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Supervisor’s Foreword

Organic radical pairs arise in a wide variety of contexts ranging from thin film
physics and materials science to chemistry and biology. The Hamiltonians that
govern the evolution of the electronic and nuclear spins in these radical pairs, and
the equations that allow for the electron spin relaxation and radical pair recombi-
nation processes that compete with this coherent spin evolution, have the same form
in all of these contexts. The resulting evolution equations are straightforward to
write down, and it is also straightforward to derive expressions for all relevant
experimental observables. However, these expressions are extremely expensive to
evaluate on a computer for all but the smallest of radical pairs, because of the
exponential scaling of quantum mechanics with system size. This makes exact
quantum mechanical simulations of radical pairs containing more than a handful of
hyperfine-coupled nuclear spins totally impractical using standard techniques.

In this thesis, Alan Lewis describes new quantum mechanical methods and
semiclassical approximations which can be used to overcome this exponential
scaling and make simulations of much larger radical pairs more practical. He then
applies these techniques to a variety of problems that arise in disciplines ranging
from materials science to biology. An exact quantum mechanical method that
exploits the properties of spin coherent states is first applied to the problem of
spin-dependent charge recombination along para-phenylene molecular wires, where
it is used to extract spin-dependent (singlet and triplet) radical pair recombination
rate constants from experimental data. A semiclassical theory based on the pre-
cession of classical electronic and nuclear spin vectors is then applied to two
separate problems relating to avian magnetoreception: the simulation of a
carotenoid-porphyrin-fullerene (CPF) radical pair that has recently been established
as a “proof-of-principle” for the operation of a chemical compass, and simulations
of the anisotropy of the singlet yield in a flavin-tryptophan radical pair in cryp-
tochrome that has been suggested to play a role in the magnetic compass sense of
migratory birds. Finally, a more primitive semiclassical theory due to Schulten and
Wolynes is used to simulate the magnetoelectroluminescence and magnetocon-
ductance of both deuterated and undeuterated DOO-PPV organic polymer light
emitting diodes. Interesting physical insights are gained in all of these applications,
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none of which would have been possible using standard quantum mechanical
techniques.

Much of the material presented in the thesis has now been published in scientific
papers, including the material in the final chapter on triphasic behaviour in the
time-dependent survival probability of the CPF radical pair (A. M. Lewis et al.,
J. Chem. Phys., 149, 034103, 2018). However, Alan’s thesis does contain some
details that have not been published elsewhere, including in particular his proof in
Sect. 5.1.1 that the radical pair mechanism provides an inclination compass rather
than a polarity compass (i.e. that the singlet yield of a radical pair recombination
reaction is unchanged on reversing the direction of an applied magnetic field). It is
well established from behavioural experiments that migratory birds have an incli-
nation compass, and that this becomes inoperative in the absence of blue-green
light. These two facts are among the strongest pieces of circumstantial evidence in
favour of the (photochemically induced) radical pair mechanism of avian magne-
toreception, so it is nice to see how the inclination compass arises. I am not aware
of such a proof having been given before in the literature.

We are now continuing to investigate various aspects of radical pair spin
dynamics in Oxford, using both the techniques that Alan describes in his thesis and
new techniques that we have developed since he graduated. On the magnetore-
ception front, we have investigated the sensitivity of the directional information
provided by the radical pair mechanism to the presence of weak radiofrequency
magnetic fields, and the extent to which this directional information can be used to
extract a compass bearing under low light conditions. We have also developed a
new quantum mechanical method for studying radicals and radical pairs with very
many hyperfine-coupled nuclear spins, and used it to investigate the hyperfine-
induced decoherence of electron spins in semiconducting quantum dots. All of this
work has been or will soon be published in the open literature.

There are clearly many different physical, chemical and biological problems that
one can solve when one knows how to simulate the spin dynamics of radical pairs.
We now have the tools to do this for arbitrarily large radicals, thanks in part to the
developments described in this thesis. It will be interesting to see how much more
can be done with these tools in the future.

Oxford, UK
July 2018

Prof. David Manolopoulos
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Abstract

The coherent spin dynamics of radical pairs play a crucial role in their reactions,
which consequently cannot be described by a simple kinetic scheme. Instead,
simulations of the spin dynamics are required in order to predict the rate and
outcome of radical pair reactions, and especially their response to the application of
a magnetic field. Unfortunately, the number of spin states of the radical pair
increases exponentially with the number of nuclear spins, making deterministic
quantum mechanical simulations of realistic radical pairs difficult.

To overcome this difficulty, this thesis begins by presenting an efficient
stochastic quantum mechanical method capable of describing a radical pair with as
many as 20 nuclear spins, which we use to analyse spin-dependent charge
recombination rates along molecular wires. This enables us to identify the mech-
anism of charge recombination of both the singlet and triplet states of the wire by
determining their relative contributions to the overall recombination rate.

We then derive an approximate semiclassical theory which allows to treat the spin
dynamics of much larger radical pairs, since the time required for a semiclassical
calculation scales linearly with the number of nuclear spins, rather than exponen-
tially. Using this method, we reproduce the results of the first experiments to show
that the outcome of a radical pair reaction may be influenced by an Earth-strength
magnetic field, and calculate the anisotropy in the singlet recombination yield of the
radical pair thought to be responsible for avian magnetoreception.

We show that our semiclassical theory reduces to the earlier Schulten–Wolynes
theory under two additional approximations, and use this simpler theory to reveal
that singlet-triplet dephasing plays an important role in the spin dynamics of
polaron pairs in the semiconducting polymer layer of organic light emitting diodes.
We derive a new expression which relates the magnetic field dependence of the
electroluminescence and conductance observed in these materials to the singlet
yield of the radical pair recombination reaction, which we confirm produces better
agreement with experimental data than the relationships used previously.
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Chapter 1
Introduction

Radical pair reactions play an important role in awide range of biological and techno-
logical processes. The overall rates and product yields of these reactions are strongly
dependent on the spin dynamics of the radical pair, despite the fact that the magnetic
interactions which produce these dynamics are far weaker than the thermal energy
at room temperature. In this thesis we will outline the quantum mechanics which
describes these radical pair reactions, before deriving semiclassical approximations
which allow the computation of the ensemble averages of observables in realistic
radical pairs. We will then apply these methods to three different problems in order
to gain an insight into the physical processes which affect the rate and outcome of
these radical pair reactions.

In this chapterwewill first introduce the property of spin and the quantummechan-
ical description of two correlated spins. We will then outline the radical pair mech-
anism, which demonstrates how the spin dynamics of the unpaired electrons in a
radical pair affect the outcome of its reaction. A qualitative explanation of how radi-
cal pair reactions are influenced by the application of a magnetic field is then given,
before we briefly discuss the different radical pair systems which we will consider
in this thesis. Finally, we set out the structure of the remainder of this thesis.

1.1 Spin

Spin is a fundamental property of electrons and nuclei which emerges from solv-
ing the relativistic Schrödinger equation [1]. It is described as an intrinsic angu-
lar momentum, and has no classical analogue [2]. The spin angular momentum is
described by two quantum numbers: the spin quantum number, S, and the spin pro-
jection quantum number, MS . These are defined in reference to the eigenstates of the
quantum mechanical operator for the square magnitude of the angular momentum,
Ŝ2, and the operator for the projection of the spin on the z axis, Ŝz [3]:

© Springer Nature Switzerland AG 2018
A. Lewis, Spin Dynamics in Radical Pairs, Springer Theses,
https://doi.org/10.1007/978-3-030-00686-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00686-0_1&domain=pdf


2 1 Introduction

Ŝ2 |S, MS 〉 = �
2S(S + 1) |S, MS 〉 ,

Ŝz |S, MS 〉 = �MS |S, MS 〉 .
(1.1)

S can take any integer or half-integer value; MS can take any value between S and
−S in integer steps. In the case of an electron, S = 1/2, so there are two electronic
spin states with MS = ± 1/2. The following compact notation is commonly used for
these states:

|1/2, 1/2 〉 = |α 〉 , |1/2, −1/2 〉 = |β 〉 . (1.2)

Since spin are angular momenta, they can couple [2]. For example, two electron
spins, S1 and S2, can couple to produce a total angular momentum S, whichmay have
a spin quantum number of either S = 1 or S = 0. In the former case, there are three
possible values of MS (0, ±1); the three corresponding states are referred to as the
triplet states [4]. When S = 0 there is only one possible value of MS (0); this state
is called the singlet state. These coupled states are related to the uncoupled electron
spin states as follows [5]:

|1, 1 〉 = |α 〉1 ⊗ |α 〉2 ,

|1, 0 〉 = 1√
2

(
|α 〉1 ⊗ |β 〉2 + |β 〉1 ⊗ |α 〉2

)
,

|1,−1 〉 = |β 〉1 ⊗ |β 〉2 ,

|0, 0 〉 = 1√
2

(
|α 〉1 ⊗ |β 〉2 − |β 〉1 ⊗ |α 〉2

)
.

(1.3)

These coupled spin states are commonly referred to using the shorthand

|1, 1 〉 = |T+ 〉 , |1, 0 〉 = |T0 〉 , |1,−1 〉 = |T− 〉 , |0, 0 〉 = |S 〉 . (1.4)

The energies of these states depend principally on two factors: the strength of
the applied magnetic field, B [2], and the exchange coupling, J [6, 7]. The origins
of these interactions will be discussed in detail in Sect. 2.1; for now, a qualitative
sketch of their effects will suffice. Figure 1.1 shows how the relative energies of
the singlet and triplet states vary as a function of the applied field strength B in
the case of a positive exchange coupling constant J . The exchange coupling lifts
the degeneracy of the singlet and triplet states in the absence of a field, and when a
magnetic field is applied the degeneracy of the three triplet states is also broken, as
the |1, 1 〉 and |1,−1 〉 states increase and decrease in energy respectively [8, 9]. This
symmetry breaking and separation of energy levels gives rise to observable magnetic
field effects, discussed in more detail in Sect. 1.3.

Many nuclei also possess spin angular momentum, which is denoted with the
quantum number I to differentiate it from the spin of an electron. Of particular note
are the 1H and 14N nuclei, which have spin numbers I = 1/2 and I = 1 respectively
[10], as they are ubiquitous in the organic molecules considered in this thesis. Both
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Fig. 1.1 The relative energies of the singlet and triplet states as a function of the applied field
strength B. γ is the gyromagnetic ratio of the electron. In the absence of a magnetic field the
energies of the singlet and triplet states are split by the exchange coupling of magnitude J . We have
assumed here that the exchange coupling is antiferromagnetic (J > 0); if it were ferromagnetic the
singlet state would be higher in energy than the triplet state in the absence of a magnetic field

12C and 16O nuclei have I = 0, so they can be ignored in the context of spin dynamics
[10]. 13C has I = 1, but is present at only 1% abundance [11], and so is neglected in
this thesis.

In systems where spin-orbit coupling is negligible, chemical reactions and pho-
tochemical processes conserve the total electronic spin angular momentum [12–14].
Radical pair reactions are a particular class of reactions where this conservation of
momentum plays a crucial role. Radical pairs contain two unpaired electrons whose
spins are coupled, and so exist in either the singlet or triplet state. This electronic
spin state is often critical in determining the product yields and rate of reaction,
even though the energy differences between spin states are very small relative to the
thermal energy [13, 15]. These reactions are described in detail in Sect. 1.2, and will
be the focus of this thesis.

1.2 Radical Pair Reactions

A general reaction scheme for radical pairs based on the mechanism proposed inde-
pendently by Closs [16] and Kaptein and Oosterhoof [17] is shown in Fig. 1.2. Pho-
toexcitation of a target molecule AB is followed by rapid charge separation to form
a radical pair, typically in the singlet state provided that spin-orbit coupling is neg-
ligible. If the electron spins interact with the nuclear spins in the radical, the singlet
state is not stationary – the radical pair will undergo intersystem crossing to form the
triplet state. The singlet and triplet states can each recombine, in general at different
rates and to form different products. Since the intersystem crossing is a coherent
process, this reaction scheme cannot be described by a simple kinetic model. There-
fore, the detailed spin dynamics of the radical pair must be simulated in order to
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Fig. 1.2 An idealised radical pair recombination reaction. The superscript S and T indicate singlet
and triplet states, respectively. The singlet product SP may or may not be the ground state, and the
charge separation process may occur in multiple steps rather than the single step shown here

predict the outcome of its reaction. The coherent intersystem crossing is influenced
by an external magnetic field, and so the product yields and radical pair lifetimes
may be modified by the application of a field – these effects are described generally
as magnetic field effects (MFEs) [9, 14, 18, 19].

The strength of the hyperfine interactions in a radical can be described by a single
parameter, the hyperfine field [20, 21]:

Bhyp =
√∑

k

(ak/|γ|)2 Ik(Ik + 1). (1.5)

Here the sum is over all of the nuclear spins in the radical, ak is the isotropic hyperfine
constant associated with nuclear spin k, Ik is its spin quantum number, and γ is
the gyromagnetic ratio of the electron. This approximate measure of the hyperfine
interactions is directly comparable to the strength of an external magnetic field B,
and can be used to help explain the form of the magnetic field effects described in
Sect. 1.3.

Schulten and Wolynes’ semiclassical treatment of radical pairs [20], discussed
in detail in Sect. 3.2, provides an intuitive way to understand why the hyperfine
interactions result in intersystem crossing between the singlet and triplet electron
spin states. Within a vector model, electron spins are thought of as precessing around
a magnetic field, with the precession frequency determined by the strength of the
field. If two correlated spins precess at the same frequency around the same axis,
their relative orientations will remain constant and their spin state will not change.
However, in the presence of hyperfine interactions, each electron spin can be thought
of as precessing around an effective magnetic field

Be f f,i = B + Bhyp,i , (1.6)
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where B is the applied magnetic field. Even though B will be the same for each
radical in the pair, Bhyp,i will differ, leading to different rates of precession around
different axes and a change in the relative orientation of the two spins, and hence a
change in the spin state of the radical pair. Note that in this simplified picture, the
precession of the nuclear spins is ignored, the consequences of which are discussed
in Sect. 3.3. Nevertheless, this provides a helpful qualitative picture of hyperfine-
mediated intersystem crossing in radical pairs.

For each particular case we consider in this thesis, it will be necessary to discuss
some variation of this general scheme. These differences will be covered in detail in
the relevant chapters in the thesis, but Fig. 1.2 remains a good general guide to any
radical pair reaction.

1.3 Magnetic Field Effects

The application of a magnetic field affects the spin dynamics of a radical pair, and
in general changes its product yields and lifetime. The precise effect produced will
depend on the initial spin state of the radical pair, the observable of interest, and
the relative magnitudes of the different magnetic interactions within the radical pair.
However, the magnetic field effects observed in radical pairs in which the dominant
interactions are the Zeeman interaction, hyperfine interactions, and an exchange
coupling can be categorised by considering three limiting cases. These are: the high
field effect, the application a magnetic field much larger than the hyperfine fields; the
low field effect, the application of a very weak but non-zero magnetic field; and the
resonance effect, the response of a radical pair with an exchange coupling larger than
its hyperfine fields to a magnetic field. These will be illustrated by considering the
dependence of the singlet yield of a singlet-born radical pair on the applied magnetic
field strength, B.

1.3.1 The High Field Effect

In general, for the application of a magnetic field to affect the outcome of a radical
pair reaction, it must change the rate of interconversion between the spin states of
the radical pair. In this thesis, we are concerned with intersystem crossing induced
by the hyperfine interactions between the electron and nuclear spins in each radical.
The most obvious way in which a magnetic field will affect this process is through
the Zeeman interaction, which separates the energies of the |T± 〉 states from that of
the |S 〉 state, as shown in Fig. 1.1. This significantly reduces the efficiency of any
interconversion between the singlet and triplet states of the radical pair. Therefore,
a high field effect (HFE) is observed when the external magnetic field is stronger
than both the hyperfine interactions and the exchange coupling, B � Bhyp, |2J/γ|
[22, 23].
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Fig. 1.3 An illustration of
the low field effect (LFE)
and high field effect (HFE)
on the singlet yield of a
singlet-born radical pair

For a singlet-born radical pair, the HFE results in an increase in the singlet yield,
�S, relative to the zero-field singlet yield, as the applied field strength is increased
[24, 25]. This will eventually saturate once the magnetic field is large enough that
essentially all |S 〉 ↔ |T± 〉 interconversion is suppressed. This dependence is shown
qualitatively in Fig. 1.3 [21]. The HFE is characterised by the parameter B1/2, the
magnetic field strength at which the singlet yield is halfway between its value in the
absence of a magnetic field and its value at saturation. B1/2 clearly depends on the
strength of the hyperfine interactions in each radical [23, 26], since saturation will
only occur once the intersystem crossing they induce has been inhibited.

Weller et al. obtained an empirical relationship between B1/2 and the weighted
average of the effective hyperfine field of each radical [21],

B1/2 = Bhyp,1

1/2
(
Bhyp,1 + Bhyp,2

) Bhyp,1 + Bhyp,2

1/2
(
Bhyp,1 + Bhyp,2

) Bhyp,2

= 2
B2
hyp,1 + B2

hyp,2

Bhyp,1 + Bhyp,2
,

(1.7)

which they showed agrees well with certain experimental values of B1/2. However,
we have found that in radical pairs where the hyperfine fields of the two radicals are
very different, the Weller equation performs less well. Figure 1.4 plots the value of
B1/2 obtained from our simulations and that predicted by theWeller equation against
the hyperfine field of one of the radicals in the pair, while the hyperfine field of the
other radical is held constant at 1 mT. The simulations were performed using the
Schulten-Wolynes method described in Sect. 3.2, considering only the Zeeman and
hyperfine interactions.While theWeller equation is qualitatively accurate, and shows
good agreement with the simulations when the hyperfine fields of the two radicals are
similar, it becomes becomes much less accurate as the ratio Bhyp,1/Bhyp,2 increases.
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Fig. 1.4 B1/2 as predicted
by the Weller equation,
Eq. (1.7), and extracted from
simulations, as a function of
the hyperfine field of radical
1. In each case the hyperfine
field of the second radical
was 1 mT. The simulations
were performed using
Schulten-Wolynes theory,
which is described in
Sect. 3.2, with the
recombination rates of both
the singlet and triplet radical
pair chosen to be 106 s−1.
The simulated B1/2 does not
depend strongly of the
choice of rate constants

1.3.2 The Low Field Effect

It is less obvious how the application of a magnetic field weaker than the hyperfine
interactions, B � Bhyp, will affect the singlet-triplet intersystem crossing. Never-
theless, a low field effect (LFE) is observed experimentally [27–29] and predicted
theoretically [25, 30], and serves to increase the rate of interconversion between sin-
glet and triplet states, rather than decreasing it. This effect was originally identified
with a change in which quantities are conserved upon the application of a magnetic
field [18]. In the absence of a magnetic field, all three components of the total angular
momentum of the radical pair are conserved; in the presence of a magnetic field only
the projection on the field axis is conserved, allowing more conversion between the
singlet and triplet states.

Timmel et al. suggested that the LFE could be understood as the result of
symmetry-breaking [25]. In the absence of a magnetic field, the three electronic
triplet states are degenerate, but applying a magnetic field breaks the symmetry of
the system. This lifts the degeneracy between some of the eigenstates of the rad-
ical pair, causing the coherences between those two states to oscillate. If the two
eigenstates in question both have some singlet character (that is, 〈m|P̂S|m〉 	= 0 for
both eigenstates |m 〉), then this change in the relative phase of the two eigenstates
changes the probability of finding the radical pair in the singlet state. In other words,
the application of a magnetic field breaks the zero-field symmetry of the radical pair
and allows additional pathways for interconversion between the singlet and triplet
electronic states. In the case of a singlet-born radical pair, this leads to a decrease
in the singlet yield at low fields relative to the singlet yield in the absence of a field
[25], as shown qualitatively in Fig. 1.6.
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In order for a significant low field effect to be observed, the lifetime of the radical
pair τ must be long enough and the relaxation rate kR slow enough for intersystem
crossing to take place. Since the rate of the additional interconversion induced by
the low field is related to the Larmor frequency of the electrons in the radical pair,
ω = −γB, one condition for observing a low field effect is τ−1, kR < ω [25]. In
addition, electron spin coupling will lower the degeneracy of the radical pair in the
absence of a magnetic field, thereby reducing or even completely eliminating the low
field effect in these radical pair reactions [25].

The maximum possible low field effect of a singlet-born radical pair is observed
in the limit of extremely slow radical pair recombination, since this provides themost
opportunity for conversion of the singlet state to the triplet state. In this limit, it is
found that the magnitude of the low field effect is given by [31]

�0
S − 1/4

�LF
S − 1/4

= 3, (1.8)

where �0
S is the singlet yield in the absence of a magnetic field and �LF

S is the
singlet yield in a low field. This can be understood using a simple vector model
[31], illustrated in Fig. 1.5. In the absence of an applied magnetic field, the vector
corresponding to the electron spin on radical i , Si , and the vector corresponding to a
nuclear spin on that radical, Ii , will precess around the resultant of their two vectors,
Ji . Within the vector model, the singlet yield is defined as

�0
S = 1

4
− 〈S1 · S2〉 = 1

4
− 〈F1 · F2〉, (1.9)

Fig. 1.5 A diagram
illustrating the justification
of Eq. (1.8) using the vector
model. The electron spin
vector S is shown in red, the
nuclear spin vector I is
shown in blue, the resultant
of those vectors J is shown
in green, and the projection
of S onto that resultant is F,
shown in orange. The
projection of F onto the z
axis is also indicated
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where the brackets indicate the average over the different combinations of the resul-
tant vectors J1 and J2, the overbar indicates a time average, and Fi is the projection
of Si onto Ji . In the limit of zero field, the system is isotropic, so

〈F1,x F2,x 〉 = 〈F1,y F2,y〉 = 〈F1,z F2,z〉 (1.10)

and

�0
S = 1

4
− 3 〈F1,z F2,z〉. (1.11)

However, when a weak magnetic field is applied, J1 and J2 precess around the z axis,
so only the z components of F1 and F2 remain independent of time, and the singlet
yield is given by

�LF
S = 1

4
− 〈S1 · S2〉 = 1

4
− 〈F1,z F2,z〉. (1.12)

Combining Eqs. (1.11) and (1.12) we find an expression for the limiting value of the
magnitude of the low field effect, Eq. (1.8).

