined by (10.21). Therefore, in this paragraph we separately consider the scattering
problem in the Coulomb field.

At the existence of a certain selected direction (here—the direction of the particle
initial momentum), particle scattering in the spherically symmetric field is possessed
with axial symmetry, so the Dirac equation in a Coulomb field is convenient to solve
in the parabolic coordinates ζ, η, and ϕ.

The (10.11) written in the parabolic coordinates ζ = r + z, η = r − z, and ϕ =
arctan(y/x) for a Coulomb field U (r) = α/r has the following form:

[
i

∂

∂ζ

(
ζ

∂

∂ζ

)
+ i

∂

∂η

(
η

∂

∂η

)
+ i

4

(
1

ζ
+ 1

η

)
∂2

∂ϕ2

−p

(
ζ

∂

∂ζ
− η

∂

∂η

)]
SC
1 (ζ, η,ϕ) − αE = 0. (10.26)
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However, because of the axial symmetry the solution SC
1 (ζ, η,ϕ) for the stated issue

does not depend onϕ. Thus, the termwith the ∂2/∂ϕ2 in (10.26) passes to a termwith
l2z (lz is the projection of the orbital moment—magnetic quantum number) which we
shall put zero in accordance with the statement that before the scattering we have
particle plane state (then the condition lz = 0 conserved in the field due to the axial
symmetry). Hence, SC

1 (ζ, η,ϕ) → SC
1 (ζ, η) and seeking a solution of (10.26) in the

form
SC
1 (ζ, η) = SC

I (ζ) + SC
II (η), (10.27)

the variables in this equation are separated and for SC
I (ζ) and SC

II (η) we obtain the
equations [

i
d

dζ

(
ζ

d

dζ

)
− p

d

dζ

(
ζ

d

dζ

)]
SC
I (ζ) = a, (10.28)

[
i

d

dη

(
η

d

dη

)
+ p

(
η

d

dη

)]
SC
II (η) = b, a + b = αE, (10.29)

where the constants a and b are the “separation parameters.”
Recalling that the particlewave function in theCoulombfield before the scattering

shall describe particle plane states, we shall look for such a solution SC
1 (ζ, η) of

(10.28) and (10.29) which at z < 0 and r → ∞ provides a plane wave for free
particle, that is,

SC (r) = pr + SC
1 (r) → pz; −∞ < z < 0, r → ∞, (10.30)

corresponding to the incident particle along the direction of O Z axis. This require-
ment can be fulfilled only by the unique choice of parameters a and b. Thus, the
asymptotic condition (10.30) in parabolic coordinates reads

p

2
(ζ − η) + SC

I (ζ) + SC
II (η) → p

2
(ζ − η); η → ∞, ∀ζ > 0. (10.31)

This condition can be fulfilled only if

SC
I (ζ) = const = 0; ∣∣SC

II (η)/η
∣∣
η→∞ → 0. (10.32)

Now taking into account that SC
I (ζ) = const, from (10.28) it follows that a = 0 and

b = αE . At these conditions, we seek the solution of (10.29) in the following form:

SC
II (η) = α

v
ln pη − α

v
F(η). (10.33)

Then for the function F(η) we receive the equation
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d2F(η)

−p2dη2
+
(

1

i pη
− 1

)
d F(η)

i pdη
= 0, (10.34)

the solution of which is the integral exponential function Ei (x):

F(η) = −α

v
Ei (i pη). (10.35)

Taking into account (10.27), (10.33), and (10.35) and passing again to Cartesian
coordinates, for SC

1 (r) we will have the following expression:

SC
1 (r) = −α

v
{Ei [i p(r − z)] − ln p (r − z)} . (10.36)

Using (10.5) and (10.36) and recalling that the obtained solution of the quadratic
Dirac equation Φ (r) in the applied approximation GEA is the solution of the
basic Dirac equation too, Φ (r) = Ψ (r), as well as taking into account the defini-
tions SC (r) = pr + SC

1 (r) and f C (r) = u + f C
1 (r), where f C

1 (r) is again defined
through SC

1 (r) in accordance with (10.14), we obtain the spinor particle wave func-
tion in a Coulomb field in GEA:

Ψ C (r) = eipr
[
1 − iγ0γ∇

2E
]

× exp
{
−i

α

v
[Ei [i p(r − z)] − ln p (r − z)]

} up√
2E . (10.37)

Formula (10.37), which satisfies asymptotes (10.30)–(10.32), is valid at the condition
(10.15) that for a long-range Coulomb field takes place if

α

v
� p(r − z). (10.38)

Now let us clarify the relation of the obtained wave function with the wave func-
tions of the Born, Farry-Sommerfeld-Maue (FSM) and eikonal approximations for
a spinor particle in the Coulomb field.

As in above-considered case of short-range potentials, to obtain the particle
wave function in the Born approximation from the GEA wave function (10.37) we
shall pass to perturbation theory over a Coulomb potential U (r), i.e., assume that∣∣SC

1 (r)
∣∣� 1 and expand the expression in (10.37) by this small quantity

∣∣SC
1 (r)

∣∣.
Then we obtain the wave function of a spinor particle in the first Born approximation:

Ψ C
B (r) = eipr

[
1 − iγ0γ∇

2E
]

×
{
1 − i

α

v
[Ei [i p(r − z)] − ln p (r − z)]

} up√
2E . (10.39)
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Formula (10.39) with the condition when this solution is valid:

α

v
|Ei [i p(r − z)] − ln p (r − z)| � 1, (10.40)

defining the Born approximation for a spinor particle scattering in a long-range
Coulomb field.

The wave function (10.37) in the quasiclassic limit—at the condition p (r − z) 	
1 (at which the second derivatives of SC

1 (r) can be neglected)—passes to the eikonal
wave function for a Coulomb field:

Ψ C
E (r) = eipr

[
1 − iγ0γ∇

2E
]
exp
[
i
α

v
ln p (r − z)

] up√
2E . (10.41)

Let us compare the obtained in GEA wave function (10.37) with the known
wave function of a relativistic particle scattering in a Coulomb field in the FSM
approximation, which is valid when α2/pρ � 1 (approximation of large momenta):

Ψ F SM (r) = e−πα/2vΓ
(
1 + i

α

v

)
eipr
[
1 − iγ0γ∇

2E
]

× F
(
−i

α

v
, 1;−i p(r − z)

) up√
2E , (10.42)

whereΓ (t) is theGamma function and F(−ia, 1; iy) is the confluent hypergeometric
function.

In the quasiclassic limit, where p (r − z) 	 1, using the asymptotic formula of
the confluent hypergeometric function for y 	 1:

F (−ia, 1; iy) ∼= eπa/2

Γ (1 + ia)
eia ln y

[
1 + O

(
1

y

)]
, (10.43)

we obtain from (10.42) the Coulomb wave function in the eikonal approximation
(10.41). Thus, where p (r − z) 	 1, the GEA and FSM wave functions coincide,
turning into the eikonal wave function of a particle in the Coulomb field.

Note that the wave functions GEA and FSM also coincide in the region where
p(r − z) � 1, if α/v � 1 too. In fact, in this limit, using the asymptotic formula for
the confluent hypergeometric function

F
(
−i

α

v
, 1; iy

) ∼= 1 − i
α

v

∞∑
k=1

yk

kk!

= 1 − i
α

v
[Ei(y) − ln y − C + iπ] (10.44)

(C = 0.577215. . . is Euler constant), we obtain from (10.42) the Coulomb wave
function in the Born approximation (10.39).
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10.3 Elastic Scattering Cross Section in Generalized
Eikonal Approximation

The knowledge of the particle wave function in the scattering field and his asymptote
at r → ∞ enables one to calculate the amplitude of the elastic scattering, and hence
the differential scattering cross sections via the asymptotic wave function. Thus, if
the wave function also describes the particle states at large distances and has an
asymptote at r → ∞ that is a superposition of a plane and spherical convergent
waves:

Ψ (r) ≈ uμ
peipr + G† (̂r)

eipr

r
, (10.45)

the scattering amplitude can be defined as

f μ (̂r) = 1

2m
uμ

pG† (̂r) , (10.46)

where uμ
p , uμ

p are bispinors describing the state of a free particle with polarization
μ and momenta p and p′ = p̂r, respectively, and G† (̂r) is a bispinor depending on
r̂ = r/r .

In other cases, when the wave function describes the particle states only in the
region where the particle potential energy U (r) is not zero (interaction region), it
is impossible to determine the scattering amplitude by the asymptote of the wave
function. Nevertheless, in these cases the Ψ (r) related to the interaction range

f μ (̂r) = − 1

4π

∫
e−ip′r′

uμ
p′γ0Ψ

(
r′)U

(
r′) d3r ′. (10.47)

As far as obtained in the two previous paragraphs, the wave functions in GEA
describe the particle states either within the range of a scattering field or at asymptotic
large distances, and both these approaches can be applied to calculate the scattering
amplitudes in the developed approximation by the two types of wave functions for
finite (short-range) or infinite (long-range) potentials. At first, we will define the
scattering amplitude by the GEA wave function (10.21) for a particle scattering in a
short-range potential.

To calculate the asymptote of the function S1(r) in (10.21), temporarily we direct
the O Z coordinate axis along r and change the integration variable in (10.14) to
Q = p + q. Turning to spherical coordinates, we carry out the integration over the
variable cos θ = Q̂r. As a result, at r → ∞ we obtain

S1(r) = iE
2π

e−i pr Ũ
(
p′ − p

) eipr

r
. (10.48)

Using (10.48), we obtain from (10.21) an asymptote of the wave function of the form
(10.45), where
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G† (̂r) = − 1

4π

[
2E + γ0γ

(
p′ − p

)]
upŨ

(
p′ − p

)
. (10.49)

In addition, taking into account that

up
(Eγ0 − γp′ − m

) = 0, (Eγ0 − γp − m) up = 0,

the scattering amplitude (10.46) takes the form:

f μ (̂r) = − 1

4π
up′γ0upŨ

(
p′ − p

)
, (10.50)

which coincides with the amplitude of the elastic scattering in the first Born approx-
imation.

The GEA wave function in the Coulomb field (10.37) describes the particle states
at large distances too. In fact, at large distances, taking into account the asymptote
of the integral exponential function

Ei(i x) ≈ eix

i x
; x 	 1,

we obtain from (10.37) the asymptote of the wave function

Ψ C (r) ≈ up exp
(

ipr + i
α

v
ln pr(1 − cos θ)

)
+ G† (̂r)

exp(i pr + i α
v ln pr)

r
,

(10.51)
where

G† (̂r) = − α

pv

[
1 + γ0

2E γ
(
p′ − p

)]
up

exp(i α
v ln(1 − cos θ))

1 − cos θ
, (10.52)

and θ is the scattering angle. The first term in (10.51) is the incident wave with
the logarithmic distortion in the phase that occurs because of the slow decrease of
the Coulomb field at the distance. There is such a kind of distortion in the scattered
sphericalwave described by the second term in (10.51) too.However, these deviations
from the usual asymptotic form of the wave function (10.45) are not essential for the
definition of the scattering amplitude, and using (10.46) and (10.52) we obtain

f μ (̂r) = − α

2p2

up′γ0up

1 − cos θ
exp
(

i
α

v
ln(1 − cos θ)

)
. (10.53)

The expression (10.53) differs from the well-known scattering amplitude of the
Coulomb field in the first Born approximation only by a phase factor. So using the
amplitude of the scattering in a short-range field in the first Born approximation
(10.50) for a long-range Coulomb field gives the same scattering cross sections.
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Now let us calculate the scattering amplitude by the formula (10.47).We carry out
integration by parts by substituting the wave function (10.21) into (10.47) and using
(10.11) and (10.12). Taking into account that for a short-range potential U (r) → 0,
∇U (r) → 0, and ΔU (r) → 0, at r → ∞, we obtain the scattering amplitude in the
GEA:

f μ (̂r) = − i

4π

up′γ0

2E
∣∣p + p′∣∣

∫
exp(−iQρ)

[
ei S̃1(ρ) − 1

]
upd2ρ, (10.54)

where O Z axis is taken along p + p′, Q = p′ − p is the transfer momentum, and we
have denoted by S̃1(ρ) the function S1(r) at z → +∞, which is defined in (10.14).

The expression (10.54) defines the amplitude of an elastic scattering in the gener-
alized eikonal approximation.Within this expression one can easily derive the elastic
scattering amplitudes of the Born and eikonal approximations.

For the scattering of nonpolarized particles, after summing over the final and
averaging over initial polarization, we obtain from (10.54) the differential cross
sections in generalized eikonal approximation:

dσ = 1

2

∑
μ

| f μ (̂r)|2 do = | f μ (̂r)|2 do, (10.55)

where

f (̂r) = − i

8π

∣∣p + p′∣∣
(
1 + pQ

2E2

)1/2 ∫
exp(−iQρ)

[
ei S̃1(ρ) − 1

]
upd2ρ

and do is the solid angle along the r̂.

10.4 Bremsstrahlung in Superstrong Radiation Fields:
Born Approximation

Now let us consider the electromagnetic aspect of considered in previous two para-
graphs quantum-mechanical scattering process of a charged particle in the electrosta-
tic field, that is, well-known bremsstrahlung (spontaneous)—major radiation process
by a free electron in vacuum. In the presence of an external radiation field, the spon-
taneous bremsstrahlung acquires induced character and stimulated bremsstrahlung
(SB) takes place. In the laser fields of relativistic intensities, SB becomes essen-
tially multiphoton process, and the description of nonlinear SB requires relativistic
quantum consideration. The latter may be made via Volkov wave function (1.94), at
the electron scattering on a static potential (arbitrary electrostatic field) in the first
Born approximation. This process can be described by the first-order Feynman dia-
gram (Fig. 10.1) where the “dressed electron” initial and final states are described by

http://dx.doi.org/10.1007/978-3-319-26384-7_1


322 10 Relativistic Quantum Theory of Scattering . . .

Fig. 10.1 Feynman diagram
for bremsstrahlung in
superstrong wave field

corresponding wave functions (1.94), and the dashed line corresponds to pseudopho-
tons of scattering potential field.

For the probability amplitude of the transition i → f at SB process, we have

Si f = − ie

�c2

∫
Ψ �′σ′ Â(e) (x) Ψ�σd4x, (10.56)

where A(e) (x) is the four-dimensional vector potential of the scattering field. Upon
Fourier transformation

A(e)(x) = 1

(2π)4

∫
A(e)

(
q ′) e−iq ′x d4q ′,

Equation (10.56) will have the form

Si f = − ie

�c2 (2π)4

∫
Ψ �′σ′ Â(e)

(
q ′) e−iq ′xΨ�σd4q ′d4x . (10.57)

The static potential field (for a nucleus/ion—as a scattering center—the recoil
momentum is neglected) will be described by the scalar potential ϕ (r)

A(e) (x) = (ϕ (r), 0)

and for the Fourier transform of A(e) (x) we have

A(e)
(
q ′) = (2πδ

(
q ′
0

)
ϕ
(
q′), 0).

Then one can conclude that the S-matrix amplitude of this process may be obtained
from the S-matrix amplitude of the Compton effect (1.106) by substitutions of the
amplitude of vector potential of quantized photon field, as well as four-dimensional
polarization and wave vectors of the photon as follows:

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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√
2π�c2

ω′ → 1

(2π)3
δ
(
q ′
0

)
ϕ
(
q′) d4q ′,

ε∗ → ε0 = (1, 0, 0, 0), k ′ → −q ′.

Hence,making these substitutions in (1.107) and using δ functions of (1.108)–(1.110)
for the integration over q ′, the probability amplitude of SB may be represented in
the following form:

Si f = −iπ
e

V c
√

Π0Π
′
0

uσ′(p′)M̂i f uσ(p) (10.58)

with

M̂i f =
∞∑

s=−∞
ϕ(qs)

[
ε̂0Bs +

(
eB̂1s k̂ε̂0

2c(kp′)
+ êε0k̂ B̂1s

2c(kp)

)

+ e2(kε0)B2s

2c2(kp′)(kp)
k̂

]
δ
(
Π ′

0 − Π0 − s�ω
)
, (10.59)

where the vector functions Bμ
1s = (0, B1s) and scalar functions Bs , B2s are expressed

via generalized Bessel functions Gs(α,β,ϕ):

B1s = A0

2

∞∑
s=−∞

{e1 (Gs−1(α,β,ϕ) + Gs+1(α,β,ϕ))

+ ie2g (Gs−1(α,β,ϕ) − Gs+1(α,β,ϕ))} , (10.60)

Bs = Gs(α,β,ϕ), (10.61)

B2s = A2
0

2
(1 + g2)G0 + A2

0

2
(1 − g2)

×
∞∑

s=−∞
(Gs−2(α,β,ϕ) + Gs+2(α,β,ϕ)), (10.62)

and
�qs = �′ − � − s�k (10.63)

is the recoil momentum. The definitions of arguments α,β,ϕ are the same as in
(1.103)–(1.105).

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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The differential probability of SB process per unit time, summed over the electron
final polarization states and averaged over the initial polarization states, is

dW = 1

2T

∑
σ′,σ

∣∣Si f

∣∣2 d�′

(2π�)3
. (10.64)

The calculation of spur will be made in the same way as has been made for the
Compton effect using (1.111) and the following relations:

ε̂0 = γ0, ε̂0 b̂̂ε∗
0 = b̂, b = (b0,−b),

δ
(
Π ′

0 − Π0 − s�ω
)
δ
(
Π ′

0 − Π0 − s ′
�ω
)

=
⎡
⎣
0, if s �= s ′,

T
2π�

δ
(
Π ′

0 − Π0 − s�ω
)
, if s = s ′.

Then we obtain

1

2

∑
σ′,σ

∣∣Si f

∣∣2 = 2πe2T

�Π ′
0Π0

∑
s

|ϕ (qs)|2
{∣∣∣∣∣EBs − e

(
pB1s

)
ω

(kp) c
+ e2ωB2s

2c2(kp)

∣∣∣∣∣
2

+ e2�2
[
kqs

]2
4(kp′)(kp)

[|B1s |2 − Re
(
B2s B∗

s

)]

− �
2q2

s c2

4
|Bs |2

}
δ
(
Π ′

0 − Π0 − s�ω
)
. (10.65)

Dividing the differential probability of the process (10.64) by initial flux density
|�| c2/Π0, and integrating over Π ′

0 we obtain the differential cross section of mul-
tiphoton SB process

dσ

d O
=

∞∑
s>−sm

dσ(s)

d O
, (10.66)

where

dσ(s)

d O
= e2 |ϕ (qs)|2

∣∣�′∣∣
4π2�4c4 |�|

⎧
⎨
⎩

∣∣∣∣∣EBs − e
(
pB1s

)
ω

(kp) c
+ e2ω

2c2(kp)
B2s

∣∣∣∣∣
2

− �
2q2

s c2

4
|Bs |2 + e2�2

[
kqs

]2
4(kp′)(kp)

[|B1s |2 − Re
(
B2s B∗

s

)]
}

(10.67)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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is the partial differential cross section, which describes the s-photon SB process. The
final quasimomentum of the electron corresponding to s-photon absorption (s > 0)
or emission (s < 0) processes in the strong wave field is

Π ′ =
√

�2 + s�ω

c2
(2Π0 + s�ω), (10.68)

and sm is the maximum number of emitted photons:

sm = Π0 − m∗c2

�ω
. (10.69)

For circular polarization of the incident EM wave

Gs(α, 0,ϕ) = (−1)s Js(α)eisϕ,

and taking into account (10.60)–(10.62), for the partial differential cross section of
SB, we have

dσ(s)

d O
= e2 |ϕ (qs)|2

∣∣�′∣∣
4π2�4c4 |�|

⎧
⎨
⎩

⎡
⎣
(

Π0 + s�ω

(kp)

κ
[
kp
]

κ2

)2

− �
2q2

s c2

4

⎤
⎦ J 2

s (α)

+ �
2e2 A2

0

4(kp′)(kp)

[
kqs

]2 [( s2

α2
− 1

)
J 2

s (α) + J ′2
s (α)

]

+ e2 A2
0

(kp)2

[
κ
[
kp
]]2

κ2
J ′2

s (α)

}
, (10.70)

where

κ =
[

k
(

p
pk

− p′

p′k

)]
(10.71)

and the Bessel function argument is

α = eA0

�ω
|κ| . (10.72)

At the absence of external EM wave (A0 = 0) from (10.70), we obtain the Mott
formula for elastic scattering of the electron in the Coulomb field, which corresponds
to s = 0 harmonic. Thus, taking into account the Fourier transform of Coulomb
potential

ϕ (q) = 4πZae

q2
, (10.73)
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where Za is the charge number of the nucleus, and (10.63) forq0, the (10.70) becomes

dσMott

d O
= 4Z2

aα
2
0

�2c2q4
0

E2

[
1 − �

2q2
0c2

4E2

]
, (10.74)

where α0 ≡ e2/(�c) = 1/137 is the fine structure constant.
Concerning the applied approximation for description of multiphoton SB, note

that the condition of validity of obtained cross sections (10.67) in the first Born
approximation by static potential field holds for electron renormalized velocities in
the incident wave field. In particular, for Coulomb potential the known condition for
the Born approximation turns into conditions

Zae2

�v
� 1,

Zae2

�v′ � 1, (10.75)

where v = c2 |�| /Π0, v
′ = c2

∣∣�′∣∣ /Π ′
0 are the electron initial and final mean veloc-

ities in the EM wave field.
For α � 1 the main contribution to the SB cross section produces one-photon

emission and absorption processes. In particular, for one-photon stimulated radiation
from (10.70) we have

dσ(−1)

d O
= e2 |ϕ (q−1)|2

∣∣p′∣∣
16π2�4c4 |p|

e2 A2
0

�2ω2

{[
k
(E ′p

pk
− Ep′

p′k

)]2

− �
2q2−1c2

4

[
k
(

p′

p′k
− p

pk

)]2
+ �

4ω2
[
kq−1

]2
2(kp′)(kp)

}
. (10.76)

From this formula one can obtain the Bethe–Heitler formula for spontaneous
bremsstrahlung (one-photon emission) in the Coulomb field. For the latter one
needs to make the replacement (1.123) in (10.76) and multiply the cross section
of bremsstrahlung by the density of photon states

2
ω2

c3
dω

do

(2π)3
,

and then we will have the Bethe–Heitler formula

dσB H = α3
0Z2

a

∣∣p′∣∣
π2�2c2ω |p| q4−1

{[
k
(Ep′

p′k
− E ′p

pk

)]2

− �
2q2−1c2

4

[
k
(

p′

p′k
− p

pk

)]2
+ �

4ω2
[
kq−1

]2
2(kp′)(kp)

}
dωdod O. (10.77)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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For multiphoton SB in the nonrelativistic limit (v � c) one can make dipole
approximation for EMwave and omit the terms proportional to k2 and q2 in (10.70).
Then we obtain the nonrelativistic factorized cross section of multiphoton SB

dσ(s)

d O
= dσR

d O
J 2

s

(
eA0

�ω

∣∣∣∣
[

k
ω

(
v − v′)

]∣∣∣∣
)

,

where
dσR

d O
= m2e2 |ϕ (qs)|2

∣∣p′∣∣
4π2�4 |p| (10.78)

is the Rutherford cross section.
Comparing the nonrelativistic cross section (10.78) with the relativistic one

(10.70), it is easy to see that besides the additional terms, which result from spin–
orbital and spin–laser interaction (∼q2

s ), as well as from the intensity effect of strong
EM wave (∼ξ20), the relativistic contribution is conditioned by arguments of the
Bessel functions. Because of sensitivity of the Bessel function to the relationship of
its argument and index, the most probable number of emitted or absorbed photons is
determined by the condition |s| ∼ |α|. For this reason the contribution of relativistic
effects to the scattering process is already essential for intensities ξ0 ∼ 0.1. Hence,
the dipole approximation is violated for nonrelativistic parameters of interaction.
Besides, the state of an electron in the field of a strong EM wave and, consequently,
the cross section of SB essentially depends on the polarization of thewave. In particu-
lar, the cross section for linear polarization of thewave is described by the generalized
Bessel function. The cross sections in both cases are complicated and to show some
features of multiphoton SB process we present the results of numerical investigation.
For the numerical calculations we have chosen the initial electron momentum p to be
colinear with the laser propagation direction. In this case for circular polarization of
thewave there is an azimuthal symmetrywith respect to propagation direction, which
simplifies the calculation of integral quantities. Then we have taken moderate initial
electron kinetic energy Ek = 2.7keV (100a.u.), neodymium laser (�ω � 1.17eV),
and screening Coulomb potential

ϕ (q) = 4πZae

q2 + χ2
,

with radius of screening χ−1 = 4 a.u. and Za = 1.
In Fig. 1.8a the envelopes of partial differential cross sections as a function of

the number of emitted or absorbed photons for circular polarization of EM wave are
shown for the deflection angle ϑ ≡ ∠ΠΠ ′ = 10 mrad. The relativistic parameter of
intensity is taken to be ξ0 � 0.1. The dotted and dashed lines correspond to initial
electron momentum parallel and antiparallel to the laser propagation direction k,
respectively, and the solid line gives the nonrelativistic result. The energy change of
a particle is characterized by the absorption/emission (AE) cross section. Partial AE
differential cross section will be

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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dσ(s)
ae

d O
= s

(
dσ(s)

d O
− dσ(−s)

d O

)
. (10.79)

In Fig. 1.8b the envelopes of partial AE differential cross sections for circular polar-
ization of EM wave are shown for the same parameters. It is seen from Fig. 10.2 that
the differences between the cases of initial electron momentum parallel or antiparal-
lel to the laser propagation direction k on the one hand and between nonrelativistic
result on the other hand are notable already for ξ0 � 0.1. In particular, the absorption
and emission edges and the magnitudes of the peaks are different.

To show the dependence of the SB process on laser intensity in Fig. 1.9a the
summed differential cross section

Fig. 10.2 a Envelopes of
partial differential cross
sections in atomic units as a
function of the number of
emitted or absorbed photons
for circular polarization of
EM wave for the deflection
angle ϑ ≡ ∠ΠΠ ′ = 10
mrad. The relativistic
parameter of intensity is
ξ0 � 0.1. b Envelopes of
partial absorption/emission
differential cross sections for
the same parameters. The
dotted and dashed lines
correspond to initial electron
momentum parallel and
antiparallel to the laser
propagation direction k,
respectively, and the solid
line gives the nonrelativistic
result

(a)

(b)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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dσ

d O
=

∞∑
s>−sm

dσ(s)

d O
(10.80)

is plotted for various deflection angles as a function of relativistic parameter of inten-
sity ξ0. The initial electron momentum is parallel to the laser propagation direction
k. In Fig. 1.9b summed AE differential cross section is shown. We see from Fig. 10.3
that SB as well as AE cross sections decrease with increasing wave intensity. This is a
consequence of the SB process being essentially nonlinear in contrast to perturbation
theory where s-photon SB cross section ∼ξ2s

0 .
For the integral quantities such as the total scattering cross section σ and total

emission/absorption cross section (σT ) which characterizes net energy change, one
should integrate partial differential cross section of SB process dσ(s)/d O over solid
angle and perform summation over photon numbers:

Fig. 10.3 The summed
differential cross sections for
circular polarization of EM
wave are plotted as a
function of relativistic
parameter of intensity ξ0 in
the range 0 ≤ ξ0 ≤ 1. The
initial electron momentum is
parallel to the laser
propagation direction k. a
SB differential cross section
dσ/dΩ; b
absorption/emission
differential cross section
dσae/dΩ . Numbers denote
different values of deflection
angle: 1 ϑ = 6 mrad; 2
ϑ = 5 mrad; 3 ϑ = 4 mrad

(a)

(b)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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σ =
∞∑

s>−sm

σ(s), (10.81)

and total AE cross section (σT ) will be

σT =
∞∑

s>−sm

sσ(s). (10.82)

Note that for these quantities in the optical range of frequencies one can neglect the
contribution from the spin interaction. The latter is essential for large angle scattering
which produces a minor contribution to the total cross sections (for optical frequen-
cies the quantum recoil is negligibly small). For the strong laser fields one should
take into account a large number of terms in (10.81) and (10.82) since multipho-
ton absorption/emission processes already play a significant role for moderate laser
intensities (ξ0 � 1) in contrast, for example, to nonlinear Compton scattering where
multiphoton processes become essential for ξ0 ∼ 1 and the cutoff number of absorbed
photons∼ξ30 . This essentially complicates the analysis of total cross sections (10.81)
and (10.82). As a first step to exhibit the dependence of SB process on laser intensity,
Fig. 10.4 plots the envelopes of integrated AE partial cross sections σ(s)

ae for various
laser intensities as a function of the photon number in the range 0 ≤ s ≤ 500. The
initial electron momentum is parallel to the laser propagation direction k. Negative
values correspond to net emission,while positive values correspond to net absorption.
Figure10.4 reveals that for this initial geometry the absorption process is dominant
but with increasing wave intensity the AE cross section decreases.

Fig. 10.4 The envelopes of integrated absorption/emission partial cross sections σ
(s)
ae for circular

polarization of EM wave as a function of photon number in the range 0 ≤ s ≤ 500 for various laser
intensities. The initial electron momentum is parallel to the laser propagation direction k. Negative
values correspond to net emission, while positive values correspond to net absorption
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10.5 Generalized Eikonal Approximation for Stimulated
Bremsstrahlung

As was mentioned in the Introduction of this chapter, for the description of induced
radiation processes with the free electrons potential scattering at the presence of
external radiation fields, in particular SB process, we need the relativistic wave
function beyond the known approximations (Born, eikonal, low-frequency), which
obey the certain restrictions and correspond to factorization by potential and radiation
fields. As a required type wave function beyond the known restrictions and taking
into account the simultaneous influence of both scattering and radiation fields with
dynamic phase relations can serve the GEAwave function at the presence of external
radiation field. So we will develop the above-presented approximation for elastic
scattering in the inelastic process of SB with the strong plane wave field in GEA.

Let us solve the evolution equation for the relativistic particle wave function in
the arbitrary electrostatic and plane EMwave fields, which simultaneously takes into
account the influence of both the scattering and radiation fields on the state of the
particle and the release from the restrictions of the known approximations.

The Dirac equation for a spinor particle in a electrostatic field with the four-vector
potential

Λ(x) = (Λ0(r), 0)

and a given (strong) plane EM wave field with the four-vector potential

A(ϕ) = (0, A(ωt − kr))

can be written in the form

[
γμ (i∂μ − eΛμ(x) − eAμ(ϕ)) − m

]
Ψ (x) = 0. (10.83)

Here all notations are the same with the first chapter. To avoid the further bulk
expressions hereafter we will use the following notation for four-product of a four-
vector aμ with γμ matrices: â ≡ γμaμ, and ∂ ≡ ∂μ ≡ ∂/∂xμ. Then (10.83) reads

[
i ∂̂ − eΛ̂(x) − e Â(ϕ) − m

]
Ψ (x) = 0. (10.84)

Introducing a bispinor function Φ(x) which is connected with the Dirac wave func-
tion Ψ (x) by the relation

Ψ (x) = 1

2m

[
i ∂̂ − eΛ̂(x) − e Â(ϕ) + m

]
Φ(x), (10.85)

we turn (10.84) into the quadratic Dirac equation
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[
(i∂ − eΛ(x) − eA(ϕ))2 − m2 − ie∂̂Λ̂(x) − i êk

d Â(ϕ)

dϕ

]
Φ(x) = 0. (10.86)

To solve (10.86) we seek a solution in the form

Φ(x) = f (x) exp [i S(x)] , (10.87)

where f (x) is a bispinor function and

ΨK = exp[i S(x)] (10.88)

is the solution of the Klein–Gordon equation for a charged particle in the static
potential and EM wave fields

[
(i∂ − eΛ(x) − eA(ϕ))2 − m2

]
ΨK = 0. (10.89)

Substituting the expression (10.87) into (10.86), we obtain the following equations
for scalar S(x) and bispinor f (x) functions:

− i∂2S(x) + [∂S(x) + eA(ϕ) + eΛ(x)]2 − m2 = 0, (10.90)

− i∂2 f (x) + 2 [∂S(x) + eA(ϕ) + eΛ(x)] ∂ f (x)

+ e∂̂Λ̂(x) f (x) + êk
d Â(ϕ)

dϕ
f (x) = 0. (10.91)

Here the notation ∂2 ≡ ∂μ∂μ has been used.
So we have initially represented the Dirac equation (10.84) in the quadratic form

(10.86) and then by two equations (10.90) and (10.91), the first of which is the Klein–
Gordon equation and the second describes the particle spin interaction with the given
fields.

We look for the solutions of (10.90) and (10.91) in the form

S(x) = SV (x) + S1(x), f (x) = fV (ϕ) + f1(x), (10.92)

where SV (x) and fV (ϕ) are the action and bispinor amplitude of a charged particle
in the EM field (Gordon-Volkov state)

SV (x) = −px − e

kp

ϕ∫

−∞

[
p A(ϕ′) − e

2
A2(ϕ′)

]
dϕ′, (10.93)

fV (ϕ) = u + êk Â(ϕ)

2(kp)
u, (10.94)
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where p = (E, p) and u are the initial four-momentum and bispinor amplitude of a
free Dirac particle, respectively (uu = 2m, and u = u†γ0; u† denotes the transposi-
tion and complex conjugation of u).

Let the Oz axis be directed along the initial momentum p of the free particle.
Then, in accordance with the solution (10.87), we have the initial condition

S(z = −∞, t = −∞) = −px,

corresponding to the asymptotic behavior of the scattering potential at z = −∞
[Λ(z = −∞) = 0] and t = −∞ [A(t = −∞) = 0]. We assume that the EM wave
is adiabatically switched on at t = −∞ (if necessary, the field must be adiabatically
switched off at t = +∞ [A(t = +∞) = 0]).

Substituting the solutions (10.92)–(10.94) into (10.90) and (10.91), we have the
following equations for S1(x) and f1(x), respectively:

−i∂2S1(x) + 2 [∂SV (x) + eA(ϕ)] ∂S1(x) = −2eΛ(x)∂SV (x)

− 2eΛ(x)∂S1(x) − e2Λ2(x) − [∂S1(x)]2 , (10.95)

−i∂2 f1(x) + 2 [∂SV (x) + eA(ϕ)] ∂ f1(x) + 2êkd Â(ϕ)/dϕ f1(x)

+2∂S1(x)∂ fV (ϕ) + 2eΛ(x)∂ fV (ϕ) = −e∂̂Λ̂(x) fV (ϕ)

− 2∂S1(x)∂ f1(x) − 2eΛ(x)∂ f1(x) − e∂̂Λ̂(x) f1(x). (10.96)

The above-mentioned GEA corresponds to keeping in (10.95) and (10.96) only
the terms proportional to U (r) = eΛ0(r)—potential energy of the particle in the
electrostatic field, i.e., the terms ∼Λ2

0 and ∼ (∂S1(x))2 are neglected. Consequently,
we shall solve the equations

i
(
∂2

t − Δ
)

S1(t, r) − 2 [∂t SV (t, r)∂t − ∇SV (t, r)∇ − eA(ϕ)∇] S1(t, r)

= 2U (r)∂t SV (t, r), (10.97)

i
(
∂2

t − Δ
)

f1(t, r) − 2 [∂t SV (t, r)∂t − ∇SV (t, r)∇ − eA(ϕ)∇] f1(t, r)

+ 2êk[γdA(ϕ)/dϕ] f1(t, r) = [γ∇U (r)]γ0 fV (ϕ)

+ 2 [∂t S1(t, r)∂t − ∇S1(t, r)∇] fV (ϕ) + 2U (r)∂t fV (ϕ). (10.98)
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To solve (10.97) and (10.98) we turn from variables t, r to ϕ, η,

ϕ = ωt − kr, η = r, (10.99)

and make a Fourier transformation over q:

S1(ϕ, η) = 1

(2π)3

∫
S̃1(ϕ, q) exp(iqη)dq, (10.100)

f1(ϕ, η) = 1

(2π)3

∫
f̃1(ϕ, q) exp(iqη)dq. (10.101)

Then, using the Lorentz condition for radiation field

k A(ϕ) = 0, (10.102)

we obtain the equations for the scalar S̃(ϕ, q) and bispinor f̃ (ϕ, q) functions, respec-
tively:

i

(
q2

2
+ q[∇SV (t, r) − eA(ϕ)]

)
S̃1(ϕ, q) + (kp − kq)∂ϕ S̃1(ϕ, q)

= Ũ (q)∂t SV (t, r), (10.103)

i

(
q2

2
+ q[∇SV (t, r) − eA(ϕ)] − ie

2
k̂[γdA(ϕ)/dϕ]

)
f̃1(ϕ, q)

+ (kp − kq)∂ϕ f̃1(ϕ, q)

= i

2
(γq)γ0Ũ (q) fV (ϕ) + Ũ (q)∂t fV (ϕ) + kq

ω
S̃1(q,ϕ)∂t fV (ϕ), (10.104)

where Ũ (q) = ∫ U () exp(−iq)dη is the Fourier transform of the function U (r). We
seek the solution of (10.103) in the form

S̃1(ϕ, q) = sI (ϕ, q) + sI I (q), (10.105)

where
sI (−∞, q) = 0 (10.106)

and sI I (q) is the action of the particle corresponding to the elastic scattering in the
potential field in the absence of an EM wave (the solution of (10.103) at A(ϕ) = 0)

sI I (q) = 2iEŨ (q)

q2 + 2pq
. (10.107)
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Then, for S̃1(ϕ, q) we have the expression

S̃1(ϕ, q) = 2iEŨ (q)

q2 + 2pq

×
⎡
⎣1 − ie−i B(ϕ,q)

ϕ∫

−∞
ei B(ϕ′,q)

(∇SV (x) − p − eA(ϕ′)
)

qdϕ′
⎤
⎦

+ eωŨ (q)

(kp − kq)kp
e−i B(ϕ,q)

ϕ∫

−∞
ei B(ϕ′,q)

[
pA(ϕ′) − eA2(ϕ′)/2

]
dϕ′, (10.108)

where the function B(ϕ, q) is defined as

B(ϕ, q) =
∫ (

q2

2
+ q[∇SV (x) − eA(ϕ′)]

)
dϕ′

kp − kq
. (10.109)

Making the inverse Fourier transformation of S̃1(ϕ, q) and then turning to the previ-
ous variables (t, r), after simple calculations we obtain the following expression for
the scalar part of a particle wave function:

S1(t, r) = 1

(2π)3

∫
dq

Ũ (q)eiqre−i B(ϕ,q)

kp − kq

ϕ∫

−∞
dϕ′ei B(ϕ′,q)

×
(

−E + eω

kp

[
pA(ϕ′) − eA2(ϕ′)/2

])
. (10.110)

In a similar way, seeking the bispinor function f̃1(ϕ, q) in the form

f̃1(ϕ, q) = gI (ϕ, q) + gI I (q), (10.111)

where
gI (−∞, q) = 0, (10.112)

and

gI I (q) = (γq)γ0Ũ (q)u

q2 + 2pq
(10.113)

(gI I (q) is the spin part of the particle wave function at the elastic scattering in
the potential field: the solution of (10.104) at A(ϕ) = 0), we obtain the following
expression for f̃1(ϕ, q):
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f̃1(ϕ, q) = (γq)γ0Ũ (q)u

q2 + 2pq

[
1 − ie−i B1(ϕ,q)

kp − kq

×
ϕ∫

−∞
ei B1(ϕ

′,q)

(
q
[∇SV (x) − p − eA(ϕ′)

]− ie

2
k̂[γdA(ϕ′)/dϕ′]

)
dϕ′
⎤
⎦

+ e−i B1(ϕ,q)

kp − kq

ϕ∫

−∞
ei B1(ϕ

′,q)

×
[[

ωŨ (q) + i(kq)S̃1(ϕ
′, q)

]
∂ϕ′ fV (ϕ′) − ie(γq)γ0Ũ (q)

2kp
k̂[γ A(ϕ′)]u

]
dϕ′.

(10.114)

The function B1(ϕ, q) in (10.114) is defined as

B1(ϕ, q) = B(ϕ, q) − i êk(γ A(ϕ))

2(kp − kq)
. (10.115)

As the terms over the first power of k̂ Â are equal to zero (in accordance with the
condition (10.102)), exp

[
i B1(q,ϕ)

]
can be written as

ei B1(q,ϕ) = ei B(q,ϕ)

(
1 + êkγ A(ϕ)

2(kp − kq)

)
. (10.116)

So, after the inverse Fourier transformation and turning to the previous variables, we
have such an expression for f1(t, r)

f1(t, r) = i

16π3

∫
eiq·re−i B(ϕ,q)

kp − kq

ϕ∫

−∞
ei B(ϕ′,q)

{[
1 + êk

(
γA(ϕ′) − γ A(ϕ)

)

2(kp − kq)

]

× (γq)γ0Ũ (q) fV (ϕ′) − i2ωŨ (q)∂ϕ′ fV (ϕ′) + Ũ (q)

×
[
−E + eω

kp
[pA(ϕ′) − eA2(ϕ′)/2]

]
(kq) k̂

(
γA(ϕ′) − γA(ϕ)

)

kp(kp − kq)
u

}
dϕ′dq.

(10.117)

After the integration by parts and simple transformation of f1(t, r) in expression
(10.117) we obtain the final form

f1(t, r) = i

16π3

∫
Ũ (q)eiqr−i B(ϕ,q)− êkγA(ϕ)

2(kp−kq)

kp − kq

ϕ∫

−∞
ei B(ϕ′,q)
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×
{
(γq)γ0 + e

2

[
k̂(γA(ϕ′))(γq)γ0

kp − kq
− (γq)γ0k̂(γA(ϕ′))

kp

]

+ eω
[
q2 + 2pq − 2E

ω
kq
]

2(kp − kq)kp
k̂
{[γA(ϕ′)] − [γA(ϕ)]}

+ ωe2k̂[γA(ϕ)]
(kp − kq)kp

[qA(ϕ′)] + (kq)(γk)γ0 − ω(γk)(γq)

2(kp − kq)kp
e2A2(ϕ′)

}
udϕ′dq.

(10.118)

Then we assume the EM wave to be quasimonochromatic and of an arbitrary
polarization with the vector potential

A(ϕ) = A0(ϕ) (e1 cos ζ cosϕ + e2 sin ζ sinϕ), (10.119)

where A0(ϕ) is the slow varying amplitude of the vector potential A(t, r), e1 and
e2 are unit vectors perpendicular to each other and to the wave vector k (e1e2 =
0, e1k = e2k = 0, and |e1| = |e2| = 1), and ζ is the polarization angle.

For further calculations it is convenient to introduce a new function Jn(u, v,�)

defined as

Jn(u, v,�) = (2π)−1

π∫

−π

dθ exp [i (u sin(θ + �) + v sin 2θ − n(θ + �))]

(10.120)

or by an infinite series representation

Jn(u, v,�) =
∞∑

k=−∞
e−i2k� Jn−2k(u)Jk(v). (10.121)

Then utilizing the formula

exp [−iα1 sin(ϕ − θ1) + iα2 sin 2ϕ] =
∞∑

n=−∞
Jn(α1,−α2, θ1) exp [in(θ1 − ϕ)],

(10.122)

for the expansion of expressions (10.110) and (10.118) by the functions Jn(u, v,�),
we carry out the integration over ϕ′ in (10.110) and (10.118).

The principal properties of the function Jn(u, v,�) with the formula (10.122)
and necessary recurrent formulas used in derivation of presented here material are
given in the end of this paragraph.

