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Supervisor’s Foreword

Quantum Hall physics started more than 35 years ago and is still an expanding field,
thanks to new high-quality materials such as graphene and zinc oxide, new theo-
retical concepts including topological insulators and topological quantum compu-
tation, and last but not least, due to important applications in metrology that will
lead to a new international system of units based on constants of nature.

The most important ingredient in this research field is merely a two-dimensional
electron system (2DES) in a strong perpendicular magnetic field leading (in an ideal
system) to a discrete energy spectrum. The 2DES is not a mathematical simplifi-
cation of a three-dimensional system; it truly opens a new dimension in science,
especially if magnetic flux quanta are added. New quasiparticles called composite
bosons, composite fermions, or anions are realized with new electronic properties.
In some cases, quasiparticles with non-abelian statistics are expected that may well
revolutionize quantum information technology. The host material in this research
field of basic science plays a secondary role and the influence of the crystal on the
2DES is normally included in parameters such as the effective mass and the g-factor
of the electrons. Unfortunately, even high-quality crystals are never perfect, and
their residual defects and impurities very often mask the intrinsic properties of the
electronic system. A two-dimensional electron layer on the clean surface of liquid
helium is very nearly an ideal system for basic science in the two-dimensional
world, but the electron concentrations in these experiments are limited to very small
values so that the diversity of quantum Hall physics cannot be exploited in these
systems.

At present, the best-controlled 2DES for basic research is realized at the interface
between GaAs and AlGaAs, and every time the quality of this system (characterized
by the mobility of electrons) has been increased, new phenomena were observed.

The integer quantum Hall effect can be discussed within a simple
independent-electron picture, where the discrete energy levels for electrons in a
strong magnetic field (Landau levels) are fully occupied and an incompressible
electron system is formed. Disorder does not destroy this effect. Quite the contrary,
it stabilizes this quantum phenomenon. However, many other fascinating electron
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phases based on electron–electron interactions such as the fractional quantum Hall
effect, Wigner crystals, or exciton condensation become visible only if the disorder
is negligibly small. Two other prominent phenomena based on correlated electrons,
namely the formation of bubbles and stripes, are the focus of the research performed
by Benedikt Frieß as described in this thesis.

Contrary to the intuitive picture of electrons in a plane with Coulomb repulsion,
the expected homogeneous electron concentration can be drastically changed by
redistributing the electrons if, for example, the increase in Coulomb energy is
overcompensated by the gain in exchange energy. The electrons in a half-filled
Landau level may redistribute in stripes representing a mixture of fully occupied
Landau levels with alternating numbers of completely filled energy levels. The
resulting electronic anisotropy can clearly be seen in angular-dependent resistivity
measurements, but another technique used by Benedikt Frieß, the analysis of the
velocity change of surface acoustic waves due to the screening properties of the
electron system, yields unexpectedly new information about the compressibility
of the spatially varying electron system. Such density-modulated phases are of
general interest because they exist in nature in many cases, including some high-TC
superconductors. Contrary to other systems, the control of the electron concentra-
tion in GaAs/AlGaAs heterostructures offers a unique opportunity to study these
phases in detail. Very sensitive probes are available for characterizing the
density-modulated phases because the charge-modulated system is generally con-
nected to a spin-density modulation, which can be detected sensitively by local
probes via the Knight shift.

This thesis provides not only a comprehensive introduction to modern aspects of
quantum Hall physics but also an impressive overview of experimental details and
techniques for characterizing quantum Hall systems with a focus on new methods
based on electron–nuclear spin interactions.

Stuttgart Prof. Dr. Dr. h.c. mult.
January 2016 Klaus von Klitzing
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Chapter 1
Introduction

The motion of electrons in a three-dimensional solid state system is generally char-
acterized by numerous degrees of freedom spanning a large phase space. Despite the
vast number of microscopic states, the overall macroscopic behavior of such sys-
tems is often rather simple and can in most cases be conveniently described by only
a few quantities. It appears almost paradoxical that reducing the electronic degrees
of freedom, in contrast, yields some of the most diverse and fascinating phenomena
in physics. Constraining the number of allowed states often entails otherwise more
subtle interactions to play a dominant role. The quantum Hall effect, studied in this
thesis, serves as a splendid example of such behavior. It is stage to a multitude of
intriguing phenomena formed by the interplay of competingmany-body interactions.
To facilitate the emergence of the quantumHall effect and the diverse physics within,
constraints must be put on the electrons in different regards.

The first important prerequisite for the existence of the quantum Hall effect is the
confinement of electrons in one direction. A versatile platform to create such two-
dimensional electron systems (2DES) is provided by semiconductor heterostructures.
Here, the electrons are kept in place by an impenetrable barrier formed at the interface
of semiconductors with different band gaps. This system offers a good controllability
of the confinement strength as well as an excellent quality of the 2DES. In recent
years, alsomaterial systemswhich naturally form a two-dimensional electron system
have become of major interest (e.g. graphene).

In addition to the confinement of electrons in the direction perpendicular to the
2DES, the number of allowed states needs to be reduced further. This is done by
restricting the movement also in the plane of the 2DES, not spatially as before but by
putting constraints on the kinetic energy. For this purpose, a magnetic field is applied
perpendicular to the 2DES. Quantum mechanics dictates that the kinetic energy of
a 2DES condenses into a set of discrete values if exposed to a strong magnetic
field. As a result, the electronic energy spectrum is composed of highly degenerate,
discrete levels separated by the cyclotron energy—the so-called Landau levels. The
degeneracy of each Landau level depends on the magnetic field strength. Thus, the
filling fraction of the Landau levels, characterized by the filling factor ν, constantly
changes when increasing the magnetic field. This important property of a 2DES lays

© Springer International Publishing Switzerland 2016
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the foundation of the famous (integer) quantum Hall effect. It manifests itself in
standard electron transport experiments as plateaus in the Hall resistance at integer
values of the filling factor combined with a vanishingly small longitudinal resistance,
provided that the temperature is low enough to suppress thermal excitations to higher
Landau levels [1].

The integer quantumHall effect (IQHE), whosemere existence can be understood
on the basis of non-interacting particles, forms the framework for a remarkable col-
lection of interaction-driven phenomena. As all electrons within a Landau level have
the same kinetic energy and excitations to higher Landau levels are frozen out, the
physics at partial filling is dominated by the interplay betweenCoulomb, Zeeman and
exchange interactions. This situation ismost evident in state-of-the-artGaAs/AlGaAs
heterostructures—up to date the superior platform to study many-body interactions
in the quantumHall regime. At high magnetic fields, when the lowest Landau level is
partially occupied, fractional quantum Hall states (FQHS) emerge [2]. These quan-
tum Hall states at fractional filling factors share the appearance of the IQHE but are
of a different origin. They are manifestations of a collective state which arises from
many-particle Coulomb interactions. At certain commensurate ratios of the charge
and magnetic flux density, the electrons can lower their Coulomb energy by binding
to magnetic flux quanta. This correlated state gives rise to a fascinating and coun-
terintuitive breed of quasiparticles, so-called anyons. They bear fractional charges
and exhibit an exchange statistic different from fermions and bosons. As a clear sign
of correlated physics, the existence of these quasiparticles cannot be understood by
extrapolating the behavior of single electrons.

When looking at higher Landau levels, beyond filling factor ν = 4, the situa-
tion is drastically different. No fractional quantum Hall states form here. Instead,
density-modulated phases are prevalent at partial fillings. They arise by the spon-
taneous ordering of electrons in spatial patterns with either one-dimensional stripe
order (stripe phase) or a two-dimensional crystalline order (bubble phase) [3]. Such
phases constitute an evident signature of systems with a strong competition between
attractive and repulsive interactions acting on different length scales. Similar physics
is at play at the formation of stripe and bubble phases in magnetic and organic films
[4]. In the quantum Hall regime, these phases emerge from the competition between
the repulsive direct Coulomb interaction and the attractive exchange interaction [3,
5]. Their dominance over the fractional quantum Hall effect stems from subtle dif-
ferences in the relative strength of these interactions, primarily caused by changes
in the shape and extent of the wavefunction in higher Landau levels. The competi-
tion between density-modulated phases and fractional quantumHall states manifests
itself most clearly in the second Landau level. Here, both phases are of almost equal
strength, andminute changes of the electron density or themagnetic fieldmay induce
transitions between them.

The diverse many-body phenomena featured in the quantum Hall regime are
enriched even further by the spin degree of freedom [6]. It leads to an additional
splitting of the Landau levels (Zeeman effect) with sometimes far-reaching con-
sequences. The fractional quantum Hall states, for instance, are known to exist
with different degrees of spin polarization depending on the ratio of Coulomb and
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Zeeman energy. By tuning the relative strength of both energies, transitions between
the respective spin phases can be induced. These spin transitions are accompanied by
the occurrence of ferromagnetic domains [7–9]. Even outside the fractional quantum
Hall regime, complex spin structures do exist such as skyrmionic spin formations
around filling factor ν = 1 [10, 11] and a spatially ordered spin density in the regime
of the density-modulated phases.

By the wealth of examples given above, the quantum Hall effect appears in
metaphorical terms as a veritable goldmine in the field of many-body physics. To
many of the intriguing phenomena we shall return in the course of this thesis. Special
emphasis is thereby put on the spin physics as well as the density-modulated phases
in the quantum Hall regime. The topics covered in detail are outlined below.

• Chapter2 treats the basic properties of a two-dimensional electron system at low
temperatures with and without an external magnetic field. At first, details on the
formation of a 2DES in a GaAs/AlGaAs quantum well structure are given. This is
followed by a section about the basic equations of motion in two dimensions. The
main part of the second chapter covers general aspects of the integer and fractional
quantum Hall effect. Special attention is paid to the density-modulated phases in
the quantum Hall regime and the exceptional physics of the second Landau level.

• Chapter3 is about electron-nuclear spin interactions in the quantum Hall regime.
The coupling of the electronic and nuclear spin system is an often unconsidered
aspectwhen dealingwith the quantumHall effect. Inmost cases this is justified as it
only leads to minor adjustments of the energy scales involved. Here, we explicitly
utilize this coupling to systematically study the low-energetic spin excitations in the
quantum Hall regime by measuring the nuclear spin relaxation rate. Surprisingly,
we find that not only the nuclear spin relaxation is modified at certain filling factors
but also the equilibrium value of the nuclear spin polarization. This observation is
studied more carefully in the second part of this chapter.

• Chapter4 addresses the long-lasting search for the spin polarization of the won-
drous ν = 5/2 state. For many years, the origin of the FQHS at ν = 5/2 has
attracted a lot of attention since it cannot be explained by the standard picture
which accounts for most of the FQHS [12]. Over time, alternative theories have
been developed, some of which predict a novel kind of quasiparticle to be present
at the ν = 5/2 state, so-called non-abelian anyons [13, 14]. The prospect of finding
such quasiparticles has triggered substantial efforts to unravel the nature of this
exceptional FQHS. An important question in this regard is the spin polarization of
the ν = 5/2 state. We have tackled this issue by means of nuclear magnetic reso-
nance spectroscopy. This technique relies on the characteristic shift of the nuclear
resonance frequency in the presence of a spin-polarized electron system (Knight
shift). In order to affect the quality of the fragile ν = 5/2 state as little as possible,
we have employed a sensitive detection scheme based on changes in the sample
resistance under resonant nuclear spin excitation.

• Chapter5 deals with the microscopic structure of the stripe phases in the quantum
Hall regime. Thus far, the density-modulated phases in the quantum Hall regime
were studied mostly in transport experiments providing only macroscopic access.

http://dx.doi.org/10.1007/978-3-319-33536-0_2
http://dx.doi.org/10.1007/978-3-319-33536-0_3
http://dx.doi.org/10.1007/978-3-319-33536-0_4
http://dx.doi.org/10.1007/978-3-319-33536-0_5
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Their microscopic nature remains a largely unexplored facet. Here, we address this
topic by employing nuclear spins as local sensors to probe the density distribution
of the stripe phase. For this purpose, as in the previous chapter, the Knight shift is
utilized. A theoretical model is implemented to interpret the observed resonance
behavior. The modulation strength and stripe period can be extracted with the help
of this model.

• Chapter6 remains in the field of density-modulated phases but focuses on a dif-
ferent aspect. Here, the bubble and stripe phases in the quantum Hall regime are
studied bymeans of surface acoustic waves. These soundwaves dynamically sense
the conductivity and the screening behavior of the 2DESwith the benefit of a well-
defined probing direction. This property proves to be advantageous especially in
the context of density-modulated phases since here the distribution of current flow
is influenced decisively by the spatial density inhomogeneities.

• Chapter7 provides a summary of the thesis.
• Appendix A specifies the details of the samples studied in the course of this thesis.
It includes information on the layer sequence and lithographical patterning.

• Appendix B describes the design of the low-temperature sample holder manufac-
tured specifically for the demanding needs of the experiments performed here. The
density-modulated phases and most of all the fragile ν = 5/2 state require ultra-
low temperatures to exist. Special measures were taken to optimize the cooling
power and to minimize the heat load even in the presence of electrical leads and
microwave excitation.
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Chapter 2
The Two-Dimensional Electron System

At the heart of this thesis are the properties of high-quality two-dimensional electron
systems when being exposed to strong magnetic fields and low temperatures. In our
case, the 2DES is hosted inside of a GaAs/AlGaAs heterostructure—a system well
known for its excellent quality. Details on the sample structure are provided in the
first section of this chapter. The remaining sections summarize the basic properties
of a 2DES in a perpendicular magnetic field and lay the foundation for the physics
discussed in subsequent chapters. Of particular importance is here the integer and
fractional quantum Hall effect. Special emphasis is put on the density-modulated
phases in the quantum Hall regime as well as the peculiar physics of the second
Landau level.We restrict ourselves to the situation inGaAs/AlGaAs heterostructures.
The following sections are based on introductory textbooks [1, 2] as well as Ph.D.
theses [3–8].

2.1 Realizing a 2DES in a GaAs/AlGaAs Heterostructure

The confinement of electrons into two dimensions can be realized in a variety
of different systems, such as semiconductor heterostructures, graphene and topo-
logical insulators. The samples investigated in the course of this thesis employ a
GaAs/AlGaAs heterostructure to form a 2DES of exceptional quality. Up to date,
it is the superior platform to study quantum Hall physics, showing a large number
of integer and fractional quantum Hall states (Sects. 2.3 and 2.4) as well as differ-
ent density-modulated phases (Sect. 2.5). The samples were fabricated by molecular
beam epitaxy (MBE), a methodwhich provides precise control over the vertical layer
growth and excellent crystalline purity. Figure2.1 shows the basic sample structure.
The key features are described below. Further details about the samples used in the
following chapters can be found in Appendix A. The wafers for fabricating these

© Springer International Publishing Switzerland 2016
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8 2 The Two-Dimensional Electron System

Fig. 2.1 Schematic of the conduction band profile along the growth direction in a typical
GaAs/AlGaAs quantum well structure (not drawn to scale). Modulation doping is used to populate
the QW with electrons. The backgate is realized by incorporating a highly doped layer underneath
the QW

samples of excellent quality were developed and kindly supplied by Dr. Vladimir
Umansky (Weizmann Institute of Science, Israel).

The Quantum Well

The 2DES is located inside of a quantum well (QW) structure, which is formed by
a thin layer of GaAs (typically 10–50 nm) sandwiched between AlGaAs barriers
(Fig. 2.2). Because GaAs has a lower conduction band energy than AlGaAs, the
movement of electrons is restricted to the GaAs layer provided that their energy
is lower than the potential barrier of the QW. In order to fulfill this requirement,
the QW width w, the density of electrons ne as well as their temperature must be
chosen accordingly.The confinement in the vertical direction (z-axis) leads to discrete
values of the z-component kz of the wavevector. In the case of a QW with infinitely
high barriers, these values are kz = iπ/w (i = 1, 2, 3, ...). Consequently, the energy
associated with the movement of electrons in the growth direction is quantized to

Fig. 2.2 Probability density
of the two lowest
wavefunctions in a
30 nm-wide GaAs/AlGaAs
quantum well
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Ez = �
2k2z
2m∗ = �

2π2i2

2m∗w2
, (2.1)

wherem∗ is the effective mass of the conduction band electrons. Therefore, decreas-
ing the QW width results in a larger spacing between the different energy subbands.
In the more realistic case of a QW with finite barriers, the wavefunction may extend
partially into the barriers, which increases the effective width of the QW. Figure2.2
shows the probability density of the twowavefunctionswhich are lowest in energy for
the case of a 30 nm-wideQW. The calculations were done by solving the Schrödinger
and Poisson equations self-consistently using the software nextnano++ [9]. The sam-
ples studied in this thesis are designed in such a way that only the lowest subband
is occupied. In this case, all electrons have the same kz component, and the electron
system can be considered two-dimensional despite the finite extent of the wavefunc-
tion along the z-direction (Fig. 2.2). For a 2DES with parabolic energy dispersion
and non-interacting electrons, the number of states per unit area and energy can be
calculated according to

DOS = m∗

π�2
. (2.2)

Thus, the density of states (DOS) of a two-dimensional electron system with par-
abolic dispersion depends merely on the effective electron mass and is in particular
independent of the electron energy.

The Doping Scheme

Intrinsic GaAs (as well as AlGaAs) turns insulating at low temperatures. There-
fore, dopants must be integrated into the crystal structure to populate the QW with
electrons. To achieve a high-quality 2DES, it is essential how the doping is imple-
mented. The dopants should affect the movement of the electrons in the QW as little
as possible. The obvious approach, i.e. to dope directly the GaAs layer, is unfavor-
able because it degrades the mobility of the electrons due to scattering from ionized
donors. Instead, we use the concept of modulation doping, which separates the dop-
ing layer from the QW by a distance of typically 50–100nm [11]. Despite the spatial
separation, electrons from the donor atoms will accumulate in the QW because of
its (initially) lower-lying unoccupied energy levels (Fig. 2.1). Once the equilibrium
state has been reached, the QW is filled with electrons up to the Fermi energy EF.1

To realize a high-mobility 2DES, a large density of electrons is desirable because
it mitigates the effect of disorder in the QW. The main sources of disorder in our
heterostructures are residual impurities in the QW and the smooth disorder poten-
tial created by the remote ionized donors randomly distributed in the doping layer
[10, 12]. The more electrons are located in the QW the better this disorder landscape
is screened. The electron density in the QW can be adjusted by changing the distance
of the doping layer from the QW. This distance is referred to as the spacer thickness.
However, decreasing the spacer thickness increases the strength of the electrostatic

1More precisely, the electrochemical potential should be used instead of the Fermi energy at finite
temperatures.We neglect this subtlety throughout the thesis in view of the low sample temperatures.
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disorder in the QWdue to the remote ionized donors and thus enhances the scattering
rate of electrons in the QW. Alternatively, higher ne can be realized by increasing
the number of doping atoms. This handle is of course limited to the point when
the energy level of the donors coincides with the Fermi level. Once this situation is
reached, increasing the doping density will not raise the electron density any further.
Nevertheless, such a strong doping is often intentionally applied as it ensures a more
homogeneous electron density across the wafer. In our samples, the doping strength
is even increased beyond this point. The idea behind such an over-doping is that the
additional electrons will remain in the doping layer and partly screen the disorder
potential of the ionized donors. This effect has been proven crucial to improve the
sample quality and in particular the strength of the fractional quantum Hall states
[13]. On the other hand, over-doping can create a conducting layer at the site of the
dopants, which gives rise to parallel conduction in transport measurements and may
impede the stable operation of topgates as they are commonly used in interferometer
structures.

In our samples, this issue is partly solved by using the dedicated doping scheme
depicted in Fig. 2.3 and described in detail in references [10, 14, 15]. It is based on a
short-period superlattice (SPSL) of thin GaAs layers separated by AlAs layers. The
Si-dopants are only placed inside of the GaAs layers. Each of the neighboring AlAs
layers forms a barrier at the Γ -point, leading to a confinement of the electrons like
in a narrow quantum well. The same is true for the AlAs layers at the X -point. The
confinement raises the energy of the electrons and improves the charge transfer into
the 2DES. Furthermore, the superlattice is designed such that the ground state energy
in the AlAs layers at the X -point is lower than the one of the GaAs layer. Thus, the
excess electrons present due to over-dopinghave the character of X -electrons inAlAs,
which implies a higher effective mass compared to the Γ -electrons in GaAs. The
main idea behind this doping scheme is that the heavier electrons in the AlAs layers
do not contribute as strongly to parallel conduction as electrons in a GaAs layer but
are still mobile enough to partly screen the disorder potential generated by the ionized

Fig. 2.3 Conduction band
energy at the Γ - and X -point
for a short-period
superlattice doping scheme
(based on [10]). The doping
is placed in the center of the
GaAs layers (dotted lines)
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donors. Doping directly the AlAs layer is intentionally avoided because it leads to the
creation ofDXcenters. These negatively charged donor states cause lattice distortions
of the crystal when trapping an additional electron and create states deep within the
band gap [1, 16]. As a consequence, the charge transfer efficiency to the 2DES is
reduced. Nevertheless, DX center doping is commonly used in high mobility 2DES
structures because it gives rise to an effect known as persistent photoconductivity:
Illuminating the samplewith infrared light at low temperatures can release the trapped
charges and increase the carrier concentration in the 2DES. After interrupting the
illumination, the charge density remains high because an energy barrier has to be
overcome for re-trapping the electrons in the DX centers. Above the SPSL doping
structure a second, uniform doping layer is placed to compensate the influence of
the surface states. Separating these two doping regions is not essential but simplifies
the search for optimal doping parameters.

The Backgate

In many cases, the previously introduced doping scheme is used symmetrically on
either side of the quantum well to double the charge density. In most of our sam-
ples, however, modulation doping is applied only at the top and left out at the bottom.
Instead, a highly conductive layer is incorporated during growth at a distance of about
800nm from the QW. This layer, if separately contacted, can be used to electrosta-
tically change the electron density in the QW by applying different gate voltages.
This feature is an important advantage. In fact, many of the experiments described in
the following chapters would not have been possible without in-situ and fast control
over the electron density. When tuning the backgate voltage, not only ne but also
the shape of the electron wavefunction is affected. Figure2.4 shows the shape of the
wavefunction calculated for three different densities. In the present configuration,
increasing the electron density obviously broadens the shape of the wavefunction.
This behavior will become important in subsequent chapters.

Fig. 2.4 Probability density
of the ground state
wavefunction in a
30 nm-wide GaAs/AlGaAs
quantum well. The density in
the QW can be tuned
electrostatically by a
backgate. At the same time,
changing the backgate
voltage affects the shape of
the wavefunction
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2.2 Classical Electron Transport

The electron transport in two dimensions has many facets and depends on different
parameters, such as sample quality, temperature andmagnetic field. This section deals
with the classical motion of electrons in two dimensions.We distinguish the situation
with and without external magnetic field. The quantum-mechanical description of
electron transport in two dimensions will be addressed in the next section. We limit
the discussion to purely electronic transport.

Transport Without Magnetic Field

To approach the classical transport behavior, we employ the Drude model [17, 18].
In this model electrons are considered as point-like, massive particles. They get
accelerated by an electric field E. After a mean time τ electrons are scattered, for
example by an impurity or a phonon. The scattering rate is treated as homogeneous
and isotropic. Interactions between electrons are not taken into account. Furthermore,
all electrons are assumed to contribute equally to the conductivity. Based on these
assumptions, the equation of motion can be written as

m∗ dv
dt

= −m∗v
τ

− eE, (2.3)

where v denotes the velocity of the electron and e the positive elementary charge.
This leads in the stationary state dv/dt = 0 to a constant drift velocity

vD = − eτ

m∗ · E. (2.4)

The mobility μ = eτ/m∗ is therefore proportional to the scattering time τ . The
quality of a 2DES is often assessed by its mobility. In recent years, mobilities as high
as 3 × 107cm2/Vs have been realized [10]. This corresponds to a mean free path of
more than 200 µm between consecutive scattering events. Using Eq.2.4, the current
density j = −neevD can be expressed as

j = nee2τ

m∗ · E. (2.5)

Thus, the conductivity at zero magnetic field σ0 can be written as σ0 = neeμ =
nee2τ/m∗. It can be measured by applying a constant voltage and detecting the
current flow through the sample. However, for the experiments discussed in this
thesis, we impose a constant current and measure the resulting voltage drop. In this
configuration, the resistivity � of the sample ismeasured. In the absence of amagnetic
field, �0 is simply the inverse of the conductivity �0 = 1/neeμ = m∗/nee2τ . Both
quantities, conductivity and resistivity, can be conveniently used to determine the
mobility of a 2DESprovided that the electron density ne is known. ne can be extracted
from the classical Hall effect with the help of an external magnetic field as described
below.
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Transport Under the Influence of a Magnetic Field

When applying a magnetic field B to the sample, the Lorentz force F = −ev × B
acts on the electrons and deflects them from a straight movement. As a consequence,
the current flow j is no longer in line with the electric field direction E. Thus,
conductivity and resistivity need to be expressed as second-order tensors. In order to
take the contribution of the magnetic field into account, Eq. 2.3 needs to be modified
as

m∗ dv
dt

= −m∗v
τ

− e(E + v × B). (2.6)

If the magnetic field is perpendicular to the 2DES (B = Bez), the electric field
generated by the current is

(
Ex

Ey

)
=

(
�xx �xy

�yx �yy

) (
jx
jy

)
=

(
m∗

nee2τ
B
nee− B

nee
m∗

nee2τ

) (
jx
jy

)
=:

(
�L �H

−�H �L

) (
jx
jy

)
. (2.7)

The equation above provides two important pieces of information:

• The longitudinal resistivity �L , which measures the resistivity along the direction
of current flow, is equal to the zero field resistivity �0. Further, it is independent
of the current direction (�xx = �yy =: �L ) as expected for an isotropic system.

• An additional electric field builds up perpendicular to the current flow. This effect
is called the Hall effect [19]. The electric field is proportional to the current with
the proportionality constant

�H = B

nee
. (2.8)

Thus, theHall effect provides a convenientmethod to determine either themagnetic
field for a known charge density or the charge density when knowing the magnetic
field strength.

The conductivity tensor is the inverse of the resistivity tensor and can be deduced
from Eq.2.7:

σ = 1

�2L + �2H

(
�L −�H

�H �L

)
= 1(

m∗
nee2τ

)2 +
(

B
nee

)2

(
m∗

nee2τ
− B

nee
B
nee

m∗
nee2τ

)
=:

(
σL −σH

σH σL

)

(2.9)
The equation above implicitly defines the following relations:

σL = �L

�2L + �2H
(2.10)

σH = �H

�2L + �2H
(2.11)
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Fig. 2.5 Schematic of a Hall bar structure used for most of the transport experiments in this thesis.
The current is imposed through the front contact covering the entire width of the Hall bar. The
longitudinal resistance is measured on neighboring contacts along the perimeter of the Hall bar,
the Hall resistance between contacts on opposite sides. Typical dimensions are W = 0.4mm and
L = 1.25 mm. In many cases a backgate is present, which is separately contacted. The magnetic
field (brown arrow) is directed perpendicular to the 2DES

In order to relate the resistivity to the quantity measured in experiment, i.e. the
resistance R, the sample geometry and current flow must be well defined. Often a
Hall bar structure as shown in Fig. 2.5 is used. Here,W denotes the width of the Hall
bar and L the distance between two neighboring contacts. For this configuration, the
longitudinal and Hall resistivity can be calculated as �xx = Rxx · W

L and �H = RH

provided that the current flow is homogeneous. The samples used in this thesis
typically have the dimensions W = 0.4mm and L = 1.25mm.

