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Preface

In the last few years it has become clear that the modelling of star formation and
feedback processes is central to the quest of finding solutions to the key problems of
galaxy formation. A complete story of star formation and its connection with the
cosmic evolution of our Universe requires to study physical processes taking place
at very different scales.

At cosmological scales the gas is sparse and highly ionized. Its temperature
depends on the subtle balance between photo-heating and adiabatic as well as
radiative cooling. In the densest regions, following the growth of the cosmological
fluctuations, it may be accreted onto forming and evolving galaxies. At the galactic
scale, the physics becomes extremely complex, non-linear and far from equilibrium.
The interstellar medium is composed of a mixture of charged particles, atoms,
molecules and dust grains. There, turbulent cascades drive the formation of cloud
complexes of various sizes and masses, from which stars may eventually form. The
collapse of these complexes is ultimately halted by star formation, resulting in a
system intricately linked together through a variety of feedback loops.

Due to the numerous complex and interleaved process involved, modelling the
star formation is challenging. The theory and numerical models of star formation
have traditionally evolved independently from those of galaxy evolution, because
they act at different spatial scales. We are now at a point however, where substantial
steps forward can only arise from the combined knowledge of these two research
fields.

The goal of the 43rd Saas-Fee Advanced Course was to bring together, in a
single place, these two fields. It aimed to take an inventory of the physical processes
related to the star formation involved at different scales and also to provide an
overview of the major computational techniques used to solve the equations gov-
erning self-gravitating fluids, essential to galactic modelling. Together this provides
a unique framework essential to developing and improving the simulation tech-
niques used to understand the formation and evolution of galaxies.

The lack of a textbook joining these different fields motivated the members
of the Swiss Society for Astrophysics and Astronomy to vote in favour of the
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organisation of a winter Saas-Fee course on the star formation in galaxies and its
modelling techniques.

The three selected lecturers—Nickolay Gnedin, Ralf Klessen and Volker
Springel—succeeded in bringing to the 95 participants a very rich and interesting
review of the fields related to the star formation in galaxies. An invaluable
additional contribution came later from Simon Glover who participated in the
writing of the chapter dedicated to the physical processes in the interstellar medium.
The reader can revel now those lectures in the following pages. The present book is
supplemented with the complete video recordings of the lectures, which are
accessible online, via the 43rd Saas-Fee Advanced Course website: http://lastro.
epfl.ch/conferences/sf2013/.

We are very grateful to the lecturers for their invaluable live lectures as well
as for their written version presented here. We are particularly thankful to
Prof. Georges Meylan, Head of the Laboratory of Astrophysics at EPFL, who
supported the organisation at all stages, making this course a success. We are
extremely grateful to Matthew Nichols, who video-recorded the lectures and
post-processed the movies. Olivier Genevay has been at the heart of all practical
arrangements without counting his time; we want to thank him very warmly. We
also thank the course secretaries, Carol Maury and Claire Schatzmann, as well as
our colleagues, Malte Tewes, Vivien Bonvin, Alexis Arnaudon and Daniel
Pfenniger for all their help in the practical organisation of the course.

The course took place during winter in the village of Villars-sur-Ollon in the
Alps of Switzerland. While benefiting from superb weather after some snowy days,
a conference picture was kindly taken by Ievgen Vovk and is displayed below.

Yves Revaz
Pascale Jablonka
Romain Teyssier

Lucio Mayer
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Modeling Physical Processes at Galactic
Scales and Above

Nickolay Y. Gnedin

1 In Lieu of Introduction

What should these lectures be? The subject assigned to us is so broad that many
books can be written about it. So, in planning these lectures I had several options.

One would be to focus on a narrow subset of topics and to cover them in great
detail. Such a subset necessarily would be highly personal and useful to a few readers
at best. Another option would be to give a very shallow overview of the whole field,
but then it won’t be very much different from a highly compressed version of a
university course (which anyone can take if they wish so).

So, I decided to be selfish and to prepare these lectures as if I was teaching my
own graduate student. Given my research interests, I selected what the student would
need to know to be able to discuss science with me and to work on joint research
projects. So, the story presented below is both personal and incomplete, but it does
cover several subjects that are poorly represented in the existing textbooks (if at all).

Some of topics I focus on below are closely connected, others are disjoint, some
are just side detours on specific technical questions. There is an overlapping theme,
however. Our goal is to follow the cosmic gas from large scales, low densities,
(relatively) simple physics to progressively smaller scales, higher densities, closer
relation to galaxies, and more complex and uncertain physics. So, we (you—the
reader, and me—the author) are going to follow a “yellow brick road” from the
gas well beyond any galaxy confines to the actual sites of star formation and stellar
feedback. On the way we will stop at some places for a tour and run without looking
back through some others. So, the road will be uneven, but I hope that some readers
find it useful.
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2 Physics of the IGM

Most of the volume of the universe is occupied by gas outside galaxies, the so-called
intergalactic medium (IGM). It may seem this gas is located far from galaxies, and
should not be relevant to formation of galaxies and stars. Wrong!—IGM is the gas
that eventually gets accreted by galaxies and turns into stars. After all, before the
first galaxy formed, the whole universe was just IGM.

Hence, as we follow the “yellow brick road” to our goal of modeling star formation
in galaxies, we pass through the IGM land first …

2.1 Linear Hydrodynamics in the Expanding Universe

Linear dynamics of the non-relativistic cold dark matter is almost trivial, density fluc-
tuation δX (t, k) with a spatial wavenumber k satisfies a simple ordinary differential
equation (ODE),

d2

dt2 δX (t, k) + 2H
d

dt
δX (t, k) = 4πGρ̄δtot(t, k), (1)

where a(t) is the cosmic scale factor, H(t) ≡ ȧ/a is the Hubble parameter and ρ̄ is
the mean density of the universe. If the universe only contained cold dark matter, then
δtot = δX . A second order ODE has two solutions, one of them is always growing
with time,

δX (t, k) = D+(t)δ0(k), (2)

where D+ is called “the linear growing mode”.
In reality, the universe contains gas, which is also subject to pressure forces.

Hence, in the linear regime the evolution of the dark matter and gas fluctuations
(δX , δB) is described by a system of two coupled equations,

d2δX

dt2 + 2H
dδX

dt
= 4πGρ̄ ( fXδX + fBδB) , (3)

d2δB

dt2 + 2H
dδB

dt
= 4πGρ̄ ( fXδX + fBδB) − c2

S

a2 k2δB, (4)

where fX ≈ 0.84 and fB ≈ 0.16 are the mass fractions of dark matter and baryons
respectively, and cS is the speed of sound in the gas.

This system of equations is coupled, but if high precision is not required, one can
assume fB � fX and ignore the baryonic contribution in the gravity terms in both
equations. In that case the solution for the dark matter fluctuation is still given by
Eq. (2), while the equation for the baryonic fluctuation reduces to
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d2δB

dt2 + 2H
dδB

dt
= 4πGρ̄δX − c2

S

a2 k2δB . (5)

Notice the difference between this equation and an equation for baryonic fluctuations
in a static reference frame (a = const, no expansion of the universe) in the absence
of dark matter:

d2δB

dt2 = 4πGρ̄δB − c2
S

a2 k2δB .

We know that in the latter case the characteristic scale over which baryonic fluctua-
tions are suppressed by the pressure force is the Jeans scale,

kJ ≡ a

cS

√
4πGρ̄.

Equation (5) cannot be solved analytically in a general case, but the important
physics we are after is how baryonic fluctuations deviate from the dark matter ones.
Hence, a quantity of interest is the ratio of two fluctuations, which can be expanded
in the Taylor series of powers of k2,

δB(t, k)

δX (t, k)
= r − k2

k2
F

+ O(k4), (6)

where r = const and we will call kF (t) a filtering scale. Because dark matter is
expected to be more clustered that baryons (it is not a subject of the pressure force
in the linear regime), we can expect that, in a general case kF > kJ (in the presence
of dark matter baryonic fluctuations are less suppressed than in a purely baryonic
case).

In the following we will only consider the case of r = 1 (baryons trace the dark
matter on large scales), since this is an excellent approximation for z < 10. However,
at higher redshifts this is not the case any more (Naoz and Barkana 2007), as the
different evolution of baryons and dark matter during the recombination epoch is not
completely forgotten at these high redshifts (for example, r � 1 at z > 1000).

Substituting Eq. (6) into (5), it is possible to obtain an expression for kF in a closed
form (Gnedin and Hui 1998),

1

k2
F (t)

= 1

D+(t)

∫ t

0
dt ′a2(t ′) D̈+(t ′) + 2H(t ′)Ḋ+(t ′)

k2
J (t ′)

∫ t

t ′
dt ′′

a2(t ′′)
.

While this expression is long and ugly, for reasonable thermal histories of the universe
a good rule of thumb at z ∼ 2–4 is kF ≈ 2 × kJ (the filtering scale is about half the
Jeans scale).

Figure 1 gives an example of scale-dependence of δB(t, k)/δX (t, k) for a repre-
sentative thermal history of the universe at several redshifts (see Gnedin et al. 2003
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Fig. 1 Solutions to Eq. (4)
for a representative thermal
history of the universe at
z = 4 (light gray), z = 1.5
(medium gray), and z = 0
(dark gray); thin lines show
the exact solutions, thick
lines give the approximation
δB/δX = exp(−k2/k2

F )

(adopted from Gnedin et al.
(2003))

for details). Fluctuations on small scales, where the pressure force dominates, are
simple sound waves, and the transition to the baryons-trace-the-dark-matter regime
is well described by the filtering scale.

Brain teaser #1: Pressure generates sound waves, and sounds waves in the
ideal gas do not dissipate. Why, then, are fluctuations “suppressed” by the
pressure force?

2.2 Lyman-α Forest

A well known empirical fact is that the IGM is highly ionized at low and intermediate
redshifts, z < 6 (we will come back to that fact). To keep the cosmic gas ionized,
the universe must be filled with ionizing radiation, the so-called “Cosmic Ionizing
Background” (CIB).

Since most of the IGM is hydrogen, let us consider hydrogen first. The ionization
balance equation for hydrogen in the expanding universe is simple,

ṅHI = −3HnHI − nHIΓ + R(T )nenHII,
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where nHI, nHII, and ne are number densities of neutral hydrogen, ionized hydro-
gen, and free electrons respectively, Γ is the photoionization rate and R(T ) is a
(temperature-dependent) recombination coefficient.

Often it is more convenient to consider not the actual number density of neutral
or ionized hydrogen, but the neutral fraction x ≡ nHI/nH, because then the Hubble
expansion term cancels out,

ẋ = −xΓ + R(T )ne(1 − x). (7)

In the ionization equilibrium ẋ = 0, hence

xeq = R(T )

Γ
ne(1 − xeq),

and since the IGM is highly ionized (x � 1),

xeq = R(T )

Γ
(n̄H + 2n̄He)(1 + δ),

where we assumed that Helium is fully ionized, n̄e = n̄H +2n̄He (denser gas is more
neutral).

Let us now consider a light source somewhere in the universe (a quasar, a galaxy,
a gamma-ray burst, etc.); the light source is at redshift ze in our reference frame.
Let us also imagine that a photon with wavelength λe is emitted by the source. As it
propagates through the universe, the photon is going to be redshifted. At a redshift
za < ze (from our reference frame) the photon has a wavelength

λe
1 + za

1 + ze
.

Hence, for any 1216 Å(1 + ze) < λe < 1216 Å there is such za that

λe
1 + za

1 + ze
= 1216 Å.

When a photon with wavelength of 1216 Å (= Lyman-α) hits a neutral hydrogen
atom, it can get absorbed and excite the atom to n = 2 level.

Indeed, this is exactly what happens in the real universe. Figure 2 shows a spectrum
of a typical z ∼ 3 quasar. The broad emission line in the middle is the Lyman-α of
the quasar itself, and blue envelope for the observed spectrum is the continuum—i.e.
the light that the quasar itself emitted. Black absorption lines come from the gas
between us and the quasar, and the numerous forest of them at shorter wavelength
is the hydrogen Lyman-α absorption from the neutral gas in the IGM, the so-called
Lyman-α Forest.
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Fig. 2 Typical z ∼ 3 quasar spectrum together with the power law continuum fit (dashed red line)
and the local continuum fit (blue line; adopted from Dall’Aglio et al. (2008))

Figure 3 illustrates how fluctuations in the neutral hydrogen density and in the
gas temperature combine to produce the Lyman-α forest of absorption features in
the spectrum. In order to understand how one goes from the lower two panels to the
top one in that figure, we need to refresh the basics of resonant line absorption in the
expanding universe.

Brain teaser #2: Hydrogen atoms do not sit forever in n = 2 state, they decay
back into n = 1 and a Lyman-α photon is re-created back. How can there be
any Lyman-α absorption?

2.2.1 Introduction to Resonant Line Absorption

The cross-section for an atom at rest to absorb a photon in the frequency range from
ν to ν + Δν to the energy level with the energy hν0 is

σ(ν) = πe2

mecν0
f φ(ν) ≡ σ0φ(ν),

where f is the oscillator strength for the transition and

φ(ν) = 1

π

wν0

(ν − ν0)2 + w2 ≈ ν0δ(ν − ν0),
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Fig. 3 Runs of neutral hydrogen density (bottom) and gas temperature (middle) along one line of
sight in a numerical simulation of Lyman-α forest at z ∼ 3. The resultant absorption spectrum is
shown in the top panel

where w is the natural line width in frequency units. For hydrogen Lyman-α the
combination of fundamental constants

σ0 = πe2

mecν0
f = 4.5 × 10−18 cm2.

Atoms, though, are social creatures and rarely live alone. For a cloud of gas of
density n, size L , and temperature T we need to integrate over all atoms to compute
the optical depth of the transition at any frequency ν,

τ (ν) = nL
∫

σ0φ(ν ′) 1√
πb

e
− (uν − u′)2

b2 du′,
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where ν ′ = ν0(1 + u′/c) and uν is defined via the expression ν = ν0(1 + uν/c).
The quantity

b =
(

2
kB T

m H

)1/2

is called the Doppler parameter and the product nL is the column density.
In an expanding universe it is not enough just to multiply by the cloud size L ,

since different locations along the line-of-sight are redshifted relative to the observer
and project to different locations in the velocity (or frequency) space. Hence, we
must integrate along the line-of-sight,

τ (λ) = σ0

∫
n(x)

c√
πbx

e
− (uλ − ux )

2

b2
x

dx

1 + zx
, (8)

where we switch to from the frequency to the wavelength (as almost all observers
tend to live in the wavelength space), and we integrate over the comoving distance
x (as almost all theorists tend to live in the comoving space); both bx and ux are,
in general, functions of position, since the temperature and velocity vary in space.
The wavelength is related to the velocity along the line-of-sight through the usual
Doppler effect,

λ = λ0

(
1 + zx + uλ

c

)

and zx is the redshift of location x along the line-of-sight.
The spectrum shown on the top panel of Fig. 3 is just exp(−τ (λ)) with τ (λ)

computed with Eq. (8) from the two bottom panels of the same figure.
Now we are ready to figure out why the IGM must be highly ionized at z < 6.

From Fig. 2 we notice that the forest absorbs about 50 % of the quasar flux, so the
average optical depth is τ ∼ 0.5–1. Considering one absorption system stretching
for about Δx ∼ 100 kpc and having temperature of 104 K (or b ∼ 10 km/s), a crude
estimate for τ is

τ ∼ σ0
c√
πb

xHInHaΔx

= 4.5 × 10−18 cm2 3 × 105 km/s√
π10 km/s

xHI1.3 × 10−5 cm−3(4a)−30.75 × 1023 cm(4a)

= 7 × 104 xHI

(4a)2

at the cosmic scale factor a. To get τ ∼ 1 the neutral fraction xHI must be xHI ∼ 10−5.
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2.2.2 Temperature

The final component in modeling the IGM is to know what the temperature of the
gas is.

Since the IGM is highly ionized, a process of photo-heating (heating by ionizing
radiation) is important. When a high energy photon hits a hydrogen atom, 13.6 eV
of its energy goes into ionizing the atom, the rest goes into the energy of the ejected
electron. If the electron is not super-energetic (less that ∼40 eV), it thermalizes and
adds its energy to the thermal energy of the gas. For more energetic electrons the
situation may be more complex, as it can ionize another atom by colliding with it (a
so-called secondary ionization). That, in turn, produces an energetic electron which
may ionize another atom etc. Usually, these secondary ionizations are only important
if the gas is substantially (more than a few percent) neutral; for the low redshift IGM
with xHI ∼ 10−5 secondary ionizations are completely unimportant.

If all the excess energy of an ionizing photon goes into heat, the rate of internal
energy increase in the gas due to photo-heating is

3

2

d

dt
(nkB T )

∣
∣
∣
∣
PH

= cnHI

∫ ∞

E0

(E − E0)σHI(E)nE d E,

where E0 = 13.6 eV is the hydrogen ionization threshold, σHI(E) is the hydrogen
ionization cross-section, and nE is the radiation spectrum measured in photons per
unit volume per unit energy.

The photoionization rate of hydrogen is

Γ = c
∫ ∞

E0

σHI(E)nE d E,

hence

3

2

d

dt
(nkB T )

∣
∣
∣
∣
PH

= nHIΓ 〈ΔE〉,

where 〈ΔE〉 is the average excess energy (over 13.6 eV) of an ionizing photon,

〈ΔE〉 ≡

∫ ∞

E0

(E − E0)σHI(E)nE d E

∫ ∞

E0

σHI(E)nE d E
. (9)

Let us ignore helium for a moment: ne = (1 − x)nH, n = nH + ne = (2 − x)nH.
Then the thermal balance equation together with the ionization balance equation
become
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3

2

d

dt
((2 − x)kB T ) = xΓ 〈ΔE〉, (10)

d

dt
x = −xΓ + R(T )nH(1 − x)2. (11)

Let us start with cold neutral IGM (x = 1, T = 0, like at very high redshift, before
cosmic reionization), and assume that the ionizing radiation pops out of nowhere
instantaneously at a cosmic time tR (a favorite approximation of your CMB friends),

Γ ∝ θ(t − tR)

(θ(x) is a Heaviside function). In the ionization equilibrium

xeq = RnH

Γ
(1 − xeq)

2.

Hence, until the ionization equilibrium is established (i.e. while x � xeq) xΓ �
RnH(1 − x)2. In that limit Eq. (11) becomes simply

d

dt
x = −xΓ

and its solution for t > tR is

x(t) = e−Γ (t−tR).

That solution is valid until x becomes small enough (∼ RnH/Γ ) for the ionization
equilibrium to get established.

Equation (10) can also be solved easily in the same limit,

(2 − x)kB T = 2

3
〈ΔE〉

(
1 − e−Γ (t−tR)

)
,

and in the limit of small x the gas temperature becomes constant (i.e. gas becomes
isothermal),

T∞ = 〈ΔE〉
3kB

(12)

and independent of density or the photoionization rate. This is an important lesson:
if a region of space is ionized rapidly, its temperature does not depend on the
strength of the radiation field. I.e., you cannot heat up the IGM by cranking up the
ionizing source, only by making the source spectrum harder.

It is also instructive to plug some numbers into Eq. (12). For example, for a power-
law energy spectrum for ionizing photons, nE ∝ E−α, and using the fact that just
beyond the ionization edge σHI(E) ∝ E−3, we find
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〈ΔE〉 =

∫ ∞

E0

(E − E0)σHI(E)nE d E

∫ ∞

E0

σHI(E)nE d E
= E0

1 + α

and

T∞ = 52,000 K

1 + α
=

[
26,000 K (α = 1)

5,000 K (α = 9)

In other words, the temperature of the photo-ionized gas is about 10,000 K, give-or-
take a factor of 2.

Let us now consider what happens next. A region of space was ionized to x = xeq
at t = tR (a = aR), and the temperature of the gas is at this moment constant at
T = T∞. Another important effect is plain adiabatic cooling due to the expansion
of the universe, so that the full equation that governs the temperature evolution after
ionization equilibrium is established is

dT

dt
= T

2ṅH

3nH
+ T∞xeqΓ = T

2ṅH

3nH
+ T∞ RnH. (13)

The recombination coefficient can be well approximated as a power-law function of
gas temperature, R(T ) ≈ 4.3 × 10−13T −0.7

4 cm3/ s (T4 ≡ T/104 K). It is easy to
solve Eq. (13) for the temperature T0 at the cosmic mean density, n̄H ∝ a−3,

T0(a) = T∞
(aR

a

)2
[

1 + 1.34R(T∞)n̄H,RtR

((
a

aR

)1.9

− 1

)]1/1.7

. (14)

At late times (a � aR) the asymptotic behavior of the temperature at the mean
density is

T0(a) ∝
(aR

a

)1.5/1.7
.

It is less rapid than pure adiabatic expansion T ∝ a−2 because photo-heating off the
residual neutral hydrogen fraction remains non-negligible at all times.

It turns out that for densities other than the mean a power-law ansatz provides a
decent approximation for moderate overdensities, δ ∼< 10,

T (ρ) ≈ T0(1 + δ)γ−1, (15)

where both T0 (as is given above) and γ are functions of time (Hui and Gnedin 1997).
Expression for γ(a) is rather ugly, but its main important properties are that γ = 1
right after instantaneous reionization and γ → 1.62 at late times (notice, it is 1.62
and not 2/3).
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Fig. 4 Left Temperature-density relation for a sudden reionization model at z = 6: dots show the
results of a full calculation at z = 4, 3, 2 (from top down) while lines are approximation (15) with
T0 given by Eq. (14); the approximate solution slightly underestimates the temperature because
it ignores the heat input from helium ionizations. Right Time evolution of γ for zR = 10, 7, 5
respectively

Figure 4 compares the temperature-density relation in the IGM from a real calcula-
tion (by following heating and cooling of individual fluid elements, Hui and Gnedin
1997) with the approximate solution above. One effect that we ignored is photo-
heating of helium—heat input from the ionizations of the residual neutral helium
will heat the gas a bit more than is given by Eq. (14), but, overall, our analytical
calculation does rather well.

“Hey”, a meticulous reader will exclaim, “what about radiative cooling?” After
all, gas does cool by emitting radiation. A story of gas cooling, with all its gory
details, awaits us in the future, but here let us estimate how important radiative
cooling actually is in the Lyman-α forest.

In a highly ionized gas the dominant radiative cooling mechanism is recombina-
tion cooling,

dU

dt

∣
∣
∣
∣
RC

= −3

4
kB T R(T )nenHII.

If we compare this term to photoionization heating in ionization equilibrium,

dU

dt

∣
∣
∣
∣
PH

= nHIΓ 〈ΔE〉 = 〈ΔE〉R(T )nenH,

we see that the radiative cooling is lower by a factor of

3

4

kB T

〈ΔE〉 = T

4T∞
.
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Hence, radiative cooling makes at most a 25 % correction, and well after reionization
(T < T∞) the correction is even smaller.

Is this the complete story? Alas, no, the reality is always more complicated than
we are ready to accept and you need to be aware of several caveats when using the
temperature-density relation.

• The temperature-density relation is an approximation, with 5–10 % scatter at low
densities and progressively larger scatter as one moves up the density axis, because
it misses a major hydrodynamic effects—shocks. Gas motions in the IGM will
cause shock waves that will lead to additional gas heating.

• There may exist other heating and cooling mechanisms. For example, Puchwein
et al. (2012) argued that heating of the Lyman-α forest by ultra-high energy gamma
rays from a population of blazars is important at very low densities. The jury is
still out on whether such an effect is important or not, but we should always be
aware that we do not known everything.

• Our analysis assumed that the gas is optically thin to ionizing radiation. While this
is the case for hydrogen at z ∼< 6, helium is believed to be reionized the second
time (from HeII to HeIII) at z ∼ 3, in which case gas is not optically thin to helium
ionizing radiation at z ∼> 3. Non-trivial opacity to ionizing radiation normally leads
to increasing photo-heating rates in the gas.

Brain teaser #3: The temperature-density relation is sometimes called an
“equation of state” (occasionally even without quotes). Do not fall into that
trap—it relates the gas temperature and density, but it is not an equation of
state. Can you explain why?

2.3 Modeling the IGM

The most straightforward model of Lyman-α forest is a hydrodynamic simulation
with ionization balance. In the 1990s several approximate methods have been used,
such as a log-normal approximation, Zel’dovich approximation, a pure N-body sim-
ulation, Hydro-Particle-Mesh (HPM) approximation. None of these methods is com-
petitive any more and their use can be hardly justified.

The assumption of the ionization equilibrium is very good in the IGM, but it does
break down in a few special cases (quasar proximity zones, helium reionization,
etc.). Hence, the most accurate simulation of the IGM includes (a model of) Cosmic
Ionizing Background (CIB), radiative transfer, non-equilibrium ionization, separate
fields for each of ionizing species (HI, HII, HeI, HeII, …). Such a simulation, how-
ever, is usually an overkill, except when it is used for a special purpose like modeling
non-equilibrium effects in quasar proximity zones.
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Fig. 5 Slices of optical depth (left) and gas density (in units of the cosmic mean, right) in a
simulation of Lyman-α forest at z ∼ 3. The box size is 20 h−1 comoving Mpc

A standard approach is to include CIB and ionization equilibrium and follow
radiative heating (and, optionally, cooling) “on-the-fly” (a-la Eq. 13). For simulations
of the Lyman-α forest alone the temperature-density relation may be assumed, but
the computational savings in that case will be modest and it is rarely worth it.

Example of a numerical simulation of the forest is shown in Fig. 5. The right panel
shows the gas density, and looks like a usual image of large-scale structure. The left
panel shows the Lyman-α optical depth that would be observed in the corresponding
position along the absorption spectrum towards a high redshift quasar. The main
thing to take from that figure is that the actual absorption lines we see clearly in
the spectra (those with τ ∼> 0.5) come from filaments: weaker ones tend to cluster
around stronger ones, although a few of the weakest ones do occur in the voids. The
higher optical depth systems, those that lead to saturated lines with τ ∼> 2 tend to
occur at the intersections of filaments, nearer to galaxies.

2.3.1 Density—Column Density Correlation

What is clear from Fig. 5 is that the gas density and the optical depth of the corre-
sponding absorption feature are well correlated. Crudely, the relation is

τ ∼ (1 + δ)1.5,

although the slope and normalization of this correlation are redshift dependent.
This correlation is so good, especially on large scales, that it is often used to

match directly the gas density into the opacity along the line of sight—such an
ansatz is called Fluctuating Gunn-Peterson Approximation, or FGPA. FGPA is useful
for modeling the forest on large scales, but one has always keep in mind that the
absorption spectrum is in the velocity space, while the density is sampled in real,
physical space, hence FGPA breaks down on sufficiently small scales (roughly less
than 1 Mpc).
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2.4 What Observations Tell Us

For a long time since the Lyman-α forest was discovered in the 60s, it was treated by
observers as just another absorption spectrum—as a collection of individual absorp-
tion lines, each having a fixed column density N and the Doppler parameter b, as
if the absorption was coming from discrete clouds. Now we know that this is not a
good description—the density, temperature, and neutral fraction fields are contin-
uous, and it is impossible to decompose the realistic spectrum into a set of (N , b)

pairs uniquely.
The modern view of the forest is that τ (λ) is a continuous field and should be

treated as such. However, there is one application where the (N , b) decomposition is
still useful—measuring the temperature-density relation. If we think about a segment
of the spectrum that has an “absorption line”, the width of the feature is determined
by the temperature of the gas plus any velocity gradient across the region that may
exist. In some cases that velocity gradient will be very small, so the narrowest features
at each column density should be those that are broadened by temperature alone.
Hence, looking at the distribution of fitted b parameters at given column density, one
can measure T (N ) in the forest and, by virtue of the strong correlation between ρ
and τ (and, hence, N ), translate that measurements into the measurement of T − ρ
correlation.

Figure 6 shows an example of such distribution from a single high resolution
quasar spectrum (Rudie et al. 2012). The cutoff in the distribution of Doppler para-
meters for a given N is clearly visible, and the value of the cutoff is well fit by
the power-law in N , demonstrating the fact that the power-law temperature-density
relation is indeed a good approximation.

A compilation of the majority of existing measurements is shown in Fig. 7 (Lidz
et al. 2010; McDonald et al. 2001; Ricotti et al. 2000; Rudie et al. 2012; Schaye et al.

Fig. 6 Example of the
(N , b) distribution for a
quasar spectrum at z = 2.4.
The measurement points
labeled by blue squares are
contamination from heavy
elements. A relatively sharp
edge of the distribution of
Doppler parameters at a
given N is apparent in the
figure (adopted from Rudie
et al. (2012))
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Fig. 7 Evolution of the
temperature-density relation
T ≈ T0(1 + δ)γ−1. Red,
blue, and green points show
individual measurements
from Ricotti et al. (2000),
Schaye et al. (2000), Lidz
et al. (2010) respectively;
thick and thin black lines
shows the average values and
1σ dispersion for all
measurements. Possible
increase in temperature and
dip in γ at z ∼ 3 is attributed
to HeII → HeIII reionization

2000). The data seem to indicate (albeit rather vaguely) an increase in the temperature
and a decrease in γ at z ≈ 3—a behavior reminiscent of cosmic reionization (Eq. 12).
Indeed, this may correspond to the second reionization of helium (HeII going into
HeIII), thought to occur at redshifts around 3.

An even simpler quantity is the column density distribution—a distribution of
all N values irrespectively of what their b values are. Altay et al. (2011) show how
modern cosmological simulations can match the observed distribution over 10 orders
of magnitude in column density (see Fig. 8).

The column density distribution is a useful observational measurement for other
types of hydrogen absorbing systems, such as Lyman-limit system (1017 cm−2 <

NHI < 1020 cm−2) and Damped Lyman-α systems (DLA) (1020 cm−2 < NHI), but
has not been particularly constraining for the forest.

Brain teaser #4: The photo-ionization cross-section for neutral hydrogen at the
ionization edge (13.6 eV) is σion = 6.3×10−18 cm2. Hence, a column density
of NHI = 1.7×1017 cm−2 has an optical depth of τion = σion NHI = 1. Never-
the-less, Lyman-α absorbers remain ionized almost all the way to Damped
Lyman-α systems, NHI ∼> 1019 cm−2 (τion ∼ 500). Can you explain why?
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Fig. 8 Distribution of column densities of Lyman-α absorbing systems (adopted from Altay et al.
(2011))

2.4.1 Lyman-α Power Spectrum

Perhaps the most important use of Lyman-α forest in cosmology is in measuring
the evolution of the matter power spectrum. Observations of the forest cover a wide
redshift range, from z ∼> 2 to z ∼< 5; since the observed optical depth is well correlated
with the gas density, which, in turn, traces the matter density on large scales (above
the filtering scale), the observed spectra of the forest contain hidden information
about the clustering of matter and its evolution over the redshift range 2 ∼< z ∼< 5.

Measuring the matter power spectrum is exactly the application for which the
Fluctuating Gunn-Peterson Approximation (FGPA) is most suitable. In the theory
of large scale structure formation there is a theorem that states that if a locally non-
linear field is a function of matter density only ( f = f (ρ)), then on sufficiently
large scales the field f is linearly biased with respect to the density field, i.e. for
sufficiently small k

Pf (k) = b2
f P(k),
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where the bias factor b f is independent of k. Hence, one can measure the matter
power spectrum P(k) in a few simple steps:

1. measure the 1D power spectrum of the transmitted Lyman-α flux, P1D(k), directly
from the observed spectra;

2. convert from a 1D to a 3D flux power spectrum,

PF (k) = −2π

k

d P1D

dk
;

3. determine the flux bias factor, bF , from numerical simulations,
4. and, finally, compute the matter power spectrum

P(k) = PF (k)

b2
F

. (16)

Such a program was first completed by Croft et al. (1998) and later repeated many
times with better data. For example, the largest set of observed Lyman-α spectra was
obtained as part of the Sloan Digital Sky Survey (SDSS), and is shown in Fig. 9.
A little bit of nuisance is that the flux power spectrum is measured in the velocity
space, so the units of k in Eq. (16) are (km/s)−1. That makes it hard to compare
with other measurements of matter power spectrum without knowing cosmological
parameters. But a good piece of news is that the power spectrum grows (or the plotted
quantity, Δ(k)2 = k3 P(k)/2π2, decreases) with redshift with the rate prescribed by
the standard cosmology, so you have not studied your Introduction To Cosmology
in vain …

On a more serious note, this measurement provides extremely powerful constraints
on the matter power spectrum at the smallest scales—in fact, the forest probes the
smallest scales currently accessible to any observational measurement. Many impor-
tant cosmological and physical studies use these measurements, from determining
cosmological parameters to constraining neutrino masses (but that is a field I am not
going to review in these lectures).

2.4.2 Where the Forest Ends

The Lyman-α forest is a small-scale scale counterpart of the large-scale structure—
but how small is “small”? In other words, what are the smallest spatial scales on
which there is structure in the IGM?

This question is not moot—indeed, the filtering scale tells us where the baryonic
fluctuations lag behind the dark matter, but it only applies to linear evolution. The
forest is nonlinear, and nonlinear evolution may drive new fluctuations on a variety
of scales.

One way to measure structure in any distribution is the, familiar to us already,
power spectrum. Using high resolution spectra from 8m-class telescopes one can
extend the SDSS measurement to much smaller scales, as is illustrated in Fig. 10.
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Fig. 9 Matter power spectra measured from SDSS Lyman-α measurements at a range of redshifts
from z = 2.2 (bottom) to z = 4.2 (top) (adopted from McDonald et al. (2006))

The decrease in the clustering amplitude is clearly visible at k > 0.03 s/km, but is
it really the end of the forest? The answer is “unfortunately, no”—unfortunately,
because the roll over in the flux power spectra has nothing to do with the actual
matter clustering—it is merely an artifact of the thermal broadening of the spectra
(the exponential factor in Eq. 8). Alternatively, one can think of it as the break up of
the linear biasing approximation (Eq. 16).

So, how would one approach the question of studying the smallest scale structure
in the forest? One option is offered by spectra of double or gravitationally lensed
quasars—if the two quasar images are not too far on the sky, their sightlines probe
small spatial scales. Unfortunately, this approach has not been particularly popular
among observers—in the only study I am aware of Rauch et al. (2001) demonstrated
that, in fact, there is not that much structure in the forest on scales below a kpc. For
example, Fig. 11 shows Lyman-α spectra along two lines of sight to two images of
a gravitationally lensed quasar separated by about 0.5 comoving kpc at z ∼ 3.
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Fig. 10 Matter power
spectra measured from SDSS
Lyman-α measurements (as
in Fig. 2) combined with data
from high resolution spectra
of several quasars (adopted
from Viel et al. (2013))
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Fig. 11 Lyman-α spectra
along lines of sight to the
gravitationally lenses quasar
Q1422 + 231 (images A and
C). One spectrum is shown
with the solid line, another
one with the dotted line
beaded with dots. The two
spectra are identical to
within the observational
errors (adopted from Rauch
et al. (2001))

Using this measurement, Rauch et al. (2001) placed a strict constraint on the
density variation in the forest on small scales,

√
〈(Δ ln ρ)2〉 < 3 × 10−2 for 〈Δx〉 = 0.6 kpc,

or, alternatively, √√
√
√

〈(
Δ ln ρ

Δx

)2
〉

< 0.05 kpc−1.

A scientifically interesting question is whether the IGM is turbulent on small scales.
The Rauch et al. (2001) constraint implies that either the forest is not turbulent on
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these small scales, or that any turbulence that is present is highly sub-sonic (i.e.
incompressible). The latter option is possible but is not too likely—density fluctu-
ations in the sub-sonic turbulence scale as Mach number squared, with the flow in
the forest becoming transonic at scales 100–200 kpc. If we take a Kolmogorov-like
scaling law,

√
〈(Δ ln ρ)2〉 ≈ 1

(
Δx

200 kpc

)1/3

,

then on scale of 0.6 kpc we find the rms density fluctuation of
√〈(Δ ln ρ)2〉 ≈ 0.15,

5 times higher than the actual observed upper limit. Of course this is not a formal
derivation, and factors of several may be lurking here and there, but the estimate
serves to demonstrate that the forest is remarkably quiet on scales below a kpc.

Brain teaser #5: It is well known in classical hydrodynamics that any flow with
Reynolds number in excess of about 1000 becomes turbulent. The viscosity in
the IGM is very small, and Reynolds number in the forest is of the order of
106. Hence, the naive expectation is that the IGM must be very turbulent on
small scales, but the Rauch et al. (2001) observations suggest it is not. Can you
think of an explanation?

3 From IGM to CGM

Circumgalactic medium, or CGM, is often understood as the gas within the galactic
dark matter halo. I am taking a broader view here, since some of the structures in the
universe, like filaments, fall in the border zone between the IGM and CGM, they are
not always considered to be part of the Lyman-α forest, but they also are not related
to galaxies. They do produce absorption lines in the quasar spectra, but they also
stream gas into galactic halos.

3.1 Large Scale Structure

Probably everyone has seen a picture of the large-scale structure of the universe
by now (if you have not, check out excellent visualizations of the Millennium sim-
ulation at www.mpa-garching.mpg.de/galform/virgo/millennium). Since the large-
scale structure forms as a result of gravitational clustering from the linear Gaussian
fluctuations, it is fully characterized by the linear matter power spectrum. Hence,
various scales that we see in the pictures are all related to features in the power

www.mpa-garching.mpg.de/galform/virgo/millennium
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spectrum. For example, typical size of voids corresponds to about 1/2 of the scale at
which the power spectrum peaks (which is about 100h−1 Mpc in comoving units).
Hence, in comoving reference frame void sizes do not change—they are as large
at z = 10 as they are at z = 0 (although, these largest voids are, of course, not
nearly as empty at z = 10 as they are at z = 0). Filaments that surround voids are
highly non-linear structures and their width is controlled by the nonlinear scale at
each epoch, i.e. the scale at which the amplitude of linear fluctuations reaches unity.
Finally, material that makes the largest objects at any time (clusters of galaxies today,
galaxies at z � 2) is assembled from regions roughly the nonlinear scale in size, so
masses of these objects are about 4 × (mean density) × (nonlinear scale)3.

Since our main interest is how gas flows from low to high density regions, the
actual motion of matter is of particular importance to us. With time voids become
deeper as matter (both dark and gaseous) flows from them onto filaments, and then
along the filaments into the galaxies. This pattern of flows is illustrated in Fig. 12
from a numerical simulation of a local region around the Local Group by Klypin
et al. (2003).

As gas flows into a filament from opposite directions, it gets shocked, and the
gas temperature is expected to rise above that maintained by photo-heating and
adiabatic expansion/contraction—a complication that eventually destroys nice and
tight density-temperature relation that exists in the lower density IGM.

The actual structure of the filaments received surprisingly little attention in the
literature. In a classical review Shandarin and Zeldovich (1989) showed the profiles of
one-dimensional collapse onto a 2D pancake (Fig. 13). Collapse onto a 1D filament

Fig. 12 Large-scale flows (cyan arrows) on top of the density contours (green, yellow, and red).
Flows of matter onto (almost all of the) filaments are clearly visible in this visualization of a
numerical simulation (adopted from Klypin et al. (2003))
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Fig. 13 Profiles of
one-dimensional collapse of
dark matter and gas onto a
2D pancake (adopted from
Shandarin and Zeldovich
(1989))

is qualitatively similar, because the physics is the same—gas gets piled up at the
center, where the entropy is the lowest, while the dark matter from each side flows
through the upcoming stream, creating density caustics on the outside. What happens
next is determined by whether the filaments are self-gravitating—but since they have
widths comparable to the nonlinear scale, we know that they, on average, are self-
gravitating. In a self-gravitating filament the dark matter will stop streaming, turn
around, and fall on itself once again and again, increasing the number of intersecting
streams as time goes on.

In order to illustrate the large- (and not-so-large-) structure further, I will use a
cosmological simulation from Gnedin and Kravtsov (2010). This simulation is not
very big, and focuses on the environs of a single, Milky-Way like galaxy, but it
will suffer for our purpose. Figure 14 shows the gas density and the gas temperature
around the main galaxy at z = 2.

Fig. 14 Thin slices through cosmological simulation that show the gas density (left) and the gas
temperature (right) around a typical galaxy at z ≈ 2
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There are a few features to note. First of all, the gas filaments do appear to be denser
and cooler in the middle, similarly to the 1D collapse. Second, in the temperature
plot we see really hot (million degrees) gas. Most of that hot gas is concentrated
around the galaxy, in the dark matter halo and beyond, but some of it extends way
into the filaments—those are the temperature spikes that we see in Fig. 13.

3.2 How Gas Gets onto Galaxies

Everyone knows that dense enough regions of the large-scale structure will collapse
and virialize (i.e. reach, or, at least, approach, the virial equilibrium). The simplest
model of such collapse is a top-hat,

ρ(x) =
{

ρ̄(1 + δi ), r < ri

ρ̄, r > ri

where ri and δi are the initial radius and amplitude of the perturbation. The overdense
perturbation collapses, and the evolution of the radius of the perturbation can be
solved analytically in the matter-dominated regime (a ∝ t2/3), albeit parametrically
with a parametric variable θ:

r = G M

δi ṙ2
i

(1 − cos θ),

t = G M

δ
3/2
i ṙ3

i

(θ − sin θ).

The moment of collapse is defined as r = 0, which occurs at the time when θ = 2π.
A remarkable property of the top-hat solution is that at the moment of collapse t f

the linear density fluctuation

δL(t) = D+(t)

D+(ti )
δi

is just a number, independent of the initial overdensity, size, or the mass of the
overdense region,

δL(t f ) = 3

5

(
9π2

4

)1/3

= 1.69.

A perturbation cannot collapse to a point—that would be even less likely than
making a pencil stand on a sharp end. A standard assumption is that the collapsing
perturbation virializes—i.e. reaches the virial equilibrium—at around the time t f . In
that case the average overdensity δv of the final virialized object is 1 + δv = 18π2 ≈
178 ≈ 180 ≈ 200.
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The virial radius of the dark matter halo in Fig. 14 is roughly the green roundish
region in the density panel (overdensity ∼> 100), while the million-degree gas extends
well beyond it. The virial radius serves as a good approximation of a boundary beyond
which any, even imaginable, resemblance of spherical symmetry totally vanishes!
As gas falls into potential wells of dark matter halos, it gets shocked and heated to
around the virial temperature (also deviations can easily be a factor of 2–3 in each
direction). Shocks never stand still (in the reference frame of the gas behind them),
so the accretion shock propagates outward. For typical cosmological objects, be it
star-forming galaxies at z ∼ 2 or galaxy clusters at z = 0 (or anything in between),
it is not uncommon to find the accretion shock extending to 3 virial radii. Since it
goes so much beyond the quasi-spherical region, it is highly asymmetric and non-
spherical, with some of its protrusions reaching well into voids, up to ∼ 10 virial
radii, while along filaments the accretion shock may not even exist (or do not reach
to even a modest fraction of the virial radius).

3.3 Cool Streams

A story of the “cold streams” is a real-life story of an elephant-in-the-room. In a
gesture of non-conformity, I am going to call them “cool streams”, because in the
ISM-speak (which we are going to use for the most of this course) the term “cold”
refers to truly cold gas, below 100 K. Strictly speaking, they should be called “warm
streams”, since 104 K gas is “warm” in the ISM-speak, but that would confuse too
many people …

Every practicing simulator knew about cool streams, but no one paid any attention
to them until in 2005 in an influential paper Kereš et al. (2005) showed that at inter-
mediate redshifts—the epoch where galaxies make most of their stars—cool streams
deliver significant, or even dominant, fraction of gas onto the galactic disks, where
stars actually form. Hence, from the point of view of a galaxy as a gas consumer,
cool streams are the primary consumption channel.

Examples of cool steams in cosmological simulations from Overwhelmingly
Large Simulation project (OWLS, van de Voort et al. 2011) are shown in Fig. 15. As
in a weird monster movie, the blue “tentacles” of cool gas try to reach the central
galaxy; they break up into individual blobs for a massive one (M = 1012.5 M�),
remain as thin streams for a M = 1012 M� one, and completely swamp gas accre-
tion for a Milky-Way type galaxy (M = 1011.5 M� at z = 2). Images like that can
be made from almost any cosmological simulation, and from any modern simulation
code, be it an SPH code, an AMR, or a moving mesh code like AREPO1 (Springel
2010). All simulations agree that the cool flows dominate the gas accretion for halos
above about M = 1011.5 M�, with this mass being only weakly (if at all) redshift
dependent.

1For these and other curious abbreviations check out Volker Springel’s lectures in this volume.
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Fig. 15 Density and temperature images of galaxies of different masses at z ≈ 2. Cool streams are
clearly visible in temperature images as blue blobs and filaments (adopted from van de Voort et al.
(2011))

Since most of the gas accretion occurs in low mass galaxies at all times, most of
gas that ends up in galactic disks enters the halo as “cool”—significantly below the
virial temperature, but it may still be well above the “ISM warm” of 104 K—at all
cosmic times up to the present epoch. The contribution of cool streams is, however,
diminishing with time, so by z = 0 they, on average, only deliver about half of the
accreting gas onto galactic disks.

A happy concordance is broken, however, when the fate of cool streams inside the
halo is explored further. In a recent study, a carefully designed comparison between
GADGET (Springel 2005) and AREPO (Springel 2010) codes found some disturbing
differences (Nelson et al. 2013, shown in Fig. 16). The two codes have the same
gravity and dark matter solvers, but differ in the way gas dynamics is treated (for
details, check Volker Springel’s lectures in this volume). While in the SPH GADGET
simulation the cool streams remain cool inside the halo and reach all the way to the
galactic disk, in the mesh-based simulation with AREPO the cools streams heat
up as they approach the disk. This discrepancy reflects the well-known dichotomy
between SPH and mesh codes—the former do not have enough diffusion (without
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Fig. 16 Temperature
distribution function for
galaxies in different mass
bins simulated with
GADGET and AREPO. The
two codes predict
significantly different
distributions for high mass
galaxies (adopted from
Nelson et al. (2013))

0.001

0.010

0.100

1.000

0.001

0.010

0.100

1.000
 9.0 < log(M) <  9.5

gadget
arepo

 9.5 < log(M) < 10.0 10.0 < log(M) < 10.5

−2 −1 0 1

0.001

0.010

0.100

1.000
10.5 < log(M) < 11.0

−2 −1 0 1

11.0 < log(M) < 11.5

−2 −1 0 1

11.5 < log(M) < 12.0

central galaxy
halo atmosphere

G
as

 M
as

s 
F

ra
ct

io
n

log ( Tmax / Tvir,acc )

special fixes), while the latter may have too much numerical diffusion, especially in
the poorly resolved regions. Which of the two codes is closer to reality is not yet
clear; the progress in this field, though, happens at a relativistic speed, so as you are
reading these lectures, the ambiguity may have been already resolved.

3.4 Galactic Halos

Few sane people doubt the existence of dark matter halos. Whether galaxies have
gaseous halos is an entirely different matter.

Cosmological simulations generically predict that galaxies like the Milky Way
(MW) should be surrounded by hot gaseous halos in quasi-virial equilibrium. For
two decades the actual existence of these hot halos was an even more hotly debated
topic. The point of contention was the simple fact that hot gas emits X-rays, hence
hot halos must be detectable in X-rays. The cruel reality is that the halo gas is rather
tenuous, and for galaxies like the Milky Way it is expected to have temperatures that
are very hard to detect observationally.

How much gas one expects to reside in the Milky Way halo actually depends on the
halo mass, which has been notoriously difficult to estimate. Proposed values range
from ∼7 × 1011 M� to over 2 × 1012 M� (values outside this range are considered
extremist and will provoke a French military intervention or an American bombing
campaign). For the fiducial value of 1012 M� the cosmic share of baryons in the MW
is 1.6×1011 M�. The stellar mass of the MW is about 6×1010 M� (although, values
up to 8 × 1010 M� are sometimes used) and the disk gas mass is ∼<1 × 1010 M�.
Hence, the gaseous halo may contain up to 1011 M� (it may, of course, be much less
if some of the gas is expelled from the Galaxy by stellar feedback and other energetic
processes).

The contention about the existence of the hot halo finally has been resolved by
Chandra—not the brilliant man who resolved so many other contentions, but the
remarkably successful space mission named after him. In a ground-breaking obser-
vation the Chandra team finally detected the X-ray emission from the hot gas around
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Fig. 17 Radial density profile at z = 0 of the same galaxy shown in Fig. 14. Blue and red solid lines
shows the actual simulated profiles of dark matter and gas, while dashed lines give the best-fit NFW
(for dark matter) and rescaled by 0.05 fb NFW (for gas) profiles respectively. The red dotted line is
the best-fit beta profile for the gaseous halo. Filled and open symbols are pre-Chandra observational
constraints (Anderson and Bregman 2010; Blitz and Robishaw 2000; Grcevich and Putman 2009;
Quilis and Moore 2001; Stanimirović et al. 2002; Weiner and Williams 1996)

the Milky Way (Gupta et al. 2012). While measuring the total mass of the halo from
Chandra observations is very challenging (try measuring the mass of a giant monster
that swallowed you), the limits that the Chandra team has been able to place on the
gas mass in the halo are consistent with our estimate of 1011 M�.

X-ray detection of the halo is important, because it is a direct evidence for the
existence of a massive (from the point of view of the disk) gaseous halo. Historically,
however, a large number of indirect constraints existed that all pointed out towards
the same conclusion. In Fig. 17, I show the z = 0 dark matter and gas profiles for
the same galaxy we met in Fig. 14. The hot halo (solid red line) in that simulation
is consistent with the existing pre-Chandra observational constraints as well as with
the actual Chandra measurement. What is remarkable is that in the simulation all
stellar feedback processes were switched off (see Gnedin (2012), for details about
the actual simulation). The galactic disk in the simulation is overly massive and has
incorrect density profile, but the halo seems to be ok (at least within the precision
of observational constraints). There is, actually a simple reason for it—the main
physical process that matters for the gas in the halo is radiative cooling, it is cooling
that determines which gas can rain on the disk and which remains in the halo in the
hot phase.

Hence, the physics of radiative cooling is our next stop.
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3.5 Diversion: Cooling of Rarefied Gases

Before we proceed further along our yellow brick road, let’s step aside for a short
while and consider how cosmic gas cools—the process we have already met in the
IGM segment of our journey, and which we will be meeting over and over again in
the future.

Radiative cooling is an “umbrella” name for diverse physical processes through
which gas transforms its thermal energy into the radiation that leaves the system.
At low enough density, three processes dominate, and all three of them involve a
collision of a free electron or an atom/ion with a neutral atom or a partially neutral
ion. These three processes are

line excitation: a collision excites the neutral atom into a higher energy state, the
state decays and the resultant photon leaves the system;

collisional ionization: a collision ionizes the neutral atom and the binding energy of
the freed electron is charged against the thermal energy account;

recombination: an ion captures a free electron and the sum of the kinetic energy of
the electron and the binding energy of the neutral atom is emitted as a photon.

All these collisional processes depend on the square of the density, so it is convenient
(and customary) to factor out that density dependence explicitly in the cooling rate
of the gas,

dU

dt

∣
∣
∣
∣
cool

= −n2
bΛ(T, . . .),

where nb is the number density of baryons (I prefer it to another commonly used
parametrization that factors out the hydrogen nucleus number density nH, because
nb is directly proportional to the gas mass density for any value of helium abundance
or gas metallicity) and Λ is commonly called a Cooling Function.

In the simplest case of gas in pure collisional equilibrium (no external or internal
radiation of any kind—the so-called collisional ionization equilibrium, or CIE) the
cooling function is called “standard”. If the relative abundance of various chemical
elements is fixed and small variations in the helium abundance are neglected, the
cooling function only depends on the gas temperature T and the total metallicity Z ,

ΛCIE = ΛCIE(T, Z).

Examples of this function for Z = 0 and Z = Z�2 are plotted in Fig. 18.

2Throughout these lectures I define “solar metallicity” as the metallicity of our galactic neigh-
borhood, Z� = 0.199 in absolute units, rather than metallicity of an average-looking single star
somewhere in the outskirts of the Galaxy.
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Fig. 18 Cooling functions
for the primordial gas
(Z = 0, dashed lines) and
the gas at solar metallicity
(solid lines). Blue lines show
the “standard” CIE cooling
functions, while red lines
show the cooling functions
for the fully ionized gas (the
only cooling process is
Bremsstrahlung)

Fig. 19 Contributions of
individual chemical elements
to the “standard” CIE
cooling function (adopted
from Wiersma et al. (2009))

The specific shape of the CIE cooling function, with its “bumps and wiggles”, is
determined by the interplay between contributions of over a dozen various chemical
elements. A good recent review is given by Wiersma et al. (2009), an illustration
from which is reproduced here in Fig. 19. In particular, one has to be aware that
many of the atomic cooling rates used to construct the cooling function are know
rather poorly, not better than a factor of 2, and that uncertainty propagates into the
actual value of the cooling function. In realistic galactic and cosmological simulations
this uncertainty is often, however, unimportant: the cooling time-scale is so much
shorter than any other physical time-scale in the problem that it does not need to be
known very precisely (all gas that can cool will indeed cool rapidly).

Wiersma et al. (2009) paper offers another, much more important lesson, though.
As they show, the actual cooling function in the IGM, CGM, and even ISM of galaxies
at low and high redshifts may deviate from the “standard” one quite substantially.
In other words, the “standard” CIE cooling function is actually highly non-standard
and is almost never realized in nature. The reason for that is that low density cosmic
gas is always affected by external radiation field.
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Fig. 20 Illustration for the
role of radiation field in
suppressing cooling (blue
lines) and enhancing heating
(red lines). A gas in the
galactic halo (at density 340
over the cosmic mean) is
shined upon by the 1012 L�
quasar. Sufficiently close, the
quasar radiation modifies the
cooling and heating
functions in a major way

Figure 20 is a simple illustration of this process. Cooling (and heating) processes
in a gaseous halo can be modified in a major way if it straddles too close to a strong
source of ionizing radiation, such a bright quasar. Within 1 Mpc from the quasar, the
equilibrium temperature in the halo goes all the way up to 200,000 K, twenty times
above our “canonical” 10,000 K.

So, let us review the cooling function from the very beginning, this time being
careful. In a most general case in addition to cooling there is also radiative heating
by the radiation field. Hence, the change of the gas internal energy due to radiative
processes has two terms with opposite signs,

dU

dt

∣
∣
∣
∣
rad

= n2
b (Γ − Λ) ,

where Λ is our old acquaintance the cooling function and Γ is the heating function.
Both of them depend on a multitude of parameters,

[Γ,Λ] = F (
T, nb, Xi jl , Jν , τi jl

)
, (17)

where the density dependence reappears because not all processes are two-body,
Xi jl is the abundance of the chemical element i = H, He, . . . in the ionization state
state j = neutral, single ionized, . . . in the quantum state l, Jν is the spectrum of the
incident radiation field that shines on a given (formally infinitesimally small) parcel
of gas, and τi jl are opacities in each radiative transition (gas may be optically thick
to some of its own cooling radiation if our parcel is embedded deep inside a huge
cloud). For the sake of brevity in notation, we will use F to label either Γ or Λ, since
both functions always depend on the same set of arguments.

In order to compute the cooling and heating functions in such a detail one needs
a highly sophisticated computer code that, in its complexity, rivals modern cosmo-
logical simulation codes. Fortunately, such codes exist, and the most famous and
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widely used of them is Cloudy.3 Conceived by Gary Ferland from the University
of Kentucky and contributed to by many people, Cloudy is freely available from its
website, nublado.org, and is well-documented for a fast start-up curve.

There is one problem only with Cloudy—it is way too complex to be used in
modern simulation codes for computing cooling functions “on the fly”. Perhaps in
the future, in the era of exa-scale computing, it will be possible to run Cloudy as
a “sub-grid” model in real simulations, but for now we need to seek approximate
short-cuts.

So, what one can do? Unless densities are very high (hence our focus on low density
gas), the gas will be optically thin to its own cooling radiation, so the dependence
of cooling and heating functions on τi jl disappears—for this to be exactly true, we
also should exclude all cooling and heating processes due to molecules, since those
always require radiative transfer to be followed properly. Thus, if you need to follow
molecular cooling/heating as well, you will have to add them “manually” to the
cooling and heating functions that we discuss below.

Second, in almost all galactic and cosmological simulations the assumption of the
ionization and excitation equilibrium is not a bad one. In the ionization equilibrium
the distribution of a given chemical element over various ionization states is uniquely
determined by density, temperature, and the radiation field. The same is true about
various quantum levels in the local thermodynamic equilibrium. If, in addition, we
assume that relative abundances of chemical elements are fixed (say, to the solar
abundance pattern), then the dependence on Xi jl reduces to the simple dependence
on the overall gas metallicity Z ,

F = F(T, nb, Z , Jν). (18)

Very often this latter expression is what actually called a “cooling/heating function”.
But even the latter form is unusable in modern simulations codes, because it includes
an explicit dependence on the radiation spectrum, which is an arbitrary function of
frequency (in a strict mathematical sense F in Eq. (18) is actually an operator, not
a function). Hence, we still need to account for that dependence in an approximate
manner.

One particular short-cut has been used in many cosmological codes for over a
decade. Wiersma et al. (2009) paper again serves as a good reference, although the
first known (to me) example of such approach is used by Kravtsov (2003). In the most
of the volume of the universe the dominant source of external radiation is the cosmic
background that we already met in the previous chapter. The cosmic background is
uniform in space and is a function of the cosmic redshift only, hence in the limit when
Jν can be approximated by the cosmic background, cooling and heating functions
become functions of 4 arguments, temperature, density, gas metallicity, and cosmic
redshift, and hence can be easily tabulated and used in simulation codes efficiently
via a simple table look-up.

3Notice the convention, Cloudy is a name, not an abbreviation.
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Unfortunately, most of the volume in the universe contains only a modest fraction
of the mass, and even smaller fraction of action. The radiation field in the ISM (and,
in at least part of the CGM) of galaxies is dominated by local radiation sources (for
example, the UV radiation field in the solar neighborhood is 500 times higher than
the cosmic background; at the center of the galaxy that ratio jumps to 5,000). Since
stars form in the ISM, any galactic or cosmological simulation that attempts to model
star formation cannot use cooling and heating functions which only account for the
cosmic background.

How one can attempt to construct a more accurate short-cut? After all, the effect
of external radiation is in ionizing some of the chemical elements and/or exciting
particular levels, and ionization and excitation rates are all integrals over the radiation
spectrum with some cross-sections, which are broad and relatively slowly varying
functions. Let’s imagine the following thought experiment: we take a given spectrum
and increase the radiation intensity in a narrow frequency bin between some ν0 and
ν0 + Δν. If the increase is large, the cooling and heating functions will be affected.
Now shift the frequency bin to ν0 −Δν to ν0. Most of ionization and excitation rates
will be barely affected (unless we choose ν0 very carefully to correspond exactly
to the ionization/excitation threshold of an important cooling channel), since cross-
sections of most physical processes will not change significantly between the two
narrow bins. Hence, in order to compute the cooling and heating functions accurately,
we do not need to know the radiation spectrum in excessive detail (say, in hundreds of
frequency bins), but it may be sufficient to describe it by several “broadband filters”.

There can be infinitely many choices for these filters. In a specific implementation
of this idea, Nick Hollon and I decided to use photoionization rates of several chemical
elements as “broadband filters”. After all, the ionization balance is controlled by
photoionization rates, so it makes sense from the atomic physics perspective. We
have explored over 20 various chemical elements and their ionization states, and the
best approximation that we have been able to come up depends on just 4 ionization
rates (Gnedin and Hollon 2012).

Specifically, we adopt the approximation in which the metallicity dependence of
the cooling and heating functions is expanded into the Taylor series in gas metallicity,

F(T, nb, Z , Jν) =
n∑

i=0

(
Z

Z�

)i

Fi (T, nb, Jν), (19)

with n = 2 providing a highly accurate approximation for Z < 5Z�. Each of the
expansion coefficients is approximated as

Fi (T, nb, Jν) ≈ Fi (T,
{
r j

}
, nb), (20)

with several parameters r j encapsulating the full dependence of the cooling and
heating functions on the external radiation field.
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A parameter set that we found to work well is defined as follows:

r1 = PLW

nb
,

r2 =
(

PHI

PLW

)0.353 (
PHeI

PLW

)0.923 (
PCVI

PLW

)0.263

,

r3 =
(

PHI

PLW

)−0.103 (
PHeI

PLW

)−0.375 (
PCVI

PLW

)0.976

, (21)

where PLW is the rate of photo-destruction of molecular hydrogen (molecules are
excluded from the cooling and heating functions, since they cannot be treated with-
out radiative transfer, so we use PLW just as a convenient “broadband filter” for the
radiation below the hydrogen ionization threshold) and PHI, PHeI and PCVI are pho-
toionization rates of HI (ionization edge of 1 Ry), HeI (ionization edge of 1.8 Ry),
and CVI (ionization edge of 36 Ry). These rates sample a large range of photon
energies, and serve as a good set of more-or-less independent “broadband filters”.4

The main problem with approximation (19)–(21) is that it occasionally results in
“catastrophic errors”—for example, if you choose the radiation field, gas temperature,
density, and metallicity at random, in about 1 case out of the million the approximate
cooling or heating function will deviate from the actual Cloudy calculation by a factor
of several (that is a consequence of not being able to fully represent all possible
variations in the radiation field by just 3 coefficients r j , j = 1, 2, 3). Figure 21
demonstrates the worst-case catastrophic error of the approximation.

The good news is that these catastrophic errors occur for either highly implausible
or completely irrelevant values of parameters—for example, the large error in the
heating function at T ∼ 10 K in the bottom panel of Fig. 21 is not very important
because the heating function there is much larger than the cooling function, and the
equilibrium temperature (blue and red lines cross) is Teq ≈ 2 × 106 K. If the gas
at 10 K finds itself suddenly in such conditions, it will be heated to above million
Kelvins rapidly, quickly leaving the parameter space where the approximation is
inaccurate.

Similarly, the large error in the cooling function at T ∼ 10 K in the top panel of
Fig. 21 is irrelevant, because the heating function in those conditions is more than
3 orders of magnitude larger than the cooling function, hence it is not important to
know the cooling function at all.

Undoubtedly, a better approximation for the cooling and heating functions is
possible, but in the absence of such, Eqs. (19)–(21) provide a practical way to fully
account for the effect of the radiation field in modern cosmological and galactic
simulations.

4They are not fully independent, of course—a photon ionizing CVI can also ionize neutral hydrogen,
but it is convenient to use photoionization rates rather that some other, arbitrary filter shapes, since
the same rates can be useful in the simulation code for other purposes—for example, for computing
the ionization balance of hydrogen, helium, or other chemical elements.
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Fig. 21 Cooling (blue lines)
and heating (red lines)
functions for our test models
that maximize the error in
the cooling function (top
panel) and the heating
function (bottom panel).
Approximate functions from
Eqs. (19)–(21) are shown as
dashed lines, while exact
calculations from Cloudy are
shown with solid lines

3.6 Back to Galactic Halos

Armed with the understanding of the cooling and heating functions, we can now
return to the fate of gas in galactic halos. As gaseous halos are expected to become
denser at the center, the cooling time will decrease towards the center. Hence, there
must exist a cooling radius RC at which the cooling time is equal to the age of the
halo. Gas inside RC is able to cool efficiently and condense towards the halo center,
while the gas outside RC cools too slowly and will remain in the (quasi-) hydrostatic
equilibrium.

A detailed analysis of the cooling process is well presented in Maller and Bullock
(2004), although they were not the first group who considered that process. In Fig. 22,
adopted from that paper, the final profile of the hot gas is shown with the dashed red
line. The density profile is cored—all the gas above some threshold density is able
to cool, and the core density is set by the requirement that the cooling time in the
remnant of the core gas is longer than the age of the halo.

The gas that is able to cool will stream towards the center and will settle into a
galactic disk. It can do that, however, in two distinct ways: it can either develop a
cooling flow and smoothly flow in a quasi-spherical way all the way to the center, or
it can experience thermal instability, split into individual dense clouds, which then
fall onto the disk along parabolic orbits like rain drops fall on the ground. Which of
these two ways dominates is still a completely open question, with the observational
evidence being sparse and inconclusive.

Clouds of neutral hydrogen (hence dense and cool) are indeed detected in the halo
of the Milky Way, they are commonly known as “high velocity clouds” (HVC), since
they are detected in radio observations as neutral hydrogen at velocities significantly
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Fig. 22 Density profiles of the hot phase of halo gas in Maller and Bullock (2004) model in the
absence of cooling (solid red line) and with cooling properly accounted for (dashed red line) for a
Milky Way like galaxy at z = 0. The dot-dashed black line shows the NFW profile (adopted from
Maller and Bullock (2004))

Fig. 23 Neutral hydrogen clouds in the halo of the Milky Way discovered by the GALPHA-HI
survey. Various colors mark the cloud type, with HVC plotted in black (adopted from Saul et al.
(2012))

offset from the gas in the galactic disk (clouds that are not offset in the velocity would
not be distinguishable from the disk itself).

For example, the recent GALPHA-HI survey by Arecibo telescope uncovered a
large number of new clouds (Saul et al. (2012) as shown in Fig. 23). Unfortunately,
from the radio observations alone it is very hard to determine the distances to those
clouds. Perhaps, they are not located in the halo but form the so-called “galactic
fountain”, with the gas being thrown up by stellar feedback.

One way to resolve the ambiguity is to search for high velocity clouds in external
galaxies. Alas, even in our neighbor Andromeda galaxies none have been found.
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Fig. 24 Strength of MgII
absorption as a function of
distance from the host
galaxy. There is a sharp drop
in absorption for distances in
excess of about 100 kpc,
probably indicating the
cooling radius for halos
(adopted from Chen (2012))

Andromeda is sufficiently far away for sufficiently small clouds to remain undetected,
so the jury is still out on whether HVCs are indeed the halo gas raining onto the
galactic disks or the disk gas pushed (temporarily) into the halo.

One part of the problem is that the 21 cm line that is used to detect neural hydrogen
in radio observations is one of the weakest lines in this universe. Neutral hydrogen
also has one of the strongest lines—Lyman-α. However, it is not easy to excite n = 2
level in the hydrogen atom, hence Lyman-α is usually seen in absorption.

That is where other chemical elements come to rescue. Even while we are primar-
ily after hydrogen, a trace amount of heavy elements may produce enough absorption
in some of their, more easily excitable and observable lines. One such element is Mag-
nesium, the ionization threshold of its singly ionized state is just 15 eV, very close to
the hydrogen ionization threshold of 13.6 eV. Because of that, MgII has been used
as a proxy for neutral hydrogen in absorption studies of galaxies for several decades.
Figure 24 shows a plot from a recent compilation of observational constraints in sev-
eral ions by Chen (2012). A general feature of all observations is that MgII drops
precipitously further away that about 100 kpc from a galaxy (with a mild dependence
on the galaxy luminosity). It is highly tempting to associate this drop with the cooling
radius for the halo, and MgII with the cool clouds formed by thermal instability, but
in the absence of additional evidence such a proposition will remain no more than a
plausible conjecture.

One way or the other the gas from the halo (and beyond) ends up in the galactic
disk, making up the Interstellar Medium (ISM) of galaxies. This is where our yellow
brick road leads us next.
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4 ISM: Gas in Galaxies

The field of Interstellar Medium takes easily a quarter of all of Astronomy. Any
attempt to review it at any reasonable level will result in me still writing these
lectures on my deathbed. Hence, our journey through the ISM realm will be brief
and highly focused—we will be mainly concerned with “gas in galaxies”, i.e. gas as
a medium (forget about chemistry, except for one very specific topic), and gas as a
galaxy component (i.e. not small-scales behavior of gas, but rather the role of gas
as a citizen of a galaxy). Even with these restrictions, the journey that lays ahead is
extremely biased towards my own research interests and topics I find fascinating.

4.1 Galaxy Formation Lite

Galaxies are rather complex creatures; understanding galaxy formation and evolution
is the current frontier of extragalactic astronomy and cosmology. Never-the-less, the
basic sketch of how galaxies form and evolve has been developed—it is captured by
the Mo et al. (1998) model (hereafter MMW98).

The cornerstone assumption of MMW98 model is that the cool (∼104 K) gas is
delivered to the bottom of the potential well of a dark matter halo—either by radiative
cooling in the halo or by inflow along cool flows. The specific way by which gas is
delivered is unimportant; what matters is that the angular momentum is conserved,
and hence the cool gas settles into a rotationally-supported disk.

It is convenient to parametrize the mass of the disk Md as a fraction md of the
halo mass Mh ,

Md = md Mh,

and the disk angular momentum Jd as a fraction jd of the halo angular momentum Jh ,

Jd = jd Jh .

For an exponential disk with constant circular velocity Vc and the surface density
profile

Σ(R) = Σ0 exp(−R/Rd),

Md = 2πΣ0 R2
d and Jd = 4πΣ0 R3

d Vc. From these two equations the disk density
profile (parameters Σ0 and Rd ) can be expressed as functions of md , jd , and Vc.

The distribution of angular momenta for dark matter halos is usually quantified
by the spin parameter

λ = Jh |Eh |1/2

G M5/2
h

,
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where Eh is the binding energy of the halo (which depends on the actual adopted
density profile). In hierarchically clustered universe spins of dark matter halos are
induced by tidal torques from the surrounding material (Heavens and Peacock 1988).
The distribution of spin parameters of halos of various masses turns out to be surpris-
ingly independent of anything else (halo mass, shape of the matter power spectrum,
cosmological parameters, redshift, etc.) and is approximately lognormal,

p(λ)dλ = 1√
2πσλ

exp

(

− ln2(λ/λ̄)

2σ2
λ

)
dλ

λ
,

with λ̄ ≈ 0.05 and σλ ≈ 0.5—that result remains unchanged from the first N-body
simulations (Barnes and Efstathiou 1987) to the present day (Trowland et al. 2013).

The final step in the MMW98 model is the connection between the disk circular
velocity Vc and the virial velocity of the halo,

Vvir =
(

G Mh

rvir

)1/2

.

In the original MMW98 model the coefficient of proportionality between Vc and Vvir
was assumed to be 1, but it does not have to be. For example, for the NFW profile

(
Vc(r)

Vvir

)2

= 1

x

ln(1 + cx) − cx/(1 + cx)

ln(1 + x) − c/(1 + c)

where x ≡ r/rvir and c is the concentration of the halo. In this case, however, Vc is
a function of radius and is not constant, so which one should we use? One solution
is to consider the “maximal” disk, i.e. take the largest value of Vc for any radius,
commonly referred to as Vmax, as the disk circular velocity. That value is mildly
dependent on the halo concentration c,

Vmax = 1.0 Vvir for c = 3,

Vmax = 1.2 Vvir for c = 10,

Vmax = 1.6 Vvir for c = 30.

The MMW98 model is controlled by two main parameters, md and jd . In principle,
they can be arbitrary. However, recently an interesting property of real galaxies has
been noticed by Kravtsov (2013): disk sizes (both for stellar disks and gaseous disks)
are linearly proportional to the virial radii, with the scatter in the relation entirely
consistent with the distribution of λ parameters for halos of a given mass. In other
words, parameters md and rd must be such that for stellar disks Rd ≈ 0.01Rvir and
for gaseous disks it is about a factor of 2.5 larger.
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Fig. 25 Normalized surface density profiles of stars and neutral gas for late-type galaxies (adopted
from Kravtsov (2013))

Fig. 26 Rotation curves of
several spiral galaxies from
Sofue et al. (1999)

4.2 Galactic Disks

We now descend into the actual galactic disks. The common lore is that disks are
exponential, rotationally supported, and have flat rotation curves. While all these
statements are kind of true, they are very far from being exact.

Disks come with a variety of density profiles and a variety of rotation curves. For
example, Fig. 25 shows surface density profiles for stars and gas for several samples
of disk galaxies (Kravtsov 2013). On average profiles are indeed exponential, but
deviations of individual galaxies from the mean can easily reach a factor of several.

Similarly, rotation curves of individual galaxies (Fig. 26) show large deviations
from the canonical flat shape—some rotation curves are rising, some are falling,
some remain truly flat all the way to the outer edge of the disk.

Disk dynamics in general is a very complex affair. A large number of various
disturbances and waves can propagate over the disks—in addition to spiral arms,
there exit bending modes, bars, warps, etc. All these perturbations cause orbits of
stars and gas to deviate from spherical symmetry. For example, spiral arms are shock
waves, gas changes its velocity abruptly by a large factor (up to several times its



Modeling Physical Processes at Galactic Scales and Above 41

sound speed) as it crosses the shock, and hence the gas in front of and behind the
spiral arm shock cannot remain on the same circular orbit—one of the sides has
to deviate substantially. For example, in the classical example of the grand design
spiral, M51, the deviations of the gas rotational velocity from the circular velocity
reach 20 km/s almost everywhere in the disk (Hitschfeld et al. 2009).

Such deviations, in fact, may be responsible, at least partially, for the notorious
cusp-core controversy. Some of the “observed” cusps may, in fact, be just an erro-
neous consequence of the incorrect assumption that the rotational velocity is equal
to the circular velocity for gas (Valenzuela et al. 2007).

4.2.1 Disk Stability

How one would investigate such waves and features? Nonlinear treatment would
require numerical simulations, but some widely known (and not so widely known)
results can be obtained analytically for the linear stability of disk systems. A standard
approach to studying linear stability of any system is to impose small fluctuations
on the system and derive their dispersion relation. For an infinitely thin disk one can
represent the radially perturbed (i.e. a perturbation remains azimuthally symmetric)
surface density Σ(t, R) as

Σ(t, R) = Σ̄(R) + ΔΣ(t, R),

where the perturbation ΔΣ(t, R) is assumed to be a collection of linear waves, each
wave characterized by the frequency ω and the wavevector k = (kR, kφ). Let’s first
focus on purely radial perturbations, kφ = 0. In that case the dispersion relation for
the gaseous disk becomes (Binney and Tremaine 1987)

ω2 = κ2 − 2πGΣ̄ |kR | + c2
s k2

R, (22)

where κ2 ≡ R(dΩ2/d R) + 4Ω2 is the so-called epicyclic frequency and Ω(R) is
the disk angular velocity, Vc(R) = RΩ .

The disk is stable when the right hand side is always positive, which is achieved
if and only if

Q ≡ csκ

πGΣ̄
> 1. (23)

This condition is universally known as Toomre stability criterion, although for
gaseous disks it has been obtained earlier by Safronov (1960), while Alan Toomre
derived a similar relation for stellar disks (Toomre 1964), a much more difficult
exercise.

When Q < 1, some of the radial modes in the disk become unstable,

κ

Qcs

(
1 −

√
1 − Q2

)
< kunstable <

κ

Qcs

(
1 +

√
1 − Q2

)
.
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An interesting property of this relation is that only a limited range of wavenumbers
become unstable, the disk remains stable at very large (k → 0) and very small
(k → ∞) scales.

4.2.2 Beyond Toomre

Toomre stability criterion is often used in galactic and extragalactic studies. However,
it is, unfortunately, often forgotten that it is incomplete. No disk is infinitely thin,
and no perturbation is perfectly radial.

A case of arbitrary, not necessarily radial, perturbations was considered by Poly-
achenko and Polyachenko (1997), who found that the critical value for the Q para-
meter is actually larger than 1. This is not surprising—at Q = 1 radial perturbations
go unstable; however, for the disk to become unstable it is only enough for some
waves to become unstable, and these first unstable waves do not have to be radial.
Thus, some of the non-radial (i.e. non-axially-symmetric) perturbations may become
unstable when all radial perturbations remain stable with Q > 1.

The critical value of the Q parameter turns out to depend on the disk density
profile,

Q2
crit = 3α2 − 3

2α2 − 3
> 1,

where

α2 = 2Ω(R)

R|dΩ/d R| .

For example, for a flat rotation curve (Ω ∝ R−1) α2 = 2 and

Qcrit = √
3.

This is the reason why most actively star-forming (and, thus, instability-developing)
disk galaxies have Q parameters above unity but not significantly greater than 2
(Leroy et al. 2008).

Another generalization of the Toomre stability criterion is obtained when the finite
thickness of a disk is taken into account. In that case the dispersion relation has been
introduced by Begelman and Shlosman (2009), although in a highly convoluted form
it has been derived earlier by Safronov (1960),

ω2 = κ2 − 2π
GΣ̄ |kR |

1 + |kR |h + c2
s k2

R, (24)
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where h is the disk scale height, Σ̄(z) ∝ exp(−z/h). For a non-exponential ver-
tical profile the dispersion relation becomes more complex and is not presentable
analytically in a closed form.

Relation (24) is remarkable in that in the limit of very small scales, well below the
disk scale height, kh � 1 (in which case the disk cannot be considered as a flattened
system any more), it reduces to

ω2 = −4πGρ̄ + c2
s k2

R,

(with Σ̄ = 2ρ̄h), which is nothing else as a usual Jeans stability dispersion relation,
familiar to any astrophysicist since kindergarten.

4.2.3 Modeling Disks

Modeling disks numerically is a subject of itself, and cannot be covered in these
lectures. However, a word of caution is in order here. Let’s imagine one is trying to
model a galactic disk (or, for that matter, a disk around a supermassive black hole, or
any other self-gravitating disk). A natural setup is to start with an axially-symmetric
disk and let the instabilities develop.

So, you prepared your symmetric disk as the initial condition for your powerful
numerical code that includes all kind of important physical processes (cooling, star
formation, feedback, etc.). To be specific, let’s say you set the gas temperature to
104 K in the disk with the circular velocity of 200 km/s.

You press the magic button, simulation starts, and in an instant your disk cools
off to the lowest temperatures your cooling module allows (indeed, cooling times in
astrophysical environments are often very short), the Q parameters plunges to very
small values, and your disk fragments into tiny clumps of size comparable to the
wavelength of fastest growing instability mode λfast,

R ∼ λfast = 2πQ
cs

κ
.

Such a state, however—cold homogeneous disk—is unphysical, there is no plausible
physical process that can create such a system: after all, you started with an artificial
initial condition; try running it backward in time, the disk is still cooling, so shortly
before your initial moment it should have been blazingly hot, at 107–108 K, and how
would you propose to keep 108 K plasma in a disk with 200 km/s circular velocity?

Ok, that does not work. Let’s now start with an initially stable disk (Q � 1) and
let it become unstable gradually (either by artificially introducing cooling gradually,
or disabling cooling below 104 K, or, even better, gradually adding mass to the disk).
As Q decreases gradually, at some moment it will reach a critical value Qcrit > 1.
At that moment some non-radial perturbations become unstable and start growing,
turning into non-linear waves; any non-linear wave in the gas steepens to a shock;
any shock in a differentially-rotating disk becomes an oblique spiral wave; oblique
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shocks are known to generate an energy cascade a-la turbulence (although it may
not be turbulence in the exact meaning of that word). Turbulence will provide extra

support to the gas, replacing the sound speed cs in Eq. (22) with
√

c2
s + σ2

t and will

limit the fragmentation scales to R ∼ 2π
√

c2
s + σ2

t /κ.
In other words, in the latter scenario the Q parameter never had a chance to

become much lower than the critical value, but must linger at around it, maintaining
the disk in the just-unstable-enough state to generate enough turbulence. Hence the
conclusion that the author arrived at himself after much suffering and erring: if your
disk simulation has Q � 1, you are doing something wrong …

4.3 Ionized, Atomic, and Molecular Gas in Galaxies

Everyone knows that ISM consists of several gas phases. The ionized gas comes
in two flavors, as hot (∼106 K) coronal gas and warm/cool (∼104 K) ionized gas
(known under many names: warm ionized medium (WIM), diffuse ionized gas (DIG),
Reynolds Layer); atomic gas exists as warm/cool (∼104 K) and cold (∼102 K) neutral
media (WNM and CNM respectively); finally, molecular gas is almost always cold
(<102 K).

4.3.1 Ionized Gas

A story of coronal gas is misty and messy—it is not even clear how much of it
there is in the Milky Way ISM, or what fraction of it comes from stellar feedback
processes and what fraction is merely halo gas intermixed into the ISM due to various
disk instabilities. Warm ionized medium is understood better because it is primarily
located at the outer edges of the disk.

What causes WIM? We can get a hint on its origin from its temperature—gas at
104 K is likely to be photo-ionized. If we recall that only gods have the power to
switch off the Cosmic Ionizing Background, the ionizing source is there too—plus
whatever ionizing radiation escapes from star-forming regions inside the Milky Way
disk.

An example of how the relative distribution of neutral and ionized gas may look
like in the Milky Way galaxy (or other similar galaxies) is shown in Fig. 27. The
WIM contribution stays more-or-less constant at about 0.5 M�/ pc2 (column density
NH = 6 × 1019 cm−2) in the outer disk, but increases to several M�/ pc2 inside the
solar radius because of the increased radiation field and a contribution of coronal gas.
Broadly, such behavior is consistent with actual observations of the ionized gas in
the Milky Way and other galaxies. For example, in the Milky Way the contribution
of ionized gas at the solar radius is about 1 M�/ pc2.
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Fig. 27 Surface density
profiles for the total, ionized,
and neutral (atomic and
molecular) gas for a model
Milky-Way-like galaxy
(from the simulation
described in Gnedin (2012))

The outer parts of the disk are consistent with being ionized by Cosmic Ionizing
Background, and the transition from neutral to ionized gas is often very sharp. How-
ever, consistency does not imply causality. There could be other ionizing sources,
such as stellar radiation escaping from star-forming regions or cosmic rays. Since
stars do not form in the ionized gas (as far as we can tell), we leave the WIM-land on
our way to denser and colder domains; interested readers should check an excellent
recent review by Haffner et al. (2009).

4.3.2 From Atomic to Molecular Gas

Stars (at least most of them) form from molecular gas. Few astronomers would
question this conjecture. While a minority of all stars may form in the atomic gas (at
least Pop III stars certainly form in gas that is 99 % atomic), on this journey we are
chasing the bulk of star formation. Hence, the transition from atomic to molecular
gas is a necessary condition for (the bulk of) star formation.