Then after the integration over ϕ′ in the expressions (10.110) and (10.118) we
obtain

S1(t, r) = i

4π3

∞∑
n=−∞

e−inϕ
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×
∫

Ũ (q)
{
(E + ωZ)Dn − ω(α(p)D1,n(θ(p)) − Z cos 2ζ D2,n)

}

q2 + 2pq + 2Zkq − 2n(kp − kq) − i0

× exp
(
i
{
qr + α1(q) sin

[
ϕ − θ1(q)

]− α2(q) sin 2ϕ + θ1(q)n
})

dq, (10.123)

and

f1(t, r) = 1

(2π)3

∞∑
n=−∞

e−inϕ

×
∫

Ũ (q) exp {i {qr + α1(q) sin[ϕ − θ1(q)] − α2(q) sin 2ϕ + θ1(q)n}}
q2 + 2pq + 2Zkq − 2n(kp − kq) − i0

×
{

Dn

[
(γq)γ0 − eω

[
q2 + 2pq − 2E

ω
kq
]

2(kp − kq)kp
k̂(γA(ϕ))

]

+ eA0k̂(γD)3,n(γq)γ0

2(kp − kq)
+ eA0

2kp

[
ω
[
q2 + 2pq − 2E

ω
kq
]

kp − kq
− (γq)γ0

]
k̂(γD)3,n

+ ωeα(q)̂k(γA(ϕ))

kp − kq
D1,n(θ(q))

+ (kq)̂kγ0 − ωk̂(γq)

kp − kq
Z
(
Dn + cos 2ζ D2,n

)}
udq. (10.124)

Here α1(q) is the parameter of the Dirac particle interaction with both scattering and
EM wave fields simultaneously

α1(q) = eA0η(q)

kp − kq
, (10.125)

where A0 is the average value of A0(ϕ) and Z is the relative parameter of the wave
intensity defined as

Z = e2 A
2
0

4kp
, (10.126)

and α2(q) has the form

α2(q) = kq
2(kp − kq)

Z cos 2ζ. (10.127)
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Then the magnitudes of η(q) and θ1(q) are

η(q) =
{[(

(kq)p
kp

+ q
)

e1

]2
cos2 ζ +

[(
(kq)p

kp
+ q
)

e2

]2
sin2 ζ

}1/2

,

(10.128)

θ1(q) = arctan

⎛
⎝
(

(kq)p
kp + q

)
e2(

(kq)p
kp + q

)
e1

tan ζ

⎞
⎠ , (10.129)

and α(p) is the intensity-dependent amplitude

α(p) = eA0

kp

√(
pe1
)2
cos2 ζ + (pe2

)2
sin2 ζ, (10.130)

with the phase angle

θ(p) = arctan

(
pe2
pe1

tan ζ

)
. (10.131)

The functions Dn , D1,n(θ(p)), and D2,n are defined by the expressions

∞∑
n=−∞

exp [−in(ϕ − θ1)] Jn(α1,−α2,θ1)

⎡
⎣

1
cos(ϕ − θ(p))

cos 2ϕ

=
∞∑

n=−∞
exp [−in(ϕ − θ1)]

⎡
⎣

Dn

D1,n(θ(p))

D2,n

. (10.132)

So that they satisfy the following relations:

Dn = Jn(α1,−α2, θ1),

D1,n(θ(p)) = 1

2

[
Jn−1(α1,−α2, θ1)e

−i(θ1−θ(p))

+ Jn+1(α1,−α2, θ1)e
i(θ1−θ(p))

]
,

D2,n = 1

2

[
Jn−2(α1,−α2, θ1)e

−i2θ1 + Jn+2(α1,−α2, θ1)e
i2θ1
]
. (10.133)

In (10.124) we have also made notation:

(γD)3,n ≡ (γe1) cos ζ + i (γe2) sin ζ

2
Jn−1(α1,−α2, θ1)e

−iθ1(q)
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+ (γe1) cos ζ − i
(
γe2
)
sin ζ

2
Jn+1(α1,−α2, θ1)e

iθ1(q).

In the denominator of the integral in expressions (10.123) and (10.124),−i0 is an
imaginary infinitesimal, which shows how the path around the pole in the integrand
should be chosen to obtain a certain asymptotic behavior of the wave function, i.e.,
the outgoing spherical wave (to determine that one must pass to the limit of the Born
approximation at A(ϕ) = 0).

Using (10.87), the approximate solution of (10.83) can be written as

Φ(x) = 1√
2E [ fV (ϕ) + f1(x)] exp [i SV (x) + i S1(x)], (10.134)

where the spin parts f1(x) and S1(t, r) are presented by (10.123) and (10.124). Note
that the wave function is normalized for the one particle in the unit volume.

Inserting the expression (10.134) for Φ(x) into (10.85) and keeping terms to
first order of the potential Λ0(r), we obtain the solution Ψ (x) of the Dirac equation
(10.83) in the applied approximation, which coincides with (10.134). So the bispinor
function Φ(x) is the solution of the Dirac equation in the GEA.

Let us now represent the principal properties of the function Jn(u, v,�) with
recurrent formulas. The function Jn(u, v,�) introduced above may be defined in the
integral form

Jn(u, v,�) = (2π)−1

π∫

−π

dθ exp [i (u sin(θ + �) + v sin 2θ − n(θ + �))]

(10.135)
or by an infinite series representation

Jn(u, v,�) =
∞∑

k=−∞
e−i2k� Jn−2k(u)Jk(v). (10.136)

Both defining relations are equivalent. From either (10.135) or (10.136) follows that

Jn(u, 0,�) = Jn(u), (10.137)

and

Jn(0, v,�) =
{

e−i�n J n
2
(v), if n even

0, if n odd
. (10.138)

Then we have directly relative formulas

Jn(−u, v,�) = (−1)n Jn(u, v,�),

Jn(u,−v,�) = (−1)n J−n(u, v,−�),
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Jn(u,−v,−�) = (−1)n J−n(u,−v,�). (10.139)

From the well-known recurrence relations for the Bessel functions we have

Jn−1(u, v,�) − Jn+1(u, v,�) = 2∂u Jn(u, v,�), (10.140)

and
e−i2� Jn−2(u, v,�) − ei2� Jn+2(u, v,�) = 2∂v Jn(u, v,�), (10.141)

which follow directly from (10.135) or expansion (10.136).
An integration by parts in (10.135) yields to the relation

2n Jn(u, v,�) = u
[
Jn−1(u, v,�) + Jn+1(u, v,�)

]

+ 2v
[
e−i2� Jn−2(u, v,�) + ei2� Jn+2(u, v,�)

]
. (10.142)

Other results can be obtained by combination of (10.136)–(10.142). We perform two
important theorems, which can be proved from (10.135). The first is

∞∑
n=−∞

ein(ϕ+�) Jn(u, v,�) = exp {i [u sin(ϕ + �) + v sin 2ϕ]} (10.143)

and the other is

∞∑
k=−∞

Jn∓k(u, v,�)Jk(u
′, v′,±�) = Jn(u ± u′, v ± v′,�). (10.144)

Then the function Jn(u, v,�) at � = 0 becomes to the generalized Bessel function
Jn(u, v).

10.6 Discussion of the GEA Wave Function in Various
Limits

Formula (10.123) has been obtained in the GEA at the condition that

|∇S1(r)|2 � |(E + ωZ)U (r)| . (10.145)

To estimate the latter let us evaluate the expression ∇S1 using the formulas (10.125)
and (10.128). Thenwe fix n in the denominator of the expression (10.123) at themost
probable value n for the action S1 (r, t). At the circular polarization of the wave the
function Jn(α1,−α2, θ1) turns into the Bessel function Jn(α1) in accordance with
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the determination by infinite series representation (10.121). Then, to determine the
value of n we use the following argumentation: the Bessel function Jn(z) gets on its
largest value when its index n is roughly equal to its argument

n (q) = 〈α1 (q)〉, (10.146)

where 〈α1 (q)〉 denotes the integer value of α1 (q). Then carrying out the summation
of n in the formula (10.123), we obtain

S1 ≈ 2i(E + ωZ)

∫
Ũ (q) eiqr

q2 + 2pq + 2Zkq − 2n(kp − kq) − i0

dq

(2π)3
. (10.147)

From the expressions (10.147) and (10.145) the condition of the GEA can be pre-
sented in general form

2(E + ωZ)

∣∣∣∣
∫

qŨ (q) eiqr

q2 + 2pq + 2Zkq − 2n(kp − kq) − i0

dq
(2π)3

∣∣∣∣
2

� |U (a)| .
(10.148)

Due to the oscillations of the factor eiqr in the integral in (10.148) the main contribu-
tion is in the region where qr ∼= 1, i.e., |q| � ∣∣qe f

∣∣ � a−1, where a is the dimension
of the effective range of the scattering potential Λ0 (r). Therefore, the condition
(10.148) can be written as

2(E + ωZ)q2
e f[

q2
e f + 2pqe f + 2Zkqe f − 2n(kp − kqe f )

]2 |U (a)| � 1. (10.149)

The n included in the formula (10.149) is the most probable number of photons that
is defined by expressions (10.146), (10.125), and (10.128):

n =
〈

eA0η

kp − kqe f

∣∣∣∣
(kqe f )p

kp
+ qe f

∣∣∣∣
〉

, (10.150)

η =
√(

p′

|p′|e1

)2

cos2 ζ +
(

p′

|p′|e2

)2

sin2 ζ, p′ = p
kp

+ qe f

kqe f
, (10.151)

Finally, the condition of applicability of the GEA (10.145) may be written in the
form

|U (a)| � 1

Π0

[
1

a
+ |�| − eA0

1 − v cos θkp

]2
, (10.152)

where θkp denotes the angle between k and p vectors, v = |p| /E is the particle
velocity, and
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Π0 = E + ωZ; � = p + kZ (10.153)

are the average values of the particle energy and momentum in the EM field which
correspond to the average four-kinetic momentum or “quasimomentum” Π of the

particle in the wave (Π2 = m2∗ ≡ m2 + e2 A
2
, where m∗ is the “effective mass” of

the particle).
The wave function (10.134) in the GEA turns into the wave function in the Born

approximation by scattering potential if

|S1 (r, t)| � 1. (10.154)

By expanding the second term in the first exponent in the formula (10.134) into the
series and keeping only the terms to the first order in Λ0(r), we obtain

ΨB(x) = 1√
2E exp [i SV (x)]

{
fV (ϕ) + f1(x) − 1

4π3
fV (ϕ)

∞∑
n=−∞

e−inϕ

×
∫

Ũ (q)
{
(E + ωZ)Dn − ω(α(p)D1,n(θ(p)) − Z cos 2ζ D2,n)

}

q2 + 2pq + 2Zkq − 2n(kp − kq) − i0

× exp (i {qr + α1(q) sin(ϕ − θ1(q)) − iα2(q) sin 2ϕ + θ1(q)n}) dq} . (10.155)

The condition when the wave function (10.155) is valid can be written using
(10.154) and taking into account (10.147) and (10.153):

|U (a)| � 1

Π0a

∣∣∣∣∣
1

a
+ |�| − eA0

1 − v cos θkp

∣∣∣∣∣ . (10.156)

This criterion of validity of the particle wave function at SB in the Born approxi-
mation by potential field includes both “fast” and “slow” particles (in the EM field)
cases. Thus, for the fast particles, when

∣∣|�| − eA0/(1 − v cos θkp)
∣∣ a 	 1,

we have

|U (a)| � 1

Π0a

∣∣∣∣∣|�| − eA0

1 − v cos θkp

∣∣∣∣∣ . (10.157)

From the condition (10.156) for the slow particles, when

∣∣|�| − eA0/
(
1 − v cos θkp

)∣∣ a � 1,
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we obtain the strong criterion of the Born approximation for SB process:

|U (a)| � 1

Π0a2
. (10.158)

Comparing the condition of applicability of the GEA (10.152) and the conditions
of the Born approximation (10.157) and (10.158), we see that for the fast particles
(in strong laser fields) the obtained wave function in the GEA (10.134) describes
the SB process in regions

∣∣|�| − eA0/
(
1 − v cos θkp

)∣∣ a 	 1 times larger than the
wave function in the Born approximation.

Now let us find the asymptote of electron wave function corresponding to the
Born approximation at r → +∞ and justify the chosen sign at the infinitesimal i0
to path around the pole in the integrals (10.123) and (10.124). From the expression
(10.155) we have

ΨB (r, t) = exp [i SV (x)]√
2E

×
{

fV (ϕ) + 1

(2π)3

∞∑
n=−∞

∫
exp
[
iqr
]

Fn(ϕ, q)dq

q2 + 2pq + 2Zkq − 2n(kp − kq) − i0

}
,

(10.159)

where the function Fn(ϕ, q) has the form

Fn(ϕ, q) = Ũ (q) exp (i {α1(q) sin[ϕ − θ1(q)] − α2(q) sin 2ϕ + θ1(q)n − nϕ})

×
{[

Dn

(
(γq)γ0 − eω

[
q2 + 2pq − 2E

ω
kq
]

2(kp − kq)kp
k̂(γA(ϕ))

)

+ eA0k̂(γD)3,n(γq)γ0

2(kp − kq)
+ eA0

2kp

[
ω
[
q2 + 2pq − 2E

ω
kq
]

kp − kq
− (γq)γ0

]
k̂(γD)3,n

+ ωeα(q)̂k(γA(ϕ))

kp − kq
D1,n(θ(q)) + (kq)̂kγ0 − ωk̂(γq)

kp − kq
Z(Dn + cos 2ζ D2,n)

]
u

− 2 fV (ϕ)
{
(E + ωZ)Dn − ω[α(p)D1,n(θ(p)) − Z cos 2ζ D2,n]

}}
. (10.160)

To calculate the asymptote of the function (10.159) we temporarily direct the Oqz

coordinate axis along r and replace the integration variable q by q′ = � + nk + q.
Turning to spherical coordinates, we carry out the integration over the solid angle by
the formula

exp
(
iq′r
) |r→∞=⇒ 2π

i |q′| r
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×
[
δ

(
q′

|q′| − r
r

)
exp
(
i
∣∣q′∣∣ r)− δ

(
q′

|q′| + r
r

)
exp
(−i

∣∣q′∣∣ r)
]

, (10.161)

Then we carry out the integration over
∣∣q′∣∣ in the complex plane, passing above the

pole
∣∣q′∣∣ = −pn and below the pole

∣∣q′∣∣ = pn , where

pn =
√

�2 + nω(2Π0 + nω) (10.162)

(this path corresponds to chosen sign of the infinitesimal −i0 in the denominator of
the integrand). As a result, at r → ∞ we obtain

ΨB (r, t) = exp (i SV (x))√
2E

×
{

fV (ϕ) + exp [−i�r]
4πr

∞∑
n = n0

ei(pn r̂−nk)r Fn (ϕ, pn̂r − � − nk)

}
, (10.163)

where Fn (ϕ, pnr/r − � − nk) is defined by (10.160). Summation of n is carried
out with n0 = 〈(−Π0 + m∗) /ω〉.

As it is seen from the expression (10.163) the asymptotic wave function at n = 0
[if A(ϕ) ≡ 0], corresponding to elastic scattering of the electron in the Born approx-
imation, describes the outgoing spherical wave at large distances, according to which
the sign of the infinitesimal i0 in the poles of the integrals (10.123), (10.124) was
chosen.

To obtain the wave function of eikonal approximation for SB process from the
GEA wave function, it is necessary to neglect the terms q2 and kq in the expressions
(10.123) and (10.124), which is equivalent to ignoring the second derivatives of the
wave function with respect to the first ones in the wave equation (10.86). Then by
integrating over q in the formulae (10.123) and (10.124) and taking into account the
expressions (10.92)–(10.94) we obtain the electron wave function in SB process in
the eikonal approximation:

ΨE (r, t) =
⎧⎨
⎩ fv(ϕ) + i

2

ϕ∫

−∞

{[
1 + êk(γA(ϕ′) − γA(ϕ))

2(kp − kq)

]
(γ∂	(ϕ′))γ0 fV (ϕ′)

− i2ω∂ϕ′ fV (ϕ′) +
[
−E + eω

kp
[pA(ϕ′) − eA2(ϕ′)/2]

]

× (k∂	(ϕ′))̂k

(kp)2

[
γA(ϕ′) − γA(ϕ)

]
u

}
U (	(ϕ′))dϕ′

}



346 10 Relativistic Quantum Theory of Scattering . . .

× ei SV (r,t) exp

⎡
⎣i

ϕ∫

−∞

(
−E + eω

kp

(
pA(ϕ′) − eA2(ϕ′)/2

))
U (	(ϕ′))dϕ′

⎤
⎦ ,

(10.164)
where

	(ϕ) = r + 1

kp

ϕ∫

ϕ′

[
p + e

(
A(τ ) + k

kp

(
pA(τ ) − eA2(τ )/2

))]
dτ . (10.165)

The conditions of common eikonal approximation for scattering process in the field
of EM wave are

|U | � 1

Π0

(
|�| − eA0

1 − v cos θkp

)2

;

z �
∣∣∣∣∣|�| − eA0

1 − v cos θkp

∣∣∣∣∣ a
2. (10.166)

Finally, let us represent the obtained GEA wave function (10.134) for SB process
in the nonrelativistic limit:

Ψ (r, t) = exp

{
i S0(r, t) − 2m

∞∑
n=−∞

e−inωt
∫

Ũ (q)Jn(α(q))

q2 + 2pq − 2mnω − i0

× exp i
[
qr + α(q) sin(ωt − θ(q)) + θ(q)n

] dq
(2π)3

}
. (10.167)

where S0 (r, t) is the classical action of the particle in the plane EM wave field with
the vector potential A (t) in dipole approximation kr � 1, v/c � 1 (at the wave
intensities ξ0 � 1):

S0 (r, t) = pr − p2

2m
t + e

mc

t∫

−∞
pA
(
t ′) dt ′ −

t∫

−∞

e2A2
(
t ′)

2m
dt ′.

The wave function (10.167) is normalized for the one particle in the unit volume
V = 1, and interaction parameters α(q) and θ(q) are determined by expressions

α(q) = eA0

mω

√(
qe1
)2
cos2 ζ + (qe2

)2
sin2 ζ,

θ(q) = arctan

(
qe2
qe1

tan ζ

)
.
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Chapter 11
Interaction of Strong Laser Radiation
with Highly Charged Atoms-Ions

Abstract The interaction of powerful laser radiation with atomic-ionic systems of
large nuclear charges has in principle multiphoton character and must be described
in the scope of relativistic theory. The one-photon resonant excitation of atoms by
a moderately strong laser radiation and associated cooperative processes have been
comprehensively described in the scope of nonrelativistic theory within the nonlinear
optics with the appearance of lasers. The situation withmultiphoton resonant bound–
bound transition processes is different and can be explained by the following factors.
For efficient multiphoton excitation of atoms, the laser field should be strong enough
to induce multiphoton transitions. However, in this case the nonresonant levels and
continuum spectrum may play a role in the interaction process. The second major
factor is that because of the strong dependence of the resonance on the pump inten-
sity, and because of levels narrowness, atoms are excited only during a small interval
of the laser pulse. As a result, the rate of concurrent process ofmultiphoton ionization
exceeds the excitation rate by the several orders making the efficient excitation of the
atom in this case problematic. Nevertheless, the numerical investigations for dynam-
ics and radiation of highly charged hydrogen-like ions in the intense high-frequency
laser fields show that if a laser field is not so strong for the ionization process to
be dominant, in the near-resonant multiphoton interaction regime only few resonant
levels are involved, rather than considering the whole wave packet like in strong field
physics one can reduce the interaction dynamics to a few levels only. On the other
hand, the multiphoton resonant excitation of atoms-ions is effective when the quan-
tum system has amean dipolemoment in the excited states. Otherwise, it is necessary
a three-level atomic system, the energies of the excited states ofwhich should be close
enough to each other and the transition dipole moment between these states must
not be zero. As a best example of such systems is a hydrogen-like atom-ion where
because of the random degeneration on an orbital moment, atom has a mean dipole
moment in the excited stationary states (like to dipolar molecules). As far as ions
may be produced with arbitrary charge state via various methods, the interaction of
superstrong laser fields with ions is the subject of prime interest at present. By multi-
photon resonant excitation of ions with large nuclear charges, we can reach far X-ray
region for coherent radiation effects, specifically for creation of powerful radiation
sources of coherent XUV in the bound–bound transitions. In this case, the relativistic
effects should be taken into account, particularly the fine-structure of hydrogen-like
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350 11 Interaction of Strong Laser Radiation with Highly Charged Atoms-Ions

atoms-ions. Along with the multiphoton resonant excitation of atoms-ions, we will
consider the concurrent process of above-threshold ionization (ATI) of such quantum
systems by superstrong laser fields in relativistic theory. At last, the acceleration of
the atoms in the strong laser fields will be considered in this book, as a one of the
important problems since the period of the appearance of laser sources. In the last
decades, the inverse problem of the atoms deceleration became more important con-
nected with the intensive experimental researches regarding the laser manipulation
of atoms. The latter involves a large class of nonlinear atomic and laser spectroscopic
issues, especially at very low temperatures—unique experiments with the trapping
of an separate atom or Bose condensation of a supercooling atomic gas in the optical-
dipole-magnetic traps. Especially from the point of view of the inverse problem of
the atom deceleration, in this chapter, we will consider a nonlinear mechanism of the
threshold character for the atom-laser beams “impact interaction”, analogous to the
one described in the Chap.2, “Reflection” phenomenon for the charged particles. It
is also important that the threshold character (the existence of the critical intensity
for the nonlinear resonance in the wave field) of such acceleration/deceleration may
be used for the separation of atoms by the velocities.

11.1 Highly Charged Hydrogen-Like Atoms-Ions
in the Strong High-Frequency Laser Field

Let us consider the relativistic quantum dynamics of a hydrogen-like atom-ion with
the charge number of the nucleus Za in the strong EM radiation field. We will start
fromDirac equation taking into account the fine-structure of atomic levels.We denote
the atomic states by |η〉, where η indicate the set of quantumnumbers that characterize
the state η = {n, j, l, M}, where n is the principal quantum number, j is the whole
moment, l is the orbital moment (which defines the state parity P = (−1)l), and
M is the magnetic quantum number. We will assume that λ � a, where a is the
characteristic size of the atomic system and λ is the wavelength of EM wave (for
the multiphoton resonance this condition is always satisfied). Besides, we will take
into account within the E L transitions only the electric-dipole transitions E1 as the
main coupling transitions between the states with the principal quantum numbers
n = 1, 2.

In accordance with the mentioned dipol approximation, the linearly polarized EM
wave may be presented in the form

E(t) = eE0(t) cosωt, (11.1)

with a slowly varying amplitude E0(t) (|e| = 1) and carrier frequency ω. With-
out loss of generality, one can take the polarization vector e aligned with the Z
axis of spherical coordinates. Then taking into account the selection rules for E10
transitions: M = M ′, P P ′ = −1,

∣∣ j − j ′∣∣ ≤ 1 ≤ j + j ′, one can produce a simple

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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picture of atomic configuration with the coupling transitions. Transitions from the
ground state {1, 1/2, 0,−1/2} (state |1〉) to the states {2, 3/2, 1,−1/2} (state |2〉)
and {2, 1/2, 1,−1/2} (state |3〉) are possible. Then these states |2〉, |3〉 are coupled
with the state {2, 1/2, 0,−1/2} (state |4〉). The considered levels are degenerated
upon the magnetic quantum number M , consequently there is a similar picture for
the other four states with M = 1/2 (the states with M = ±3/2 do not satisfy the
selection rules). So, the Dirac equation which is a set of eight equations in this case
reduces to the two independent sets of four equations for each magnetic quantum
number M = ±1/2.

TheDirac equation (10.83) in the energetic representation, i.e., the set of equations
for the probability amplitudes aη(t), is the following (in atomic units: e = m = � =
1, c = 137):

i
daη

dt
= εηaη +

4∑
ν=1

Vηνaυ, (11.2)

where

ε1 = c2γ, ε2 = c2
γ1

2
, ε3,4 = c2

N

2
(11.3)

are the energies of electronic levels. Here

γ =
√
1 − (α0Za)

2, γ1 =
√
4 − (α0Za)

2, N = √
2 (1 + γ), (11.4)

and α0 is the fine-structure constant. The interaction Hamiltonian can be written as

Vην = zην E, (11.5)

where the matrix elements zην = 〈η | z | ν〉 of the electric-dipole moment calculated
by the known bispinor solutions of stationary Dirac equation in Coulomb field are

z12 = i
1

Za

22γ+γ1+2Γ (γ + γ1 + 2)

3γ+γ1+3

√
(1 + γ) (2 + γ1)

2Γ (2γ + 1) Γ (2γ1 + 1)

×
{
1 − (α0Za)

2

(1 + γ) (2 + γ1)

}
, (11.6)

z13 = 2i

3

1

Za
22γ−1/2 N γ+3

(N + 1)2γ+3

√
(2γ + 1) (N − 1) (N + 2), (11.7)

z34 = i

4

1

Za

√
N 2 − 1N 2, (11.8)
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z24 = i

3

1

Za
22γ+γ1+3/2 N γ1+1Γ (γ + γ1 + 2)

2 (N + 2)γ+γ1+3/2

√
(2 + γ1)

×
√

2γ + 1

(N + 1) Γ (2γ + 1) Γ (2γ1 + 1)

{
2N 2 + 4 + 4γ1

(N − 1) (N + 2)
− N

−
√

(2 − γ1) (2 − N )

(2 + γ1) (2 + N )

[
N + 2 − 2N 2 + 4 + 4γ1

(N − 1) (N + 2)

]}
. (11.9)

In order to have physically more appropriate forms of equations for multiphoton
resonant transitions, by analogy with the hydrogen atom problem in the parabolic
coordinates, we apply unitary transformation that is represented by the following
matrix

Ŝ =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1√
3

1√
6

i√
2

0 − 1√
3

2√
6

0

0 1√
3

1√
6

− i√
2

⎞
⎟⎟⎟⎟⎠

. (11.10)

Application of unitarian transformation (11.10) yields to the following set of equa-
tions

i
d

dt
â′ = Û â′, (11.11)

where operator Û has the following matrix form

Û =

⎛
⎜⎜⎝

ε1 id12E id13E id12E
−id12E ε + d E 
 − d23E −

−id13E 
 − d23E ε 
 + d23E
−id12E −
 
 + d23E ε − d E

⎞
⎟⎟⎠ (11.12)

and for the transformed probability amplitudes, the relation â′ = Ŝâ takes place.
Here, the transitions dipole moments are

d12 = z13 + √
2z12

i
√
6

, d23 = z24 − √
2z34

i
√
6

,

d13 =
√
2z13 − z12

i
√
3

, d = z34 + √
2z24

i
√
3

,

and |3
| represents the splitting of fine-structure:


 = ε3 − ε2

3
. (11.13)
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In the transformed system, the excited states have the same ε energy

ε = ε2 + ε3 + ε4

3
, (11.14)

and two of them have nonzero mean dipole moments d and −d . The terms ±d E(t)
in (11.12) describe the self-energy oscillating levels and are responsible for the
multiphoton resonance. The state and the transitions indicated by the dashed lines
are the result of relativistic effects. The matrix elements of these transitions (d23, d13,
and 
) are proportional to fine-structure splitting.

Although the obtained system of (11.11) is very complicated it can be solved in the
resonant approximation, through separating slowly varying and rapidly oscillating
functions on the scale of the EM wave period. This can be made in the “interaction
picture” in which we assign to the probability amplitudes the time dependence due
only to the transitions. Hence, if resonant condition

ε1 + nω − ε � 0, (n = 1, 2 . . .) (11.15)

holds, then the amplitudes (bη) in the interaction picture are defined as

a′
1 = b1 exp {−iε1t} , a′

3 = b3 exp {−i (ε1 + nω) t} ,

a′
2 = b2 exp

{
−i (ε1 + nω) t − i

E0d

ω
sinωt

}
,

a′
4 = b4 exp

{
−i (ε1 + nω) t + i

E0d

ω
sinωt

}
. (11.16)

We can then derive the set of equations for the new amplitudes bη from (11.11),
(11.12), and (11.16). The resulting equations are

i
dbη

dt
=

4∑
ν=1

Lηνbυ, (11.17)

where

L11 = 0, L22 = L33 = L44 = −δ,

L12 = iω
d12
d

∞∑
s=−∞

s (−1)s+1 Js

(
E0d

ω

)
ei(s−n)ωt ,

L13 = −id13E0 cosωte−inωt ,

L14 = iω
d12
d

∞∑
s=−∞

s Js

(
E0d

ω

)
ei(s−n)ωt ,
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L23 =
∞∑

s=−∞

(

 − sω

d23
d

)
Js

(
E0d

ω

)
eisωt ,

L24 = −


∞∑
s=−∞

Js

(
2E0d

ω

)
eisωt ,

L34 =
∞∑

s=−∞

(

 + sω

d23
d

)
Js

(
E0d

ω

)
eisωt. (11.18)

In deriving (11.18), we have applied the following expansion by Bessel functions:

exp (iα sinωt) =
∞∑

s=−∞
Js (α) exp (isωt), (11.19)

and introduced resonance detuning

δ = ε1 + nω − ε. (11.20)

In this representation, the quasi-energetic levels ε − nω (n = 1, 2, . . .) close to
the ground state arise. The probabilities of multiphoton transitions between these
levels will have maximal values for the resonant transitions (|δ| 
 ω). The functions
Lην (t) can then be represented in the following form:

Lην = L(n)
ην + lην (t) , (11.21)

where L(n)
ην are slowly varying functions on the scale of the EM wave period (for a

monochromatic wave they are constants), and lην (t) are rapidly oscillating functions.
As a consequence of this separation, the probability amplitudes can be represented
in the form

bη(t) = bη(t) + βη(t), (η = 1, 3, 2, 4), (11.22)

where b
η
(t) is the time average of b

η
(t) and βη(t) denotes the rapidly oscillating

functions. Substituting (11.22) into (11.17) and separating slow and rapid oscilla-
tions, taking into account (11.21), we obtain the following set of equations for the
time average amplitudes bη(t):

i
dbη

dt
=

4∑
ν=1

L(n)
ην bυ +

4∑
ν=1

lηνβυ, (11.23)

and consequently

i
dβη

dt
=

4∑
ν=1

lηνbυ. (11.24)
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In (11.23) the overbar denotes averaging over a time much larger than the EM
wave period. In the set, because of rapid oscillations (11.24), we have neglected the
terms ∼L(n)

ην βυ

∣∣L(n)
ην βυ)

∣∣ 

∣∣∣∣
dβη

dt

∣∣∣∣ . (11.25)

Solving the set of (11.24) and taking into account that b
η
(t) are slowly varying

functions, we obtain

βη = −i
4∑

α=1

bα

t∫

0

lηα

(
t ′) dt ′, (11.26)

and substituting βη(t) into (11.23) we obtain the equations for the slowly varying
amplitudes

i
dbη

dt
=

4∑
ν=1

Lηνbυ, (11.27)

where

Lην = L(n)
ην − i

4∑
α=1

lηα (t)

t∫

0

lαν (t ′) dt ′. (11.28)

The second term in (11.28) describes the dynamic Stark shift. In the general case
of arbitrary envelope, the reduced set of (11.27) can be solved only numerically. But
it allows for an exact solution for a monochromatic wave describing Rabi oscillations
in four-level atomic system. In this case, we have a set of linear ordinary differential
equations with fixed coefficients, so its general solution is given by a superposition
of four linearly independent solutions

bη =
4∑

ν=1

Cηυ exp (iλυt) , (11.29)

where Cηυ are constants of integration which are determined from the initial condi-
tions and the factors λυ are the solutions of the fourth-order characteristic equation

det
(

L̂ − λ Î
)

= 0. (11.30)

Now it is relevant to comment on the region of applicability of the theory presented
hear. The set of equations (11.27) has been derived using the assumption that the
amplitudes bη are slowly varying functions on the scale of the EM wave period that
puts the following restriction ∣∣Lην

∣∣ 
 ω (11.31)

on the characteristic parameters of the system considered.
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The solution (11.29) is very complicated and in order to reveal the physics of
multiphoton resonant excitation process, let us consider the solution at the exact res-
onance when the dynamic Stark shift and fine-structure splitting are small compared
with the Rabi frequency. Then the solution (11.29) is

b1 (t) = b1 (0) cosλnt − (−1)n b2 (0) − b4 (0)√
2

sin λnt,

b2 (t) = b2 (0) − (−1)n b4 (0)

2
cosλnt,

+ (−1)n b1 (0)√
2

sin λnt + b2 (0) + (−1)n b4 (0)

2
, (11.32)

b3 (t) = b3 (0) ,

b4 (t) = (−1)n+1 (b2 (t) − (
b2 (0) + (−1)n b4 (0)

))
,

where

λn = √
2nω

d12
d

Jn

(
E0d

ω

)
. (11.33)

The solution (11.32) expresses oscillations of the probability amplitudes at the mul-
tiphoton resonant excitation analogously to ordinary Rabi oscillations at the one-
photon resonance. However, in this case, the generalized Rabi frequency has a non-
linear dependence on the amplitude of the EM wave field. For n-photon resonance,
the atomic inversion oscillates at the frequency

Ω
(n)
R ≡ 2 |λn| = 2

√
2

∣∣∣∣∣nω
d12
d

Jn

(
E0d

ω

)∣∣∣∣∣ . (11.34)

For one-photon resonance in the weak EM field E0d 
 ω, J1 (x) � x/2 and
from (11.34) we have Ω

(1)
R = √

2d12E0, which coincides with the Rabi frequency of
V -type atomic system.

It is also interesting to note that there is a principal difference between the odd and
even photon resonances which is more evident for the system initially in the ground
state. If we assume that the system is initially in the ground state, then

b1 (t) = cosλnt, b3 = 0,

b2 (t) = (−1)n

√
2

sin λnt, b4 (t) = (−1)n+1 b2 (t) . (11.35)
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With this solutions it is not difficult to verify that after the inverse transformation
â = Ŝ−1â′ for the even-photon resonance (b4 (t) = −b2 (t)), the 2P1/2 and 2P3/2

states’ populations after the interaction are negligibly small and mainly the states
1S1/2 and 2S1/2 are populated. For the odd-photon resonances (b4 (t) = b2 (t)), the
opposite situation takes place where the 2S1/2 state remains unpopulated and the
states 2P1/2 and 2P3/2 are populated.

Let us represent some numerical simulations—solution of (11.2) numerically,
for an ion with the charge number of the nucleus Za = 10 (ε1 − ε � 37.5a.u. �
1keV, z12 � 0.0606a.u., z13 � 0.043a.u., z24 � 0.2447a.u., and z34 � 0.1728a.u.).
We choose the state |1〉 as the initial state for the atom in the EM wave field. The
calculations have been made for a monochromatic wave as well as for the finite wave
pulse describing the envelope by the hyperbolic secant function

E0(t) = E0

cosh
(

t−τ
τ

) , (11.36)

Fig. 11.1 (Color online)
Three-photon resonance
(n = 3) for Za = 10. The
electric field strength is
E0 = 40a.u.; to compensate
the Stark shift, the detuning
is taken to be δ/ω � 0.02. a
Temporal evolution of the
state populations for a
continuous wave. b
Temporal evolution of the
state populations for the laser
pulse of finite duration with
ωτ/2π = 15

(a)

(b)
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where τ characterizes the pulse duration. For visual convenience, we have eliminated
the rapid oscillations from the graphics taking the plot step equal to wave period (in
our approximate solutions these rapid oscillations are described by βη functions).

For the large photon numbers, the dynamic Stark shift of levels takes the states
off resonance and to compensate this one should take an appropriate detuning. The
latter can be calculated from (11.28):

ΔSt = ω
d2
12

d
2

∑
s 
=n

3 + (−1)s+n

s − n
s2 J 2

s

(
E0d

ω

)
. (11.37)

Figure11.1a displays the temporal evolution of the states populations for three-
photon resonance, when E0 = 40a.u and the detuning has been chosen to be δ/ω �
0.02. The oscillation frequencywith the high accuracy coincideswith the generalized
Rabi frequency (11.34). The state populations for a finite wave pulse are shown
in Fig. 11.1b for ωτ/2π = 15. The final state is a superposition of two P states

Fig. 11.2 (Color online)
Six-photon resonance
(n = 6) for Za = 10. The
electric field strength is
E0 = 50a.u.; the detuning is
taken to be δ/ω � 0.055. a
Temporal evolution of the
state populations for a
continuous wave. b
Temporal evolution of the
state populations for the laser
pulse of finite duration with
ωτ/2π = 41

(a)

(b)
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(we have overpopulation in P states). Figure11.2 displays six-photon resonance. In
this case E0 = 50a.u., ωτ/2π = 41, and δ/ω � 0.055. For the chosen pulse length,
the final state is a superposition of two states—ground and excited S states (P states
remain unpopulated). As we can see, by the appropriate laser pulses with moderately
strong intensities (E0 
 Z3

a), one can achieve various superposition states by the
multiphoton resonant excitation of ions.

For large photon numbers n > 10, the Bessel function reaches its maximal value
when E0d � nω (see (11.34)). The latter means that for the efficient multiphoton
excitation of atoms, the laser field should be strong (E0 � 0.1Z3

a). On the other hand,
in this case, the dynamic Stark shift (11.37) becomes the order of a laser frequency,
then the resonant approximation is violated, and consequently, Rabi oscillations
vanish. In addition, for the charge number of the nucleus well above 10, the fine-
structure splitting becomes larger than the generalized Rabi frequency, taking 2P3/2

state off the resonance.

11.2 Above-Threshold Ionization of Atoms-Ions
By Superstrong Laser Fields

The problem of ATI of a hydrogen-like atom-ion in the superstrong laser fields can be
reduced to the investigation of the relativistic exploration of the transition S-matrix
formalism utilizing the relativistic GEA wave function as a wave function of the
final state of a photodetached electron. Because of bulk mathematical expressions
for relativistic GEA wave function, we will rather simplify it by neglecting with the
spin interaction and instead of Dirac wave function to use the Klein–Gordon one.
Following the relativistic S-matrix formalism, the bound–free transition amplitude
can be written in this integral form (in natural units � = c = 1)

Ti→ f = −i

∞∫

−∞
Ψ (−)† (x)V̂ Φ(x)d4x, (11.38)

where x = (t, r) is the four-component radius vector xμ, Φ(x) is the initial unper-
turbed bound state of the atomic system, and Ψ (−)(x) is the final out-state of an
electron in the potential of atomic remainder and in the field of a plane EM wave
(K † is denotes the complex conjugation of K ). We assume the EM wave to be qua-
simonochromatic and of an arbitrary polarization with the vector potential

A(ϕ) = A0(ϕ) (e1 cosϕ + e2ζ sinϕ); ϕ = kx = ωt − kr, (11.39)
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where k = (ω, k) is the four-wave vector, A0(ϕ) is the slow varying amplitude of
the vector potential of a plane wave, e1 and e2 are unit vectors: e1 ⊥ e2 ⊥ k, and
arctan ζ is the polarization angle.

According to the Klein–Gordon equation, the interaction operator is

V̂ = −2eA(ϕ)(−i∇) + e2A2(ϕ), (11.40)

where e is the electron charge.
Thewave function of the final state of the photodetached electron in the relativistic

GEA approximation has the following form:

Ψ (−)† (x) = 1√
2Π0

F†(x) exp[−i SV (x)], (11.41)

The SV (x) is the action of photoelectron in the field (11.39)

SV (x) = �r − Π0t + α

(
p

kp

)
sin[ϕ − θ(p)] − Z

2
(1 − ζ2) sin 2ϕ. (11.42)

Here Π = (Π0,�) is the average four-kinetic momentum or “quasimomentum” of
the electron in the plane EM wave field, which is defined via free electron four-
momentum p = (ε0, p) and relative parameter of the wave intensity Z by the fol-
lowing equation

Π = p + k Z(1 + ζ2); Z = e2A2
0

4kp
, (11.43)

where |A0| is the averaged value of the amplitude A0(ϕ). The wave function (11.41)
is normalized for the one particle in the unit volume V = 1.

Including in (11.42), the quantity α
(

p
kp

)
is the intensity-dependent amplitude

of the electron-wave interaction and as a function of any three-vector b it has the
following definition:

α (b) = e |A0|
√

(be1)2 + ζ2 (be2)2, (11.44)

with the phase angle

θ(p) = arctan

(
pe2
pe1

ζ

)
. (11.45)

The function F†(x) in (11.41), describing the impact of both the scattering and
EM radiation fields on the photoelectron state simultaneously, has the following
form:
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F†(x) = exp

[
1

4π3

∞∑
n=−∞

einϕ

∫
dqŨ (q)

×
{
ω
[
α
(

p
kp

)
D†

1,n (θ1(q) − θ(p)) − Z(1 − ζ2)D†
2,n

]
− Π0D†

n

}

q2 + 2�q − 2n(kp − kq) + i0

× exp
[−i

{
qr + α1(q) sin

[
ϕ − θ1(q)

] − α2(q) sin 2ϕ + θ1(q)n
}]]

, (11.46)

where

Ũ (q) =
∫

U (r) exp(−iqr)dr (11.47)

is the Fourier transform of the potential of the atomic remainder, α1(q) , α2(q) are
dynamic parameters of the interaction defined by the expressions

α1(q) = α

(
(kq)

p
kp

+ q
)

, α2(q) = kq
2(kp − kq

)Z(1 − ζ2), (11.48)

and θ1(q) is the phase angle

θ1(q) = θ

(
(kq)

p
kp

+ q
)

. (11.49)

The functions Jn(u, v,�), Dn, D1,n (θ1(q) − θ(p)) , and D2,n are defined by the
expressions

Dn = Jn(α1(q),−α2(q), θ1(q)), (11.50)

D1,n (θ1(q) − θ(p)) = 1

2

[
Jn−1(α1(q),−α2(q), θ1(q))e−i(θ1(q)−θ(p))

+ Jn+1(α1(q),−α2(q), θ1(q))ei(θ1(q)−θ(p))
]
, (11.51)

and

D2,n = 1

2

[
Jn−2(α1(q),−α2(q), θ1(q))e−i2θ1(q)

+ Jn+2(α1(q),−α2(q), θ1(q))ei2θ1(q). (11.52)

In the denominator of the integral in expression (11.46) +i0 is an imaginary
infinitesimal, which shows how the path around the pole in the integrand should
be chosen to obtain a certain asymptotic behavior of the wave function, i.e., the
ingoing spherical wave (to determine that one must be passed to the limit of the Born
approximation at A(ϕ) = 0).
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Since we consider the ATI problem for hydrogen-like atoms (Za 
 137), the
initial velocities of atomic electrons are nonrelativistic, and as a initial-state wave
functionΦ in the transition amplitude (11.38)will be taken a stationarywave function
of the hydrogen-like atom bound state in the nonrelativistic limit,

Φ (r, t) = 1√
2m

Φ0 (r) exp (−iε0t), ε0 = m − EB, (11.53)

where EB > 0 is the binding energy of the valence electron in the atom

2m EB = a−2. (11.54)

Concerning the relativism of the photoelectron final state in a strong EM field, it
should be mentioned that at the wave intensities already ξ ∼ 10−1 relativistic effects
become observable, and the final state of the photoelectron should be described in
the scope of relativistic theory. Moreover, at the currently available laser intensities
ξ > 1 (even ξ � 1) a free electron becomes essentially relativistic already at dis-
tances smaller than one wavelength. On the other hand, in such fields, we see the
production of electron–positron pairs from an intense photon field on the electrosta-
tic potential of atomic remainder through multiphoton channels. However, we can
calculate separately the ATI probability in superstrong laser fields without restricting
intensities by the threshold value of multiphoton pairs production (ξ � 2) since those
are independent processes.

Since V̂ is a Hermitian operator, the transition amplitude (11.38) can be written
in the form

Ti→ f = −i

∞∫

−∞
Φ(x)V̂ †(x)Ψ (−) †(x)d4x . (11.55)

To integrate this expression, it is convenient to turn from variables t, r to η ≡ r, ϕ
(see (11.39))

Ti→ f = − i

ω

∞∫

−∞
Φ(ϕ,η)V̂ †(ϕ,η)Ψ (−) †(ϕ,η)dϕdη. (11.56)

and make a Fourier transformation of the function F†(x) over the variable ϕ

F†(ϕ,η) =
∞∑

l=−∞
F̃l(η) exp(−ilϕ), (11.57)

F̃l(η) = 1

2π

π∫

−π

F(ϕ,η) exp(ilϕ)dϕ. (11.58)
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Thenwith the help of (11.39)–(11.52), (11.53) (using (10.143) aswell) and taking into
account theLorentz condition for the planewavefieldkA(ϕ) = 0,wecan accomplish
the integration over the variable ϕ in (11.56). After a simple transformation with the
help of the formula (10.144), we obtain the following expression for the transition
amplitude:

Ti→ f = i2π(kp)

ω
√

mΠ0

∞∑
L ,l=−∞

{ (
L − Z(1 + ζ2)

)
Φ̃l (g)

× JL

(
α

[
p

kp

]
,− Z

2
(1 − ζ2), θ(p)

)
ei Lθ(p)δ

(
Π0 − ε0

ω
− L − l

)

+ 2
∞∑

n=−∞

∫
dq

(2π)3
Φ̃l (g + q) Ũ (q)

×α

(
q
kp

)
C†
1,L (θ(p + q) − θ(q)) e−inθ1(q)+i Lθ(p+q)

×
{
ω
[
α
(

p
kp

)
D†

1,n (θ1(q) − θ(p)) − Z(1 − ζ2)D†
2,n

]
− Π0D†

n

}

q2 + 2�q − 2n(kp − kq) + i0

× δ

(
Π0 − ε0

ω
− L − l + n

)}
, (11.59)

where g is the three-vector,

g = p − (ε − ε0)k
ω

. (11.60)

and the function Φ̃l (b) is the Fourier transform of Φl(η) ≡ Φ(η)F̃l(η), and as a
function of any three-vector b is defined by analogous formula (11.47), and

C1,n (θ(p + q) − θ(q))

= 1

2

[
Jn−1(α1(p + q),− Z1

2
(1 − ζ2), θ(p + q))e−i(θ(p+q)−θ(q))

+ Jn+1(α1(q),− Z1

2
(1 − ζ2), θ(p + q))ei(θ(p+q)−θ(q))

]
, (11.61)

where the parameters α
(

p+q
kp−kq

)
and θ(p + q) are determined by the expressions

(11.44) and (11.45), and

Z1 = e2A2
0

4(kp − kq)
. (11.62)

http://dx.doi.org/10.1007/978-3-319-26384-7_10
http://dx.doi.org/10.1007/978-3-319-26384-7_10
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Using the general conservation law of considering process, the probability ampli-
tude of the above-threshold ionization in the concluding form can be presented in
this ultimate form

Ti→ f = i2π(kp)√
mΠ0

∞∑
N ,l=−∞

{
(N + l − Z(1 + ζ2))Φ̃l (g)

× JN−l

(
α

(
p

kp

)
,− Z

2
(1 − ζ2), θ(p)

)
ei(N−l)θ(p)

+ 2
∞∑

n=−∞

∫
dq

(2π)3
Φ̃l (g + q) Ũ (q)

×α

(
q
kp

)
C†
1,N−l+n (θ(p + q) − θ(q)) e−inθ1(q)+i(N−l+n)θ(p+q)

×
{
ω
[
α
(

p
kp

)
D†

1,n (θ1(q) − θ(p)) − Z(1 − ζ2)D†
2,n

]
− Π0D†

n

}

q2 + 2�q − 2n(kp − kq) + i0

}

× δ (Π0 − ε0 − ωN ). (11.63)

The differential probability of ATI process per unit time in the phase space
d�/ (2π)3 (space volume V = 1 in accordance with normalization of electron-wave
function) taking into account all the final states of a photoelectronwith quasimomenta
in the interval �, � + d� is

dWi→ f =
∣∣Ti→ f

∣∣2
τ

d�

(2π)3

=
∣∣Ti→ f

∣∣2
τ

√
Π2

0 − m2∗Π0dΠ0
dΩ

(2π)3
, (11.64)

where τ is the interaction time, dΩ is the differential solid angle, and

m∗ =
√

Π2
0 − �2 =

√
m2 + e2A2

0

(1 + ζ2)

2
(11.65)

is the “effective mass” of the relativistic electron in the EM wave field.
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As follows from (11.63) and formulas

2πδ (Π0 − ε0 − ωN ) δ
(
Π0 − ε0 − ωN ′) =

[
0, if N 
= N ′
τδ (Π0 − ε0 − ωN ) , if N = N ′ ,

(11.66)

the differential probability of ATI process dWi→ f (11.64) per unit time does not
depend on interaction time.