2.3 The Integer Quantum Hall Effect

The Drude model introduced in the previous section predicts the Hall resistance to
increase linearlywith themagnetic field,while the longitudinal resistance is supposed
to remain constant. This prediction is contrasted by the measurement of Rxx and RH

shown in Fig. 2.6.2 In this measurement, a perpendicular magnetic field was applied
to a high-quality sample at a temperature of roughly 20mK. Already at a relatively
lowmagnetic field of 100mT, theHall resistance deviates from its linear dependence,
and Rxx starts to oscillate. These deviations from the predicted behavior get stronger
when ramping up the magnetic field. Eventually, Rxx drops to zero in certain ranges
of the magnetic field, interrupted by peaks of a finite resistance. In these regions

2Here, as in all other resistance measurements throughout this thesis, a low-frequency lock-in
technique was used to improve the signal-to-noise ratio.
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Fig. 2.6 Longitudinal and Hall resistance for magnetic fields up to 2 T. Characteristic of the integer
quantum Hall effect is a vanishingly small longitudinal resistance accompanied by a plateau in the
Hall resistance. The integer values of ν in expression 2.12 are indicated in blue boxes

of Rxx ≈ 0, the Hall resistance exhibits a plateau. The resistance values of these
plateaus are precisely quantized to

RH = h

e2
· 1
ν

, (2.12)

with ν being an integer number (ν = 1, 2, 3, ...). In view of these findings, this
effect has been named the integer quantum Hall effect (IQHE). For its discovery,
Klaus von Klitzing was awarded the Nobel Prize in 1985. The resistance values of
the plateaus only depend on natural constants and are in particular independent of
sample properties like charge density and spatial dimensions. For this reason, the
IQHE is used as a resistance standard.

2.3.1 Quantum Mechanical Treatment in the Single-Particle
Picture

The time-independent Schrödinger equation of non-interacting electrons in a mag-
netic field can be written as

Ĥ · ψ(r) =
[

1

2m∗ ( p̂ − eA(r̂))2 + eφ(r̂)
]

ψ(r) = E · ψ(r). (2.13)

TheHamilton operator Ĥ contains themomentumoperator p̂, the electrostatic poten-
tial φ and the vector potential A, which depends on the location operator r̂ . ψ are the
eigenfunctions of theHamilton operator. To calculate the solutions of the Schrödinger
equation in a homogeneous magnetic field, two different gauges for the vector poten-
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tial are frequently used, both of which are outlined below. The corresponding calcu-
lations can be found in textbooks [1, 20].

The Landau Gauge

In the Landau gauge, the vector potential has only one component A = (0,−Bx, 0).
This simplifies the algebra notably. In the case of free electrons, φ vanishes if no
external electrical field is applied. For electrons confined to a quantum well, the
electrostatic potential varies only along the growth direction (z-axis). In this case,
the motion along the z-direction can be separated from the main Schrödinger equa-
tion, which leads to expression 2.1 in the first section. The normalized solution for
the motion in the x–y–plane is shown in Eq.2.14. Here, Hn represents the Hermite
polynomial of order n. Figure2.7 displays the wavefunctions ψn,m for different para-
meters n and m. The eigenfunctions in Landau gauge comprise plane waves along
the y-direction with wavevector km . For periodic boundary conditions, km must fulfill
km = 2π

Ly
m with m being an integer number (m = 1, 2, 3...) and Ly representing the

sample size in the y-direction. The plane waves are distributed equally along the
x-axis and are centered at positions xm = l2Bkm .

ψn,m(x, y) = 1√
2nn!√πlB

Hn

(
x − l2Bkm

lB

)
e
− (x−l2B km)

2

2l2B eikm y (2.14)

The solutions of theSchrödinger equation contain themagnetic length lB = √
�/(eB)

≈ 25.7/
√
B[T ] nm—a characteristic length scale brought about by the magnetic

field. The physical consequences of the eigenfunctions are discussed below. They
must be independent of the chosen gauge. Properties of the wavefunctions that do
depend on the gauge, like the orientation of the plane waves along the y-direction,
have no physical meaning. In fact, one can also choose a gaugewhich is characterized
by the circular symmetry of its eigenfunctions as described in the following.

Fig. 2.7 Electron
wavefunctions in the Landau
gauge for different
parameters of m and n
(based on [3]). Both energy
and wavefunction amplitude
are plotted along the z-axis
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Fig. 2.8 Electron
wavefunctions in the
symmetric gauge for
different parameters of m
and n (based on [3]). Both
energy and wavefunction
amplitude are plotted along
the ordinate

The Symmetric Gauge

The symmetric gauge is rotationally invariant about the z-axis and is defined as
A = 1

2 B × r . Consequently, the eigenfunctions in the symmetric gauge are best
parameterized in polar coordinates r and θ:

ψnr ,m(r,φ) = 1

l

√
nr !

(nr + |m|)!
(

r

lB
√
2

)|m|
e
− r2

4l2B L |m|
nr

(
r2

2l2B

)
eimθ, (2.15)

where L |m|
nr are the associated Laguerre polynomials. The wavefunctions are shown

graphically in Fig. 2.8. The radial quantum number nr (nr ≥ 0) counts the zeros
in the radial term of the wavefunction and relates to n (in the Landau gauge) via
n = nr + (|m| − m)/2. The angular momentum quantum number m is restricted to
m ≥ −n. For large values of m, the shape of the wavefunctions in the symmetric
gauge is roughly equal to rings of width lB and radius r|m| = √

2|m|lB . As in the
case of the Landau gauge, the wavefunctions are shaped along the vector potential
A. Because of the centrifugal potential, the wavefunctions get pushed away from
the origin when increasing m. In general, the solutions in the symmetric gauge are
more complicated to handle than those in the Landau gauge. Therefore, preferably
the Landau gauge is used, except for cases where rotational symmetry is prevalent,
e.g. in quantum dots.3

Gauge Independent Properties

The following consequences of the Schrödinger equation are independent of the
gauge choice and describe important properties of the 2DES:

• Formation of Landau levels—The eigenvalues of the wavefunctions yield the
energy spectrum of electrons in a magnetic field. They can be expressed as

3In some cases, which are not of relevance for this work, it is advantageous to use the von Neumann
lattice gauge. Here, the wavefunctions describe a cyclotron motion of electrons centered around
points of a von Neumann lattice [21].
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En =
(
n + 1

2

)
· �ωc, (2.16)

using the classical cyclotron frequency ωc = eB/m∗. Thus, the energy spectrum
has discrete values parameterized by the index n (n = 0, 1, 2...). These energy
levels are called Landau levels. They are separated by the cyclotron energy Ec =
�ωc. This result stands in contrast to classical calculations which predict a constant
density of states (Eq.2.2). The reduction of the electronic energy spectrum to
discrete values brought about by themagnetic field has far-reaching consequences.
In fact, the existence and robustness of the quantum Hall effect is deeply rooted
in the formation of Landau levels.

• Degeneracy of Landau levels—The fact that the energy values in Eq.2.16 only
depend on the quantum number n and not on k (in Landau gauge) shows that the
Landau levels are highly degenerate. The number of allowed states per unit area
in a Landau level nL depends on the sample dimensions. In the Landau gauge,
we need to impose the requirement that the center coordinate xm lies within the
sample, i.e. xm = l2B

2π
Ly
m < Lx . This immediately leads to the expression

nL = eB

h
= B

Φ
. (2.17)

Thus, a Landau level can accommodate as many electrons as magnetic flux quanta
Φ = h/e penetrate the sample. In a sense, each electron state occupies the area of
a single flux quantum. An important quantity in the context of the quantum Hall
effect is the filling factor ν. It denotes how many Landau levels are filled with
electrons. Using Eq.2.17, the filling factor can be calculated as

ν = ne
nL

= neh

eB
. (2.18)

Strictly speaking, this expression is only valid on length scales much larger than
the extent of the electron wavefunction. For small dimensions, the electron density
ne in Eq.2.18 has to be replaced by the density of the wavefunctions’ center
coordinates. Of course, at macroscopic dimensions both definitions are equivalent.

The Spin Degree of Freedom

Up to now, the implications of the electron spin have been swept under the rug. If
an electron spin is placed in a magnetic field, it contributes an additional energy Ez

alongside the cyclotron energy Ec due to the Zeeman effect. The Zeeman energy
depends linearly on the magnetic field:

Ez = g∗
eμB B, (2.19)

with μB = e�/2m being the Bohr magneton and g∗
e the effective g-factor. For elec-

trons in bulk GaAs, g∗
e has a value of−0.44 [22, 23]. However, in a 2DES, exchange
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interaction effects might greatly modify g∗
e at low filling factors [23]. Equation2.19

implicitly assumes that conduction band electrons in GaAs have total spin 1/2 (s-
band, orbital spin 0). Hence, the Zeeman effect splits each Landau level into a spin-up
and spin-down branch separated by Ez . The additional degree of freedom brought by
the electron spin doubles the density of states in a Landau level (factor 2 in Eq.2.17).
Nevertheless, it is customary for the definition of the filling factor (Eq.2.18) to
count the spin branches as separate levels: ν = 1 →only the spin-up branch is filled
(n = 0,↑); ν = 2 →the spin-down branch (n = 0,↓) is filled as well.

Figure2.9 shows schematically the Landau level structure as a function of mag-
netic field. The energy spectrum has a fan-like structure since both Zeeman and
cyclotron energy increase linearly with the magnetic field. The relative weight of the
respective energies is understated in Fig. 2.9. For typical experimental conditions, the
cyclotron energy is about 70 times larger than the Zeeman energy (for g∗

e = −0.44
and m∗ = 0.067m). This pronounced difference is the reason why integer quantum
Hall states (IQHS) are generally more stable at even filling factors, i.e. they have a
higher energy gap compared to odd filling factors (even in the presence of exchange
enhancement at lower filling factors). Figure2.9 also shows the evolution of the Fermi
energy when increasing the magnetic field for a fixed electron density. EF follows
the linear increase of the Landau levels up to the point where the degeneracy in the
lower levels is high enough to accommodate all electrons of the upper level. At this
point, the Fermi energy jumps to the lower level, which creates the sawtooth-like

Fig. 2.9 Evolution of the discrete Landau level energies in a perpendicular magnetic field (based
on [3]). The Landau levels are separated by the cyclotron energy. In addition, each Landau level
is split by the Zeeman energy (splitting is exaggerated for clarity). Both energies depend linearly
on the magnetic field. In addition, the Landau level degeneracy increases when raising B, and
more electrons can be accommodated in the lower-lying Landau levels. Once a level is emptied
completely, the Fermi energy (red line) drops abruptly
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pattern shown in Fig. 2.9. Since the Fermi energy jumps between levels of oppo-
site spin orientation, the total spin polarization exhibits an oscillatory behavior. At
even filling factors, the electron system is unpolarized and becomes increasingly
polarized towards (smaller) odd filling factors. Deviations from this general behav-
ior arise from many-particle interactions between the electrons. We will return to
this important point in later chapters.

2.3.2 Microscopic Picture

Many aspects of the QHE cannot be understood without looking at the electrostatic
situation of the sample at amicroscopic level. For instance, thewidth of the resistance
plateaus in Fig. 2.6 depends decisively on the disorder potential experienced by the
electrons, and the electrostatic potential at the edges strongly influences the current
flow through the sample.

The Role of Disorder

The Landau levels introduced above as a solution of the Schrödinger equation have a
sharp, peak-like density of states. In reality, the disorder present in the sample due to
background impurities and remote ionized donors leads to an energetic broadening
Γ of the Landau levels. The exact shape of the broadening is unclear and presum-
ably depends on the details of the disorder potential. Some publications support a
Gaussian shape [24–26], while others reported a Lorentzian one [27, 28]. Uncer-
tainty governs also the question how the Landau level broadening evolves when
changing the magnetic field. A square root dependence has been observed in refer-
ences [25, 26], whereas references [24, 27] found no change of Γ with magnetic
field. Figure2.10a depicts the B-field dependence of the electron DOS in the case of
a Gaussian broadening. A clear separation of the Landau levels requires �ωc > Γ .

Fig. 2.10 a Evolution of the electron DOS with increasing magnetic field. Landau levels develop
separated by the cyclotron energy. The Zeeman energy splits each Landau level into two branches of
opposite spin orientation. b Due to the disorder in the sample, each Landau level branch is divided
into extended states at its center and localized states at its periphery
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The disorder potential not only leads to a broadening of the Landau levels but also
divides the electron system into localized and extended states (Fig. 2.10b). Intuitively,
electrons are localized either in the valleys or hills of the disorder landscape. The
motion of the confined electrons can in a simplified picture be viewed as closed orbits
of constant energy inside of the hills and valleys as shown in Fig. 2.11. Quantum
mechanics dictates that these orbits enclose an integer number of flux quanta [2].
The localized states become populated predominantly for high and low fillings of a
Landau level. For intermediate filling factors, the electrons are free to move across
the sample. Yet, this simplified picture does not grasp the whole complexity of the
problem. Ilani et al. found the number of localized states to be independent of the
magnetic field by probing the 2DES with a single-electron transistor [29]. This is
surprising in view of the magnetic field dependent Landau level degeneracy. As the
magnetic field and with it the flux density increases, more and more localized states
are expected to form in the valleys and hills of the disorder landscape [29]. Thus, in the
single-particle picture, the density of localized states would depend on the magnetic
field. Based on this discrepancy, the authors concluded that the localization physics
in high-quality (low disorder) samples is dominated byCoulomb interaction. Further,
eachof the electronpockets has to be treated as a quantumdot (or anti-dot).Because of
the Coulomb repulsion inside of the quantum dot (Coulomb blockade), each electron
pocket can accommodate only a fixed number of electrons. As a consequence, the
density of localized states is independent of the magnetic field.

Given the separation of the DOS into localized and extended states, it is possible
to understand intuitively the vanishing of the longitudinal resistance over a wide
magnetic field range in the IQHE (Fig. 2.6). Whenever the Fermi energy falls into
a region of localized states, the conductivity σxx drops to zero, and according to
Eq.2.10, �xx = 0 follows. If extended states are present at the Fermi energy, Rxx has
a finite value. The large number of localized states ensures Rxx ≈ 0 over an extended
filling factor range in contrast to the situation in Fig. 2.9, where zero longitudinal

Fig. 2.11 Visualization of localized states in the single-particle picture. Shown is the spatial vari-
ation of the electrostatic potential in a disordered sample. Electrons get trapped in the valleys and
hills of the disorder landscape. Their orbits are indicated in blue
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resistance would only be observable at the point when EF jumps from one Landau
level to the other.

What we have not addressed so far is the question why the Hall resistance is
quantized. To answer this question, we have to take a closer look at the edges of the
sample.

The Landauer-Büttiker Picture

Whengoing away from the interior of the sample towards the edges, theLandau levels
have to bend upwards because the Fermi energy at the surface is pinned to a value
within the GaAs bandgap (Fig. 2.12a). Consequently, the Landau levels coincide
with the Fermi energy at the edges, and one-dimensional conductive channels are
created, even if the interior part of the sample is insulating. For each completely filled
Landau level branch, one transport channel is created on either side of the sample
(Fig. 2.12b). The electron transport along the two sides occurs in opposite directions
as determined by the potential gradient at the edges. The spatial separation of the
counter-propagating current paths strongly suppresses dissipative backscattering of
the charge carriers. As a consequence, a constant potential is maintained throughout
each channel, and the voltage drop between contacts on the same side becomes
vanishingly small. At the same time, each one-dimensional channel adds a value
of e2/h to the total conductance [30]. Based on this argument, it becomes obvious
that the Hall resistance is precisely quantized to RH = h/(e2ν) simply because the
Hall voltage is set by the potential difference between opposite sides of the sample.
This approach of decomposing the transport in the quantumHall regime into isolated
current channels goes back to ideas by R. Landauer and M. Büttiker [30, 31].

The Interacting-Electron Picture

When taking a closer look, the Landauer-Büttiker picture of current flow has some
obvious shortcomings. For instance, the sudden step-like drop of the electron density

Fig. 2.12 The Landauer-Büttiker edge channel picture. a Spatial evolution of the Landau level
energy across the sample. At the edges, the Landau levels are lifted by the confinement potential.
As a consequence, partially filled one-dimensional channels are created which run along the sample
edges. b Visualization of the edge channels in a Hall bar structure
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at the edges of the sample is energetically unfavorable (Fig. 2.13a left). In a more
realistic scenario, the Coulomb repulsion between electronswould lead to a smoothly
varying density decrease towards the edges. This is confirmed by the self-consistent
calculations of the electrostatic and chemical potential performed by Chklovskii et
al. [32, 33]. Their findings are shown in Fig. 2.13a (right). In contrast to the single-
particle picture of Landauer and Büttiker, the self-consistent calculations separate
the sample into regions of opposing character—compressible and incompressible
stripes. In the compressible stripes, the topmost filled Landau level is only partially
occupied, and its energy is fixed to the Fermi energy. In the incompressible stripes,
all occupied Landau levels are completely filled, and the electrons cannot screen the
lateral confinement potential. Hence, the absolute value of the chemical potential
decreases here towards the edge. All incompressible stripes have an integer value
of the filling factor. Scattering of the electrons inside of these stripes is therefore
strongly suppressed by the energy gap to the next, unoccupied level. As a result,
the current can flow dissipationless inside of the incompressible stripes, and any
externally injected current will preferentially distribute to flow in the incompressible
stripes. More precisely, the current will favor the innermost incompressible stripe
on either side of the sample because it is the most stable one and can sustain the
highest currents [33–35]. If these incompressible stripes become too narrow (on
the order of lB), scattering into the central compressible regions is possible, and
dissipation occurs. Hence, a quantized Hall plateau is only observable if at least
one incompressible stripe exists in the sample which is wide enough to sustain a
dissipationless current.

Fig. 2.13 The interacting-electron picture. a The Coulomb interaction favors a smooth density
distribution at the edges of the sample (right) in contrast to the Landauer-Büttiker picture (left).
This leads to the formation of compressible (hatched regions) and incompressible stripes (picture
modified from [32]). b Scanning probe measurement of the Hall potential distribution from the
edge towards the center of the sample (picture taken from [40]). Black lines indicate the theoretical
position of the innermost incompressible stripe (see [40] for details)
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The behavior described above has been confirmed experimentally by measuring
the Hall potential distribution across the sample using different scanning probe tech-
niques with either a metal tip [36, 37] or a single-electron transistor [38, 39] as a
sensor. The spatial variation of the Hall potential provides information about the
current distribution because the Hall potential drops in a region where the current
flows. An example of a measured Hall potential distribution is depicted in Fig. 2.13b.
It shows that the current distribution moves to the interior part of the sample as the
magnetic field approaches an integer value of the filling factor. This observation
is consistent with the theoretical movement of the innermost incompressible stripe
(black lines). Details on these experiments are given in reference [40].

Yet, the question remains how the quantization of the Hall resistance comes about
in this model. The very fact that in the quantum Hall effect the current flows in the
innermost incompressible stripe is the reason why the Hall resistance is precisely
quantized to RH = h/(e2ν). This explanation is straightforward when bringing to
mind that the innermost incompressible stripe always has an integer filling factor and
its value is the largest integer filling factor in the sample. If the current flow is limited
to this filling factor region, the Hall voltage drop will be as well. Combining Eqs. 2.8
and 2.18 then directly leads to RH = h/(e2ν). The onset of the quantized resistance
plateau therefore occurs at the point when the innermost incompressible stripe is
wide enough to maintain its incompressible character. By increasing the magnetic
field, this stripe will move to the center of the sample. Eventually, the plateau will
disappear once the central stripe gets disrupted by disorder and vanishes [35].

2.4 The Fractional Quantum Hall Effect

In the previous section, we have introduced that a magnetic field perpendicular to
the 2DES can cause a sequence of plateaus in the Hall resistance centered around
integer values of the filling factor. The sample studied in Fig. 2.6 nicely follows this
behavior up to a magnetic field of 3 T. If we increase the magnetic field beyond this
point, deviations from the simple oscillatory behavior occur as shown in Fig. 2.14.
Additional quantum Hall states occur in between the IQHS at fractional values of
the filling factor. Clearly visible are for example the plateaus at ν = 5/3 , 4/3 and
4/5 accompanied by a vanishing longitudinal resistance. These states belong to the
fractional quantumHall effect (FQHE). The FQHEwas first observed for ν = 1/3 by
Tsui et al. in 1982 [41] shortly after the discovery of the IQHE in 1980 [42]. In sub-
sequent years, increasingly more fractional quantumHall states (FQHS) were found,
owing to improvements in sample quality and low-temperature measurements. At
the present day, more than 80 different FQHS are known to exist [43]. The discovery
and explanation of the FQHE has been honored with awarding the Nobel Prize to
Robert Laughlin, Horst Störmer and Daniel Tsui in 1998.
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Fig. 2.14 Longitudinal and Hall resistance measured at base temperature (∼20mK) over a broad
magnetic field range. Multiple fractional quantum Hall states are visible in between the IQHS.
Filling factors are indicated in blue boxes

The existence of quantumHall states at fractional filling factors came as a surprise
because it cannot be explained by the single-particle theory introduced in the previous
section. At a partial filling of Landau levels, the electron system is supposed to
be compressible, and no excitation gap for the formation of quantum Hall states
should exist. The FQHEmust therefore originate from electron-electron interactions.
In partially filled Landau levels, electrons can rearrange and thereby reduce their
Coulomb energy while maintaining a constant kinetic energy. This is not possible
for the IQHE because of the completely filled Landau levels. For this reason, the
Coulomb interaction does not enter the IQHE in the first place. Yet, when taking a
closer look, the Coulomb interaction can also significantly affect the IQHE as pointed
out in the previous section. Describing these many-particle interactions theoretically
is in general an exceptionally challenging endeavor. Nevertheless, several ingenious
theoretical concepts have been put forward [2, 44–49]. The two most important ones
are introduced hereinafter.

2.4.1 Laughlin’s Wavefunction

In an attempt to describe the formation of quantum Hall states at fractional fill-
ing factors ν = 1/q in the lowest Landau level, Laughlin proposed a succinct trial
wavefunction

ψ1/q =
∏
i< j

(zi − z j )
q exp

(
− 1

4l2B

∑
i

|zi |2
)

, (2.20)
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where zi denotes the position of the i th electron in complex numbers [44, 50]. The
properties of this wavefunction are described below:

• Based on the assumption that all electrons in the lowest Landau levels are spin
polarized (symmetric spin wavefunction), the orbital wavefunction in Eq.2.20
must be anti-symmetric. This forces q to be an odd integer number. Assuming a
spin-polarized electron system is in fact only justified for filling factors 1/q . At
other FQHS the electron system can be partially polarized or even unpolarized.
We will come back to this important issue at a later point.

• The electron system has a homogeneous density distribution [2].
• The second part of Eq.2.20 consists of a product of Gaussian wavefunctions rem-
iniscent of the single-particle solutions discussed in the previous section.

• The product term at the beginning contains the electron-electron interactions by
imposing a q-fold zero point whenever two electrons are at the same position.
This ensures that all electrons are well separated and thereby reduces the Coulomb
energy. In a more advanced interpretation, the zeros in the wavefunction can be
understood as vortices, i.e. as points of vanishing probability density in the center
and a phase change of 2π when circulating around the vortex. Intuitively, one can
imagine each electron to carry q vortices with it. The correlation of electrons and
vortices ensures that no two electrons can occur in the same place. One vortex
would be enough to fulfill Pauli’s exclusion principle. However, the additional
q − 1 vortices further reduce the electrostatic Coulomb energy considerably [51].
This is the basic idea behind the electron-electron correlations in a 2DES exposed
to a strong magnetic field. Besides the q vortices at each electron’s location, no
further vortices are present in the 2DES. Hence, the number of vortices equals the
number of magnetic flux quanta piercing through the sample simply because of the
respective filling factor 1/q. In fact, one can think of each vortex in the 2DES as
embodiment of a single flux quantum [52]. This close relation between flux quanta
and vortices as well as their affinity to electrons forms the basis of the composite
fermion theory detailed below.

Above, we have introduced that a 2DES at ν = 1/q canminimize its Coulomb energy
by attaching q vortices to each electron. When moving away from this commensu-
rate electron-vortex ratio, e.g. by increasing the magnetic field and adding another
vortex, a substantial amount of Coulomb energy has to be paid [46, 51]. This deter-
mines the energy gap of the FQHE and therby identifies the Coulomb energy as the
prevalent energy scale for FQHE physics. At the same time, introducing additional
vortices in the 2DES excites quasiparticles that come along with very surprising
properties. Because of the strong tie between vortices and electrons in Laughlin’s
theory, introducing one additional flux quantum can be understood equivalently as
adding a quasiparticle with a fractional charge e∗ = e/q [44]. This startling property
of Laughlin’s quasiparticles has far-reaching consequences as these particles obey
neither Fermi-Dirac nor Bose-Einstein statistics [46]. Instead, they follow a more
general anyonic statistics, which will be addressed in Sect. 2.6.

Yet, the question remains whether Laughlin’s wavefunction is indeed correctly
describing FQHE physics and, if so, to what extent. The existence of fractionally
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charged excitations has been confirmed experimentally by tunneling [53] and shot
noise measurements [54–56] as well as more recently in experiments using single-
electron transistors [57]. The verification of these counterintuitive entities provides
strong support for Laughlin’s theory. Apart from that, it is a beautiful example of frac-
tionalization in solid state physics, according towhich the properties of quasiparticles
cannot be understood simply as a linear combination of its elementary constituents.
This general phenomenon has been encountered in different manifestations in recent
years, for example as magnetic monopoles in spin ice materials [58–60] or as the
deconfinement of an electron into a holon, spinon and orbiton [61–63]. Further sup-
port for Laughlin’s theory comes from exact diagonalization studies [64] and Monte
Carlo simulations [65], where it was shown that Laughlin’s wavefunction yields the
correct ground state for short range interactions.

Laughlin’s concept has been successfully generalized to FQHS at filling factors
different from 1/q . QuantumHall states at filling factors ν = 1 − 1/q follow directly
from particle-hole symmetry [51, 66]. Wavefunctions for other fractional filling
factors were constructed by Halperin and Haldane using a hierarchical approach
based on Laughlin’s quasiparticles [45, 46, 51]. However, these wavefunctions are
more complex and partly lead to discrepancies between experiment and theory, such
as the relative strength of FQHS [2]. An alternative and at the same time very elegant
approach to construct higher-order FQHS is the composite fermion model.