1.3.3 Resonance Effect

Resonance effects are observed when the exchange coupling is large compared to
the hyperfine field, |2J/γ| > Bhyp. In these systems, singlet-triplet interconversion
increases to amaximum as themagnetic field strength increases, before falling below
its zero-field rate due to the normal high field effect [8, 32, 33]. This is qualitatively
similar to the low field effect, but is observed for much larger applied fields, where
B > Bhyp. In this case, the energy of the singlet state is well separated from the
energy of the triplet states in the absence of a field, resulting in little intersystem
crossing. However, as the applied field strength is increased towards |2J/γ|, the
energy of one of the triplet states approaches that of the singlet state and the rate of
interconversion increases. This reaches a maximum at B = |2J/γ| – the resonance
condition, indicated in Fig. 1.1 [8, 9, 34]. As B is increased further still, the energy
of two states separates again, and intersystem crossing is suppressed. Therefore, a
minimum in the singlet yield of a singlet-born radical pair is observed when this
condition is satisfied, as illustrated in Fig. 1.6.

The width of the resonance peak, denoted �B in Fig. 1.6, is usually related to the
strength of the hyperfine interactions of the radical pair [21, 34, 35]. The larger Bhyp

is, the less precisely the applied field strength must match the exchange coupling
for interconversion to occur, and so the range of applied field strengths at which
significant intersystem crossing can take place becomes wider. �B is also affected
by the lifetimes of the radical pairs. As the lifetime of either the singlet or triplet state
is reduced, its energy levels are broadened, producing a non-zero density of states at
the energy of the other state over a wider range of magnetic field strengths around
the resonance at B = |2J/γ| [36]. This is discussed in more detail in Sect. 4.4.1.
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Fig. 1.6 An illustration of
the resonance effect on the
singlet yield of a singlet-born
radical pair

Finally, this discussion has focussed on a single molecule with a well defined value
of J . If, however, we consider an ensemble of flexible molecules, there will be a
range of inter-radical separations and hence a distribution of values of J within an
individual sample [37, 38]. In this case, the width �B observed in an experiment
may arise from the superposition of different resonance effects in molecules with
different values of J [39].

1.4 Applications

Our goal in this thesis will be firstly to develop both quantum mechanical and semi-
classical descriptions of radical pair reactions, and then to use these methods to gain
insight into real problems. We will now briefly introduce the specific examples of
radical pair reactions to which we will apply the theory developed in this thesis.

1.4.1 Molecular Wires

Molecular wires are designed to imitate the long-range transport of electrons from
chromophores to reaction centres observed in photosynthetic organisms [39–42].
This feature is extremely desirable in chemical solar energy conversion systems,
which aim to mimic the behaviour of photosynthetic light harvesting complexes
[39, 43], as well as in molecular electronics and nanotechnology [44, 45]. In order
to synthesise molecular wires optimised for efficient charge transport, it is vital to
understand the mechanisms by which electron transfer along them occurs.

There is a body of experimental evidence which shows that the distance depen-
dence of the rate of charge recombination along molecular wires varies significantly
between different molecular wires [46–49], and in some cases even changes as the
length of the wire is increased [50]. This suggests that there are different mechanisms
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of electron transfer which operate inmolecular wires. A better understanding of these
mechanisms can be gleaned from the magnetic field dependence of the triplet and
radical pair yields of charge-separated molecular wires, which have been measured
in a number of different systems [34, 39, 50–52]. These experiments have been
used to obtain the exchange coupling constant between the two unpaired electrons
in the molecular wires, as well as allowing us to determine the relative contribu-
tion of the singlet and triplet recombination pathways to the overall rate of charge
recombination, which depends on the spin dynamics of the radical pair.

1.4.2 Avian Magnetoreception

It has been well known for a long time that many organisms are able to navigate using
the Earth’s magnetic field [53–58]. More recently, radical pair reactions have been
proposed as the mechanism by which the Earth’s very weak magnetic field might
be detected in biological systems [18, 59, 60]. Much of the biological research on
magnetoreception has focussed on migratory birds [61–65], which will be the focus
of Chap.5 of this thesis.

The first experimental demonstration that a radical pair reaction could act as a
magnetoreceptor in anEarth-strengthmagnetic fieldwas performedbyMaeda et al. in
2008 [66]. However, these proof-of-principle experiments were performed using a
carotenoid-porphyrin-fullerene triad optimised to detect a low field effect, rather than
the cryptochrome-based radical pair thought to be responsible for magnetoreception
in migratory birds [14, 15, 60, 67, 68]. The cryptochromes are photoreceptors found
in both plants and animals which are involved in regulating the circadian clock [69].
and are found in the retinas of several species of bird which exhibit a magnetic
compass sense [70]. The anisotropic response of the cryptochrome radical pair to
magnetic fields which is required for them to function as magnetoreceptors has been
difficult to measure experimentally. Instead, much theoretical work has been done to
try to assess this, in an effort to ascertain the plausibility of the radical pairmechanism
of magnetoreception [71–75].

1.4.3 Magnetoelectroluminescence

Organic light emitting diodes (oLEDs) are rapidly becoming commonplace in a vari-
ety of commercial applications [76–78], and offer several advantages over similar
inorganic devices [79–81]. Despite this, there is still significant debate about the
factors which govern the dynamics of the charge carriers in the electroluminescent
semiconducting polymer layer of oLEDs [82–88]. The observation of a magnetic
field effect on the electroluminescence of several semiconducting conjugated poly-
mers, and especially an isotope effect on thatMFE, has provided convincing evidence
for the involvement of the radical pair mechanism in electroluminescence [80, 87,
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89–92]. However, previous simulations of the magnetoelectroluminescence have all
failed to quantitatively reproduce the experimental observations [86, 87, 89]. This
suggests that the existing theory has neglected a magnetic field dependent aspect
of the mechanism of electroluminescence. Furthermore, while isotopic substitution
experiments have conclusively demonstrated the involvement of hyperfine interac-
tions in the mechanism of magnetoelectroluminescence [86, 90], there may well
be other physical effects which influence the spin dynamics of the radical pairs in
oLEDs.

1.5 Outline of Thesis

The remainder of this thesis will be organised as follows. Chapter 2 outlines the
quantum mechanical description of radical pair reactions. It introduces the Hamilto-
nian which governs the spin evolution of radical pairs, and briefly sketches the origin
of each term which appears. It then defines the Haberkorn recombination operator
used to account for the reaction of these radical pairs, and justifies its use rather
than a recently proposed alternative. With these operators in place, it is possible
to find an expression for the ensemble average of an observable of a radical pair
reaction, which we may use to make comparisons between simulations and exper-
imental results. These ensemble averages may be evaluated more efficiently when
formulated in the coherent spin state basis of the nuclear spins of the radical pair. The
performance of this method is then assessed. Chapter 2 concludes with a discussion
of two different mechanisms by which the electron spins in radical pairs can relax,
and the difficulty of including these effects in quantum mechanical calculations.

Chapter 3 is devoted to the semiclassical treatment of radical pair reactions. It
opens by explaining why these approximate methods are often necessary to simu-
late real radical pair systems, before describing two of these methods in detail: the
semiclassical (SC) theory, and the earlier and simpler Shulten-Wolynes (SW) theory.
Both involve treating the electron and nuclear spins as classical vectors, with SW
theory making additional approximations about the dynamics of the nuclear spin
vectors. It then compares the performance of both of these methods with exact quan-
tum mechanical results for three model systems, revealing that each method has a
range of applicability in which it is both useful and reasonably reliable. Finally, it
demonstrates how electron spin relaxation may be treated straightforwardly within
the semiclassical theories, in contrast to the quantum mechanical description of rad-
ical pair reactions.

Chapter 4 begins by describing the two limiting mechanisms by which charge
recombination along molecular wires may occur, and introduces the PTZ•+–Phn–
PDI•− molecular wires whose magnetic field effects we will reproduce. It then
describes the parameters which define the Hamiltonian of this molecular wire, as
well as the constraints on its recombination rates provided by experimental mea-
surements. The results of our simulations are then presented, with a background
contribution to the triplet yield proposed to explain the magnetic field dependence
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of the triplet yields observed experimentally. The chapter concludes by discussing
three interesting features of our simulations: the width of the resonance peaks seen
in the magnetic field effect on the triplet yield of the recombination reaction, the
rates of recombination of the singlet and triplet radical pairs, and the origin of the
background contribution to the triplet yield.

Chapter 5 starts by describing the experimental evidence for the radical pair mech-
anism of magnetoreception, and provides details of the cryptochrome radical pair
proposed as the magnetoreceptor in birds. It then demonstrates that the results of
the proof-of-principle experiments of Maeda et al. [66] can be reproduced using the
SC theory, and that these simulations can be used to shed light on origin and effect
of relaxation in the carotenoid-porphyrin-fullerene triad. The semiclassical method
is then used to calculate the anisotropy in the singlet yield of simplified models of
the cryptochrome radical pair, which are compared against exact quantum mechan-
ical results, before the results of a simulation of the full cryptochrome radical pair,
including all of the hyperfine interactions and electron spin coupling, are presented.
The chapter concludes with a brief discussion of the recently suggested “quantum
needle” of the avian compass [93].

Chapter 6 is concerned with the dynamics of the radical pairs in the semiconduct-
ing polymer layers of oLEDs which are responsible for the electroluminescence of
the devices. It contains a derivation of the relationship between the singlet yield of
these radical pairs and the magnetic field dependence of the electroluminescence and
conductance observed experimentally in oLEDs. It then describes how the strength
of the hyperfine fields of each radical may be obtained experimentally, and how
singlet-triplet dephasing affects the response of electroluminescence to the applica-
tion of a magnetic field. It concludes by comparing Schulten-Wolynes simulations
of the magnetoelectroluminescence to the experimental results, and outlining the
implications of these results.

Finally, Chap. 7 summarises the main conclusions of this thesis, and suggests two
areas to which the theories presented here could be applied in the future.

References

1. Dirac, P. A. M. (1928). The quantum theory of the electron. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 117, 610–624.

2. Dirac, P. A. M. (1930). The Principles of Quantum Mechanics. Clarendon Press.
3. Slichter, C. P. (1963). Principles of Magnetic Resonance. Berlin: Springer.
4. Carrington, A. & McLachlan, A. D. (1967). Introduction to Magnetic Resonance with Appli-

cations to Chemistry and Chemical Physics. Harper & Row.
5. Atkins, P. W., & Friedman, R. S. (2011). Molecular Quantum Mechanics. Oxford: Oxford

University Press.
6. VanVleck, J. H. (1932). The Theory of Electric andMagnetic Susceptibilities. Clarendon Press.
7. Pauli, W. (1940). The connection between spin and statistics. Physical Review, 58, 716–722.
8. Weller, A., Staerk, H., & Treichel, R. (1984). Magnetic-field effects on geminate radical-pair

recombination. Faraday Discussions of the Chemical Society, 78, 271.
9. Steiner, U. E., & Ulrich, T. (1989). Magnetic field effects in chemical kinetics and related

phenomena. Chemical Reviews, 89, 51–147.



14 1 Introduction

10. Fuller, G. H. (1976). Nuclear spins and moments. Journal of Physical and Chemical Reference
Data, 5, 835–1092.

11. Rosman, K. J. R., & Taylor, P. D. P. (1998). Isotopic compositions of the elements 1997. Pure
and Applied Chemistry, 70, 217–235.

12. Brocklehurst, B. (1969). Formation of excited states by recombining organic ions.Nature, 221,
921–923.

13. McLauchlan, K. A., & Steiner, U. E. (1991). The spin-correlated radical pair as a reaction
intermediate.Molecular Physics, 73, 241–263.

14. Hore, P. J., & Mouritsen, H. (2016). The radical-pair mechanism of magnetoreception. Annual
Review of Biophysics, 45, 299.

15. Rodgers, C. T., & Hore, P. J. (2009). Chemical magnetoreception in birds: the radical pair
mechanism. Proceedings of the National Academy of Sciences of the United States of America,
106, 353–360.

16. Closs, G. L. (1969). Amechanism explaining nuclear spin polarizations in radical combination
reactions. Journal of the American Chemical Society, 91, 4552–4554.

17. Kaptein, R., & Oosterhoff, J. (1969). Chemically induced dynamic nuclear polarization II.
Chemical Physics Letters, 4, 195–197.

18. Brocklehurst, B., & McLauchlan, K. A. (1996). Free radical mechanism for the effects of
environmental electromagnetic fields on biological systems. International Journal of Radiation
Biology, 69, 3–24.

19. Till, U., & Hore, P. J. (1997). Radical pair kinetics in a magnetic field.Molecular Physics, 90,
289–296.

20. Schulten, K., & Wolynes, P. G. (1978). Semi-classical description of electron-spin motion in
radicals including effect of electron hopping. Journal of Chemical Physics, 68, 3292–3297.

21. Weller, A., Nolting, F., & Staerk, H. (1983). A quantitative interpretation of the magnetic field
effect on hyperfine-coupling-induced triplet fromation from radical ion pairs.Chemical Physics
Letters, 96, 24–27.

22. Klein, J., & Voltz, R. (1976). Time-resolved optical detection of coherent spin motion for
organic-radical-ion pairs in solution. Physical Review Letters, 36, 1214–1217.

23. Werner, H. J., Staerk, H., & Weller, A. (1978). Solvent, isotope, and magnetic field effects in
the geminate recombination of radical ion pairs. Journal of Chemical Physics, 68, 2419.

24. Brocklehurst, B. (1976). Magnetic field effect on the pulse shape of scintillations due to gem-
inate recombination of ion pairs. Chemical Physics Letters, 44, 245–248.

25. Timmel, C. R., Till, U., Brocklehurst, B., Mclauchlan, K. A., & Hore, P. J. (1998). Effects of
weak magnetic fields on free radical recombination reactions. Molecular Physics, 95, 71–89.

26. Werner, H. J., Schulten, Z., & Schulten, K. (1977). Theory of the magnetic field modulated
geminate recombination of radical ion pairs in polar solvents: application to the pyrene-N.
N-dimethylaniline system. Journal of Chemical Physics, 67, 646.

27. Fischer, H. (1983). The effect of a magnetic field on the product yield of a geminate radical-pair
reaction in homogeneous solution. Chemical Physics Letters, 100, 255–258.

28. Hamilton, C. A., Hewitt, J. P., McLauchlan, K. A., & Steiner, U. E. (1988). High resolution
studies of the effects ofmagnetic fields on chemical reactions.Molecular Physics, 65, 423–438.

29. Batchelor, S. N., Kay, C.W.M.,McLauchlan, K. A., & Shkrob, I. A. (1993). Time-resolved and
modulation methods in the study of the effects of magnetic fields on the yields of free-radical
reactions. Journal of Chemical Physics, 97, 13250–13258.

30. Brocklehurst, B. (1976). Spin correlation in the geminate reconibination of radical ions in
hydrocarbons. Journal of the Chemical Society, Faraday Transactions, 2(72), 1869.

31. Till, U., Timmel, C. R., Brocklehurst, B., & Hore, P. J. (1998). The inuence of very small
magnetic fields on radical recombination reactions in the limit of slow recombination.Chemical
Physics Letters, 298, 7–14.

32. Norris, J. R., Lin, C. P., & Budil, D. E. (1987). Magnetic resonance of ultrafast chemical
reactions. Journal of the Chemical Society, Faraday Transactions, 1(83), 13–27.

33. Hamilton, C., McLauchlan, K., & Peterson, K. (1989). J-resonances in MARY and RYDMR
spectra from freely diffusing radical ion pairs. Chemical Physics Letters, 162, 145–151.



References 15

34. Weiss, E. A., Ratner, M. A., & Wasielewski, M. R. (2003). Direct measurement of singlet -
triplet splitting within rodlike photogenerated radical ion pairs using magnetic field effects:
estimation of the electronic coupling for charge recombination. Journal of Physical Chemistry,
107, 3639–3647.

35. Weiss, E.A., Tauber,M. J., Ratner,M.A.,&Wasielewski,M.R. (2005). Electron spin dynamics
as a probe of molecular dynamics: temperature-dependent magnetic field effects on charge
recombination within a covalent radical ion pair. Journal of the American Chemical Society,
127, 6052–6061.

36. Staerk, H., Treichel, R., & Weller, A. (1983). Life uncertainty broadening in photoinduced
electron transfer. Chemical Physics Letters, 96, 28–30.

37. Anderson, P. W. (1959). New approach to the theory of superexchange interactions. Physical
Review, 115, 2–13.

38. McConnell, H. M. (1961). Intramolecular charge transfer in aromatic free radicals. Journal of
Chemical Physics, 35, 508–515.

39. Wasielewski, M. R. (2006). Energy, charge, and spin transport in molecules and self-assembled
nanostructures inspired by photosynthesis. Journal of Organic Chemistry, 71, 5051–5066.

40. Fromme, P., et al. (2002). Functional implications on the mechanism of the function of pho-
tosystem II including water oxidation based on the structure of photosystem II. Philosophical
Transactions of the Royal Society of London. Series B, Biological Sciences, 357, 1337–44.

41. Parson, W. W. (2003). Electron donors and acceptors in the initial steps of photosynthesis in
purple bacteria: a personal account. Photosynthesis Research, 76, 81–92.

42. Weiss, E. A., et al. (2005). Conformationally gated switching between superexchange and
hopping within oligo-p-phenylene-based molecular wires. Journal of the American Chemical
Society, 127, 11842–11850.

43. Goldsmith, R. H., et al. (2005). Wire-like charge transport at near constant bridge energy
through uorene oligomers. Proceedings of the National Academy of Sciences of the United
States of America, 102, 3540–5.

44. Jortner, J., & Ratner, M. A. (1997). Molecular Electronics. Oxford: Blackwell Science.
45. Nitzan, A. (2001). Electron transmission through molecules and molecular interfaces. Annual

Review of Physical Chemistry, 52, 681–750.
46. Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S., & Dutton, P. L. (1992). Nature of

biological electron transfer. Nature, 355, 796–802.
47. Farid, R. S.,Moser, C. C., &Dutton, P. L. (1993). Electron transfer in proteins.Current Opinion

in Structural Biology, 3, 225–233.
48. Murphy, C. J., et al. (1994). Fast photoinduced electron transfer through DNA intercalation.

Proceedings of the National Academy of Sciences of the United States of America, 91, 5315–9.
49. Davis, W. B., Svec, W. A., Ratner, M. A., & Wasielewski, M. R. (1998). Molecular-wire

behaviour in p-phenylenevinylene oligomers. Nature, 396, 60–63.
50. Weiss, E. A. (2004). Making a molecular wire: charge and spin transport through. Journal of

The American Chemical Society, 126, 5577–5584.
51. Tauber, M. J., Kelley, R. F., Giaimo, J. M., Rybtchinski, B., & Wasielewski, M. R. (2006).

Electron hopping in pi-stacked covalent and self-assembled perylene diimides observed by
ENDOR spectroscopy. Journal of the American Chemical Society, 128, 1782–1783.

52. Scott, A. M., & Wasielewski, M. R. (2011). Temperature dependence of spin-selective charge
transfer pathways in donor-bridge-acceptor molecules with oligomeric uorenone and p -
phenylethynylene bridges. Journal of the American Chemical Society, 133, 3005–3013.

53. Von Middendorf, A. (1859). Die Isepiptesen Rufflands. Mem. Acad. Sci. St Petersbourg VI.
Ser. Tome, 8, 1–143.

54. Viguier, C. Le. (1882). Sens deL’orientation et sesOrganes chez lesAnimaux et chez L’homme.
Revue Philosophique de la France et de l’ Etranger, 14, 1–36.

55. Wiltschko, W. (1968). Über den Einflu statischer Magnetfelder auf die Zugorientierung der
Rotkehlchen (Erithacus rubecula). Zeitschrift für Tierpsychologie, 25, 537–558.

56. Walker, M. M., et al. (1997). Structure and function of the vertebrate magnetic sense. Nature,
390, 371–376.



16 1 Introduction

57. Lohmann, K. J., Lohmann, C. M. F., & Putman, N. F. (2007). Magnetic maps in animals:
nature’s GPS. Journal of Experimental Biology, 210, 3697–3705.

58. Mouritsen, H. (2013). Neurosciences - FromMolecule to Behavior: A University Textbook (pp.
427–443). Berlin: Springer.

59. Schulten, K., & Windemuth, A. (1986). Biophysical Effects of Steady Magnetic Fields (pp.
99–106). Berlin: Springer.

60. Ritz, T., Adem, S., & Schulten, K. (2000). A model for photoreceptor-based magnetoreception
in birds. Biophysical Journal, 78, 707–718.

61. Wiltschko, W., & Wiltschko, R. (1972). Magnetic compass of European robins. Science, 176,
62–64.

62. Wiltschko,W., &Wiltschko, R. (1996). Magnetic orientation in birds. Journal of Experimental
Biology, 199, 29–38.

63. Akesson, S., Morin, J., Muheim, R., &Ottosson, U. (2001). Avian orientation at steep angles of
inclination: experiments with migratory white-crowned sparrows at the magnetic North Pole.
Proceedings of the Royal Society B: Biological Sciences, 268, 1907–1913.

64. Wiltschko, R., Ritz, T., Stapput, K., Thalau, P., & Wiltschko, W. (2005). Two different types
of light-dependent responses to magnetic fields in birds. Current Biology, 15, 1518–1523.

65. Wiltschko, R., et al. (2015). Magnetoreception in birds: the effect of radio-frequency fields.
Journal of the Royal Society Interface, 12, 20141103.

66. Maeda, K., et al. (2008). Chemical compass model of avian magnetoreception. Nature, 453,
387–390.

67. Maeda, K., et al. (2012). Magnetically sensitive light-induced reactions in cryptochrome are
consistent with its proposed role as a magnetoreceptor. Proceedings of the National Academy
of Sciences of the United States of America, 109, 4774–4779.

68. Dodson, C. A., Hore, P. J., &Wallace, M. I. (2013). A radical sense of direction: signaling and
mechanism in cryptochrome magnetoreception. Trends in Biochemical Sciences, 38, 435–446.

69. Lin, C., & Todo, T. (2005). The cryptochromes. Genome Biology, 6, 220.
70. Nießner, C. (2011). Avian ultraviolet/violet cones identified as probable magnetoreceptors.