11.3 The Relativistic Born Approximation by the Potential
of Atomic Remainder in ATI

The impact of the rescattering effect on the ATI process is more transparent in the
limit of the Born approximation by the scattering potential. The latter takes place
if the corresponding part of the action in the GEA wave function, describing the
impact of both the scattering and EM radiation fields on the photoelectron state
simultaneously, is enough small.

Expanding (11.63) into the series and keeping only the terms to the first order
over U (r), after a simple transformation, utilizing (10.136), (10.143), and (10.144),
we obtain

Ti→ f = i2π√
mΠ0

∞∑
N=−∞

⎧⎨
⎩

[
N − Z(1 + ζ2)

]
(kp)Φ̃ (g) ei Nθ(p)

× JN

(
α

(
p

kp

)
,− Z

2
(1 − ζ2), θ(p)

)

+2
∞∑

n=−∞

∫
dq

(2π)3

[
N + n − Z1(1 + ζ2)

]
(kp − kq) Φ̃ (g + q) Ũ (q)

×
[
ω

{
α

(
p

kp

)
D†

1,n(θ1(q) − θ(p)) − Z(1 − ζ2)D†
2,n

}
− Π0D†

n

]

× e−inθ1(q)+i(N+n)θ(p+q)

×
J(N+n)

(
α
(

p+q
kp−kq

)
,− Z1

2 (1 − ζ2), θ(p + q)
)

q2 + 2�q − 2n(kp − kq) + i0

⎫⎬
⎭

× δ (Π0 − ε0 − ωN ) . (11.67)

http://dx.doi.org/10.1007/978-3-319-26384-7_10
http://dx.doi.org/10.1007/978-3-319-26384-7_10
http://dx.doi.org/10.1007/978-3-319-26384-7_10
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For hydrogen-like atoms with the charge number Za , the condition of the Born
approximation for the photoelectron scattering (in the Coulomb field),

Zae2

�v

 1 (11.68)

requires electron velocities v � Zaα (it is assumed that Za 
 137). The photoelec-
tron acquires such velocities in the EM wave field at the intensities

ξ � Za

137
. (11.69)

Aswill be shown below, (11.69) is the condition of theBorn approximation in theATI
process of hydrogen-like atoms taking into account the photoelectron rescattering.

The initial bound state enters into (11.63) through its momentum space wave
function Φ̃ (b). For hydrogen-like atoms, the bound state wave function is

Φ(η) = exp(−η/a)√
πa3

, (11.70)

where a = a0/Za (a0 = 1/me2 is theBohr radius) and the correspondingmomentum
space wave function has the following form:

Φ̃ (b) = 23(πa3)1/2

b4a4
. (11.71)

Note, that in (11.71), |b| a � 1 has been taken into account in accordance with
the Born approximation. Then the function Φ̃ (g + q) in the second term in curly
brackets of (11.67) can be replaced by the quantity δ(g + q)/

√
πa3 because of the

small contributions of the other terms in an expansion of Ti→ f over the parameter
g2a2, which will be shown bellow. Such a δ function can be used to accomplish the
integration over q in the large curly brackets of (11.67).

For the scattering of a charged particle in the Coulomb field for which the Fourier
transform is

Ũ (g) = 4π

amg2
, (11.72)

we have the following expression for the transition amplitude in the field of arbitrary
polarization of an EM wave:

Ti→ f = i24(πa)3/2√
mΠ0

(kp)

g4a4

∞∑
N=−∞

{(
N − Z(1 + ζ2)

)
ei Nθ(p)

× JN

(
α

(
p

kp

)
,− Z

2
(1 − ζ2), θ(p)

)
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− ωε0g2

m(kp)

∞∑
n=−∞

(
2n − α′(1 + ζ2)

)
e−i(2n−N )θ(p)

×
{
(ω(2n − N ) + Π0)C

†
N−2n + ωα′(1 − ζ2)C†

2,N−2n

}
Jn

(
−α′(1−ζ2)

2

)

m2∗ + ε20 − 2ε0(Π0 + ω(2n − N ))

⎫⎬
⎭

× δ (Π0−ε0 − ωN ), (11.73)

whereα′ is defined by (11.62) atq = −g andα′ = e2A2
0/4ωε0 , then Jn

(−α′(1−ζ2)
2

)
is

the ordinary Bessel function (J2n (0, x, 0) = Jn(x) (10.137)),Cs andC2,s are defined
by the expressions

Cs = Js

(
α

(
p

kp

)
,
(Z − α′)(1 − ζ2)

2
, θ(p)

)
, (11.74)

and

C2,s = 1

2

[
Js−2

(
α

(
p

kp

)
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(Z − α′)(1 − ζ2)

2
, θ(p)

)
e−i2θ(p)

+ Js+2

(
α

(
p

kp

)
,
(Z − α′)(1 − ζ2)

2
, θ(p)

)
ei2θ(p)

]
. (11.75)

Integrating the expression (11.64) over Π0, taking into account (11.73) and
(11.66), for differential probability of ATI we obtain the formula

dWi→ f

dΩ
= 24

πma5

∞∑
N=N0

(
N − Z(1 + ζ2)

)2
(kΠ)2 |�|

g8

×
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ei Nθ(�) JN
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(
�
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2
(1 − ζ2), θ(�)

)

+ g2

2m
(
N − Z(1 + ζ2)

)
(kΠ)

∞∑
n=−∞

e−i(2n−N )θ(�) Jn

(−α′(1 − ζ2)

2

)

×
(
(ε0 + 2nω)C†

N−2n + ωα′(1 − ζ2)C†
2,N−2n

)}∣∣∣
2
. (11.76)

Here the three-vector g (11.60) is

g = � − Nk, |�| =
√

(ε0 + ωN )2 − m2∗. (11.77)

http://dx.doi.org/10.1007/978-3-319-26384-7_10


368 11 Interaction of Strong Laser Radiation with Highly Charged Atoms-Ions

The number N0 from which we carry out the summation in (11.76) is defined from
the energy conservation law of ATI process: N0 = 〈(m∗ − ε0)/ω〉.

The first term in the curly brackets of (11.76) corresponds to the result of the
so-called Keldysh–Faisal–Reiss (KFR) approximation, and the second term shows
the dependance of the total ATI probability on the ejected photoelectron stimulated
bremsstrahlung (SB) probability on the residual atom, i.e., it takes into account the
rescattering in the ATI process.

11.4 Probability of ATI Process for Circular and Linear
Polarizations of an EM Wave

The state of a photoelectron in the field of a strong EM wave and consequently the
ionization probability essentially depends on the polarization of thewave (the nonlin-
ear effect of intensity conditioned by the impact of strong magnetic field). Thus, for
circular polarization the relativistic parameter of the wave intensity ξ2 = const = ξ20
and the longitudinal velocity of the electron in the wave vI I = const (eliminating
this inertial motion—in the framework of the electron—we have the uniform rota-
tion in the polarization plane with the wave frequency ω), meanwhile for the linear
one ξ2 = ξ20 cos

2 ϕ and vI I oscillates with the frequencies of all wave harmonics nω
corresponding to strongly unharmonic oscillatory motion of a photoelectron. The
later leads principally to different behavior of the ionization process and correspond-
ing formulas depending on the polarization of a strong wave. Therefore, we shall
consider the cases of circular and linear polarizations of EM wave field separately.

From (11.76), for the circularly polarized wave (ζ = 1) in the first Born approx-
imation by the ionized atom potential, we obtain the following formula for the dif-
ferential probability of the ATI process:

dWi→ f

dΩ
= 24

πma5

∞∑
N=N0

(N − 2Z)2 (kΠ)2 |�|
g8

× J 2
N

(
α

(
�

kΠ

)){
1 + g2

2 (N − 2Z) (kΠ)

}2

. (11.78)

As is seen from this formula, in contrast to the case of another polarizations, the
differential probability of the ATI process is defined by the ordinary Bessel function
instead of the function Jn(u, v,�) and the sum over n vanishes. The latter corre-
sponds to the above-mentioned fact that for the circular polarization, the parameter
of the intensity of the wave ξ2 = const , and the effect of the intensity of a strong
wave appears in the form of constant renormalization of the characteristic parameters
of the interacting system.
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Let us estimate the contribution of photoelectron rescattering in the probability
of the ATI process that is the second term in the curly brackets in (11.78). The latter
for the most probable number of absorbed photons, at which the Bessel function in
(11.78) has the maximum value,

g2

2 (N − 2Z) (kΠ)
� 1, (11.79)

i.e., is of the order of the direct transition probability (the first term in the curly
brackets of (11.78)) in the strong field approximation (SFA) for the ATI process.
So, even in the Born approximation when the impact of the scattering potential is
the smallest, the rescattering effect of the photoelectron on the atomic remainder in
the relativistic regime of the ATI process has a significant contribution to the total
probability of the multiphoton ionization of an atom for high intensities of a pump
laser radiation. Indeed, beyond the scope of the Born approximation, the contribution
of the rescattering effect in the relativistic domain of the ATI process will be more
considerable, for instant, by the photoelectron GEA wave function for a long-range
Coulomb scattering potential of the residual atom.

In the context of the current approximation ξ � Za/137, the explicit analytic
formulas for the total ionization rate can be obtained utilizing the properties of the
Bessel function. With the condition (11.69), the argument of the Bessel function
X (N ) � 1 and always X < N . Therefore, the terms with N � 1 and N ∼ X give
the main contribution in the sum (11.78). Besides, in this limit one can replace the
summation over N with integration and approximate the Bessel function by the Airy
one,

JN (x) �
(
2

N

)1/3

Ai

[(
N

2

)2/3 (
1 − x2

N 2

)]
. (11.80)

Turning to spherical coordinates, we carry out the integration over the ϕ since
there is azimuthal symmetry with respect to the direction k (the O Z axis), and for
the ionization rate we have

Wi→ f = 25

ma5

π∫

0

sin θdθ

∞∫
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d N

(
2

N

)2/3
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× Ai2 [y(N , θ)]
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, (11.81)

where

y(N , θ) =
(

N

2

)2/3
[
1 − α2

(
�

kΠ

)

N 2

]
. (11.82)
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The y(N , θ) has a minimum as a function of N and θ, and since the Airy function
decreases exponentially with increasing argument, one can use the Laplace method
(the method of the steepest descent) in order to carry out the integration over N as
well as over θ. The extremum points of the function y(N , θ), i.e., the most probable
values of N and θ, are

Nm = m2∗ − ε20
ε0ω

� m

ω
ξ2; cos θm = |�(Nm)|

Π0(Nm)
(11.83)

and

ym = y(Nm, θm) = 21/3EB

N 1/3
m ω

=
(

Fat

2F0

)2/3

, (11.84)

where F0 and Fat = Z3
am2e5 arewave and atomic electric field strengths. At N = Nm

and θ = θm , we have a peak for angular and energetic distribution. Let us note that the
contribution of the rescattering effect to the angular distribution of the photoelectrons
is nonessential.

For ym 
 1, when the wave electric field strength greatly exceeds the atomic one
(F0 � Fat ), the main contribution in the integral gives

δθ � (Nm/2)−1/3/
√
1 + ξ2 and δN � 2(Nm/2)2/3 (11.85)

(angular and energetic widths of the peak) and for ionization rate we have an explicit
formula that expresses directly the dependence upon the wave intensity,

Wi→ f = 27/3

34/3Γ 2(2/3)
πω

(
ω

EB

)3 ( Fat

F0

)11/3

. (11.86)

The formula (11.86) expresses the suppressionofATI ionization ratewith the increase
of the strength of the pump laser field—atom stabilization phenomenon. Note that
this result regarding the stabilization effect is inherent in the dynamics of ATI process
for an atom-ion or a quantum system under the action of the long-range scattering
potential.

For ym � 1 or F0 
 Fat (the so-called tunneling regime of ionization), we shall
use the following asymptotic formula for Airy function:

Ai(x) � 1

2
√

π
x−1/4 exp

(
−2x3/2

3

)
, (11.87)

and applying the Laplace method we have

Wi→ f = 2ω

(
ω

EB

)3 ( Fat

F0

)3

exp

{
−2

3

Fat

F0

}
. (11.88)
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Let us revert to the Born condition (11.68) to substantiate the condition (11.69).
As is shown above, we have a peak for angular and energetic distribution (11.78) at
θm and Nm (11.83), and the electron mean velocity will be defined by these values,

v = |�(Nm)|
Π0(Nm)

� ξ√
1 + ξ2

. (11.89)

Now we can justify the (11.69) for hydrogen-like atoms ionization process taking
into account (11.89) and the condition of the Born approximation (11.68).

Using the explicit analytic formulas for the total ionization rate, we can conclude
that at N = Nm and θ = θm we have peaks for angular and energetic distributions
that are given by (11.83) with the angular and energetic widths of the peak δθ and
δN , respectively (11.85).

In the case of linear polarization of the wave from (11.76), we have

dWi→ f
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, (11.90)

where Jn(u, v) is the real generalized Bessel function. As is seen from the formula
(11.90), in this case, the total probability of ATI process includes all intermediate
transitions of photoelectron through the virtual vacuum states as well, corresponding
the emission and absorption of wave photons of number −∞ < n < ∞ (the sum
over n) in accordance with the above-mentioned behavior of the wave intensity effect
on linear polarization (strongly unharmonic oscillatory motion of photoelectron).

Using the recurrent formula

2n Jn (u, v) = u (Jn−1 (u, v) + Jn+1 (u, v))

+ 2v (Jn−2 (u, v) + Jn+2 (u, v)), (11.91)

via simple transformations one can make the summation in (11.90) by the intermedi-
ate transitions of a photoelectron through the virtual states of the atomic continuum
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(sum over n) corresponding to induced free-free transitions of the photoelectron in
the continuous spectrum (multiphoton absorption and/or emission of the wave pho-
tons at the SB). In the result, we obtain the simplified ultimate formula for numerical
investigation of ATI in the field of a strong EMW of linear polarization

dWi f

dΩ
= 24

πma5

∞∑
N=N0

(N − Z)2(kΠ)2 |�|
g8

×
{
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(
α,− Z

2
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+ g2ε0

2m(N − Z)(kΠ)
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(
α,

Z

2
− α′

)}2

. (11.92)

Let us now consider theATI processwith the rescattering effect in the nonrelativis-
tic limit since the theoretical treatments of this problem—the main of those are KFR
ansatz—in general have been carried out for a nonrelativistic photoelectron when the
rescattering effect is neglected. In the pioneer result of Keldysh, the rescattering of
a photoelectron from the potential of atomic remainder has been approximately esti-
mated and put in the form of a coefficient in the ultimate formula for the ionization
probability (for the wave fields much smaller than atomic ones). Further, the same
approach has been made by other authors for relatively large wave fields up to the
atomic ones. Besides, in the existing nonrelativistic theory of ATI, the gauge problem
for the description of interaction with the wave field and different views concerning
the role of wave intensity in the dipole approximation have arisen. Moreover, in the
scope of the same KFR ansatz, the existence of stabilization effect depends on the
gauge of the wave field. Therefore, we shall consider the presented results in the
nonrelativistic limit taking into account the photoelectron rescattering.

From the formula (11.78), for the differential probability of the ATI transition
rate in the case of circular polarization of an EM wave in the nonrelativistic limit,
we have

dW nrel
i→ f

dΩ
= 8ω

π

(
EB

ω

)5/2 ∞∑
N=N0

(N − 2z − EB/ω)1/2

(N − 2z)2
J 2

N (ϑ)

×
[
1 + N − 2z − EB/ω

N − 2z

]2
, (11.93)

where

ϑ = e |A0|
ωm

√(
pe1

)2 + (
pe2

)2
, (11.94)

z = Z = Z1 = e2A2
0/4mω,

and
N0 = 〈(

p2/2m − EB
)
/ω + z

〉
.
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The corresponding condition of the Born approximation (11.69) in the nonrela-
tivistic limit is

1 � ξ � Za

137
. (11.95)

The first term in the quadratic brackets of (11.93) coincides with the above-threshold
ionization differential probability obtained in the SFA for the nonrelativistic photo-
electron without the rescattering effect. According to the SFA, is expected to become
valid when the ponderomotive potential Up = e2A2

0/2m due to an EM radiation
field larger than the ionization potential of the atom, Up � EB and consequently
p2/2m � EB , which is the condition of the Born approximation. Then taking into
account the scattering potential by perturbation theory, we obtain (11.93) that the
contribution of the photoelectron rescattering in the ATI probability (in the first order
of the Born approximation over the Coulomb potential) is of the order of the main
results of the KFR ansatz. Therefore, neglecting the SB process for the photoelectron
in the long-range Coulomb field of a residual atom is incorrect.

In the case of a linear polarized EM wave from the formula (11.90), we have the
differential probability of the ATI process in the nonrelativistic domain,

dW nrel
i→ f

dΩ
= 8ω

π

(
EB

ω

)5/2 ∞∑
N=N0
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(N − z)2
J 2
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(
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2

)

×
{
1 + (N − z − EB/ω)

(N − z)

}
, (11.96)

where

u = z1/2χ, χ = 81/2
(

N − z − EB

ω

)1/2

cos θ, (11.97)

and θ is the angle between the velocity vector of the emitted photoelectron and the
wave polarization vector.

Owing to the complicated analytic formulas for relativistic ATI in the case of
linear polarization of EM wave, the physical analysis of the multiphoton ioniza-
tion rates, energetic spectra, and angular distributions of photoelectrons requires the
numerical investigation of relativistic ATI. So for ultimate quantitative results, we
will accomplish numerical simulations for the case of linear polarization of a pump
laser radiation.

For numerical simulations, the hydrogen-like atom with Za = 5 in the ground

state with the energy Ip = m
(
1 − √

1 − (Za/137)2
)
is considered. Then one should

require that the total transition probability W per unit time be limited to values
which do not cause depletion in the target material during a full pulse duration τ of
the applied laser field: W 
 τ−1 or W 
 ω. Thus, at the radiation of Ti:Sapphire
laser (ω = 0.058a.u.), the ionization probability of atoms should be much less than
2.8 × 1015 s−1.
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In Fig. 11.3a (solid line), the envelope of the partial ionization rates WN per unit
time is presented taking into account the electron secondary SB in both the residual
ion and the linearly polarized laser field. The functionWN wasdefinedby (11.92) after
the integration over the polar and azimuthal angles θ, ϕ (with the axis directed along
the vector of the wave propagation). The laser intensity is taken to be 0.8 × 1018

W/cm2 that corresponds to the relativistic parameter of the intensity ξ = 0.6. In
contrast to the case of the circularly polarized EMwave (11.78), when the maximum
of the distribution functionWN corresponds to the number of photons Nmax � mξ2/ω
(at the same parameters of the process), in the case of the wave linear polarization the
functionWN reaches itsmaximumvalue already in the vicinity of theATI threshold, at

Fig. 11.3 The energetic
spectra of photoelectrons.
The envelopes of partial ATI
probability rates WN of a
hydrogenlike atom with
Za = 5 as functions of the
photons number N , scaled to
the ponderomotive potential
Up , at the frequency
ω = 0.058a.u. of the linearly
polarized Ti:Sapphire laser,
in the logarithmic scale. The
solid and dotted lines are the
ATI partial rates with the
photoelectron secondary SB
process and without it,
respectively, at the parameter
of the laser intensity: a
ξ = 0.6, b ξ = 1, and c
ξ = 1.5

(a)

(b)

(c)
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the photons number Nmax = N0. In Fig. 11.3b, c (solid lines) the laser field intensities
are taken to be 2.2 × 1018 W/cm2 (ξ = 1) and 4.9 × 1018 W/cm2 (ξ = 1.5). To
reveal the effect of the secondary SB process, in Fig. 11.3 the partial ionization rates
are presented without the SB process (dotted lines).

As it is seen from these graphics, the relativistic multiphoton ATI rates with the
secondary SB process are four times larger than the ATI rates of the direct process for
the photoelectrons energies up to 2Up (the cutoff position is approximately the same).
Note that in relativistic case, the mean kinetic energy acquired by a free electron
(initially at rest) in the arbitrary strong wave field of linear polarization is: mξ2/4.
This coincides with the analogous nonrelativistic quantity e2E2/4mω2 ≡ Up at the
arbitrary initial velocity of an electron, i.e., the relativistic ponderomotive potential
for an electron initially at rest coincides with the nonrelativistic one. Therefore, the

Fig. 11.4 The angular
distributions of the partial
ATI rates dWN /dΩ as a
function of the polar angle θ
(with respect to the wave
propagation direction) for
the fixed values of the
azimuthal angle (ϕ = 0) and
photons number N with the
photoelectron secondary SB
process (solid line), and-
without it (dotted line) for a
hydrogenlike atom with
Za = 5, at the intensity
parameters of the linearly
polarized Ti:Sapphire laser
with ω = 0.058a.u.: a
ξ = 0.6 and N =
50,000 (N = 1.72Up/ω), b
ξ = 1 and N = 150,000
(N = 1.85Up/ω), and c
ξ = 1.5 and N = 350,000
(N = 1.92Up/ω)

(a)

(b)

(c)
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use of the same notation Up and the scaling to the nonrelativistic ponderomotive
potential in the relativistic theory is justified.

The comparison of the ATI rates for the linear and circular polarizations shows
that in case of the linear polarization of laser field, the ATI rates increase at least by
two orders of magnitude at the same parameters of the process.

Consideration of the ATI rates at the laser relativistic intensities shows the sup-
pression of the ATI rate with the increase of the strength of the pump field, which
evidences the atom stabilization effect in the strong electromagnetic field.

To illustrate the angular distribution of relativistic multiphoton ATI rates in the
linearly polarized strong laser field with the photoelectron secondary SB process,
we plot the dependence of the partial ATI rates on the polar and azimuthal angles.
Figure11.4 represents the angular distribution of the ATI differential rate dW/dΩ

(11.92) summedover the number of absorbed photons N as a function of the polar and
azimuthal angles θ, ϕ taking into account the photoelectron secondary SB process.
The angle θ is taken between the photoelectron momentum p and the wave vector k
of EMwave, and the azimuthal angleϕ is taken between the two planes formed by the
vectors A, k and A, p. With the increase of the wave intensity, and consequently the
relativism of photoelectrons, the angular distribution of multiphoton ATI becomes
anisotropic to the direction of an EM wave polarization vector. The main peaks in
the angular distributions of photoelectrons in the relativistic case are shifted toward
the direction of the wave propagation, in contrast to the nonrelativistic case when the
angular distribution of electrons in the ATI spectrum are typically aligned along the
electric field of an EM wave. As is seen from the Fig. 11.4, the higher the energy of
the photoelectron, the narrower and closer to the wave propagation direction is the
region where the electrons are mainly ejected.

11.5 Acceleration or Deceleration of the Atoms
by Counterpropagating Laser Beams

Because of the neutrality of an atom for the direct electromagnetic interaction, the
spectrum of the probable mechanisms of the laser acceleration of the atoms is very
restricted in comparison with the charged particles. It is clear, that in this case an
acceleration of the atoms by laser fields is possible due to the interaction of induced
dipole moment of an atom with a laser radiation. In this context, there are two mech-
anisms of the acceleration, i.e., two types of the radiative forces—dissipative and
dispersive, acting on the atom at the interaction with the laser fields. At that, atom is
represented as a classical object—a complex particlewith the internal degrees of free-
dom. The first type force, also called radiation pressure force, results from the transfer
of the momentum from the light beam to the atom at the resonant scattering, and it is
proportional to the scattering rate Γ . The corresponding acceleration/deceleration of
an atom with the mass m is ∼ �kΓ/m, where �k is the momentum of the absorbed
photon. With such a force, one can accelerate an atom in rest up to the thermal veloc-
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ities, or stop a thermal atomic beam in a distance of the order of one meter, during a
few milliseconds. The second type of force, the dispersive force, also called dipole
force or gradient force, arises from the dispersive interaction of the induced atomic
dipole moment with the intensity gradient of the laser beam: F ∼ ∇ I (r), where
I (r) is the intensity envelope of the incident laser beam. Because of its conservative
character, such force can serve as an optical trap for neutral atoms.

Regarding the considering problem, the effective interference wave field formed
by the two counterpropagating light beams is of interest. As a significant application
of radiation pressure forces, theDoppler cooling of the neutral atoms and trapped ions
have been realized. The latter results from a Doppler-induced imbalance between
the two opposite radiation pressure forces caused by the laser beams of the same
frequencies.At the different frequencies, the acceleration of atoms occurs in amoving
periodic potentials traps. The latter relies on the “conveyor belt” provided by a
frequency-chirped optical lattice formed by the two counterpropagating laser beams.
However, in such fields there is a more important nonlinear phenomenon of threshold
character in the field of the two counterpropagatingwaves of the different frequencies
resulting to the atom acceleration/deceleration, like to the “Reflection” phenomenon
of a charged particle, considered in theChap.2 of this book. The existence of a critical
intensity of the combined radiation field principally changes the classical dynamics
of an atom center-of-mass motion, the description of which is presented below.

Nowwewill study the dynamics of the interaction of a two-level atomwith the two
quasimonochromatic counterpropagating plane waves of the different frequencies in
the given field representation taking into account the atom quantum structure. The
magnitudes of the waves fields are assumed so strong that the radiation-absorption
processes by the atom cannot change the given values of the fields. For the actual
cases of the strong laser pulses, this assumption is satisfied with the great accuracy.

TheHamiltonianof the two-level atom in thefield of the twoquasi-monochromatic
counterpropagating plane waves will be presented in the form:

Ĥ = p̂2

2m
+ ε1|1〉〈1| + ε2|2〉〈2| + V̂ , (11.98)

where

V̂ = −d12 (E1 cosϕ1 (t, r) + E2 cosϕ2 (t, r)) |1〉〈2| + h.c. (11.99)

is the interaction Hamiltonian.
The operator |s〉〈s| (s = 1, 2) gives the projection on to the state |s〉with the energy

εs . The operators |1〉〈2| and |2〉〈1| describe the transitions in the atomic system, being
driven by the counterpropagating waves with the same parameters as in the previous
paragraph: carrier frequencies ω1, ω2 (let ω1 > ω2), wave vectors k1, k2, and slowly
varying amplitudes E1, E2. The corresponding phases areϕ1,2 (t, r) = ω1,2t − k1,2r.
The fields of both pulses are assumed to be linearly polarized along the same direction
and d12 is the projection of the atomic transition dipole moment along the waves

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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polarization direction (we assume d12 to be real). Here r and p̂ are the operators of
the position and momentum of an atom center-of-mass (m).

In the process of emitting and absorbing photons, atoms not only change their
internal states but their external translational states change aswell due to the absorbed
and/or emitted photons recoil. If the atomic momentum change is large as compared
to the photons momenta �k1,2, one can describe the atom center-of-mass motion
classically. In this case, the position and momentum of an atom center-of-mass obey
the Hamilton canonical equations of motion

dr
dt

= p
m

,
dp
dt

= −∇Vef f (r, t), (11.100)

with the effective potential

Vef f (r, t) = Sp
(
ρ̂V̂

)
. (11.101)

Hear ρ̂ is the density matrix corresponding to the internal degree of freedom of the
atomic system. The density matrix ρ̂ can be written in the following form:

ρ̂ = ρ11|1〉〈1| + ρ22|2〉〈2| + (
ρ12eiω0t |1〉〈2| + h.c.

)
, (11.102)

where ω0 = (ε2 − ε1) /� is the frequency of the atomic transition. The dynamics of
the density matrix ρ̂ in the interaction picture is determined by the Liouville–von
Neumann equation

i�
∂ρ̂

∂t
= [

V̂ , ρ̂
]
. (11.103)

The resulting equations for the density matrix elements are

dρ11

dt
= −iρ21e−iω0t

(
Ω1

2
eiϕ1(t,r) + Ω2

2
eiϕ2(t,r)

)
+ c.c., (11.104)

dρ22

dt
= iρ21e−iω0t

(
Ω1

2
eiϕ1(t,r) + Ω2

2
eiϕ2(t,r)

)
+ c.c., (11.105)

dρ12

dt
= ie−iω0t

(
Ω1

2
eiϕ1(t,r) + Ω2

2
eiϕ2(t,r)

)
(ρ11 − ρ22) , (11.106)

dρ21

dt
= −ieiω0t

(
Ω1

2
e−iϕ1(t,r) + Ω2

2
e−iϕ2(t,r)

)
(ρ11 − ρ22) . (11.107)

With the help of (11.99), (11.101), and (11.102), one can obtain the following expres-
sion for the effective potential of interaction;
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Vef f (r, t) =
(

Ω1

2
e−iϕ1(t,r) + Ω2

2
e−iϕ2(t,r)

)
eiω0tρ12 + c.c.. (11.108)

HereΩ1,2 are the Rabi frequencies of the energy levels 1 and 2, respectively: Ω1,2 =
E1,2d12/�.

To be more precise in the set of (11.104)–(11.107) one should add the terms
describing spontaneous transitions and other relaxation processes. Since we have
not taken into account the relaxation processes, this consideration is correct only for
the interaction times T < τmin, where τmin is the minimal of all the relaxation times.
Thus, the full dynamics in the absence of any losses is now governed by (11.101)
and (11.104)–(11.108). These equations represent nonlinear set of equations where
the atomic internal (ρ̂) and translational (r, p) variables are defined self-consistently.
However in some cases it is possible to decouple the translational variables and to
disclose the nonlinear dynamics of an atom center-of-mass motion.

For the large resonance detunings (or not so strong laser fields) when
∣∣Δ1,2

∣∣ �∣∣Ω1,2

∣∣ (Δ1,2 = ω1,2 − ω0 are the resonance detunings for atomic internal transitions),
and if the atom initially is in the ground state, the excited state population remains
small and can be neglected. Then, setting ρ11 � 1, ρ22 � 0 in (11.106) one can obtain,

ρ12 � e−iω0t

(
Ω1

2Δ1
eiϕ1(t,r) + Ω2

2Δ2
eiϕ2(t,r)

)
, (11.109)

and correspondingly the effective potential (11.108) is reduced to

Vef f (r, t) = Ω1Ω2

2

[
1

Δ1
+ 1

Δ2

]
cos

[
δω

(
t − z

vph

)]
. (11.110)

In (11.110), only the time-dependent terms are dropped, δω = ω1 − ω2 > 0, and it is
assumed that thewaves propagate along the Z axis.Aswe see, the atomic translational
motion is governed by the slowed interference wave. The latter propagates with the
phase velocity vph = c/n < c (c is the light speed in vacuum), where

n = ω1 + ω2

ω1 − ω2
> 1 (11.111)

is the “effective refractive index” of the resulting slowed interference wave. So,
the resonant interaction of an atom with the two traveling vacuum-waves subjects
the atom center-of-mass translational motion in the slowed wave field, which has a
nonlinear-threshold nature over the interference wave intensity, as it will be shown
below.

Next, we consider the nonlinear dynamics—translational motion of the atom
center-of-mass in the field of the slowed traveling wave (11.110), at the near-resonant
transitions within the atomic internal quantum states:

∣∣Δ1,2

∣∣ 
 ∣∣Ω1,2

∣∣. In this case,
the internal and translational variables are also separated allowing one to integrate the
reduced equations of motion. The latter is clear if the following resonance condition
for two waves
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ω0 = ω2 + ω1

2
(11.112)

holds, which demands the inverse symmetric detunings Δ1 = −Δ2. For the sim-
plicity, we also assume Ω1 = Ω2 ≡ Ω . Then, the set of (11.104)–(11.107) can be
rewritten as:

dρ12

dt
= iΩ cos

[
δω

2

(
t − z

vph

)]
e−i δωz

2c (ρ11 − ρ22), (11.113)

dρ11

dt
= iΩ cos

[
δω

2

(
t − z

vph

)] [
ei δωz

2c ρ12 − c.c.
]
, (11.114)

ρ22 = 1 − ρ11; ρ21 = ρ∗
12, (11.115)

and the effective potential (11.108) is reduced to

Vef f (r, t) = Ω cos

[
δω

2

(
t − z

vph

)] [
e−i δωz

2c ρ21 + c.c.
]
. (11.116)

If vph 
 c, which is satisfied with the great accuracy for considered setup, in
(11.113)–(11.115) and (11.116), one can ignore the slow oscillations in the terms
containing exp [±iδωz/ (2c)]. This is justified if the condition

|z| 
 2c

δω
= n

c

ω0
(11.117)

is satisfied, which practically will not limit the interaction length for the actual pulses
because of the very large values of the quantity n-effective refractive index n � 1
(this is equivalent to the condition vph 
 c).

Then, these equations can be solved exactly subject to the certain initial conditions.
A general solution for the density matrix elements is

ρ11 = 1

2
+ Im [ρ12 (0)]

sin ϑ0
cosϑ (t), (11.118)

Im [ρ12 (t)] = Im [ρ12 (0)]

sin ϑ0
sin ϑ (t), (11.119)

Re [ρ12 (t)] = const, (11.120)

where

ϑ (t) = 2

t∫

0

Ω
(
t ′) cos

[
δω

2

(
t ′ − z

(
t ′)

vph

)]
dt ′ + ϑ0, (11.121)
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and

tan ϑ0 = Im [ρ12 (0)]

ρ11 (0) − 1/2
. (11.122)

This solution represents Rabi oscillations with modulated Rabi frequency. For the
effective potential we obtain

Vef f (r, t) = 2ΩRe [ρ12 (0)] cos

[
δω

2

(
t − z

vph

)]
. (11.123)

As is seen from (11.110) to (11.123), in these two distinct cases, the translational
motion of an atom is governed by the slowed interference wave and at the resonant
interaction the amplitude of the effective potential depends on the initial atomic state.
For the nonvanishing interaction, one should prepare the atom in the superposition
state and tomaximize interaction potential one should achieve the equal superposition
of the states |1〉 and |2〉. At that, for the same laser intensities, the amplitude of the
effective interaction potential (11.123) is at least on one order of magnitude larger
than what one expects to achieve at the nonresonant interaction regime.

Nowwe turn to the solution of the equation ofmotion for the center ofmassmotion
of an atom. From (11.100) follows the conservation of the transverse momentum of
the atom: px,y = const . Then, taking into account the dependence of the effective
potential on the time and coordinate in both resonant and nonresonant cases, for the
monochromatic waves from (11.100) one can find the integral of motion

E − vph pz = const = E0 − vph p0z, (11.124)

where E0 and p0z are the initial energy and longitudinal momentum of the atom. For
the quasi-monochromatic waves with the slowly varying envelopes (11.124) repre-
sents adiabatic integral, when the waves are turned on and turned off adiabatically.

With the help of (11.124) one can obtain the velocity of the atom in the field,

vz = vph

⎡
⎣1 ∓

√(
1 − v0z

vph

)2

− Vef f (z, t)

Eph

⎤
⎦ , (11.125)

vx = v0x , vy = v0y, (11.126)

where v0 = (v0x , v0y, v0z) is the initial velocity of the atom and Eph = mv2ph/2 is
the kinetic energy of a particle corresponding to the velocity vph = c/n.

As it is seen from (11.125), when the maximal value of the interaction potential
Vef f (z, t)max = |V0| is larger than a value, which will be called critical,

Vcr = Eph

(
1 − v0z

vph

)2

, (11.127)
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the expression (11.125) for the atom velocity may become a complex. This com-
plexity is bypassed in the complex plane by continuously passing from the one
Riemann sheet to another, at which the root changes its sign. Hence, the atom veloc-
ity remains real everywhere and themultivalence of the expression (11.125) vanishes
too. Indeed, if |V0| < Vcr , one should take the root in the (11.125) with the sign (−), if
v0z ≤ vph and with the sign (+), if v0z ≥ vph , to satisfy the initial condition vz = v0z

at the Vef f (z, t = −∞) = 0. Then, after the interaction (Vef f (z, t = +∞) = 0)
the energy of the atom remains unchanged. However, when |V0| > Vcr the value
Vef f (z(t0), t0) = Vcr (where z(t0) is the atom coordinate at the moment t = t0) steps
out as a turn point, and for t > t0 one should change the sign of the root, in respect
to the moments t ≤ t0.

Consider now the behavior of the atom in the field at this situation. As we see,
atom can not penetrate the region of the field Vef f (z, t) > Vcr where the expres-
sion (11.125) becomes a complex. At that, the slowed interference wave becomes
a potential barrier for the atom and the reflection of the atom from such moving
barrier occurs. To explain the physics of this phenomenon it is necessary to clear
up the meaning of the critical field. This is an essentially nonlinear phenomenon of
threshold nature and the critical intensity of the interference wave is the threshold
value for this process. Namely, the (11.125) shows that the critical value Vcr is the
value of the potential, at which the longitudinal velocity of the atom in the field
vz(t) becomes equal to the phase velocity of slowed interference wave: vz(t) = vph ,
irrespective of the atom initial velocity v0z . The latter is the condition of resonance
with the Doppler-shifted waves frequencies, at which the coherent scattering—that
is the induced scattering of counterpropagating waves on an atom occurs:

ω1

(
1 − vz(t)

c

)
= ω2

(
1 + vz(t)

c

)
. (11.128)

Under this condition, the nonlinear resonance takes place, since the resonant veloc-
ity of the atom vz(t) = vph is acquired in the field at the value Vef f = Vcr (due
to the waves intensity effect). Note in this aspect that the existence of the critical
intensity in the coherent wave fields is the feature of induced coherent processes,
such as Cherenkov, Compton (as well as in undulator), where the nonlinear resonant
phenomena have been revealed (see Chap.2). Then, in the critical point the reso-
nant absorption of photons from the one wave and re-emission into the other wave
occurs, resulting the break of the synchronism vz(t) = vph between the atom and
slowed interference wave (either vz(t) > vph or vz(t) < vph) and atom abandons
it—the reflection of the atom from the moving barrier occurs. Note, that actually this
is a reflection in the frame of reference moving with the velocity V = vph , which is
the rest frame of the slowed interference wave. In this frame, atom with the veloc-
ity v′

0z swoops on the motionless barrier and, as is seen from (11.125), an elastic
reflection of the atom occurs: v′

z = − v′
0z .

Thus, if the maximal value of the interaction potential |V0| > Vcr , then after the
interaction for the atom velocity we have

http://dx.doi.org/10.1007/978-3-319-26384-7_2
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vz f = 2vph − v0z . (11.129)

As we see from (11.129), if the slowed interference wave pulse initially overtakes
the atom (v0z < vph), then vz f > v0z and the atom is accelerated. But if the atom
initially overtakes the wave (v0z > vph), then vz f < v0z and the deceleration of the
atom takes place. For the resonant atoms (v0z = vph), Vcr = 0 and consequently the
atom velocity does not change (vz f = v0z).

For the kinetic energy change of the atom center-of-mass, we have

ΔE = 4Eph

(
1 − v0z

vph

)
. (11.130)

As is seen from this formula, the acceleration of the atom depends neither on the
field magnitude (only should be an above-threshold field) nor the interaction length.
The formulas (11.129) and (11.130) show that acceleration or deceleration of the
atom is defined by the key parameters of this process—the atom’s initial velocity
and the phase velocity of the slowed interference wave vph .

Let us present some numerical simulations that illustrate the nonlinear picture of
interaction of the atom with the two counterpropagating waves. The time evolution
of the set of (11.100), (11.104–11.107) is found with a Runge–Kutta method. The
calculations were made for a quasi-monochromatic wave fields providing the adia-
batic turn on/off of the interaction. The latter is achieved by describing the envelopes
with Gaussian functionsΩ1,2(t) = Ω0 exp

[−(t − 3τ )2/2τ 2
]
, where τ andΩ0 char-

acterize the pulse duration and amplitudes, respectively. We will consider resonant
interaction regime assuming the atom initially to be in an equal superposition of the
states |1〉 and |2〉 (ρ12 (0) = 1/2). For all calculations Ω0/δω = 103, and the pulse
duration has been chosen to be δωτ = 20 (pulse duration should be much larger than
the period of the interference wave). At t = 0 waves’ intensities fall down to 1/e9

of its’ maximal values, providing the adiabatic switch on of the interaction. Then,
to accentuate this acceleration mechanism caused by the nonlinear resonance in the
fields, we will present especially the atom dynamics when the initial velocity of the
atom is very far from the induced resonance (11.128).

In the Fig. 11.5 the atom dynamics is displayed, when the intensity is above the
critical point: V0 = 1.3Vcr . Figure11.5a illustrates the acceleration of an atom in rest
(v0 = 0). By the solid curve, the temporal evolution of the atom velocity is shown.
By the dashed curve, the variation of the scaled potential Vef f /Vcr along the atom
trajectory is shown. Figure11.5b illustrates the deceleration, when v0 = 2vph . From
these figures it is clearly seen that at the critical point Vef f � Vcr the longitudinal
velocity of the atombecomes equal to phase velocity of the interferencewave: vz(t) =
vph = c/n and it is a turning point for the solid curves. The latter corresponds to the
formulae (11.125) where the root changes its sign and the further evolution of the
velocity proceeds along the second brunch of the root with the inverse sign. In the
resonance range, the velocity of the atom strictly increases, if v0 < vph (Fig. 11.5a),
or decreases, if v0 > vph (Fig. 11.5b) due to the genuine nonlinear character of the
resonance in the field. Then, after leaving the resonance range, the final velocity of the
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Fig. 11.5 Atom
acceleration/deceleration.
The intensity is above the
critical point: V0 = 1.3Vcr . a
Solid curve displays the
temporal evolution of the
atom scaled velocity vz/vph
at v0 = 0, z0 = 0. The
dashed curve is the scaled
interaction potential
Vef f /Vcr , sensed by the
atom along the trajectory. b
Atom deceleration, when
v0 = 2vph , z0 = 0

(b)

(a)

atom becomes vz f = 2vph—acceleration, and vz f = 0—deceleration, respectively,
in accordance with the analytical results (see (11.125) and (11.129)).

Figure11.6, displaying the role of initial conditions: the final energy versus the
initial position z0 of the atom. As is seen, the acceleration is negligibly small under
the threshold of the nonlinear resonance (Fig. 11.6a). The net gain is defined by the
initial phasewhich is in accordancewith the perturbation theory.When the amplitude
of the slowed interference wave is above the critical point (Fig. 11.6b), then the final
energy for reflected particles is almost constant (E f = 4Eph).

Let us make some estimations. Best suited for the resonant interaction regime
are the Rydberg atoms, i.e., the high excited states of hydrogen or alkali metals’
atoms. Here we are interested mainly in circular Rydberg states. These are the states
with highest allowed angular momentum l = n0 − 1, for a given principal quantum
number n0 (with |m0| = l, where m0 is the magnetic quantum number). For these
states, only one resonant dipole transition is allowed: n0 ↔ n0 + 1, so that such
states closely approximate a two-level system with the extremely long lifetime and
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Fig. 11.6 The final scaled
energy versus the initial
position of the atom z0 (in
the units of reduced
wavelength
λ = 2λ1λ2/(λ1 + λ2)),
when v0 = 0. a The intensity
is below the critical point:
V0 = 0.9Vcr . b The intensity
is above the critical point:
V0 = 1.3Vcr

(a)

(b)

are widely used in themicrowave cavity QED experiments. Hence, with our notation,
we assume |1〉 ≡ |n0, l = n0 − 1, m0 = n0 − 1〉 and |2〉 ≡ |n0 + 1, l = n0, m0 =
n0 − 1〉. For a Rydberg atom’s state with a large n0 and Δn0 = 1, the transition
frequency is

ω0 ≈ ε0

�n3
0

= 1

n3
0

a.u.,

where ε0 is the atomic unit of energy (27.2 eV). Here we have taken into account
a fact that for the high orbital moments l the quantum defect which corrects for the
deviation of the binding potential from a purely hydrogenic situation is small. The
transition dipole moment between neighboring Rydberg states is estimated as

d12 = √
2ea0

22n0+2nn0+3
0 (n0 + 1)n0+2

(2n0 + 1)2n0+3 ≈ n2
0√
2
a.u.,

where a0 is the Bohr radius. The rate of spontaneous emission is given by the formula
Γ = Γ0/n5

0, where Γ0 = 2α4c/(3a0) ≈ 1010 s−1 is the characteristic rate, and α is
the fine-structure constant. Then, the pulse duration of the waves is assumed to
be τ ≈ 1/ (10Γ ), which gives δω ≈ 2 × 102Γ in accordance with the condition
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δωτ = 20 . For the effective refractive index we obtain:

n � 2ω0

δω
= 10−2 ε0

�Γ0
n2
0 ≈ 4 × 104n2

0.