2.4.2 The Composite Fermion Theory

In 1989 Jainendra Jain enriched the understanding of the FQHE by proposing a
new concept [67]. Again, it is based on the coupling of electrons and vortices, but
this time an electron dressed with an even number of magnetic flux quanta is con-
sidered as a new entity—the composite fermion (CF). With this transformation in
mind, the FQHE can be elegantly rephrased as the IQHE of composite fermions. In
the following, we illustrate this statement at an intuitive level using Fig. 2.15. For
a deeper understanding, we refer to reference [2]. Figure2.15 shows the longitudi-
nal resistance for the FQHS around ν = 1/2 in the lower panel. Plotted above are
the IQHS appearing at smaller magnetic fields. Filling factor ν = 1/2 corresponds
to the situation where twice as many magnetic flux quanta penetrate the sample as
electrons are present. After attaching two flux quanta to each electron, the result-
ing composite particles essentially move around in a vanishing effective magnetic
field because all flux quanta were already taken into account in the construction
of the composite fermions. Hence, a compressible Fermi sea of composite fermi-
ons is formed. When increasing the magnetic field and going away from ν = 1/2 ,
the effective magnetic field B∗ = B − B(ν = 1/2 ) increases likewise. As a conse-
quence, quantum Hall states start to develop for integer values of the effective filling
factor ν∗ = neh/(eB∗). Figure2.15 highlights the essence and beauty of the CF
model: The IQHE of composite fermions in their effective magnetic field coincides
with the FQHE of electrons in the total magnetic field. In this sense, the FQHE at
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Fig. 2.15 Visualization of the CF picture (plotted according to [78]). Shown is the longitudinal
resistance up to ν = 1 (upper panel) and between ν = 1/2 and ν = 1/3 (lower panel). The positions
of the FQHS with respect to ν = 1/2 coincide with the IQHS in the total magnetic field. The upper
panel was measured at roughly 400 mK in order to locate more easily the position of each IQHS

ν = 1/3 (2/5 , 3/7 , ...) can be understood as the IQHE of composite fermions with
ν∗ = 1 (2, 3, ...). Thus, the CF theory transforms the strongly interacting 2DES into
a system of weakly interacting composite fermions whose energy spectrum develops
discrete Landau levels if B∗ is strong enough. These CF Landau levels are sometimes
referred to as � levels. Drawing further on the analogy to the IQHE, the excitation
gap of composite fermions can be interpreted as cyclotron energy Ec = �eB∗/m∗

CF ,
with m∗

CF being the effective CF mass. m∗
CF must be proportional to

√
B since the

energy gap arises solely from Coulomb interactions.
In general, the CF theory accounts for FQHS at filling factors

ν = ν∗

p · ν∗ ± 1
. (2.21)
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In this expression, p is an even integer number and denotes the number of flux
quanta attached to each electron. Equation2.21 covers only filling factors in the
lowest Landau level branch. However, it can be extended to the second Landau level
by ignoring the completely filled lower-lying levels. This accounts for the FQHE at
ν = 7/3 and ν = 10/3 , for instance. In addition, particle-hole symmetry within each
Landau level might be observable, leading to states such as ν = 4/5 and ν = 5/7 .

The composite fermion theory has been proven very helpful in explaining various
experimental results [68–70]. The validity of the CF concept is further supported by
the determination of the CF Fermi wavevector [71, 72] and the demonstration of a
quasi-classical motion of the composite fermions in their effective magnetic field B∗
[73–75]. Cyclotron resonances of composite fermions have been measured directly
by microwave absorption [76]. Interestingly, also the FQHE of composite fermions
has been observed, which highlights the existence of residual interactions between
composite fermions [77].

2.5 Density-Modulated Phases in the Quantum Hall
Regime

When looking at Fig. 2.14 in the previous section, it becomes apparent that the FQHS
only appear at high magnetic fields in the first and second Landau level (n = 0, 1).
At lower magnetic fields, i.e. when higher Landau levels are occupied, density-
modulated phases are energetically favored at partial fillings [79]. Their existence is
not directly visible in Fig. 2.14 but will be demonstrated experimentally later on. For
these density-modulated phases, the homogeneous electron system in the topmost
Landau level breaks up into alternating regions of high and low electron density. Two
types of density-modulated phases are believed to exist [80]: the bubble phases char-
acterized by a twofold periodicity and the stripe phases, which consists in the simplest
case of parallel stripes with a strictly one-dimensional (1D) periodicity (Fig. 2.16).
In both cases, the system alternates between regions where the topmost Landau level
branch is completely filled and regions where it is completely empty. The reason for
the formation of density-modulated phases is rooted in the competition between the
repulsive direct Coulomb interaction on the one hand and the attractive exchange
interaction on the other hand [80, 81]. Whenever the 2DES deviates from a homo-
geneous distribution, this comes at the cost of direct Coulomb energy. Despite the
abrupt change of the filling factor in Fig. 2.16, the impact on the Coulomb interaction
is weakened by the spatial extent of the electron wavefunction in the plane of the
2DES as it smoothens the electron density distribution. At dimensions on the order
of the wavefunction width, it is important to bear in mind that the filling factor is
given by the density of the wavefunctions’ center coordinates and not by the electron
density (see Sect. 2.3.1). If the modulation period is similar to the width of the wave-
function (∼lB), the density modulation and therefore also the increase in Coulomb
energy will be small in comparison to the step-like change of the filling factor. The
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Fig. 2.16 Spatial modulation of the filling factor in the topmost Landau level for the bubble and
stripe phase. a In the case of the bubble phase, the homogeneous electron system contracts to islands
which arrange in a triangular lattice. b The stripe phase may in the simplest case be understood as
a periodic arrangement of parallel stripes with a strictly one-dimensional periodicity

gain in exchange energy, however, is rather determined by the modulation of the
filling factor [82]. In total, the 2DES can minimize its energy by modulating the
electron density at certain fillings of the topmost occupied spin branch [79, 82, 83].
The average filling factor determines the phase symmetry, i.e. whether the bubble
or the stripe phase is favored energetically. In general, the energy gain of density-
modulated phases is rather small. Hence, to observe such phases, low temperatures
(∼100mK) as well as high mobilities (∼107 cm2/Vs) are required.

2.5.1 The Bubble Phase

The bubble phase is present in Fig. 2.14 though not yet visible. Its presence becomes
evident as one slightly raises the temperature to about 35mK. The result is shown
in Fig. 2.17. At higher temperatures, the physics appears to be much richer than the
low-temperature data suggests. The blue curve reveals that the IQHS breaks down
rather quicklywhen increasing (and lowering) themagnetic field.However, the IQHE
reappears at even higher (lower) magnetic fields, where Rxx drops to zero and RH

returns to the value of the nearby IQHE plateau. These states are therefore called
reentrant integer quantumHall states (RIQHS). In the case ofn ≥ 2, theRIQHSoccur
at elevated temperatures around the partial filling factors ν̃ = 1/4 and ν̃ = 3/4 , where
ν̃ denotes the filling factor of the highest occupied Landau level branch [84–86]. If the
electron temperature is low enough, a seamless transition to the IQHE is observed
in Fig. 2.17. The reappearance of the IQHE can be understood as a manifestation
of the bubble phase: Since the lattice of electron clusters is pinned by disorder, it
cannot participate in transport. Therefore, the system behaves in a standard charge
transport experiment as if all Landau levels are filled, and the IQHE occurs. The
same arguments hold for the RIQHS at ν̃ = 3/4 with the exception that there clusters
of holes are embedded in the electron system of the next higher integer filling factor.
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Fig. 2.17 Longitudinal and Hall resistance at base temperature (∼20mK, in red) and at slightly
higher temperatures (∼35mK, in blue). At elevated temperatures a reappearance of the IQHE is
visible (marked in green)

Extensive theoretical studies of the bubble phase and, in general, the density-
modulated phases have been carried out. They predict that the electron bubbles
arrange in a triangular lattice with a period of roughly 3 · Rc, where Rc = √

2πne�/

(eB) denotes the cyclotron radius [79, 82]. The number of electrons varies according
to the partial filling ν̃ with the restriction that the maximum number of electrons per
bubble is limited to n in the nth Landau level (for n > 1) [79, 87].4 The optimal
number of electrons per bubble can be well approximated by 3ν̃n [80, 87]. Thus,
when increasing ν̃ from ν̃ = 0, at first, only a single electron occupies a bubble site.

4Côté et al. consider a maximum number of n+1 electrons per bubble. However, as the n+1 bubble
phase appears around ν̃ = 1/2 , it is unstable against the formation of a stripe phase [81].
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This is the famous Wigner crystal [88]. It can be considered a special case of the
bubble phase. For higher ν̃, the system undergoes a succession of phases separated
by first order phase transitions with an increasing number of electrons per bubble
[87].

From an experimental point of view, little is know about the microscopic structure
of the bubble phases. The interpretation as bubbles pinned by disorder is corroborated
by the observation of a strongly non-linear I -V characteristic, which points to the
sudden depinning of the bubble crystal [86]. Apart from that, resonances in the
microwave absorption have been interpreted as pinning modes of the bubble crystal
in the surrounding disorder potential [89, 90].Using this technique, the coexistence of
the Wigner crystal and the multi-electron bubble phase has been shown over a broad
filling factor range, which indicates a first order transition between the respective
phases [91].

2.5.2 The Stripe Phase

To unveil the existence of the stripe phase, the longitudinal resistance along two
orthogonal crystal directions must be compared. This is done in Fig. 2.18. The mea-
surement was performed on a square-shaped structure in order to obtain a symmetric
setup. Figure2.18 demonstrates that the longitudinal resistance depends strongly on
the crystal direction probed in experiment. This observation is most evident at half

Fig. 2.18 Longitudinal resistance along two orthogonal current directions (sample temperature
∼35mK). A strong transport anisotropy is visible at each half-filled Landau level branch (marked
in green), which indicates the formation of a stripe phase
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filling of each Landau level branch (ν̃ = 1/2 ). Since both crystal directions, [110]
and [11̄0], are identical in an ideal gallium arsenide crystal, the strong transport
anisotropy indicates the existence of an anisotropic, stripe-like electron phase. If
the current flows along the stripes (“easy” axis), the resulting voltage drop will be
smaller than in the orthogonal direction (“hard” axis). This anisotropy is amplified by
an effect called current channeling: If the current is sent perpendicular to the stripes,
it gets spread out stronger towards the sample edges causing a higher voltage drop
as compared to the orthogonal current direction [92, 93].

The physical mechanism leading to a preferred stripe orientation along specific
crystal axes remains an open question up to date. Cooper et al. excluded substrate
morphology, steps induced by miscuts as well as an anisotropic effective mass as
possible explanations [94]. Instead, piezoelectric effects [95] and a combination of
Rashba and Dresselhaus spin-orbit interactions have been proposed [96]. Intriguing
is the fact that the stripe orientation depends on the electron density. Below a density
of 2.9 × 1011 cm−2 the easy axis is directed along the [110] direction, whereas for
higher densities the [11̄0] direction is preferred [97]. In addition, the stripes can be
oriented by applying a magnetic field component in the plane of the 2DES [97–99].
Yet, the exact behavior of the stripes in an in-plane magnetic field seems to depend
on the details of the sample [97].

Different theoretical models have been proposed for the microscopic structure of
the stripe phase [80]. The charge density wave picture has been mentioned before
(Fig. 2.16). In thismodel, the local filling factor is assumed to bemodulated in parallel
stripes with a strictly one-dimensional periodicity. Fradkin and Kivelson studied the
effects of quantum and thermal fluctuations on the stripe formation and predicted in
analogy to liquid crystal behavior the existence of a different class of stripe phases—
the electron liquid crystal phases [100]. They are categorized according to their
symmetry as smectic, nematic and stripe crystal phase. These phaseswill be discussed
in detail in Chap.5. Which of the three electron liquid crystal phases is lowest in
energy depends on the strength of the shape fluctuations and the average filling factor
[100]. As a consequence, different types of stripe phases might be present within the
anisotropic region in Fig. 2.18, and transitions between the respective phases may
occur as a function of the magnetic field.

Similar to the bubble phase, experimental results providing a detailed micro-
scopic understanding of the stripe phase are scarce. The temperature dependence
of the longitudinal resistance points towards the existence of a nematic phase [101,
102]. Recently, the collective modes of the stripe phase at ν = 9/2 were probed in
a sophisticated experiment involving surface acoustic waves, microwaves and pho-
toluminescence [103]. In the same experiment, the period of the stripe pattern was
determined to 3.6 · Rc. In addition, pinningmode resonances have been observed also
for the stripe phase as reported earlier for the bubble phase [104, 105]. Interestingly,
in the case of the stripe phase, a resonance only occurs if the electric field of the
microwave signal is oriented along the hard axis.

http://dx.doi.org/10.1007/978-3-319-33536-0_5
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2.6 The Second Landau Level

In the previous sections, it has been shown that the physics in partially filled Landau
levels is governed by two classes of competing, interaction-driven phases. At high
magnetic fields, when the first Landau level is partially occupied, FQHS are preva-
lent. In contrast, starting from the third Landau level towards higher filling factors,
density-modulated phases, i.e. the bubble and stripe phases, take over. Their existence
is heralded either by a reappearance of the IQHE or a strong transport anisotropy.
Their dominance over the FQHS in higher Landau levels is rooted in the different
exchange and direct Coulomb interactions, which originate from the altered shape
and extent of the wavefunction. The competition between density-modulated phases
and FQHE is most prominent in the second Landau level. Here, density-modulated
phases as well as FQHS coexist, and minute changes of the magnetic field or electron
density can lead to transitions between them. This is shown in Fig. 2.19. It displays the
longitudinal and Hall resistance between filling factors ν = 2 and ν = 4, measured
on a high-quality sample. A large number of different FQHS as well as reentrant
states are visible, which emphasizes the superior quality of the sample. The vari-
ety of competing phases in the second Landau level is a beautiful example of the
enormous richness and complexity of quantum Hall physics. When taking a closer
look at Fig. 2.19, it becomes apparent that the second Landau level is exceptional
in many regards. Not only the coexistence of density-modulated phases and FQHS
is conspicuous but also the appearance of four reentrant states in each branch of
the second Landau level leaps to the eye. Moreover, the observation of a fractional
quantum Hall state also at half filling of each spin branch is striking (ν = 5/2 and
ν = 7/2 ). Both points are addressed in more detail hereinafter.

Fig. 2.19 Longitudinal and Hall resistance in the second Landau level measured on a high-quality
sample.Multiple FQHS (marked in pink) and reentrant states (marked in green) are visible. Remark-
able is the appearance of a quantumHall state at half filling of each spin-split Landau level (ν = 5/2
and 7/2 , marked in blue)
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2.6.1 Reentrant States in the Second Landau Level

As mentioned earlier, the second Landau level differs from higher levels in the
number of reentrant states. Figure2.19 shows four reentrant states per spin branch,
separated by different FQHS. They appear at partial filling ν̃ = 0.29, 0.43, 0.57 and
0.70 in agreement with previous publications [106–108]. That raises the question
whether the reentrant states in the second Landau level are of equal nature as the
bubble phases in higher levels. Initially, theories did not consider the second Landau
level for bubble phase formation at all [82, 83]. This deficiency was remedied more
recently, when the bubble phase consisting of one-electron and two-electron bubbles
was shown to be lowest in energy for certain filling factors in the second Landau
level [81, 109]. Besides the IQHE transport behavior, other similarities to the bubble
phases in higher Landau levels have been observed, such as sharp and hysteretic
features in the I–V characteristics [106] as well as pinning modes in microwave
absorption [110]. In addition, it has been demonstrated that the onset temperatures
of the RIQHS in the second Landau level scale with the Coulomb energy, which
highlights the importance of electron-electron interactions for the formation of these
states [108]. However, also discrepancies to the bubble phases in higher Landau
levels are evident. The onset temperatures normalized by the Coulomb energy differ
strongly between the second and third Landau level [111]. This observation is in
conflict with existing theories and emphasizes that the bubble phases in the second
Landau levelmight be of amore complex nature. Further work is needed to clarify the
microscopic structure of the bubble phases in the second Landau level and beyond.

It is important to mention that also the close relative of the bubble phase, the stripe
phase, can be observed in the second Landau level. In Fig. 2.19 its position at half
filling is taken in by the ν = 5/2 and 7/2 FQHS. However, tilting the sample with
respect to the external magnetic field causes the stripe phase to prevail energetically
over the FQHE [98, 99, 112]. Themicroscopic nature of this tilt-induced stripe phase
is the focus of Chap.5.

2.6.2 The ν = 5/2 and 7/2 States

The observation of FQHS at half fillings comes as a surprise in view of the CF theory
introduced in Sect. 2.4.2. There, the partial filling factor ν̃ = 1/2 was described as a
compressible Fermi sea of composite fermions. It was concluded that the CF theory
only accounts for FQHS at odd-denominator filling factors. Since its discovery in
1987 [113], the 5/2 state and its particle-hole conjugate, the 7/2 state, attracted a lot
of attention.5 This is partly due to the fact that these even-denominator FQHS do not
comply with the standard CF picture but also because of some interesting theoretical

5In the following, we will focus mainly on the 5/2 state because of its higher stability and therefore
greater experimental relevance. Since the 7/2 state is considered the particle-hole conjugate of the
5/2 state, all statements should apply equally to the 7/2 state.

http://dx.doi.org/10.1007/978-3-319-33536-0_5
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proposals which came up to explain the occurrence of the 5/2 state. In particular
the theory of G. Moore and N. Read (together with Greiter et al. [114]) raised a lot
of excitement as it ascribes the origin of the 5/2 state to a pairing of two CFs in
analogy to the p-wave pairing in a superconductor [115]. By the nature of the p-wave
pairing, the resulting state would be spin polarized, and the quasiparticles would have
a fractional charge of e/4. Even more intriguing is the prediction that the excitations
of the Moore-Read state constitute a novel type of quasiparticle called non-abelian
anyon. Their exceptional properties are described below. A recent review on the 5/2
state and its potentially non-abelian nature is given in reference [116].

Non-abelian Anyons and Their Relevance for Topological Quantum Computa-
tion

Quasiparticles in the FQHEnot only carry fractional charges asmentioned in Sect. 2.4
but also exhibit another fascinating property—they are anyons. Anyons can be con-
sidered a generalization of bosons and fermions. They can be distinguished by their
exchange statistics. The interchange of anyons results in a general phase factor
eiθ to the wavefunction and is not limited to −1 and 1 as in the case of fermions
and bosons, respectively [117]. This generalized exchange statistics can only occur
in two-dimensional systems. To illustrate this statement, we consider the twofold
exchange of two particles with each other. This process is equivalent to describing a
closed loop of one particle around the other. When moving a particle around another
in a three-dimensional space, the trace can always be deformed continuously down
to a point (Fig. 2.20). Therefore, a closed loop of particles is topologically equivalent
to no movement at all and multiplies the wavefunction with a phase factor of 1.
In this case, the only possible solutions for a single interchange are the factors −1
and 1, corresponding to the exchange of fermions and bosons, respectively. In two
dimensions, however, a closed loop can no longer be contracted to a point without
cutting through the other particle, i.e. the system does not necessarily come back to
the same state [118]. Hence, also the phase acquired during particle exchange can
have any value and is not bound to 0 and π as in the case of fermions and bosons. For
the FQHE at ν = 1/3 , for instance, a counterclockwise exchange of quasiparticles
leads to a phase change of π/3 [119].

Non-abelian anyons are special in the sense that the particle exchange is non-
commutative. Suppose we have three particles and want to mutually change their
positions (Fig. 2.21). The non-abelian nature brings the system into a different state

Fig. 2.20 Particle exchange
in two and three dimensions
(based on [3])
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Fig. 2.21 The exchange of
non-abelian particles is not
commutative (based on [3])

if first particles on position 1 and 2 interchange and then on positions 2 and 3 in
comparison to the particle exchange in the opposite order. Put differently, the opera-
tors for particle exchange do not commute. A necessary requirement for non-abelian
states ofmatter is the existence of a highly degenerate ground state which is protected
by an energy gap. When particles encircle one another or, in other words, particles
are made to “braid”, the system transforms from one ground state to another [120].
The transformation is determined solely by the topology of the braiding and is in
particular independent of the precise trace taken by the particles. This robustness to
local perturbations in combination with the non-abelian braiding statistics provides
the basis for topological quantum computation [118–121]. In this particular type
of quantum computer, the quantum operations are performed by braiding of non-
abelian particles. A topological quantum computer is superior in the sense that it is
rather immune to local perturbations of the environment [118]. Standard schemes
of quantum computation suffer from the fact that the quantum bits couple to the
environment, which causes decoherence and loss of quantum information. In a topo-
logical quantum computer local perturbations would affect the path of the particle,
but as long as it maintains a loop around the other particle, i.e. as long as the topology
is preserved, the quantum information is preserved as well. Instead, the lifetime of
quantum information is mainly determined by the sample temperature with respect
to the energy gap which protects the degenerate ground state [118, 119].

Besides the mentioned odd-denominator FQHS, other phases of matter are pre-
dicted to host non-abelian particles, such as cold atoms [122], p-wave superconduc-
tors [118] as well as hybrid systems made out of superconductors in combination
with topological insulators [123] or semiconductors [124, 125]. Among these, the
most prominently studied candidate for fault-tolerant quantum computation is prob-
ably the 5/2 state. In the following, we briefly summarize what is known about the
potentially non-abelian nature of the 5/2 state.

Is the 5/2 State Indeed Home to Non-abelian Anyons?

This question would be answered most convincingly by braiding of ν = 5/2 quasi-
particles and thereby testing the underlying exchange statistics. Several proposals
for interference experiments at the 5/2 state have been made [126–130], and also
first steps towards their realization were undertaken [131, 132]. Even weak signa-
tures of non-abelian anyons were already reported in interferometer structures at
ν = 5/2 [133, 134]. The results are, however, difficult to interpret and discussed
rather controversially. Further experiments will be necessary to directly prove the
non-abelian nature of the 5/2 quasiparticles. Unfortunately, efforts in this direction
are hampered by the high fragility of the 5/2 state. The fabrication of gates on top
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of the sample, a basic requirement to control the interferometer structure, can easily
destroy the 5/2 state. A different way to probe the potentially non-abelian proper-
ties might be thermopower [135] or entropy measurements [136]. More precisely, it
has been predicted that the thermopower at ν = 5/2 is temperature independent and
changes linearly when going away from the exact filling factor if non-abelian anyons
are present. Recently, first experiments in this direction have been performed [137].
The results were tentatively claimed to be consistent with the predicted behavior.
Even though being still in its infancy, this technique might well prove fruitful in the
exploration of the 5/2 state.

In view of the hurdles which need to be taken to directly measure the non-abelian
properties, research in the past has focused stronger on the other predictions of the
Moore-Read theory. In particular, the verification of the e/4 fractional charge and the
full spin polarization would provide strong support for the wavefunction proposed
by Moore and Read (sometimes called Pfaffian wavefunction).

The question for the charge of the 5/2 quasiparticles has been addressed in a num-
ber of experiments by different means: tunneling through a quantum point contact
[132], noise measurements [138], Aharanov-Bohm interference [133] and experi-
ments using a single-electron transistor [139]. The obtained results are consistently
in agreement with a fractional charge of e/4. However, establishing the charge e/4
does not allow to discriminate between the Pfaffian state and other proposed wave-
functions such as the anti-Pfaffian and the so-called 331 state. The anti-Pfaffian state
is similar to the Pfaffian and is also expected to give rise to non-abelian excitations
but in addition is particle-hole symmetric, a property lacked by the Pfaffian state
[140, 141]. The 331 state was originally proposed by Halperin as a description of a
two-component FQHS [51]. It is unpolarized and obeys abelian statistics [142].

Information on the spin polarization of the 5/2 state would shed further light on
its true nature. In view of the verified e/4 fractional charge, a polarized state would
indirectly provide strong support for the non-abelian character of the 5/2 quasipar-
ticles. First experiments on the spin polarization examined the behavior of the 5/2
state when tilting the sample with respect to the magnetic field [143]. This selec-
tively enhances the Zeeman energy relative to the Coulomb energy since the latter
only depends on the perpendicular magnetic field component. The disappearance of
the 5/2 state under tilt was therefore taken as an indication for an unpolarized state.
In later years, the vanishing of the 5/2 state was attributed rather to the emergence
of an anisotropic stripe phase under the influence of the in-plane magnetic field [98,
99, 112, 144, 145]. Pan et al. approached the spin polarization of the 5/2 state in a
different way [146]. They determined the energy gap at ν = 5/2 over a wide density
range and compared its evolution with the behavior of the FQHS at ν = 8/5 , a state
known to be unpolarized at low electron densities. From the observation that the 8/5
state undergoes a spin transition whereas the 5/2 state remains mostly unaffected,
the authors concluded a spin-polarized state at ν = 5/2 . In contrast, a more recent
study of the ν = 5/2 energy gap at various perpendicular and in-planemagnetic fields
came to the conclusion that their data is more consistent with a spin-unpolarized state
[147]. Besides transport and tilted-field experiments, also other techniques have been
used to assess the spin polarization at ν = 5/2 . Rhone et al. probed the 5/2 state by
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inelastic light scattering and ruled out a fully polarized state from the absence of a
long-wavelength spin wave mode [148]. However, shortly after, such a spin mode
was found byWurstbauer et al. [149]. Apart from that, Stern et al. claimed the obser-
vation of an unpolarized 5/2 state using photoluminescence spectroscopy [150]. Yet,
the difficulty behind optical experiments is that the excitation of electron-hole pairs
might disturb the electron system andmay impair the proper assignment of the filling
factor. A different access to the spin polarization provides nuclear magnetic reso-
nance spectroscopy. It uses a characteristic shift of the nuclear resonance frequency
to detect the presence of a spin-polarized electron system. This technique has been
employed in two similar studies, both of which found a fully spin-polarized state
[151, 152].

After all, contradictory conclusions from different experiments keep the issue of
the spin polarization at ν = 5/2 open [116]. Since the discrepancies between the
different experiments might arise from the fragility of the 5/2 state, it is required to
repeat the measurement of the spin polarization on samples with a higher quality
showing a well-developed 5/2 state. This task will be addressed in Chap.4.
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Chapter 3
Electron–Nuclear Spin Interaction
in the Quantum Hall Regime

The spin degree of freedom only played aminor role in the introduction to the integer
and fractional quantum Hall effect given in the previous chapter. It is not essential
to understand the formation of quantum Hall states. However, when taking a deeper
look into quantum Hall physics, the importance of spin related phenomena becomes
evident. Today, many interesting spin phenomena are known to exist, such as spin
transitions of FQHS [1–3], ferromagnetic spin ordering [3–6] and skyrmionic spin
excitations [7, 8]. The spin degree of freedom enriches the quantum Hall physics
in many regards. Its complexity increases by the coupling of electron spins to the
nuclear spin system established via the hyperfine interaction. Even though this effect
is rather weak, it significantly alters the electronic spin properties. The interaction
between the electronic and nuclear spin system as well as its utilization to investigate
electronic spin excitations is the main focus of this chapter. In the last part of this
chapter, we expand on a different but closely related topic, namely the filling factor
dependence of the nuclear spin polarization.

3.1 Introduction to the Spin Physics in the Quantum
Hall Regime

Before embarking on the experimental sections, first a brief overview on the elec-
tronic and nuclear spin system as well as the hyperfine coupling between these two
systems is given. Detailed information can be found in references [9, 10].

3.1.1 The Role of the Electron Spin System

The physics of electron spins in the quantum Hall effect is dominated by the Zee-
man splitting of the Landau levels. All electrons within a 2DES are distributed in
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consecutive energy levels of opposite spin orientation (Fig. 2.9). Therefore, the spin
polarization oscillates when increasing the magnetic field. The overall spin polariza-
tion P is generally defined as

P = n↑ − n↓
n↑ + n↓

, (3.1)

where n↑ (n↓) denotes the majority (minority) spin density. It has a (local) maximum
for odd integer filling factors and a minimum (P = 0%) for even integer values of
ν. In between these two limiting cases, P changes linearly. The spin polarization at
odd integer values of ν increases for smaller filling factors and equals P = 100%
for ν = 1. However, complete spin polarization can only be achieved in the limit of
large Zeeman energies. More precisely, the Zeeman splitting must be larger than the
disorder broadening of the Landau levels.