Chemistry of molecular hydrogen is not particularly complex; H2 forms through
two physically distinct channels: in numerous reactions in the gaseous phase, from
rare ions H− and H2

+ (the best reference for these processes is Glover and Abel
(2008)), and on the surface of cosmic dust, which serves as a catalyst. The gas
processes are slow exactly because H− and H2

+ are rare; fraction of molecular
hydrogen forming in the gas phase saturates at 10−3–10−2 and only jumps to close
to 1 when 3-body reactions become sufficiently efficient (which only happens at
densities above about 1012 cm−3). This channel of H2 formation does not require
any metals and can proceed in the primordial gas (indeed, this is how Pop III stars
form).

Formation of H2 on dust grains is not fully understood. It is usually assumed that
atomic hydrogen accumulates on grains where two atoms can find each other much
more easily (young couples tend to live in cities). The formation rate RD , defined as
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dnH2

dt

∣
∣
∣
∣
dust

= RDnHnHI,

has been modeled (some what inconclusively) theoretically and measured observa-
tionally by Wolfire et al. (2008):

RD = DMW R0,

with R0 ≈ 3.5×10−17 cm3/ s, where from now on I will use a convenient parameter
DMW that measures the abundance of dust relative to the solar neighborhood; i.e.
DMW = 1 implies the same abundance of dust per unit mass of gas as in the Milky
Way ISM around us.

It is not, however, enough to know the formation rate to determine the abundance
of molecular hydrogen—like predator and prey, ultraviolet radiation plays with H2
the game of life and death. Particularly deadly for molecular hydrogen is radiation
in the so-called Lyman and Werner bands, at energies between 11.3 and 13.6 eV
(actually, the bands extends further, but hydrogen ionizing radiation is often well
shielded by neutral atomic ISM). In addition, molecular hydrogen is destroyed by
collisions with atoms and other molecules when gas temperatures raise above about
5000 K. Hence, in order to predict the abundance of molecular hydrogen in specific
conditions, we need to know the Interstellar Radiation Field (ISRF).

ISRF is not measured directly, but rather modeled based on the observations of
various line ratios in the ISM. Two canonical references to such models are Draine
(1978) and Mathis et al. (1983), which are perfectly consistent with each other. In the
solar neighborhood J0 ≈ 106 phot/cm2/s/eV/rad, but in the Galaxy the radiation
field changes with the distance from the center. At the center it is up to 10 times
higher than around the Sun.

Just like masses and luminosities are convenient to measure in solar units, in
galactic studies it is convenient to measure the radiation field and other quantities
(like dust abundance) in the Milky Way units. Hence, hereafter we will also use
UMW ≡ JLW/J0 (where JLW is the average radiation field in the Lyman and Werner
bands). By definition, UMW = 1 in the solar neighborhood, but in high redshift
galaxies it can be large, UMW = 30–300 at z ∼ 2 (Chen et al. 2009).

Even the Milky Way radiation field is extremely strong from the molecular hydro-
gen point of view—if it could shine on typical molecular clouds unimpeded, the
molecular fraction would only be 10−6–10−5. The only reason molecular clouds
exist in the universe is because all that radiation is shielded.

There are two distinct shielding processes: dust shielding and molecular self-
shielding. Dust absorbs radiation over a very large range of wavelengths, from infra-
red to X-rays. Dust opacity is a smooth function of wavelengths, and in the first
approximation it can be considered constant over narrow Lyman and Werner bands
(for detailed plots of dust opacity see Weingartner and Draine (2001)). In different
galaxies the dust opacity is different, but in the three galaxies it was studied best—
Milky Way and two Magellanic clouds—it is roughly proportional to the dust-to-gas
ratio,
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σLW = DMWσ0

with σ0 = 1.7 × 10−21 cm2 for the Milky Way (DMW = 1), σ0 = 1.6 × 10−21 cm2

for the LMC (DMW ≈ 0.5), and σ0 = 2.2 × 10−21 cm2 for the SMC (DMW ≈ 0.2).
Thus, it is possible to simply take σ0 as a universal constant,

σ0 ≈ 2 × 10−21 cm2.

Accounting for continuum shielding over a narrow band is easy; the molecular
hydrogen photo-destruction rate Γ is then simply

Γ = c
∑

j

∫ ν2

ν1

σ j (ν) e−σd (ν)NH nν︸ ︷︷ ︸
radiation field

dν ≈ e−τ̄d ΓLW,

where NH is the total hydrogen column density, τ̄d ≡ Σ̄d NH is the average dust
opacity in the Lyman and Werner bands, ΓLW is the so-called “free space” photo-
destruction rate (i.e. photo-destruction rate in the absence of any shielding), and the
sum is taken over all H2 lines in the Lyman and Werner bands. It is convenient to
define a shielding factor SD that parametrizes the suppression of the free space field
by dust shielding, Γ = SDΓLW, with

SD(DMW, NH) = e−DMWσ0 NH .

Self-shielding of molecular hydrogen is much more complicated. Lyman and
Werner bands consist of numerous lines of various strengths (Fig. 28). Absorbing a

Fig. 28 Molecular lines in
the Lyman and Werner
bands. A hydrogen molecule
has a non-zero probability to
be photo-dissociated fdiss
when it is excited into any of
these states (adopted from
Haiman et al. (2000))
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photon in one of those lines may or may not lead to the destruction of the hydrogen
molecule, and the probability of dissociation varies significantly for different lines.

Hence, the shielded photo-destruction rate can be represented as a sum over indi-
vidual lines, each with its own cross section σ j (ν),

Γ = c
∑

j

∫ ν2

ν1

σ j (ν) e−σ j (ν)NH2 nν︸ ︷︷ ︸
radiation field

dν ≈
∑

j

e−τ̄ j ΓLW, j = SH2(NH2)ΓLW. (25)

The self-shielding factor SH2(NH2) is much harder to compute, but its general
behavior may be guessed. As individual Lyman and Werner bands lines become
optically thick, some of the terms in the sum in Eq. (25) become small, but weaker
lines will remain optically thin and un-shielded for much higher column densities
than the stronger lines, thus allowing the destructing radiation to sneak deeper into
a molecular cloud. Hence, as the column density of molecular hydrogen increases,
the self-shielding factor will fall at a rate, which is much slower than the exponential
decline of an individual line.

The self-shielding of molecular hydrogen has been modeled extensively; a specific
approximation for the self-shielding factor that is most commonly used is due to
Draine and Bertoldi (1996),

SH2 = 0.965

(1 + x/b5)α
+ 0.035√

1 + x
exp

(

−
√

1 + x

1180

)

, (26)

where x ≡ NH2/5 × 1014 cm−2, b5 ≡ b/ km/s, and in the original approximation
α = 2. Wolcott-Green et al. (2011) suggested that at higher temperatures a better fit
is α = 1.1, but the first term in Eq. (26) is not important anyway.

Figure 29 shows the Draine and Bertoldi (1996) approximation as a function of the
molecular column density. A gradual decline of the self-shielding factor (SH2 going
approximately as N−0.75

H2
) is apparent for almost 8 orders of magnitude. However,

at very high column densities, NH2 > 1022 cm−2, the fall-off becomes steeper, with
the last factor in Eq. (26) dominating. What could cause such a steep decline?

Our deduction above that the weaker lines remain optically thin and serve as
avenues for the radiation to sneak into a molecular cloud remain correct for as long
as each absorption line can be treated as independent. However, just like in human
society neighbors sooner or later will put a stop on a weak person misbehaving, so
in the society of Lyman and Werner bands stronger lines begin to interfere in the
affairs of weaker one at sufficiently high column densities. Since each excited state
in an atom or molecule lives for a finite time, lines have non-trivial natural width
(see Sect. 2.2.1). In the high column density limit the natural width dominates, and
the equivalent width of a line (the area of the spectrum the line takes out) grows as
N 1/2

H2
. As the strongest lines begin to overlap, the nature of self-shielding changes—

instead of individual lines absorbing UV radiation each by itself, the absorption
cross-section now becomes a continuous function of frequency, with cross-sections
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Fig. 29 Draine and Bertoldi (1996) molecular self-shielding factor as a function of H2 column
density (solid red line). For comparison, exponentially falling off shielding factor (dust shielding
with Milky Way dust and fully molecular gas, NH2 = 2NH2 ) is shown as a blue line. Red dotted
line is a power-law approximation for the self-shielding factor, SH2 ∝ N−0.75

H2
that has been also

used in the past

of individual lines all blending together into a single, continuum-like absorption.
Hence, self-shielding becomes much stronger, and that is manifested in the drop-off
in the Draine and Bertoldi (1996) formula at NH2 > 1022 cm−2.

Finally, we need to figure out what NH2 actually is. Let’s imagine that we have a
line-of-sight through a molecular cloud with the total hydrogen column density NH.
The first inclination is to simply use NH2 = 0.5NH (let’s assume the cloud is fully
molecular), but that is actually wrong!

Equation (26) is suitable for the idealized case of a slab of gas with no internal
motions. Real molecular clouds are, however, supersonically turbulent on scales
above the sonic length, ls ∼< 1 pc. In other words, if you take two parcels of gas inside
a molecular cloud separated by a distance l, the rms velocity dispersion between them
satisfies what is known as Larson’s law,

δv(l) ≈ cs

(
l

ls

)0.5

with cs being the gas sound speed (in fact, the definition of the sonic length is that
δv(ls) = cs). For l � ls , the velocity difference between them would be much larger
than the width of each Lyman and Werner bands line b ∼ cs . Hence, these two fluid
elements would shield each other only if they happen accidentally to fall at the same
line-of-sight velocity, which would occur with the probability b/δv.

This is illustrated in a cartoon fashion in Fig. 30. Hence, a fluid element inside a
molecular cloud sees a column density of about NH2 ∼ 〈nH2〉s LMCb/δv ≈ NH2 ∼
〈nH2〉s(ls LMC)1/2, where 〈nH2〉s is the average molecular hydrogen density on a sonic
scale at the location of interest and LMC the width of the whole molecular cloud. This
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Fig. 30 A cartoon
illustrating the role of ISM
turbulence in suppressing
self-shielding of molecular
hydrogen on scales above the
sonic length

is valid, however, only until individual lines do not overlap. With line overlap relative
velocity shifts between different fluid elements become unimportant (lines overlap
anyway). In other words, at sufficiently large column densities line radiative transfer
in the Lyman and Werner bands effectively behaves as continuum radiative transfer,
and the effective length over which the column density is accumulated approaches
LMC.

In Eq. (26) the line overlap is described by the last exponential factor. To account
for the supersonic turbulence inside the molecular cloud, Eq. (26) can be modified as

SH2 = 0.965

(1 + x1/b5)2 + 0.035√
1 + x1

exp

(
−

√
1 + x2

1180

)
, (27)

where x1 ≡ 〈nH2〉s(ls LMC)1/2/5 × 1014 cm−2 is proportional to the H2 column
density over the sonic length, while x2 ≡ 〈nH2〉MCLMC/5 × 1014 cm−2 accounts for
the column density of the whole molecular cloud. Obviously, x2 � x1.

Armed with understanding of dust and self-shielding, we can consider some inter-
esting limiting cases. In the kinetic equilibrium the rates of photo-destruction and
molecular hydrogen formation balance, hence

ΓLW SH2 e−σLW NH nH2 = RDnHnHI.

The free-space radiation field is parametrized by the introduced above UMW para-
meter, UMW ≡ ΓLW/Γ0. Hence,

fH2

(1 − fH2)
= DMW

UMW

R0

SH2Γ0
eDMWσ0 NH nH. (28)

As we already know, in low metallicity environments self-shielding is expected
to dominate over dust shielding,

fH2

(1 − fH2)
= DMW

UMW

R0

SH2Γ0
nH.
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Let’s say we are interested in densities at which the gas becomes 50 % molecular
( fH2 = 0.5). In that case

SH2 ∝ DMW

UMW
,

and for high enough column density, when

SH2 ∼ e−const×N 1/2
H2 ,

we find

N1/2 ≡ NH( fH2 = 1/2) ∝ ln2
(

UMW

DMW
× const

)
,

i.e. the column density of the atomic-to-molecular transition depends only weakly
on the dust abundance or the interstellar radiation field.

In the opposite extreme, in high radiation fields the dust shielding dominates,

fH2

(1 − fH2)
= DMW

UMW

R0

Γ0
eDMWσ0 NH nH,

hence

N1/2 ∝ 1

DMW
ln

(
UMW

DMW
× const

)
.

As could have been easily guessed, higher dust abundance pushes the atomic-to-
molecular transition towards lower (column) densities.

How should we go now from shielding factors for individual parcels of gas to the
factors that should be used in actual numerical simulations? Modern cosmological or
galactic scale simulation may not resolve molecular clouds at all or may resolve them
down to parsec scales. Hence, in the most general case we can imagine whole space
being tessellated into regions (say, simulation cells) of size L some of which include
pieces of molecular clouds. Each such piece has a distribution of column density
inside it, φ j (NH2), where j refers to a given piece. Hence, the average shielding
factor is

〈SH2 〉 j =
∫

SH2 (NH2 )φ j (NH2 )d NH2 = SH2 (Neff, j )

∫
φ j (NH2 )d NH2 = SH2 (Neff, j )

since
∫

φ j (NH2)d NH2 = 1 by definition. If the distribution φ j (NH2) was known, one
can also compute Neff, j , but at present there are no models that attempt to determine
φ j . Hence, we need to come up with an ansatz for Neff, j . For example, in the absence
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Fig. 31 Average total hydrogen number density of atomic-to-molecular gas transition (defined as
fH2 = 1/2) as a function of the dust-to-gas ratio DMW and the interstellar radiation field UMW on
scales L = 65 pc

of a better alternative, we can simply take Eq. (27) with the sonic length ls being fixed
to some small value (0.1–1 pc) and a model for the size of molecular cloud LMC.

Perhaps the simplest such model is a “Sobolev-like” approximation that Andrey
Kravtsov and I introduced a few years ago (Gnedin et al. 2011),

LMC ≡ ρ

2|∇ρ| .

With such an approximation the complete set of equations is obtained. The depen-
dence of the characteristic density of the transition on the environmental parameters
on the particular spatial scale L = 65 pc (read “resolution of your simulation”) is
shown in Fig. 31—the two limiting regimes are easily noticeable in the figure.

In Fig. 32, I show how such a model fares in matching the observed surface densi-
ties of atomic and molecular gas on larger scales, where they are actually measured.
The main achievement of models like this one is that they capture the observed sat-
uration of the atomic surface density at about 10 M�/ pc2 (for DMW = UMW = 1
case; the saturation level does depend on the environment, just like n1/2). A detailed
description of the latest edition of Gnedin et al. (2011) model is presented in Gnedin,
Kravtsov, and Draine (2013, in preparation).

An alternative model for the atomic-to-molecular transition is due to Krumholz
et al. (2009)—that model is simpler to implement, but does not account for line
overlap, and, hence, breaks down for metallicities (or, rather, dust-to-gas ratios)
below about 20 % of the Milky Way value.

4.4 Molecular ISM

Ok, we arrived into the molecular ISM. Now what? Why do we even care about the
molecular gas? After all, many experts in star formation will tell you that molecules
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Fig. 32 Average atomic and molecular gas surface densities as functions of the total (neutral)
hydrogen gas surface density averaged over 500 pc scale for the (DMW = 1, UMW = 1) simulation
case (red lines/bands for mean/rms). Filled squares and open circles with error bars mark the
observed average and rms atomic and molecular hydrogen surface densities from Wong and Blitz
(2002)

are not required for star formation. Now we know this is not quite true—line overlap
makes H2 self-shielding important at low dust abundances, and, hence, in that regime
molecules are required for star formation.

A second answer to that question is offered by Krumholz et al. (2011) (and by
the nature herself, but that story is still well ahead). Shielding in molecular gas
actually performs two functions at once—it protects hydrogen molecules from photo-
destruction by Lyman and Werner bands photons, but it also allows gas to cool to
the state that is properly called cold (100 K and below)—without shielding, UV and
optical photons can eject energetic electrons from dust grains by photoelectric effect
(the one Einstein got the Nobel prize for); these energetic electrons thermalize in
the gas, effectively transferring the energy of radiation into the gas thermal energy.
With shielding, this process becomes much less efficient and the gas can cool to low
temperatures—and, hence, fragment into small clumps from which stars can form.

Thus, even in the regime when molecular self-shielding is not important, molec-
ular gas plays a role of a “paint” someone poured into the ISM—the “painted” (i.e.
molecular) gas is cold and can form stars, while gas without “paint” is too hot for
star formation to take place there. Think of this as a lucky “coincidence”, if you like.

4.4.1 Thermodynamics of H2

Before we move further down the yellow brick road towards star forming regions, let
us pause for a short while and refresh what we know about the hydrogen molecule.
After all, it is the simplest molecule one can imagine, containing just two atoms
(hence diatomic), and its thermodynamics can be solved (almost) exactly.
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If you recall some college thermodynamics, you may remember that the diatomic
gas has a polytropic index of 7/5 (or, equivalently, specific heat cV = 5/2). If you
have forgotten that, it should not be hard to re-derive that result! After all, the partition
function for the diatomic molecule is simply

Z = e−En/(kB T )Zrot Zvib,

where the vibrational part is

Zvib =
∞∑

v=0

e−�ω(v + 1/2)/(kB T ).

The rotational part is a bit tricky, but really just a bit—since H2 is a symmetric
molecule and two protons are indistinguishable, two nuclear states (with the spins
aligned, total nuclear spin is 1 and the spins anti-aligned, total nuclear spin is 0)
behave almost like two different molecules (transitions between the two states are
possible, but highly suppressed and only occur at high enough densities). The state
with the nuclear spin of 1 is called an ortho-hydrogen molecule, and only allows
odd values for the total angular momentum J , while the state with the 0 nuclear spin
is a para-hydrogen molecule and only has even values of the angular momentum.
Ortho-H2 has a higher statistical weight than the para-state, hence

Zrot = 3

4
Zortho + 1

4
Zpara,

where

Zortho =
∑

J=1,3,...

(2J + 1)e−�
2 J (J + 1)/(2I kB T ), (29)

Zpara =
∑

J=0,2,...

(2J + 1)e−�
2 J (J + 1)/(2I kB T ).

The partition function Z is a magic wand of thermodynamics, all other quantities
are derived from it: free energy

F = −kB T ln

[
V

N !
(

mkB T

2π�2

)3/2

Z

]

,

internal energy

E = F − T
∂F

∂T

∣
∣
∣
∣
V

,
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Fig. 33 Specific heat cV
(red) and the internal energy
over pressure (blue) for
molecular hydrogen gas as a
function of temperature.
Notice that H2 never behaves
as classic diatomic gas
(cV = E/P = 5/2)

specific heat

cV = 1

kB N

∂E

∂T

∣
∣
∣
∣
V

,

etc.
For example, Fig. 33 shows cv and E/(kbT ) for H2 gas with 3 : 1 ratio of ortho-

to-para molecules. If that plot does not surprise you, then you are a true expert in
quantum thermodynamics—molecular hydrogen actually never behaves as classic
diatomic gas with cV = 5/2 (or, equivalently, γ = 7/5 ). More than that, it does not
even behave as polytropic gas with E = P/(γ −1) except for very low temperatures
(T < 20 K) where it behaves as monoatomic gas with cV = 3/2! If you did not
know that, you can be excused—some of highly distinguished astrophysicists made
that error too …

4.4.2 Cosmic Pandora Box: The X-Factor

We are now approaching the most confused, abused, and misused subject in the
studies of molecular ISM—CO emission and the XCO factor.

Molecular hydrogen is a great example of a classic catch-22 - H2 has to be shielded
from the outside to exist, hence the outside (i.e. us observing it) cannot actually see its
emission in the Lyman and Werner bands. And to add insult to injury, the same dust
obscures background sources, making absorption spectroscopy extremely difficult.
Historically, by far the most common method to observe molecular gas was via its
CO emission.

Rotational transitions of the CO molecule are equally spaced in frequency, νJ =
�J/(2π I ) (the molecule is asymmetric, so we do not need to worry about ortho/para
mess). For the most common 12C16O isotope the first (1 → 0) transition is located
at ν1→0 = 115 GHz (or λ1→0 = 0.26 cm). This is a major convenience, since CO
emission lines are easy to identify (just look for a uniform fence in the millimeter
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Fig. 34 CO luminosity
versus the virial mass for
extragalactic molecular
clouds. The gray band shows
the average values in the
Milky Way (adopted from
Bolatto et al. (2013))

wavelengths). On the other hand, there is no a priori reason why CO should be a
good tracer of H2: CO needs higher dust shielding to form and it gets saturated at too
high column densities. Hence, CO emission comes from a narrow range of column
densities, both cloud outskirts and cloud centers emit little.

Never-the-less, whenever a mass of molecular gas can be estimated by other means
(usually the virial theorem), observations show a good correlation between the CO
luminosity and the gas mass, albeit with substantial scatter from one cloud to another
(Fig. 34).

In galactic studies the relevant conversion factor between the molecular gas and
CO luminosity is the infamous X-factor,

XCO ≡ NH2

WCO
,

where WCO is the equivalent width of a CO emission line (which will be different
for different transitions),

WCO =
∫

TA(v)dv

with TA being the antenna temperature of the radio emission. The canonical Milky
Way value for the X-factor is XCO = 2 × 1020 cm−2 K−1 (km/s)−1 (enjoy the ele-
gance of units!). The reason for this particular combination is that a measurement
of the equivalent width in your telescope beam can be directly converted into the
column density of molecular hydrogen along the line-of-sight.
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In extra-galactic studies most of the time a galaxy is not spatially resolved (at
least until the full ALMA comes online), so a single observation measures the total
CO luminosity LCO of a galaxy, and a convenient quantity is

αCO ≡ 1.36MH2

LCO

(the factor of 1.36 is a contribution of Helium, and it really should be 1/(1 − Y ),
since Y does depend slightly on the metallicity). The Milky Way value is αCO =
4.3 M�/ pc2/ K/ (km/s). Notice, that the connection between XCO and αCO is some-
what non-trivial; αCO can be re-written as

αCO ∝
∫

NH2 d A
∫

WCOd A
= 〈NH2〉

〈WCO〉 ,

where A is the area on the sky. Hence, αCO is not directly proportional to the average
XCO for a galaxy. Rather, it is proportional to the ratio of average NH2 to the average
WCO. Alternatively, we can re-interpret the averaging procedure for XCO in a highly
non-trivial way,

X̄−1
CO ≡ 〈WCO〉

〈NH2〉
= 〈(WCO/NH2)NH2〉

〈NH2〉
=

〈
1

XCO

〉

NH2

.

i.e., XCO should be averaged harmonically and with the H2 column density weighing.
So, how should we approach modeling CO emission in modern cosmological

or galactic-scale simulations? Scales on which CO emission originates are not yet
resolvable in modern simulations, hence, it needs to be followed with a sub-grid
model. However, since CO emission is not important dynamically, it can be mod-
eled in post-processing, after the simulation had been completed. There exist many
approaches to constructing a sub-grid model, and the best (at least in principle)
sub-grid model is a someone’s else simulation!

The field of modeling internal structure of molecular clouds with sufficient physics
is rather new, with only a few attempts made so far, but it certainly developing rapidly.
One example of how CO emission can be modeled is the work that was led by Robert
Feldmann in two series of paper in 2012 (Feldmann et al. 2012a, b). This is just an
illustration, one can follow a similar path with newer, better small-scale simulations
for an undoubtedly better result.

One of the very first attempt to model CO emission directly in GMC-scale simu-
lations was done by Simon Glover and collaborators (Glover et al. 2011; Shetty et al.
2011a, b). Images of H2 and CO column densities, CO equivalent width WCO, the
XCO factor from these simulations are shown in Fig. 35. As can be expected in a tur-
bulent ISM, there are large variations in the XCO factor on very small, sub-pc scales.
Never-the-less, when averaged over the whole simulated region, XCO dependence on
the properties of the molecular cloud exhibits remarkable regularity—Glover et al.



58 N.Y. Gnedin

Fig. 35 Images of H2 and CO column densities, CO equivalent width WCO, the XCO factor from
Shetty et al. (2011a) simulations

(2011) found that the main parameter that controls the XCO factor is (surprise!) the
dust opacity (sometimes parametrized as the visual extinction AV ∼ τD).

Figure 36 shows the mass-weighted molecular and CO fractions from Glover
et al. (2011) simulations. Using these tabulated values, Feldmann et al. (2012a, b)
developed a sub-grid model that can be used in cosmological and galactic-scale
simulations for computing the XCO factor in each simulation cell. Realistic simulated
galaxies have complex ISM, with gas densities, metallicities, dust abundances, and
interstellar radiation field varying from place to place. Hence, one can and should
expect the XCO factor to vary significantly inside a given galaxy and from galaxy to
galaxy.

As the result, the Feldmann et al. (2012a, b) model predicts a range of values
for XCO even for a given metallicity and UMW, not a single number, as is shown in
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Fig. 36 Mass-weighted fractions of H2 and CO as a function of average gas density in Glover et al.
(2011) simulations

Fig. 37 Dependence of the
XCO factor on the
environmental parameters:
gas metallicity Z and the
interstellar radiation field
UMW, on ∼50 pc scales.
Colored bands show the
variation over different
locations in a single
simulated galaxy (adopted
from Feldmann et al.
(2012a))
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Fig. 37. Overall, the predictions of the model are within the existing observational
measurements, although observations are still too imprecise to provide a serious
constraint on the theoretical models.

Using the Feldmann et al. (2012a, b) model, we can explore why observers are
often extremely stubborn in using a constant value for XCO (or, alternatively, for
αCO). In Fig. 38, I show the dependence of the XCO factor on the molecular hydrogen
column density on small (GMC) scales and on large (galactic) scales. Averaging
over large scales performs a miracle—almost all the complicated variations in the
XCO factor with various environmental parameters disappear (except for the mild
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Fig. 38 XCO factor as a function of H2 column density for a variety of values for the gas metallicity
and the interstellar radiation field UMW on small, 50 pc scale (left) and large, ∼1 kpc scale (right).
The data points on the left panel are from Heiderman et al. (2010). The role of large-scale averaging
in making XCO approximately constant is apparent (adopted from Feldmann et al. (2012a))

residual dependence on the metallicity) and X̄CO ∝ αCO becomes a surprisingly
robust conversion factor from the observed CO luminosity to the total mass of the
molecular gas in a distant galaxy (this is indeed nothing short of a miracle).

Before we depart from the domain of sub-grid modeling of the XCO factor, a
word of caution is in order. Such modeling is, obviously, not unique. In addition,
the existing observational constraints that can be used to calibrate such modeling
are still in their infant stage. Hence, any sub-grid model for the XCO factor will
remain highly imprecise for some time. For example, an alternative model was pro-
posed by Narayanan et al. (2011) in which XCO is a decreasing function of H2 col-
umn density—the dependence that has the opposite sign to the left panel of Fig. 38.
That does seem somewhat inconsistent with the data from Heiderman et al. (2010),
but the measurements are not yet fully constraining. In any event it is clear that if
two different models predict opposite signs, there is a large amount of work laying
ahead …

4.4.3 Cosmic Pandora Box, Level 2: The X-Factor in ULIRGS

Cosmic Pandora boxes are like Russian Matrioshka dolls, inside one there is always
another one …

The remarkable property of the XCO factor to average out on large scales has been
used extensively in many extragalactic studies. From an observer’s point of view, it
is very convenient to be able to determine the molecular gas mass of a distant galaxy
by a simple multiplication. There is, however, a complication. For an optically thick
emission, like CO, the equivalent width of the line WCO = TB

∫
β(v)dv, where TB

is the brightness temperature of the emitting gas and β(v) is the escape probability
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from a parcel of gas with velocity v. The second factor can be thought of as an
effective line width Δveff , so that

XCO = NH2

TBΔveff
.

Variations in NH2 and Δveff do average out, so it is TB that we are concerned with
now. In LTE brightness temperature is equal to the gas temperature. In normal galax-
ies molecular gas is very cold, TB ∼ 10 K, but dust is usually warmer than the
gas, Tdust = 40–60 K. Hence, if dust and gas couple thermally, TB can increase
systematically in at least some molecular clouds, causing a systematic decrease in
the XCO factor that will not average out.

For dust and gas to couple, densities must be really high, significantly higher
than is achieved in normal molecular clouds, so in normal galaxies coupling occurs
only in a tiny fraction of the most dense molecular gas. The situation is different in
Ultra-Luminous IR Galaxies (ULIRG), which are major merger of large galaxies. In
mergers substantial fraction of the total gas in both galaxies gets channeled towards
the center, where it gets extremely dense, piling up to many thousands of solar masses
per square parsec (versus a few tens for galaxies like the Milky Way). At such high
densities (and column densities) dusts starts coupling to (and, hence, heating) the
gas.

In a classical study Solomon et al. (1997) explored that effect in several nearest
ULIRG, and concluded that the XCO factor (or, rather, αCO, since we are talking
about external galaxies) could be as low as αCO,min = 0.8 M�/ pc2/ K/ (km/s). That
value, however, was only a strict lower limit, as their results depended on several
assumptions that all added a factor of 2 factors on top of αCO,min. Alas, in an ironic
mis-interpretation of the Solomon et al. (1997) paper many observers took that lower
limit as the actual value, and for almost 2 decades it was quite common to hear a
fairy tale of “two modes of star formation”, each with its own value of αCO (0.8 and
4.3).

Obviously, such a “bimodality” makes no physical sense—a miracle of nature
may make αCO a universal constant, but if it is not, then there must be either a
distribution of αCO for different galaxies or a systematic trend of the average αCO
value with some of galaxy properties, like the mean surface density or IR luminosity.

Fortunately, the dust settled (or, more precisely, was observed directly), thanks
to Herschel (again, not a somewhat eccentric, clever, and compassionate man but a
space telescope). Measurements of dust emission over several bands between 100
and 1000 microns, when taken together with optical and sub-mm observations from
the ground, allow to fit detailed models of dust spectral energy distribution and,
hence, derive dust temperature and mass, in a substantial sample of ULIRG over a
wide redshift range, all the way to z ∼ 3 (c.f. Magdis et al. 2012).

These observations can then be combined with measurements of gas metallicities
and CO luminosities in the same galaxies in two different ways.
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Fig. 39 αCO as a function of
gas metallicity for several
samples of local and high
redshift galaxies (adopted
from Magdis et al. (2012))

1. If one assumes dust-to-gas ratio as a function of metallicity Mgas/Mdust(Z) (for
example, by calibrating from the measurements of nearby galaxies), then from
Mdust one gets Mgas, and under the assumption that all gas is molecular, Mgas and
LCO give αCO.

2. Alternatively, if one adopts a value for αCO, the dust-to-gas ratio can be derived
in the reverse order of steps.

The measurements of αCO vs. Z for Magdis et al. (2012) sample and other avail-
able samples are shown in Fig. 39. The data are inconclusive—a trend with metal-
licity, a wide distribution, even bimodality cannot yet be excluded, but the main
conclusion is clear—the XCO is not universal.

4.4.4 Cosmic Pandora Box, Level 3: Which Transition Dominates?

If, by now, you are totally disenchanted with the XCO factor, here is an insult to your
injury—in Fig. 40, I show a distribution of CO emission over the rotational transitions
J → (J − 1) for several galaxies. Even in our own Milky Way CO emits most of
its energy in the 2 → 1 transition, in more active/merging galaxies the peak of the
emission is shifted to even high transitions (i.e. higher gas temperatures). Hence, the
XCO factor is different for different J → (J − 1) transitions, so to compare apples
to apples, we need to convert different observed transitions to one baseline one (say,
1 → 0). These new conversions factors will also depend on the galactic environment,
dust temperature, perhaps redshift, etc. A hierarchy of nested Pandora boxes never
ends …
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Fig. 40 Distribution of CO
emission over the rotational
transition J for several
galaxies (colors) and the
average distribution for
high-redshift sub-millimeter
galaxies (SMG). For most
galaxies the 1 → 0 transition
is not the dominant one
(adopted from Bothwell
et al. (2013))

5 Star Formation

If the field of ISM is large, what one can say about star formation—it is at least
another quarter of all Astronomy research. So, we must thread very carefully, or we
will be lost forever in the jungle of clouds, disks, and outflows. We will attempt to
stay on largest scales, and will look only on the most generic relations between gas
and stars. We are not even going to paint the broad picture, we will just look at the
frame …

5.1 Kennicutt-Schmidt and All, All, All

For us, looking down on star formation from galactic scales and above, the story of
star formation begins in March 1959, with the classical paper by Schmidt (1959), who
noticed that the surface density (and let us be precise here, we still have very little
observational clues on what the volumetric density of star formation is doing) of star
formation correlates with the surface density of gas approximately as a power-law,

ΣSFR ∝ Σn
gas,

with n = 1–2.
This relationship was firmed up later by Kennicutt (1989, 1998), resulting in what

is nowadays commonly referred to as the Kennicutt-Schmidt (KS) relation,5

5God save you from calling it a “law” in the presence of a devout physicist!
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Fig. 41 Star formation surface density as a function of HI (left) and H2 surface densities from the
THINGS survey (adopted from Bigiel et al. (2008))

ΣSFR = (2.5 ± 0.7) × 10−4 M�
kpc2 yr

(
Σgas

1 M�/ pc2

)1.4±0.15

. (30)

In this form the KS relation survived for 10 years. But THINGS does matter
(orthography is correct), The Nearby HI Galaxies Survey was an important step in
shaping our modern understanding and interpretation of the KS relation, in large part
because in addition to HI, the THINGS team assembled a large amount of other data
on their target galaxies, from CO emission to UV and H-α measurements of star
formation rates.

The THINGS survey unambiguously proved what everyone knew in their hearts:
stars form from molecular gas.6 In Fig. 41, there is a clear strong correlation between
ΣSFR and the surface density of the molecular gas, but there is almost no correlation
with the atomic gas. Hence, we have not wasted our time discussing the atomic-
to-molecular transition, it is one of the bottlenecks that controls star formation in
galaxies.

Historically, it was common to represent the KS relation as the relation between
the star formation surface density and the surface density of the “total” gas, which
actually meant the sum of atomic and molecular (i.e. neutral) gas. The left panel of
Fig. 42 shows this “classical” form of KS relation from the THINGS data, together
with the original measurements from Kennicutt (1998) (although the latter are tricky
to interpret, since they use a different value of αCO to convert CO emission to the
molecular gas surface density).

In order to illustrate how that particular shape appears, the right panel shows the KS
relation from a numerical simulation of the Milky-Way-like galaxy that we already
met several times in two previous chapters. In the simulation the star formation rate

6At least, the vast majority of them—by itself, the THINGS result does not exclude a possibility of
a small fraction of stars forming in the atomic gas.
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Fig. 42 Left “Classical” Kennicutt-Schmidt relation from THINGS (adopted from Bigiel et al.
(2008)). Right Separate average KS relations for the atomic (dotted), molecular (dashed), and
neutral (solid) gas from the already familiar to us cosmological simulation of the Milky Way like
galaxy. The solid line is the sum of the dotted and dashed along the horizontal direction

is postulated to be linearly proportional to the molecular gas surface density,

ΣSFR = 1.36ΣH2

τSF
, (31)

where the factor 1.36 is, again, to account for Helium, and τSF is the gas depletion
time, assumed to be constant τSF = 1.5 Gyr in the simulation (we will come back to
that number shortly).

The “classical” KS relation then forms from the separate atomic ΣHI and molec-
ular ΣH2 surface densities as

ΣSFR = 1.36

τSF
ΣH2 + 0 × ΣHI,

ΣHI+H2 = ΣH2 + ΣHI.

The steepening of the KS relation at low surface densities is simply due to gas becom-
ing predominantly atomic, and is fully explained by the physics of the atomic-to-
molecular transition. Indeed, observations support this interpretation (but we won’t
dive into that question here, it is too wide and deep for us to linger in it, as we are
rushing along our yellow brick road).
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5.1.1 How We Should Think About Star Formation

If star formation correlates well with molecular gas, it is useful to think about Eq. (31)
as our primary ansatz, and consider how τSF may depend on other properties (for
example, density). That thinking, however, is totally wrong!

A simple fact that we often forget is that density is not even defined without a
particular scale. After all, ρ = M/V , and if there is no V , there is no ρ. Hence, both
theoretically and observationally, we need to explicitly consider the range of spatial
scales that is relevant for our problem.

Let us take some spatial scale L . One can imagine the whole universe divided into
boxes of size L , like in a super-huge numerical simulation, or the universe observed
with a given telescope resolution. If we average gas densities on scale L , they become
meaningfully defined. Thus, Eq. (31) should really be replaced with

〈ρ̇∗〉L = 〈ρmol〉L

τSF
, (32)

where ρmol = 1.36ρH2 is the density of the molecular gas, and averaging is done
over the spatial scale L . In that case depletion time becomes the function of other
gas properties on scale L ,

τSF = τSF(L , 〈ρmol〉L , . . .).

In other words, we need to explicitly think of star formation relation as (at least)
a two-dimensional relation on the plane (L , 〈ρmol〉L), or, perhaps, even a higher-
dimensional relation if chemistry, magnetic fields, properties of ISM turbulence, etc.
are also important.

Armed with this understanding, we can now reinterpret the existing observational
constraints on various scales on a uniform basis.

In Fig. 43, I show the molecular KS relation for normal star forming galaxies (i.e.
not ULIRGs, with their complicated CO → H2 conversion) in the local universe and
at high redshift. These observations sample star formation on large scales (from many
hundreds of parsecs to several kilo-parsecs). They all are consistent with roughly
linear KS relation,

τSF ≈ const(L � 100 pc),

although with substantial intrinsic (i.e. exceeding the formal observational error)
scatter, and the actual value for τSF noticeably different at z = 0 (τSF ≈ 2 Gyr) and
high redshift (τSF ≈ 0.7 Gyr).

At the present moment (Sep 2013) it seems difficult to make any further inference
from these measurements. For example, is 2 = 0.7? In fact, they might, since local
and high redshift measurements probe very different, non-overlapping ranges of gas
surface density: few local observations reach 100 M�/ pc2, while all high redshift
measurement are way above that limit. The Feldmann et al. (2012a) model for the
XCO factor predicts that XCO/αCO factor increases gradually with the gas surface
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Fig. 43 Star formation rate surface density versus the surface density of the molecular gas for local
galaxies (left, Bigiel et al. (2011)) and high redshift normal star forming galaxies (right, Tacconi
et al. (2013))

density; Feldmann et al. (2012b) present, as an example, a cosmological simulation
with constant in time and space τSF = 1.5 Gyr, which is consistent with both the low
and high redshift measurements. We do not yet know how accurate the Feldmann
et al. (2012a) model is, but, at the very least, there exists a plausible counterexample
to any potential claim that low- and high-redshift KS relation are inconsistent with
each other.

The same uncertainty applies to the scatter around the mean KS relation. We do
know that the XCO factor varies across single galaxies and between different galaxies,
so some fraction of the scatter should be due to scatter in XCO. In addition, there
is scatter from the time dimension that we have so far ignored: CO emission from
the molecular gas is essentially instantaneous, but observational estimates of star
formation are not. For example, Schruba et al. (2010) show that the depletion time
is systematically higher around peaks of CO emission (molecular clouds where star
formation is just starting) than around peaks of H-α emission (star forming regions
where star formation is well under way).

This difference is purely due to the fact that we do not measure the instantaneous
rate of star formation, but use observational indicators that return a time-averaged star
formation rate over some characteristic time-scale (∼20 Myr for UV light, ∼5 Myr
for H-α). Hence, if we point our telescope on a freshly formed molecular cloud,
we will see a lower star formation rate than the actual instantaneous one—if the
cloud has been forming stars for only 1 Myr and we use H-α, we will measure a
5 Myr/1 Myr = 5 times lower star formation rate than the true one. Now, if we
point it at a mature star forming region, we will measure a higher time-averaged star
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formation rate than the instantaneous one, because 5 Myr ago the region contained
more molecular gas (and, hence, higher instantaneous star formation rate) than it has
right now.

The combined scatter due to variations in the XCO factor and the finite time-
averaging is easily quantifiable, though, and appears to be less than the actual
observed scatter in the KS relation (Feldmann et al. 2012b). This should not be
particularly surprising, though—it is hard to imagine that the nature is so kind to us
as to make each region of space with the same surface density of molecular gas to
have exactly the same star formation rate, surely there must be random or systematic
variation from place to place that affect star formation rate, and that will appear as
the true intrinsic scatter in Eq. (32).

There exist several other constraints we can place on τSF(L , 〈ρmol〉L , . . .). Lada
et al. (2010) found that on the scale of individual star-forming cores (∼1 pc) the
depletion time is also constant (i.e. independent of density) and is about 20 Myr, but
only if the density is above ρmin = 700 M�/ pc3. A threshold must exist in that case,
since any small-scale relation must be consistent with the large-scale one. Namely,
if on 1 pc scale we have

〈ρ̇∗〉1 =
⎧
⎨

⎩

〈ρmol〉1

20 Myr
, ρmol > ρmin,

0, ρmol < ρmin,

and on 500 pc scale we have a usual molecular KS relation,

〈ρ̇∗〉500 = 〈ρmol〉500

2 Gyr
,

then these two relations can be mutually consistent if and only if exactly 1 % of the
molecular gas sits above the small-scale density threshold ρmin—after all,

〈ρ̇∗〉500 =
〈
〈ρ̇∗〉1

〉

500
.

Another commonly used ansatz for the star formation rate is constant efficiency
per free-fall time,

τSF(L , 〈ρmol〉L , . . .) = τff(〈ρmol〉L)

εSF
= ε−1

SF

√
3π

32G〈ρmol〉L
,

or, in a more familiar form,

〈ρ̇∗〉L = εSF
〈ρmol〉L

τff
= εSF

〈ρmol〉3/2
L√

3π/(32G)
. (33)

The origin of that formula disappears in the depths of time; it is often used without
any attention to the scale under consideration. In an influential paper, Krumholz
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and Tan (2007) argued that many observational constraints are consistent with that
ansatz7 with εSF ≈ 1–2 % for a wide array of molecular densities, from average
molecular clouds to molecular cores.

However, observational constraints used by Krumholz and Tan (2007) sample
not only various densities, but also various spatial scales; namely, they all fall
along a particular track L2 × 〈ρmol〉L ≈ 104 cm−3 pc2 in the two-dimensional plane
(L , 〈ρmol〉L). In other words, observational constraints that support the “constant
efficiency per free-fall time” are equally well support the “constant efficiency per
unit scale”,

〈ρ̇∗〉L = εSF
〈ρmol〉L

τff
≈ εSF

〈ρmol〉L

τff(104 cm−3)(L/1 pc)
.

The two alternatives cannot be distinguished at present without additional observa-
tional constraints.

In fact, I am going to make a bold claim (and challenge anyone to refute it) that
all of the existing observational constraints are consistent with the linear (in density)
star formation ansatz in which the depletion time is function of scale only,

〈ρ̇∗〉L =
⎧
⎨

⎩

〈ρmol〉L

τSF(L)
, ρmol > ρmin(L),

0, ρmol < ρmin(L),

(34)

with

τSF(L) ∼ 2 Gyr × min

(
1,

L

L0

)
,

ρmin(L) ∼ ρ0 × min

(

1,
L2

0

L2

)

,

and L0 is in the range of a few hundred parsecs (for example, the scale height of the
gaseous disk). In the Milky Way galaxy ρ0 is such that the Lada et al. (2010) result
is matched (ρmin(L) ≈ 700 M�/ pc3 at L ∼ 1 pc), but in other galaxies it may be
different (for example, being proportional to the density of the atomic-to-molecular
transition).

Figure 44 shows two alternatives (linear star formation relation (34) and constant-
efficiency-per-free-fall-time star formation relation (33)) in a cartoon fashion. At
present, either one is a sensible model, as well as any other, intermediate or more
complex model, that still matches the observational constraints.

7One should never forget that the “constant efficiency per free-fall time” model is no more than an
ansatz; molecular clouds are turbulent and the free-fall time has no physical relevance on scales
above the sonic length.
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Fig. 44 Cartoon version of contours of constant depletion time (shown as different colored bands)
on the (L , 〈ρmol〉L ) plane. The left panel shows the linear star formation relation (34), while the right
panel shows the constant-efficiency-per-free-fall-time star formation relation (33). In the latter case
the depletion function must transition to a constant on the largest scale somehow to be consistent
with large-scale KS relation

5.2 Excursion Set Formalism in Star Formation

The idea of using Excursion Set formalism in star formation is based on a well
established fact: in isothermal supersonic turbulence the density PDF is lognormal,
in a direct analogy with the Gaussian distribution of the linear overdensity δ. Such
an approach was first attempted by Padoan and Nordlund (2002), picked up later by
Hennebelle and Chabrier (2008) and developed much further by Phil Hopkins in a
recent series of papers (Hopkins 2012a, b, 2013).

5.2.1 Refresher: Excursion Set Formalism

Excursion Set formalism (sometimes also called “Press-Schechter formalism”) deals
with a Gaussian random field δ(x) (and δ can be anything, for supersonic turbulence it
will be ln(ρ/ρ0)). For a Gaussian random field different wavenumbers of the Fourier
transform

δk ≡
∫

d3xδ(x)eikx

of the field are uncorrelated,

〈δk1
δ∗

k2
〉 = P(k1)δ

3
D(k1 − k2).

One can reverse the Fourier transform,

δ(x) =
∫

d3k
√

P(k)λke−ikx, (35)
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Fig. 45 Example of the
Gaussian random field at
three different values for the
smoothing scale R

with uncorrelated, normally distributed random numbers λk satisfying the relation
〈λk1

λ∗
k2

〉 = δ3
D(k1 − k2). Equation (35) should be considered in a generalized sense

(similar to Dirac delta-function), because for some P(k) the integral may actually
diverge. In that case δ(x) should be considered as a limit of the smoothed density
field,

δ(x) ≡ lim
R→0

δ(x; R) =
∫

d3k
√

P(k)λkW (k R)e−ikx,

where W (k R) is a low-pass filter (W (0) = 1, W (∞) = 0). An example of a Gaussian
random field at 3 different resolutions is shown in Fig. 45.

Excursion Set formalism considers δ(x; R) as a function of the filter scale R
and compares it with some barrier function b(R). Obviously, δ(x, R = ∞) = 0.
As R decreases, δ(x; R) starts deviating from zero. For some value of R it may
cross the barrier for the first time. The fraction of all δ(x; R) that cross the bar-
rier at R is called the first crossing distribution. For example, in the canonical
Press-Schechter formalism the barrier is constant, b = δL(t f ) = 1.69. Then the
first crossing distribution becomes (half) the mass function of dark matter halos with
Mh = 4πρ̄m R3/3.

In modeling star formation Excursion Set formalism can be used for several goals:

• First crossing distribution gives the mass function of largest bound objects—
molecular clouds.

• Last crossing distribution gives the mass function of smallest bound objects—
molecular cores/stars.

• It is useful for other purposes too: distribution of holes in the ISM, clustering of
stars, etc.

One only needs to define a barrier—but we have already considered it! After all,
gas collapses when it becomes gravitationally unstable, hence the barrier is simply
the stability criterion for the disk with finite thickness, our Eq. (24)—with a minor
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Fig. 46 Several predictions of the Excursion Set formalism as a theory of star formation: GMC
mass functions for the Milky Way, LMC, and M31 (right, adopted from Hopkins (2012a)) and
clump mass function (bottom, adopted from Hopkins (2012b))

correction of adding turbulent velocity dispersion σ2
t to the gas sound speed c2

S , since
turbulence also provides support against gravitational collapse.

Excursion Set formalism makes predictions that are computable analytically and
match a large variety of observations unexpectedly well (see Fig. 46). The final verdict
on this novel approach is still pending, with opinions ranging from “it should never
work” to “it solves all the problems”. So, if you are bold enough, make your bet …

6 Stellar Feedback

Stars affect their environments by their feedback—anyone reading these lines knows
that well, without the stellar feedback we would not even exist (as there would not
exist planets made out of heavy elements).
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Fig. 47 Various pathways
for stellar feedback

Fig. 48 Energy injection
rate (=luminosity) per unit
mass for the total radiation,
winds, and supernovae as a
function of time for a normal
stellar population at solar
metallicity

6.1 What Escapes from Stars

However, stellar feedback is not just supernovae (sometimes that’s the impression
one gets by reading simulation papers). Stars affect their environments in several
ways: supernovae (both type II and type Ia), stellar winds from massive stars, mass
loss from AGB and planetary nebulae, and, of course, radiation. Each of these modes
inject into surrounding gas energy, momentum, mass, metals, dust, and cosmic rays.
The various pathways the inputs and outputs are connected are shown in Fig. 47. If
you think the feedback is complicated, then you are right!

It is easy to get lost in this maze of feedback pathways. But one important fact
should light our way (literally)—by far the largest energy output of stars is light! Just
as an illustration, I show in Fig. 48, the energy production rate as a function of time
for a normal stellar population at solar metallicity. The bolometric luminosity of stars
dwarfs all other feedback channels at all times. And we know that at least half of that
energy is re-radiated in the infrared by dust, hence a substantial fraction of stellar
light is indeed absorbed by the surrounding gas. We should, therefore, consider that
feedback channel very seriously.
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6.1.1 Radiation Pressure

Massive (hence, young) stars spend a substantial fraction of their lives heavily embed-
ded into the surrounding gas and dust; for heavily obscured stars most of their light is
absorbed. Since photons have momentum, absorbing all light from a star/star cluster
of luminosity L injects momentum into the surrounding gas,

ṗ1 = L

c
.

The energy, however, is conserved—the absorbed bolometric luminosity of the star
must be re-emitted by dust in the infrared. If there is enough dust around a young
massive star (and, at least in the Milky Way, there is), the dust will be optically thick
to its own IR radiation. That radiation will do work on the surrounding gas, i.e. will
inject extra momentum, so that the total momentum injection rate is

ṗtot = (1 − fesc + τIR)
L

c
, (36)

where, in order to be completely general, I included the fraction fesc of stellar radi-
ation (of all frequencies) that escapes the star forming region. The new factor τIR
is easy to derive for a homogeneous medium (Gayley et al. 1995). Since energy is
conserved, the radiation flux at each radius R from the star is still

FR = L

4πR2 .

Hence, the momentum (in the radial direction) imparted on the gas between R and
R + d R is simply

d ṗIR = 4πR2 FR

c
κd R = L

c
dτ ,

and, hence,

ṗIR = τIR
L

c
.

In the infrared dust opacity is

κIR ≈ 3
cm2

g

(
Td

100 K

)2

(Semenov et al. 2003). Observational estimates of τIR at Td = 100 K are shown in
Fig. 49; radiation pressure is particularly important for large stellar clusters.
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Fig. 49 Observational
estimates of τIR for GMC
clumps (blue squares) and
young stellar clusters (stars).
Adopted from Agertz et al.
(2013)

Fig. 50 Time evolution of the cumulative injected specific momentum (left) and specific energy
(right) for various feedback channels at solar metallicity (solid lines) and at Z = 0.01Z� (dashed
lines). Notice that supernovae kick in after all other feedback channels already fired. Adopted from
Agertz et al. (2013)

6.1.2 All Feedback, All the Time

Stars, of course, do not have a freedom to selectively fire only some of their feedback
channels, they all work all the time. In Fig. 50, the time evolution of the momentum
and energy injection is shown for several dominant feedback modes. Supernovae
form the last episode in the feedback fireworks—by the time they start in earnest
(after about 10 Myr after the onset of star formation) all other feedback channels
have already finished.

In fact, with all likelihood, supernovae are not important to actually destroying
molecular clouds (and, hence, controlling the efficiency of star formation, Fall et al.
2010). They may be important for heating the overall ISM, for stabilizing the disk,
for driving galactic winds, but star formation they control not.
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Fig. 51 Density and
temperature in a
computational cell evolving
in response to various
feedback channels: only
energy from supernovae
(red), energy and momentum
from supernovae (magenta),
only momentum feedback
from all channels (blue), and
all feedback channels acting
together (black). Adopted
from Agertz et al. (2013)

The relative role of different feedback channels can be understood even better with
a simple numerical exercise—a single computational cell “simulation”. Figure 51
shows the fate of a such a cell when various feedback channels are switched on and
off.

The first important lesson is that purely thermal feedback—injecting all of the
supernova energy as thermal energy into the parent cell (or particle in case of SPH)
of even a large stellar cluster does not do anything, the cooling times are always so
short that the thermal energy is quickly radiated away. This is not a new result, it
has been known since the dawn of numerical galaxy formation, and re-discovered
independently by many research groups; but it does pose a dilemma for cosmological
and even galactic-scale simulations—the only direct way of implementing stellar
feedback does not work, and one has to use a sub-grid model, i.e. a specific recipe
about how to implement the feedback in a numerical code.

Figure 51 may offer a clue how such a sub-grid model may be implemented: other
feedback channels produce a large effect on the dynamics of a single cell, and, hence,
may have a significant effect on the dynamics of larger scales as well. There is just
one problem with that approach—actual stellar feedback like Eq. (36) is operating on
scales of molecular cores and their very vicinities, on sub-parsec scales. Whenever
we use, say, the radiation pressure formula in cosmological (or even galactic-scale)
simulations, we are injecting the momentum on scales of many tens, even hundreds
of parsecs, well beyond the range of scales where it is actually operating. Hence,
using Eq. (36) in a cosmological code is also a sub-grid model, an ansatz that is
a priori as good or bad as any other sub-grid model. Not surprising, then, that the
radiation pressure is gradually falling out of fashion.

Before we trash all sub-grid models or pick one of them and place it on the throne,
it is worth taking a step back and re-thinking what we are actually trying to achieve.
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6.2 Unconventional Marriage: Feedback and Star Formation

If you did not skip the previous chapter, my dear reader, then you know that star
formation is inefficient—the depletion time τSF is of the order of a Gyr (give or take
a factor of 2–3), while molecular clouds are short-lived (10–20 Myr). During their
lifetimes molecular clouds convert only a small fraction, mere percents, of their gas
into stars. A natural conclusion from that fact is, since star formation is inefficient,
then so must be the feedback. And that conclusion is utterly wrong!

Do you recall a simulation of a Milky Way like galaxy that I used to illustrate the
properties of the gaseous halo (Fig. 17)? Have you wondered why I never showed
you the circular velocity profile for that galaxy? There is a good reason I have not—I
am ashamed to! While the gaseous halo for that galaxy may look ok, the disk is
totally wrong, it has an extremely dense spike at the center, with the circular velocity
peaking at 450 km/s, more than twice the rotation velocity of the Milky Way. The
reason for such a huge discrepancy is the absence of any feedback process in the
simulation.

If we learned anything after 20+ years of modeling galaxy formation, then it
is that the central spikes in circular velocity (caused by unrealistic central mass
concentrations) can only be destroyed by strong feedback. No other physics can do
the trick—in fact, as simulations grew more sophisticated, included more physics,
and reached higher resolution, the central mass concentration problem became worse.
It is a real, physical problem, not a numerical one— the high-redshift progenitors of
normal galaxies are too dense, and these early dense gaseous concentrations survive
all the subsequent adventures of galaxy evolution; if not blown out, they will become
large stellar bulges.

Indeed, that was commonly occurring in simulations until only a few years ago—
for example, check out beautiful pictures of center-heavy galaxies in Stinson et al.
(2010). At the same time, as observers figured out the difference between the real
bulges and pseudo-bulges (central features formed by secular evolution from barred
disks), they realized that a significant fraction, perhaps as much as 50 %, of galaxies
are actually bulgeless, pure disks.

All these examples illustrate one crucially important conclusion about star for-
mation and feedback—while start formation is inefficient, the feedback is actually
strong. These two facts may be deeply connected, but we are not going to dive into the
connection between star formation and feedback, for our purpose what is important
is this apparent dichotomy in behavior.

A good illustration of that dichotomy comes from the so-called “abundance match-
ing” exercise—a match between the observationally derived8 stellar mass and the
theoretically known mass function of dark matter halos. Such a match results in a
one-to-one correspondence between the stellar mass and the halo mass for individ-
ual halos (or, in a more complex implementation of the abundance matching idea, a
distribution of stellar masses for a given halo mass). Figure 52 shows a comparison

8Never forget that stellar masses are not observed, they are always derived from observations of
luminosity functions, with all the inherent in spectral synthesis uncertainties and biases.
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Fig. 52 Abundance
matching in action: stellar
vs. total mass for dark matter
halos from several
independent groups; they all
agree that star formation is
inefficient. Adopted from
Behroozi et al. (2013)

(and uncertainty) of the stellar mass—halo mass relation for several independent
applications of that approach from Behroozi et al. (2013).

The most important result of the abundance matching exercise is that stellar masses
of low mass halos are very small, roughly M∗ ∝ M2.5

h for Mh � 1012 M�. To get
such a behavior, it is not enough to make star formation inefficient—that would still
result in stellar mass being proportional to halo mass, the inefficiency would only
make the coefficient of proportionality small—but it also requires the feedback to be
progressively more efficient in lower mass galaxies to sculpt the inferred M∗ ∝ M2.5

h
relation.

Attempts to model the feedback as a sub-grid model are as old as the galaxy
formation simulations themselves. It is not too instructive to review all of them, as
until 2010 none of the sub-grid models were particularly successful. The important
thing to remember about any sub-grid model is that it would only work over a finite
range of spatial scales. If the model is good, that range would be sufficiently large
(say, a decade in spatial scale); if the model is bad, the range may be zero. Even if the
model is good, but its range of validity does not match the resolution of simulations,
then it would not work well.

Indeed, that is what have happened with one simple sub-grid feedback model. In
1997 in his Ph.D. thesis, Jeroen Gerritsen proposed a simple way to make feedback
strong—simply to disable cooling in star forming regions for several tens of Myr
(we now call this method “delayed cooling”). The model did not work too well with
the spatial resolution simulations were able to reach in 1997. However, miracles do
happen—as the resolution improved, the delayed cooling model appeared to work
better and better, until, finally, in 2010 it was declared to be a panacea for galaxy
formation (Governato et al. 2010)!

Figure 53 gives two examples of how well modern simulations with delayed cool-
ing feedback reproduce observations, but similarly impressive examples for various
observational constraints are abound.
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Fig. 53 Left Stellar versus total mass from abundance matching (green line) and modern galaxy
formation simulations (open and filled circles—adopted from Munshi et al. (2013)). Right Face-
and edge-on projections of Eris simulation of the Milky Way galaxy (adopted from Guedes et al.
(2011))

6.2.1 Why Delayed Cooling Works

While it is easy to declare the delayed cooling a success, it is much harder to under-
stand what it actually means. As such, it is just a numerical trick, without any serious
physical justification. The fact that it works may be a pure coincidence; alterna-
tively, it can be a manifestation of a real physical process that operates on sub-parsec
scales, but its consequences on ∼100 pc scales appear as if cooling was switched
off. In fact, it is easy to come up with several real physical processes that will all
manifest themselves as delayed cooling on large scales:

• radiation pressure from massive stars (we now know it is important) provides
support for gas that “does not cool”, i.e. if treated as an effective additional pressure,
that pressure would not be affected by the cooling processes in the gas, but will
diminish after about 10 Myr;

• coronal gas—the hot, million-degree gas produced in supernova explosions may
accumulate in regions of low density in a supersonically turbulent IGM; cooling
times in such gas will depend on its density, but generally will be of the order of
several to several tens of Myr;

• as stellar feedback continue to stir supersonic turbulence in molecular clouds on
small scales, the energy of the kinetic motions will accumulate to the point at
which the dissipation rate will approximately equal the production rate; while the
dissipation time-scale is likely to be short, the supersonic turbulence (i.e. highly
super-thermal additional pressure in the gas) will be maintained for the duration
of stellar feedback, several tens of Myr;
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• cosmic rays produced in supernova explosions are observationally known to pro-
vide significant additional support in the magnetized molecular clouds; cosmic
rays diffuse out of GMC on time-scales of tens of Myr.

I am sure that list can be easily extended, but it already serves our purposed well—
numerous real small-scale physical processes may hide themselves under the large-
scale mask of “delayed cooling”, and one, several, all of them, or different combina-
tions of them in different environments may be the actual feedback process(es) that
is/are responsible for making the real galaxies as they are …

6.3 Toward the Future

So, where do we go from there? If only we could figure out which of the actual
feedback channels hides behind the mask of delayed cooling, the galaxy formation
(of normal disk galaxies—the AGN feedback is entirely different story) will be
essentially solved (well, hopefully you do not take me as being too optimistic).

These feedback processes are more-or-less understood, as, hopefully, I persuaded
you in the beginning of this chapter. Actually modeling them in the cosmological
and galactic-scale simulations is not trivial, but big strides in that directions have
been already made. We may still argue occasionally how to do it better, or what the
most appropriate value for, say, τIR should be, but the importance of the modeling
feedback correctly is not a subject of debate any more.

The good piece of news is that even if various feedback channels are tuned to
match the basic observational constraints like the stellar mass vs. total halo mass,
Kennicutt-Schmidt relation, rotational velocity curves, etc., simulated galaxies in
runs with different feedback channels still look amazingly different (Fig. 54), and
there lies the key to the eventual success.

Hence, the plan for the future is to identify the best observational probes that will
help us understand which of all of the potential feedback channels are important in
which environments and on what spatial scales. This is left as an exercise for the
reader...

7 Answers to Brain Teasers

1. Sound waves indeed do not dissipate. However, they also do not grow with time,
since they are stable perturbations, while large-scale, unstable perturbations in
both dark matter and gas grow. Hence, relative to the large-scale perturbations,
the small-scale sound waves become smaller and smaller, i.e. they appear to be
“suppressed”.

2. The proper term for “Lyman-α absorption” is resonant scattering. A Lyman-α
photon is re-emitted by the atom, but in the meantime that atom experienced
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Fig. 54 Face-on and edge-on maps of simulated galactic disks with different small-scale feedback
models. Separate rows show gas surface density (top), mass weighted average gas temperature
(middle), and stellar surface density (bottom). Columns from left to right are no feedback, all feed-
back channels from Fig. 47, all feedback with extra radiation pressure, delayed cooling feedback,
feedback model with extra energy variable (adopted from Agertz et al. (2013))

a large number of collisions with other atoms and ions, so its momentum is
now unrelated to the momentum it had at the moment of absorption. Hence, the
re-emitted Lyman-α photon will be send out into a random direction in the frame
of the atom, and will not reach our telescope. For us, that photon is lost, hence
we, sometimes, call it absorption.
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3. The term “equation of state” relates the perturbations in the gas pressure (or
temperature) to those of the density. If we impose (adiabatically) a perturbation
δρ to the gas density, the instantaneous response to the pressure will be identical to
the ideal gas, δP = c2

Sδρ. Only with time adiabatic expansion and photoheating
will bring that perturbation back to the temperature-density relation.

4. A typical ionizing photon is not sitting at the Lyman edge, it has the energy of
E0 + 〈ΔE〉 (see Eq. 9), which is about 40–50 eV for the cosmic background.
The ionizing cross-section falls off with energy as E−3, hence the typical cross-
section is ∼(1–2)×10−19 cm2 instead of 6.3×10−18 cm2. In addition, the typical
ionization level in the forest is 10−5, which requires τ = ln(105) ≈ 10 to neu-
tralize. Hence, hydrogen absorbers only become fully neutral at column densities
of NH ∼ (0.5–1) × 1020 cm−2.

5. This one is really tricky. In fact, I do not know the full answer to it. One possible
reason why Lyman-α forest is not turbulent was suggested to me by Andrea
Ferrara: for turbulence to develop, the gas needs to have vorticity, but in the linear
regime vorticity in cosmic gas decays, so there should be no vorticity at δ ≈ 0
in the forest. Non-linear evolution will generate some vorticity, but since most of
the forest is not extremely non-linear, it is plausible that the vorticity generated
in the forest may not be enough to create a full turbulent cascade.

References

Agertz, O., Kravtsov, A. V., Leitner, S. N., & Gnedin, N. Y. 2013, ApJ, 770, 25
Altay, G., Theuns, T., Schaye, J., Crighton, N. H. M., & Dalla Vecchia, C. 2011, ApJL, 737, L37.
Anderson, M. E. & Bregman, J. N. 2010, ApJ, 714, 320
Barnes, J. & Efstathiou, G. 1987, ApJ, 319, 575
Begelman, M. C. & Shlosman, I. 2009, ApJL, 702, L5
Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2013, ApJ, 770, 57
Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008,

AJ, 136, 2846
Bigiel, F., Leroy, A. K., Walter, F., Brinks, E., de Blok, W. J. G., Kramer, C., Rix, H. W., Schruba,

A., Schuster, K., Usero, A., & Wiesemeyer, H. W. 2011, ApJL, 730, L13+.
Binney, J. & Tremaine, S. 1987, Galactic dynamics.
Blitz, L. & Robishaw, T. 2000, ApJ, 541, 675
Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ArXiv e-prints.
Bothwell, M. S., Smail, I., Chapman, S. C., Genzel, R., Ivison, R. J., Tacconi, L. J., Alaghband-

Zadeh, S., Bertoldi, F., Blain, A. W., Casey, C. M., Cox, P., Greve, T. R., Lutz, D., Neri, R.,
Omont, A., & Swinbank, A. M. 2013, MNRAS, 429, 3047

Chen, H.-W. 2012, MNRAS, 427, 1238
Chen, H.-W., Perley, D. A., Pollack, L. K., Prochaska, J. X., Bloom, J. S., Dessauges-Zavadsky,

M., Pettini, M., Lopez, S., Dall’aglio, A., & Becker, G. D. 2009, ApJ, 691, 152
Croft, R. A. C., Weinberg, D. H., Katz, N., & Hernquist, L. 1998, ApJ, 495, 44
Dall’Aglio, A., Wisotzki, L., & Worseck, G. 2008, A&Ap, 491, 465
Draine, B. T. 1978, ApJS, 36, 595
Draine, B. T. & Bertoldi, F. 1996, ApJ, 468, 269
Fall, S. M., Krumholz, M. R., & Matzner, C. D. 2010, ApJL, 710, L142
Feldmann, R., Gnedin, N. Y., & Kravtsov, A. V. 2012a, ApJ, 747, 124



Modeling Physical Processes at Galactic Scales and Above 83

Feldmann, R., Gnedin, N. Y., & Kravtsov, A. V. 2012b, ApJ, 758, 127
Gayley, K. G., Owocki, S. P., & Cranmer, S. R. 1995, ApJ, 442, 296
Glover, S. C. O. & Abel, T. 2008, MNRAS, 388, 1627
Glover, S. C. O. & Mac Low, M.-M. 2011, MNRAS, 412, 337.
Gnedin, N. Y. 2012, ApJ, 754, 113
Gnedin, N. Y., Baker, E. J., Bethell, T. J., Drosback, M. M., Harford, A. G., Hicks, A. K., Jensen,

A. G., Keeney, B. A., Kelso, C. M., Neyrinck, M. C., Pollack, S. E., & van Vliet, T. P. 2003, ApJ,
583, 525

Gnedin, N. Y. & Hollon, N. 2012, ApJS, 202, 13
Gnedin, N. Y. & Hui, L. 1998, MNRAS, 296, 44
Gnedin, N. Y. & Kravtsov, A. V. 2010, ApJ, 714, 287
Gnedin, N. Y. & Kravtsov, A. V. 2011, ApJ, 728, 88
Gnedin, N.Y., & Draine, B.T. (2014), ApJ, 795, 37
Governato, F., Brook, C., Mayer, L., Brooks, A., Rhee, G., Wadsley, J., Jonsson, P., Willman, B.,

Stinson, G., Quinn, T., & Madau, P. 2010, Nature, 463, 203
Grcevich, J. & Putman, M. E. 2009, ApJ, 696, 385
Guedes, J., Callegari, S., Madau, P., & Mayer, L. 2011, ApJ, 742, 76
Gupta, A., Mathur, S., Krongold, Y., Nicastro, F., & Galeazzi, M. 2012, ApJL, 756, L8
Haffner, L. M., Dettmar, R.-J., Beckman, J. E., Wood, K., Slavin, J. D., Giammanco, C., Madsen,

G. J., Zurita, A., & Reynolds, R. J. 2009, Reviews of Modern Physics, 81, 969
Haiman, Z., Abel, T., & Rees, M. J. 2000, ApJ, 534, 11
Heavens, A. & Peacock, J. 1988, MNRAS, 232, 339
Heiderman, A., Evans, II, N. J., Allen, L. E., Huard, T., & Heyer, M. 2010, ApJ, 723, 1019
Hennebelle, P. & Chabrier, G. 2008, ApJ, 684, 395
Hitschfeld, M., Kramer, C., Schuster, K. F., Garcia-Burillo, S., & Stutzki, J. 2009, A&Ap, 495, 795
Hopkins, P. F. 2012a, MNRAS, 423, 2016
Hopkins, P. F. 2012b, MNRAS, 423, 2037
Hopkins, P. F. 2013, MNRAS, 430, 1653
Hui, L. & Gnedin, N. Y. 1997, MNRAS, 292, 27
Kennicutt, Jr., R. C. 1989, ApJ, 344, 685
Kennicutt, Jr., R. C. 1998, ApJ, 498, 541
Kereš, D., Katz, N., Weinberg, D. H., & Davé, R. 2005, MNRAS, 363, 2
Klypin, A., Hoffman, Y., Kravtsov, A. V., & Gottlöber, S. 2003, ApJ, 596, 19
Kravtsov, A. V. 2003, ApJL, 590, L1
Kravtsov, A. V. 2013, ApJL, 764, L31
Krumholz, M. R., Leroy, A. K., & McKee, C. F. 2011, ApJ, 731, 25
Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2009, ApJ, 693, 216
Krumholz, M. R. & Tan, J. C. 2007, ApJ, 654, 304
Lada, C. J., Lombardi, M., & Alves, J. F. 2010, ApJ, 724, 687
Leroy, A. K., Walter, F., Brinks, E., Bigiel, F., de Blok, W. J. G., Madore, B., & Thornley, M. D.

2008, AJ, 136, 2782
Lidz, A., Faucher-Giguère, C.-A., Dall’Aglio, A., McQuinn, M., Fechner, C., Zaldarriaga, M.,

Hernquist, L., & Dutta, S. 2010, ApJ, 718, 199
Magdis, G. E., Daddi, E., Béthermin, M., Sargent, M., Elbaz, D., Pannella, M., Dickinson, M.,

Dannerbauer, H., da Cunha, E., Walter, F., Rigopoulou, D., Charmandaris, V., Hwang, H. S., &
Kartaltepe, J. 2012, ApJ, 760, 6

Maller, A. H. & Bullock, J. S. 2004, MNRAS, 355, 694
Mathis, J. S., Mezger, P. G., & Panagia, N. 1983, A&Ap, 128, 212
McDonald, P., Miralda-Escudé, J., Rauch, M., Sargent, W. L. W., Barlow, T. A., & Cen, R. 2001,

ApJ, 562, 52
McDonald, P., Seljak, U., Burles, S., Schlegel, D. J., Weinberg, D. H., Cen, R., Shih, D., Schaye,

J., Schneider, D. P., Bahcall, N. A., Briggs, J. W., Brinkmann, J., Brunner, R. J., Fukugita, M.,
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Stanimirović, S., Dickey, J. M., Krčo, M., & Brooks, A. M. 2002, ApJ, 576, 773
Stinson, G. S., Bailin, J., Couchman, H., Wadsley, J., Shen, S., Nickerson, S., Brook, C., & Quinn,

T. 2010, MNRAS, 408, 812
Tacconi, L. J., Neri, R., Genzel, R., Combes, F., Bolatto, A., Cooper, M. C., Wuyts, S., Bournaud,

F., Burkert, A., Comerford, J., Cox, P., Davis, M., Förster Schreiber, N. M., García-Burillo, S.,
Gracia-Carpio, J., Lutz, D., Naab, T., Newman, S., Omont, A., Saintonge, A., Shapiro Griffin,
K., Shapley, A., Sternberg, A., & Weiner, B. 2013, ApJ, 768, 74.

Toomre, A. 1964, ApJ, 139, 1217
Trowland, H. E., Lewis, G. F., & Bland-Hawthorn, J. 2013, ApJ, 762, 72
Valenzuela, O., Rhee, G., Klypin, A., Governato, F., Stinson, G., Quinn, T., & Wadsley, J. 2007,

ApJ, 657, 773
van de Voort, F., Schaye, J., Booth, C. M., Haas, M. R., & Dalla Vecchia, C. 2011, MNRAS, 414,

2458.
Viel, M., Becker, G. D., Bolton, J. S., & Haehnelt, M. G. 2013, ArXiv e-prints.
Weiner, B. J. & Williams, T. B. 1996, AJ, 111, 1156
Weingartner, J. C. & Draine, B. T. 2001, ApJ, 548, 296
Wiersma, R. P. C., Schaye, J., & Smith, B. D. 2009, MNRAS, 393, 99
Wolcott-Green, J., Haiman, Z., & Bryan, G. L. 2011, MNRAS, 18, 838
Wolfire, M.G., Tielens, A.G.G.M., Hollenbach, D., & Kaufman, M.J. (2008), ApJ, 680, 384–397
Wong, T. & Blitz, L. 2002, ApJ, 569, 157
Springel, V., 2010, MNRAS, 401, 791
Springel, V., 2005, MNRAS, 364, 1105



Physical Processes in the Interstellar Medium

Ralf S. Klessen and Simon C.O. Glover

1 Introduction

Understanding the physical processes that govern the dynamical behavior of the
interstellar medium (ISM) is central to much of modern astronomy and astrophysics.
The ISM is the primary galactic repository out of which stars are born and into which
they deposit energy, momentum and enriched material as they die. It constitutes the
anchor point of the galactic matter cycle, and as such is the key to a consistent picture
of galaxy formation and evolution. The dynamics of the ISM determines where and
when stars form. Similarly, the properties of the planets and planetary systems around
these stars are intimately connected to the properties of their host stars and the details
of their formation process.

When we look at the sky on a clear night, we can notice dark patches of obscuration
along the band of the Milky Way. These are clouds of dust and gas that block the light
from distant stars. With the current set of telescopes and satellites we can observe dark
clouds at essentially all frequencies possible, ranging from low-energy radio waves
all the way up to highly energetic γ-rays. We have learned that all star formation
occurring in the Milky Way and other galaxies is associated with these dark clouds
that mostly consist of cold molecular hydrogen and dust. In general, these dense
clouds are embedded in and dynamically connected to the larger-scale and less dense
atomic component. Once stellar birth sets in, feedback becomes important. Massive
stars emit copious amounts of ultraviolet photons and create bubbles of hot ionized
plasma, thus converting ISM material into a hot and very tenuous state.

We shall see in this lecture that we cannot understand the large-scale dynamics
of the ISM without profound knowledge of the underlying microphysics. And vice

R.S. Klessen (B) · S.C.O. Glover
Zentrum Für Astronomie der Universität Heidelberg, Heidelberg, Germany
e-mail: klessen@uni-heidelberg.de

S.C.O. Glover
e-mail: glover@uni-heidelberg.de

© Springer-Verlag Berlin Heidelberg 2016
Y. Revaz et al. (eds.), Star Formation in Galaxy Evolution: Connecting Numerical
Models to Reality, Saas-Fee Advanced Course 43,
DOI 10.1007/978-3-662-47890-5_2

85



86 R.S. Klessen and S.C.O. Glover

versa, we will argue that dynamical processes on large galactic scales determine
the local properties of the different phases of the ISM, such as their ability to cool
and collapse, and to give birth to new stars. ISM dynamics spans a wide range of
spatial scales, from the extent of the galaxy as a whole down to the local blobs
of gas that collapse to form individual stars or binary systems. Similarly, it covers
many decades in temporal scales, from the hundreds of millions of years it takes to
complete one galactic rotation down to the hundreds of years it takes an ionization
front to travel through a star-forming cloud. This wide range of scales is intricately
linked by a number of competing feedback loops. Altogether, characterizing the ISM
is truly a multi-scale and multi-physics problem. It requires insights from quantum
physics and chemistry, as well as knowledge of magnetohydrodynamics, plasma
physics, and gravitational dynamics. It also demands a deep understanding of the
coupling between matter and radiation, together with input from high-resolution
multi-frequency and multi-messenger astronomical observations.

By mass, the ISM consists of around 70 % hydrogen (H), 28 % helium (He), and
2 % heavier elements. The latter are generally termed metals in the sometimes very
crude astronomical nomenclature. We give a detailed account of the composition of
the ISM in Sect. 2. Because helium is chemically inert, it is customary, and indeed
highly practical, to distinguish the different phases of the ISM by the chemical
state of hydrogen. Ionized bubbles are called Hii regions, while atomic gas is often
termed Hi gas, in both cases referring to the spectroscopic notation. Hii regions are
best observed by looking at hydrogen recombination lines or the fine structure lines
of ionized heavy atoms. The properties of Hi gas are best studied via the 21 cm
hyperfine structure line of hydrogen. Dark clouds are sufficiently dense and well-
shielded against the dissociating effects of interstellar ultraviolet radiation to allow
H atoms to bind together to form molecular hydrogen (H2). They are therefore called
molecular clouds.

H2 is a homonuclear molecule. Its dipole moment vanishes and it radiates
extremely weakly under normal Galactic ISM conditions. Direct detection of H2
is therefore generally possible only through ultraviolet absorption studies. Due to
atmospheric opacity these studies can only be done from space, and are limited to
pencil-beam measurements of the absorption of light from bright stars or active galac-
tic nuclei (AGN). We note that rotational and ro-vibrational emission lines from H2
have indeed been detected in the infrared, both in the Milky Way and in other galax-
ies. However, this emission comes from gas that has been strongly heated by shocks
or radiation, and it traces only a small fraction of the overall amount of molecular
hydrogen. Due to these limitations, the most common tool for studying the molecu-
lar ISM is radio and sub-millimeter emission either from dust grains or from other
molecules that tend to be found in the same locations as H2. By far the most com-
monly used molecular tracer is carbon monoxide with its various isotopologues. The
most abundant, and hence easiest to observe is 12C16O, usually referred to simply as
12CO or just CO. However, this isotopologue is often so abundant that its emission is
optically thick, meaning that it only traces conditions reliably in the surface layers of
the dense substructure found within most molecular clouds. The next most abundant
isotopologues are 13C16O (usually written simply as 13CO) and 12C18O (usually just
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C18O). Their emission is often optically thin and can freely escape the system. This
allows us to trace the full volume of the cloud. As CO has a relatively low critical
density and also freezes out on dust grains at very high densities, other tracers such
as HCN or N2H+ need to be used to study conditions within high density regions
such as prestellar cores. We discuss the microphysics of the interaction between radi-
ation and matter and the various heating and cooling processes that determine the
thermodynamic response of the various phases of the ISM in Sect. 3.

A key physical agent controlling the dynamical evolution of the ISM is turbulence.
For a long time it was thought that supersonic turbulence in the interstellar gas could
not produce significant compressions, since this would result in a rapid dissipation
of the turbulent kinetic energy. In order to avoid this rapid dissipation of energy,
appeal was made to the presence of strong magnetic fields in the clouds, which were
thought to greatly reduce the dissipation rate. However, it was later shown in high-
resolution numerical simulations and theoretical stability analyses that magnetized
turbulence dissipates energy at roughly the same rate as hydrodynamic turbulence. In
both cases, the resulting density structure is highly inhomogeneous and intermittent
in time. Today, we think that ISM turbulence plays a dual role. It is energetic enough
to counterbalance gravity on global scales, but at the same time it may provoke local
collapse on small scales. This apparent paradox can be resolved when considering that
supersonic turbulence establishes a complex network of interacting shocks, where
converging flows generate regions of high density. These localized enhancements can
be sufficiently large for gravitational instability to set in. The subsequent evolution
now depends on the competition between collapse and dispersal. The same random
flows that create high-density regions in the first place may also destroy them again.
For local collapse to result in the formation of stars, it must happen rapidly enough
for the region to decouple from the flow. Typical collapse timescales are found to be
comparable to dispersal times of shock-generated density fluctuations in the turbulent
gas. This makes the outcome highly unpredictable and theoretical models are based
on stochastic theory. In addition, supersonic turbulence dissipates quickly and so
needs to be continuously driven for the galaxy to reach an approximate steady state.
Finding and investigating suitable astrophysical processes that can drive interstellar
turbulence remains a major challenge. We review the current state of affairs in this
field in Sect. 4.

We think that molecular clouds form by a combination of turbulent compression
and global instabilities. This process connects large-scale dynamics in the galaxy
with the localized transition from warm, tenuous, mostly atomic gas to a dense, cold,
fully molecular phase. The thermodynamics of the gas, and thus its ability to respond
to external compression and consequently to go into collapse, depends on the balance
between heating and cooling processes. Magnetic fields and radiative processes also
play an important role. The chemical reactions associated with the transition from
H to H2, the importance of dust shielding, and the relation between molecular cloud
formation and the larger galactic context are discussed in Sect. 5.

These clouds constitute the environment where new stars are born. The loca-
tion and the mass growth of young stars are therefore intimately coupled to the
dynamical properties of their parental clouds. Stars form by gravitational collapse
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of shock-compressed density fluctuations generated from the supersonic turbulence
ubiquitously observed in molecular clouds. Once a gas clump becomes gravitation-
ally unstable, it begins to collapse and its central density increases considerably until
a new stars is born. Altogether, star formation in molecular clouds can be seen as a
two-phase process. First, supersonic turbulence creates a highly transient and inho-
mogeneous molecular cloud structure that is characterized by large density contrasts.
Some of the high-density fluctuations are transient, but others exceed the critical mass
for gravitational contraction, and hence begin to collapse. Second, the collapse of
these unstable cores leads to the formation of individual stars and star clusters. In
this phase, a nascent protostar grows in mass via accretion from the infalling enve-
lope until the available gas reservoir is exhausted or stellar feedback effects become
important and remove the parental cocoon. In Sect. 6, we discuss the properties of
molecular cloud cores, the statistical characteristics of newly born stars and star clus-
ters, and our current theoretical models of dynamical star formation including the
distribution of stellar masses at birth.