PLOS ONE, 6, e20091.
71. Solov’yov, I. A., Chandler, D. E., & Schulten, K. (2007). Magnetic field effects in arabidopsis

thaliana cryptochrome-1. Biophysical Journal, 92, 2711–2726.
72. Lee, A. A., et al. (2014). Alternative radical pairs for cryptochrome-based magnetoreception.

Journal of the Royal Society Interface, 11, 20131063.
73. Worster, S., Kattnig, D. R., & Hore, P. J. (2016). Spin relaxation of radicals in cryptochrome

and its role in avian magnetoreception. Journal of Chemical Physics, 145, 035104.
74. Kattnig, D. R., Solov’yov, I. A., &Hore, P. J. (2016). Electron spin relaxation in cryptochrome-

based magnetoreception. Physical Chemistry Chemical Physics, 18, 12443–12456.
75. Kattnig, D. R., Sowa, J. K., Solov’yov, I. A., & Hore, P. J. (2016). Electron spin relaxation can

enhance the performance of a cryptochrome-based magnetic compass sensor. New Journal of
Physics, 18, 063007.

76. Tang, C. W., & Vanslyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics
Letters, 51, 913–915.

77. Kido, J. (1999). Organic displays. Physics World, 12, 27–30.
78. OLED displays and organic photovoltaics. (2009). Nature Photonics, 3, 457.
79. Forrest, S. R. (2004). The path to ubiquitous and low-cost organic electronic appliances on

plastic. Nature, 428, 911–918.
80. Lupton, J.M.,McCamey,D.R.,&Boehme,C. (2010).Coherent spinmanipulation inmolecular

semiconductors: getting a handle on organic spintronics. ChemPhysChem, 11, 3040–3058.
81. Reineke, S. (2015). Complementary LED technologies. Nature Materials, 14, 459–462.
82. Frankevich, E. L., et al. (1992). Polaron-pair generation in poly(phenylene vinylenes).Physical

Review B, 46, 9320–9324.
83. Hu, B., & Wu, Y. (2007). Tuning magnetoresistance between positive and negative values in

organic semiconductors. Nature Materials, 6, 985–91.



References 17

84. Bobbert, P. A., Nguyen, T. D., Van Oost, F. W. A., Koopmans, B., & Wohlgenannt, M. (2007).
Bipolaron mechanism for organic magnetoresistance. Physical Review Letters, 99, 216801.

85. Lupton, J. M., & Boehme, C. (2008). Magnetoresistance in organic semiconductors. Nature
Materials, 7, 598.

86. Nguyen, T. D., Gautam, B. R., Ehrenfreund, E., & Vardeny, Z. V. (2010). Magnetoconductance
response in unipolar and bipolar organic diodes at ultrasmall fields. Physical Review Letters,
105, 166804.

87. Ehrenfreund, E., & Vardeny, Z. V. (2012). Effects of magnetic field on conductance and elec-
troluminescence in organic devices. Israel Journal of Chemistry, 52, 552–562.

88. Cox, M., et al. (2014). Spectroscopic evidence for trap-dominated magnetic field effects in
organic semiconductors. Physical Review B, 90, 155205.

89. Kersten, S. P., Schellekens, A. J., Koopmans, B., & Bobbert, P. A. (2011). Magnetic-field
dependence of the electroluminescence of organic light-emitting diodes: a competition between
exciton formation and spin mixing. Physical Review Letters, 106, 197402.

90. Nguyen, T. D., et al. (2010). Isotope effect in spin response of pi-conjugated polymer films and
devices. Nature Materials, 9, 345–352.

91. McCamey, D. R., Lee, S. Y., Paik, S. Y., Lupton, J. M., & Boehme, C. (2010). Spin-dependent
dynamics of polaron pairs in organic semiconductors. Physical Review B, 82, 125206.

92. Wang, F., Yang, C. G., Ehrenfreund, E., & Vardeny, Z. V. (2010). Spin dependent reactions of
polaron pairs in PPV-based organic diodes. Synthetic Metals, 160, 297–302.

93. Hiscock, H. G., et al. (2016). The quantum needle of the avian magnetic compass. Proceedings
of the National Academy of Sciences of the United States of America, 113, 201600341.



Chapter 2
Quantum Mechanics

In this chapter, we shall outline the quantum mechanical description of the spin
dynamics of a radical pair reaction. To begin, we will sketch the origin of the Hamil-
tonian which governs the evolution of the electron and nuclear spins in a radical
pair. We will then describe the Haberkorn operator used to account for the recom-
bination of radical pairs, and introduce the ensemble dynamics of the radical pair,
which provide a connection to experimental measurements. Using this machinery,
we shall demonstrate an efficient method of calculating these ensemble averages and
discuss its limitations, which motivate the development of approximate semiclas-
sical theories of spin dynamics in Chap.3. We will then introduce spin correlation
tensors, which may be used in the special case where there is no coupling between
electron spins to further reduce the computational time required to simulate radical
pair reactions. Finally, we shall discuss relaxation effects, noting that the difficulty of
including them in fully quantum mechanical simulations provides additional moti-
vation to find semiclassical models which can account for these effects.1

2.1 The Hamiltonian

The Hamiltonian which describes the evolution of the electron and nuclear spins in
the radical pairs considered in this thesis is [1, 2]

Ĥ = Ĥ1 + Ĥ2 + Ŝ1 · D′ · Ŝ2,

Ĥi = ωi · Ŝi +
Ni∑

k=1

Îik · A′
ik · Ŝi .

(2.1)

1Parts of this chapter have been reproduced with permission from Lewis, A. M., Fay, T. P. &
Manolopoulos, D. E. Journal of Chemical Physics 145, 244101 (2016), https://aip.scitation.org/
doi/10.1063/1.4972277
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In these equations, ωi = −γiB, where γi is the gyromagnetic ratio of the electron
in radical i and B is the applied magnetic field. A′

ik is the hyperfine coupling tensor
between the kth nuclear spin and the electron spin in radical i , andD′ is the coupling
tensor between the two electron spins, which accounts for both the dipolar coupling
D and the exchange coupling J . Îik and Ŝi are the nuclear and electron spin operators
respectively, and Ni is the number of nuclear spins in radical i .

In the uncoupled spin basis, this Hamiltonian is sparse; that is, most of its elements
are zero. This is a result of the structure of the Hamiltonian: each term connects a
given state only to states in which the projection onto the z axis of at most two spins
has changed. Therefore, each state is coupled to just a small fraction of the full basis
of states. There are a total of 4Z diagonal elements, which correspond to the terms
in the Hamiltonian which leave the spin states of all of the electrons and nuclei in the
radical pair unchanged. Here Z = �i,k(2Iik + 1) is the total number of nuclear spin
states of the radical pair. The terms in the Hamiltonian which change the spin state of
one of the electrons in the radical pair produce 8Z non-zero elements, with a further
4Z arising from terms which change the state of both electron spins simultaneously.
There are a total of

4Z

2Iik + 1
(2Iik + 1 − 1) × 2 = 8Z

2Iik
2Iik + 1

(2.2)

non-zero elements which involve changing the spin state of the kth nucleus on radical
i only, and another 8Z(2Iik/(2Iik + 1)) which correspond to changing the spin state
of both the kth nucleus and the electron spin on radical i . Therefore, the total number
of non-zero matrix elements of the Hamiltonian in the uncoupled spin basis is

16Z + 16Z

(
2∑

i=1

Ni∑

k=1

2Iik
2Iik + 1

)
. (2.3)

If Iik = 1/2 for every nuclear spin, this expression simplifies to

16Z + 8Z log2 Z . (2.4)

This feature of the Hamiltonian allows the efficient implementation of matrix-vector
multiplications which require only O(Z log Z) operations, rather than O(Z2). This
will be crucial when calculating the spin dynamics of molecular wires in Chap.4.

We have neglected the contributions to the Hamiltonian from the motion of the
nuclei. Translational motion can safely be ignored, since Eq. (2.1) is unaffected by a
displacement. The Hamiltonian is not invariant to rotations, however – the hyperfine
tensors and electron spin coupling tensor are, in general, anisotropic. If the rotational
motion is rapid relative to the timescale of the spin dynamics, any anisotropic tensors
will be averaged over all orientations of the radical pair, destroying them and leaving
only isotropic contributions to the hyperfine and electron spin couplings, as shown in
Appendix B. For each of the applications considered in this thesis, we shall assume
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either that the radical pairs are tumbling rapidly, or not rotating at all. The relaxation
associated with the modulation of hyperfine tensors by rotational and vibrational
motion is more difficult to describe, and is discussed in more detail in Sect. 2.7.1.

2.1.1 Exchange Coupling

The coupling between the electron spins is described in the Hamiltonian of Eq. (2.1)
by the tensorD′. This can be split into an isotropic component, given by the exchange
coupling constant, J , and a traceless anisotropic component arising from dipolar
coupling, D:

D′ = D + 2JE, (2.5)

where E is a 3 × 3 unit matrix. The exchange coupling is a consequence of the
Pauli principle [3], which states that particles with half integer spin, such as elec-
trons, follow Fermi-Dirac statistics. We shall now outline the origin of the exchange
interaction, following Van Vleck in Ref. [4].

Firstly, consider a system of two non-interacting electrons which experience the
same potential, V̂ (r). The Schrödinger equation for this system is

− �
2

2m

(
∇2

1 + ∇2
2

)
� +

(
V̂ (r1) + V̂ (r2)

)
� = E0�, (2.6)

where ∇2
i is the Laplacian, ri is the position of particle i , and E0 is the energy of the

system. Neglecting the spin of the electrons for now, Eq. (2.6) has the degenerate
solutions

�I = ψk(r1)ψm(r2),

�I I = ψk(r2)ψm(r1),

E0 = Ek + Em,

(2.7)

where ψk and ψm are solutions of the Schrödinger equation for a single electron in
the potential V̂ (r). We will assume for simplicity that these functions are real and
orthonormal. Any linear combination of �I and �I I also satisfies Eq. (2.6).

We then introduce a perturbation to this system: a potential V̂12 between the two
electrons. This breaks the degeneracy of the system, with the energy levels now given
to first order by ∣∣∣∣

E0 + K12 − E J12
J12 E0 + K12 − E

∣∣∣∣ = 0, (2.8)

where
K12 = 〈

�I

∣∣V̂12

∣∣�I
〉 = 〈

�I I

∣∣V̂12

∣∣�I I
〉
,

J12 = 〈
�I

∣∣V̂12

∣∣�I I
〉 = 〈

�I I

∣∣V̂12

∣∣�I
〉
.

(2.9)
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Note that both J12 and K12 are positive. The solutions to Eq. (2.8) are

E+ = E0 + K12 + J12
E− = E0 + K12 − J12,

(2.10)

which correspond to the symmetric and antisymmetric combinations of ψI and ψI I

respectively,

�+ = 1√
2

(�I + �I I ) ,

�− = 1√
2

(�I − �I I ) .

(2.11)

We must now introduce the spins of the electrons. Assuming that there is no
spin-orbit coupling, the total wavefunction can simply be written as a product of a
spatial wavefunction, such as those in Eq. (2.11), and a spin wavefunction, such as
those in Eq. (1.3). In order to satisfy the Pauli principle, the total wavefunction must
be antisymmetric with respect to exchange of the two electrons, so one and only
one of the spin and spatial wavefunctions must be antisymmetric. As is clear from
Eq. (1.3), the spin wavefunctions are antisymmetric when the total spin quantum
number S = 0 and symmetric when S = 1. These must therefore be paired with the
the spatial wavefunctions �+ and �−, respectively, which are eigenfunctions of V̂12

with eigenvalues K12 + J12 and K12 − J12; the singlet state (S = 0) is 2J12 higher
in energy than the triplet state (S = 1).

The eigenvalues of the square of the electron spin vector operators Ŝ21 and Ŝ
2
2 are

3/4�2, and the operator Ŝ2 =
(
Ŝ1 + Ŝ2

)2
has eigenvalues of 0 and 2�

2. Therefore,

the operator

Ŝ1 · Ŝ2 = 1

2

(
Ŝ2 − Ŝ21 − Ŝ21

)
(2.12)

has eigenvalues −3/4�2 and 1/4�2, corresponding to when S = 0 and S = 1 respec-
tively. Combining this with the result above, and defining J = −J12/�

2, we can say
that in the basis of singlet and triplet states the operator V̂12 − 2J Ŝ1 · Ŝ2 − K12 +
1/2J12 is diagonal with eigenvalues equal to zero – it is a zero matrix. Since it must
therefore be invariant under a similarity transform, it is generally true that

2J Ŝ1 · Ŝ2 = V̂12 − K12 + 1

2
J12. (2.13)

What we have shown in Eq. (2.13) is that the electrons have an effective isotropic
coupling between their spins, which in fact is a consequence of the orbital parts
of the wavefunction [5]. The triplet (S = 1) spin states must be combined with the
antisymmetric spatial wavefunction, which vanishes when r1 = r2. This decrease in
the probability density when the two electrons are close together in space is referred
to as a Fermi hole; a Fermi heap is observed in the symmetric spatial wavefunction
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as the probability density increases when the electrons are close together [6]. The
existence of a Fermi hole reduces the average electron-electron repulsion energy,
leading to the difference in energy between the singlet and triplet states. Despite the
orbital origin of the exchange coupling constant J , it is extremely helpful to think
of it as an effective spin coupling; and it has a profound effect on the spin dynamics
in a radical pair.

In addition to this “direct” exchange mechanism, there are also contributions to J
from what is called the superexchange mechanism. This is a perturbative correction
to the exchange coupling, which accounts for the exchange interactions in excited
spin states of a molecule, and is mediated by the electrons in orbitals between the two
spins [7, 8]. The magnitude of the superexchange coupling depends on the overlap
between the orbitals occupied by two coupled spins and the bridging orbitals. Both the
superexchange and direct exchange interactions are expected to have an exponential
dependence on the separation between the two electrons [1, 9],

J (r) = J0e
−(r/rJ ), (2.14)

where J0 and rJ are parameters which characterise the magnitude and decay of the
interaction. However, while the contribution to J from direct exchange is always
negative, contributions from superexchange may be positive or negative, depending
on the relative energies of the excited states involved [8]. As a result, if the superex-
change mechanism outweighs the direct exchange mechanism the overall coupling
constant may be positive, resulting in the singlet state being lower in energy than the
triplet state.

2.1.2 Dipolar Coupling

The anisotropic component D of the electron spin coupling tensor D′ in Eq. (2.5)
arises from the dipolar coupling between the two electron spins. An electron with
spin Si has an associated magnetic dipole mi , related by [10]

mi = γiSi , (2.15)

where γi is the gyromagnetic ratio of the electron. The magnetic field generated by
that magnetic dipole at some point in space r, assuming it to be a point dipole, is
given by [11]

Bi = − μ0

4πr3

(
mi − 3r(r · mi )

r2

)
, (2.16)

where μ0 is the vacuum permeability, and r = |r|. The Hamiltonian which describes
the interaction of this field with another magnetic dipole is
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ĤD = −B̂1 · m̂2

= γ1γ2μ0

4πr3

(
Ŝ1 · Ŝ2 − 3(Ŝ1 · r)(r · Ŝ2)

r2

)
(2.17)

provided that the dipoles are far apart [12]. We may rewrite this expression as

ĤD = Ŝ1 · D · Ŝ2, (2.18)

where D is a 3 × 3 matrix given by

D = γ1γ2μ0

4πr3

(
E − 3

r ⊗ r
r2

)

= D

(
E − 3

r ⊗ r
r2

)
,

(2.19)

E is the unit matrix, and ⊗ indicates an outer product.
It is important to note that the dipolar coupling tensor vanishes if the radical pair

is tumbling in solution; this is shown explicitly in Appendix B. The dipolar coupling
is sometimes referred to as the zero-field splitting, since it lifts the degeneracy of
the triplet states of a radical pair even in the absence of an external magnetic field.
However, it is not the only possible origin of a zero-field splitting; spin orbit coupling,
if present, has a similar symmetry-breaking effect [13].

2.1.3 The Zeeman Interaction

The first term of Ĥi in Eq. (2.1) is the Zeeman interaction between an electron spin
and an external magnetic field B [5],

ĤZ = ω · Ŝ = −γ B · Ŝ = −B · m̂. (2.20)

The gyromagnetic ratio of the electron, γ, is defined as −gμB/�, where μB is the
Bohr magneton and g is the electron spin g-factor. In this work, we assume that the
g-factor is isotropic and equal to that of the free electron, ge, and hence that the
gyromagnetic ratio of an electron is γe. The first assumption is easily justified if the
system under investigation is tumbling in solution, since any anisotropic component
of the g-tensor will average to zero, and so not influence the spin dynamics of the
radical pair [13].

Even when molecular tumbling is slow, the g-tensor will only be anisotropic if
there is significant coupling between the electron’s spin and orbital angular momen-
tum [12]. This is generally not observed in the type of planar, conjugated radicals
we consider in this thesis [14]. This also justifies our second assumption, since the
isotropic g-factors of electrons do not vary significantly from the free electron value
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without strong spin-orbit coupling [12]. To second order in perturbation theory, the
isotropic g-factor is given by [13]

g = ge − 2λ

3

∑

n>0

〈
0
∣∣L̂

∣∣n
〉 · 〈

n
∣∣L̂

∣∣0
〉

En − E0
, (2.21)

where λ is the spin-orbit coupling constant, L̂ is the electron orbital angular momen-
tum vector operator, |n 〉 is an eigenstate of the spatial Hamiltonian, and En is the
energy of that state. It is clear from this expression that g ≈ ge unless λ is large
relative to the difference between the energies of the spatial eigenstates, En − E0.

The Hamiltonian in Eq. (2.1) neglects the Zeeman interactions between the mag-
netic field and the nuclear spins. This approximation is based on the fact that these
interactions are at least three orders of magnitude smaller than the electronic Zeeman
interactions, since the gyromagnetic ratio of a particle is inversely proportional to its
mass [13].

2.1.4 Hyperfine Interactions

The final term of Ĥi in Eq. (2.1) describes the hyperfine interactions between the
electron spin and nuclear spins in radical i . These couplings have an isotropic com-
ponent a, arising from the Fermi contact interaction, and a traceless anisotropic part
A from the dipolar coupling between the electron and nuclear spins [13]. The total
hyperfine tensor is defined as

A′ = A + aE, (2.22)

where E is a 3 × 3 unit matrix. The anisotropic part of the hyperfine interaction A
is entirely analogous to the tensor which describes the dipolar coupling between
two electrons, D. We shall therefore not repeat that discussion here, other than to
re-emphasise that the tensor A averages to zero for radicals tumbling in solution.
Instead, we will focus on the origin of the isotropic coupling constant, a.

The Fermi contact interaction between a nuclear spin and an electron spin is a
correction to point dipole approximation made in our derivation of dipolar coupling.
Eq. (2.17) has a singularity at r = 0, and so does not accurately describe systems
which have non-zero electron density at the position of the nucleus.We shall consider
the simplest example forwhich this correction is required, an electron in the 1s orbital
of a hydrogen atom. Firstly, we define the average of the magnetic field B generated
by the magnetic moment of the nucleus mN over the electron probability density,
|�(r)|2,

B =
∫

B(r)|�(r)|2dr. (2.23)
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Taking the nucleus to be a sphere of radius b, and noting that |�(r)|2 is spherically
symmetric, it is clear that the contribution to the integral when r > b will vanish, but
a term corresponding to a uniform field Bc within r < b will survive [12]. If |�(r)|2
is slowly varying within the volume of the nucleus, then

B = Bc|�(0)|2 4π
3
b3. (2.24)

Bc can be shown to be equal to [12]

Bc = 2μ0mN

4πb3
, (2.25)

which may be substituted back into Eq. (2.24), leaving

B = 2

3
μ0mN |�(0)|2. (2.26)

The interaction of this averaged field with the magnetic moment of an electron me

is described by the spin Hamiltonian

ĤF = −B̂ · m̂e

= −2

3
μ0(m̂N · m̂e)|�(0)|2

= −2

3
μ0γeγN Î · Ŝ|�(0)|2,

(2.27)

where γe and γN are the gyromagnetic ratios of the free electron and nucleus, respec-
tively. Note that this Hamiltonian is applied only to the spin part of the wavefunction;
the average of the spatial wavefunction has already been taken, which leads to the
term |�(0)|2 in Eq. (2.27). We may now define the isotropic hyperfine coupling
constant

a = −2

3
μ0γeγN |�(0)|2. (2.28)

This expression can be easily generalised to a molecular hyperfine constant [13]:

a = −2

3
μ0γeγNρS(0). (2.29)

Here ρS(0) is the electron spin density at the nucleus of interest, and is defined as
[13, 15]

ρS(0) = 2〈χ|
∑

k

δ(rk)Ŝkz|χ〉 (2.30)
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where |χ 〉 is a multi-electron wavefunction, rk is the position of the kth electron,
δ(rk) is the Dirac delta function, and the sum is over every electron. ρS(0) may be
simply interpreted as the difference between the average number of electrons at the
nucleus in the spin states |α 〉 and |β 〉. Note that ρS(0), and hence the corresponding
hyperfine constant, may be either positive or negative for a given nucleus.

Having described the origin of each term in the Hamiltonian which describes the
spin evolution of a radical pair, wewill now discuss the quantummechanical operator
used to describe their recombination reactions.

2.2 The Recombination Operator

The reactions of radical pairs are typically spin selective: the rate and products of the
reaction depend on the spin state of the radical pair. As a result, the recombination
of radical pairs is dynamically coupled to their Hamiltonian evolution, and cannot in
general be factored out of the spin dynamics. Section 2.2.1 outlines some properties
of the Haberkorn operator used throughout this thesis to account for recombination.
Section 2.2.2 discusses and critiques an alternative recombination operator which
has been proposed.