For filling factors ν < 1, where the FQHE is dominant, one may expect the
electron system to be always spin polarized, given the argumentation above. In this
case, the spin degree of freedom would be frozen out. However, since the Zeeman
energy in GaAs is rather weak and has a value comparable to the energy scale of the
FQHE, i.e. the effective cyclotron energy of composite fermions, the FQHS are not
necessarily fully polarized. This was first pointed out by Halperin in 1983 shortly
after the discovery of the FQHE [12]. Since then, various unpolarized and partially
polarized FQHS have been found. The question to what extent a FQHS is polarized
depends sensitively on the interplay of Zeeman and Coulomb energy. Hence, it is
not surprising that transitions between phases of different spin polarization can be
induced. A prominent example is the spin transition from unpolarized to fully polar-
ized occurring at filling factor ν = 2/3 [1–3, 13]. Other spin transitions are known to
exist, for instance at ν = 3/5 [1], ν = 4/3 [14] and since recently also in the second
Landau level at ν = 8/3 [15]. The appearance of spin transitions in the FQHE can be
understood intuitively in the composite fermion picture introduced in Sect. 2.4.2. In
general, spin transitions occur when CF Landau levels of opposite spin orientation
cross. In the FQHE, such crossings can be induced simply by tuning the magnetic
field while keeping the filling factor constant since the Zeeman and the Coulomb
energy have a different functional dependence on B. The separation of CF Landau
levels given by the effective cyclotron energy E∗

c depends on the Coulomb energy
and is therefore proportional to 1/d = √

ne, where d is the average particle distance.
For a fixed filling factor, this implies E∗

c ∝ √
B. The Zeeman energy in contrast,

which splits a single CF Landau level into branches of opposite spin orientation,
increases linearly with the magnetic field. We illustrate this in Fig. 3.1 for the case
of a spin transition at filling factor ν = 2/3 . This transition will play a central role
for the remainder of this chapter. In the CF picture, ν = 2/3 corresponds to the
case of two completely filled CF Landau levels (ν∗ = 2). In the limit of small Zee-
man energies, i.e. for low magnetic fields and consequently small densities, the two
lowest energy levels have their electron spins aligned in opposite directions. Hence,
the electron system is unpolarized. When increasing the magnetic field, the Zeeman
splitting grows more rapidly than the cyclotron energy. At some point, a crossing of
CF Landau levels occurs. Here, the electron system undergoes a spin transition to an

http://dx.doi.org/10.1007/978-3-319-33536-0_2
http://dx.doi.org/10.1007/978-3-319-33536-0_2
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Fig. 3.1 Evolution of CF
Landau levels at ν = 2/3 as a
function of the magnetic
field strength (based on [11])

unpolarized state. At the crossing point, the energy gap vanishes due to the presence
of unoccupied states at the Fermi energy. Consequently, the longitudinal resistance
increases, and the quantization of the Hall resistance is lost. Such indications for
a spin transition have been observed in transport experiments [1, 3]. Also a direct
proof of the transition to a polarized state has been achieved by nuclear magnetic
resonance techniques [16] and photoluminescence spectroscopy [2].

Spin transitions in the FQHE can be induced by different means. Besides the
method discussed so far, i.e. changing the electron density, an often used technique
is tilted-field studies [1, 13, 14]. Tilting the sample with respect to the external
magnetic field while keeping the perpendicular field component constant selectively
enhances the Zeeman energy. The Coulomb energy, in contrast, only depends on
the perpendicular field component and remains therefore unchanged. An alternative
method to change the Zeeman energy, though experimentally more difficult, is to
apply pressure to the sample [17]. Apart from that, the g-factor can be influenced by
the strength of the quantum confinement [18].

The crossing of energy levels with different spin orientations gives rise to complex
microscopic spin formations, which bear strong similarities with a ferromagnetic
state. This quantum Hall ferromagnetism manifests itself in transport experiments
by hysteretic behavior as well as Barkhausen jumps in the sample resistance [3, 5].
Also a coexistence of unpolarized and polarized spin domains has been found by
nuclear magnetic resonance spectroscopy [16]. Further insight into the microscopic
nature of the spin transitions has been gained using a single-electron transistor on
the sample surface to sense the compressibility of the 2DES underneath [11]. With
this technique, domain sizes in excess of 500nm were observed. More recently,
real-space imaging of the spin transition at ν = 2/3 has been achieved by scanning
optical microscopy using trions (charged excitons) as local probes for the electron
spin polarization [6]. These experiments provided an intriguing visualization of the
spin transition and revealed domain sizes of about 33µm.

Quantum Hall ferromagnetism is not unique to the FQHE but also appears in
the IQHE [19]. The most prominent example is the IQHE at ν = 1. Here, a fully
aligned spin system is favored by the electron-electron interaction even in the case of
vanishing Zeeman energy [7, 20]. It can be considered a Heisenberg-like isotropic
ferromagnet [20]. Interestingly, the ν = 1 quantumHall state is also home to complex
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spin textures known as skyrmions [7, 21]. These will be important in a later part
of this chapter (Sect. 3.3) and are discussed there in more detail. Also Ising-type
spin transitions with broken symmetry can be realized in the IQHE similar to the
FQHE by inducing a crossing of Landau levels with opposite spin orientations [22].
However, in the IQHE this is hampered by the fact that both the Zeeman and the
cyclotron energy exhibit a linear B-dependence. Nevertheless, spin transitions have
been achieved by using large tilt angles [22] or by resorting to wide quantum wells
with multiple subband occupation [4].

Special attention needs to be attributed to the spin physics at filling factor ν = 1/2 .
According to the CF theory, the electron system at ν = 1/2 can be understood as a
Fermi sea ofweakly interacting composite fermions in a vanishing effectivemagnetic
field. Yet, it is important to bear in mind that the effective magnetic field only applies
to the orbital degree of the composite fermions. The spin degree of freedom is subject
to the totalmagnetic field. In the case of non-interacting particles, composite fermions

have a parabolic energy dispersion E = �
2k2CF
2m∗

CF
, with m∗

CF being the effective mass
of composite fermions and kCF their wavevector. Hence, the density of states for
each spin orientation is constant as shown in Fig. 3.2. The overall spin polarization
depends on the relative occupation of the two spin branches. For Ez > EF , the
electron system is fully polarized. Below this point, it becomes partially polarized.
The spin polarization can therefore be continuously tuned by changing the density
ne and thereby the magnetic field while keeping ν = 1/2 constant. This has been
confirmed experimentally by polarization-sensitive photoluminescence spectroscopy
[2]. The transition to a fully polarized electron system occurred around 9T. The
above considerations are similarly applicable to the CF Fermi sea at the particle-
hole-conjugate filling factor ν = 3/2 and to higher-order CF Fermi seas, e.g. at
ν = 1/4 , where four flux quanta are attached to each electron.

Fig. 3.2 Relative occupation
of the spin-up and -down
energy levels for a CF Fermi
sea forming at high magnetic
fields (based on [23])
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3.1.2 The Nuclear Spin System in a GaAs/AlGaAs
Heterostructure

When a single nuclear spin is placed in a magnetic field, it experiences in analogy to
its electronic counterpart the Zeeman interaction

Ez = −μM · B, (3.2)

where μM is the nuclear magnetic moment defined as

μM = gNμN

�
J. (3.3)

In this equation, gN denotes the nuclear g-factor, μN the nuclear magneton μN = e�
2mp

with the proton rest mass mp and J is the nuclear spin angular momentum. Quantum
mechanics dictates that the projection of J along the magnetic field direction has
discrete values �mJ , where the magnetic quantum number mJ is restricted to values
J ,J −1,…,−J +1,−J . Here, J is the nuclear spin quantum number. Altogether,
Eq. 3.2 is transformed into

Ez = −gNμNBmJ . (3.4)

An often used quantity in this context is the gyromagnetic ratio γ. It relates the
transition frequency of the Zeeman splitting f directly to the magnetic field via
f = γ

2πB.
The magnetic moments and gyromagnetic ratios of the nuclear isotopes inherent

to GaAs are shown in Table3.1 together with other properties which will become
important later on. Since the electronwavefunction is located almost entirely inside of
the GaAs quantum well, the influence of the Al nuclei in the barrier can be neglected
in most cases.

All stable nuclei in GaAs have spin J = 3/2. Hence, when applying a mag-
netic field, the nuclear spin system splits equally into four energy levels due to the
Zeeman energy in expression 3.4 (Fig. 3.3a). Each of these levels corresponds to a
different spin orientation. Consequently, the relative occupation of the energy levels

Table 3.1 Properties of the stable nuclear isotopes in GaAs (data taken from [10, 24])

Isotope 69Ga 71Ga 75As

Abundance (%) 60.1 39.9 100

Spin quantum number J 3/2 3/2 3/2

Magnetic moment μM (μN ) 2.0166 2.5623 1.4395

Reduced gyromagnetic ratio γ
2π (MHz/T) 10.248 13.021 7.3150

Hyperfine constant AHF (µeV) 38 49 46

Overhauser field at full polarization BN (T) −1.37 −1.17 −2.76
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Fig. 3.3 a Zeeman splitting of a nuclear spin system with spin J = 3/2. b Nuclear spin polariza-
tion of the nuclides 69Ga, 71Ga and 75As as a function of temperature at a magnetic field of 5T.
Calculations are based on Eq.3.5

determines the overall nuclear spin polarization. If the nuclei are equally distributed
among these levels, the nuclear spin system is unpolarized. This corresponds to the
situation at high temperatures. When lowering the temperature, the number of nuclei
in the lowest spin level increases and with it the nuclear spin polarization. Based on
Boltzmann statistics, the nuclear spin polarizationPN can be calculated according to

PN = BJ (η) = 2J + 1

2J coth

(
η
2J + 1

2J
)

− 1

2J coth

(
η

1

2J
)

. (3.5)

Here, the Brillouin function BJ and the substitution η = gNμNJ B/kBT was used,
with kB representing the Boltzmann constant and T the temperature of the nuclear
spin system [10]. Figure3.3b shows exemplarily the temperature dependence of PN

for the three isotopes 69Ga, 71Ga and 75As at a magnetic field of 5T. It emphasizes
that the nuclear spin polarization diminishes rapidly with increasing temperature.
If a high spin polarization is desired in thermal equilibrium, low temperatures as
well as high magnetic fields are required. Many of the experiments described in this
thesis were performed inside of a dilution refrigerator at a base temperature of around
20mK, which corresponds to a nuclear spin polarization of roughly 12% at 5T.

3.1.3 The Hyperfine Coupling of Electronic
and Nuclear Spins

Treating the nuclear spins as an isolated system of paramagnets as done in the previ-
ous section does not grasp the full complexity of the nuclear spin system. In a more
realistic scenario, nuclear spins interact with their environment, for instance via
the dipole-dipole interaction. Another important mechanism of nuclear spin inter-
action is the hyperfine coupling to the electron spin system of the 2DES. For a
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GaAs-based 2DES, the hyperfine interaction is dominated by the Fermi contact
interaction between the s-type conduction band electrons and the nuclei [10]. This
interaction can be described by the Hamiltonian

HHF = AHFJ · S, (3.6)

with the hyperfine interaction constant

AHF = 2μ0

3
(geμB)(gNμN ) |ψ(0)|2 , (3.7)

which depends on the probability |ψ(0)|2 of finding an electron at a nucleus’ site [16].
In the case of s-band electrons, the overlap of the electron wavefunction with the

nucleus is strong, and |ψ(0)|2 has a large value. The hyperfine constants for GaAs
are stated in Table3.1.

The product J · S in Eq.3.6 can be rewritten as

J · S = 1

2

(
J+S− + J−S+) + JzSz, (3.8)

where the superscript + (−) denotes the raising (lowering) of the respective spin
operators and the subscript z represents the z-component of the spins.

The first term is called the “flip-flop” term. It describes a nuclear spin flipmediated
by an electron spin rotation in the opposite direction, i.e. a spin transfer from an elec-
tron to the nuclear spin system and vice versa. This dynamic term is key to different
ways of dynamic nuclear spin polarization, for example by electron spin resonance
[25] and optical pumping [26, 27]. It also provides an efficient channel for nuclear
spin relaxation if the energies of electronic and nuclear spin flip match [28, 29].

The second, static term in Eq.3.8 states that a polarized nuclear spin system
modifies the electronic Zeeman energy. This contribution to Ez is often quantified
by an additional effective magnetic field BN acting solely on the electronic spin
degree of freedom, i.e. the filling factor remains unchanged. The change of the
electronic Zeeman energy caused by this so-called Overhauser field can be observed
in electron spin resonance experiments [25, 30]. Since the hyperfine interaction
selectively alters the Zeeman energy, it also affects the occurrence of spin transitions
in the FQHE. Some values ofBN calculated for the case of fully polarized nuclear spin
system are listed in Table3.1. The negative sign of BN indicates that the Overhauser
field is oriented opposite to the external magnetic field. Thus, increasing the nuclear
spin polarization leads to a reduction of the electronic Zeeman energy. Analogously
to the Overhauser field, also a spin-polarized electron system causes a change of
the nuclear Zeeman energy. This effect is detectable in nuclear magnetic resonance
experiments as a shift of the resonance frequency—also known as the Knight shift
[31]. Measurements of the Knight shift have been proven a powerful method to probe
the electron spin polarization [32, 33] and their spatial variation [16]. This technique
will become important in Chaps. 4 and 5.

http://dx.doi.org/10.1007/978-3-319-33536-0_4
http://dx.doi.org/10.1007/978-3-319-33536-0_5
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3.2 Nuclear Spin Relaxation Rate in the Quantum
Hall Regime

Theflip-flopmechanism for nuclear spin relaxation introduced in the previous section
requires the energy gain of a nuclear spin flip to be compensated by the electron
system, for example by an increase of its kinetic energy. In a metal, this energy
conservation is easily accomplished since a continuum of states is available for either
spin direction. In the quantum Hall regime the situation is different. Here, the DOS
is bundled in Landau levels, and states of opposite spin orientation are separated
by the electronic Zeeman energy. This splitting is about three orders of magnitude
larger than the nuclear spin splitting. Hence, in the quantum Hall regime the energy
conservation is in general not easily fulfilled, and the nuclear spin relaxation via this
channel is rather slow. However, at certain filling factors low-energy spin excitations
exist in the 2DES, which provide an efficient way of nuclear spin relaxation. This
section aims at identifying these low-energetic spin excitations by measuring the
nuclear spin relaxation rate at different filling factors. Of particular interest is here the
nuclear spin relaxation at the enigmatic ν = 5/2 FQHS. Theory predicts the existence
of skyrmionic spin excitations in its close vicinity [34]. If present, signatures of these
excitations would be observable in the nuclear spin relaxation rate. Before looking
at the experimental results, we first introduce the technique used for measuring the
relaxation rate. It is based on the spin transition at ν = 2/3 .

3.2.1 Nuclear Magnetometry Based on the ν = 2/3 Spin
Transition

In order to measure the nuclear spin relaxation rate, two tasks need to be accom-
plished. First, the nuclear spin polarizationmust be driven out of thermal equilibrium.
In a second step, the time dependent relaxation of the nuclear spin polarization back
to its equilibrium value needs to be measured. Thus, two tools are necessary—one
for manipulating and one for measuring the nuclear spin polarization. Both of these
tasks can be accomplished by taking advantage of the spin transition at ν = 2/3 as
described below.

Nuclear Spin Manipulation

The spin transition at ν = 2/3 is well suited to manipulate the nuclear spin polar-
ization (Sect. 3.1.1). The crossing of Landau levels with opposite spin orientation
allows electronic spin flips at little energetic cost, thus, matching the nuclear Zeeman
splitting more aptly. This opens up an efficient channel for conveying spin angular
momentum between both systems. Based on this situation, nuclear spinmanipulation
can be realized simply by driving a strong current through the sample. Imposing a
strong current has two main consequences. On the one hand, it inevitably causes
a heating of the electron system. This heat will be transferred to the nuclear spin
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system, which leads according to Boltzmann statistics to a lower spin polarization
(Fig. 3.3b). On the other hand, the coexistence of unpolarized and polarized domains
at the spin transition was found to facilitate a dynamic nuclear spin polarization
when imposing an external current [3, 28, 29, 35, 36]. The underlying process can
be understood in the following way [10]. If electrons are driven across the domain
walls separating regions of opposite spin orientation, a spin reversal is required. This
spin flip may be carried out by a flip-flop process involving a simultaneous nuclear
spin flip in the opposite direction. Thus, current flowmay locally enhance the nuclear
spin polarization in a dynamic fashion. The altered spin polarization acts back on
the electronic domain morphology because it locally changes the electronic Zeeman
energy via the hyperfine interaction. This implies spatial fluctuations of the electronic
Zeeman energy across the sample, which presumably leads to smaller domain sizes
and therefore higher electron scattering [36]. Indeed, the longitudinal resistance at
the spin transitions was found to be enhanced considerably under the influence of a
strong current [35, 36]. In transport experiments a large resistance peak forms over
a long time scale, which indicates the involvement of nuclear spins. More direct
evidence for a current-induced nuclear spin polarization is given by the appearance
of strong nuclear magnetic resonance signals in the region of the spin transition [3].
Nevertheless, a detailed microscopic picture of the underlying physics is missing
up to date.

Which of these two counteracting effects of the current flow is strongest presum-
ably depends on the exact details of the experiment, e.g. current strength and sample
disorder. We will come back to this point in the next section. A measurement of the
nuclear spin relaxation rate is possible in either case as long as the system is driven
out of equilibrium in the first place.

Detection of the Nuclear Spin Polarization

Changes of the nuclear spin polarization can be probed simply by measuring a dis-
placement of the spin transition at ν = 2/3 . As mentioned earlier, the coincidence
condition is set by the ratio betweenCoulomb and Zeeman energy. The latter depends
on the nuclear spin polarization due to the hyperfine interaction. Yet, the question
remains how to detect the position of the spin transition. This can be done easily by
standard transport experiments as shown in Fig. 3.4. Here, the longitudinal resistance
was measured around ν = 2/3 for different densities and consequently also different
magnetic fields. The spin transition is clearly visible by a peak of finite resistance
separating regions of vanishing Rxx. The resistance peak indicates the closing of
the energy gap induced by the swapping of the Landau level spin branches. Below
this point the electron system is unpolarized, whereas at higher magnetic fields it is
completely spin polarized.

Putting it all Together

The ability to manipulate and measure the nuclear spin polarization provides us with
the basic tools to determine the nuclear spin relaxation rate. The entire measurement
sequence is shown in Fig. 3.5. It exploits the varying degree of electron-nuclear
spin interaction at different filling factors. Rapid changes of the filling factor were
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Fig. 3.4 Magnetic field dependence of the longitudinal resistance around filling factor ν = 2/3 . The
crossing of CF Landau levels manifests itself as a peak of finite resistance traversing the region of
Rxx = 0. At lower magnetic fields the electron system is unpolarized; at larger fields it is polarized.
The black circle marks the filling factor used for the experiments in Fig. 3.6

Fig. 3.5 Measurement sequence used to determine the nuclear spin relaxation rate at filling factor
νprobe (see text for details)

achieved by tuning the electron density electrostatically with the help of a backgate.
The magnetic field was kept constant. The measurement sequence consists basically
of four steps. In the first step, the nuclear spin system is initialized in order to
have a common starting point for all subsequent steps. This is done by completely
thermalizing thenuclear spin system to the environment. For this purpose, the electron
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system is set to a filling factor νinit which provides a fast nuclear spin relaxation. We
have chosen νinit to be in the vicinity of ν = 1 out of reasons which will become
apparent in the next section. During the second step, the nuclei get dynamically
polarized by applying a strong current (200nA) at ν = 2/3 . In the third step, the
electron density is tuned to the filling factor of interest νprobe where the nuclear spin
relaxation rate is measured. Therefore, the nuclear spin system is allowed to interact
with the electron system for the time twait. In the fourth step, the 2DES is returned
to ν = 2/3 for detecting the change of nuclear spin polarization which has occurred
during twait. This is done simply by measuring the longitudinal resistance at the flank
of the spin transition peak. These four steps are repeated multiple times while for
each cycle a different value of twait is chosen in order to obtain the whole relaxation
curve.

An example of nuclear spin relaxation is depicted in Fig. 3.6a. After fitting an
exponential function R = R0 +ΔR · e− t

τ , the relaxation time τ can be extracted. It is
important to emphasize that τ is only equal to the nuclear spin relaxation time T1 if
the resistance changeΔRxx depends linearly on the electronic Zeeman energy. This is
approximately fulfilled for small changes ofEz [23]. In fact, the exponential behavior
of Rxx in Fig. 3.6a supports the interpretation of τ as the nuclear spin relaxation time.
Apart from that, even if Rxx responds to changes in Ez in a non-linear way, τ remains
a good measure to compare relaxation rates at different filling factors and to identify
filling factors of fast nuclear spin relaxation. The exact point selected for dynamic
polarization and read-out of the nuclear spin polarization is indicated in Fig. 3.4. It
was chosen for its large responsiveness to an external current. Fig. 3.6b shows the
effect of a strong current (200 nA) on the longitudinal resistance, recorded over an
hour. At first, Rxx increases strongly and starts to saturate after about 20min. A short
excursion to a different filling factor causes a drop in Rxx due to the partial relaxation
of the nuclear spins. This observation highlights the basic principle underlying the
measurement scheme in Fig. 3.5.

Fig. 3.6 aMeasurement of the nuclear spin relaxation rate via changes in the longitudinal resistance.
The spin transition at ν = 2/3 was used for the manipulation and detection of the nuclear spin
polarization. A nuclear spin relaxation time of 75 s was extracted from an exponential fit. b Time
dependence of the longitudinal resistance at ν = 2/3 under the influence of a strong current (200 nA).
An intermediate relaxation of the nuclear spin polarization causes a drop of Rxx
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3.2.2 Results and Discussion

Using the previously introduced technique, we measured the nuclear spin relaxation
rate at all filling factors within the tuning range of the backgate. The measurements
were performed at a constant magnetic field of 4.3T and a temperature of roughly
20mK. Two sets of experiments were carried out. First, a low-frequency current
(∼10Hz) of 200 nA was driven constantly through the sample during each step of
themeasurement sequence. Themain effect of the strong current on themeasurement
is a substantial heat input and consequently a higher electron temperature. In a second
set of experiments, the current was turned off during nuclear spin relaxation at νprobe
and was applied only for the dynamic polarization as well as the read-out of the
nuclear spin polarization.

The filling factor dependence of the nuclear spin relaxation rate obtained in the
first case is shown in Fig. 3.8a together with the longitudinal resistance for these
conditions. The salient observation is two regions of fast nuclear spin relaxation
symmetric around filling factor ν = 1. This is the region used for the initialization
of the nuclear spin system (νinit in Fig. 3.5). A similar relaxation characteristic has
been observed before at ν = 1 [28, 29, 38]. It was attributed to the formation of
skyrmions in the vicinity of the ν = 1 IQHS, more precisely, to the presence of a so-
calledGoldstonemode. Skyrmions are gapped collective spin excitationswith charge
±e [7]. They possess a complex spin texture which can be illustrated as a vortex of
spins (Fig. 3.7). In the center of the vortex, the electron spin is directed opposite to the
external magnetic field. When going towards the perimeter, the spin slowly rotates
by 180◦ and ends up oriented along the magnetic field. This spin order results from
a competition between Zeeman and exchange energy. The latter prefers to distribute
a single spin flip among many electrons instead of reversing a single electron spin.
In fact, the optimal skyrmion configuration requires only half the energy of a single
electron spin flip [7, 19]. The size and effective spin of the skyrmions depends on
the ratio of Zeeman and Coulomb energy. At T = 0, the skyrmions are predicted to
order in a crystal structure [39]. This skyrmion crystal exhibits gapless Goldstone
modes, which open up an efficient channel for spin transfer to the nuclei. The fast

Fig. 3.7 Schematic
representation of a skyrmion
spin texture (based on [37])
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Fig. 3.8 a Filling factor dependence of the nuclear spin relaxation rate. A strong current of 200 nA
was driven constantly through the sample. The inset shows the measurement sequence according
to Fig. 3.5. bMeasurement of the nuclear spin relaxation rate while the current is turned off during
relaxation

nuclear spin relaxation in Fig. 3.8a is a consequence of these Goldstone modes [40].
A strong coupling between the electronic and nuclear spin system around ν = 1
was also inferred from heat capacity measurements [41]. The existence of skyrmions
was further corroborated by the observation of a strongly decreasing electron spin
polarization when going away from exact ν = 1 [32, 42]. Apart from the ν = 1
quantum Hall state, skyrmions are also expected to occur at other (odd) integer
and fractional quantum Hall states with similar energetic situations, for instance at
ν = 1/3 and ν = 1/5 [7]. However, experimental evidence for this assumption is
scarce. Recently, the existence of skyrmions has been predicted by theory for the
ν = 5/2 state as well [34].

When turning off the external current during nuclear spin relaxation, the elec-
tron temperature is lowered substantially. Under such conditions, additional features
appear in the filling factor dependence of 1/T1 as shown in Fig. 3.8b. These are
addressed hereinafter starting at low filling factors:
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• The first relaxation peak appears around ν = 2/3 . The fast nuclear spin relaxation
at this filling factor can be understood as a consequence of the spin transition
occurring here. The coincidence of CF Landau levels used to dynamically polarize
the nuclei also facilitates a rapid spin relaxation.

• The double peak structure around ν = 1, which was previously attributed to
skyrmion formation, is also present at base temperature, though much lower in
intensity. The observation of a decreasing spin relaxation at lower temperatures
is consistent with the theoretical prediction of a Korringa-like temperature depen-
dence 1/T1 ∝ T [40]. A similar behavior was observed by Tracy et al. [43]. In
contrast, Gervais et al. found an increased relaxation in the same temperature range
upon cooling the system [44]. For small deviations from ν = 1, Fig. 3.8b displays
a linear dependence 1/T1 ∝ |1− ν|. This behavior nicely confirms the theoretical
predictions [40].

• The next region of fast spin relaxation occurs at the ν = 4/3 quantum Hall state.
In the limit of small Zeeman energy, ν = 4/3 is the particle-hole conjugate state
to ν = 2/3 . Hence, the ν = 4/3 state also undergoes a spin transition in roughly
the same magnetic field range. As in the case of the ν = 2/3 state, this would
account for the high relaxation rate. This interpretation is supported by the slow
spin relaxation occuring at ν = 5/3 . As the conjugate state to ν = 1/3 , this FQHS
does not exhibit a spin transition (only one filled CF Landau level). Interestingly,
also the FQHS at ν = 8/5 has a slightly increased relaxation rate. It is the particle-
hole conjugate state to ν = 2/5 and consequently has two filled CF Landau levels
as well. However, the 8/5 state is subject to a different Coulomb energy compared
to ν = 4/3 and therefore is further apart from the spin transition at the present
magnetic field. Hence, it is not surprising that the enhancement of the relaxation
rate is weaker here.

• Rather surprising is the observation of a fast nuclear spin relaxation around ν = 2.
To our knowledge, this is the first report of such a behavior. No othermeasurements
of the relaxation rate are known to exist in this filling factor range at such low
temperatures. So far, no clear explanation has been found for the observed behavior.
In the single-particle picture the excitation gap at ν = 2 is set by the cyclotron
energy and has a large value. Hence, excitations between different Landau levels
fail to explain the fast nuclear spin relaxation. The exchange energy, being a
dominant factor at ν = 1, is much smaller around ν = 2, which renders the
formation of skyrmions unlikely. Possibly, edge effects are responsible for the fast
relaxation. However, in this case, the relaxation curve would show signatures of
two distinct relaxation times, one for the bulk and one for edge effects. We also
verified that the observed behavior is not an artifact of the detection method by
using filling factor ν = 1/2 as an alternative detection scheme [23]. Our findings
suggest that the physics at ν = 2 is in fact richer than expected. The microscopic
origin of these results remains to be resolved.

• An importantmotivation for these experimentswas the questionwhether signatures
of the ν = 5/2 statewould showup in the nuclear spin relaxation rate.Asmentioned
earlier, theory predicts the formation of skyrmions for this FQHS [34]. Evidently,
no indication of an enhanced relaxation rate is observed in Fig. 3.8b. Also a more
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detailed measurement around ν = 5/2 unveiled no further insights. Possibly, the
quality of the ν = 5/2 state is not sufficient for the formation of skyrmions. On
the other hand, this result may indicate that the theoretical understanding of the
ν = 5/2 state is not accurate enough.

Figure3.8 demonstrates that measurements of the nuclear spin relaxation rate can be
utilized to probe low-energetic spin excitations in the integer and fractional quantum
Hall effect. Our results highlight the rich spin physics present in the quantum Hall
regime. Another interesting facet of spin physics is the filling factor dependence of
the nuclear spin polarization studied in the following section.