Finally, we conclude these lecture notes with a short summary in Sect. 7.

2 Composition of the ISM

2.1 Gas

The gas in the ISM is composed almost entirely of hydrogen and helium, with
hydrogen accounting for around 70 % of the total mass, helium for 28 %, and all other
elements for the remaining 2 %. The total gas mass in the Milky Way is difficult to
estimate, but is probably close to 1010 M� (Kalberla and Kerp 2009). The majority of
the volume of the ISM is occupied by ionized gas, but the total mass associated with
this component is not more than around 25 % of the total gas mass. The majority of
the mass is located in regions dominated by neutral atomic gas (H, He) or molecular
gas (H2). Much of the atomic gas and all of the molecular gas is found in the form
of dense clouds that occupy only 1–2 % of the total volume of the ISM.

The thermal and chemical state of the ISM is conventionally described in terms
of a number of distinct phases. An early and highly influential model of the phase
structure of the ISM was put forward by Field et al. (1969), who showed that if one
assumes that the atomic gas in the ISM is in thermal equilibrium, then there exists
a wide range of pressures for which there are two thermally stable solutions: one
corresponding to cold, dense gas with T ∼ 100 K that we can identify with the
phase now known as the Cold Neutral Medium (CNM), and a second corresponding
to warm, diffuse gas with T ∼ 104 K that we can identify with the phase now
known as the Warm Neutral Medium (WNM). In the Field et al. (1969) model, gas
at intermediate temperatures is thermally unstable and depending on its density will
either cool down and increase its density until it joins the CNM, or heat up and reduce
its density until it joins the WNM.
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This two-phase model of the ISM was extended by McKee and Ostriker (1977),
who pointed out that supernovae exploding in the ISM would create large, ionized
bubbles filled with very hot gas (T ∼ 106 K). Although this gas would eventually
cool, the temperature dependence of the atomic cooling curve at high temperatures
is such that the cooling time around T ∼ 106 K is considerably longer than the
cooling time in the temperature range 104 < T < 106 K (see Sect. 3.4 below).
Therefore, rather than this hot gas having a wide range of temperatures, one would
instead expect to find most of it close to 106 K. This hot, ionized phase of the ISM
has subsequently become known as the Hot Ionized medium (HIM).

Evidence for an additional phase, the so-called Warm Ionized Medium (WIM),
comes from a variety of observations, including free-free absorption of the Galactic
synchrotron background (Hoyle and Ellis 1963), the dispersion of radio signals from
pulsars (Reynolds 1989; Gaensler et al. 2008), and faint optical emission lines pro-
duced by ionized species such as O+ and N+ (Reynolds et al. 1973; Mierkiewicz et al.
2006). This ionized phase has a density comparable to that of the WNM, and has a
scale-height of the order of 1 kpc (see e.g. Reynolds 1989). Its volume filling factor is
relatively small in regions close to the Galactic midplane, but increases significantly
as one moves away from the midplane (see e.g. Gaensler et al. 2008). Overall, 90 %
or more of the total ionized gas within the ISM is located in the WIM (Haffner et al.
2009). It should be noted that the gas in classical Hii regions surrounding O stars is
generally not considered to be part of the WIM.

Finally, a distinction is often drawn between the dense, molecular phase of the
ISM, observed to be distributed in the form of discrete molecular clouds of various
masses and sizes (see e.g. Blitz et al. 2007) and the lower density, cold atomic gas
surrounding these clouds, which is part of the CNM. The distribution of this molecular
gas in our Galaxy is of particular interest, as star formation is observed to correlate
closely with the presence of molecular gas. The distribution of molecular gas with
Galactocentric radius can be measured by combining data from CO observations,
which trace clouds with high concentrations of both H2 and CO, and C+ observations,
which trace so-called “dark molecular gas”, i.e. clouds with high H2 fractions but
little CO (see e.g. Pineda et al. 2013). The molecular gas surface density shows a
pronounced peak within the central 500 pc of the Galaxy, a region known as the
Central Molecular Zone (CMZ). It then falls off sharply between 0.5 and 3 kpc,
possibly owing to the influence of the Milky Way’s central stellar bar (Morris and
Serabyn 1996), before peaking again at a Galactocentric radius of around 4–6 kpc
in a structure known as the Molecular Ring. Outside of the Molecular Ring, the
surface density of molecular gas declines exponentially, but it can still be traced out
to distances of at least 12–13 kpc (Heyer et al. 1998).

An overview of the main physical properties of these different phases is given
in Table 1. The information on the typical density and temperature ranges was taken
from the review by Ferriére (2001), while the information on the typical fractional
ionization of the various phases is based on Caselli et al. (1998); Wolfire et al. (2003),
and Jenkins (2013).

Although gas in the ISM is often classified purely in terms of these five different
phases, the question of how distinct these phases truly are remains open. For example,
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Table 1 Phases of the ISM

Component Temperature (K) Density (cm−3) Fractional ionization

Molecular gas 10–20 >102 <10−6

Cold neutral medium
(CNM)

50–100 20–50 ∼10−4

Warm neutral medium
(WNM)

6000–10000 0.2–0.5 ∼0.1

Warm ionized medium
(WIM)

∼8000 0.2–0.5 1.0

Hot ionized medium
(HIM)

∼106 ∼10−2 1.0

Adapted from Ferriére (2001); Caselli et al. (1998); Wolfire et al. (2003), and Jenkins (2013)

in the classical Field et al. (1969) model and the many subsequent models inspired
by it, the CNM and WNM are two completely distinct phases in pressure equilibrium
with each other, and all neutral atomic hydrogen in the ISM belongs to one phase or
the other. However, observations of Hi in the ISM suggest that the true picture is more
complicated, as there is good evidence that a significant fraction of the atomic gas has
a temperature intermediate between the CNM and WNM solutions, in the thermally
unstable regime (Heiles and Troland 2003; Roy et al. 2013). This gas cannot be in
equilibrium, and cannot easily be assigned to either the CNM or the WNM.

One important reason why this picture of the ISM appears to be an oversimplifica-
tion is that the ISM is a highly turbulent medium. Turbulence in the ISM is driven by
a number of different physical processes, including thermal instability (Kritsuk and
Norman 2002a), supernova feedback (see e.g. Mac Low and Klessen 2004), and the
inflow of gas onto the disk (Klessen and Hennebelle 2010; Elmegreen and Burkert
2010), and acts to mix together what would otherwise be distinct phases of the ISM
(see e.g. Joung et al. 2009; Seifried et al. 2011). We discuss the role that turbulence
plays in structuring the ISM together with the various driving mechanisms proposed
at much greater length in Sect. 4.

Finally, it is useful to briefly summarize what we know about the metallicity of
the ISM, i.e. of the fractional abundance of elements heavier than helium, since this
plays an important role in regulating the thermal behavior of the ISM. In the Milky
Way, the metallicity can be measured using a variety of methods (Maciel and Costa
2010). Measurements of the optical emission lines Oii and Oiii together with Hα
and Hβ can be used to constrain the oxygen abundance in Galactic Hii regions (see
e.g. Deharveng et al. 2000), from which the total metallicity Z follows if we assume
that the oxygen abundance scales linearly with Z . Alternatively, the abundances of
carbon, nitrogen, oxygen and many other elements can be measured using ultraviolet
(UV) absorption lines in the spectra of bright background stars (see e.g. Cowie and
Songaila 1986; Savage and Sembach 1996; Sofia 2004). The metallicity can also be
measured using stars, specifically by studying the spectra of young, massive B-type
stars (see e.g. Rolleston et al. 2000). Technically, stellar measurements constrain
the metallicity at the time that the star formed, rather than at the present day, but
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since B stars have short lifetimes, this distinction does not turn out to be particularly
important in practice.

None of these techniques gives us a completely unbiased picture of the metallicity
of the ISM. Emission line measurements are sensitive to the temperature distribution
within the Hii regions, which is difficult to constrain accurately. UV absorption line
measurements are much less sensitive to excitation effects, but can only be carried
out from space, and also require the presence of a UV-bright background source.
Therefore, although they can give us information on the composition of the more
diffuse phases of the ISM, including the WNM and CNM, they cannot be used to
probe denser regions, such as molecular clouds, as the extinction in these regions is
typically far too high for us to be able to detect the required background sources in
the UV. In addition, these measurements tell us only about the gas-phase metals and
not about the metals that are locked up in dust grains (see Sect. 2.2). Finally, stellar
measurements provide us with good tracers of the total metallicity, but do not tell us
how much of this was formerly in the gas phase, and how much was in dust.

Nevertheless, by combining the information provided by these different methods,
we can put together a pretty good picture of the metallicity distribution of the gas
in the ISM. Measurements of the metallicities of B stars and of Hii regions both
show that there is a large-scale radial metallicity gradient in the ISM, with a value
of around −0.04 dex kpc−1 (Maciel and Costa 2010). The metallicity of the gas in
the CMZ is therefore around twice the solar value (Ferrière et al. 2007), while in the
outer Galaxy, metallicities are typically somewhat sub-solar (Rudolph et al. 2006).

Comparison of the abundances of individual elements derived using B stars and
those derived using UV absorption lines shows that most elements are depleted from
the gas phase to some extent, a finding that we can explain if we suppose that these
elements are locked up in interstellar dust grains. Support for this interpretation comes
from the fact that the degree to which elements are depleted generally correlates well
with their condensation temperature, i.e. the critical gas temperature below which a
solid form is the favored equilibrium state for the elements (Lodders 2003). Elements
with high condensation temperatures are more easily incorporated into dust grains
than those with low condensation temperatures, and so if the observed depletions are
due to dust formation, one expects the degree of depletion to increase with increasing
condensation temperature, as observed (see e.g. Fig. 15 in Jenkins 2009). In addition,
the values of high condensation temperature elements such as iron, nickel or silicon,
also seem to correlate with the mean gas density (Jenkins 2009), and so are higher
in the CNM than in the WNM (Welty et al. 1999). A plausible explanation of this
fact is that dust growth in the ISM is an ongoing process that occurs more rapidly in
cold, dense gas than in warm, diffuse gas (see e.g. Zhukovska et al. 2008).

2.2 Dust

The reddening of starlight in the ISM, and the fact that this effect correlates closely
with the hydrogen column density rather than with distance, points towards there
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being an additional component of the ISM, responsible for absorbing light over a
wide range of frequencies. Measurements of the strength of the absorption at different
frequencies show that when there are distinct features in the extinction curve—e.g. the
217.5 nm bump—they tend to be extremely broad, quite unlike what we expect from
atoms or small molecules. In addition, measurement of elemental abundances in the
local ISM show that a number of elements, notably silicon and iron, are considerably
less abundant in the gas-phase than in the Sun. Finally, mid-infrared and far-infrared
observations show that there is widespread continuum emission, with a spectrum
close to that of a black-body, and an intensity that once again correlates well with the
hydrogen column density. Putting all of these separate pieces of evidence together,
we are lead to the conclusion that in addition to the ionized, atomic and molecular
constituents of the ISM, there must also be a particulate component, commonly
referred to simply as dust.

Our best evidence for the nature of this dust comes from detailed measurements
of the spectral shape of the extinction curve that it produces. To a first approximation,
individual dust grains absorb only those photons with wavelengths smaller than the
physical size of the grain. Therefore, the fact that we see a large amount of absorption
in the ultraviolet, somewhat less in the optical and even less at infrared wavelengths
tells us immediately that there are many more small dust grains than there are large
ones. In addition, we can often associate particular spectral features in the extinction
curve, such as the 217.5 nm bump or the infrared bands at 9.7 and 18 µm, with
particular types of dust grain: graphite in the case of the 217.5 nm bump (Mathis
et al. 1977) and amorphous silicates in the case of the infrared bands (e.g. Draine
and Lee 1984; Draine and Li 2007); see also Fig. 1.

This argument can be made more quantitative, and has been used to derive detailed
constraints on the size distribution of interstellar dust grains. One of the earlier and
still highly influential attempts to do this was made by Mathis et al. (1977). They
were able to reproduce the then-extant measurements of the ISM extinction curve
between 0.1–1µm with a mixture of spherical graphite and silicate grains with a size
distribution

N (a)da ∝ a−3.5da , (1)

where a is the grain radius, and where the distribution extends over a range of radii
from amin = 50 nm to amax = 0.25 µm. Subsequent studies have improved on this
simple description (see e.g. Draine and Lee 1984; Weingartner and Draine 2001a), but
it remains a useful guide to the properties of interstellar dust. In particular, it is easy
to see that for grains with the size distribution given by Eq. (1)—commonly known
as the MRN distribution—the total mass of dust is dominated by the contribution
made by large grains, while the total surface area is dominated by the contribution
made by small grains. This general behavior remains true in more recent models (see
the detailed discussion by Draine 2011).

The total mass in dust is difficult to constrain purely with absorption measure-
ments, but if we combine these with measurements of elemental depletion patterns
in the cold ISM, then we can put fairly good constraints on how much dust there is.
In the local ISM, we find that the total mass of metals locked up in grains is roughly
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Fig. 1 Schematic sketch of the energy density of the interstellar radiation field at different frequen-
cies. The contributions of the cosmic microwave background (CMB) as well as of old, low-mass
and young, high-mass stars are taken to be perfect blackbodies with temperatures 2.73, 3500, and
18,000 K, respectively (see Chakraborty and Fields 2013). The contributions from dust and PAHs
are obtained from Draine and Li (2007). The estimate for the Galactic synchrotron emission is taken
from Draine (2011) and the one for the X-ray flux from Snowden et al. (1997). Note that in the
vicinity of massive star clusters, the contributions from massive stars can be orders of magnitude
larger than the numbers provided here. For further discussions, see for example Draine (2011)

the same as the total mass in the gas phase. The dust therefore accounts for around
1 % of the total mass of the ISM. Therefore, when we attempt to model the behavior
of the ISM—particularly its thermal and chemical behavior—the dust can play a role
that is as important or more important than the gas-phase metals (see e.g. Sect. 3.5).

2.3 Interstellar Radiation Field

The chemical and thermal state of the gas in the ISM is determined in large part by the
interaction of the gas and the dust with the interstellar radiation field (ISRF). Several
processes are important. First, the chemical state of the gas (the ionization fraction,
the balance between atomic and molecular gas, etc.) depends on the rate at which
molecules are photodissociated and atoms are photoionized by the radiation field.
Second, the thermal state of the gas depends on the photoionization rate, and also
on the rate of a process known as photoelectric heating: the ejection of an energetic
electron from a dust grain due to the absorption of a UV photon by the grain. And
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Table 2 Energy densities in different components of the ISRF

Component of ISRF Energy density (erg cm−3)

Synchrotron 2.7 × 10−18

CMB 4.19 × 10−13

Dust emission 5.0 × 10−13

Nebular emission (bf, ff) 4.5 × 10−15

Nebular emission (Hα) 8 × 10−16

Nebular emission (all other bb) 10−15

Starlight, T1 = 3000 K 4.29 × 10−13

Starlight, T2 = 4000 K 3.19 × 10−13

Starlight, T3 = 7000 K 2.29 × 10−13

Starlight, power-law 7.11 × 10−14

Starlight, total 1.05 × 10−12

Soft X-rays 10−17

Adapted from Draine (2011)

finally, the thermal state of the dust is almost entirely determined by the balance
between the absorption by the grains of radiation from the ISRF and the re-emission
of this energy in the form of thermal radiation.

In the solar neighborhood, the ISRF is dominated by six components, (1) galactic
synchrotron emission from relativistic electrons, (2) the cosmic microwave back-
ground (CMB), (3) infrared and far-infrared emission from dust grains heated by
starlight, (4) bound-bound (bb), bound-free (bf) and free-free (ff) emission from
104 K ionized plasma (sometimes referred to as nebular emission), (5) starlight, and
finally (6) X-rays from hot (105–108 K) plasma. The energy densities of each of
these components are summarized in Table 2 (adapted from Draine 2011); see also
Fig. 1.

We see that most of the energy density of the ISRF is in the infrared, where
thermal dust emission and the CMB dominate, and in the optical and UV, where
starlight dominates. It is these components that play the main role in regulating the
properties of the ISM, and so we focus on them below.

2.3.1 Cosmic Microwave Background

At wavelengths between λ = 600 µm and λ = 30 cm, the energy budget of the
ISRF is dominated by the CMB. This has an almost perfect black-body spectrum
with a temperature TCMB = 2.725 K (Fixsen and Mather 2002). This temperature
is significantly lower than the typical temperatures of the gas and the dust in the
local ISM, and so despite the high energy density of the CMB, energy exchange
between it and these components does not substantially affect their temperature
(Black 1994). The CMB therefore does not play a major role in the overall energy
balance of the ISM in the Milky Way or in other local galaxies. In high-redshift
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galaxies, however, the CMB temperature and energy density are both much larger,
with a redshift dependence of TCMB ∝ (1 + z) and uCMB ∝ (1 + z)4, respectively.
The CMB can therefore play a much more significant role in regulating the thermal
evolution of the gas and the dust. The extent to which this affects the outcome of the
star formation process in high-redshift galaxies, and in particular the stellar initial
mass function (IMF) remains very unclear. Some authors have suggested that as the
CMB essentially imposes a temperature floor at TCMB, it can potentially affect the
form of the IMF by suppressing low-mass star formation when the CMB temperature
is large (see e.g. Clarke and Bromm 2003; Schneider and Omukai 2010). However,
the observational evidence for a systematic change in the IMF as one moves to higher
redshift remains weak (Bastian et al. 2010; Offner et al. 2014), and although some
simulations find evidence that a high CMB temperature can suppress low-mass star
formation (see e.g. Smith et al. 2009), other work suggests that low-mass stars can
form even at very high redshifts (see e.g. Clark et al. 2011; Greif et al. 2011, 2012;
Dopcke et al. 2013) by the fragmentation of the accretion disk surrounding the central
star (see also Sect. 6.4).

2.3.2 Infrared and Far-Infrared Emission from Dust

Infrared emission from dust grains dominates the spectrum of the ISRF between
λ = 5 and λ = 600µm. About two-thirds of the total power is radiated in the
mid and far-infrared, at λ > 50µm. This emission is largely in the form of thermal
emission from dust grains: the spectrum is that of a modified black-body

Jν ∝ Bν(T0)

(
ν

ν0

)β

, (2)

where Jν is the mean specific intensity of the radiation field, Bν(T0) is the Planck
function, T0 is the mean temperature of the dust grains, and β is the spectral index.
In the Milky Way, the mean dust temperature 〈Td〉 ≈ 20 K, and the spectral index
is typically around β ≈ 1.7 (Planck Collaboration 2014). The question of whether
β depends on temperature is somewhat controversial. Many studies find an apparent
anti-correlation between β and Td (see e.g. Dupac et al. 2003; Désert et al. 2008).
However, these studies generally fit the spectral energy distribution (SED) with the
χ2 linear regression method, which is known to produce an artificial anti-correlation
from uncorrelated data in some cases simply due to the presence of noise in the
observations (Shetty et al. 2009a, b). When using hierarchical Bayesian methods for
determining β and Td, Shetty et al. (2009b) and the Planck Collaboration (2014)
instead find a slight positive correlation between the two parameters.

The remaining one-third of the dust emission is largely concentrated in a series of
distinct peaks at wavelengths λ = 3.3, 6.2, 7.7, 8.6, 11.3 and 12.7µm. These peaks
correspond to vibrational emission bands produced by so-called polycyclic aromatic
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hydrocarbons, or PAHs for short. These are large organic molecules, containing one
or more benzene rings (hence ‘aromatic’).

Although dust grains are large enough that we can usually treat them as macro-
scopic objects without distinct radiative transitions, the same is not true for the much
smaller PAH molecules. The rate at which individual PAH molecules absorb photons
is small, but each photon causes a significant change in the internal energy of the
molecule. Their “temperature” therefore varies greatly with time—they are very hot
(i.e. have a large internal energy) immediately after they absorb a photon, but spend
much of their time being very cold. Physically, what happens is actually a form of
fluoresence—the PAHs absorb UV photons, putting them into a highly excited state,
and then cascade back to the ground state via a large number of infrared transitions.
An important implication of this is that PAH emission dominates at short wavelengths
(i.e. in the near and mid-infrared) unless the other grains are also very hot. Since the
strength of the PAH emission depends on the strength of the UV radiation field, it is
therefore a useful tracer of the formation of massive stars.

2.3.3 Starlight

Stars produce energy primarily at near infrared, visible and soft ultraviolet wave-
lengths. However, in neutral regions of the ISM, stellar photons with energies
greater than the ionization energy of hydrogen, 13.6 eV, are largely absent—they
are absorbed by hydrogen atoms, ionizing them, and hence cannot penetrate deeply
into neutral regions.

Mathis et al. (1983) showed that in the solar neighborhood, the starlight component
of the ISRF could be represented at long wavelengths as the sum of three diluted
black-body spectra. At wavelengths λ > 245 nm, the radiation energy density is

νuν =
3∑

i=1

8πhν4

c3

Wi

ehν/kBTi − 1
erg cm−3 . (3)

As usual h = 6.626 × 10−27 erg s and kB = 1.381 × 10−16 erg K−1 are Planck’s
and Boltzmann’s constants. The quantities Wi and Ti are the dilution factor and
temperature of each component, with

T1 = 3000 K, W1 = 7.0 × 10−13 , (4)

T2 = 4000 K, W2 = 1.65 × 10−13 , (5)

T3 = 7500 K, W3 = 1.0 × 10−14 . (6)

At wavelengths λ < 245 nm, the starlight contribution to the ISRF has been estimated
by a number of authors. The earliest widely-cited estimate was made by Habing
(1968). He estimated that νuν ≈ 4×10−14 erg cm−3 at λ = 100 nm, corresponding
to a photon energy of 12.4 eV. It is often convenient to reference other estimates to
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this value, which we do via the dimensionless parameter

χ ≡ (νuν)100nm

4 × 10−14 erg cm−3 . (7)

Alternatively, we can reference other estimates to the Habing (1968) field by compar-
ing the total energy density in the range 6–13.6 eV. In this case, we define a different
dimensionless parameter

G0 ≡ u(6 − 13.6 eV)

5.29 × 10−14 erg cm−3 . (8)

If we are interested in e.g. the photodissociation of H2 or CO, which requires photons
with energies above 10 eV, then χ is the appropriate parameter to use. On the other
hand, if we are interested in e.g. the photoelectric heating rate, which is sensitive to
a wider range of photon energies, then G0 is more appropriate.

Two other estimates of the UV portion of the ISRF are in widespread use: one
due to Draine (1978) and the other due to Mathis et al. (1983). Draine (1978) fit the
field with a polynomial function:

λuλ = 6.84 × 10−14 λ−5
2

(
31.016 λ2

2 − 49.913 λ2 + 19.897
)

erg cm−3, (9)

where λ2 ≡ λ/100 nm. This field has a normalization, relative to the Habing field,
of χ = 1.71 and G0 = 1.69.

Mathis et al. (1983) instead used a broken power-law fit:

λuλ =
⎧
⎨

⎩

2.373 × 10−14λ−0.6678 for 0.134 µm < λ < 0.245 µm
6.825 × 10−13λ for 0.110 µm < λ ≤ 0.134 µm
1.287 × 10−9λ4.4172 for 0.091 µm < λ ≤ 0.110 µm

(10)

Here, all wavelengths are in units of µm, and the energy densities are in units of
erg cm−3. This estimate has χ = 1.23 and G0 = 1.14. The available observational
evidence (see e.g. Henry et al. 1980; Gondhalekar et al. 1980) is better fit by the
Mathis et al. (1983) field than by the Draine (1978) field, but the latter estimate is
probably in wider use in models of the ISM.

2.4 Cosmic Rays

The final part of our inventory of the ISM are the cosmic rays. These are high energy,
relativistic particles, mostly being nuclei (∼99 %) with a small fraction of electrons
(∼1 %). The nuclei are primarily protons, but with about 10 % being alpha particles
and ∼1 % being metal nuclei. Their energy spans a wide range, from 100 MeV up to
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more than 1 TeV (Fig. 2). The total energy density in cosmic rays is approximately
2 eV cm−3, within a factor of a few of the mean thermal energy density of the ISM.
Cosmic rays therefore play an important role in the overall energy balance of the gas.

All but the most highly energetic cosmic rays are tied to the magnetic field of the
galaxy and therefore scatter repeatedly within the disk. The expectation is therefore
that the local energy density in cosmic rays should be relatively uniform. Observations
of cosmic rays with TeV energies, which are not significantly affected by interactions
with the solar wind, find that their intensity in the solar rest-frame is almost isotropic,
consistent with this picture of a uniform energy density (Amenomori et al. 2006).

The spectrum of the cosmic rays (i.e. the flux per unit energy) decreases sharply
with increasing energy, and so the majority of the heating and ionization that they
provide comes from the least energetic cosmic rays, with energies of ∼100 MeV or
below. Unfortunately, it is precisely this part of the cosmic ray energy spectrum that
we know the least about. At this energy, cosmic rays are unable to penetrate within
the heliosphere, owing to interactions with the solar wind. Our determination of the
cosmic ray ionization rate is therefore indirect, based on chemical constraints.

An important example of this kind of constraint is provided by the abundance of
the H+

3 ion. It is formed in the diffuse ISM via the reaction chain

H2 + CR → H+
2 + e−, (11)

H+
2 + H2 → H+

3 + H, (12)

Fig. 2 Energy spectrum of
cosmic rays as observed with
different instruments and
telescopes. Plot from Blasi
(2014); see also Gaisser
(2006) for further
information
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where the first reaction is the rate-limiting step. It is destroyed by dissociative recom-
bination,

H+
3 + e− → various products. (13)

In a diffuse cloud, with nH2 > nH, the equilibrium number density of H+
3 that results

from these reactions is given approximately by

nH+
3

= ζH2

kdr

nH2

ne
, (14)

where kdr is the dissociative recombination rate coefficient and ζH2 is the cosmic ray
ionization rate of H2, and where nH, nH2 , nH+

3
, and ne are the number densities of

H, H2, H+
3 , and free electrons, respectively.

If we assume that the temperature and the values of the H2-to-electron ratio do not
vary greatly along the line of sight, then we can convert Eq. (14) into an expression
relating the column densities of H2, H+

3 and electrons,

NH+
3

= ζH2

kdr

NH2

Ne
. (15)

Next, we note that within diffuse molecular clouds, the main source of electrons is
ionized carbon, C+. We therefore assume that NC+ = Ne and write

NH+
3

= ζH2

kdr

NH2

NC+
. (16)

Finally, this can be rearranged to give

ζH2 =
NH+

3
NC+kdr

NH2

. (17)

Since all of the column densities on the right-hand side of this expression can be
measured observationally (see e.g. Savage et al. 1977; Cardelli et al. 1996; McCall
et al. 2002), and kdr can be measured experimentally (McCall et al. 2004), we can
use this expression to constrain ζH2 .

In practice, a slightly more sophisticated version of this technique is used that
accounts for the fact that not all of the H+

2 ions produced by cosmic ray ionization
of H2 survive for long enough to form H+

3 , and that also includes several additional
destruction processes for H+

3 (Indriolo and McCall 2012). Applying this technique
to many lines-of-sight in the diffuse ISM, one finds that the resulting mean value
for the cosmic ray ionization rate of H2 is ζH2 = 3.5 × 10−16 s−1, but also that
there is a very substantial scatter around this mean, with some lines-of-sight having
ζH2 ∼ 10−15 s−1 or more, and others having ζH2 ∼ 10−17 s−1 (Indriolo and McCall
2012).
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In dense clouds of gas, the chemical abundances of other observable species such
as OH or HCO+ are also sensitive to the cosmic ray ionization rate, and measurements
of the abundances of these species relative to CO can therefore be used to provide
additional constraints on ζH2 . These other techniques typically find that in dense
gas, ζH2 ∼ 10−17 s−1 (see e.g. Williams et al. 1998; van der Tak and van Dishoeck
2000). This is consistent with the low end of the range of values found using H+

3 ,
but not with the higher values found in many diffuse clouds. This difference between
diffuse and dense clouds may indicate that the cosmic rays that dominate the heating
and ionization of the local ISM have energies of only a few MeV, allowing them to
penetrate low column density, diffuse atomic or molecular gas, but not high column
density clouds (Padovani et al. 2009). Alternatively, purely magnetic effects, such as
the interaction between low energy cosmic rays and their self-generated MHD waves
(Padoan and Scalo 2005) may explain the apparent inability of low energy cosmic
rays to travel into dense molecular cloud regions. In either case, these mechanisms do
not explain the large scatter in ζH2 seen in purely diffuse clouds, which may indicate
that the energy density in very low energy cosmic rays is significantly less uniform
than has been previously supposed (Indriolo and McCall 2012).

3 Heating and Cooling of Interstellar Gas

3.1 Optically-Thin Two-Level Atom

A convenient starting point for understanding how radiative cooling operates in the
ISM is the two-level atom. This toy model allows us to illustrate many of the most
important concepts involved without unnecessarily complicating the mathematical
details.

Picture an atomic system with two bound states, a lower level l and an upper
level u, with statistical weights gl and gu , separated by an energy Eul . We will write
the number density of the atoms in the lower level as nl and the number density
in the upper level as nu . The total number density of the atoms then follows as
natom = nl + nu . For simplicity, we consider for the time being monoatomic gases
at rest, so that dnatom/dt = 0. Even if the number density natom remains constant,
the values of nl and nu will change over time, as individual atoms transition from the
lower to the upper level due to collisional excitation or the absorption of a photon,
and transition from the upper to the lower level due to collisional de-excitation or
the emission of a photon. For the time being, we consider optically thin conditions,
which means that the emitted photon can leave the region of interest unimpeded. In
the opposite, optically thick case, it would very likely be absorbed by a neighboring
atom.

We note that in general, the atomic species under consideration is just one amongst
many. Typically, the medium is a mixture of different atomic or molecular species
i , with the total number density being n = ∑

ni . In this case our atoms will not
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only collide with each other, but also with particles of the other species. Chemical
reactions lead to further complications as the total number (and consequently the
number density) of atoms is no longer conserved, but instead may change with time.
If we also consider gas motions, even for monoatomic gases the local density will
vary with time, so that again dnatom/dt �= 0.

For a static system without chemical reactions, we can write the rates of change
of nl and nu at fixed natom as

dnu

dt
= Clunl − Culnu − Aulnu − Bul Iulnu + Blu Iulnl , (18)

dnl

dt
= −Clunl + Culnu + Aulnu + Bul Iulnu − Blu Iulnl . (19)

Here, Clu and Cul are the collisional excitation and de-excitation rates, which we
discuss in more detail below, Aul , Bul and Blu are the three Einstein coefficients for
the transition (describing spontaneous emission, stimulated emission and absorption,
respectively), and Iul is the specific intensity of the local radiation field at the fre-
quency νul = Eul/h. For a detailed derivation of this equation and the parameters
involved, see e.g. the textbook by Rybicki and Lightman (1986).

Typically, the radiative and/or collisional transitions occur rapidly compared to
any of the other timescales of interest in the ISM, and so it is usually reasonable to
assume that the level populations have reached a state of statistical equilibrium in
which

dnu

dt
= dnl

dt
= 0. (20)

In this case, nl and nu are linked by a single algebraic equation,

(Clu + Blu Iul)nl = (Cul + Aul + Bul Iul) nu . (21)

A further simplification that we can often make is to ignore the effects of the incident
radiation field. This is justified if the gas is optically thin and the strength of the
interstellar radiation field at the frequency νul is small. In this regime, we have

Clunl = (Cul + Aul) nu , (22)

which we can rearrange to give

nu

nl
= Clu

Cul + Aul
. (23)

The collisional excitation rate Clu describes the rate per atom at which collisions
with other gas particles cause the atom to change its quantum state from level l to level
u. In principle, collisions with any of the many different chemical species present
in the ISM will contribute towards Clu , but in practice, the main contributions come
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from only a few key species: H, H2, H+, He, and free electrons. We can write Clu as
a sum of the collisional excitation rates due to these species,

Clu =
∑

i

qi
luni , (24)

where i = H, H2, H+, He, e− and qi
lu is the collisional excitation rate coefficient

for collisions between our atom of interest and species i . The collisional excitation
rate coefficients themselves can be computed using the tools of quantum chemistry
or measured in laboratory experiments. Values for many atoms and molecules of
astrophysical interest can be found in the LAMDA database1 (Schöier et al. 2005).

Given the excitation rate Clu , it is straightforward to obtain the de-excitation rate
Cul by making use of the principle of detailed balance. This states that in local thermal
equilibrium (LTE), the rate at which collisions cause transitions from level l to level
u must be the same as the rate at which they cause transitions from level u to level l.
This is a consequence of microscopic reversibility, i.e. the fact that the microscopic
dynamics of particles and fields are time-reversible, because the governing equations
are symmetric in time.

In thermal equilibrium, we know that the ratio of atoms in level u to those in level
l is simply given by the Boltzmann distribution,

nu

nl
= gu

gl
e−Eul/kBT . (25)

The principle of detailed balance tells us that for any collisional transition the equi-
librium condition reads as

qi
lunlni = qi

ulnuni . (26)

It therefore follows that
Clunl = Culnu , (27)

and consequently, we can write

Clu

Cul
= nu

nl
= gu

gl
e−Eul/kBT (28)

for a system in thermal equilibrium. The true power of the principle of detailed
balance becomes clear once we realize that the values of Clu and Cul depend only on
the quantum mechanical properties of our atoms, and not on whether our collection
of atoms actually is in thermal equilibrium or not. Therefore, although we have
assumed thermal equilibrium in deriving Eq. (28), we find that the final result holds
even when the system is not in equilibrium.

1http://home.strw.leidenuniv.nl/~moldata/.

http://home.strw.leidenuniv.nl/~moldata/
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We can use this relation between Clu and Cul to write our expression for nu/nl

in the form
nu

nl
= (gu/gl)e−Eul/kBT

1 + Aul/Cul
. (29)

In the limit that collisions dominate the behavior, i.e. for Cul � Aul , we recover
the Boltzmann distribution. On the other hand, if radiative de-excitation is more
important than the collisional one, that is in the limit Cul 
 Aul , we find that

nu

nl
≈ Cul

Aul

gu

gl
e−Eul/kBT . (30)

Together with Eq. (28) we arrive at

nu

nl
≈ Clu

Aul
. (31)

We see therefore that when collisions dominate over radiative decays, the level popu-
lations approach their LTE values, while in the other limit, collisional excitations are
balanced by radiative de-excitations, and collisional de-excitations are unimportant.

In the simple case in which collisions with a single species dominate Cul , we
can write the collisional de-excitation rate as Cul = qi

ulni , where ni is the number
density of the dominant collision partner. Since the key parameter that determines
whether collisions or radiative decays dominate is the ratio Aul/Cul , we can define
a critical density for the collision partner, such that this ratio is one,

ncr,i ≡ Aul

qi
ul

. (32)

When ni � ncr,i , collisions dominate and the level populations tend to their LTE
values. On the other hand, when ni 
 ncr,i , radiative decay dominates and most
atoms are in their ground states.

In the more general case in which collisions with several different species make
comparably large contributions to Cul , we can define the critical density in a more
general fashion. If we take n to be some reference number density (e.g. the number
density of H nuclei, which has the benefit that it is invariant to changes in the ratio
of atomic to molecular hydrogen), then we can define a critical density with the
following expression,

Aul

Cul
≡ ncr

n
. (33)

Here, ncr is the critical value of our reference density, rather than that of a specific
collision partner. In terms of the individual fractional abundances and collisional
de-excitation rates, we have

ncr = Aul
∑

c qi
ul xi

(34)
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where xi ≡ ni/n is the relative abundance of the species i . Alternatively, if we divide
through by Aul , we can easily show that

ncr =
[
∑

i

xi

ncr,i

]−1

, (35)

where the critical densities for the individual colliders are given by Eq. (32) above.
Using our general definition of the critical density, we can write the ratio of the

level populations of our two level atom as

nu

nl
= (gu/gl)e−Eul/kBT

1 + ncr/n
. (36)

We can now use the fact that for our species of interest in the two-level approximation
the density natom = nl + nu , and rewrite this equation as

nu

natom − nu
= (gu/gl)e−Eul/kBT

1 + ncr/n
. (37)

Further rearrangement gives

nu

natom
= (gu/gl)e−Eul/kBT

1 + ncr/n + (gu/gl)e−Eul/kBT
. (38)

The radiative cooling rate Λul of our collection of atoms is simply the rate at which
they emit photons multiplied by the energy of the photons, i.e.

Λul = Aul Eulnu . (39)

If we make use of the expression derived above for nu , this becomes

Λul = Aul Eulnatom
(gu/gl)e−Eul/kBT

1 + ncr/n + (gu/gl)e−Eul/kBT
. (40)

It is informative to examine the behavior of this expression in the limits of very low
and very high density. At low densities, n 
 ncr, Eq. (40) reduces to

Λul, n→0 = Aul Eulnatom
(gu/gl)e−Eul/kBT

ncr/n
. (41)

We can use the equation of detailed balance in the form (28) together with the defin-
ition of the critical density as given by Eq. (34) to derive the more useful expression
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Λul, n→0 = Eul

(
∑

i

qi
luni

)

natom = EulClunatom . (42)

Physically, this expression has a simple interpretation. At low densities, every col-
lisional excitation is followed by radiative de-excitation and hence by the loss of
a photon’s worth of energy from the gas. The cooling rate in this limit therefore
depends only on the excitation rate of the atom, and is independent of the radiative
de-excitation rate. Moreover, this rate is proportional to the total number density of
the gas, Clu ∝ n, and in addition natom ∝ n, if the fractional abundance of our atomic
coolant is independent of density. As a consequence, the cooling rate scales with the
density squared in the low-density regime,

Λul, n→0 ∝ n2 . (43)

The behavior is different at high densities, n � ncr. The expression for the cooling
rate now becomes

Λul, LTE = Aul Eulnatom

[
(gu/gl)e−Eul/kBT

1 + (gu/gl)e−Eul/kBT

]
. (44)

The term in square brackets is simply the fraction of all of the atoms that are in the
upper level u when the system is in LTE, a quantity that we will refer to as fu, LTE.
In this limit, we write

Λul, LTE = Aul Eul fu, LTEnatom . (45)

This is known as the LTE limit. In this limit, the mean cooling rate per atom depends
only on the temperature, and not on the collisional excitation rate. Consequently, the
cooling rate scales linearly with the density,

Λul, LTE ∝ n . (46)

3.2 Effects of Line Opacity

So far, we have assumed that the strength of the local radiation field at the frequency
of the atomic transition is negligible, allowing us to ignore the effects of absorption
and stimulated emission. This is a reasonable approximation when the gas is optically
thin, provided that the ISRF is not too strong, but it becomes a poor approximation
once the gas becomes optically thick. Therefore, we now generalize our analysis to
handle the effects of absorption and stimulated emission.

Consider once again our two-level atom, with level populations that are in statis-
tical equilibrium. In this case, we have

(Clu + Blu Jul)nl = (Aul + Bul Jul + Cul)nu, (47)
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where Jul is the mean specific intensity,

Jul = 1

4π

∮
Iul(n)dΩ, (48)

where the integral is over all directions n and dΩ is the solid angle element.
In general, to solve this equation throughout our medium, we need to know Jul at

every point, and since Jul depends on the level populations, we end up with a tightly
coupled problem that is difficult to solve even for highly symmetric systems, and
that in general requires a numerical treatment. A detailed discussion of the different
numerical methods that can be used to solve this optically-thick line transfer problem
is outside the scope of our lecture notes. Instead, we refer the reader to the paper by
van Zadelhoff et al. (2002) and the references therein.

Here, we restrict our attention to a simple but important limiting case. We start
by assuming that any incident radiation field is negligible, and hence that the only
important contribution to Jul comes from the emission of the atoms themselves. We
also assume that there are only three possible fates for the emitted photons:

(1) Local absorption, followed by collisional de-excitation of the atom2

(2) Local absorption, followed by re-emission (i.e. scattering)
(3) Escape from the gas.

Photons which scatter may do so once or many times, before either escaping from
the gas, or being removed by absorption followed by collisional de-excitation. The
probability that the photon eventually escapes from the gas is termed the escape
probability. In its most general form, this can be written as

β(x) = 1

4π

∮ ∫
e−τν (x,n)φ(ν)dνdΩ, (49)

where β(x) is the escape probability at a position x, φ(ν) is the line profile function,
a function normalized to unity that describes the shape of the line, and τν(x, n) is
the optical depth at frequency ν at position x in the direction n.

We note that the net number of absorptions (i.e. the number of photons absorbed
minus the number produced by stimulated emission) must equal the number of pho-
tons emitted that do not escape from the gas, i.e.

(nl Blu − nu Bul)Jul = nu(1 − β)Aul . (50)

Using this, we can rewrite Eq. (47) for the statistical equilibrium level populations
as

Clunl = (Cul + β Aul)nu . (51)

2By local, we generally mean within a small volume around the emission site, within which we can
assume that physical conditions such as density and temperature do not vary appreciably.
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Local absorptions reduce the effective radiative de-excitation rate by a factor deter-
mined by the escape probability β, i.e. we go from Aul in the optically thin case
to A′

ul = β Aul in the optically thick case. Therefore, all of our previously derived
results still hold provided that we make the substitution Aul → A′

ul . One important
consequence of this is that the critical density decreases. Since ncr ∝ Aul , we see
that when the gas is optically thick, ncr ∝ β. This means that the effect of local
absorption (also known as photon trapping) is to lower the density at which LTE is
reached. The higher the optical depth, the more pronounced this effect becomes.

In order for the escape probability approach to be useful in practice, we need
to be able to calculate β in a computationally efficient fashion. Unfortunately, the
expression for β given in Eq. (49) is not well suited for this. The reason for this is
the dependence of β on the direction-dependent optical depth τν(x, n). This can be
written in terms of the absorption coefficient αν as

τν(x, n) =
∫ ∞

0
αν(x + sn, n)ds, (52)

where αν(x + sn, n) is the absorption coefficient at position x + sn for photons
propagating in the direction n. To compute the integral over solid angle in Eq. (49),
we need to integrate for τν along many rays between the point of interest and the
edge of the cloud. This can be done, but if we want to properly sample the spatial
distribution of the gas, then the computational cost of performing these integrals will
typically scale as N 2/3, where N is the number of fluid elements in our model cloud.
If we then need to repeat this calculation for every fluid element (e.g. in order to
calculate the cooling rate at every point in the cloud), the result is a calculation that
scales as N 5/3. For comparison, modeling the hydrodynamical or chemical evolution
of the cloud has a cost that scales as N .

Because of the high computational cost involved in computing β accurately, most
applications of the escape probability formalism make further simplifications to allow
β to be estimated more easily. One common approach is to simplify the geometry of
the cloud model under consideration. For example, if we adopt a spherically sym-
metric or slab-symmetric geometry, the inherent dimensionality of the problem can
be reduced from three to one, greatly speeding up our calculation of β. This approach
can work very well in objects such as prestellar cores that are quasi-spherical, but
becomes less applicable as we move to larger scales in the ISM, since real molecular
clouds exhibit complex and highly inhomogeneous density and velocity structure
(Sect. 4.1.2) and are not particularly well described as either slabs or spheres.

A more useful approximation for treating cooling in interstellar clouds is the Large
Velocity Gradient (LVG) approximation, also known as the Sobolev approximation
(Sobolev 1957). The basic idea here is that when there are large differences in the
velocities of adjacent fluid elements, photons can more easily escape from the gas.
Suppose a photon is emitted at position x from gas moving with velocity v, and
propagates a distance Δx, to a point in the gas where the velocity is v + Δv. The
probability of the photon being absorbed at this point depends on the frequency of the
photon in the rest frame of the gas at that point. If the change in velocity is sufficient
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to have Doppler-shifted the photon out of the core of the line, the probability of it
being absorbed is small. For lines dominated by thermal broadening, the required
change in velocity is roughly equal to the thermal velocity of the absorber, vth. If the
photon can successfully propagate a distance

Ls ≡ vth

|dv/dx | , (53)

where dv/dx is the velocity gradient, then it is extremely likely that it will escape from
the gas. The length-scale defined by Eq. (53) is known as the Sobolev length, and the
LVG approximation can be used successfully when this length-scale is significantly
shorter than the length-scales corresponding to variations in the density, temperature
or velocity of the gas, or in the fractional abundance of the absorbing species.

More quantitatively, when the Sobolev approximation applies, the integral over
frequency can be solved analytically, yielding

∫
e−τν (x,n)φ(ν)dν = 1 − e−τLVG(x,n)

τLVG(x, n)
, (54)

where τLVG(x, n) is the direction-dependent LVG optical depth,

τLVG(x, n) = Aulc3

8πν3
ul

1

|n · ∇v|
(

gl

gu
nu − nl

)
. (55)

In this case, β is given by the expression

β(x) = 1

4π

∮
1 − e−τLVG(x,n)

τLVG(x, n)
dΩ. (56)

The validity of the Sobolev approximation for line transfer in turbulent molecular
clouds was examined by Ossenkopf (1997), who showed that most of the fluid ele-
ments contributing significantly to the 13CO line emission produced by a typical
turbulent cloud had short Sobolev lengths, justifying the use of the LVG approxima-
tion for modeling the emission (see also Ossenkopf 2002).

3.3 Multi-level Systems

So far, we have restricted our discussion to the case of a simple two-level system.
However, most of the important coolants in the ISM have more than two energy
levels that need to be taken into account when computing the cooling rate, and so
in this section, we briefly look at how we can generalize our analysis to the case of
multiple levels.
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When we are dealing with more than two levels, and hence more than a single
transition contributing to the cooling rate, then the net cooling rate can be written in
terms of the level populations as

Λ =
∑

u

∑

l<u

Eul [(Aul + Bul Jul)nu − Blu Julnl ] , (57)

where the second sum is over all states l that have energies El < Eu . A major
difficulty here comes from the need to compute the level populations nu . If the levels
are in statistical equilibrium, then the level populations satisfy the equation

∑

j>i

[
n j A ji + (n j B ji − ni Bi j )Ji j

] −
∑

j<i

[
ni Ai j + (ni Bi j − n j B ji )Ji j

]

+
∑

j �=i

[
n j C ji − ni Ci j

] = 0. (58)

If we have N different levels, then this equation can also be written in the form of N
coupled linear equations. These are straightforward to solve numerically if the mean
specific intensities Ji j are known, but just as in the two-level case, these specific
intensities will in general depend on the level populations at every point in our gas,
meaning that the general form of the non-LTE statistical equilibrium equation is very
challenging to solve numerically in an efficient manner.

Consequently, when computing cooling rates for complicated multi-level systems,
we often make use of simplifying assumptions similar to those we have already
discussed in the case of the two-level system. For example, when the gas density
is very low, it is reasonable to assume that essentially all of our coolant atoms or
molecules will be in the ground state, and that every collisional excitation from the
ground state will be followed by the loss of a photon from the gas (possible after one
or more scattering events, if the gas is optically thick). In this limit, the cooling rate
simplifies to

Λn→0 =
∑

u

Eu0Cu0n0, (59)

where n0 is the number density of coolant atoms/molecules in the ground state, Cu0
is the collisional excitation rate from the ground state to state u, and Eu0 is the
difference in energy between state u and the ground state.

In the LTE limit, the cooling rate is also easy to calculate, as the level populations
will simply have the values implied by the Boltzmann distribution,

nu = (gu/g0)e−Eu0/kBT

Z(T )
natom, (60)
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where natom is the total number density of the coolant of interest, g0 is the statistical
weight of the ground state, gu is the statistical weight of level u, Eu0 is the energy
difference between level u and the ground state, and Z is the partition function. It is
given by the expression

Z(T ) =
∑

i

gi

g0
e−Ei0/kBT , (61)

where we sum over all of the states of the coolant, including the ground state. In
this limit, we still need to know the mean specific intensities of the various lines
in order to calculate the total cooling rate. In principle, these are straightforward to
compute when the level populations are fixed, although for reasons of computational
efficiency, a further simplifying assumption such as the LVG approximation is often
adopted.

In the case of our simple two-level system, we have already seen that at densities
n 
 ncrit , it is safe to use the low-density limit of the cooling rate, while at densities
n � ncrit , the LTE limit applies. In the multi-level case, the situation is slightly more
complicated, as in principle there is a critical density ncrit,ul associated with every
possible transition that can occur. Moreover, since there can be large differences in
the value of Aul between one transition and another, these individual critical densities
can differ by orders of magnitude. We can therefore often be in the situation where
some of the energy levels of our coolant are in LTE, while others are not. In practice,
what is often done if we are interested in the total cooling rate and not in the strengths
of the individual lines is to define an effective critical density (Hollenbach and McKee
1979)

ncrit,eff = ΛLTE

Λn→0
n , (62)

and write the density-dependent cooling rate as

Λ = ΛLTE

1 + ncrit,eff/n
. (63)

This expression can be somewhat approximate at densities close to ncrit,eff , but
becomes very accurate in the limit of low density or high density.

3.4 Atomic and Molecular Coolants in the ISM

Having briefly outlined the basic physical principles of line cooling, we now go on
to examine which of the many possible forms of line emission are most important
for the cooling of interstellar gas.
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3.4.1 Permitted Transitions

At high temperatures, in regions dominated by atomic or ionized gas, the cooling
of the ISM takes place largely via the permitted (i.e. dipole-allowed) electronic
transitions of various atoms and ions. At temperatures close to 104 K, excitation of
the Lyman series lines of atomic hydrogen is the dominant process,3 giving rise to a
cooling rate per unit volume (Black 1981; Cen 1992) of

ΛH = 7.5 × 10−19 1

1 + (T/105)1/2
exp

(−118348

T

)
nenH, (64)

where ne and nH are the number densities of free electrons and atomic hydrogen,
respectively, and temperature T are in kelvin. At temperatures T ∼ 3 × 104 K and
above, however, the abundance of atomic hydrogen generally becomes very small,
and other elements, particularly C, O, Ne and Fe, start to dominate the cooling (see
e.g. Gnat and Ferland 2012).

In conditions where collisional ionization equilibrium (CIE) applies, and where
the fractional abundance of each ion or neutral atom is set by the balance between col-
lisional ionization and radiative recombination, the total cooling function is relatively
straightforward to compute and only depends on the temperature and metallicity. As
an example, we show in Fig. 3 the CIE cooling efficiency, LCIE, as a function of
temperature, computed for a solar metallicity gas using the data given in Gnat and
Ferland (2012). The cooling efficiency plotted in the figure has units of erg cm3 s−1

and is related to the cooling rate per unit volume by the expression

ΛCIE = LCIEnen, (65)

where ne is the number density of free electrons and n is the number density of
hydrogen nuclei.

Unfortunately, there are many cases in the real ISM in which the CIE assumption
does not apply. As an obvious example, consider gas in the Hii regions around massive
stars, where the ionization state of the various elements is determined primarily by
photoionization rather than collisional ionization. The CIE assumption also breaks
down whenever the gas cools rapidly. When the cooling time becomes shorter than
the recombination time the gas cannot adjust its ionization state rapidly enough to
remain in equilibrium. Instead, it becomes over-ionized compared to the CIE case
(see e.g. Kafatos 1973; Sutherland and Dopita 1993; Gnat and Sternberg 2007).
Similarly, if gas is heated more rapidly than it can collisionally ionize itself, such as
in a very strong shock, then it can be under-ionized compared to the CIE case. These
non-equilibrium effects are particularly important around 104 K (see e.g. Micic et al.
2013; Richings et al. 2014), but can also significantly affect the cooling rate at higher
temperatures.

3Note that this is often referred to in the literature simply as “Lyman-α” cooling.
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Fig. 3 Cooling efficiency of solar-metallicity gas in collisional ionization equilibrium, plotted as
a function of temperature. This plot is based on data taken from Gnat and Ferland (2012)

Efforts have been made to account for these non-equilibrium effects, either by
explicitly solving for the non-equilibrium ionization state of the main elements con-
tributing to the high temperature cooling (see e.g. Cen and Fang 2006; de Avillez
and Breitschwerdt 2012; Oppenheimer and Schaye 2013; Richings et al. 2014), or by
pre-computing and tabulating rates appropriate for gas cooling at constant pressure
or constant density (Gnat and Sternberg 2007), or with an ionization state domi-
nated by photoionization rather than collisional ionization (e.g. Wiersma et al. 2009;
Gnedin and Hollon 2012). In any case, there is inevitably a trade-off between accu-
racy and speed—full non-equilibrium calculations best represent the behavior of the
real ISM but have a considerably larger computational cost than simple CIE-based
calculations.

3.4.2 Fine Structure Lines

At temperatures below around 104 K, it becomes extremely difficult for the gas to
cool via radiation from permitted atomic transitions, such as the Lyman series lines of
atomic hydrogen, as the number of electrons available with sufficient energy to excite
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these transitions declines exponentially with decreasing temperature. Atomic cooling
continues to play a role in this low temperature regime, but the focus now shifts from
permitted transitions between atomic energy levels with different principal quantum
numbers to forbidden transitions between different fine structure energy levels.

Fine structure splitting is a phenomenon caused by the interaction between the
orbital and spin angular momenta of the electrons in an atom, an effect known as
spin-orbit coupling (see e.g. Atkins and Friedman 2010). Each electron within an
atom has a magnetic moment due to its orbital motion and also an intrinsic magnetic
moment due to its spin. States where these magnetic moments are parallel have higher
energy than states where they are anti-parallel, which in the right conditions can lead
to a splitting of energy levels that would otherwise remain degenerate. In order for
an atom or ion to display fine structure splitting in its ground state, the electrons in
the outermost shell must have both non-zero total orbital angular momentum (i.e.
L > 0) and non-zero total spin angular momentum (i.e. S > 0), or else the spin-orbit
coupling term in the Hamiltonian, which is proportional to L · S, will vanish. For
example, the ground state of the hydrogen atom has S = 1/2 but L = 0, and hence
has no fine structure. On the other hand, the ground state of neutral atomic carbon
has L = 1 and S = 1 and hence does have fine structure.

As the size of the spin-orbit term in the Hamiltonian is typically quite small
compared to the other terms, the resulting splitting of the energy levels is also small,
with energy separations of the order of 10−2 eV. This corresponds to a temperature of
about 100 K, meaning that it is possible to excite these transitions even at relatively
low gas temperatures.

The radiative transition rates associated with these fine structure transitions are
very small in comparison to the rates of the permitted atomic transitions discussed
above, for a couple of reasons. First, they are typically magnetic dipole transitions,
with transition matrix elements that are of the order of α2 ≈ 5 × 10−5 times smaller
than for electric dipole transitions, where α is the fine structure constant. Second, it
is easy to show that transitions with similar transition matrix elements but different
frequencies have spontaneous transition rates that scale as Ai j ∝ ν3

i j . Since the
frequencies associated with the fine structure transitions are of the order of a thousand
times smaller than those associated with the most important permitted electronic
transitions, such as Lyman-α, one expects the spontaneous transition rates to be a
factor of 109 smaller.

Together, these two effects mean that we expect the size of the spontaneous tran-
sition rates associated with the fine structure transitions to be of the order of 1014 or
more times smaller than those associated with the most important permitted atomic
transitions. Consequently, the critical densities associated with many of the impor-
tant fine structure transitions are relatively low: ncrit ∼ 102–106 cm−3 in conditions
when collisions with H or H2 dominate, and up to two to three orders of magnitude
smaller when collisions with electrons dominate (Hollenbach and McKee 1989). We
therefore would expect cooling from fine structure emission to be effective at mod-
erate densities, e.g. in the WNM or CNM, but to become much less effective at the
much higher densities found in gravitationally collapsing regions within molecular
clouds.
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As hydrogen and helium have no fine structure in their ground states, fine structure
cooling in the ISM is dominated by the contribution made by the next most abundant
elements, carbon and oxygen (Wolfire et al. 1995). In the diffuse ISM, carbon is
found mainly in the form of C+, as neutral atomic carbon can be photoionized by
photons with energies E > 11.26 eV, below the Lyman limit. Singly ionized carbon
has two fine structure levels in its ground state, an upper level with total angular
momentum J = 3/2 and a lower level with total angular momentum J = 1/2. The
energy separation between these two levels is approximately E/kB = 92 K, and
so this transition remains easy to excite down to temperatures of around 20 K (see
Fig. 4).

In denser regions of the ISM, where dust provides some shielding from the effects
of the ISRF, C+ recombines to yield C. Atomic carbon has three fine structure
levels, with total angular momenta J = 0, 1, 2 and energies relative to the ground
state ΔE/kB = 0.0, 23.6, 62.4 K, respectively. The small energy separations of

Fig. 4 Cooling rates for selected ISM coolants. The values plotted were computed assuming that
n = 1 cm−3 and are weighted by the fractional abundance (relative to the total number of hydrogen
nuclei) of the coolant in question. For H2 and HD, we assume that the gas is fully molecular, so
that xH2 = 0.5 and xHD = 2.5 × 10−5. For the metals, we adopt total C and O abundances from
Sembach et al. (2000), and show the cooling rate that we would have if all of the relevant element
were in the form of the indicated species. In the case of CO, the adopted abundance is the total
C abundance, since this is smaller than the total abundance of oxygen (Sembach et al. 2000). For
cooling from H2 and HD, we account for collisions with both H2 and He, while for the other species,
we account only for collisions with H2, owing to a lack of data on the collision rates with He. The
error introduced by omitting He is unlikely to exceed 10–20 %. The data on which these cooling
rates are based is taken from Flower and Roueff (1998, 1999a), and Flower et al. (1998) for H2,
Flower and Roueff (1999b) and Roueff and Zeippen (1999) for HD, Wiesenfeld and Goldsmith
(2014) for C+, Schroder et al. (1991) and Warin et al. (1996) for C, Jaquet et al. (1992) for O, and
Neufeld and Kaufman (1993); Neufeld et al. (1995); Flower (2001) and Wernli et al. (2006) for CO
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these levels mean that neutral atomic carbon remains an effective coolant down to
very low temperatures. Indeed, in the low density limit, neutral atomic carbon is a
more effective coolant than CO (Fig. 4), although it becomes ineffective at densities
n � 100 cm−3, owing to its low critical density.

The ionization energy of neutral oxygen is very similar to that of hydrogen, and
so in the WNM and CNM, oxygen is present largely in neutral atomic form. Neutral
oxygen also has fine structure in its ground state. In this case, there are three fine
structure levels, with total angular momenta J = 0, 1, 2 and energies relative to
the ground state ΔE/kB = 0.0, 227.7, 326.6 K, respectively. The larger energy
separation of these levels compared to the C+ fine structure levels means that in the
CNM, C+ cooling is considerably more effective than cooling from oxygen, despite
the larger abundance of oxygen relative to carbon (see e.g. Wolfire et al. 1995). In
warmer gas, however, carbon and oxygen are both important coolants.

In gas with standard solar metallicity, other metals such as N, Ne, Si, Fe and S also
have relatively high abundances, but in practice they do not contribute significantly
to the cooling of the ISM. Nitrogen and neon are present in the WNM and CNM
primarily in neutral form, and have no fine structure in their ground state in this form.
Silicon and iron do have ground state fine structure, but are strongly depleted in the
ISM, particularly in the colder and denser phases (Jenkins 2009). Finally, sulfur is
present primarily in the form of S+, which has no fine structure in its ground state.

Data on the collisional excitation rates of the fine structure transitions of C+, C
and O can be found in a number of places in the literature. Compilations of excitation
rate data are given in Hollenbach and McKee (1989); Glover and Jappsen (2007) and
Maio et al. (2007), as well as in the LAMDA database (Schöier et al. 2005).

3.4.3 Molecular Hydrogen

Molecular hydrogen is the dominant molecular species in the ISM and can have an
abundance that is orders of magnitude larger than that of any other molecule or that
of any of the elements responsible for fine structure cooling. Because of this, it is
natural to expect H2 to play an important role in the cooling of the ISM. In practice,
however, at metallicities close to solar, H2 cooling is important only in shocks (see
e.g. Hollenbach and McKee 1979, 1989) and not in more quiescent regions of the
diffuse ISM (Glover and Clark 2014). H2 is not a particularly effective coolant at
low temperatures.

There are several reasons for that. To a first approximation, we can treat H2 as a
linear rigid rotor, with rotational energy levels separated by energies

ΔE = 2B J, (66)

where J is the rotational quantum number of the upper level and B is the rotational
constant,

B ≡ �
2

2Im
, (67)
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and Im is the moment of inertia of the molecule (see e.g. Atkins and Friedman 2010).
Since H2 is a light molecule, it has a small moment of inertia, and hence a large
rotational constant, leading to widely spaced energy levels: ΔE/kB ≈ 170J K when
the rotational quantum number J is small. In addition, radiative transitions between
states with odd J and even J are strongly forbidden. The reason for this is that the
hydrogen molecule has two distinct forms, distinguished by the value of the nuclear
spin quantum number I . If the two protons have anti-parallel spins, so that I = 0, then
the total wave-function is anti-symmetric with respect to exchange of the two protons
(as required by the Pauli exclusion principle) if and only if the rotational quantum
number J is even. Molecular hydrogen in this form is known as para-hydrogen. On
the other hand, if the protons have parallel spins, then the Pauli principle requires that
J be odd. H2 in this form is known as ortho-hydrogen. Radiative transitions between
the ortho and para states (or vice versa) therefore require a change in the nuclear spin,
which is highly unlikely, and hence the associated transition rates are very small. The
first accessible rotational transition is therefore the J = 2 → 0 transition, which has
an associated energy separation of around 510 K. At low temperatures, it becomes
extremely hard to excite this transition, and therefore H2 cooling becomes extremely
ineffective.

This is illustrated in Fig. 4, where we compare the cooling rate due to H2 with
the cooling rates of a number of other potentially important coolants, discussed in
more detail below. All of the cooling rates are computed in the low density limit and
assume that the hydrogen is fully molecular and that the fractional ionization is zero.

From the figure, we see that in these conditions, H2 cooling can be important at
temperatures T > 100 K, but becomes insignificant in comparison to fine structure
line cooling or CO rotational emission at T < 100 K, owing to the exponential
fall-off in the H2 cooling rate. Changing the composition of the gas will change the
relative contributions of the different coolants, but in practice will typically make H2
cooling less important. For example, reducing the fractional abundance of H2 causes
the H2 cooling rate to drop significantly, because not only does one have fewer H2
molecules to provide the cooling, but their collisional excitation rates also decrease,
since collisions with H atoms are much less effective at exciting the rotational levels
of H2 than collisions with other H2 molecules (see e.g. Glover and Abel 2008 and
references therein). We therefore see that at solar metallicity, H2 cooling is important
only in gas with a high H2 fraction and a temperature T > 100 K. In practice, it
is difficult to satisfy both of these conditions at the same time in quiescent gas.
Temperatures of 100 K or more are easy to reach in low density CNM clouds, but
the equilibrium H2 abundance in these clouds is small. Increasing the density and/or
column density of the clouds increases the equilibrium H2 abundance, but at the
same time decreases the typical gas temperature. For this reason, high H2 fractions
tend to be found only in cold gas (Krumholz et al. 2011), and therefore in conditions
where H2 cooling is ineffective.

The combination of high H2 fraction and a gas temperature T > 100 K can occur
in shocked molecular gas, provided that the shock is not so strong as to completely
dissociate the H2, and H2 has long been known to be a significant coolant in these
conditions (Hollenbach and McKee 1979, 1989; Pon et al. 2012).
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3.4.4 Hydrogen Deuteride

Although H2 is an ineffective low temperature coolant, the same is not true for its
deuterated analogue, HD. Unlike H2, HD does not have distinct ortho and para forms,
and hence for HD molecules in the J = 0 ground state, the first accessible excited
level is the J = 1 rotational level. In addition, HD is 50 % heavier than H2, and
hence has a smaller rotational constant and more narrowly spaced energy levels. The
energy separation of its J = 0 and J = 1 rotational levels is ΔE10/kB = 128 K,
around a factor of four smaller than the separation of the J = 0 and J = 2 levels of
H2. We would therefore expect HD cooling to remain effective down to much lower
temperatures than H2.

One important factor working against HD is the fact that the deuterium abundance
is only a small fraction of the hydrogen abundance, meaning that in general H2 is
orders of magnitude more abundant than HD. However, in cold gas that is not yet
fully molecular, the HD abundance can be significantly enhanced by a process known
as chemical fractionation. HD is formed from H2 by the reaction

H2 + D+ → HD + H+ (68)

and is destroyed by the inverse reaction

HD + H+ → H2 + D+. (69)

The formation of HD via reaction (68) is exothermic and can take place at all tem-
peratures, but the destruction of HD via reaction (69) is mildly endothermic and
becomes very slow at low temperatures. As a result, the equilibrium HD/H2 ratio is
enhanced by a factor (Galli and Palla 2002)

fen = 2 exp

(
462

T

)
(70)

over the elemental D/H ratio. At temperatures T < 100 K, characteristic of the
CNM, this corresponds to an enhancement in the equilibrium abundance by a factor
of hundreds to thousands. This fractionation effect helps HD to be a more effective
low temperature coolant than one might initially suspect. Nevertheless, there is a
limit to how effective HD can become, since the HD abundance obviously cannot
exceed the total deuterium abundance. The total abundance of deuterium relative to
hydrogen in primordial gas is (Cooke et al. 2014)

(D/H) = (2.53 ± 0.04) × 10−5. (71)

In the local ISM, the ratio of D/H is even smaller (see e.g. Linsky et al. 2006;
Prodanović et al. 2010), as some of the primordial deuterium has been destroyed by
stellar processing.
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From the comparison of cooling rates in Fig. 4, we see that in fully molecular gas,
HD becomes a more effective coolant than H2 once the temperature drops below
50 K, despite the fact that in these conditions, the abundance of HD is more than 104

times smaller than that of H2. However, we also see that at these low temperatures,
the amount of cooling provided by HD is a factor of a hundred or more smaller
than the cooling provided by C+, C or CO. It is therefore safe to conclude that HD
cooling is negligible in low density, solar metallicity gas. At higher densities, HD
cooling could potentially become more important, as HD has a larger critical density
than C or C+, but at the relevant densities (n ∼ 106 cm−3), dust cooling generally
dominates.

3.4.5 Carbon Monoxide

Heavier molecules can also contribute significantly to the cooling of interstellar gas.
In particular, carbon monoxide (CO), the second most abundant molecular species in
the local ISM, can play an important role in regulating the temperature within giant
molecular clouds (GMCs). As we can see from Fig. 4, CO is a particularly important
coolant at very low gas temperatures, T < 20 K, owing to the very small energy
separations between its excited rotational levels. However, we also see from the
figure that at low densities, fine structure cooling from neutral atomic carbon is more
effective than CO cooling, and that at T ∼ 20 K and above, the contribution from C+
also becomes significant. The overall importance of CO therefore depends strongly
on the chemical state of the gas. If the gas-phase carbon is primarily in the form of
C or C+, then fine structure emission from these species will dominate, implying
that CO becomes important only once the fraction of carbon in CO becomes large.
As we will discuss in more detail later, this only occurs in dense, well-shielded gas,
and so in typical GMCs, CO cooling only dominates once the gas density exceeds
n ∼ 1000 cm−3.

In practice, CO is able to dominate the cooling only over a restricted range in
densities, as it becomes ineffective at densities n � 1000 cm−3. In part, this is
because CO has only a small dipole moment and hence the CO rotational transitions
have low critical densities. For example, in optically thin gas, the relative populations
of the J = 0 and J = 1 rotational levels reach their LTE values at a density ncrit ∼
2200 cm−3, while the J = 2 level reaches LTE at ncrit ∼ 23000 cm−3. In addition, the
low J transitions of 12CO rapidly become optically thick in these conditions, further
lowering their effective critical densities and significantly limiting their contribution
to the cooling rate of the gas. This behavior has a couple of interesting implications.
First, it means that cooling from isotopic variants of CO, such as 13CO or C18O
can become important, despite the low abundances of these species relative to 12CO
(e.g. Szűcs et al. 2014), since they will often remain optically thin even if 12CO is
optically thick. Second, it means that the freeze-out of CO onto the surface of dust
grains, which is thought to occur in the cold, dense gas at the center of many prestellar
cores, has very little effect on the overall CO cooling rate. This was demonstrated
in striking fashion by Goldsmith (2001), who showed that at densities of order 104–
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105 cm−3 within a typical prestellar core, reducing the CO abundance by a factor of
a hundred reduces the CO cooling rate by only a factor of a few.

3.4.6 Other Heavy Molecules

Other molecular species can become important coolants in comparison to H2 and
CO in the right conditions. An interesting example is water. H2O molecules have a
very large number of accessible rotational and vibrational transitions and also have
high critical densities. Therefore, over a wide range of temperatures and densities,
the amount of cooling that one gets per water molecule can be much larger than
the amount that one gets per CO molecule (see e.g. the comparison in Neufeld and
Kaufman 1993). Despite this, water does not contribute significantly to the thermal
balance of cold gas in molecular clouds, because the fractional abundance of water
in these regions is very small (see e.g. Snell et al. 2000). This is, because most of the
water molecules that form rapidly freeze out onto the surface of dust grains, forming
a significant part of the ice mantles that surround these grains (Bergin et al. 2000;
Hollenbach et al. 2009). On the other hand, in warm regions, such as the shocked
gas in molecular outflows, H2O can be a very important coolant (Nisini et al. 2010).

The other molecules and molecular ions present in interstellar gas also provide
some cooling, but at low gas densities, their total contribution is relatively small
compared to that of CO, since the latter generally has a much larger abundance. In
very dense gas, however, their contributions become much more important, owing to
the high optical depth of the CO rotational lines. Of particular importance in this high
density regime are species that have large dipole moments, such as HCN or N2H+,
as these species have high critical densities and hence remain effective coolants up to
very high densities. That said, in typical molecular cloud conditions, dust cooling
takes over from molecular line cooling as the main energy loss route well before
these species start to dominate the line cooling, and so their overall influence on the
thermal balance of the cloud remains small.

3.5 Gas-Grain Energy Transfer

Dust can also play an important role in the cooling of the ISM (Goldreich and Kwan
1974; Leung 1975). Individual dust grains are extremely efficient radiators, and so the
mean temperature of the population of dust grains very quickly relaxes to an equilib-
rium value given by the balance between radiative heating caused by the absorption
of photons from the ISRF and radiative cooling via the thermal emission from the
grains.4 If the resulting dust temperature, Td, differs from the gas temperature, TK,

4The chemical energy released when H2 molecules form on grain surfaces and the direct interaction
between dust grains and cosmic rays also affect the grain temperature, but their influence on the
mean grain temperature is relatively minor (Leger et al. 1985).
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then collisions between gas particles and dust grains lead to a net flow of energy
from one component to the other, potentially changing both TK and Td.

The mean energy transferred from the gas to the dust by a single collision is given
by

ΔE = 1

2
kB(TK − Td)α, (72)

where α is the thermal energy accommodation coefficient, which describes how
efficiently energy is shared between the dust and the gas (Burke and Hollenbach
1983). This efficiency typically varies stochastically from collision to collision, but
since we are always dealing with a large number of collisions, it is common to work
in terms of the mean value of α, which we denote as ᾱ. However, even then, the
treatment of the accommodation coefficient can be complicated, as ᾱ depends in a
complicated fashion on the nature of the dust grain, the nature of the collider (e.g.
whether it is a proton, a hydrogen atom or an H2 molecule), and the gas and grain
temperatures (Burke and Hollenbach 1983).

The total rate at which energy flows from the gas to the dust is the product of the
mean energy per collision and the total collision rate. The latter can be written as

Rcoll = 4πσdv̄ntotnd, (73)

where σd is the mean cross-sectional area of a dust grain, nd is the number density of
dust grains, ntot is the number density of particles, and v̄ is the mean thermal velocity
of the particles in the gas. Note that both ntot and v̄ are functions of the composition
of the gas—in a fully atomic gas, ntot and v̄ are both larger than in a fully molecular
gas.

Combining Eqs. (72) and (73), we can write the cooling rate per unit volume due
to energy transfer from the gas to the dust as

Λgd = πσdv̄ᾱ(2kTK − 2kTd)ntotnd. (74)

Note that although it is common to talk about this in terms of cooling, if Td > TK
then energy will flow from the dust to the gas, i.e. this will become a heating rate.

Expressions given in the astrophysical literature for Λgd are typically written in
the form

Λgd = CgdT 1/2
K (TK − Td) n2 erg s−1 cm−3, (75)

where n is the number density of hydrogen nuclei and Cgd is a cooling rate coefficient
given by

Cgd = 2πkσd

(
v̄

T 1/2
K

)

ᾱ
ntotnd

n2 . (76)

The value of Cgd is largely determined by the assumptions that we make regarding the
chemical state of the gas and the nature of the dust grain population, but in principle
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it also depends on temperature, through the temperature dependence of the mean
accommodation coefficient, ᾱ.

Different authors introduce different assumptions about various of these issues,
leading to a wide spread of values for Cgd being quoted in the literature for Milky
Way dust. For example, Hollenbach and McKee (1989) write Cgd as

Cgd = 3.8×10−33
[

1 − 0.8 exp

(
− 75

TK

)] (
10 nm

amin

)1/2

erg s−1 cm3 K−3/2, (77)

where amin is the minimum radius of a dust grain, often taken to be simply amin =
10 nm. However, Tielens and Hollenbach (1985) quote a value for the same process
that is almost an order of magnitude smaller

Cgd = 3.5 × 10−34 erg s−1 cm3 K−3/2, (78)

while Goldsmith (2001) quotes a value that is smaller still,

Cgd = 1.6 × 10−34 erg s−1 cm3 K−3/2. (79)

Finally, Evans (private communication) argues for a rate

Cgd = 1.8 × 10−33
[

1 − 0.8 exp

(
− 75

TK

)]
erg s−1 cm3 K−3/2, (80)

close to the Hollenbach and McKee (1989) rate. Although it is not always clearly
stated, all of these rates seem to be intended for use in H2-dominated regions. In
regions dominated by atomic hydrogen, one would expect the cooling rate to vary,
owing to the difference in the value of ᾱ appropriate for H atoms and that appro-
priate for H2 molecules (Burke and Hollenbach 1983). In a recent study, Krumholz
et al. (2011) attempted to distinguish between the molecular-dominated and atomic-
dominated cases, using

Cgd = 3.8 × 10−33 erg s−1 cm3 K−3/2 (81)

for molecular gas and

Cgd = 1.0 × 10−33 erg s−1 cm3 K−3/2 (82)

for atomic gas.
The uncertainty in Cgd becomes even greater as we move to lower metallicity, as

less is known about the properties of the dust. It is often assumed that Cgd scales
linearly with metallicity (e.g. Glover and Clark 2012c), but this is at best a crude
approximation, particularly as the dust abundance appears to scale non-linearly with
metallicity in metal-poor galaxies (Galametz et al. 2011; Herrera-Camus et al. 2012).
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The importance of gas-grain energy transfer as a cooling mechanism depends
strongly on the gas density, regardless of which value of Cgd we adopt. At low
densities, the cooling rate is low in comparison to that provided by atomic fine
structure lines or molecular transitions, as can be seen by comparing the values
quoted above with the atomic and molecular cooling rates plotted in Fig. 4. This
remains true for as long as we remain in the low-density line cooling regime, where
the cooling rate due to line emission scales as n2. However, as the density increases,
we will eventually pass the critical densities of our main atomic and molecular
coolants. Once we do so, the line cooling rate will begin to scale linearly with the
density, while the gas-grain rate will continue to scale as n2. We therefore see that
eventually gas-grain energy transfer will come to dominate the cooling rate of the
gas. The considerable optical depths that can build up in the main coolant lines simply
act to hasten this process.

Once gas-grain energy transfer dominates the cooling rate, the gas temperature
is quickly driven towards the dust temperature. This is illustrated in Fig. 5, which
shows the evolution of dust and gas temperature as function of number density in
the turbulent ISM for different combinations of metallicity and strength of the ISRF
(based on numerical simulations similar to those described in Glover and Clark
2012a, c). The gas density at which the two temperatures become strongly coupled
depends on the value of Cgd. In a quiescent pre-stellar core, coupling occurs once
the cooling due to dust becomes larger than the cosmic ray heating rate of the gas.
In solar metallicity gas, this takes place at a density n ∼ 105 cm−3 if one uses the

Z = 1 Z  G0 = 17 Z = 0.1 Z  G0 = 1.7Z = 1 Z  G0 = 1.7

gas

dust

Fig. 5 Gas and dust temperatures, TK and Td, as a function of the hydrogen nuclei number density
n in the turbulent ISM for two different metallicities (the solar value, Z = 1 Z�, and a much smaller
value typical of metal-poor dwarf galaxies, Z = 0.1 Z�), and for two different strength of the ISRF
(the solar neighborhood value with G0 = 1.7, and a value ten times larger with G0 = 17). We
assume here that the grain size distribution is the same in each case, and that the dust-to-gas ratio
scales linearly with the metallicity. The distribution of dust temperatures varies only weakly with
changes in Z or G0. For Z = 1 Z�, the gas becomes thermally coupled to the gas at densities larger
than n ∼ 105 cm−3, so that TK ≈ Td. For Z = 0.1 Z�, this happens instead at densities above
n ∼ 106 cm−3. In these models, which started with atomic initial conditions, H2 formation on dust
grains releases latent heat and leads to a bump in the gas temperature at densities n ∼ 104 cm−3 for
Z = 1 Z�, and at n ∼ 105 cm−3 for Z = 0.1 Z�. This feature is absent in clouds that have already
converted all of their hydrogen to molecular form
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Hollenbach and McKee (1989) prescription for Cgd, but not until n ∼ 106 cm−3

if one uses the Goldsmith (2001) prescription, provided that we assume a standard
value for the cosmic ray heating rate. In regions where the cosmic ray flux is highly
enhanced or where the metallicity is low, however, the coupling between gas and
dust can be delayed until much higher densities (see e.g. Papadopoulos 2010; Clark
et al. 2013).

3.6 Computing the Dust Temperature

As we saw in the previous subsection, energy transfer between gas and grains acts
to couple the gas temperature to the dust temperature in dense gas. It is therefore
important to understand the physics responsible for determining Td. Because dust
grains are extremely efficient radiators, it is usually a good approximation to treat
them as being in thermal equilibrium, with a temperature set by the balance between
three processes: heating by photon absorption and by collisions with warmer gas
particles, and cooling by photon emission.

The dust temperature is set by the following equation:

Γext − Λdust + Λgd = 0 . (83)

Here Γext is the dust heating rate per unit volume due to the absorption of radiation,
Λdust is the radiative cooling rate of the dust, and Λgd, as we have already seen, is
the net rate at which energy is transferred from the gas to the dust by collisions.

In the simple case in which the main contribution to Γext comes from the interstel-
lar radiation field, we can write this term as the product of a optically thin heating rate,
Γext,0, and a dimensionless factor, χ, that represents the attenuation of the interstellar
radiation field by dust absorption (Goldsmith 2001),

Γext = χΓext,0. (84)

The optically thin heating rate is given by

Γext,0 = 4πDρ

∫ ∞

0
Jνκν dν, (85)

where D is the dust-to-gas ratio, ρ is the gas density, Jν is the mean specific intensity
of the incident interstellar radiation field, and κν is the dust opacity in units of
cm2 g−1. To determine the attenuation factor χ at a specified point in the cloud, we
can use the following expression:

χ =
∮ ∫ ∞

0 Jνκν exp [−κνΣ(n)] dν dΩ

4π
∫ ∞

0 Jνκν dν
, (86)
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where Σ(n) is the column density of the gas between the point in question and the
edge of the cloud in the direction n.

The values of both Γext,0 and χ depend on the parameterization we use for the
ISRF and on our choice of dust opacities. For example, Goldsmith (2001) uses values
for the radiation field from Mathis et al. (1983) plus a highly simplified dust grain
model and derives an optically thin heating rate

Γext,0 = 1.95 × 10−24n erg s−1 cm−3. (87)

On the other hand, Glover and Clark (2012b) make use of a more complicated model,
involving values for the ISRF taken from Black (1994) and dust opacities taken from
Ossenkopf and Henning (1994) at long wavelengths and Mathis et al. (1983) at short
wavelengths, but their resulting value for Γext,0 is relatively similar:

Γext,0 = 5.6 × 10−24n erg s−1 cm−3. (88)

The dust cooling rate, Λdust, is given by

Λdust(Td) = 4πDρ

∫ ∞

0
Bν(Td)κν dν, (89)

where Bν(Td) is the Planck function for a temperature Td. Again, the resulting rate
is sensitive to our choice of opacities. Using values from Ossenkopf and Henning
(1994) yields a cooling rate that is well fit by the expression (Glover and Clark 2012b)

Λdust(Td) = 4.68 × 10−31T 6
d n erg s−1 cm−3 (90)

for dust temperatures 5 < Td < 100 K.
Comparing the expressions given above for Γext,0 and Λdust(Td), we see that in

optically thin, quiescent gas illuminated by a standard ISRF, the equilibrium dust
temperature is Td ∼ 15 K.5 Moreover, Td decreases only very slowly as χ increases,
since Td ∝ χ1/6, and so substantial attenuation of the ISRF is required in order to
significantly alter the dust temperature. Note also, however, that once the attenuation
becomes very large, this simple prescription for computing Td breaks down, as the re-
emitted far infrared radiation from the grains themselves starts to make a significant
contribution to the overall heating rate (see e.g. Mathis et al. 1983).