2.2.1 The Haberkorn Recombination Operator

The Haberkorn recombination operator is defined as [16]

K̂ = kS
2
P̂S + kT

2
P̂T, (2.31)

where

P̂S = 1

4
1̂ − Ŝ1 · Ŝ2, (2.32)

P̂T = 3

4
1̂ + Ŝ1 · Ŝ2, (2.33)

are the projection operators onto the singlet and triplet subspaces, and kS and kT
are the first order rate constants for recombination of the singlet and triplet states,
respectively. In the absence of any other spin evolution (Ĥ = 0), the density operator
ρ̂ evolves under this recombination operator according to

dρ̂

dt
= −

(
K̂ ρ̂ + ρ̂K̂

)
= −

{
K̂ , ρ̂

}
, (2.34)

where {· · · } indicates an anticommutator.
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To illustrate the effect of the recombination operator, we will consider a sim-
ple example: the recombination of a pure state |α1β2 〉. In the |S, MS 〉 basis
{ |1, 0 〉 , |0, 0 〉}, the density matrix which describes this state is

ρ̂(0) = 1

2

(
1 1
1 1

)
. (2.35)

Since the recombination operator is diagonal in this basis, the solution to Eq. (2.34)
is straightforward [16]:

ρ̂(t) = 1

2

(
e−kTt e−1/2(kS+kT)t

e−1/2(kS+kT)t e−kSt

)
. (2.36)

This predicts the correct dynamics: the population of the triplet and singlet states
decay exponentially with rate constants kS and kT respectively. The coherence
between the two states decays exponentially with the mean of their rate constants.
This may be trivially extended to the full basis of electronic spin states.

2.2.2 An Alternative Recombination Operator

Despite the Haberkorn operator being used uncontroversially for over 30 years, its
validity has recently been questioned [17]. In particular, it was suggested that the
Haberkorn operator failed to explain the experimental data presented by Maeda et
al. which demonstrated an Earth-strength magnetic field effect [18] – the same data
discussed in Sect. 5.2.2 In response to this, the alternative Jones model of recombi-
nation was proposed based on quantum measurement theory [19].

In the language of that theory, the Haberkorn operator treats chemical reactions as
continuous weakmeasurements; that is, measurement failure indicates nothing about
the system. On the other hand, the Jones operator treats reactions as probabilistic
strong measurements, where failure provides definite information about the state of
the system [20]. This has the effect of dephasing the system more quickly than the
Haberkorn model: applying the Jones model of recombination to the density matrix
in Eq. (2.35) produces the density matrix

ρ̂(t) = 1

2

(
e−kTt e−(kS+kT)t

e−(kS+kT)t e−kSt

)
, (2.37)

by contrast to Eq. (2.36). Here the singlet-triplet coherences decay at the sum of the
singlet and triplet recombination rates, rather than their average.

2In fact, in Sect. 5.2 we will show that Maeda’s results can be reproduced using the Haberkorn
operator, provided that other sources of dephasing are accounted for.
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This discrepancy between the dephasing rates of the two approaches is subtle,
particularly since they only provide lower bounds for the dephasing rate; usually
there will be additional sources of dephasing caused by the motion of the radical
pair. Therefore, differentiating between the two possible operators is very difficult to
do experimentally, since isolating other sources of dephasing is challenging. Never-
theless, an experimental test of the validity of the recombination operators has been
performed using the carotenoid-porphyrin-fullerene triad described in Sect. 5.2 [21].
In that case, it was found that the dephasing was inconsistent with the Jones model,
but in agreement with the Haberkorn operator.

In addition, it has been shown that the Haberkorn model may be derived from the
quantummechanical treatment of a simple recombination reaction in which a radical
pair interacts with a harmonic bath [22]. Numerical simulations involvingmore com-
plex system-bath interactions also supported the Haberkorn model of recombination.
In the light of this, and the lack of experimental evidence calling it into question, we
will continue to use Haberkorn’s recombination operator in this work.

2.3 Observables

Radical pairs are rarely investigated in isolation experimentally; instead, measure-
ments are usually made on an ensemble of radical pairs. In quantum mechanics,
the ensemble average of an observable A(t) corresponding to an operator Â is
given by [23]

A(t) = tr
[
ρ̂(t) Â

]
, (2.38)

where ρ̂(t) is the density operator at time t , and the trace is takenover the entireHilbert
space. In the case that the density operator represents a pure state, this is identical
to the expectation value of the operator in that state; in the case of a mixed state, it
is the sum of the expectation values of each state weighted by its probability within
the statistical ensemble. We shall now consider how to calculate these ensemble
averages. Please note that for the remainder of this chapter we will work in a unit
system where � = 1, for convenience.

The unitary evolution of the density operator is described by the von Neumann
equation [24]

dρ̂

dt
= −i

(
Ĥ ρ̂ − ρ̂Ĥ

)
= −i

[
Ĥ , ρ̂

]
, (2.39)

where [· · · ] indicates a commutator. We must add to this a term describing the spin-
selective recombination of radical pairs, given by Eqs. (2.31) and (2.34):

dρ̂

dt
= −i

[
Ĥ , ρ̂

]
−

{
K̂ , ρ̂

}
. (2.40)
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Solving this equation yields an expression for the density operator at time t [25]:

ρ̂(t) = e−i Ĥ t−K̂ t ρ̂(0)e+i Ĥ t−K̂ t . (2.41)

While in theory Eq. (2.41) is all that is required to calculate the ensemble averages of
observables, in practice its evaluation is not feasible for realistic radical pairs. Both
ρ̂ and the propagation operator e−i Ĥ t−K̂ t have (4Z)2 elements, and since Z scales
exponentially with the number of nuclear spins, calculating and storing the matrix
elements of these operators becomes prohibitive when N > 10.

By a little manipulation, it is possible find a less memory-intensive method to
calculate ensemble averages. Defining

Â(t) = e+i Ĥ t−K̂ t Â e−i Ĥ t−K̂ t , (2.42)

inserting Eq. (2.41) into (2.38), and using the invariance of a trace to cyclic permu-
tation yields

A(t) = tr
[
ρ̂(0) Â(t)

]
. (2.43)

This trace may be evaluated in the basis

{B} = { |� 〉 ⊗ |M1 〉 ⊗ |M2 〉}. (2.44)

Here |� 〉 is the electronic spin state, and � can take the values S, T+, T0 and T−,
representing the singlet and triplet states respectively. |Mi 〉 is the nuclear spin state
of radical i , given by

|Mi 〉 = |Mi1 〉 ⊗ |Mi2 〉 ⊗ · · · ⊗ ∣∣MiNi

〉
, (2.45)

where Mik is the projection of the kth nuclear spin in radical i onto the z axis. In this
basis, Eq. (2.43) becomes

A(t) =
∑

�

∑

M1

∑

M2

〈�,M1,M2|ρ̂(0) Â(t)|�,M1,M2〉 (2.46)

where the sum overMi indicates the sum over all possible nuclear spin states |Mi 〉.
In the case of photoexcited radical pairs formed in the singlet state, ρ̂(0) = P̂S/Z .

The sum over � can then be evaluated immediately: only terms with � = S survive.
Then, defining

|S,M1,M2; t 〉 = e−i Ĥ t−K̂ t |S,M1,M2 〉 , (2.47)

Equation (2.46) becomes

A(t) = 1

Z

∑

M1

∑

M2

〈S,M1,M2; t | Â|S,M1,M2; t〉. (2.48)
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Therefore, the ensemble average of an observable can be evaluated by propagating
Z wavepackets with orthogonal initial nuclear spin states and calculating the expec-
tation value of Â in each state at time t . The propagation described in Eq. (2.47)
may be performed by various different algorithms, two of which are discussed in
Appendix A.

While this wavepacket propagation approach significantly reduces the memory
requirements of calculating ensemble averages of observables, it is still computa-
tionally expensive. Both the number of wavepacket propagations required and the
CPU time required for each propagation increase exponentially as the number of
nuclear spins in the radical pair increases. In Sect.2.5, we will discuss a more effi-
cient method which reduces the number of wavepacket propagations required. This
method uses stochastic sampling of the coherent spin states of the nuclear spins,
which are introduced in the following section.

2.4 Coherent Spin States

A coherent spin state of a spin with quantum number J , |�J 〉, is a quantum state in
which the expectation value of the angular momentum operator Ĵ is given by [26]

〈�J |Ĵ|�J 〉 = Jn(�),

n(�) = (sin θ cosφ, sin θ sin φ, cos θ)	.
(2.49)

They are the quantum states in which the behaviour of the expectation values of the
angular momentum operator Ĵmost closely resemble a classical angular momentum.
|�J 〉 may be obtained by rotating the quantisation axis of the |J, J 〉 eigenstate of
Ĵz to lie in the direction � = (θ,φ) [26],

|�J 〉 = (cos θ/2)2J exp
{
tan (θ/2) eiφ Ĵ−

} |J, J 〉 , (2.50)

where 0 � θ � π and 0 � φ < 2π. Equivalently, |�J 〉 can be expressed as a
weighted sum of the eigenstates of Ĵz [27]:

|�J 〉 =
J∑

M=−J

(
2J

J + M

)1/2

(cos θ/2)J+M (sin θ/2)J−M ei(J−M)φ |J, M 〉 . (2.51)

Using this definition, it can clearly be seen that the coherent spin states are not
orthogonal [27]:

〈
�′

J

∣∣ |�J 〉 =
(
cos θ

2 cos
θ′
2 + ei(φ−φ′) sin θ

2 sin
θ′
2

)2J 
= δ(� − �′) (2.52)
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We shall now prove that the set of states { |�J 〉} resolves the identity [26]:

1̂ = 2J + 1

4π

∫
d� |�J 〉 〈�J | . (2.53)

Inserting the definition of a coherent spin state given in Eq. (2.51), we find [28]

1̂ = 2J + 1

4π

∫ 2π

0
dφ

∫ π

0
sin θ dθ

[ J∑

M,M ′=−J

(
2J

J + M

)(
cos θ

2

)2J+M+M ′

×
(
sin θ

2

)2J−M−M ′
ei(M

′−M)φ
∣∣J, M ′ 〉 〈J, M |

]

=
J∑

M=−J

|J, M 〉 〈J, M | 2J + 1

2

(
2J

J + M

)∫ π

0
sin θ dθ

[ (
cos θ

2

)2J+2M (
sin θ

2

)2J−2M
]

(2.54)
The integral on the final line of Eq. (2.54), which we shall label λJ,M , can be solved
using a reduction formula:

λJ,M = 4
∫ π/2

0
d θ
2

[ (
cos θ

2

)2(J+M)
cos θ

2

(
sin θ

2

)2(J−M)+1
]

= 4

(
J + M

J − M + 1

) ∫ π/2

0
d θ
2

[ (
cos θ

2

)2(J+M)−2
cos θ

2

(
sin θ

2

)2(J−M)+3
]

= 4

(
J + M

J − M + 1

)
λJ,M−1

= 4

(
J + M

J − M + 1

) (
J + M − 1

J − M + 2

)
. . .

(
J + 1

J

)
λJ,0

= 4

(
(J + M)!

J !
)(

(J − M)!
J !

)
λJ,0

(2.55)
The integral λJ,0 may be straightforwardly evaluated

λJ,0 =
∫ π/2

0
d θ
2

(
cos θ

2

)2J+1 (
sin θ

2

)2J+1

= 1

2

∫ π

0
dθ

(
1
2 sin θ

)2J+1

= 1

2

(J !)2
(2J + 1)!

(2.56)

Finally, by combining Eqs. (2.54), (2.55), and (2.56), we can prove Eq. (2.53):
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1̂ =
J∑

M=−J

|J, M 〉 〈J, M |
(

2J

J + M

) (
(2J + 1)(J !)2

(2J + 1)!

) (
(J + M)!

J !
)(

(J − M)!
J !

)

=
J∑

M=−J

|J, M 〉 〈J, M |
(

(2J )!
(J + M)!(J − M)!

)(
(J !)2
(2J )!

) (
(J + M)!(J − M)!

(J !)2
)

=
J∑

M=−J

|J, M 〉 〈J, M |

(2.57)
Note that since the coherent states are not orthogonal, the set of states { |�J 〉} is
overcomplete.

The ensemble average of an observable may be evaluated in the basis of coherent
spin states. By inserting equation Eq. (2.53) into (2.48), the sums over M1 and M2

can be replaced by an 2N dimensional integral over the coherent spin states of each
nuclear spin:

A(t) = 1

(4π)N

∫
d�1

∫
d�2〈S,�1,�2; t | Â|S,�1,�2; t〉. (2.58)

Here
|�i 〉 = |�i1 〉 ⊗ |�i2 〉 ⊗ · · · ⊗ ∣∣�i Ni

〉
, (2.59)

|�ik 〉 is a coherent spin state of the kth nuclear spin of radical i , and ∫
d�i indicates

the integral over all possible orientations of each of these coherent spin states. Note
that the factors of (2J + 1) in Eq. (2.53) cancel with 1/Z in Eq. (2.48).

2.5 An Efficient Quantum Mechanical Method

We have shown that the ensemble average of an observable may be expressed in
terms of integrals over the coherent spin state basis of each nuclear spin in a radical
pair. These integrals, and hence A(t), may be evaluated by Monte Carlo sampling
the directions of the initial nuclear spin states |�ik 〉 from the surfaces of spheres. If
the number of samples M required to converge these integrals is significantly smaller
than Z , then evaluating A(t) using Eq. (2.58) will be far less expensive than using
Eq. (2.48).

In order to investigate this, we have calculated the singlet yield of a model radical
pair,

�S = kS

∫ ∞

0
PS(t) dt. (2.60)

PS(t) is the ensemble average of the singlet probability at time t , obtained by substi-
tuting Â = P̂S into Eq. (2.58). In our model system, dipolar interactions are assumed
to be averaged out by tumbling in solution, and each electron is coupled to ten
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Table 2.1 The hyperfine coupling constants used in the model radical pair

k a1k/|γe| (mT) a2k/|γe| (mT)

1 −0.999985 −0.232996

2 −0.736925 0.0388327

3 0.511210 0.661931

4 −0.0826998 −0.930856

5 0.0655341 −0.893077

6 −0.562082 0.0594001

7 −0.905911 0.342299

8 0.357729 −0.984604

9 0.358593 −0.233169

10 0.869386 −0.866316

Fig. 2.1 The singlet yield of
the model radical pair as a
function of the applied
magnetic field strength B,
averaged over M initial
nuclear spin states. The error
bars are given by ±ε, the
standard error in the mean of
the M samples
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nuclear spins with random isotropic hyperfine coupling constants uniformly dis-
tributed between−1 < aik < 1mT, which are listed in Table 2.1. The exchange cou-
pling constant is taken to be J/|γe| = 1.75mT, comparable to the effective hyperfine
field strength in each radical (Bhyp,1 = 1.72, Bhyp,2 = 1.74), and the rate constants
are chosen as kS/|γe| = 0.1 mT and kT/|γe| = 1.0 mT.

Figure 2.1 shows the convergence of the singlet yield of this model radical pair
with M across a wide range of magnetic field strengths. The results are converged to



2.5 An Efficient Quantum Mechanical Method 35

graphical accuracy at all field strengths with only M = 200 samples. Since the total
number of nuclear spin states of the radical pair is Z = 1,048,576, this stochastic
calculation is > 5000 times faster than the equivalent deterministic one would be.

The form of the MFE on the singlet yield shown in Fig. 2.1 can be understood by
considering the energy levels of the spin states of the radical pair, shown schematically
in Fig. 1.1. At both zero and high fields, the singlet state is separated in energy from
the triplet states, which leads to slow conversion between the spin states. By contrast,
whenω = |ω| = 2J , the singlet state is degeneratewith the |T− 〉 state, and hyperfine
mediated intersystem crossing becomes much more efficient. Since the radical pair
is formed in the singlet state, any intersystem crossing will reduce the singlet yield.
Therefore, a minimum is observed in the the singlet yield when ω = 2J ; this is the
resonance effect described in Sect. 1.3.3.

This explains the observation that in the top panel of Fig. 2.1 the convergence
of the Monte Carlo integration is slowest, and the error bars largest, around the
minimum in the singlet yield. Away from resonance, the hyperfine interactions play
only a small role in the spin dynamics, and the singlet yield does not vary significantly
between Monte Carlo samples. However, when the intersystem crossing is fast the
singlet yield depends strongly on the initial nuclear spin state, and more samples are
required to obtain converged results.

The field dependent sensitivity of the spin dynamics to the initial nuclear spin state
is illustrated by the distribution of singlet yields obtained from individual wavepack-
ets,

φS(�1,�2) = kS

∫ ∞

0
〈S,�1,�2; t |P̂S|S,�1,�2; t〉dt. (2.61)

Figure 2.2 shows a histogram of 1000 evaluations of this singlet yield at three dif-
ferent magnetic field strengths. This highlights the increased variation in φS when
intersystem crossing becomes more efficient. Nevertheless, even when ω = 2J , the
number of coherent spin state samples required to converge the ensemble average of
the singlet yield is still far smaller than the total number of nuclear spin states, Z .

This analysis also explains why stochastic integration over coherent spin states
is so efficient. Since the singlet yield is bounded between zero and one, the maxi-
mum possible standard deviation in the distribution of φS is σ = 1/2. In practice, the
distribution is likely to be confined to a smaller range, as demonstrated by Fig. 2.2,
and so have an even smaller standard deviation. When performing a Monte Carlo
integration with random sampling, the standard deviation is related to the error in
the integral, ε, and the number of samples, M , by [29]

ε ∝ σ√
M

. (2.62)

Therefore, the necessarily small standard deviation in the distribution of singlet yields
means that only a small number of samples are required to converge the results.
We expect this observation to be general, since the observables of interest in spin
dynamics calculations are typically probabilities or yields, which must be bounded
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Fig. 2.2 Histograms of 1000
single wavepacket singlet
yields, φS, of the model
radical pair at three different
applied magnetic field
strengths
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between zero and one. As a result, this stochastic approach should be applicable to a
wide range of radical pairs. While the precise number of samples required to obtain
converged results will doubtless vary from system to system, it seems likely that for
radical pairs with N > 10 nuclear spins, M will be significantly smaller than the
number of nuclear spin states.

As an alternative to the method presented here, we also considered the possibility
of stochastically samplingM1 andM2 in order to evaluate the sums in Eq. (2.48). We
found that convergence was much slower than that observed when sampling coher-
ent spin states. The reason for this lies in the fact that the Hamiltonian in Eq. (2.1)
commutes with the total spin projection operator, Ĵz = Ŝ1z + Ŝ2z + ∑

i,k Îikz . This
divides the Hilbert space into sectors of different MJ , which all contribute indepen-
dently to �S. Since the state |S,M1,M2 〉 is an eigenstate of Ĵz , each choice of M1
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and M2 samples only a single sector of the total Hilbert space. By contrast, each
coherent spin state includes some contribution from every MJ sector in the Hilbert
space. If anisotropic hyperfine coupling or dipolar coupling were introduced, the
Hamiltonian would no longer commute with Ĵz , and so we expect that the conver-
gence of results by stochastically sampling the eigenstates of Ĵz would be faster.
Nonetheless, we would still expect the results from sampling coherent spin states to
converge at least as quickly.

This method dramatically improves upon a deterministic evaluation of the ensem-
ble average of an observable by reducing the number of wavepackets which must be
propagated. For the model radical pair discussed here, it is over 5000 times faster,
corresponding to one day of CPU time rather than 13 years. However, the compu-
tational time required for each wavepacket propagation still scales as O(Z log Z),
meaning calculations of radical pairs will still become intractable as N increases. In
order to overcome this, we have developed two semiclassical models which describe
radical pair reactions, which will be introduced in Chap.3.

2.6 Spin Correlation Tensors

For the special case of radical pairswith no electron spin coupling (D′ = 0) andwhose
singlet and triplet recombination rates are equal (kS = kT = k), there is another way
to reduce the computational time required to calculate the singlet yield. In this case,
the ensemble average of the singlet probability of can be expressed as a function of
the spin correlation tensors of each radical [30].

Beginning with the definition of the ensemble average from Eq. (2.38),

PS(t) = tr
[
ρ̂(t)P̂S

]
, (2.63)

inserting Eq. (2.41) gives

PS(t) = tr
[
e−i Ĥ t−K̂ t ρ̂(0)e+i Ĥ t−K̂ t P̂S

]
. (2.64)

Since in this example K̂ = k/21̂, we can immediately factor out the recombination
operator

PS(t) = e−kt tr
[
e−i Ĥ t ρ̂(0)e+i Ĥ t P̂S

]
, (2.65)

and we see that the spin dynamics of the radical pair are decoupled from its recom-
bination. Considering the case of a radical pair formed by photoexcitation in the
singlet state, such that ρ(0) = P̂S/Z , and using the invariance of a trace to cyclic
permutation

PS(t) = e−kt

Z
tr

[
P̂Se

+i Ĥ t P̂Se
−i Ĥ t

]
. (2.66)
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Inserting Eq. (2.32) yields

PS(t) = e−kt

Z
tr

[(
1

4
1̂ − Ŝ1 · Ŝ2

)
e+i Ĥ t

(
1

4
1̂ − Ŝ1 · Ŝ2

)
e−i Ĥ t

]

= e−kt

Z
tr

[
1

16
1̂ − 1

2
Ŝ1 · Ŝ2 + Ŝ1 · Ŝ2 e+i Ĥ t Ŝ1 · Ŝ2 e−i Ĥ t

]

= e−kt

Z

(
tr

[
1

2
P̂S − 1

16
1̂

]
+ tr

[
Ŝ1 · Ŝ2 e+i Ĥ t Ŝ1 · Ŝ2 e−i Ĥ t

])
.