3.3 Filling Factor Dependence of the Nuclear Spin
Polarization

When taking a closer look at the measurement data acquired for Fig. 3.8, it becomes
apparent that not only the relaxation rate depends on the filling factor but also the
resistance change (ΔR in Fig. 3.6). In other words, when waiting for a long time at
νprobe, the resistance value R0 measured upon return to ν ≈ 2/3 depends on the exact
value of νprobe as shown in Fig. 3.9. This implies that the nuclear spin polarization
PN in thermal equilibrium changes for different filling factors if our interpretation of
Rxx(ν = 2/3 ) as a measure of the nuclear spin polarization is correct. First indications
of such a behavior have been observed previously [45].

In order to further investigate this hypothesis, we measured directly the shift of
the spin transition according to the scheme in Fig. 3.10a. In the first step, the electron
system rests at filling factor νprobe for 10min to ensure thermal equilibrium. During
this time, the current is switched off. In a second step, the equilibrium nuclear spin
polarization is measured by quickly jumping to ν ≈ 2/3 and sweeping across the
spin transition peak while keeping the magnetic field constant at 5 T. This process is
repeated afterwards for different values of νprobe. The result is shown in Fig. 3.10b as

Fig. 3.9 Longitudinal resistance at ν = 2/3 measured after the nuclei have equilibrated at νprobe.
The resistance values at ν = 2/3 are normalized by the values obtained after dynamic nuclear
polarization
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Fig. 3.10 a Measurement sequence used to probe the filling factor dependence of the nuclear spin
polarization. In the first step, the electron system rests for 10min at νprobe. Then, the nuclear spin
polarization is detected bymeasuring Rxx while sweeping across the spin transition peak at ν = 2/3 .
Themagnetic field is kept constant. b Shift of the spin transition peak in color coding acquired at 5 T.
c Filling factor of the transition peaks in panel b plotted together with the longitudinal resistance
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Fig. 3.11 Filling factor dependence of the nuclear spin polarization measured at different temper-
atures. Plotted is the peak position (filling factor) of the spin transition at ν = 2/3 (∝ 1/PN )

a color plot. The extracted peak positions are depicted in Fig. 3.10c together with the
longitudinal resistance measured at the same magnetic field. From the comparison
with Fig. 3.9, it can be stated that it is indeed a displacement of the spin transition
causing the resistance changes in Fig. 3.9. This supports with hindsight the interpre-
tation Rxx ∝ PN used in the previous section to determine the nuclear spin relaxation
rate. From the direction of the peak shift, the polarity of the change in PN can be
assigned. A shift to lower filling factors corresponds to an increase of the nuclear
spin polarization. Hence, the nuclear spin polarization is highest around ν = 1.22.
At this point, a low resistance was measured in Fig. 3.9. With this correlation in
mind, we can clarify the effect of the current driven through the sample for dynamic
polarization in the previous section. The steady increase of Rxx shown in Fig. 3.6b
identifies PN to be overall reduced by the current flow.

Not only the position of the spin transition peak shifts for different filling fac-
tors νprobe but also its height varies. Since the magnitude of the resistance peak is
inherently connected to the size and structure of the domain pattern at the ν = 2/3
spin transition, this observation points to an additional source of disorder imposed
at certain filling factors νprobe. Remarkably, this is also the case for the exact filling
νprobe = 1.

Figure3.11 reveals the temperature dependence of the nuclear spin polarization.
The overall shift of the peak position to larger filling factors upon warming the
sample results from the population of higher-energy spin levels and the concomitant
depolarization of the nuclei. At the same time, the filling factor dependence of PN

is weakened at higher temperatures. At 43mK, PN becomes independent of the
filling factor. Interestingly, not all features disappear uniformly. At first, the increased
nuclear spin polarization atν = 1.22vanishes,while other features remainunaffected
by the temperature change. Figure3.11 allows quantifying the variation ofPN which
occurs at base temperature. ΔPN is roughly equivalent to the change in nuclear
spin polarization caused by a cooling of the electron system from 43mK to base
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Fig. 3.12 Schematic rendering of a sample with topgates used to deplete the 2DES underneath and
thereby separate the interior of the sample from the contacts. An insulating layer (shown in blue)
was fabricated below the metallic topgates to eliminate leakage currents

temperature (∼20mK). With the help of Eq.3.5, this temperature difference can be
converted to ΔPN = 5% for 75As nuclei.

The observation of a filling-factor-dependent nuclear spin polarization is surpris-
ing since PN , in the first place, depends only on the nuclear Zeeman splitting and
the temperature. It would stand to reason to suspect the hyperfine interaction as the
origin of the variations in PN . As mentioned earlier, a spin-polarized electron sys-
tem reduces the Zeeman splitting of the nuclei (Knight shift). However, this effect
is about three orders of magnitude smaller than our findings. A plausible alternative
explanation is a varying electron temperature caused by unintended current flows.
The sample couples to the environment outside of the cryostat via the leads and can
thereby easily pick up microwave radiation from the environment. This would lead
to a persistent, small current flow through the sample even when all intentionally
imposed external currents are switched off. As a consequence, the 2DES would heat
up slightly. The resulting temperature gain would depend on the sample impedance
and would therefore change for different filling factors. This scenario would explain
why the electron temperature varies and with it also the nuclear spin polarization.

To verify or rule out this hypothesis, we repeated the experiment with themodified
sample sketched in Fig. 3.12. It has metallic gates on top of the surface designed such
that the 2DES underneath can be depleted locally, thereby isolating the interior part
of the sample from the contacts. With this capability at hand, a potential influence
of the leads on the equilibrium value of PN can be investigated. We have repeated
the measurements of Fig. 3.10c with the topgates being energized when approaching
thermal equilibrium and turned off for the detection of the spin transition peak.
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Fig. 3.13 a Filling factor dependence of the nuclear spin polarization with and without pinched-off
contacts. Plotted is the peak position (filling factor) of the spin transition at ν = 2/3 (∝ 1/PN ).
The measurements were done at base temperature (∼20mK) while applying a magnetic field of
5.55T. b Variation of the relaxation time during which the nuclear spin system approaches thermal
equilibrium

Figure3.13a compares the nuclear spin polarization obtained with and without
pinched-off contacts. Also plotted is the longitudinal resistance of the sample. Inter-
estingly, the presence of the topgates modifies the 2DES underneath slightly even if
no voltage is applied. As a result, the FQHS around ν = 3/2 appear not fully devel-
oped. However, the interior of the sample remains unaffected. It leaps to the eye that
the filling factor dependence of PN is very similar to Fig. 3.10c albeit measured on a
different sample. Small changes presumably arise from the higher magnetic field of
5.55T used for the measurements in Fig. 3.13a. Of main interest is the observation
that both curves exhibit the same variations in PN even in the case of pinched-off
contacts. Thus, coupling effects via the leads can be ruled out to account for the
filling factor dependence of PN . Interestingly, an overall shift to lower filling factors
is observed if the topgates are energized. Apparently, the 2DES is heated slightly
by an external current via the leads if not hindered by the topgate. We have studied
also the time dependence of the nuclear spin polarization for this sample by varying
the waiting time at νprobe. The outcome is plotted in Fig. 3.13b. It emphasizes that
most features in PN develop rather slowly, on similar time scales as imposed by the
electron-nuclear spin interaction.
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Since our findingsmostly discard external influences to be responsible for the vari-
ations inPN , the observed behavior is likely to have an intrinsic origin. An intriguing
candidate is the ferromagnetic ordering of nuclear spins. Already more than 70 years
ago, the nuclear Curie temperature of a three-dimensional metal was calculated to
fall into themicrokelvin range [46]. However, recently it has been shown that a 2DES
with strong electron-electron interactions can exhibit nuclear Curie temperatures on
the order of millikelvin [47, 48]. The coupling between the nuclear spins in the 2DES
is mainly established via the Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction,
i.e. it is mediated indirectly by the electron system. The direct dipolar interaction
between nuclei is much weaker [48]. The RKKY interaction requires a compressible
electron system to evolve. Hence, only in this case a potential magnetic ordering of
the nuclear spins would occur. Consequently, the nuclear spin polarization would
be higher in regions of a finite longitudinal resistance. This prediction fits with the
main observations in Fig. 3.13. However, further experiments are necessary and in
progress to unambiguously identify the origin of the filling-factor-dependent nuclear
spin polarization. In any case, our findings provide the possibility to manipulate the
nuclear spin polarization simply by changing the filling factor, without the need for
strong currents or other external means which raise the temperature.

References

1. L.W. Engel, S.W. Hwang, T. Sajoto, D.C. Tsui, M. Shayegan, Fractional quantum Hall effect
at ν = 2/3 and 3/5 in tilted magnetic fields. Phys. Rev. B 45, 3418 (1992)

2. I.V. Kukushkin, K. von Klitzing, K. Eberl, Spin polarization of composite fermions: Measure-
ments of the Fermi energy. Phys. Rev. Lett. 82, 3665 (1999)

3. J.H. Smet, R.A. Deutschmann, W. Wegscheider, G. Abstreiter, K. von Klitzing, Ising ferro-
magnetism and domain morphology in the fractional quantum Hall regime. Phys. Rev. Lett.
86, 2412 (2001)

4. V. Piazza,V. Pellegrini, F.Beltram,W.Wegscheider, T. Jungwirth,A.H.MacDonald, First-order
phase transitions in a quantum Hall ferromagnet. Nature 402, 638 (1999)

5. J. Eom,H.Cho,W.Kang,K.L.Campman,A.C.Gossard,M.Bichler,W.Wegscheider,Quantum
Hall ferromagnetism in a two-dimensional electron system. Science 289, 2320 (2000)

6. J. Hayakawa, K. Muraki, G. Yusa, Real-space imaging of fractional quantum Hall liquids. Nat.
Nanotechnol. 8, 31 (2013)

7. S.L. Sondhi, A. Karlhede, S.A. Kivelson, E.H. Rezayi, Skyrmions and the crossover from the
integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419
(1993)

8. S.M. Girvin, Spin and isospin: Exotic order in quantum Hall ferromagnets. Phys. Today 3, 39
(2000)

9. J.K. Jain, Composite Fermions (Cambridge University Press, Cambridge, 2007)
10. Y.Q. Li, J.H. Smet, Nuclear-electron spin interactions in the quantum Hall regime, in Spin

Physics in Semiconductors (Springer, Berlin, 2008), pp. 347–388
11. B. Verdene, J. Martin, G. Gamez, J. Smet, K. von Klitzing, D. Mahalu, D. Schuh, G. Abstreiter,

A. Yacoby, Microscopic manifestation of the spin phase transition at filling factor 2/3. Nat.
Phys. 3, 392 (2007)

12. B.I. Halperin, Theory of the quantized Hall conductance. Helv. Phys. Acta 56, 75 (1983)
13. J.P. Eisenstein, H.L. Stormer, L.N. Pfeiffer, K.W. West, Evidence for a spin transition in the

ν = 2/3 fractional quantum Hall effect. Phys. Rev. B 41, 7910 (1990)



References 67

14. R.G. Clark, S.R.Haynes, A.M. Suckling, J.R.Mallett, P.A.Wright, J.J. Harris, C.T. Foxon, Spin
configurations and quasiparticle fractional charge of fractional-quantum-Hall-effect ground
states in the N = 0 Landau level. Phys. Rev. Lett. 62, 1536 (1989)

15. W. Pan, K.W. Baldwin, K.W. West, L.N. Pfeiffer, D.C. Tsui, Spin transition in the ν = 8/3
fractional quantum Hall effect. Phys. Rev. Lett. 108, 216804 (2012)

16. O. Stern, N. Freytag, A. Fay, W. Dietsche, J.H. Smet, K. von Klitzing, D. Schuh, W.Wegschei-
der, NMR study of the electron spin polarization in the fractional quantum Hall effect of a
single quantum well: Spectroscopic evidence for domain formation. Phys. Rev. B 70, 075318
(2004)

17. H. Cho, J.B. Young, W. Kang, K.L. Campman, A.C. Gossard, M. Bichler, W. Wegscheider,
Hysteresis and spin transitions in the fractional quantum Hall effect. Phys. Rev. Lett. 81, 2522
(1998)

18. M.J. Snelling, G.P. Flinn, A.S. Plaut, R.T. Harley, A.C. Tropper, R. Eccleston, C.C. Phillips,
Magnetic g factor of electrons in GaAs/AlxGa1−xAs quantum wells. Phys. Rev. B 44, 11345
(1991)

19. S.M. Girvin, A.H. MacDonald, Multicomponent quantum Hall systems: The sum of their parts
andmore, inPerspectives inQuantumHall Effects:NovelQuantumLiquids inLow-dimensional
Semiconductor Structures (John Wiley & Sons, New York, 1996), pp. 161–224

20. T. Jungwirth, A.H. MacDonald, Pseudospin anisotropy classification of quantum Hall ferro-
magnets. Phys. Rev. B 63, 035305 (2000)

21. A.H. MacDonald, H.A. Fertig, L. Brey, Skyrmions without sigma models in quantum Hall
ferromagnets. Phys. Rev. Lett. 76, 2153 (1996)

22. T. Jungwirth, S.P. Shukla, L. Smrčka, M. Shayegan, A.H. MacDonald, Magnetic anisotropy in
quantum Hall ferromagnets. Phys. Rev. Lett. 81, 2328 (1998)

23. Y.Q. Li, V. Umansky, K. von Klitzing, J.H. Smet, Current-induced nuclear spin depolarization
at Landau level filling factor ν = 1/2. Phys. Rev. B 86, 115421 (2012)

24. D.R. Lide, Handbook of Chemistry and Physics (CRC Press/Taylor & Francis Group, Boca
Raton, 2008)

25. M. Dobers, K. von Klitzing, J. Schneider, G. Weimann, K. Ploog, Overhauser-shift of the
ESR in the two-dimensional electron gas of GaAs–AlGaAs heterostructures, inHighMagnetic
Fields in Semiconductor Physics II (Springer, Berlin, 1989), pp. 396–400

26. G. Lampel, Nuclear dynamic polarization by optical electronic saturation and optical pumping
in semiconductors. Phys. Rev. Lett. 20, 491 (1968)

27. I.V. Kukushkin, K. von Klitzing, K. Eberl, Enhancement of the skyrmionic excitations due to
the suppression of Zeeman energy by optical orientation of nuclear spins. Phys. Rev. B 60,
2554 (1999)

28. J.H. Smet, R.A. Deutschmann, F. Ertl, W. Wegscheider, G. Abstreiter, K. von Klitzing, Gate-
voltage control of spin interactions between electrons and nuclei in a semiconductor. Nature
415, 281 (2002)

29. K. Hashimoto, K. Muraki, T. Saku, Y. Hirayama, Electrically controlled nuclear spin polariza-
tion and relaxation by quantum-Hall states. Phys. Rev. Lett. 88, 176601 (2002)

30. M.Dobers, K. vonKlitzing, J. Schneider, G.Weimann, K. Ploog, Electrical detection of nuclear
magnetic resonance in GaAs-AlxGa1−xAs heterostructures. Phys. Rev. Lett. 61, 1650 (1988)

31. W.D. Knight, Nuclear magnetic resonance shift in metals. Phys. Rev. Lett. 76, 1529 (1949)
32. S.E. Barrett, G.Dabbagh, L.N. Pfeiffer, K.W.West, R. Tycko,Optically pumpedNMRevidence

for finite-size skyrmions in GaAs quantum wells near Landau level filling ν = 1. Phys. Rev.
Lett. 74, 5112 (1995)

33. N.N. Kuzma, P. Khandelwal, S.E. Barrett, L.N. Pfeiffer, K.W. West, Ultraslow electron spin
dynamics in GaAs quantum wells probed by optically pumped NMR. Science 281, 686 (1998)

34. A. Wójs, G. Möller, S. Simon, N.R. Cooper, Skyrmions in the Moore–Read state at ν = 5/2.
Phys. Rev. Lett. 104, 086801 (2010)

35. S. Kronmüller, W. Dietsche, J. Weis, K. von Klitzing, W. Wegscheider, M. Bichler, New resis-
tance maxima in the fractional quantum Hall effect regime. Phys. Rev. Lett. 81, 2526 (1998)



68 3 Electron–Nuclear Spin Interaction in the Quantum Hall Regime

36. S. Kraus, O. Stern, J.G.S. Lok, W. Dietsche, K. von Klitzing, M. Bichler, D. Schuh, W.
Wegscheider, From quantum Hall ferromagnetism to huge longitudinal resistance at the 2/3
fractional quantum Hall state. Phys. Rev. Lett. 89, 266801 (2002)

37. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura,
Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901 (2010)

38. R. Tycko, S.E. Barrett, G. Dabbagh, L.N. Pfeiffer, K.W. West, Electronic states in gallium
arsenide quantum wells probed by optically pumped NMR. Science 268, 1460 (1995)

39. L. Brey, H.A. Fertig, R. Côté, A.H. MacDonald, Skyrme crystal in a two-dimensional electron
gas. Phys. Rev. Lett. 75, 2562 (1995)

40. R. Côté, A.H. MacDonald, L. Brey, H.A. Fertig, S.M. Girvin, H.T.C. Stoof, Collective excita-
tions, NMR, and phase transitions in Skyrme crystals. Phys. Rev. Lett. 78, 4825 (1997)

41. V. Bayot, E. Grivei, S.Melinte,M.B. Santos,M. Shayegan, Giant low temperature heat capacity
of GaAs quantum wells near Landau level filling ν = 1. Phys. Rev. Lett. 76, 4584 (1996)

42. E.H. Aifer, B.B. Goldberg, D.A. Broido, Evidence of skyrmion excitations about ν = 1 in
n-modulation-doped single quantum wells by interband optical transmission. Phys. Rev. Lett.
76, 680 (1996)

43. L.A. Tracy, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Resistively detected NMR in a two-
dimensional electron system near ν = 1: Clues to the origin of the dispersive lineshape. Phys.
Rev. B 73, 121306 (2006)

44. G.Gervais,H.L. Stormer,D.C. Tsui, P.L.Kuhns,W.G.Moulton,A.P. Reyes, L.N. Pfeiffer, K.W.
Baldwin, K.W.West, Evidence for skyrmion crystallization fromNMR relaxation experiments.
Phys. Rev. Lett. 94, 196803 (2005)

45. J.H. Smet, R.A. Deutschmann, F. Ertl, W. Wegscheider, G. Abstreiter, K. von Klitzing,
Anomalous-filling-factor-dependent nuclear-spin polarization in a 2D electron system. Phys.
Rev. Lett. 92, 086802 (2004)

46. H. Fröhlich, F.R.N. Nabarro, Orientation of nuclear spins in metals. Proc. R. Soc. Lond. A 175,
382 (1940)

47. P. Simon, D. Loss, Nuclear spin ferromagnetic phase transition in an interacting two dimen-
sional electron gas. Phys. Rev. Lett. 98, 156401 (2007)

48. P. Simon, B. Braunecker, D. Loss, Magnetic ordering of nuclear spins in an interacting two-
dimensional electron gas. Phys. Rev. B 77, 045108 (2008)



Chapter 4
The Spin Polarization of the 5/2 State

In the previous chapter, we exploited the hyperfine coupling of electrons and nuclei to
investigate different electronic spin excitations. In this chapter, we rely on a different
aspect of the hyperfine interaction, namely the ability to probe the electron spin
polarization by a nuclear magnetic resonance (NMR) of the host crystal. Using this
technique, we have measured the spin polarization of the FQHS at filling factor
ν = 5/2 . As discussed in Sect. 2.6.2, it is a crucial quantity to unravel the enigmatic
nature of the ν = 5/2 state.

4.1 Resistively Detected NMR

For performing NMR experiments, a coil was wound around the sample as depicted
in Fig. 4.1. It allows applying an oscillating magnetic field with frequency f in the
plane of the 2DES. If the corresponding photon energy hf is tuned such that itmatches
the Zeeman splitting of the nuclei, transitions between nuclear energy levels can be
triggered by photon absorption (Fig. 4.2a). For short interaction times, this can be
used to coherently control the nuclear spin polarization. If the radio frequency (RF)
radiation is applied over a long time scale, in particular longer than the dephasing
time, the coherence is lost, and the mean nuclear spin polarization PN vanishes. This
is referred to as the continuous-wave mode. The decrease of nuclear spin polariza-
tion under resonant excitation affects the energetic situation of the electron system.
As mentioned earlier (Sect. 3.1), a spin-polarized nuclear spin system changes the
electronic Zeeman energy via the hyperfine interaction. This contribution to the elec-
tronic Zeeman energy is often expressed in terms of a fictitious magnetic field, the
Overhauser field BN , acting on the electron system as Ez = g∗

eμB(B + BN ). The
Overhauser field is oriented opposite to the external magnetic field. Thus, a polar-
ized nuclear spin system reduces the Zeeman splitting (Fig. 4.2b). As a result, the
hyperfine coupling lays the foundation to conveniently identify the nuclear resonance
condition by a change in the longitudinal resistance of the sample if the filling factor
is chosen properly—a method named resistively detected NMR. In general, a strong
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Fig. 4.1 Experimental setup for the NMR experiments

Fig. 4.2 a Resonant RF radiation excites nuclear spins to higher energy levels and thereby reduces
the nuclear spin polarization. Shown is the case for nuclei with spin J = 3/2. b The fictitious
Overhauser field BN arises from a finite nuclear spin polarization and causes a reduction of the elec-
tronic Zeeman energy. c Resistively detected NMR spectrum of 75As nuclei. The radio frequency
was swept from high to low values while recording the longitudinal resistance. dNuclear resonance
frequency measured at different magnetic fields. A linear fit yields the gyromagnetic ratio of the
75As nuclei
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response in Rxx is expected for filling factors at the flank of a quantum Hall state
whose energy gap depends predominantly on the Zeeman energy, e.g. at the flank
of ν = 1. Figure4.2c gives an example of a nuclear magnetic resonance detected
via the longitudinal resistance of the sample. It shows a measurement of Rxx as the
radio frequency was swept across the nuclear resonance. At high frequencies, when
the radio frequency is off-resonant to the nuclear Zeeman splitting, PN has a finite
value corresponding to the relative occupation of the nuclear energy levels. If the
RF energy is tuned into resonance, nuclei get excited to higher energy levels, and
as a consequence the average spin polarization decreases. In the present case, this
causes a drastic change in Rxx to lower values. Once the RF radiation is off-resonant
again, PN recovers thermal equilibrium at a time scale set by T1. At the same time,
Rxx returns to its equilibrium value. The resonance spectrum in Fig. 4.2c was taken
for 75As nuclei. Throughout this thesis, we exclusively studied resonances of 75As
isotopes as they yield the strongest signal owing to their high abundance. In order
to unambiguously identify the feature in Rxx as a nuclear magnetic resonance, we
have analyzed the magnetic field dependence of the resonance frequency as shown
in Fig. 4.2d. The resonance shifts linearly with a slope of γ/2π = 7.29MHz/T
when changing the magnetic field. This value is in good agreement with the reduced
gyromagnetic ratio of 75As nuclei (see Table3.1).

Figure4.2c nicely demonstrates that a nuclear magnetic resonance can be detected
via the longitudinal resistance. Yet, the question remains how this can be utilized to
measure the spin polarization of the electron system.Thekey ingredient to answer this
question is again the hyperfine interaction. In the sameway as a polarized nuclear spin
system changes the Zeeman energy of the electrons, also a spin-polarized electron
system influences the Zeeman splitting of the nuclei. Thus, a non-zero value of the
electron spin polarization manifests itself as a linear shift of the NMR frequency,
introduced in Sect. 3.1.3 as the Knight shift Ks [1]. The Knight shift depends on both
the spin polarization and the electron density—overall, the electron spin density.
Over the last years, this technique has been established as a reliable method to probe
the electron spin polarization [2–5]. The downside of this method is that it is only
directly applicable at filling factors where Rxx depends on the Zeeman energy. In
many cases this requirement is not fulfilled, especially not for quantum Hall states
whereRxx ≈ 0.We have solved this issue by taking advantage of the backgate present
in our sample.

The extended measurement procedure is shown in Fig. 4.3. It divides the mea-
surement process into two parts, separating the manipulation of the nuclei from the
detection of the nuclear spin polarization. In the first step, a radio frequency close
to the nuclear resonance frequency is applied at νprobe. It is the electron spin polar-
ization of this filling factor which determines the Knight shift. In the second step,
the RF-induced change of PN is detected by measuring Rxx at a different filling
factor νdetect. These two steps are repeated multiple times while for each cycle the
applied frequency is lowered slightly to scan across the whole resonance. With this
method, resonances can be acquired in principle at every filling factor νprobe within
the tuning range of the backgate. The magnetic field is kept constant throughout the
entire sequence. An important prerequisite for this measurement technique is the

http://dx.doi.org/10.1007/978-3-319-33536-0_3
http://dx.doi.org/10.1007/978-3-319-33536-0_3


72 4 The Spin Polarization of the 5/2 State

Fig. 4.3 Measurement
sequence used to acquire
NMR spectra at different
filling factors νprobe. The
technique relies on abrupt
changes of the filling factor
to separate the RF-induced
nuclear spin manipulation
from its detection (see text
for details)

preservation of the nuclear spin polarization during read out. This is ensured firstly
by a swift control of the filling factor on time scales much faster than the nuclear
spin relaxation time. Secondly, the RF radiation is set off-resonant during read-out to
avoid a furthermanipulation of the nuclei. The same effect can be achieved by turning
off the RF power during read-out. However, this would lead to a temperature change
with sometimes unforeseeable side effects. The described measurement technique
for the determination of the electron spin polarization requires the nuclear spin sys-
tem to be at least partially polarized. This can be achieved either by dynamic nuclear
polarization [6] or, as in our case, by sufficiently low temperatures (see Fig. 3.3b).
The need for ultra-low temperatures is inherently counteracted by the unavoidable
heating due to the applied RF radiation. On the one hand, higher RF powers improve
the NMR signal. On the other hand, the concomitant temperature change reducesPN .
The heating effects are in particular problematic when probing fragile quantum Hall
states, such as the ν = 5/2 state. Here, low RF powers are necessary to impair the
quality of the FQHS as little as possible, rendering signal acquisition a challenge. In
view of the conflicting priorities of low temperatures and good signal-to-noise ratio,
we maximized the NMR signal by averaging over multiple measurement cycles.

4.2 Results and Discussion

In order to determine the spin polarization at ν = 5/2 , first the Knight shift needs to
be calibrated. This is done by recording NMR spectra at quantum Hall states with
a known spin polarization. For this purpose, we have measured resonance spectra
at the filling factors ν = 2, 1 and 5/3 (Fig. 4.4a–c). In the case of ν = 2, both spin
branches of the first Landau level are completely filled. Hence, the electron system
at this first reference point is unpolarized. For ν = 1, in contrast, only the lower spin
branch of the first Landau level is occupied, and the electron system is considered
to be maximally polarized. As a third reference point, ν = 5/3 is chosen. It is the
particle-hole-conjugate state of ν = 1/3 with respect to ν = 2 and is therefore
spin polarized. For the following considerations, it is important to bear in mind that

http://dx.doi.org/10.1007/978-3-319-33536-0_3
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Fig. 4.4 Resistively
detected NMR spectra of
75As nuclei measured
according to Fig. 4.3 at filling
factors ν = 2 (a), ν = 1 (b),
ν = 5/3 (c) and ν = 5/2 (d).
The magnetic field was kept
constant at 4.3T. The insets
show the nominal Landau
level occupation. The solid
lines represent fits to theory

all measurements in Fig. 4.4 were obtained at a constant magnetic field of 4.3T.
Thus, the shifts to lower frequencies appearing at ν = 1 and ν = 5/3 stem solely
from the non-zero electron spin polarization and represent the Knight shift. The
frequency difference fν=2 − fν=1 = 22 kHz delineates the maximum possible Knight
shift Ks,max for the present (fixed) magnetic field. Its exact value is magnetic field
dependent since the Landau level degeneracy and therefore also the maximum spin
density at full polarization changes for different B-fields. For a known electron spin
polarization and at a constant magnetic field, the corresponding Knight shift can in
principle be calculated according to
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Ks(P∗) = (fν=2 − fν=1) · P∗ = Ks,max · P∗, (4.1)

whereP∗ denotes the spin polarization normalized by theLandau level degeneracy nL

P∗ = n↑ − n↓
nL

. (4.2)

In turn, relation 4.1 allows us to directly determine the electron spin polarization
by measuring the Knight shift. However, applying this calibration to the Knight
shift Ks = 8.4 kHz at ν = 5/3 yields a spin polarization of P∗ = 39%. This
value is slightly higher than the maximum polarization possible at ν = 5/3 in the
case of well-separated Landau levels, i.e. P∗ = 1/3. We will come back to this
discrepancy at a later point. First, we briefly touch upon a different topic. It addresses
the salient differences of the NMR lineshapes in Fig. 4.4. The resonance at ν = 1,
for instance, exhibits a strong asymmetry, whereas at ν = 2 the resonance is rather
symmetric. This behavior can be understood as a consequence of the finite width
of the electron wavefunction in the direction perpendicular to the quantum well as
described below [4, 7].