For an atom initially in rest (with an atomic weight A), the critical field, and conse-
quently, Rabi frequency will be

Vcr = �Ωmin = m
c2

2n2
≈ 1. 2 × 10−2 A

n4
0

a.u.

The latter should be much more smaller than the frequency difference between the
main resonant and nonresonant transitions (n0 ↔ n0 − 1, n0 + 1 ↔ n0 + 2), which
is of the order of 3/n4

0 a.u. This condition is satisfied as for the hydrogen atom, as
well as for the light alkali atoms (lithium, sodium) and a model of supposed two level
atom is well enough justified. Note that the required fields for this effect should be

E � 2 × 10−2 A

n6
0

a.u.,

which are much more smaller than the atomic ones for the Rydberg atoms in the state
with a large n0 that is E0 = 1/(16n4

0) a.u.
In particular, at the principal quantum number n0 = 40, and ω0/(2π) ≈ 103

GHz (corresponding effective refractive index is n � 6. 4 × 107) an atom initially
in rest can be accelerated up to the velocities 103 cm/s. The required fields for
this effect are: E � 2. 5 × 10−2 A V/cm that corresponds to the wave intensities
I ∼ 4 × 10−5 W/cm2, for lithium atoms with A = 7. In the inverse regime of the
deceleration with the same fields one can stop such an atomic beam.
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Chapter 12
Interaction of Superstrong Laser Radiation
with Plasma

Abstract Interaction of superstrong laser radiation with the matter under extreme
conditions in ultrashort space-time scales is of prime importance specifically con-
nected with the problems of generation and probing of high energy-density plasma,
ions acceleration and inertial confinement fusion, compact laser-plasma accelera-
tors, production of antimatter, etc. Generally, the interaction of such fields with the
electrons in the presence of a third body makes available the revelation of many
nonlinear relativistic electrodynamic phenomena. As a third body can serve an ion
and in the super intense laser fields one can observe relativistic above-threshold ion-
ization and high-order harmonic generation and shortwave coherent radiation imple-
mentation, electron–positron pairs production on nuclei, and multiphoton stimulated
bremsstrahlung of electrons on the ions/nuclei. The latter is one of the fundamental
processes at the interaction of superstrong laser pulses with plasma and under some
circumstances inverse-bremsstrahlung absorptionmaybecomedominantmechanism
for absorption of strong EM radiation in plasma. Theoretical investigations regarding
the plasma absorption problem on the base of inverse bremsstrahlung were carried
out mainly in the Born approximation over the scattering potential, meanwhile at
the ions large charge and for the clusters, when electron interaction with the entire
dense cluster ion core that composed of a large number of ions is dominant, the Born
approximation is not applicable. Taking into account this fact and the significance of
this problem with the application of the existing already X-ray free-electron lasers,
the description of this chapter, we will start from the presentation of the quantum
theory of the inverse-bremsstrahlung absorption with the exact consideration of the
scattering Coulomb potential, which at first allows to develop analytical theory for
absorption process in the plasma at the exact description of electrons interaction
with the static scattering field, and second—will describe the quantum contribution
into the plasma absorption rate at the high X-ray frequencies. Regarding the multi-
photon absorption of superstrong laser radiation in the plasma, for the infrared and
optical lasers one can apply classical theory, and the main approximation in the clas-
sical theory is the low-frequency or impact approximation. Then, we will present
the nonlinear theory of the absorption of super intense radiation of relativistic and
asymptotically large intensities in the isotropic and anisotropic classical as well as
quantum plasmas due to the inverse-bremsstrahlung absorption, taking into account
the initial relativism of the plasma electrons in such superstrong fields.
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12.1 Electron Wavefunction in SB Process with Exact
Consideration of Scattering Coulomb Field

Thewavefunction of a charged particle (electron) in the fields of a Coulomb potential
and an EM wave satisfies the following Schrodinger equation (we adopted a vector
potential in the gauge form A = 0, ϕA = −E(t)r):

[
− �

2

2m
Δ + eϕ(r) − eE(t)r

]
Ψ (r, t) = i�

∂

∂t
Ψ (r, t), (12.1)

where E(t) = εE sinωt is the electric field strength of a linearly polarized electro-
magnetic (EM) wave of frequency ω in the dipole approximation (ε is a unit vector),
ϕ(r) = Q/r is the Coulomb attractive potential.

We shall solve (12.1) treating the EM wave using perturbation theory, but taking
theCoulombpotential into account exactly. In the case of aweakwaveone can confine
oneself to one-photon emission-absorption processes and write the wavefunction in
the form

Ψ (r, t) = Ψ
(0)
k0

(r, t) + Ψ
(1)
k0

(r, t). (12.2)

As the SB process is under consideration, we choose as an unperturbed wavefunction
the following Coulomb eigenfunction Ψ

(+)
k0

(r, t), which describes the electron state
with a definite momentum �k0:

Ψ
(+)
k0

(r, t) = N0 exp

(
− i

�
E0t + ik0r

)
F(i

κ

k0
; 1; i (k0r − k0r) ,

N0 = exp

(
πκ

2k0

)
Γ

(
1 − i

κ

k0

)
. (12.3)

Here F(α;β; z) is the confluent hypergeometric function, Γ (z) is the gamma func-
tion and E0 = �

2k2
0/2m, κ = |Qe| m/�

2.
The perturbed wavefunction Ψ

(1)
k0

(r, t) describes stimulated one-photon transi-
tions in a Coulomb field and can be found from (12.1) if one expands the full wave-
function of the electron in terms of Coulomb eigenfunctions. Such decomposition
may be done in two different ways. The first is the expansion in terms of Coulomb
eigenfunctions Ψ C

λlm(r, t), which describe the electron states with definite eigen-
values of energy Eλ, orbital moment l, and its projection m, and the second is the
expansion in terms of Coulomb eigenfunctions Ψ

(±)
k (r, t), which describe the elec-

tron states with definite momentum �k at infinity. In the first case, after standard
calculations of perturbation theory, the perturbed wavefunction can be written in the
following form
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Ψ
(1)
k0

(r, t) = eE0

4k0
exp

(
− i

�
E0t

) ∞∑
l=0

i l
{
εz
[
lDl,l−1 − (l + 1)Dl,l+1

]
Pl(cos θ)

+ εy
(Dl,l−1 + Dl,l+1

)
sinϕP (1)

l (cos θ)
}

, (12.4)

where P (m)
l (cos θ) are the associated Legendre polynomials, θ andϕ are the spherical

angles (the O Z axis is directed along the electron initial momentum �k0, and the
unit vector ε is in the plane Y O Z ). The quantitiesDl,l+1 are functions of r, t and are
defined by the following expression

Dl ′,l(r, t) =
∑∫

λ

Rλl ′(r)
〈
λ, l ′ |r | k0, l

〉

× eiδl (k0)

[
e−iωt

Eλ − E0 − �ω
− eiωt

Eλ − E0 + �ω

]
. (12.5)

Here, the symbol
∑∫
denotes summation over all energy eigenstates (bound and con-

tinuum), δl (k0) = argΓ (l + 1 − iκ/k0) is the Coulomb phase shift, Rλl(r) are
Coulomb radial eigenfunctions, and the radial matrix elements 〈λ, l |r | k0, l ± 1〉 for
the transitions in the continuum spectrum (λ = k), are equal to

(k, l |r | k0, l + 1) = i
(−1)−iκ/k

(2l + 1)!
C∗

klCk0,l+1

(4k0k)2
(−z)l+2 (1 − z)i(κ/2)(1/k+1/k0)−1

×
[
(1 − z) F

(
l + 1 + i

κ

k
, l + 2 + i

κ

k0
, 2l + 2, z

)

−F

(
l + 1 + i

κ

k
, l + i

κ

k0
, 2l + 2, z

)]
, (12.6)

(k, l |r | k0, l − 1) = i
(−1)iκ/k0

(2l − 1)!
C∗

klCk0,l−1

(4k0k)2
(−z)l+1 (1 − z)−i(κ/2)(1/k+1/k0)−1

×
[

F

(
l − i

κ

k0
, l − 1 − i

κ

k
, 2l, z

)

− (1 − z) F

(
l − i

κ

k0
, l + 1 − i

κ

k
, 2l, z

)]
, (12.7)

where z = −4kk0/(k − k0)2, Ckl = 2k exp(πκ/2k) |Γ (l + 1 − iκ/k)|. For the
transitions from the continuum to the discrete spectrum, one has to change Ckl for
Cnl = (2κ3/2/n2)[(n + l)!(n − l −1)!]1/2 in the expressions (12.6), (12.7) and then to
put k = −iκ/n. Expressions (12.4)–(12.7), by means of (12.2), define the electron
wavefunction which describes stimulated one-photon transitions of an initially free
electron in the Coulomb field at an arbitrary moment of time. The final state of the
electrons in the SB process is a free-electron state, so we exclude the possibility of
bound-state creation in the SB process by putting �ω < E0. Then, the contribution
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of the discrete spectrum
(∑

n

)
in the expression (12.5) (

∑∫
λ = ∑

n + ∫ ...dk) is
negligibly small with respect to resonant denominators expressing the energy change
in SB. It is noteworthy, that the assumption �ω < E0, is a stronger restriction than
one needs to exclude the bound states. Generally, for electron binding one needs the
condition E0 − �ω � En , so that, if �ω > E0 − (En)min the final state of the electron
will again be a free one. Thus, the possibility of stimulated emission is excluded,
and in (12.5) only the term, which describes stimulated absorption of the quantum
�ω remains, so that in this case the wavefunction (12.4)–(12.7) will describe inverse
bremsstrahlung.

To obtain the electron wavefunction after scattering at large distances from the
Coulomb center, let us find the asymptotes r → ∞ of the expressions (12.4), (12.5).
With this aim, we insert the asymptotic expansion of radial Coulomb functions for
large r into expression (12.5)

Rkl(r) ≈ (−i)l+1

r

{
exp

[
i
(

kr + κ

k
ln 2kr + δl(k)

)]

+(−1)l+1 exp
[
−i
(

kr + κ

k
ln 2kr + δl(k)

)]}
(12.8)

and perform integration over k (as was mentioned above for free-free transitions∑∫
λ = ∑

n + ∫ ...dk). During the integration one must take into account that the
integrand expression in addition to the singularities at points Ek = E0 ± �ω, also has
a singularity at k = k0. This is conditioned by the matrix elements (12.6), (12.7) and
is a consequence of the long-range nature of the Coulomb potential. Therefore, we
choose the integration path in the complex plane in such a way that the perturbed
wavefunction (12.4) would describe an outgoing spherical wavewith changed energy
and momentum at asymptotically large distances. To obtain the full wavefunction of
the electron after the scattering, one has to also take the asymptote r → ∞ of the
unperturbed wavefunction (12.3). Doing so, we obtain

Ψ (r, t) �
(
1 + κ2

ik3
0r(1 − cos θ)

)
exp

(
ik0r cos θ − i

κ

k0
ln k0r(1 − cos θ) − i

�
E0t

)

+ f0(θ)

r
exp

(
ik0r + i

κ

k0
ln 2k0r − i

�
E0t

)

+ f+(θ,ϕ)

r
exp

(
ik+r + i

κ

k+
ln 2k+r − i

�
E+t

)

+ f−(θ,ϕ)

r
exp

(
ik−r + i

κ

k−
ln 2k−r − i

�
E−t

)
. (12.9)

Here, f0(θ) is the amplitude of elastic scattering in the Coulomb potential, f+(θ,ϕ),
f−(θ,ϕ) are the amplitudes of stimulated scattering when photon absorption or
emission occurs, respectively (with electron energies E0± = �

2k2±/2m = E0 ± �ω
after the scattering)
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f0(θ) = κ

k2
0(1 − cos θ)

Γ (1 − iκ/k0)

Γ (1 + iκ/k0)
exp

(
2i

κ

k0
ln sin

θ

2

)
,

f±(θ,ϕ) = ∓ iem E0

4�2k0k±

∞∑
l=0

{〈k±, l |r | k0, l − 1〉 eiδl−1(k0)

×
[
εzl Pl(cos θ) + εy sinϕP (1)

l (cos θ)
]

− 〈k±, l |r | k0, l + 1〉 eiδl+1(k0)

×
[
εz(l + 1)Pl(cos θ) − εy sinϕP (1)

l (cos θ)
]}

eiδl (k±). (12.10)

Expressions (12.9) and (12.10) describe one-photon direct and inverse SB and hold
if the condition eE0k0/mω2 � 1 is fulfilled, i.e., when the energy change of the
electron for a period of the wave is much less than the photon energy.

As is seen from (12.10), the amplitudes of inelastic scattering are sums of the
partial scattering amplitudes with definite values of orbital moment. We were unable
to bring these infinite sums to the known ones, and it appears very unlikely to be
able to carry out the summing directly. However, it is possible to overcome the diffi-
culty of direct calculation and obtain a formula for summation of such series, acting
as follows. As was mentioned above, one can solve the Schrodinger equation also
by expanding the full wavefunction Ψ (r, t) in terms of Coulomb eigenfunctions
Ψ

(−)
k (r, t), which describe the state of the particle with definite momentum �k at

infinity. Then, after standard perturbative calculations, for the perturbed wavefunc-
tion Ψ

(1)
k0

(r, t) we obtain

Ψ
(1)
k0

(r, t) = i

2
eE0

∫
Ψ

(−)
k (r, t)εD (k, k0)

×
[
exp

[
i
�

(Ek − E0 − �ω) t
]

Ek − E0 − �ω
− exp

[
i
�

(Ek − E0 + �ω) t
]

Ek − E0 + �ω

]
d3k

(2π)3
,

(12.11)

where

Ψ
(−)
k (r, t) = N exp

[
− i

�
Ek t + ikr

]
F

(
−i

κ

k0
, 1;−i (kr + kr)

)
, (12.12)

N = eπκ/2kΓ

(
1 + iκ

k

)
,

D (k, k0) = − 16πN N0e−πκ/k0

(k − k0)
4 (k + k0)

2

(
k0 − k

k0 + k

)iκ/k0+iκ/k

(1 − u)iκ/k0+iκ/k−1

× [iκF (u) (k − k0) + (1 − u) F ′(u) (kk0 − k0k)
]
. (12.13)
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Here, F(u) = F(iκ/k0, iκ/k, 1, u) is the hypergeometric function of argument u,
u = −2 (kk0 − kk0) / (k − k0)

2.
To obtain the wavefunction of the electron after the scattering, let us take the

asymptote r → ∞ of (12.11). Unfortunately, the functions Ψ
(−)
k (r, t), written in the

form of (12.12), do not suit this purpose (when r → ∞ the angle kr = π becomes
singular). Therefore, we use the expansion of Ψ

(−)
k (r, t) over the momenta

Ψ
(−)
k (r, t) = exp

(− i
�
Ek t
)

2k

∞∑
l=0

i l(2l + 1)e−iδl (k) Rkl(r)Pl

(
kr
kr

)
, (12.14)

and take the asymptote r → ∞ through radial Coulomb functions Rkl(r) according
to the formula (12.8). Carrying out the integration over k in (12.11) and summing
over l by the mean of the known formula

∞∑
l=0

(2l + 1)Pl (cos θ) = 4δ(1 − cos θ) (12.15)

(δ(1 − cos θ) is the Dirac δ-function) we integrate over the direction of the electron
final momentum and for the full wavefunction of the electron obtain a result of the
form (12.9), where

f±(θ,ϕ) = ± ieE0m

4π�2
εD (k±, k0) , (12.16)

where k± = k±n f , n f is a unit vector along the scattering direction.
Expression (12.16) defines the amplitudes of direct and inverse SB of the electrons

scattered in the given direction and, in fact, is a sum of partial amplitudes of photon
absorption or emission, when the electron scatters with various definite values of
momenta l. The comparison of expressions (12.13) and (12.16)with (12.10) allows us
to obtain formulae for summation of infinite series, which are given in the appendix.

12.2 Radiation Absorption in Plasma via Inverse SB
at the Exact Consideration of Scattering Field

The absorption of EM radiation in an isotropic plasma due to stimulated
bremsstrahlung of electrons on ions, is sufficiently well investigated with the aim of
plasma heating by lasers. As to the absorption capabilities of anisotropic plasma, in
this case the investigations have been mainly directed to obtain by negative absorp-
tion, whereas, in experiments on EM wave amplification strong absorption of the
wave is also observed, which brings about increase of the electron current in plasma.
The absorption coefficient of the wave in anisotropic plasma, particularly in the
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electron beam, is usually obtained using the Born approximation and in the case
of soft photons, when �ω � Ep, where Ep is the most probable electron energy
in plasma. However, the application of the Born approximation during absorption
coefficient calculations brings about an appreciable error in the definite domain of
velocities (plasma temperatures) even in the case of a weakwave, i.e., the one-photon
absorption coefficient becomes sensitive to accuracy with which SB is considered.
Besides an essential absorption can occur in the case of a high-frequency wave
(�ω > Ep,), when the concurrent process of stimulated emission is strongly sup-
pressed. Therefore, it is of interest to calculate the absorption coefficient in a plasma
for arbitrary wave frequencies with the exact consideration of the Coulomb field.
The method usually applied for absorption coefficient calculations in an isotropic
plasma with the help of bremsstrahlung cross sections is not admittable in the case of
anisotropic plasma, because these cross sections are averaged over the polarization
states of the final photon. Therefore, we shall calculate the absorption coefficient
of the weak wave in a plasma with the help of the exact wavefunction of the SB
process (12.9). For this purpose, we write the total probability of stimulated absorp-
tion (emission) of one quantum due to the electron scattering by the Coulomb centers
with number density ni

wa,e = ni
�k±
m

∫
| f±(k±, ki )|2 dθk± . (12.17)

Here, f±(k±, ki ) are the amplitudes of inelastic scattering defined by the expressions
(12.13) and (12.16), the+ sign and indexa corresponds to the absorption case, and the
− sign and index e to the emission. In (12.17) integration goes over the final directions
of the scattered electron. Inserting expressions (12.13), (12.16) into (12.17), we first
carry out integration over the azimuthal angle ϕ. Also changing the variable from θ
to u, u = z(1−cos θ)/2 (for z see paragraph 2) and using the well-known features of
hypergeometric functions, the total probability of the one-photon SB can be written
in the following form

wa,e = 2π3ni
e2E2

0�κ2

m3ω4ki

(εni )
2 I1 (k±, ki ) + (3 (εni )

2 − 1
)

I2 (k±, ki )[
exp(2πκ/ki ) − 1

] [
1 − exp(−2πκ/k±)

] , (12.18)

where by I1 and I2, we have denoted the following integrals (z± = −4ki k±/

(ki − k±)2):

I1 (k±, ki ) = 2κ2

ki k±

z±∫

0

{
ki k±
κ2

∣∣F ′(u)
∣∣2 − i (ki + k±)

2κ(1 − u)

× [
F(u)F ′∗(u) − F∗(u)F ′(u)

]− |F(u)|2
u(1 − u)

}
udu,

I2 (k±, ki ) = κ2

k2
i

(
1 + κ2

k2±

) z±∫

0

u

(
u

z±
− 1

) ∣∣∣∣F
(
2 + i

κ

k±
, 1 + i

κ

ki
; 2, u

)∣∣∣∣
2

du.
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The integral I1, is encountered during the bremsstrahlung cross-section calculations
and is equal to

I1 (k±, ki ) = z±
d

dz±

∣∣∣∣F
(

i
κ

k±
, i

κ

ki
; 1, z±

)∣∣∣∣
2

. (12.19)

To evaluate I2, we change the variable from u to t , t = u/(u − 1) and use the
following integral

1∫

0

x(1 − x)F (α,β; 2, vx) F
(
α′,β′; 2, vx

)
dx = 1

6
F1;2;2
1;1;1

[
2; α,β; α′,β′ :
4; 2; 2 : v, v

]
,

where F1;2;2
1;1;1

[
2; (a) ; (a′) :
4; 2; 2 : x, y

]
is the function of Campe-de-Feriet. As a result

we obtain

I2 (k±, ki ) = −κ2

k2i

(
1 + κ2

k2±

)
v2±
6

× F1;2;2
1;1;1

[
2; 2 − iκ/k±, 1 + iκ/ki ; 2 + iκ/k±, 1 − iκ/ki :
4; 2; 2 : v±, v±

]
,

(12.20)

where v± = z±/ (z± − 1) = 4ki k±/ (ki + k±)2 .

The absorption coefficient of theweakwave in the single-photon approximation is
determined through the total probabilities of one-photon absorptionwa , and emission
we of the SB process in the following way:

α = �ω

J

∫
[wa (ki ) − we (ki )] f (ki )

d3ki

(2π)3
,

where J = cE2
0/8π is the intensity of the EMwave, f (ki ) is the distribution function

of the electrons over the wavevectors ki = pi/� and is normalized on the electron
number density ne as follows

∫
f (ki )d

3ki = (2π)3 ne.

By means of expressions (12.18)–(12.20), obtained for total probabilities wa,e, the
absorption coefficient of the wave due to the mechanism of SB, for arbitrary electron
distribution over the momentum in plasma in the one-photon approximation has the
form
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α = 2πni
Q2e4

mc�2ω3

∫ {
(εni )

2

[
I1 (k+, ki )

1 − exp(−2πκ/k+)
− I1 (k−, ki )

1 − exp(−2πκ/k−)

]

+ (3 (εni )
2 − 1

) [ I2 (k+, ki )

1 − exp(−2πκ/k+)
− I2 (k−, ki )

1 − exp(−2πκ/k−)

]}

× f (ki )d3ki

ki
[
exp(2πκ/ki ) − 1

] . (12.21)

Below, we shall consider separately the cases when the electron distribution function
is anisotropic or isotropic.

12.3 Absorption at Anisotropic Electron Distribution

First, let us consider an essentially anisotropic plasma, when the electron distribution
over momentum is monochromatic: f (ki ) = (2π)3 neδ (ki−k0) where �k0 is the
momentum of electrons. Then performing integration in (12.21) we obtain

α = (2π)4 neni Q2e4

mc�2ω3k0
[
exp(2πκ/k0) − 1

]

×
{
(εn0)

2

[
I1 (k+, k0)

1 − exp(−2πκ/k+)
− I1 (k−, k0)

1 − exp(−2πκ/k−)

]

+ (3 (εn0)
2 − 1

) [ I2 (k+, k0)

1 − exp(−2πκ/k+)
− I2 (k−, k0)

1 − exp(−2πκ/k−)

]}
, (12.22)

where I1 (k±, k0), I2 (k±, k0) are the values of corresponding functions (12.19) and
(12.20) at ki = k0, and n0= k0/k0. This expression is written for the case when the
electron energy is larger than the quantum energy: E0 = �

2k2
0/2m > �ω. It takes a

simple form in the case when κ/k0 � 1, κ/k± � 1 and the Born approximation
can be applied. Then for the functions I1 and I2 in the lowest order we obtain from
(12.19), (12.20)

I1 (k±, k0) ≈ − 2κ2

k0k±
ln

(
k0 − k±
k0 + k±

)2

,

I2 (k±, k0) ≈ κ2

k2
0

[
2 + k2

0 + k2±
2k0k±

ln

(
k0 − k±
k0 + k±

)2
]

. (12.23)

In (12.22) expanding the exponents in power series and leaving the first nonvanishing
terms, by means of (12.23) we obtain, the absorption coefficient in the first Born
approximation
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αB = 8π2 neni Q2e4

mc�2ω3k0

[
2
(
(εn0)

2 − 1
)
ln

(
k0 + k−
k0 + k+

)

+ (3 (εn0)
2 − 1

) (k+ − k−
k0

+ k2
ω

k2
0

ln
k2
ω

(k+ + k0) (k− + k0)

)]
, (12.24)

where kω = (2mω/�)1/2.
In the soft-photon limit, when kω � k0, formula (12.24) takes the following form:

αB = 16π2 neni Q2e4

mc�2ω3k0

k2
ω

k2
0

(
(εn0)

2 + (3 (εn0)
2 − 1

)
ln

kω

2k0

)
. (12.25)

In this case, the negative absorption is possible when the direction of the electron
beam is in a certain cone, the axis of which coincides with the EMwave polarization
vector. As follows from (12.24), for large photon energies this cone becomes narrow
and when �ω � E0, the negative absorption becomes impossible.

If the quantum energy is larger than the electron energy: �ω > E0, the absorption
coefficient is defined by the expression

α = (2π)4
neni Q2e4

mc�2ω3k0

(εn0)
2 I1 (k+, k0) + (3 (εn0)

2 − 1
)

I2 (k+, k0)[
exp(2πκ/k0) − 1

] [
1 − exp(−2πκ/k+)

] . (12.26)

In the case of hard quanta, when for electrons which have absorbed quantum the
condition of the Born approximation is valid: κ/k+ � 1 (it is noteworthy that for the
initial states of electrons the Born approximation can fail) one can insert into (12.26)
the approximate value of I2 (k+, k0) from (12.23) and the following expression for
I1, also

I1 (k+, k0) ≈ −2κ

k+
sin

(
2

κ

k0
ln

(
k+ − k0
k+ + k0

))
. (12.27)

The last expression is obtained from (12.19) when κ/k+ � 1. As a result, for the
absorption coefficient of the wave in a monochromatic beam we obtain from (12.26)

α = 16π3 neni Q2e4

mc�2ω3k0
[
exp(2πκ/k0) − 1

]
{
− (εn0)

2 sin

(
2

κ

k0
ln

k+ − k0
k+ + k0

)

+ (3 (εn0)
2 − 1

) κ

k0

[
k+
k0

+ 1

2

(
1 + k2+

k2
0

)
ln

k+ − k0
k+ + k0

]}
. (12.28)

If the condition k0 � k+, is also valid, then from (12.28) we obtain (in the lowest
order of k0/k+)
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α = 64

3
π3 neni Q2e4

mc�2ω3k0

κ

kω

[
exp(2πκ/k0) − 1

]−1
. (12.29)

The last equation does not depend on the angle between the electron velocity and
wave polarization direction. In theBorn approximation limit for electron initial states,
when κ/k0 � 1, it takes the form

αB = 32

3
π3 neni Q2e4

mc�2ω3kω
. (12.30)

Note that formula (12.30) is obtained for a monochromatic beam, but it coincides
with the expression of the absorption coefficient in the isotropic plasmawith arbitrary
momentum distribution of electrons in the corresponding hard quantum case. Thus,
the absorption coefficient of hard radiation (�ω � E0) in the Born approximation
does not depend on characteristic quantities of the electronmomentum distribution in
plasma or on whether it is isotropic or anisotropic. Whereas, as follows from (12.28),
when the Coulomb potential is taken into account exactly the absorption coefficient
depends on the initial velocity of the beam and for slow electrons when κ/k0 � 1
it decreases exponentially (α ∼ exp(−2πκ/k0)). The magnitude of the momentum
change during the scattering process of slow electrons in the Coulomb potential is
much less than is necessary for real absorption of a quantumwith energy many times
greater than the energy of electrons.

Now, let us investigate the influence of the beam energetic and angular spreads
on the absorption coefficient. In general, for arbitrary momentum distribution of the
electrons the one-photon absorption coefficient is defined by the expression (12.21),
which in the case of a beam with Gaussian distribution

f (k) = 4πne

k2
0 sin θ0Δδ

exp

[
− (k − k0)

2

Δ2
− (θ − θ0)

2

δ2

]
(12.31)

can be written in the Born approximation in the following form (inserting I1, I2 from
(12.23), expanding the exponents in power series and integrating over the angles)

α = 8π3/2neni Q2e4

mc�2ω3Δ

k2ω
k20

×
⎧⎨
⎩

∞∫

0

{
exp

[− (kωx − k0)
2 /Δ2]+ exp

[
−
(

kω

√
1 + x2 − k0

)2
/Δ2

]}

× 4 (εn0)
2 ln
[
x +

√
1 + x2

]
xdx + [3 (εn0)

2 − 1
]
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×
∞∫

0

dx√
1 + x2

{
1 − 2x2 + 1

x
√
1 + x2

ln
[
x +

√
1 + x2

]}

×
{(

1 + x2
)
exp

[− (kωx − k0)
2 /Δ2]− x2 exp

[
−
(

kω

√
1 + x2 − k0

)2
/Δ2

]}}
,

(12.32)

where �Δ is the momentum spread of the electrons around the mean momentum
�k0, δ is the angular spread of the beam with respect to the angle θ0 between the
beam axis and the direction of the electric field of the wave. For simplicity in (12.32)
the small corrections of order δ2 depending on the angle spread are omitted. In the
case of hard quanta, when kω � k0, after performing integration over x , for α we
obtain expression (12.30) multiplied by the factor (1−δ2/4)(1+Δ2/2k2

0). Thus, we
conclude that the contribution of the beam spread to the absorption coefficient is not
essential. Physically, it is evident that the contribution of the beam spreads into the
absorption coefficient will be maximal when kω � Δ. In this case we obtain from
(12.32)

α = 8π2 neni Q2e4k2
ω

mc�2ω3k3
0

{
2 (εn0)

2 + 2
[
3 (εn0)

2 − 1
]
ln

kω

2k0

+kωΔ2

k3
0

(
(εn0)

2 − 1 + [3 (εn0)
2 − 1

]
ln

kω

2k0

)}
. (12.33)

However, as it is seen from the formula (12.33) in this case the spreads lead to small
corrections also, so that the consideration of a monochromatic beam of electrons
instead of a real beam for calculation of the one-photon absorption coefficient due
to SB is justified (in contradistinction to coherent processes; e.g., of the stimulated
Compton scattering type).

12.4 Absorption at Isotropic Electron Distribution

For the isotropic plasma with Maxwellian distribution function

f (k) = ne

(
2π�

2

mkB T

)3/2

exp
(−�

2k2/2mkB T
)

(kB is Boltzmann’s constant, T is the temperature of the electrons in plasma) after
integrating over the angles in (12.21) the absorption coefficient can be written in the
form
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α = 8

3
π2neni k

2
ω

Q2e4�

mcω3

(
2π

mkB T

)3/2

×
∞∫

0

exp(−x2
�ω/kB T )I1

(
kω

√
1 + x2, kωx

)

×
⎡
⎣ 1
[
exp ((2π/x) κ/kω) − 1

] [
1 − exp

(
−
(
2π/

√
1 + x2

)
κ/kω

)]

− 1[
exp

((
2π/

√
1 + x2

)
κ/kω

)
− 1
] [

1 − exp(− (2π/x) κ/kω)
]

⎤
⎦ xdx .

(12.34)

In the case of hard radiation, when κ/kω � 1, using the approximate value of I2 from

(12.23) and taking into account that in the integration region ln
(

x + √
1 + x2

)
� x ,

we expand the integrand expression in a power series over the small parameter κ/kω.
As a result in the lowest order we obtain

α = 32

3
πneni

Q2e4�

mcω3

(
2π

mkB T

)3/2

κkω

∞∫

0

exp

(
−x2 �ω

kB T

)

×
ln
(

x + √
1 + x2

)

exp [(2π/x) κ/kω] − 1

[
1 − exp

(
− �ω

kB T

)
exp

(
2πκ

kωx

)]
dx . (12.35)

In the case of high-temperature plasma, when kB T � �ω, expanding in power series
the exponent exp (−�ω/kB T ) and performing integration in (12.35) we obtain

α = 64

3
π5/2Γ

(
1

2

)
neni

Q2e4

m2cω3

κ

kB T
. (12.36)

If in (12.35) the exponents exp (2πκ/kωx) are expanded then after integration we
obtain

α = 64

3
πneni

Q2e4

mc�ω3

(
2π

mkB T

)1/2

sinh

(
�ω

2kB T

)
K0

(
�ω

2kB T

)
, (12.37)

where K0 (x) is McDonald’s function, i.e., the absorption coefficient of the weak
wave in isotropic plasma in the Born approximation. Comparison of the expression
(12.37) in the soft-photon limit (�ω/kB T � 1) with (12.36) reveals that when
the electron–ion interaction is taken into account exactly the absorption coefficient
of high-temperature plasma (kB T � �ω � �

2κ2/2m) decreases more slowly as
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plasma temperature increases (α ∼ 1/T ) than in the case when the electron–ion
interaction is considered in the Born approximation (in this case α ∼ (ln T ) /T 3/2).

In the case of �ω � kB T , when the energy of the quantum is much larger than the
most probable energy of the electrons in plasma the second term in quadratic brackets
in (12.34) is exponentially small and we neglect it. Besides, in (12.34) the main
contribution comes from the region of small x. Then using the asymptotic definition
of the confluent hypergeometric function: limx→∞ F(1/x, y; 1; x0x) = F(y, 1, x0),
for the function I1(kω

√
1 + x2, kωx) we obtain from (12.19)

I1 � x0
d

dx0

∣∣∣∣F
(
1 − i

κ

kω
; 1; x0

)∣∣∣∣
2

, x0 = 4iκ/kω.

Inserting this expression into (12.34) and performing integration for the absorption
coefficient in Maxwellian plasma we obtain

α = 32

3
π3 neni Q2e4

m2c�2ω3

(
2π

mkB T

)1/2

x0
d

dx0

∣∣∣∣F
(
1 − i

κ

kω
; 1; x0

)∣∣∣∣
2

× B (2πκ/kT )

1 − exp (−2πκ/kω)
, (12.38)

where kT = √
2mkB T /�, and the function

B (z) =
∞∫

0

x exp(−x2)

exp(z/x) − 1
dx . (12.39)

As in the integral B the main contribution comes from x ∼ 1 we put x = 1 in the
denominator and after integration obtain

B (2πκ/kT ) = 1

2

[
exp(2πκ/kT ) − 1

]−1
. (12.40)

In the case when κ/kω � 1 and κ/kT � 1 (12.38) (if one takes into account that
x0 (d/dx0) |F (1 − iκ/kω; 1; x0)|2 � 8κ2/k2

ω) coincides with the known result in
the Born approximation and with the absorption coefficient (12.30) in the case of a
monochromatic beam.

Thus, if the electron–ion interaction in Maxwellian plasma is considered exactly
the absorption coefficient of hard radiation (�ω � kB T ) depends on electron tem-
perature in contradistinction to the Born approximation case and in the limit of low
temperatures, when κ/kT � 1, it exponentially decreases. It happens because of the
classical nature of the electron interaction with the Coulomb potential, whereas its
interaction with the EM wave has purely quantum nature (one-photon inverse SB).

As an important mathematical result let us represent new formulae for summing
of series containing hypergeometric functions and Legendre polynomials, obtained
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by us at the consideration of the quantum theory of SB. Thus, from the expressions
(12.10), (12.13), and (12.16) (by means of (12.6, (12.7)) the following formulae for
summing of infinite series we obtain (here v > ν0):

∞∑
i=0

(
4vν0

(v − ν0)
2

)l−1

Pl(cos θ)Γ (l + 1 − iν)

×
{

l
Γ (l − iν0)

(2l − 1)! I m

[(
v + ν0

v − ν0

)iv+iν0
F

(
l + 1 + iν, l + iν0, 2l,− 4vν0

(v − ν0)
2

)]

− (l + 1)
4vν0

(v − ν0)
2

Γ (l + 2 − iν0)

(2l + 1)!

×I m

[(
v + ν0

v − ν0

)iv+iν0
F

(
l + 2 + iν0, l + 1 + iν, 2l + 2,− 4vν0

(v − ν0)
2

)]}

= Γ (1 + iν)Γ (1 − iν0)
4vν0

(v + ν0)
2

(
v + ν0

v − ν0

)−iv−iν0

×
[

i (ν0 cos θ − ν) F

(
1 − iν, 1 − iν0, 1,− 4vν0

(v − ν0)
2 sin2

θ

2

)

−νν0 (1 − cos θ) F

(
1 − iν, 1 − iν0, 2,− 4vν0

(v − ν0)
2 sin2

θ

2

)]
, (12.41)

∞∑
i=0

(
4vν0

(v − ν0)
2

)l−1

P(1)
l (cos θ)Γ (l + 1 − iν)

×
{

Γ (l − iν0)

(2l − 1)! I m

[(
v + ν0

v − ν0

)iv+iν0
F

(
l + 1 + iν, l + iν0, 2l,− 4vν0

(v − ν0)
2

)]

+ 4vν0

(v − ν0)
2

Γ (l + 2 − iν0)

(2l + 1)!

×I m

[(
v + ν0

v − ν0

)iv+iν0
F

(
l + 2 + iν0, l + 1 + iν, 2l + 2,− 4vν0

(v − ν0)
2

)]}

= Γ (1 + iν)Γ (1 − iν0)
4vν20

(v + ν0)
2

(
v + ν0

v − ν0

)−iv−iν0
sin θ

×
[

i F

(
1 − iν, 1 − iν0, 1,− 4vν0

(v − ν0)
2 sin2

θ

2

)

+ νF

(
1 − iν, 1 − iν0, 2,− 4vν0

(v − ν0)
2 sin2

θ

2

)]
. (12.42)

When v0 > v, in (12.41), (12.42) v − v0 must be changed to v0 − v. The formulae
(12.41), (12.42) can be interpreted as expansions of some linear combination of
hypergeometric functions by Legendre (12.41), and first-order associated Legendre
(12.42) polynomials.
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For definite values of the angle θ, from (12.41) and (12.42) one can obtain formulae
for the sum of some series which contain hypergeometric functions. In particular,
putting θ = 0 in the formula (12.41) we obtain

∞∑
i=0

(
4vν0

(v − ν0)
2

)l−1

Γ (l + 1 − iν)

×
{

l
Γ (l − iν0)

(2l − 1)! I m

[(
v + ν0

v − ν0

)iv+iν0
F

(
l + 1 + iν, l + iν0, 2l,− 4vν0

(v − ν0)
2

)]

− (l + 1)
4vν0

(v − ν0)
2

Γ (l + 2 + iν)

(2l + 1)!

×I m

[(
v + ν0

v − ν0

)iv+iν0
F

(
l + 2 + iν0, l + 1 + iν, 2l + 2,− 4vν0

(v − ν0)
2

)]}

= iΓ (1 + iν)Γ (1 − iν0)
4vν0

v + ν0

(
v + ν0

v − ν0

)−iv−iν0−1

. (12.43)

12.5 Nonlinear Inverse-Bremsstrahlung Absorption
Coefficient

Let us now consider, the nonlinear absorption process of super intense laser radiation
in plasma, at first, on the base of the classical theory. The absorption coefficient α
of an EM radiation with arbitrary intensity and polarization, in general case for
homogeneous ensemble of electrons with concentration ne and arbitrary distribution
function f (p) over the momenta p, at the inverse bremsstrahlung on the scattering
centers with concentration ni , can be represented in the form:

α = ne

I

∫
W f (p0)dp0, (12.44)

where W is the classical energy absorbed by a single electron per unit time from
the EM wave of intensity I due to the SB process on the scattering centers. For the
homogeneous scattering centers W ∼ ni . For the generality, we assume Maxwellian
plasma with the relativistic distribution function:

f (p0) =
exp

(
−E(p0)

kB T

)

4πm2ckB T K2(mc2/kB T )
, (12.45)

where kB is Boltzmann’s constant, T is the temperature of electrons in plasma,
E(p0) is the relativistic energy–momentum dispersion law of electrons, and K2(x)

is McDonald’s function; f (p0) is normalized as
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∫
f (p0)d

3p0 = 1. (12.46)

To obtain W for the SB process, the electron interaction with the scattering poten-
tial and EM wave in the low-frequency approximation can be considered as inde-
pendently proceeding processes, separated into the following three stages. Field free
electron with energy E0 and momentum p0 interacts with the EM wave. The exact
solution of the relativistic equation of motion of an electron in a plane EM wave is
well known (see, Chap.1). The electron momentum and energy in the field we will
represent in the following form:

p⊥(ψ) = p⊥(ψ0) − e
A(ψ0) − A(ψ)

c
, (12.47)

νp(ψ) = νp(ψ0) + 1

2c(E(ψ0) − cνp(ψ0))

× [e2 (A(ψ0) − A(ψ))2 − 2ecp(ψ0) (A(ψ0) − A(ψ))
]
, (12.48)

E(ψ) = E(ψ0) + cν (p(ψ) − p(ψ0)) , (12.49)

where
A(ψ) = A0(ψ)(̂e1 cosψ + ê2ζ sinψ) (12.50)

is the vector potential of the EM wave of currier frequency ω and slowly varying
amplitude A0(ψ). Here ψ = ωτ is the phase, τ = t − νr/c, ν is an unit vector in
the wave propagation direction, ê1,2 are the unit polarization vectors, and arctan ζ is
the polarization angle. At the second stage the elastic scattering of the electron in the
potential field takes place at the arbitrary, but certain phase ψs of the EMwave. Thus,
taking into account adiabatic turn on of the wave (A(ψ0) = 0) from (12.47)–(12.49)
before the scattering one can write

p⊥(ψs) = p0⊥ + eA(ψs)

c
, (12.51)

νp(ψs) = νp0 + 1

2cΛ

[
e2A2(ψs) + 2cep0A(ψs)

]
, (12.52)

E(ψs) = E0 + cν (p(ψs) − p0) , (12.53)

where
Λ = E(ψs) − cνp(ψs) = E0 − cνp0 (12.54)

is the integral of motion for a charged particle in the field of a plane EM wave. The
mean energy of an electron in the wave field before the scattering will be

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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〈E(ψ)〉i = E0 + e2
〈
A2
〉

2Λ
. (12.55)

Then elastic scattering on the potential field U (r) takes place. Due to the instan-
taneous interaction of the electron with the scattering potential the wave phase does
not change its value during the scattering. This is the low-frequency approximation,
which is applicable when

λ � RU , (12.56)

where λ is the laser radiation wavelength and RU is the range of effective scatter-
ing. The electron with the initial momentum p(ψs) attains the momentum p′(ψs)

(E ′(ψs) = E(ψs)) after scattering directly at the same phase ψs of the wave, which
can be defined from the generalized consideration of the elastic scattering. Thus,mea-
suring the scattering angle ϑ from a direction p (ψs), with corresponding azimuthal
angle ϕ for the scattered momentum one can write

⎡
⎣

p′
x (ψs)

p′
y (ψs)

p′
z (ψs)

⎤
⎦ = p(ψs)R̂

⎡
⎣
sin ϑ cosϕ
sin ϑ sinϕ

cosϑ

⎤
⎦ , (12.57)

where R̂ = R̂z (ϕ0) R̂y (ϑ0), R̂y (ϑ0) and R̂z (ϕ0) are the basic rotation matrices
about the y and z axes, respectively:

R̂ =
⎡
⎣
cosϑ0 cosϕ0 − sinϕ0 sin ϑ0 cosϕ0

cosϑ0 sinϕ0 cosϕ0 sin ϑ0 sinϕ0

− sin ϑ0 0 cosϑ0

⎤
⎦ . (12.58)

As an Oz axis, we take the wave propagation direction ν, θ0 is the polar angle and
ϕ0 is the azimuthal angle in the wave polarization plane.

At the third stage, the electron again interacts only with the wave, moving in the
wave field with the momentum and energy defined from (12.47)–(12.49):

p⊥ f (ψ) = p′ (ψs) − e
A(ψs) − A(ψ)

c
, (12.59)

νp f (ψ) = νp′(ψs) + 1

2cΛ′
[
e2 (A(ψs) − A(ψ))2

−2cep′(ψs) (A(ψs) − A(ψ))
]
, (12.60)

E f (ψ) = E(ψs) + cν
(
p(ψ) − p′(ψs)

)
, (12.61)

where
Λ′ = E f (ψ) − cνp f (ψ) = E(ψs) − cνp′(ψs). (12.62)
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The mean energy of an electron in the wave field after the scattering will be

〈E f (ψ)
〉 = E(ψs) + 1

2Λ′
× [e2 (A2(ψs) + 〈A2

〉)− 2cep′(ψs)A(ψs)
]
. (12.63)

The energy change due to SB can be calculated as a difference of mean energy in
the field before and after the scattering:

ΔE (ϑ,ϕ,ψs, p0) = 〈E f (ψ)
〉− 〈E(ψ)〉i .