Comparison of Γext and Λgd allows us to explore the role played by the gas in
heating the grains. In optically thin gas, Γext � Λgd even when TK � Td unless the
gas density is very high, of the order of 105cm−3 or higher, and so in these conditions,
dust is heated primarily by the ISRF, with energy transfer from the gas becoming
important only in extreme conditions, such as in supernova blast waves. In dense

5This is somewhat smaller than the mean value of ∼20 K that we quote in Sect. 2.3.2, but this
discrepancy is most likely due to our use of the Ossenkopf and Henning (1994) opacities here, as
these are intended to represent the behavior of dust in dense molecular clouds and not in the diffuse
WNM and CNM.
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cores, where n is large and χ is small, the importance of gas-grain energy transfer
for heating the dust depends on the difference between the gas temperature and the
dust temperature, which in these conditions will generally be small. However, if we
assume that we are at densities where the gas and dust temperatures are strongly
coupled, we can get a good idea of the importance of the Λgd term by comparing
the heating rate of the gas (e.g. by cosmic rays or compressional heating) with Γext,
since most of the energy deposited in the gas will be quickly transferred to the dust
grains.

If cosmic ray heating of the gas dominates, and we adopt the prescription for
cosmic ray heating given in Goldsmith and Langer (1978), then gas-grain energy
transfer and heating from the ISRF become comparable once χ ∼ 10−4ζ17, where
ζ17 is the cosmic ray ionization rate of atomic hydrogen in units of 10−17 s−1, and
where we have adopted the Hollenbach and McKee (1989) form for Λgd. In dense
cores, ζ17 ∼ 1 (van der Tak and van Dishoeck 2000), and so in this scenario, gas-
grain energy transfer only becomes important for heating the grains once χ ∼ 10−4,
corresponding to an extremely high dust extinction (see e.g. Fig. A1 in Glover and
Clark 2012b). On the other hand, if compressional heating or turbulent dissipation
dominate, as appears to be the case in gravitationally collapsing cores (Glover and
Clark 2012a), then the heating rate can be considerably larger. One important conse-
quence of this is that once dynamical effects dominate the heating of the dust grains,
the dust (and hence the gas) will start to heat up with increasing density, evolving
with an effective adiabatic index γeff ≈ 1.1 (Larson 2005; Banerjee et al. 2006).

3.7 Photoelectric Heating

One of the most important forms of radiative heating in the diffuse ISM is the
photoelectric heating caused by the interaction between dust grains and UV photons.
If a dust grain is hit by a suitably energetic photon, it can emit a photo-electron.
The energy of this photo-electron is equal to the difference between the energy of
the photon and the energy barrier that needs to be overcome in order to detach the
electron from the grain, a quantity often known as the work function. This difference
in energies can often be substantial (of the order of an eV or more), and this energy
is rapidly redistributed amongst the other particles in the gas in the form of heat.

For a dust grain with radius a, photon absorption cross-section σd(a, ν), and
charge Zde, the rate at which photo-electrons are ejected can be written as

Rpe(a, Zd) = 4π

∫ νH

νZd

Jν

hν
σd(a, ν)Yion(Zd, a, ν)dν. (91)

Here, Jν is the mean specific intensity of the ISRF, hνZd is the ionization potential of
the grain (i.e. the energy required to remove a single electron), and hνH = 13.6 eV
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is the ionization potential of atomic hydrogen; we assume that photons with ν > νH
are absorbed by the neutral atomic hydrogen in the ISM and do not reach the grains.

The Yion term is the photo-ionization yield. It can be written as

Yion = Y∞
(

1 − νZd

ν

)
fy(a), (92)

where Y∞ is the yield for very large grains in the limit ν � νZd , and fy(a) is a yield
correction factor. This correction factor accounts for the fact that in large grains, the
photon attenuation depth, la , i.e. the distance that a photon can penetrate into the
material before it is absorbed, can be larger than the electron mean free path le. We
typically normalize Y∞ such that fy(a) = 1 for large grains, in which case our values
for small grains are enhanced by a factor fy = (le + la)/ le. Typical values for these
yield-related parameters are Y∞ = 0.15, le = 1 nm and la = 10 nm, respectively.

We therefore see that there are three main parameters that influence the size of
the photoelectric heating rate. These are (1) the strength of the ISRF at the relevant
frequencies, as quantified by the mean specific intensity Jν , (2) the size distribution
of the grains, often taken to be given by the simple MRN distribution (Eq. 1), and (3)
the charge of the grains. The charge is important because it influences how easy it
is to eject electrons from the grains. When the grains are highly negatively charged,
electron ejection is easy, the work function is small, and the photo-ionization yield
is high. As the grains become more neutral or even positively charged, it becomes
much harder to detach electrons from the grains: the work function increases and the
photo-ionization yield drops.

The photoelectric heating rate is therefore much larger in conditions when most
grains are neutral, or negatively charged, than when most grains are positively
charged. The main processes determining the charge on a typical grain are photo-
ionization—i.e. the same process that gives us the photoelectric heating—together
with the accretion of free electrons and the recombination of gas-phase ions with
surface electrons. Schematically, we can write these reactions as

GR+n + γ → GR+n+1 + e−, (93)

GR+n + e− → GR+n−1, (94)

GR+n + A+ → GR+n+1 + A. (95)

In general, collisions with electrons are more important than collisions with positive
ions, since the electron thermal velocity is much larger than the thermal velocity of
the ions. The level of charge on the grains is therefore set primarily by the balance
between photo-ionization and recombination with free electrons.

Although a detailed analysis of grain charging is rather complex, and beyond
the scope of these lecture notes, in practice one finds that the dependence of the
photoelectric heating rate on the physical conditions in the gas is fairly accurately
described as a function of a single parameter, the combination
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ψ ≡ G0T 1/2

ne
, (96)

where G0 is the strength of the ISRF, ne is the number density of gas-phase electrons
and T is the gas temperature (Draine and Sutin 1987; Bakes and Tielens 1994;
Weingartner and Draine 2001b). Physically, this behavior makes sense: a strong ISRF
or a paucity of free electrons will tend to lead to the grains being more positively
charged, while the converse will lead to grains being more negatively charged. The
T 1/2 dependence simply reflects the temperature dependence of the rate coefficient
for electron recombination with the grains.

For standard interstellar dust, the photoelectric heating rate has been parameter-
ized as a function of this ψ parameter by Bakes and Tielens (1994). Their prescription
for the heating rate per unit volume can be written as

Γpe = 1.3 × 10−24εG0n erg s−1 cm−3, (97)

where ε is the photoelectric heating efficiency, given by

ε = 0.049

1 + (ψ/1925)0.73 + 0.037(T/10000)0.7

1 + (ψ/5000)
, (98)

and G0 is the strength of the interstellar radiation field in units of the Habing (1968)
field (see Eq. 8). In the limit of small ψ, we have ε ≈ 0.05 when the temperature is
low, and ε ≈ 0.09 when the temperature is high (see Fig. 6). A more recent treatment
by Weingartner and Draine (2001b) gives similar values for ε for small ψ, but predicts
a more rapid fall-off in ε and Γpe with increasing ψ for ψ > 104.

A final important point to note is that because the photons required to eject photo-
electrons must be energetic, with minimum energies typically around 6 eV, the pho-
toelectric heating rate is highly sensitive to the dust extinction. This sensitivity can be
approximately represented by a scaling factor fthick = exp(−2.5AV ) (Bergin et al.
2004). From this, we see that photoelectric heating will become ineffective once the
visual extinction of the gas exceeds AV ∼ 1–2.

3.8 Other Processes Responsible for Heating

Ultraviolet radiation

As well as heating the gas via the photoelectric effect, the ultraviolet component of
the ISRF also heats the gas in two other important ways. First, the photodissociation
of H2 by UV photons results in a transfer of energy to the gas, as the hydrogen
atoms produced in this process have kinetic energies that on average are greater than
the mean kinetic energy of the gas particles. The amount of energy released varies
depending upon which rovibrational level of the excited electronic state was involved
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Fig. 6 Photoelectric heating efficiency ε as a function of ψ ≡ G0T 1/2n−1
e . Values are plotted

for gas temperatures of 6000 K (solid line), characteristic of the WNM, and 60 K (dashed line),
characteristic of the CNM. The values shown here are based on the work of Bakes and Tielens
(1994), as modified by Wolfire et al. (2003). In the local ISM, ψ ∼ 2×104 in the WNM and ∼2000
in the CNM (Wolfire et al. 2003)

in the dissociation (Stephens and Dalgarno 1973; Abgrall et al. 2000). Averaged over
all the available dissociative transitions, the total heating rate is around 0.4 eV per
dissociation (Black and Dalgarno 1977).

Second, UV irradiation of molecular hydrogen can lead to heating via a process
known as UV pumping. The absorption of a UV photon by H2 leads to photodissocia-
tion only around 15 % of the time (Draine and Bertoldi 1996). The rest of the time, the
H2 molecule decays from its electronically excited state back into a bound rovibra-
tional level in the electronic ground state. Although the molecule will occasionally
decay directly back into the v = 0 vibrational ground state, it is far more likely to
end up in a vibrationally excited level. In low density gas, it then radiatively decays
back to the rovibrational ground state, producing a number of near infrared photons
in the process. In high density gas, on the other hand, collisional de-excitation occurs
more rapidly than radiative de-excitation, and so most of the excitation energy is con-
verted into heat. In this case, the resulting heating rate is around 2 eV per pumping
event, corresponding to around 10–11 eV per photodissociation (see e.g. Burton et al.
1990). The density at which this process becomes important is simply the critical
density of H2, ncrit ∼ 104 cm−3. This process is therefore not a major heat source at



Physical Processes in the Interstellar Medium 129

typical molecular cloud densities, but can become important in dense cores exposed
to strong UV radiation fields.

Cosmic rays

In gas that is well shielded from the ISRF, both of these processes become unim-
portant, as does photoelectric heating. In this regime, cosmic rays provide one of
the main sources of heat. When a cosmic ray proton ionizes a hydrogen or helium
atom, or an H2 molecule, the energy lost by the cosmic ray is typically considerably
larger than the ionization energy of the atom or molecule (Glassgold and Langer
1973). The excess energy is shared between the resulting ion and electron as kinetic
energy, and the collisions of these particles with other atoms or molecules can lead to
further ionizations, known as secondary ionizations. Alternatively, the excess kinetic
energy can be redistributed in collisions as heat. The amount of heat transferred to
the gas per cosmic ray ionization depends upon the composition of the gas (Dalgarno
et al. 1999; Glassgold et al. 2012), but is typically around 10–20 eV. Most models
of thermal balance in dark clouds adopt a heating rate that is a fixed multiple of the
cosmic ray ionization rate, rather than trying to account for the dependence of the
heating rate on the local composition of the gas (see e.g. Goldsmith and Langer 1978;
Goldsmith 2001; Glover et al. 2010; Krumholz et al. 2011). A commonly adopted
parameterization is

Γcr ∼ 3.2 × 10−28(ζH/10−17 s−1) n erg cm−3s−1 , (99)

where the cosmic ray ionization rate of atomic hydrogen ζH is scaled by its typical
value of 10−17 s−1, and where n is the number density of hydrogen nuclei. Note that
the uncertainty introduced by averaging procedure is typically much smaller than the
current uncertainty in the actual cosmic ray ionization rate in the considered region
(see Sect. 2.4).

X-rays

X-rays can also heat interstellar gas, and indeed in this case the chain of events is
very similar to that in the case of cosmic ray heating: X-ray ionization produces an
energetic electron that can cause a significant number of secondary ionizations, with
some fraction of the excess energy also going into heat. Unlike cosmic rays, X-rays
are rather more sensitive to the effects of absorption, since their mean free paths are
typically much smaller. Therefore, although X-ray heating can be important in the
diffuse ISM (see e.g. Wolfire et al. 1995), it is generally not important in the dense
gas inside molecular clouds, unless these clouds are located close to a strong X-ray
source such as an AGN (see e.g. Hocuk and Spaans 2010).

Chemical reactions

Another way in which the gas can gain energy is through changes in its chemical
composition. The formation of a new chemical bond, such as that between the two
hydrogen nuclei in an H2 molecule, leads to a release of energy. Much of this energy
will be in the form of rotational and/or vibrational excitation of the newly-formed
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molecule, and in low density environments, this will rapidly be radiated away. At
high densities, however, collisional de-excitation can convert this energy into heat
before it can be lost via radiation. Some of the energy released in a reaction may also
be in the form of translational energy of the newly-formed molecule, and this will
also be rapidly converted into heat via collisions. Many of the reactions occurring
in interstellar gas lead to heating in this way, but for the most part, their effects are
unimportant, as the quantities of the reactants involved are too small to do much. The
one case in which this process can become significant, however, is the formation of
H2. In the local ISM, the H2 formation rate is approximately (Jura 1975)

RH2 ∼ 3 × 10−17nnH cm−3s−1, (100)

and a total of 4.48 eV of energy is released for each H2 molecule that is formed. If
this energy is converted to heat with an efficiency εH2 , then the resulting heating rate
is

ΓH2form ∼ 2 × 10−28εH2 nnH erg cm−3s−1. (101)

Comparing this with the heating rate (99) due to cosmic ray ionization, we see
that H2 formation heating will dominate whenever εH2 nH > (ζH/10−17 s−1). In
principle, therefore, H2 formation heating can be an important process, provided
that the efficiency factor εH2 is not too small. Unfortunately, the value of εH2 remains
a matter of debate within the astrochemical community. Some studies (see e.g. Le
Bourlot et al. 2012 and references therein) indicate that a significant fraction of the
H2 binding energy should be available for heating the gas, while others (e.g. Roser
et al. 2003; Congiu et al. 2009) predict that εH2 should be small.

Dynamical processes

Finally, hydrodynamical and magnetohydrodynamical effects can also lead to sig-
nificant heating. In subsonic, gravitationally collapsing regions, such as low mass
prestellar cores, adiabatic compression (PdV heating) can be a major source of heat
and can actually be more important in the overall thermal balance of the core than
cosmic ray heating. In less quiescent regions, where the gas flow is supersonic, turbu-
lent dissipation in shocks is another major heat source. Figure 7 provides an overview
of the most important heating and cooling processes for the solar neighborhood ISM.
Unlike in Fig. 4, the rates are here plotted as a function of the hydrogen nuclei number
density n. The figure shows that initially atomic gas exhibits three different regimes.
At densities n < 2000 cm−3, the gas heating is dominated by photoelectric emis-
sion from dust grains (Sect. 3.7), while cooling is provided by fine structure emission
from C+. In the density regime 2000 < n < 105 cm−3, rotational line emission from
CO becomes the main coolant. Photoelectric heating remains the main heat source
initially, but steadily becomes less effective, owing to the larger visual extinction of
the cloud at these densities, and other processes—adiabatic compression of the gas,
dissipation of turbulent kinetic energy in shocks and cosmic ray ionization heating—
become more important at n ∼ 6000 cm−3 and above. Finally, at densities above
about 105 cm−3, the gas couples to the dust (Sect. 3.5), which acts as a thermostat
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Fig. 7 Overview of the main heating and cooling processes plotted as a function of the hydrogen
nuclei number density n calculated from a simulation of molecular cloud formation from initially
atomic gas in the solar neighborhood. Adopted from Glover and Clark (2012a)

and provides most of the cooling power. Weak shocks and adiabatic compressions
together dominate the heating of the gas in this regime, each contributing close to
half of the total heating rate (for a more detailed discussion, see Glover and Clark
2012a).

The rate at which turbulent kinetic energy is dissipated in regions where the
turbulence is supersonic is well established (Mac Low et al. 1998; Stone et al. 1998;
Mac Low 1999). The energy dissipation rate within a cloud of mass M and velocity
dispersion σ can be written to within a factor of order unity as (Mac Low 1999)

Ėkin ∼ −Mkdσ
3, (102)

where kd is the wavenumber on which energy is injected into the system. If we
assume that this is comparable to the size of the cloud (see e.g. Brunt et al. 2009),
and adopt Larson’s relations between the size of the cloud and its velocity dispersion
and number density (Larson 1981), then we arrive at an average turbulent heating
rate (Pan and Padoan 2009)

Γturb = 3 × 10−27
(

L

1 pc

)0.2

n erg s−1 cm−3. (103)

This heating rate is of a similar order of magnitude to the cosmic ray heating rate.
Unlike cosmic ray heating, however, turbulent heating is highly intermittent (Pan and
Padoan 2009). This means that in much of the cloud, the influence of the turbulent
dissipation is small, while in small, localized regions, very high heating rates can be
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produced (see e.g. Falgarone et al. 1995, Godard et al. 2009). We provide a more
detailed account of ISM turbulence in the next Section.

Finally, note that the physical nature of the heating process depends upon the
strength of the magnetic field within the gas. If the field is weak, energy dissipation
occurs mostly through shocks, whereas if the field is strong, a substantial amount of
energy is dissipated via ambipolar diffusion (Padoan et al. 2000; Li et al. 2012).

4 ISM Turbulence

The dynamical evolution of the ISM and many of its observational parameters cannot
be understood without acknowledging the importance of supersonic turbulence. Here,
we summarize some of the key measurements that point towards the presence of
strong supersonic turbulent motions in the various phases of the ISM on a wide
range of spatial scales. We introduce the most important theoretical concepts behind
our current understanding of ISM turbulence, and discuss some statistical properties
of compressible turbulent flows. Finally, we speculate about the physical origin of
the observed turbulence in the ISM. For an overview of ISM turbulence we refer the
reader to the review articles by Elmegreen and Scalo (2004) and Scalo and Elmegreen
(2004), and for a discussion of the relation between turbulence and star formation
on local as well as galactic scales, we point to the reviews by Mac Low and Klessen
(2004) and Ballesteros-Paredes et al. (2007). More recent discussions on the topic
of ISM dynamics can be found in Hennebelle and Falgarone (2012) as well as in
Protostars and Planets VI, in particular in the chapters by Padoan et al. (2014) or
Dobbs et al. (2014).

4.1 Observations

4.1.1 Observational Tracers of ISM Dynamics

The best approach to learn more about the dynamical and kinematic state of the ISM
is to look for the line emission (or sometimes absorption) of various atomic and
molecular species. We take a spectrum, and once we have identified the line, we can
compare the observed frequency with the rest-frame frequency in order to obtain
information about the velocity distribution of gas along the line of sight (LOS).
Ideally, we obtain spectra at multiple positions and fully cover the projected area
of the object of interest on the sky. By doing so, we obtain a three-dimensional
data cube containing the line intensity at different positions on the sky and different
LOS velocities. Such position-position-velocity (PPV) cubes form the basis of most
kinematic studies of ISM dynamics.

For the warm neutral medium (Sect. 2.1), most studies focus on the 21 cm hyper-
fine structure line of atomic hydrogen (Hi). It occurs with a spin flip from the
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excited state (S = 1), where the spins of proton and electron are parallel, to the
ground state (S = 0), where the two spins are anti-parallel. The energy difference is
ΔE = 5.87 × 10−6 eV or ΔE/kB = 0.06816 K, corresponding to the emission of a
photon with the wavelength λ = 21.106 cm or the frequency ν = 1.4204 GHz (for
further details, see e.g. Chap. 8 in Draine 2011).

Molecular hydrogen is much more difficult to observe. It is a homonuclear mole-
cule, and as a consequence its dipole moment vanishes. The quadrupole radiation
requires high excitation temperatures and is extremely weak under normal molecular
cloud conditions (Sect. 3.4.3). Direct detection of cold interstellar H2 requires ultra-
violet absorption studies. However, due to the atmospheric absorption properties,
this is only possible from space and limited to pencil-beam measurements of the
absorption of light from bright stars or from AGN.6 Studies of the molecular ISM
therefore typically rely on measuring the radio and sub-millimeter emission either
from dust grains or from other molecules that tend to be found in the same locations
as H2.

The most prominent of these tracer molecules is CO and its various isotopologues.
As previously mentioned, the most abundant of these isotopologues is 12C16O, often
referred to just as 12CO or simply CO. However, the high abundance of this tracer
can actually become problematic, as it is often optically thick, and hence we cannot
use it to trace the properties of the turbulence in the whole of the cloud. For example,
numerical studies have shown that many of the smaller-scale structures identified in
PPV cubes of 12CO emission are actually blends of multiple unrelated features along
the LOS (Ballesteros-Paredes and Mac Low 2002; Beaumont et al. 2013), and that
the statistical properties of the velocity field that can be derived using 12CO emission
are not the same as those derived using the 12CO number density (Bertram et al.
2014). For this reason, studies of the properties of the turbulence within molecular
clouds often focus on less abundant isotopologues, such as 13C16O (usually written
simply as 13CO) or 12C18O (often written just as C18O). The optical depths of these
tracers are much lower, and we therefore expect them to provide a less biased view of
the properties of the turbulent velocity field. Nevertheless, problems still remain. The
lowest rotational transition of CO, the J = 1–0 transition, has a critical density of only
ncr = 1.1×103 particles per cm3, only a factor of a few larger than the typical mean
density of a molecular cloud. Observations of this transition are therefore useful
at providing us with information on the properties of the cloud at densities close
to the mean density, but provide little information on highly underdense or highly
overdense regions. This is exacerbated by the chemical inhomogeneity of the CO
distribution within molecular clouds. In low density, low extinction regions, much
of the CO is photodissociated (see Sect. 5.1.2), and most of the available carbon is
found instead in the form of C+, while in high density cores, CO freezes out onto
the surface of dust grains.

6Note that rotational and ro-vibrational emission lines from H2 have also been detected in the
infrared, both in the Milky Way and in other galaxies. However, this emission comes from gas that
has been strongly heated by shocks or radiation, and it traces only a small fraction of the total H2
mass (e.g. van der Werf 2000).
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Fig. 8 Temperature and density range of various observational tracers of molecular cloud structure
and dynamics. Adapted from Genzel (1991)

To trace the properties of the turbulence in these regions, different observa-
tional tracers are required. In low density regions, this is difficult, as C+ emits at
a wavelength of 158µm which cannot be observed from the ground owing to the

Fig. 9 Schematic distribution of molecular cloud complexes in the disk of the Milky Way. Data
from Dame et al. (2001)
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effects of atmospheric attenuation. It has been observed from the stratosphere by
the Kuiper Airborne Observatory (see e.g. Chokshi et al. 1988) and more recently
by the Stratospheric Observatory for Infrared Astronomy (SOFIA; see e.g. Simon
et al. 2012), and from space by ISO and by the Herschel space telescope (e.g. Pineda
et al. 2013), but efforts to map the large-scale distribution of C+ emission within
molecular clouds are still in their infancy. In addition, they are hampered by the fact
that the energy separation of the ground state and first excited state of C+ corre-
sponds to a temperature of around 92 K, higher than one expects to find in the low
density regions of most molecular clouds, making the properties of the observed C+
emission highly sensitive to the temperature distribution of the gas in the cloud. In
high density regions, the situation is much simpler, as a number of different obser-
vational tracers are readily available, with the most popular ones being HCN, NH3,
HCO+ and N2H+. A summary of the most relevant tracers, together with the range
of temperature and density they are most suitable for, is depicted in Fig. 8.

For studying the properties of Hii regions, atomic recombination lines are the
best available tool. These are electronic transitions that occur when the recombination
event leaves the electron in an excited state, which consequently decays down towards
the ground state by emitting photons. The classic example is line emission from the
hydrogen atom itself in the Lyman, Balmer, Paschen, etc. series (e.g. Spitzer 1978;
Osterbrock 1989). For low quantum numbers these photons typically have UV or
optical wavelengths, but if highly excited Rydberg states are involved, the emission
can be detected at radio or sub-mm wavelengths. Besides hydrogen (and in part
helium) recombination lines, Hii regions also show a large number of metal lines,
both at optical wavelengths, where they result from the recombination of (multiply)
ionized atoms (such as O++ or N+), and in the infrared, where they result from fine
structure transitions of ions or atoms with high ionization potentials.

Fig. 9 (continued)
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4.1.2 Properties of Molecular Clouds

In the following, we focus on the properties of the molecular component of the ISM.
The all-sky survey conducted by Dame et al. (2001) shows that molecular gas is
mostly confined to a thin layer in the Galactic disk, and that the gas in this layer is
organized into cloud complexes of various sizes and masses (see also Combes 1991).
Figure 9 illustrates the distribution of Galactic H2 as traced by the J = 1−0 line of
12CO with some of the most prominent molecular cloud complexes indicated by
name. One of the best studied complexes in the northern sky contains the two giant
molecular clouds Orion A and B, lying between a Galactic longitude 200◦ < � <

220◦ and a latitude −20◦ < b < −10◦. A detailed map of the total CO intensity from
this region is shown in Fig. 10, taken from the study of Wilson et al. (2005). Their
observations reveal a complex hierarchy of filaments and clumps on all resolved
scales.

Studies of the structure of the molecular gas show that molecular clouds appear
to display self-similar behavior over a wide distribution of spatial scales (see e.g.
the review by Williams et al. 2000), ranging from scales comparable to the disk
thickness down to the size of individual prestellar cores, where thermal pressure starts
to dominate the dynamics. The molecular cloud mass spectrum is well described by
a power law of the form

d N

dm
∝ m−α , (104)

Fig. 10 Map of the velocity-integrated J=1–0 rotational line emission of the 12CO molecule as
tracer of the total molecular hydrogen gas in the Orion/Monoceros region. The image shows the
complex spatial structure of H2 gas in a typical molecular cloud complex. The figure is taken from
Wilson et al. (2005)
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Table 3 Physical properties of molecular clouds, clumps, and cores

Molecular clouds
Cluster-forming
clumps

Protostellar cores

Size (pc) 2–20 0.1–2 <∼ 0.1

Mean density
(H2 cm−3)

102–103 103–105 >105

Mass (M�) 102–106 10–103 0.1–10

Temperature (K) 10–30 10–20 7–12

Line width (km s−1) 1–10 0.5–3 0.2–0.5

Turbulent Mach
number

5–50 2–15 0–2

Column density (g
cm−2)

0.03 0.03–1.0 0.3–3

Crossing time (Myr) 2–10 <∼ 1 0.1–0.5

Free-fall time (Myr) 0.3–3 0.1–1 <∼ 0.1

Examples Orion, Perseus L1641, L1709 B68, L1544

Adapted from Cernicharo (1991) and Bergin and Tafalla (2007)

with the exponent being somewhere in the range 3/2 < α < 2. Consequently there
is no natural mass or size scale for molecular clouds between the observed lower and
upper limits. The largest molecular structures are giant molecular clouds (GMCs).
They have masses of typically 105–106 M� and extend over a few tens of parsecs. On
the other hand, the smallest observed entities are protostellar cores with masses of a
few solar masses or less and sizes of <∼ 10−2 pc. The volume filling factor of dense
clumps, even denser subclumps and so on, is very low. It is of the order of 10 % or
less. In the following, we distinguish between molecular cloud complexes, cluster-
forming clumps (often called infrared dark clouds, IRDCs, in the phases prior to the
onset of massive star formation), and protostellar cores (which give rise to individual
stars or binary systems). Table 3 summarizes their basic parameters.

The fact that all studies obtain a similar power law is remarkable, and we argue
below that it is the result of turbulent motions acting on self-gravitating gas (see also
Mac Low and Klessen 2004; Ballesteros-Paredes et al. 2007). This result holds for
clouds over a wide range of masses and densities, and is based on data obtained with
different reduction and analysis techniques. Furthermore, the result seems to be inde-
pendent of whether it was derived for very actively star-forming clouds or very cold
and quiescent ones. Given the uncertainties in determining the slope, it appears rea-
sonable to conclude that there is a universal mass spectrum, and it appears plausible
that the physical processes at work are rather similar from cloud to cloud. And vice
versa, clouds that show significant deviation from this universal distribution most
likely have different dynamical histories or live in different environments (for a dis-
cussion of molecular cloud properties in the spiral galaxy M51 based on probability
distribution functions of 12CO integrated intensity, see Hughes et al. 2013).
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Temperatures within molecular clouds are generally lower than in other phases
of the ISM. Simulations suggest that the low density portions of molecular clouds
that are CO-dark (i.e. that are H2-rich, but CO-poor; see Sect. 5.2) have temperatures
ranging from around 20 K up to the temperatures of 50–100 K that are typical of
the CNM (see e.g. Glover and Clark 2012c; Glover et al. 2015). Unfortunately,
observational verification of this prediction is difficult, as the main observational
tracer of the gas in these regions, C+, has only a single fine structure emission line
and hence does not directly constrain the temperature of the gas. In the denser, CO-
emitting gas, both observations and simulations find temperatures of around 10–20 K
for dark, quiescent clouds, and somewhat higher values in clouds close to sites of
ongoing high-mass star formation. It is notable that within this dense, well-shielded
gas, the temperature remains remarkably constant over several orders of magnitude in
density (see e.g. Goldsmith 1988; Glover and Clark 2012a; Glover et al. 2015). This
has important consequences for theoretical and numerical models of molecular cloud
dynamics and evolution, because to a good approximation the gas can be described
by a simple isothermal equation of state, where pressure P and density ρ are linearly
related,

P = c2
s ρ, (105)

with the sound speed cs being the proportionality factor. The assumption of isother-
mality breaks down when the gas becomes optically thick and heat can no longer
be radiated away efficiently. In the local ISM, this occurs when the number density
exceeds values of n(H2) ≈ 1010 cm−3.

The masses of molecular clouds are orders of magnitude larger than the critical
mass for gravitational collapse computed from the average density and temperature
(see Sect. 6). If we assume that only thermal pressure opposes gravitational attraction
they should collapse and quickly form stars on timescales comparable to the free-fall
time. However, this is not observed (for an early discussion, see Zuckerman and
Evans 1974; for more recent discussions, consult Kennicutt and Evans 2012). The
typical lifetime of giant molecular clouds is about 107 years (Blitz et al. 2007; Dobbs
et al. 2014), and the average star formation efficiency is low, with values ranging
between 1 and 10 % (Blitz and Shu 1980; Krumholz and Tan 2007). This tells us
that there must be additional physical agents that provide stability against large-scale
cloud collapse.

For a long time, magnetic fields have been proposed as the main agent responsible
for preventing collapse (e.g. Shu et al. 1987). However, it appears that the typical field
strengths observed in molecular clouds are not sufficient to stabilize the clouds as a
whole (Verschuur 1995a, b; Troland et al. 1996; Padoan and Nordlund 1999; Lunttila
et al. 2009; Crutcher et al. 2009a; Crutcher 2010; Bertram et al. 2012). This is the
point at which ISM turbulence comes into play (Elmegreen and Scalo 2004; Scalo
and Elmegreen 2004). Virtually all observations of molecular cloud dynamics reveal
highly supersonic gas motions on scales above a few tenths of a parsec. The observed
linewidths are always wider than what is implied by the excitation temperature of the
molecules. This is illustrated in Fig. 11, which shows the 12CO J = 1–0 integrated
intensity from the Orion A cloud in the top panel together with the distribution of
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Fig. 11 Top Integrated intensities of the J = 1–0 transition of 12CO of the Orion A cloud (enlarge-
ment of the lower central parts of Fig. 10). Bottom Distribution of line-of-sight velocities as a
function of Galactic longitude for the same region, based on data integrated in stripes of Galactic
latitude from −22◦ < b < −17◦. The width of the velocity distribution gives a good indication of
the turbulent velocity dispersion in the region. (For more information on both panels, see Wilson
et al. 2005)

Doppler velocities of the line peak as a function of the cloud’s major axis in the
bottom panel, each entry sampled in strips across the face of the cloud parallel to
the minor axis. The width of the velocity distribution along the ordinate is a good
indicator of the one-dimensional velocity dispersion σ1D of the cloud. We see that
σ1D reaches values of a few km s−1, about an order of magnitude larger than the
sound speed of the dense molecular gas, cs ≈ 0.2 km s−1.

More detailed analysis reveals that the observed velocity dispersion σ1D is related
to the size L of the cloud by

σ1D ≈ 0.5

(
L

1.0 pc

)1/2

km s−1. (106)

This goes back to the seminal work by Larson (1981), who compared measurements
of different clouds available at that time, and it has been confirmed by many follow-up
studies both in our Milky Way as well as neighboring satellite galaxies (e.g. Solomon
et al. 1987; Heyer and Brunt 2004; Bolatto et al. 2008; Falgarone et al. 2009; Roman-
Duval et al. 2011; Caldú-Primo et al. 2013). There is still some debate about the
normalization and about slight variations in the slope (Heyer et al. 2009; Shetty et al.
2012; Hughes et al. 2013), but in general the relation (106) is thought to reflect a more
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Fig. 12 Relation between velocity dispersion (as measured by the width of the J =1–0 rotational
line transition of 12CO) and spatial scale in the Galactic ISM. The data points come from a wide
range of observations that trace different structures and physical conditions (in terms of density,
temperature, excitation parameter, etc.). This in part contributes to the large scatter in the data.
However, altogether the observations reveal a clear power-law relation of the form ΔvNT ∝ Lα.
To guide the eyes, the solid lines illustrate the slopes α = 1/3 and α = 1/2. The lower limit of
ΔvNT ≈ 0.1 km s−1 is due to the spectral resolution in the data and corresponding noise level. The
figure is taken from Falgarone et al. (2009), where further details and a full list of references can
be found

or less universal property of the ISM (see Fig. 12). The most common interpretation is
the presence of turbulent gas motions. On scales above ∼0.1 pc (which corresponds
to the typical sizes of prestellar cores; see Sect. 6.1), the velocities inferred from
Eq. (106) exceed values of the thermal line broadening (where the one-dimensional
velocity dispersion σ1D is comparable to the sound speed cs). On scales of molecular
cloud complexes, we measure root mean square Mach numbers of 10 or larger, clearly
indicative of highly supersonic turbulence. We also note that these motions seem to
exceed the typical Alfvén velocities in molecular clouds,

vA =
(

B2

4πρ

)1/2

, (107)

with B and ρ being the magnetic field strength and the mass density of the gas,
respectively. The observed turbulence is not only supersonic but also super-Alfvénic
(e.g. Padoan and Nordlund 1999; Heyer and Brunt 2012). In essence, this means that
the energy density associated with turbulent gas motions dominates over both the
thermal energy density as well as the magnetic energy density. We also note that the
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Fig. 13 Column density PDFs derived from Herschel observations (see e.g. Schneider et al. 2013)
for four different nearby molecular clouds: two tenuous high-latitude clouds, Spider (top left) and
Polaris (top right), and two star dense star-forming regions, Monoceros R2 (bottom left) and Orion
A (bottom right). For a map of the latter two clouds, see Fig. 10. The lower abscissa gives the visual
extinction, AV, which we take as a proxy of the column density N . The upper axis indicates the
natural logarithm of the column density normalized to the mean value, η = ln(N/〈N 〉). The left
ordinate is the PDF of the extinction, and to the right, we provide the corresponding total number of
pixels to indicate the statistical significance of the observation. The green curve indicates the fitted
PDF, and the red line shows a possible power-law fit to the high AV tail. The plots are adopted from
Schneider et al. (2015)

observed linewidths generally are not due to large-scale collapse as inferred from
the generally rather low star formation rates and the absence of inverse P-Cygni line
profiles.

The analysis of extinction or dust emission maps in nearby molecular clouds
reveals a roughly log-normal distribution of column densities in tenuous cirrus-like
clouds with no or little star formation, and they show the development of a power-
law tail at high column density that becomes more pronounced for more massive
and more vigorously star-forming clouds (Lada et al. 2010; Kainulainen et al. 2011;
2013; Schneider et al. 2012, 2015; Alves et al. 2014). Typical examples are provided
in Fig. 13, where we take the visual extinction, AV, as a proxy for the column density.
Spider (top left) and Polaris (top right) are high latitude clouds located in the North
Celestial Loop (Meyerdierks et al. 1991). Spider shows no signs of star formation and
is a prototypical example of a cloud with a log-normal PDF, while Polaris seems to
be forming some low-mass stars and exhibits a weak power-law tail. Monoceros and
Orion A (see also Fig. 10) have much higher average densities and are forming clusters
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containing intermediate to high-mass stars. They exhibit a clear power-law tail at
high extinctions. These observations are essential, because the characteristics of the
(column) density distribution function are important input to our current theoretical
star formation models. This is discussed in detail in Sect. 6.4.4.

4.2 Simple Theoretical Considerations

At this point, we need to digress from our discussion of molecular cloud properties
and turn our attention to the theoretical models introduced to describe turbulent
flows. We begin by introducing the classical picture of incompressible turbulence.
This is a good description for turbulent flows with velocities that are significantly
smaller than the speed of sound, such as those we typically encounter on Earth. For
very subsonic flows we can infer from the continuity equation (108) that density
fluctuations are negligible. We note that for typical ISM conditions, however, the
turbulence is highly supersonic, and we need to go beyond this simple picture as the
compressibility of the medium becomes important, for instance when we want to
understand the formation of stars as discussed in Sect. 6.3. In any case, we assume
that kinetic energy is inserted into the system on some well-defined, large scale LD,
and that it cascades down through a sequence of eddies of decreasing size until
the size of the eddies becomes comparable to the mean free path λ. The kinetic
energy associated with eddy motion turns into heat (random thermal motion) and
is dissipated away. This picture of the turbulent cascade goes back to Richardson
(1920).

We first follow Kolmogorov (1941) and derive the corresponding power spectrum
of the turbulent kinetic energy, which describes terrestrial flows, such as the motion
of air in the Earth’s atmosphere or the flow of water in rivers and oceans. Then we turn
to supersonic motions and focus on additional aspects that are characteristic of ISM
turbulence. For the level of our discussion, it is sufficient to think of turbulence as the
gas flow resulting from random motions on many scales, consistent with the simple
scaling relations discussed above. For a more detailed discussion of the complex
statistical characteristics of turbulence, we refer the reader to the excellent textbooks
by Frisch (1996); Lesieur (1997), or Pope (2000). For a thorough account of ISM
turbulence, we point again to the reviews by Elmegreen and Scalo (2004) and Scalo
and Elmegreen (2004), and for the relation to star formation to Mac Low and Klessen
(2004) and Ballesteros-Paredes et al. (2007).

4.2.1 Energy Cascade in Stationary Subsonic Turbulence

Hydrodynamical flows exhibit two fundamentally different states. For small veloci-
ties, they tend to be laminar and smooth. If the velocity increases, however, the flow
becomes unstable. It becomes turbulent and highly chaotic. This transition occurs
when advection strongly dominates over dissipation. To see this, let us consider the
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equations describing the motion of a fluid element. From the continuity equation,

∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v , (108)

we can infer for incompressible flows (ρ = const.) that ∇ · v = 0. The equation of
motion, also called the Navier-Stokes equation, then simplifies to

∂v
∂t

+ (v · ∇)v − ν ∇2v = −1

ρ
∇P , (109)

where v is the fluid velocity, P and ρ are pressure and density, and ν is the kinetic
viscosity with the units cm2 s−1. At any spatial scale �, we can compare the advection
term (v · ∇)v with the dissipation term ν ∇2v. To get an estimate of their relative
importance for the flow dynamics we approximate ∇ by 1/� and obtain

(v · ∇)v ≈ v2
�

�
and ν ∇2v ≈ νv�

�2 , (110)

with v� being the typical velocity on scale �. This ratio defines the dimensionless
Reynolds number on that scale,

Re� = v��

ν
. (111)

It turns out that a flow becomes unstable and changes from being laminar to turbulent
if the Reynolds number exceeds a critical value Recr ≈ few × 103. The exact value
depends on the flow characteristics. For example, pipe flows with Re < 2 × 103

are usually laminar, while flows with Re > 4 × 103 are most certainly turbulent.
For intermediate Reynolds numbers both laminar and turbulent flows are possible,
depending on other factors, such as pipe roughness and flow uniformity. These flows
are often called transition flows. In the ISM, the Reynolds number can easily exceed
values of 109 or more, indicating that the ISM is highly turbulent.

A full analysis of the turbulent instability is very difficult and in general an
unsolved problem. In the classical picture turbulence causes the formation of eddies
on a wide range of different length scales. In this picture, some driving mechanism
creates eddies on some large scale. These live for about one crossing time, and then
fragment into smaller eddies, which again break up into even smaller eddies, and so
forth. Most of the kinetic energy of the turbulent motion is contained on large scales.
It cascades down to smaller and smaller ones in an inertial and essentially inviscid
way. This holds as long as the advection term dominates over dissipation, i.e. as long
as Re � Recr. Eventually this hierarchy creates structures on scales that are small
enough so that molecular diffusion or other forms of dissipation become important.
The turbulent eddies become so tiny that they essentially turn into random thermal
motion, the kinetic energy they carry becomes heat, and may be radiated away.

To obtain an estimate of the scaling behavior of turbulent flows let us look at
the specific kinetic energy ε� carried by eddies of size �. With v� being the typical
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rotational velocity across the eddy and with t� ≈ �/v� being the typical eddy turnover
time, we can estimate the energy flow rate through eddies of size � as

ε̇ ≈ ε�

t�
≈

(
v2
�

2

)(
�

v�

)−1

≈ v3
�

�
. (112)

As long as Re� � 1, dissipation is negligible. The rate ε̇ is conserved, and the kinetic
energy simply flows across � from larger scales down to smaller ones. This defines
the inertial range of the turbulent cascade. It ends when Re� approaches unity at the
dissipation scale λν . Assume now that kinetic energy is inserted into the system on
some large scale L with a typical velocity vL . Then, the inertial range covers the
scales

L > � > λν . (113)

In this regime, the energy flow ε̇ is independent of scale, as kinetic energy cannot be
accumulated along the turbulent cascade. This implies that the typical eddy velocity
v� changes with eddy scale � as v� = ε��

1/3. As a consequence, the largest eddies
carry the highest velocities,

v� ≈ vL

(
�

L

)1/3

, (114)

but the smallest ones have the highest vorticity,

Ω� = ∇ × v� ≈ v�

�
≈ vL

(�2L)1/3 ≈
(

L

�

)2/3

ΩL . (115)

Indeed, in agreement with this picture of the turbulent cascade, observations of nearby
molecular clouds reveal that the energy is carried by large-scale modes, indicating
that the turbulent velocity field in these clouds is driven by external sources (see
Sect. 4.5).

We can obtain an estimate for the size of the inertial range (113) based on the
requirement that Re ≈ 1 on the dissipation scale λν . In combination with (114), this
leads to

L

λν
≈ Re3/4 . (116)

With Reynolds numbers Re ≈ 109 and above, the turbulent cascade in the ISM
extends over more than six orders of magnitude in spatial scale.

We now look at the autocorrelation function of the velocity fluctuations on the
scale � defined as

ξv(�) = 〈[v(x + �) − v(x)]2〉 , (117)

which is the average of the square of all velocity differences between any two points
in space separated by a lag �. We have assumed that the system has zero net velocity,
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〈v(x)〉 = 0. If turbulence is isotropic, the autocorrelation function depends only on
the separation � = |�| and not on the direction, and so ξv(�) = ξv(�). From (112)
we obtain

ξv(�) ∝ 〈v2
� 〉 ∝ (ε̇�)2/3 . (118)

In particular, we are interested in the Fourier transform of ξv(�), the power spectrum
P(k) of the velocity fluctuations. For random Gaussian fluctuations, both are related
via

1

2

∫ ∞

0
〈v′2

� 〉d3�′ =
∫ 0

∞
Pv(k)d3k , (119)

which simply is the specific kinetic energy in the system. On each scale � = 2π/k
Eq. (119) can be approximated by

Pv(k) ∝ �3ξv ∝ k−3
(
ε̇k−1

)2/3 ∝ ε̇2/3k−11/3 . (120)

If we consider isotropic turbulence with d3k → 4πk2dk, then the power in modes
in the wave number range k to k + dk is

Pv k2dk ∝ ε̇2/3k−5/3dk . (121)

This is the Kolmogorov spectrum of isotropic incompressible turbulence in the iner-
tial range.

4.2.2 Energy Cascade in Stationary Supersonic Turbulence

We now turn to the opposite limit of highly compressible turbulence, where the flow
can be described as a network of interacting shock fronts. To simplify our discussion,
we neglect the effects of pressure forces. This leads to the so-called Burgers (1939)
turbulence. He introduced a simplified non-linear partial differential equation of the
form

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2 , (122)

as approximation to the full Navier-Stokes equation, in order to study the mathemat-
ical properties of turbulent flows. Indeed, in the high Mach number regime, where
the velocities v are much larger than the sound speed cs, we can neglect the pressure
term, since P ∝ c2

s , and Burgers’ equation (122) is identical to Eq. (109) in one
dimension. If we consider the width of the shock transition to be infinitely thin, then
the density or the velocity jump in the shock can be mathematically described by a
Heaviside step function. For isotropic turbulence, there is always a shock that runs
parallel to the considered line-of-sight, and we can naively estimate the power in the
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wavenumber range k to k + dk as

Pvdk ∝ v2
k dk ∝ k−2dk . (123)

In a more general sense, this follows from the fact that the energy spectrum of a field
is determined by its strongest singularity. If a function u(x) has a discontinuity in
the (m − 1)th order derivative, then its energy spectrum has the form of a power-law
P(k) ∝ k−2m . In a shock the velocity itself is discontiuous, and with m = 1 we
obtain Eq. (123). A less handwaving derivation is very involved (see e.g. Boldyrev
1998; Verma 2000; Boldyrev et al. 2004; Bec and Khanin 2007), but in general leads
to a similar conclusion.

4.2.3 Decay Rate of Turbulent Energy

So far, we have considered the case of stationary turbulence. This requires an energy
source that continuously excites large-scales modes to compensate for the loss of
energy at the dissipation scale. For a long time, it was thought that the rate of
energy dissipation in a magnetized gas differs significantly from purely hydrody-
namic turbulence. Arons and Max (1975), for example, suggested that presence of
strong magnetic fields could explain the supersonic motions ubiquitously observed
in molecular clouds (Sect. 4.1). In their view, interstellar turbulence is a superposi-
tion of Alfvén waves, propagating in many different directions with different wave-
lengths and amplitudes. These are transverse waves traveling with the Alfvén velocity
(Eq. 107), and they are dissipationless in the linear regime under the assumption of
ideal magnetohydrodynamics. However, if ambipolar diffusion is taken into account,
i.e. the drift between charged and neutral particles in the partially ionized ISM, these
waves can be dissipated away at a rate substantial enough to require energy input
from a driving source to maintain the observed motions (e.g. Zweibel and Josafats-
son 1983; Zweibel 2002). Furthermore, if one includes higher order effects, then
the dissipation becomes comparable to the purely hydrodynamic case (e.g. Cho and
Lazarian 2003).

This analysis is supported by numerical simulations. One-dimensional calcula-
tions of non-driven, compressible, isothermal, magnetized turbulence by Gammie
and Ostriker (1996) indicate a very efficient dissipation of kinetic energy. They also
found that the decay rate depends strongly on the adopted initial and boundary con-
ditions. Mac Low et al. (1998); Stone et al. (1998), and Padoan and Nordlund (1999)
determined the decay rate in direct numerical simulations in three dimensions, using
a range of different numerical methods. They uniformly report very rapid decay rates
and propose a power-law behavior for the decay of the specific kinetic energy of the
form ε̇ ∝ t−η , with 0.85 < η < 1.1. A typical result is shown in Fig. 14. Magnetic
fields with strengths ranging up to equipartition with the turbulent motions seem to
reduce η to the lower end of this range, while unmagnetized supersonic turbulence
shows values closer to η <∼ 1.1.
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MHD

HD HD

MHD

Fig. 14 Decay of supersonic turbulence. The plots show the time evolution of the total kinetic energy
EK in a variety of three-dimensional numerical calculations of decaying supersonic turbulence in
isothermal ideal gas with initial root mean square Mach number of 5, calculated with two different
numerical codes. ZEUS is a Eulerian grid code that solves the equations of magnetohydrodynamics
(Stone and Norman 1992a, b), while SPH follows a particle-based approach (Benz 1990; Springel
2010). The top panels depict the decay of purely hydrodynamic turbulence, the bottom panels show
the decay properties with weak and strong magnetic fields. For more details see Mac Low et al.
(1998)

Besides directly measuring the decay of the kinetic energy in the absence of driving
sources in a closed system, we can also continuously insert energy and determine
the resulting velocity dispersion. Mac Low (1999) and Elmegreen (2000b) argue that
the dissipation time, td = ε/ε̇, is comparable to the turbulent crossing time in the
system,

td ≈ L

σ
, (124)

where L is again the driving scale and σ the velocity dispersion. This holds regardless
of whether the gas is magnetized or not and also extends into the subsonic regime.
The loss of the specific turbulent kinetic energy, ε = 1/2σ2 is then,

ε̇ = ε

td
= ξ

1

2

σ3

L
. (125)

We have recovered Kolmogorov’s formula for the energy decay rate (112), modulo
an efficiency coefficient ξ/2 that depends on the physical parameters of the system
or on the details of the numerical method employed.
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4.3 Scales of ISM Turbulence

As introduced in Sect. 4.2.3, interstellar turbulence decays on roughly a crossing
time. It needs to be continuously driven in order to maintain a steady state. Here we
compare the various astrophysical processes that have been proposed as the origin of
ISM turbulence, and mostly follow the discussion in Mac Low and Klessen (2004)
and Klessen and Hennebelle (2010).

We begin with an analysis of the typical scales of ISM turbulence in our Galaxy,
then calculate the corresponding turbulent energy loss, and finally turn our attention to
the various astrophysical driving mechanisms that have been proposed to compensate
for the decay of turbulent energy. We point out that a key assumption is that the ISM
in the Milky Way evolves in a quasi steady state, so that energy input and energy
loss rates roughly balance when being averaged over secular timescales and over
large enough volumes of the Galactic disk. We caution the reader that this need not
necessarily be the case.

The self-similar behavior of turbulent flows only hold in the inertial range, i.e.
on scales between the driving and dissipation scales. We now want to address the
question of what these scales are in the Galactic ISM. The answer clearly depends on
the different physical processes that stir the turbulence and that provide dissipation.
There is a wide variety of driving mechanisms proposed in the literature, ranging
from stellar feedback acting only on very local scales up to accretion onto the Galaxy
as a whole, inserting energy on very large scales. As we discuss below, we favor the
latter idea.

Regardless of the detailed driving process, a firm outer limit to the turbulent
cascade in disk galaxies is given by the disk scale height. If molecular clouds are
created at least in part by converging large-scale flows triggered by accretion, or
by spiral shocks, or by the collective influence of recurring supernovae explosions,
then the extent of the Galactic disk is indeed the true upper scale of turbulence in
the Milky Way. For individual molecular clouds this means that turbulent energy is
fed in at scales well above the size of the cloud itself. This picture is supported by
the observation that the clouds’ density and velocity structure exhibits a power-law
scaling behavior extending all the way up to the largest scales observed in today’s
surveys (Ossenkopf and Mac Low 2002; Brunt 2003; Brunt et al. 2009).

One could argue that the outer scale of the ISM turbulence actually corresponds to
the diameter of the Galaxy as a whole (rather than the disk scale height) and that the
largest turbulent eddy is the rotational motion of the disk itself. However, because
the disk scale height H is typically less than 10 % of the disk radius R, this motion is
intrinsically two-dimensional and if we restrict our discussion to three-dimensional
turbulence then H is the maximum outer scale. In addition, we note that the decay
time (124) is comparable for both approaches. At the solar radius, R = 8.5 kpc, the
rotational speed is vrot = 220 km s−1, leading to td ≈ R/vrot ≈ 38 Myr. If we adopt
an average Hi disk scale height of H = 0.5 kpc and a typical velocity dispersion of
σ = 12 km s−1 (Ferriére 2001; Kalberla 2003), then our estimate of the turbulent
decay time, td ≈ L/σ ≈ 40 Myr, is essentially the same. In conclusion, for the



Physical Processes in the Interstellar Medium 149

estimate of the energy decay rate in typical disk galaxies, and by the same token,
for the calculation of the required turbulent driving rate, it does not really matter
what we assume for the outer scale of the turbulence (for further discussions, see e.g.
Klessen and Hennebelle 2010). This follows, because for typical disk galaxies, the
disk scale height and radius, as well as the velocity dispersion and rotational velocity
scale similarly, that is H/R ≈ 0.1 and σ/vrot ≈ 0.1.

The estimate of the dissipation scale is also difficult. For purely hydrodynamic
turbulence, dissipation sets in when molecular viscosity becomes important. The cor-
responding spatial scales are tiny. In the ISM the situation is more complex because
we are dealing with a magnetized, partially ionized, dusty plasma. Zweibel and
Josafatsson (1983) argue that ambipolar diffusion (i.e. the drift between charged and
neutral species in this plasma) is the most important dissipation mechanism in typ-
ical molecular clouds with very low ionization fractions x = ρi/ρn , where ρi and
ρn are is the densities of ions and neutrals, respectively, with ρ = ρi + ρn being the
total density. We can then replace the kinetic viscosity in the Navier-Stokes equation
(109) by the ambipolar diffusion coefficient

νAD = v2
A/ζni , (126)

where v2
A = B2/4πρn approximates the effective Alfvén speed for the coupled

neutrals and ions if ρn � ρi , and ζni = αρi is the rate at which each neutral is hit
by ions. The coupling constant α is given by

α = 〈σv〉/(mi + mn) ≈ 9.2 × 1013 cm3 s−1 g−1 , (127)

with mi and mn being the mean mass per particle for the ions and neutrals, respec-
tively. Typical values in molecular clouds are mi = 10 mH and mn = 2.35mH. It
turns out that α is roughly independent of the mean velocity, as the ion-neutral cross-
section σ scales inversely with velocity in the regime of interest. For further details
on the microphysics, consult the excellent textbooks by Osterbrock (1989); Tielens
(2010), or Draine (2011).

We can define an ambipolar diffusion Reynolds number in analogy to Eq. (111)
as

ReAD,� = �v�/νAD = MA� ζni/vA, (128)

which must fall below unity on scales where ambipolar diffusion becomes important.
As before, v� is the characteristic velocity at scale �, and we define MA = v�/vA as
the characteristic Alfvén Mach number at that scale. From the condition ReAD,λ = 1,
we derive the dissipation scale due to ambipolar diffusion as

λAD = vA

MAζni
≈ 0.041 pc

(
B

10 μG

)
MA

−1
( x

10−6

)−1 ( nn

103 cm−3

)−3/2
,

(129)
with the magnetic field strength B, the ionization fraction x , the neutral number
density nn , and where we have taken ρn = μnn , with a mean particle mass μ =
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2.35 mH = 3.92 × 10−24 g typical for molecular clouds. It is interesting to note, that
the resulting value for λAD is comparable to the typical sizes of protostellar cores
(e.g. Bergin and Tafalla 2007). Indeed, the velocity dispersion in these objects is
dominated by thermal motions (Goodman et al. 1998).

We note that there are wave families that can survive below λAD that resem-
ble gas dynamic sound waves. Consequently, even on scales where the magnetic
field becomes uniform, the gas dynamical turbulent cascade could continue. This is
determined by the dimensionless magnetic Prandtl number,

Prmag = ReAD

Re
= ν

νAD
, (130)

which compares the relative importance of viscous and magnetic diffusion processes.
For small magnetic Prandtl numbers the hydrodynamic inertial range extends beyond
the magnetic one, and vice versa, for Prmag � 1 fluctuations in the magnetic field
can occur on scales much smaller than the hydrodynamic diffusion limit (for further
discussions see e.g. Schekochihin et al. 2004a, b; Schober et al. 2012a, b).

Combining these findings with the molecular cloud properties discussed in
Sect. 4.1.2 we arrive at the following picture, as illustrated in Fig. 15. On the scales
of individual molecular clouds and large molecular cloud complexes, the observed
turbulence is highly supersonic. We know that the density contrast created by shocks
in isothermal gas scales with the Mach numberM to the second power, Δρ/ρ ∝ M2

(e.g. Landau and Lifshitz 1959). Consequently, for M ≈ 10 we expect density con-
trasts of roughy 100. This is indeed observed in molecular clouds, where the mean
density is around 100 particles per cubic centimeter and where the high-density
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Fig. 15 Simple cartoon picture of the turbulent energy spectrum, i.e. of the kinetic energy carried
by modes of different wave numbers k, and their relation to different cloud structures (see also
Table 3). Turbulence is driven on large scales comparable to the size L of the cloud and is dissipated
on very small scales ηK. Adopted from Klessen (2011)
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cores exceed values of 104 cm−3 and more (see Table 3). When we focus on cluster-
forming cloud cores (or their not-yet-star-forming counterparts, the so-called infrared
dark clouds) we still measure M ≈ 5 leading to localized density fluctuations of
Δρ/ρ ≈ 25, on average. As we discuss further in Sect. 6, some of these fluctuations
may exceed the critical mass for gravitational collapse to set in. The presence of
turbulence thus leads to the break-up into smaller units. The core fragments to build
up a cluster of stars with a wide range of masses rather than forming one single
high-mass star. We call this process gravoturbulent fragmentation, because turbu-
lence generates the distribution of clumps in the first place, and then gravity selects
a subset of them for subsequent star formation (see also Sect. 6.3). Finally, when
focusing on low-mass cores, the velocity field becomes more coherent and the tur-
bulence subsonic (see Sect. 6.1). This defines the sonic scale at around 0.1 pc. Such
structures are no longer subject to gravoturbulent fragmentation and are the direct
progenitors of individual stars or binary systems. We note, however, that gravita-
tional fragmentation may still occur within the protostellar accretion disk that builds
up in the center of the core due to angular momentum conservation (Sect. 6.6). This
process is likely to produce close binaries (see e.g. Bodenheimer 1995; Machida
2008). The fact that the observed velocity dispersion approaches the thermal value
as one zooms in on smaller and smaller scales is a direct consequence of the turbulent
cascade, as expressed in the observed Larson relation (Eq. 106).

4.4 Decay of ISM Turbulence

With the above considerations, we are now in a position to calculate the rate of energy
loss in the Galactic ISM due to the decay of turbulence. Our Milky Way is a typical
L� galaxy with a total mass including dark matter of about 1012 M� out to the virial
radius at ∼250 kpc (e.g. Xue et al. 2008). The resulting rotation curve is 220 km s−1

at the solar radius, R� ≈ 8.5 kpc, and it declines to values slightly below 200 km
s−1 at a radius of 60 kpc (Xue et al. 2008). Star formation occurs out to a radius
of about 15 kpc (Rix and Bovy 2013). The total mass in the disk in stars is about
2.7 × 1010 M�, and in gas it is about 8 × 109 M� (see Table 4, as well as Naab
and Ostriker 2006). Assuming a global baryon fraction of 17 %, this corresponds
to 40 % of all the baryonic mass within the virial radius and implies that roughly
the same amount of baryons is in an extended halo in form of hot and tenuous gas.
The gaseous disk of the Milky Way can be decomposed into a number of different
phases. We follow Ferriére (2001) and Kalberla (2003), and consider molecular gas
(H2 as traced e.g. via CO emission) as well as atomic hydrogen gas (as observed,
e.g. by the Hi 21 cm emission). The Hi component can be separated into a cold
(T ≈ few × 102 K) and a hot (T ≈ few × 103 K) component. Because they have
similar overall distributions we consider them together. The scale height of Hi ranges
from ∼230 pc within 4 kpc up to values of ∼3 kpc at the outer Galactic boundaries.
The Hi disk therefore is strongly flared. We take 500 pc as a reasonable mean value,
but note that this introduces a high degree of uncertainty. Also, we neglect the warm
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Table 4 Properties of gas components of the Milky Way

Component M (109 M�)a n (cm−3)b L (pc)c σ (km s−1)d Ekin
(1055 erg)e

Molecular gas 2 0.7 150 5 0.5

Atomic gas 6 0.4 1000 12 8.6
aTotal mass of the component. Values from Ferriére (2001) and Kalberla (2003)
bEstimate of volume-averaged midplane number density. Values from Ferriére (2001) and Kalberla
(2003). Note that the value for H2 gas is so low compared to Table 3, because the volume filling
factor of molecular clouds in the Galactic disk is very small
cWe consider the disk thickness as being twice the observed scale height
dThe parameter σ is the three-dimensional velocity dispersion
eTotal kinetic energy of the component, Ekin = 1/2 Mσ2

and the hot ionized medium in our analysis, since the ionized gas within Hii regions
or supernova remnants carries little of the turbulent kinetic energy compared to the
other components. Indeed, roughly 95 % of the turbulent kinetic energy is carried by
the atomic component. The adopted values are summarized in Table 4.

One of the remarkable features of spiral galaxies is the nearly constant velocity
dispersion σ, e.g. as measured using the Hi 21 cm emission line, seemingly indepen-
dent of galaxy mass and type (Dickey and Lockman 1990; van Zee and Bryant 1999;
Tamburro et al. 2009). The inferred values of σ typically fall in a range between
10 and 20 km s−1 (Bigiel et al. 2008; Walter et al. 2008) and extend well beyond
the optical radius of the galaxy with only moderate fall-off as one goes outwards.
Quite similar behavior is found in the molecular gas, when increasing the sensitivity
in the outer regions by stacking the data (Caldú-Primo et al. 2013). It is interesting
in this context that the transition from the star-forming parts of the galaxy to the
non-star-forming outer disk seems not to cause significant changes in the velocity
dispersion. This approximate indifference to the presence of stellar feedback sources
sets severe constraints on the physical processes that can drive the observed level of
turbulence (see Sects. 4.5 and 4.6).

Using Eq. (125), we can calculate the average loss of kinetic energy density e
(erg/cm3) per unit time in the ISM. With e = ρε, where ε is the specific energy (in
units of erg/g) and ρ = μn is the mass density, we obtain

ė = −1

2

μnσ3

L
(131)

≈ −3.5 × 10−27 erg cm−3 s−1
( n

1 cm−3

) ( σ

10 km s−1

)3
(

L

100 pc

)−1

,

where we have set the efficiency parameter ξ in Eq. (125) to unity, and where again
n, σ, and L are the number density, the velocity dispersion, and the turbulent driving
scale, respectively. For simplicity, we have assumed a mean mass per particle μ =
1.26 mH = 2.11 × 10−24 g typical for purely atomic gas. If we consider different
ISM phases, this number needs to be adapted. If we plug in the values from Table 4,
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we obtain the following estimate for our Galaxy:

ėISM = ėH2 + ėHI ≈ −4.5 × 10−28 erg cm−3 s−1 . (132)

According to (124) the decay timescale can be computed as

td = e

ė
= L

σ
≈ 10 Myr

(
L

100 pc

) ( σ

10 km s−1

)−1
, (133)

which is simply the turbulent crossing time on the driving scale.

4.5 Sources of ISM Turbulence: Gravity and Rotation

There is a wide range of physical processes that could potentially drive the observed
turbulent flows in the ISM. We will introduce and discuss the most important ones
that have been proposed in the literature. We identify two main categories of sources.
In this Section we focus on processes that convert a fraction of the potential energy
available in the galaxy into turbulent gas motions. We first look at the process of
accretion-driven turbulence, and then turn to rotation. As the rotational motion of
the Galaxy is ultimately driven by gravity, we include all mechanisms that can tap
the rotational energy here as well. In Sect. 4.6 we then assess the influence of stellar
feedback on the large-scale dynamics of the ISM. Our list is sorted in such a way
that the processes which seem most important to us are introduced first.

4.5.1 Accretion onto the Galaxy

We argue that it is the accretion process that inevitably accompanies any astrophysical
structure formation, whether it is the formation of galaxies or the birth of stars, that
drives the observed turbulent motions. We propose that this process is universal
and makes significant contributions to the turbulent energy on all scales (see also
Field et al. 2008). When cosmic structures grow, they gain mass via accretion. This
transport of matter is associated with kinetic energy and provides an ubiquitous source
for the internal turbulence on smaller scales. We follow the analysis of Klessen and
Hennebelle (2010) and ask whether the accretion flow onto galaxies provides enough
energy to account for the observed ISM turbulence.

We begin with a summary of what we know about accretion onto spiral galaxies
like our Milky Way. Our Galaxy forms new stars at a rate of ṀSF ∼ 2 − 4 M� yr−1

(e.g. Naab and Ostriker 2006; Adams et al. 2013). Its gas mass is about Mgas ≈
8 × 109 M� (see Table 4, and also Ferriére 2001 and Kalberla 2003). If we assume
a constant star formation rate, then the remaining gas should be converted into stars
within about 2–4 Gyr. Similar gas depletion timescales of the order of a few billion
years are reported for many nearby spiral galaxies (Bigiel et al. 2008). We note,
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however, that there is a debate in the community as to whether the depletion timescale
is constant or whether it varies with the surface gas density. While Leroy et al. (2008,
2012, 2013) argue in favor of a more or less universal gas depletion time of ∼2 Gyr,
Shetty et al. (2013) and Shetty et al. (2014) find that the depletion time varies from
galaxy to galaxy, and as a general trend, increases with surface density. Nevertheless,
it is fair to say that the inferred overall gas depletion times are shorter by a factor of
a few than the ages of these galaxies of ∼10 Gyr. If we discard the possibility that
most spiral galaxies are observed at an evolutionary phase close to running out of
gas, and instead assume that they evolve in quasi steady state, then this requires a
supply of fresh gas at a rate roughly equal to the star formation rate.

There is additional support for this picture. Dekel et al. (2009) and Ceverino et al.
(2010), for example, argue that massive galaxies are continuously fed by steady, nar-
row, cold gas streams that penetrate through the accretion shock associated with the
dark matter halo down to the central galaxy. This is a natural outcome of cosmolog-
ical structure formation calculations if baryonic physics is considered consistently.
In this case, roughly three quarters of all galaxies forming stars at a given rate are fed
by smooth streams (see also Agertz et al. 2009). The details of this process, however,
seem to depend on the numerical method employed and on the way gas cooling
is implemented (e.g. Bird et al. 2013). Further evidence for accretion onto galax-
ies comes from the observation that the total amount of atomic gas in the universe
appears to be roughly constant for redshifts z <∼ 3. This holds despite the continuous
transformation of gas into stars, and it suggests that Hi is continuously replenished
(Hopkins et al. 2008; Prochaska and Wolfe 2009). In our Galaxy, the presence of
deuterium at the solar neighborhood (Linsky 2003) as well as in the Galactic Center
(Lubowich et al. 2000) also points towards a continuous inflow of low-metallicity
material. As deuterium is destroyed in stars and as there is no other known source
of deuterium in the Milky Way, it must be of cosmological and extragalactic origin
(Ostriker and Tinsley 1975; Chiappini et al. 2002).

In order to calculate the energy input rate from gas accretion we need to know the
velocity vin with which this gas falls onto the disk of the Galaxy and the efficiency
with which the kinetic energy of the infalling gas is converted into ISM turbulence.
As the cold accretion flow originates from the outer reaches of the halo and beyond,
and because it lies in the nature of these cold streams that gas comes in almost in
free fall, vin can in principle be as high as the escape velocity vesc of the halo. For
the Milky Way in the solar neighborhood we find vesc ∼ 550 km s−1 (Fich and
Tremaine 1991; Smith et al. 2007). However, numerical experiments indicate that
the inflow velocity of cold streams is of order of the virialization velocity of the halo
(Dekel et al. 2009), which typically is ∼200 km s−1. The actual impact velocity with
which this gas interacts with disk material will also depend on the sense of rotation.
Streams which come in co-rotating with the disk will have smaller impact velocities
than material that comes in counter-rotating. To relate to quantities that are easily
observable and to within the limits of our approximations, we adopt vin = vrot as our
fiducial value, but note that considerable deviations are possible. We also note that
even gas that shocks at the virial radius and thus heats up to 105–106 K, may cool
down again and some fraction of it may be available for disk accretion. This gas can
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condense into higher-density clumps that sink towards the center and replenish the
disk (Peek 2009). Again, vin ≈ vrot is a reasonable estimate.

Putting everything together, we can now calculate the energy input rate associated
with gas accretion onto the Milky Way as

ė = ρε̇ = 1

2
ρ

Ṁin

Mgas
v2

in (134)

= 6.2 × 10−27 erg cm−3 s−1
( n

1 cm−3

)(
Ṁin

3 M� yr−1

) ( vin

220 km s−1

)2
,

where again ρ = μ n with the mean particle mass μ = 2.11 × 10−24 g suitable for
atomic gas. We take an average number density n in the Galactic disk from Table 4,
set the mass infall rate Ṁin to the average star formation rate of 3 M� yr−1, and
approximate the infall velocity vin by the circular velocity of 220 km s−1.

If we compare the input rate (134) with the decay rate (132), we note that only
about 7 % of the infall energy is needed to explain the observed ISM turbulence.
However, the fraction of the infall energy that actually is converted into turbulent
motions is very difficult to estimate. Some fraction will turn into heat and is radiated
away. In addition, if the system is highly inhomogeneous with most of the mass resid-
ing in high density clumps with a low volume filling factor, most of the incoming flux
will feed the tenuous interclump medium rather than the dense clumps, and again,
will not contribute directly to driving turbulence in the dense ISM. Numerical exper-
iments indicate that the efficiency of converting infall energy into turbulence scales
linearly with the density contrast between the infalling gas and the ISM (Klessen and
Hennebelle 2010). For the Milky Way, this means that the infalling material should
have average densities of <∼ 0.1 cm−3.

It seems attractive to speculate that the population of high-velocity clouds
observed around the Milky Way is the visible signpost for high-density peaks in
this accretion flow. Indeed the inferred infall rates of high-velocity clouds are in
the range 0.5–5 M�yr−1 (Wakker et al. 1999; Blitz et al. 1999; Braun and Thilker
2004; Putman 2006), in good agreement with the Galactic star formation rate or with
chemical enrichment models (see e.g. Casuso and Beckman 2004 and references
therein). An important question in this context is where and in what form the gas
reaches the Galaxy. This is not known well. Recent numerical simulations indicate
that small clouds (with masses less than a few 104 M�) most likely will dissolve,
heat up and merge with the hot halo gas, while larger complexes will be able to
deliver cold atomic gas even to the inner disk (Heitsch and Putman 2009). In any
case, it is likely that the gas is predominantly accreted onto the outer disk of the
Milky Way. However, it is consumed by star formation mostly in the inner regions.
To keep the Galaxy in a steady state there must be an inwards gas motion of the order
of vR ≈ Ṁin/(2πRΣ) ≈ 3 km s−1, where we adopt a gas surface density at the solar
radius R� = 8.5 kpc of Σ = 15 M� pc−1 (Naab and Ostriker 2006). Whether this
net inward flow exists is not known, given our viewpoint from within the Galaxy and
given a typical velocity dispersion of ∼10 km s−1, which exceeds the strength of the



156 R.S. Klessen and S.C.O. Glover

signal we are interested in. In other galaxies, where we have an outside view onto
the disk, we could in principle try to decompose the observed line-of-sight motions
and find signs of the proposed inward mass transport.

4.5.2 Spiral Arms

Spiral galaxies such as our Milky Way are rotationally supported. This means that
the gas is prevented from freely flowing towards the Galactic Center by angular
momentum conservation, which forces the gas into circular orbits about a common
origin. The process is very similar to the formation of protostellar accretion disks
during the collapse of rotating cloud cores, which are a natural part of the process of
stellar birth (see Sect. 6.6). Parcels of gas can only change their radial distance from
the center of the disk by exchanging angular momentum with neighboring gas. Fluid
elements that lose angular momentum move inwards, while those that gain angular
momentum move outwards. Exchange of angular momentum between fluid elements
may be due to dynamical friction or to the influence of some effective viscosity. In
the ISM, molecular viscosity is far too small to explain the observed gas motions.
However, we can resort to either spiral arms (which reflect the onset of gravitational
instability) or to magnetic fields in the disk. In both cases, some of the energy stored
in Galactic rotation can be converted into turbulent kinetic energy as the gas moves
inwards.

Indeed, the spiral structure that is almost ubiquitously observed in disk galaxies
has long been proposed as an important source of ISM turbulence. Roberts (1969)
argued that the gas that flows through spiral arms forming in marginally stable disks
(Toomre 1964; Lin and Shu 1964; Lin et al. 1969) may shock and so distribute energy
throughout different scales. Gómez and Cox (2002) and Martos and Cox (1998), for
example, found that some fraction of the gas will be lifted up in a sudden vertical jump
at the position of the shock. Some portion of this flow will contribute to interstellar
turbulence. However, we note that the observed presence of interstellar turbulence in
irregular galaxies without spiral arms as well as in the outer regions of disk galaxies
beyond the extent of the spiral arm structure suggests that there must be additional
physical mechanisms driving turbulence.

For purely hydrodynamic turbulence in the absence of magnetic fields or for flows
with weak Maxwell stresses (see Eq. 136 below), purely gravitational stress terms
may become important. Wada et al. (2002) estimated the energy input resulting from
these Newton stress terms. They result from correlations in the different components
of the flow velocity v as TRΦ = 〈ρvRvΦ〉 (Lynden-Bell and Kalnajs 1972), and will
only add energy for a positive correlation between radial and azimuthal gravitational
forces. It is not clear, however, whether this is always the case. Despite this fact,
we can use this approach to get an upper limit to the energy input. As an order of
magnitude estimate, we obtain
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ė ≈ G(Σg/H)2 L2Ω (135)

≈ 4 × 10−29erg cm−3s−1

×
(

Σg

10 M�pc−2

)2 (
H

100 pc

)−2 (
L

100 pc

)2 (
Ω

(220 Myr)−1

)
,

where G is the gravitational constant, Σg is the density of gas, H is the scale height
of the disk, L is the length scale of turbulent perturbations, and Ω is the angular
velocity. The normalization is appropriate for the Milky Way. This is about an order
of magnitude less than the value required to maintain the observed ISM turbulence
(Eq. 132).

We note that the fact that spiral arms are curved adds another pathway to driving
ISM turbulence. Curved shocks are able to generate vortex motions as the gas flows
through the discontinuity. Kevlahan and Pudritz (2009) argue that this process is able
to produce a Kolmogorov-type energy spectrum in successive shock passages (see
also Wada 2008). However, further investigations are needed to determine whether
this process is able to produce the observed energy density in the Galactic ISM.

4.5.3 Magnetorotational Instabilities

Sellwood and Balbus (1999) proposed that the magnetorotational instability (Bal-
bus and Hawley 1998) could efficiently couple large scale rotation with small-scale
turbulence. The instability generates Maxwell stresses, which lead to a positive cor-
relation between radial BR and azimuthal BΦ components of the magnetic field,
transfering energy from shear into turbulent motions at a rate

ė = −TRΦ(dΩ/d ln R) = TRΦΩ , (136)

where the last equality holds for a flat rotation curve. Typical values are TRΦ ≈
0.6 B2/(8π) (Hawley et al. 1995). At the radius of the Sun, R� = 8.5 kpc and a
circular velocity of vrot = 220 km s−1, we obtain an angular velocity of

Ω = vrot

2πR�
= 1

220 Myr
≈ 1.4 × 10−16 rad s−1 . (137)

If we put both together, we conclude that the magnetorotational instability could
contribute energy at a rate

ė = 3 × 10−29 erg cm−3 s−1
(

B

3μG

)2 (
Ω

(220 Myr)−1

)
. (138)

Sellwood and Balbus (1999) tested this hypothesis for the small galaxy NGC 1058
and concluded that the magnetic field required to produce the observed velocity
dispersion of 6 Km s−1 is roughly 3 µG which is reasonable value for such a galaxy.
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Whether the process is efficient enough to explain ISM turbulence in large spiral
galaxies such as our Milky Way remains an open question. The typical values derived
from Eq. (138) are considerably lower than the energy required to compensate for
the loss of turbulent energy (Eq. 132). Numerical simulations geared towards the
Galactic disk (e.g. Dziourkevitch et al. 2004; Piontek and Ostriker 2004; Piontek
and Ostriker 2005) are not fully conclusive and in general deliver values of ė that
are too small. Overall, the magnetorotational instability may provide a base value
for the velocity dispersion below which no galaxy will fall, but it seems likely that
additional processes are needed to explain the observations.

4.6 Sources of ISM Turbulence: Stellar Feedback

There are various stellar feedback processes that could also act as potential sources
of ISM turbulence. In general, we can distinguish between mechanical and radiative
energy input. Supernova explosions that accompany the death of massive stars, line-
driven winds in the late phases of stellar evolution, as well as the protostellar jets
and outflows that are associated with stellar birth belong to the first category. The
ionizing and non-ionizing radiation that stars emit during all of their life belongs to
the latter one. As before, we discuss these various feedback processes in decreasing
order of importance.

4.6.1 Supernovae

The largest contribution from massive stars to interstellar turbulence most likely
comes from supernova explosions. In order to understand their impact on ISM dynam-
ics in our Galaxy, we first need to determine the supernova rate σSN. The exact number
is quite uncertain, but typical estimates fall in the range of 2–5 supernovae per cen-
tury (e.g. McKee 1989; McKee and Williams 1997; Adams et al. 2013). Note that
we do not distinguish between core collapse supernovae from massive stars and type
Ia explosions which are triggered by accretion onto white dwarfs. In addition, we
assume for simplicity that each event releases the same energy of ESN = 1051 erg.
Next, we need to obtain an estimate for the volume of the star forming disk of the
Galaxy. Following the values discussed in Sect. 4.4, we take the star forming radius
to be R = 15 kpc and the disk thickness to be H = 100 pc. The corresponding
energy input rate normalized to Milky Way values becomes

ė = σSNξSN ESN

πR2
sf H

(139)

= 3 × 10−26 erg s−1cm−3

×
(

ξSN
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) (
H
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)−2 (
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1051erg

)
.
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The efficiency of energy transfer from supernova blast waves to the interstellar gas
ξSN depends on many factors, including the strength of radiative cooling in the initial
shock, or whether the explosion occurs within a hot and tenuous Hii region or in dense
gas. Substantial amounts of energy can escape in the vertical direction in galactic
fountain flows. The scaling factor ξSN ≈ 0.1 used here was derived by Thornton
et al. (1998) from detailed one-dimensional numerical simulations of supernovae
expanding in a uniform medium. The efficiency can also be estimated analytically
(Norman and Ferrara 1996), mostly easily by assuming momentum conservation,
comparing the typical expansion velocity of 100 Km s−1 to the typical velocity of
ISM turbulence of 10 Km s−1. Clearly, fully three-dimensional models, describing
the interaction of multiple supernovae in the multi-phase ISM are needed to better
constrain the efficiency factor ξSN.

Supernova driving appears to be powerful enough to maintain ISM turbulence at
the observed levels and to compensate for the energy loss estimated in Eq. (125). In
the star-forming parts of the Galactic disk, it provides a large-scale self-regulation
mechanism. As the disk becomes more unstable, the star formation rate goes up.
Consequently, the number of OB stars increases which leads to a higher supernova
rate. As the velocity dispersion increases, the disk becomes more stable again and
the star formation rate goes down again. However, this process does not explain the
large velocity dispersion observed in the outer parts of disk galaxies, which show little
signs of star formation, and hence, will not have much energy input from supernovae.
Here other processes, such as those described in Sect. 4.5, appear to be required.

4.6.2 Stellar Winds

The total energy input from a line-driven stellar wind over the main-sequence life-
time of an early O star can equal the energy from its supernova explosion, and the
Wolf-Rayet wind can be even more powerful (Nugis and Lamers 2000). The wind
mass-loss rate scales somewhat less than quadratically with the stellar luminosity
(e.g. Pauldrach and Puls 1990; Puls et al. 1996; Vink et al. 2000, 2001), and as the
luminosity L itself is a very steep function of stellar mass M , with L ∝ M3.5 provid-
ing a reasonable approximation (e.g. Kippenhahn et al. 2012), only the most massive
stars contribute substantial energy input (for a review, see Lamers and Cassinelli
1999). We also note that stellar rotation can dramatically change the derived stellar
mass loss rates and the energy and momentum inserted by line-driven winds (for
recent reviews, see Meynet 2009 or Maeder and Meynet 2012, or for a grid of evo-
lutionary tracks, see Ekström et al. 2012 and Georgy et al. 2012). Krumholz et al.
(2014) concluded that even the most optimistic wind models lead to momentum
and energy input rates comparable to the radiation field (see below, Sect. 4.6.4). In
comparison, the energy from supernova explosions remains nearly constant down to
the least massive star that can explode. Because there are far more low-mass stars
than massive stars in the Milky Way and other nearby galaxies (for a discussion
of the stellar initial mass function, see Sect. 6.2.3), supernova explosions inevitably
dominate over stellar winds after the first few million years of the lifetime of an
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OB association. Nevertheless, realistic three-dimensional numerical models of the
momentum and kinetic energy input into the ISM and its effects on molecular cloud
evolution and on interstellar turbulence are needed. At the moment too little is known
about this process (see also Krumholz et al. 2006; Yeh and Matzner 2012).

4.6.3 Protostellar Jets and Outflows

Protostellar jets and outflows are another very popular potential energy source for
the observed ISM turbulence. They propagate with velocities of about 300 km s−1 as
seen in the radial velocity shift of forbidden emission lines, but also in proper motion
of jet knots. Many of these jets remain highly collimated with opening angles less
than 5◦ over a distance up to several parsec (e.g. Mundt et al. 1990, 1991).

Protostellar jets and outflows are launched by magnetic forces (for a summary,
see Pudritz et al. 2007). The scenario of magnetohydrodynamic jet formation has
been studied with stationary models (Camenzind 1990; Shu et al. 1994; Fendt and
Camenzind 1996; Ferreira 1997) as well as by time-dependent MHD simulations
(e.g. Ouyed and Pudritz 1997; Ouyed et al. 2003; Krasnopolsky et al. 1999).

Essentially, the MHD jet formation process works by transferring magnetic energy
(Poynting flux) into kinetic energy. As a consequence, the asymptotic, collimated jet
flow is in energy equipartition between magnetic and kinetic energy. The general
characteristics of jet propagation can be summarized as follows. Along the interface
between the propagating jet and the surrounding material at rest, Kelvin-Helmholtz
instabilities develop and lead to the entrainment of matter from this region into the
jet. This slows down the outward propagation while roughly conserving the overall
momentum of the flow. At the front of the jet two leading shocks build up, a bow
shock at the interface between the jet and the ambient medium and a Mach shock
where the propagating matter is decelerated to low velocities. It is diverted into a
cocoon of back-flowing material which is highly turbulent and heated up to high
temperatures, leading to emission from the fine structure lines of carbon, nitrogen,
oxygen, or sulfur atoms and to some degree from their ions (Sect. 3.4.2). Eventually
the outflow dissolves as it reaches a speed that is comparable to the typical velocity
dispersion in the ISM.