4.2.1 Discussion of the NMR Lineshape

The electron wavefunction of the 2DES is spatially extended in the direction perpen-
dicular to the quantum well as pointed out in Sect. 2.1. Owing to the spatial spread of
the wavefunction, the electron density varies along the z-axis and so does the local
Knight shift. In other words, the Knight shift of a single nucleus depends on its local
environment and thus varies for different positions in the quantum well. The overall
NMR lineshape measured in experiment is therefore composed of single resonances
with a different Knight shift. Its exact shape I(f ) can be calculated by integrating
over the different resonance lines while taking the local electron densities via their
respective Knight shifts into account:

I(f ) =
∫

Gaussian(f − (f0 − ξ P∗ |ψ(z)|2)) |ψdetect(z)|2 dz, (4.3)

where f0 denotes the unshifted resonance frequency and ψ(z) represents the electron
wavefunction in the z-direction. It was assumed that a single nucleus has a Gaussian
lineshape. Since our measurement technique relies on different filling factors for
detection and RF excitation, the distinct electron distribution present at νdetect needs
to be taken into account as well. This is done by weighting the single Gaussian
functions with |ψdetect(z)|2 while assuming that regions of higher electron density
contribute stronger to the resistive detection. The calibration constant ξ defines how
much the nuclear resonance frequency is shifted by a given electron spin polarization.
It is magnetic field dependent and equalsKs,max in the limit of narrowwavefunctions.

http://dx.doi.org/10.1007/978-3-319-33536-0_2
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Fig. 4.5 Simulated NMR
response at ν = 1 (red) and
ν = 5/2 (blue) when
assuming equal spin
polarization and electron
density. The inset shows the
shape of the wavefunction
(probability density) for each
of the two filling factors

For realistic experimental conditions, the definition of the Knight shift given
in Eq.4.1 is problematic since already the varying shape of the wavefunction at
different filling factors can shift the overall resonance frequency, even in the case
of equal spin densities. This behavior is due to the fact that the filling factor is
tuned electrostatically. The shape of the quantum well and consequently also the
wavefunction changes for different backgate voltages. This effect is illustrated in
Fig. 4.5. It shows the wavefunctions at two different filling factors and the resulting
resonanceswhen assuming equal spin polarization and electron density. Interestingly,
a symmetric density distribution in the quantumwell causes an asymmetric resonance
and vice versa.

Based on Eq.4.3, we calculated the resonance spectra for the experimental data in
Fig. 4.4.The shapeof thewavefunction at the respectivefilling factorswasdetermined
by solving the Schrödinger and Poisson equations iteratively using the software
nextnano++ [8]. The resonance at ν = 2 is fit simply by a Gaussian lineshape: In
the case of an unpolarized electron system the Knight shift is zero, and the resonance
remains symmetric irrespective of the density distribution. Filling factor ν = 5/3
was used as a second reference point. The electron spin polarization was fixed to
P∗ = 1/3, and ξ was varied to yield best fit. The shoulder which appears on the
high frequency side is not reproduced by the fit. Possibly, some of the structural
parameters, such as the quantum well width, differ from their nominal value. With
the value of ξ determined for ν = 5/3 , we now turn to the resonance at ν = 1. Here,
the electron spin polarization was varied as the only parameter to fit the resonance.
The result is P∗(ν =1) = 0.73 ± 0.17%, which is considerably smaller than the
expected full polarization (P∗ = 1). This discrepancy, already deduced earlier from
the ratio of the Knight shifts, cannot be explained by the different shape of the
wavefunctions. Nevertheless, we deem the calibration at ν = 5/3 reliable. A spin
polarization P∗(ν = 1) < 1 is not surprising in view of the skyrmions present
in this region (see Sect. 3.2.2) and has been observed before [4, 9]. In turn, using
P∗(ν = 1) = 1 as a calibration would imply P∗(ν = 5/3 ) > 1/3, i.e. the spin
polarization of the 5/3 state would be higher than its maximum value.

http://dx.doi.org/10.1007/978-3-319-33536-0_3
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4.2.2 The Spin Polarization at ν = 5/2

Having calibrated theKnight shift, we proceedwith determining the spin polarization
at ν = 5/2 . With the help of the measurement sequence described in the previous
section, it was possible to acquire resonance spectra also at ν = 5/2 as depicted
in Fig. 4.4d. The resonance lineshape at ν = 5/2 is symmetric in contrast to the
resonance at ν = 1. This difference stems from the altered shape of thewavefunction.
Fitting the nuclear resonance with the model presented above reveals the electron
spin polarization. The simulated NMR response in Fig. 4.4d reflects the case of a
completely spin-polarized electron system in the half-filled spin branch of the second
Landau level, i.e. P∗ = 0.5. However, to be able to attribute this spin polarization
to the ν = 5/2 FHQS, it is crucial to consider the effect of RF-induced heating on
the 2DES. In Fig. 4.6a the longitudinal resistance between ν = 2 and ν = 2.6 is
plotted, measured under the influence of four different RF powers as well as at base
temperature. Of course, the heating caused by high RF powers degrades the quality
of the 5/2 state. To determine the exact value of the RF-induced temperature change,
we recorded Rxx in the same filling factor range at different temperatures (Fig. 4.6b).
From the temperature dependence of the resistance value at ν = 5/2 , the energy gap
Δ5/2 of the 5/2 state can be extracted. This is done best with the aid of an Arrhenius
plot as shown in Fig. 4.6c while assuming R(T) ∝ exp(− Δ

2kBT
). A linear fit in the

temperature-activated regime yields an energy gap Δ5/2 = 168mK. Knowing the
temperature dependence of Rxx, the resistance values in Fig. 4.6a can be converted
to the corresponding electron temperature. The result is depicted in Fig. 4.6d.

The resonance at ν = 5/2 shown in Fig. 4.4d was measured at a RF power of
−20 dBm. Thanks to the excellent sensitivity of the resistive detection method, it
was possible to reduce the RF power further and acquire resonance spectra down
to −50 dBm. The extracted values of P∗(ν = 5/2 ) are summarized in Fig. 4.7. The
error bars comprise the uncertainty in determining the resonance frequencies. At
all accessible temperatures, P∗(ν = 5/2 ) is consistent with a completely polarized
electron system.
At high temperatures, when the 5/2 state has not yet developed, a fully polarized
electron system fits with the expectations of the non-interacting electron picture. All
electrons within a Landau level spin branch have the same spin orientation provided
that the Zeeman splitting is strong enough. However, if the CF picture of the first
Landau level (Sect. 2.4.2) is extended to the second Landau level, it predicts a Fermi
sea of composite fermions at half filling. In this case, the spin polarization is deter-
mined by the ratio of the Zeeman and CF Fermi energy as described in Sect. 3.1.1.
Hence, a spin-polarized electron system requires

EF = �
2k2CF
2m∗

CF

= �
22πnCF
2m∗

CF

> geμBB, (4.4)

wherenCF is the density of composite fermions, i.e.nCF = ne/5 in the case ofν = 5/2 .
For the present experimental conditions, this implies a CF mass m∗

CF > 1.14me,

http://dx.doi.org/10.1007/978-3-319-33536-0_2
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Fig. 4.6 Estimation of the RF-induced heating. a Longitudinal resistance measured at 4.3T for
different RF powers. b Rxx in the same filling factor range for different temperatures. c Arrhenius
plot of the resistance values at ν = 5/2 with linear fit. d Conversion of RF power to electron
temperature

which is close to the value m∗
CF = 1.13me determined by Kukushkin et al. at filling

factor ν = 3/2 [10].1 While the validity of the CF picture in higher Landau levels is
questionable, indications of a CF Fermi sea at ν = 5/2 have been found by surface
acoustic wave experiments [11].
At lower temperatures,whenRxx(ν = 5/2 ) approaches zero, Fig. 4.7 unveils the sought
for spin polarization of the 5/2 state. The discovery of a fully polarized state confirms
the prediction of the Moore-Read theory. Together with the observed e/4 fractional
charge [12–14] these results strongly favor the (anti-)Pfaffian wavefunction as a valid
description of the 5/2 state [15–17]. This would further imply the non-abelian nature
of the 5/2 quasiparticles [18–20]. Our results exclude the unpolarized 331 state [21],
which was considered the most likely abelian contender in explaining the existence
of the 5/2 state. For a discussion of the main candidate wavefunctions and a review
on the experiments performed so far, we refer to Sect. 2.6.2.

In the course of acquiring these results, two similar pieces of work were pub-
lished by other groups [4, 5]. The authors also inferred a spin-polarized 5/2 state
in consistence with our findings. What distinguishes the present work is the quality

1It was assumed that the CF mass scales with the magnetic field according to m∗
CF ∝ √

Bme [10].

http://dx.doi.org/10.1007/978-3-319-33536-0_2
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Fig. 4.7 Electron spin
polarization measured by
resistively detected NMR at
ν = 5/2 with different
intensities of RF radiation.
The transport behavior under
these conditions is shown in
Fig. 4.6a. The values of P∗
are normalized by the
maximum polarization
possible within a spin-split
Landau level at ν = 5/2
(P∗

max = 0.5)

of the 5/2 state. Considerable efforts have been undertaken in the present study to
optimize the cooling of the electrons while keeping the external heat input at bay
(details can be found in appendix B). Figure4.6a reveals a well-developed 5/2 state
with Rxx becoming vanishingly small in contrast to the experimental conditions in
references [4, 5]. This is an important point since the electron system at ν = 5/2
is spin polarized also in the absence of a quantized state. It is therefore difficult to
judge at which temperature P(ν = 5/2 ) starts to represent the spin polarization of the
FQHS.

In Fig. 4.7 a tendency to lower values of P∗ is observable when decreasing the
temperature. With the present accuracy, however, it is not possible to state whether
this is a genuine trend or not. In principle, our results would also support a high
partial spin polarization. For this depth of analysis, additional experiments will be
necessary to either increase the measurement accuracy or improve the quality of the
ν = 5/2 state further.
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Chapter 5
Probing the Microscopic Structure
of the Stripe Phase at ν = 5/2

In the previous chapter, we probed the electron spin polarization by means of
resistively detectedNMR. Itwas shown that the resonance lineshape not only depends
on the spin polarization but also on the spatial distribution of the electrons inside of
the quantum well. This technique can therefore be used more generally to probe the
distribution of the electron density in all three spatial dimensions. Due to this local
sensitivity, NMR is ideally suited to study the spatial ordering of electrons which is
believed to occur in the density-modulated phases introduced in Sect. 2.5. This con-
stitutes the central topic of the present chapter. More to the point, it deals with the
study of the stripe phase emerging at filling factor ν = 5/2 when rotating the sample
with respect to the external magnetic field. The first section gives an overview of the
experimental indications for such a stripe phase. In the second part, we employ the
NMR technique to study the spatial density distribution of this phase. The results
are discussed in the last section, underpinned by a theoretical model of the stripe
formation. From this model, the stripe period as well as the modulation strength are
deduced.

5.1 Tilt-Induced Phase Transition at ν = 5/2

The appearance of density-modulated phases in the quantum Hall regime was intro-
duced in Sect. 2.5. For such phases, the homogeneous electron system in the topmost
Landau level is assumed to break up into regions of alternating electron density.
Their existence is inferred from characteristic features in the transport behavior. In
the case of the bubble phase, a reappearance of the IQHE indicates a pinning of the
excess electrons in the partially occupied Landau level. More precisely, the electrons
are believed to cluster in bubbles with an integer filling factor, which arrange in a
triangular lattice. This distinguishes the bubble phase from the stripe phase. In case of
the stripe phase, electrons are supposed to order in stripe-like patterns of alternating
filling factor. The appearance of a strong transport anisotropy at half Landau level
fillings is construed as an indication for such a stripe phase.
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These density-modulated phases compete at partial fillings with FQHS for sta-
bility. In the first Landau level FQHS are ubiquitous, whereas in higher Landau
levels density-modulated phases prevail over the FQHE. This competition stems
from subtle changes in the direct Coulomb and exchange interaction owing to the
altered shape and extent of the electron wavefunction in the respective Landau
levels. As already addressed in Sect. 2.6, this effect looms largest in the second
Landau level, where FQHS are intertwinedwith reentrant integer quantumHall states
(see Fig. 2.19). Here, transitions between FQHS and density-modulated phases are
induced by minute changes of the electron density or the magnetic field. The close
proximity of FQHS and density-modulated phases further manifests itself in Fig. 5.1.
It shows the longitudinal resistance along two perpendicular current directions under
the influence of an additional magnetic field component in the plane of the 2DES.
The measurement was performed at about 20mK in a dilution refrigerator. To allow
for a proper comparison between both current directions, the sample was patterned
in a square geometry (400µm wide). The in-plane field component was created by
tilting the sample with respect to the external magnetic field. The filling factor is
set by the perpendicular field component B⊥ = cos(ϕ)Btot, where Btot denotes the
total magnetic field and ϕ the angle spanned by Btot and B⊥. Figure5.1 reveals two
salient observations. Firstly, upon tilting of the sample the 5/2 state gradually dis-
appears, while the states at ν = 7/3 and ν = 8/3 get strengthened by the in-plane
magnetic field. Secondly, the weakening of the 5/2 state is accompanied by an emer-
gent strong transport anisotropy. Its hard axis is oriented along the in-plane magnetic
field component B‖. These observations are consistent with previous publications
[1–4].

The disappearance of the 5/2 state had first been taken as evidence for an unpo-
larized electron system since an in-plane magnetic field selectively enhances the
Zeeman energy [1]. In view of the strong transport anisotropy, this interpretation has
later been revised in favor of a stripe phase formation. According to Hartree–Fock
calculations, the anisotropic phasemay be understood as a unidirectional charge den-
sity wave (CDW) [5–7]. In this case, the local filling factor in the topmost Landau
level alternates between two neighboring integer numbers in stripes with a strictly
one-dimensional periodicity. This behavior is sketched in Fig. 5.2a. Alternative mod-
els take fluctuations along the stripes into account and approach the stripe phase in
close analogy to the behavior of liquid crystals [8, 9]. Fradkin and Kivelson pro-
posed distinct electron liquid crystal phases which are categorized according to their
symmetry and strength of shape fluctuations [8]: the smectic, nematic and stripe crys-
tal phase. Details on these phases can be found in references [8, 9]. Based on this
literature, we briefly introduce the different electron liquid phases in the following:

• Hartree–Fock calculations indicate that the CDW at zero temperature is generally
unstable to the formation of modulations along the stripes [10]. In the case of the
stripe crystal phase, these modulations order in an anti-phase manner (Fig. 5.2b).
The resultant phase is equivalent to an anisotropic Wigner crystal.

• The smectic phase has modulations along the stripes similar to the stripe crystal,
albeit with no long range anti-phase order due to dynamic phase slips (Fig. 5.2c).

http://dx.doi.org/10.1007/978-3-319-33536-0_2
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Fig. 5.1 Influence of an in-plane magnetic field B‖ on the longitudinal resistance (measured at
T ≈ 20mK). The sample was tilted by an angle ϕ with respect to the external magnetic field.
ϕ = 0◦ corresponds to B‖ = 0.The transportwas probed along twoperpendicular current directions:
IAC ‖ B‖ (blue) and IAC ⊥ B‖ (red). The direction of current flow is indicated by red arrows

In the thermodynamic limit, the smectic phase is equivalent to a CDW with no
modulations. An important prerequisite for smectic order is the continuity of the
stripes. The amplitude of the shape fluctuations is small compared to the stripe
period such that neighboring stripes do not overlap. This requirement distinguishes
the smectic phase from the nematic phase.

• In the case of the nematic phase, the fluctuations along the stripes are strong
enough that stripes may break apart and dislocations can occur (Fig. 5.2d). On the
other hand, the fluctuations must not be too strong so that the orientational order
of the stripes persists. Otherwise, the anisotropic character of the nematic phase
would be lost.

Beyond the mere transport behavior, experiments on the local nature of the
anisotropic phases in the quantum Hall regime are scarce. The temperature depen-
dence of the transport anisotropy at ν = 9/2 has been analyzed and was found to
be consistent with the predictions of a nematic phase [11, 12]. Apart from that,
resonances in the microwave absorption have been observed and interpreted as pin-
ning modes of the stripe crystal [13, 14]. Yet, with these techniques microscopic
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Fig. 5.2 Illustration of the filling factor variation in the topmost Landau level for the different
stripe phase models. a The charge density wave picture assumes alternating stripes with a strictly
1D periodicity. b For the stripe crystal phase, modulations on neighboring stripes are ordered anti-
phase. c The smectic phase has random shape fluctuations with a moderate amplitude. d In the
case of the nematic phase, the shape fluctuations are strong enough that stripes break apart and
dislocations form

details remain elusive. A first step towards a microscopic understanding has been
made by Kukushkin et al. [15]. They probed the collective modes and periodicity
of the stripe phase at ν = 9/2 by means of surface acoustic waves and photolu-
minescence spectroscopy. In principle, scanning probe techniques would serve as
an ideal method to study the local nature of the anisotropic phase. However, their
implementation is impeded by the necessity for low temperatures and the depth of
the 2DES in GaAs/AlGaAs heterostructures [16]. The latter is problematic since the
distance between probing tip and 2DES sets a lower bound to the spatial resolution
achievable with scanning probe techniques. The density modulations in stripe phases
are predicted to occur on the order of a few magnetic lengths—a length scale much
smaller than the depth of a 2DES in a typical heterostructure.

In this chapter, we adapt the previously introduced NMR technique to study the
microscopic nature of the anisotropic phase emerging at ν = 5/2 when tilting the
sample with respect to the external magnetic field. In a sense, we use nuclear spins
as local detectors to probe the spatial density distribution of the anisotropic phase.
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5.2 NMR Spectroscopy of the Stripe Phase

Following the sequence in Fig. 4.3, several nuclear resonances were measured in
the filling factor range displaying large transport anisotropy at a fixed magnetic
field Btot = 6.9T and a constant tilt angle of 60◦. The detailed transport behavior
for these conditions is shown in Fig. 5.3a. The measurement of Rxx was performed
under the influence of RF radiation in order to include off-resonant heating effects.
As a consequence of the increased temperature, the 7/3 and 8/3 FQHS have vanished
in contrast to the measurement in Fig. 5.1, which was performed at base temperature.
Despite the elevated temperatures, the transport anisotropy remains on a high level.
The colored bars indicate the exact filling factors at which a nuclear resonance was
measured. For the detection of the NMR response, the flank of the plateau at ν = 3
was chosen (νdetect = 2.86). The RF power was kept at a constant value of−17dBm,
leading to an electron temperature of roughly 70mK. The measured NMR spectra
are presented in Fig. 5.3b. Theywere inverted, normalized and offset for clarity. First,
we focus on the spectra recorded at ν = 2 and 3. Here, two main observations leap
to the eye. Firstly, the resonance at ν = 3 is shifted to lower frequencies with respect
to ν = 2 as a result of the Knight shift. At ν = 3 the electron system is maximally
polarized, albeit potentially lower than P∗ = 100% due the presence of disorder. At
ν = 2, in contrast, the 2DES is supposed to be unpolarized. The second observation
concerns the NMR lineshape. The resonance at ν = 3 is obviously broader than the

Fig. 5.3 a Transport behavior along two perpendicular current directions for a constant tilt angle
ϕ = 60◦ and magnetic field Btot = 6.9T. RF-induced heating caused an increase of the electron
temperature to about 70mK. b NMR spectra of 75As nuclei measured at different filling factors as
indicated by colored bars in panel a. The resistively detected change of the nuclear spin polarization
ΔR was normalized, inverted and offset for clarity. c Simulated NMR response based on the model
in Fig. 5.4. For the calculations, a stripe period of λ = 2.6 · lB was assumed

http://dx.doi.org/10.1007/978-3-319-33536-0_4


86 5 Probing the Microscopic Structure of the Stripe Phase at ν = 5/2

one at ν = 2. This observation can be attributed to the finite width of the electron
wavefunction as discussed in Sect. 4.2.1. The spatial integration of the varying local
Knight shifts along the z-axis inevitably leads to a broadening of the resonance line.
This effect is conspicuously absent at ν = 2: In the case of an unpolarized electron
system, the Knight shift is zero irrespective of the density distribution. Between
these two limiting cases, at intermediate filling factors, a second resonance peak is
observable in the NMR spectra. The appearance of this twofold resonance coincides
with the filling factor range exhibiting a strong transport anisotropy.When increasing
the filling factor, both resonances shift to higher frequencies and eventually evolve
back to a single resonance at ν = 3. The steady shift to lower frequencies reflects the
rising degree of spin polarization when populating the spin-up branch of the second
Landau level.

It is tempting to attribute the splitting of the resonance line to a modulation of the
electron spin density in the plane of the 2DES. In fact, other mechanisms known to
cause additional features in the NMR response can be excluded as described below.
The first candidate to think of is the electric quadrupole interaction. Samples with
an intrinsic electric field gradient, caused for instance by internal or external stress,
exhibit multiple, evenly spaced resonances due to the electric quadrupole interaction
[17, 18]. However, this effect always leads to at least three resonances in the NMR
response. Moreover, any effect arising from the host crystal should be independent
of the filling factor and would therefore be observable at ν = 2 and 3 as well. Thus,
the quadrupole interaction fails to explain the resonance splitting in Fig. 5.3b. An
alternative explanation would be a modulation of the electron density in the direc-
tion perpendicular to the quantumwell, caused for example by the in-plane magnetic
field component. This could lead to similar NMR features if the electron density is
modulated accordingly. However, the resultant resonance splitting would grow lin-
early when increasing the filling factor due to the rising spin polarization. It would
be largest at ν = 3. In contrast, Fig. 5.3b shows a rather constant splitting at inter-
mediate filling factors and a single resonance for ν = 3. Having ruled out the two
alternative scenarios above, the most likely explanation for the observed resonance
behavior is a modulation of the electron spin density in the plane of the 2DES. If
the spin-split Landau levels are well separated, the spatial modulation of the spin
polarization is inherently connected to a corresponding variation of the charge den-
sity. To further corroborate that the resonance splitting is indeed associated with the
anisotropic phase, we have verified that the additional peak in theNMR response van-
ishes at higher temperatures when the transport anisotropy is substantially reduced
(∼800mK). In addition, the twofold resonance is absent in the case of a purely
perpendicular magnetic field as shown in the previous chapter (Fig. 4.4).

5.3 Modeling of the NMR Response

In an attempt to model the resonance behavior in Fig. 5.3b, we assume that the local
filling factor is modulated in parallel stripes of νloc = 2 and νloc = 3 (Fig. 5.4a left).
The relative stripe width determines the average filling factor ν. The local filling

http://dx.doi.org/10.1007/978-3-319-33536-0_4
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factor is set by the density of the center coordinates of the electron wavefunction and
might change in a step-like manner. The electron density, in contrast, is set by the
probability density of thewavefunction and evolves rather smoothly due to the spatial
extent of the wavefunction (Fig. 5.4a right). The exact density distribution ρ(x, y) in
the plane of the 2DES depends on the shape of the wavefunction and the stripe period
λ. For stripes running along the y-axis, the density distribution is independent of the
y-coordinate ρ(x, y) = ρ(x). In a first step, the density distribution ρ(x) is calculated
by convolving the local filling factor νloc with the electron wavefunction ψ :

ρν,λ(x) = K ·
∫

|ψ(x − x̃)|2 · (νloc(x̃) − 2) dx̃, (5.1)

using the normalization constant K . The calculation is done in the Landau gauge,
which inherently supports the stripe symmetry (Sect. 2.3). In the second step, we
determine the NMR response according to

I( f ) =
∫

Gaussian( f − ( f0 − ρν,λ(x) · Ks,max )) dx, (5.2)

wherewe use again aGaussian lineshape to describe the resonance of a single nucleus
(see Eq.4.3). Moreover, it is assumed that the spin polarization grows linearly as the
spin-up branch of the second Landau level gets increasingly populated and that the
detection sensitivity is uniform across the sample. The value of the maximal Knight
shift Ks,max is extracted from Fig. 5.3b. The NMR response calculated for a fixed
filling factor ν = 5/2 as a function of the stripe period is depicted in Fig. 5.4b. At
ν = 5/2 , the regions with νloc = 2 and νloc = 3 are of equal width. The stripe period
is plotted in units of the magnetic length lB , which roughly sets the length scale of the
wavefunction. The corresponding charge density is shown in Fig. 5.4c for prominent
values of λ. We first address the two limiting cases λ � lB and λ = lB . If the stripe
period is large compared to the magnetic length, the electron density follows the
step-like variation imposed by the filling factor νloc. The electron system therefore
alternates between unpolarized stripes and stripes having maximum polarization.
Consequently, two resonances appear in the spectrum—an unshifted resonance and
one with Knight shift Ks,max . In the case λ = lB , the variation of νloc is completely
smeared out by the spatial extent of the wavefunction. Hence, the spectrum exhibits
only a single resonance,which is shifted by Ks,max/2 because theLandau level branch
at ν = 5/2 is only half occupied. At intermediate values of λ, the behavior becomes
more complex. At λ = 4.4 ·lB , the NMR responsemerges back to a single resonance.
The almost uniform density distribution at this point is a result of the characteristic
node appearing in the electron wavefunction of the second Landau level.

When comparing the simulated NMR response with the experimental findings in
Fig. 5.3b, best agreement is found for λ = (2.6 ± 0.6) · lB , which corresponds to
λ = (1.5 ± 0.4) · Rc. For this value, both theory and experiment yield a twofold
resonance which is shifted with respect to an unpolarized 2DES. For stripe phases in
perpendicularmagnetic fields, theory predicts a slightly higher valueλtheory = 2.8·Rc

http://dx.doi.org/10.1007/978-3-319-33536-0_2
http://dx.doi.org/10.1007/978-3-319-33536-0_4
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Fig. 5.4 Modeling of theNMR response. a The filling factor in the topmost Landau level is assumed
to alternate between ν̃ = 1 and 0 in parallel stripes (left). The spatial extent of the wavefunction
leads to a smooth variation of the electron density (right). b NMR response at ν = 5/2 for different
stripe periods in units of the magnetic length lB . c Spatial density distribution in the second Landau
level within a single stripe period for selected points in panel b

[19].No other experimentally determined values for the present conditions are known
to exist. For the stripe phase at ν = 9/2 in perpendicular magnetic fields, a stripe
period 3.6 · Rc was found [15].