Taking into account (12.55) and (12.63), we obtain:

ΔE = e2
A2(ψs) + 〈A2

〉

2

(
1

Λ′ − 1

Λ

)

− ecp′(ψs)A(ψs)

Λ′ + ecp(ψs)A(ψs)

Λ
. (12.64)

For the energy absorbed by a single electron per unit time from the EM wave due to
SB process on the scattering centers, one can write

W = ni

2π

2π∫

0

dψs

∫
v (ψs) ΔEdσ(ϑ, p(ψs)), (12.65)

where v (ψs) = c2 p(ψs)/E(ψs) is the velocity of an electron in the wave field,
p(ψs) = √E2(ψs) − m2c4/c is the momentum, and dσ(ϑ, p(ψs)) is the differential
cross section of the elastic scattering in the potential field U (r). Taking into account
the fact that the main contribution in the integral (12.65) comes from the small-angle
scatterings, one can write

W = ni

2π

2π∫

0

dψs

∫
v (ψs)

∂2ΔE
∂2ϑ

dσtr(ϑ, p(ψs)), (12.66)

where
dσtr(ϑ, p(ψs)) = (1 − cosϑ) dσ(ϑ, p(ψs)) (12.67)

is the transport differential cross section. For the Coulomb scattering centers with
potential energy

U (r) = Ze2

r
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of electron interaction with the ion of charge Ze, one can use the relativistic cross
section for elastic scattering at small angles

dσ(ϑ, p) = 4
(
Ze2
)2

p2v2ϑ4
, (12.68)

and make integration over ϑ and ϕ to obtain

W = ni Z2e4
2π∫

0

dψs
m2c2

Λ3

[
e2

A2(ψs) + 〈A2
〉

2m2c4

× (E(ψs)Λ − m2c4
)+ cep(ψs)A(ψs)

] E(ψs)

p3(ψs)
Lcb, (12.69)

where

Lcb = ln

(
2ρmax

ρmin

)2

(12.70)

is theCoulomb logarithm.The latter canbe calculated takingρmin = max
{
2Ze2/vp,

�/p} as a lower limit of the impact parameter, while for the upper limit we assume
ρmax = min

{
v/ω, v/ωp

}
. Here, � is the Plank’s constant and ωp = √

4πnee2/m
is the plasma frequency. Taking into account (12.44), (12.50), and (12.69) for the
absorption coefficient, we obtain:

α = ni ne Z2e4

I

∫
dp0 f (p0)

2π∫

0

dψs

[
e2

A2(ψs) + 〈A2
〉

2m2c4

× (E(ψs)Λ − m2c4
)+ cep(ψs)A(ψs)

] m2c2E(ψs)

Λ3 p3(ψs)
Lcb, (12.71)

where
I = (1 + ζ2)ω2 A2

0/8πc.

is the intensity of the laser beam. Thus, (12.71) represents the nonlinear inverse-
bremsstrahlung absorption coefficient α for an EM radiation field of arbitrary inten-
sity and polarization, for a homogeneous ensemble of electrons of concentration ne,
with the arbitrary distribution function f (p0) over momenta p0. From (12.71) one
can obtain the absorption coefficient in the well known nonrelativistic limit. Indeed,
in (12.71) one can pass to the nonrelativistic limit as follows:

e2A2(ψs)

m2c4
→ 0, E(ψs) → mc2, Λ → mc2, p (ψs) → mv (ψs) ,

which yields
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α = ni ne Z2e4

I

∫
dp0 f (p0)

2π∫

0

dψs
e

c
p(ψs)A(ψs)

1

p3(ψs)
Lcb. (12.72)

For certainty, we will consider the laser field of linear polarization. Introducing the
interaction parameter ζE = eE0/(p0ω) and angle ϑE between E0 and p0 for the
absorption rate, we will obtain:

α = ni ne Z2e4

I

∫
dp0

2π∫

0

dψs f (p0)

× ζE sinψs cosϑE + ζ2E sin2 ψs

p0
(
1 + ζ2E sin2 ψs + 2ζE sinψs cosϑE

)3/2 Lcb. (12.73)

Formula (12.73) coincides with the known nonrelativistic result.

12.6 Asymptotic Formulas for Plasma Nonlinear
Absorption at Arbitrary Large Intensities

In general, analytical integration over momentum p0 and scattering phase ψs in
(12.71) is impossible, and one needs the numerical integration to obtain the nonlin-
ear inverse-bremsstrahlung absorption coefficient of plasma α for EM radiation of
arbitrary large intensities. For the latter, it is convenient to represent the absorption
coefficient (12.71) in the form of dimensionless quantities:

α

α0
= 1

2π(1 + ζ2)ξ20

∫
dp0 f

(
p0

) 2π∫

0

dψs
γ(ψs)

p3(ψs)Λ
3

×
(

ξ2(ψs) + 〈ξ2(ψs)
〉

2

(
γ(ψs)Λ − 1

)+ p0ξ(ψs) + ξ2(ψs)

)
Lcb. (12.74)

Here
α0 = 4Z2r3e λ2ni ne, (12.75)

and re is the classical electron radius. In (12.74), the dimensionless momentum,
energy, and temperature were introduced as follows:

p = p
mc

, γ(ψs) = E(ψs)

mc2
, Tn = kB T

mc2
,

and the dimensionless relativistic intensity parameters of the EM wave



410 12 Interaction of Superstrong Laser Radiation with Plasma

ξ(ψs) = ξ0(̂e1 cosψs + ê2ζ sinψs).

The scaled relativistic distribution function is

f
(
p0

) = 1

4πTnK2(T −1
n )

exp

(
−γ0

Tn

)
.

For the lower limit of the impact parameter in the Coulomb logarithm, one can write

ρmin = max

{
2Zre

p2(ψs)
γ(ψs),

λc

p(ψs)

}
, (12.76)

where λc is the electron Compton wavelength.
It is well known that the kinematics of an electron in the field of a strong EM

wave essentially depends on the polarization of the wave (see, Chap. 1). In particular,
for the particle initially at rest, in the circularly polarized wave, energy γ(ψs), and
momentum p (ψs) are constants, since ξ2(ψs) = const . Meanwhile in the linearly
polarized wave, p (ψs) oscillates and as a consequence small values of p (ψs) give
themain contribution in (12.74). The latter leads tomore complicated behavior of the
dynamics of SB at the linear polarization of a stimulating strong wave. Besides in the
case of circularly polarized wave, thanks to azimuthal symmetry, one canmake a step
forward in analytical calculation and obtain an explicit formula for the absorption
coefficient at superstrong laser fields. Thus, taking into account azimuthal symmetry
in the case of circularly polarized wave, one can make integration over phase ψs ,
which results in

α

α0
= 1

2

∫
dp0 f

(
p0

) (
γ
(
p0

)
Λ + p0

ξ0
sin ϑ0 cosϕ0

)

× γ
(
p0

)

Λ
3

p3(p0)
Lcb, (12.77)

where

γ
(
p0

) = γ0 + 1

2Λ

[
ξ20 + 2p0ξ0 sin ϑ0 cosϕ0

]
, (12.78)

p(p0) =
√

γ2(p0) − 1. (12.79)

At the large ξ20 � 1, taking into account (12.78) and (12.79), from (12.77) one can
obtain

α = α0

ξ20

∫
dp0 f

(
p0

) 1

Λ
Lcb, (12.80)

where Lcb ∼ ln ξ0.
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Formula (12.80) shows the suppression of the SB rate with an increase of the
wave intensity. Ignoring weak logarithmic dependence, we see that the absorption
coefficient is inversely proportional to the laser intensity: α ∼ 1/ξ20 . For the large
ξ20 , the dependence of the absorption coefficient on temperature comes from Λ in
(12.80). In particular, for initially nonrelativistic plasma Tn � 1 in (12.80) one can
put Λ � 1, which gives

α ≡ αC = α0

ξ20
Lcb. (12.81)

The relation for the absorption coefficient in the case of linearly polarized wave is
complicated and even for large ξ0 one can not integrate it analytically. Therefore,
for the analysis we have performed numerical investigations, making also analytic
interpolation. For the numerical simulations in the Coulomb logarithmwe have taken
Z = 10, �ω = 1 eV. Taking into account the weak logarithmic dependence of the
normalized absorption coefficient (12.74) on Z and ω through Lcb, the obtained
results are universal, since for the wide range of parameters Lcb ≈ 25 − 30.

Numerical calculation of the inverse-bremsstrahlung absorption coefficient
(12.74) has been made at large values of laser fields and high temperatures of elec-
trons. In Fig. 12.1 total scaled rate α/α0 of inverse-bremsstrahlung absorption (in
arbitrary units) of linearly polarized laser radiation in Maxwellian plasma versus
the dimensionless relativistic invariant parameter of the wave intensity for various
plasma temperatures. As is seen from this figure, the SB rate is suppressed with
an increase of the wave intensity, and for large values of ξ0 it exhibits a tenuous
dependence on the plasma temperature.

Numerical calculations show that in the case of circularly polarized wave the
absorption coefficient α decreases as 1/ξ20 in accordance with the analytical result
(12.80). To clarify the range of applicability of the asymptotic formula (12.81) in
Fig. 12.2, the density plot of the total rate of inverse-bremsstrahlung absorption scaled
to asymptotic rate αC as a function of the plasma temperature and the intensity
parameter ξ0 is shown for circular polarization of the wave. As is seen in the wide

Fig. 12.1 (Color online)
Total scaled rate of
inverse-bremsstrahlung
absorption (in arbitrary
units) of linearly polarized
laser radiation in Maxwellian
plasma versus the
dimensionless relativistic
invariant parameter of the
wave intensity for various
plasma temperatures
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Fig. 12.2 (Color online)
Density plot of the total rate
of inverse-bremsstrahlung
absorption scaled to
asymptotic rate αC (in
arbitrary units), as a function
of the plasma temperature (in
units of an electron rest
energy mc2) and the
dimensionless relativistic
invariant parameter of the
circularly polarized laser
beam
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Fig. 12.3 (Color online)
Density plot of the total rate
of inverse-bremsstrahlung
absorption scaled to
asymptotic rate αL (in
arbitrary units), as a function
of the plasma temperature (in
units of an electron rest
energy mc2) and the
dimensionless relativistic
invariant parameter of the
linearly polarized laser beam
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range of Tn and ξ0 one can apply asymptotic formula (12.81). In the case of the
wave linear polarization from Fig. 12.1 with the interpolation, we have seen that α

decreases as 1/ξ5/40 and exhibits a tenuous dependence on the plasma temperature.
Making analog with the case of circular polarization, for the large ξ0, we interpolate
α by the following formula:

α � αL = α0

2ξ5/40

Lcb. (12.82)

As is seen from Fig. 12.3, in the case of linear polarization and for the moderate tem-
peratures, with the well-enough accuracy one can apply the asymptotic rate (12.82).

Laser assisted electron–ion collisions have two important effects on the plasma.
First of all, they are responsible for the absorption of energy via inverse bremsstra-
hlung. Second, thermalization of particles’ energy proceeds via collisions. For the
description of thermalization processes one should solve self-consistent kinetic equa-
tions. The obtained results can be applied to the underdense plasma ω > ωp, as well
as to the overdense ω < ωp plasma if one considers interaction of the laser beam
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with ultrathin (comparable to skin depth) plasma targets of solid densities. In both
cases, one should take into account the applicability condition of the low-frequency
approximation (12.56), which for a plasma reads:

λ � λD, (12.83)

where λD = √kbT/4πnee2Z is the Debye screening length:

λD[cm] = 7.43 × 102 ×
√

T [eV]
Zne[cm−3] . (12.84)

In the presence of the laser field, electron–ion binary collisions take place with the
effective frequency νe f f :

νe f f = p2
0v0

〈p〉2 〈v〉νei , (12.85)

where 〈p〉2 and 〈v〉 are the mean values of p2(ψ) and v (ψ) in the laser field, respec-
tively, defined by (12.47)–(12.49), and

νei = 2πZ2e4ni

p2
0v0

Lcb. (12.86)

is the field free collision frequency. During the time of the order of ν−1
e f f , the thermal-

ization of the electrons’ energy in plasma occurs, hence, our consideration is valid
when the pulse duration τ of an EMwave is restricted by the relation τ < ν−1

e f f . Note
that, the last condition can be satisfied even at the solid densities (ne ∼ 1024 cm−3)
for superstrong laser fields ξ0 > 1 (〈v〉 → c) when τ < 200 fs.

We have neglected quantum effects, which for elementary free-free transitions in
the strong laser fields can be essential. The quantum effects which are relevant for
the considering processes are due to the photon quantum recoil and electron spin.
The quantum recoil can be essential at �ω > kB T , and when at the energy exchange
with a radiation field, a few photons take part. This situation will be considered in
the next paragraph. For low-frequency and strong laser fields the mean number of
absorbed/emitted photons Nm is proportional to the work of the wave field on one
wavelength. Since we consider relativistic intensities ξ0 � 0.1, we have Nm > 104,
and classical consideration is justified.

Regarding electron spin effects. As is well known, the spin effects in the scattering
cross-section yield significantly different values compared to the classical result for
the backward scatterings where, however, the cross section values are considerably
small. Thus, for the total cross section, the contribution of backward scattering is
small and themain contribution comes from the small-angle scatterings and for angles
ϑ � 1/

(
1 − v2/c2

)1/2
one can use the classical relativistic Rutherford differential

cross section at small angles (12.68).
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Under the same circumstances, large-angle scatterings may be important for
inverse-bremsstrahlung giving rise to anomalous absorption. The latter takes place
for nonrelativistic electron trajectories repeatedly oscillating close to an ion, where
large energy exchange with the laser field takes place. The same mechanism of large
energy exchange takes place at a high-order harmonic generation process, where the
photoelectron recollides with the parent ion. At the laser intensities ξ > 0.1, rela-
tivistic effects become essential and relativistic trajectories prevent the particle from
repeatedly oscillating close to the ion. This is connected with the conventional effect
of the relativistic drift of an electron due to the magnetic field of a strong EM wave
(see (12.47)–(12.49)). In the relativistic laser fields, irrespective to its initial state,
the particle acquires large momentum along the wave propagation direction and the
small-angle scattering approximation is more justified than that in the nonrelativistic
case.

Regarding underdense plasma, there are several instabilities which can be devel-
oped on a time scale shorter than the pulse duration. Hence, the pulse duration τ of
an EM wave should also satisfy the condition

τ < μ−1
m , (12.87)

where μm is the maximal increment of the instability of the plasma in the strong laser
field. At relativistic laser intensities, the most fast growing instabilities are Raman
side-scatter ones. The increments of these instabilities can be estimated as

μm ∼ ω
(ωp

ω

)2/3
. (12.88)

12.7 Microscopic Quantum Theory of Absorption
of Powerful X-Ray in Plasma

Let us now consider, the microscopic relativistic quantum theory of plasma (as clas-
sical as well as and quantum) nonlinear interaction with superstrong laser fields and
nonlinear absorption process of powerful shortwave radiation in plasma on the base
of the particle density matrix for description of electrons-ions collisions in plasma, in
the strong EMwave field. The latter is described by (1.51) and the ions are assumed to
be at rest and being either randomly or nonrandomly distributed in plasma, the static
potential field of which (for nucleus/ion -as a scattering center- the recoil momentum
is neglected) is described by the scalar potential (A(e) (x) = (ϕ (r) , 0))

ϕ (r) =
Ni∑
i

ϕi (r − Ri ) , (12.89)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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where ϕi is the potential of a single ion situated at the position Ri , and Ni is the
number of ions in the interaction region.

To investigate the quantumdynamics of SBweneed the quantumkinetic equations
for a single particle density matrix, which can be derived arising from the second
quantized formalism and using the exact solution of theDirac equation (1.94)–(1.97).

Cast in the second quantization formalism, the Hamiltonian is given by (8.5) with
the interaction Hamiltonian

Hsb = 1

c (2π)3

∫
Ψ̂ +V (q) e−iqrΨ̂ dqdr, (12.90)

where

V (q) =
∫ Ni∑

i

eϕi (r − Ri ) e−iqrdr. (12.91)

We pass to the Furry representation and write the Heisenberg field operator of the
electron in the form of an expansion in the quasistationary Volkov states (1.97)

Ψ̂ (r, t) =
∑

σ

∫
dΦ�â�,σe

i
�

E�tΨ�σ(r, t), (12.92)

where dΦ� = Vd3�/ (2π�)3 (V is the quantization volume).
Taking into account (8.8), (8.7), (8.6) and (1.97), the second quantized Hamil-

tonian can be expressed in the form

H = H0 + Hsb (t) . (12.93)

The first term in (12.93) is the Hamiltonian of Volkov dressed electron field

H0 =
∑

σ

∫
dΦ�E�â+

�,σâ�,σ, (12.94)

and the second term

Hsb (t) =
∑
σσ′

∫
dΦ�

∫
dΦ�′ M�′,σ′;�,σ (t) â+

�′,σ′ â�,σ (12.95)

is the interaction Hamiltonian describing the SB process with amplitudes

M�′,σ′;�,σ (t) = 1

V
∞∑

s=−∞
e−isωtM(s)

�′,σ′;�,σ
, (12.96)

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_8
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_8
http://dx.doi.org/10.1007/978-3-319-26384-7_8
http://dx.doi.org/10.1007/978-3-319-26384-7_8
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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M(s)
�′,σ′;�,σ

= V (qs)

2c
√

E�E�′
uσ′(p′)

×
[
ε̂0Bs +

(
eB̂1s k̂ε̂0

2c(kp′)
+ êε0k̂ B̂1s

2c(kp)

)

+ e2(kε0)B2s

2c2(kp′)(kp)
k̂

]
uσ(p). (12.97)

In (12.97) the vector functions Bμ
1s = (0, B1s) and scalar functions Bs , B2s are

expressed via the generalized Bessel functions Gs(α,β,ϕ) (1.56) by the formu-
las (10.60)–(10.63). The definition of the arguments α,β,ϕ are given by (1.103)–
(1.105).

Thus, in order to develop microscopic relativistic quantum theory of the multi-
photon inverse-bremsstrahlung absorption of ultrastrong shortwave laser radiation in
plasma we need to solve the Liouville-von Neumann equation for the density matrix
ρ̂:

∂ρ̂

∂t
= i

�
[ρ̂,H0 + Hsb (t)] , (12.98)

with the initial condition
ρ̂ (−∞) = ρ̂G . (12.99)

Here ρ̂G is the density matrix of the grand canonical ensemble:

ρ̂G = exp

[
1

Te

(
Ω +

∑
σ

∫
dΦ� (μ − E�) â+

�,σâ�,σ

)]
. (12.100)

In (12.100) Te is the electrons temperature in energy units,μ is the chemical potential,
and Ω is the grand potential. Note that the initial one-particle density matrix in
momentum space is

ρσ1σ2(�1,�2,−∞) = Tr
(
ρ̂Gâ+

�2,σ2
â�1,σ1

)

= n
(
E�1

) (2π�)3

V δ (�1−�2) δσ1,σ2 , (12.101)

where

n
(
E�1

) = 1

exp
[

E�1−μ

Te

]
+ 1

. (12.102)

We consider, Volkov dressed SB Hamiltonian Hsb (t) as a perturbation. Accord-
ingly, we expand the density matrix as

ρ̂ = ρ̂G + ρ̂(1).

http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_10
http://dx.doi.org/10.1007/978-3-319-26384-7_10
http://dx.doi.org/10.1007/978-3-319-26384-7_1
http://dx.doi.org/10.1007/978-3-319-26384-7_1
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Then taking into account the relations

[
â+

�′,σ′ â�,σ, ρ̂G

]
=
(
1 − e

1
Te

(E�′−E�)
)

ρ̂Gâ+
�′,σ′ â

′
�,σ

and
[ρ̂G,H0] = 0,

for ρ̂(1) we obtain

ρ̂(1) = 1

i�

t∫

−∞
dt ′∑

σσ′

∫
dΦ�

∫
dΦ�′ M�′,σ′;�,σ

(
t ′)

× e
i
� (t ′−t)(E�′ −E�)

(
1 − e

1
Te

(E�′−E�)
)

ρ̂Gâ+
�′,σ′ â�,σ. (12.103)

Now with the help of this solution one can calculate the desired physical character-
istics of the SB process. In particular, for the energy absorption rate by the electrons
due to the inverse stimulated bremsstrahlung one can write

dE
dt

= Tr

(
ρ̂(1) ∂Hsb (t)

∂t

)
. (12.104)

It is more convenient to represent the rate of the inverse-bremsstrahlung absorption
via the mean number of absorbed photons by per electron, per unit time:

d Nγe

dt
= 1

�ωNe

dE
dt

, (12.105)

where Ne is the number of electrons in the interaction region. Taking into account
decomposition

(
1 − e

1
Te

(E1−E2)
)
Tr
(
ρ̂Gâ+

1 â2â+
3 â4
) =

(
1 − e

1
Te

(E1−E2)
)

n1 (1 − n2) δ23δ14,

with the help of (12.103), (12.104), (12.105), and (12.97) for large t we obtain

d Nγe

dt
=

∞∑
s=1

d Nγe (s)

dt
, (12.106)

where the partial s-photon absorption rates are given by the formula
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d Nγe (s)

dt
= 8πs

�NeV2

∫ ∫
dΦ�dΦ�′

E�E�′
|V (qs)|2

∣∣∣B(s)
�′;�

∣∣∣
2

× δ (E�′ − E� + s�ω)
(
1 − e

1
Te

(E�′−E�)
)

× n (E�′) (1 − n (E�)) , (12.107)

where

∣∣∣B(s)
�′;�

∣∣∣
2 =

⎧
⎨
⎩

∣∣∣∣∣EBs − e
(
pB1s

)
ω

(kp) c
+ e2ωB2s

2c2(kp)

∣∣∣∣∣
2

−�
2q2

s c2

4
|Bs |2 + e2�2

[
kqs

]2
4(kp′)(kp)

[|B1s |2 − Re
(
B2s B∗

s

)]}
, (12.108)

and δ(x) is the Dirac delta function that expresses the energy conservation law in SB
process. The obtained expression for the absorption rate is general and applicable
to arbitrary polarization, frequency and intensity of the wave field. This formula
is applicable for a grand canonical ensemble and is always positive. With the help
of (12.107) and (12.106) one can calculate the nonlinear inverse-bremsstrahlung
absorption rate for Maxwellian, as well as for degenerate quantum plasmas.

For the obtained absorption rate (12.107) one need to concretize the ionic potential
V (qs). For s single ion of charge number Za we will assume screening Coulomb
potential with radius of screening κ

−1
e as a function of the plasma temperature and

density of electrons ne:

κe =
(
4πe2

∂ne

∂μ

)1/2

.

Thus, taking into account the plasma quasi-neutrality (Za Ni = Ne), we have

|V (qs)|2 = Ne
16π2Zae4(
q2

s + κ2
e

)2 . (12.109)

Integrating in (12.107) over E�′ we will obtain the following expression for partial
absorption rates:

d Nγe (s)

dt
= 2Zae4s

π3�3c4

∫

m∗c2+s�ω

d E�dΩdΩ ′
|�| ∣∣�′∣∣ ∣∣∣B(s)

�′;�
∣∣∣
2

(
�2q2

s + �2κ2
e

)2

×
(
1 − e− s�ω

Te

)
n (E� − s�ω) (1 − n (E�)) , (12.110)



12.7 Microscopic Quantum Theory of Absorption … 419

where
∣∣�′∣∣ =

√
|�|2 + �2s2k2 − 2

E�s�ω

c2
.

In general, the analytical integration over solid anglesΩ ,Ω ′ and energy is impos-
sible, and one shouldmake numerical integration. The latter for initially nonrelativis-
tic plasma and at the photon energies �ω > Te, is convenient to made introducing a
dimensionless parameter

χ0 = eE0

ω
√

m�ω
, (12.111)

which is the ratio of the amplitude of the momentum transferred by the wave field to
themomentumat theone-photon absorption. In (12.111) thedimensionless parameter
E0 = ωA0

√
1 + g2/c is the amplitude of the electric field strength. Hence, the

average intensity of the wave expressed via the parameter χ0, can be estimated as

Iχ0 = χ2
0 × 1.74 × 1012 W cm−2

[
�ω

eV

]3
.

The intensity Iχ0 strongly depends on the photon energy �ω. At χ0 ∼ 1, the mul-
tiphoton effects become essential. Particularly, for X-ray photons with energies
εγ ≡ �ω = 0.1 − 1 keV, multiphoton interaction regime can be achieved at the
intensities Iχ0 ∼ 1018 − 1021 W/cm2. In the opposite limit χ0 � 1, the multiphoton
effects are suppressed.

For all calculations as a reference samplewe take ionswith Za = 13 (fully ionized
Aluminum) and consider plasma of solid densities. To show the dependence of the
inverse-bremsstrahlung absorption rate on the laser radiation intensity, in Fig. 12.4
the total rate (12.106) with (12.110) for circularly polarized wave in Maxwellian
plasma versus the parameter χ0 for various photon energies are shown. Here, we
take ne = 1023 cm−3 and Te = 100 eV (ne ∝ eμ/Te and κe = (4πe2ne/Te

)1/2
). As is

Fig. 12.4 (Color online)
Total rate of
inverse-bremsstrahlung
absorption for circularly
polarized wave in
Maxwellian plasma versus
the dimensionless parameter
χ0 for various photon
energies at ne = 1023 cm−3,
and Te = 100 eV
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Fig. 12.5 (Color online)
Total rate of
inverse-bremsstrahlung
absorption of circularly
polarized wave in
Maxwellian plasma, as a
function of the plasma
temperature is shown for
various wave intensities at
εγ = 1 keV, Za = 13,
ne = 1023 cm−3
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Fig. 12.6 (Color online)
Total rate of
inverse-bremsstrahlung
absorption for circularly and
linearly polarized waves in
degenerate plasma versus the
parameter χ0 at
εF = 11.7 eV , Za = 13,
and Te = 0.1εF

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

dN
γe

/d
t [

fs
-1

]

χ0

CPW
LPW

seen from this figure for the large values of χ0 the rate exhibits a tenuous dependence
on the wave intensity.

To show the dependence of the considered process on the plasma temperature,
in Fig. 12.5 we plot total rate of the inverse-bremsstrahlung absorption of circularly
polarized laser radiation in Maxwellian plasma, as a function of the plasma temper-
ature for various wave intensities at εγ = 1 keV, and ne = 1023 cm−3 . The similar
picture holds for LPW. Here for the large values of χ0 we have a weak dependence
on the temperature, which is a result of the laser modified scattering of electrons
irrespective of its’ initial state.

We have also made calculations for a degenerate quantum plasma with Fermi
energy μ � εF = 11.7 eV (Aluminum). The total rate of inverse-bremsstrahlung
absorption for circularly and linearly polarized waves in degenerate plasma versus
the parameter χ0 at Te = 0.1εF (κe = (

6πe2ne/εF
)1/2

) is shown in Fig. 12.6. As
is seen from these figure, the rate strictly depends on the wave polarization, and for
the large values of χ0 it is saturated. Note that, our consideration is valid when the
pulse duration τ of an EM wave is restricted by the condition τ < ν−1

e f f , where ν−1
e f f

is the time scale during which the thermalization of the electrons energy in plasma
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occurs. In the presence of a laser field, the electron–ion binary collisions take place
with the effective frequency

νe f f � 2πZae4ne

m2 〈v〉3 Lcb,

where Lcb is the Coulomb logarithm, and 〈v〉 is the mean values of electrons velocity
in the laser field. For moderate intensities one can write 〈v〉 � χ0

√
εγ/m. For the

considered parameters we have νe f f � 1014 − 1015 s−1. Thus, the pulse duration
should be τ < 1 fs. The latter is satisfied for X-ray sources. As is seen from Figs. 12.4
and 12.6, for the pulse durations τ � 1 fs one can achieve an one absorbed X-ray
photon by per electron, which means that in plasma of solid densities one can reach
the plasma heating of high temperatures by X-ray laser already with the intensity
parameter ξ0 ∼ 0.1.
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Chapter 13
High Harmonic Generation and Coherent
X-Ray–γ -Ray Radiation in Relativistic
Atomic-Ionic Systems

Abstract The increasing interest in the processes of intense laser–atom/ion inter-
action is largely attributed to the problem of high harmonic generation (HHG) and
coherent shortwave radiation implementation. One of the most promising mecha-
nisms for the creation of coherent XUV sources and intense attosecond pulses—in
particular for the control of electrodynamic processes on attosecond time scales—is
just the nonlinear process of HHG in the field of strong laser radiation. To reach a far
X-ray region in this process, one needs the atoms or ions with a large nuclear charge
and laser fields of ultrahigh intensities at which the nondipole interaction and rela-
tivistic effects become essential. Depending on the interaction parameters, harmonic
generation may occur via bound-bound and bound-free-bound transitions through
the continuum spectrum. For a light scattering process via bound-bound transitions,
the resonant interaction is of interest. Apart from its pure theoretical interest as a
simple model, the resonant interaction regime enables to significantly increase the
efficiency of frequency conversion. For high harmonics generation via bound-bound
states, one needs multiphoton resonant transition. The latter is effective when the
atomic system has a mean dipole moment in the stationary states, or the energies of
the two states of a three-level atomic system are close enough to each other and there
is a nonvanishing transition dipole moment between these states. A typical example
of such configuration is the hydrogen-like atomic system which because of the ran-
dom degeneracy of an orbital moment the atom has a mean dipole moment in the
excited stationary states. To reach the far X-ray region, atoms or ions with the large
nuclear charges are necessary. In this case, the relativistic effects should be taken into
account, specifically, the fine structure of the hydrogen-like atoms or ions. Thus, it is
of interest to study the harmonic generation from hydrogen-like ions at multiphoton
resonant excitation, when only a few resonant states are involved in the radiation
generation processes. Here one can expect further upconversion of existing X-ray
FEL frequencies. At ultrahigh intensities, the state of an ionized electron becomes
relativistic already at the distances less than a laser wavelength irrespective of its
initial state, hence the investigation of the laser-atom/ion induced processes require
relativistic consideration. On the other hand, the relativistic drift of a photoelectron
due to themagnetic field of a strong electromagnetic wave becomes themajor inhibit-
ing factor in the relativistic regime of HHG. Due to this drift, the significant HHG
suppression takes place, so that to overcome this negative effect we need to find such
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mechanisms of the laser-atom/ion interaction in the relativistic domain of HHG at
which the relativistic drift of the magnetic field is compensated. A good example
for the latter is a standing wave configuration formed by the two counterpropagating
laser beams of the same frequencies. At the linear polarization of thewaves, the effect
of resulting magnetic field of the standing wave is vanished near the stationary max-
ima (at the waves’ circular polarization, one can achieve the fully vanishing of the
resulting longitudinal magnetic force; however, the latter takes place at the adiabatic
turn-on of the waves which is not valid for the supershort laser pulses of relativistic
intensities). In contrast to a standing wave configuration with approximate uniform
periodic electric field, there is a scheme of HHG in underdense plasma with a single
laser pulse of relativistic intensities, which in the own frame of reference (moving
with the pulse group velocity in plasma) is transformed into the uniform periodic
electric field exactly, i.e., the wave magnetic field in this case vanishes completely.
At that the dispersion law of the plasma allows a principal possibility to eliminate the
negative effect of the magnetic drift for relativistic HHG in two boundary cases—
nonrelativistic and ultrarelativistic if one use copropagating ultraintense laser and
ion beams of the same velocities. The HHG processes with relativistic effects and
generation of coherent X-ray radiation in relativistic atomic-ionic systems with the
large charge number of the nucleus by multiphoton excitation, are considered in this
chapter. In this chapter, we will also consider a possibility for generation of coherent
γ -ray at the collective annihilation decay of positronium (Ps) atoms in the Bose–
Einstein condensate state. Being a pure leptonic atom, Ps is of interest for revealing
of QED effects with the great precision. Besides, Ps is a compound of the matter-
antimatter and may play a central role for achieving a fundamental understanding
of diverse phenomena in many branches of contemporary physics ranging from the
elementary particle physics to astrophysics, and condensed-matter physics. At last,
Ps atoms are connected with the cosmic electron–positron annihilation radiation first
detected from the Galactic center direction during the 1970s. Since these times, the
International Gamma-Ray Astrophysics Laboratory has greatly refined these mea-
surements and has showed that the line center is at ∼511 keV with the annihilation
rate ∼3 × 1042 electron-positron pairs per second. The data analysis suggests that
annihilations through Ps formation dominate (in average 90%), resulting in a narrow
511 keV line. Nevertheless, it follows to mention that the origin of these positrons
and formation of Ps atoms in astrophysical conditions remains unknown.

13.1 Relativistic HHG in the Counterpropagating
Waves Field

As was mentioned above, a standing wave configuration formed by the two coun-
terpropagating laser beams of linear polarizations is of interest due to the simplicity
to realize a field structure providing incomparable large HHG rates in the relativis-
tic regime. At the lengths, much smaller than a wavelength of a pump wave, the
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effective field of the standing wave may be approximated by the uniform periodic
electric field.

Let two linearly polarized plane electromagnetic waves with the carrier frequency
ω and amplitude of the electric field Ea

E1 = Ea cos(ωt − kr), E2 = Ea cos(ωt + kr), (13.1)

propagating in the opposite directions in vacuum, interplay with the hydrogen-like
ions having the charge number of the nucleus Za . We will assume that λ � a, where
a is the characteristic size of the atomic system and λ is the wavelength of a pump
wave (for the HHG this condition is always satisfied).

At the photoionization of an atom/ion in the strong traveling wave field taking
into account the relativistic drift due to the magnetic field, one can expect that the
probability of the ionized electron recombination with the ionic core could be non-
negligible only if the electron is initially born with a nonzero velocity oppositely
directed to the incident laser beam. The probability of tunneling ionization with the
nonzero initial velocity of the photoelectron is given by the quantum mechanical
tunneling theory:

Wion ∝ e−2(Z2
a+v2)

3/2
/(3E), (13.2)

where v is the photoelectron initial velocity, and E is the electric field strength of the
wave (here and below, unless stated otherwise, we employ atomic units). However,
according to (13.2), the ionization probability falls off exponentially if this velocity
v is larger than the characteristic atomic velocities, irrespective of its direction. Since
we study the case of superstrong laser fields with ξ ≡ E/cω ∼ 1 when the energy of
the interaction of an electron with the field over a wavelength becomes comparable
to electron rest energy, the required velocities becomes comparable with the light
speed c (c = 137a.u.). Hence, the probability (13.2) in such fields is practically
zero. Therefore, in considering the case of a standing wave formed by the laser
beams (13.1), a significant input in the HHG process will be conditioned by the
ions situated near the stationary maxima of the standing wave. For this points the
magnetic fields of the counterpropagating waves cancel each other. Since the HHG
is essentially produced at the lengths l � λ near the electric field maximums, we
will assume the effective field to be:

E(t) = êE0 cosωt, (13.3)

where E0 = 2Ea , and ê is the unit polarization vector.
Wewill consider ionswith the charge Za � 137 and photons frequencies:ω � c2

restricting laser intensities by the values ξ ∼ 1. Under these circumstances, one can
ignore the spin-interaction of a photoelectron with the external fields, as well as the
spin-orbital interaction in the field-free states and solve the Klein–Gordon equation
instead of Dirac equation. To find out the relativistic probabilities of HHG in the field
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(13.3) on the base of the Klein–Gordon equation, we arise from the Feshbach-Villars
representation:

i
∂Ψ

∂t
=
(
(̂τ3 + i τ̂2)

p̂2

2
+ c2τ̂3 + Za

r
− rE (t)

)
Ψ, (13.4)

where the matrixes

τ̂2 =
(
0 −i
i 0

)
, τ̂3 =

(
1 0
0 −1

)
,

and p̂ is the operator of the kinetic momentum (̂p = −i∇). Here Ψ is the two-
component column vector

Ψ =
(
ϕ

χ

)
(13.5)

and (13.4) represents a set of the two coupled differential equations of the first
order. The Feshbach-Villars representation (13.4) of Klein–Gordon equation is more
convenient, since we have unitary evolution similar to Schrödinger equation, and
separation of the particle–antiparticle degree of freedom along with a single particle
interpretation of Ψ are more explicit. In this representation, the mean value of an
operator L̂ is defined by the following way:

〈L̂〉 =
∫
Ψ †τ̂3 L̂Ψ dr.

We denote the atomic-bound states by ψη, where η indicates the set of quan-
tum numbers that characterizes the state. The time-dependent wave function can be
expanded as

|Ψ 〉 =
(

C0 (t) ψη0 +
∫

dpC (p, t)Φp (r)
)

e−iεt . (13.6)

Here ψη0 is the initial bound state’s wave function with the energy ε. Since we
consider hydrogen-like atoms/ions with Za � 137, the initial velocities of atomic
electrons are nonrelativistic, and as an initial-statewave functionψη0 in the expansion
(13.6) one can take the ground-state’s wave function for the hydrogen-like atom in
the nonrelativistic limit:

ψη0 = Z3/2
a√
π

(
1
0

)
e−Zar , (13.7)

with the corresponding energy: ε = c2 − Z2
a/2. Concerning the relativism of the

photoelectron continuum states Φp (r), it should be noted that already at the wave
intensities ξ ∼ 10−1 the relativistic effects become observable, and the continuum
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states of the photoelectron should be described in the scope of the relativistic theory.
Thus, in the expansion (13.6), we will take the Klein–Gordon free solutions with the
positive energies E (p) = √c2p2 + c4:

Φp (r) = 1

2 (2π)3/2

√
1

c2E (p)
(

c2 + E (p)
c2 − E (p)

)
eipr. (13.8)

In the expansion (13.6), we have excluded the negative energy states, since the input
of the particle–antiparticle intermediate states will lead only to small corrections to
the process considered. Neglecting the free-free transitions due to the Coulomb field
and the depletion of the ground state, i.e., assuming C0 (t) 
 1, the Klein–Gordon
equation for the amplitudes C (p, t) reads as

∂C (p, t)

∂t
+ E (t)

∂C (p, t)

∂p
+ i (E (p)− ε)C (p, t) = iD (p) E (t) , (13.9)

whereD (p) = ∫ Φ†
p τ̂3 (̂er) ψη0dr is the atomic dipole matrix element for the bound-

free transition. Without loss of generality, one can take the polarization vector ê
aligned with the z axis of spherical coordinates and for the matrix elementD (p) we
obtain

D (p) = 25/2Z5/2
a

πc

c2 + E (p)√E (p)
i pz(

p2 + Z2
a

)3 . (13.10)

Then, from (13.9) for the probability amplitudes C (p, t), we obtain

C (p, t) = i

t∫

0

dt ′D
(

p + 1

c

(
A (t)−A

(
t ′))
)

E
(
t ′)

× exp

⎧
⎨
⎩−i

t∫

t ′

[
E
(

p+1

c

(
A (t)−A

(
t ′′))

)
− ε

]
dt ′′

⎫
⎬
⎭ , (13.11)

where A (t) = −̂ec2ξ sinωt is the vector potential of the resulting electric field of
the standing wave.

For the harmonic radiation perpendicular to the polarization direction ê, one needs
the mean value of the z component of the electron current density

J (t) = 1

2

∫ (
Ψ +τ̂ (̂êpΨ )− (̂êpΨ +) τ̂Ψ ) dr, (13.12)

where τ̂ = τ̂3 (̂τ3 + i τ̂2). Using (13.6), (13.11), (13.12), and neglecting the contri-
bution by the free-free transitions, we obtain
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J (t) = i
∫

dp

t∫

0

dt ′J
(

p − 1

c
A (t)

)
D
(

p−1

c
A
(
t ′)
)

E
(
t ′)

× exp
{−i S

(
p, t, t ′)+ iε

(
t − t ′)}+ c.c., (13.13)

where

S(p, t, t ′) =
t∫

t ′

E
(

p−1

c
A
(
t ′′)
)

dt ′′

=
t∫

t ′

√
c2 (p+ε̂cξ sinωt ′′)2 + c4dt ′′ (13.14)

is the relativistic classical action of an electron in the field, and the function J (p) is
defined as

J (p) = Z5/2
a

π

23/2√E (p)
cpz(

Z2
a + p2

)2 . (13.15)

As in the nonrelativistic case, the HHG rate is mainly determined by the expo-
nential in the integrand of (13.13) with the exact relativistic classical action. The
integral over the intermediate momentum p and time t ′ can be calculated using the
saddle-point method. The saddle momentum is determined by the equation

∂S(p, t, t ′)
∂p

= 0, (13.16)

which for momentum components gives px,y = 0, and the z component of the
momentum (ps) is given by the solution of the equation:

t∫

t ′

ps+cξ sinωt ′′
√
(ps+cξ sinωt ′′)2 + c2

dt ′′ = 0. (13.17)

In contrast to nonrelativistic and relativistic cases for a traveling wave, this equation
cannot be solved analytically and requires numerical solution. Integrating the latter
over p, for the current density we obtain

J (t) = (2π)3/2
√

i

t∫

0

dt ′ e
−i(S(ps ,t,t ′)−ε(t−t ′))
√∣∣det S′′

pp

∣∣ E
(
t ′)
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× D
(

ps−1

c
A
(
t ′)
)
J
(

ps − 1

c
A (t)

)
+ c.c., (13.18)

where

det S′′
pp =

⎛
⎝

t∫

t ′

dτ

γ (t ′, τ ; ξ)

⎞
⎠

2 t∫

t ′

dτ

γ 3 (t ′, τ ; ξ) ,

γ
(
t ′, τ ; ξ) = (1 + (ps+cξ sinωτ)2 /c2

)1/2
. (13.19)

At ξ � 1, for det S′′
pp one can recover nonrelativistic result: det S′′

pp = (t − t ′)3.
The complex saddle times ts are the solutions of the following equation:

∂S(ps, t, t ′)
∂t ′ + ε = 0, (13.20)

which may be expressed by the transcendental equation

√
c2 (ps+cξ sinωts)

2 + c4 − ε = 0. (13.21)

Then expressing the saddle time as ts = tb + iδ, with ωδ � 1, one can obtain the
saddle momentum

ps = −cξ sinωtb, (13.22)

and the imaginary part of the saddle time

δ = Za

|E (tb)| , (13.23)

where E (tb) = cξω cosωtb. Taking into account (13.22), from (13.17) for the real
part of the saddle time we obtain:

t∫

tb

sinωt ′′ − sinωtb√
1 + ξ 2 (sinωt ′′ − sinωtb)

2
dt ′′ = 0. (13.24)

As usual, tb is interpreted as the birth time of the photoelectron which returns at
the moment t to the core and generates harmonic radiation. The transition dipole
moment has singularity at the saddle times and the integration has been made with
the help of the formula

∫
g(x)

e−λ f (x)

(x − x0)
ν dx 
 iν

√
πg(x0)

[
2 f ′′ (x0) λ

] ν−1
2
Γ (ν/2) e−λ f (x0)

Γ (ν)
. (13.25)
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Fig. 13.1 The photoelectron
energy gain in units of
ponderomotive energy
Up = c2ξ2/4 and ionization
time versus the electron time
evolution in the continuum
for the various laser
intensities (tb and τ are
normalized to the standing
wave period T )

Thus, taking into account (13.16–13.25), we obtain the ultimate formula for current
density:

J (t) =
∑

tb

Cion (tb)Cpr (t, tb)Crec (t, tb)+ c.c.. (13.26)

The formula (13.26) is the analogous to the nonrelativistic formula for the dipole
moment in the three-step model. Here the summation is carried out over the solutions
of (13.24). The tunneling ionization amplitude Cion (tb) is

Cion (tb) = i√
2

Z
3
2
a

E (tb)
e
− Z3a

3|E(tb)| . (13.27)

The propagation amplitude is given by the expression

Cpr (t, tb) = (2π)3/2√
i

exp {−i S (ps, t, tb)+ iε (t − tb)}√∣∣det S′′
pp

∣∣ , (13.28)

and the recombination amplitude is:

Crec (t, tb) = J
(

ps − 1

c
A (t)

)
. (13.29)
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Fig. 13.2 Maximum energy
gain of photoelectron (in
units of its rest energy c2)
which defines the cutoff
frequency as a function of
the dimensionless relativistic
parameter of the wave
intensity

The formula (13.26) has been obtained assuming tunneling ionization regime,
which is valid for the fields E � Eat , where Eat = Z3

a (Z
3
am2

e |e|5 /�4 in usual units)
is the atomic characteristic electric field strength.

As is seen from (13.27), (13.28), and (13.29), except of the normalization ampli-
tude (see, (13.15) and Crec (t, tb)), the relativistic effects are considerable only for
propagation amplitude Cpr (t, tb), which is evident since photoelectron may become
relativistic (for large ξ ) irrespective of its initial state.

13.2 Relativistic High-Order Harmonic Emission

In the considered relativistic theory, the saddle time and energy gain essentially
depend on the intensity of a pump wave. The latter leads to the modification of
the HHG spectrum compared with nonrelativistic one. In Fig. 13.1, we present the
solution of (13.24) for the born times tb which are limited to a quarter of the laser
period. Figure13.1 also illustrates the photoelectron energy gain (in units of pondero-
motive energy Up = c2ξ 2/4) versus the electron’s time evolution in the continuum
(return time) for various laser intensities. The cutoff energies are defined by the max-
imal kinetic energy gain of the photoelectron in the laser field. The latter due to the
quasiclassical nature of the wave function exp {−i Scl} corresponds to the maximal
kinetic energy gain following the relativistic classical equation of motion for the
case when the electron appears in the continuum with zero initial momentum at the
moment tb (and returns at the moment t to the core generating harmonic radiation).
In Fig. 13.2, the maximum energy gain of the photoelectron as a function of the rel-
ativistic parameter of the wave intensity ξ 2 is displayed. As we see, the relativistic
cutoff essentially differs from the nonrelativistic one for ξ � 1, and the shift of the
cutoff position to the lower values of the harmonic order for the same laser intensity
becomes evident. Figure13.1 also reveals the multiplateau character of the harmonic
spectrum like to the nonrelativistic one.
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Fig. 13.3 (Color online)
Harmonic emission rate via
log10

(
N 2 |JN |2), as a

function of the photon
energy (in units of ω), for an
ion with Za = 4, ξ = 0.47
(4.72 × 1017 W/cm2), and
frequency ω = 0.057a.u.
(800nm). The gray (yellow)
curve represents the HHG
spectrum for a traveling
wave. The arrow shows the
position of the harmonic
cutoff according to
nonrelativistic theory
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Fig. 13.4 (Color online)
Harmonic emission rate as a
function of the photon
energy (in units of ω) for an
ion with Za = 8 and
standing wave of frequency
ω = 0.184a.u.(248 nm). The
black (blue) line corresponds
to standing wave intensity
2.2 × 1019 W/cm2 (ξ = 1);
the gray (yellow) line
corresponds to a standing
wave intensity of
1.8× 1019 W/cm2 (ξ = 0.9)
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The emission rate of N th harmonic is proportional to |N |2 |JN |2, where JN is the
N th Fourier component of the field-induced current density (13.26). To find out JN ,
the Fast Fourier Transform algorithm has been used.