Norman and Silk (1980) estimated the amount of energy injected into the ISM by
protostellar outflows, and showed that they could be an important energy source for
turbulent motions in molecular clouds. They suggested that this in turn may influ-
ence the structure of the clouds and regulate the rate of gravitational collapse and star
formation (see also Li and Nakamura 2006; Banerjee et al. 2007; Nakamura and Li
2008; Wang et al. 2010). The existence of a kinematic interrelation between outflows
and their ambient medium has been inferred from high resolution CO observations,
e.g. of the PV Cephei outflow HH 315 (Arce and Goodman 2002a, b). Optical obser-
vations surveying nearby molecular clouds furthermore indicate a similar influence
of the outflows on the ionization state and energetics of the inter-cloud medium that
surrounds low-mass star forming regions (for Perseus, see Bally et al. 1997 or Arce
et al. 2010; for Orion A, see Stanke et al. 2002).
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We begin with an estimate of the protostellar jet kinetic luminosity. It can be
described as

L jet = 1

2
Ṁjet v

2
jet = 1.3×1032 erg s−1

(
Ṁjet

10−8 M�yr−1

)(
vjet

200 km s−1

)2

, (140)

with Ṁjet ≈ 10−8 M�yr−1 being the mass loss associated with the jet material that
departs from the protostellar disk system at typical velocities of vjet ≈ 200 km s−1.
This outflow rate is closely coupled to the accretion rate Ṁacc onto the central
star by Ṁjet = fjet Ṁacc, with the efficiency factor typically being in the range
0.1 <∼ fjet

<∼ 0.4 (see e.g. Shu et al. 2000; Ouyed and Pudritz 1997; Bontemps et al.
1996; or consult the reviews by Bally et al. 2007; Pudritz et al. 2007; Frank et al.
2014; or Li et al. 2014 for further details).

A simple estimate of the jet lifetime in this phase is tjet ≈ 2 pc/200 km s−1 ≈
104 yr. This coincides to within factors of a few with the typical duration of the class 0
and early class 1 phases of protostellar evolution (see Sect. 6.6). During these phases,
we expect the strongest outflow activity (see the review by André et al. 2000). The
total amount of energy provided by the jet is therefore

Ejet = L jet tjet ≈ 8 × 1043erg . (141)

This kinetic luminosity is smaller than but comparable to the radiative luminosity
of protostars. The outflow-ISM coupling is more direct and, thus, supposedly more
efficient than the energy exchange between the protostellar radiation and the ISM.
However, determinations of the coupling strength are controversial and require fur-
ther investigation (Banerjee et al. 2007; Nakamura and Li 2008; Cunningham et al.
2008; Wang et al. 2010; Carroll et al. 2010; Federrath et al. 2014).

The total energy input from protostellar winds will substantially exceed the
amount that can be transferred to the turbulence, because of radiative cooling at
the wind termination shock. This introduces another efficiency factor ξjet. A reason-
able upper limit to the energy loss can be obtained by assuming that this cooling
process is very efficient so that only momentum conservation holds,

ξjet
<∼

σ

vjet
= 0.05

( σ

10 km s−1

) ( vjet

200 km s−1

)−1
, (142)

where σ as before is the velocity dispersion of ISM turbulence. If we assumed that
most of the energy went into driving dense gas, the efficiency would be lower, as
typical velocities for CO outflows are only 1–2 km s−1. The energy injection rate per
unit volume then follows as
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ė = 1

2
ξjet fjet

ṀSFv2
jet

πR2 H
= 1

2
fjet

ṀSFvjetσ

πR2 H
(143)

= 1.4 × 10−28 erg cm−3 s−1

×
(

fjet

0.2

)(
ṀSF

3 M� yr−1

)( vjet

200 km s−1

)( σ

10 km s−1

)(
H

100 pc

)−1( R

15 kpc

)−2

,

where we again normalize to the Galactic star formation rate ṀSF = 3 M� yr−1 and
take the volume of the star forming disk as V = πR2 H , with radius R = 15 kpc and
disk thickness H = 100 pc.

Although protostellar jets and outflows are very energetic, they are likely to deposit
most of their energy into low density gas (Henning 1989), as is shown by the obser-
vation of multi-parsec long jets extending completely out of molecular clouds (Bally
and Devine 1994). Furthermore, observed motions of molecular gas show increasing
power on scales all the way up to and perhaps beyond the largest scale of molecular
cloud complexes (Ossenkopf and Mac Low 2002). It is hard to see how such large
scales could be driven by protostars embedded in the clouds.

4.6.4 Radiation

Next, we consider the radiation from massive stars. We focus our attention on ionizing
radiation, because Hii regions can affect large volumes of interstellar gas and their
expansion converts thermal energy into kinetic energy. To a much lesser degree, the
same holds for radiation in the spectral bands that can lead to the dissociation of
molecular hydrogen into atomic gas. The thermal radiation mostly from low-mass
stars will not be able to trigger large gas motions in the ISM, and we will not concern
ourselves with it here (but see Sect. 2.3).

The total energy density carried by photons at frequencies high enough to ionize
hydrogen is very large. We use the information provided, e.g. by Tielens (2010) or
Draine (2011), and estimate the integrated luminosity of ionizing radiation in the
disk of the Milky Way to be

ė = 1.5 × 10−24 erg s−1 cm−3 . (144)

(See also earlier work by Abbott 1982). We note, however, that only a small fraction
of this energy is converted into turbulent gas motions. There are two main pathways
for this to happen. First, ionizing radiation will produce free electrons with relatively
large velocities. This process heats up the resulting plasma to 7000–10000 K. The
ionized regions are over pressured compared to the ambient gas and start to expand.
They cool adiabatically and convert thermal energy into kinetic energy. Second, the
medium can also cool radiatively and possibly contract. The ISM in this regime is
thermally unstable (Field 1965; McKee and Ostriker 1977). This instability can excite
turbulent motions (e.g. Vázquez-Semadeni et al. 2000; Kritsuk and Norman 2002a;
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Piontek and Ostriker 2005; Hennebelle and Audit 2007) with typical conversion
factors from thermal to kinetic energy of less than 10 %.

We begin with the first process, and look at the supersonic expansion of Hii regions
after photoionization heating raises their pressures above that of the surrounding
neutral gas. By integrating over the Hii region luminosity function derived by McKee
and Williams (1997), Matzner (2002) estimates the average momentum input from
expanding Hii regions as

pHii ≈ 260 km s−1
(

N

1.5 × 1022 cm−2

)−3/14 (
Mcloud

106 M�

)1/14

M∗ , (145)

where the column density N is scaled to the mean value for Galactic molecular clouds
(Solomon et al. 1987), Mcloud is a typical molecular cloud mass, and M∗ = 440 M�
is the mean stellar mass per cluster in the Galaxy (Matzner 2002; Lada and Lada
2003).

We focus our attention on clusters and OB associations producing more than 1049

ionizing photons per second, because these are responsible for most of the available
ionizing photons. From the luminosity function presented by McKee and Williams
(1997), we estimate that there are about N49 = 650 such clusters in the Milky Way.
To derive an energy input rate per unit volume from the mean momentum input per
cluster (Eq. 145), we need to obtain an estimate for the typical expansion velocity vHii
of the Hii regions as well as for the duration of this process. While expansion is super-
sonic with respect to the ambient gas, it is by definition subsonic with respect to the
hot interior. The age spread in massive star clusters and OB associations can be several
million years (Preibisch and Zinnecker 1999; Portegies Zwart et al. 2010; Longmore
et al. 2014). We take a value of t∗ = 10 Myr. With the stellar mass—luminosity rela-
tion on the main sequence being L/L� ≈ 1.5 (M/M�)3.5 for stars with masses up to
M ≈ 20 M� and L/L� ≈ 3200 (M/M�) for stars with M >∼ 20 M�, the energy out-
put in a cluster is dominated by the most massive stars. The main sequence lifetime
can be estimated as tMS ≈ 1010 yr (M/M�)(L/L�)−1 ≈ 1010 yr (M/M�)−2.5 for
stars with M < 20 M�, asymptoting to a value of around tMS ≈ 3 Myr for more
massive stars (e.g. Hansen and Kawaler 1994). For typical O-type stars, tMS < t∗,
and as a consequence we can take t∗ as a good order of magnitude estimate for the
duration of strong ionizing feedback from the clusters of interest. Once again, we
estimate the volume of the star forming disk of the Galaxy as V = πR2 H , with
radius R = 15 kpc and disk thickness H = 100 pc. Putting this all together, the
estimated energy input rate from expanding Hii regions is then

ė = N49 pHiivHii

πR2 H t∗
(146)

= 3 × 10−30 erg s−1 cm−3
(

N

1.5 × 1022 cm−2

)−3/14( Mcloud

106 M�

)1/14

×
(

M∗
440 M�

) (
N49

650

)(
vHii

10 km s−1

)(
H

100 pc

)−1( R

15 kpc

)−2( t∗
10 Myr

)−1

.
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Nearly all of the energy in ionizing radiation goes towards maintaining the ionization
and temperature of the diffuse medium, and hardly any towards driving turbulence.
Flows of ionized gas may be important very close to young clusters and may termi-
nate star formation locally (for the difference between two- and three-dimensional
simulations, see Yorke and Sonnhalter 2002; Krumholz et al. 2007, 2009, Peters
et al. 2010b, 2011; Kuiper et al. 2011). They can also influence the molecular cloud
material that surrounds the young star cluster (e.g. Dale et al. 2005; Dale and Bonnell
2011; Walch et al. 2012, 2013). However, they appear not to contribute significantly
on a global scale.

Now we turn our attention to the second process, to the thermal instability. Kritsuk
and Norman (2002b) find that the thermal energy released can be converted into
turbulent kinetic energy, ekin = ξioneth, with an efficiency ξion ≈ 0.07. Parravano
et al. (2003) study the time dependence of the local UV radiation field. They find
that the corresponding photoelectric heating rate increases by a factor of 2–3 due
to the formation of a nearby OB association every 100–200 Myr. Note, however,
that substantial motions only last about 1 Myr after a heating event (Kritsuk and
Norman 2002b; de Avillez and Breitschwerdt 2004, 2005, 2007). We follow this line
of reasoning and estimate the resulting average energy input by taking the kinetic
energy input from the heating event and dividing by the typical time tOB between
heating events. We determine the thermal energy for gas at a number density of
n = 1 cm−3 at a temperature of T = 104 K and find that

ė = 3

2

nkT ξion

tOB
(147)

= 5 × 10−29 erg cm−3 s−1
( n

1 cm−3

) (
T

104 K

)(
ξion

0.07

) (
tOB

100 Myr

)−1

.

In comparison to some other proposed energy sources discussed here, this mechanism
appears unlikely to be as important as the supernova explosions from the same OB
stars discussed before.

5 Formation of Molecular Clouds

5.1 Transition from Atomic to Molecular Gas

Our starting point for considering the physics of molecular cloud formation is the
chemistry of the gas. After all, molecular clouds are, by definition, dominated by
molecular gas, while the gas in the more diffuse neutral phases of the ISM is almost
entirely atomic. Cloud formation must therefore involve, at some stage of the process,
a chemical transition from gas which is mainly atomic to gas which is mainly mole-
cular.
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There are two main chemical transitions, occurring at different points in the assem-
bly of a molecular cloud, that we could use to identify the point at which our assem-
bling cloud becomes “molecular”. The first and most obvious of these is the transition
between atomic and molecular hydrogen: once most of the hydrogen in the cloud is
in the form of H2 rather than H, it is obviously reasonable to talk of the cloud as being
molecular. However, this transition has the disadvantage that it is extremely difficult
to observe, since H2 does not emit radiation at typical molecular cloud temperatures.
Therefore, it is common to use a different, observationally-motivated definition of
the point when a cloud becomes molecular, which is the moment it becomes visible in
CO emission. Understanding when this occurs requires understanding the chemical
transition from C+ to C to CO that occurs within the assembling cloud.

Below, we discuss the chemistry involved in both of these transitions in more
detail, and then examine some of the approximations used to model the atomic-to-
molecular transition in numerical studies of molecular cloud formation.

5.1.1 Transition from H to H2

The simplest way to form H2 in the ISM is via the radiative association of two
hydrogen atoms, i.e.

H + H → H2 + γ. (148)

However, in practice the rate coefficient for this reaction is so small that only a very
small amount of H2 forms in this way. Somewhat more can form via the ion-neutral
reaction pathways

H + e− → H− + γ, (149)

H− + H → H2 + e−, (150)

and

H + H+ → H+
2 + γ, (151)

H+
2 + H → H2 + H+, (152)

but it is difficult to produce H2 fractional abundances larger than around fH2 ∼ 10−2

with these reactions, even in the most optimal conditions (see e.g. Tegmark et al.
1997). Moreover, in the local ISM, photodetachment of H− and photodissociation
of H+

2 by the ISRF render these pathways considerably less effective (Glover 2003).
We are therefore forced to conclude that gas-phase formation of H2 is extremely
inefficient in typical ISM conditions. Nevertheless, we do observe large quantities
of H2 in Galactic molecular clouds.

The resolution to this apparent puzzle comes when we realize that most of the H2
in the ISM does not form in the gas-phase, but instead forms on the surface of dust
grains (Gould and Salpeter 1963). Association reactions between adsorbed hydrogen
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atoms occur readily on grain surfaces, and the rate at which H2 forms there is limited
primarily by the rate at which H atoms are adsorbed onto the surface. For typical
Milky Way conditions, the resulting H2 formation rate is approximately (Jura 1975)

RH2 ∼ 3 × 10−17nnH cm−3s−1. (153)

Here, n is the total number density of gas particles, while nH is the number density
of atomic hydrogen. For atomic hydrogen gas, both quantities are identical if we
neglect contributions from helium and possibly metals. Note that nH goes down as the
molecular fraction increases, while n remains the same in the absence of compression
or expansion. The H2 formation timescale corresponding to the formation rate (153)
is approximately

tform = nH

RH2

∼ 109n−1 yr. (154)

When the gas density is low, this timescale can be considerably longer than the
most important dynamical timescales, such as the turbulent crossing time or the
gravitational free-fall time. Accounting for the effects of the small-scale transient
density structures produced by supersonic turbulence does shorten the timescale
somewhat (Glover and Mac Low 2007b; Micic et al. 2012), but typically not by
more than an order of magnitude.

Molecular hydrogen in the ISM can be collisionally dissociated by

H2 + H → H + H + H, (155)

H2 + H2 → H + H + H2. (156)

However, these reactions are effective at destroying H2 only in warm, dense gas,
and so although they are important in certain circumstances, such as in molecular
outflows (see e.g. Flower et al. 2003), they do not play a major role in regulating
the molecular content of the ISM. Instead, the dominant process responsible for
destroying H2 in the local ISM is photodissociation.

Photodissociation of H2 occurs via a process known as spontaneous radiative
dissociation (Stecher and Williams 1967; van Dishoeck 1987). The H2 molecule first
absorbs a UV photon with energy E > 11.2 eV, placing it in an excited electronic
state. The excited H2 molecule then undergoes a radiative transition back to the
electronic ground state. This transition can occur either into a bound ro-vibrational
level in the ground state, in which case the molecule survives, or into the vibrational
continuum, in which case it dissociates. The dissociation probability depends strongly
on the rotational and vibrational quantum numbers that the molecule has while in
the excited electronic state, but on average, it is around 15 % (Draine and Bertoldi
1996). The discrete set of UV absorption lines produced by this process are known
as the Lyman and Werner bands, and hence it has become common to refer to the
energetic photons responsible for destroying H2 as Lyman-Werner photons.

Because H2 photodissociation is line-based, rather than continuum-based, the
H2 photodissociation rate in the ISM is highly sensitive to an effect known as
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self-shielding. This term refers to the fact that in a region with a high H2 column
density, the Lyman-Werner photons with energies corresponding to the main absorp-
tion lines are mostly absorbed by H2 on the outskirts of the region, with only a few
surviving to reach the center. Consequently, the H2 photodissociation rate in the gas
at the center of the region is reduced by a large factor compared to the rate in the
unshielded, optically thin gas. Detailed studies of this process show that it starts to
significantly affect the H2 photodissociation rate once the H2 column density exceeds
NH2 ∼ 1014 cm−2 (Draine and Bertoldi 1996). The corresponding total column den-
sity of hydrogen depends on the strength of the ISRF and the density of the gas.
In unshielded gas illuminated by an ISRF with a strength G0 in Habing units (see
Sect. 2.3), the equilibrium number density of H2 is given approximately by

nH2 ∼ 3 × 10−17nnH

3 × 10−10G0
= 10−6nnHG−1

0 . (157)

The resulting H2 column density, NH2 , is therefore related to the total hydrogen
column density N by

NH2 = 10−6nHG−1
0 N . (158)

From this, we see that in order to produce an H2 column density of 1014 cm−2, we
need a total column density

N = 1020G0n−1 cm−2. (159)

For comparison, the visual extinction required to reduce the H2 photodissociation
rate by a factor of ten is approximately AV ≈ 0.65, which in the diffuse ISM
corresponds to a total hydrogen column density N ∼ 1021 cm−2. Therefore, H2
self-shielding becomes important earlier, at lower total column densities, than dust
shielding in conditions when G0/n is small, such as in CNM clouds far from regions
of massive star formation. On the other hand, if G0/n is large, such as can be the
case in photodissociation regions close to massive stars, then dust extinction typically
dominates.

5.1.2 Transition from C+ to C to CO

The chemistry involved in the transition from C+ to C is very simple: atomic carbon
forms via the radiative recombination of C+,

C+ + e− → C + γ, (160)

and is destroyed by photoionization,

C + → C+ + e−. (161)



168 R.S. Klessen and S.C.O. Glover

However, the formation of CO is considerably more complicated, as in this case there
is not a single dominant process responsible for CO formation, but rather a variety
of different pathways that one can follow to get to CO. In this section, we give a
very brief introduction to the basics of CO formation chemistry, but we refer readers
in search of a more detailed and comprehensive treatment to the classic papers by
Glassgold and Langer (1975), Langer (1976), Dalgarno and Black (1976), Tielens
and Hollenbach (1985) and Sternberg and Dalgarno (1995).

CO Formation

The majority of the CO found in molecular clouds forms via one or the other of
two main sets of chemical intermediates. One set of intermediates includes hydroxyl
(OH), its positive ion (OH+) and their products, while the other set includes the
simple hydrocarbons CH and CH2 and their positive ions.

The formation of CO from OH occurs rapidly via the neutral-neutral reaction

C + OH → CO + H. (162)

Unlike many neutral-neutral gas-phase reactions, this reaction has no activation
energy and hence remains effective even at the very low temperatures found within
molecular clouds. In addition, in gas with a high C+ to C ratio, CO+ ions are produced
by

C+ + OH → CO+ + H, (163)

which then form CO either directly,

CO+ + H → CO + H+, (164)

or indirectly, via HCO+ in the reactions

CO+ + H2 → HCO+ + H, (165)

HCO+ + e− → CO + H. (166)

We therefore see that once OH forms, CO follows rapidly. However, forming the
necessary OH radical is not so straightforward. One obvious pathway to OH involves
the reaction of atomic oxygen with H2,

O + H2 → OH + H. (167)

However, this reaction has an activation energy of 0.26 eV, and so although it is an
important source of OH in hot gas (see e.g. Hollenbach and McKee 1979), in the
cold gas found in CNM clouds and molecular clouds, other less-direct routes to OH
dominate. One of these involves the reaction of atomic oxygen with H+

3 :
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O + H+
3 → OH+ + H2. (168)

The OH+ ions react rapidly with H2, forming H2O+ and H3O+ via

OH+ + H2 → H2O+ + H, (169)

H2O+ + H2 → H3O+ + H. (170)

H3O+ does not readily react further with H2, but instead is removed from the gas
via dissociative recombination, yielding a variety of products that include OH and
water (see e.g. Jensen et al. 2000),

H3O+ + e− → H2O + H, (171)

H3O+ + e− → OH + H2, (172)

H3O+ + e− → OH + H + H, (173)

H3O+ + e− → O + H2 + H. (174)

The other main route to OH involves O+. This can be produced by cosmic ray
ionization of neutral oxygen, or by charge transfer from H+, and can react with H2
to yield OH+,

O+ + H2 → OH+ + H. (175)

The OH+ ions produced in this reaction then follow the same chain of reactions as
outlined above.

An important point to note here is that in every case, the rate-limiting step is the
formation of the initial OH+ ion. Although the reactions between O and H+

3 and
between O+ and H2 are rapid, the fractional abundances of O+ and H+

3 are small,
and so the overall rate of OH+ formation is relatively small. Once the OH+ ions have
formed, however, the remainder of the reactions in the chain leading to CO are rapid.
Since all of the reactions involved in the formation of OH+ depend on H2, either
directly or as a source for the H+

3 ions, one consequence of this is that CO formation
via the OH pathway is sensitive to the molecular hydrogen abundance.

The other main route to CO involves the simple hydrocarbons CH and CH2 and
their ions. In gas with a high C+ fraction, CH+ can be formed via the reaction with
H2,

C+ + H2 → CH+ + H, (176)

or by radiative association with atomic hydrogen,

C+ + H → CH+ + γ. (177)

As radiative association is a slow process, one might expect that the reaction with H2
would dominate. However, this suffers from the same problem as reaction (167). It
has a substantial energy barrier, in this case 0.4 eV, and therefore proceeds at a very
slow rate at the temperatures typical of the CNM or of molecular clouds. Indeed, this
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presents something of a problem, as the resulting CH+ formation rate is too slow to
explain the observed CH+ abundance in the diffuse atomic ISM, possibly indicating
that some form of non-thermal chemistry is active there (see e.g. Sheffer et al. 2008;
Godard et al. 2009).

In gas with significant fractions of C+ and H2, the CH+
2 ion can be formed by

radiative association,

C+ + H2 → CH+
2 + γ. (178)

The rate coefficient for this reaction is significantly larger than the rate coefficient
for reaction (177) as discussed by McElroy et al. (2013), and so in regions with
nH2 ≥ nH, this reaction is usually the main starting point for the formation of CO
via the hydrocarbon pathway.

Once CH+ or CH+
2 has formed via one of the above reactions, it quickly reacts

further with H2,

CH+ + H2 → CH+
2 + H, (179)

CH+
2 + H2 → CH+

3 + H. (180)

Although the CH+
3 ions can react further with H2, they do so via a slow radiative

association reaction,
CH+

3 + H2 → CH+
5 + γ. (181)

Therefore, most of the CH+
3 is destroyed instead by dissociative recombination,

CH+
3 + e− → CH + H2,

CH+
3 + e− → CH + H + H,

CH+
3 + e− → CH2 + H. (182)

The CH and CH2 radicals produced by this process react readily with atomic oxygen,
forming CO via

CH + O → CO + H, (183)

CH2 + O → CO + H2, (184)

CH2 + O → CO + H + H. (185)

The CH2 radicals are also destroyed rapidly in a reaction with atomic hydrogen,

CH2 + H → CH + H2, (186)

but in the case of CH, the analogous reaction has a significant energy barrier and
hence is negligible at the temperatures of interest. The end result is therefore that a
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large fraction of the carbon incorporated into CH+ or CH+
2 by the reactions described

above ultimately ends up in the form of CO.
In gas with a high abundance of neutral atomic carbon, a few other processes

contribute significantly to the formation rate of the CH and CH2 radicals that are the
precursor of CO. They can be formed directly via radiative association of C with H
or H2,

C + H → CH + γ, (187)

C + H2 → CH2 + γ, (188)

although these reactions are relatively slow. Alternatively, atomic carbon can react
with H+

3 ,
C + H+

3 → CH+ + H2, (189)

forming a CH+ ion that the reacts further as described above
Looking at the hydrocarbon pathway as a whole, we see that it shares some

common features with the OH pathway. In each case, the rate-limiting step is the
initiating reaction, whether this is the formation of CH, CH2, CH+ or CH+

2 by
radiative association, or the formation of H+

3 as a consequence of the cosmic ray
ionization of H2. Once the initial molecular ion or radical has formed, the remainder
of the reactions that lead to CO proceed relatively quickly. This behavior forms the
basis of several simplified methods for treating CO formation that we discuss in
Sect. 5.1.3. In addition, we also see that all of the different ways that we can proceed
from C+ or C to CO rely on the presence of molecular hydrogen. This is important, as
it implies that substantial quantities of CO will form only in regions that already have
high H2 fractions. Therefore, although the characteristic timescales of the chemical
reactions involved in CO formation are generally shorter than the H2 formation time,
non-equilibrium, time-dependent behavior can nevertheless still be important, owing
to the dependence on the H2 fraction.

CO Destruction

In gas with a low visual extinction, the destruction of CO is dominated by photodis-
sociation:

CO + γ → C + O. (190)

The photodissociation of the CO molecule occurs via a process known as predisso-
ciation (van Dishoeck 1987). The molecule first absorbs a UV photon with energy
E > 11.09 eV, placing it in an excited electronic state. From here, it can either
return to the ground state via radiative decay, or it can undergo a transition to a
repulsive electronic state via a radiationless process. In the latter case, the molecule
very rapidly dissociates. In the case of CO, dissociation is typically far more likely
than decay back to the ground state (van Dishoeck and Black 1988). Consequently,
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the lifetimes of the excited electronic states are very short. This is important, as
Heisenberg’s uncertainty principle then implies that their energy is comparatively
uncertain. The UV absorption lines associated with the photodissociation of CO are
therefore much broader than the lines associated with H2 photodissociation. As a
result, CO self-shielding is less effective than the analogous process for H2.

The classic work on the photodissociation of CO in an astrophysical context is
the paper by van Dishoeck and Black (1988). However, in the two decades since
this paper was published, improved experimental data on the properties of the CO
molecule has become available, and a revised treatment of CO photodissociation was
recently given by Visser et al. (2009).

Once the visual extinction of the gas becomes large, CO photodissociation
becomes unimportant. In these circumstances, two other processes take over as the
main routes by which CO is destroyed. First, cosmic ray ionization of hydrogen
molecules or hydrogen atoms produces energetic photo-electrons. If these collide
with other hydrogen molecules before dissipating their energy, they can excite the
H2 molecules into excited electronic states. The subsequent radiative decay of the
molecules back to the ground state produces UV photons that can produce localized
photodissociation of CO and other molecules (Prasad and Tarafdar 1983; Gredel
et al. 1987, 1989). Second, CO is also destroyed via dissociative charge transfer
with He+ ions,

CO + He+ → C+ + O + He. (191)

The He+ ions required by this reaction are produced by cosmic ray ionization of
neutral helium. We therefore see that the rate at which CO molecules are destroyed in
high AV gas is controlled by the cosmic ray ionization rate. In local molecular clouds,
this is relatively small (van der Tak and van Dishoeck 2000), and so almost all of the
carbon in these high AV regions is found in the form of CO. In clouds illuminated
by a much higher cosmic ray flux, however, such as those in the Central Molecular
Zone of the Galaxy, the destruction of CO by these processes in high extinction gas
is considerably more important, and the CO fraction can be significantly suppressed
even in well-shielded gas (see e.g. Clark et al. 2013).

5.1.3 Modeling the Atomic-to-Molecular Transition

There are a number of different approaches that one can use in order to numerically
model the transition from atomic to molecular gas that occurs as one builds up a
molecular cloud, each with their own strengths and weaknesses.

One of the most obvious approaches is to build a model that incorporates all of the
main chemical reactions occurring in the gas. The forty or so reactions discussed in
Sects. 5.1.1 and 5.1.2 above represent only a small fraction of the full range of possible
reactions that can occur, particular once one accounts for the role played by additional
chemical elements such as nitrogen or sulfur. An example of the degree of chemical
complexity that is possible is given by the UMIST Database for Astrochemistry
(McElroy et al. 2013). The latest release of this database contains details of 6173 gas-
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phase reactions of astrophysical interest, involving 467 different chemical species.
If one also attempts to account for the full range of possible grain-surface chemistry
and also for important isotopic variants of the main chemical species (e.g. molecules
with one or more deuterium atoms in place of a hydrogen atom), then the size of the
resulting chemical network can easily be an order of magnitude larger still (see e.g.
Albertsson et al. 2013 for a recent example). By coupling a comprehensive chemical
model such as this to a detailed model for the penetration of UV radiation through the
gas and in addition a treatment of its magnetohydrodynamical and thermal evolution,
we can in principle model the chemical evolution of the gas with a very high degree
of accuracy.

Unfortunately, the computational requirements of such an approach are currently
prohibitive. The chemistry of the ISM evolves on a wide range of different timescales,
and hence the set of coupled ordinary differential equations (ODEs) that describe
the chemical evolution of the gas are what is known as “stiff”. To ensure stability,
these equations must be solved implicitly, and the cost of doing so scales as the cube
of the number of ODEs. Consequently, solving for the chemical evolution of the gas
using a comprehensive chemical model is rather time-consuming, owing to the large
number of ODEs involved. This is not necessarily a problem if one is interested in
solving for the chemical evolution of only a small number of fluid elements, but
becomes a major difficulty once one tries to solve for the chemical evolution of the
gas within a high-resolution three-dimensional simulation, when one is dealing with
tens or hundreds of millions of fluid elements. Chemical networks involving ∼10 to
20 different species can be used within such models (see e.g. Glover et al. 2010),
although this is already computationally demanding, but scaling up to ∼400 to 500
species requires approximately 104 times more computational power, rendering it
completely impractical at the present time.

Because of this, any attempt to model the atomic-to-molecular transition numer-
ically must make some simplifications. If one is interested in a time-dependent,
non-equilibrium description of the transition, then there are two main strategies that
can be used to make the problem simpler. First, we can simplify the chemistry while
continuing to use a detailed model of the hydrodynamical evolution of the gas. The
basic idea here is to strip the chemical model down to its bare essentials, i.e. only
those reactions that most directly affect the abundances of H, H2, C+, C and CO. In
the case of H and H2, the simplicity of the chemistry makes this relatively straightfor-
ward, and a number of different implementations of H2 formation chemistry within
large hydrodynamical simulations are now available (see e.g. Anninos et al. 1997;
Glover and Mac Low 2007a; Dobbs et al. 2008; Gnedin et al. 2009; Christensen
et al. 2012). The only real difficulty in this case is how to handle the effects of H2
self-shielding and dust shielding. Several different approaches have been used in the
literature, ranging from simple Sobolev-like approximations (Gnedin et al. 2009), to
more sophisticated approximations based on computing the column density of dust
and H2 along a limited number of sight-lines (see e.g. Clark et al. 2012a, b; Hartwig
et al. 2015).

Modeling the chemistry involved in the transition from C+ to C to CO is rather
harder, owing to the significantly greater complexity of the required chemical net-
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work. Nevertheless, several different possibilities have been put forward in the lit-
erature (Nelson and Langer 1997, 1999; Keto and Caselli 2008, 2010; Glover et al.
2010). Typically, these approximate treatments ignore any reactions involving ele-
ments other than H, He, C and O, ignore those parts of the carbon chemistry not
directly involved in the formation or destruction of CO, and greatly simplify the
treatment of the main pathways from C+ to CO. As we have seen, the rate limiting
step in these pathways is typically the initiating reaction, and so a decent estimate
of the CO formation rate can be arrived at by computing how rapidly carbon is
incorporated into any one of CH, CH2, CH+ and CH+

2 , and how rapidly oxygen is
incorporated into OH+, without the need to follow all of the details of the subsequent
chemistry. A number of these approximate treatments were compared with each other
by Glover and Clark (2012b), who showed that although very simple treatments such
as that of Nelson and Langer (1997) tend to over-produce CO, more detailed models
such as those of Nelson and Langer (1999) and Glover et al. (2010) produced results
that agreed well with each other.

The other main non-equilibrium approach retains far more of the chemical com-
plexity of the full network, choosing to simplify instead the treatment of the gas
dynamics and often also the geometry of the gas. This is the strategy used, for
example, in most PDR codes.7 For a long time, the standard approach has been to
ignore the effects of dynamics completely, and to adopt either spherical symme-
try or one-dimensional slab symmetry in order to model the clouds. Neglecting the
hydrodynamical evolution of the gas is often justified, if the chemical species one is
interested in have characteristic evolutionary timescales that are much shorter than
a representative dynamical timescale such as the turbulent crossing time or gravita-
tional free-fall time. However, it is probably not a good approximation for treating
species such as H or H2 that have long chemical timescales and whose abundances
at any given time in the evolution of a molecular cloud are therefore sensitive to the
previous dynamical history of the gas (see e.g. Bergin et al. 2004; Glover and Mac
Low 2007b). The assumption of one-dimensional symmetry, although computation-
ally convenient, is less easy to justify, as the resulting models are unable to explain
some notable features of real molecular clouds such as the widespread distribution of
atomic carbon (Frerking et al. 1989; Little et al. 1994; Schilke et al. 1995). Account-
ing for clumping within the cloud greatly alleviates this issue (see e.g. Kramer et al.
2008), and although it is possible to model a clumpy cloud using a one-dimensional
PDR code by representing the cloud as an ensemble of spherically-symmetric clumps
(see e.g. Stutzki et al. 1988), ideally one would use a full three-dimensional approach.
Recently, three-dimensional PDR codes are starting to become available (see e.g.
Levrier et al. 2012; Offner et al. 2013), although they are not yet as fully-featured as
their one-dimensional cousins.

An even simpler approach to modeling the atomic-to-molecular transition involves
relaxing the assumption that the chemistry is out of equilibrium. If we assume that
the gas is in chemical equilibrium, then instead of solving a set of coupled ordinary
differential equations in order to obtain the current values of the chemical abun-

7The acronym PDR stands for photodissociation region or photon dominated region.
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dances, we have the simpler task of solving a set of linear equations. In particular,
note the studies by Krumholz et al. (2008, 2009) and McKee and Krumholz (2010)
in which they solve for the equilibrium H and H2 abundances as a function of the gas
surface density, the UV field strength, and the metallicity. They also derive simple
analytical approximations to their numerical results, suitable for implementing in
large-scale numerical simulations that do not have the resolution to model the struc-
ture of individual molecular clouds (see e.g. Kuhlen et al. 2012; Thompson et al.
2014).

The validity of the equilibrium approach depends upon the extent to which the
equilibrium abundances reflect the true chemical abundances in the ISM, and hence
on the relative sizes of the H2 formation timescale, tform, and the dynamical time, tdyn.
At solar metallicity, the two timescales are roughly equal in dense GMCs, and so it is
reasonable to expect equilibrium models to be a good guide to the behavior of the H2
fraction in these clouds. Indeed, recent observations of the H and H2 content of the
Perseus molecular cloud made by Lee et al. (2012) yield results that are well fit by
the Krumholz et al. (2008) model. However, as tform ∝ n−1, the formation time can
be significantly longer than the dynamical time in lower density clouds, such as the
diffuse H2 clouds observed in UV absorption line studies (Snow and McCall 2006),
and it is therefore unclear whether the H2 content of these clouds has yet reached
equilibrium (see also Mac Low and Glover 2012). Furthermore, since H2 formation
timescale scales inversely with the dust-to-gas ratio, the equilibrium approximation
can fail badly in very low metallicity, dust-poor systems. In these conditions, cloud
formation, gravitational collapse and star formation can all take place before the gas
has had a chance to reach chemical equilibrium (Glover and Clark 2012c; Krumholz
2012). At very low metallicities, this can even lead to star formation occurring in
regions that are primarily atomic rather than molecular.

5.2 Importance of Dust Shielding

In our discussion of the atomic to molecular transition in the previous Section, we
saw that the column density of the gas in the ISM plays an important role in regulating
its chemical state. Regions with high column densities have large visual extinctions,
and hence can shield themselves effectively from the UV portion of the ISRF (see
Sect. 2.3). In these regions, the gas is primarily molecular once it reaches chemical
equilibrium, although the approach to equilibrium can take a long time when the
volume density of the gas is small. On the other hand, regions with a low column
density have low visual extinctions and so are unable to resist the dissociating effects
of the ISRF. These regions are generally dominated by atomic gas.

The precise value of the visual extinction corresponding to the transition between
mostly-atomic and mostly-molecular gas depends on a number of factors: the strength
of the ISRF, the volume density of the gas, and the effectiveness of self-shielding.
However, the equilibrium molecular fraction typically depends only linearly on these
quantities, but exponentially on the visual extinction. In conditions typical of local
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GMCs, the transition from atomic to molecular hydrogen occurs at a visual extinction
AV ∼ 0.1–0.2 (Draine and Bertoldi 1996; Krumholz et al. 2008) and that from C+
to CO occurs at AV ∼ 1 (Wolfire et al. 2010). Large differences in either the density
of the gas or the strength of the ISRF are required in order to significantly alter these
values. In solar metallicity gas, the total hydrogen column densities corresponding
to the two transitions are NH,tot ≈ 2 × 1020 cm−2 for the H–H2 transition and
NH,tot ≈ 2 × 1021 cm−2 for the C+–CO transition. However, in lower metallicity
environments, such as the Magellanic Clouds, the lower dust-to-gas ratio means that
a higher column density is required.

The transition from unshielded gas to gas with a significant visual extinction
also has an important influence on the thermal state of the gas. As we have already
discussed, photoelectric heating is the dominant form of radiative heating in the
diffuse ISM (Sect. 3.7), but its effectiveness falls off rapidly with increasing extinction
for AV > 1. Consequently, the equilibrium gas temperature drops significantly as
we move from unshielded to shielded gas, as illustrated in Fig. 16.

The chemical and thermal changes that occur as we move from unshielded to
shielded regions have important implications for the gravitational stability of the gas.
The Jeans mass—the critical mass scale above which quasi-spherical overdensities
become unstable to their own self-gravity—is related to the gas density and the
temperature by

MJ ≈ 60 M� μ−2T 3/2n−1/2
tot , (192)

where μ is the mean particle mass and ntot is the total particle number density. The
factor of six decrease in T that we find as we move from low extinction to high
extinction gas therefore results in a drop in MJ of roughly a factor of fifteen. The
associated chemical transition from gas which is primarily atomic to gas which is
primarily molecular results in a further decrease in MJ by roughly a factor of 2.5,
and so the overall effect of increasing the extinction is to decrease the Jeans mass by
more than an order of magnitude.

The decrease in T and increase in μ that occur as we move from low AV to high
AV gas are also responsible for a drop in the sound speed of the gas. If the turbulent
kinetic energy remains fixed, the result is an increase in the Mach number of the
turbulence. This makes it easier for the turbulence to create high density regions (see
also Sect. 6.4.4). The high density gas is more likely to be gravitationally bound, since
MJ ∝ n−1/2, and so the result of an increase in the Mach number of the turbulence
will typically be an increase in the star formation rate of the gas (Krumholz and
McKee 2005; Padoan and Nordlund 2011; Hennebelle and Chabrier 2011; Federrath
and Klessen 2012).

We therefore see that it is much easier to form stars in gas clouds with high visual
extinctions than in those with low visual extinctions. In high AV clouds, the gas
temperature is lower and the gas is more likely to be molecular, and both of these
effects make star formation more likely. We therefore expect to find a correlation
between high AV clouds and star formation. Moreover, since these high AV clouds
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Fig. 16 Equilibrium temperature as a function of visual extinction within a uniform density, semi-
infinite slab of solar metallicity gas. The slab had a fixed hydrogen nuclei number density n =
300 cm−3, a velocity gradient of 3 km s−1 pc−1, and was illuminated with a model of the ISRF
based on Draine (1978) at UV wavelengths and Mathis et al. (1983) at longer wavelengths. The
cosmic ray ionization rate of atomic hydrogen was taken to be ζH = 3 × 10−17 s−1. The rise in
the temperature at very low AV is a consequence of the transition from H to H2: the cooling in this
regime is dominated by C+ fine structure cooling, and at these densities and at fixed temperature,
the C+ cooling rate in fully atomic gas is two to three times larger than the C+ cooling rate in fully
molecular gas

are dominated by molecular gas, we also expect there to be a correlation between
molecular gas and star formation (Krumholz et al. 2011; Federrath 2013).

A correlation of just this kind is seen when we examine how stars form in our own
Milky Way or in nearby spiral galaxies. Work by a number of groups has shown that
on large scales, there is a tight correlation between the surface density of molecular
gas and the surface density of star formation in spiral galaxies (Wong and Blitz 2002;
Leroy et al. 2008; Bigiel et al. 2008, 2011; Schruba et al. 2011). This correlation is
close to linear, although arguments continue as to whether it is truly linear (Leroy
et al. 2013), or is actually slightly sub-linear (Shetty et al. 2013, 2014; Federrath
2013).

This correlation is often interpreted as being a consequence of molecular cooling.
It is argued that only CO cooling can lower the gas temperature to the value of ∼10 K
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characteristic of prestellar cores within molecular clouds (Bergin and Tafalla 2007),
and that these low temperatures are required for star formation. Although it is true
that gas cannot reach 10 K purely due to C+ or O fine structure cooling, it can quite
easily reach temperatures as low as 20 K in well-shielded gas, as demonstrated in the
detailed numerical simulations of Glover and Clark (2012a). These simulations also
show that the star formation rate of the gas is relatively insensitive to whether the
gas is dominated by atomic or molecular cooling (see also Glover and Clark 2012c;
Krumholz 2012), further supporting the idea that the observed correlation between
molecular gas and star formation is a consequence of the fact that both are associated
with regions of cold, dense gas. In short, molecular gas is a tracer of star formation
but not its cause.

Dust shielding may also play an important role in determining which sub-regions
within molecular clouds can successfully form stars. We know from observations
of local star-forming GMCs that stellar birth is not a completely random process.
Instead, there is a clear relationship between the observed column density of the gas
and the star formation rate. The process occurs predominantly in regions with column
densities NH2 > 7.5 × 1021 cm−2, corresponding to visual extinctions AV > 8 (see
e.g. the discussion in Molinari et al. 2014). It remains an open question as to whether
this relationship is best described in terms of a column density threshold (Onishi
et al. 1998; Johnstone et al. 2004; Lada et al. 2010) or simply a steep dependence
of the star formation rate on the column density (Hatchell et al. 2005; Enoch et al.
2008; Heiderman et al. 2010; Gutermuth et al. 2011; Burkert and Hartmann 2013;
Lada et al. 2013; Evans et al. 2014).

A complete theoretical understanding of why this correlation exists remains lack-
ing, but Clark and Glover (2014) argue that it is a further consequence of dust shield-
ing. They point out that in a turbulent cloud, the angle-averaged extinction seen by
an arbitrarily chosen point along a high extinction line of sight will frequently be
much lower than the extinction along that line of sight. In their simulations, the
dense structures traced by line of sight extinctions AV > 8 typically have much
smaller mean extinctions, 〈AV〉 ∼ 1–2. This roughly corresponds to the point at
which dust shielding renders photoelectric heating of the gas ineffective, and so
Clark and Glover (2014) argue that the observed column density threshold merely
reflects the extinction required for clouds to shield themselves effectively from their
environment.

5.3 Molecular Cloud Formation in a Galactic Context

As we have seen above, the transition between regions of the ISM that are dominated
by atomic gas and regions that are dominated by molecular gas is primarily driven by
changes in the column density. In regions with low column densities, photodissoci-
ation of H2 and CO is very efficient and the equilibrium molecular fraction is small.
On the other hand, in regions with high column densities, molecular self-shielding
and dust shielding dramatically reduce the photodissociation rates of H2 and CO,
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allowing the equilibrium molecular fraction to become large. From one point of view,
then, the question of how molecular clouds form in the ISM has a simple answer.
This happens whenever sufficient gas is brought together in one place to raise the
column density above the value needed to provide effective shielding against the
ISRF, as long as the gas remains in this configuration for longer than the H2 for-
mation timescale, tform. The real question, therefore, is what are the most important
processes responsible for gathering together sufficient gas out of the diffuse ISM to
make a dense molecular cloud. This is a highly complex topic, and in these lecture
notes we will do little more than to give a brief outline of the main models that have
been proposed to explain molecular cloud formation. We refer readers in search of
a more in-depth treatment of these issues to the recent reviews by Hennebelle and
Falgarone (2012), Dobbs et al. (2014) and Molinari et al. (2014).

One of the simplest models for molecular cloud formation is the coagulation
model, originally proposed by Oort (1954) and subsequently elaborated by many
other authors (see e.g. Field 1965; Kwan 1979; Tomisaka 1984; Tasker and Tan
2009). This model is based on a picture of the ISM in which the cold atomic and
molecular gas is organized into a series of discrete clouds with a range of different
masses. Small atomic clouds are formed directly from warmer atomic gas by thermal
instability (Field 1965). Collisions between these small clouds efficiently dissipate
energy, and so colliding clouds tend to coagulate, forming successively larger clouds.
Once the clouds have grown large enough, they become able to shield themselves
from the effects of the ISRF, at which point they become dominated by molecular gas.
Even once they have become molecular, however, the clouds continue to undergo
regular collisions, and can potentially grow to very large masses. This process is
terminated for a particular cloud once the feedback from the stars forming within it
becomes strong enough to disrupt the cloud.

This model has a number of appealing features. The stochasticity of the process
of cloud-cloud collisions is thought to naturally lead to a power law cloud mass
function (e.g. Field 1965), and the fact that collisions occur more frequently in
denser regions of the galactic disk also provides a simple explanation for the enhanced
concentrations of molecular gas and ongoing star formation found within most spiral
arms. In addition, the coagulation model also can easily produce clouds that are
counter-rotating compared to the galactic disk (e.g. Dobbs 2008; Tasker and Tan
2009), explaining why clouds with retrograde rotation appear to be common within
the ISM (see e.g. Phillips 1999; Imara and Blitz 2011).

Unfortunately, this model also suffers from a major problem. Small molecular
clouds can be built by coagulation relatively rapidly, but large molecular clouds with
masses of 105–106 M� require of the order of 100 Myr or more to form by this
method (Blitz and Shu 1980). Since this is an order of magnitude larger than most
estimates for typical GMC lifetimes (Blitz et al. 2007), it seems to be impossible
to form massive GMCs in low density environments in this model. In the dense
environments of spiral arms, the much higher cloud collision rate alleviates this
problem to a large extent (Casoli and Combes 1982; Kwan and Valdes 1983; Dobbs
2008), but this does not provide an explanation for the existence of very massive
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clouds in inter-arm regions, as observed in galaxies such as M51 (Hughes et al.
2013).

A more fundamental issue with the coagulation model is that it is not clear that
the picture of the ISM on which it is based, in which GMCs are discrete objects that
evolve in equilibrium between collisions and that have well-defined masses and clear
edges, is a good description of the real ISM. As we discuss in Sect. 4.1, observations
show that GMCs are ubiquitously surrounded by extended envelopes of atomic gas
(see e.g. Wannier et al. 1983; Elmegreen and Elmegreen 1987; Lee et al. 2012;
Heiner and Vázquez-Semadeni 2013; Motte et al. 2014) and so the observational
“edge” of a GMC—the point at which we cease to be able to detect CO emission—
more likely represents a chemical transition in the gas (see Sect. 5.1), rather than any
sudden change in the density. In addition, a considerable fraction of the molecular
gas of a galaxy seems to be in an extended diffuse component, rather than in discrete
clouds (see e.g. Pety et al. 2013; Shetty et al. 2014; Smith et al. 2014). This finding
casts further doubts on any astrophysical conclusion derived from the cloud collision
picture.

Altogether, it is highly plausible that rather than being discrete objects with iden-
tities that persist over long periods of time, molecular clouds are instead merely the
highest density regions within a far more extended turbulent flow of gas. This picture
motivates an alternative way of thinking about molecular cloud formation, known as
the converging (or colliding) flow model for cloud formation. The basic idea in this
case is that molecular clouds form in dense, post-shock regions formed when con-
verging flows of lower density gas collide and interact. If the flows initially consist of
warm atomic hydrogen, then their collision can trigger a thermal instability, leading
to the rapid production of a cloud of much denser, cooler gas (see e.g. Hennebelle
and Pérault 1999, 2000; Koyama and Inutsuka 2002; Audit and Hennebelle 2005;
Heitsch et al. 2005, 2006; Vázquez-Semadeni et al. 2006; Hennebelle and Audit
2007; Heitsch and Hartmann 2008; Banerjee et al. 2009). The mean density of the
cold gas clouds produced in this way is typically of the order of 100 cm−3, high
enough to allow H2 formation to occur on a timescale shorter than the duration of
the collision (see e.g. Clark et al. 2012b). CO will also form in these cold clouds in
regions where the column density is high enough to provide effective shielding from
the ISRF, although simulations have shown that the production of these high column
density regions generally requires at least some part of the cold cloud to undergo
gravitational collapse (Heitsch and Hartmann 2008; Clark et al. 2012b).

The converging flow model for GMC formation naturally explains why we see
so few molecular clouds that are not associated with ongoing star formation. CO
observations are blind to the inflow during its early evolution, since at this stage, the
molecular abundance in the gas is very small (Hartmann et al. 2001). High molecular
abundances and detectable CO luminosities are produced only during relatively late
evolutionary phases, and work by Clark et al. (2012b) has shown that the time lag
between the appearance of detectable CO emission and the onset of star formation is
typically only 1–2 Myr. This picture is supported by growing observational evidence
that molecular clouds (as traced by CO) are continuously gaining mass during their
evolution. For example, Fukui et al. (2009) and Kawamura et al. (2009) report in
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their analysis of GMCs in the Large Magellanic Cloud mass growth rates of several
10−2 M� yr−1. It is a very appealing feature that this continuous accretion process
provides a simple explanation for the presence of turbulence within GMCs. The
kinetic energy associated with the convergent flow that forms the cloud in the first
place is also able to drive its internal turbulence and explain many of its internal
properties (see Klessen and Hennebelle 2010; Goldbaum et al. 2011). As a conse-
quence, the turbulent cascade extends from global galactic scales all the way down
to the dissipation regime on sub-parsec scales (Sect. 4.3).

Much of the work that has been done to model the formation of molecular clouds
in converging flows has focused on the case where the flow is essentially one-
dimensional, with two streams of gas colliding head-on. However, in this scenario, it
is difficult to form very massive clouds, as a simple calculation demonstrates. Sup-
pose we have two flows of convergent gas, each of which has a cross-sectional area
A, an initial number density n0, and a length Lflow/2. The total mass of the cloud
that can be formed by the collision of these flows is given approximately by

Mcloud ∼ μn0 ALflow, (193)

where we have assumed that all of the gas in the flows becomes part of the cold cloud,
and μ = 1.26 mH = 2.11 × 10−24 g typical for atomic gas. If the gas in the flows is
initially part of the warm neutral medium, then the number density is n0 ∼ 0.5 cm−3

(see Table 1), and

Mcloud ∼ 2300 M�
(

A

1000 pc2

) (
Lflow

150 pc

)
. (194)

If the flows together have a total length Lflow ∼ 150 pc that is comparable to the
molecular gas scale height of the Galactic disk (see Table 4), and a cross-sectional
area typical of a reasonably large GMC (Solomon et al. 1987), then the total mass of
the resulting cloud is only a few thousand solar masses, much smaller than the mass
of most GMCs.

There are several ways in which we might try to avoid this problem. First, we can
make Lflow larger. However, even if we make it comparable to the atomic gas scale
height, so that Lflow ∼ 1000 pc, the resulting cloud mass is still small, Mcloud ∼
15000 M�. Second, we can make n0 larger. The value that we have adopted above
is typical of the stable WNM, but thermally unstable diffuse atomic gas could have
a density that is an order of magnitude higher (see e.g. Dobbs et al. 2012). However,
once again this does not increase Mcloud by a large enough amount to explain how
the most massive GMCs form. Finally, we could make A larger. Simulations show
that clouds formed in one-dimensional flows tend to collapse gravitationally in the
directions perpendicular to the flow (see e.g. Burkert and Hartmann 2004; Heitsch
et al. 2008; Vázquez-Semadeni et al. 2009). Therefore, it is reasonable to suppose
that the cross-sectional area of the flows involved in forming the cloud may be much
larger than the cross-sectional area of the final GMC. However, even if we increase
A by a factor of 20, so that the width and height of the flow are comparable to its
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length, we again only increase Mcloud by an order of magnitude. In addition, if all of
the dimensions of the flow are similar, it is unclear whether we should really think
of it as a one-dimensional flow any longer. In the end, what is needed in order to
explain the formation of the most massive GMCs in this model is a combination of
these points. The flow must consist of gas that is denser than is typical for the WNM,
that has a coherent velocity over a relatively large distance, and that either has a large
cross-sectional area or is actually inflowing from multiple directions simultaneously.
How often these conditions are realized in the real ISM remains an open question.

Another issue that is not yet completely settled is which of several different possi-
ble physical processes is primarily responsible for driving these convergent flows of
gas. One obvious possibility is that these flows are driven by large-scale gravitational
instability. Analysis of the behavior of small perturbations in a thin rotating gas disk
shows that the key parameter that determines whether or not they grow exponentially
is the so-called Toomre parameter (Toomre 1964),

Q = cs,effκ

πGΣ
. (195)

Here, cs,eff is the effective sound-speed of the gas, which accounts not only for the
thermal sound speed, but also for the influence of the small-scale turbulent velocity
dispersion, κ is the epicyclic frequency of the disk, and Σ is the surface density of
the gas. A pure gas disk is unstable whenever Q < 1. In the case of a disk that
contains a mix of gas and stars, the analysis is more complex (see e.g. Rafikov 2001;
Elmegreen 2011), but the required value of Q remains close to unity. Measurements
of Q in nearby spirals and dwarf galaxies suggest that in most of these systems, the
gas is marginally Toomre stable, even when the gravity of the stellar component is
taken into account (Leroy et al. 2008). However, this does not mean that gravitational
instability is unimportant in these systems, as simulations show that star formation in
disk galaxies tends to self-regulate so that Q ∼ 1 (e.g. Krumholz and Burkert 2010;
Faucher-Giguère et al. 2013). Briefly, the reason for this is that if Q 
 1, the disk
will be highly unstable and will form stars rapidly (see e.g. Li et al. 2005, 2006).
This will both deplete the gas surface density, and also increase cs,eff , due to the
injection of thermal and turbulent energy into the gas by the various stellar feedback
processes discussed in Sect. 4.6. These effects combine to increase Q until the disk
becomes marginally stable.

Another mechanism that can drive large-scale convergent flows of gas in spiral
galaxies is the Parker instability (Parker 1966). This is a magnetic instability which
causes a field that is stratified horizontally in the disk to buckle due to the influence of
magnetic buoyancy. Gas then flows down the buckled magnetic field lines, accumu-
lating near the midplane of the disk. The characteristic length scale associated with
this instability is a factor of a few larger than the disk scale height. It therefore allows
gas to be accumulated from within a large volume, and is hence capable of producing
even the most massive GMCs (Mouschovias 1974; Mouschovias et al. 1974). How-
ever, the density contrasts produced by the Parker instability are relatively small (see
e.g. Kim et al. 1998, 2001, 2002) and so, although this instability may play a role
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in triggering thermal instability in the galactic midplane (Mouschovias et al. 2009),
it seems unlikely to be the main mechanism responsible for GMC formation.

Finally, stellar feedback in the form of expanding Hii regions, stellar wind bubbles,
supernova remnants and super-bubbles may also drive converging flows of gas in the
ISM (see e.g. Ntormousi et al. 2011; Dobbs et al. 2012; Hennebelle and Iffrig 2014 for
some recent examples). The idea that stellar feedback may trigger cloud formation,
and hence also star formation, has a long history (see e.g. Elmegreen and Lada 1977
for a seminal early study). At first sight it has considerable observational support,
since examples of spatial associations between molecular clouds and feedback-driven
bubbles are widespread (e.g. Beaumont and Williams 2010; Deharveng et al. 2010;
Hou and Gao 2014). However, this is a case in which the observations are somewhat
misleading. The fact that a molecular cloud is associated with the edge of a feedback-
driven bubble does not necessarily imply that the bubble is responsible for creating
the cloud, since the expanding bubble may simply have swept up some dense, pre-
existing structure (e.g. Pringle et al. 2001). Models of cloud formation in a supernova-
driven turbulent ISM without self-gravity find that although some cold, dense clouds
are formed in the expanding shells bounding the supernova remnants, the total star
formation rate expected for these regions is only ∼10% of the rate required to produce
the assumed supernova driving (Joung and Mac Low 2006). Recent efforts to quantify
the effectiveness of triggering in the LMC also find that no more than about 5–10 %
of the total molecular gas mass budget can be ascribed to the direct effect of stellar
feedback (Dawson et al. 2013). Therefore, although stellar feedback clearly plays an
important role in structuring the ISM on small scales and contributes significantly to
the energy budget of interstellar turbulence (Sect. 4.6), it does not appear to be the
main process responsible for the formation of molecular clouds.

6 Star Formation

6.1 Molecular Cloud Cores as Sites of Star Formation

In this Section, we focus on the small-scale characteristics of molecular clouds and
discuss the properties of the low-mass cores that are the immediate progenitors of
individual stars or binary systems. We begin with a discussion of the core mass
spectrum, and then turn our attention to the density, thermal, chemical, kinematic,
and magnetic field structure of individual cores. We distinguish between prestellar
cores, which are dense cloud cores that are about to form stars in their interior, but
have not yet done so (or at least show no detectable sign of stellar activity), and
protostellar cores, for which we can infer the presence of embedded protostars in the
main accretion phase.



184 R.S. Klessen and S.C.O. Glover

6.1.1 Mass Spectrum of Molecular Cloud Cores

In Sect. 4.1.2, we discussed the global statistical properties of molecular clouds.
While a complete structural decomposition of an entire cloud leads to a power-law
mass spectrum (Eq. 104), focusing on the densest parts of the clouds, on the pre- and
protostellar cores, yields a different picture. As one probes smaller and smaller scales
and more strongly bound objects, the inferred mass distribution becomes closer to
the stellar IMF. The first large study of this kind was published by Motte et al. (1998),
for a population of submillimeter cores in ρ Oph. Using data obtained with the IRAM
30m-telescope,8 they discovered a total of 58 starless clumps, ranging in mass from
0.05 M� to 3 M�. Similar results have been obtained for the Serpens cloud (Testi
and Sargent 1998), for Orion B North (Johnstone et al. 2001) and Orion B South
(Johnstone et al. 2006), and for the Pipe Nebula (Lada et al. 2006). Currently all
observational data (e.g. Motte et al. 1998; Testi and Sargent 1998; Johnstone et al.
2000, 2001, 2006; Nutter and Ward-Thompson 2007; Alves et al. 2007; Di Francesco
et al. 2007; Ward-Thompson et al. 2007; Lada et al. 2008; Könyves et al. 2010) reveal
a striking similarity to the IMF. To reach complete overlap one is required to introduce
a mass scaling or efficiency factor of 0.2–0.5, depending on the considered region.
An exciting interpretation of these observations is that we are witnessing the direct
formation of the IMF via fragmentation of the parent cloud. However, we note that
the observational data also indicate that a considerable fraction of the prestellar cores
do not exceed the critical mass for gravitational collapse, much like the clumps on
larger scales. The evidence for a one-to-one mapping between prestellar cores and
the stellar mass, thus, is by no means conclusive. For an extended discussion of
potential caveats, see Clark et al. (2007) or consult the Protostars and Planets VI
review by Offner et al. (2014).

6.1.2 Density Structure

The density structure of prestellar cores is typically inferred through the analysis
of dust emission or absorption using near-infrared extinction mapping of back-
ground starlight, millimeter/submillimeter dust continuum emission, or dust absorp-
tion against the bright mid-infrared background emission (Bergin and Tafalla 2007).
A main characteristic of the density profiles derived with the above techniques is that
they require a central flattening within radii smaller than 2500–5000 AU, with typical
central densities of 105–106 cm−3 (Motte et al. 1998; Ward-Thompson et al. 1999).
A popular approach is to describe these cores as truncated isothermal (Bonnor-Ebert)
spheres (Ebert 1955; Bonnor 1956) that often (but not always) provide a good fit to
the data (Bacmann et al. 2001; Alves et al. 2001; Kandori et al. 2005). These are equi-
librium solutions for the density structure of self-gravitating gas spheres bounded by
external pressure. However, this density structure is not unique. Numerical calcu-
lations of the dynamical evolution of supersonically turbulent clouds show that the

8http://www.iram-institute.org/EN/30-meter-telescope.php.
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transient cores forming at the stagnation points of convergent flows exhibit similar
morphology despite not being in dynamical equilibrium (Ballesteros-Paredes et al.
2003).

6.1.3 Kinematic Structure

In contrast to the supersonic velocity fields observed in molecular clouds, dense
cores have low internal velocities. Starless cores in clouds like Taurus, Perseus, and
Ophiuchus systematically exhibit spectra with close to thermal linewidths, even when
observed at low angular resolution (Myers 1983; Jijina et al. 1999). This indicates
that the gas motions inside the cores are subsonic or at best transsonic, with Mach
numbers less than ∼2 (Kirk et al. 2007; André et al. 2007; Rosolowsky et al. 2008).
In addition, in some cores, inward motions have also been detected. They are inferred
from the observation of optically thick, self-absorbed lines of species like CS, H2CO,
or HCO+, in which low-excitation foreground gas absorbs part of the background
emission. Typical inflow velocities are of order of 0.05–0.1 km s−1 and are observed
on scales of 0.05–0.15 pc, comparable to the total size of the cores (Lee et al. 1999).
The overall velocity structure of starless cores appears broadly consistent with the
structure predicted by models in which protostellar cores form at the stagnation points
of convergent flows, but the agreement is not perfect (Klessen et al. 2005; Offner
et al. 2008). Clearly more theoretical and numerical work is needed. In particular,
the comparison should be based on synthetic line emission maps, requiring one to
account for the chemical evolution of the gas in the core and the effects of radiative
transfer (e.g. Smith et al. 2012, 2013; Chira et al. 2014). In addition, it is also plausible
that the discrepancy occurs because the simulations do not include all the necessary
physics such as radiative feedback and magnetic fields.

Subsonic turbulence contributes less to the energy budget of the cloud than ther-
mal pressure and so cannot provide sufficient support against gravitational collapse
(Myers 1983; Goodman et al. 1998; Tafalla et al. 2006). If cores are longer lasting
entities there must be other mechanisms to provide stability. Obvious candidates are
magnetic fields (Shu et al. 1987). However, they are usually not strong enough to
provide sufficient support (Crutcher et al. 1999, 2009a, 2010b; Crutcher and Troland
2000; Bourke et al. 2001). It seem reasonable to conclude that most observed cores
are continuously evolving transient objects rather than long-lived equilibrium struc-
tures.

6.1.4 Thermal Structure

The kinetic temperature of dust and gas in a core is regulated by the interplay between
various heating and cooling processes. At densities above 105 cm−3 in the inner part
of the cores, gas and dust are coupled thermally via collisions (Goldsmith and Langer
1978; Burke and Hollenbach 1983; Goldsmith 2001, and see also Sect. 3.5). At
lower densities, corresponding to the outer parts of the cores, the two temperatures



186 R.S. Klessen and S.C.O. Glover

are not necessarily expected to be the same. Thus, the dust and gas temperature
distributions need to be independently inferred from the observations. Large-scale
studies of the dust temperature show that the grains in starless cores are colder than in
the surrounding lower-density medium. Far-infrared observations toward the vicinity
of a number of dense cores provide evidence for flat or decreasing temperature
gradients with cloud temperatures of 15–20 K and core values of 8–12 K (Ward-
Thompson et al. 2002; Tóth et al. 2004; Launhardt et al. 2013). These observations
are consistent with dust radiative transfer modeling in cores illuminated by interstellar
radiation field (Langer et al. 2005; Keto and Field 2005; Stamatellos et al. 2007).
The gas temperature in molecular clouds and cores is commonly infered from the
level excitation of simple molecules like CO and NH3 (Evans 1999; Walmsley and
Ungerechts 1983). One finds gas temperatures of 10–15 K, with a possible increase
toward the lower density gas near the cloud edges. However, these measurements are
difficult, since as the density drops, the molecular emission can become sub-thermal,
in which case its excitation temperature no longer traces the kinetic temperature of the
gas (see the discussion in Sect. 3.1). In static prestellar cores (if such things exist), the
main heat source is cosmic ray ionization, while in gravitationally collapsing cores,
compressional heating and the dissipation of turbulence can also make significant
contributions to the total heating rate (Glover and Clark 2012a). Cooling in dense
cores is dominated by molecular line emission, particularly from CO, and by heat
transfer from the gas to the grains (Goldsmith and Langer 1978).

6.1.5 Chemical Structure

Maps of integrated line intensity can look very different for different molecular
tracers. This is illustrated in Fig. 17. It shows that the emission from nitrogen-bearing
species, such as N2H+, more closely follows the dust emission, while emission
from carbon-bearing molecules, such as C18O or CS, often appears as a “ring-like”
structure around the dust emission peak (Bergin et al. 2002; Tafalla et al. 2002; Lada
et al. 2003; Maret et al. 2007). The common theoretical interpretation of these data
is that carbon-bearing species freeze-out on the surfaces of cold dust grains in dense
portions of the cloud, while nitrogen-bearing molecules largely remain in the gas
phase. At the same time, chemical models of prestellar cores predict that molecules
in the envelope of the core are destroyed by the interstellar UV field (Pavlyuchenkov
et al. 2006; Aikawa et al. 2008). The resulting chemical stratification significantly
complicates the interpretation of molecular line observations, and again requires the
use of sophisticated chemical models which have to be coupled to the dynamical
evolution (e.g. Aikawa et al. 2008; van Weeren et al. 2009; Furuya et al. 2012).
From the observational side, the freeze-out of many molecules makes it difficult to
use their emission lines for probing the physical conditions in the inner regions of
the cores. Nevertheless, modeling of the chemical evolution of the gas can provide
us with important information on the cores. For example, the level of CS depletion
can be used to constrain the age of the prestellar cores, while the deficit of CS in the
envelope can indicate the strength of the external UV field (Bergin and Tafalla 2007).
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Fig. 17 Isolated prestellar molecular cloud core Barnard 68. Upper panel Optical image and extinc-
tion map of the object (see Alves et al. 2001; images from ESO website). Lower panel Maps of
molecular line emission from C18O, N2H+, and CS (images adopted from Lada et al. 2003; see
also see Bergin et al. 2002). The lower images illustrate the effects of depletion onto grains in the
high-density central region of the core. C18O is clearly underabundant in the central, high-density
regions of Barnard 68, while N2H+ traces this region very well. CS is brightest in the tail structure
in the south-east corner and is highly depleted in the core center (see also Bergin and Tafalla 2007)

In any case, any physical interpretation of the molecular lines in prestellar cores has
to be based on chemical models and should do justice to the underlying density and
velocity pattern of the gas.

6.1.6 Magnetic Field Structure

Magnetic fields are ubiquitously observed in the interstellar gas on all scales (Crutcher
et al. 2003; Heiles and Troland 2005). However, their importance for star formation
and for the morphology and evolution of molecular cloud cores remains a source
of considerable controversy. A crucial parameter in this debate is the ratio between
core mass and magnetic flux. In supercritical cores, this ratio exceeds a threshold
value and collapse can proceed. In subcritical ones, magnetic fields provide stabil-
ity (Spitzer 1978; Mouschovias 1991a, b). Measurements of the Zeeman splitting of
molecular lines in nearby cloud cores indicate mass-to-flux ratios that lie above the
critical value, in some cases only by a small margin, but very often by factors of
many if non-detections are included (Crutcher 1999; Bourke et al. 2001; Crutcher
et al. 2009a, 2010a). The polarization of dust emission offers an alternative path-
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Fig. 18 Polarization vector map of the central region of the Serpens cloud core, superimposed
on the total intensity images in logarithmic scaling. The area of the image is 220” × 220”. From
Sugitani et al. (2010)

way to studying the magnetic field structure of molecular cloud cores (as illustrated
in Fig. 18). Magnetohydrodynamic (MHD) simulations of turbulent clouds predict
degrees of polarization between 1 and 10 %, regardless of whether turbulent energy
dominates over the magnetic energy (i.e. the turbulence is super-Alfvénic) or not
(Padoan and Nordlund 1999; Padoan et al. 2001). However, converting polarization
into magnetic field strength is very difficult (Heitsch et al. 2001b). Altogether, the
current observational findings imply that magnetic fields must be considered when
studying stellar birth, but also that they are not the dominant agent that determines
when and where star formation sets in within a cloud. It seems fair to conclude
that magnetic fields appear to be too weak to prevent gravitational collapse from
occurring.

This means that in many cases and to a reasonable approximation purely hydrody-
namic simulations are sufficient to model ISM dynamics and stellar birth. However,
when more precise and quantitative predictions are desired, e.g. when attempting
to predict star formation timescales or binary properties, it is necessary to perform
magnetohydrodynamic simulations or even to consider non-ideal MHD. The latter
means to take ambipolar diffusion (drift between charged and neutral particles) or



Physical Processes in the Interstellar Medium 189

Ohmic dissipation into account. Recent numerical calculations have shown that even
a weak magnetic field can have noticeable dynamical effects. It can alter how cores
fragment (Price and Bate 2007b, 2008; Hennebelle and Fromang 2008; Hennebelle
and Teyssier 2008; Hennebelle et al. 2011; Peters et al. 2011), change the coupling
between stellar feedback processes and their parent clouds (Nakamura and Li 2007;
Krumholz et al. 2007b), influence the properties of protostellar disks due to magnetic
braking (Price and Bate 2007a; Mellon and Li 2009; Hennebelle and Ciardi 2009;
Seifried et al. 2011, 2012a, b, 2013), or slow down the overall evolution (Heitsch
et al. 2001a).

6.2 Statistical Properties of Stars and Star Clusters

In order to better understand how gas turns into stars, we also need to introduce some
of the key properties of young stellar systems. We restrict ourselves to a discussion
of the star formation timescale, the spatial distribution of young stars, and the stellar
initial mass function (IMF). We note, however, that other statistical characteristics,
such as the binary fraction, its relation to the stellar mass, and the orbital parameters of
binary stars are equally important for distinguishing between different star formation
models. As the study of stars and star clusters is central to many areas of astronomy
and astrophysics, there are a large number of excellent reviews that cover various
aspects of this wide field. For further reading on embedded star clusters, we refer
to Lada and Lada (2003). For the early evolution of young star clusters, we point to
Krumholz et al. (2014) and Longmore et al. (2014), as well as to Kroupa (2005) and
Portegies Zwart et al. (2010). More information on the stellar IMF can be found in
the seminal papers by Scalo (1986), Kroupa (2002), and Chabrier (2003a), as well
as in the reviews by Kroupa et al. (2013) and Offner et al. (2014). General reviews
of star formation are provided by Mac Low and Klessen (2004), Ballesteros-Paredes
et al. (2007), McKee and Ostriker (2007), Krumholz (2014), or Zinnecker and Yorke
(2007), with the latter focusing specifically on the formation of high-mass stars.

6.2.1 Star Formation Timescales

The star formation process in molecular clouds appears to be fast (Hartmann et al.
2001; Elmegreen 2007). Once the collapse of a cloud region sets in, it rapidly forms
an entire cluster of stars within 106 years or less. This is indicated by the young stars
associated with star-forming regions, typically T Tauri stars with ages less than 106

years (Gomez et al. 1992; Greene and Meyer 1995; Carpenter et al. 1997), and by the
small age spread in more evolved stellar clusters (Hillenbrand 1997; Palla and Stahler
1999). Star clusters in the Milky Way also exhibit an amazing degree of chemical
homogeneity (in the case of the Pleiades, see Wilden et al. 2002), implying that the
gas out of which these stars formed must have been chemically well-mixed initially,
which could provide interesting pathways to better understand turbulent mixing in
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the ISM (see also de Avillez and Mac Low 2002; Klessen and Lin 2003; Feng and
Krumholz 2014).

6.2.2 Spatial Distribution

The advent of sensitive infrared detectors in the last decade or so allowed us to conduct
wide-area surveys. These have revealed that most stars form in clusters and aggregates
of various size and mass scales, and that isolated or widely distributed star formation
is the exception rather than the rule (Lada and Lada 2003). The complex hierarchical
structure of molecular clouds (see e.g. Fig. 10) provides a natural explanation for this
finding.

Star-forming molecular cloud cores can vary strongly in size and mass. In small,
low-density clouds, stars form with low efficiency, more or less in isolation or scat-
tered around in small groups of up to a few dozen members. Denser and more massive
clouds may build up stars in associations and clusters of a few hundred members. This
appears to be the most common mode of star formation in the solar neighborhood
(Adams and Myers 2001). Examples of star formation in small groups and associ-
ations are found in the Taurus-Aurigae molecular cloud (Hartmann 2002). Young
stellar groups with a few hundred members form in the Chamaeleon I (Persi et al.
2000) or ρ-Ophiuchi (Bontemps et al. 2001) dark clouds. Each of these clouds is at
a distance of about 130–160 pc from the Sun. Like most of the nearby young star
forming regions they appear to be associated with a ring-like structure in the Galactic
disk called Gould’s Belt (Poppel 1997).

The formation of dense rich clusters with thousands of stars is rare. The closest
region where this happens is the Orion Nebula Cluster (Hillenbrand 1997; Hillen-
brand and Hartmann 1998). It lies at a distance of 410 pc (Sandstrom et al. 2007;
Menten et al. 2007; Hirota et al. 2007; Caballero 2008). A rich cluster somewhat
further away is associated with the Monoceros R2 cloud (Carpenter et al. 1997) at
a distance of ∼830 pc. The cluster NGC 3603 is roughly ten times more massive
than the Orion Nebula Cluster. It lies in the Carina region, at about 7 kpc distance.
It contains about a dozen O stars, and is the nearest object analogous to a starburst
knot (Brandl et al. 1999; Moffat et al. 2002). To find star-forming regions building
up hundreds of O stars one has to look towards giant extragalactic Hii regions, the
nearest of which is 30 Doradus in the Large Magellanic Cloud, a satellite galaxy of
our Milky Way at a distance at 55 kpc. The giant star-forming region 30 Doradus
is thought to contain up to a hundred thousand young stars, including more than
400 O stars (Hunter et al. 1995; Walborn and Blades 1997; Townsley et al. 2006).
Figure 19 shows that the star formation process spans many orders of magnitude in
spatial scale and mass, ranging from stellar groups with no or only a few high-mass
stars to massive clusters with several tens of thousands of stars and dozens if not
hundreds of O stars. This variety of star-forming regions appears to be controlled by
the competition between self-gravity and opposing agents such as the turbulence in
the parental gas clouds, its gas pressure and magnetic field content.
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Fig. 19 Comparison of clusters of different masses scaled to same relative distance. The cluster
in the upper left corner is the Orion Nebula Cluster (McCaughrean 2001) and the one at the lower
left is NGC 3603 (Brandl et al. 1999), both observed with the Very Large Telescope at infrared
wavelength. The large cluster in the center is 30 Doradus in the LMC observed with the Hubble
Space Telescope (courtesy of M.J. McCaughrean). The total mass increases roughly by a factor of
ten from one cluster to the other. Image from Zinnecker and Yorke (2007)

6.2.3 Observations of the Stellar IMF

Mass is the most important parameter determining the evolution of individual stars.
The luminosity L of a star scales as a very steep function of the mass M . The relation
L ∝ M3.5 provides a reasonable estimate except for very low-mass stars and very
massive ones (Kippenhahn et al. 2012). Stars on the main sequence generate energy
by nuclear fusion. The total energy available is some fraction of Mc2, with c being the
speed of light. Consequently, we can estimate the main sequence lifetime as t ∝ M/L
or t ∝ M−2.5. Massive stars with high pressures and temperatures in their centers
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Fig. 20 Stellar mass
spectrum in different nearby
clusters (black symbols
Orion Nebula Cluster, green
Pleiades, blue M35) and its
description by a
three-component power law
(red lines with overall
uncertainties indicated by the
hatched region). From
Kroupa (2002)

convert hydrogen into helium very efficiently. This makes them very luminous but
also short-lived. Conversely, low-mass stars are much fainter but long-lived.

Explaining the distribution of stellar masses at birth, the so-called initial mass
function (IMF), is a key prerequisite to any theory of star formation. The IMF has three
properties that appear to be relatively robust in diverse environments (see Fig. 20).
These are the power law behavior d N/d M ∝ M−α with slope α ≈ 2.3 for masses M
above about 1 M�, originally determined by Salpeter (1955), the lower mass limit for
the power law and the broad plateau below it before the brown dwarf regime (Miller
and Scalo 1979; Scalo 1986), and the maximum mass of stars at around 100 M�
(Weidner and Kroupa 2004, 2006; Oey and Clarke 2005). Comprehensive reviews
of cluster and field IMFs may be found in Scalo (1986), Kroupa (2002), Chabrier
(2003a), Bastian et al. (2010), Kroupa et al. (2013), and Offner et al. (2014).

There are two widely accepted functional parameterizations of the IMF. The first
one is based on the continuous combination of multiple power-law segments. It
was proposed by Kroupa (2001, 2002), and introducing the dimensionless mass
m = M/1M�, it reads
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f (m) =

⎧
⎪⎨

⎪⎩

Ak0 m−0.3 for 0.01 < m < 0.08 ,

Ak1 m−1.3 for 0.08 < m < 0.5 ,

Ak2 m−2.3 for 0.5 < m ,

(196)

where A is a global normalization factor, and k0 = 1, k1 = k0m−0.3+1.3
1 , and

k2 = k1m−1.3+2.3
2 are chosen to provide a continuous transition between the power-

law segments at m1 = 0.08 and m2 = 0.5. The quantity f (m)dm denotes the number
of stars in the mass interval [m, m + dm]. A method to calculate ki is provided by
Pflamm-Altenburg and Kroupa (2006); see also Maschberger (2013a).

Another parameterization is suggested by Chabrier (2003a). It combines a log-
normal with a power-law,

f (m) =

⎧
⎪⎨

⎪⎩

Ak1m−1 exp

[

−1

2

(
log10 m − log10 0.079

0.69

)2
]

for m < 1 ,

Ak2m−2.3 for m > 1 .

(197)

Again A is a global normalization factor, and k1 = 0.158 and k2 = 0.0443 provide
a continuous connection at m = 1 (Chabrier 2003b, 2005; Maschberger 2013a).
Equation (196) is easier to integrate than (197), as this does not involve special
functions. On the other hand it has several kinks. Both converge to the Salpeter
(1955) power law with a slope of −2.3 for large masses. They differ by about a
factor of 2 at low masses. However, within the observational errors, both functional
forms are more or less equivalent.

We need to point out that the observational knowledge of the IMF is quite limited
at the extreme ends of the stellar mass spectrum. Because massive stars are very rare
and short-lived, only very few are sufficiently near to study them in detail and with
very high spatial resolution, for example to determine multiplicity (Zinnecker and
Yorke 2007). We do not even know what is the upper mass limit for stability, both in
terms of observations as well as theoretical models (Massey 2003; Vink et al. 2015).
In addition, there is evidence that the upper mass end of the IMF depends on the
properties of the cluster where it is measured. The upper mass limit in more massive
clusters seems to be higher than in lower-mass clusters, an effect that goes beyond
the statistical fluctuations expected for purely random sampling from a universal
distribution (see e.g. Weidner and Kroupa 2004, 2006; Weidner et al. 2010).

At the other end of the IMF, low-mass stars and brown dwarfs are faint, so they
too are difficult to study in detail (Burrows et al. 2001). Such studies, however, are
in great demand, because secondary indicators such as the fraction of binaries and
higher-order multiples as a function of mass, or the distribution of disks around very
young stars and possible signatures of accretion during their formation are probably
better suited to distinguish between different star formation models than just looking
at the IMF (e.g. Goodwin and Kroupa 2005; Marks and Kroupa 2012).
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6.3 Gravoturbulent Star Formation

The past decade has seen a paradigm shift in low-mass star formation theory
(Mac Low and Klessen 2004; McKee and Ostriker 2007; Offner et al. 2014). The gen-
eral belief since the 1980s was that prestellar cores in low-mass star-forming regions
evolve quasi-statically in magnetically subcritical clouds (Shu et al. 1987). In this
picture, gravitational contraction is mediated by ambipolar diffusion (Mouschovias
1976, 1979, 1991a; Mouschovias and Paleologou 1981) causing a redistribution
of magnetic flux until the inner regions of the core become supercritical and go
into dynamical collapse. This process was originally thought to be slow, because in
highly subcritical clouds the ambipolar diffusion timescale is about 10 times larger
than the dynamical one. However, for cores close to the critical value, as is suggested
by observations, both timescales are comparable. Numerical simulations further-
more indicate that the ambipolar diffusion timescale becomes significantly shorter
for turbulent velocities similar to the values observed in nearby star-forming region
(Fatuzzo and Adams 2002; Heitsch et al. 2004; Li and Nakamura 2004). The fact
that ambipolar diffusion may not be a slow process under realistic cloud conditions,
as well as the fact that most cloud cores are magnetically supercritical (Crutcher et
al. 1999, 2009a; Crutcher and Troland 2000; Bourke et al. 2001) has cast signifi-
cant doubts on any magnetically-dominated quasi-static models of stellar birth. For
a more detailed account of the shortcomings of the quasi-static star formation model,
see Mac Low and Klessen (2004).

For this reason, star formation research has turned to considering supersonic tur-
bulence as being one of the primary physical agents regulating stellar birth. The
presence of turbulence, in particular of supersonic turbulence, has important con-
sequences for molecular cloud evolution (see e.g. Padoan et al. 2014; Dobbs et al.
2014). On large scales it can support clouds against contraction, while on small
scales it can provoke localized collapse. Turbulence establishes a complex network
of interacting shocks, where dense cores form at the stagnation points of convergent
flows. The density can be large enough for gravitational collapse to set in. However,
the fluctuations in turbulent velocity fields are highly transient. The random flow
that creates local density enhancements can disperse them again. For local collapse
to actually result in the formation of stars, high density fluctuations must collapse
on timescales shorter than the typical time interval between two successive shock
passages. Only then are they able to decouple from the ambient flow and survive sub-
sequent shock interactions. The shorter the time between shock passages, the less
likely these fluctuations are to survive. Hence, the timescale and efficiency of proto-
stellar core formation depend strongly on the wavelength and strength of the driving
source (Klessen et al. 2000; Heitsch et al. 2001a; Vázquez-Semadeni et al. 2003;
Mac Low and Klessen 2004; Krumholz and McKee 2005; Ballesteros-Paredes et al.
2007; McKee and Ostriker 2007), and accretion histories of individual protostars are
strongly time-varying (Klessen 2001a; Schmeja and Klessen 2004).