Remarkable is also the strong charge density modulation of about 60% (20% of
total density ne) which is necessary to reproduce the resonance splitting found in
experiment. Interestingly, the density modulation is ordered anti-phase with respect
to the variation of the filling factor. The strong density modulation is particularly
surprising considering that theoretical studies estimate a variation of only 20%within
a spin-split Landau level at zero tilt [5, 6]. To the best of our knowledge, none of
the theoretical publications have addressed the effect of an in-plane magnetic field
on the modulation strength. Intuitively, it comes as no surprise that the in-plane field
component imparts a stronger one-dimensional character to the stripes.
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Based on the extracted value λ = 2.6 · lB , we have modeled the filling factor
dependence of the nuclear resonance behavior. The result is shown in Fig. 5.3c.
Keeping in mind that our model is relatively straightforward and does not consider
fluctuations of the stripe pattern, the simulated NMR response compares remarkably
well with the experimental data in Fig. 5.3b. In both experiment and theory, the NMR
spectrum starts off with a single resonance which undergoes a splitting into two
distinct features. Both resonances shift simultaneously to lower frequencies when
increasing ν and eventually merge back to a symmetric resonance line at ν = 3.
Apparent discrepancies mainly arise from the fact that our model is purely two-
dimensional. Calculating the density distribution in the z-direction as done in the
previous chapter is in the present case rather cumbersome due to the influence of the
in-plane magnetic field component on the shape of the electron wavefunction. This
task needs to be addressed in future work. A three-dimensional model would capture
the broadening of the resonances occurring at higher filling factors. Presumably also
the asymmetric height of the resonances in Fig. 5.3b, with the resonance at lower
frequencies being constantly smaller, is a consequence of the electron distribution in
the z-direction. As pointed out in Sect. 4.2.1, the spatial spread of the wavefunction in
the direction perpendicular to the quantumwell often causes an asymmetric lineshape
slanted towards higher frequencies.

From the clear splitting of the resonance line in Fig. 5.3b, one may further con-
jecture that the stripe pattern is rather well ordered. Strong fluctuations along the
stripes would change the stripe period locally, resulting in a different NMR response
according to Fig. 5.4b. This would smooth out and obscure the twofold resonance
when averaging across the whole sample. Hence, the appearance of two distinct
resonances points towards the formation of a strongly ordered phase, such as a uni-
directional CDW or a stripe crystal. This ordered phase is presumably stabilized by
the in-plane field component. It has been shown theoretically that an in-plane mag-
netic field enhances the anisotropy energy of the stripe phase [20]. The increased
stability of the stripe phase under tilt also manifests itself in the need for higher
temperatures to destroy the transport anisotropy [12].

It is noteworthy that a twofold nuclear resonance similar to the one discussed here
has recently been discovered in the high-Tc superconductor YBa2Cu3Oy. There as
well, the additional resonance peak was interpreted as evidence for a magnetic-field-
induced charge-stripe order [21].

Outlook

Future work will aim at repeating the above experiments for the stripe phases in
higher Landau levels. This would allow comparing the different stripe phases among
each other. Experimentally it is challenging to acquire resonance spectra at higher
Landau levels due to the lower magnetic fields. The reduced field has two negative
implications for performing NMR experiments. Firstly, it decreases the nuclear spin
polarization and therefore the signal strength. Secondly, the Knight shift is reduced
as well owing to the lower Landau level degeneracy. This impairs the chance to detect
single features in the NMR response. In these regards, the stripe phase at ν = 5/2 pro-
vides the best conditions for NMR spectroscopy. Here, the Landau level degeneracy

http://dx.doi.org/10.1007/978-3-319-33536-0_4
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set be the perpendicular magnetic field component is comparably large, and the total
magnetic field, relevant for the degree of nuclear spin polarization, ismuch higher due
to the tilted field configuration. Apart from that, the electron wavefunction becomes
increasingly complicated in higher Landau levels (see Fig. 2.7). Consequently, the
spatial density distribution of the stripe phase and the NMR response would presum-
ably be more complex as well.

Another project currently under investigation employs NMR spectroscopy to
probe the density distribution of the different bubble phases in the quantum Hall
regime. This is particularly challenging since the reentrant states in the second
Landau level are extremely fragile. Tilting the sample to increase the NMR signal is
here not an option as the bubble phases immediately disappear under the influence of
an in-plane magnetic field component. Yet, a close relative of the bubble phase, the
Wigner crystal, has recently been successfully analyzed using the NMR technique
employed above [22].
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Chapter 6
Surface Acoustic Wave Study
of Density-Modulated Phases

The existence of density-modulated phases was first inferred from signatures in
charge transport experiments [1, 2]. The bubble phase was identified by a reappear-
ance of the integer quantum Hall effect, whereas the stripe phase manifested itself
by the anisotropic transport behavior (Sect. 2.5). Since then, research on density-
modulated phases has focused primarily on their response to an external current
flow. Here, we pursue a different approach and investigate these phases by means of
surface acoustic waves. This technique provides an intriguing alternative access to
the electron dynamics and conductivity in a two-dimensional electron system.

6.1 Surface Acoustic Waves on a GaAs/AlGaAs
Heterostructure

This section summarizes the basic properties of surface acoustic waves and discusses
their interaction with a two-dimensional electron system. The information provided
here is based on references [3, 4].

Surface acoustic waves (SAWs) are modes of elastic energy bound to propagate
along the surface of an elastic medium [3]. They combine elements of longitudinal
and transversal waves. Hence, the displacement of a single particle is elliptic. Their
amplitude decays exponentially towards the interior of the sample at a length scale
set by the SAW wavelength. In piezoelectric materials, such as GaAs/AlGaAs, the
mechanical strain associated with the particle displacement creates an electric field,
which propagates alongside the sound wave. The presence of this field significantly
alters the SAW propagation in the material. The piezoelectric tensor p couples the
mechanical and electrical quantities according to

Ti,j = cijkl
∂uk
∂xl

+ pkij
∂φ

∂xk
(6.1)
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Di = −εij
∂φ

∂xj
+ pijk

∂uj
∂xk

, (6.2)

with indices i, j, k, l = 1, 2, 3 [4]. The first term in the stress equation (Eq.6.1) repre-
sents Hooke’s law with the particle displacement u, stiffness tensor c and mechanical
stress T . The spatial coordinates are denoted as xi. The first term of the electric equa-
tion (Eq.6.2) is the well-known relation between electric field E and displacement
field D = εE, where ε is the electric permittivity tensor and φ the scalar electric
potential.

To simplify the equations above, we first consider a one-dimensional longitudinal
bulk wave running along the x-direction. Combining

∂T
∂x

= ρ
∂2u

∂t2
(6.3)

with Eqs. 6.1 and 6.2 leads to the basic equation of motion

ρ
∂2u

∂t2
= c

(
1 + p2

c ε

)
∂2u

∂x2
− p

ε

∂D

∂x
, (6.4)

where ρ is the density of the material [3]. Based on this equation, we discuss the
two opposing scenarios of an insulating and a perfectly conducting piezoelectric
material.

• In the case of an ideal conductor (σ = ∞), any electric field generated by the SAW
is immediately screened by the electrons provided that the electronic relaxation
time, i.e. the time required by the electrons to react to an external electric field, is
shorter than 1/f (SAW frequency f ). As a consequence, the last terms in Eq.6.4
cancel each other, and it remains

ρ
∂2u

∂t2
= c

∂2u

∂x2
. (6.5)

This is the equation of a wave propagating with velocity v0 = √
c/ρ. Hence, the

material behaves as if it would be non-piezoelectric.
• In the case of a piezoelectric insulator (σ = 0), no charges can build up to screen
the electric field, and according to Poisson’s equation, ∂D/∂x = 0 follows. Conse-
quently, Eq.6.4 describes waves propagating with velocity v = √

c̃/ρ in a material
with an effective stiffness c̃ = c(1+p2/c ε). In this case, the piezoelectricity leads
to a stiffening of the crystal. The term p2/c ε is also known as the electromechanical
coupling coefficient K2.

In summary, the extent to which the SAW electric fields are screened depends deci-
sively on the conductivity σ as well as the SAW frequency ω. In this context, it is
instructive to introduce the conductivity relaxation frequency ωr = σ/(ε1 + ε2) [3].
This frequency is derived from the time t = 2π/ωr which an electron system needs to
react to an external electric field and to restore equilibrium. Here, ε1 and ε2 denote the



6.1 Surface Acoustic Waves on a GaAs/AlGaAs Heterostructure 95

dielectric constants of the sample and the space above, respectively. If ω < ωr , the
electrons are able to follow the electric field created by the SAW and build up a space
charge which screens the electric field. If in contrast ω > ωr , the electrons cannot
redistribute fast enough, and the SAW propagates like in a piezoelectric insulator. In
this case, a piezoelectric stiffening of the crystal occurs. For the general case of SAW
propagation on top of a piezoelectric material with homogeneous bulk conductivity
σ, the velocity change Δv/v0 and the attenuation coefficient Γ can be expressed as

Δv

v0
= K2

eff

2

1

1 + (ωr
ω

)2
(6.6)

Γ = ω

v0

K2
eff

2

ωr/ω

1 + (ωr
ω

)2
. (6.7)

Here, Keff denotes the effective coupling coefficient which takes into account the
boundary conditions on the surface of the material [3, 5].

Yet, the equations above do not fully reflect the physical situation inGaAs/AlGaAs
heterostructures since here the bulk is insulating (at low temperatures) and the elec-
trons are confined to a thin conductive layer. This case has been approached theoret-
ically by considering a metallic layer with sheet conductivity σ� on the surface of
a piezoelectric insulator. It was found that under these circumstances the relaxation
frequency ωr depends on the SAW wavevector k as [3, 6]

ωr = σ�k

ε1 + ε2
. (6.8)

Consequently, Eqs. 6.6 and 6.7 can be expressed in terms of conductivities

Δv

v0
= K2

eff

2

1

1 + (
σ�
σm

)2
(6.9)

Γ = k
K2

eff

2

σ�/σm

1 + (
σ�
σm

)2
, (6.10)

where σm = v0(ε1 + ε2) was used. The velocity change Δv/v0 and SAW attenuation
Γ/k for a GaAs (100) surface are plotted in Fig. 6.1a, b, respectively. It was assumed
that σm = 3.3× 10−7(Ω/�)−1 and K2

eff = 6.4× 10−4 [3]. For conductivities above
σm, the SAW velocity is identical to v0. In the opposite case, the relative velocity
change equals K2

eff/2. The SAW attenuation results from ohmic losses in the material
and becomes strongest for σ� = σm. It drops again for lower conductivities because
here current and electric field are out of phase [5].

If we now consider looseness-1the propagation of surface acoustic waves in an
external magnetic field, the sheet conductivity σ� in the equations above has to
be replaced by the longitudinal conductivity σxx, assuming that the electric field
generated by the SAW is oriented along the x-direction [3]. Surface acoustic waves
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Fig. 6.1 Velocity change (a) and damping factor (b) calculated for a SAW propagation along
the GaAs (100) surface. For the calculations, the parameters σm = 3.3 × 10−7(Ω/�)−1 and
K2
eff = 6.4 × 10−4 were used

are well suited to study the conductivity oscillations in the quantum Hall regime if
the depth of the 2DES is considerably smaller than the SAW wavelength. Figure 6.1
tells us that the SAW propagation is primarily sensitive to very low conductivities.
Hence, the velocity change is strongest in the region of incompressible quantumHall
states. In fact, the model described above was found to successfully reproduce the
SAW propagation in the quantum Hall regime [7].

The study of quantum Hall physics using surface acoustic waves offers intriguing
insights also beyond the basic transport behavior. Presumably the most prominent
example is the evidence for composite fermions (Sect. 2.4.2) found by Willett et
al. when detecting a Fermi surface at half-filled Landau levels [8–10]. In detail, an
enhanced conductivity was observed at ν = 1/2 if the SAW wavelength is tuned
below the mean free path of composite fermions. When setting the magnetic field
slightly away from ν = 1/2 , geometrical resonances appeared in the conductivity,
corresponding to the cyclotron motion of the composite fermions in their reduced
effective magnetic field.

SAW studies are advantageous in many regards. Not only that surface acoustic
waves probe the conductivity of a 2DES at dimensions set by the SAW wavelength,
they conveniently do so without the need for electrical contacts to the sample. In
addition, the probing direction of the acoustic waves is well defined in contrast to
macroscopic transportmeasurements. Especially in the case of the density-modulated
phases, the direction of current flow is strongly influenced by the spatially varying
density distribution. In the stripe phase, for instance, the current spreads towards the
edges of the sample when being sent perpendicular to the stripe orientation [11, 12].
Surface acoustic waves allow probing the inner parts of the sample even in this case.
We will benefit from this property of SAWs in the following sections.

http://dx.doi.org/10.1007/978-3-319-33536-0_2
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6.2 Experimental Setup and Measurement Technique

To study the propagation of surface acoustic waves in the quantum Hall regime, we
fabricated the sample structure depicted in Fig. 6.2. As in the previous chapter, the
2DES is confined to a square-shaped mesa structure in order to obtain an equal prob-
ing length along the [110] and [11̄0] crystal directions. On either side of the sample,
a so-called interdigital transducer is placed. It is made of aluminum with a thickness
of 100 nm. Each transducer consists of two electrodes with an interlaced comb-like
structure. These interdigital transducers are used to excite surface acoustic waves
in the GaAs/AlGaAs heterostructure. For this purpose, a high-frequency voltage is
applied between both electrodes of the transducer. As a result, an electric field spans
the gap between the finger structure and penetrates the substrate below. Here, the
piezoelectricity causes an alternating density variation in response to the applied
microwave field. These density oscillations excite surface acoustic waves, which
propagate along the surface of the substrate. The wavelength of the SAW is set by
the period of the comb-shaped electrodes. After traversing the mesa structure, the
SAW arrives at the opposite transducer and gets partially converted back into an elec-
trical signal.While the surfacewave ismoving across themesa, the 2DES underneath
is exposed to the alternating electric field and therefore tries to screen it by redistrib-
uting the electrons. Depending on the conductivity of the 2DES, the screening will
be more or less effective. If the electrons successfully weaken the electric field, the

Fig. 6.2 Schematic of the sample used for the SAW experiments (not drawn to scale). The 2DES
is confined to a square-shaped mesa (width 1.1mm). On either side of the mesa, an interdigital
transducer was fabricated out of aluminum. In the [11̄0] direction, the pair of transducers was placed
further apart to distinguish the SAW propagation along both crystal directions by their travel time.
The SAW phase shift and power transmission was measured using a standard network analyzer
(represented by blue “N”)
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SAW is slowed down as discussed in the previous section (Fig. 6.1a). This velocity
change is detectable as a phase shift of the SAWwhen reaching the transducer at the
opposite side of the structure. Given the phase difference Δα, the velocity change
Δv/v0 can be calculated according to

Δv

v0
= λ

L

Δα

360◦ , (6.11)

where λ is the SAW wavelength and L the length of the mesa. The reference point
v0 for the velocity change Δv is standardly chosen such that it resembles the case
of a 2DES with perfect screening properties, i.e. when no piezoelectric stiffening of
the crystal occurs.

A technical subtlety which had to be dealt with is the constraint that only two
coaxial cables are fitted to the microwave sample holder, owing to the endeavor
to minimize the heat load. Yet, to be able to probe the 2DES independently along
the two major axes with only one pair of transmission lines, the signals emanating
from both directions need to be distinguished. This was accomplished by choosing
different travel times of the surface acoustic waves along each axis. For this purpose,
one set of transducers was placed further apart from the mesa. The two axes can then
be addressed individually by gating the transmission time. For the present design,
the traveling times are between 600 ns and 1.4µs. A network analyzer was utilized to
apply the microwave signal as well as to detect the response of the second, opposite
transducer. Both the phase and transmitted power were measured simultaneously.
The signal of the incoming surface acoustic wave is in general rather small, and
often multiple averaging cycles are necessary to improve the signal quality. It turned
out to be crucial to further enhance the signal-to-noise ratio by an external amplifier
(amplification factor 104).

6.3 SAW Propagation in the Quantum Hall Regime

The key findings of this chapter are presented in Fig. 6.3. It shows in panel a the
longitudinal and Hall resistance along the two orthogonal directions [110] and [11̄0]
at different magnetic fields from B = 0 to filling factor ν = 2. Between ν = 4
and ν = 8, different stripe phases as well as bubble phases are discernible by their
characteristic transport behavior—a reentrance of the IQHE for the bubble phase and
an anisotropic transport in the case of the stripe phase (Sect. 2.5). Panel b depicts the
phase shift and velocity change of the surface acoustic waves propagating along both
crystal directions with a frequency of 340MHz. The power transmitted by the SAW
is shown in panel c. The data below 150mT is omitted because the aluminum of the
transducers turns superconducting at low magnetic fields. This transition also affects
the SAW propagation. The main observations of Fig. 6.3 are summarized below.

http://dx.doi.org/10.1007/978-3-319-33536-0_2
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Fig. 6.3 SAW propagation in the quantum Hall regime. a Longitudinal and Hall resistance as a
function of magnetic field. The current was sent along the perpendicular directions [110] (black)
and [11̄0] (blue).Green stripes on top of the depictedmesa indicate the stripe orientation as deduced
from the transport behavior.bPhase difference and velocity change for SAWpropagation along both
crystal directions. α(B = 0) was chosen as zero point. c SAW transmission in the same magnetic
field range. In the [11̄0] direction the SAW transmission is lower due to the higher spatial separation
of the transducers. The transmission is increased by an external amplifier (factor 104)
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• An increase of the SAW velocity is visible whenever the electron system enters a
quantum Hall state. This behavior is consistent with the theoretical predictions of
the model presented above: The incompressible electron system in a quantumHall
state poorly screens the electric field created by the SAW. Hence, a piezoelectric
stiffening of the crystal occurs, which increases the propagation velocity.

• In some magnetic field ranges, a negative phase shift is observable. This reduc-
tion of the SAW phase corresponds to a slowing down of the SAW velocity or,
alternatively, to a softening of the crystal. Its occurrence is limited to the density-
modulated phases. The discovery of a crystal softening is surprising considering
that for any conductivity a positive (or zero) velocity change is predicted to occur
(Fig. 6.1a). In fact, to the best of our knowledge, this is the first observation of such
a behavior. However, it all hinges on the question whether the zero point reference
has been assigned properly. We have chosen the phase at B = 0 as the reference
point since for a high mobility 2DES the conductivity here is well above σm. This
assignment is further supported by the behavior at high magnetic fields, where α
approaches zero multiple times whenever the 2DES becomes compressible again.
The origin of the negative phase shift will be discussed in more detail at a later
point.

• Another intriguing observation is made for the stripe phases in the quantum Hall
regime. The anisotropy observed so far in standard electron transport experiments
is also evident in the SAW propagation. For acoustic waves traveling in the direc-
tion of the stripe orientation (as derived from Rxx), the SAW velocity is reduced. In
the perpendicular case, the acoustic waves gain speed, leading to a positive phase
shift.

• Also the bubble phases are clearly discernable in the SAW propagation. Both the
longitudinal resistance and the SAW velocity are isotropic at these filling factors.
The phase change is negative along both crystal directions.

• Considering the SAW power transmission, the model in Fig. 6.1b predicts a strong
attenuation of the acoustic waves for low conductivities σ ≈ σm. This behavior
is reproduced by the experiment in Fig. 6.3c for all quantum Hall states up to
a magnetic field of 1 T. Beyond that point, the magnetic field dependence of the
SAWpower inverts. It stands to reason that this behavior results from the crossover
σ < σm.When comparing the transmission intensity among the density-modulated
phases, the power absorption of the stripe phase is conspicuously different from
the bubble phase. In the latter case the absorption is weak, whereas for the stripe
phase a strongdamping is observed. Interestingly, the attenuation in the stripe phase
is equal along both crystal directions. The overall SAW transmission is reduced
along the [11̄0] direction owing to the increased spatial separation between the
transducers on this axis.

Before embarking on the discussion of the observed SAW transmission, we briefly
look at the temperature dependence in Fig. 6.4. Here, the measurements of Fig. 6.3
were repeated at higher temperatures (67, 78 and 89mK). With increasing temper-
ature, corresponding features in Rxx and α disappear concomitantly starting with
the less robust phases at low magnetic fields. Figure 6.4 emphasizes the inherent
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Fig. 6.4 Temperature dependence of the transport measurements in Fig. 6.3. The studied tempera-
tures are 67mK (left column), 78mK (central column) and 89mK (right column). The black (blue)
line indicates the current flow and SAW propagation in the [110] ([11̄0]) direction. All features
in Rxx and α which are associated with the appearance of density-modulated phases exhibit equal
temperature dependencies
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connection between the density-modulated phases on the one hand and on the other
hand the occurrence of a negative phase shift as well as in the case of the stripe phase
the observation of an anisotropic SAW propagation.

6.3.1 Discussion of the Negative Phase Shift

In the following,wepresent twoplausible interpretations of the negative phase change
occurring in the presence of the density-modulated phases. The theoretical under-
standing has been developed in collaboration with Prof. Bernd Rosenow (Universität
Leipzig), Dr. Yang Peng (FU Berlin) and Prof. Felix von Oppen (FU Berlin). We
restrict ourselves to a discussion based on intuitive arguments. Detailed calculations
will be available as part of a joint publication.

Pinning Mode Resonance

A first interpretation of the negative phase shift is based on the occurrence of a pin-
ning mode resonance in the bubble and stripe phases. In the realistic scenario of a
disordered sample, the lattices of the bubbles and stripes are pinned by the random
electrostatic potential of the disorder landscape. When driven by an oscillating elec-
tric field, the electron system responds in a collective manner, a so-called pinning
mode, if the external frequency matches the resonance frequency set by the pinning
potential. The existence of such a pinningmode has been inferred from resonances in
the microwave conductivity around 200MHz [13] for the bubble phase and 100MHz
[14] for the stripe phase. If the excitation frequency is higher than the pinning mode
resonance frequency, a π phase shift between the electric field and the charge mod-
ulation occurs as for any classical driven oscillator. The anti-phase motion of the
oscillating charge leads to a negative real part of the dielectric function (Fig. 6.5)
whose magnitude is sufficiently strong to outweigh the positive contributions of the
bulk. As a consequence, the reduction of the SAW velocity becomes stronger than
for a sole screening of the SAW electric field. In the stripe phase, the pinning strength

Fig. 6.5 Real and
imaginary part of the
dielectric function calculated
from the Lorentz oscillator
model in the vicinity of a
resonance
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depends on the crystal direction. Along the stripe orientation, the pinning is small
or completely absent in strong contrast to the perpendicular direction. Hence, the
anisotropic SAW propagation in the stripe phase arises partly from the anisotropic
nature of the pinning mode resonance. However, from the above sequence of argu-
ments, one would infer that a negative velocity change only occurs if the acoustic
waves travel along the easy direction, contrary to the observations in Fig. 6.3b. The
missing piece of information is the contribution of the magnetic field. It couples
the equations of motion for the two orthogonal directions and ultimately causes an
inversion of the anisotropy.

The observation of an identical SAW phase shift in both crystal directions of
the bubble phases suggests that the pinning mode is isotropic here. In an advanced
interpretation, this points to the symmetric Wigner crystal as the basis for the bubble
phase. Anisotropic models, such as a pinned stripe crystal (Fig. 5.2), seem to be
in conflict with the isotropic sound propagation. So far, it has not been possible
to address the degree of anisotropy in the bubble phase by macroscopic transport
experiments due to its insulating nature.

Concerning the SAW power transmission, the energy dissipation is expected to
be highest at the pinning mode resonance. At larger frequencies, the dissipation is
supposed to be small since here the current and electric field are out of phase as for any
driven harmonic oscillator. This prediction fits the experimental findings in the case
of the bubble phase. For the stripe phase, however, a low power transmission (high
absorption) is found in experiment. This contrast is better explained by the different
compressibilities of the respective phases. In the bubble phase, the electron system
is incompressible similar to the nearby IQHS. Hence, both states exhibit minimal
power absorption due to their low bulk conductivities. In case of the stripe phase, the
situation is reversed: The electron system is compressible and has a moderate bulk
conductivity. Consequently, the power absorption is enhanced, similar to other close-
by filling factors with a compressible 2DES. Remarkably, at filling factor ν = 9/2 ,
where the stripe phase is strongest, the SAW propagation is weakened substantially
compared to the overall damping behavior at half filling.

In summary, the pinning mode model presented above predicts a negative veloc-
ity change for SAW propagation along the stripe orientation in agreement with our
findings. However, it fails to capture some of the experimental observations. In par-
ticular, the fact that we observe a negative phase shift over a large frequency range
(70MHz−1GHz), i.e. also far away from the pinning mode resonance, renders the
above interpretation unlikely. It rather points towards the second interpretation out-
lined below.

Negative Electron Compressibility

Microscopically, density-modulated phases are characterized by a clustering of elec-
trons in local domains. This spatial ordering results from a competition between
the repulsive and attractive interactions acting among the electrons. It seems nat-
ural to associate the presence of an attractive interaction between the electrons with
a (dynamic) negative compressibility of the electron system. This term describes

http://dx.doi.org/10.1007/978-3-319-33536-0_5


104 6 Surface Acoustic Wave Study of Density-Modulated Phases

the unusual situation that an electron system can lower its chemical potential by
increasing the number of charge carriers. Such negative electron compressibilities
have been observed in different strongly interacting two-dimensional electron sys-
tems [15–18]. A clear signature of negative compressibility is an over-screening of
external electric fields.

When studying the propagation of surface acoustic waves, we inherently probe
how well the 2DES is able to screen the alternating electric fields created by the
SAW. In this respect, the velocity change of the SAW reflects the compressibility of
the 2DES. If we now consider a potential negative compressibility of the 2DES in
the bubble and stripe phases, the resulting over-screening of the SAW electric field
would slow down the sound propagation even further than in the case of a perfect
screening. This would cause a negative phase and velocity shift as observed in our
experiments. In this picture, the negative phase shift is intimately connected to the
strong electron-electron interactions in the bubble and stripe phases. It is important
to mention that only the compressibility of the 2DES is probed in the experiment.
The overall compressibility of the system remains positive due to the large geometric
capacitance between the 2DES and the nearby doping layers.

6.3.2 Reentrant States in the Second Landau Level

In Sect. 2.6 we have pointed out the existence of reentrant states in the second
Landau level akin to the bubble phases in higher Landau levels. Hence, it seems
obvious to extend the present study also to the reentrant states in the second Landau
level. In Fig. 6.3, however, no signatures of these states are observed in Rxx and RH .
This is first of all a temperature issue. The sample holder used for the SAW exper-
iments is not optimized for obtaining low electron temperatures. Still, to be able to
perform SAWmeasurements also on the fragile reentrant states in the second Landau
level, we have fitted suitable coaxial cables with a reduced thermal conductivity to
the low-temperature sample holder used in the previous chapters. After improving
the thermal anchoring, it was possible to achieve lower sample temperatures. The
result is shown in Fig. 6.6. The measurements were done on a different sample with
slightly higher quality. In panel a, the longitudinal and Hall resistance is plotted. The
transport behavior along the crystal directions [110] and [11̄0] was measured at sep-
arate cool-downs. In both directions, the reentrant states in the second Landau level
are clearly visible. Remarkably, the easy axis of the stripe phases is rotated compared
to the measurements in Fig. 6.3. This rotation of the stripe pattern is a consequence
of the slightly lower electron density in the present sample (2.8 × 1011 cm−2). As
reported by Zhu et al., the stripe phase may interchange its easy and hard axis at a
density of about 2.9×1011 cm−2 [19]. The reason for this behavior is unknown so far.
Panel b presents the phase shift of the surface acoustic waves. As in Fig. 6.3, a nega-
tive phase shift is observed for the bubble and stripe phases. Again, the appearance of

http://dx.doi.org/10.1007/978-3-319-33536-0_2
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Fig. 6.6 SAW transmission under improved temperature conditions and sample quality. a Longi-
tudinal and Hall resistance for different magnetic fields up to B = 7T measured along the crystal
directions [11̄0] (black) and [110] (blue). The measurements were performed after separate cool-
downs. For the stripe phases, the easy axis is rotated compared to Fig. 6.3 due to the lower electron
density. b SAW phase shift in the same magnetic field range. Strong signatures of the reentrant
states in the second Landau level are observed. c Power transmitted by the surface acoustic waves.
The transmission intensity is enhanced by an external amplifier (factor 104)
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a negative phase shift in the stripe phases is limited to the easy axis. Most interesting
about this measurement is the observation of a crystal softening also in the presence
of the reentrant states in the second Landau level, independent of the crystal direc-
tion. This highlights the close connection between the reentrant states in the second
Landau level and the bubble phases in higher Landau levels. Panel c shows the SAW
power transmission. As for the bubble phases in higher Landau levels, the SAW trans-
mission is enhanced also for the reentrant states in the second Landau level. As an
interesting side note, it is important to mention that the bubble phases in the third and
higher Landau levels have merged with the nearby IQHS judging from the transport
measurement in Fig. 6.6a. Their existence is masked by a single, broad plateau in
this low-temperature measurement. For the SAWpropagation, however, the presence
of the bubble and stripe phases is still well discernible as distinct features, which
emphasizes the importance of SAW measurements as an complementary method to
study correlated phases.