(2.67)

The first term of the final line of Eq. (2.67) is simply a constant. The trace of the
unit operator returns the number of states in the total Hilbert space, and the trace of
the singlet projection operator the number of states in the singlet subspace, 4Z and
Z respectively. The second term in Eq. (2.67) may be expanded by noting that in this
case Ĥ = Ĥ1 + Ĥ2, and that Ĥ1 and Ĥ2 commute,

Ŝ1 · Ŝ2 e+i Ĥ t Ŝ1 · Ŝ2 e−i Ĥ t =
∑

α,β

Ŝ1α Ŝ2α e
+i(Ĥ1+Ĥ2)t Ŝ1β Ŝ2β e

−i(Ĥ1+Ĥ2)t

=
∑

α,β

Ŝ1α e
+i Ĥ1t Ŝ1β e

−i Ĥ1t Ŝ2α e
+i Ĥ2t Ŝ2β e

−i Ĥ2t .
(2.68)

Finally, defining the spin correlation tensor

R(i)
αβ(t) = 1

Zi
tr

[
Ŝiα e

+i Ĥi t Ŝiβ e
−i Ĥi t

]
, (2.69)

where Zi is the number of nuclear spin states of radical i , and combining Eqs. (2.67),
(2.68) and (2.69), we obtain

PS(t) = e−kt

⎛

⎝1

4
+

∑

α,β

R(1)
αβ (t)R(2)

αβ (t)

⎞

⎠ . (2.70)

While at first sight this may seem to have complicated the problem, in fact this
formulation of PS(t) greatly reduces the time required for its calculation. The cor-
relation tensors in Eq. (2.70) are independent; they may be calculated separately in
the reduced Hilbert space of each individual radical, which are of size 2Zi . This
will be much faster than a calculation in the total Hilbert space of size 4Z1Z2 = 4Z .
However, Eq. (2.70) only applies to the specific case of a radical pair with uncoupled
electrons and symmetric recombination rates. These circumstances rarely arise in
real systems; instead, this formulation will be useful when performing calculations
of model systems for comparison with the semiclassical approximations of Chap. 3.
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2.7 Relaxation

Radical pairs are formed with electron spins in a correlated, non-equilibrium state.
As they interact with their environment, they relax towards equilibrium, in which
all correlations and coherences are lost and the populations of the singlet and triplet
states are given by theBoltzmanndistribution [10, 12, 31]. Spin relaxation is driven in
general by the time-dependent modulation of magnetic interactions. However, since
thesemodulations are typically induced bymolecularmotions, the exactmechanisms
of relaxationwill vary from system to system, as differentmotionsmodulate different
interactions in each species. These motions make the explicit quantum mechanical
treatment of relaxation extremely complex.

In this section, we will discuss the two relaxation mechanisms which are of par-
ticular relevance to radical pair reactions. However, even simplified models of these
relaxation mechanisms present a computational challenge. The quantum mechanics
of these processes necessitate a description of the radical pairs in Liouville space [32,
33], whose size is (4Z)2. As a result, the time required for calculations that include
relaxation becomes prohibitive even for radical pairs with around ten nuclear spins,
further limiting the applicability of fully quantum mechanical simulations. This pro-
vides a further motivation for developing semiclassical theories of radical pair reac-
tions, which can account for these phenomena in an approximate but very efficient
way, as discussed in Sect. 3.4.

2.7.1 Modulation of Hyperfine Tensors

For radical pairs in solution, the most important relaxation mechanism is usually the
modulation of anisotropic hyperfine tensors by molecular tumbling. The simplest
way to describe this relaxation is to use the phenomenological Bloch equations [34]:

d〈Ŝz〉
dt

= −〈Ŝz〉 − 〈Ŝeq〉
T1

,

d〈Ŝx 〉
dt

= −〈Ŝx 〉
T2

,

d〈Ŝy〉
dt

= −〈Ŝy〉
T2

,

(2.71)

where 〈Ŝq〉 is the expectation value of the q component of the electron spin operator,
and 〈Ŝeq〉 is the equilibrium value of 〈Ŝz〉 when an external field is applied in the
z direction. Since changes in 〈Ŝz〉 alter the total Zeeman interaction energy, only
components of the modulating hyperfine interactions which involve energy transfer
with the surroundings may cause longitudinal relaxation. However, changes in 〈Ŝx 〉
and 〈Ŝy〉 do not change the energy of the system, and so may be caused by different
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components of the hyperfine tensor modulation. As a result, the two relaxation times
T1 and T2 are usually different [12]. While the simple exponential model predicted
by Eqs. (2.71) is rarely justified [10], it is a very straightforward way to model spin
relaxation which provides qualitatively useful and intuitive results, and so remains
quite widely used.

A more complex perturbative approach to describing relaxation was developed
by Redfield [32, 35]. In this theory, the system is perturbed by a time dependent
Hamiltonian, Ĥ1(t), which arises from some randommotion andwhose time average
is zero. The resulting relaxation of the density operator can be shown to be described
by a linear set of coupled differential equations [32]:

dρ̂αα′

dt
= +

∑

ββ′
Rαα′ββ′ ρ̂ββ′ (2.72)

where ρ̂αα′ is an element of the density operator. Rαα′ββ′ is an element of the relaxation
superoperator, which describes the evolution of each element of the density matrix
under the perturbing Hamiltonian. This result only holds if the motion accounted for
by Ĥ1(t) is Marvokian – that is, the correlation time of the motion is sufficiently
short that the evolution of ρ̂(t) depends only on its current value, and not its previ-
ous values [10]. Redfield theory itself is completely general, but in the context of
radical pair reactions it is typically applied by defining Ĥ1(t) to describe how a par-
ticular molecular motion of interest causes fluctuations of the anisotropic hyperfine
interactions [36, 37].

For certain choices of Ĥ1(t), Redfield theory reduces to theBloch equations (2.71)
and provides expressions for the T1 and T2 relaxation times in terms of the spectral
density of the perturbation [12]. In general, however, it leads to an extremely complex
expression for relaxation, in which every element of the density matrix is coupled
to every other element, such that the relaxation cannot be characterised by a single
relaxation time. As a result, in practice it is applicable only to very small systems.

2.7.2 Singlet-Triplet Dephasing

Singlet-triplet dephasing is a relaxation mechanism which results solely in the decay
of coherences between the singlet and triplet states, and does not change the pop-
ulations of those states. It is produced by modulation of the exchange interaction
between the spins in the radical pair. This may be caused by one of the electrons
in the pair hopping to a third site to temporarily form a different radical pair with a
much larger exchange coupling, before hopping back to reform the original radical
pair. Dephasing by this mechanism was originally proposed to explain the observa-
tion that the line splittings in the electron spin resonance (ESR) [38] and stimulated
nuclear polarization (SNP) [39] spectra of some radical pairs were half the value of
the splitting measured in the corresponding free radical [33]. More recently, it has
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been invoked to explain the fact the values of B1/2 observed in the cryptochrome
family are much larger than those predicted by the Weller equation [40].

In Ref. [33], Shushin shows that provided the lifetime of the original radical
pair is much longer than that of the intermediate radical pair, there is no need to
explicitly include the third site in the description of the system. Instead, the singlet-
triplet dephasing may be treated phenomenologically using a Lindblad equation of
the form:

dρ̂

dt
= · · · + kR

∑

j=S,T

(
P̂j ρ̂P̂j − 1

2
P̂†
j P̂j ρ̂ − 1

2
ρ̂P̂†

j P̂j

)
. (2.73)

Using the property of projection operators that P̂†
j P̂j = P̂j , and the fact that P̂S +

P̂T = 1̂, this expression can be simplified:

dρ̂

dt
= · · · + kR

(
P̂Sρ̂P̂S − 1

2
P̂Sρ̂ − 1

2
ρ̂P̂S + P̂Tρ̂P̂T − 1

2
P̂Tρ̂ − 1

2
ρ̂P̂T

)

= · · · + kR

(
P̂Sρ̂P̂S + P̂Tρ̂P̂T − 1

2

(
P̂S + P̂T

)
ρ̂ − 1

2
ρ̂

(
P̂S + P̂T

))

= · · · + kR
(
P̂Sρ̂P̂S + P̂Tρ̂P̂T −

(
P̂S + P̂T

)
ρ̂

(
P̂S + P̂T

))

= · · · − kR
(
P̂Sρ̂P̂T + P̂Tρ̂P̂S

)
.

(2.74)

It is clear from the final line of Eq. (2.74) that this approach will result in the decay
of coherences between the singlet and triplet states at a rate kR, while leaving their
populations unchanged, as required.

2.8 Conclusion

In this chapter, we have introduced the quantum mechanical operators required to
describe radical pair reactions. We have outlined the origin of each term of the spin
Hamiltonian in Eq. (2.1), and considered two possible forms of the recombination
operator which accounts for the reaction of radical pairs. We have then demonstrated
how the ensemble averages of observables may be efficiently calculated in order to
make comparisons between theory and experiment. The method outlined in Sect. 2.5
will be used in Chap. 4 to calculate the triplet yields and survival probabilities of a
series of molecular wires. Using this information, we shall investigate the mecha-
nisms of recombination which operate along the wires. Finally, we discussed how
the computational demands of a fully quantum mechanical simulation motivate the
development of approximate semiclassical theories. In Chap.3 these semiclassical
models will be presented and the results they produce compared to exact results
obtained using the methods outlined here.
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Chapter 3
Semiclassical Approximations

In Chap.2, we outlined the quantum mechanics which describes radical pair reac-
tions, and demonstrated an efficient way to perform fully quantum mechanical sim-
ulations. However, the computational time required for these calculations scales
exponentially with the number of nuclear spins in the radical pair, meaning there is a
limit to the size of radical pair which may practically be treated in this way. Further-
more, including spin relaxation in quantum mechanical simulations is an extremely
complex task. In order to avoid the scaling problem, and to allow a straightforward
phenomenological account of relaxation, we have considered two semiclassicalmod-
els of radical pair reactions, which will be presented in this chapter.1

In 1978, Schulten and Wolynes presented their semiclassical theory of electron
spin dynamics in radical pairs [1]. It was based on the approximation of quantum
mechanical vector operators as classical vectors, and then further assumed that the
nuclear spins were static on the time-scale of the electron spin motion. In certain
limiting cases this theory gives analytical results; even in the most general case
it produces a set of 16 coupled differential equations which may be easily solved
numerically. It is computationally a huge improvement over the exponential scalingof
quantum mechanics, and for certain radical pairs like pyrene-N,N,-dimethylalanine
produces very accurate results [1]. However, as we will demonstrate in Sect. 3.3, it
does not always agree well with exact quantum mechanical results, particularly at
low applied magnetic field strengths.

Inspired by this approach, we have recently developed an improved semiclassical
theory which produces accurate results for a wider range of radical pairs [2, 3]. In
this theory, the electron and nuclear spins are still treated as classical vectors, but the
assumption that the motion of the nuclear spins can be neglected is removed – the
nuclear spins are allowed to precess around the electron spin. While this does make

1Parts of this chapter have been reproduced with permission from Lewis, A. M., Manolopoulos, D.
E. and Hore, P. J. Journal of Chemical Physics 141, 044111 (2014), https://aip.scitation.org/doi/
abs/10.1063/1.4890659.

© Springer Nature Switzerland AG 2018
A. Lewis, Spin Dynamics in Radical Pairs, Springer Theses,
https://doi.org/10.1007/978-3-030-00686-0_3
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the improved semiclassical method computationally more expensive than Schulten
andWolynes’ theory, theCPU time required for these simulations scales only linearly
with the number of nuclear spins in the system, avoiding the exponential scaling of
quantummechanical calculations.Wewill demonstrate in Sect. 3.3 that this approach
produces more accurate results than Schulten and Wolynes’ method.

In this chapter we will outline the assumptions which lead to each semiclassical
theory. While Schulten–Wolynes (SW) theory was developed first, for reasons of
clarity wewill present the improved semiclassical (SC) theory first, and then describe
the additional approximations which lead to SW theory. We will then compare the
results produced by the two semiclassical methods to exact quantum mechanical
results for a number of different model problems. Finally, we will briefly discuss
how relaxation of the electron spins can be accounted for the in the SC theory.

3.1 The Semiclassical Theory

The semiclassical theory is based on the approximation that the electron and nuclear
spins may be treated as classical vectors. These classical vectors evolve under a
set of coupled equations of motion which may be solved numerically; the number
of coupled equations will increase linearly with the number of nuclear spins. The
equations of motionmay be obtained by deriving the Heisenberg equations of motion
for the quantum mechanical electron and nuclear spin operators, and then simply
replacing all of the vector operators with classical vectors. For simplicity, throughout
this section we will neglect both exchange and dipolar electron spin coupling, setting
D′ = 0, and assume that all hyperfine interactions are isotropic, A′ = aE, working
with a Hamiltonian of the form

Ĥ = ω1 · Ŝ1 + ω2 · Ŝ2 +
N1∑

k=1

a1k Î1k · Ŝ1 +
N2∑

k=1

a2k Î2k · Ŝ2. (3.1)

The additional terms in the equations of motion which arise from using the full
Hamiltonian in Eq. (2.1) are given in AppendixC; their inclusion does not change
any of the following discussion.

The Heisenberg equation of motion for an operator Â(t) defined by Eq. (2.42) is

d

dt
Â(t) = d

dt

(
e+i Ĥ t−K̂ t Â e−i Ĥ t−K̂ t

)

=
[(

+i Ĥ − K̂
)
Â(t) + Â(t)

(
−i Ĥ − K̂

)]

= +i
[
Ĥ , Â(t)

]
−

{
K̂ , Â(t)

}
.

(3.2)

There are a total of 16 operators in the complete set of variables which describe
the two electron spins of the radical pair: Ŝ1, Ŝ2, T̂12 = Ŝ1 ⊗ Ŝ2 and 1̂. Firstly, we
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must derive the Heisenberg equation of motion for each of these operators. Then,
we replace the vector operators with classical vectors, and close the equations of
motion by replacing the operator Ŝi × Îik wherever it appears with the cross product
of the classical vectors Si and Iik . Doing this, we find a set of 3N + 16 coupled
equations [3]:

d
dt Iik = aikSi × Iik − k̄ Iik + 4�k tr[T12]Iik, (3.3)

d
dt S1 = ω̄1 × S1 − k̄ S1 + �k S2, (3.4)
d
dt S2 = ω̄2 × S2 − k̄ S2 + �k S1, (3.5)

d
dtT12 = ω̄1 × T12 − T12 × ω̄2 − k̄T12 + �k T�

12 + �k P̄S E, (3.6)

and
d

dt
1̄ = −k̄ 1̄ + 4�k tr[T12], (3.7)

where 1̄ is the classical variable corresponding to the unit operator, and

k̄ = 1

4
(kS + 3kT), (3.8)

�k = 1

4
(kS − kT), (3.9)

ω̄i = ωi +
Ni∑

k=1

aik Iik . (3.10)

In Eqs. (3.3) and (3.7), tr[T12] denotes the trace of the tensor T12, and is the classical
variable corresponding to the operator Ŝ1 · Ŝ2. In Eq. (3.6), ω̄1 × T12 denotes the
vector product of ω̄1 with each column of T12, T12 × ω̄2 denotes the vector product
of each row of T12 with ω̄2, T�

12 is the transpose of T12, E is a (3 × 3) unit matrix,
and

P̄S = 1

4
1̄ − tr[T12] (3.11)

is the classical variable corresponding to the singlet projection operator P̂S in
Eq. (2.32). Similarly, the classical variable corresponding to the triplet projection
operator is

P̄T = 3

4
1̄ + tr[T12]. (3.12)

An alternative way of expressing the equations of motion in Eqs. (3.3)–(3.7) using
tensor notation and the Einstein summation convention is given in AppendixC.

The initial conditions of these classical variables are specified as follows. We
replace the trace over all of the spin states of each electron and nuclear spin with the
integral over all possible orientations of the corresponding classical vector,
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trSi → 2Si + 1

4π

∫
d�Si ,

tr Iik → 2Iik + 1

4π

∫
d�Iik .

(3.13)

The two-electron classical variables T12 are simply the outer product of the classical
electron spin vectors S1 ⊗ S2 at t = 0, although this will not in general be true at later
times. 1̄ is equal to unity at t = 0, but in generalwill changewith time to account for the
recombination of the radical pair. Therefore, the semiclassical expression analogous
to the quantummechanical Eq. (2.43) for the ensemble average of an observable A(t)
of a radical pair is

A(t) �
2∏

i=1

2

4π

∫
d�Si

Ni∏

k=1

2Iik + 1

4π

∫
d�Iik ρ̄(0) Ā(t), (3.14)

where ρ̄(0) and Ā(t) are the classical variables corresponding to the operators ρ̂(0)
and Â(t) respectively. Similarly, the semiclassical expression analogous to Eq. (2.69)
for the spin correlation tensor of a radical in a singlet-born pair is

R(i)
αβ(t) � 2

4π

∫
d�Si

Ni∏

k=1

1

4π

∫
d�Iik Siα(0)Siβ(t). (3.15)

Note that there are no factors of (2Iik + 1) in Eq. (3.15) because they cancel with the
prefactor 1/Zi in Eq. (2.69).

However, an examination of Eqs. (3.3)–(3.7) reveals a problemwith the equations
of motion for the classical variables, which can be clearly seen if we consider the
scenario where �k = 0 and k̄ �= 0. As discussed in Sect. 2.6, under these conditions
the recombination is separable from the spin dynamics of the radical pair. That is, in
the exact QM formulation we can calculate the spin dynamics of the radical pair in
the absence of any recombination and subsequently multiply the resulting curves by
an exponential decay to account for the recombination of the radical pair to obtain
results which are identical to those calculated without factoring out recombination.
The equations of motion in Eqs. (3.3)–(3.7) are not consistent with this. Furthermore,
in Eq. (3.3), each nuclear spin vector Iik precesses around the electron spin vector Si ,
which has length |Si |. However, Eqs. (3.4) and (3.5) show that the magnitudes of the
electron spin vectors will decrease with time, slowing the precession of the nuclear
spin vectors. This is unphysical – there is no reason why the nuclear spin precession
should slow down before the radical pair recombines, at which point any precession
would cease entirely.

Clearly some correction to the equations ofmotion is required. Beforewe consider
what that correction might be, though, it is helpful to consider another special case.
We can show numerically that our semiclassical theory becomes exact in the absence
of any nuclear spins, such that ω̄i = ωi is constant. Figures3.1 and 3.2 show the
singlet and triplet probability and the xy component of the spin correlation tensors
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Fig. 3.1 Comparison of the
quantum mechanical (QM)
and semiclassical (SC)
singlet and triplet
probabilities of a radical pair
with ω̄1 = ω1 = (0, 0, 1),
ω̄2 = ω2 =
−(

√
1/2,

√
1/3,

√
1/5),

kS = √
1/7, and

kT = √
1/11. Adapted from

Ref. [3]
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of each radical respectively in a radical pair with no nuclear spins, asymmetric
recombination rates and ω1 �= ω2. The spin correlation tensors are functions of
the single electron spin variables, while the singlet and triplet probabilities depend
on the two-electron variables and 1̄; the two sets of variables are independent of
one another when ω̄1 and ω̄2 are constant and there is no electron spin coupling.
Therefore, Fig. 3.1 demonstrates that Eqs. (3.6) and (3.7) are exact and Fig. 3.2 shows
that Eqs. (3.4) and (3.5) are exact in this case, so none of these equations should be
modified when we come to correct our semiclassical theory.2

In addition, Eq. (3.7) satisfies the requirement that the sumof the singlet and triplet
yield equals one precisely. This is straightforward to prove quantum mechanically
[3]. The singlet and triplet yields are defined as

�S = kS

∫ ∞

0
PS(t) dt (3.16)

2These equations remain exact when electron spin coupling is included, as shown numerically in
AppendixC.
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Fig. 3.2 Comparison of the
quantum mechanical (QM)
and semiclassical (SC) xy
components of the spin
correlation tensors of the
electrons in radicals 1 and 2
of a radical pair with
ω̄1 = ω1 = (0, 0, 1),
ω̄2 = ω2 =
−(

√
1/2,

√
1/3,

√
1/5),

kS = √
1/7, and

kT = √
1/11. Adapted from

Ref. [3]
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and
�T = kT

∫ ∞

0
PT(t) dt (3.17)

respectively. Inserting the definition of the ensemble average of an observable from
Eq. (2.43), we can show that [3]

�S + �T = tr

{
ρ̂(0)

∫ ∞

0

(
kS P̂S(t) + kT P̂T(t)

)
dt

}

= tr

{
ρ̂(0)

∫ ∞

0
2K̂ (t) dt

}

= tr

{
ρ̂(0)

∫ ∞

0
e+i Ĥ t−K̂ t 2K̂ e−i Ĥ t−K̂ t dt

}

= tr

{
ρ̂(0)

∫ ∞

0

d

dt

(
−e+i Ĥ t−K̂ t 1̂ e−i Ĥ t−K̂ t

)
dt

}

= tr

{
ρ̂(0)

∫ ∞

0

d

dt

(
−1̂(t)

)
dt

}

= tr
{
ρ̂(0)

[
−e+i Ĥ t−K̂ t e−i Ĥ t−K̂ t

]∞
0

}

= tr
{
ρ̂(0)

} = 1.

(3.18)
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We can use a similar argument to show that our semiclassical theory also satisfies this
condition. Using the semiclassical definitions of the singlet and triplet probabilities
in Eqs. (3.11) and (3.12), we can show that by analogy to the quantum mechanics
above

kS P̄S(t) + kT P̄T(t) = 1

4
(kS + 3kT) 1̄(t) + (kT − kS) tr[T12(t)]

= k̄1̄(t) − 4�k tr[T12(t)]
= − d

dt
1̄(t),

(3.19)

where we have used the equation of motion of 1̄ from Eq. (3.7). Then, using the
semiclassical definition of an ensemble average in Eq. (3.14), the sum of the singlet
and triplet yield is

�S + �T =
2∏

i=1

2

4π

∫
d�Si

Ni∏

k=1

2Iik + 1

4π

∫
d�Iik ρ̄(0)

∫ ∞

0

(
− d

dt
1̄(t)

)
dt

=
2∏

i=1

2

4π

∫
d�Si

Ni∏

k=1

2Iik + 1

4π

∫
d�Iik ρ̄(0),

(3.20)
since when the radical pair recombines, k̄ > 0 and 1̄(∞) = 0. ρ̄(0) can always be
written as normalised linear combination of the classical variables corresponding to
the projection operators,

P̄S = 1

4
1̄ − tr[T12],

P̄T+ = 1

4
1̄ + 1

2
(S1z + S2z) + S1z S2z,

P̄T0 = 1

4
1̄ + tr[T12] − 2S1z S2z,

P̄T− = 1

4
1̄ − 1

2
(S1z + S2z) + S1z S2z,

(3.21)

and so can be expressed as

ρ̄(0) = 1

4Z
1̄(0) + f (S1(0),S2(0),T12(0)). (3.22)

Since f (S1(0),S2(0),T12(0)) is a linear function of the one- and two-electron classi-
cal variables, it vanishes when integrated over all possible orientations of the electron
spin vectors. Therefore,
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�S + �T =
2∏

i=1

2

4π

∫
d�Si

Ni∏

k=1

2Iik + 1

4π

∫
d�Iik

(
1

4Z
1̄(0) + f (S1,S2,T12)

)
.

= 1

4Z

2∏

i=1

2

4π

∫
d�Si

Ni∏

k=1

2Iik + 1

4π

∫
d�Iik = 1,

(3.23)
and our semiclassical expressions in Eqs. (3.7) and (3.14) are consistent with this
exact sum rule.