Altogether, we propose an evolutionary sequence as outlined in Fig. 21. Star clus-
ter formation takes place in massive cloud cores of several 102–103 solar masses with
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Fig. 21 Cartoon picture of star cluster formation in a molecular cloud core. From Klessen (2011)

sizes of a few parsecs and a velocity dispersion of about 1 km s−1 (see also Table 3).
In order to form a bound cluster, the potential energy must dominate the energy bud-
get, meaning that the entire region is contracting. The cluster-forming massive cloud
cores are still in the supersonic range of the turbulent cascade (see Sect. 4.3), and as
a consequence they exhibit a high degree of internal substructure with large density
contrasts. Some of these density fluctuations are gravitationally unstable in their own
right and begin to collapse on timescales much shorter than the global contraction
time, as the free-fall time τff scales with the density ρ as τff ∝ ρ−1/2.

Typically, the most massive fluctuations have the highest density and form a
protostar in their center first. This nascent star can accrete from the immediate envi-
ronment, but because it is located in a minimum of the cloud core’s gravitational
potential more gas flows towards it, and it can maintain a high accretion rate for
a longer time. In contrast, stars that form in lower-mass gas clumps typically can
only accrete material from their immediate surrounding and not much beyond that
(see e.g. Klessen and Burkert 2000, 2001; Klessen et al. 2000; Bonnell et al. 2004).
Because this preferentially happens in the cluster outskirts, these processes naturally
lead to mass segregation as we often observe in young clusters (see e.g. Hillenbrand
1997; Hillenbrand and Hartmann 1998 for the Orion Nebula Cluster). In very dense
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clusters, there is the possibility that clumps merge while still accreting onto their
central protostars. These protostars now compete for further mass growth from a
common gas reservoir. This gives rise to collective phenomena which can strongly
modify the accretion behavior and hence influence the resulting mass spectrum (see
Sect. 6.4).

Once a star has reached a mass of about 10 M�, it begins to ionize its environment.
It carves out a bubble of hot and tenuous gas, which eventually will expand and
enclose the entire stellar cluster. At this point no new stars can form and stellar birth
has come to an end. We can observe the young cluster at infrared or even optical
wavelengths, as illustrated in Fig. 19.

6.4 Theoretical Models for the Origin of the IMF

There are three principal pathways towards better understanding the origin of the IMF,
depending on which aspects of gravitational collapse in the turbulent ISM one decides
to focus on. We begin by introducing the underlying physical concepts behind the
three different models in a qualitative way. Then we follow a more rigorous approach
and discuss the most popular theoretical models for the IMF in some mathematical
detail. We point out that the boundaries between these approaches are not clearly
defined and that numerous hybrid models have been proposed in the current literature.

It turns out that essentially all theoretical models that are able to reproduce the
IMF rely on two basic ingredients. They propose that the stellar mass spectrum is
determined by a sequence of stochastic processes (such as turbulence or the prob-
abilistic nature of stellar encounters in dense clusters) combined with scale-free
physics (again, as provided by the power-law nature of the turbulent energy cascade
or by the simple distance dependence of gravitational interactions). The former leads
to a log-normal mass spectrum, the latter to a power-law contribution. Put together,
they constitute one of the most popular parameterizations of the IMF (e.g. Chabrier
2003a).

6.4.1 Basic Concepts and Caveats

Here we introduce the three basic physical concepts behind the IMF.

Core Accretion

This model takes as its starting point the striking similarity between the shape of
the observed core mass distribution and the IMF. It is based on the assumption of
a one-to-one relation between the two distributions, such that the observed cores
are the direct progenitors of individual stars or binary systems. The factor of ∼3
decrease in mass between cores and stars is thought to be the result of feedback
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processes, mostly protostellar outflows, that eject a fixed fraction of the mass in a
core rather than letting it accrete onto the star (Matzner and McKee 2000). This model
reduces the problem of the origin of the IMF to understanding the mass spectrum of
bound cores. Arguments to explain the core mass distribution generally rely on the
statistical properties of turbulence. Its scale-free nature leads to a power-law behavior
for high masses. The thermal Jeans mass in the cloud then imposes the flattening and
turn-down in the observed mass spectrum. For further discussion, see Sect. 6.4.4.

Collective Models

A second line of reasoning accounts for the fact that stars almost always form in
clusters, where the interaction between protostars, as well as between a protostellar
population and the gas cloud around it may become important. In these collective
models, the origin of the peak in the IMF is much the same as in the core accretion
model: it is set by the Jeans mass in the prestellar gas cloud. However, rather than
fragmentation in the gas phase producing a spectrum of core masses, each of which
collapses down to a single star or star system, the final stellar mass spectrum in
the collective accretion model is the result of the mutual interaction between the
protostars in a cluster during their main accretion phase.

In the original competitive accretion picture (Bonnell et al. 2001a, b; Bonnell
and Bate 2002; Bate et al. 2003) protostars start out with roughly the same small
mass close to the opacity limit of fragmentation (Rees 1976). These protostars then
compete with each other for mass accretion from the same reservoir of gas. In a
simple Bondi-Hoyle-Lyttleton accretion scenario (e.g. Bondi 1952), the accretion
rate scales as the square of the protostellar mass (d M/dt ∝ M2). That means small
initial differences in mass quickly amplify and leads to a run-away growth of a few
selected objects. The original idea of putting roughly equal-mass protostellar seeds
into an pre-existing gas reservoir was later extended by taking the original cloud
fragmentation process into account (Klessen et al. 1998; Klessen and Burkert 2000,
2001; Bate and Bonnell 2005; Bonnell et al. 2006, 2008). The fragmentation down
to the local Jeans scale creates a mass function that lacks the power law tail at high
masses that we observe in the stellar mass function. This part of the distribution
forms via a second phase in which protostars with initial masses close to the Jeans
mass compete for gas in the center of a dense cluster. The cluster potential channels
mass toward the center, so stars that remain in the center grow to large masses, while
those that are ejected from the cluster center by N -body interactions remain low
mass (Bonnell et al. 2004).

The fact that fragmentation and the formation of multiple protostars strongly
influence the subsequent accretion flow in the entire cluster also allows for a different
interpretation. Peters et al. (2010b) and Girichidis et al. (2012b) point out that the
processes described above limit the accretion of gas onto the central protostars in a
cluster. They find that the gas flowing towards the potential minimum at the center
of the cluster is efficiently accreted by protostars that are located at larger radii. As
a consequence, the central region is effectively shielded from further accretion and
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none of the central objects can sustain its initially high accretion rate for a very long
time. The fact that the gas fragments into a cluster of stars limits the mass growth
onto the central object, which would otherwise have the available gas reservoir all
for itself (as in the core accretion model described before). The gas flow towards
the cluster center is reduced due to the efficient shielding by secondary protostars.
Consequently, this process has been termed fragmentation-induced starvation (Peters
et al. 2010a; Girichidis et al. 2011, 2012a). In these collective models, the apparent
similarity between the core and stellar mass functions is an illusion, because the
observed cores do not map the gas reservoir that is accreted by the stars (Clark and
Bonnell 2006; Smith et al. 2008).

Importance of the Thermodynamic Behavior of the Gas

One potential drawback to both the core accretion and collective models is that they
rely on the Jeans mass to determine the peak of the IMF, but do not answer the question
of how to compute it. This is subtle, because molecular clouds are nearly isothermal
but at the same time contain a very wide range of densities. At a fixed temperature,
the Jeans mass scales as MJ ∝ ρ−1/2, and it is not obvious what value of the density
should be used to calculate MJ. A promising idea to resolve this problem forms
the basis for a third model of the IMF. It focuses on the thermodynamic properties
of the gas. The amount of fragmentation occurring during gravitational collapse
depends on the compressibility of the gas (Li et al. 2003). For a polytropic equation
of state (215) with an index γ < 1, the gas reacts very strongly to pressure gradients.
Turbulent compression can thus lead to large density contrasts. The local Jeans mass
(Eq. 192) drops rapidly and many high-density fluctuations in the turbulent flow
become gravitationally unstable and collapse. On the other hand, when γ > 1,
compression leads to heating and turbulence can only induce small density variations.
As the gas heats up, the decrease in the Jeans mass in the compressed gas is much
smaller. Indeed, for γ > 4/3, compression actually results in an increasing Jeans
mass. In addition, Larson (2005) argues that γ = 1 is a critical value, because
filaments in which γ < 1 are unstable to continued gravitational collapse, while
those with γ > 1 are stabilized against collapse and hence cannot decrease their Jeans
mass to very small values. In real molecular clouds, the effective polytropic index
varies significantly as the gas density increases. At low densities, γ ≈ 0.7 (Larson
1985, 2005; Glover and Clark 2012a), but once the gas and dust temperatures become
thermally coupled at ncrit ≈ 105 cm−3 (see Fig. 5 and the discussion in Sect. 3.5),
one expects this value to increase, reaching γ ≈ 1.1 at densities n � ncrit (Banerjee
et al. 2006). This suggests that fragmentation will tend to occur at densities n ≈ ncrit ,
and that the Jeans mass evaluated at this point sets the mass scale for the peak of the
IMF. In this model, the apparent universality of the IMF in the Milky Way and nearby
galaxies is then a result of the insensitivity of the dust temperature to the intensity of
the interstellar radiation field (Elmegreen et al. 2008). Not only does this mechanism
set the peak mass, but it also appears to produce a power-law distribution of masses
at the high-mass end comparable to the observed distribution (Jappsen et al. 2005).
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Caveats

Each of these models has potential problems. In the core accretion picture, hydro-
dynamic simulations seem to indicate that massive cores should fragment into many
stars rather than collapsing monolithically (Dobbs et al. 2005; Clark and Bonnell
2006; Bonnell and Bate 2006). The hydrodynamic simulations often suffer from
over-fragmentation because they do not include radiative feedback from embedded
massive stars (Krumholz 2006; Krumholz et al. 2007; Krumholz and McKee 2008).
The suggestion of a one-to-one mapping between the observed clumps and the final
IMF is subject to strong debate, too. Many of the prestellar cores discussed in Sect. 6.1
appear to be stable entities (Johnstone et al. 2000, 2001, 2006; Lada et al. 2008),
and thus are unlikely to be in a state of active star formation. In addition, the simple
interpretation that one core forms on average one star, and that all cores contain the
same number of thermal Jeans masses, leads to a timescale problem (Clark et al.
2007; see also the discussion in the last paragraph of Sect. 6.4.4). Its solution actu-
ally requires a difference between the core mass function and the stellar IMF. We
also note that the problems associated with neglecting radiative feedback effects also
apply to the gas thermodynamic idea. The assumed cooling curves typically ignore
the influence of protostellar radiation on the temperature of the gas, which simula-
tions show can reduce fragmentation (Krumholz et al. 2007; Commerçon et al. 2011;
Peters et al. 2010b, 2011). The collective accretion picture has also been challenged,
on the grounds that the kinematic structure observed in star-forming regions some-
times appears inconsistent with the idea that protostars have time to interact with
one another strongly before they completely accrete their parent cores (André et al.
2007). For a comprehensive overview of the big open questions in star formation
theory, see Krumholz (2014).

6.4.2 IMF from Simple Statistical Theory

In the previous section, we discussed various models for the origin of the stellar
mass function based on a range of different physical processes. Here we approach
the problem from a purely statistical point of view without specifying up front which
of these processes will become dominant. We consider the distribution of stellar
masses as the result of a sequence of independent stochastic processes. Invoking the
central limit theorem then naturally leads to a log-normal IMF (for early discussions,
see Zinnecker 1984; Adams and Fatuzzo 1996). The key assumption is that the mass
M of a star can be expressed as the product of N independent variables x j . At this
point it is not necessary to specify these variables, as long as they are statistically
independent and their values are determined by stochastic processes. We introduce
again the dimensionless mass variable m = M/(1M�) and write

m =
N∏

j=1

x j . (198)
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Taking the logarithm of this equation, the logarithm of the mass is a sum of the
random variables,

ln m =
N∑

j=1

ln x j + constant , (199)

where the constant term includes all quantities that are truly constant, e.g. the gravi-
tational constant G or Boltzmann’s constant kB or others. The central limit theorem
shows that the distribution of the composite variable ln m always approaches a nor-
mal distribution as the number N of variables approaches infinity (Bronstein and
Semendjajew 1987). For the application of the theorem, a transformation into nor-
malized variables ξ j is useful, which are given by

ξ j ≡ ln x j − 〈ln x j 〉 ≡ ln

(
x j

x̄ j

)
. (200)

The angle brackets denote averages taken over the logarithm of the variables,

ln x̄ j = 〈ln x j 〉 =
∫ ∞

−∞
ln x j f j (ln x j )d ln x j . (201)

Here, f j is the distribution function of the variable x j . The normalized variables ξ j

have zero mean and their dispersions σ j are given by

σ2
j =

∫ ∞

−∞
ξ2

j f j (ξ j )dξ j . (202)

We can define the new composite variable Ξ as

Ξ ≡
N∑

j=1

ξ j =
N∑

j=1

ln

(
x j

x̄ j

)
. (203)

It also has zero mean and, since the variables are assumed to be independent, it
follows that

Σ2 =
N∑

j=1

σ2
j . (204)

For N → ∞, the central limit theorem describes its distribution function as being
Gaussian with

f (Ξ) = (2πΣ2)−1/2 exp

(
−1

2

Ξ2

Σ2

)
, (205)
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independent of the distribution f j of the individual variables x j . The mass function
(198) then can be expressed as

ln m = ln m0 + Ξ , (206)

with m0 being a characteristic mass scale defined by

ln m0 ≡
N∑

j=1

〈ln x̄ j 〉 . (207)

Combining the two Eqs. (205) and (206), we can write the distribution f of stellar
masses in the form

ln f (ln m) = A − 1

2Σ2

[
ln

(
m

m0

)]2

, (208)

where A is a constant. This is the log-normal form of the IMF first introduced by
Miller and Scalo (1979). It fits very well the mass distribution of multiple stellar
systems in the solar vicinity with masses less than few solar masses (e.g. Kroupa
et al. 1990, 1991) and it is often used to describe the peak of the single star IMF
(Sect. 6.2.3).

6.4.3 IMF from Stochastically Varying Accretion Rates

To obtain the observed power-law behavior at the high-mass end of the IMF, we
need to add complexity to the model and extend this simple statistical approach. As
a highly illustrative example, we follow the discussion provided by Maschberger
(2013b) and consider the case where the stellar mass is determined by accretion in
a stochastically fluctuating medium. If we disregard the fluctuating part for the time
being, and if we assume that the accretion rate depends on the mass to some power
of α, then the growth of an individual star can be described by the simple differential
equation

dm = mα Adt , (209)

where the constant A > 0 and the exponent α account for all physical processes
involved. For example, if the protostars move with constant velocity v through
isothermal gas with temperature T and sound speed cs = (kBT/μ)1/2 with Boltz-
mann constant kB and mean particle mass μ (in grams), we can apply the Bondi-
Hoyle-Lyttleton accretion formula (e.g. Bondi 1952) to obtain

A = 2πG2ρ

(v2 + c2
s )

3/2 ,

α = 2 .
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Note that this is an approximate formula. Replacing the factor 2π by 4π gives a
better fit to the Hoyle-Lyttleton rate (Hoyle and Lyttleton 1939), where the object
moves highly supersonically and we can neglect the contribution of the sound speed.
Detailed numerical simulations yield a more complex parameterization of A, depend-
ing on the physical parameters of the system (e.g. Ruffert and Arnett 1994; Krumholz
et al. 2006). What remains, however, is the quadratic power-law dependence of the
accretion rate on the mass.

Now assume that the star grows with a statistically fluctuating mass accretion rate.
This could be due to the stochastic nature of gas flows in turbulent media, and/or
due to N -body dynamics in dense embedded clusters (e.g. Bonnell et al. 2001a, b;
Klessen 2001a), or due to other processes that lead to stochastic protostellar mass
growth. In this case, Eq. (209) turns into a stochastic differential equation,

dm = mα(Adt + BdW ) , (210)

where Adt describes the mean growth rate and BdW the fluctuations around this
mean. Depending on the statistical properties of BdW the sum Adt + BdW could
become negative, which would imply mass loss and could potentially lead to negative
masses. In order to avoid that, it is often sensible to restrict the stochastic variable
BdW to positive values or to very small amplitudes. For α �= 1 (as well as for α �= 0)
we obtain the formal solution

m(t) =
[

(1 − α)

(
m1−α

0

1 − α
+ At + BW(t)

)] 1
1−α

, (211)

where the integration constant m0 is the initial mass and W(t) = ∫ t
0 dW is the integral

of the stochastic variable. For Gaussian fluctuations, its distribution has zero mean
and variance t , as is well known from the random walk problem. For a more detailed
discussion, see e.g. (Øksendal 2000). To get a mass spectrum, many realizations of
the random variable need to be considered. For B = 0, Eq. (211) reduces to the
solution of the deterministic growth problem, which for α > 1 reaches infinite mass
in the finite time

t∞ = m1−α
0

A(α − 1)
. (212)

For B �= 0, the time t∞ no longer takes on a single value, but instead depends on
the stochastic path W(t). In reality, this solution is not desired, because the mass of a
cloud core is limited. In addition, once feedback from massive stars sets in, the local
reservoir of gas available for star formation is reduced even further. Consequently,
the solution (211) makes sense only for t 
 t∞.

If we know the statistical properties of the random process W(t), we can calculate
the mass spectrum for an ensemble of stars. For Gaussian fluctuations with zero mean
and variance t , we obtain
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α → 1 α = 2.3

Fig. 22 Mass distribution function (213) from stochastic accretion for α → 1 (left) and α = 2.3
(right). The parameters A, B, and m0 are all set to unity. As α approaches unity, the mass function
becomes log-normal. The case α = 2.3 develops a power law tail at large m with slope α = 2.3 (as
indicted by the long dashed line) and is very similar to the observed IMF (Sect. 6.2.3). The dotted
curves indicates a log-normal fit to the peak of the mass distribution. Adopted from Maschberger
(2013b)

f (m, t) = 1

(2π)1/2

1

mα

n∞(t)

Bt1/2 exp

⎡

⎣− 1

2B2t

(
m1−α − m1−α

0

1 − α
− At

)2
⎤

⎦ , (213)

where f (m, t)dm gives the fraction of stars in the mass range m to m + dm. The
factor n∞(t) corrects for the possible contributions of stars with masses approach-
ing infinity for α > 1. It needs to be introduced to ensure the normalization of
f (m, t)dm as a probability distribution function at any time t (for further details, see
Maschberger 2013b). For α < 1, we set n∞(t) to unity. For α → 1, i.e. for average
exponential growth, we obtain the log-normal distribution function motivated before
(see Eq. 208),

f (m, t) = 1

(2π)1/2

1

m

1

Bt1/2 exp

[
− 1

2B2t
(log m − log m0 − At)2

]
, (214)

where the factor 1/m is due to the conversion from log m to m, as d log m = dm/m.
We plot the two cases α = 1 and α = 2.3 in Fig. 22. The log-normal distribution
function (left) peaks at the mass m0. For all values α > 1 the function f (m, t)dm
(at the right) develops a power-law tail at large masses m with slope α, reaches a
maximum slightly below m0, and exhibits a sharp decline for small masses. The
case α = 2.3 is therefore very similar to the observed stellar IMF, as discussed in
Sect. 6.2.3. In short, the power-law tail traces the accretion behavior, while the log-
normal part of the spectrum comes from the intrinsic stochasticity of the process.

6.4.4 IMF from Turbulence Statistics

Besides leading to stochastic variations in the protostellar accretion rate (as discussed
before in Sect. 6.4.3), interstellar turbulence can influence the IMF by producing the
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clump structure within molecular clouds. These clumps or cores define the mass
reservoir available for the formation of individual stars and small-multiple stellar sys-
tems. As a start, let us assume—most likely wrongly (see Sect. 6.4.1)—that each core
forms exactly one star with some fixed efficiency factor. If we furthermore assume
that there are no other stochastic processes at play, such as competitive accretion
or fragmentation-induced starvation (Sect. 6.4.1), then understanding the origin of
the stellar IMF boils down to identifying the physical processes that determine the
clump mass function (CMF) in star-forming molecular clouds.

ISM turbulence is intrinsically a scale-free process as long as one stays within
the inertial range (Sect. 4.3). It is therefore conceivable that it could play a key role
in producing the power-law tail at the high-mass end of the stellar mass distribution.
Most analytic models that attempt to do so involve the following four steps. First,
they come up with a model that relates key parameters of the turbulent ISM to the
probability distribution function (PDF) of gas density. Second, they relate the density
PDF to the clump mass spectrum. Third, they identify a set of criteria by which some
of these clumps go into gravitational collapse and begin to form stars. Typically,
these involve some kind of Jeans argument and give preference to the most massive
and densest clumps in the cloud. Fourth, they involve a mapping procedure, which
converts a certain fraction of the clump mass into the final stellar mass.

Density Distribution Function

As discussed at the end of Sect. 4.1.2, the PDF of column densities in tenuous, non
star-forming clouds is well approximated by a log-normal function. However, it
develops a power-law tail at high column densities in more massive and star-forming
cloud complexes. This is a signpost of gravitational contraction. A typical example
for this case is the Orion A cloud. A map of its integrated CO emission is shown
in the top panel of Fig. 11, and the corresponding distribution function of column
densities (derived from dust emission measurements) is plotted at the bottom right
of Fig. 13.

In order to obtain an estimate of the three-dimensional density distribution we
need to convert the projected column density PDFs. Numerical simulations show
that the column density PDFs have a smaller width than the density PDFs and can
exhibit different shapes in the high- and low-density regimes (Ostriker et al. 2001;
Federrath et al. 2010). However, both generally show very similar statistical prop-
erties (Federrath and Klessen 2012). This can be used to derive an estimate of the
three-dimensional density PDF from the two-dimensional column density PDF (for
further details, see Brunt et al. 2010). The shape and width of the density PDF are
governed by the presence of compressive motions in the turbulent ISM. The medium
is highly compressive and locally convergent flows lead to spatially and tempo-
rally confined regions of increased density. By the same token, expansion creates
lower-density voids. Consequently, the overall distribution of density in the ISM is a
sensitive function of the statistical properties of the underlying turbulent flow, with
key parameters being the effective Mach number, the turbulent forcing scheme (i.e.
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the ratio between compressional and rotational modes), the magnetic field strength,
and the thermodynamic properties of the gas. Magnetic field lines resist compression
and distortion and therefore reduce the compressibility of the gas. The competition
between heating and cooling processes in the ISM (see Sect. 3) can act both ways.
This is best seen when adopting a effective polytropic equation of state of the form

P ∝ ργ . (215)

If the gas heats up when being compressed (for γ > 1), then pressure differences
lead only to moderate density increase. However, when the gas gets colder when
compressed (in the case γ < 1), the same pressure gradient can result in large
density excursions.

Analytical theory as well as numerical simulations show that the distribution of the
gas density in isothermal (γ = 1), non self-gravitating, and well sampled turbulent
media follows a log-normal distribution,

PDF(s) = 1
√

2πσ2
s

exp

(
− (s − s0)

2

2σ2
s

)
. (216)

Here, we introduce the logarithmic density,

s = ln (ρ/ρ0) , (217)

and ρ0 = 〈ρ〉 as well as s0 = 〈s〉 denote the corresponding mean values. For a purely
Gaussian distribution, the mean s0 is related to the variance σ2

s of the logarithmic
density s via the equation

s0 = −1

2
σ2

s . (218)

This results from the normalization and mass-conservation constraints of the PDF
(Vázquez-Semadeni 1994; Federrath et al. 2008). In turn, we can relate σs to the
Mach number M, to the forcing parameter b, and to the ratio of the thermal energy
density to the magnetic energy density β,

σ2
s = ln

(
1 + b2M2 β

β + 1

)
. (219)

For further discussions, see Padoan and Nordlund (2011) or Molina et al. (2012). The
forcing parameter b varies from a value of approximately 0.3 for turbulence that is
purely driven by solenoidal (divergence-free) modes to b ≈ 1 for purely compressive
(curl-free) schemes. A natural mix of forcing modes results in b ≈ 0.4 (see e.g.
Federrath et al. 2008, 2010; Schmidt et al. 2009; Seifried et al. 2011; Konstandin
et al. 2012). The parameter β describes the ratio between thermal energy density and
magnetic energy density,
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β = c2
s

B2/8πρ
= 2

c2
s

v2
A

, (220)

and can be expressed as the ratio between sound speed cs and Alfvén velocity vA =
B/

√
4πρ (Eq. 107).

As indicated by the column density PDF in nearby molecular clouds depicted
in Fig. 13, deviations from the pure log-normal behavior occur when parts of the
gas undergo gravitational collapse and form stars. The velocity field, and as a conse-
quence the density distribution, are no longer solely governed by turbulence statistics,
but are also influenced by varying degrees of self-gravity (Klessen 2000; Dib and
Burkert 2005; Collins et al. 2011; Kritsuk et al. 2011). Furthermore, Passot and
Vázquez-Semadeni (1998) found deviations of the log-normal behavior in simula-
tions of non-isothermal gas. Depending on the polytropic exponent γ in the equation
of state (215), the PDF develops a power-law tail at low densities for γ > 1 and at
high densities for γ < 1 (see e.g. Li et al. 2003). The latter effect is very similar to
gravitational collapse. In addition, the PDFs from hydrodynamic simulations typi-
cally change with time as the overall cloud evolution progresses (Ballesteros-Paredes
et al. 2011; Cho and Kim 2011). For example, Federrath and Klessen (2013) quantify
how the slope of the high-density tail of the PDF in their numerical models flattens
with increasing star-formation efficiency. Girichidis et al. (2014) demonstrate analyt-
ically that free-fall contraction of a single core or an ensemble of collapsing spheres
forms a power- law tail similar to the observed PDFs.

Clump Mass Function

The next step in this sequence is to relate the density PDF to the clump mass function
(CMF). A first attempt to analytically derive the CMF from turbulence properties goes
back to Elmegreen (1993) and was then refined by Padoan et al. (1997) and Padoan
and Nordlund (2002). They argue that high-density clumps are simply the shock-
compressed regions that are the natural outcome of supersonic turbulence. They then
invoke the shock jump conditions to calculate the achievable density contrast from
the distribution of Mach numbers in the flow. Because they consider magnetized
media, they base their considerations on the Alfvénic Mach number (MA = vA/cs),
but similar conclusions follow for purely hydrodynamic flows (Elmegreen 2002b).
To get the number of cores at a given density and length scale they argue that the flow
is self-similar and that this quantity is simply determined by the available volume
compressed to the density under consideration. This method has a number of short-
comings and we refer the reader to Krumholz (2014) for a more detailed account.

More refined statistical approaches are based on the Press-Schechter (1974) and
excursion set (Bond et al. 1991) formalisms. These were originally introduced to
describe the stochastic properties of cosmological fluctuations and quantify the
behavior of random fields with structure over a wide range of scales. In particu-
lar, they can be used to count the number of objects above a certain density threshold
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for a given distribution function. This is exactly what is needed to determine the
CMF. The first to realize this and to employ the Press-Schechter formalism to con-
struct a model of the mass distribution of clumps from ISM turbulence was Inutsuka
(2001). This was later extended by Hennebelle and Chabrier (2008, 2009, 2013).
The Press-Schechter method, however, gives rise to the so-called ‘cloud-in-cloud’
problem, which occurs because the same object may be counted several times at
different spatial scales. It can be resolved by introducing an appropriate correction
factor (Jedamzik 1995), but a better a approach is to resort to the excursion set for-
malism. In essence, one computes a large number of Monte Carlo realizations of the
stochastic variable by performing a random walk in the available parameter space.
This allows one to determine the expected number of cores for a given length scale
and density (and thus mass) with high precision (for a more detailed discussion, see
Hopkins 2012a, b, 2013b).

We would also like to mention that alternative statistical models have been pro-
posed that are based on stochastic sampling in fractal media (see Elmegreen 1996,
1997a, b, 1999, 2000a, 2002a).

Collapsing Cores

Once the CMF is obtained, the next step towards the stellar mass function is to select
the subset of clumps that are gravitationally unstable and that begin to collapse in
order to form stars. The most simple approach is to base the selection of bound
clumps on a thermal Jeans argument. Jeans (1902) studied the stability of isothermal
gas spheres. He found that the competition between thermal pressure gradients and
potential gradients introduces a critical mass, MJ ∝ ρ−1/2(T/μ)3/2, as expressed by
Eq. (192). The Jeans mass only depends on the density ρ and the temperature T , as
well as on the chemical composition of the gas through the mean particle mass μ. If
a clump is more massive than MJ, then it will collapse; otherwise, it will expand.

This approach can be extended by including the effects of micro-turbulence (von
Weizsäcker 1951; Chandrasekhar 1951) and by considering the presence of magnetic
fields (Mestel and Spitzer 1956; Mouschovias and Spitzer 1976; Shu et al. 1987).
For a more detailed account of the historic development of star formation criteria,
see Mac Low and Klessen (2004). Probably the most intuitive approach to assess the
stability of molecular cloud clumps is based on the virial theorem, which relates the
time evolution of the moment of inertia tensor of an object to its volumetric energy
densities and surface terms, and allows us to take all physical processes into account
that influence the dynamical evolution of the system (e.g. McKee and Zweibel 1992;
Ballesteros-Paredes 2006). For an application to star formation, see for example
Krumholz and McKee (2005).

The problem that arises from the turbulent compression (Padoan et al. 1997;
Padoan and Nordlund 2002) or Press-Schechter approach is that it provides an esti-
mate of the mass of a clump, but not of the density and of other physical properties
that allow us to calculate the stability of the clump. To solve this problem, Padoan
and Nordlund (2002), for example, take a typical cloud temperature T (see Table 3)
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and pick a random density ρ from the assumed density PDF (see above) for each
clump M in the CMF. With these values they calculate the Jeans mass (Eq. 192). If
the clump mass exceeds the Jeans mass, M > MJ, the clump is considered to be
gravitationally bound and forming stars. If it is less massive than the Jeans mass, it is
disregarded. The probability for massive clumps to be unstable for randomly picked
ρ and T values is very high, and the mass spectrum of bound clumps is similar to
the CMF at high masses. However, for lower-mass clumps, the likelihood of picking
a combination of ρ and T such that the clump mass exceeds the Jeans mass gets
smaller and smaller. As a consequence, the mass spectrum of bound clumps turns
over towards smaller masses. This calculation becomes somewhat easier in the excur-
sion set approach. This is because the random walk through parameter space provides
both the length scale � and the density ρ for each clump. If one picks a temperature
T , one can calculate at each step in the process whether the mass M ∼ ρ�3 of the
clump under consideration exceeds the Jeans mass. Objects on the largest scales �

with M > MJ are identified as giant molecular clouds and objects on the smallest
scales � with M > MJ as star-forming clumps or prestellar cores (Hopkins 2012a, b).
This approach can readily be extended to include the stabilizing effects of turbulence
and magnetic fields (Krumholz and McKee 2005; Padoan et al. 2007; Hennebelle
and Chabrier 2009, 2013; Chabrier and Hennebelle 2010; Hopkins 2013a; Federrath
and Klessen 2012) or the influence of changes in the equation of state (Guszejnov
and Hopkins 2015). The overall peak of the mass spectrum is most likely determined
by the balance between heating and cooling processes in the star-forming gas which
sets a characteristic range of values for MJ and its variants (Sect. 6.4.1).

Stellar IMF

Once an ensemble of collapsing cloud clumps is selected, as outlined above, the
stellar IMF is often determined by simply mapping the clump mass to the stellar mass
with some given fixed efficiency. Typical values are around 30 % (see Sect. 6.4.1).
As a result the IMF has the same functional form as the mass function of bound
cores (see Sect. 6.1.1). However, as outlined in Sect. 6.4.1, this simple approach has
its problems. If indeed each core only forms one star (or maybe a binary system),
then it needs to have about one Jeans mass. Otherwise the core is likely to fragment
(Goodwin et al. 2004a, b, 2006; Dobbs and Bonnell 2008; Holman et al. 2013).
Because MJ ∝ ρ−1/2 for a given temperature T , high-mass clumps should be less
dense than low mass ones. This immediately leads to a timescale problem (Clark
et al. 2007). The free-fall time τff ∝ ρ−1/2, and so the collapse time scales linearly
with the clump mass. The time it takes to build up a star with 10 M� is sufficient
to form ten stars with 1 M�. As a consequence the resulting stellar IMF should be
considerably steeper than the CMF (e.g. Veltchev et al. 2011). In addition, high-mass
clumps are not observed to be less dense than low-mass ones. If anything, they tend
to be denser, and they are typically highly Jeans-unstable (Battersby et al. 2010;
Ragan et al. 2012, 2013; Marsh et al. 2014).
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A potential way out of this dilemma is to assume that high-mass clumps are
hotter. High mass stars can indeed heat up their surroundings quite considerably
(Sect. 6.5), since their luminosity L scales with stellar mass M as L ∝ M3.5 (e.g.
Hansen and Kawaler 1994). However, there are many low-mass star-forming regions
which show no signs of massive star formation (e.g. Taurus or ρ-Ophiuchi) and where
the temperatures inferred for prestellar cores are uniformly low (Bergin and Tafalla
2007).

In general there is thus no good reason to believe in a one-to-one mapping between
the core mass function and the stellar IMF. None of the current analytic models for
the IMF includes processes such as stellar feedback in form of radiation or outflows,
or fragmentation during core collapse and during the accretion disk phase, in a
realistic and consistent way. The same holds for numerical simulations of star cluster
formation. Altogether, it is likely that the transition from core to stars follows a
complicated and stochastic pathway that may change with varying environmental
conditions. For a simple cartoon picture, see Sect. 6.6.

6.5 Massive Star Formation

Because their formation time is short, of the order of 105 yr, and because they grow
while deeply embedded in massive cloud cores, very little is known about the initial
and environmental conditions of high-mass stellar birth. In general, regions forming
high-mass stars are characterized by more extreme physical conditions than regions
forming only low-mass stars, containing cores of size, mass, and velocity dispersion
roughly an order of magnitude larger than those of cores in regions without high-
mass star formation (e.g. Beltrán et al. 2006; Beuther et al. 2002, 2007; Motte et al.
2008; Krumholz et al. 2014). Typical sizes of cluster-forming clumps are about 1 pc.
They have mean densities of n ≈ 105 cm−3, masses of ∼103 M� and above, and
velocity dispersions ranging between 1.5 and 4 km s−1. Whenever observed with
high resolution, these clumps break up into even denser cores that are believed to
be the immediate precursors of single or gravitationally bound multiple massive
protostars.

Massive stars usually form as members of multiple stellar systems (Ho and
Haschick 1981; Lada 2006; Zinnecker and Yorke 2007; Reipurth et al. 2014) which
themselves are parts of larger clusters (Lada and Lada 2003; de Wit et al. 2004;
Testi et al. 1997; Longmore et al. 2014). This fact adds additional challenges to the
interpretation of observational data from high-mass star forming regions as it is dif-
ficult to disentangle mutual dynamical interactions from the influence of individual
stars (e.g. Goto et al. 2006; Linz et al. 2005). Furthermore, high-mass stars reach
the main sequence while still accreting. Their Kelvin-Helmholtz pre-main sequence
contraction time is considerably shorter than their accretion time. Once a star has
reached a mass of about 10 M�, its spectrum becomes UV-dominated and it begins
to ionize its environment. This means that accretion as well as ionizing and non-
ionizing radiation needs to be considered in concert (Keto 2002, 2003, 2007; Keto
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and Wood 2006; Peters et al. 2010a, b). It was realized decades ago that in sim-
ple one-dimensional collapse models, the outward radiation force on the accreting
material should be significantly stronger than the inward pull of gravity (Larson and
Starrfield 1971; Kahn 1974), in particular if one accounts for dust opacity. Since we
see stars with 100 M� or even more (Bonanos et al. 2004; Figer 2005; Rauw et al.
2005; Bestenlehner et al. 2011; Borissova et al. 2012; Doran et al. 2013), a simple
spherically symmetric approach to high-mass star formation must fail.

Consequently, two different models for massive star formation have been pro-
posed. The first one takes advantage of the fact that high-mass stars always form as
members of stellar clusters. If the central density in the cluster is high enough, there
is a chance that low-mass protostars collide and so successively build up more mas-
sive objects (Bonnell et al. 1998). As the radii of protostars usually are considerably
larger than the radii of main sequence stars in the same mass range (Hosokawa and
Omukai 2009), this could be a viable option. However, the stellar densities required
to produce massive stars by collisions are extremely high (Baumgardt and Klessen
2011). They seem inconsistent with the observed stellar densities of most Galactic
star clusters (e.g. Portegies Zwart et al. 2010 and references therein), but could be
reached in the central regions of the most extreme and massive clusters in the Local
Group (such as 30 Doradus in the LMC as shown in Fig. 19; see e.g. Banerjee et al.
2013).

An alternative approach is to argue that high-mass stars build up like low-
mass stars by accretion of ambient gas that goes through a rotationally supported
disk formed by angular momentum conservation. Indeed, such disk structures are
observed around a number of high-mass protostars (Chini et al. 2004, 2006; Jiang
et al. 2008; Davies et al. 2010). Their presence breaks any spherical symmetry that
might have been present in the initial cloud and thus solves the opacity problem.
Radiation tends to escape along the polar axis, while matter is transported inwards
through parts of the equatorial plane shielded by the disk. Hydrodynamic simula-
tions in two and three dimensions focusing on the transport of non-ionizing radiation
strongly support this picture (Yorke and Sonnhalter 2002; Krumholz et al. 2009;
Kuiper et al. 2010, 2011). The same holds when taking the effects of ionizing radi-
ation into account (Peters et al. 2010a, b, 2011; Commerçon et al. 2011). Once the
disk becomes gravitationally unstable, material flows along dense, opaque filaments,
whereas the radiation escapes through optically thin channels in and above the disk.
Even ionized material can be accreted, if the accretion flow is strong enough (Keto
2003, 2007). Hii regions are gravitationally trapped at this stage, but soon begin to
rapidly fluctuate between trapped and extended states, as seen in some Galactic mas-
sive star-formation regions (Peters et al. 2010a; Galván-Madrid et al. 2011; De Pree
et al. 2014). Over time, the same ultracompact Hii region can expand anisotropically,
contract again, and take on any of the observed morphological classes (Wood and
Churchwell 1989; Kurtz et al. 1994; Peters et al. 2010c). In their extended phases,
expanding Hii regions drive bipolar neutral outflows characteristic of high-mass star
formation (Peters et al. 2010a).

Another key fact that any theory of massive star formation must account for is
the apparent presence of an upper mass limit at around 100–150 M� (Massey 2003).
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It holds for the Galactic field, but in dense clusters, apparently higher-mass stars
have been reported (e.g. Crowther et al. 2010; Doran et al. 2013). If this mass limit
holds, then purely random sampling of the initial mass function (IMF) (Kroupa
2002; Chabrier 2003a) without an upper mass limit should have yielded stars above
150 M� (Weidner and Kroupa 2004; Figer 2005; Oey and Clarke 2005; Weidner
et al. 2010; see however, Selman and Melnick 2008). Altogether, the situation is
not fully conclusive. If indeed there is an upper mass limit, it raises the question
of its physical origin. It has been speculated before that radiative stellar feedback
might be responsible for this limit (for a detailed discussion see e.g. Zinnecker and
Yorke 2007) or alternatively that the internal stability limit of stars with non-zero
metallicity lies in this mass regime (Appenzeller 1970a, b, 1987; Baraffe et al. 2001).
However, fragmentation could also limit protostellar mass growth, as suggested by
the numerical simulations of Peters et al. (2010b). The likelihood of fragmentation
to occur and the number of fragments to form depends sensitively on the physical
conditions in the star-forming cloud and its initial and environmental parameters (see
e.g. Girichidis et al. 2012b). Understanding the build-up of massive stars therefore
requires detailed knowledge about the physical processes that initiate and regulate
the formation and dynamical evolution of the molecular clouds these stars form in
(Vázquez-Semadeni et al. 2009).

Peters et al. (2010b, 2011), Kuiper et al. (2011), and Commerçon et al. (2011)
argue that ionizing radiation (see also Krumholz et al. 2014), just like its non-ionizing,
lower-energy counterpart, cannot shut off the accretion flow onto massive stars.
Instead it is the dynamical processes in the gravitationally unstable accretion flow that
inevitably occurs during the collapse of high-mass cloud cores that control the mass
growth of individual protostars. Accretion onto the central star is shut off by the frag-
mentation of the disk and the formation of lower-mass companions which intercept
inward-moving material. Peters et al. (2010b, 2011) call this process fragmentation-
induced starvation and show that it occurs unavoidably in regions of high-mass star
formation where the mass flow onto the disk exceeds the inward transport of matter
due to viscosity only and thus renders the disk unstable to fragmentation (see also
Sect. 6.4.1).

As a side note, it is interesting to speculate that fragmentation-induced starvation is
important not only for present-day star formation but also in the primordial universe
during the formation of metal-free Population III stars. Consequently, we expect
these stars to be in binary or small number multiple systems and to be of lower
mass than usually inferred (Abel et al. 2002; Bromm et al. 2009). Indeed, current
numerical simulations provide the first hints that this might be the case (e.g. Clark
et al. 2011; Greif et al. 2011; Stacy and Bromm 2013).

6.6 Final Stages of Star and Planet Formation

Here, we summarize again the main phases of the star and planet formation process.
The entire sequence is illustrated in Fig. 23. It begins with the formation of molecular
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cloud complexes in the turbulent multi-phase ISM of the Galaxy (as we discuss in
Sect. 4.1.2), and continues (a) with supersonic turbulence generating high density
clumps with a wide range of densities and sizes (Sect. 6.1). (b) Some of these density
fluctuations may become gravitationally unstable and begin to collapse. The central
density increases until the compressional heat generated by the contraction can no
longer be radiated away efficiently. A quasi-hydrostatic object then forms in the
center of the core. This protostar continues to grows in mass by accreting material
from the infalling envelope. In the class 0 phase of protostellar evolution, the mass
budget is still dominated by the enclosing envelope. It is optically thin and absorbs
the accretion luminosity generated as the infalling material comes to a halt at the
protostellar surface. The spectral energy distribution (SED) of the system is thus
dominated by the reprocessed emission from the cold envelope radiating mainly at
sub-mm wavelengths.

Due to the conservation of angular momentum, most of the infalling matter will
not directly end up in the central protostar, (c) but instead it will build up a rota-
tionally supported accretion disk. If the mass load onto this disk during the main
accretion phase exceeds its capability to transport material inwards by gravitovis-
cous processes, then the disk becomes unstable and will fragment into a binary or
higher-order multiple stellar system. This is very likely to happen for high-mass
stars, but occurs less frequently for low-mass objects, as indicated by the strong
mass dependence of the stellar multiplicity fraction (Lada 2006). Molecular cloud
cores are magnetized. The magnetic field is compressed and amplified by dynamo
processes during the contraction, and eventually the accretion disk is able to launch
a magnetically driven outflow along the rotational axis of the system (for a sum-
mary, see Pudritz et al. 2007). The outflow begins to disperse the remaining envelope
material. First this happens along the polar axis, but later on larger and larger vol-
umes are affected. This influences the observed SED. As more and more of the inner
regions of the disk become visible, the peak of the emission moves towards infrared
wavelengths. Favorable viewing angles even permit us to look down onto the pro-
tostellar photosphere, which contributes to the emission at near infrared and optical
wavelengths. (d) Clearing the infalling envelope and the corresponding changes in
SED mark the transition from class 1 to class 2 objects. In this T Tauri phase of
protostellar evolution, most of the mass is already assembled in the central star with
the remaining accretion disk contributing only a few percent to the overall matter
budget. Nevertheless, this is where planets begin to form.

At some point, (e) the envelope is completely removed (or accreted by the disk),
and the central star becomes fully visible. Only a debris disk remains in which planet
formation continues. The central protostar is expected to be fully convective and the
energy loss due to the emission of radiation at its surface is compensated by the
release of gravitational energy. It slowly contracts and by doing so becomes hotter
and denser. This is the classical Kelvin-Helmholtz contraction phase of pre-main
sequence evolution. For solar-type stars it lasts about 20–30 million years. Finally,
the central conditions are right for nuclear fusion to set in. The star enters the main
sequence and settles into a quasi-equillibrium state, where its radiative energy losses
are compensated by nuclear burning processes converting hydrogen into helium. (f)
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(a) (b) (c)

(d) (e) (f)

Fig. 23 Schematic view of the star and planet formation process. a Prestellar cores form by turbulent
compression inside larger molecular clouds. b Some become gravitational unstable and begin to
collapse. During the main accretion phase, the young protostar in the center experiences rapid
mass growth. This is the class 0 phase of protostellar evolution. c Because of angular momentum
conservation, the infalling material settles into a protostellar/protoplanetary disk. Magnetically
launched outflows begin to disperse the infalling envelope. This is the class 1 phase. d The central
protostar becomes visible as more and more of the envelope is removed. This is the class 2 phase. e
The envelope is removed, and the central star becomes fully visible. Only a remnant disk remains
in which planet formation continues. Low mass stars are still on the Kelvin-Helmholtz pre-main
sequence contraction phase. f Finally, the original gas and dust disk is cleared and what remains
is a central star with a planetary system, such as we observe in our solar system. Note that the
cartoon picture describes the situation for isolated low-mass stars. For high-mass stars, the situation
is more complicated, because the disk is likely to fragment into a binary or higher-order stellar
system during the main accretion phase

After some time, the remaining debris disk is also cleared away and we are left with
the central star, most likely being surrounded by a planetary system, such as we see
in our own solar system or as we observe around other nearby stars.9

9The latest updates and findings of the research activities on extrasolar planets can be found at the
following websites: www.exoplanet.eu and www.exoplanets.org.

www.exoplanet.eu
www.exoplanets.org
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7 Summary

In these lecture notes, we have made an attempt to identify and characterize the
key astrophysical processes that provide the link between the dynamical behavior
of the interstellar medium and the formation of stars. We hope that we have made it
clear that one part cannot be understood without solid knowledge of the other. Both
are connected via a number of competing feedback loops. We have argued that the
evolution of the galactic ISM on large scales depends on the detailed microphysics
in very complicated and often counter-intuitive ways. Conversely, global dynamical
processes set the initial and boundary conditions for the formation of dense clouds on
small scales and the birth of stars in their interior. Altogether, ISM dynamics spans
an enormous dynamic range, from the extent of the galaxy as a whole down to the
local blobs of gas that collapse to form individual stars or binary systems. Similarly,
it covers many orders of magnitude in time, from the hundreds of millions of years
it takes to complete one galactic rotation down to the hundreds of years it takes an
ionization front to travel through a star-forming cloud. Improving our understanding
of the interstellar medium and its ability to give birth to new stars is a complex
multi-scale and multi-physics problem. It requires insights from quantum physics
and chemistry, and knowledge of magnetohydrodynamics, plasma physics as well as
gravitational dynamics. It also asks for a deep understanding of the coupling between
matter and radiation, together with input from high-resolution multi-frequency and
multi-messenger astronomical observations.

After a brief introduction to the field in Sect. 1, we began our discussion in Sect. 2
with a detailed account of the main constituents of the interstellar medium. These
are gas, dust, the interstellar radiation field, and cosmic rays. Next, we turned our
attention to the various heating and cooling processes that govern the thermodynamic
behavior of the ISM. In Sect. 3, we introduced the microphysical processes that
regulate the coupling between matter and radiation as well as between the different
matter components. We identified the observed interstellar turbulence as a key agent
driving the dynamical evolution of the Galactic ISM. These turbulent flows play a
dual role. As we discussed in Sect. 4, turbulence can prevent or delay collapse on
large scales, but on small scales it may actually trigger local compression and star
formation. In addition, we showed that ISM turbulence dissipates quickly and needs
to be continuously replenished for a galaxy to reach an approximate steady state.
This led to a critical comparison of the various astrophysical processes that have
been proposed to drive interstellar turbulence in galaxies such as our Milky Way.
Because star formation is always found to be associated with molecular clouds, we
discussed the physical (and chemical) processes that govern the formation of these
densest and coldest components of the ISM in Sect. 5. We paid special attention to the
chemical reactions that lead to the formation of H2 and to its most important tracer
CO. We found that dust attenuation plays a key role in this process, and we discussed
molecular cloud formation in the context of global ISM dynamics on galactic scales.
Finally, in Sect. 6 we zoomed in on smaller and smaller scales, and summarized
the properties of molecular cloud cores as the direct progenitors of individual stars
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and stellar systems. Furthermore, we motivated and described the current statistical
and theoretical models of stellar birth and tried to explain the seemingly universal
observed distribution of stellar masses at birth, the initial mass function (IMF), as the
result of a sequence of stochastic events mostly governed by the interplay between
turbulence and self-gravity in the star-forming gas.

We hope that we have illustrated in these lecture notes that the question of stellar
birth in the multi-phase ISM of our Milky Way and elsewhere in the universe is far
from being solved. On the contrary, the field of ISM dynamics and star formation is
rapidly evolving and has gone through a significant transformation in recent years.
We acknowledge that scientific progress in this area requires the concerted and com-
bined efforts of theory, observations, as well as laboratory experiments. We notice a
general trend away from only taking isolated processes and phenomena into account
and towards a more integrated multi-scale and multi-physics approach in today’s
theoretical models and computer simulations. Observational studies now regularly
attempt to accumulate and combine information from as many different wavebands
as possible, and to cover as large an area on the sky with as much detail and resolution
as possible. New large facilities such as ALMA on the ground or Gaia in space have
the potential for real scientific breakthroughs.10 All our theoretical and observational
efforts would be in vain without complementary laboratory studies that provide fun-
damental information and cross sections for molecular and ionic reactions as well
as transition frequencies and data on dust physics, that constitute the physical and
chemical basis of our understanding of the ISM.

We end this summary with a list of questions, which we think are amongst the most
important open problems in the field of ISM dynamics and star formation studies.
We note that these questions are closely related to each other, and that the answer to
one question may hold the key to resolving another.

What drives interstellar turbulence? Observations show that turbulence in molec-
ular clouds is ubiquitous. With the exception of the dense cores discussed in Sect. 6.1,
it seems to follow a universal relationship between velocity dispersion and size (Lar-
son’s relation, see Sect. 4.1). Even extragalactic molecular clouds exhibit similar
behavior. In addition, there are few variations in the turbulent properties between
molecular cloud regions with ongoing star formation and those without. This seems
to argue in favor of a galaxy-scale driving process (Sect. 4.5). On the other hand, there
are also no systematic variations in GMC properties within a galaxy or between galax-
ies, which would seem to argue that internal processes must be important as well
(Sect. 4.6). What is the relative importance of internal and external forcing mecha-
nisms in driving ISM turbulence? Does the answer depend on the length scales that
one examines, or on the place where one looks? So far, the ‘smoking gun’ to answer
these questions, both observationally or theoretically, remains to be found.

How is the star formation process correlated with galaxy properties? And how
can we best study that problem? On large scales, star formation appears to follow a
fairly universal scaling behavior. This holds for galaxies that range from being mildly

10Information about the Atacama Large Millimeter/Submillimeter Array (ALMA) and about the
Gaia satellite can be found at http://www.almaobservatory.org and http://sci.esa.int/gaia/.

http://www.almaobservatory.org
http://sci.esa.int/gaia/
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dominated by atomic hydrogen (such as the Milky Way) to those that are strongly
dominated by molecular hydrogen (such as local starbursts). Does the presence or
absence of a significant atomic phase play an important role in regulating star forma-
tion, either directly (e.g. by limiting the amount of molecular gas available for star
formation) or indirectly (e.g. by driving turbulent motions via thermal instability)?
How does the star formation process change, if at all, in galaxies such as dwarfs that
contain very little molecular gas? On the observational side, one of the key questions
is whether and to what extent commonly used observational tracers of the star forma-
tion rate (SFR), such as Hα, 24µm dust emission, or [Cii] fine structure emission,
can reliably recover the true rates? Accurate measurements of the SFR in galaxies
are of great importance for many different fields of astrophysical research, and yet
remain difficult to carry out. In nearby molecular clouds, counts of young stellar
objects can give a direct measurement of the SFR, but this technique cannot be used
in extragalactic systems where individual objects cannot be detected and resolved.
Instead, indirect indicators of the SFR must be used, such as the Hα luminosity or
the total far-infrared emission. A central assumption underpinning these methods is
that the energy radiated by these tracers comes primarily from newly-formed mas-
sive stars. If this is not the case, then these tracers will give a misleading view of the
SFR. Answering these questions requires both dedicated observations and numerical
models that allow us to explore the conditions in which the different tracers of the
SFR can be used safely, and to understand when and why they fail. These can then
also address the question of the scale over which the above correlations hold. Do we
still see a good correlation between the tracers and the SFR on small scales (tens of
parsecs or less), or only when we average on scales of hundreds of parsecs?

What are the best observational tracers to study ISM dynamics and molecular
cloud assembly? We know that dense molecular clouds must be assembled from gas
that is initially in a more diffuse state (Sect. 5), but whether this process is driven
primarily by turbulence or by gravity is unclear. At the present time, we are not even
sure what we should observe in order to best distinguish between these two models.
It seems likely that CO forms in significant quantities only once a large fraction of
the cloud mass is already assembled, since it resists photodissociation only in regions
with relatively high extinctions (Sect. 5.2), and so CO observations are unlikely to
provide strong constraints on the assembly process. Hi 21 cm observations may be
better suited for this purpose, but only if the inflowing gas is primarily atomic. If,
instead, it is largely composed of H2, then chemical tracers of this phase (e.g. HD or
HF) may be more useful. Fine structure emission from [Cii] or [Oi] may also trace
the inflowing gas, but only if it is warm enough to excite the lines. Addressing this
issue requires us to perform dedicated numerical simulations coupled with a time-
dependent chemical network and to produce synthetic observations in the tracers of
interest in a post-processing step, which then can be compared one-to-one with real
observational data.

Which observational diagnostics are best suited to recover the true physical prop-
erties of the ISM? Our knowledge of physical cloud properties (such as mass or spatial
extent) often relies on indirect measurements, particularly in extragalactic systems.
For example, it is often assumed that all molecular clouds are in virial equilibrium,
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which allows us to estimate their masses from the observed CO linewidths. In the
Milky Way, we can hope to benchmark this approach by using more direct mea-
surements of cloud masses, as derived from e.g. dust extinction. However, this can
be done easily only for nearby clouds, meaning that the range of environments in
which these estimates can be directly tested is quite limited. Besides better and more
detailed observations, progress will require us to examine the performance of the
different available measures of cloud mass in dedicated numerical simulations for a
wide variety of different physical environments. Only these calculations provide full
access to the six-dimensional phase space, and by doing so enable us to figure out
which measures are the least biased and potentially also to derive correction factors
to improve the observational estimates.

What physical processes determine the distribution of stellar masses at birth? How
reliable are observations that suggest that the stellar IMF and binary distribution at
the present day are similar in different galactic environments? In particular, in rich
(and more distant) clusters, our observational basis needs to be extended to lower
masses. The same holds for variations with metallicity as can be traced in the Local
Group. Is the IMF in the Large Magellanic Cloud (with a metal abundance of about
half of the solar value) and the Small Magellanic Cloud (with a metal abundance of
about one fifth solar or less) really similar to the Milky Way? On the theoretical side,
what processes are responsible for the (non-)variation of the IMF? The critical mass
for gravitational collapse can vary enormously between different environments. Yet
the IMF in globular clusters, for example, appears to be the same as in regions of
distributed star formation such as Taurus. How can the statistical theoretical models
introduced in Sect. 6.4 be extended to address these questions? Better understanding
the physical origin of the IMF will remain a key driver of star formation research for
a long time to come.
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High Performance Computing
and Numerical Modelling

Volker Springel

1 Preamble

Numerical methods play an ever more important role in astrophysics. This can be
easily demonstrated through a cursory comparison of a random sample of paper
abstracts from today and 20 years ago, which shows that a growing fraction of
studies in astronomy is based, at least in part, on numerical work. This is especially
true in theoretical works, but of course, even in purely observational projects, data
analysis without massive use of computational methods has become unthinkable.
For example, cosmological inferences of large CMB experiments routinely use very
large Monte-Carlo simulations as part of their Baysian parameter estimation.

The key utility of computer simulations comes from their ability to solve com-
plex systems of equations that are either intractable with analytic techniques or only
amenable to highly approximative treatments. Thanks to the rapid increase of the per-
formance of computers, the technical limitations faced when attacking the equations
numerically (in terms of calculational time, memory use, numerical resolution, etc.)
become progressively smaller. But it is important to realize that they will always stay
with us at some level. Computer simulations are therefore best viewed as a powerful
complement to analytic reasoning, and as the method of choice to model systems that
feature enormous physical complexity—such as star formation in evolving galaxies,
the topic of this 43rd Saas Fee Advanced Course.

The organizers asked me to lecture about High performance computing and
numerical modelling in this winter school, which took place March 11–16, 2013,
in Villars-sur-Ollon, Switzerland. As my co-lecturers Ralf Klessen und Nick Gnedin
should focus on the physical processes in the interstellar medium and on galactic
scales, my task was defined as covering the basics of numerically treating gravity
and hydrodynamics, and on making some remarks on the use of high performance
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computing techniques in general. In a nutshell, my lectures hence intend to cover the
basic numerical methods necessary to simulate evolving galaxies. This is still a vast
field, and I necessarily had to make a selection of a subset of the relevant material.
I have tried to strike a compromise between what I considered most useful for the
majority of students and what I could cover in the available time.

In particular, my lectures concentrate on techniques to compute gravitational
dynamics of collisionless fluids composed of dark matter and stars in galaxies. I also
spend a fair amount of time explaining basic concepts of various solvers for Eulerian
gas dynamics. Due to lack of time, I am not discussing collisional N-body dynamics
as applicable to star cluster, and I omit a detailed discussion of different schemes to
implement adaptive mesh refinement.

The written notes presented here quite closely follow the lectures as held in Villars-
sur-Ollon, apart from being expanded somewhat in detail where this seemed ade-
quate. I note that the shear breadth of the material made it impossible to include
detailed mathematical discussions and proofs of all the methods. The discussion is
therefore often at an introductory level, but hopefully still useful as a general overview
for students working on numerical models of galaxy evolution and star formation.
Interested readers are referred to some of the references for a more detailed and
mathematically sound exposition of the numerical techniques.

2 Collisionless N-Body Dynamics

According to the ΛCDM paradigm, the matter density of our Universe is dominated
by dark matter, which is thought to be composed of a yet unidentified, non-baryonic
elementary particle (e.g. Bertone et al. 2005). A full description of the dark mass
in a galaxy would hence be based on following the trajectories of each dark matter
particle—resulting in a gigantic N-body model. This is clearly impossible due to the
large number of particles involved. Similarly, describing all the stars in a galaxy as
point masses would require of order 1011 bodies. This may come within reach in a
few years, but at present it is still essentially infeasible. In this section we discuss why
we can nevertheless describe both of these galactic components as discrete N-body
systems, but composed of far fewer particles than there are in reality.

2.1 The Hierarchy of Particle Distribution Functions

The state of an N -particle ensemble at time t can be specified by the exact particle
distribution function (Hockney and Eastwood 1988), in the form

F(r, v, t) =
N∑

i=1

δ(r − ri (t)) · δ(v − vi (t)), (1)
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where ri and vi denote the position and velocity of particle i , respectively. This
effectively gives the number density of particles at point (r, v) at time t . Let now

p(r1, r2, . . . , rN , v1, v2, . . . vN ) dr1 dr2 · · · drN dv1 dv2 · · · dvN , (2)

be the probability that the system is in the given state at time t . Then a reduced
statistical description is obtained by ensemble averaging:

f1(r, v, t) = 〈F(r, v, t)〉 =
∫

F · p · dr1 dr2 · · · drN dv1 dv2 · · · dvN . (3)

We can integrate out one of the Dirac delta-functions in F to obtain

f1(r, v, t) = N
∫

p(r, r2, . . . , rN , v, v2, . . . vN ) dr2 · · · drN dv2 · · · dvN . (4)

Note that as all particles are equivalent we can permute the arguments in p where r
and v appear. f1(r, v, t) dr dv now gives the mean number of particles in a phase-
space volume dr dv around (r, v).

Similarly, the ensemble-averaged two-particle distribution (“the mean product of
the numbers of particles at (r, v) and (r′, v′)”) is given by

f2(r, v, r′, v′, t) = 〈
F(r, v, t)F(r′, v′, t)

〉
(5)

= N (N − 1)

∫
p(r, r′, r3, . . . , rN , v, v′, v3, . . . vN ) dr3 · · · drN dv3 · · · dvN .

Likewise one may define f3, f4, . . . and so on. This yields the so-called BBGKY
(Bogoliubov-Born-Green-Kirkwood-Yvon) chain (e.g. Kirkwood 1946), see also
Hockney and Eastwood (1988) for a detailed discussion.

Uncorrelated (collisionless) systems The simplest closure for the BBGKY hierarchy
is to assume that particles are uncorrelated, i.e., that we have

f2(r, v, r′, v′, t) = f1(r, v, t) f1(r′, v′, t). (6)

Physically, this means that a particle at (r, v) is completely unaffected by one at
(r′, v′). Systems in which this is approximately the case include stars in a galaxy,
dark matter particles in the universe, or electrons in a plasma. We will later consider
in more detail under which conditions a system is collisionless.

Let’s now go back to the probability density p(w) which depends on the
N -particle phase-space state w = (r1, r2, . . . , rN , v1, v2, . . . vN ). The conserva-
tion of probability in phase-space means that it fulfills a continuity equation

∂ p

∂t
+ ∇w · (p ẇ) = 0. (7)
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We can cast this into

∂ p

∂t
+
∑

i

(
p
∂ṙi

∂ri
+ ∂ p

∂ri
ṙi + p

∂v̇i

∂vi
+ ∂ p

∂vi
v̇i

)
= 0. (8)

Because only conservative gravitational fields are involved, the system is described
by classical mechanics as a so-called Hamiltonian system. Recalling the equations of
motion ṙ = ∂H

∂p and ṗ = −∂H
∂r of Hamiltonian dynamics (Goldstein 1950), we can

differentiate them to get ∂ṙ
∂r = ∂2 H

∂r∂p , and ∂ṗ
∂p = − ∂2 H

∂r∂p . Hence it follows ∂ṙ
∂r = −∂v̇

∂v .
Using this we get

∂ p

∂t
+
∑

i

(
vi

∂ p

∂ri
+ ai

∂ p

∂vi

)
= 0, (9)

where ai = v̇i = Fi/mi is the particle acceleration and mi is the particle mass. This
is Liouville’s theorem.

Now, in the collisionless/uncorrelated limit, this directly carries over to the one-
point distribution function f = f1 if we integrate out all particle coordinates except
for one as in Eq. (4), yielding the Vlasov equation, also known as collisionless Boltz-
mann equation:

∂ f

∂t
+ v

∂ f

∂r
+ a

∂ f

∂v
= 0. (10)

The close relation to Liouville’s equation means that also here the phase space-density
stays constant along characteristics of the system (i.e., along orbits of individual
particles).

What about the acceleration? In the limit of a collisionless system, the accel-
eration a in the above equation cannot be due to another single particle, as this
would imply local correlations. However, collective effects, for example from the
gravitational field produced by the whole system are still allowed.

For example, the source field of self-gravity (i.e., the mass density) can be
described as

ρ(r, t) = m
∫

f (r, v, t) dv. (11)

This then produces a gravitational field through Poisson’s equation,

∇2Φ(r, t) = 4πGρ(r, t), (12)

which gives the accelerations as

a = −∂Φ

∂r
. (13)



High Performance Computing and Numerical Modelling 255

One can also combine these equations to yield the Poisson-Vlasov system, given by

∂ f

∂t
+ v

∂ f

∂r
− ∂Φ

∂r
∂ f

∂v
= 0, (14)

∇2Φ = 4πGm
∫

f (r, v, t) dv. (15)

This holds in an analogous way also for a plasma where the mass density is replaced
by a charge density.

It is interesting to note that in this description the particles have basically com-
pletely vanished and have been replaced with a continuum fluid description. Later,
for the purpose of solving the equations, we will have to reintroduce particles as a
means of discretizing the equations—but these are then not the real physical particles
any more, rather they are fiducial macro particles that sample the phase-space in a
Monte-Carlo fashion.

2.2 The Relaxation Time—When Is a System Collisionless?

Consider a system of size R containing N particles. The time for one crossing of a
particle through the system is of order

tcross = R

v
, (16)

where v is the typical particle velocity (Binney and Tremaine 1987, 2008). For a
self-gravitating system of that size we expect

v2 � G Nm

R
= G M

R
, (17)

where M = N m is the total mass.
We now want to estimate the rate at which a particle experiences weak deflections

by other particles, which is the process that violates perfect collisionless behavior and
which induces relaxation. We calculate the deflection in the impulse approximation
where the particle’s orbit is taken as a straight path, as sketched in Fig. 1.

To get the deflection, we compute the transverse momentum acquired by the
particle as it flies by the perturber (assumed to be stationary for simplicity):

Δp = mΔv =
∫

F⊥dt =
∫

Gm2

x2 + b2

b√
x2 + b2

dx

v
= 2Gm2

bv
. (18)
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Fig. 1 Sketch of a two-body encounter, in which a particle passes another particle (assumed to be
at rest) with impact parameter b and velocity v

How many encounters do we expect in one crossing? For impact parameters
between [b, b + db] we have

dn = N
2πb db

πR2 (19)

targets. The velocity perturbations from each encounter have random orientations,
so they add up in quadrature. Per crossing we hence have for the quadratic velocity
perturbation:

(Δv)2 =
∫ (

2Gm

bv

)2

dn = 8N

(
Gm

Rv

)2

ln Λ, (20)

where

ln Λ = ln
bmax

bmin
(21)

is the so-called Coulomb logarithm, and bmax and bmin are the adopted integration
limits. We can now define the relaxation time as

trelax ≡ v2

(Δv)2/tcross
, (22)

i.e., after this time the individual perturbations have reached ∼100 % of the typical
squared velocity, and one can certainly not neglect the interactions any more. With
our result for (Δv)2, and using Eq. (17) this now becomes

trelax = N

8 ln Λ
tcross. (23)

But we still have to clarify what we can sensibly use for bmin and bmax in the Coulomb
logarithm. For bmax, we can set the size of the system, i.e., bmax � R. For bmin, we
can use as a lower limit the b where very strong deflections ensue, which is given by

2Gm

bminv
� v, (24)

i.e where the transverse velocity perturbation becomes as large as the velocity itself
(see Eq. 18). This then yields bmin = 2R/N . We hence get for the Coulomb logarithm
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ln Λ � ln(N/2). But a factor of 2 in the logarithm might as well be neglected in this
coarse estimate, so that we obtain ln Λ ∼ N . We hence arrive at the final result
(Chandrasekhar 1943):

trelax = N

8 ln N
tcross. (25)

A system can be viewed as collisionless if trelax � tage, where tage is the time
of interest. We note that tcross depends only on the size and mass of the system, but
not on the particle number N or the individual masses of the N-body particles. We
therefore clearly see that the primary requirement to obtain a collisionless system is
to use a sufficiently large N .

Examples:

• globular star clusters have N ∼ 105, tcross ∼ 3 pc
6 km/sec � 0.5 Myr. This implies

that such systems are strongly affected by collisions over the age of the Universe,
tage = 1

H0
∼ 10 Gyr, where H0 is the Hubble constant.

• stars in a typical galaxy: Here we have N ∼ 1011 and tcross ∼ 1
100 H0

. This means
that these large stellar systems are collisionless over the age of the Universe to
extremely good approximation.

• dark matter in a galaxy: Here we have N ∼ 1077 if the dark matter is composed
of a ∼ 100 GeV weakly interacting massive particle (WIMP). In addition, the
crossing time is longer than for the stars, tcross ∼ 1

10 H0
, due to the larger size of

the ‘halo’ relative to the embedded stellar system. Clearly, dark matter represents
the crème de la crème of collisionless systems.

2.3 N-Body Models and Gravitational Softening

We now reintroduce particles in order to discretize the collisionless fluid described by
the Poisson-Vlasov system. We use however far fewer particles than in real physical
systems, and we correspondingly give them a higher mass. These are hence fiducial
macro-particles. Their equations of motion in the case of gravity take on the form:

ẍi = −∇iΦ(ri ), (26)

Φ(r) = −G
N∑

j=1

m j

[(r − r j )2 + ε2]1/2 . (27)

A few comments are in order here:

• Provided we can ensure trelax � tsim, where tsim is the simulated time-space,
the numerical model keeps behaving as a collisionless system over tsim despite a
smaller N than in the real physical system. In this limit, the collective gravitational
potential is sufficiently smooth.
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• Note that the mass of a macro-particle used to discretize the collision system drops
out from its equation of motion (because there is no self-force). Provided there are
enough particles to describe the gravitational potential accurately, the orbits of the
macro-particles will be just as valid as the orbits of the real physical particles.

• The N-body model gives only one (quite noisy) realization of the one-point func-
tion. It does not give the ensemble average directly (this would require multiple
simulations).

• The equations of motion contain a softening length ε. The purpose of the force
softening is to avoid large angle scatterings and the numerical expense that would
be needed to integrate the orbits with sufficient accuracy in singular potentials.
Also, we would like to prevent the possibility of the formation of bound parti-
cle pairs—they would obviously be highly correlated and hence strongly violate
collisionless behavior. We don’t get bound pairs if

〈
v2
〉
� Gm

ε
, (28)

which can be viewed as a necessary (but not in general sufficient) condition on
reasonable softening settings (Power et al. 2003). The adoption of a softening
length also implies the introduction of a smallest resolved length-scale. The spe-
cific softening choice one makes ultimately represents a compromise between
spatial resolution, discreteness noise in the orbits and the gravitational potential,
computational cost, and the relaxation effects that adversely influence results.

2.4 N-Body Equations in Cosmology

In cosmological simulations, it is customary to use comoving coordinates x instead
of physical coordinates r. The two are related by

r = a(t) x, (29)

where a = 1/(1 + z) is the cosmological scale factor. Its evolution is governed by
the Hubble rate

ȧ

a
= H(a), (30)

which in turn is given by H(a) = [Ω0a−3 +(1−Ω0 −ΩΛ)a−2 +ΩΛ]1/2 in standard
Friedmann-Lemaitre models (e.g. Peacock 1999; Mo et al. 2010).

In an (infinite) expanding space, modelled through period replication of a box of
size L , one can then show (e.g. Springel et al. 2001) that the Newtonian equations
of motion in comoving coordinates can be written as

d

dt
(a2ẋ) = −1

a
∇iφ(xi ), (31)
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∇2φ(x) = 4πG
∑

i

mi

[

− 1

L3 +
∑

n

δ(x − xi − nL)

]

, (32)

where the sum over i extends over N particles in the box, and φ is the peculiar
gravitational potential. It corresponds to the Newtonian potential of density devia-
tions around a constant mean background density. Note that the sum over all parti-
cles for calculating the potential extends also over all of their period images, with
n = (n1, n2, n3) being a vector of integer triples. The term −1/L3 is simply needed
to ensure that the mean density sourcing the Poisson equation vanishes, otherwise
there would be no solution for an infinite space.

2.5 Calculating the Dynamics of an N-Body System

Once we have discretized a collisionless fluid in terms of an N-body system, two
questions come up:

1. How do we integrate the equations of motion in time?
2. How do we compute the right hand side of the equations of motion, i.e., the

gravitational forces?

For the first point, we can use an integration scheme for ordinary differential
equations, preferably a symplectic one since we are dealing with a Hamiltonian
system. We shall briefly discuss elementary aspects of these time integration methods
in the following section.

The second point seems also straightforward at first, as the accelerations (forces)
can be readily calculated through direct summation. In the isolated case this reads as

r̈i = −G
N∑

j=1

m j

[(ri − r j )2 + ε2]3/2 (ri − r j ). (33)

For a periodic space, the force kernel is slightly different but in principle the same
summation applies (Hernquist et al. 1991). This calculation is exact, but for each
of the N equations we have to calculate a sum with N partial forces, yielding a
computational cost of order O(N 2). This quickly becomes prohibitive for large N ,
and causes a conflict with our urgent need to have a large N !

Perhaps a simple example is in order to show how bad the N 2 scaling really is in
practice. Suppose you can do N = 106 in a month of computer time, which is close
to the maximum that one may want to do in practice. A particle number of N = 1010

would then already take of order 10 million years.
We hence need faster, approximative force calculation schemes. We shall discuss

a number of different possibilities for this in Sect. 4, namely:
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• Particle-mesh (PM) algorithms
• Fourier-transform based solvers of Poisson’s equations
• Iterative solvers for Poisson’s equation (multigrid-methods)
• Hierarchical multipole methods (“tree-algorithms”)
• So-called TreePM methods

Various combinations of these approaches may also be used, and sometimes they
are also applied together with direct summation on small scales. The latter may
also be accelerated with special-purpose hardware (e.g. the GRAPE board; Makino
et al. 2003), or with graphics processing units (GPUs) that are used as fast number-
crushers.

3 Time Integration Techniques

We discuss in the following some basic methods for the integration of ordinary
differential equations (ODEs). These are relations between an unknown scalar or
vector-values function y(t) and its derivatives with respect to an independent variable,
t in this case (the following discussion associates the independent variable with
‘time’, but this could of course be also any other quantity). Such equations hence
formally take the form

dy
dt

= f(y, t), (34)

and we seek the solution y(t), subject to boundary conditions.
Many simple dynamical problems can be written in this form, including ones

that involve second or higher derivatives. This is done through a procedure called
reduction to 1st order. One does this by adding the higher derivatives, or combinations
of them, as further rows to the vector y.

For example, consider a simple pendulum of length l with the equation of motion

q̈ = −g

l
sin(q), (35)

where q is the angle with respect to the vertical. Now define p ≡ q̇ , yielding a state
vector

y ≡
(

q
p

)
, (36)

and a first order ODE of the form:

dy
dt

= f(y) =
(

p
− g

l sin(q)

)
. (37)

A numerical approximation to the solution of an ODE is a set of values {y0, y1,
y2, . . .} at discrete times {t0, t1, t2, . . .}, obtained for certain boundary conditions.
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The most common boundary condition for ODEs is the initial value problem (IVP),
where the state of y is known at the beginning of the integration interval. It is however
also possible to have mixed boundary conditions where y is partially known at both
ends of the integration interval.

There are many different methods for obtaining a discrete solution of an ODE
system (e.g. Press et al. 1992). We shall here discuss some of the most basic ones,
restricting ourselves to the IVP problem, for simplicity, as this is the one naturally
appearing in cosmological simulations.

3.1 Explicit and Implicit Euler Methods

Explicit Euler This solution method, sometimes also called “forward Euler”, uses
the iteration

yn+1 = yn + f (yn)Δt, (38)

where y can also be a vector. Δt is the integration step.

• This approach is the simplest of all.
• The method is called explicit because yn+1 is computed with a right-hand-side that

only depends on quantities that are already known.
• The stability of the method can be a sensitive function of the step size, and will in

general only be obtained for a sufficiently small step size.
• It is recommended to refrain from using this scheme in practice, since there are

other methods that offer higher accuracy at the same or lower computational cost.
The reason is that the Euler method is only first order accurate. To see this, note
that the truncation error in a single step is of order Os(Δt2), which follows simply
from a Taylor expansion. To integrate over a time interval T , we need however
Ns = T/Δt steps, producing a total error that scales as NsOs(Δt2) = OT (Δt).

• The method is also not time-symmetric, which makes it prone to accumulation of
secular integration errors.

We remark in passing that for a method to reach a global error that scales as
OT (Δtn) (which is then called an “nth order accurate” scheme), a local truncation
error of one order higher is required, i.e., Os(Δtn+1).

Implicit Euler In a so-called “backwards Euler” scheme, one uses

yn+1 = yn + f (yn+1)Δt, (39)

which seemingly represents only a tiny change compared to the explicit scheme.

• This approach has excellent stability properties, and for some problems, it is in fact
essentially always stable even for extremely large timestep. Note however that the
accuracy will usually nevertheless become very bad when using such large steps.
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• This stability property makes implicit Euler sometimes useful for stiff equations,
where the derivatives (suddenly) can become very large.

• The implicit equation for yn+1 that needs to be solved here corresponds in many
practical applications to a non-linear equation that can be complicated to solve
for yn+1. Often, the root of the equation has to be found numerically, for example
through an iterative technique.

• The method is still first order accurate, and also lacks time-symmetry, just like the
explicit Euler scheme.

Implicit midpoint rule If we use

yn+1 = yn + f

(
yn + yn+1

2

)
Δt, (40)

we obtain the implicit midpoint rule, which can be viewed as a symmetrized variant
of explicit and implicit Euler. This is second order accurate, but still implicit, so
difficult to use in practice. Interestingly, it is also time-symmetric, i.e., one can
formally integrate backwards and recover exactly the same steps (modulo floating
point round-off errors) as in a forward integration.

3.2 Runge-Kutta Methods

The Runge-Kutta schemes form a whole class of versatile integration methods (e.g.
Atkinson 1978; Stoer and Bulirsch 2002). Let’s derive one of the simplest Runge-
Kutta schemes.

1. We start from the exact solution,

yn+1 = yn +
∫ tn+1

tn
f (y(t)) dt. (41)

2. Next, we approximate the integral with the (implicit) trapezoidal rule:

yn+1 = yn + f (yn) + f (yn+1)

2
Δt. (42)

3. Runge (1895) proposed to predict the unknown yn+1 on the right hand side by an
Euler step, yielding a 2nd order accurate Runge-Kutta scheme, sometimes also
called predictor-corrector scheme:

k1 = f (yn, tn), (43)

k2 = f (yn + k1Δt, tn+1), (44)

yn+1 = k1 + k2

2
Δt. (45)
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Here the step done with the derivate of Eq. (43) is called the ‘predictor’ and the
one done with Eq. (44) is the corrector step.

Higher order Runge-Kutta schemes A variety of further Runge-Kutta schemes
of different order can be defined. Perhaps the most commonly used is the classical
4th-order Runge-Kutta scheme:

k1 = f (yn, tn), (46)

k2 = f

(
yn + k1

Δt

2
, tn + Δt

2

)
, (47)

k3 = f

(
yn + k2

Δt

2
, tn + Δt

2

)
, (48)

k4 = f (yn + k3Δt, tn + Δt) . (49)

These four function evaluations per step are then combined in a weighted fashion to
carry out the actual update step:

yn+1 = yn +
(

k1

6
+ k2

3
+ k3

3
+ k4

6

)
Δt + O(Δt5). (50)

We note that the use of higher order schemes also entails more function evaluations
per step, i.e., the individual steps become more complicated and expensive. Because
of this, higher order schemes are not always better; they usually are up to some point,
but sometimes even a simple second-order accurate scheme can be the best choice
for certain problems.

3.3 The Leapfrog

Suppose we have a second order differential equation of the type

ẍ = f (x). (51)

This could of course be brought into standard form, ẏ = f̃(y), by defining something
like y = (x, ẋ) and f̃ = (ẋ, f (x)), followed by applying a Runge-Kutta scheme as
introduced above.

However, there is also another approach in this case, which turns out to be par-
ticularly simple and interesting. Let’s define v ≡ ẋ . Then the so-called Leapfrog
integration scheme is the mapping (xn, vn) → (xn+1, vn+1) defined as:

vn+ 1
2

= vn + f (xn)
Δt

2
, (52)

xn+1 = xn + vn+ 1
2
Δt, (53)

vn+1 = vn+ 1
2

+ f (xn+1)
Δt

2
. (54)
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• This scheme is 2nd-order accurate (proof through Taylor expansion).
• It requires only 1 evaluation of the right hand side per step (note that f (xn+1) can

be reused in the next step.
• The method is time-symmetric, i.e., one can integrate backwards in time and arrives

at the initial state again, modulo numerical round-off errors.
• The scheme can be written in a number of alternative ways, for example by com-

bining the two half-steps of two subsequent steps. One then gets:

xn+1 = xn + vn+ 1
2
Δt, (55)

vn+ 3
2

= vn+ 1
2

+ f (xn+1)Δt. (56)

One here sees the time-centered nature of the formulation very clearly, and the
interleaved advances of position and velocity give it the name leapfrog.

The performance of the leapfrog in certain problems is found to be surprisingly
good, better than that of other schemes such as Runge-Kutta which have formally the
same or even a better error order. This is illustrated in Fig. 2 for the Kepler problem,
i.e., the integration of the motion of a small point mass in the gravitational field of a
large mass. We see that the long-term evolution is entirely different. Unlike the RK
schemes, the leapfrog does not build up a large energy error. So why is the leapfrog
behaving here so much better than other 2nd order or even 4th order schemes?

3.4 Symplectic Integrators

The reason for these beneficial properties lies in the fact that the leapfrog is a so-called
symplectic method. These are structure-preserving integration methods (e.g. Saha
and Tremaine 1992; Hairer et al. 2002) that observe important special properties
of Hamiltonian systems: Such systems have first conserved integrals (such as the
energy), they also exhibit phase-space conservation as described by the Liouville
theorem, and more generally, they preserve Poincare’s integral invariants.

Symplectic transformations

• A linear map F : R2d → R
2d is called symplectic if ω(Fξ, Fη) = ω(ξ, η) for all

vectors ξ, η ∈ R
2d , where ω gives the area of the parallelogram spanned by the

two vectors.
• A differentiable map g : U → R

2d with U ∈ R is called symplectic if its Jacobian
matrix is everywhere symplectic, i.e., ω(g′ξ, g′η) = ω(ξ, η).