Figure13.3 displays the harmonic emission rate for an ion with Za = 4 and
Ti:sapphire laser (λ = 800 nm,ω = 0.057a.u.) with the intensity 4.72×1017 W/cm2

(ξ = 0.47). For the comparison, we have also presented the spectrum for a traveling
wave. As we see from this figure, with the increase of the laser intensity, the HHG
rate for a standing wave field by many orders of magnitude is larger than the HHG
rate for a traveling wave.

For large charge numbers of nuclei Za , it is more desirable to consider laser
fields of higher frequencies. For this reason in Fig. 13.4, we have presented high-
order harmonic spectra for KrF laser (λ = 248 nm, ω = 0.184 a.u.). Here we
have taken Za = 8 for standing wave intensities 2.2 × 1019 W/cm2 (ξ = 1) and
1.8 × 1019 W/cm2 (ξ = 0.9). The cutoff frequencies are 2.62Up(ξ), (0.33 MeV),
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and 2.7Up(ξ) (0.28 MeV). For these setups, the cutoff positions are in good agree-
ment with the semiclassical analysis (see Fig. 13.2). For the considered values of
interaction parameters, the harmonic emission rates for a traveling wave are negli-
gible; meanwhile, the relativistic rates of HHG for a standing wave field at photons
energies approaching to MeV region, are considerable.

For efficient HHG, one should overcome the problem connected with the realiza-
tion of the phase-matched emission of harmonics from different ions. In case of a
nonrelativistic HHGwith a traveling wave, one can expect phase-matching in princi-
ple from total number of ions in the interaction volume; in relativistic HHG, because
of magnetic drift, we have to employ a standing wave configuration at which only a
small fraction of ions make contribution in HHG that is the area close to antinodes
of resultant electric field. Taking into account the propagation effect of counterprop-
agating pulses and the fact that the tunneling ionization is exponentially small for a
single laser pulse (at Ea = E0/2 in (13.2)), the phase-matched harmonic radiation is
expected to be propagated in both directions along the pulses’ wave-vectors k and−k
(x axis). The number of coherently emitting ions can be estimated as N = Lc SN0,
where N0 is the density of ions, S is the transverse size of an interaction region, and
Lc is the coherence length over which the s-th harmonic can be radiated coherently.
For a standing wave configuration, net emission arises from the contribution of the
ions situated at the antinodes with dimension kΔx � 1 (in accordance with the our
model; let Δx � 10−1/k). Hence, the effective coherence length can be estimated
to be: Lc ≈ r0λ/20π , where r0 is the number of antinodes in the standing wave
(separated by λ/2). At short laser pulses, one can assume, e.g., r0 ∼ 10 and for
coherence length we have: Lc ≈ λ/2π . It is evident that in relativistic HHG, the
coherence length for a standing wave configuration is much smaller compared with
its counterpart for a traveling wave in nonrelativistic HHG (for the latter Lc � λ).
However, due to exponential suppression of relativistic harmonics rates in case of
a traveling wave, the standing wave configuration is more preferable for ultimate
relativistic HHG due to the efficient single-atom emission.

13.3 Relativistic HHG with Copropagating Ultrastrong
Laser and Ion Beams in Plasma

As was mentioned above, for HHG in relativistic regime one needs to exclude the
relativistic drift of a photoelectron due to the magnetic field of a strong electromag-
netic wave, i.e., the magnetic component of a traveling wave. This can be achieved
in the plasma-like medium with a refractive index n p < 1. Indeed, let a plane, trans-
verse, and linearly polarized strong EM wave with a frequency ω0 > ωp propagates
in plasma, where ωp is the effective (in general, taking into account the intensity
effect of a strong wave) plasma frequency. Since we study the case of strong laser
fields with ξ ≡ eE/mcω0 ∼ 1, the effective plasma frequency depends on the
intensity (ξ 2) of the wave. It is well known that only circularly polarized modes of
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transverse EM waves may propagate in plasma as pure transverse waves. In case of
other polarizations, particularly, for a linear one a longitudinal component (along
the wave propagation direction) of the electric field is also generated. However, for
two boundary cases of our interest—for cancellation of relativistic magnetic drift
effect by traveling wave in HHG process, this longitudinal (El) component with
great accuracy may be neglected. Thus, when n p(ω0, ξ

2) � 1 (the group velocity
of the wave in plasma in this case is: vg = cn p � c), this longitudinal component
El ∼ n p(ω0, ξ

2)E and, consequently: |El | � |E|. The other boundary case corre-
sponds to plasma refractive index: 1 − n p(ω0, ξ

2) � 1 (ω0 � ωp and vg � c ).
In this case, for the moderate relativism of the laser beam intensities (ξ 2 < 0.5),
the longitudinal electric field component oscillates with the frequency 2ω0 and the
amplitude of this mode can be approximated as El max 
 ω2

pξEmax/8ω2
0. Hence, in

this case |El | � |E| too (because of small factors ω2
p/ω

2
0 � 1 and ξ/8 � 1), and

with great accuracy one can assume that the incident transverse linearly polarized
wave remains transverse in plasma for both considered cases. So, for the electric and
magnetic field strengths, one can write

E = Ea cos (ω0t − k0r) , H = c

ω0
[k0 × E] , (13.30)

where |k0| = n p(ω0, ξ
2)ω0/c. As we noted in the Introduction, one can eliminate the

relativistic magnetic drift in plasma (via the exact cancellation of the wave magnetic
component) considering the copropagating ion beam moving in plasma with a mean
velocity V equal to a laser beam group velocity: V = cn p(ω0, ξ

2). In this case, in the
rest frame of the ions (R), the wave vector of a plane pulse k′ ≡ 0 and the traveling
electromagnetic wave is transformed into the uniform periodic electric field

H′ ≡ 0, E′ = Ea
ωp

ω0
cosωt ′,

where

ω = ω0

√
1 − n2

p(ω0, ξ 2) ≡ ωp. (13.31)

Hence, at V = cn p(ω0, ξ
2), in the R frame the problem of HHG in plasma is reduced

to one in vacuum with the uniform periodic electric field.
Whenω0 � ωp, one needs relativistic ion beams for cancellation of the relativistic

magnetic drift effect in HHG. Concerning the ion beams of requiring relativism with
Lorentz factor γL = (

1 − V2/c2
)−1/2 = ω0/ωp, note that relativistic ion beams

in arbitrary charge states, with the Lorentz factor up to about 30 is supposed to be
realized at the new accelerator complex at Gesellschaft für Schwerionenforschung
(GSI) (Darmstadt,Germany). In the other boundary case when n p(ω0, ξ

2) � 1,
the laser beam group velocity: vg � c and consequently the ion beam should be
nonrelativistic. Note that an alternative to conventional accelerator ion beams can
serve quasimonoenergetic and low emittance ions bunches of solid densities with
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nonrelativistic energies, generated from ultrathin foils—nanotargets by supershort
laser pulses of relativistic intensities. Moreover, in the radiation pressure-dominant
regime, acceleration of the ion beams up to relativistic energies is foreseen.

To find out the HHG rate, it is convenient to solve the problem in the rest frame
of the ions, and for simplicity, hereafter, we will omit the prime for the quantities in
the R frame, writing:

E(t) = êE0 cosωt, (13.32)

where E0 = Eaωp/ω0 and ê is the unit polarization vector.
To find out the relativistic probabilities of HHG in the field (13.32), we start from

the Dirac equation:

i
∂ |Ψ 〉
∂t

=
(

cα̂p̂ + β̂c2 + Za

r
− rE (t)

)
|Ψ 〉 , (13.33)

where α̂ and β̂ are the Diracmatrices in the standard representation, σ = (σx , σy, σz
)

are the Pauli matrices and p̂ is the operator of the kinetic momentum (̂p = −i∇).
Here and below, unless stated otherwise, we employ atomic units. Without loss of
generality, one can take the polarization vector ê aligned with the z axis of the
spherical coordinates.

We denote the atomic-bound states by |η〉, where η indicates the set of quantum
numbers that characterizes the state:η = {n, j, l, M}. Here n is the principal quantum
number, j is the whole moment, l is the orbital moment and M is the magnetic
quantum number.

Here it is convenient to expand the time-dependent wave function as

|Ψ 〉 =
(

C0 (t) |η0〉 +
∑
μ

∫
dpCμ (p, t) |p, μ〉

)
e−iεt , (13.34)

where the bispinor wave functions

|p, μ〉 = 1

(2π)3/2

√
E (p)+ c2

2E (p)
(

ϕμ
c(σp)

E(p)+c2 ϕμ

)
eipr (13.35)

are the Dirac free solutions with the energy E (p) = √
c2p2 + c4 and polarization

states μ = 1,−1:

ϕ1 =
(
1
0

)
, ϕ−1 =

(
0
1

)
. (13.36)

As an initial bound state wave function |η0〉, we assume the ground-state bispinor
wave function for the hydrogen-like ion with the quantum numbers n = 1, j = 1/2,
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l = 0, and M = 1/2:

|η0〉 = Z3/2
a√

πΓ (3 − 2ε)

⎛
⎜⎜⎝

√
2 − ε

0
i cos θ

√
ε

i sin θeiϕ√ε

⎞
⎟⎟⎠ (2r Za)

−ε e−Zar . (13.37)

Here Γ (x) is the Euler gamma function, θ and ϕ are the polar and azimuthal angles,
ε = 1 − √1 − Z2

a/c2, and ε = c2 (1 − ε) is the energy of the ground state. We
consider ions with Za � 137, i.e., ε 
 Z2

a/2c2 � 1 and photons frequencies:
ω � c2. Under the circumstances, one can ignore the spin-orbital interaction in
the ground-state and spin flip due to the free-free transitions. In expansion (13.34),
we have also excluded the negative energy states, since at the considered intensities
the excitation of the Dirac sea and, consequently, the probability of the electron–
positron pair production is negligibly small. Neglecting the depletion of the ground
state C0 (t) 
 1 and the free-free transitions due to the Coulomb field, the Dirac
equation for the probability amplitude C1 (p, t) reads

∂C1 (p, t)

∂t
+ E (t)

∂C1 (p, t)

∂pz
+ i (E (p)− ε)C1 (p, t) = iD1 (p) E (t) , (13.38)

where
D1 (p) = 〈p, 1| z |η0〉 (13.39)

is the atomic dipole matrix element for the bound-free transition. The latter can be
calculated with the help of the integral

π∫

0

eic1 cos θ cosΘ Jm(c1 sin θ sinΘ)Pm
l (cos θ) sin θdθ

=
(
2π

c1

)1/2

i l−m Pm
l (cosΘ) Jl+1/2(c1),

where Pm
l (cosΘ) is an associated Legendre polynomial of degree l and order m,

Jm is a Bessel function of the order m. Thus, for the atomic dipole matrix element
D1 (p), we have:

D1 (p) = i
23−ε

π

√
E + c2

2E
Z5/2−ε

a Γ (3 − ε)√
Γ (3 − 2ε)

pz(
p2 + Z2

a

)3−ε

×
[

1

4c
√
2ε

Z3−ε
a

2p2

(
Υ 3−ε + Υ †3−ε − i

(
p2 + Z2

a

)

(2 − ε) Za p

(
Υ 2−ε − Υ †2−ε)

)
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+ 1

E + c2

√
1

2 (2 − ε)

i Z3−ε
a

8p

((
Υ 3−ε − Υ †3−ε)− 2i

(
p2 + Z2

a

)

(2 − ε) Za p

(
Υ 2−ε + Υ †2−ε)

−2Γ (1 − ε)

Γ (3 − ε)

(
p2 + Z2

a

)2
Z2

a p2

(
Υ 1−ε − Υ †1−ε)

)]
, (13.40)

where

Υ = 1 − i
p

Za
, Υ † = 1 + i

p

Za
. (13.41)

Note that at ε � 1 the matrix element D1 (p) can be approximated as:

D1 (p) = 25/2

iπ

√
E + c2

2E Z5/2
a

pz(
p2 + Z2

a

)3 . (13.42)

Then, from (13.38) for the amplitude C1 (p, t) we obtain:

C1 (p, t) = i

t∫

0

dt ′D1

(
p + 1

c

(
A (t)−A

(
t ′))
)

E
(
t ′)

× exp

⎧⎨
⎩−i

t∫

t ′

[
E
(

p+1

c

(
A (t)−A

(
t ′′))

)
− ε

]
dt ′′

⎫⎬
⎭ , (13.43)

where A (t) = −̂ec2ξ sinωt is the vector potential of the laser field in plasma.
For the harmonic radiation perpendicular to the polarization direction ê, one needs

the mean value of the z component of the photoelectron current density J (t) =
c 〈Ψ | α̂z |Ψ 〉. Using (13.34), (13.43), we obtain:

J (t) = i
∫

dp

t∫

0

dt1J1

(
p − 1

c
A (t)

)
D1

(
p−1

c
A (t1)

)
E (t1)

× exp {−i S (p, t, t1)+ iε (t − t1)} + c.c., (13.44)
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where the function S(p, t, t1) is the relativistic classical action of an electron in the
field, given in the Sect. 13.1 of this chapter, by (13.14), and the matrix elementJ1 (p)
is:

J1 (p) = c 〈η0| α̂z |p, 1〉 . (13.45)

At ε � 1, for J1 (p) one can obtain:

J1 (p) = 21/2Z5/2
a

π

√
E + c2

2E
pz(

p2 + Z2
a

)2
(
1 + 2c2

E + c2

)
. (13.46)

As in the case of a standing wave, the HHG rate is mainly determined by the
exponential in the integrand of (13.44) with the exact relativistic classical action
S(p, t, t1). The integral over the intermediate momentum p and time t1 can be cal-
culated by the same way that has been made in Sect. 13.1 of this chapter using the
saddle-point method. Therefore, we will not repeat the derivations for calculation of
the current density J (t) in (13.44), presented by the formulae (13.16)–(13.29). As
appear (13.27), (13.28), and (13.46), the relativistic effects for HHG in plasma, as
in the case of a standing wave, are considerable for propagation and recombination
amplitudes, which is evident since for large ξ a photoelectron becomes relativistic
irrespective of its initial state.

Because of the saddle time and energy gain, nonlinear dependence on the intensity
of stimulated laser radiation, the essential modification of the HHG spectrum in rela-
tivistic domain, occurs as in the case of a standing wave. Thus, omitting the detailed
analysis made in Sect. 13.1, lets us represent only the main results of the numerical
simulations for relativistic HHG in plasma with the copropagating ultraintense laser
and ion beams moving with the laser pulse group velocity.

Figure13.5 displays the harmonic emission rate for an ion with Za = 4 and
Nd:GAY laser (ω0 = 0.043a.u.) with the intensity 2.47 × 1017 W/cm2 (ξ = 0.45)

Fig. 13.5 Harmonic
emission rate in a plasma via
log10

(
N 2 |JN |2), as a

function of the photon
energy (in units of ω), for an
ion with Za = 4, ξ = 0.45
(2.47 × 1017 W/cm2), and
frequency ω = 0.043a.u.
The lower curve represents
the HHG spectrum for a
traveling wave in vacuum
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Fig. 13.6 Harmonic
emission rate in a plasma as
a function of the photon
energy (in units of ω) for a
moving ion (Za = 2) with
γL = ω0/ωp = 10 and wave
of frequency ω0 = 0.057a.u.
The relativistic invariant
parameter of the wave
intensity is taken to be
ξ = 0.5
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in plasma of the density Ne 
 1021 cm−3 (in this case vg � c). For comparison, we
also include the spectrum for a traveling wave in vacuum. As we see from this figure,
with the increase of the laser intensity, the HHG rate in plasma is larger by many
orders of magnitude than the HHG rate for a traveling wave in vacuum. The cutoff
frequency is Ecut(ω) = 3.03Up 
 78 keV, whereUp = c2ξ 2/4 is the ponderomotive
energy . As we see, the relativistic harmonic cutoff is shifted to the lower values
compared with the nonrelativistic one (3.17Up).

Figure13.6 displays the harmonic emission rate in the R frame for an ion (Za = 2)
with the Lorentz factor γL = ω0/ωp 
 10 and Ti:sapphire laser (ω0 = 0.057a.u.)
with the intensity 5.34× 1017 W/cm2 (ξ = 0.5). The cutoff frequency is: Ecut(ω) 

2.98Up 
 95 keV. For the fulfillment of the condition Vion 
 cn p, one needs a
plasma with the density Ne 
 1.7 × 1019 cm−3.

The maximal energy of radiated photon in the laboratory frame of reference is
obtained in the forward direction, for which:ωmax 
 2γLEcut(ω) and for the setups of
Fig. 13.6 we have: 1.9 MeV. For the considered values of the interaction parameters,
the harmonic emission rates for a traveling wave in vacuum are negligible; whereas
the relativistic rates of HHG in plasma at the photon energies in the MeV region are
significant.

For efficient HHG toward the implementation of coherent γ -ray sources, one
should overcome the problem connected with the realization of the phase-matched
emission of harmonics from the different ions. In the plasma, where the field of
the form (13.3) is realized, the photoelectrons from the different ions are excited
simultaneously and emit harmonics synchronously but from the different spatial
points. With the random distribution of Ni ions, the net emission proportional to
N 2

i in this case will be vanished. To obtain coherent emission from the ion beam
proportional to N 2

i , one should have spatially ordered ion bunches—modulated ion
beams.
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13.4 HHG by Intense Coherent X-Ray on Highly-Charged
Hydrogen-like Ions

Let us now consider resonant interaction of a hydrogen-like ion with moderately
strong X-ray coherent radiation field . In this case, if a radiation field is not so strong
to make dominant the ionization process, rather than to consider the whole atomic
wave packet, one can reduce the interaction dynamics to a few levels only. For a
large charge number of the nucleus Za , the relativistic effects play important role
and, therefore, should be taken into account. For the considered x-ray frequencies and
multiphoton resonances, the dipole approximation is still applicable: λ � a, where
a is the characteristic size of the atomic system and λ is the wavelength of the X-ray
wave. Hence, as in the Sect. 11.1 we will take into account only electrical-dipole
transitions E1 as the main coupling transitions between the states with the main
quantum numbers n0 = 1, 2. It is supposed that the pump field is much smaller than
characteristic atomic fields: E0 � Eat ∼ Z3

a and ionization rates can be neglected.
So, theDirac equation in linearly polarizedX-ray radiationfieldwith unit polarization
vector ẑ, slowly varying amplitude E0, and carrier frequency ωX , reduces to the two
independent sets of four equations for each magnetic quantum number M = ±1/2,
whole moment j = 1/2, 3/2, and the state parity P = ±1. The latter is defined via
the orbital moment l. So, the resonant interaction of a X-ray coherent radiation field
with a hydrogen-like ion can be described by the 4 × 4 effective Hamiltonian:

Ĥ =

⎛
⎜⎜⎝

ε1 V12 V13 0
V ∗
12 ε2 0 V24

V ∗
13 0 ε3 V34

0 V ∗
24 V ∗

34 ε3

⎞
⎟⎟⎠ . (13.47)

Here we have assumed the following basis |η〉, where η = {n0, j, l, M} indicates the
set of quantum numbers as follow:

|1〉 ≡ |1, 1/2, 0,−1/2〉 , |2〉 ≡ |2, 3/2, 1,−1/2〉 ,
|3〉 ≡ |2, 1/2, 1,−1/2〉 , |4〉 ≡ |2, 1/2, 0,−1/2〉 .

The method of solving of the Dirac equation for Hamiltonian has been described
in detail in the Chap.11 and will not be repeated here. Hence, we will adopt the
wave function obtained in the Sect. 11.1. At the n -photon resonance and under the
generalized rotating wave approximation , the time-dependent wave function can be
expanded as:

|Ψ (t)〉 = e−iε1t
{[

b1(t)+ β1(t)
] ∣∣1′〉

+ [b2(t)+ β2(t)
]
exp

⎡
⎣−i

⎛
⎝nωX t −

t∫

0

d22Edt

⎞
⎠
⎤
⎦ ∣∣2′〉

http://dx.doi.org/10.1007/978-3-319-26384-7_11
http://dx.doi.org/10.1007/978-3-319-26384-7_11
http://dx.doi.org/10.1007/978-3-319-26384-7_11
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+ [b3(t)+ β3(t)
]
exp [−inωX t]

∣∣3′〉

+ [b4(t)+ β4(t)
]
exp

⎡
⎣−i

⎛
⎝nωX t −

t∫

0

d44Edt

⎞
⎠
⎤
⎦ ∣∣4′〉

⎫
⎬
⎭ , (13.48)

where bi (t) are the time-averaged probability amplitudes and βi (t) are rapidly oscil-
lating functions on the scale of the pumpwave period. The time-averaged amplitudes
bi (t) are:

bi =
4∑

j=1

Ci j exp(iλ j t), (13.49)

where Ci j are the constants of the integration determined by the initial conditions,
and the factors λ j are the solutions of the fourth-order characteristic equation:

∥∥∥∥∥∥∥∥

2Δ+ λ L(n)
12 0 L(n)

14

L(n)
21 Δ− δ + λ 0 Δ̃

0 0 −δ + λ 0
L(n)
41 Δ̃ 0 Δ− δ + λ

∥∥∥∥∥∥∥∥
= 0, (13.50)

with the terms:

L(n)
12 = (L(n)

21 )
∗ = i(−1)n+1 d12

d22
nωX Jn (ρ) , (13.51)

L(n)
14 = (L(n)

41 )
∗ = i

d12
d22

nωX Jn (ρ) , (13.52)

describing the time-averaged probability amplitudes, and

Δ = ωX

(
d12
d22

)2∑
k �=n

k2 J 2
k (ρ)

k − n
. (13.53)

Δ̃ = ωX

(
d12
d22

)2∑
k �=n

(−1)kk2 J 2
k (ρ)

k − n
. (13.54)

are dynamic Stark shifts . The argument of the ordinary Bessel function Jn (ρ) is
the dipole interaction energy in the units of the pump wave photon energy: ρ =
|d22E0/ωX |. For the relatively small nuclear charges, (αZa)

2 � 1 one can neglect
the terms O((αZa)

2) and obtain compact expressions in (13.50). In deriving these
equations, we have applied well-known expansion of exponent through the Bessel
functions with real arguments (11.19) and introduced the resonance detuning

http://dx.doi.org/10.1007/978-3-319-26384-7_11
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δ = ε1 + nω − ε. (13.55)

Assuming smooth turn-on of the pump wave, the relation between the rapidly and
slowly oscillating parts of the probability amplitudes can be written as:

β1(t) = b2(t)
d12
d22

∑
k �=n

(−1)kk Jk (ρ) ei(k−n)ωX t

k − n

+ b4(t)
d14
d44

∑
k �=n

k Jk (ρ) ei(k−n)ωX t

k − n
, (13.56)

β2(t) = −b1(t)
d∗
12

d22

∑
k �=n

(−1)kk Jk (ρ) e−i(k−n)ωX t

k − n
, (13.57)

β3(t) = O((αZa)
2), (13.58)

β4(t) = −b1(t)
d∗
14

d44

∑
k �=n

k Jk (ρ) e−i(k−n)ωX t

k − n
. (13.59)

The coherent part of the dipole spectrum in the Schroedinger picture has the form:

Sc =
∣∣∣∣∣∣

∞∫

−∞
dte−iωt 〈D(t)〉

∣∣∣∣∣∣

2

, (13.60)

where
〈D(t)〉 = 〈Ψ (t)| ẑ · d̂(0) |Ψ (t)〉 (13.61)

is the time-dependent expectation value of the dipole operator. With the help of
expressions (13.56)–(13.59), one can analytically calculate (13.48) for arbitrary ini-
tial atomic state and, therefore, the expectation value of the dipole operator (13.61).
Then the solution ( 13.49) for the system initially situated in the ground state, when
the dynamic Stark shifts are compensated by appropriate detuning, is:

b1(t) = e−i2Δt cos(ΩRt/2),

and

b3(t) = −b2(t) = e−i2Δt

√
2

sin(ΩRt/2). (13.62)
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Here

ΩR ≡
∣∣∣∣2

√
2

d12
d22

nωX Jn (ρ)

∣∣∣∣ (13.63)

is the generalized Rabi frequency at the n-photon resonance, which has a nonlinear
dependence on the amplitudes of the wave fields through the Bessel functions.

Replacing the probability amplitudes in (13.48) by the corresponding expressions
(13.62) and putting in (13.61), one can derive analytical expression for 〈D(t)〉. Here,
one can neglect the second-order terms of the rapidly oscillating parts of the proba-
bility amplitudes, since β2

l (t) ∼ (d12/d22)2 � 1. This leads to the compact analytic
formula:

〈D(t)〉 =
∑

k

[Sk sin((2k + 1)ωX t)+ Ck cos((2k + 1)ωX t)], (13.64)

where

Sk = √
2d12

n J2k+1+n (ρ)

2k + 1
sin(ΩRt), (13.65)

Ck = d2
12

d22

∑
s �=n

{
(−1)n−s − 1 − [3 + (−1)n−s] cos(ΩRt)

}

× s J2k+1+s(ρ)Js(ρ)

s − n
. (13.66)

The expression for 〈D(t)〉 shows that intensities of the harmonics are mainly deter-
mined by the behavior of theBessel function. Since the latter: Jm(ρ) steeply decreases
with the increase of an index m � ρ, the cutoff harmonic sc is determined from the
condition sc − n ∼ ρ. From this estimation for the cutoff harmonic follows that
the upper limit of the energy ωc, which can be effectively generated by the direct
n-photon excitation, is higher for the systems with a larger difference of energy in
the stationary states (ωc − (ε2 − ε1) ∼ d22E). The latter has quadratic dependence
on the nuclear charge Za .

For the large nuclear charges, the spontaneous decay of the excited states becomes
significant since the rates ∼Z4

a . Thus, in order to develop the microscopic theory of
the multiphoton interaction of hydrogen-like ions with a strong radiation field, we
need to solve the master equation for the density matrix:

dρ̂

dt
= i
(
ρ̂ Ĥ − Ĥ ρ̂

)+ Lρ̂, (13.67)
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where

ρ̂ ≡ ρμν; μ, ν = 1, 2, 3, 4 (13.68)

is the density matrix. The decay processes with the rates

γi = 4 (εi − ε1)
3

3c3
|z1i |2 ; i = 2, 3 (13.69)

have been incorporated into evolution equation (13.67) by the damping term:

Lρ̂ = −

⎛
⎜⎜⎝

−γ2ρ22 − γ3ρ33
γ2
2 ρ12

γ3
2 ρ13 0

γ2
2 ρ21 γ2ρ22

γ2+γ3
2 ρ23

γ2
2 ρ24

γ3
2 ρ31

γ2+γ3
2 ρ32 γ3ρ33

γ3
2 ρ34

0 γ2
2 ρ42

γ3
2 ρ43 0

⎞
⎟⎟⎠ . (13.70)

Here the operator Lρ̂ represents the norm-conserving spontaneous decay of the
population from the excited states |2〉 and |3〉 into the ground state |1〉. The decay
process |2〉 → |4〉 has been neglected due to the smallness of its rate compared
with the γ2,3. The time-dependent expectation value of the dipole operator now is
determined by the density matrix ρ̂:

< D̂(t) >= Tr
(
ρ̂ (t)

(
ẑ · d̂

))
= Re (ρ21z12 + ρ31z13 + ρ42z24 + ρ43z34) .

(13.71)
For comparison with the obtained analytical results, semi-infinite pulses with smooth
turn-on, in particular, with the hyperbolic tangent tanh(t/τr ) envelope is considered.
Here the characteristic rise time τr chosen to be τr = 20TX , where TX = 2π/ωX is
the X-ray wave period. For the turn-on/off of the wave field, the latter is described
by the envelope function E0 (t) = E0 f (t):

f (t) =
{
sin2 (π t/τ) ; 0 � t � τ

0; t < 0, t > τ
, (13.72)

where τ characterizes the pulse duration. It should be noted that the current X-ray
facilities, such as the Linac Coherent Light Source (LCLS), operate in the self-
amplified spontaneous emission (SASE) regime and produce pulses with the partial
temporal coherence and a spiky temporal profile. However, the rapid development
of X-ray sources and self-seeding techniques makes relevant of consideration of the
seeding pulses with the high temporal coherence.

For the numerical calculations, we assume that a hydrogen-like atomic system is
situated initially in the ground state (ρ11 (0) = 1). The time evolution of the system
(13.67) is found with the help of the standard fourth-order Runge–Kutta algorithm
and for estimation of the power spectra the fast Fourier transform algorithm of the
expectation value of the dipole operator (13.71) is used.
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Fig. 13.7 (Color online)
Coherent part of the
harmonic emission as a
function of the harmonic
order at resonant excitation
of hydrogen-like atomic
system with nuclear charge
Za = 20. a for a five-photon
resonance E0 = 280a.u.,
δn = 0.021ωX and b
ten-photon resonance
E0 = 550a.u. and
δn = 0.173ωX
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Fig. 13.8 Harmonic
emission rate as a function of
the harmonic order for short
X-ray pulses. a for
hydrogen-like atomic system
with nuclear charge Za = 30
and at five-photon resonance
(E0 = 1000a.u.,
ωX = 68.68a.u.), and b
Za = 40 and eight-photon
resonance (E0 = 3800a.u.
and ωX = 77.49a.u.)
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Here and below, for achieving the almost complete population transfer, the
dynamic Stark shift is compensated by the appropriate detuning. In Fig. 13.3, we plot
the dipole spectrum as a function of harmonic order for five (n = 5) and ten-photon
(n = 10) resonant excitation of the hydrogen-like atomic systemwith nuclear charge
Za = 20 for the semiinfinite pulse. The pump field strength and frequency are set
to be E0 = 280a.u. and ωX = 30.293a.u. for five-photon resonance, E0 = 550a.u.
and ωX = 15.349a.u. for ten-photon resonance. For better visibility, the spectrum
corresponding to analytical calculations has been slightly shifted to the left. As we
can see from Fig. 13.7, the analytical formula (13.64) is in good agreement with the
numerical result.

We have also performed calculations for a short X-ray pulse. Figure13.8 shows
the dipole spectrum as a function of the harmonic order at the multiphoton resonant
excitation of the hydrogen-like atomic systems (Za = 30 and Za = 40) with the
X-ray pulse of the duration τ = 100TX . As is seen from this figure, short laser pulses
broaden the harmonics spectra.

Let us make some estimations for the total radiation power of the ensemble of
the hydrogen-like atoms. Thus, for considered X-ray pump fields, the radiated wave-
lengths are much smaller than the transverse size of the interaction region. The latter
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is assumed to be limited due to the X-ray beam size with a waist of w0, which is
typicallyw0 
 10−4 cm for currently available X-ray FELs. The longitudinal size of
the interaction region is determined by Rayleigh length L = πw2

0/λ, where λ is the
pump X-ray wavelength. Thus, we have a cigar-shaped active medium (L � w0),
and the coherent radiation will occur primarily along the propagation axis of the
pump laser beam and will cover only a tiny solid angle ∼ λ2s/

(
πw2

0

)
(λs is the

sth-harmonic wavelength).
Then, for the radiation power, we have

Ps = P (1)
s (VN0)

2 μs,

where N0 is the atomic density, P (1)
s = 4s4ω4

X |ds |2 /3c3 is the single-atom total
radiation power with the Fourier component of the dipole moment ds . The inter-
ference factor μs is defined by the shape of an active medium. For the cylindrical
system it can be estimated as μs = 3λ2s/

(
8π2w2

0

)
. In particular, for the setup of

Fig. 13.8a λ = 0.664 nm, and the interaction volume becomes V = πw2
0L 


1. 5× 10−8 cm3. For the 5th harmonic μ5 
 6.7× 10−10 and P (1)
5 
 1.3× 10−2 W.

Thus, for the atomic density N0 
 1018 cm−3 the total power at the hard X-ray
frequencies ∼10keV is estimated to be P10 keV 
 2 × 109 W .

13.5 Effective Hamiltonian for Collective Two-Photon
Decay of Positronium Atoms

The singlet (11S0) state of positronium (Ps), so called para-positronium (p-Ps) ,
mainly decays into two photons with the lifetime of 125 ps, while the triplet (13S1)
state of Ps, so called ortho-positronium (o-Ps) , mainly decays into three photons
with a relatively long lifetime of 142 ns. As far as o-Ps have relatively long lifetime,
in laboratory-based experiment it will be more suitable to obtain a Bose–Einstein
condensate (BEC) for o-Ps. The use of spin-polarized positrons will eventually lead
to a gas of spin-polarized Ps, which does not undergo the mutual spin-conversion
reaction. Thus, in the ensemble of Ps atoms rapid annihilation of the singlet states
and collisions among the various triplet substates will cause the Ps atoms to become
completely polarized into a pure m = 1 triplet state. Then to initiate two-photon
annihilation, one should induce the triplet to the singlet transition. The latter can be
realized via the ground state hyperfine transition either by resonant sub-THz radiation
(0.2 THz) or strong electromagnetic field.

We begin our study with construction of the Hamiltonian which governs the
quantum dynamics of considered process. Here and below, except where it is stated
otherwise, we employ natural units (c = � = 1).

To obtain dynamic equations, we will arise from the second quantized formalism.
For this purpose let us introduce creation and annihilation operators for p-Ps and
o-Ps. The operator describing creation of p-Ps in the internal ground state with the
total center-of-mass momentum p can be written as



13.5 Effective Hamiltonian for Collective Two-Photon Decay of Positronium Atoms 447

Π̂+
p = 1√

2V

∫
dΦp′ϕ

(
p′ − p

2

) [
â+

p′,s+ b̂+
p−p′,s− − â+

p′,s− b̂+
p−p′,s+

]
, (13.73)

where ϕ (p) is the Fourier transform of the ground-state wave function:

ϕ (p) =
8
√
πa3

0(
1 + p2a2

0

)2 , (13.74)

a0 = 2/(mα0) is the Bohr radius for Ps, m is the electron mass, and α0 is the fine
structure constant. For the phase-space integration, we have introduced the notation
dΦq = Vd3q/ (2π)3 (V is the quantization volume). In (13.73) â+

p,s and b̂+
p,s are the

creation operators for electrons and positrons, respectively. The quantum number
s describes the spin state of the particles. The operators â+

p,s and b̂+
p,s satisfy the

fermionic anticommutation rules

{
âp,s, â+

p′,s ′

}
= (2π)3

V δ
(
p − p′) δss ′ . (13.75)

The commutator for the p-Ps operator is

Π̂pΠ̂
+
p′ − Π̂+

p′ Π̂p 
 (2π)3

V δ
(
p − p′)− O

(
a3
0

N0

V
)
. (13.76)

This is a Bosonic commutation relation for a relatively small number of p-Ps atoms
N , i.e., at N/V � a−3

0 ∼ 1024 cm−3 . However, at high densities one should take
into account the deviations from the Bosonic nature. The operator describing the
creation of o-Ps in the pure m = 1 triplet state can be written as

Ξ̂+
p = 1√

2V

∫
dΦp′ϕ

(
p′ − p

2

)
â+

p′,s+ b̂+
p−p′,s+ . (13.77)

The total Hamiltonian consists of four parts:

Ĥ = ĤPs + Ĥph + Ĥo→p + Ĥ2γ . (13.78)

Here the first part is the Hamiltonian of free Ps atoms of two species:

ĤPs =
∫

dΦpEΠ (p) Π̂+
p Π̂p +

∫
dΦpEΞ (p) Ξ̂+

p Ξ̂p, (13.79)

where

EΠ (p) =
√(

2m + ES0

)2 + p2, EΞ (p) =
√(

2m + ES1

)2 + p2, (13.80)
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are the total energies of the p-Ps and o-Ps with themomentum p of the center-of-mass
motion, and ES0 , ES1 are the binding energies, respectively. The origin of the energy
difference between the ground states of the o-Ps and p-Ps (hyperfine splitting) is the
spin-spin interaction. In the lowest order of α0 , the latter is

ES1 − ES0 ≡ εhfs = 7

12
mα4

0 
 0.85 meV. (13.81)

The second term in (13.78) is the Hamiltonian of the free photons

Ĥph =
∑
ζ

∫
dΦkω (k) ĉ+

k,ζ ĉk,ζ , (13.82)

where ĉk,ζ (̂c
+
k,ζ ) is the annihilation (creation) operator of the photonwith themomen-

tum

k = ω(sin ϑ cosϕ, sin ϑ sin ϕ, cosϑ). (13.83)

As two independent basis vectors of the polarization, we have chosen

ε(ζ ) = 1√
2

{ζ cosϑ cosϕ + i sin ϕ, ζ cosϑ sin ϕ − i cosϕ,−ζ sin ϑ} , (13.84)

which corresponds to the certain helicity (ζ = ±1) of photons:

ε(ζ )ε∗(ζ ′) = δζζ ′ ; kε(ζ ) = 0.

The third part in (13.78) is the Hamiltonian that is responsible for the triplet to the
singlet transition:

Ĥo→p =
∫

dΦp
(
Λ(t) Π̂+

p Ξ̂p +Λ∗ (t) Ξ̂+
p Π̂p

)
(13.85)

Here it is assumed that o-Ps =⇒ p-Ps transition is recoilless (the generalization of
obtained results for the transition with momentum transfer is straightforward) and

Λ(t) = Λ0eiω f t ; Λ0 = 1

2
μB B0, (13.86)

where Λ0 is the amplitude of the spin-magnetic field interaction, μB = e/2m =
5.8×10−5 eV × T−1 is the Bohr magneton, B0 is the amplitude of the applied mag-
netic field, and ω f is the frequency of the applied wave field. The last term in (13.78)
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Ĥ2γ =
∑
ζ,ζ ′

∫
dΦk

∫
dΦp

[
Mζ,ζ ′ (k,p) ĉ+

k,ζ ĉ+
p−k,ζ ′Π̂p

+ M∗
ζ,ζ ′ (k,p) Π̂+

p ĉp−k,ζ ′ ĉk,ζ
]

(13.87)

is the Hamiltonian of the two-photon decay of a p-Ps. The amplitudeMζ,ζ ′ (k,p) for
the annihilation of a p-Ps into the two photons are given by the Feynman diagrams
that can be derived from the amplitude for annihilation of a free electron–positron
pair with the momenta p− and p − p− into the two photons with the polarizations
ε(ζ ), ε(ζ ′) and momenta k,k′ = p − k. Taking into account the definition (13.73), we
obtain

Mζ,ζ ′ (k,p) = πα0

V3/2

∫
dΦp−ϕ

(
p− − p

2

)
√
2ωω′ε

(
p − p−

)
ε (p−)

×
{
v̄(s+)(p − p−)

[
/ε∗
(ζ ′)

1

/p− − /k − m
/ε∗
(ζ )

+ε∗
(ζ )

1

/p− − /k ′ − m
/ε∗
(ζ ′)

]
u(s−)(p−)− (s+ ⇔ s−)

}
, (13.88)

where /a ≡ aμγ μ, γ μ ≡ {γ 0, γ 1, γ 2, γ 3
}
—are the Dirac matrices, ε (p) is given by

the free electron dispersion relation, u(α)(p) and v(α)(p) are the bispinor amplitudes
of a free Dirac particle corresponding to electron and positron, respectively.

We consider dilute system of Ps atoms when na3
t � 1, and interaction between

the Ps atoms is neglected. For the considered process of γ -ray annihilation decay,
this is justified for the uniform system of Ps atoms and for the condensate confined
by a box with sufficiently (infinitely) hard walls (see Sect. 13.8).

13.6 Spontaneous Two-Photon Decay of a Para-Positronium

Before considering the collective annihilation decay of the p-Ps, it will be useful
to consider spontaneous decay of a single p-Ps from the quantum dynamic point of
view. For this propose, we need the Hamiltonian (13.78), without Ĥo→p and o-Ps
part in (13.79):

Ĥ =
∫

dΦpEΠ (p) Π̂+
p Π̂p + Ĥph + Ĥ2γ . (13.89)

For the spontaneous decay, we consider initial condition in which the photonic field
starts in the vacuum state, while p-Ps field is prepared in a Fock state with a one
p-Ps in the rest (p = 0). From (13.73) follows that such state can be represented as
|Ψ (0)〉 = |0ph〉 ⊗ Π̂+

0 |0Ps〉. Then the state vector for times t > 0 is just given by the
expansion
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|Ψ 〉 = C0 (t) e−iEΠ (0)t |0ph〉 ⊗ Π̂+
0 |0Ps〉 +

∑
α,α′

∫
dΦkdΦk′

× Ck,α;k′,α′ (t) e−i(ω+ω′)t ĉ+
k,α ĉ+

k′,α′ |0ph〉 ⊗ |0Ps〉, (13.90)

where Ck1,α1;k2,α2 (t) is the probability amplitude for the photonic field to be in
the two-photon state, while p-Ps field -in the vacuum state. From the Schrödinger
equation one can obtain evolution equations:

i
∂Ck,α;k′,α′

∂t
= Mα,α′ (k, 0)+ Mα′,α

(
k′, 0

)

2

× C0ei(2ω−EΠ (0))t (2π)
3

V δ
(
k + k′) , (13.91)

i
∂C0

∂t
= 2

∑
ζ,ζ ′

∫
dΦkM∗

ζ,ζ ′ (k, 0) ei(EΠ(0)−2ω)t Ck,ζ ;−k,ζ ′ . (13.92)

Here we have taken into account the bosonic nature of photons: Ck1,α1;k2,α2 =
Ck2,α2;k1,α1 .

The calculation of the amplitude Mζ,ζ ′ (k, 0) is substantially simplified if one
takes into account nonrelativistic nature of the Ps internal degrees of freedom. As
follows from (13.74), the wave function ϕ (p) takes sizeable values for momenta p
� 1/a0 ∼ mα0 � m. Meanwhile, the momentum scale for positronium annihilation
is of the order of m. This corresponds to the well-known fact that positronium decay
is only sensitive to the value of the wave function at zero separation of the electron
and positron:

φ (0) = 1

V
∫

dΦp−ϕ (p−) =
√

m3α3
0

8π
. (13.93)

Hence, one can make approximation for the amplitude Mζ,ζ ′ (k, 0) as follow:

Mζ,ζ ′ (k, 0) = πα0√
2Vm2

(
1

V
∫

dΦp−ϕ (p−)
)

×
{
v̄(s+)(0)

[
/ε∗
(ζ ′)

1

/p− − /k − m
/ε∗
(ζ )

+ /ε∗
(ζ )

1

/p− − /k ′ − m
/ε∗
(ζ ′)

]
u(s−)(0)− (s+ ⇔ s−)

}
. (13.94)

In (13.94) p− = {m, 0, 0, 0}, k = {
m,mk̂

}
, and k ′ = {

m,−mk̂
}
. After long but

straightforward calculations we arrive at
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Mζ,ζ ′ (k, 0) = i
4πα0φ (0)

m2
√
2V k̂· [ε∗

(ζ ) × ε∗
(ζ ′)
]
. (13.95)

Then, taking into account (13.83), (13.84), and (13.93) we have

Mζ,ζ ′ (k, 0) = −
√
πα5

0

mV ζ δζ,ζ ′ . (13.96)

According to perturbation theory we take C0 (t) 
 1, and for the amplitude
Ck,α;k′,α′ (t → ∞) from (13.91) we obtain

Ck,α;k′,α′ = i

√
πα5

0

mV
(2π)4

V αδα,α′δ
(
k + k′) δ (2ω (k)− EΠ (0)) . (13.97)

Then returning to the expansion (13.90), one can write

|Ψ 〉 
 C0e−iEΠ (0)t |0ph〉 ⊗ Π̂+
0 |0Ps〉 + i

√
Vm3α5

0

8π3/2
|0Ps〉

⊗
∫

dk̂e−2imt
[̂
c+

k,+ĉ+
−k,+|0ph〉 − ĉ+

k,−ĉ+
−k,−|0ph〉

]
. (13.98)

As is seen from (13.96), the two-photon annihilation amplitude does not depend on k,
as a result the two-photon state (13.98) resulting from the p-Ps decay is a maximally
entangled (over the helicity) state of the two oppositely propagating photons.

For the decay rate of the process: p-Ps → 2γ one can write

Γ = 1

2

∑
α1,α2

∫
dΦk1dΦk2

∣∣Ck1,α1;k2,α2

∣∣2
T

,

where T is the interaction time and the symmetry factor 1/2! takes into account that
in the final state there are two identical photons. With the help of (13.97) we obtain
the well-known result:

Γ = mα5
0

2
. (13.99)
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13.7 Gamma-Ray Laser Based on the Collective Decay
of Positronium Atoms in Bose–Einstein Condensate

For analysis of the collective two-photon decay , we will use the Heisenberg repre-
sentation , where the evolution operators are given by the following equation :

i
∂ L̂

∂t
= [L̂, Ĥ

]
, (13.100)

and the expectation values are determined by the initial wave function Ψ0:

〈
L̂
〉 = 〈Ψ0|L̂|Ψ0〉.