Returning to the inconsistency in the semiclassical theory highlighted earlier, it
is now clear that the most straightforward way to remove the unphysical behaviour
will be to modify the equations of motion of the nuclear spins, Eq. (3.3). One way
these equations can be changed to recover a physically reasonable model is to replace
them with

d

dt
Iik = aik

√
Si (Si + 1)

|Si | Si × Iik . (3.24)

Now the nuclear spins will always precess around an electron spin vector of length√
Si (Si + 1), and the magnitude of the nuclear spin vector no longer changes, so the

electron spin precessionwill not slow down either.While this correction is admittedly
ad hoc, it is both physically motivated and necessary to recover the correct behaviour
in the limiting case of symmetric recombination.

In this section we have outlined our semiclassical theory of the spin dynamics of
radical pairs. We shall now show how it is related to the earlier semiclassical theory
of Schulten and Wolynes, before comparing the performance of both semiclassical
methods to fully quantum mechanical simulations in Sect. 3.3.

3.2 Schulten–Wolynes Theory

In 1978, Schulten and Wolynes introduced their theory of the spin dynamics of
radical pair reactions [1]. It is similar to our theory, outlined in Sect. 3.1, in that it
makes the semiclassical approximation of replacing vector operators with classical
vectors. However, Schulten and Wolynes made some additional assumptions which
further simplify the problem, and in the case of symmetric recombination allow the
derivation of analytical expressions for the ensemble averages of some observables.

Firstly, Schulten and Wolynes assumed that there are sufficiently many nuclear
spins present that the hyperfine-weighted resultant of all of the nuclear spins on each
radical

Ii =
Ni∑

k=1

aikIik, (3.25)

and hence also
ω̄i = ωi + Ii , (3.26)
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can be considered constant. This approximation is reasonable at short times, since
the electron spin will precess much more quickly than Ii , and becomes exact in the
limit that Ni → ∞ [4, 5]. It is equivalent to replacing Eq. (3.24), the equation of
motion of the nuclear spins in our semiclassical theory, with

d

dt
Iik = 0. (3.27)

However, this approximation is not consistent with Newton’s third law – the torque
exerted on the electron spin by the nuclear spins is not matched by an equal and
opposite torque on the nuclear spins by the electron spin.

Secondly, Schulten andWolynes treated this resultant vector Ii as a random flight
polymer, and assumed a distribution of end-to-end distances Ii = |Ii | given by [1, 6]

g(Ii ) =
(

τ 2
i

4π

)3/2

e−I 2i τ 2
i /4, (3.28)

where

τ−2
i = 1

6

Ni∑

k=1

a2ik Iik(Iik + 1) (3.29)

This assumption is valid in the same limit as the first, that of a large number of nuclear
spins on radical i , due to the central limit theorem. These additional assumptions lead
to new expressions for the ensemble average of an observable of a radical pair,

A(t) �
2∏

i=1

2

4π

∫
d�Si

∫
dI1 g(I1)

∫
dI2 g(I2)ρ̄(0) Ā(I1, I2, t), (3.30)

and the spin correlation tensor of a singlet-born radical pair,

R(i)
αβ(t) � 2

4π

∫
d�Si

∫
dIi g(Ii )Siα(0)Siβ(Ii , t). (3.31)

The classical variables Ā(I1, I2, t) and Siβ(Ii , t) in Eqs. (3.30) and (3.31) are obtained
from the equations of motion in Eqs. (3.4)–(3.7), with ω̄i related to Ii by Eq. (3.26).

When the recombination rates of the radical pair are symmetric and can be factored
out of the spin dynamics, the equations of motion of the electron spin vectors can be
solved analytically [2]:

Si (t) = 1 − cos ω̄i t

ω̄2
i

ω̄i (ω̄i · Si (0)) + Si (0) cos ω̄i t + sin ω̄i t

ω̄i
ω̄i × Si (0), (3.32)

since I1 and I2 and therefore ω̄1 and ω̄2 are independent of time. Here ω̄i = |ω̄i |.
Using this result, wemay use SW theory to find analytical expressions for the ensem-
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ble average of any observable which can be written as a function of the electron spin
variables. For example, the singlet probability of a singlet-born radical pair may be
written as

PS(t) �
(

2

4π

)2 ∫
d�S1

∫
d�S2

∫
dω̄1 g(ω̄1)

∫
dω̄2 g(ω̄2)P̄S(0)P̄S(ω̄1, ω̄2, t),

(3.33)
expressed now in terms of ω̄i rather than Ii . Here

g(ω̄i ) =
(

τ 2
i

4π

)3/2

e−(ω̄2
i +ω2

i −2ω̄iωi cos θi )τ
2
i /4, (3.34)

where θi is the polar angle of the resultant vector ω̄i relative to a static applied field
ω1 = ω2 = ω of magnitude ω, and

P̄S(t) = 1

4
1̄ − tr[T12(t)] = 1

4
1̄ − S1(t) · S2(t). (3.35)

Substituting Eq. (3.32) into Eq. (3.33) and integrating over the initial orientations of
the electron spin vectors gives

PS(t) =
∫

dω̄1

∫
dω̄2 g(ω̄1)g(ω̄2)

1

16

[
1 + cos ω̄1t + cos ω̄2t + cos ω̄1t cos ω̄2t +

2

ω̄1ω̄2
(ω̄1 · ω̄2) sin ω̄1t sin ω̄2t + 1

ω̄2
1ω̄

2
2

(ω̄1 · ω̄2)
2 (1 − cos ω̄1t) (1 − cos ω̄2t)

]
.

(3.36)
Finally, Rodgers has shown that the integrals over ω̄1 and ω̄2 may also be solved ana-
lytically [7]. This leads to an extremely lengthy expression, included in AppendixD.
A more manageable expression is obtained in the limit of no nuclear spins on one of
the radicals, such that ω̄2 = ω2 = ω and g(ω̄2) = 1. In that case [7],

PS(t) =
(
1 + e−t2/τ21

)

2τ21ω2

(
τ21ω2 + 2 cosωt − 2

)
+ i

√
πe−τ21 ω2/4

2τ31ω3
(cosωt − 1) f (t, τ1, ω),

f (t, τ1,ω) =
[
erf

(
t

τ1
− iτ1ω

2

)
− erf

(
t

τ1
+ iτ1ω

2

)
+ 2erf

(
iτ1ω

2

)]
,

(3.37)

where erf(x) is the error function,

erf(x) = 2√
π

∫ x

0
e−y2dy. (3.38)

Similar closed form expressions may be obtained for the components of the spin
correlation tensor [2, 7], which are also listed in AppendixD.
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When the recombination rates of the radical pair are not equal, it is no longer
possible to find analytical expressions for the ensemble averages of observables
within SW theory. Nevertheless, it is inexpensive to use Eq. (3.30) to find ensemble
averages numerically, as it only requires the solution of at most the 16 coupled
differential equations in Eqs. (3.4)–(3.7) since the nuclear spins no longer evolve in
time. The singlet yield of a radical pair is even more straightforward to evaluate.
Using the quantum mechanical definition of PS(t) from Eq. (2.38), and introducing
the Liouvillian superoperator

− ˆ̂L ρ̂ = −i[Ĥ , ρ̂] − {K̂ , ρ̂}, (3.39)

where [· · · ] indicates a commutator and {· · · } an anticommutator, the singlet yield
may be written as

�S = kS

∫ ∞

0
tr[P̂Se− ˆ̂Lt ρ̂(0)] dt. (3.40)

The integral over time can be easily evaluated:

�S = kS tr[P̂S ˆ̂L−1ρ̂(0)]. (3.41)

Then, applying Schulten and Wolynes’ approximations, the quantum mechanical
trace over the nuclear spin states can be replaced by integrals over the resultant
vectors I1 and I2, leaving

�S =
∫

dI1 g(I1)
∫

dI2 g(I2) kS trS[P̂S ˆ̂L(I1, I2)−1ρ̂(0)], (3.42)

where trS indicates a trace over the four dimensional Hilbert space of the two electron
spins. This expression allows the straightforward and efficient calculation of the
singlet yield of a radical pair, and is used in Chap. 6 to analyse the magnetic field
effect on the electroluminescence of organic light emitting diodes.

3.3 Comparison of Methods

3.3.1 A Simple Radical Pair

In order to compare the three methods we have now described it is helpful to apply
them to a range of model systems. The first example is taken from Ref. [2], where the
authors used a simple radical pair with no recombination or electron spin coupling
and nuclear spins on only one of the two radicals to establish the accuracy of the two
semiclassical methods against exact quantummechanical results. Every nuclear spin
had the same quantum number, I = 1/2, and a hyperfine coupling constant taken from
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Table 3.1 The hyperfine coupling constants used in the model radical pair in Ref. [2]

k a1k/|γe| (mT) k a1k/|γe| (mT)

1 −0.999985 9 0.358593

2 −0.736925 10 0.869386

3 0.51121 11 −0.232996

4 −0.0826998 12 0.0388327

5 0.0655341 13 0.661931

6 −0.562082 14 −0.930856

7 −0.905911 15 −0.893077

8 0.357729 16 0.0594001

a uniform distribution between −1 ≤ a1k/|γe| ≤ 1mT. These constants are listed in
Table3.1. Three components of the spin correlation tensor of a radical with N1 = 1,
4, and 16 of these nuclear spins in a magnetic field of strength B = 0.5mT applied
along the z axis were calculated quantum mechanically (QM), and using both the
semiclassical (SC) theory and Shulten-Wolynes (SW) theory. The results are shown
in Fig. 3.3, along with the singlet probability of the corresponding radical pair when
N2 = 0.

When N1 = 1, coherent oscillations are observed in the QM calculation of the
components of the spin correlation tensor and the singlet probability, which unsur-
prisingly are not captured by either semiclassical approach. However, the SC theory
does track the average of these oscillations reasonably closely. We can hardly expect
SW theory to be accurate in this case, since it is derived using approximations that
only become exact when N1 → ∞. The coherent oscillations are damped as the
number of nuclear spins increases, and by the time N1 = 16 only the semiclassical
precession remains. This is reproduced quantitatively by the SC theory; however,
SW theory is only accurate at short times t < 2τ1, before significant precession of
the nuclear spins has occurred [2].

The SCmethod is also far less computationally expensive than the full QM calcu-
lation by the time N1 = 16, since the time required increases only linearly with the
number of nuclear spins, rather than exponentially. The relative CPU time taken for
the SC and QM calculations as N1 increases is shown in Fig. 3.4.3 For small num-
bers of nuclear spins, N1 < 10, the SC method is less efficient due to the number of
samples required to converge the integrals in Eq. (3.14). However, as N1 increases
the SC calculation becomes both quantitatively accurate and more efficient than the
QM calculation. The SW result, of course, requires no computation at all, as we have
found analytical expressions for the singlet probability in Eq. (3.37) and the compo-
nents of the spin correlation tensor in AppendixD. Therefore, there exists a range

3It should be noted that these QM calculations were performed deterministically, rather than with
the more efficient stochastic method outlined in Sect. 2.5. While using the latter method would
probably mean that the cross-over in efficiency occurred for a slightly larger value of N1, the SC
must necessarily become more efficient at some point.
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Fig. 3.3 The xx , xy, and zz components of the spin correlation tensor of a radical with N1 = 1, 4,
and 16 nuclear spins, and the singlet probability of the corresponding radical pair with N2 = 0, no
recombination, and no electron spin coupling. They hyperfine coupling constants for radical 1 are
given in Table3.1. Adapted with permission from Ref. [2]
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Fig. 3.4 The relative CPU
time taken by the QM and
SC methods as the number of
nuclear spins in radical 1
increases. Adapted with
permission from Ref. [2]
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of applicability for each method: when N1 is small, the QM calculation is possible;
when N1 is very large SW theory is reliable and in some cases analytical; and for
intermediate N1 the SC theory is far more efficient than a QM calculation and more
accurate than SW theory.

3.3.2 Asymmetric Recombination Rates

For the model radical pair in Sect. 3.3.1, the modified equation of motion for the
nuclear spins, Eq. (3.24), is identical to that derived from the Heisenberg equation
of motion, Eq. (3.3), since recombination has been neglected. In order to assess the
accuracy of our modified equation of motion, we need to simulate a slightly different
model radical pair, with asymmetric singlet and triplet recombination rates. For this
purpose, we will consider a radical pair with N1 = 12 and N2 = 0, with I = 1/2 for
each nuclear spin and hyperfine coupling constants taken from Table3.1, again with
no electron spin coupling.

The QM, SC, and SW singlet probability of this radical pair are shown in Fig. 3.5
for three different values of recombination asymmetry �k = 1/4(kS − kT), and at
two different applied magnetic field strengths, B = 0.5 and 4 mT. In each case, the
average recombination rate k̄/|γe| = 1/4(kS + 3kT)/|γe| = 0.1 mT, as we move from
symmetric rates, �k = 0, through an intermediate case, �k = k̄/2, to fully asym-
metric recombination, �k = k̄. In every scenario, there is quantitative agreement
between the SC and QM results; certainly the SC theory seems no less accurate
when �k �= 0. By contrast, the SW results show a pronounced Zeeman oscillation
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Fig. 3.5 The quantum mechanical, semiclassical, and Schulten–Wolynes singlet probabilities for
a model radical pair with N1 = 12 and hyperfine coupling constants taken from Table3.1, for three
values of �k and two different magnetic field strengths. k̄/|γe| = 0.1 mT in every case. Data is
taken from Ref. [3]

with period 2π/|γe|B μs, which do not appear in either the SC or QM simulations.
This is also apparent in the bottom right panel of Fig. 3.3. It appears that including
the nuclear spin dynamics in the SC theory damps these oscillations and so produces
results which are much closer to the correct QM singlet probability.

It is also instructive to compare the exact singlet yield of the radical pair to that
calculated semiclassically over a range of magnetic field strengths, as in Fig. 3.6. In
the case of both symmetric and asymmetric recombination, the SC theory performs
much better in the low field region than SW theory, which significantly overestimates
the singlet yield in the absence of a magnetic field. In the case of symmetric recom-
bination, both semiclassical theories show excellent agreement with the quantum
mechanical results at high fields. As can be seen from Fig. 3.5, the frequency of the
spurious Zeeman oscillation in the SW results increases with B, and so the absence
of nuclear spin dynamics to damp these oscillations becomes less important at high
fields.

Strangely, when the recombination rates are not equal the SC method shows
slightly poorer agreement with the exact results than SW theory in the high field
region. However, this discrepancy is much smaller than the error in the SW results at
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Fig. 3.6 The quantum
mechanical, semiclassical,
and Schulten–Wolynes
singlet yield of the same
radical pair as Fig. 3.5 for
two values of �k. When
�k = k̄, the singlet yield
equals one for all B. Data is
taken from Ref. [3]
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low fields. Furthermore, it should be re-emphasised that we expect the accuracy of
the SC theory to improve as the number of nuclear spins increases. Overall, it appears
that the modification to the equations of motion for the nuclear spins required when
the recombination rates are not symmetric does not significantly reduce the accuracy
of the SC theory, and it remains the best method to use for intermediate numbers of
nuclear spins.

3.3.3 Exchange Coupling

Finally, Fig. 3.7 compares the quantummechanical results with those found using the
semiclassical theory and Schulten–Wolynes theory for themodel problem introduced
inSect. 2.5,which includes exchange coupling between the twoelectron spins.Unlike
the previous models, here neither semiclassical method is quantitatively accurate. Of
the two, however, the SC theory is qualitatively better than SW theory, correctly
predicting the position of the minimum in the singlet yield, and in much closer
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Fig. 3.7 The relative singlet
yield of the model radical
pair described in Sect. 2.5 as
a function of magnetic field
strength B, calculated using
the stochastic quantum
mechanical approach (QM)
introduced in Sect. 2.5, the
semiclassical method (SC)
presented in Sect. 3.1, and a
variation of
Schulten–Wolynes theory
(SW) outlined in Sect. 3.2.
Data is taken from Ref. [8]
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agreement with the QM results across the entire range of magnetic field strengths.
Clearly in this case, where the hyperfine interactions, exchange coupling and the
applied magnetic field are all of a similar magnitude, semiclassical models are not
sufficient to accurately capture the fine details of the spin dynamics. The quantum
mechanical method is required for applications where all of these interactions are
important, such as the one described in Chap.4.

3.4 Relaxation

At the end of Chap.2 we attempted to introduce relaxation into our quantummechan-
ical simulations. There we found that the processes which give rise to relaxation are
extremely difficult to describe accurately, and even simple phenomenological mod-
els of relaxation greatly increase the computational time required by simulations.
While a detailed account of relaxation remains difficult in the semiclassical theory,
a phenomenological one analogous to the Bloch equations introduced in Sect. 2.7.1
is straightforward to include and does not increase the numerical complexity of the
problem.

The semiclassical equivalent to the Bloch equations simply consists of adding the
following terms to Eqs. (3.4)–(3.6):

d

dt
S1 = · · · − R(1)S1, (3.43)
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d

dt
S2 = · · · − R(2)S2, (3.44)

d

dt
T12 = · · · − R(1)T12 − T12R(2). (3.45)

Here · · · indicates the evolution and recombination terms also present in the equations
of motion, and

R(i) =
⎛

⎝
1/T (i)

2 0 0
0 1/T (i)

2 0
0 0 1/T (i)

1

⎞

⎠ . (3.46)

The electron spins are assumed to relax independently of one another, with the x and
y components of electron spin i relaxing at a rate 1/T (i)

2 and the z component at a rate
1/T (i)

1 , as is conventional. We have assumed that the magnetic field is sufficiently
small that there is no polarisation of the equilibrium distribution of either electron
spin; that is, we assume that 〈Ŝeq〉 = 0. This assumption is reasonable for every
application of the semiclassical theory presented in this thesis.

These equations produce physically reasonable results: the two-electron spin vari-
ables relax at the sumof the rates of the corresponding single spin variables; relaxation
reduces the magnitude of tr[T12] and so, when the radical pairs do not recombine,
causes P̄S and P̄T to tend to their equilibrium values of 1/4 and 3/4 respectively; and
the equation of motion of 1̄ is unchanged when relaxation is included. The equations
can be further simplified in the case of very small applied magnetic fields, where we
may make the approximation that T (i)

1 � T (i)
2 . The relaxation of the nuclear spins

has been neglected on the grounds of their far smaller gyromagnetic ratios.
While this method of treating relaxation is admittedly crude, the fact that it is

possible with essentially no extra computational cost nonetheless represents a con-
siderable advantage of the semiclassical theory over quantum mechanical calcula-
tions. Furthermore, we will demonstrate in Sect. 5.2 that this approach is sufficient
to reproduce the experimentally measured Earth-strength magnetic field effect on
the survival probability of a carotenoid-porphyrin-fullerene triad in solution. More
explicit approaches to accounting for electron spin relaxation in the semiclassical
theory have been considered recently and show some promise [9], but do not yet
represent a significant improvement upon the simple theory outlined here.

3.5 Conclusion

In this chapter, we have introduced the semiclassical theory as a practical solution
to the exponential scaling problem of quantum mechanical calculations. We have
demonstrated numerically that the semiclassical theory is exact in the limit of con-
stant magnetic fields, and is therefore also correct when N → ∞ or B → ∞. We
have also shown how our theory reduces to Schulten and Wolynes’ theory with two
additional approximations, and how SW theory may be formulated for a radical
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pair with asymmetric recombination rates. We compared the performance of the two
semiclassical methods to exact quantum mechanical simulations for three different
model problems, showing the SC theory to be an improvement on SW theory in
all cases, and in quantitative agreement with QM results in the absence of electron
spin coupling. Finally, we discussed how relaxation of the electron spins could be
accounted for in the SC theory.

We are now in a position to apply these three methods to a range of different
problems in the next three chapters. In Chap.4, we will use the efficient quantum
mechanical method described in Sect. 2.5 to analyse the the mechanisms involved
in charge recombination along molecular wires. In Chap. 5 the semiclassical theory
introduced in Sect. 3.1 is shown to reproduce experimentalmeasurements of anEarth-
strength magnetic field effect, and is used to assess the suitability of a cryptochrome-
based radical pair to act as a biological compass. Finally, in Chap.6 we shall identify
the physical interactions which govern the magnetoelectroluminscence of organic
light emitting diodes using the formulation of SW theory presented at the end of
Sect. 3.2.
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Chapter 4
Molecular Wires

In recent years, molecular wires have been the subject of significant interest and
investigation [1, 2]. A common class of molecular wires are those with a D–B–A
structure – an electron donor separated from an electron acceptor by a molecular
“bridge”, typically an oligomer, which allows precise control over the separation
between the electron donor and acceptor [3]. Molecular wires undergo charge sepa-
ration following photoexcitation to form a radical pair, D•+–B–A•−, mimicking the
efficient long range charge transport found in the photosynthetic reaction centre [4,
5]. There are a number of possible applications for molecular wires; in particular,
efficient ‘wire-like’ charge separation to form a long-lived radical pair is a highly
desirable feature in chemical solar energy conversion systems [3, 6]. These systems
depend on the rapid transport of electrons from the chromophores where light is
absorbed to a reaction centre, where they must survive for long enough to catalyse a
reaction, such as the reduction of CO2 [6].

In order to design molecular wires which are suitable for this purpose, an under-
standing of the mechanisms by which charge recombination along them occurs is
crucial [7]. However, this is a complex problem: the distance dependence of the rate
of electron transfer has been shown to vary with a number of factors, including the
geometry of the molecular wire as well as its energetics [1, 8, 9]. Usually, the rate
of electron transfer is found to decrease exponentially as the distance between the
donor and acceptor sites increases [10, 11], although the characteristic length of this
dependence can vary significantly [12, 13]. However, there are a number of exam-
ples where this exponential dependence on distance is not observed, with the rate
of electron transfer depending only very weakly on the separation of the donor and
acceptor [14, 15].
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In this chapter, we shall begin by examining the mechanisms which give rise to
these two different types of behaviour, superexchange and incoherent hopping.1 We
will then turn our attention to a particular set of molecular wires, PTZ•+–Phn–PDI•−
with n = 2 − 5, whose triplet recombination yields and “radical pair yields” – the
survival probability of the radical pair 50 ns after the initial photoexcitation laser
pulse – have been measured at a range of different applied magnetic field strengths
[16]. By fitting quantummechanical calculations of the triplet and radical pair yields
of these radical pairs to the experimental measurements, it is possible to extract
their singlet and triplet recombination rate constants. In order to do this, we must
determine the parameters which define the spin Hamiltonian of these radical pairs
and consider the experimental evidence which constrains their recombination rate
constants. Finally we shall use the rate constants obtained from these simulations
to shed light on the mechanisms of radical pair recombination which operate along
these molecular wires.