• Poincare’s theorem states that the time evolution generated by a Hamiltonian in
phase-space is a symplectic transformation.

The above suggests that there is a close connection between exact solutions of
Hamiltonians and symplectic transformations. Also, two consecutive symplectic
transformations are again symplectic.
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Fig. 2 Kepler problem integrated with different integration schemes (Springel, 2005). The panels
on top are for a 4th-order Runge Kutta scheme, the middle for a 2nd order Runge-Kutta, and the
bottom for a 2nd-order leapfrog. The leapfrog does not show a secular drift of the total energy, and
is hence much more suitable for long-term integration of this Hamiltonian system
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Separable Hamiltonians Dynamical problems that are described by Hamiltonians
of the form

H(p, q) = p2

2m
+ U (q) (57)

are quite common. These systems have separable Hamiltonians that can be written
as

H(p, q) = Hkin(p) + Hpot(q). (58)

Now we will allude to the general idea of operator splitting (Strang 1968). Let’s try
to solve the two parts of the Hamiltonian individually:

1. For the part H = Hkin = p2

2m , the equations of motion are

q̇ = ∂H

∂ p
= p

m
, (59)

ṗ = −∂H

∂q
= 0. (60)

These equations are straightforwardly solved and give

qn+1 = qn + pn

m
Δt, (61)

pn+1 = pn . (62)

Note that this solution is exact for the given Hamiltonian, for arbitrarily long time
intervals Δt . Given that it is a solution of a Hamiltonian, the solution constitutes
a symplectic mapping.

2. The potential part, H = Hpot = U (q), leads to the equations

q̇ = ∂H

∂ p
= 0, (63)

ṗ = −∂H

∂q
= −∂U

∂q
. (64)

This is solved by

qn+1 = qn, (65)

pn+1 = pn − ∂U

∂q
Δt. (66)

Again, this is an exact solution independent of the size of Δt , and therefore a
symplectic transformation.
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Let’s now introduce an operator ϕΔt (H) that describes the mapping of phase-
space under a Hamiltonian H that is evolved over a time interval Δt . Then it is easy
to see that the leapfrog is given by

ϕΔt (H) = ϕΔt
2

(Hpot) ◦ ϕΔt (Hkin) ◦ ϕΔt
2

(Hpot) (67)

for a separable Hamiltonian H = Hkin + Hpot.

• Since each individual step of the leapfrog is symplectic, the concatenation of
Eq. (67) is also symplectic.

• In fact, the leapfrog generates the exact solution of a modified Hamiltonian Hleap,
where Hleap = H +Herr. The difference lies in the ‘error Hamiltonian’ Herr, which
is given by

Herr ∝ Δt2

12

{
{

Hkin, Hpot
}
, Hkin + 1

2
Hpot

}
+ O(Δt3), (68)

where the curly brackets are Poisson brackets (Goldstein 1950). This can be
demonstrated by expanding

e(H+Herr)Δt = eHpot
Δt
2 eHkinΔt eHpot

Δt
2 (69)

with the help of the Baker-Campbell-Hausdorff formula (Campbell 1897; Saha
and Tremaine 1992).

• The above property explains the superior long-term stability of the integration
of conservative systems with the leapfrog. Because it respects phase-space con-
servation, secular trends are largely absent, and the long-term energy error stays
bounded and reasonably small.

4 Gravitational Force Calculation

As mentioned earlier, calculating the gravitational forces exactly for a large number
of bodies becomes computational prohibitive very quickly. Fortunately, in the case
of collisionless systems, this is also not necessary, because comparatively large force
errors can be tolerated. All they do is to shorten the relaxation time slightly by an
insignificant amount (Hernquist et al. 1993). In this section, we discuss a number
of the most commonly employed approximate force calculation schemes, beginning
with the so-called particle mesh techniques (White et al. 1983; Klypin and Shandarin
1983) that were originally pioneered in plasma physics (Hockney and Eastwood
1988).
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4.1 Particle Mesh Technique

An important approach to accelerate the force calculation for an N-body system
lies in the use of an auxiliary mesh. Conceptually, this so-called particle-mesh (PM)
technique involves four steps:

1. Construction of a density field ρ on a suitable mesh.
2. Computation of the potential on the mesh by solving the Poisson equation.
3. Calculation of the force field from the potential.
4. Calculation of the forces at the original particle positions.

We shall now discuss these four steps in turn. An excellent coverage of the material
in this section is given by Hockney and Eastwood (1988).

4.1.1 Mass Assignment

We want to put N particles with mass mi and coordinates ri (i = 1, 2, . . . , N ) onto
a mesh with uniform spacing h = L/Ng (Fig. 3). For simplicity, we will assume a
cubical calculational domain with extension L and a number of Ng grid cells per
dimension. Let {rp} denote the set of discrete cell-centers, with p = (px , py, pz)

being a suitable integer index (0 ≤ px,y,z < Ng). Note that one may equally well
identify the {rp} with the lower left corner of a mesh cell, if this is more practical.

We associate a shape function S(x) with each particle, normalized according to

∫
S(x) dx = 1. (70)

To each mesh-cell, we then assign the fraction Wp(xi ) of particle i’s mass that falls
into the cell indexed by p. This is given by the overlap of the mesh cell with the
shape function, namely:

Fig. 3 Sketch of the mesh
geometry used in typical
particle-mesh techniques
with Cartesian grids
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Wp(xi ) =
∫ xp+ h

2

xp− h
2

S(x − xi ) dx. (71)

The integration extends here over the cubical cell p. By introducing the top-hat
function

Π(x) =
{

1 for |x| ≤ 1
2 ,

0 otherwise,
(72)

we can extend the integration boundaries to all space and write instead:

Wp(xi ) =
∫

Π

(
x − xp

h

)
S(x − xi ) dx. (73)

Note that this also shows that the assignment function W is a convolution of Π with
S. The full density in grid cell p is then given

ρp = 1

h3

N∑

i=1

mi Wp(xi ). (74)

These general formula evidently depend on the specific choice one makes for
the shape function S(x). Below, we discuss a few of the most commonly employed
low-order assignment schemes.

4.1.2 Nearest Grid Point (NGP) Assignment

The simplest possible choice for S is a Dirac δ-function. One then gets:

Wp(xi ) =
∫

Π

(
x − xp

h

)
δ(x − xi ) dx = Π

(
xi − xp

h

)
. (75)

In other words, this means that Wp is either 1 (if the coordinate of particle i lies
inside the cell), or otherwise it is zero. Consequently, the mass of particle i is fully
assigned to exactly one cell—the nearest grid point, as sketched in Fig. 4.

Fig. 4 Sketch of the nearest grid point (NGP) assignment scheme. This simple binning scheme
simply assigns the mass of a particle completely to the one mesh cell in which it falls
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4.1.3 Clouds-in-cell (CIC) Assignment

Here one adopts as shape function

S(x) = 1

h3 Π
(x

h

)
, (76)

which is the same cubical ‘cloud’ shape as that of individual mesh cells. The assign-
ment function is

Wp(xi ) =
∫

Π

(
x − xp

h

)
1

h3 Π

(
x − xi

h

)
dx, (77)

which only has a non-zero (and then constant) integrand if the cubes centered on xi

and xp overlap. How can this overlap be calculated? The 1D sketch of Fig. 5 can help
to make this clear.

Recall that for one of the dimensions we have x p = (px + 1/2)h, for p ∈ {0, 1,
2, …, N − 1}. For a given particle coordinate xi we may first calculate a ‘floating
point index’ by inverting this relation, yielding p f = xi/h − 1/2. The index of the
left cell of the two cells with some overlap is then given by p = �p f �, where the
brackets denote the integer floor, i.e., the largest integer not larger than p f . We may
then further define p� ≡ p f − p, which is a number between 0 and 1. From the
sketch, we see that the length of the overlap of the particle’s cloud with the cell p is
h − hp�, hence the assignment function at cell p takes on the value Wp = 1 − p�

for this location of the particle, whereas the assignment function for the neighboring
cell p + 1 will take on the value Wp+1 = p�.

These considerations readily generalize to 2D and 3D. For example, in 2D (as
sketched in Fig. 6), we first assign to the yi -coordinate of point i a ‘floating point
index’ q f = yi/h − 1/2. We can then use this to compute a cell index as the integer
floor q = �q f �, and a fractional contribution q� = q f − q. Finally, we obtain the
following weights for the assignment of a particle’s mass to the four cells its ‘cloud’
touches in 2D (as sketched):

Fig. 5 Sketch of the clouds-in-cell (CIC) assignment scheme. The fraction of mass assigned to a
given cell is given by the fraction of the cubical cloud shape of the particle that overlaps with the
cell
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Fig. 6 Sketch of CIC
assignment of a particle to a
two-dimensional mesh

Wp,q = (1 − p�)(1 − q�) (78)

Wp+1,q = p�(1 − q�) (79)

Wp,q+1 = (1 − p�)q� (80)

Wp+1,q+1 = p�q� (81)

In the corresponding 3D case, each particle contributes to the weight functions of 8
cells, or in other words, it is spread over 8 cells.

4.1.4 Triangular Shaped Clouds (TSC) Assignment

One can construct a systematic sequence of ever higher-order shape functions by
adding more convolutions with the top-hat kernel. For example, the next higher
order (in 3D) is given by

Wp(xi ) =
∫

Π

(
x − xp

h

)
1

h3 Π

(
xi − x − x′

h

)
1

h3 Π

(
x′

h

)
dx dx′ (82)

= 1

h6

∫
Π

(
x − xp

h

)
Π

(
xi − x

h

)
Π

(
x′ − x

h

)
dx dx′. (83)

This still has a simple geometric interpretation. If one pictures the kernel shape as
a triangle with total base length 2h, then the fraction assigned to a certain cell is
given by the area of overlap of this triangle with the cell of interest (see Fig. 7).
The triangle will now in general touch 3 cells per dimension, making an evaluation
correspondingly more expensive. In 3D, 27 cells are touched for every particle.
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Fig. 7 Sketch of
triangular-shaped-clouds
(TSC) assignment. Here a
particle is spread to three
cells in one dimension

Table 1 Commonly used shape functions

Name Cloud shape S(x) # of cells used Assignment function
shape

NGP δ(x) 1d Π

CIC 1
hd Π

( x
h

)
2d Π � Π

TSC 1
hd Π

( x
h

)
� 1

hd Π
( x

h

)
3d Π � Π � Π

What’s the advantage of using TSC over CIC, if any? Or should one stick with the
computationally cheap NGP? The assignment schemes differ in the smoothness and
differentiability of the reconstructed density field. In particular, for NGP, the assigned
density and hence the resulting force jump discontinuously when a particle crosses
a cell boundary. The resulting force law will then at best be piece-wise constant.

In contrast, the CIC scheme produces a force that is piece-wise linear and contin-
uous, but its first derivative jumps. Here the information where a particle is inside a
certain cell is not completely lost, unlike in NGP.

Finally, TSC is yet smoother, and also the first derivative of the force is continu-
ous. See Table 1 for a brief summary of these assignment schemes. Which of these
schemes is the preferred choice is ultimately problem-dependent. In most cases,
CIC and TSC are quite good options, providing sufficient accuracy with still reason-
ably small (and hence computationally efficient) assignment kernels. The latter get
invariably more extended for higher-order assignment schemes, which not only is
computationally ever more costly but also invokes additional communication over-
heads in parallelization schemes.

4.1.5 Solving for the Gravitational Potential

Once the density field is obtained, we would like to solve Poisson’s equation

∇2Φ = 4πG ρ, (84)

and obtain the gravitational potential discretized on the same mesh. There are pri-
marily two methods that are in widespread use for this.

First, there are Fourier-transform based methods which exploit the fact that the
potential can be viewed as a convolution of a Green’s function with the density field. In
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Fourier-space, one can then use the convolution theorem and cast the computationally
expensive convolution into a cheap algebraic multiplication. Due to the importance
of this approach, we will discuss it extensively in Sect. 4.2.

Second, there are also iterative solvers for Poisson’s equation which yield a solu-
tion directly in real-space. Simple versions of such iteration schemes use Jacobi or
Gauss-Seidel iteration, more complicated ones employ a sophisticated multi-grid
approach to speed up convergence. We shall discuss these methods in Sect. 4.3.

4.1.6 Calculation of the Forces

Let’s assume for the moment that we already obtained the gravitational potential Φ

on the mesh, with one of the methods mentioned above. We would then like to get
the acceleration field from

a = −∇Φ. (85)

One can achieve this by calculating a numerical derivative of the potential by finite
differencing. For example, the simplest estimate of the force in the x-direction would
be

a(i, j,k)
x = −Φ(i+1, j,k) − Φ(i−1, j,k)

2h
, (86)

where p = (i, j, k) is a cell index. The truncation error of this expression is O(h2),
hence the estimate of the derivative is second-order accurate.

Alternatively, one can use larger stencils to obtain a more accurate finite difference
approximation of the derivative, at greater computational cost. For example, the 4-
point expression

a(i, j,k)
x = − 1

2h

{
4

3

[
Φ(i+1, j,k) − Φ(i−1, j,k)

]
− 1

6

[
Φ(i+2, j,k) − Φ(i−2, j,k)

]}

(87)
can be used, which has a truncation error of O(h4), as verified through simple Taylor
expansions.

For the y- and z-dimensions, corresponding formulae, where j or k are varied
and the other cell coordinates are held fixed, can be used. Whether a second- or
fourth-order discretization formula should be used depends again on the question
which compromise between accuracy and speed is best for a given problem. In
many collisionless simulation set-ups, the residual truncation error of the second-
order finite difference approximation of the force will be negligible compared to
other errors inherent in the simulation methodology, hence the second-order formula
would then be expected to be sufficient. But this cannot be generalized to all situations
and simulation setups; if in doubt, it is best to explicitly test for this source of error.
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4.1.7 Interpolating from the Mesh to the Particles

Once we have the force field on a mesh, we are not yet fully done. We actually desire
the forces at the particle coordinates of the N-body system, not at the coordinates
of the mesh cells of our auxiliary computational grid. We are hence left with the
problem of interpolating the forces from the mesh to the particle coordinates.

Recall that we defined the density field in terms of mass assignment functions, of
the form

ρp = 1

h3

∑

i

Wp(xi ) = 1

h3

∑

i

W (xi − xp). (88)

Here we introduced in the last expression an alternative notation for the weight
assignment function.

Assume that we have computed the acceleration field on the grid, {ap}. It turns
out to be very important to use the same assignment kernel as used in the density
construction also for the force interpolation, i.e., the force at coordinate x for a mass
m needs to be computed as

F(x) = m
∑

p

apW (x − xp), (89)

where W denotes the assignment function used for computing the density field on
the mesh. This requirement results from the desire to have a vanishing self-force, as
well as pairwise antisymmetric forces between every particle pair. The self-force is
the force that a particle would feel if just it alone would be present in the system.
If numerically this force would evaluate to a non-zero value, the particle would
accelerate all by itself, violating momentum conservation. Likewise, for two particles,
we require that the forces they mutually exert on each other are equal in magnitude
and opposite in direction, such that momentum conservation is manifest.

We now show that using the same kernels for the mass assignment and force inter-
polation protects against these numerical artefacts (Hockney and Eastwood 1988).
We start by noting that the acceleration field at a mesh point p depends linearly on
the mass at another mesh point p′, which is a manifestation of the superposition
principle (this can, for example, also be seen when Fourier techniques are used to
solve the Poisson equation). We can hence express the field as

ap =
∑

p′
d(p, p′) h3ρp′ , (90)

with a Green’s function d(p, p′). This vector-valued Green’s function for the force
is antisymmetric, i.e., it changes sign when the two points in the arguments are
swapped. Note that h3ρp′ is simply the mass contained in mesh cell p′.
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We can now calculate the self-force resulting from the density assignment and
interpolation steps:

Fself(xi ) = mi ai (xi ) = mi

∑

p

W (xi − xp)ap (91)

= mi

∑

p

W (xi − xp)
∑

p′
d(p, p′)h3ρp′ (92)

= mi

∑

p

W (xi − xp)
∑

p′
d(p, p′)mi W (xi − xp′) (93)

= m2
i

∑

p,p′
d(p, p′)W (xi − xp)W (xi − xp′) (94)

= 0. (95)

Here we have started out with the interpolation from the mesh-based acceleration
field, and then inserted the expansion of the latter as convolution over the density field
of the mesh. Finally, we put in the density contribution created by the particle i at a
mesh cell p′. We then see that the double sum vanishes because of the antisymmetry
of d and the symmetry of the kernel product under exchange of p and p′. Note
that this however only works because the kernels used for force interpolation and
density assignment are indeed equal—it would have not worked out if they would
be different, which brings us back to the point emphasized above.

Now let’s turn to the force antisymmetry. The force exerted on a particle 1 of mass
m1 at location x1 due to a particle 2 of mass m2 at location x2 is given by

F12 = m1a(x1) = m1

∑

p

W (x1 − xp)ap (96)

= m1

∑

p

W (x1 − xp)
∑

p′
d(p, p′)h3ρp′ (97)

= m1

∑

p

W (x1 − xp)
∑

p′
d(p, p′)m2W (x2 − xp′) (98)

= m1m2

∑

p,p′
d(p, p′)W (x1 − xp)W (x2 − xp′). (99)

Likewise, we obtain for the force experienced by particle 2 due to particle 1:

F21 = m1m2

∑

p′,p
d(p, p′)W (x2 − xp)W (x1 − xp′). (100)

We may swap the summation indices through relabeling and exploiting the antisym-
metry of d, obtaining:

F21 = −m1m2

∑

p′,p
d(p, p′)W (x1 − xp)W (x2 − xp′). (101)
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Hence we have F12 + F21 = 0, independent on where the points are located on the
mesh.

4.2 Fourier Techniques

Fourier transforms provide a powerful tool for solving certain partial differential
equations. In this subsection we shall consider the particularly important example of
using them to solve Poisson’s equation, but we note that the basic technique can be
used in similar form also for other systems of equations.

4.2.1 Convolution Problems

Suppose we want to solve Poisson’s equation,

∇2Φ = 4πGρ, (102)

for a given density distribution ρ. Actually, we can readily write down a solution for a
non-periodic space, since we know the Newtonian potential of a point mass, and the
equation is linear. The potential is simply a linear superposition of contributions from
individual mass elements, which in the continuum can be written as the integration:

Φ(x) = −
∫

G
ρ(x′) dx′

|x − x′| . (103)

This is recognized to be a convolution integral of the form

Φ(x) =
∫

g(x − x′) ρ(x′) dx′, (104)

where

g(x) = − G

|x| (105)

is the Green’s function of Newtonian gravity. The convolution may also be formally
written as:

Φ = g � ρ. (106)

We now recall the convolution theorem, which says that the Fourier transform of
the convolution of two functions is equal to the product of the individual Fourier
transforms of the two functions, i.e.,

F( f � g) = F( f ) · F(g), (107)
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where F denotes the Fourier transform and f and g are the two functions. A con-
volution in real space can hence be transformed to a much simpler, point-by-point
multiplication in Fourier space.

There are many problems where this can be exploited to arrive at efficient calcu-
lational schemes, for example in solving Poisson’s equation for a given density field.
Here the central idea is to compute the potential through

Φ = F−1 [F(g) · F(ρ)] , (108)

i.e., in Fourier space, with Φ̂(k) ≡ F(Φ), we have the simple equation

Φ̂(k) = ĝ(k) · ρ̂(k). (109)

4.2.2 The Continuous Fourier Transform

But how do we solve this in practice? Let’s first assume that we have periodic
boundary conditions with a box of size L in each dimension. The continuous ρ(x)

can in this case be written as a Fourier series of the form

ρ(x) =
∑

k

ρk eikx, (110)

where the sum over the k-vectors extends over a discrete spectrum of wave vectors,
with

k ∈ 2π

L

⎛

⎝
n1
n2
n3

⎞

⎠ , (111)

where n1, n2, n3 are from the set of positive and negative integer numbers. The
allowed modes in k hence form an infinitely extended Cartesian grid with spacing
2π/L . Because of the periodicity condition, only these waves ‘fit’ into the box. For
a real field such as ρ, there is also a reality constraint of the form ρk = ρ�−k, hence
the modes are not all independent. The Fourier coefficients can be calculated as

ρk = 1

L3

∫

V
ρ(x) e−ikxdx, (112)

where the integration is over one instance of the periodic box.
More generally, the periodic Fourier series features the following orthogonality

and closure relationships:

1

L3

∫
dx ei(k−k′)x = δk,k′ , (113)
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1

L3

∑

k

eikx = δ(x), (114)

where the first relation gives a Kronecker delta, the second a Dirac δ-function.
Let’s now look at the Poisson equation again and replace the potential and the

density field with their corresponding Fourier series:

∇2

(
∑

k

Φk eikx

)

= 4πG

(
∑

k

ρk eikx

)

. (115)

We see that we can easily carry out the spatial derivate on the left hand side, yielding:

∑

k

(
−k2Φk

)
eikx = 4πG

∑

k

ρk eikx. (116)

The equality must hold for each of the Fourier modes separately, hence we infer

Φk = −4πG

k2 ρk. (117)

Comparing with Eq. (109), this means we have identified the Green’s function of the
Poisson equation in a periodic space as

gk = −4πG

k2 . (118)

4.2.3 The Discrete Fourier Transform (DFT)

The above considerations were still for a continuous density field. On a computer,
we will usually only have a discretized version of the field ρ(x), defined at a set of
points. Assuming we have N equally spaced points per dimension, the x positions
may only take on the discrete positions

xp = L

N

⎛

⎝
p1
p2
p3

⎞

⎠ where p1, p2, p3 ∈ {0, 1, . . . , N − 1}. (119)

With the replacement d3x → (L/N )3, we can cast the Fourier integral (112) into a
discrete sum:

ρk = 1

N 3

∑

p

ρp e−ikxp . (120)

Because of the periodicity and the finite number of density values that is summed
over, it turns out that this also restricts the number of k values that give different
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answers—shifting k in any of the dimensions by N times the fundamental mode
2π/L gives again the same result. We may then for example select as primary set of
k-modes the values

kl = 2π

L

⎛

⎝
l1
l2
l3

⎞

⎠ where l1, l2, l3 ∈ {0, 1, . . . , N − 1}, (121)

and the construction of ρ through the Fourier series becomes a finite sum over these
N 3 modes. We have now arrived at the discrete Fourier transform (DFT), which can
equally well be written as:

ρ̂l = 1

N 3

∑

p

ρp e−i 2π
N lp, (122)

ρp =
∑

l

ρ̂l ei 2π
N lp. (123)

Here are some notes about different aspects of the Fourier pair defined by these
relations:

• The two transformations are an invertible linear mapping of a set of N 3 (or N in
1D) complex values ρp to N 3 complex values ρ̂l, and vice versa.

• To label the frequency values, k = (2π/L) · l, one often conventionally uses the
set l ∈ {−N/2, . . . ,−1, 0, 1, . . . , N

2 − 1} instead of l ∈ {0, 1, . . . , N − 1}, which
is always possible because shifting l by multiples of N does not change anything
as this yields only a 2π phase factor. With this convention, the occurrence of both
negative and positive frequencies is made more explicit, and they are arranged
quasi-symmetrically in a box in k-space centered on k = (0, 0, 0). The box extends
out to

kmax = N

2

2π

L
, (124)

which is the so-called Nyquist frequency (e.g. Diniz et al. 2002). Adding waves
beyond the Nyquist frequency in a reconstruction of ρ on a given grid would add
redundant information that could not be unambiguously recovered from the dis-
cretized density field. (Instead, the power in these waves would be erroneously
mapped to lower frequencies—this is called aliasing, see also the so-called sam-
pling theorem.)

• Parseval’s theorem relates the quadratic norms of the transform pair, namely

∑

p

|ρp|2 = N 3
∑

l

|ρ̂l|2. (125)

• The 1/N 3 normalization factor could equally well be placed in front of the Fourier
series instead of the Fourier transform, or one may split it symmetrically and
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introduce a factor 1/
√

N 3 in front of both. This is just a matter of convention, and
all of these alternative conventions are sometimes used.

• In fact, many computer libraries for the DFT will omit the factor N completely and
leave it up to the user to introduce it where needed. Commonly, the DFT library
functions define as forward transform of a set of N complex numbers x j , with
j ∈ {0, . . . , N − 1}, the set of N complex numbers:

yk =
N−1∑

j=0

x j e−i 2π
N j ·k . (126)

The backwards transform is then defined as

yk =
N−1∑

j=0

x j ei 2π
N j ·k . (127)

This form of writing the Fourier transform is now nicely symmetric, with the
only difference between forward and backward transforms being the sign in the
exponential function. However, in this case we have that F−1(F(x)) = Nx,
i.e., to get back to the original input vector x one must eventually divide by N .
Note that the multi-dimensional transforms are simply Cartesian products of one-
dimensional transforms, i.e., those are obtained as straightforward generalizations
of the one-dimensional definition.

• Computing the DFT of N numbers has in principal a computational cost of order
O(N 2). This is because for each of the N numbers one has to calculate N terms and
sum them up. Fortunately, in 1965, the Fast Fourier Transform (FFT) algorithm
(Cooley and Tukey 1965) has been discovered (interestingly, Gauss had already
known something similar; Gauss 1866). This method for calculating the DFT sub-
divides the problem recursively into smaller and smaller blocks. It turns out that
this divide and conquer strategy can reduce the computational cost to O(N log N ),
which is a very significant difference. The result of the FFT algorithm is math-
ematically identical to the DFT. But actually, in practice, the FFT is even better
than a direct computation of the DFT, because as an aside the FFT algorithm
also reduces the numerical floating point round-off error that would otherwise be
incurred. It is ultimately only because of the existence of the FFT algorithm that
Fourier methods are so widely used in numerical calculations and applicable to
even very large problem sizes.

4.2.4 Storage Conventions for the DFT

Most numerical libraries for computing the FFT store both the original field and its
Fourier transform as simple arrays indexed by k ∈ {0, . . . , N − 1}. The negative
frequencies will then be stored in the upper half of the array, consistent with what
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Fig. 8 Commonly employed
storage convention for DFTs.
The positive frequencies are
stored in the lower half of
the array, the negative ones
in the upper half

one obtains by subtracting N from the linear index. The example shown in Fig. 8 for
N = 8 in 1D may help to make this clear.

Correspondingly, in 2D, the grid of real-space values is mapped to a grid of k-
space values of the same dimensions. Again, negative frequencies seem to be stored
‘backwards’, with the smallest negative frequency having the largest linear index, and
the most negative frequency appearing as first value past the middle of the mesh. But
note that this is consistent with the translational invariance in k-space with respect
to shifts of the indices by multiples of N .

Finally, when we have a real real-space field (such as the physical density), the
discrete Fourier transform fulfills a reality constraint of the form ρ̂k = ρ̂�−k. This
implies a set of relations between the complex values that make up the Fourier
transform of ρ, reducing the number of values that can be chosen arbitrarily. What
does this imply in the discrete case? Consider the sketch shown in Fig. 9, in which
regions of like color are related to each other by the reality constraint. Note that
kx = N/2 indices are aliased to themselves under complex conjugation, i.e., negating
this gives kx = −N/2, but since N can be added, this mode really maps again to
kx = N/2. Nevertheless, for the yellow regions there are always different partner
cells when one considers the corresponding −k cell. Only for the orange cells this

Fig. 9 Sketch illustrating
the implications of the reality
constraint for the FFT of a
field of reals in 2D. Different
pairs of cells are related to
each other as complex
conjugate numbers (labeled
as colored blocks), and some
are aliased to themselves
(orange) so that they end up
being real
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is not the case; those are mapped to themselves and are hence real due to the reality
constraint.

If we now count how many independent numbers we have in the Fourier trans-
formed grid of a 2D real field, we find

2

(
N

2
− 1

)2

× 2 + 4

(
N

2
− 1

)
× 2 + 4 × 1. (128)

The first term accounts for the two square-shaped regions that have different mirrored
regions. Those contain ( N

2 − 1)2 complex numbers, each with two independent real
and imaginary values. Then there are 4 different sections of rows and columns that
are related to each other by mirroring in k-space. Those contain ( N

2 − 1) complex
numbers each. Finally, there are 4 independent cells that are real and hence account
for one independent value each. Reassuringly, the sum of Eq. (128) works out to N 2,
which is the result we expect: the number of independent values in Fourier space
must be exactly equal to the N 2 real values we started out with, otherwise we would
not expect a strictly reversible transformation.

4.2.5 Non-periodic Problems with ‘Zero Padding’

Can we use the FFT/DFT techniques discussed above also to calculate non-periodic
force fields? At first, this may seem impossible since the DFT is intrinsically periodic.
However, through the so-called zero-padding trick one can circumvent this limitation.

Let’s discuss the procedure based on a 2D example (it works also in 1D or 3D, of
course):

1. We need to arrange our mesh such that the source distribution lives only in
one quarter of the mesh, the rest of the density field needs to be zeroed out.
Schematically we hence have the situation depicted in Fig. 10.

Fig. 10 Sketch of zero
padding used to treat
non-periodic problems with
the discrete Fourier
transform
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2. We now set up our desired real-space Green’s function, i.e., this is the response
of a mass at the origin. The Green’s function for the whole mesh is set-up as
gN−i, j = gi,N− j = gN−i,N− j = gi, j where 0 ≤ i, j ≤ N/2. This is equivalent
to defining g everywhere on the mesh, and using as relevant distance the distance
to the nearest periodic image of the origin. Note that by replicating g with the
condition of periodicity, the tessellated mesh then effectively yields a Green’s
function that is nicely symmetric around the origin.

3. We now want to carry out the real-space convolution

φ = g � ρ (129)

by using the definition of the discrete, periodic convolution

Φp =
∑

n

gp−n ρn, (130)

where both g and ρ are treated as periodic fields for which adding multiples of
N to the indices does not change anything. We see that this sum indeed yields
the correct result for the non-periodic potential in the quarter of the mesh that
contains our source distribution. This is because the Green’s function ‘sees’ only
one copy of the source distribution in this sector; the zero-padded region is big
enough to prevent any cross-talk from the (existing) periodic images of the source
distribution. This is different in the other three quadrants of the mesh. Here
we obtain incorrect potential values that are basically useless and need to be
discarded.

4. Given that Eq. (130) yields the correct result in the region of the mesh covered by
the sources, we may now just as well use periodic FFTs in the usual way to carry
out this convolution quickly! A downside of this procedure is that it features an
enlarged cost in terms of CPU and memory usage. Because we have to effectively
double the mesh-size compared to the corresponding periodic problem, the cost
goes up by a factor of 4 in 2D, and by a factor of 8 in 3D.

5. We note that James (1977) proposed an ingenious trick based that allows a more
efficient treatment of isolated source distributions. Through suitably determined
correction masses on the boundaries, the memory and CPU cost can be reduced
compared to the zero-padding approach described above.

4.3 Multigrid Techniques

Let’s return once more to the problem of solving Poisson’s equation,

∇2Φ = 4πGρ, (131)
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and consider first the one-dimensional problem, i.e.,

∂2Φ

∂x2 = 4πGρ(x). (132)

The spatial derivative on the left hand-side can be approximated as

(
∂2Φ

∂x2

)

i
� Φi+1 − 2Φi + Φi−1

h2 , (133)

where we have assumed that Φ is discretized with N points on a regular mesh with
spacing h, and i is the cell index. This means that we have the equations

Φi+1 − 2Φi + Φi−1

h2 = 4πGρi . (134)

There are N of these equations, for the N unknowns Φi , with i ∈ {0, 1, . . . , N − 1}.
This means we should in principle be able to solve this algebraically! In other words,
the system of equations can be rewritten as a standard linear set of equations, in the
form

Ax = b, (135)

with a vector of unknowns, x = (Φi ), and a right hand side b = 4πG
h2 ρ. In the 1D

case, the matrix A (assuming periodic boundary conditions) is explicitly given as

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 1 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (136)

Solving equation (135) directly constitutes a matrix inversion that can in principle
be carried out by LU-decomposition or Gauss elimination with pivoting (e.g. Press
et al. 1992). However, the computational cost of these procedures is of order O(N 3),
meaning that it becomes extremely costly with growing N , and rather sooner than
later infeasible, already for problems of small to moderate size.

4.3.1 Jacobi Iteration

However, if we are satisfied with an approximate solution, then we can turn to iterative
solvers that are much faster. Suppose we decompose the matrix A as

A = D − (L + U), (137)
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where D is the diagonal part, L is the (negative) lower diagonal part and U is the
upper diagonal part. Then we have

[D − (L + U)] x = b, (138)

and from this
x = D−1b + D−1(L + U)x. (139)

We can use this to define an iterative sequence of vectors xn :

x(n+1) = D−1b + D−1(L + U)x(n). (140)

This is called Jacobi iteration (e.g. Saad 2003). Note that D−1 is trivially obtained
because D is diagonal. I.e., here (D−1)i i = 1/Ai i .

The scheme converges if and only if the so-called convergence matrix

M = D−1(L + U) (141)

has only eigenvalues that are less than 1, or in other words, that the spectral radius
ρs(M) fullfils

ρs(M) ≡ max
i

|λi | < 1. (142)

We can easily derive this condition by considering the error vector of the iteration.
At step n it is defined as

e(n) ≡ xexact − x(n), (143)

where xexact is the exact solution. We can use this to write the error at step n + 1 of
the iteration as

e(n+1) = xexact −x(n+1) = xexact −D−1b−D−1(L+U)x(n) = Mxexact −Mx(n) = Me(n)

(144)
Hence we find

e(n) = Mne(0). (145)

This implies |e(n)| ≤ [ρs(M)]n|e(0)|, and hence convergence if the spectral radius is
smaller than 1.

For completeness, we state the Jacobi iteration rule for the Poisson equation
in 3D when a simple 2-point stencil is used in each dimension for estimating the
corresponding derivatives:

Φ
(n+1)
i, j,k = 1

6

(
Φi+1, j,k + Φi−1, j,k + Φi, j+1,k + Φi, j−1,k + Φi, j,k+1 + Φi, j,k−1

− 4πGh2ρi, j,k

)
. (146)
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4.3.2 Gauss-Seidel Iteration

The central idea of Gauss-Seidel iteration is to use the updated values as soon as
they become available for computing further updated values. We can formalize this
as follows. Adopting the same decomposition of A as before, we can write

(D − L)x = Ux + b, (147)

from which we obtain

x = (D − L)−1Ux + (D − L)−1b, (148)

suggesting the iteration rule

x(n+1) = (D − L)−1Ux(n) + (D − L)−1b. (149)

This seems at first problematic, because we can’t easily compute (D − L)−1. But we
can modify the last equation as follows:

Dx(n+1) = Ux(n) + Lx(n+1) + b. (150)

From which we get the alternative form:

x(n+1) = D−1Ux(n) + D−1Lx(n+1) + D−1b. (151)

Again, this may seem of little help because it looks like x(n+1) would only be implic-
itly given. However, if we start computing the new elements in the first row i = 1
of this matrix equation, we see that no values of x(n+1) are actually needed, because
L has only elements below the diagonal. For the same reason, if we then proceed
with the second row i = 2, then with i = 3, etc., only elements of x(n+1) from rows
above the current one are needed. So we can calculate things in this order without
problem and make use of the already updated values. It turns out that this speeds
up the convergence quite a bit, with one Gauss-Seidel step often being close to two
Jacobi steps.

4.3.3 Red Black Ordering

A problematic point about Gauss-Seidel is that the equations have to be solved in
a specific sequential order, meaning that this part cannot be parallelized. Also, the
result will in general depend on which element is selected to be the first. To overcome
this problem, one can sometimes use so-called red-black ordering, which effectively
is a compromise between Jacobi and Gauss-Seidel.

Certain update rules, such as that for the Poisson equation, allow a decomposition
of the cells into disjoint sets whose update rules depend only on cells from other
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Fig. 11 Red-black ordering
in which two interleaved
chessboard-like patterns are
formed that can be
independently processed
with immediate updating

sets, as shown in Fig. 11. For example, for the Poisson equation, this is the case for
a chess-board like pattern of ‘red’ and ‘black’ cells.

One can then first update all the black points (which rely only on the red points),
followed by an update of all the red points (which rely only on the black ones). In
the second of these two half-steps, one can then use the updated values from the
first half-step, making it intuitively clear why such a scheme can almost double the
convergence rate relative to Jacobi.

4.3.4 The Multigrid Technique

Iterative solvers like Jacobi or Gauss-Seidel often converge quite slowly, in fact, the
convergence seems to “stall” after a few steps and proceeds only anemically. One
also observes that high-frequency errors in the solution are damped out quickly by
the iterations, but long-wavelength errors die out much more slowly. Intuitively this
is not unexpected: In every iteration, only neighboring points communicate, so the
information “travels” only by one cell (or more generally, one stencil length) per
iteration. And for convergence, it has to propagate back and forth over the whole
domain a few times.

Idea By going to a coarser mesh, we may be able to compute an improved initial
guess which may help to speed up the convergence on the fine grid (Brandt 1977).
Note that on the coarser mesh, the relaxation will be computationally cheaper (since
there are only 1/8 as many points in 3D, or 1/4 in 2D), and the convergence rate
should be faster, too, because the perturbation is there less smooth and effectively
on a smaller scale relative to the coarser grid.

So schematically, we, for example, might imagine an iteration scheme where we
first iterate the problem Ax = b on a mesh with cells 4h, i.e., for times coarser than
the fine mesh. Once we have a solution there, we continue to iterate it on a mesh
coarsened with cell size 2h, and only finally we iterate to solution on the fine mesh
with cell size h.

A couple of questions immediately come up when we want to work out the details
of this basic idea:
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1. How do we get from a coarse solution to a guess on a finer grid?
2. How should we solve Ax = b on the coarsened mesh?
3. What if there is still an error left with long wavelength on the fine grid?

In order to make things work, we clearly need mappings from a finer grid to a
coarser one, and vice versa. This is the most important issue to solve.

4.3.5 Prolongation and Restriction Operations

Coarse-to-fine This transition is an interpolation step, or in the language of multigrid
methods (Briggs et al. 2000), it is called prolongation. Let x(h) be a vector defined
on a mesh Ω(h) with N cells and spacing h, covering our computational domain.
Similarly, let x(2h) be a vector living on a coarser mesh Ω(2h) with twice the spacing
and half as many points per dimension. We now define a linear interpolation operator
Ih

2h that maps points from the coarser to the fine mesh, as follows:

Ih
2h x(2h) = x(h). (152)

A simple realization of this operator in 2D would be the following:

Ih
2h :

x (h)
2i = x (2h)

i
for 0 ≤ i < N

2 .

x (h)
2i+1 = 1

2 (x (2h)
i + x (2h)

i+1 )

(153)

Here, every second point is simply injected from the coarse to the fine mesh, and
the intermediate points are linearly interpolated from the neighboring points, which
here boils down to a simple arithmetic average.

Fine-to-coarse The converse mapping represents a smoothing operation, or a restric-
tion in multigrid-language. We can define the restriction operator as

I2h
h x(h) = x(2h), (154)

which hence takes a vector defined on the fine grid Ω(h) to one that lives on the
coarse grid Ω(2h). Again, let’s give a simple realization example in 2D:

I2h
h : x (2h)

i = x (h)
2i−1 + 2x (h)

2i + x (h)
2i+1

4
for 0 ≤ i <

N

2
. (155)

Evidently, this is a smoothing operation with a simple 3-point stencil.
One usually chooses these two operators such that the transpose of one is propor-

tional to the other, i.e., they are related as follows:

I2h
h = c [Ih

2h]T, (156)

where c is a real number.
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In a shorter notation, the above prolongation operator can be written as

1D-prolongation, Ih
2h :

]
1

2
1

1

2

[
, (157)

which means that every coarse point is added with these weights to three points of
the fine grid. The fine-grid points accessed with weight 1/2 will get contributions
from two coarse grid points. Similarly, the restriction operator can be written with
the short-hand notation

1D-restriction, I2h
h :

[
1

4

1

2

1

4

]
. (158)

This expresses that every coarse grid point is a weighted sum of three fine grid points.
For reference, we also state the corresponding low-order prolongation and restric-

tion operators in 2D:

2D-prolongation, Ih
2h :

⎤

⎥
⎥
⎥
⎥
⎦

1
4

1
2

1
4

1
2 1 1

2

1
4

1
2

1
4

⎡

⎢
⎢
⎢
⎢
⎣

(159)

2D-restriction, I2h
h :

⎡

⎢
⎢
⎢
⎢
⎣

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

⎤

⎥
⎥
⎥
⎥
⎦

(160)

Corresponding extensions to 3D can be readily derived.

4.3.6 The Multigrid V-Cycle

An important role in the multigrid approach plays the error vector, defined as

e ≡ xexact − x̃, (161)

where xexact is the exact solution, and x̃ the (current) approximate solution. Another
important concept is the residual, defined as

r ≡ b − Ax̃. (162)
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Note that the pair of error and residual are solutions of the original linear system,
i.e., we have

Ae = r. (163)

Coarse-grid correction scheme We now define a function that is supposed to return
an improved solution x̃′(h) for the problem A(h)x(h) = b(h) on grid level h, based
on some starting guess x̃(h) and a right hand side b(h). This so-called coarse grid
correction,

x̃′(h) = CG(x̃(h), b(h)), (164)

proceeds along the following steps:

1. Carry out a relaxation step on h (for example by using one Gauss-Seidel or one
Jacobi iteration).

2. Compute the residual: r(h) = b(h) − A(h)x̃(h).
3. Restrict the residual to a coarser mesh: r(2h) = I2h

h r(h).
4. Solve A(2h)e(2h) = r(2h) on the coarsened mesh, with ẽ(2h) = 0 as initial guess.
5. Prolong the obtained error e(2h) to the finer mesh, e(h) = Ih

2h e(2h), and use it to
correct the current solution on the fine grid: x̃′(h) = x̃(h) + e(h).

6. Carry out a further relaxation step on the fine mesh h.

How do we carry out step 4 in this scheme? We can use recursion! Because what
we have to do in step 4 is exactly the job description of the function CG(., .). However,
we also need a stopping condition for the recursion, which is simply a prescription
that tells us under which conditions we should skip steps 2–5 in the above scheme.
We can do this by simply saying that further coarsening of the problem should stop
once we have reached a minimum number of cells N . At this point we either just do
the relaxation steps, or we solve the remaining problem exactly.

V-Cycle When the coarse grid correction scheme is recursively called, we arrive
at the schematic diagram shown in Fig. 12 for how the iteration progresses, which
is called a V-cycle. It turns out that the V-cycle rather dramatically speeds up the
convergence rate of simple iterative solvers for linear systems of equations. It is easy

Fig. 12 The typical V-cycle
of a multigrid iteration
scheme. The current solution
on a fine mesh is recursively
restricted to coarser meshes.
Coarse-grid corrections are
then prolonged back up to
the finer meshes, interleaved
with one Gauss-Seidel or
Jacobi iteration at the
corresponding mesh level
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to show that the computational cost of one V-cycle is of order O(Ngrid), where Ngrid
is the number of grid cells on the fine mesh. A convergence to truncation error (i.e.,
machine precision) requires several V-cycles and involves a computational cost of
orderO(Ngrid log Ngrid). For the Poisson equation, this is the same cost scaling as one
gets with FFT-based methods. In practice, good implementations of the two schemes
should roughly be equally fast. In cosmology, a multigrid solver is for example used
by the MLAPM (Knebe et al. 2001) and RAMSES codes (Teyssier 2002). An interesting
advantage of multigrid is that it requires less data communication when parallelized
on distributed memory machines.

One problem we haven’t addressed yet is how one finds the operator A(2h) required
on the coarse mesh. The two most commonly used options for this are:

• Direct coarse grid approximation: Here one simply uses the same discrete equa-
tions on the coarse grid as on the fine grid, just scaled by the grid resolution h as
needed. In this case, the stencil of the matrix does not change.

• Galerkin coarse grid approximation: Here one defines the coarse operator as

A(2h) = I2h
h A(h) Ih

2h, (165)

which is formally the most consistent way of defining A(2h), and in this sense
optimal. However, computing the matrix in this way can be a bit cumbersome,
and it may involve a growing size of the stencil, which then leads to an enlarged
computational cost.

4.3.7 The Full Multigrid Method

The V-cycle scheme discussed thus far still relies on an initial guess for the solution,
and if this guess is bad, one has to do more V-cycles to reach satisfactory convergence.
This raises the question on how one may get a good guess. If one is dealing with
the task of repeatedly having to solve the same problem over and over again with
only small changes from solution to solution (as will often be the case in dynamical
simulation problems) one may be able to simply use the solution from the previous
timestep as a guess. In all other cases, one can allude to the following idea: Let’s get
a good guess by solving the problem on a coarser grid first, and then interpolate the
coarse solution to the fine grid as a starting guess.

But at the coarser grid, one is then again confronted with the task to solve the
problem without a starting guess. Well, we can simply recursively apply the idea
again, and delegate the finding of a good guess to a yet coarser grid, etc. This then
yields the full multigrid cycle, as depicted in Fig. 13. It involves the following steps:

1. Initialize the right hand side on all grid levels, b(h), b(2h), b(4h), . . . , b(H), down
to some coarsest level H .

2. Solve the problem (exactly) on the coarsest level H .
3. Given a solution on level i with spacing 2h, map it to the next level i + 1 with

spacing h and obtain the initial guess x̃(h) = I h
2h x(2h).
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Fig. 13 The full multigrid
cycle in which also the
problem of finding an
adequate starting guess is
addressed

4. Use this starting guess to solve the problem on the level i + 1 with one V-cycle.
5. Repeat Step 3 until the finest level is reached.

The computational cost of such a full multigrid cycle is still of order the number
of mesh cells, as before.

4.4 Hierarchical Multipole Methods (“tree Codes”)

Another approach for a real-space evaluation of the gravitational field are so-called
tree codes (Barnes and Hut 1986). In cosmology, they are for example used in the PKD-

GRAV/GASOLINE (Wadsley et al. 2004) and GADGET (Springel et al. 2001; Springel
2005) codes.

4.4.1 Multipole Expansion

The central idea is here to use the multipole expansion of a distant group of particle
to describe its gravity, instead of summing up the forces from all individual particles.

The potential of the group is given by

Φ(r) = −G
∑

i

mi

|r − xi | , (166)

which we can re-write as

Φ(r) = −G
∑

i

mi

|r − s + s − xi | . (167)

Now we expand the denominator assuming |xi − s| � |r − s|, which will be the case
provided the opening angle θ under which the group is seen is sufficiently small, as
sketched in Fig. 14. We can then use the Taylor expansion
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Fig. 14 Multipole
expansion for a group of
distant particles. Provided
the reference point r is
sufficiently far away, the
particles are seen under a
small opening angle θ, and
the field created by the
particle group can be
approximated by the
monopole term at its center
of mass, augmented with
higher order multipole
corrections if desired

1

|y + s − xi | = 1

|y| − y · (s − xi )

|y|3 + 1

2

yT
[
3(s − xi )(s − xi )

T − (s − xi )
2
]

y

|y|5 +· · · ,

(168)
where we introduced y ≡ r − s as a short-cut. The first term on the right hand side
gives rise to the monopole moment, the second to the dipole moment, and the third
to the quadrupole moment. If desired, one can continue the expansion to ever higher
order terms.

These multipole moments then become properties of the group of particles:

monopole: M =
∑

i

mi , (169)

quadrupole: Qi j =
∑

k

mk

[
3(s − xk)i (s − xk) j − δi j (s − xk)

2
]
. (170)

The dipole vanishes, because we carried out the expansion relative to the center-of-
mass, defined as

s = 1

M

∑

i

mi xi . (171)

If we restrict ourselves to terms of up to quadrupole order, we hence arrive at the
expansion

Φ(r) = −G

(
M

|y| + 1

2

yT Qy
|y|5

)
, y = r − s, (172)
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from which also the force can be readily obtained through differentiation. Recall that
we expect the expansion to be accurate if

θ � 〈|xi − s|〉
|y| � l

y
� 1, (173)

where l is the radius of the group.

4.4.2 Hierarchical Grouping

Tree algorithms are based on a hierarchical grouping of the particles, and for each
group, one then pre-computes the multipole moments for later use in approximations
of the force due to distant groups. Usually, the hierarchy of groups is organized with
the help of a tree-like data structure, hence the name “tree algorithms”.

There are different strategies for defining the groups. In the popular Barnes and
Hut (1986) oct-tree, one starts out with a cube that contains all the particles. This cube
is then subdivided into 8 sub-cubes of half the size in each spatial dimension. One
continues with this refinement recursively until each subnode contains only a single
particle. Empty nodes (sub-cubes) need not be stored. Figure 15 shows a schematic
sketch how this can look like in two dimensions.

• We note that the oct-tree is not the only possible grouping strategy. Sometimes kd-
trees (Stadel 2001), or binary trees where subdivisions are done along alternating
spatial axes are used.

• An important property of such hierarchical, tree-based groupings is that they are
geometrically highly flexible and adjust to any clustering state the particles may
have. They are hence automatically adaptive.

• Also, there is no significant slow-down when severe clustering starts.
• The simplest way to construct the hierarchical grouping is to sequentially insert

particles into the tree, and then to compute the multipole moments recursively.

4.4.3 Tree Walk

The force calculation with the tree then proceeds by walking the tree. Starting at
the root node, one checks for every node whether the opening angle under which
it is seen is smaller than a prescribed tolerance angle θc. If this is the case, the
multipole expansion of the node can be accepted, and the corresponding partial force
is evaluated and added to an accumulation of the total force. The tree walk along this
branch of the tree can then be stopped. Otherwise, one must open the tree node and
consider all its sub-nodes in turn.

The resulting force is approximate by construction, but the overall size of the error
can be conveniently controlled by the tolerance opening angle θc (see also Salmon
and Warren 1994). If one makes this smaller, more nodes will have to be opened. This
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Fig. 15 Organization of the
Barnes and Hut (1986) tree
in two dimensions (quad
tree). All particles are
enclosed in a square-shaped
box. This is then
hierarchically subdivided
until each particle finds itself
in a node on its own. Empty
cells do not need to be stored

will make the residual force errors smaller, but at the price of a higher computational
cost. In the limit of θc → 0 one gets back to the expensive direct summation force.

An interesting variant of this approach to walk the tree is obtained by not only
expanding the potential on the source side into a multipole expansion, but also around
the target coordinate. This can yield a substantial additional acceleration and results in
so-called fast multipole methods (FFM). The FALCON code of Dehnen (2000, 2002)
employs this approach. A further advantage of the FFM formulation is that force anti-
symmetry is manifest, so that momentum conservation to machine precision can be
achieved. Unfortunately, the speed advantages of FFM compared to ordinary tree
codes are significantly alleviated once individual time-step schemes are considered.
Also, FFM is more difficult to parallelize efficiently on distributed memory machines.

4.4.4 Cost of the Tree-Based Force Computations

How do we expect the total cost of the tree algorithm to scale with particle number
N? For simplicity, let’s consider a sphere of size R containing N particles that
are approximately homogeneously distributed. The mean particle spacing of these
particles will then be
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d =
[
(4π/3)R3

N

]1/3

. (174)

We now want to estimate the number of nodes that we need for calculating the force
on a central particle in the middle of the sphere. We can identify the computational
cost with the number of interaction terms that are needed. Since the used nodes must
tessellate the sphere, their number can be estimated as

Nnodes =
∫ R

d

4πr2 dr

l3(r)
, (175)

where l(r) is the expected node size at distance r , and d is the characteristic distance
of the nearest particle. Since we expect the nodes to be close to their maximum
allowed size, we can set l � θcr . We then obtain

Nnodes = 4π

θ3
c

ln
R

d
∝ ln N

θ3
c

. (176)

The total computational cost for a calculation of the forces for all particles is therefore
expected to scale as O(N ln N ). This is a very significant improvement compared
with the N 2-scaling of direct summation.

We may also try to estimate the expected typical force errors. If we keep only
monopoles, the error in the force per unit mass from one node should roughly be of
order the truncation error, i.e., about

ΔFnode ∼ G Mnode

r2 θ2. (177)

The errors from multipole nodes will add up in quadrature, hence

(ΔFtot)
2 ∼ Nnode(ΔFnode)

2 = Nnode

(
G Mnode

r2 θ2
)2

∝ θ4

Nnode
∝ θ7. (178)

The force error for a monopoles-only scheme therefore scales as (ΔFtot) ∝ θ3.5,
roughly inversely as the invested computational cost. A much more detailed analy-
sis of the performance characteristics of tree codes can be found, for example, in
Hernquist (1987).

4.5 TreePM Schemes

While the high adaptivity of tree algorithms is particularly ideal for strongly clustered
particle distributions and when a high spatial force accuracy is desired, the mesh-
based approaches are usually faster when only a coarsely resolved gravitational field
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on large scales is required. In particular, the particle-mesh (PM) approach based on
Fourier techniques is probably the fastest method to calculate the gravitational field
on a homogenous mesh. The obvious limitation of this method is however that the
force resolution cannot be better than the size of one mesh cell, and the latter cannot
be easily made small enough to resolve all the scales of interest in cosmological
simulations.

One interesting idea is to try to combine both approaches into a unified scheme,
where the gravitational field on large scales is calculated with a PM algorithm, while
the short-range forces are delivered by a hierarchical tree method. Such TreePM
schemes have first been proposed by Xu (1995) and Bagla (2002), and a version
similar to that of Bagla (2002) is implemented in the GADGET2 code (Springel 2005).

In order to achieve a clean separation of scales, one can consider the potential in
Fourier space. The individual modes Φk can be decomposed into a long-range and
a short-range part, as follows:

Φk = Φ
long
k + Φshort

k , (179)

where
Φ

long
k = Φk exp(−k2r2

s ), (180)

and
Φshort

k = Φk[1 − exp(−k2r2
s )], (181)

with rs describing the spatial scale of the force-split. Due to the exponential cut-off
of the Fourier-spectrum of the long-range force, a PM grid of finite size can be used
to fully resolve this force component (this is achieved once the cell size is a few
times smaller than rs). Compared to the ordinary PM-scheme, the only change is
that the Greens function in Fourier-space gets an additional exponential smoothing
factor. Thanks to this force-shaping factor, inaccuracies such as force anisotropies
from the mesh geometry can be made arbitrarily small, so that the long-range force
in the transition region between the force components is accurately computed by the
PM scheme.

To calculate the short-range force, one transforms Eq. (181) back to real space.
Assuming a single point mass m somewhere in a periodic box of size L , this becomes
for rs � L:

Φshort(x) = −G
m

r
erfc

(
r

2rs

)
, (182)

where r = min(|x − r − nL|) is defined as the smallest distance of any of the
periodic images (n is an arbitrary integer triplet) of the point mass at r relative to the
point x. Now, this is recognized as the ordinary Newtonian potential, modified with
a truncation factor that rapidly turns off the force at a finite distance of order rs . In
fact, the force drops to about 1 % of its Newtonian value for r � 4.5rs , and quickly
becomes completely negligible at still larger separations.
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The potential (182) can still be treated with a hierarchical tree algorithm, except
for the simplification that any tree node more distant than a finite cut-off range
(of order ∼5rs) can be immediately discarded in the tree walk. This can yield a
significant speed-up relative to a plain tree code, because the tree-walk can now be
restricted to a small region around the target particle as opposed to having to be
carried out for the full volume. Also, periodic boundary conditions do not have to
be included explicitly through Ewald summation (Hernquist et al. 1991) any more,
rather they are absorbed in the periodic PM force. Another advantage is that for
close to homogeneous particle distributions, the PM method used for long-range
forces delivers a precise force quickly, whereas a pure tree code struggles in this
regime to reach the required force accuracy, simply because here large forces in all
directions, which almost completely compensate in the end, need to be evaluated
with high relative accuracy, otherwise they do not cancel out properly. Finally, the
hybrid TreePM scheme also offers the possibility to split the time integration into a
less frequent evaluation of the long-range force, and a more frequent evaluation of
the short-range tree force, because the former is associated with longer dynamical
time scales than the latter. This can be exploited to realize additional efficiency gains,
and can in principle even be done in a symplectic fashion (Saha and Tremaine 1992;
Springel 2005).

5 Basic Gas Dynamics

Gravity is the dominant driver behind cosmic structure formation (e.g. Mo et al.
2010), but at small scales hydrodynamics in the baryonic components becomes very
important, too. In this section we very briefly review the basic equations and some
prominent phenomena related to gas dynamics in order to make the discussion of
the numerical fluid solvers used in galaxy evolution more accessible. For a detailed
introduction to hydrodynamics, the reader is referred to the standard textbooks on
this subject (e.g. Landau and Lifshitz 1959; Shu 1992).

5.1 Euler and Navier-Stokes Equations

The gas flows in astrophysics are often of extremely low density, making internal
friction in the gas extremely small. In the limit of assuming internal friction to
be completely absent, we arrive at the so-called ideal gas dynamics as described
by the Euler equations. Most calculations in cosmology and galaxy formation are
carried out under this assumption. However, in certain regimes, viscosity may still
become important (for example in the very hot plasma of rich galaxy clusters),
hence we shall also briefly discuss the hydrodynamical equations in the presence of
physical viscosity, the Navier-Stokes equations, which in a sense describe real fluids
as opposed to ideal ones. Phenomena such as fluid instabilities or turbulence are also
best understood if one does not neglect viscosity completely.
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5.1.1 Euler Equations

If internal friction in a gas flow can be neglected, the dynamics of the fluid is governed
by the Euler equations:

∂ρ

∂t
+ ∇(ρv) = 0, (183)

∂

∂t
(ρv) + ∇(ρvvT + P) = 0, (184)

∂

∂t
(ρe) + ∇[(ρe + P)v] = 0, (185)

where e = u + v2/2 is the total energy per unit mass, and u is the thermal energy
per unit mass. Each of these equations is a continuity law, one for the mass, one
for the momentum, and one for the total energy. The equations hence form a set of
hyperbolic conservation laws. In the form given above, they are not yet complete,
however. One still needs a further expression that gives the pressure in terms of the
other thermodynamic variables. For an ideal gas, the pressure law is

P = (γ − 1)ρu, (186)

where γ = cp/cv is the ratio of specific heats. For a monoatomic gas, we have
γ = 5/3.

5.1.2 Navier-Stokes Equations

Real fluids have internal stresses, due to viscosity. The effect of viscosity is to dissipate
relative motions of the fluid into heat. The Navier-Stokes equations are then given
by

∂ρ

∂t
+ ∇(ρv) = 0, (187)

∂

∂t
(ρv) + ∇(ρvvT + P) = ∇ �, (188)

∂

∂t
(ρe) + ∇[(ρe + P)v] = ∇(�v). (189)

Here � is the so-called viscous stress tensor, which is a material property. For � = 0,
the Euler equations are recovered. To first order, the viscous stress tensor must be
a linear function of the velocity derivatives (Landau and Lifshitz 1959). The most
general tensor of rank-2 of this type can be written as

� = η

[
∇v + (∇v)T − 2

3
(∇ · v)1

]
+ ξ(∇ · v)1, (190)
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where 1 is the unit matrix. Here η scales the traceless part of the tensor and describes
the shear viscosity. ξ gives the strength of the diagonal part, and is the so-called bulk
viscosity. Note that η and ξ can in principle be functions of local fluid properties,
such as ρ, T , etc.

Incompressible fluids In the following we shall assume constant viscosity coef-
ficients. Also, we specialize to incompressible fluids with ∇ · v = 0, which is a
particularly important case in practice. Let’s see how the Navier-Stokes equations
simplify in this case. Obviously, ξ is then unimportant and we only need to deal with
shear viscosity. Now, let us consider one of the components of the viscous shear
force described by Eq. (188):

1

η
(∇ �)x = ∂

∂x

(
2
∂vx

∂x

)
+ ∂

∂y

(
∂vx

∂y
+ ∂vy

∂x

)
+ ∂

∂z

(
∂vx

∂z
+ ∂vz

∂x

)

=
(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
vx = ∇2vx , (191)

where we made use of the ∇ · v = 0 constraint. If we furthermore introduce the
kinematic viscosity ν as

ν ≡ η

ρ
, (192)

we can write the equivalent of Eq. (188) in the compact form

D v
D t

= −∇ P

ρ
+ ν∇2v, (193)

where the derivative on the left-hand side is the Lagrangian derivative,

D

D t
= ∂

∂t
+ v · ∇. (194)

We hence see that the motion of individual fluid elements responds to pressure
gradients and to viscous forces. The form (193) of the equation is also often simply
referred to as the Navier-Stokes equation.

5.1.3 Scaling Properties of Viscous Flows

Consider the Navier-Stokes equations for some flow problem that is characterized by
some characteristic length L0, velocity V0, and density scale ρ0. We can then define
dimensionless fluid variables of the form

v̂ = v
V0

, x̂ = x
L0

, P̂ = P

ρ0V 2
0

. (195)
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Similarly, we define a dimensionless time, a dimensionless density, and a dimen-
sionless Nabla operator:

t̂ = t

L0/V0
, ρ̂ = ρ

ρ0
, ∇̂ = L0∇. (196)

Inserting these definitions into the Navier-Stokes equation (193), we obtain the
dimensionless equation

Dv̂

Dt̂
= −∇̂ P̂

ρ̂
+ ν

L0V0
∇̂2v̂. (197)

Interestingly, this equation involves one number,

Re ≡ L0V0

ν
, (198)

which characterizes the flow and determines the structure of the possible solutions
of the equation. This is the so-called Reynolds number. Problems which have similar
Reynolds number are expected to exhibit very similar fluid behavior. One then has
Reynolds-number similarity. In contrast, the Euler equations (Re → ∞) exhibit
always scale similarity because they are invariant under scale transformations.

One intuitive interpretation one can give the Reynolds number is that it measures
the importance of inertia relative to viscous forces. Hence:

Re ≈ inertial forces

viscous forces
≈ Dv/Dt

ν∇2v
≈ V0/(L0/V0)

νV0/L2
0

= L0V0

ν
. (199)

If we have Re ∼ 1, we are completely dominated by viscosity. On the other hand,
for Re → ∞ viscosity becomes unimportant and we approach an ideal gas.

5.2 Shocks

An important feature of hydrodynamical flows is that they can develop shock waves
in which the density, velocity, temperature and specific jump by finite amounts (e.g.
Toro 1997). In the case of the Euler equations, such shocks are true mathematical
discontinuities. Interestingly, shocks can occur even from perfectly smooth initial
conditions, which is a typical feature of hyperbolic partial differential equations. In
fact, acoustic waves with sufficiently large amplitude will suffer from wave-steeping
(because the slightly hotter wave crests travel faster than the colder troughs), lead-
ing eventually to shocks. Of larger practical importance in astrophysics are however
the shocks that occur when flows collide supersonically; here kinetic energy is irre-
versibly transferred into thermal energy, a process that also manifests itself with an
increase in entropy.
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In the limit of vanishing viscosity (i.e., for the Euler equations), the differential
form of the fluid equations breaks down at the discontinuity of a shock, but the integral
form (the weak formulation) remains valid. In other words this means that the flux
of mass, momentum and energy must remain continuous at a shock front. Assuming
that the shock connects two piecewise constant states, this leads to the Rankine-
Hugoniot jump conditions (Rankine 1870). If we select a frame of reference where
the shock is stationary (vs = 0) and denote the pre-shock state with (v1, P1, ρ1), and
the post-shock state as (v2, P2, ρ2) (hence v1, v2 > 0), we have

ρ1v2 = ρ2v2, (200)

ρ1v
2
1 + P1 = ρ2v

2
2 + P2, (201)

(ρ1e1 + P1)v1 = (ρ2e2 + P2)v2. (202)

For an ideal gas, the presence of a shock requires that the pre-shock gas streams
supersonically into the discontinuity, i.e., v1 > c1, where c2

1 = γ P1/ρ1 is the sound
speed in the pre-shock phase. The Mach number

M = v1

c1
(203)

measures the strength of the shock (M > 1). The shock itself decelerates the fluid
and compresses it, so that we have v2 < v1 and ρ2 > ρ1. It also heats it up, so that
T2 > T1, and makes the postshock flow subsonic, with v2/c2 < 1. Manipulating
Eqs. (200)–(202), we can express the relative jumps in the thermodynamic quantities
(density, temperature, entropy, etc.) through the Mach number alone, for example:

ρ2

ρ1
= (γ + 1)M2

(γ − 1)M2 + 2
. (204)

5.3 Fluid Instabilities

In many situations, gaseous flows can be subject to fluid instabilities in which small
perturbations can rapidly grow, thereby tapping a source of free energy. An important
example of this are Kelvin-Helmholtz and Rayleigh-Taylor instabilities, which we
briefly discuss in this subsection.

Stability of a shear flow We consider a flow in the x-direction, which in the lower
half-space z < 0 has velocity U1 and density ρ1, whereas in the upper half-space
the gas streams with U2 and has density ρ2. In addition there can be a homogeneous
gravitational field g pointing into the negative z-direction, as sketched in Fig. 16.

The stability of the flow can be analysed through perturbation theory. To this end,
one can for example treat the flow as an incompressible potential flow, and carry out
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Fig. 16 Geometry of a
generic shear flow

an Eigenmode analysis in Fourier space. With the help of Bernoulli’s theorem one
can then derive an equation for a function ξ(x, t) = z that describes the z-location
of the interface between the two phases of the fluid. Details of this calculation can
for example be found in Pringle and King (2007). For a single perturbative Fourier
mode

ξ = ξ̂ exp[i(kx − ωt)], (205)

one then finds that non-trivial solutions with ξ̂ �= 0 are possible for

ω2(ρ1 + ρ2)− 2ωk(ρ1U1 + ρ2U2)+ k2(ρ1U 2
1 + ρ2U 2

2 )+ (ρ2 − ρ1)kg = 0, (206)

which is the dispersion relation. Unstable, exponentially growing mode solutions
appear if there are solutions for ω with positive imaginary part. Below, we examine
the dispersion relation for a few special cases.

Rayleigh-Taylor instability Let us consider the case of a fluid at rest, U1 = U2 = 0.
The dispersion relation simplifies to

ω2 = (ρ1 − ρ2)kg

ρ1 + ρ2
. (207)

We see that for ρ2 > ρ1, i.e., the denser fluid lies on top, unstable solutions with ω2 <

0 exist. This is the so-called Rayleigh-Taylor instability. It is in essence buoyancy
driven and leads to the rise of lighter material underneath heavier fluid in a stratified
atmosphere, as illustrated in the simulation shown in Fig. 17. The free energy that
is tapped here is the potential energy in the gravitational field. Also notice that for
an ideal gas, arbitrary small wavelengths are unstable, and those modes will grow
fastest. If on the other hand we have ρ1 > ρ2, then the interface is stable and will
only oscillate when perturbed.

Kelvin-Helmholtz instability If we set the gravitational field to zero, g = 0, we
have the situation of a pure shear flow. In this case, the solutions of the dispersion
relation are given by

ω1/2 = k(ρ1U1 + ρ2U2)

ρ1 + ρ2
± ik

√
ρ1ρ2

ρ1 + ρ2
|U1 − U2|. (208)
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Fig. 17 A growing Rayleigh-Taylor instability in which a lighter fluid (blue) is covered by a heaver
fluid (yellow)

Interestingly, in an ideal gas there is an imaginary growing mode component for every
|U1 − U2| > 0! This means that a small wave-like perturbation at an interface will
grow rapidly into large waves that take the form of characteristic Kelvin-Helmholtz
“billows”. In the non-linear regime reached during the subsequent evolution of this
instability the waves are rolled up, leading to the creation of vortex like structures, as
seen in Fig. 18. As the instability grows fastest for small scales (high k), the billows
tend to get larger and larger with time.

Because the Kelvin-Helmholtz instability basically means that any sharp veloc-
ity gradient in a shear flow is unstable in a freely streaming fluid, this instability
is particularly important for the creation of fluid turbulence. Under certain condi-
tions, some modes can however be stabilized against the instability. This happens for
example if we consider shearing with U1 �= U2 in a gravitational field g > 0. Then
the dispersion relation has the solutions

ω = k(ρ1U1 + ρ2U2)

ρ1 + ρ2
±
√−k2ρ1ρ2(U1 − U2)2 − (ρ1 + ρ2)(ρ2 − ρ1)kg

ρ1 + ρ2
. (209)

Stability is possible if two conditions are met. First, we need ρ1 > ρ2, i.e., the lighter
fluid needs to be on top (otherwise we would have in any case a Rayleigh-Taylor
instability). Second, the condition

Fig. 18 Characteristic
Kelvin-Helmholtz billows
arising in a shear flow
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(U1 − U2)
2 <

(ρ1 + ρ2)(ρ1 − ρ2)g

kρ1ρ2
(210)

must be fulfilled. Compared to the ordinary Kelvin-Holmholtz instability without a
gravitational field, we hence see that sufficiently small wavelengths are stabilized
below a threshold wavelength. The larger the shear becomes, the further this threshold
moves to small scales.

The Rayleigh-Taylor and Kelvin-Helmholtz instabilities are by no means the only
fluid instabilities that can occur in an ideal gas (Pringle and King 2007). For example,
there is also the Richtmyer-Meshov instability, which can occur when an interface
is suddenly accelerated, for example due to the passage of a shock wave. In self-
gravitating gases, there is the Jeans instability, which occurs when the internal gas
pressure is not strong enough to prevent a positive density perturbation from growing
and collapsing under its own gravitational attraction. This type of instability is partic-
ularly important in cosmic structure growth and star formation. If the gas dynamics
is coupled to external sources of heat (e.g., through a radiation field), a number of
further instabilities are possible. For example, a thermal instability (Field 1965) can
occur when a radiative cooling function has a negative dependence on temperature.
If the temperature drops somewhere a bit more through cooling than elsewhere, the
cooling rate of this cooler patch will increase such that it is cooling even faster. In
this way, cool clouds can drop out of the background gas.

5.4 Turbulence

Fluid flow which is unsteady, irregular, seemingly random, and chaotic is called
turbulent (Pope 2000). Familiar examples of such situations include the smoke from
a chimney, a waterfall, or the wind field behind a fast car or airplane. The characteristic
feature of turbulence is that the fluid velocity varies significantly and irregularly both
in position and time. As a result, turbulence is a statistical phenomenon and is best
described with statistical techniques.

If the turbulent motions are subsonic, the flow can often be approximately treated
as being incompressible, even for an equation of state that is not particularly stiff.
Then only solenoidal motions that are divergence free can occur, or in other words,
only shear flows are present. We have already seen that such flows are subject to
fluid instabilities such as the Kelvin-Helmholtz instability, which can easily produce
swirling motions on many different scales. Such vortex-like motions, also called
eddies, are the conceptual building blocks of Kolmogorov’s theory of incompressible
turbulence (Kolmogorov 1941), which yields a surprisingly accurate description of
the basic phenomenology of turbulence, even though many aspects of turbulence are
still not fully understood.
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5.4.1 Kolmogorov’s Theory of Incompressible Turbulence

We consider a fully turbulent flow with characteristic velocity U0 and length scale
L0. We assume that a quasi-stationary state for the turbulence is achieved by some
kind of driving process on large scales, which in a time-averaged way injects an
energy ε per unit mass. We shall also assume that the Reynolds number Re is large.
We further imagine that the turbulent flow can be considered to be composed of
eddies of different size l, with characteristic velocity u(l), and associated timescale
τ (l) = l/u(l).

For the largest eddies, l ∼ L0 and u(l) ∼ U0, hence viscosity is unimportant
for them. But large eddies are unstable und break up, transferring their energy to
somewhat smaller eddies. This continues to yet smaller scales, until

Re(l) = lu(l)

ν
(211)

reaches of order unity, where ν is the kinematic viscosity. For these eddies, viscosity
will be very important so that their kinetic energy is dissipated away. We will see that
this transfer of energy to smaller scales gives rise to the energy cascade of turbulence.
But several important questions are still unanswered:

1. What is the actual size of the smallest eddies that dissipate the energy?
2. How do the velocities u(l) of the eddies vary with l when the eddies become

smaller?

Kolmogorov’s hypotheses Kolmogorov conjectured a number of hypotheses that
can answer these questions. In particular, he proposed:

• For high Reynolds number, the small-scale turbulent motions (l � L0) become
statistically isotropic. Any memory of large-scale boundary conditions and the
original creation of the turbulence on large scales is lost.

• For high Reynolds number, the statistics of small-scale turbulent motions has a
universal form and is only determined by ν and the energy injection rate per unit
mass, ε.

From ν and ε, one can construct characteristic Kolmogorov length, velocity and
timescales. Of particular importance is the Kolmogorov length:

η ≡
(

ν3

ε

)1/4

. (212)

Velocity and timescales are given by

uη = (εν)1/4, τη =
(ν

ε

)1/2
. (213)
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We then see that the Reynolds number at the Kolmogorov scales is

Re(η) = ηuη

ν
= 1, (214)

showing that they describe the dissipation range. Kolmogorov has furthermore made
a second similarity hypothesis, as follows:

• For high Reynolds number, there is a range of scales L0 � l � η over which
the statistics of the motions on scale l take a universal form, and this form is only
determined by ε, independent of ν.

In other words, this also means that viscous effects are unimportant over this range
of scales, which is called the inertial range. Given an eddy size l in the inertial range,
one can construct its characteristic velocity and timescale just from l and ε:

u(l) = (εl)1/3, τ (l) =
(

l2

ε

)1/3

. (215)

One further consequence of the existence of the inertial range is that here the energy
transfer rate

T (l) ∼ u2(l)

τ (l)
(216)

of eddies to smaller scales is expected to be scale-invariant. Indeed, putting in the
expected characteristic scale dependence we get T (l) ∼ ε, i.e., T (l) is equal to the
energy injection rate. This also implies that we have

ε ∼ U 3
0

L0
. (217)

With this result we can also work out what we expect for the ratio between the
characteristic quantities of the largest and smallest scales:

η

L0
∼
(

ν3

εL4
0

)1/4

=
(

ν3

U 3
0 L3

0

)1/4

= Re− 3
4 , (218)

uη

U0
∼
(

εν

U 4
0

)1/4

=
(

U 3
0 ν

L0U 4
0

)1/4

= Re− 1
4 , (219)

τη

τ
∼
(

νU 2
0

εL2
0

)1/2

=
(

νU 2
0 L0

U 3
0 L2

0

)1/2

= Re− 1
2 . (220)

This shows that the Reynolds number directly sets the dynamic range of the inertial
range.
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5.4.2 Energy Spectrum of Kolmogorov Turbulence

Eddy motions on a length-scale l correspond to wavenumber k = 2π/ l. The kinetic
energy ΔE contained between two wave numbers k1 and k2 can be described by

ΔE =
∫ k2

k1

E(k) dk, (221)

where E(k) is the so-called energy spectrum. For the inertial range in Kolmogorov’s
theory, we know that E(k) is a universal function that only depends on ε and k. Hence
E(k) must be of the form

E(k) = C εa kb, (222)

where C is a dimensionless constant. Through dimensional analysis it is easy to see
that one must have a = 2/3 and b = −5/3. We hence obtain the famous −5/3 slope
of the Kolmogorov energy power spectrum:

E(k) = C ε2/3 k−5/3. (223)

The constant C is universal in Kolmogorov’s theory, but cannot be computed from
first principles. Experiment and numerical simulations give C � 1.5 (Pope 2000).

Actually, if we recall Kolmogorov’s first similarity hypothesis, it makes the
stronger claim that the statistics for all small scale motion is universal. This means
that also the dissipation part of the turbulence must have a universal form. To include
this in the description of the spectrum (Fig. 19), we can for example write

E(k) = C ε2/3 k−5/3 fη(kη), (224)

where fη(kη) is a universal function with fη(x) = 1 for x � 1, and with fη(x) → 0
for x → ∞. This function has to be determined experimentally or numerically. A
good fit to different results is given by

Fig. 19 Schematic energy
spectrum of Kolmogorov
turbulence
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fη(x) = exp
(
−β[(x4 + c4)1/4 − c]

)
, (225)

with β0 ∼ 5.2 and c ∼ 0.4 (Pope 2000).

6 Eulerian Hydrodynamics

Many physical theories are expressed as partial differential equations (PDEs), includ-
ing some of the most fundamental laws of nature, such as fluid dynamics (Euler
and Navier Stokes equations), electromagnetism (Maxwell’s equations) or general
relativity/gravity (Einstein’s field equations). Broadly speaking, partial differential
equations (PDE) are equations describing relations between partial derivatives of a
dependent variable with respect to several independent variables. Unlike for ordinary
differential equations (ODEs), there is no simple unified theory for PDEs. Rather,
there are different types of PDEs which exhibit special features (Renardy and Rogers
2004).

The Euler equations, which will be the focus of this section, are so-called hyper-
bolic conservation laws. They are non-linear, because they contain non-linear terms
in the unknown functions and/or its partial derivatives. We note that a full char-
acterization of the different types of PDEs goes beyond the scope of these lecture
notes.

6.1 Solution Schemes for PDEs

Unfortunately, for partial differential equations one cannot give a general solution
method that works equally well for all types of problems. Rather, each type requires
different approaches, and certain PDEs encountered in practice may even be best
addressed with special custom techniques built by combining different elements from
standard techniques. Important classes of solution schemes include the following:

• Finite difference methods: Here the differential operators are approximated
through finite difference approximations, usually on a regular (cartesian) mesh, or
some other kind of structured mesh (for example a polar grid). An example we
already previously discussed is Poisson’s equation treated with iterative (multigrid)
methods.

• Finite volume methods: These may be seen as a subclass of finite difference
methods. They are particularly useful for hyperbolic conservation laws. We shall
discuss examples for this approach in applications to fluid dynamics later in this
section.

• Spectral methods: Here the solution is represented by a linear combination of
functions, allowing the PDE to be transformed to algebraic equations or ordi-
nary differential equations. Often this is done by applying Fourier techniques. For
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example, solving the Poisson equation with FFTs, as we discussed earlier, is a
spectral method.

• Method of lines: This is a semi-discrete approach where all derivatives except for
one are approximated with finite differences. The remaining derivative is then the
only one left, so that the remaining problem forms a set of ordinary differential
equations (ODEs). Very often, this approach is used in time-dependent problems.
One here discretizes space in terms of a set of N points xi , and for each of these
points one obtains an ODE that describes the time evolution of the function at this
point. The PDE is transformed in this way into a set of N coupled ODEs. For
example, consider the heat diffusion equation in one dimension,

∂u

∂t
+ λ

∂2u

∂x2 = 0. (226)

If we discretize this into a set of points that are spaced h apart, we obtain N
equations

dui

dt
+ λ

ui+1 + ui−1 − 2ui

h2 = 0. (227)

These differential equations can now be integrated in time as an ODE system. Note
however that this is not necessarily stable. Some problems may require upwinding,
i.e., asymmetric forms for the finite difference estimates to recover stability.

• Finite element methods: Here the domain is subdivided into “cells” (elements)
of fairly arbitrary shape. The solution is then represented in terms of simple,
usually polynomial functions on the element, and then the PDE is transformed
to an algebraic problem for the coefficients in front of these simple functions.
This is hence similar in spirit to spectral methods, except that the expansion is
done in terms of highly localized functions on an element by element basis, and
is truncated already at low order.

In practice, many different variants of these basic methods exist, and sometimes
also combinations of them are used.

6.2 Simple Advection

First-order equations of hyperbolic type are particularly useful for introducing the
numerical difficulties that then also need to be addressed for more complicated non-
linear conservation laws (e.g. Toro 1997; LeVeque 2002; Stone et al. 2008). The
simplest equation of this type is the advection equation in one dimension. This is
given by

∂u

∂t
+ v · ∂u

∂x
= 0, (228)
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Fig. 20 Simple advection
with constant velocity to the
right

Fig. 21 A set of flow
characteristics for advection
to the right with constant
velocity v

where u = u(x, t) is a function of x and t , and v is a constant parameter. This
equation is hyperbolic because the so-called coefficient matrix1 is real and trivially
diagonalizable.

If we are given any function q(x), then

u(x, t) = q(x − vt) (230)

is a solution of the PDE, as one can easily check. We can interpret u(x, t = 0) = q(x)

as initial condition, and the solution at a later time is then an exact copy of q, simply
translated by v t along the x-direction, as shown in Fig. 20.

Points that start at a certain coordinate x0 are advected to a new location
xch(t) = vt + x0. These so-called characteristics (see Fig. 21), which can be viewed
as mediating the propagation of information in the system, are straight lines, all ori-
ented in the downstream direction. Note that “downstream” refers to the direction in
which the flow goes, whereas “upstream” is from where the flow comes.

Let’s now assume we want to solve the advection problem numerically. (Strictly
speaking this is of course superfluous as we have an analytic solution in this case,
but we want to see how well a numerical technique would perform here.) We can

1A linear system of first-order PDEs can be written in the generic form

∂ui

∂t
+
∑

j

Ai j
∂ui

∂x j
= 0, (229)

where Ai j is the coefficient matrix.
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approach this with a straightforward discretization of u on a special mesh, using for
example the method of lines. This gives us:

dui

dt
+ v

ui+1 − ui−1

2h
= 0. (231)

If we go one step further and also discretize the time derivative with a simple Euler
scheme, we get

u
(n+1)
i = u

(n)
i − v

u
(n)
i+1 − u

(n)
i−1

2h
Δt. (232)

This is a complete update formula which can be readily applied to a given initial state
on the grid. The big surprise is that this turns out to be quite violently unstable! For
example, if one applies this to the advection of a step function, one invariably obtains
strong oscillatory errors in the downstream region of the step, quickly rendering the
numerical solution into complete garbage. What is the reason for this fundamental
failure?

• First note that all characteristics (signals) propagate downstream in this problem,
or in other words, information strictly travels in the flow direction in this problem.

• But, the information to update ui is derived both from the upstream (ui−1) and the
downstream (ui+1) side.