Wewill assume that the photonic field begins in the vacuum state, while Ps field is in
the Bose–Einstein condensate state. Taking into account, Hamiltonian (13.78), from
(13.100), we obtain a set of equations:

i
∂ ĉk,ζ

∂t
= ω (k) ĉk,ζ

+
∑
ζ1

∫
dΦp

{Mζ,ζ1 (k,p)+ Mζ1,ζ (p − k,p)
}

ĉ+
p−k,ζ1Π̂p, (13.101)

i
∂Π̂p

∂t
= EΠ (p) Π̂p +Λ(t) Ξ̂p +

∑
ζ1,ζ2

∫
dΦkM∗

ζ1,ζ2
(k,p) ĉp−k,ζ2 ĉk,ζ1 , (13.102)

i
∂Ξ̂p

∂t
= EΞ (p) Ξ̂p +Λ∗ (t) Π̂p. (13.103)

These equations are a nonlinear set of equations with the photonic and Ps fields’
operators defined self-consistently. As we are interested in the quantum dynamics of
the considered system in the presence of instabilities, we can decouple the photonic
and Ps fields treating the dynamics of a photonic field. Passing to the interaction
picture:

Ξ̂p = Θ̂pe−iEΞ (p)t , Π̂p = �̂pe−i(EΞ (p)−ω f )t , ĉk,ζ = âk,ζ e−iω(k)t , (13.104)

for the new operators âk,ζ , �̂p, and Θ̂p, we obtain

i
∂ âk,ζ

∂t
=
∑
ζ1

∫
dΦp

{Mζ,ζ1 (k,p)+ Mζ1,ζ (p − k,p)
}

× â+
p−k,ζ1�̂pei(ω(k)+ω(p−k)−EΞ (p)+ω f )t , (13.105)
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i
∂�̂p

∂t
+Δp�̂p = Λ0Θ̂p +

∑
ζ1,ζ2

∫
dΦkM∗

ζ1,ζ2
(k,p)

× âp−k,ζ2 âk,ζ1e
−i(ω(k)+ω(p−k)−EΞ (p)+ω f )t , (13.106)

i
∂Θ̂p

∂t
= Λ0�̂p, (13.107)

where

Δp = EΞ (p)− ω f − EΠ (p)

is the resonance detuning for the triplet to the singlet transition.We assume that the Ps
atoms are initially in the triplet state (m = 1). For driving triplet to singlet transition,
we will consider both resonant and nonresonant interactions. At the resonant case∣∣Δp
∣∣2 � Λ2

0 and in the ultrafast excitation regime (smaller than the lifetime of the
o-Ps), when relaxation processes are not relevant, the Rabi oscillation provides a
direct control of the states’ populations. Thus, with the π -pulse

∫
Λ0dt = π the

population can be transferred from the o-Ps to the p-Ps state and instead of (13.106)
and (13.107) one can consider the equation

i
∂�̂p

∂t
=
∑
ζ1,ζ2

∫
dΦkM∗

ζ1,ζ2
(k,p) âp−k,ζ2 âk,ζ1e

i(EΠ(p)−ω(k)−ω(p−k))t . (13.108)

At the nonresonant case
∣∣Δp
∣∣2 � Λ2

0, the pump electromagnetic field is sufficiently
far detuned from the resonance for the p-Ps state population to remain small at all
times. The intermediate level can then be eliminated in the standard way:

�̂p 
 Λ0

Δp
Θ̂p,

and from (13.105), (13.106), and (13.107) we get

i
∂ âk,ζ

∂t
=
∑
ζ ′

∫
dΦp

(Mζ,ζ ′ (k,p)+ Mζ ′,ζ (p − k,p)
)

× â+
p−k,ζ ′Θ̂p

Λ0

Δp
ei(ω(k)+ω(p−k)−EΞ (p)+ω f )t , (13.109)

i
∂Θ̂p

∂t
= Λ0

Δp

∑
ζ,ζ ′

∫
dΦkM∗

ζ,ζ ′ (k,p)

× âp−k,ζ ′ âk,ζ ei(EΞ (p)−ω f −ω(k)−ω(p−k))t . (13.110)
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To decouple the photonic and Ps fields, we just use the Bogoloubov approxima-
tion . If a lowest energy single particle state has a macroscopic occupation, we can
separate the field operators (�̂p, Θ̂p) into the condensate term and the noncondensate
components, i.e., the operator �̂p in (13.105) or Θ̂p in (13.109) is replaced by the
c-number as follows:

�̂p = √
n0
(2π)3

V1/2
δ (p) , (13.111)

where n0 is the number density of atoms in the condensate. Making Bogoloubov
approximation, we arrive at a finite set of the Heisenberg equations

i
∂ âk,ζ

∂t
= χζ (k) â+

−k,ζ eiδ(k)t , (13.112)

i
∂ â+

−k,ζ

∂t
= −χζ (k) âk,ζ e−iδ(k)t , (13.113)

which couples the modes âk,ζ to the modes â−k,ζ with the coupling constant

χζ (k) = 2
√

nef f V1/2Mζ,ζ (k, 0) . (13.114)

Here

δ (k) = 2ω − EΠ (0) 
 2 (ω − m∗) (13.115)

is the resonance detuning for the two-photon annihilation, m∗ is the half of the Ps
mass, which is the electron (positron) mass diminished by the Coulomb attraction:
m∗ = m + ES0/2 (ES0 = −6.8 eV). For the joint consideration of resonant and
nonresonant cases, we have introduced the effective BEC density nef f = #n0, where
the factor # = 1 for the resonant triggering and # = Λ2

0/Δ
2
p for the off-resonant one.

Equations (13.112) and (13.113) are a set of linearly coupled operator equations
that can be solved by the method of characteristics whose eigenfrequencies define
the temporal dynamics of the photonic field. The existence of an eigenfrequency
with an imaginary part would indicate the onset of instability at which the initial
spontaneously emitted entangled photon pairs are amplified leading to an exponential
buildup of amacroscopicmode population. Solving (13.112) and (13.113), we obtain

âk,ζ (t) = ei δ(k)2 t
[̂
ak,ζ (0) cos λt

+ 1

iλ

{
χζ (k) â+

−k,ζ (0)+ δ (k)
2

âk,ζ (0)

}
sin λt

]
, (13.116)
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where

λ =
√
δ2 (k)
4

− χ2
ζ (k). (13.117)

The condition for the exponential gain is therefore:

∣∣χζ (k)
∣∣ > |ω − m∗| ,

leading to the exponential growth of the modes in the narrow interval of frequencies

m∗ − ∣∣χζ (k)
∣∣ < ω < m∗ + ∣∣χζ (k)

∣∣ . (13.118)

For the interval (13.118), we find that the expectation value of the mode occupation
grows exponentially

Nk,ζ (t) = 〈0ph |̂a+
k,ζ (t) âk,ζ (t) |0ph〉 = χ2

ζ (k)

4χ2
ζ (k)− δ2 (k)

×
(

e2
√
χ2
ζ (k)− δ2(k)

4 t + e−2
√
χ2
ζ (k)− δ2(k)

4 t − 2

)
. (13.119)

For the central frequency (δ (k) = 0), the exponential growth rate is

G = 2
∣∣χζ (k)

∣∣ . (13.120)

Taking into account (13.114) and derived expression (13.96) for the decay amplitude,
we obtain compact expression for the exponential growth rate

G =
√
16πnef f α

5
0

m
. (13.121)

We have solved the issue considering uniform BEC without boundary conditions
and, as a consequence, according to (13.121) and (13.119), we have isotropic expo-
nential gain. Due to the BEC coherence, here we have an absolute instability, i.e., the
number of photons grows in every point within a BEC. As is seen from (13.121), the
gain is scaled as

√
nef f , which means that one might observe the start-up of an anni-

hilation γ -ray laser at lower densities than would be the case for a gain proportional
to the density. Indeed, the Dirac rate can be written as

G0 = 2π

m2
nef f . (13.122)
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As is seen from (13.121) and (13.122), the gain G is larger than the Dirac rate G0

up to densities 4. 53 × 1020 cm−3. Besides, as is seen from (13.119), the generation
process starts without initial seed.

For laser-like action, i.e., for the directional radiation, we should take an elon-
gated shape of the BEC. In this case, boundary conditions can be incorporated into
the derived equation (13.112) and (13.113) by introducing mode damping. The latter
is simply due to the propagation of the photonic field, which escapes from the active
medium and is inversely proportional to the transit time of a photon in the active
medium. This transit time strictly depends on the direction. The latter is equivalent
to the finite interaction time strictly depending on the shape of the BEC. For con-
creteness, we consider a cigar-shaped BEC of width Lw and length L (L � Lw). It is
assumed that initially we have a BEC of spin-polarized o-Ps atoms. Then the applied
electromagnetic field triggers collective annihilation of the BEC. Due to the intrinsic
instability of recoilless two-photon decay and shape of the condensate, the initial
spontaneously emitted entangled photon pairs are amplified leading to an exponen-
tial buildup of a macroscopic population into the end-fire-modes. In this case, due to
an azimuthal symmetry for effective interaction time, one can write

tint (ϑ, χ, L) = L√
cos2 ϑ + χ2 sin2 ϑ

, (13.123)

where χ = L/Lw � 1. In this case, for the photon number density in the frequency
interval (13.118)

nγ 

∑
ζ

∫
d3k

(2π)3
Nk,ζ (tint (ϑ, χ, L)) (13.124)

we have

nγ 
 G

2π2λ2c

1∫

0

dx

π∫

0

dϑ
sin ϑ

1 − x2
sinh2

( √
1 − x2Λ

2
√
cos2 ϑ + χ2 sin2 ϑ

)
(13.125)

where λc = �/mc is the electron Compton wavelength and the dimensionless inter-
action parameter Λ = GL defines the amplification regime. In Fig. 13.9, we show
the density of generated γ -ray photons nγ versus the effective density of p-Ps atoms
in a BEC for the given length L = 1.5 cm and various widths. The ratio χ = L/Lw

defines the angular width of the end-fire-modes. For the densities, when Λ > 1,
we have high gain regime and the radiation is concentrated in the end-fire-modes. In
Fig. 13.10, the angular distribution of the density of generated γ -ray photons dnγ /dϑ
for the given interaction length L = 1.5 cm and density 1021 cm−3 is shown. As is
seen, due to the intrinsic instability of the two-photon collective decay of BEC and its
shape the initial spontaneously emitted entangled photon pairs are amplified, leading
to an exponential buildup of amacroscopic population into the end-fire-modes. Since



13.7 Gamma-Ray Laser Based on the Collective Decay of Positronium … 457

Fig. 13.9 In the logarithmic
scale it is shown the density
of generated γ -ray photons
versus effective density of
p-Ps atoms in BEC for the
given interaction length
L = 1.5 cm and various
widths: Lw = L/χ

1012

1013

1014

1015

1016

1017

1018

1019

1020

10
18

10
19

10
20

10
21

n
γ 

[c
m

-3
]

neff [cm-3]

χ=1000
χ=2000
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distribution of the density of
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we have not considered BEC depletion, the obtained solution (13.125) is applicable
for the time scales when the number of photons Nγ is much smaller than the total
number of Ps atoms (N ): Nγ � N .

Let us consider the parameters required for an efficient γ -ray laser. The BEC
occurs below a critical temperature, which for a uniform gas of Ps atoms with the
density n0 is given by the formula

Tc 
 1.66
�
2

mkB
n2/3
0 , (13.126)

where kB is the Boltzmann constant. The maximal amplification length is taken to
be Lm 
 cτp 
 3.75 cm. For an exponential amplification, we need GLm > 1,
which defines minimal densities ∼ 2 × 1018 cm−3 for realization of the γ -ray laser.
As a maximal density, we take n0 
 1/

(
4a3

s

) 
 2.8 × 1021 cm−3. With the further
increase of the density, the deviation from the bosonic nature of Ps atoms becomes
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considerable (see (13.76)). At high densities, the bound states of electron-positron
pairs do not survive making electron-positron plasma. It should be noted that for
the BEC realized in the trap with the potential that varies relatively smoothly in the
space, the critical temperature and the number of Ps atoms in the condensate strongly
defined by the parameters of the trap (see next paragraph).

13.8 The Influence of the Confinement and Interaction
Between the Positronium Atoms on the γ -Ray
Generation Process

Although we consider dilute system of Ps atoms when na3
t � 1, for the trapped

atoms the interaction can have a strong influence on the ground state of the BEC
and on the critical temperature of condensation. In this case, the starting point is the
Gross–Pitaevskii equation for the order parameter of an inhomogeneous BEC well
below the critical temperature. TheGross–Pitaevskii equation for the order parameter
Ψ (r) of a BEC has the well-known form:

(
− �

2

2ma
Δ+ Vtr (r)+ 4π�

2at

ma
|Ψ (r)|2

)
Ψ (r) = μΨ (r) , (13.127)

where ma = 2m∗ is the Ps mass, Vtr (r) is the trap confining potential. The nonlinear
term takes into account interaction between the Ps atoms parametrized by the s-wave
scattering length at . The chemical potentialμ is fixed by the normalization condition:

∫
n (r) dr = N ; n (r) = |Ψ (r)|2 , (13.128)

where n (r) is the density of the atoms with the total number N . When the number
of atoms is large and interaction is repulsive (at > 0), an accurate expression for the
ground-state Ψ (r) may be obtained within the Thomas–Fermi approximation. The
latter is valid when the dimensionless parameter Nat/a is very large. Here a is the
characteristic length of the confining potential. In this case, the kinetic energy term
∼Δ can be neglected in the Gross–Pitaevskii equation (13.127), and we have

n (r) = ma

4π�2at
(μ− Vtr (r)) (13.129)

in the region where the right-hand side of (13.129) is positive and n (r) = 0 oth-
erwise. The boundary of the BEC cloud is given by the relation μ = Vtr (r). The
Thomas–Fermi approach fails near the edge of the cloud when kinetic energy term
shouldbe taken into account. In this case, the characteristic length is the healing length
lh = 1/

√
8πnat , which describes the distance over which the density tends to its bulk

value from the boundary. For the considered densities n = 1018cm−3−1021cm−3, the
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healing length lh 
 10−6 − 5× 10−8cm � L , Lw. As a consequence, the boundary
effects can be neglected. Thus, for the condensate confined by a box with suffi-
ciently (infinitely) hard walls the above consideration is valid and one can consider
a homogeneous condensate with the density

n (r) = ma

4π�2at
μ = n0. (13.130)

For a confining potential that varies relatively smoothly in the space, the inhomo-
geneous nature of BEC should be taken into account. For an anisotropic three-
dimensional harmonic-oscillator potential Vtr (r) given by

Vtr (r) = 1

2
maω

2
0

(
x2 + y2 + z2

χ2

)
(13.131)

the solution (13.129) becomes

n (x, y, z) = nmax

[
1 − 1

R2
0

(
x2 + y2 + z2

χ2

)]
, (13.132)

with

nmax = 152/5

8πa2at

(
Nat

a

)2/5

; R0 = 151/5

χ1/3

(
Nat

a

)1/5

a. (13.133)

where a = √
�/maω and ω = ω0χ

−1/3 is the geometrical mean frequency of an
anisotropic oscillator. As far as γ -ray wavelength ∼ λc � L , Lw, we can use the
expression (13.121) for the exponential growth rate with the density defined through
(13.132):

G (x, y, z) =
√
16π#n (x, y, z) α5

0

m
. (13.134)

Then, the dimensionless interaction parameter in the exponent of (13.125) for the
end-fire-modes can be written as

Λ =
χR0∫

−χR0

G (0, 0, z) dz = χπR0

2

√
16π#nmaxα

5
0

m
. (13.135)

As is seen from (13.135), the effective interaction length is χπR0/2. Taking into
account the interaction of Ps atoms, the critical temperature for BEC in the trap
(13.131) is defined as:

Tc 
 0.94
�ω

kB
N 1/3

(
1 − 1.33

at

a
N 1/6

)
. (13.136)



460 13 High Harmonic Generation and Coherent X-Ray–γ -Ray Radiation . . .

Thus, for a system of 1012 Ps atoms, interacting with a scattering length at 
 1.6 ×
10−8 cm,which is trapped in an anisotropic harmonic potential fixed by a 
 10−5 cm
with the anisotropy parameter χ = 2000 the dimensionless interaction parameter
will be Λ 
 1.12. At that the critical temperature, (13.136) will be Tc 
 330oK .
Note that the γ -ray line broadening due to the uncertainty in the momentum of Ps
atoms confined in a trap δω ∼ �/

(
2ma R2

0

)
is considerably smaller than the rate G.
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Chapter 14
“Relativistic” Nonlinear Electromagnetic
Processes in Graphene

Abstract As a condensed matter with unique nonlinear electromagnetic properties
and, moreover, of “relativistic” nature of the interaction with strong electromag-
netic radiation fields, in this chapter we will consider induced multiphoton coherent
processes in graphene. The graphene—a single sheet of carbon atoms in a honeycomb
lattice—possesseswith such physical characteristics (quasiparticle states in graphene
behave like massless “relativistic” Dirac fermions and in the interaction parameter
instead of the light speed the much less Fermi velocity stands for) due to which the
multiphoton effects at the interactionwith external fields occur at incomparable small
intensities than that are necessary in the common condensed matter with the bound–
bound transitions, or free–free ones in case of charged particle beams. Thus, the
nonlinear excitation of the Dirac sea and formation of multiphoton Rabi oscillations
in graphene occur at billion time smaller intensities that are required for excitation of
the electron–positron vacuum and, in general, for revealing of nonlinear effects in the
ordinary materials. Owing to the mentioned unique property of graphene, the micro-
scopic theory of such physical systems, in general, and specifically the description
of electromagnetic processes in graphene-like nanostructures are succeeded on the
basis of the “relativistic” Dirac theory, thereby connecting the microscopic theory of
the condensedmatter physics with the quantum electrodynamics. The significance of
graphene nonlinear electromagnetic properties and, in general, the role of graphene
in contemporary physics are difficult to exaggerate. Besides the various applications
in nanoelectronics–nanooptics, the graphene physics opens wide research field uni-
fying low-energy condensed matter physics and quantum electrodynamics. Many
fundamental nonlinear QED processes, specifically, electron–positron pair produc-
tion in superstrong laser fields of ultrarelativistic intensities, observation of which
is problematic yet even in the current superintense laser fields, have their counter-
parts in graphene where considerably weaker electromagnetic fields are required for
realization of production of the antimatter. In this connection one can note Klein
paradox, Schwinger mechanism, and Zitterbewegung for particle-hole excitation, as
well as diverse physical and applied effects based on Zitterbewegung, e.g., minimal
conductivity at vanishing carrier concentration, etc. At the particle-hole annihilation
from that induced by pump field coherent superposition states of quasiparticles in
a graphene, the wave mixing and high harmonics generation processes occur with
great efficiency. Due to the massless energy spectrum, the Compton wavelength for
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graphene quasiparticle tends to infinity. On the other hand, in the QED the Compton
wavelength is characteristic length for particle–antiparticle pair creation and annihi-
lation. So, at the interaction of an electromagnetic field with an intrinsic graphene,
there is no quasiclassical limit, since no matter how weak the applied field is and
how small the photon energy is, the particle-hole pairs will be created during the
whole interaction process—at the arbitrary distances. One can change the topology
of the Fermi surface in the low-energy region and many important features of a
graphene using the multilayer graphene of diverse structure and geometry. The mul-
tilayer graphene is of great interest, since its electronic states are considerably richer
than that of a monolayer graphene. For example, in case of a bilayer graphene, the
interlayer coupling between the two graphene sheets changes the monolayer’s Dirac
cone inducing a trigonal warping on the band dispersion and changing the topology
of the Fermi surface. Thus, bilayer graphene (AB-stacked) may have better potential
than a single-layer graphene for photonic applications due to its anisotropic band
structure and widely tunable bandgap. For the intrinsic bilayer graphene trigonal
warping effects in the energy spectrum are considerable for the low-energy exci-
tations E � 10 meV. Hence, one can expect essential enhancement of nonlinear
electromagnetic response of a bilayer graphene compared with a monolayer one in
the THz domain where high-power THz generators and frequency multipliers are of
special interest for THz science.

14.1 Effective “Relativistic” Hamiltonian for Graphene
Quasiparticles

Let us, before the consideration of a graphene interaction with an external electro-
magnetic field, represent the effective Hamiltonian in the tight-binding approxima-
tion and dispersion law for a graphene applicable in the full Brillouin zone of a
hexagonal nanostructure. In the vicinity of the K points of the Brillouin zone this
Hamiltonian with great accuracy turns into the “relativistic” Dirac Hamiltonian of
a massless fermion. Hence, we will describe here the microscopic theory and the
stated electromagnetic problems in graphene on the base of the “relativistic” Dirac
theory.

The honeycomb lattice of a graphene is shown in Fig. 14.1. The vectors which
connect the nearest-neighbor carbon atoms are

δ1 = a

2

(√
3̂x + ŷ

)
, δ2 = a

2

(
−√

3̂x + ŷ
)
, δ3 = −aŷ. (14.1)

Triangular Bravais lattice is spanned by the basis vectors

a1 =
√
3a

2

(
x̂ + √

3̂y
)

, a2 =
√
3a

2

(
−x̂ + √

3̂y
)

. (14.2)
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(a) (b)

Fig. 14.1 a Graphene honeycomb lattice. The vectors δ1, δ2, and δ3 connect nearest-neighbor
carbon atoms, separated by a distance a = 0.142 nm. As a basis vectors of the triangular Bravais
lattice we have choosen a1 = δ1 − δ3 and a2 = δ2 − δ3. The shaded region represents conventional
unit cell with two atoms. b Reciprocal lattice of the triangular lattice. Its basis vectors are b1 and
b2. The reciprocal lattice unit cell is shown as a shaded rhombic area, with its inequivalent K+ and
K− points. It is also shown central point Γ of the Brillouin zone and M point (van Hove singularity
point)

The reciprocal lattice unit cell is a rhombus formed by two vectors

b1 = 2π√
3a

(
x̂ + ŷ√

3

)
, b2 = 2π√

3a

(
x̂ − ŷ√

3

)
. (14.3)

Themodules of the basis vectors yield the lattice spacings: a = √
3a and kb = 4π/3a

in conventional and reciprocal space, respectively. The important crystallographic
points which are crucial for graphene electronic properties are also shown. High-
energy excitations are situated in the vicinity of the Γ point. Low-energy excitations
are centered around the two points K+ and K− represented by the vectors

K+ = kb√
3

x̂, K− = 2kb√
3

x̂. (14.4)

Finally, it is shown M point (M = √
3kbx̂/2)where vanHove singularity takes place,

i.e., the density of states diverges. The Hamiltonian for electrons in a monolayer
graphene sheet can be written as

Ĥ0 =
∫

dr ψ̂†(r)
{

p̂2

2m
+ UL (r)

}
ψ̂(r). (14.5)

It describes the motion of the electrons of mass m in the periodic lattice potential
UL (r).We treat Ĥ0 in the tight-binding approximation and expand the field operators
in terms of the carbon wave functions,

ψ̂(r) = 1√
N

∑
k,RA

eikRAϕ(r − RA )̂ak
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+ 1√
N

∑
k,RB

eikRB ϕ(r − RB )̂bk. (14.6)

Here the sum is over N different unit cells, andRA andRB denote the positions of the
carbon atoms on each sublattice. In (14.6), operators âk and b̂k annihilate a particle
in the state |k〉 on the sublattices A and B, respectively. The carbon 2pz orbital is
ϕ(r) = re−r/2d cosϑ/

√
32πd5, with d � 0.15A. Taking into account only nearest-

neighbor overlapping, from (14.5) and (14.6) for the free part of the Hamiltonian we
obtain

Ĥ0 =
∑

k

(
Υ (k) â+

k b̂k + Υ ∗ (k) b̂+
k âk

)
, (14.7)

where

Υ (k) = −γ0

3∑
j=1

eikδ j (14.8)

and γ0 is the nearest-neighbor hopping parameter. For the latter we take γ0 = 2.7 eV.
Here we consider intrinsic graphene, so Fermi energy is taken to be zero.

One can diagonalize theHamiltonian (14.7) by introducing annihilation (creation)
operators for conduction (̂eck) and valence (̂eνk) bands:

âk = 1√
2

(̂eck − êνk) , (14.9)

b̂k = Υ ∗ (k)√
2 |Υ (k)| (̂eck + êνk) . (14.10)

With the help of the new operators the total Hamiltonian can be represented as
follows:

Ĥ =
∑

k

E (k)
(̂
e+

ckêck − ê+
vkêvk

)
, (14.11)

where

E (k) = |Υ (k)| = γ0
√
3 + 2 (cos a1k + cos a2k + cos a3k) (14.12)

is the dispersion law of a graphene which is applicable to the full Brillouin zone of
a hexagonal tight-binding nanostructure.

Before considering the low-energy excitations around the two points K+ and
K− let us define an effective single-particle tight-binding Hamiltonian arising from
(14.7). The later can be defined as
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Ĥs (k) =
(

0 Υ ∗ (k)

Υ (k) 0

)
. (14.13)

The eigenstates of the effective Hamiltonian (14.13) are the spinors

Ψk,σ =
[

αk,σ

βk,σ

]
,

the components of which are the probability amplitudes of the Bloch wave function
on the two sublattices A and B. The index “σ” is associated with positive (σ = 1)
and negative (σ = −1) energy solutions. The solution of the eigenvalue equation

Ĥs (k) Ψk,σ = Eσ (k) Ψk,σ

yields to wave function

Ψk,σ = 1√
2

[
1

σeiarg(Υ (k))

]
. (14.14)

As is expected, the wave function (14.14) represents an equal probability to find an
electron on the sublattices A and B.

In order to describe the low-energy excitations, i.e., electronic excitations with
energy that is much smaller than the γ0, one may restrict the excitations to quantum
states in the vicinity of the so-called Dirac points K+ and K− and expand the dis-
persion law around these K± points. Hence, the wave vector is decomposed as k =
K± + p/�, where |p| a/� � 1. Expanding Υ± ≡ Υ (K± + p/�), we obtain

Υ± � ±3aγ0

2�

(
px ± i py

)
. (14.15)

Taking into account (14.15), from the effective Hamiltonian (14.13) we obtain

Ĥs(p,ζ) = ζvF
(

pxσx + ζ pyσy
)
, (14.16)

where we have defined the Fermi velocity

vF = 3aγ0

2�
.

In (14.16) σx , σy are Pauli matrices and we have introduced the valley quantum
number ζ = ±1, where ζ = 1 denotes the K+ point and ζ = −1 denotes the K−
point. It is clear that the effective Hamiltonian (14.16) represents two copies of the
massless Dirac-like Hamiltonian with vF instead of the light speed. Thus, dispersion
law in the vicinity of the Dirac points is “ultrarelativistic”:

Eσ (p) = σ pvF . (14.17)
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The last equation for dispersion law shows that one can expect thatmany fundamental
nonlinear and relativistic QED processes should have their counterparts in graphene,
where, however, incomparably weaker electromagnetic fields will be required for
their revelation. Thus, the wave–particle interaction in graphene can be characterized
by the dimensionless parameter

χ = eEvF

ω

1

�ω
,

which represents the work of the wave electric field E on a period 1/ω in the units
of photon energy εγ = �ω. Here vF is the Fermi velocity: vF ≈ c/300, and e is
the elementary charge. The average intensity of the wave expressed by χ can be
estimated as

Iχ = χ2 × 3.07 × 1011 W cm−2[�ω/eV]4.

Depending on the value of this parameter χ, one can distinguish three different
regimes in the wave–particle interaction process. Thus, χ � 1 corresponds to
one-photon interaction regime, χ ∼ 1—to multiphoton interaction regime, and
χ 
 1 corresponds to static field limit or Schwinger regime. As is seen, the in-
tensity Iχ strongly depends on the photon energy. Particularly, for infrared photons,
εγ ∼ 0.1 eV,multiphoton interaction regime canbe achieved already at the intensities
Iχ = 3.07×107 W cm−2, while for example in case of free electrons at the same pho-
ton energies the multiphoton effects take place at the intensities I ∼ 1016 W cm−2

(see Chap.1). Such a huge difference, as well as the gapless particle-hole energy
spectrum in graphene, makes realistic the implementation of considered nonlinear
QED processes via multiphoton excitation of the Dirac vacuum by laser fields of
ordinary strengths.

14.2 Microscopic Theory of Strong Laser Fields Interaction
with Graphene

Let us consider the graphene interaction with an external strong electromagnetic
wave. Specifically, in case of a laser radiation we assume that the pulse propagates in
the perpendicular direction to the graphene plane (XY ) when the laser pulse electric
field E (t) lies in the graphene plane, to exclude the effect of the wave magnetic field.
In this case the actionof themagnetic field canproceedonly in the planeperpendicular
to the graphene layer; however, the Coulomb interaction of the graphene electrons
with the ions–crystal lattice considerably exceeds the Lorentz force for considering
moderately strong laser fields, and the resulting electron motion cannot obey the
Lorentz force to go out from the graphene plane.

http://dx.doi.org/10.1007/978-3-319-26384-7_1
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For the interaction Hamiltonian we will use the length gauge describing the in-
teraction by the potential energy

V̂ = erE (t) . (14.18)

Here r = {x, y} is the 2D position operator. The Hamiltonian of the system in the
second quantization formalism can be presented in the form

Ĥ =
∫

Ψ̂ + ĤsΨ̂ dr, (14.19)

where Ψ̂ is the field operator for quasiparticles of the Fermi-Dirac sea in the graphene,
and Ĥs is the single-particle Hamiltonian in the external electric field E (t). This
Hamiltonian in the vicinity of the K point can be written as (here we omit the real
spin and valley quantum numbers)

Ĥs = vF

(
0 p̂x − i p̂y

p̂x + i p̂y 0

)
+
(

erE (t) 0
0 erE (t)

)
, (14.20)

where p̂ = {
p̂x , p̂y

}
is the electron momentum operator. The first term in (14.20)

describes theHamiltonian of two-dimensional quasiparticles in the graphene (14.16),
and the second term is the interaction Hamiltonian.

Expanding the fermionic field operator over the free Dirac states

Ψ̂ (r, t) =
∑
p,σ

âp,σ(t)Ψp,σ(r), (14.21)

where the creation and annihilation operators, â+
p,σ(t) and âp,σ(t), associated with

positive (σ = 1) and negative (σ = −1) energy solutions, satisfy the anticommuta-
tion rules at equal times and using the free Dirac wave functions:

Ψp,σ(x, y) = 1√
2S

(
1

σeiΘ(p)

)
e

i
�

pr, (14.22)

the second quantized Hamiltonian can be expressed in the following form:

Ĥ =
∑
p,σ

Eσ (p) â+
pσâpσ + eE (t)

∑
p,σ

∑
p′,σ′

Dσσ′
(
p, p′) â+

p,σâp′,σ′ , (14.23)

where

Dσσ′
(
p, p′) = 1

2S

[
1 + σσ′ei(Θ(p′)−Θ(p))

] ∫
re

i
� (p′−p)rdr. (14.24)
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In (14.22) the parameter S is the quantization area-graphene layer surface area, and
function

Θ (p) = arctan

(
py

px

)
(14.25)

is the angle in momentum space. The energies Eσ (p) (where σ = ±1) in (14.23) are

defined by dispersion law of quasiparticles in the graphene: Eσ (p) = σvF

√
p2

x + p2
y .

Thenwewill pass toHeisenberg representationwhere operators obey the evolution
equation (8.17) and expectation values are determined by the initial density matrix
(8.18). We will define the single-particle density matrix in the momentum space as
follows:

ρσ1σ2(p1, p2, t) = 〈̂a+
p2,σ2

(t )̂ap1,σ1(t)〉 (14.26)

and for the initial state of the graphene quasiparticles we assume an ideal Fermi gas
in equilibrium. According to the latter, the initial single-particle density matrix will
be a diagonal, and we will have the Fermi-Dirac distribution:

ρσσ′(p, p′, 0) = 1

1 + e
Eσ (p)−μ

T

δp,p′δσ,σ′ . (14.27)

Including in (14.27) quantity μ is the chemical potential, and T is the temperature
in energy units.

Taking into account the definition (14.26), from (8.17) one can obtain evolution
equation for the single-particle density matrix in graphene:

i�
∂ρσ1σ2(p1, p2, t)

∂t
= [Eσ1 (p1) − Eσ2 (p2)

]
ρσ1σ2(p1, p2, t)

− eE (t)
∑
p,σ

[
Dσσ2

(
p, p2

)
ρσ1σ(p1, p, t) − Dσ1σ (p1, p) ρσσ2(p, p2, t)

]
. (14.28)

Then, using the known formulae with the Dirac delta function δ (α):

∞∫

−∞
xe−iαx dx = 2πi

∂

∂α
δ (α) (14.29)

and passing from the sum to the integral

∑
p

→ S

(2π�)2

∫
dp, (14.30)

http://dx.doi.org/10.1007/978-3-319-26384-7_8
http://dx.doi.org/10.1007/978-3-319-26384-7_8
http://dx.doi.org/10.1007/978-3-319-26384-7_8
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we will obtain the following closed set of equations for the single-particle density
matrix elements:

∂ρσ,σ(p, p, t)

∂t
− eE (t)

∂ρσ,σ(p1, p, t)

∂p1

∣∣∣∣
p1=p

− eE (t)
∂ρσ,σ(p, p2, t)

∂p2

∣∣∣∣
p2=p

= i
eE (t)

2

∂Θ (p)

∂p

[
ρσ,−σ(p, p, t) − ρ−σ,σ(p, p, t)

]
, (14.31)

∂ρσ,−σ(p, p, t)

∂t
− eE (t)

∂ρσ,−σ(p1, p, t)

∂p1

∣∣∣∣
p1=p

− eE (t)
∂ρσ,−σ(p, p2, t)

∂p2

∣∣∣∣
p2=p

= 2

i�
Eσ (p) ρσ,−σ(p, p, t) − eE (t)

2i

∂Θ (p)

∂p

[
ρσ,σ(p, p, t) − ρ−σ,−σ(p, p, t)

]
. (14.32)

To solve these equations one need to eliminate the termswith the partial derivatives
over the momentum. Using the method of characteristics, we obtain

p = p0 + pE (t) , (14.33)

where

pE (t) = −e

t∫

0

E
(
t ′) dt ′ (14.34)

is the momentum given by the wave field. Now the (14.31) and (14.32) will have the
form

∂ρσ,σ(p0, p0, t)

∂t
= i

2
F (p0, t)

[
ρσ,−σ(p0, p0, t) − ρ−σ,σ(p0, p0, t)

]
, (14.35)

∂ρσ,−σ(p0, p0, t)

∂t
= 2

i�
Ẽσ (p0, t) ρσ,−σ(p0, p0, t)

+ i

2
F (p0, t)

[
ρσ,σ(p0, p0, t) − ρ−σ,−σ(p0, p0, t)

]
, (14.36)

where the function F (p0, t) is

F (p0, t) = eEy (t) p0x − eEx (t) p0y

(p0 + pE (t))2
, (14.37)
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and

Ẽσ (p0, t) = σvF

√
(p0 + pE (t))2 (14.38)

is the classical energy of the graphene electrons in the wave field. Within the (14.33)
one can state that

ρσ,σ′(p0, p0, 0) = ρσ,σ′(p, p, 0). (14.39)

Note that as far as we neglected relaxation processes, here the developed theory is
applicable only for limited times: t < τmin, where τmin is theminimal of all relaxation
times. Equations (14.35) and (14.36) lead to the conservation law for the particles
number:

ρ1,1(p0, p0, t) + ρ−1,−1(p0, p0, t)

= ρ1,1(p0, p0, 0) + ρ−1,−1(p0, p0, 0) ≡ Ξ (p0,μ, T ) . (14.40)

The function Ξp0,μ,T is determined by the diagonal elements and according to the
(14.27) is

Ξp0,μ,T = 1

1 + e
vF p0−μ

T

+ 1

1 + e
−vF p0−μ

T

. (14.41)

The diagonal elements of density matrix represent distribution functions of the par-
ticles, N (p0, t) ≡ ρ1,1(p0, p0, t), and holes, Nh (p0, t) = 1 − ρ−1,−1(p0, p0, t),
in graphene. The nondiagonal elements ρ1,−1(p0, p0, t) = ρ∗−1,1(p0, p0, t) describe
particle-hole coherent transitions.

Let us now introduce the concept of the interband coherency J (p0, t) in the
interaction picture:

ρ1,−1(p0, p0, t) = iJ (p0, t) exp

⎧⎨
⎩−i

2

�

t∫

0

Ẽ1
(
p0, t ′) dt ′

⎫⎬
⎭ . (14.42)

Then using the (14.40) and (14.42), from (14.35) and (14.36) one can obtain the
following set of equations:

∂N (p0, t)

∂t
= −1

2
F (p0, t)

⎡
⎣J (p0, t) exp

⎧⎨
⎩−i

2

�

t∫

0

Ẽ1
(
p0, t ′) dt ′

⎫⎬
⎭+ c.c.

⎤
⎦ ,

(14.43)

∂J (p0, t)

∂t
= 1

2
F (p0, t) exp

⎧⎨
⎩i

2

�

t∫

0

Ẽ1
(
p0, t ′) dt ′

⎫⎬
⎭
[
2N (p0, t) − Ξp0,μ,T

]
.

(14.44)
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The set of equations (14.43) and (14.44) should be solved under the following initial
conditions:

J (p0, 0) = 0; N (p0, 0) = 1

1 + e
vF p0−μ

T

. (14.45)

14.3 Multiphoton Resonant Excitation and Rabi
Oscillations in Graphene

Equations (14.43) and (14.44) represent linear set of equations with the time-varying
coefficients. To clarify the multiphoton resonant excitation picture in graphene, at
first, we consider the case of interaction when the laser radiation of arbitrary po-
larization propagates in perpendicular direction to the graphene plane XY (constant
phase connected with the position of the wave pulse maximum with respect to the
graphene plane is set zero):

E (t) = x̂ E0x cosωt + ŷE0y sinωt. (14.46)

Assuming adiabatic turn-on/off the interaction, for the momentum of an electron
pE (t) given by the wave field (14.34), we have

pE (t) =
{
−eE0x

ω
sinωt,

eE0y

ω
cosωt

}
. (14.47)

In this case of the interaction with the monochromatic wave, (14.43) and (14.93)
are equations with periodic coefficients and those are analogous to the optical Bloch
equations which describe Rabi oscillations of states populations of the two-level
atomic system under resonant excitation. However, there is a significant difference
between the Bloch equations and (14.43), (14.44), which are the following. Accord-
ing to (14.43) and (14.44), the coupling term

Λ(p0, t) = F (p0, t) exp

⎧
⎨
⎩i

2

�

t∫

0

Ẽ1
(
p0, t ′) dt ′

⎫
⎬
⎭ (14.48)

is a quasiperiodic function, that is

Λ

(
p0, t + 2π

ω

)
= exp

{
i
2EE (p0)

�

2π

ω

}
Λ(p0, t) , (14.49)
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where Ẽ1 (p0, t) = vF

√[
p0 + pE (t)

]2
and

EE (p0) = ω

2π

2π/ω∫

0

Ẽ1 (p0, t) dt

= vFω

2π

2π/ω∫

0

√(
p0x − eE0x

ω
sinωt

)2

+
(

p0y + eE0y

ω
cosωt

)2

dt (14.50)

is the quasienergy of a graphene electron in the field (14.46), which coincides with
the mean classical energy. Since due to the space homogeneity of the field in specific
geometry (14.46), the generalized momentum of a particle conserves and the real
transitions in the wave field will occur from a negative energy level −EE (p0) to the
positive energy level +EE (p0). Hence, the multiphoton probabilities of the particle-
hole pair production process will have maximal values for the resonant transitions:

2EE � n�ω; n = 1, 2, 3, .... (14.51)

Note that these levels are coupled by the term F (p0, t + 2π/ω) = F (p0, t) which,
in turn, contains all harmonics of driving field, in contrast to Bloch equations where
coupling contains only oscillation on fundamental frequency ω, which provides only
one-photon direct resonant excitation. Besides, if the resonant transitions in atomic
systems with discrete energy levels occur at the certain pump photon energies, the
transitions in the graphene are always of resonant character to pump radiation of any
frequency ω > μ/�, due to the band structure of the graphene (with the fixed photon
energies we have fixed resonant energy bands).

Equations (14.43) and (14.44) contain slow and fast oscillations at the resonant
condition (14.51), to decouple of which we will use the periodic properties of the
function exp {−2iEE (p0) t/�}Λ(p0, t) and expanding it over Fourier series:

e− 2i
�
EE (p0)tΛ(p0, t) = F (p0, t) e

i 2
�

t∫
0
[Ẽ1(p0,t ′)−EE (p0)]dt ′

=
∑

s

Gs (p0, E) e−isωt ,

(14.52)
we can represent (14.43) and (14.44) in the following form:

∂N (p0, t)

∂t
= −1

2
J (p0, t)

∑
s

G∗
s (p0, E) e−i( 2

�
EE (p0)−sω)t + c.c., (14.53)

∂J (p0, t)

∂t
= 1

2

∑
s

Gs (p0, E) ei( 2
�
EE (p0)−sω)t

[
2N (p0, t) − Ξp0,μ,T

]
. (14.54)
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The coupling coefficient corresponding to s-photon resonant interaction is

Gs (p0, E) = ω

2π

2π/ω∫

0

F (p0, t) e
i 2

�

t∫
0
[Ẽ1(p0,t ′)−EE (p0)]dt ′

eisωt dt. (14.55)

In (14.53) and (14.54), the main coupling term is the slowly varying term with
s = n in the vicinity of resonance (14.51). The other fast oscillating nonresonant
terms express only the dynamic Stark shifts. Taking into account these facts, we can
define the time average functionsN (p0, t) and J (p0, t) according to the following
equations:

∂N (p0, t)

∂t
= −1

2
J (p0, t) G∗

n (p0, E) e−iδn t + c.c., (14.56)

∂J (p0, t)

∂t
+ iδstJ (p0, t) = 1

2
Gn (p0, E) eiδn t

(
2N (p0, t) − Ξp0,μ,T

)
, (14.57)

where

δn = 2EE (p0) − n�ω

�
(14.58)

is the resonance detuning and

δst = 1

2ω

∑
s �=n

|Gs (p0, E)|2
(n − s)

(14.59)

is the dynamic Stark shift. The latter arises because of nonresonant transitions be-
tween the virtual Floquet states. So the problem reduces to the set of ordinary linear
differential equations, the solution of which at the initial condition (14.45) is

N (p0, t) = Ξp0,μ,T

2
+ |Gn (p0, E)|2

2Ω2
n

Δp0,μ,T

[
(δn + δst )

2

|Gn (p0, E)|2 + cosΩnt

]
,

(14.60)

J (p0, t) = eiδn t Gn (p0, E)

2Ωn
Δp0,μ,T

(
sinΩnt − i

δn + δst

Ωn
(1 − cosΩnt)

)
,

(14.61)

where the parameter Δp0,μ,T
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Δp0,μ,T = 1

1 + e
vF p0−μ

T

− 1

1 + e
−vF p0−μ

T

(14.62)

is the initial population inversion, and Ωn is the generalized Rabi frequency:

Ωn =
√

|Gn (p0, E)|2 + (δn + δst )
2. (14.63)

Formula (14.61) represents the Rabi flopping between the particle-hole states in
graphene at the multiphoton resonance.

Now let us note the conditions at which the obtained solutions are valid. The
expressions (14.60) and (14.61) have been derived under the resonance condition,
at which N (p0, t) and J (p0, t) are the slowly varying functions on the scale of
the wave period. The latter puts the following restrictions on the characteristic para-
meters of the system graphene + electromagnetic wave that are coupling coefficient
Gn (p0, E), resonance detuning δn , and dynamic Stark shift δst :

(|Gn (p0, E)| , |δn| , |δst |) � ω. (14.64)

In the exact resonance, when δn + δst = 0, the generalized Rabi frequency coin-
cides with the coupling coefficient: Ωn = |Gn (p0, E)| and for the particles distrib-
ution functions N (p0, t) and interband coherency J (p0, t) we have

N (p0, t) = Δp0,μ,T

2
cosΩnt + Ξp0,μ,T

2
, (14.65)

J (p0, t) = Δp0,μ,T

2
ei arg(Gn(p0,E)) sinΩnt. (14.66)

For the weak laser fields when χ � 1 and the one-photon interband excitation
take place, we can neglect the nonlinear over the pump field terms in (14.55) and the
Rabi frequency in the laser field of arbitrary polarization will have

Ω1 =
e
√

E2
0x sin

2 Θ (p0) + E2
0y cos

2 Θ (p0)

2p0
. (14.67)

Rabi frequency in graphene may be expressed via interaction parameter χ0x,y =
eE0x,yvF/(�ω2) taking into account the resonant condition 2p0vF � �ω. Then it
reads

Ω1 = ω
√

χ2
0x sin

2 Θ (p0) + χ2
0y cos

2 Θ (p0). (14.68)

In particular case of a wave circular polarization (χ0x = χ0y ≡ χ0), Rabi frequency
does not depend on angle Θ (p0), and we have isotropic excitation:
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Ω1 = ωχ0, (14.69)

while for a linearly polarized (χ0y = 0) wave we have strictly anisotropic excitation:

Ω1 = ω |sinΘ (p0)| χ0x . (14.70)

It is clear that for the multiphoton transitions one should have the higher pump wave
intensities at which the electron–hole population oscillations in graphene occur with
generalized Rabi frequencies (14.63). On the other hand, at strong pump fields
the intensity effect considerably changes the quasienergy spectrum in graphene be-
cause of the Stark shift due to the free–free intraband transitions, and the dynamic
Stark shift due to the virtual nonresonant transitions becomes significant. Thus, at
the laser intensities corresponding to the values of the intensity parameter χ ∼ 1, the
probabilities of the multiphoton transitions are essential up to the photon numbers
n ∼ 6. For such photon numbers, the Stark shift due to the intraband transitions
(14.59) is not essential yet; however, the quasienergy spectrum in the graphene be-
cause of the dynamic Stark shift is considerably modified. In general, the isolines
corresponding to quasienergy spectrum determined by (14.50) were circles in the
strong laser field they deformed. Hence, at the multiphoton interaction of graphene
with strong laser radiation the excitation of particles distribution function occurs
along the modified ellipse-like isolines.