4.1 Mechanisms of Charge Recombination

There are two limitingmechanisms of charge recombination which operate inmolec-
ular wires: the superexchange mechanism and the incoherent hopping mechanism
[8, 17]. In the superexchange mechanism, recombination occurs by an electron tun-
nelling from the A•− radical to the D•+ radical in a single step via the superexchange
coupling between the electron and hole, which is mediated by orbitals on the bridge
[18]. The magnitude of this coupling, and therefore the rate of electron transfer
by this mechanism, is expected to decrease exponentially with increasing donor-
acceptor separation [19, 20]. By contrast, the incoherent hopping mechanism is a
two step process, in which an electron hops from the bridge to the D•+ radical, fol-
lowed by a second electron hopping from the A•− radical onto the bridge. The rate
of charge transfer by this mechanism is governed by the energy gap between the ini-
tial charge separated state of the molecular wire, D•+–B–A•−, and the intermediate
formed by the first electron hopping step, D–B•+–A•−. Provided that this energy gap
is small, the rate of electron transfer is approximately independent of the radical pair
separation [9, 21].

The charge separated state of a molecular wire is formed initially in the singlet
spin state, S[D•+–B–A•−], but then undergoes intersystem crossing to form the triplet
state, as shown in Fig. 1.2 [22]. In general, charge recombination along a molecular
wire in the singlet state will occur at a different rate, and potentially by a differ-
ent mechanism, than along a wire in the triplet state. Therefore, the intersystem
crossing between these spin states can play a significant role in the overall rate of
charge transfer. The interconversion between spin states, and hence the overall charge
recombination rate, is influenced by the application of an external magnetic field,
because the intersystem crossing is mediated by the hyperfine interactions between

1Parts of this chapter have been reproduced with permission from Fay, T. P., Lewis, A. M. &
Manolopoulos, D. E. Journal of Chemical Physics 147, 064107 (2017), https://aip.scitation.org/
doi/10.1063/1.4997482.
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Fig. 4.1 A typical charge recombination reaction along a donor-bridge-acceptor (D–B–A)molecu-
lar wire. kS and kT are the recombination rate constants for the singlet and triplet states of the radical
pair, and the curved arrows represent hyperfine-mediated intersystem crossing between those spin
states. The symbol * represents an excited state of the molecule with no unpaired electrons

the electron and nuclear spins on the donor and acceptor. As a result, the magnetic
field dependence of experimental observables such as the triplet yield of the recombi-
nation reaction can be used to shed light on the rate andmechanism of recombination
of the singlet and triplet radical pairs (Fig. 4.1).

In a recent experimental study [16], Weiss et al. used transient absorption spec-
troscopy to measure the overall recombination rate constants of the PTZ•+–Phn–
PDI•− molecularwireswithn =1–5. These consist of a phenothiazine (PTZ) donor, a
perylene-3,4:9,10-bis(dicarboximide) (PDI) acceptor, and a bridge of n p-phenylene
rings between them. They found evidencewhich suggested that a change in themech-
anism of recombination occurs as the length of the bridge is increased. For wires
with short bridges, the rate constants decreased exponentially with increasing bridge
length, consistent with the superexchange mechanism. However, the recombination
rates of the longer wires increased slightly as the bridge length increased, indicating
a change in mechanism to incoherent hopping [16].

The overall recombination rate constants obtained from transient absorption spec-
troscopy contain contributions from both the singlet and triplet recombination path-
ways, but their relative importance was not determined by these experiments [16].
This information is crucial to understanding the operation of these wires, since there
is no reason to expect that the singlet and triplet states of the radical pair will recom-
bine by the same mechanism. By fitting the experimentally observed magnetic field
effects (MFEs) in the triplet and radical pair yields to quantum mechanical simu-
lations, we shall disentangle the contributions of the singlet and triplet pathways
to the overall recombination rate, and reveal the likely mechanisms by which these
pathways operate.

4.2 Simulation Details

Weiss et al. probed the spin dynamics of the PTZ•+–Phn–PDI•− molecular wires
by measuring the magnetic field effect on the triplet yield and what they term the
“radical pair yield” – the survival probability of the radical pair 50 ns after the initial
photoexcitation laser pulse. The triplet yield is defined as
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Fig. 4.2 a The chemical
structure of the
PTZ•+–Phn–PDI•−
molecular wires. b The
positions of the nuclei
corresponding the hyperfine
coupling constants of the
PTZ•+ radical listed in
Table4.1. c The positions of
the nuclei corresponding the
hyperfine coupling constants
of the PDI•− radical listed in
Table4.2

(a)

(b) (c)

�T = kT

∫ ∞

0
PT(t) dt, (4.1)

where PT(t) is the probability of finding the radical pair in the triplet state at time t ,
and the radical pair yield is simply

�RP = tr[ρ̂(t)], (4.2)

evaluated at t = 50 ns, where ρ̂(t) is the density operator of the radical pair.
Since there is significant exchange coupling between the unpaired electrons in the
PTZ•+–Phn–PDI•− radical pairs, the semiclassicalmethods of evaluating these yields
described in Chap.3 are unlikely to be reliable, as demonstrated in Sect. 3.3.3. There-
fore, we shall use the stochastic quantum mechanical method outlined in Sect. 2.5 to
simulate the triplet and radical pair yields. The latter canbe calculatedusingEq. (2.58)
with Â = 1̂, while setting Â = P̂T gives the triplet probability PT(t) required to cal-
culate the triplet yield.

In order to evaluate Eq. (2.58), we must define the parameters that enter the
Hamiltonian in Eq. (2.1) and the recombination operator in Eq. (2.31). The spin
evolution of the PTZ•+–Phn–PDI•− radical pair shown in Fig. 4.2 is governed by the
interactions of the electron spins with each other, the applied magnetic field, and the
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nuclear spins to which they are coupled. We therefore need to know the strength J
of the exchange coupling between the two electron spins and the hyperfine coupling
constants aik of the two radicals.

The magnitudes of the hyperfine coupling constants have been measured using
electron spin resonance (ESR) spectroscopy for the PTZ•+ radical [23], and electron
nuclear double resonance (ENDOR) spectroscopy for the PDI•− radical [24]. These
measured values are compared with the hyperfine couplings obtained from B3LYP
[25, 26] density functional theory (DFT) calculations in Tables4.1 and 4.2. For the
purposes of these calculations, the O-R and N-R′ sidechains in PDI were replaced
with O-H and N-H groups.

The agreement between the experimental and calculated coupling constants is
not especially good. This is highlighted by comparing the effective hyperfine fields,
Bhyp. For PTZ•+, the experimental hyperfine field is 0.96 mT, while the calculations
suggest an effective field of 0.64 mT; for PDI•−, the experimental and calculated
hyperfine fields are 0.27 and 0.34 mT respectively. The results for the PTZ radical
are particularly poor, which may in part be due to the fact the EPR-II basis set
normally used to calculate hyperfine constants cannot be applied to this radical, as it

Table 4.1 The hyperfine coupling constants of the PTZ•+ radical in mT. Experimental data is taken
from Ref. [23]; DFT calculations were performed using the B3LYP functional and cc-PV5Z basis
set

k Nucleus |ak/γe| (Expt) ak/|γe| (DFT)
1 H 0.113 −0.0753

2 H 0.113 −0.0753

3 H 0.050 −0.0813

4 H 0.050 −0.0813

5 H 0.249 −0.2247

6 H 0.249 −0.2247

7 H 0.050 0.0503

8 H 0.050 0.0503

9 N 0.634 0.3917

Table 4.2 The hyperfine coupling constants of the PDI•− radical in mT. Experimental data is taken
from Ref. [24]; DFT calculations were performed using the B3LYP functional and EPR-II basis set

k Nucleus |ak/γe| (Expt) ak/|γe| (DFT)
1 H 0.0785 0.0658

2 H 0.0785 0.0658

3 H 0.172 −0.2263

4 H 0.172 −0.2263

5 H 0.0575 0.1351

6 H 0.0575 0.1351

7 N 0.0621 −0.0348

8 N 0.0621 −0.0348
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is only parametrised for Period II elements [27]. For this radical we used the larger
but hyperfine-unoptimised cc-PV5Z orbital basis set instead [28, 29].

Since the DFT calculations significantly underestimate the size of the hyperfine
field on the PTZ radical, we found that it was impossible to quantitatively reproduce
the experimental MFEs using the coupling constants obtained from DFT. However,
DFT is able to provide the signs of the hyperfine coupling constants, which are not
available from the experimental ESR [23] or ENDOR [24] data. Therefore, in our
simulations we used hyperfine coupling constants with the magnitude taken from the
experimental data and the sign inferred from the DFT calculations.

The exchange coupling constants of these wires can be obtained from theMFEs in
the triplet and radical pair yields measured byWeiss et al. [16]. In their experiments,
they found a maximum in the triplet yield of the shorter molecular wires (n = 2, 3)
as the applied magnetic field was increased. This can be understood in terms of
the relative energy levels of the singlet and triplet states, as discussed in Sect. 1.3.3.
When there is no applied field, or if the applied field is very large, the singlet state
is separated in energy from all of the triplet states, limiting singlet-triplet intercon-
version. However, on resonance, when B = 2J/|γe|, the singlet state in which the
radical pair is formed is isoenergetic with the |T−〉 state. This results in more efficient
intersystem crossing and a maximum in the triplet yield. Similarly, a minimum is
observed in the radical pair yield of the longer molecular wires (n = 4, 5) at the
resonance condition. Therefore, by determining the strength of the applied field at
which the triplet (radical pair) yield is largest (smallest), it is possible to infer the
magnitude of 2J . The values of 2J for each of the wires were determined in this
way in Ref. [16], and are listed in Table4.3. Note that here we have assumed that
the exchange coupling is antiferromagnetic (J > 0), informed by ESR experiments
on a similar molecular wire [30]. In fact, identical MFEs would be observed if the
coupling were antiferromagnetic, with the singlet state becoming degenerate with
the |T+〉 state, rather than the |T−〉 state, at the resonance condition B = −2J/|γe|.

The singlet and triplet recombination rates of the PTZ•+–Phn–PDI•− molecular
wires have not beenmeasured directly, but there are experimental observations which
provide constraints on them. Firstly, aminimum in the radical pair yield on resonance,
rather than a maximum, implies that the triplet recombination rate is faster than the
singlet rate, kT > kS. Secondly, the radical pair lifetime of each molecular wire has
been measured in the absence of a magnetic field by monitoring the decay of the
720nm absorption band of PDI•− [16]. These are listed in Table4.3.

For eachmolecularwire, this lifetime imposes one constraint on the two unknowns
kS and kT. This is illustrated in Fig. 4.3, which shows the line in the kS, kT plane
along which our calculations reproduce the experimental radical pair lifetime of the

Table 4.3 Exchange coupling constants and the zero-field recombination lifetimes of the PTZ•+–
Phn–PDI•− molecular wires, both taken from Ref. [16]

n 2 3 4 5

2J/|γe|mT 170 31 6.4 1.5

τ / ns 21 330 217 121
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Fig. 4.3 Five pairs of values
of (kS, kT) which reproduce
the overall recombination
lifetime of PTZ•+–Ph3–
PDI•− in the absence of a
magnetic field are shown in
blue. The polynomial fit to
these points is shown in red,
and is defined by
kS = ak2T + bkT + c. The
constants a, b, and c for
each molecular wire are
given in Table4.4

0 2000 4000 6000

kT / µs
-1

1.5

2

2.5

3

3.5

k S
 / 
µs

-1

Simulation
Polynomial Fit

Table 4.4 The coefficients of the polynomial kS = ak2T + bkT + c which defines the (kS, kT)

parameter space consistent the experimental radical pair lifetime of each molecular wire in the
absence of a magnetic field

n a/µs b c/µs−1

2 8.540 × 10−11 −9.375 × 10−6 47.620

3 1.372 × 10−8 −2.821 × 10−4 3.034

4 2.116 × 10−6 −6.983 × 10−3 4.634

5 1.194 × 10−3 −0.215 9.923

PTZ•+–Ph3–PDI•− molecular wire in the absence of a magnetic field. This line may
be fit accurately by writing kS as a quadratic function of kT. A similar quadratic
relationship can be found between kS and kT for each of the other molecular wires;
the parameters which define these curves are listed in Table4.4. Since these functions
determine kS for a given kT, we now only have a single free parameter to vary for
each wire to reproduce the MFEs observed by Weiss et al. [16].

4.3 Results

4.3.1 Shorter Wires

For the n = 2 and 3 wires, Weiss et al. measured the triplet yield of the radical
pair recombination reaction as a function of the applied magnetic field strength, and
reported this as the relative triplet yield, �T(B)/�T(0). We have simulated these
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Fig. 4.4 The triplet yield of
PTZ•+–Phn–PDI•− as a
function of the strength of
the applied magnetic field,
relative to the triplet yield in
the absence of a field, for
n = 2 above and n = 3
below. The blue curve shows
the results of the raw spin
dynamics simulations, and
the red line the results of the
simulations which include a
field-independent
background contribution to
the triplet yield. The
experimental data is taken
from Ref. [16]
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experiments using the parameters defined in Sect. 4.2 in the spin Hamiltonian, taking
kT as an adjustable parameter to fit the experimental data and specifying kS in terms of
kT in accordancewith Table4.4. The simulated fits to the experimental�T(B)/�T(0)
curves are plotted in Fig. 4.4 in blue.

While the positions and heights of the resonance peaks in the triplet yields of both
wires are captured well by these calculations, there is very poor agreement between
experiment and theory in the high field region. We believe that this discrepancy
suggests that the reaction scheme in Fig. 4.1 is incomplete; specifically, it is missing
a magnetic field independent “background” contribution to the yield of TD–B–A∗. In
the absence of such a background, one would expect the high field triplet yield to be
approximately one third of its zero-field value. This is a result of the high field effect
described in Sect. 1.3.1: two of the three triplet states have a much larger energy
gap to the singlet state in the high field limit than when there is no applied field, so
intersystem crossing to those states will be significantly reduced. This argument is
consistent with the raw simulations of the relative triplet yields in Fig. 4.4, which are
tending towards a value of around 1/3 in the high field limit. However, it is clearly
inconsistent with experimentally measured relative triplet yields.
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Table 4.5 The singlet and
triplet recombination rate
constants of the
PTZ•+–Phn–PDI•−
molecular wires

n kT / µs−1 kS / µs−1

2 27500 47.4

3 3800 2.16

4 350 2.45

5 60.0 2.89

The discrepancies between our simulations and the experiments are resolved if
we assume that the experiments are detecting an additional contribution to the triplet
yield produced by some field independent process outside of the mechanism outlined
in Fig. 4.1. This would in effect add a background contribution to the triplet yields
calculated using the radical pair model. To account for this contribution, we have
recalculated the relative triplet yield (RTY) as

RTY(B) = �T(B) + x

�T(0) + x
, (4.3)

where �T(B) is the simulated triplet yield at magnetic field strength B, and x is the
background contribution, defined as

x = λ �T(0) − �T(∞)

1 − λ
, (4.4)

where λ is the experimental high field limit of the triplet yield.
New best fits to the experimental RTYs were found for both the n = 2 and 3

wires by using Eq. (4.3) to reoptimise the triplet recombination rate kT. These fits are
plotted in red in Fig. 4.4. With the background correction included, the simulations
agree quantitatively with the experiments, allowing us to extract the optimum values
of kT and hence also kS for both molecular wires. These are listed in Table4.5.
The empirical parameters used for the background corrections were x = 0.0416
and λ = 0.9465 when n = 2, and x = 0.5253 and λ = 0.8136 when n = 3. An a
posteriori justification for including the background correction will be presented in
Sect. 4.4.2, and several possible mechanisms by which the TD–B–A∗ state could be
produced will be discussed in Sect. 4.4.3.

4.3.2 Longer Wires

For the wires with n = 4 and 5, Weiss et al. measured the radical pair yield 50 ns
after the initial photoexcitation as a function of the strength of the applied magnetic
field, and again reported this as the relative radical pair yield,�RP(B)/�RP(0). In our
simulations, we found a best fit to the experimental data at t = 55 ns, most likely due
to the finite (7 ns) experimental instrument response time [16]. Our results are plotted
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Fig. 4.5 The radical pair
yield of PTZ•+–Phn–PDI•−
as a function of the strength
of the applied magnetic field,
relative to the radical pair
yield in the absence of a
field, for n = 4 above and
n = 5 below. The blue
curves were obtained using
the exchange coupling
constants given in Ref. [16];
the red curve in the lower
panel is obtained with
2J/|γe| = 1.75 mT, which
has been fitted to the
experimental peak position.
The experimental data is
taken from Ref. [16]
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in Fig. 4.5 in blue. For n = 4, excellent quantitative agreement is observed between
simulation and experiment without the need for any further correction. However, the
results for n = 5 are not as good, with the simulated minimum in the radical pair
yield at a different magnetic field strength than that observed experimentally.

When n = 5, the exchange coupling is comparable to the sum of the effective
hyperfine fields of the two radicals (0.96 mT in PTZ•+ and 0.27 mT in PDI•−).
As a result, intersystem crossing to the |T+〉 state cannot entirely be neglected on
resonance, as it can for the shorter wires. As the magnetic field strength is increased
towards 2J/|γe|, the energy gap between the |S〉 and |T+〉 states increases, reducing
the rate of transition between the two states. At the same time, the rate of crossing
from |S〉 to |T−〉 increases, becoming most efficient when B = 2J/|γe|. Therefore,
the total intersystem crossing is most efficient, and a minimum in the radical pair
yield is observed, at a field strength somewhat below 2J/|γe|.

As a result of this, one cannot simply read off the magnitude of the exchange
coupling constant J from the magnetic field strength at the minimum in the radical
pair yield for the n = 5 wire. Instead, J must be extracted from a spin dynamics
calculation. In order to do this, we varied J until the position of the minimum in
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the computed radical pair yield matched the experimental data.2 Using the optimised
value of J (2J/|γe| = 1.75mT), a new lifetime-constrained (kS, kT) parameter space
was constructed, defined by kS = ak2T + bkT + c with the constants a = 6.523 ×
10−4 µs, b = −0.147, and c = 9.377µs−1, and from this a best fit to the experimental
data was obtained by varying kT. This best fit is shown as the red curve in the
lower panel Fig. 4.5, and is in much better agreement with experiment than the raw
simulation. The optimised rate constants for the longer wires are given along with
those of the short wires in Table4.5.

4.4 Discussion

4.4.1 Resonance Peak Widths

These simulations allow us to investigate a number of questions about the physics
of the charge recombination along the PTZ•+–Phn–PDI•− molecular wires. Firstly,
why are the resonance peaks in the triplet and radical pair yield MFEs in Figs. 4.4
and 4.5 so broad? Previous experimental studies of similar D–B–A wires have noted
that the width of the MFE peaks are often far greater than the size of the hyperfine
interactions in the radical pair [31, 32]. That is also clear here: the sumof the effective
hyperfine fields of the two radical is 1.23 mT, far smaller than the widths of peaks
in the triplet yield MFE of ∼100 mT and ∼25 mT for the n = 2 and n = 3 wires
respectively. Therefore, it seems implausible that hyperfine interactions alone could
be responsible for the peak widths observed.

Our calculations suggest that the resonance peak widths are dominated by the
lifetime broadening of the triplet state of the radical pair. Dividing the triplet recom-
bination rate for the wires with n = 2 and 3 by the gyromagnetic ratio of an electron
gives magnetic field strengths of 156 and 22 mT respectively, which are of the same
order of magnitude as the observed resonance widths. The short lifetime of the triplet
states of the radical pair leads to a broadening of their energy levels, giving a non-
zero density of triplet states at the energy of the singlet state over a wide range of
magnetic field strengths around the resonance condition B = 2J/|γe|. The singlet
states of these radical pairs have much longer lifetimes, and so we do not expect
lifetime broadening to have a significant effect on their density of states.

Figure4.6 supports this explanation: for the n = 3 wire, the full width at half
maximum (FWHM) of the peak in the simulated triplet yield increasesmonotonically
with increasing kT. Since the triplet recombination rate decreases as n increases, it is
likely that when n = 4 the hyperfine interactions will contribute to the width of the
radical pair yield resonance along with lifetime broadening, and when n = 5 they
may well be the primary cause of the resonance width.

2We found that the position of the minimum in the radical pair yield was independent of the rate
constants kS and kT.
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Fig. 4.6 The full width at
half maximum of the
simulated resonance peak in
the triplet yield of
PTZ•+–Ph3–PDI•− as a
function of the triplet
recombination rate, kT. For
each point, kS is chosen to
give the correct zero-field
lifetime of the radical pair
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4.4.2 Recombination Mechanisms

Secondly, what is the mechanism of charge recombination along the singlet and
triplet pathways? Fig. 4.7 shows how kS and kT vary as a function of the distance
between the radicals in the pair, with the rates plotted on a logarithmic scale. The
triplet recombination rate decreases exponentially with the radical separation, with
a decay constant βTR = 0.48 Å−1. This is very similar to that observed by Weiss et
al. for the initial charge separation, βCS = 0.46 Å−1 [16]. This exponential depen-
dence is characteristic of the superexchange mechanism of recombination, indicat-
ing that the recombination of the triplet states of all four molecular wires occurs by
superexchange.

The triplet recombination rate constants in Fig. 4.7 provide an a posteriori justifi-
cation for introducing the background contribution to the triplet yield in Sect. 4.3.1.
The values of kT extracted from the simulations of the n = 2 and 3 wires which
required the inclusion of a background are entirely consistent with those found for
the n = 4 and 5 wires, which were obtained independently and without any need for
a background. The quality of the single exponential fit to all four kT data points in
Fig. 4.7 (R2 = 0.997) certainly supports this.