• According to how the information flows, ui should not really depend on the down-
stream side at all, which in some sense is causally disconnected. So let’s try to
get rid off this dependence by going to a one-sided approximation for the spatial
derivative, of the form:

dui

dt
+ v

ui − ui−1

h
= 0. (233)

This is called upwind differencing. Interestingly, now the stability problems are
completely gone!

• But there are still some caveats to observe: First of all, the discretization now
depends on the sign of v. For negative v, one instead has to use

dui

dt
+ v

ui+1 − ui

h
= 0. (234)

The other is that the solution is not advected in a perfectly faithful way, instead it is
quite significantly smoothed out, through a process one calls numerical diffusion.

We can actually understand where this strong diffusion in the 1st-order upwind
scheme comes from. To this end, let’s rewrite the upwind finite difference approxi-
mation of the spatial derivative as

ui − ui−1

h
= ui+1 − ui−1

2h
− ui+1 − 2ui + ui−1

2h
. (235)
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Hence our stable upwind scheme can also be written as

dui

dt
+ v

ui+1 − ui−1

2h
= vh

2

ui+1 − 2ui + ui−1

h2 . (236)

But recall from Eq. (133) that

(
∂2u

∂x2

)

i
� ui+1 − 2ui + ui−1

h2 , (237)

so if we define a diffusion constant D = (vh)/2, we are effectively solving the
following problem,

∂u

∂t
+ v · ∂u

∂x
= D

∂2u

∂x2 , (238)

and not the original advection problem. The diffusion term on the right hand side is
here a byproduct of the numerical algorithm that we have used. We needed to add
this numerical diffusion in order to obtain stability of the integration.

Note however that for better grid resolution, h → 0, the diffusion becomes
smaller, so in this limit one obtains an ever better solution. Also note that the dif-
fusivity becomes larger for larger velocity v, so the faster one needs to advect, the
stronger the numerical diffusion effects become.

Besides the upwinding requirement, integrating a hyperbolic conservation law
with an explicit method in time also requires the use of a sufficiently small integration
timestep, not only to get sufficiently good accuracy, but also for reasons of stability.
In essence, there is a maximum timestep that may be used before the integration
brakes down. How large can we make this timestep? Again, we can think about
this in terms of information travel. If the timestep exceeds Δtmax = h/v, then the
updating of ui would have to include information from ui−2, but if we don’t do this,
the updating will likely become unstable.

This leads to the so-called Courant-Friedrichs-Levy (CFL) timestep condition
(Courant et al. 1928), which for this problem takes the form

Δt ≤ h

v
. (239)

This is a necessary but not sufficient condition for any explicit finite different
approach of the hyperbolic advection equation. For other hyperbolic conservation
laws, similar CFL-conditions apply.

Hyperbolic conservation laws We now consider a hyperbolic conservation law,
such as the continuity equation for the mass density of a fluid:

∂ρ

∂t
+ ∇ · (ρv) = 0. (240)
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Fig. 22 A discretization
scheme for the continuity
equation in one spatial
dimension. The red and blue
boxes mark the stencils that
are applied for calculating
the spatial and time
derivatives

We see that this is effectively the advection equation, but with a spatially variable
velocity v = v(x). Here F = ρv is the mass flux.

Let’s study the problem in one spatial dimension, and consider a discretization
both of the x- and t-axis (Fig. 22). This corresponds to

ρ
(n+1)
i − ρ

(n)
i

Δt
+ F (n)

i+1 − F (n)
i−1

2Δx
= 0, (241)

leading to the update rule

ρ(n+1)
i = ρ(n)

i + Δt

2Δx

(
F (n)

i−1 − F (n)
i+1

)
. (242)

This is again found to be highly unstable, for the same reasons as in the plain advection
problem: we have not observed in ‘which direction the wind blows’, or in other words,
we have ignored in which direction the local characteristics point. For example, if the
mass flux is to the right, we know that the characteristics point also to the right. The
upwind direction is therefore towards negative x , and by using only this information
in making our spatial derivative one-sided, we should be able to resurrect stability.

Now, for the mass continuity equation identifying the local characteristics is quite
easy, and in fact, their direction can simply be inferred from the sign of the mass flux.
However, in more general situations for systems of non-linear PDEs, this is far less
obvious. Here we need to use a so-called Riemann solvers to give us information
about the local solution and the local characteristics (Toro 1997). This then also
implicitly identifies the proper upwinding that is needed for stability.

6.3 Riemann Problem

The Riemann problem is an initial value problem for a hyperbolic system, consisting
of two piece-wise constant states (two half-spaces) that meet at a plane at t = 0. The
task is then to solve for the subsequent evolution at t > 0.

An important special case is the Riemann problem for the Euler equations (i.e., for
ideal gas dynamics). Here the left and right states of the interface, can, for example,
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be uniquely specified by giving the three “primitive” variables density, pressure and
velocity, viz.

UL =
⎛

⎝
ρL

PL

vL

⎞

⎠ , UR =
⎛

⎝
ρR

PR

vR

⎞

⎠ . (243)

Alternatively one can also specify density, momentum density, and energy density.
For an ideal gas, this initial value problem can be solved analytically (Toro 1997),
modulo an implicit equation which requires numerical root-finding, i.e., the solution
cannot be written down explicitly. The solution always contains characteristics for
three self-similar waves, as shown schematically in Fig. 23. Some notes on this:

• The middle wave is always present and is a contact wave that marks the boundary
between the original fluid phases from the left and right sides.

• The contact wave is sandwiched between a shock or a rarefaction wave on either
side (it is possible to have shocks on both sides, or rarefactions on both sides,
or one of each). The rarefaction wave is not a single characteristic but rather a
rarefaction fan with a beginning and an end.

• These waves propagate with constant speed. If the solution is known at some time
t > 0, it can also be obtained at any other time through a suitable scaling transfor-
mation. An important corollary is that at x = 0, the fluid quantities (ρ�, P�, v�)

are constant in time for t > 0.
• For vL = vR = 0, the Riemann problem simplifies and becomes the ‘Sod shock

tube’ problem.

Let’s consider an example how this wave structure looks in a real Riemann prob-
lem. We consider, for definiteness, a Riemann problem with ρL = 1.0, PL = 1.0,
vL = 0, and ρR = 0.25, PR = 0.1795, vR = 0 (which is of Sod-shock type).
The adiabatic exponent is taken to be γ = 1.4. We hence deal at t = 0.0 with the
initial state displayed in Fig. 24. After time t = 5.0, the wave structure formed by a
rarefaction to the left (location marked in green), a contact in the middle (blue) and
a shock to the right (red) can be nicely seen in Fig. 25.

Some general properties of the waves appearing in the Riemann problem can be
summarized as follows:

Fig. 23 Wave structure of the solution of the Riemann problem. The central contact wave separates
the original fluid phases. On the left and the right, there is either a shock or a rarefaction wave



316 V. Springel

density

-5 0 5 10
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2
ρ

velocity

-5 0 5 10
x

-0.2

0.0

0.2

0.4

0.6

0.8

v x
entropy

-5 0 5 10
x

1.0

1.1

1.2

1.3

P/
ργ

pressure

-5 0 5 10
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2
P

Fig. 24 Initial state of an example Riemann problem, composed of two phases in different states
that are brought into contact at x = 0 at time t = 0. (Since vx = 0, the initial conditions are actually
an example of the special case of a Sod shock-tube problem)

• Shock: This is a sudden compression of the fluid, associated with an irreversible
conversion of kinetic energy to heat, i.e., here entropy is produced. The density,
normal velocity component, pressure, and entropy all change discontinuously at a
shock.

• Contact discontinuity: This traces the original separating plane between the two
fluid phases that have been brought into contact. Pressure as well as the normal
velocity are constant across a contact, but density, entropy and temperature can
jump.

• Rarefaction wave: This occurs when the gas (suddenly) expands. The rarefac-
tion wave smoothly connects two states over a finite spatial region; there are no
discontinuities in any of the fluid variables.
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Fig. 25 Evolved state at t = 5.0 of the initial fluid state displayed in Fig. 24. The blue dashed line
marks the position of the contact wave, the green dashed lines give the location of the rarefaction
fan, and the red dashed line marks the shock

6.4 Finite Volume Discretization

Let’s now take a look how Riemann solvers can be used in the finite volume dis-
cretization approach to the PDEs of fluid dynamics. Recall that we can write our
hyperbolic conservation laws as

∂U
∂t

+ ∇ · F = 0. (244)

Here U is a state vector and F is the flux vector. For example, the Euler equations of
Sect. 5.1.1 can be written in the form
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U =
⎛

⎝
ρ
ρv
ρe

⎞

⎠ , F =
⎛

⎝
ρv

ρvvT + P
(ρe + P)v

⎞

⎠ , (245)

with the specific energy e = u+ v2/2 and u being the thermal energy per unit mass.
The ideal gas equation gives the pressure as P = (γ − 1)ρu and provides a closure
for the system.

In a finite volume scheme, we describe the system through the averaged state over
a set of finite cells. These cell averages are defined as

Ui = 1

Vi

∫

cell i
U(x) dV . (246)

Let’s now see how we could divise an update scheme for these cell-averaged quan-
tities.

1. We start by integrating the conservation law over a cell, and over a finite interval
in time: ∫ x

i+ 1
2

x
i− 1

2

dx
∫ tn+1

tn
dt

(
∂U
∂t

+ ∂F
∂x

)
= 0. (247)

2. This gives

∫ x
i+ 1

2

x
i− 1

2

dx
[
U(x, tn+1) − U(x, tn)

]+
∫ tn+1

tn
dt
[
F(xi+ 1

2
, t) − F(xi− 1

2
, t)
]

= 0.

(248)
In the first term, we recognize the definition of the cell average:

U(n)
i ≡ 1

Δx

∫ x
i+ 1

2

x
i− 1

2

U(x, tn)dx . (249)

Hence we have

Δx
[
U(n+1)

i − U(n)
i

]
+
∫ tn+1

tn
dt
[
F(xi+ 1

2
, t) − F(xi− 1

2
, t)
]

= 0. (250)

3. Now, F(xi+ 1
2
, t) for t > tn is given by the solution of the Riemann problem with

left state U(n)
i and right state U(n)

i+1. At the interface, this solution is independent
of time. We can hence write

F(xi+ 1
2
, t) = F�

i+ 1
2
, (251)
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where F�

i+ 1
2

= FRiemann(U
(n)
i , U(n)

i+1) is a short-hand notation for the correspond-

ing Riemann solution sampled at the interface. Hence we now get

Δx
[
U(n+1)

i − U(n)
i

]
+ Δt

[
F�

i+ 1
2

− F�

i− 1
2

]
= 0. (252)

Or alternative, as an explicit update formula:

U(n+1)
i = U(n)

i + Δt

Δx

[
F�

i− 1
2

− F�

i+ 1
2

]
. (253)

The first term in the square bracket gives the flux that flows from left into the
cell, the second term is the flux out of the cell on its right side. The idea to use
the Riemann solution in the updating step is due to Godunov, that’s why such
schemes are often called Godunov schemes.

It is worthwhile to note that we haven’t really made any approximation in the
above (yet). In particular, if we calculate FRiemann analytically (and hence exactly),
then the above seems to account for the correct fluxes for arbitrarily long times. So
does this mean that we get a perfectly accurate result even for very large timesteps?
This certainly sounds too good to be true, so there must be a catch somewhere.

Indeed, there is. First of all, we have assumed that the Riemann problems are
independent of each other and each describe infinite half-spaces. This is not true
once we consider finite volume cells, but it is still ok for a while as long tn+1 is close
enough to tn such that the waves emanating in one interface have not yet arrived at
the next interface left or right. This then leads to a CFL-timestep criterion, were
Δt ≤ Δx/cmax and cmax is the maximum wavespeed.

Another point is more subtle and comes into play when we consider more than
one timestep. We assumed that the U(n)

i describe piece-wise constant states which
can then be fed to the Riemann solver to give us the flux. However, even when this is
true initially, we have just seen that after one timestep it will not be true anymore. By
ignoring this in the subsequent timestep (which is done by performing an averaging
step that washes out the cell substructure that developed as part of the evolution
during the previous timestep) we make some error.

6.5 Godunov’s Method and Riemann Solvers

It is useful to introduce another interpretation of common finite-volume discretiza-
tions of fluid dynamics, so-called Reconstruct-Evolve-Average (REA) schemes. We
also use this here for a short summary of Godunov’s important method, and the way
Riemann solvers come into play in it.

An REA update scheme of a hydrodynamical system discretized on a mesh can
be viewed as a sequence of three steps:
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Fig. 26 Piece-wise constant
states of a fluid forming the
simplest possible
reconstruction of its state
based on a set of discrete
values Ui known at spatial
positions xi

1. Reconstruct: Using the cell-averaged quantities (as shown in Fig. 26), this defines
the run of these quantities everywhere in the cell. In the sketch, a piece-wise
constant reconstruction is assumed, which is the simplest procedure one can use
and leads to 1st order accuracy.

2. Evolve: The reconstructed state is then evolved forward in time by Δt . In
Godunov’s approach, this is done by treating each cell interface as a piece-wise
constant initial value problem which is solved with the Riemann solver exactly
or approximately. This solution is formally valid as long as the waves emanating
from opposite sides of a cell do not yet start to interact. In practice, one therefore
needs to limit the timestep Δt such that this does not happen.

3. Average: The wave structure resulting from the evolution over timestep Δt is
spatially averaged in a conservative fashion to compute new states Un+1 for each
cell. Fortunately, the averaging step does not need to be done explicitly; instead
it can simply be carried out by accounting for the fluxes that enter or leave the
control volume of the cell. Then the whole cycle repeats again.

What is needed for the evolve step is a prescription to either exactly or approx-
imately solve the Riemann problem for a piece-wise linear left and right state that
are brought into contact at time t = tn . Formally, this can be written as

F� = FRiemann(UL , UR). (254)

In practice, a variety of approximate Riemann solvers FRiemann are commonly used
in the literature (Rusanov 1961; Harten et al. 1983; Toro 1997; Miyoshi and Kusano
2005). For the ideal gas and for isothermal gas, it is also possible to solve the Riemann
problem exactly, but not in closed form (i.e., the solution involves an iterative root
finding of a non-linear equation).

There are now two main issues left:

• How can this be extended to multiple spatial dimensions?
• How can it be extended such that a higher order integration accuracy both in space

and time is reached?

We’ll discuss these issues next.
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6.6 Extensions to Multiple Dimensions

So far, we have considered one-dimensional hyperbolic conservation laws of the
form

∂t U + ∂x F(U) = 0, (255)

where ∂t is a short-hand notation for ∂t = ∂
∂t , and similarly ∂x = ∂

∂x . For example,
for isothermal gas with soundspeed cs , the state vector U and flux vector F(U) are
given as

U =
(

ρ
ρu

)
, F =

(
ρu

ρu2 + ρc2
s

)
, (256)

where u is the velocity in the x-direction.
In three dimensions, the PDEs describing a fluid become considerably more

involved. For example, the Euler equations for an ideal gas are given in explicit
form as

∂t

⎛

⎜
⎜
⎜
⎜
⎝

ρ
ρu
ρv

ρw

ρe

⎞

⎟
⎟
⎟
⎟
⎠

+ ∂x

⎛

⎜
⎜
⎜
⎜
⎝

ρu
ρu2 + P

ρuv

ρuw

ρu(ρe + P)

⎞

⎟
⎟
⎟
⎟
⎠

+ ∂y

⎛

⎜
⎜
⎜
⎜
⎝

ρv

ρuv

ρv2 + P
ρvw

ρv(ρe + P)

⎞

⎟
⎟
⎟
⎟
⎠

+ ∂z

⎛

⎜
⎜
⎜
⎜
⎝

ρw

ρuw

ρvw

ρw2 + P
ρw(ρe + P)

⎞

⎟
⎟
⎟
⎟
⎠

= 0,

(257)
where e = etherm + (u2 +v2 +w2)/2 is the total specific energy per unit mass, etherm
is the thermal energy per unit mass, and P = (γ − 1)ρ etherm is the pressure. These
equations are often written in the following notation:

∂t U + ∂x F + ∂yG + ∂zH = 0. (258)

Here the functions F(U), G(U) and H(U) give the flux vectors in the x-, y- and
z-direction, respectively.

6.6.1 Dimensional Splitting

Let us now consider the three dimensionally split problems derived from Eq. (258):

∂t U + ∂x F = 0, (259)

∂t U + ∂yG = 0, (260)

∂t U + ∂zH = 0. (261)
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Note that the vectors appearing here have still the same dimensionality as in the full
equations. They are augmented one-dimensional problems, i.e., the transverse vari-
ables still appear but spatial differentiation happens only in one direction. Because of
this, these additional transverse variables do not make the 1D problem more difficult
compared to the ‘pure’ 1D problem considered earlier, but the fluxes appearing in
them still need to be included.

Now let us assume that he have a method to solve/advance each of these one-
dimensional problems. We can for example express this formally through time-
evolution operators X (Δt), Y(Δt), and Z(Δt), which advance the solution by a
timestep Δt . Then the full time advance of the system can for example be approxi-
mated by

Un+1 � Z(Δt)Y(Δt)X (Δt)Un . (262)

This is one possible dimensionally split update scheme. In fact, this is the exact
solution if Eqs. (259)–(260) represent the linear advection problem, but for more
general non-linear equations it only provides a first order approximation. However,
higher-order dimensionally split update schemes can also be easily constructed. For
example, in two-dimensions,

Un+1 = 1

2
[X (Δt)Y(Δt) + Y(Δt)X (Δt)]Un (263)

and
Un+1 = X (Δt/2)Y(Δt)X (Δt/2)Un (264)

are second-order accurate. Similarly, for three dimensions the scheme

Un+1 = X (Δt/2)Y(Δt/2)Z(Δt)Y(Δt/2)X (Δt/2)Un (265)

is second-order accurate. As a general rule of thumb, the time evolution operators have
to be applied alternatingly in reverse order to reach second-order accuracy. We see
that the dimensionless splitting reduces the problem effectively to a sequence of one-
dimensional solution operations which are applied to multi-dimensional domains.
Note that each one-dimensional operator leads to an update of U, and is a complete
step for the corresponding augmented one-dimensional problem. Gradients, etc., that
are needed for the next step then have to be recomputed before the next time-evolution
operator is applied. In practical applications of mesh codes, these one-dimensional
solves are often called sweeps.

6.6.2 Unsplit Schemes

In an unsplit approach, all flux updates of a cell are applied simultaneously to a cell,
not sequentially. This is for example illustrated in 2D in the situations depicted in
Fig. 27. The unsplit update of cell i, j in the Cartesian case is then given by
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Fig. 27 Sketch of unsplit finite-volume update schemes. On the left, the case of a structured
Cartesian grid is shown, the case on the right is for an unstructured grid

U n+1
i, j = U n

i, j + Δt

Δx

(
Fi− 1

2 , j − Fi+ 1
2 , j

)
+ Δt

Δy

(
Gi, j− 1

2
− Gi, j+ 1

2

)
. (266)

Unsplit approaches can also be used for irregular shaped cells like those appearing
in unstructured meshes (see Fig. 27). For example, integrating over a cell of volume V
and denoting with U the cell average, we can write the cell update with the divergence
theorem as

Un+1 = Un − Δt

V

∫
F · dS, (267)

where the integration is over the whole cell surface, with outwards pointing face area
vectors dS.

6.7 Extensions for High-Order Accuracy

We should first clarify what we mean with higher order schemes. Loosely speaking,
this refers to the convergence rate of a scheme in smooth regions of a flow. For
example, if we know the analytic solution ρ(x) for some problem, and then obtain a
numerical result ρi at a set of N points at locations xi , we can ask what the typical
error of the solution is. One possibility to quantify this would be through a L1 error
norm, for example in the form

L1 = 1

N

∑

i

|ρi − ρ(xi )|, (268)

which can be interpreted as the average error per cell. If we now measure this error
quantitatively for different resolutions of the applied discretization, we would like
to find that L1 decreases with increasing N . In such a case our numerical scheme is
converging, and provided we use sufficient numerical resources, we have a chance
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to get below any desired absolute error level. But the rate of convergence can be very
different between different numerical schemes when applied to the same problem. If
a method shows a L1 ∝ N−1 scaling, it is said to be first-order accurate; a doubling
of the number of cells will then cut the error in half. A second-order method has
L1 ∝ N−2, meaning that a doubling of the number of cells can actually reduce the
error by a factor of 4. This much better convergence rate is of course highly desirable.
It is also possible to construct schemes with still higher convergence rates, but they
tend to quickly become much more complex and computationally involved, so that
one eventually reaches a point of diminishing return, depending on the specific type
of problem. But the extra effort one needs to make to go from first to second-order
is often very small, sometimes trivially small, so that one basically should always
strive to try at least this.

A first step in constructing a 2nd order extension of Godunov’s method is to
replace the piece-wise constant with a piece-wise linear reconstruction (Fig. 28).
This requires that one first estimates gradients for each cell (usually by a simple
finite difference formula). These are then slope-limited if needed such that the linear
extrapolations of the cell states to the cell interfaces do not introduce new extrema.
This slope-limiting procedure is quite important; it needs to be done to avoid that
real fluid discontinuities introduce large spurious oscillations into the fluid.

Given slope limited gradients, for example ∇ρ for the density, one can then esti-
mate the left and right states adjacent to an interface xi+ 1

2
by spatial extrapolation

from the centers of the cells left and right from the interface:

ρL
i+ 1

2
= ρi + (∇ρ)i

Δx

2
, (269)

ρR
i+ 1

2
= ρi+1 − (∇ρ)i+1

Δx

2
. (270)

The next step would in principle be to use these states in the Riemann solver. In doing
this we will ignore the fact that our reconstruction has now a gradient over the cell;
instead we still pretend that the fluid state can be taken as piece-wise constant left and
right of the interface as far as the Riemann solver is concerned. However, it turns out

Fig. 28 Piece-wise linear
reconstruction scheme
applied to a fluid state
represented through a regular
mesh
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that the spatial extrapolation needs to be augmented with a temporal extrapolation
one half timestep into the future, such that the flux estimate is now effectively done
in the middle of the timestep. This is necessary both to reach second-order accuracy
in time and also for stability reasons. Hence we really need to use

ρL
i+ 1

2
= ρi + (∇ρ)i

Δx

2
+
(

∂ρ

∂t

)

i

Δt

2
, (271)

ρR
i+ 1

2
= ρi+1 − (∇ρ)i+1

Δx

2
+
(

∂ρ

∂t

)

i+1

Δt

2
, (272)

for extrapolating to the interfaces. More generally, this has to be done for the whole
state vector of the system, i.e.,

UL
i+ 1

2
= Ui + (∂x U)i

Δx

2
+ (∂t U)i

Δt

2
, (273)

UR
i+ 1

2
= Ui+1 − (∂x U)i+1

Δx

2
+ (∂t U)i+1

Δt

2
. (274)

Note that here the quantity (∂x U)i is a (slope-limited) estimate of the gradient in cell i ,
based on finite-differences plus a slope limiting procedure. Similarly, we somehow
need to estimate the time derivative encoded in (∂x U)i . How can this be done? One
way to do this is to exploit the Jacobian matrix of the Euler equations. We can write
the Euler equations as

∂t U = −∂x F(U) = − ∂F
∂U

∂x U = −A(U) ∂x U, (275)

where A(U) is the Jacobian matrix. Using this, we can simply estimate the required
time-derivative based on the spatial derivatives:

(∂t U)i = −A(Ui ) (∂x U)i . (276)

Hence the extrapolation can be done as

UL
i+ 1

2
= Ui +

[
Δx

2
− Δt

2
A(Ui )

]
(∂x U)i , (277)

UR
i+ 1

2
= Ui+1 +

[
−Δx

2
− Δt

2
A(Ui+1)

]
(∂x U)i+1. (278)

This procedure defines the so-called MUSCL-Hancock scheme (van Leer 1984; Toro
1997; van Leer 2006), which is a 2nd-order accurate extension of Godunov’s method.

Higher-order extensions such as the piece-wise parabolic method (PPM) start out
with a higher order polynomial reconstruction. In the case of PPM, parabolic shapes
are assumed in each cell instead of piece-wise linear states. The reconstruction is
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still guaranteed to be conservative, i.e., the integral underneath the reconstruction
recovers the total values of the conserved variables individually in each cell. So-
called ENO and WENO schemes (e.g. Balsara et al. 2009) use yet higher-order
polynomials to reconstruct the state in a conservative fashion. Here many more cells
in the environment need to be considered (i.e., the so-called stencil of these methods
is much larger) to robustly determine the coefficients of the reconstruction. This can
for example involve a least-square fitting procedure (Ollivier-Gooch 1997).

7 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a technique for approximating the con-
tinuum dynamics of fluids through the use of particles, which may also be viewed
as interpolation points (SPH; Lucy 1977; Gingold and Monaghan 1977; Monaghan
1992; Springel 2010b). The principal idea of SPH is to treat hydrodynamics in a
completely mesh-free fashion, in terms of a set of sampling particles. Hydrodynam-
ical equations of motion are then derived for these particles, yielding a quite simple
and intuitive formulation of gas dynamics. Moreover, it turns out that the particle
representation of SPH has excellent conservation properties. Energy, linear momen-
tum, angular momentum, mass, and entropy (if no artificial viscosity operates) are
all simultaneously conserved. In addition, there are no advection errors in SPH, and
the scheme is fully Galilean-invariant, unlike alternative mesh-based Eulerian tech-
niques. Due to its Lagrangian character, the local resolution of SPH follows the mass
flow automatically, a property that is convenient in representing the large density
contrasts often encountered in astrophysical problems.

7.1 Kernel Interpolation

At the heart of smoothed particle hydrodynamics lie so-called kernel interpolants. In
particular, we use a kernel summation interpolant for estimating the density, which
then determines the rest of the basic SPH equations through the variational formalism.

For any field F(r), we may define a smoothed interpolated version, Fs(r), through
a convolution with a kernel W (r, h):

Fs(r) =
∫

F(r′) W (r − r′, h) dr′. (279)

Here h describes the characteristic width of the kernel, which is normalized to unity
and approximates a Dirac δ-function in the limit h → 0. We further require that the
kernel is symmetric and sufficiently smooth to make it at least differentiable twice.
One possibility for W is a Gaussian. However, most current SPH implementations
are based on kernels with a finite support. Usually a cubic spline is adopted with



High Performance Computing and Numerical Modelling 327

W (r, h) = w( r
2h ), and

w3D(q) = 8

π

⎧
⎨

⎩

1 − 6q2 + 6q3, 0 ≤ q ≤ 1
2 ,

2 (1 − q)3 , 1
2 < q ≤ 1,

0, q > 1,

(280)

in three-dimensional normalization, but recent work also considered various alterna-
tive kernels (Read et al. 2010; Dehnen and Aly 2012). Through Taylor expansion, it
is easy to see that the above kernel interpolant is second-order accurate for regularly
distributed points due to the symmetry of the kernel (Fig. 29).

Suppose now we know the field at a set of points ri , i.e., Fi = F(ri ). The points
have an associated mass mi and density ρi , such that Vi ∼ mi/ρi is their associated
finite volume element. Provided the points sufficiently densely sample the kernel
volume, we can approximate the integral in Eq. (279) with the sum

Fs(r) �
∑

j

m j

ρ j
Fj W (r − r j , h). (281)

This is effectively a Monte-Carlo integration, except that thanks to the comparatively
regular distribution of points encountered in practice, the accuracy is better than for a
random distribution of the sampling points. In particular, for points in one dimension
with equal spacing d, one can show that for h = d the sum of Eq. (281) provides a
second order accurate approximation to the real underlying function. Unfortunately,
for the irregular yet somewhat ordered particle configurations encountered in real
applications, a formal error analysis is not straightforward. It is clear however, that
at the very least one should have h ≥ d, which translates to a minimum of ∼33
neighbors in 3D if a Cartesian point distribution is assumed.

Importantly, we see that the estimate for Fs(r) is defined everywhere (not only at
the underlying points), and is differentiable thanks to the differentiability of the ker-
nel, albeit with a considerably higher interpolation error for the derivative. Moreover,

Fig. 29 Kernel interpolation with a B-spline kernel
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if we set F(r) = ρ(r), we obtain

ρs(r) �
∑

j

m j W (r − r j , h), (282)

yielding a density estimate just based on the particle coordinates and their masses. In
general, the smoothing length can be made variable in space, h = h(r, t), to account
for variations in the sampling density. This adaptivity is one of the key advantages
of SPH and is essentially always used in practice. There are two options to introduce
the variability of h into Eq. (282). One is by adopting W (r − r j , h(r)) as kernel,
which corresponds to the so-called ‘scatter’ approach (Hernquist and Katz 1989).
It has the advantage that the volume integral of the smoothed field recovers the
total mass,

∫
ρs(r) dr = ∑

i mi . On the other hand, the so-called ‘gather’ approach,
where we use W (r−r j , h(ri )) as kernel in Eq. (282), requires only knowledge of the
smoothing length hi = h(ri ) for estimating the density of particle i , which leads to
computationally convenient expressions when the variation of the smoothing length
is consistently included in the SPH equations of motion. Since the density is only
needed at the coordinates of the particles and the total mass is conserved anyway
(since it is tied to the particles), it is not important that the volume integral of the
gather form of ρs(r) exactly equals the total mass.

In the following we drop the subscript s for indicating the smoothed field, and
adopt as SPH estimate of the density of particle i the expression

ρi =
N∑

j=1

m j W (ri − r j , hi ). (283)

It is clear now why kernels with a finite support are preferred. They allow the sum-
mation to be restricted to the Nngb neighbors that lie within the spherical region
of radius 2h around the target point ri , corresponding to a computational cost of
order O(Nngb N ) for the full density estimate. Normally this number Nngb of neigh-
bors within the support of the kernel is approximately (or exactly) kept constant by
choosing the hi appropriately. Nngb hence represents an important parameter of the
SPH method and needs to be made large enough to provide sufficient sampling of
the kernel volumes. Kernels like the Gaussian on the other hand would require a
summation over all particles N for every target particle, resulting in a O(N 2) scaling
of the computational cost.

If SPH was really a Monte-Carlo method, the accuracy expected from the interpo-
lation errors of the density estimate would be rather problematic. But the errors are
much smaller because the particles do not sample the fluid in a Poissonian fashion.
Instead, their distances tend to equilibrate due to the pressure forces, which makes
the interpolation errors much smaller (Price 2012). Yet, they remain a significant
source of error in SPH and are ultimately the primary origin of the noise inherent in
SPH results (Bauer and Springel 2012).
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Even though we have based most of the above discussion on the density, the
general kernel interpolation technique can also be applied to other fields, and to the
construction of differential operators. For example, we may write down a smoothed
velocity field and take its derivative to estimate the local velocity divergence, yielding:

(∇ · v)i =
∑

j

m j

ρ j
v j · ∇i W (ri − r j , h). (284)

However, an alternative estimate can be obtained by considering the identity ρ∇ ·v =
∇(ρv) − v · ∇ρ, and computing kernel estimates for the two terms on the right hand
side independently. Their difference then yields

(∇ · v)i = 1

ρi

∑

j

m j (v j − vi ) · ∇i W (ri − r j , h). (285)

This pair-wise formulation turns out to be more accurate in practice. In particular, it
has the advantage of always providing a vanishing velocity divergence if all particle
velocities are equal.

7.2 SPH Equations of Motion

The Euler equations for inviscid gas dynamics in Lagrangian form are given by

dρ

dt
+ ρ∇ · v = 0, (286)

dv
dt

+ ∇ P

ρ
= 0, (287)

du

dt
+ P

ρ
∇ · v = 0, (288)

where d/dt = ∂/∂t + v · ∇ is the convective derivative. This system of partial
differential equations expresses conservation of mass, momentum and energy. Eckart
(1960) has shown that the Euler equations for an inviscid ideal gas follow from the
Lagrangian

L =
∫

ρ

(
v2

2
− u

)
dV . (289)

This opens up an interesting route for obtaining discretized equations of motion for
gas dynamics. Instead of working with the continuum equations directly and trying
to heuristically work out a set of accurate difference formulas, one can discretize
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the Lagrangian and then derive SPH equations of motion by applying the variational
principals of classical mechanics (Springel and Hernquist 2002). Using a Lagrangian
also immediately guarantees certain conservation laws and retains the geometric
structure imposed by Hamiltonian dynamics on phase space.

We start by discretizing the Lagrangian in terms of fluid particles of mass mi ,
yielding

LSPH =
∑

i

(
1

2
mi v2

i − miui

)
, (290)

where it has been assumed that the thermal energy per unit mass of a particle can
be expressed through an entropic function Ai of the particle, which simply labels its
specific thermodynamic entropy. The pressure of the particles is

Pi = Aiρ
γ
i = (γ − 1)ρiui , (291)

where γ is the adiabatic index. Note that for isentropic flow (i.e., in the absence of
shocks, and without mixing or thermal conduction) we expect the Ai to be constant.
We hence define ui , the thermal energy per unit mass, in terms of the density estimate
as

ui (ρi ) = Ai
ρ

γ−1
i

γ − 1
. (292)

This raises the question of how the smoothing lengths hi needed for estimating
ρi should be determined. As we discussed above, we would like to ensure adaptive
kernel sizes, meaning that the number of points in the kernel should be approximately
constant. In much of the older SPH literature, the number of neighbors was allowed
to vary within some (small) range around a target number. Sometimes the smoothing
length itself was evolved with a differential equation in time, exploiting the continuity
relation and the expectation that ρh3 should be approximately constant. In case the
number of neighbors outside the kernel happened to fall outside the allowed range,
h was suitably readjusted, at the price of some errors in energy conservation.

A better method is to require that the mass in the kernel volume should be constant,
viz.

ρi h
3
i = const (293)

for three dimensions. Since ρi = ρi (r1, r2, . . . rN , hi ) is only a function of the
particle coordinates and of hi , this equation implicitly defines the function hi =
hi (r1, r2, . . . rN ) in terms of the particle coordinates.

We can then proceed to derive the equations of motion from

d

dt

∂L

∂ṙi
− ∂L

∂ri
= 0. (294)
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This first gives

mi
dvi

dt
= −

N∑

j=1

m j
Pj

ρ2
j

∂ρ j

∂ri
, (295)

where the derivative ∂ρ j/∂ri stands for the total variation of the density with respect
to the coordinate ri , including any variation of h j this may entail. We can hence
write

∂ρ j

∂ri
= ∇iρ j + ∂ρ j

∂h j

∂h j

∂ri
, (296)

where the smoothing length is kept constant in the first derivative on the right hand
side (in our notation, the Nabla operator ∇i = ∂/∂ri means differentiation with
respect to ri holding the smoothing lengths constant). On the other hand, differenti-
ation of ρ j h3

j = const with respect to ri yields

∂ρ j

∂h j

∂h j

∂ri

[

1 + 3 ρ j

h j

(
∂ρ j

∂h j

)−1
]

= −∇iρ j . (297)

Combining Eqs. (296) and (297) we then find

∂ρ j

∂ri
=
(

1 + h j

3ρ j

∂ρ j

∂h j

)−1

∇iρ j . (298)

Using

∇iρ j = mi∇i Wi j (h j ) + δi j

N∑

k=1

mk∇i Wki (hi ), (299)

we finally obtain the equations of motion

dvi

dt
= −

N∑

j=1

m j

[

fi
Pi

ρ2
i

∇i Wi j (hi ) + f j
Pj

ρ2
j

∇i Wi j (h j )

]

, (300)

where the fi are defined by

fi =
[

1 + hi

3ρi

∂ρi

∂hi

]−1

, (301)

and the abbreviation Wi j (h) = W (|ri −r j |, h) has been used. Note that the correction
factors fi can be easily calculated alongside the density estimate, all that is required
is an additional summation to get ∂ρi/∂ri for each particle. This quantity is in fact
also useful to get the correct smoothing radii by iteratively solving ρi h3

i = const
with a Newton-Raphson iteration (Springel and Hernquist 2002).
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The equations of motion (300) for inviscid hydrodynamics are remarkably simple.
In essence, we have transformed a complicated system of partial differential equations
into a much simpler set of ordinary differential equations. Furthermore, we only have
to solve the momentum equation explicitly. The mass conservation equation as well
as the total energy equation (and hence the thermal energy equation) are already
taken care of, because the particle masses and their specific entropies stay constant
for reversible gas dynamics. However, later we will introduce an artificial viscosity
that is needed to allow a treatment of shocks. This will introduce additional terms
in the equation of motion and requires the time integration of one thermodynamic
quantity per particle, which can either be chosen as entropy or thermal energy. Indeed,
the above formulation can also be equivalently expressed in terms of thermal energy
instead of entropy. This follows by taking the time derivative of Eq. (292), which first
yields

dui

dt
= Pi

ρ2
i

∑

j

v j · ∂ρi

∂r j
. (302)

Using Eqs. (298) and (299) then gives the evolution of the thermal energy as

dui

dt
= fi

Pi

ρ2
i

∑

j

m j (vi − v j ) · ∇Wi j (hi ), (303)

which needs to be integrated along the equation of motion if one wants to use the ther-
mal energy as independent thermodynamic variable. There is no difference however
to using the entropy; the two are completely equivalent in the variational formulation.

Note that the above formulation readily fulfills the conservation laws of energy,
momentum and angular momentum. This can be shown based on the discretized form
of the equations, but it is also manifest due to the symmetries of the Lagrangian that
was used as a starting point. The absence of an explicit time dependence gives the
energy conservation, the translational invariance implies momentum conservation,
and the rotational invariance gives angular momentum conservation.

7.3 Artificial Viscosity

Even when starting from perfectly smooth initial conditions, the gas dynamics
described by the Euler equations may readily produce true discontinuities in the
form of shock waves and contact discontinuities. At such fronts the differential form
of the Euler equations breaks down, and their integral form (equivalent to the con-
servation laws) needs to be used. At a shock front, this yields the Rankine-Hugoniot
jump conditions that relate the upstream and downstream states of the fluid. These
relations show that the specific entropy of the gas always increases at a shock front,
implying that in the shock layer itself the gas dynamics can no longer be described
as inviscid. In turn, this also implies that the discretized SPH equations we derived
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above can not correctly describe a shock, simply because they keep the entropy
strictly constant.

One thus must allow for a modification of the dynamics at shocks and somehow
introduce the necessary dissipation. This is usually accomplished in SPH by an arti-
ficial viscosity. Its purpose is to dissipate kinetic energy into heat and to produce
entropy in the process. The usual approach is to parameterize the artificial viscosity
in terms of a friction force that damps the relative motion of particles. Through the
viscosity, the shock is broadened into a resolvable layer, something that makes a
description of the dynamics everywhere in terms of the differential form possible. It
may seem a daunting task though to somehow tune the strength of the artificial vis-
cosity such that just the right amount of entropy is generated in a shock. Fortunately,
this is however relatively unproblematic. Provided the viscosity is introduced into
the dynamics in a conservative fashion, the conservation laws themselves ensure that
the right amount of dissipation occurs at a shock front.

What is more problematic is to devise the viscosity such that it is only active when
there is really a shock present. If it also operates outside of shocks, even if only at a
weak level, the dynamics may begin to deviate from that of an ideal gas.

The viscous force is most often added to the equation of motion as

dvi

dt

∣
∣
∣
∣
visc

= −
N∑

j=1

m jΠi j∇i W i j , (304)

where

W i j = 1

2

[
Wi j (hi ) + Wi j (h j )

]
(305)

denotes a symmetrized kernel, which some researchers prefer to define as W i j =
Wi j ([hi + h j ]/2). Provided the viscosity factor Πi j is symmetric in i and j , the
viscous force between any pair of interacting particles will be antisymmetric and
along the line joining the particles. Hence linear momentum and angular momentum
are still preserved. In order to conserve total energy, we need to compensate the work
done against the viscous force in the thermal reservoir, described either in terms of
entropy,

dAi

dt

∣
∣
∣
∣
visc

= 1

2

γ − 1

ρ
γ−1
i

N∑

j=1

m jΠi j vi j · ∇i W i j , (306)

or in terms of thermal energy per unit mass,

dui

dt

∣
∣
∣
∣
visc

= 1

2

N∑

j=1

m jΠi j vi j · ∇i W i j , (307)

where vi j = vi − v j . There is substantial freedom in the detailed parametrization of
the viscosity Πi j . The most commonly used formulation of the viscosity is
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Πi j =
{[

−αci jμi j + βμ2
i j

]
/ρi j if vi j · ri j < 0

0 otherwise,
(308)

with

μi j = hi j vi j · ri j
∣
∣ri j
∣
∣2 + εh2

i j

. (309)

Here hi j and ρi j denote arithmetic means of the corresponding quantities for the
two particles i and j , with ci j giving the mean sound speed, and ri j ≡ ri − r j .
The strength of the viscosity is regulated by the parameters α and β, with typical
values in the range α � 0.5−1.0 and the frequent choice of β = 2 α. The parameter
ε � 0.01 is introduced to protect against singularities if two particles happen to get
very close.

In this form, the artificial viscosity is basically a combination of a bulk and a von
Neumann-Richtmyer viscosity. Historically, the quadratic term in μi j has been added
to the original Monaghan-Gingold form to prevent particle penetration in high Mach
number shocks. Note that the viscosity only acts for particles that rapidly approach
each other, hence the entropy production is always positive definite.

7.4 New Trends in SPH

Smoothed particle hydrodynamics is a remarkably versatile and simple approach for
numerical fluid dynamics. The ease with which it can provide a large dynamic range
in spatial resolution and density, as well as an automatically adaptive resolution, are
unmatched in Eulerian methods. At the same time, SPH has excellent conservation
properties, not only for energy and linear momentum, but also for angular momentum.
The latter is not automatically guaranteed in Eulerian codes, even though it is usually
fulfilled at an acceptable level for well-resolved flows. When coupled to self-gravity,
SPH conserves the total energy exactly, which is again not manifestly true in most
mesh-based approaches to hydrodynamics. Finally, SPH is Galilean-invariant and
free of any errors from advection alone, which is another advantage compared to
Eulerian mesh-based approaches.

Thanks to its completely mesh-free nature, SPH can easily deal with complicated
geometric settings and large regions of space that are completely devoid of particles.
Implementations of SPH in a numerical code tend to be comparatively simple and
transparent. At the same time, the scheme is characterized by remarkable robustness.
For example, negative densities or negative temperatures, sometimes a problem in
mesh-based codes, can not occur in SPH by construction. Although shock waves are
broadened in SPH, the properties of the post-shock flow are correct.

The main disadvantage of SPH is its limited accuracy in multi-dimensional flows
(e.g. Agertz et al. 2007; Bauer and Springel 2012). One source of noise originates
in the approximation of local kernel interpolants through discrete sums over a small
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set of nearest neighbors. While in 1D the consequences of this noise tend to be
reasonably benign, particle motion in multiple dimensions has a much higher degree
of freedom. Here the mutually repulsive forces of pressurized neighboring particle
pairs do not easily cancel in all dimensions simultaneously, especially not given the
errors of the discretized kernel interpolants. As a result, some ‘jitter’ in the particle
motions readily develops, giving rise to velocity noise up to a few percent of the local
sound speed. This noise seriously messes up the accuracy that can be reached with
the technique, especially for subsonic flow, and also leads to a slow convergence rate.

Another problem is the relatively high numerical viscosity of SPH. To reduce
the numerical viscosity of SPH in regions away from shocks, several studies have
recently advanced the idea of keeping the functional form of the artificial viscosity,
but making the viscosity strength parameter α variable in time (Morris 1997; Dolag
et al. 2005; Rosswog 2005). Adopting β = 2α, one may for example evolve the
parameter α individually for each particle with an equation such as

dαi

dt
= −αi − αmax

τi
+ Si , (310)

where Si is some source function meant to ramp up the viscosity rapidly if a shock
is detected, while the first term lets the viscosity exponentially decay again to a
prescribed minimum value αmin on a timescale τi . So far, mostly simple source
functions like Si = max[−(∇ ·v)i , 0] and timescales τi � hi/ci have been explored
and the viscosity αi has often also been prevented from becoming higher than some
prescribed maximum value αmax. It is clear that the success of such a variable α
scheme depends critically on an appropriate source function. The form above can
still not distinguish purely adiabatic compression from that in a shock, so is not
completely free of creating unwanted viscosity. More advanced parameterizations
that try to address this problem have therefore also been developed (Cullen and
Dehnen 2010).

Particularly problematic in SPH are also fluid instabilities across contact discon-
tinuities, such as Kelvin-Helmholtz instabilities. These are usually found to be sup-
pressed in their growth. Recent new formulations of SPH try to improve on this either
through different kernel shapes combined with a much larger number of smoothing
neighbors (e.g. Read and Hayfield 2012), through artificial thermal conduction at
contact discontinuities to reduce pressure force errors and spurious surface tension
there (e.g. Price 2008), or by alluding to a pressure-based formulation where the den-
sity is estimated only indirectly from a kernel-interpolated pressure field (Hopkins
2013). These developments appear certainly promising. At the moment many new
ideas for improved SPH formulations are still advanced, and new implementations
are published regularly. While many problems of SPH have been addresses by these
new schemes, so far they have not yet been able to cure the relatively large gradient
errors in SPH, suggesting that the convergence rate of them is still lower than that of
comparable mesh-based approaches (e.g. Hu et al. 2014).
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8 Moving-Mesh Techniques

8.1 Differences Between Eulerian and Lagrangian Techniques

It has become clear over recent years that both Lagrangian SPH and Eulerian AMR
techniques suffer from fundamental limitations that make them inaccurate in certain
regimes. Indeed, these methods sometimes yield conflicting results even for basic
calculations that only consider non-radiative hydrodynamics (e.g. Frenk et al. 1999;
Agertz et al. 2007; Tasker et al. 2008; Mitchell et al. 2009). SPH codes have com-
paratively poor shock resolution, offer only low-order accuracy for the treatment of
contact discontinuities, and suffer from subsonic velocity noise. Worse, they appear
to suppress fluid instabilities under certain conditions, as a result of a spurious surface
tension and inaccurate gradient estimates across density jumps. On the other hand,
Eulerian codes are not free of fundamental problems either. They do not produce
Galilean-invariant results, which can make their accuracy sensitive to the presence
of bulk velocities (e.g. Wadsley et al. 2008; Tasker et al. 2008). Another concern lies
in the preference of certain spatial directions in Eulerian hydrodynamics, which can
make poorly resolved disk galaxies align with the coordinate planes (Dubois et al.
2014).

There is hence substantial motivation to search for new hydrodynamical methods
that improve on these weaknesses of the SPH and AMR techniques. In particular, we
would like to retain the accuracy of mesh-based hydrodynamical methods (for which
decades of experience have been accumulated in computational fluid dynamics),
while at the same time we would like to outfit them with the Galilean-invariance and
geometric flexibility that is characteristic of SPH. The principal idea for achieving
such a synthesis is to allow the mesh to move with the flow itself. This is in principle
an obvious and old idea(Braun and Sambridge 1995 ; Gnedin 1995; Whitehurst 1995;
Mavriplis 1997; Xu 1997; Hassan et al. 1998; Pen 1998; Trac and Pen 2004), but one
fraught with many practical difficulties. In particular, mesh tangling (manifested in
‘bow-tie’ cells and hourglass like mesh motions) is the traditional problem of such
attempts to simulate multi-dimensional hydrodynamics in a Lagrangian fashion.

8.2 Voronoi Tessellations

We here briefly describe a new formulation of continuum hydrodynamics based on
an unstructured mesh that overcomes many of these problems (Springel 2010a).
The mesh is defined as the Voronoi tessellation of a set of discrete mesh-generating
points, which are in principle allowed to move freely. For the given set of points, the
Voronoi tessellation of space consists of non-overlapping cells around each of the
sites such that each cell contains the region of space closer to it than to any of the
other sites. Closely related to the Voronoi tessellation is the Delaunay tessellation,
the topological dual of the Voronoi diagram. Both constructions can also be used
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for natural neighbor interpolation and geometric analysis of cosmic structures (e.g.
van de Weygaert 1994; Pelupessy et al. 2003; van de Weygaert and Schaap 2009).
In 2D, the Delaunay tessellation for a given set of points is a triangulation of the
plane, where the points serve as vertices of the triangles. The defining property of
the Delaunay triangulation is that each circumcircle around one of the triangles of the
tessellation is not allowed to contain any of the other mesh-generating points in its
interior. This empty circumcircle property distinguishes the Delaunay triangulation
from the many other triangulations of the plane that are possible for the point set, and
in fact uniquely determines the triangulation for points in general position. Similarly,
in three dimensions, the Delaunay tessellation is formed by tetrahedra that are not
allowed to contain any of the points inside their circumspheres.

As an example, Fig. 30 shows the Delaunay and Voronoi tessellations for a small
set of points in 2D, enclosed in a box with imposed periodic boundary conditions.
The midpoints of the circumcircles around each Delaunay triangle form the vertices
of the Voronoi cells, and for each line in the Delaunay diagram, there is an orthogonal
face in the Voronoi tessellation.

The Voronoi cells can be used as control volumes for a finite-volume formulation
of hydrodynamics, using the same principal ideas for reconstruction, evolution and
averaging (REA) steps that we have discussed earlier in the context of Eulerian tech-
niques. However, as we will discuss below it is possible to consistently include the
mesh motion in the formulation of the numerical steps, allowing the REA-scheme to
become Galilean-invariant. Even more importantly, due to the mathematical prop-
erties of the Voronoi tessellation, the mesh continuously deforms and changes its
topology as a result of the point motion, without ever leading to the dreaded mesh-
tangling effects that are the curse of traditional moving-mesh methods.

Fig. 30 Example of a
Voronoi and Delaunay
tessellation in 2D, with
periodic boundary
conditions. The red circles
show the generating points
of the Voronoi tessellation,
which is drawn with solid
lines. Its topological dual,
the Delaunay triangulation,
is overlaid with thin dashed
lines
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8.3 Finite Volume Hydrodynamics on a Moving-mesh

As already discussed earlier in Sect. 6.4, the Euler equations are conservation laws
for mass, momentum and energy that take the form of a system of hyperbolic partial
differential equation. They can be written in the compact form

∂U
∂t

+ ∇ · F = 0, (311)

which emphasizes their character as conservation laws.
Following the finite-volume strategy, we describe the fluid’s state by the cell-

averages of the conserved quantities for these cells. In particular, integrating the
fluid over the volume Vi of cell i , we can define the total mass mi , momentum pi

and energy Ei contained in the cell as follows,

Qi =
⎛

⎝
mi

pi

Ei

⎞

⎠ =
∫

Vi

U dV . (312)

With the help of the Euler equations, we can calculate the rate of change of Qi in
time. Converting the volume integral over the flux divergence into a surface integral
over the cell results in

dQi

dt
= −

∫

∂Vi

[
F(U) − UwT

]
dn. (313)

Here n is an outward normal vector of the cell surface, and w is the velocity with
which each point of the boundary of the cell moves. In Eulerian codes, the mesh is
taken to be static, so that w = 0, while in a fully Lagrangian approach, the surface
would move at every point with the local flow velocity, i.e., w = v. In this case, the
right hand side of Eq. (313) formally simplifies, because then the first component of
Qi , the mass, stays fixed for each cell. Unfortunately, it is normally not possible to
follow the distortions of the shapes of fluid volumes exactly in multi-dimensional
flows for a reasonably long time, or in other words, one cannot guarantee the condition
w = v over the entire surface. In this case, one needs to use the general formula of
Eq. (313). As an aside, we note that one conceptual problem of SPH is that these
surface fluxes due to the w-term are always ignored.

The cells of our finite volume discretization are polyhedra with flat polygonal
faces (or lines in 2D). Let Ai j describe the oriented area of the face between cells i
and j (pointing from i to j). Then we can define the averaged flux across the face
i- j as

Fi j = 1

Ai j

∫

Ai j

[
F(U) − UwT

]
dAi j , (314)
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and the Euler equations in finite-volume form become

dQi

dt
= −

∑

j

Ai j Fi j . (315)

We obtain a manifestly conservative time discretization of this equation by writing
it as

Q(n+1)
i = Q(n)

i − Δt
∑

j

Ai j F̂
(n+1/2)

i j , (316)

where the F̂i j are now an appropriately time-averaged approximation to the true flux

Fi j across the cell face. The notation Q(n)
i is meant to describe the state of the system

at step n. Note that F̂i j = −F̂ j i , i.e., the discretization is manifestly conservative.
Evidently, a crucial step lies in obtaining a numerical estimate of the fluxes F̂i j .

We employ the MUSCL-Hancock scheme (van Leer 1984, 2006; Toro 1997) already
discussed in Sect. 6.7, which is a well-known and relatively simple approach for
obtaining second-order accuracy in space and time. This scheme is used in several
state-of-the art Eulerian codes (e.g. Fromang et al. 2006; Mignone et al. 2007; Cun-
ningham et al. 2009). In its basic form, the MUSCL-Hancock scheme involves a
slope-limited piece-wise linear reconstruction step within each cell, a first order pre-
diction step for the evolution over half a timestep, and finally a Riemann solver to
estimate the time-averaged inter-cell fluxes for the timestep. After the fluxes have
been applied to each cell, a new averaged state of the cells is constructed. This
sequence of steps in a timestep hence follows the general REA approach.

Figure 31 gives a sketch of the geometry involved in estimating the flux across
the face between two Voronoi cells. Truly multidimensional Riemann solvers have
been developed recently (Wendroff 1999; Brio et al. 2001; Balsara 2010), but it is
unclear whether they can be readily adapted to our complicated face geometry. We
therefore follow the common approach and calculate the flux for each face separately,
treating it as an effectively one-dimensional problem. Since we do not work with
Cartesian meshes, we cannot use operating splitting to deal with the individual spatial
dimensions, hence we apply an unsplit approach. For defining the Riemann problem
normal to a cell face, we rotate the fluid state into a suitable coordinate system with
the x ′-axis normal to the cell face (see sketch). This defines the left and right states
across the face, which we pass to an (exact) Riemann solver, following Toro (1997).
Once the flux has been calculated with the Riemann solver, we transform it back to
the lab frame. In order to obtain Galilean-invariance and stable upwind behavior, the
Riemann problem needs to be solved in the frame of the moving face.

In the moving-mesh hydrodynamical scheme implemented in the AREPO2 code
(Springel 2010a), each timestep hence involves the following basic steps:

2Named after the enigmatic word AREPO in the Latin palindromic sentence sator arepo tenet opera
rotas, the ‘Sator Square’.



340 V. Springel

(a) (b)

Fig. 31 Sketch of a Voronoi mesh and the relevant geometric quantities that enter the flux calculation
across a face. In a, we show the mesh-generating points ri and r j of two cells i and j . The face
between these two cells has a center-of-mass vector f i j , which in general will be offset from the
mid-point mi j of the two points. In b, we illustrate the two velocity vectors wi and w j associated
with the mesh-generating points. These are normally chosen equal to the gas velocity in the cells,
but other choices are allowed too. The motion of the mesh-generating points uniquely determines
the motion of the face between the cells. Only the normal velocity w is however needed for the flux
computation in the rotated frame x ′, y′

1. Calculate a new Voronoi tessellation based on the current coordinates ri of the
mesh generating points. This also gives the centers-of-mass si of each cell, their
volumes Vi , as well as the areas Ai j and centers f i j of all faces between cells.

2. Based on the vector of conserved fluid variables Qi associated with each cell,
calculate the ‘primitive’ fluid variables Wi = (ρi , vi , Pi ) for each cell.

3. Estimate the gradients of the density, of each of the velocity components, and of
the pressure in each cell, and apply a slope-limiting procedure to avoid overshoots
and the introduction of new extrema.

4. Assign velocities wi to the mesh generating points.
5. Evaluate the Courant criterion and determine a suitable timestep size Δt .
6. For each Voronoi face, compute the flux F̂i j across it by first determining the

left and right states at the midpoint of the face by linear extrapolation from the
cell midpoints, and by predicting these states forward in time by half a timestep.
Solve the Riemann problem in a rotated frame that is moving with the speed of
the face, and transform the result back into the lab-frame.

7. For each cell, update its conserved quantities with the total flux over its surface
multiplied by the timestep, using Eq. (316). This yields the new state vectors
Q(n+1)

i of the conserved variables at the end of the timestep.
8. Move the mesh-generating points with their assigned velocities for this timestep.

Full details for each of these different steps as well as test problems can be found
in Springel (2010a). Recently, a number of science applications involving fairly
large calculations with AREPO have been carried out that demonstrate the practical
advantages of this technique for applications in galaxy formation and evolution (e.g.
Greif et al. 2011a, b; Vogelsberger et al. 2012, 2013, 2014; Marinacci et al. 2014;
Pakmor et al. 2014).
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9 Parallelization Techniques and Current Computing
Trends

Modern computer architectures offer ever more computational power that we ideally
would like to use to their full extent for scientific purposes, in particular for simula-
tions in astrophysics. However, unlike in the past, the speed of individual compute
cores, which may be viewed as serial computers, has recently hardly grown any more
(in stark contrast to the evolution a few years back). Instead, the number of cores
on large supercomputers has started to increase exponentially. Even on laptops and
cell-phones, multi-core computers have become the norm rather than the exception.

However, most algorithms and computer languages are constructed around the
concepts of a serial computer, in which a stream of operations is executed sequentially.
This is also how we typically think when we write computer code. In order to exploit
the power available in modern computers, one needs to change this approach and
adopt parallel computing techniques. Due to the large variety of computer hardware,
and the many different technical concepts for devising parallel programs, we can
only scratch the surface here and make a few basic remarks about parallelization,
and some basic techniques that are currently in wide use for it. The interested student
is encouraged to read more about this in textbooks and/or in online resources.

9.1 Hardware Overview

Let’s start first with a schematic overview over some of the main characteristics and
types of current computer architectures.

9.1.1 Serial Computer

The traditional model of a computer consists of a central processing unit (CPU),
capable of executing a sequential stream of load, store, and compute operations,
attached to a random access memory (RAM) used for data storage, as sketched in
Fig. 32. Branches and jumps in this stream are possible too, but at any given time,
only one operation is carried out. The operating system may still provide the illusion

Fig. 32 Simple schematic sketch of a serial computer—most traditional computer languages are
formulated for this type of machine
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that several programs are executed concurrently, but in this case this is reached by
time slicing the single compute resource.

Most computer languages are built around this model; they can be viewed as
a means to create the stream of serial operations in a convenient way. One can in
principle also by-pass the computer language and write down the machine instruc-
tions directly (assembler programming), but fortunately, modern compilers make this
unnecessary in scientific applications (except perhaps in very special circumstances
where extreme performance tuning is desired).

9.1.2 Multi-core Nodes

It is possible to attach multiple CPUs to the same RAM (see Fig. 33), and, especially
in recent times, computer vendors have started to add multiple cores to individual
CPUs. On each CPU and each core of a CPU, different programs can be executed
concurrently, allowing real parallel computations.

In machines with uniform memory access, the individual cores can access the
memory with the same speed, at least in principle. In this case the distinction between
a CPU and a core can become confusing (and is in fact superfluous at some level),
because it is ambiguous whether “CPU” refers to a single core, or all the cores on
the same die of silicon (it’s hence best to simple speak about cores to avoid any
confusion).

9.1.3 Multi-socket Compute Nodes

Most powerful compute servers feature these days a so-called NUMA (non-uniform
memory access) architecture. Here the full main memory is accessible by all cores, but
not all parts of it with the same speed. The compute nodes usually feature individual
multi-core CPUs, each with a dedicated memory bank attached (see Fig. 34). Read
and write operations to this part of physical memory are fastest, while accessing the
other memory banks is typically noticeably slower and often involves going through
special, high-bandwidth interprocessor bus systems.

Fig. 33 Multi-core
computer with shared
memory
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Fig. 34 Non-uniform memory access computer. Here multiple sockets contain several processor
dies, each with multiple cores. The total memory is split up into banks, which can be accessed
with maximum speed by the processor associated with it, and with a reduced speed from different
processors

In such machines, maximum compute performance is only reached when the data
that is worked on by a core resides on the “right” memory bank. Fortunately, the
operating system will normally try to help with this by satisfying memory requests
out of the closest part of physical memory, if possible. It is then also advantageous
to tell the operating system to “pin” execution of a process or thread to a certain
physical core, so that it is not rescheduled to run on another core from which the
already allocated data may be accessible only with slower speed.

9.1.4 Compute Clusters

Very powerful supercomputers used in the field of high-performance computing
(HPC) can be formed by connecting many compute nodes through a fast commu-
nication network, as sketched in Fig. 35. This can be standard gigabit ethernet in
some cases, but usually much faster (and more expensive) communication networks
such as infiniband are employed. The leading supercomputers in the world are of this
type, and currently typically reach several 105 cores in total, with the first machines
surpassing even 106 cores. Towards the end of the decade, when exaflop machines
(capable of carrying out 1018 floating point operations per second) are expected,
this may even grow to 108 or beyond. How to use these machines efficiently for
interesting science problems, which tend to be tightly coupled and not amenable to
unlimited levels of computational concurrency, is however still an unsolved problem.
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Fig. 35 In large high-performance supercomputers, one typically connects a large number of pow-
erful compute nodes (often of NUMA type) through a very fast dedicated communication network

9.1.5 Device Computing

A comparatively new trend in scientific computing is to augment classical compute
nodes with special accelerator cards that are particularly tuned to floating point
calculations. These cards have much simpler, less flexible compute cores, but the
transistors saved on implementing chip complexity can be spent on building more
powerful compute engines that can execute many floating point operations in parallel.
Graphics processing units (GPUs) have been originally developed with such a design
just for the vector operations necessary to render graphics, but now their streaming
processors can also be used for general purpose calculations. For certain applications,
GPUs can be much faster than ordinary CPUs, but programming them is harder.

In so-called hybrid compute nodes (Fig. 36), one has one or several ordinary CPUs
coupled to one or several GPUs, or other accelerator cards such as the new Intel
Xeon Phi. Of course, these hybrid nodes can be clustered again with a fabric to form
powerful supercomputers. In fact, the fastest machines in the world are presently of
this type.

Fig. 36 Hybrid compute node. An accelerator device (a GPU, or an Intel Xeon Phi card) is connected
to an ordinary compute node through a fast bus system. Usually, host CPU and computing device
each have their own RAM
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9.1.6 Vector Cores

Another hardware aspect that should not be overlooked is that single compute cores
are actually increasingly capable to carry out so-called vector instructions. Here a
single instruction (such as addition, multiplication, etc.) is applied to multiple data
elements (a vector). This is also a form of parallelization, allowing the calculation
throughput to be raised significantly. Below is an example that calculates x = a · b
element by element for 4-vectors a and b using Intel’s Advanced Vector Instructions
(AVX). These can be programmed explicitly through intrinsics in C, which are basi-
cally individual machine instructions hidden as macros or function calls within C.
(Usually, one does not do this manually though, but rather hopes the compiler emits
such instructions somehow automatically).

#include <xmmintrin .h>

void do_stuff (void)
{

double a[4] , b[4] , res [4];

_ _m256d x = _mm256_load_pd(a ) ;
_ _m256d y = _mm256_load_pd(b) ;

x = _mm256_mul_pd(x, y) ;

_mm256_store_pd( res , x) ;
}

The current generation of the x86 processors from Intel/AMD features SSE/AVX
instructions that operate on vectors of up to 256 bits. This means that 4 double-
precision or 8 single precision operations can be executed with such an instruction,
roughly in the same speed that an ordinary double or single-precision operation takes.
So if these instructions can be used in an optimum way, one achieves a speed-up by
a factor of up to 4 or 8, respectively. On the Intel Xeon Phi chips, the vector length
has already doubled again and is now 512 bits, hence allowing another factor of 2 in
the performance. Likely, we will see even larger vector lengths in the near future.

9.1.7 Hyperthreading

A general problem in exploiting modern computer hardware to its full capacity is
that accessing main memory is very much slower than doing a single floating point
operation in a compute core (note that moving data also costs more energy than doing
a floating point calculation, which is becoming an important consideration too). As a
result, a compute core typically spends a large fraction of its cycles waiting for data
to arrive from memory.
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The idea of hyperthreading as implemented in CPUs by Intel and in IBM’s Power
architecture is to use this wait time by letting the core do some useful work in the
meantime. This is achieved by “overloading” the compute core with several execution
streams. But instead of letting the operating system toggle between their execution,
the hardware itself can switch very rapidly between these different “hyperthreads”.
Even though there is still some overhead in changing the execution context from
one thread to another, this strategy can still lead to a substantial net increase in the
calculational throughput on the core. Effectively, to the operating system and user it
appears as if there are more cores (so called virtual cores) than there are real physical
cores. For example, the IBM CPU on the Bluegene/Q machine has 16 physical cores
with 4-fold hyperthreading, yielding 64 virtual cores. One may then start 64 threads
in the user application. Compared with just starting 16 threads, one will then not
get four times the performance, but still perhaps 2.1 times the performance or so,
depending on the particular application.

9.2 Amdahl’s Law

Before we discuss some elementary parallelization techniques, it is worthwhile to
point out a fundamental limit to the parallel speed-up that may be reached for a given
program. We define the speed up here as the ratio of the total execution time without
parallelization (i.e., when the calculation is done in serial) to the total execution time
obtained when the parallelization is enabled.

Suppose we have a program that we have successfully parallelized. In practice,
this parallelization is never going to be fully perfect. Normally there are parts of
the calculation that remain serial, either for algorithmic reasons, due to technical
limitations, or we considered them unimportant enough that we have not bothered to
parallelize those too. Let us call the residual serial fraction fs , i.e., this is the fraction
of the execution time spent in the corresponding code parts when the program is
executed in ordinary serial mode.

Then Amdahl’s law (Amdahl 1967) gives the maximum parallel speed up as

maximum parallel speed up = 1

fs
. (317)

This is simply because in the most optimistic case we can at most assume that our
parallelization effort has been perfect, so that the time spent in the parallel parts
approaches zero for a sufficiently large number of cores. The serial time remains
unaffected by this, however, and does not shrink at all. The lesson is a bit sobering:
Achieving large parallel speed-ups, say beyond a factor of 100 or so, also requires
extremely tiny residual serial fractions. This is sometimes very hard to reach in
practice, and for certain problems, it may even be impossible.
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9.3 Shared Memory Parallelization

Shared memory parallelization can be used to distribute a computational work-load
on the multiple available compute cores that have access to the same memory, which
is where the data resides. UNIX processes are isolated from each other—they usually
have their own protected memory, preventing simple joint work on the same memory
space (data exchange requires the use of files, sockets, or special devices such as
/dev/shm). But, a process may be split up into multiple execution paths, called threads.
Such threads share all the resources of the parent process (memory, files, etc.), and
they are the ideal vehicle for efficient shared memory parallelization.

Threads can be created and destroyed manually, e.g., with the pthreads-library of
the POSIX standard. Here is a simple example how this could be achieved:

#include <pthread .h>

void do_stuff (void)
{

int i , threadid = 1;
pthread_attr_r a t t r ;
pthread_t mythread;
pthread_attr_init(&at t r ) ;
pthread_create (mythread, &attr , evaluate , &threadid ) ;

for ( i = 0; i < 100; i++)
some_expensive_calculation( i ) ;

}

void ∗evaluate (void ∗p)
{

int i ;

for ( i = 100; i < 200; i++)
some_expensive_calculation( i ) ;

}

Here the two loops in lines 11/12 and 19/20 will be carried out simultaneously
(i.e., in parallel) by two different threads of the same parent process. While certainly
doable in principle this style of parallel programming is a bit cumbersome if one has
to do it regularly—fortunately, there is a convenient alternative (see below) where
much of the thread logistics is carried out by the compiler.
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9.3.1 OpenMP and Its Fork-Join Model

A simpler approach for shared memory programming is to use the OpenMP stan-
dard, which is a language/compiler extension for C/C++ and Fortran. It allows the
programmer to give simple hints to the compiler, instructing it which parts can be
executed in parallel sections. OpenMP then automatically deals with the thread cre-
ation and destruction, and completely hides this nuisance from the programmer. As a
result, it becomes possible to parallelize a code with minimal modifications, and the
modified program can still be compiled and executed without OpenMP as a serial
code. Here is how the example from above would like like in OpenMP:

#include <omp.h>

void do_stuff (void)
{

int i ;

#pragma omp parallel for
for ( i = 0; i < 200; i++)

some_expensive_calculation( i ) ;
}

This is obviously a lot simpler. We see here an example of so-called loop-level
parallelism with OpenMP. In practice, one simply puts a special directive for the
compiler in front of the loop. That’s basically all. The OpenMP compiler will then
automatically wake up all available threads at the beginning of the loop (the “fork”),
it will then distribute the loop iterations evenly onto the different threads, and they
are then executed concurrently. Finally, once all loop iterations have completed, the
threads are put to sleep again, and only the master thread continues in serial fashion.
Note that this will only work correctly if there are no dependencies between the
different loop iterations, or in other words, the order in which they are carried out
needs to be unimportant. If everything goes well, the loop is then executed faster by
a factor close to the number of threads.

This illustrates the central idea of OpenMP, which is to let the programmer identify
sections in a code that can be executed in parallel and annotate these to the compiler.
Whenever such a section is encountered, the program execution is split into a number
of threads that work in a team in parallel on the work of the section. Often, this work
is a simple loop whose iterations are distributed evenly on the team, but also more
general parallel sections are possible. At the end of the parallel section, the threads
join again onto the master thread, the team is dissolved, and serial execution resumes
until the next parallel section starts. Normally, the number of threads used in each
parallel section is constant, but this can also be changed through calls of OpenMP
runtime library functions. In order for this to work in practice, one has to do a few
additional things:
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• The code has to be compiled with an OpenMP capable compiler. This feature often
needs to be enabled with a special switch, e.g., with gcc,

gcc -fopenmp ...

needs to be used.
• For some more advanced OpenMP features accessible through calls of OpenMP-

library functions, one should include the OpenMP header file

#include <omp.h>

• In order to set the number of threads that are used, one should set the OMP
_NUM_THREADS environment variable before the program is started. Depend-
ing on the shell that is used (here bash is assumed), this can be done for example
through

export OMP_NUM_THREADS=8

in which case 8 threads would be allocated by OpenMP. Normally one should then
also have at least eight (virtual) cores available. Theomp_get_num_threads()
function call can be used inside a program to check how many threads are available.

9.3.2 Race Conditions

When OpenMP is used, one can easily create hideous bugs if different threads are
allowed to modify the same variable at the same time. Which thread wins the “race”
and gets to modify a variable first is essentially undetermined in OpenMP (note that
the exact timings on a compute core can vary stochastically due to “timing noise”
originating in interruptions from the operating system), so that subsequent executions
may each time yield a different result and seemingly produce non-deterministic
behavior. A simple example for incorrect code with this problem is the following
double-loop:

int i , j ;
#pragma omp parallel for

for ( i = 0; i < N; i++)
{

for ( j = 0; j < N; j++)
{

do_stuff ( i , j ) ;
}

}
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Here the simple OpenMP directive in the outer loop will instruct the i-loop to be
split up between different threads. However, there is only one variable for j, shared
by all the threads. They are hence not able to carry out the inner loop independent
from each other! What is needed here is that each thread gets its own copy of j, so
that the inner loop can be executed independently. This can be achieved by either
adding a private(j) clause to the OpenMP directive of the outer loop, like this:

int i ;
#pragma omp parallel for private ( j )

for ( i = 0; i < N; i++)
{

for ( j = 0; j < N; j++)
{

do_stuff ( i , j ) ;
}

}

or by exploiting the scoping rules of C for the variable j, declaring it in the loop
body:

int i ;
#pragma omp parallel for

for ( i = 0; i < N; i++)
{

int j ;
for ( j = 0; j < N; j++)

{
do_stuff ( i , j ) ;

}
}

9.3.3 Reductions

Another common construct in code are reductions that build, e.g., large sums or
products, such as attempted incorrectly in this example:

int count = 0;
#pragma omp parallel for

for ( i = 0; i < N; i++)
{

i f (complicated_calculation( i ) > 0)
count++;

}
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Again, even though here the loop is nicely parallelized by OpenMP, we may
nevertheless get an incorrect result for count. This is because the increment of this
variable is not necessarily carried out as a single instruction. It basically involves a
read from memory, an addition of 1, and a write back. If now two threads happen
to arrive at this statement at essentially the same time, they will both read count,
increment it, and then write it back. But in this case the variable will end up being
incremented only by one unit and not by two, because one of the threads is ignorant
of the change ofcount by the other and overwrites it. We have here another example
for a race conditions.

There are different solutions to this problem. One is to serialize the increment of
count by putting a so-called lock around it. Since we here have a simple increment
of a variable, a particularly fast look—a so-called atomic instruction—is possible.
This can be done through:

int count = 0;
#pragma omp parallel for

for ( i = 0; i < N; i++)
{

i f (complicated_calculation( i ) > 0)
{

#pragma omp atomic
count++;

}
}

But this can still cost substantial performance: If one or several threads arrive at
the statement protected by the atomic lock at the same time, they have to wait and
do the operation one after the other.

A better solution would be to have private variables for count for each thread,
and only at the end of the parallel section add up the different copies to get the global
sum. OpenMP can generate the required code automatically, all that is needed is to
add the clause reduction(+:count) to the directive for parallelizing the loop:

int count = 0;
#pragma omp parallel for reduction(+:count)

for ( i = 0; i < N; i++)
{

i f (complicated_calculation( i ) > 0)
count++;

}
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This shall suffice for giving a flavor of the style and the concepts of OpenMP.
A more detailed description of the OpenMP standard can for example be found in
various textbooks, and good online tutorials.3

9.4 Distributed Memory Parallelization with MPI

To use multiple nodes in compute clusters, OpenMP is not sufficient. Here one either
has to use special programming languages that directly support distributed memory
models (for example UPC, Co-Array Fortran, or Chapel), or one turns to the “Message
Passing Interface” (MPI). MPI has become the de-facto standard for programming
large-scale simulation code.

MPI offers library functions for exchanging messages between different processes
running on the same or different compute nodes. The compute nodes do not neces-
sarily have to be physically close, in principle they can also be loosely connected
over the internet (although for tightly coupled problems the message latency makes
this unattractive). Most of the time, the same program is executed on all compute
cores (SPMD, “single program multiple data”), but they operate on different data
such that the computational task is put onto many shoulders and a parallel speed up
is achieved. Since the MPI processes are isolated from each other, all data exchanges
necessary for the computations have to be explicitly programmed—this makes this
approach much harder than, e.g., OpenMP. Often substantial program modifications
and algorithmic changes are needed for MPI.

Once a program has been parallelized with MPI, it may also be augmented with
OpenMP. Such hybrid parallel code may then be executed in different ways on a
cluster. For example, if one has two compute nodes with 8 cores each, one could
run the program with 16 MPI tasks, or with 2 MPI tasks that each using 8 OpenMP
threads, or with 4 MPI tasks and 4 OpenMP threads each. It would not make sense to
use 1 MPI task and 16 OpenMP threads, however—then only one of the two compute
nodes could be used.

9.4.1 General Structure of an MPI Program

A basic template of a simple MPI program in C looks as follows:

3https://computing.llnl.gov/tutorials/openMP.

https://computing.llnl.gov/tutorials/openMP


High Performance Computing and Numerical Modelling 353

#include <mpi.h>

int main( int argc , char ∗∗argv)
{

MPI_Init(&argc , &argv ) ;
.
.

/∗ now we can send/ receive message to other MPI ranks ∗/
.
.

MPI_Finalize ( ) ;
}

• To compile this program, one would normally use a compiler wrapper, for example
mpicc instead of cc, which sets pathnames correctly such that the MPI header
files and MPI library files are found by the compiler.

• For executing the MPI program, one will normally use a start-up program such as
mpirun or mpiexec. For example, the command

mpirun -np 8 ./mycalc

could be used to launch 8 instances of the program mycalc.

If a normal serial program is augmented by MPI_Init in the above fashion, and
if it is started multiple times with mpirun -np X, it will simply do multiple times
exactly the same thing as the corresponding serial program (unless they somehow
synchronize their work through modifying common files). To change this behavior
and achieve non-trivial parallelism, the execution paths taken in each copy of the
program need to become different. This is normally achieved by making it explicitly
depend on the rank of the MPI task. All the N processes of an MPI program form a
so-called communicator, and they are labelled with a unique rank-id, with the values
0, 1, 2, …, N − 1. MPI processes can then send and receive message from different
ranks using these IDs to identify each other.

The first thing an MPI program normally does is therefore to find out how many
MPI processes there are in the “world”, and what the rank of the current instance of
the program is. This is done with the function calls

The returned integers NTask and ThisTask then contain the number of MPI
tasks and the rank of the current one, respectively.
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9.4.2 A Simple Point to Point Message

With this information in hand, we can then exchange simple messages between two
different MPI ranks. For example, a send of a message consisting of 50 integers from
rank 5 to rank 7 could be programmed like this4:

Here one sees the general structure of most send/recv calls, which always decom-
pose a message into an “envelope” and the “data”. The envelope describes the rank-id
of sender/receiver, the size and type of the message, and a user-specified tag (this is
the ‘12345’ here), which can be used to distinguish messages of the same length.

Through the if-statements that depend on the local MPI rank, different execution
paths for sender and receiver are achieved in this example. Note that if something
goes wrong here, for example an MPI rank posts a receive but the matching send
does not occur, the program will deadlock, where one or several of the MPI tasks
gets stuck in waiting in vain for messages that are not sent. This is one of the many
new types of bugs one has to cope with in distributed parallel programs.

It is also possible to make MPI communications non-blocking and achieve asyn-
chronous communication in this way. The MPI-2 standard even contains some calls
for one-sided communication operations that do not always require direct involve-
ment of both the sending and receiving sides.

9.4.3 Collective Communications

The MPI standard knowns a large number of functions that can be used to conve-
niently make use of commonly encountered communication patterns. For example,
there are calls for broadcasts which send the same data to all other MPI tasks in the
same communicator. There are also gather and scatter operations that collect data
elements from all tasks, or distribute them as disjoint sets to the other tasks. Finally,

4We note that normally one would of course not hard-code the rank numbers like this, but rather
design the communication such that the program can run with different numbers of MPI tasks.
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there are reduction function that allow one to conveniently calculate sums, minima,
maxima, etc., over variables held by all MPI tasks in a communicator.

A detailed description of all these possibilities is way passed the scope of these
brief lecture notes. Please check out a textbook (e.g. Pacheco 1997) or some of the
online resources5 on MPI if you want to get detailed information about MPI and start
to program in it.
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Parker instability, 182
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theorem, 264

Poisson
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Poisson’s equation, 254, 259, 260, 268, 272–
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309
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Polycyclic aromatic hydrocarbons (PAH),

93, 96
Polytropic

equation of state, 198, 205
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index, 54, 198
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Power spectrum
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Lyman-α, 17
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Poynting flux, 160
PPV, see Position-position-velocity
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spectrum, 6
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305
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Recombination, 29

coefficient, 5
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Reduction, 350
to first order, 260

Relaxation time, 255, 267
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Richtmyer-Meshov instability, 305
Riemann

problem, 314
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Runge-Kutta, 262–264

S
Sampling theorem, 279
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Secondary ionization, 9, 129
SED, see Spectral energy distribution
Self-force, 258, 274, 275
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Shear
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factor, 47

Shock, 301
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Smoothed particle hydrodynamics (SPH),

25, 76, 326
Smoothing length, 328, 330, 331
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approximation, 52, 107
length, 108
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Softening length, 258
Spectral

energy distribution, 95, 212
methods, 309, 310

SPH, see Smoothed particle hydrodynamics
Spin parameter, 38
Spontaneous emission, 101
Star formation, 63, 183

Starlight emission, 94, 96, 184
Stiff equations, 262
Stimulated emission, 101, 106
Supernova, 73, 75, 89, 124, 148, 158
Supersonic turbulence, 87, 132
Symplectic, 265, 298

integrator, 264
transformation, 264

Synchrotron emission, 93, 94

T
Thermal

energy accommodation coefficient, 120
instability, 35, 37, 90, 164, 179, 180, 183,
216, 305

THINGS, 64
Time-symmetric, 261, 262, 264
Toomre

parameter, 182
stability criterion, 41

Trapezoidal rule, 262
Tree

algorithm, 294–296, 298
code, 292, 295, 296, 298

Triangular shaped clouds (TSC) assignment,
271

TSC, see Triangular shaped clouds assign-
ment

T Tauri
phase, 212
star, 189

Turbulence, 87, 203, 305
Burgers turbulence, 145
compressible turbulence, 145
dissipation scale, 144, 146, 148, 149, 151
incompressible turbulence, 142, 306
ISM turbulence, 132
Kolmogorov spectrum, 145
Kolmogorov turbulence, 306
magnetized turbulence, 146
subsonic turbulence, 185
supersonic turbulence, 50, 70, 79

Turbulent
cascade, 142, 144, 181
dissipation, 130, 131
flow, 132, 142, 143, 153, 198, 306
heating, 131

U
ULIRG, see Ultra-Luminous IR galaxies
Ultra-Luminous IR galaxies (ULIRG), 61
Unsplit schemes, 322, 339
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UV pumping, 128

V
Variational formalism, 326, 332
V-cycle, 289–291
Vibrational excitation, 129
Virial

equilibrium, 24, 216
mass, 56
radius, 25, 39, 151
temperature, 25
theorem, 56, 207
velocity, 39

Viscosity
artificial, 332, 334, 335
bulk, 300
shear, 300

Viscous
force, 300, 333
stress tensor, 299

Vlasov equation, 254
Voids, 22
Voronoi tessellation, 336, 340

W
Warm ionized medium (WIM), 44, 89
Warm neutral medium (WNM), 88, 89
Weakly interacting massive particle

(WIMP), 257
Werner band, 46, 55, 166
WIM, see Warm ionized medium
WIMP, see Weakly interacting massive par-

ticle
WNM, see Warm neutral medium
Work function, 125, 126

X
X-factor, 55
X-rays, 27, 46, 94, 129

Z
Zeeman splitting, 187
Zel’dovich approximation, 13
ZEUS, 147
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