Let us represent the results of numerical simulations. We have integrated (14.43)
and (14.44) within the fourth-order adaptive Runge–Kutta method. Since we study
the interbandmultiphoton transitions in graphene, the chemical potential and temper-
ature have been fixed at the certain values; here: μ/�ω = 0.1 and T/�ω = 5×10−3.
For ultrashort laser pulses the wave envelope (13.72) (Chap.13) is chosen to turn-
on/off the interaction by function f (t), where the pulse duration (here Tp) is chosen
to be Tp = 32T (T is the wave period).

Figure14.2 displays the picture of laser excitation of Fermi-Dirac sea in graphene.
The quasiparticle distribution function N f (p0, t) after the interaction is presented.
The laser intensity is large enough and, as a consequence, the resonant rings appear
corresponding tomultiphoton excitation up to 5 photons, and the excitation of Fermi-
Dirac sea takes place along the modified isolines of quasienergy spectrum (14.50),
in accordance with the analytical treatment. To demonstrate the nonlinear features
of the dynamics of multiphoton excitation of Fermi-Dirac sea in graphene and Rabi
oscillations dependence on the angleΘ (p0) (14.25), in Fig. 14.3 the colored 4D den-
sity plot of Rabi oscillations of the particles resonant distribution functionNr (p0, t)
on isosurface 2EE (p0) /�ω = 3 is illustrated in the case of monochromatic wave.
Figure14.3 corresponds to 3-photon resonance for circularly polarized wave with
χ0 = 1.0. It is clearly seen isotropic Rabi oscillations of Nr (p0, t) with the mean
period TR � 15T .

http://dx.doi.org/10.1007/978-3-319-26384-7_13
http://dx.doi.org/10.1007/978-3-319-26384-7_13


478 14 “Relativistic” Nonlinear Electromagnetic Processes in Graphene

Nf (p0)

-4 -3 -2 -1  0  1  2  3  4

p0xvF/−hω

-4

-3

-2

-1

 0

 1

 2

 3

 4

p 0
y
v F

/− hω

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Fig. 14.2 (Color online) Creation of particle-hole pair in graphene at themultiphoton resonant exci-
tation for linearly polarized wave. Particle distribution functionN f (p0) (in arbitrary units) after the
interaction as a function of scaled dimensionless momentum components

{
p0xvF/�ω, p0yvF/�ω

}
.

The electric field dimensionless parameter is χ0 = 1

Fig. 14.3 (Color online)
Colored 4D plot of Rabi
oscillations of the particle
distribution function
Nr (p0, t) for 3-photon
resonance on isosurface
2EE (p0) /�ω = 3 for
circularly polarized wave.
The electric field
dimensionless parameter is
χ0 = 1.0
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14.4 Particle-Hole Multiphoton Excitation and High
Harmonics Generation in Graphene

Graphene has extensively been considered as a promising material for harmonics
generation due to its strongly pronounced nonlinear electromagnetic properties. At
the multiphoton resonant excitation of graphene one can expect intense coherent
radiation of harmonics of the applied wave field in the result of the particle-hole
annihilation from the coherent superposition states. At this, because of inversion
symmetry, at the normal incidence of laser radiation on the uniform graphene layer
only odd harmonics can be generated. For generation of even harmonics one should
break the inversion symmetry.
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Here we will consider the possibility of generation as of odd, as well as, even
harmonics from the multiphoton excited states of a graphene depending on the laser
field polarization and additional perturbation of the initial stationary state of the
graphene applying an external static electric field.

To find out the coherent part of the radiation spectrum we need the mean value of
the current density operator:

ĵ = −evF
〈
Ψ̂
∣∣ σ̂ ∣∣Ψ̂ 〉 , (14.71)

where σ̂ = {
σx ,σy

}
—Pauli matrices. With the help of (14.21) and (8.18) the ex-

pectation value of the total current in components can be written in the following
form:

jx (t) = −evFgsgv S

(2π�)2

∫
dp
[
cosΘ (p) (ρ11(p, p, t) − ρ−1−1(p, p, t))

+i sinΘ (p)
(
ρ1,−1(p, p, t) − ρ∗

1,−1(p, p, t)
)]

, (14.72)

jy (t) = −evFgsgv S

(2π�)2

∫
dp
[
sinΘ (p) (ρ11(p, p, t) − ρ−1−1(p, p, t))

−i cosΘ (p)
(
ρ1,−1(p, p, t) − ρ∗

1,−1(p, p, t)
)]

, (14.73)

where gs = 2 and gv = 2 are the spin and valley degeneracy factors, respectively.
With the help of (14.33), the total current can be expressed through the interband
coherence (14.42) and particle-hole distribution functions:

jx (t) = −evFgsgv S

(2π�)2

∫
dp0√

(p0 + pE (t))2

×
⎡
⎣− (p0y + pEy (t)

)
⎛
⎝J (p0, t) exp

⎧⎨
⎩−i

2

�

t∫

0

Ẽ1
(
p0, t ′) dt ′

⎫⎬
⎭+ c.c.

⎞
⎠

+ (p0x + pEx (t)
)
(N (p0, t) + Nh (p0, t))

]
. (14.74)

jy (t) = −evFgsgv S

(2π�)2

∫
dp0√

(p0 + pE (t))2

×
⎡
⎣(p0x + pEx (t)

)
⎛
⎝J (p0, t) exp

⎧
⎨
⎩−i

2

�

t∫

0

Ẽ1
(
p0, t ′) dt ′

⎫
⎬
⎭+ c.c.

⎞
⎠

+ (p0y + pEy (t)
)
(N (p0, t) + Nh (p0, t))

]
. (14.75)

http://dx.doi.org/10.1007/978-3-319-26384-7_8


480 14 “Relativistic” Nonlinear Electromagnetic Processes in Graphene

From (14.74) and (14.75) follows the relation

jx,y

j0
= Rx,y

(
ωt;χ0x ,χ0y,

μ

�ω
,

T

�ω

)
; j0 = eω2S

π2vF
, (14.76)

where Rx and Ry are periodic (in case of an external monochromatic wave) dimen-
sionless functions, which parametrically depend on the graphene–wave interaction
parameters χ0x,y = eE0x,yvF/(�ω2) and the graphene-scaled macroscopic parame-
ters.

Now, performing the integration in (14.74) and (14.75) and using the solutions
of (14.43) and (14.44), we can calculate the harmonics radiation spectrum with the
help of Fourier transform of the functions Rx,y (t).

As is seen from (14.74) and (14.75), the spectrum contains, in general, both even
and odd harmonics. However, depending on the initial conditions, in particular, for
the equilibrium initial state (14.45) and at the smooth turn-on/off of the wave field,
the terms containing even harmonics cancel each other, and only the odd harmonics
are generated. The emission rate of the N th harmonics is proportional to N 2 | jN |2,
where | jN |2 = | jx N |2 + ∣∣ jyN

∣∣2 is determined by jx N and jyN , being the N th Fourier
components of the field-induced current. To find out jN , the fast Fourier transform
algorithm has been used. The inversion symmetry of the system can be broken either
by an additional external perturbation of the initial stationary state of the graphene, or
the latter should not have spherical symmetry. Here we consider the case of linearly
polarizedwaveχ0x = 1 and additional static uniformelectric field Es = 2×10−3E0x ,
which is assumed to be veryweak, but itmakes possible generation of even harmonics
with the rates comparable to odd harmonics. Figure14.4 display harmonics emission
rates in a graphene via log10

(
N 2 |RN |2)which contains both even andoddharmonics.

Conversion efficiency for harmonics ηn = In/I can be estimated as

ηn ∼ 10−3χ−2
0 (d/λ)2 N 2 |RN |2 , (14.77)

Fig. 14.4 Harmonics
emission rate in graphene at
the resonant excitation for
linearly polarized wave
(χ0 = 1), with additional
static uniform electric field
of strength
Es = 2 × 10−3E0x
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where λ = 2πc/ω and d = min{Lg, w}, with Lg and w being characteristic sizes of
graphene and laser beam waist, respectively. For the setup of Fig. 14.4 depending on
the ratio d/λ, one can achieve quite large conversion efficiencies for 3rd, 4th, and
5th harmonics, which are comparable to what one expects to achieve with resonant
two-level systems.

14.5 Graphene Interaction with Strong Laser Radiation
Beyond the Dirac Cone Approximation

Now let us consider a monolayer graphene interaction with the strong laser fields
beyond the Dirac cone approximation which is applicable to the full Brillouin zone
of a hexagonal tight-binding nanostructure. We consider nonlinear coherent inter-
action in the ultrafast excitation regime when relaxation processes are not relevant.
Investigations regarding ultrafast interband excitations of energies E � 1 eV show
that the dominant mechanism for relaxation is electron–phonon coupling via optical
phonons, and the relaxation times are about 0.1 ps. Therefore, in graphene, one can
coherently manipulate with interband optical transitions on timescales t � 100 fs.

As effective tools in modern Quantum Optics and Informatics for coherent quan-
tum control of quasiparticles states populations and resulting coherent effects, the
Rabi oscillations of the particle-hole states, multiphoton excitation of Fermi-Dirac
sea, and rapid adiabatic passage for interband population transfer are of interest.
Hence, we will consider the scheme of rapid adiabatic passage when the detuning
chirping is induced by direct sweeping of the frequency of a laser pulse. So, using
strong laser fields of intensities belowgraphene damage threshold, one can effectively
control interband optical transitions on femtosecond timescale.

Let graphenemonolayer interactwith a plane quasimonochromatic laser radiation.
We consider the interaction when the laser wave propagates again in a perpendicular
direction to the graphene plane (XY ). In this case, as was mentioned in the last
paragraph, the effect of the wave magnetic field is excluded, since in the z direction
we have strong binding of the graphene electrons. Thus, this traveling wave for
graphene electrons becomes a homogeneous quasiperiodic electric field of carrier
frequency ω and slowly varying envelope E0 (t) directed along the unit vector ε̂
within the XY plane:

E (t) = ε̂
E0 (t)

2
e−iωt + c.c.. (14.78)

Taking into account expansion (14.6) the second quantized interaction Hamiltonian

V̂ = e
∫

dr ψ̂†(r) (r · E (t)) ψ̂(r) (14.79)

can be represented as
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V̂ = ie
∑

k

∫
d k′

(
E · ∂δ

(
k − k′)

∂k′

) (̂
a+

k′ âk + b̂+
k′ b̂k

)
. (14.80)

Here we have neglected the terms ∼DABâ+
k b̂k, i.e., the transitions between the

sublattices A ⇒ B, since transition dipole moments DAB ∼ ed are very small. With
the help of annihilation (creation) operators for conduction (̂eck) and valence (̂eνk)
bands (14.9) and (14.10), the total Hamiltonian can be represented as follows:

Ĥ =
∑

k

E (k)
(̂
e+

ckêck − ê+
vkêvk

)

+ie
∑

k

∫
d k′

(
E·∂δ

(
k − k′)

∂k′

)

×
[
D(+)

k′k
(̂
e+

ck′ êck + ê+
νk′ êνk

)+ D(−)
k′k
(̂
e+

ck′ êνk + ê+
νk′ êck

)]
. (14.81)

Here E (k) is given by (14.12) and

D(±)
k′k = 1

2

(
1 ± Υ

(
k′)

|Υ (k′)|
Υ ∗ (k)

|Υ (k)|

)
. (14.82)

In (14.81) the term proportional to D(+)
k′k is responsible for the intraband transi-

tions, while the term proportional toD(−)
k′k describes interband transitions. In order to

develop microscopic theory of the multiphoton interaction of monolayer graphene
with a strong radiation field, we need to solve the evolution equation for the single-
particle density matrix

ρσ1σ2(k1, k2, t) = 〈̂e+
σ2k2

(t )̂eσ1k1(t)〉; σ1,2 = c, v (14.83)

where êσk(t) obeys the Heisenberg equation (8.17) and expectation values are de-
termined by the initial density matrix. As an initial state we assume Fermi-Dirac
distribution. As far as the pump field (14.78) is homogeneous, one can obtain a
closed set of equations for the particle occupation number

N (k, t) = ρcc(k, k, t) = 〈̂e+
ck(t )̂eck(t)〉, (14.84)

and interband polarization

P (k, t) = ρvc(k, k, t) = 〈̂e+
ck(t )̂evk(t)〉. (14.85)

Taking into account these definitions and second quantized Hamiltonian (14.81),
from Heisenberg equation (8.17) one can obtain evolution equations:

http://dx.doi.org/10.1007/978-3-319-26384-7_8
http://dx.doi.org/10.1007/978-3-319-26384-7_8
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∂N (k, t)

∂t
− eE

�
·∂N (k, t)

∂k
= iΛ(k, t)

[P (k, t) − P∗ (k, t)
]
, (14.86)

∂P (k, t)

∂t
− eE

�
·∂P (k, t)

∂k

= 2i

�
E (k)P (k, t) + iΛ(k, t) [2N (k, t) − 1] . (14.87)

The interband coupling is

Λ(k, t) = 1

�
E (t) · d (k) , (14.88)

where the components of transition dipole moment are

dx (k) = ea

√
3γ2

0

4E2 (k)
[cos a1k− cos a2k] , (14.89)

dy (k) = ea
γ2
0

4E2 (k)

(
3

(
cos a3k + 1

2

)
− E2 (k)

2γ2
0

)
. (14.90)

The set of equations (14.86) and (14.87) should be solved with the initial conditions:

P (k, 0) = 0; N (k, 0) = 1

1 + eE(k)/T
, (14.91)

where T is the temperature in energy units.

14.6 Coherent Effects and Control of Macroscopic
Quantum States in Graphene

For the relatively weak pump fields, when the classical momentum (scaled to �)
given by the wave field

kE (t) = − e

�

t∫

0

E
(
t ′) dt ′ (14.92)

is considerably smaller than the characteristic momentum, |kE | � |k|, one can omit
intraband transitions in (14.93) and (14.87), which are represented by the second
terms in the left-hand side of equations. Thus, we have the following set of equations:
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∂N (k, t)

∂t
= iΛ(k, t)

[P (k, t) − P∗ (k, t)
]
, (14.93)

∂P (k, t)

∂t
= 2i

�
E (k)P (k, t) + iΛ(k, t) [2N (k, t) − 1] . (14.94)

In this case (14.93) and (14.94) are analogous to the optical Bloch equations, which
describe Rabi oscillations of state populations of the two-level atomic system under
the resonant excitation. Here we also have two-level system. Thus, because of space
homogeneity of the field (14.78), the generalized momentum of a particle conserves,
so that the real transitions in the field occur from a −E (k) negative energy level to
the positive E (k) energy level and, consequently, the probability of particle-hole pair
production will have maximal values for the resonant transitions 2E (k) � �ω. For
the resonant momenta |2E (k) − �ω| � |ΩR| one can write the explicit solutions of
(14.93) and (14.94) in the rotating wave approximation:

P (k, t) = i
Δω,T

2
e

2i
�
E(k)t sin (σ (k, t)) , (14.95)

N (k, t) = 1

2
+ 1

2
Δω,T cos (σ (k, t)) , (14.96)

where

σ (k, t) =
t∫

0

ΩR
(
k, t ′) dt ′ (14.97)

is the pulse area,

ΩR (k, t) = E0 (t) ε̂d (k) (14.98)

is the Rabi frequency (here we assume ImE0 = 0 and ReE0 > 0) and

Δω,T = −e
�ω
2T − 1

e
�ω
2T + 1

. (14.99)

is the initial population inversion. For optical frequencies and room temperatures
�ω 
 T , and Δω,T � −1. The solution (14.96) expresses Rabi flopping among
the particle-hole states at the single-photon interband transitions. From the quantum
optics it is well known that when the pulse σ (k, t) area of the wave is equal to π,
complete population transfer of particles on isoline 2E (k) � �ω can occur from the
valence band to the conduction band. The π-pulses method, while effective for two-
level atom, is not in general an effective and robust method for population transfer
in graphene. Particularly, transfer probability is highly sensitive to variations in the
pulse area. Besides, in the considering case transition dipole moments (14.89) and
(14.90) depend on momentum, because of which it is impossible for a single pulse
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to simultaneously satisfy the condition for all transitions:

σ (k, t)|k∈{2E(k)=�ω} �= π (14.100)

Thus, for complete population transfer one should use more robust method.
A much more effective and robust method for population transfer is the rapid

adiabatic passage. In this scheme, the radiation is tuned above (or below) the reso-
nance frequency, and the radiation frequency is swept through the resonance. If the
process is performed adiabatically, then the desired final state can be populated with
the 100% efficiency. The condition for adiabaticity is

Ω2
R max 


∣∣∣∣
dδω (t)

dt

∣∣∣∣ , (14.101)

whereΩR max is the peakRabi frequency. The resonance detuning, δω (t), is defined as
�δω (t)= 2E (k)−�ω (t), whereω (t) is the radiation frequency. Besides, the transfer
process should be completed rapidly—in timescale small compared to relaxation
times. In contrast toπ-pulse condition, the condition (14.101) canbe satisfiedon fairly
large part of isoline k ∈ {2E (k) = �ω}. For this propose we have made numerical
calculations with chirped laser pulses. Here we consider linear temporal chirp, which
can be achieved by linear optical methods. For definiteness we consider a Gaussian
form for the electric field, which can be written as

E (t) = ε̂
E0

2
e− t2

2τ2
−iωt−i α

2 t2 + c.c. (14.102)

where E0 is the peak amplitude, τ is the pulse duration, and α is the coefficient of
the linear temporal chirp (ω (t) = ω + αt/2). As an example, we consider
Nd:YAG laser of frequency ω = 1.17 eV/� and Ti:sapphire laser of frequency
ω = 1.8 eV/�. For the pulse duration and chirp coefficient we assume τ = 20T and
α = 7.5 × 10−3/T 2, respectively.

In Fig. 14.5 the creation of the particle-hole pair in graphene via the rapid adiabatic
passage is shown. As is seen from these figures, one can achieve almost complete
population transfer on isoline 2E (k) � �ω from valence to conduction band by
chirped Gaussian pulse on the femtosecond timescale. With the chirped laser pulses
the population transfer is uniform, except of the points where dx (k) = 0.

With the increasing of the pump wave intensity and approaching to the domain
|kE | ∼ |k| the multiphoton excitations take place and the Rabi oscillations appear
corresponding to multiphoton transitions. In this case intraband transitions in (14.86)
and (14.87) become essential, and one should solve the set of equations with the
partial derivatives ∂/∂k. One can eliminate these terms based on the characteristics
of (14.86) and (14.87). Thus, with the new variables k0 = k − kE (t) and t , (14.86)
and (14.87) read
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Fig. 14.5 (Color online) Creation of particle-hole pair in graphene via rapid adiabatic passage. It
is shown complete population transfer on isoline 2E (k) � �ω from valence to conduction band by
chirped Gaussian pulse for Nd:YAG laser of intensity 5 × 109 W/cm2, duration τ = 70 fs, and
chirp α = 7.5 × 10−3/T 2

∂N (k0, t)

∂t
= iΛ(k0 + kE (t) , t)

[P (k0, t) − P∗ (k0, t)
]
, (14.103)

∂P (k0, t)

∂t
= 2i

�
E (k0 + kE (t))P (k0, t)

+ iΛ(k0 + kE (t) , t) [2N (k0, t) − 1] . (14.104)

Here one can apply generalized rotating wave approximation. For a monochro-
maticwave the coupling termΛ(k0 + kE (t), t) in (14.103) and (14.104) is a periodic
function and contains harmonics of the pumpwave. Hence, there is a direct multipho-
ton resonant coupling of the interband transitions. Besides, one should also take into
account the intensity effect of the pump wave on the quasienergy spectrum (Stark
shift due to the free–free intraband transitions) and, consequently, the multiphoton
probabilities of particle-hole pair creation will have maximal values for the resonant
transitions (14.51), where

EE (k0) = 1

T

T∫

0

E1 (k0 + kE (t)) dt (14.105)

is the mean value of classical energy (quasienergy) in the field (14.78). Then the
n-photon coupling term Gn will be

Gn = 2

T

T∫

0

Λ(k0 + kE (t), t)
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× e
− 2i

�

t∫
0
(E(k0+kE(t ′))−EE (k0)+ n�ω

2 )dt ′
dt, (14.106)

Along the isoline EE (k0) � n�ω/2 the solutions of (14.103) and (14.104) become

P (k0, t) = i
Δnω,T

2
e

2i
�

t∫
0
E(k0+kE(t ′))dt ′+i arg(Gn)

sinΩnt, (14.107)

N (k0, t) = 1

2
Δnω,T cosΩnt + 1

2
, (14.108)

where

Δnω,T = −e
n�ω
2T − 1

e
n�ω
2T + 1

. (14.109)

The solution (14.108) expresses Rabi flopping among the particle-hole states at the
multiphoton resonance with the generalized Rabi frequency:

Ωn = |Gn| . (14.110)

The solutions (14.107) and (14.108) are valid for the slowly varying functions
N (k0, t) and J (k0, t) on the scale of the wave period, which put the following
restrictions:

|Gn| � ω. (14.111)

Equations (14.103) and (14.104) have integrated numerically for the wave field
describing the envelope function E0 (t) = E0 f (t) (13.72) (Chap.13), where pulse
duration τ is chosen to be τ = 50 fs. In Fig. 14.6 photoexcitations of Fermi-Dirac
sea on the full reciprocal lattice unit cell are presented. Particle distribution function
N (

k, t f
)
after the interaction with a laser field of intensity 5 × 1011 W/cm2 and

diverse frequencies are shown. Thewave is assumed to be linearly polarized along the
x-axis. As is seen, with the increasing of the wave intensity the states with absorption
of several photons appear in the Fermi-Dirac sea, in accordance with analytical
treatment (14.108). The high-energy excitations are trigonally warped and strongly
depend on the laser field polarization direction. Besides, multiphoton excitation of
isoline 2γ0 = n�ω is possible, corresponding to the van Hove singularity.

http://dx.doi.org/10.1007/978-3-319-26384-7_13
http://dx.doi.org/10.1007/978-3-319-26384-7_13
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Fig. 14.6 (Color online) Particle distribution functionN (
k, t f

)
(in arbitrary units) after the inter-

action, as a function of scaled dimensionless momentum components (kx/kb, ky/kb). The wave
is assumed to be linearly polarized along the x-axis with intensity 5 × 1011 W/cm2 and duration
50 fs. It is shown the multiphoton excitation with the trigonal warping effect for the photon energies
a �ω = 1.35 eV , b �ω = 1.8 eV, c �ω = 2.7 eV, and d �ω = 2γ0 � 5.4 eV

14.7 Resonant Excitations of Fermi-Dirac Sea
in a Bilayer Graphene

Let us now consider nonlinear interaction of strong coherent EM radiation with
a bilayer graphene. We consider multiphoton resonant interaction in the ultrafast
excitation regime, when relaxation processes are not relevant. In the AB-stacked
bilayer, graphene low-energy excitations which are much smaller than the vertical
interlayer hopping γ1 can be described by an effective 2 × 2 Hamiltonian. Thus, for
the energies |E | � γ1 = 0.39 eV the effective Hamiltonian is

Ĥζ =
(

0 h∗
ζ (p)

hζ (p) 0

)
, (14.112)

where

hζ (p) = 1

2m

(
ζ px + i py

)2 + v3
(
ζ px − i py

)
, (14.113)

p̂ = {
p̂x , p̂y

}
is the momentum operator, ζ = ±1 for K± points (valley quantum

number); m = γ1/(2v2F ) is the effective mass, with vF being the Fermi velocity in
monolayer graphene; v3 = √

3aγ3/(2�) is the effective velocity related to oblique
interlayer hopping γ3 = 0.32 eV (a ≈ 0.246 nm is the distance between the nearest A
sites). The first term in (14.113) gives a pair of parabolic bands E = ±p2/(2m), while
the second term coming from γ3 causes the trigonal warping in the band dispersion.
In the low-energy region Lifshitz transition (separation of the Fermi surface) occurs
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at the energy EL = mv23/2 � 1meV, and two touching parabolas are reformed into
four separate ‘pockets.’ The eigenstates of the effective Hamiltonian (14.112) are
the spinors:

Ψp,σ(x, y) = 1√
2

(
1

σeiΘ(p)

)
e

i
�

p·r, (14.114)

corresponding to energies

Eσ (p) = σ

√
(v3 p)2 + ζ

v3 p3

m
cos 3ϑ +

(
p2

2m

)2

. (14.115)

Here band index σ = ±1,

Θ (p) = arctan

(
Imhζ (p)

Rehζ (p)

)
,

and ϑ = arctan
(

py/px
)
. Although there is no degeneracy upon the valley quantum

number ζ, for the considered issue there are no intervalley transitions and valley
index ζ can be considered as a parameter (otherwise one can formally introduce
bispinors and provide orthogonality of eigenstates for different valleys).

Let a bilayer graphene interact with a plane quasimonochromatic EM radiation of
carrier frequency ω and slowly varying envelope. We consider the case of interaction
when the wave propagates in perpendicular direction to graphene sheets (XY ) to
exclude the effect of magnetic field. Here the x-axis is considered to be along the
line connecting atoms of same sublattice while the y-axis along the line connecting
atoms of alternating sublattice. In this geometry the traveling wave for electrons in
the bilayer graphene becomes a homogeneous time-periodic electric field of carrier
frequency ω and slowly varying envelope E0 (t) directed along the unit vector ε̂
within the (XY ) plane:

E (t) = ε̂E0 (t) cosωt. (14.116)

The single-particle Hamiltonian in the presence of a uniform time-dependent electric
field E (t) reads

Ĥs = Ĥζ +
(

er · E (t) 0
0 er · E (t)

)
, (14.117)

where for the interaction Hamiltonian we have used length gauge, describing the in-
teraction by the potential energy. The latter is given in terms of the gauge-independent
field E (t). As is known, in this gauge it is straightforward to study quantum transi-
tions via intermediate states and obtain gauge-independent transition probabilities.
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Using the Fermi-Dirac field operator

Ψ̂ (r, t) =
∑
p,σ

âp,σ(t)Ψp,σ(r), (14.118)

the second quantized Hamiltonian is obtained

Ĥ =
∑
p,σ

Eσ (p) â+
p,σâp,σ + eE (t)

∑
p,σ

∑
p′,σ′

Dσσ′
(
p, p′) â+

p,σâp′,σ′ , (14.119)

where

Dσσ′
(
p, p′) = 1

2

[
1 + h∗

ζ (p) hζ

(
p′)

Eσ (p) Eσ′ (p′)

]∫
re

i
� (p′−p)·rdr. (14.120)

In order to develop microscopic theory of the multiphoton interaction of a bilayer
graphene with a strong radiation field, we need to solve the Liouville–von Neumann
evolution equation for the single-particle density matrix

ρσ1σ2(p1, p2, t) = 〈̂a+
p2,σ2

(t )̂ap1,σ1(t)〉, (14.121)

where âp,σ(t) obeys the Heisenberg equation (8.17). As an initial state we assume
ideal Fermi gas in equilibrium:

ρσ,σ′(p, p′, 0) = 1

1 + e
Eσ (p)−μ

T

δp,p′δσ,σ′ . (14.122)

Here μ is the chemical potential, and T is the temperature in energy units. Taking
into account the definition (14.121) and second quantized Hamiltonian (14.119),
from (8.17) one can obtain the evolution equation for the single-particle density
matrix:

∂ρ1,1(p0, p0, t)

∂t
= iΛ(p0, t)

× [
ρ1,−1(p0, p0, t) − ρ−1,1(p0, p0, t)

]
, (14.123)

∂ρ−1,−1(p0, p0, t)

∂t
= −∂ρ1,1(p0, p0, t)

∂t
, (14.124)

∂ρ1,−1(p0, p0, t)

∂t
= 2

i�
Ẽ1 (p0, t) ρ1,−1(p0, p0, t)

+ iΛ(p0, t)
[
ρ1,1(p0, p0, t) − ρ−1,−1(p0, p0, t)

]
, (14.125)

http://dx.doi.org/10.1007/978-3-319-26384-7_8
http://dx.doi.org/10.1007/978-3-319-26384-7_8
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ρ−1,1(p0, p0, t) = ρ∗
1,−1(p0, p0, t). (14.126)

In these equations we have made change of variables (t, p) =⇒ (t, p0 = p − pE (t))
and transformed partial differential equation into the ordinary one. Here

pE (t) = −e

t∫

0

E
(
t ′) dt ′ (14.127)

is the classical momentum given by the wave field, and consequently energy

Ẽ1 (p0, t) = E1 (p0 + pE (t)). (14.128)

The interband coupling is

Λ(p0, t) = 1

�
E (t) · d (p0 + pE (t)), (14.129)

where the components of transition dipole moment are

dx (p) = e�

2E2
1 (p)

[(
− p2

2m
+ mv23

)
ζ py

m
+ v3

m
px py

]
, (14.130)

dy (p) = e�

2E2
1 (p)

[(
p2

2m
− mv23

)
ζ px

m
+ v3

2m

(
p2

x − p2
y

)]
. (14.131)

Equations (14.123) and (14.124) yield the conservation law for the particle number:

ρ1,1(p0, p0, t) + ρ−1,−1(p0, p0, t)

= ρ1,1(p0, p0, 0) + ρ−1,−1(p0, p0, 0) ≡ Ξ (p0,μ, T ) . (14.132)

Here we have introduced the notation Ξ (p0,μ, T ), which according to (14.122) is

Ξp0,μ,T = 1

1 + e
E1(p0)−μ

T

+ 1

1 + e
−E1(p0)−μ

T

. (14.133)

In (14.123) and (14.124) the diagonal elements represent particle N (p0, t) ≡
ρ1,1(p0, p0, t) and hole (1−ρ−1,−1(p0, p0, t)) distribution functions, while nondiag-
onal elements ρ1,−1(p0, p0, t) = ρ∗−1,1(p0, p0, t) describe the particle-hole coherent
transitions. Introducing the interband coherence J (p0, t)

ρ1,−1(p0, p0, t) = iJ (p0, t) ei 2
�

Sp0 (t), (14.134)
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where

Sp0 (t) = −
t∫

0

Ẽ1
(
p0, t ′) dt ′, (14.135)

and taking into account that ρ−1,−1(p0, p0, t) = Ξ (p0,μ, T ) − N (p0, t), from
(14.123)–(14.126) we obtain the following set of equations:

∂N (p0, t)

∂t
= −Λ(p0, t)

[
J (p0, t) ei 2

�
Sp0 (t) + c.c.

]
, (14.136)

∂J (p0, t)

∂t
= Λ(p0, t) e−i 2

�
Sp0 (t)

× [
2N (p0, t) − Ξ (p0,μ, T )

]
. (14.137)

This set of equations should be solved with the initial conditions:

J (p0, 0) = 0; N (p0, 0) = 1

1 + e
E1(p0)−μ

T

. (14.138)

Note that here we consider coherent interaction of the bilayer graphene with the
pump wave in the ultrafast excitation regime, which is correct only for the times
t < τmin, where τmin is the minimum of all relaxation times. For the considered
excitations of energies E � γ1 = 0.39 eV, the dominant mechanism for relaxation
will be electron–phonon coupling via longitudinal acoustic phonons. In the low-
temperature limit T � 2cph/vF

√Eγ1, where cph � 2× 106 cm/s is the velocity of
the longitudinal acoustic phonon, the relaxation time for the energy level E can be
estimated as

τ (E) �
(

πD2T 2

8ρm�3vF c3ph

√
γ1

E

)−1

. (14.139)

Here D � 20 eV is the electron–phonon coupling constant, and ρm � 15 ×
10−8 g/cm2 is the mass density of the bilayer graphene. For E � 10−2 eV, at the
temperatures T ∼ 0.25 meV, from (14.139) we obtain τ (E) � 300 ps. Thus, in this
energy range, one can coherently manipulate with interband multiphoton transitions
in the bilayer graphene on the timescales t � 100 ps.

From (14.115), (14.128), and (14.129) it is seen that in the bilayer graphene, the
wave–particle interaction at the photon energies �ω > EL can be characterized by the
dimensionless parameter χ = eE0/(ω

√
m�ω), which is the ratio of the amplitude of

the momentum given by the wave field to momentum at the one-photon absorption.
For the frequencies much smaller than the Lifshitz energy, the effective interaction
parameter is χL = eE0v3/

(
�ω2

)
. Our consideration is mainly focused at the rela-
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tively high photon energies. The average intensity of the wave, expressed by χ, can
be estimated as

Iχ = χ2 × 6 × 1010 W cm−2 [�ω/eV]3. (14.140)

The intensity Iχ strongly depends on the photon energy �ω. Atχ ∼ 1 themultiphoton
effects become essential. Particularly, for THz photons (wavelengths from 30 µm
to 3 mm), multiphoton interaction regime can be achieved at the intensities Iχ ∼
10−105 W/cm2. In the opposite limitχ � 1, themultiphoton effects are suppressed.
For the clearness we consider these two regimes separately.

For the weak pump fields χ � 1, when |pE (t)| � |p0|, one can omit nonlinear
over E0 terms in (14.136) and (14.137) which yields the following set of equations:

∂N (p, t)

∂t
= −Ω1 (p) cosωt

[
J (p, t) e−i 2E1(p)t

� + c.c.
]

(14.141)

∂J (p, t)

∂t
= Ω1 (p) cosωtei 2E1(p)t

�

[
2N (p, t) − Ξp,μ,T

]
. (14.142)

where

Ω1 (p) = E0̂εd (p) (14.143)

In this case, (14.141) and (14.142) are analogous to the optical Bloch equations,
which describe Rabi oscillations of state populations of the two-level atomic system
under the resonant excitation. Here we also have two-level system. Thus, because
of space homogeneity of the field (14.116), the generalized momentum of a particle
conserves, so that the real transitions in the field occur from a −E1 (p) negative
energy level to the positive E1 (p) energy level and, consequently, the probability of
particle-hole pair production will have maximal values for the resonant transitions
2E1 (p) � �ω. For the resonant momenta |2E1 (p) − �ω| � |Ω1 (p)| one can write
the explicit solutions of (14.141) and (14.142) in the rotating wave approximation as

J (p, t) = Δp,μ,T

2
sin (Ω1 (p) t) , (14.144)

N (p, t) = Ξp,μ,T

2
+ 1

2
Δp,μ,T cos (Ω1 (p) t) , (14.145)

where

Δp,μ,T = 1

1 + e
E1(p)−μ

T

− 1

1 + e
−E1(p)−μ

T

(14.146)

is the initial population inversion. The Rabi frequency in this case is |Ω1 (p)|. Thus,
choosing photon energy �ω one can excite the desired isoline in the time scale
∼1/ |Ω1 (p)|.
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With increasing of the pump wave intensity and approaching it to the domain
χ ∼ 1, the multiphoton excitations take place and the Rabi oscillations appear corre-
sponding to multiphoton transitions. Here one can apply generalized rotating wave
approximation. For a monochromatic wave the coupling term (14.129) in (14.136)
and (14.137) is a periodic function and contains harmonics of the pumpwave. Hence,
there is a direct multiphoton resonant coupling of interband transitions. Besides, one
should also take into account the intensity effect of the pumpwave on the quasienergy
spectrum (Stark shift due to the free–free intraband transitions) and, consequently,
the multiphoton probabilities of the particle-hole pair production will have maximal
values for the resonant transitions (14.51), where

EE (p0) = 1

T

T∫

0

E1 (p0 + pE (t)) dt (14.147)

is the mean value of the classical energy (quasienergy) in the field (14.116) and T
= 2π/ω is the wave period. Then the n-photon coupling term Gn will be

Gn = 2

T

T∫

0

Λ(p0, t) e−i 2
� (Sp0 (t)+EE (p0)t− n�ωt

2 )dt. (14.148)

Along the isoline EE (p0) � n�ω/2 the solutions of (14.136) and (14.137) become

J (p0, t) = Δp0,μ,T

2
ei arg(Gn) sinΩnt, (14.149)

N (p0, t) = Δp0,μ,T

2
cosΩnt + Ξp0,μ,T

2
. (14.150)

The solution (14.150) expresses Rabi flopping among the particle-hole states at the
multiphoton resonance with the generalized Rabi frequency:

Ωn = |Gn| . (14.151)

The solutions (14.149) and (14.150) are valid for slowly varying functionsN (p0, t)
and J (p0, t) on the scale of the wave period, which put the following restrictions:

|Gn (p0, E0)| � ω. (14.152)

We have also integrated (14.136) and (14.137) numerically with the fourth-order
adaptiveRunge–Kuttamethod. For turn-on/off of thewavefield, the latter is described
by the envelope function E0 (t) = E0 f (t) (13.72) (Chap.13), where the pulse
duration (τ ≡ Tp) is chosen to be Tp = 32T . The wave is assumed to be linearly
polarized along the y-axis. Similar calculations for a wave linearly polarized along

http://dx.doi.org/10.1007/978-3-319-26384-7_13
http://dx.doi.org/10.1007/978-3-319-26384-7_13
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Fig. 14.7 (Color online) Creation of particle-hole pair in bilayer graphene at the multiphoton
resonant excitation. Particle distribution functionN (

p, t f
)
(in arbitrary units) after the interaction

is displayed for various wave intensities. The chemical potential and temperature are taken to be
μ = 0 and T/�ω = 0.01. The wave is assumed to be linearly polarized along the y-axis with
the frequency ω = 10EL/� � 10meV/�. The results are for the valley ζ = 1: a–d correspond to
dimensionless field parameter χ = 0.2, χ = 0.3, χ = 0.4, and χ = 0.5, respectively

the x-axis show qualitatively same picture. In Fig. 14.7 the creation of the particle-
hole pair in the bilayer graphene is shown for various pumpwave intensities but fixed
frequency ω = 10EL/� � 10meV/� (pulse duration Tp = 32T � 12.5 ps). The
chemical potential and temperature are taken to be μ = 0 and T/�ω = 0.01. As is
seen, with the increasing of the wave intensity the states with the absorption of more
photons appear in the Fermi-Dirac sea, in accordance with the analytical treatment
(14.150). The multiphoton excitation of the Fermi-Dirac sea takes place along the
trigonally warped isolines of the quasienergy spectrum modified by the wave field.

14.8 Generation of Harmonics in a Bilayer Graphene
at the Particle-Hole Multiphoton Excitation

At the multiphoton resonant excitation, the particle-hole annihilation from the co-
herent superposition states will cause intense coherent radiation of harmonics of the
applied wave field. Here we consider the possibility of generation of harmonics from
the multiphoton excited states depending on the pump field intensity and tempera-
ture of the initial stationary state. For the coherent part of the radiation spectrum one
needs the mean value of the current density operator:

ĵζ = −e
〈
Ψ̂
∣∣ v̂ζ

∣∣Ψ̂ 〉 , (14.153)
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where v̂ζ = ∂ Ĥζ/∂p̂ is the velocity operator. For the effective 2 × 2 Hamiltonian
(14.112) the velocity operator in components reads

v̂ζx = ζ

(
0 1

m

(
ζ p̂x − i p̂y

)+ v3
1
m

(
ζ p̂x + i p̂y

)+ v3 0

)
, (14.154)

v̂ζ y = i

(
0 − 1

m

(
ζ p̂x − i p̂y

)+ v3
1
m

(
ζ p̂x + i p̂y

)− v3 0

)
. (14.155)

With the help of (14.153), (14.154), (14.155), and (14.121) the expectation value of
the current for the valley ζ in components can be written as

jζ,x = − egs

(2π�)2

∫
dpζ

(
ρ1,1 − ρ−1,−1

) [(ζ px

m
+ v3

)
cosΘ (p)

+ py

m
sinΘ (p)

]
+ egs

(2π�)2

∫
dpi

(
ρ1,−1 − ρ−1,1

)

×
[
ζ

py

m
cosΘ (p) − ζ

(
ζ px

m
+ v3

)
sinΘ (p)

]
, (14.156)

jζ,y = − egs

(2π�)2

∫
dp
(
ρ1,1 − ρ−1,−1

) [(ζ px

m
− v3

)
sinΘ (p) []

− py

m
cosΘ (p)

]
+ egs

(2π�)2

∫
dpi

(
ρ1,−1 − ρ−1,1

)

×
[(

ζ px

m
− v3

)
cosΘ (p) + py

m
sinΘ (p)

]
, (14.157)

where gs = 2 is the spin degeneracy factor, and

cosΘ (p) = 1

E1 (p)

(
1

2m

(
p2

x − p2
y

)+ ζv3 px

)
, (14.158)

sinΘ (p) = 1

E1 (p)

(
ζ px

m
− v3

)
py . (14.159)

Since there is no degeneracy upon valley quantum number ζ, the total current is
obtained by the summation over ζ:

jx = j1,x + j−1,x , (14.160)

jy = j1,y + j−1,y . (14.161)
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From (14.156) and (14.157), it is easy to see that

jx,y

j0
= Rx,y

(
ωt;χ,

EL
�ω

,
μ

�ω
,

T

�ω

)
, (14.162)

where

j0 = eω2

π2vF

√
γ1

2�ω
, (14.163)

and Rx and Ry are the dimensionless periodic (for monochromatic wave) func-
tions, which parametrically depend on the interaction parameter χ, scaled Lifshitz
energy, andmacroscopic parameters of the system.Thus, having solutions of (14.136)
and (14.137), and making integration in (14.156) and (14.157), one can calculate
harmonics radiation spectrum with the help of Fourier transform of the function
Rx,y (t). The emission rate of the nth harmonics is proportional to n2 | jn|2, where
| jn|2 = | jxn|2 + ∣∣ jyn

∣∣2, with jxn and jyn being the nth Fourier components of the
field-induced total current. To find out jn , the fast Fourier transform algorithm has
been used. For the plots we have used normalized current density (14.162).

As is clear from Hamiltonian (14.112), (14.156), and (14.157), inversion sym-
metry for separate valleys does not hold and consequently Fourier components of
the field-induced currents for each valley contain, in general, both even and odd
harmonics. Since for the total system the inversion symmetry holds, at the normal
incidence of radiation on the uniform bilayer graphene, only odd harmonics are
generated (for equilibrium initial state (14.138) and smooth turn-on/off of the wave
field). Figure14.8 shows the dependence of harmonics emission rate on the wave
intensity in bilayer graphene at the multiphoton excitation. The chemical potential
and temperature are taken to be μ = 0 and T/�ω = 0.01. The wave is assumed to
be linearly polarized along the y-axis with the frequency ω = 10EL/� � 10meV/�.
As shown from this figure, the process of harmonics generation is strictly nonlinear
and with the moderate change of interaction parameter χ one can achieve generation
of higher harmonics with reasonable rates.

Comparing the amplitude j0 (14.163) with its counterpart for a single-layer
graphene, one can see that j0 for bilayer graphene is larger by the factor (γ1/2�ω)1/2.
Besides, the cut-off harmonics is larger than in the case of monolayer graphene,
which is a result of strong nonlinearity caused by the trigonal warping. Hence, for
considered setups �ω � γ1, the harmonics radiation intensity is at least by one or-
der of magnitude larger than in the monolayer graphene. Conversion efficiency for
harmonics ηn = In/I can be estimated as

ηn ∼ 10−3χ−2
0 (d/λ)2 n2 |Rn|2 ,

where λ = 2πc/ω and d is the characteristic size of bilayer graphene sheet. For the
setup of Fig. 14.8, depending on the ratio d/λ, one can achieve conversion efficiencies
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Fig. 14.8 Harmonics emission rate in bilayer graphene at the multiphoton excitation via
log10(n

2Rn) (in arbitrary units), as a function of the photon energy (in units of �ω), is shown
for various wave intensities. The chemical potential and temperature are taken to be μ = 0 and
T/�ω = 0.01. The wave is assumed to be linearly polarized with the frequency ω = 10EL/� �
10meV/�. The results are for a χ = 0.2, b χ = 0.3, c χ = 0.4, and d χ = 0.5

ηn ∼ 10−2 for up to 9th harmonics. Note that these quite large conversion efficiencies
are obtained for a single bilayer graphene sheet, which are comparable to what one
expects to achieve with resonant two-level systems in nonlinear optics.
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