6.3.3 Impact of current flow

It has been shown by Göres et al. that a strong DC current can significantly influence
the stripe and bubble phases [20]. Figure 6.7 shows the differential longitudinal
resistance measured with a small AC current of 10 nA while a DC current of variable
strength was sent along the crystal directions [110] and [11̄0]. The DC current was
increased in steps of 10 nA up to a maximum current of 300 nA. In the case of the
stripe phase, the DC current seemingly destroys the stripe phase if sent perpendicular
to the stripes. If the DC current is directed along the easy axis, the stripe phase gets
stabilized. For the bubble phase, in contrast, the DC current apparently induces an
anisotropic transport behavior with the hard axis being oriented always along the DC
current. A microscopic interpretation of this behavior is difficult to derive because
the measured resistance values depend strongly on the current path, which in the
bubble and stripe phases naturally follows a complicated pattern imposed by the
spatial density inhomogeneities. In this respect, probing the conductivity by means
of surface acoustic waves is superior to a standard resistive measurement. Surface
acoustic waves propagate along a well-defined direction and are only sensitive to
length scales much larger than the spatial inhomogeneities of the density-modulated
phases.

The correspondingmeasurements of the SAWpropagation are depicted in Fig. 6.8.
Shown is the SAW phase shift along both perpendicular crystal axes. The SAWmea-
surements were recorded simultaneously to the transport experiments in Fig. 6.7.
Comparing the two figures reveals that the SAW propagation remains conspicuously
unaffected by the current flow. This result clarifies that the current flow only locally
drives the 2DES out of equilibrium. It is predominantly this local reordering of the
stripe pattern which is reflected in the resistive transport measurements. If the current
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Fig. 6.7 Influence of a DC current on the differential longitudinal resistance in the density-
modulated phases. Plotted is the filling factor range between ν = 4 and 6.A small AC current of
10 nA was used to measure diff Rxx along [110] and [11̄0] while the DC current was increased from
0 to 300 nA in steps of 10 nA

is driven orthogonal to the stripe orientation, the stripe order breaks up locally, and
a new channel for the current flow is created. The current distribution remains rather
well confined along this channel. Away from this region, the stripe pattern remains
unaffected. For the isotropic bubble phases, the situation is less clear. Possibly, the
strong DC current induces a local stripe order oriented along the Hall field. Such a
stripe formation would direct the current flow towards the sample edges and there-
fore would account for the increased differential resistance observed in Fig. 6.7a, d.
Alternatively, the DC current might cause a local depinning or break down of the
bubble crystal, which would result in Rxx > 0. In either case, the reordering of the
density distribution must be limited to a small fraction of the sample. Otherwise,
signatures of such a substantial structural change would be observable in the SAW
measurements.
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Fig. 6.8 Influence of a DC current on the propagation of surface acoustic waves. Shown is the SAW
phase shift along the crystallographic directions [110] and [11̄0]. The DC current was varied from 0
to 300 nA in steps of 10 nA. The measurements were performed simultaneously to the experiments
in Fig. 6.7
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Chapter 7
Summary

More than 30 years after its discovery, the quantum Hall effect keeps surprising
us by the stunning richness and complexity of the underlying physical phenomena.
Some of the finest pieces of many-body physics are featured in the quantum Hall
effect. Its intriguing physics often reappears in other branches of solid state science.
The observation of fractionally charged quasiparticles, for instance, is a beautiful
manifestation of fractionalization—a many-body phenomenon characterized by the
appearance of quasiparticles which cannot be understood as a linear combination of
its constituent particles. Similar physics is at play when a single electron decomposes
in its fictitious constituents, the spinon, holon and orbiton [1–3], or alternatively in the
case of magnetic monopoles in spin ice materials [4–6]. Another beautiful example
of quantum Hall physics is the spontaneous symmetry breaking occurring in the
density-modulated phases at partially filled Landau levels [7]. It resembles the stripe-
shaped charge order known from high-Tc superconductors. Akin to superconductors
is also the p-wave pairing of composite fermions, which is believed to take place in
the creation of the ν = 5/2 state. Going by this scenario, the ν = 5/2 state would
give rise to a fundamental new type of quasiparticles—so-called non-abelian anyons
[8, 9]. Their existencewould open up a plethora of newexperiments.Among these are
proposals to utilize the unique braiding statistics of the non-abelian anyons for fault-
tolerant topological quantum computation [9, 10]. At this point, the quantum Hall
effect connects to the field of quantum information processing. On other frontiers,
the quantum Hall effect is a platform to rich spin physics, such as ferromagnetic
phase transitions and skyrmionic spin textures [11].

In the light of the magnificent physics transpiring in the quantum Hall regime, we
have put the focus on electronic and nuclear spin phenomena as well as the spatial
ordering of charges in bubble and stripe phases.

Electron-Nuclear Spin Interaction in the Quantum Hall Regime

The first experimental chapter deals with the coupling of electronic and nuclear
spins in the quantum Hall regime. In GaAs/AlGaAs heterostructures, this coupling
is mediated by the contact hyperfine interaction. Its strength can be assessed under
the present experimental conditions bymeasuring the nuclear spin relaxation rate. At
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ultra-low temperatures, nuclear spin flips are conveyed preferentially by the coupling
to the electron spin system. An important prerequisite to open up this relaxation
channel is the presence of low-energetic electron spin excitation in order to bridge the
strong imbalance between the electronic and nuclear Zeeman energy. We can access
the nuclear relaxation rate by utilizing an electron spin transition at filling factor
ν = 2/3 to manipulate the nuclear spin polarization as well as to detect its changes.
With this technique at hand, we have investigated systematically the nuclear spin
relaxation rate over a large filling factor range. A fast nuclear spin relaxation was
found in the vicinity of ν = 1, which is attributed to the presence of skyrmionic spin
excitations. At filling factor ν = 5/2 , such signatures were conspicuously absent
contrary to recent theoretical predictions [12]. Instead, an enhanced nuclear spin
relaxation was present at other fractional quantum Hall states. In these cases, a fast
spin relaxation was understood as a consequence of composite fermion Landau level
crossings. Apart from that, an unexpected and hitherto unobserved enhancement of
the relaxation rate was evident at filling factor ν = 2. Moreover, it was found that the
equilibrium value of the nuclear spin polarization, i.e. once the nuclei have relaxed
completely to thermal equilibrium, depends sensitively on the exact filling factor.

In the second part of this chapter, we studied this filling factor dependence of the
nuclear spin polarization in more detail and found a remarkably strong increase of
the nuclear spin polarization at filling factors exhibiting a compressible electron sys-
tem. We were able to largely exclude external influences as the origin of this finding
by isolating the interior of the sample from the electrical contacts during relaxation.
The observation of a strongly filling-factor-dependent nuclear spin polarization chal-
lenges our established understanding of the nuclear spin system in the quantum Hall
regime. It would, however, be consistentwith amagnetic ordering of the nuclear spins
mediated by the Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction. Theoretical
calculations predict that the RKKY interaction in a two-dimensional electron system
(2DES) can lift the ferromagnetic Curie temperature to themillikelvin range [13, 14].
In the light of future experiments, our findings might constitute the first evidence of
a nuclear magnetic ordering under such conditions.

The Spin Polarization of the 5/2 State

The spin polarization of the ν = 5/2 state has received considerable attention over
the last years. It is a crucial quantity to unravel the true nature of the enigmatic
ν = 5/2 state. We have approached this question by measuring the characteristic
shift of the Zeeman energy experienced by nuclear spins in the presence of a spin-
polarized electron system (Knight shift). This shift was investigated by means of
nuclear magnetic resonance (NMR) spectroscopy using a resistive detection method.
Special attentionwas attributed to optimize the quality of the ν = 5/2 state asmuch as
possible by increasing the cooling efficiency and reducing the external heat input. In
summary, the measured spin polarization at ν = 5/2 is consistent with a completely
spin-polarized electron system at all accessible temperatures. This result excludes
unpolarized candidate wavefunctions to explain the existence of the ν = 5/2 state,
such as the so-called 331 state. Combined with previous measurements of the e/4
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quasiparticle charge, our findings support the Pfaffian and anti-Pfaffian description
of the ν = 5/2 state, both of which predict quasiparticles with non-abelian anyonic
exchange statistics.

Probing the Microscopic Structure of the Stripe Phase at ν = 5/2

The physics of the quantumHall regime at partial fillings is dominated by the compe-
tition between fractional quantumHall states on the one hand and density-modulated
phases on the other hand. This observation becomes most evident in the second Lan-
dau level, where density-modulated phases and fractional quantum Hall states are
tightly packed and minute changes of the magnetic field or the charge density induce
transitions between the respective phases. The close vicinity of density-modulated
phases and quantum Hall states is further reflected by the fact that the ν = 5/2
state gives way to a stripe phase when tilting the sample with respect to the external
magnetic field.

Our understanding of density-modulated phases originatesmostly from their char-
acteristic response to external currents—a reentrance of the integer quantum Hall
effect in the case of the bubble phase and strong transport anisotropy in the presence
of the stripe phase. Inferred from this transport behavior and substantiated by theo-
retical calculations, the density-modulated phases are formed by a spatially varying
charge density with either a two-dimensional crystalline order (bubble phase) or a
one-dimensional stripe order (stripe phase). In this thesis, we have probed for the
first time the spatial density distribution of such a stripe phase, more precisely, the
stripe phase which emerges at ν = 5/2 when applying an additional magnetic field in
the plane of the 2DES. This was achieved by using nuclear spins as local detectors
for the electron spin density in the vicinity of each nucleus. Using this technique, we
found a remarkably strong modulation of the electron density of about 20%. Further,
it was possible to model the observed nuclear spin response and extract from this the
stripe period of the domain pattern.

Surface Acoustic Wave Study of Density-Modulated Phases

The existence of density-modulated phases in the quantum Hall regime was first
experimentally deduced from resistive transport measurements. Since then, exper-
iments of this kind continued to be the method of choice to investigate the stripe
and bubble phases in more detail. In the last chapter of this thesis, we have taken
a novel approach to probe the conductivity of the density-modulated phases. It uti-
lizes the propagation of acoustic waves along the surface of a sample to study the
screening properties of the 2DES below. On piezoelectric substrates, the periodic
crystal movement causes an alternating electric field, which in turn influences the
sound propagation in the material. At the same time, the electric field interacts with
the electrons in the 2DES. This allows us to probe the screening behavior of the
2DES by measuring the propagation velocity of surface acoustic waves (SAWs). We
have investigated the SAW transmission in the stripe and bubble phases along both
principal axes of the sample. The characteristic transport anisotropy of the stripe
phases was found to manifest itself also in the SAW propagation. Surprisingly, if the
SAW is traveling along the easy axis of the stripe phase, a reduction of the SAW
sound velocity was observed, corresponding to a softening of the crystal. Also for the
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bubble phases a negative velocity shift is evident but, in contrast to the stripe phase,
along both crystal directions. Such a softening of the crystal has not been reported
before. It may in the simplest case be understood by the collective excitation of the
bubble and stripe crystal in its pinning potential. Driving the system at SAW fre-
quencies higher than the pinning mode resonance might lead to a negative dielectric
constant whosemagnitude is strong enough to cause a reduction of the SAWvelocity.
However, additional experiments point towards an alternative interpretation which
attributes the observation of a crystal softening in the density-modulated phases to
a negative compressibility of the electron system. This unusual property might arise
from the strong electron-electron interactions in the bubble and stripe phases.

The clear response of the SAW propagation in the density-modulated phases
further allowed clarifying the impact of a strong unidirectional current flow on the
stripe phase order. While in resistively detected transport measurements the stripe
order appears to be strongly influenced when driving a large current perpendicular to
the equilibrium stripe orientation [15], such an effect is conspicuously absent in the
SAW measurement. This observation identifies the influence of an external current
on the stripe orientation to be purely local. It further highlights the importance of
SAW experiments as a complementary method to probe the conductivity.
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Appendix A
Sample Parameters

A.1 Wafer Structure

Most of the samples studied throughout this thesis were developed by Dr. Vladimir
Umansky at the Weizmann Institute in Israel. The sample for the measurements
presented in Figs. 2.6 and 2.14 was provided by Christian Reichl from the group of
Prof. Werner Wegscheider at the ETH Zürich.

All measurements in Chaps. 3–5 were performed on samples of the same wafer.
It consists of a GaAs/AlGaAs heterostructure with single-sided doping above the
quantum well and an in-situ grown backgate underneath. Its structural details are
listed below.

Quantity Value
Quantum well thickness 30nm
Depth of the 2DES 140nm
Spacer thickness 66nm
Backgate depth 1064nm
Density at VBG = 0V 1.8 × 1011 cm−2

Maximum density 2.9 × 1011 cm−2

Maximum mobility 1.8 × 107 cm2/Vs

Additional details on the conduction band profile and the doping scheme are provided
in Sect. 2.1. The measurements in Chap.6 as well as in Sects. 2.5 and 2.6 were
performed on samples without backgate. Instead, these structures had a double-sided
doping placed symmetrically on either side of the quantum well. In many cases such
structures provide a better quality than equivalent structures with backgate. Yet, for
most experiments in this thesis it is required to tune the electron density in a fast and
reversible manner.
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A.2 Device Fabrication

For performing transport experiments, the 2DES was patterned either in the shape
of a Hall bar or in a square-shaped van der Pauw geometry. The main steps of the
fabrication process are outlined below:

• In the first step, the mesa structure is defined by standard photolithography. For
the wet etching, a solution of sulfuric acid and hydrogen peroxide in water is used
(H2SO4:H2O2:H2O = 1:8:400). The etch depth is typically around 120nm. It is
chosen such that the upper doping layer is removed in the region outside of the
mesa in order to deplete the quantum well underneath.

• For samples with backgate, a separate etch step is required. Here, a typical etch
depth is 900nm. The etching should stop slightly above the backgate layer.

• Before fabricating the contacts to the 2DES, the sample is cleaned in an O2 plasma
in order to remove any residues from the etch mask.

• In the next step, the contact material is deposited. It consists of 7nm Ni, 90nm
Ge, 180nm Au and 37nm Ni.

• After lift-off, the contacts are annealed in forming gas at a temperature of roughly
440 ◦C.

• In the final processing step, the material for the bonding pads is deposited. Here,
about 20nm Cr and 100nm Au are used.

• For integrating the sample into the measurement setup, the fabricated device is
glued onto a 24-pin chip carrier. The electrical contact between chip carrier and
sample is established by wire bonding.



Appendix B
The Low-Temperature Sample Holder

The physical phenomena investigated throughout this thesis mostly require ultra-low
temperatures to be observable. In particular, the ν = 5/2 state and the reentrant states
in the second Landau level are very fragile. In the course of this Ph.D. work, elab-
orate measures were taken to optimize the temperature of the sample. The cooling
of the sample to temperatures below 20mK was done using a top-loading 3He/4He
dilution refrigerator. In this cryostat, the sample is immersed in a mixture of liquid
3He/4He. Placing the sample directly in the tail of the mixing chamber ensures a
good thermalization of the sample. To minimize the base temperature of the cryo-
stat, it is required to decouple the mixing chamber of the dilution refrigerator as
much as possible from the outside world. This reduces the heat input from the warm
environment. However, for performing transport and microwave experiments at low
temperatures, electrical leads and coaxial cables must be fitted to the sample holder
connecting the chip carrier to the measurement equipment outside of the cryostat. In
view of these conflicting priorities, it is of highest importance to carefully design the
measurement leads and minimize the heat input via these channels. The measures
taken in this regard either aim at reducing the heat transfer or improving the cooling
efficiency of the sample.

B.1 Reducing the Heat Load

It seems obvious to choose a material with low thermal conductivity for the 24
measurement wires leading to the sample. However, for most materials this implies
also a lowelectrical conductivity (Wiedemann–Franz law).Aclass ofmaterialswhich
does not follow this rule is superconductors. They exhibit nearly perfect electron
transport combined with a low thermal conductivity. Hence, superconductors serve
as an ideal material for the measurement leads. Yet, they can only be used in parts of
the sample holder where the temperature is below the transition temperature of the
superconductor and where the magnetic field is smaller than the critical field. In our
sample holder, the measurement wires are made of a niobium-titanium alloy from
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the 1K pot down to the tail of the mixing chamber. For the high-frequency coaxial
cables, niobium is used as the inner and outer conductor. At parts of the sample
holder which do not allow superconducting wires, leads made from stainless steel
offer a good compromise for low thermal but high electrical conduction.

Heat Anchoring

Besides the material choice, it is important to ensure a proper heat anchoring of the
wires before entering the mixing chamber. In our system this is done at the 1K pot.
It has a large cooling power and space for additional parts. A thorough pre-cooling is
particularly important for the coaxial cables as here the inner conductor is cooled very
inefficiently due to the insulating cladding. For this purpose, a printed circuit board
with a coplanar waveguide structure is used to bare the inner conductor (Fig.B.1).
The board is made of a ceramic with comparably high thermal conductivity.

Microwave Filtering

In addition to the heat anchoring, it is crucial to install high frequency filters in order
to minimize external microwave radiation and thermal noise on the measurement
lines. Such filters are particularly useful for the 24 measurement wires. Standard
transport measurements are performed under quasi-DC conditions at a modulation
frequency below 50Hz. Hence, no high-frequency transmission is required here. Of
course, installing low-pass filters for the coaxial cables would be counter-productive.

An often used high-frequency filter for cryogenic purposes is Thermocoax® cable.
This coaxial cable has a nickel-chromium inner conductor and a stainless steel outer
conductor. Originally designed as flexible heatingwires, Thermocoax® cables turned
out to be efficient microwave filters [1]. The high-frequency damping results from
losses due to the skin effect. Unfortunately, Thermocoax® wires are difficult to han-
dle since they do not easily wet with solder and because they useMgO as an insulator
between inner and outer conductor. MgO is hygroscopic and therefore causes elec-
trical leakage if not sealed properly. We use Thermocoax® wires between the room
temperature top of the sample holder and the 1K pot. In addition, a 3m long wire is
coiled in the mixing chamber part of the sample holder.

Fig. B.1 Printed circuit
board used to thermalize the
inner conductor of the
coaxial cable
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Fig. B.2 High-frequency filter made of copper wire in a silver epoxy matrix. a In the first step, the
copper wire is wound around a silver rod. b Between consecutive windings silver epoxy is applied
such that the copper wire becomes immersed in a silver matrix. c Signal transmission through the
silver epoxy filter. The background transmission without filter is plotted for comparison

Another high-frequency filter we have worked on is a long copper wire immersed
in a matrix of silver epoxy. This type of filter was brought to our attention by Prof.
Dominik Zumbühl (Universität Basel) [2]. In a first step, an insulated copper wire
with thickness 0.1mm iswound around a thin silver rod (Fig.B.2a). After completing
a full layer, the coil is covered with silver epoxy to completely embed the copper wire
in a silver matrix. This entire process is repeated multiple times (Fig.B.2b). In total,
the copper wire has a length of roughly 14m. After completing the filter element,
connectors are fitted to either side of the coil such that the transmission line connects
to the copper wire. Filters of this kind achieve a remarkable damping behavior. As
shown in Fig.B.2c, the signal drops to the noise floor already at frequencies above
100MHz.

B.2 Improving the Cooling Efficiency

Reducing the heat input into the mixing chamber is an important prerequisite for
cooling samples to ultra-low temperatures. Yet, it does not guarantee low sample
temperatures. In fact, very often the temperature of the electrons in the sample is
significantly higher than the mixing chamber temperature. This is a consequence of
the low cooling efficiency in the millikelvin range. At higher temperatures, the heat
transfer is established primarily via phonons. In themillikelvin range, this type of heat
transfer is largely suppressed [2, 3]. Instead, at low temperatures the sample is cooled
mostly by the conduction electrons in the leads. This raises the question how the leads
can be cooled efficiently by the liquid 3He/4He mixture. For this purpose, we have
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Fig. B.3 Heat exchanger
fabricated from silver
nanoparticles

fabricated different heat exchangers, one for each of the 24 measurement wires. The
thermal boundary resistance (Kapitza resistance) between the liquid helium and the
heat exchanger is inversely proportional to the contact area S [5]: RK ∝ T−3 S−1.
Hence, a large surface area is required to increase the thermal conductivity. Our
heat exchangers are made of silver nanoparticles pressed into a cylindrical shape
(Fig.B.3). A sintering of the nanoparticles to increase the stability of the cylinders
was not necessary. On either side of the cylinder, a pin is incorporated to connect
to the measurement lines. The loose agglomeration of the silver particles brings a
large surface area with it, which increases the contact area between the liquid helium
and the conductive silver [3–5]. This large interaction surface facilitates an efficient
cooling of the electrons.

We have constructed an apparatus which allows us to measure the surface area
of these heat exchangers in order to improve the fabrication process and compare
different nanoparticle powders. Before presenting the results, we first introduce the
underlying measurement principle.

The BET Method to Determine the Surface Area

The technique used to measure the surface area of the heat exchangers is based on a
theory by Brunauer, Emmett and Teller (BET) [6]. It investigates the adsorption of
gas molecules on the surface of a nanoporous material. The detailed measurement
procedure is described below. All quantities are denoted by a bar to distinguish them
from previously used symbols. The measurement setup is sketched in Fig.B.4a.

• At first, the heat exchanger is placed at the bottomof a cylindrical vessel. A vacuum
of about 5 × 10−5 mbar is pumped while the specimen is heated to a moderate
temperature of about 60 ◦C. During this step, most adsorbates on the surface of
the heat exchanger are removed.

• Having reached a decent vacuum, the lower part of the sample vessel is placed in
a bath of liquid nitrogen to cool the heat exchanger.

• In the next step, a small amount of nitrogen gas is released from a separate, fixed
volume V 1 into the sample vessel. It is important to measure the pressure p̄1 inside
of V 1 before opening the valve to the sample vessel.
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Fig. B.4 BET method to determine the surface area of nanoporous materials. a Schematic of the
measurement apparatus. The sample is placed at the bottom of a cylindrical vessel and is cooled
from outside with liquid nitrogen. Nitrogen gas is inserted into the sample vessel from a separate
dosing volume V 1. These gas molecules are partly adsorbed on the surface of the sample. b The
BET theory predicts a linear relation between expression B.2 and the relative pressure p̄/ p̄0. From
the slope and intersect of the linear fit, the surface area can be calculated

• After opening the valve, the pressure is allowed to settle until an equilibrium is
reached. The equilibrium pressure p̄ is measured.

• The two previous steps are repeated multiple times while in each cycle nitrogen
gas at a slightly higher pressure is inserted into V 1.

From the gas expansion, the amount of gas adsorbed in each cycle can be calculated.
For this purpose, the effective volume V ef f of the sample cylinder must be known.
It is the volume obtained from gas expansion if no heat exchanger is present in the
cylinder. It is an effective volume because it considers the entire apparatus to be
at equal temperature. The cooler temperatures at the bottom of the sample vessel
reduce the pressure inside, which mimics a higher volume. Once V ef f is known, the
adsorbed amount of gas Δn̄ (in mol) follows directly from the ideal gas equation:

Δn̄ = V 1 · ( p̄1 − p̄) − V ef f · ( p̄ − p̄2)

R T
, (B.1)

where p̄2 is the pressure in the sample vessel before opening the valve, R the universal
gas constant and T the temperature of the apparatus (room temperature). For each
cycle, the adsorbed gas is calculated according to Eq.B.1. Attention must be paid
to keep the liquid nitrogen level outside of the sample cylinder always at the same
height. Otherwise, its effective volume would change over time.

The sum of adsorbed gas at equilibrium pressure p̄ is labeled n̄. According to the
BET theory, the expression

p̄

n̄ · ( p̄0 − p̄)
(B.2)
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follows a linear dependencewhen plotted as a function of p̄/ p̄0, where p̄0 denotes the
standard atmospheric pressure [6]. An example of such a plot is shown in Fig.B.4b.
The measured gas adsorption nicely follows the prediction of the BET theory. Fitting
a straight line yields the slope and intercept. According to the BET theory, the amount
of N2 gas (in mol) necessary to form a monolayer of adsorbates on the surface is
given by n̄1 = 1/(slope+ intercept). However, a linear relationship between expres-
sion B.2 and the relative pressure p̄/ p̄0 is only fulfilled for a limited range from
p̄/ p̄0 = 0.05 to about 0.35 [6]. The exact limits may vary for different nanoporous
materials. Having determined n̄1, the total surface area S of the heat exchanger can
be calculated simply by S = n̄1 NA SN , where NA is the Avogadro constant and SN

represents the area occupied by a single N2 molecule.

Finding the Optimal Packing Density

We have compared the surface area of heat exchangers made from three different
silver nanoparticle powders. The microscopic structure of these powders is shown
in Fig.B.5. Powder A is specified for an average particle size of 150nm by the
manufacturer (Inframat® AdvancedMaterials LLC, USA). Powder B is finer and has
an average particle size of 90nm (M K Impex Corp., Canada). Powder C consists
of the smallest particles and is listed with an average particle size of about 60nm
(Inframat® Advanced Materials LLC, USA). Not only the particle size is visibly
smaller for this powder but also the variation in size appears to be reduced. The three
powders were pressed into cylindrical heat exchangers (Fig.B.3). The cylinders have
a diameter of 8mm and a height of 21mm. The dimensions are optimized for the
spatial constraints in the sample holder. Shortly before pressing the heat exchangers,
the powder was treated with forming gas for one hour at a temperature of 60 ◦C in
order to clean the particle surface [4, 5].

For the given heat exchanger dimensions, we have studied systematically how the
surface area changes for different packing densities. Itwas possible to vary the density
from 30 to 80% relative to the density of massive silver. For smaller densities, the
powder is only loosely connected and does not stay in shape. For higher densities, the

Fig. B.5 Microscopic image of powder A, B and C with an average particle size of 150, 90 and
60nm, respectively
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Fig. B.6 Surface area of heat exchangers made of different powders A, B and C with varying
packing densities

molding press gets damaged. The measured surface areas are depicted in Fig.B.6.
Powder C, the powder with the smallest particles, yields the largest surface area.
Despite the small particle size, a widely ramified network of nanoscale pores must
have formed during pressing such that the overall surface area becomes larger. At
a density of 60%, the surface becomes maximal and has a value of roughly 20m2.
When going to even higher densities, the size and number of pores gets reduced,
causing a smaller surface area.
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