The singlet recombination rate constants in Fig. 4.7 are very similar for the n =
3 − 5 wires, but kS is significantly larger when n = 2. This suggests that a change
in the mechanism of the singlet recombination pathway occurs as the bridge length
increases, with the superexchange mechanism most important when n = 2, while
for the longer wires the incoherent hopping mechanism dominates.
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Fig. 4.7 The singlet and
triplet recombination rate
constants kS and kT of the
PTZ•+–Phn–PDI•− radical
pair for n = 2 − 5 extracted
from our simulations, plotted
as a function of the radical
pair separation in those
wires. kT follows a single
exponential with decay
constant β = 0.48 Å−1. The
overall recombination rates
kCR are the reciprocals of the
radical pair lifetimes in the
absence of a magnetic field
given in Table4.3. These are
taken from Ref. [16], along
with the donor-acceptor
distances
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This change ofmechanismcanbe understood in terms ofMarcus theory. The direct
recombination of the singlet radical pair lies deep in theMarcus inverted region [33],
disfavouring the superexchange mechanism [16]. For wires with short bridges, the
large electronic coupling between the electron donor and acceptor can compensate for
this, so thatwhen n = 2 charge recombination occurs primarily by the superexchange
mechanism. However, as the bridge length increases and the electronic coupling
decreases, the superexchange mechanism becomes slow compared to the incoherent
hopping mechanism. On the other hand, direct recombination of the triplet radical
pair is not as deep in the inverted region, because the triplet product is higher in
energy than the singlet product [16]. As a result, the superexchange mechanism is
far more favourable for the triplet radical pairs, and dominates for all bridge lengths.

These insights could not have been obtained from the overall experimental recom-
bination rate constants kCR alone, since they depend not only on kS and kT but also
the rate of intersystem crossing between the spin states of the radical pair. This can
be clearly seen by comparing kS and kCR for the n = 2 and n = 5 wires in Fig. 4.7.
When n = 2, the exchange coupling is large, so intersystem crossing from the sin-
glet state to the triplet state is very slow, and kCR ≈ kS. However, when n = 5 the
exchange coupling is much smaller and intersystem crossing is much more efficient,
so recombination of the triplet radical pair contributes significantly to the experimen-
tal recombination rate and kCR > kS. Furthermore, kCR will depend on the external
magnetic field, whereas kS and kT do not. If the experimental measurements of kCR
were repeated in the presence of a magnetic field, we would expect them to satisfy
kT > kCR(B) > kS for all magnetic field strengths B, with kCR approaching kT most
closely at the resonant field strength, B = 2J/|γe|. However, kCR(B) will not actu-
ally reach kT, so it is hard to see how kS and kT could be determined experimentally
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Fig. 4.8 A recombination
reaction scheme including
the possibility of intersystem
crossing accompanying
charge recombination. Here,
kSS and kST are the rate
constants for recombination
of the singlet radical pair to
the singlet and triplet product
states respectively

in this way. Instead, these rate constants must be determined by fitting the magnetic
field dependence of the experimental results to quantum spin dynamics simulations,
as we have done here.

4.4.3 The Origin of the Background

The final question raised by these results is that of the origin of the field independent
background contribution to the triplet yield of the recombination reaction, which
we introduced in Sect. 4.3.1. Here we will discuss four possible explanations of this
background and their limitations.

Firstly, the triplet product could be generated by direct intersystem crossing from
the excited singlet state,

SPTZ–Phn–PDI
∗ → TPTZ–Phn–PDI

∗. (4.5)

It also possible that the triplet state could be formed by singlet fission,

SPTZ–Phn–PDI + SPTZ–Phn–PDI
∗ → 2 TPTZ–Phn–PDI

∗, (4.6)

since the energy gap from the ground state to the excited triplet state is approximately
half of the energy gap to the excited singlet state [16]. However, both of these pro-
cesses appear to be ruled out by the control experiments of Weiss et al. which found
the fluorescence yield of the compounds Phn–PDI to be 1, indicating that only charge
separation competes with fluorescence in SPTZ–Phn–PDI∗. It is perhaps possible that
direct intersystem crossing might be promoted by the presence of a heavy sulphur
atom in PTZ, but this seems unlikely if the electronic excitation in SPTZ–Phn–PDI∗
is confined to the PDI chromophore.

A third possibility is intersystem occurring simultaneously with charge recombi-
nation,

S[PTZ•+–Phn–PDI•−] → TPTZ–Phn–PDI
∗. (4.7)
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which has been observed in these molecular wires [34]. This process is shown in
radical pair reaction scheme in Fig. 4.8, labelled with the rate constant kST to distin-
guish it from ‘normal’ recombination of the singlet radical pair to the ground state,
now labelled kSS. Defining f = kST/(kST + kSS) as the fraction of the singlet radical
pair which reacts to form the triplet product, the total triplet yield from this scheme
is

�′
T(B) = �T(B) + f �S(B)

= (1 − f )�T(B) + f,
(4.8)

where �T is still defined by Eq. (4.1). Comparing Eqs. (4.8)–(4.3), it is clear that

f = x

x + 1
, (4.9)

and therefore that this mechanismwill have the same effect as adding a field indepen-
dent background contribution to the triplet yield. However, it is shown in Ref. [34]
that the process in Eq. (4.7) only occurs at temperatures below 200K in themolecular
wires PTZ–Phn–PDI with n ≥ 2, whereas the experiments of Weiss et al. that we
have reproduced in this chapter were performed at room temperature [32].

Finally, the background could be due to a fraction of the radical pairs being formed
in the triplet state, rather than the singlet state, during the initial charge separation:

SPTZ–Phn–PDI
∗ → T[PTZ•+–Phn–PDI•−]. (4.10)

We have checked in our simulations that the triplet recombination rates in these
wires are sufficiently fast that these triplet radical pairs would recombine before any
significant conversion to the singlet radical pair occurs, adding a field independent
background contribution to the triplet yield of the radical pair recombination reaction.
However, the fraction of radical pairs formed in the triplet state by this mechanism
would need to be f = x/(x + 1) = 0.04 when n = 2 and 0.34 when n = 3 in order
to explain our results. The first of these fractions is consistent with the amount of
intersystem crossing observed during charge separation in other radical pair reactions
[35], but the second is much larger than would be expected on the basis of previous
experiments. While the intersystem crossing will be promoted by the spin-orbit cou-
pling associated with the sulphur atom in the PTZ radical, we can see no reason why
the fraction of radical pairs formed in the triplet state would increase upon changing
the bridge length from 2 to 3 para-phenylene units.

In summary, while we believe that some field independent background is required
to explain the experimental triplet yields in Fig. 4.4, as discussed in Sect. 4.3.1 and
justified a posteriori in Sect. 4.4.2, for now we remain unconvinced by all of the
mechanisms we have proposed to account for this. It would be interesting if further
experiments could be done to shed light on thesemechanisms in an attempt to resolve
this issue.
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4.5 Conclusions

In this chapter, we have used the stochastic quantummechanical method described in
Sect. 2.5 to reproduce the magnetic field effects on the triplet and radical pair yields
measured byWeiss et al. [16] for a series of PTZ•+–Phn–PDI•− molecular wires with
increasing bridge lengths n = 2 − 5. We have extracted recombination rates for the
singlet and triplet states of the radical pair fromour simulations, and used them to shed
light on the spin dynamics and charge recombination mechanisms of these molecular
wires. The very wide peaks in the triplet yield MFEs observed experimentally and
reproduced in our simulations are the result of lifetime broadening of the triplet states.
The triplet rates follow a single exponential decay as a function of radical separation,
consistentwith the superexchange recombinationmechanism.By contrast, the singlet
rates are very similar for wires with bridges consisting of three or more p-phenylene
rings, suggesting that incoherent hopping is the primary recombinationmechanism in
the singlet pathway. The difference between themechanisms of the two pathways can
been explained using Marcus theory. The fact that charge transport along the singlet
and triplet states of the molecular wires operates via different mechanisms precludes
a straightforward rationalisation of the change in radical pair lifetimes with bridge
length. Instead, the separate singlet and triplet rates must be extracted in order to
understand the behaviour of these wires. Finally, we have found good evidence for a
magnetic field independent background contribution to the triplet yield of the charge
recombination reaction, the physical origin of which remains an open question.
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Chapter 5
Avian Magnetoreception

In 2000, Ritz and Schulten proposed that a radical pair reaction could be respon-
sible for the magnetoreception observed in some birds [1]. This suggestion gained
further traction in 2008, when Maeda et al. showed that the recombination rate
of a carotenoid-porphyrin-fullerene radical pair was affected by the application of
an Earth-strength magnetic field [2]. At the same time, substantial circumstantial
evidence for the involvement of a radical pair reaction in the avian compass was
mounting. However, in order for such a reaction to act as a biological compass, it
must have an anisotropic response to an Earth-strength magnetic field. This has not
yet been observed experimentally, so theoretical studies of the cryptochrome-based
radical pair thought to be responsible for magnetoreception are required to assess the
likelihood of this mechanism being the basis of the magnetic compass of migratory
birds.

In this chapter, we will review the evidence for the radical pair mechanism of
magnetoreception, and discuss the possible identity of the radical pair responsible.
We shall then use the semiclassical theory outlined in Sect. 3.1 to reproduce the results
of Maeda et al.’s experiments which demonstrated an Earth-strength magnetic field
effect on a radical pair reaction. These simulations also provide some insight into
the effect of electron spin relaxation on this reaction. Having established an isotropic
magnetic field effect, we conclude the chapter by investigating the plausibility of
the cryptochrome radical pair exhibiting an anisotropic magnetic field effect in an
Earth-strength field.1

1Parts of this chapter have been reproduced with permission from Lewis, A. M., Manolopoulos,
D. E. & Hore, P. J. Journal of Chemical Physics 141, 044111 (2014), https://aip.scitation.org/doi/
abs/10.1063/1.4890659
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5.1 Background

The ability of birds to use the Earth’s magnetic field as a navigational aid was first
proposed in the 19th century [3, 4], and was observed conclusively in European
robins in 1968 [5]. During their migration season, it was found that caged birds
preferred to orient themselves in the direction of migration. When the direction of
magnetic north was changed artificially, the birds reoriented themselves according
to the new alignment of the magnetic field. Since then, it has been shown that many
other species of bird exhibit magnetoreception [6], and that the compass in some
migratory birds can provide very precise directional information, detecting the axis
of magnetic field lines to within 5◦ [7, 8]. There are two main hypotheses for the
mechanism of this magnetoreception: a radical pair model and a magnetite based
model. We will discuss the evidence for the former in some detail, before briefly
commenting on the latter.

5.1.1 The Radical Pair Mechanism

There are several features of the avian magnetic compass which are consistent with
the radical pair mechanism of magnetoreception. Firstly, it is an inclination compass:
it is independent of the polarity of the applied magnetic field, based instead on
the axial direction of the field lines [9]. Therefore at the equator, when the field
lines are parallel to the surface of the Earth, the compass provides no information;
migratory birds become disoriented in a horizontal field [9]. Away from the equator,
the compass does not distinguish between north and south, instead distinguishing
between “polewards”, following magnetic field lines angled towards the Earth, and
“equatorwards”, following magnetic field lines angled away from the Earth. This
appears to present a problem for migratory birds which cross the equator, such as
the garden warbler. However, it has been shown that exposure to a horizontal field
acts as a trigger to change the warbler’s direction of migration from equatorwards
to polewards, so their migration continues in the correct direction after crossing the
equator [10].

The singlet yield of a radical pair reaction, �S, is also independent of the polarity
of an applied magnetic field, as we shall now prove. Firstly, we must define the time
reversal operator, �̂,

�̂ |�, t 〉 = |�,−t 〉 . (5.1)

Unusually for a quantum mechanical operator, �̂ is anti-linear [11]:

�̂ (c1 |1 〉 + c2 |2 〉) = c∗
1 �̂ |1 〉 + c∗

2 �̂ |2 〉 . (5.2)

This has several interesting consequences; of particular significance here are the
properties [11]
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�̂ i Ĥ = −i �̂Ĥ ,

�̂ Ĵ �̂−1 = −Ĵ, (5.3)

where Ĵ is any angular momentum vector operator. We can apply the time reversal
operator to the Hamiltonian in Eq. (2.1):

�̂ i Ĥ(B) �̂−1 = −i �̂Ĥ(B)�̂−1

= −i �̂

[ 2∑
i=1

(
−γeB · Ŝi +

Ni∑
k=1

Îik · A′
ik · Ŝi

)
+ Ŝ1 · D′ · Ŝ2

]
�̂−1

= −i �̂

[ 2∑
i=1

(
−γeB · Ŝi +

Ni∑
k=1

Îik�̂−1 · A′
ik · �̂Ŝi

)

+ Ŝ1�̂−1 · D′ · �̂Ŝ2

]
�̂−1

= −i

[
2∑

i=1

(
+γeB · Ŝi +

Ni∑
k=1

Îik · A′
ik · Ŝi

)
+ Ŝ1 · D′ · Ŝ2

]

= −i Ĥ(−B),

(5.4)
where we have used the results in Eq. (5.3), and twice inserted the unit operator
1̂ = �̂−1�̂. We may also apply the time reversal operator to the singlet projection
operator

�̂P̂S �̂−1 = �̂

(
1

4
1̂ − Ŝ1�̂−1 · �̂Ŝ2

)
�̂−1

=
(
1

4
1̂ − Ŝ1 · Ŝ2

)
= P̂S,

(5.5)

and by doing so establish that the recombination operator is unaffected by application
of the time reversal operator:

�̂K̂ �̂−1 = �̂

(
kS
2
P̂S + kT

2
P̂T

)
�̂−1

= �̂

(
kS
2
P̂S + kT

2

(
1̂ − P̂S

))
�̂−1

=
(
kS
2
P̂S + kT

2

(
1̂ − P̂S

))
= K̂ .

(5.6)

The quantum mechanical definition of the singlet probability of a radical pair
initially in the singlet state is given by Eqs. (2.42) and (2.43), with Â = ρ̂(0) = P̂S:

PS(B, t) = 1

Z
tr

[
P̂S e

+i Ĥ(B)t−K̂ t P̂S e
−i Ĥ(B)t−K̂ t

]
. (5.7)
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We can use Eqs. (5.4) and (5.6) to find the effect of applying the time reversal operator
to the propagation operator,

�̂ e±i Ĥ(B)t−K̂ t �̂−1 = lim
n→∞ �̂

[
1 ± i t

n
Ĥ(B) − t

n
K̂

]n

�̂−1

= lim
n→∞

[
�̂

(
1 ± i t

n
Ĥ(B) − t

n
K̂

)
�̂−1

]n

= lim
n→∞

[
1 ∓ i t

n
Ĥ(−B) − t

n
K̂

]n

= e∓i Ĥ(−B)t−K̂ t .

(5.8)

Then, inserting 1̂ = �̂−1�̂ into Eq. (5.7) several times and using the results in
Eqs. (5.5) and (5.8) along with the invariance of a trace to cyclic permutation, we
find

PS(B, t) = 1

Z
tr

[
P̂S �̂−1�̂ e+i Ĥ(B)t−K̂ t �̂−1�̂P̂S �̂−1�̂e−i Ĥ(B)t−K̂ t �̂−1�̂

]

= 1

Z
tr

[
P̂S �̂−1 e−i Ĥ(−B)t−K̂ t �̂P̂S �̂−1e+i Ĥ(−B)t−K̂ t �̂

]

= 1

Z
tr

[
�̂P̂S �̂−1e+i Ĥ(−B)t−K̂ t �̂P̂S�̂

−1 e−i Ĥ(−B)t−K̂ t
]

= 1

Z
tr

[
P̂S e

+i Ĥ(−B)t−K̂ t P̂S e
−i Ĥ(−B)t−K̂ t

]

= PS(−B, t).

(5.9)

It then follows immediately from Eq. (5.9) and the definition of the singlet yield in
Eq. (2.60) that

�S(B) = �S(−B), (5.10)

as we set out to prove. Hence radical pair reactions are also sensitive only to the
orientation of an applied magnetic field, and not its polarity.

Secondly, the avian compass is very sensitive to the strength of the magnetic
field [12]. Birds could not orient themselves in a magnetic field strength even 10
µT different from that which they were acclimatised to. However, they were able
to orient themselves once they had been exposed to the new field strength for three
days. This can be understood within the radical pair hypothesis – the form of the
magnetic field effect will depend on the applied field strength, so birds may take time
to adapt to a new compass pattern [13].

Thirdly, the birds’ ability to orient themselves has been shown to depend on the
wavelength of the ambient light. The magnetic compass has been shown to operate
under blue and green light but not under red light [14]. This observation is easily
interpreted within the radical pair hypothesis: the energy threshold which must be
reached for successful photoexcitation and subsequent radical pair formation occurs
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at shorter wavelengths than red light [1]. However, it has been pointed out that
the light-dependence of orientation may in fact arise from a separate process which
affects the birds’motivation to act upon information provided by a chemical compass,
rather than magnetoreception itself being light dependent [13, 15].

Perhaps the key observations which support the radical pair hypothesis are the
effects of radio frequency (RF) fields on avian magnetoreception. The rate and yields
of radical pair reactions are expected to change when exposed to RF fields, since
the fields will induce transitions when on resonance with the Zeeman or hyperfine
splittings between the spin states of the radical pair and hence modulate the singlet-
triplet conversion rate [1, 16]. This phenomenon has been demonstrated in at least
two organic radical pairs [17, 18], leading to the prediction that if avian magnetore-
ception did operate by the radical pair mechanism, birds would be disoriented in the
presence of RF fields. This was indeed observed [19–21], and the experiments had
three features of particular interest. Firstly, the birds were unable to adapt to the RF
fields as they were to a change in the strength of the static magnetic field, suggest-
ing the presence of these fields directly disables magnetoreception [22]. Secondly,
even incredibly weak RF fields caused disorientation, suggesting an extremely long
lifetime of the radical pair involved in magnetoreception [13, 21]. Finally, when the
RF field was parallel to the magnetic field, the birds remained able to orient them-
selves. This implies that one of the radicals in the pair has no significant hyperfine
interactions [2, 23]. However, this last claim has since been disputed [24].

There are a number of conditions which must be satisfied for an Earth-strength
magnetic field effect to be observed in a radical pair reactions [1, 15]. To begin
with, the recombination rate of the radical pair must be slow. Ritz suggested that
an average rate of k̄ < 1 µs−1 is necessary for significant mixing of the singlet
and triplet states to take place before recombination occurs in an Earth-strength
magnetic field [1]. In addition, the radical pair must be essentially immobile. If the
radicals rotate with a correlation time of ≤1µs, any anisotropy in the reaction yield
will be averaged out, and no directional information would be available to form
a magnetic compass [13]. Furthermore, molecular motions modulate the hyperfine
interactions and induce relaxation of the electron spins, destroying the correlation
between them. Therefore, for radical pair reactions to act as magnetoreceptors the
relaxation times must be longer than the radical pair lifetimes. Recent studies show
that while some relaxation caused by limited molecular motion may be tolerated, at
present it is difficult to reconcile the extremely long lifetimes implied by the RF field
experiments with the relaxation inevitably caused by even small motions [25–27].

5.1.2 Cryptochrome

The radical pair most likely to be responsible for magnetoreception in European
robins consists of a flavin adenide nucleotide (FAD) radical and a tryptophan (TrpC
or WC) radical found in the cryptochrome protein [1, 13, 15], whose structure is
shown on the left of Fig. 5.1. The relative orientation of the two radicals is taken
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Fig. 5.1 The structure of the cryptochrome protein is displayed on the left, with the position of
the FAD cofactor highlighted in yellow in the centre of the protein and the three Trp residues
shown in orange to its right. On the right, the FAD cofactor and Trp residues are displayed in the
crystallographic orientation for DmCry (red) and AtCry (green). It is the terminal tryptophan, WC,
which forms the long-lived radical pair along with FAD

from the crystal structure of the Drosophila melanogaster cryptochrome (DmCry)
[28, 29]. This is shown in red on the right-hand side of Fig. 5.1, alongwith the relative
positions of the two radicals in the Arabidopsis thaliana cryptochrome (AtCry),
a plant cryptochrome, in green [30]. The crystal structure of the proposed avian
magnetoreceptor, Cry1a, has not yet been elucidated, but the similarity between the
cryptochrome structures which have been identified gives us confidence that the
DmCry structure will serve as a suitable proxy for Cry1a.

The 15magnetic nitrogen and hydrogen nuclei in the FAD radical and 12magnetic
nuclei in the TrpC radical are shown in Fig. 5.2; their hyperfine tensors are listed in
Appendix E. The radical pair is formed by the photoexcitation of FAD using blue
light, which is followed by a series of rapid (ket > 108 s−1) [31, 32] electron transfers
along a chain of three tryptophan residues resulting in the oxidation of the terminal
TrpC to create the long-lived radical pair [32, 33]. In solution, the recombination of
this radical pair has been shown to be influenced by a magnetic field, suggesting its
suitability as a magnetoreceptor [34, 35]. Furthermore, it survives long enough to be
influenced by an Earth-strength magnetic field [34], and is found in high abundance
in the cell membrane of photoreceptors in the retina of birds [36, 37]. Finally, the
separation between the two radicals is sufficiently large that there will not be a
significant energy gap between the singlet and triplet states of the radical pair, but
the charge separation can still occur rapidly, since it takes place through three short-
range electron transfer reactions [13].
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Fig. 5.2 The 15 magnetic nuclei in the flavin (FAD•−) radical are shown above, along with the
definition of the x , y and z axes of the flavin radical used in the plots of the anisotropy of the singlet
yield later in this chapter. The 12 magnetic nuclei in the tryptophan (W•+

C ) radical are shown below.
The anisotropic hyperfine interaction tensors of these nuclei are listed in Appendix E

However, one feature of this radical pair is not consistent with the experimen-
tal evidence described earlier. Both radicals have significant hyperfine interactions,
which is inconsistent with the observation that RF fields parallel to the Earth’s field
do not disorient birds. Furthermore, while the FAD radical is almost ideally suited to
magnetoreception [32, 38], pairing it with a radical with many hyperfine interactions
like tryptophan is not [39, 40]. In fact, simulations have shown that replacing the
tryptophan with a hypothetical radical with no hyperfine interactions increases the
anisotropic response of the radical pair a hundredfold [38]. This has lead to spec-
ulation about alternative partners for the FAD radical in the pair, such as ascorbic
acid [38] or a fully reduced FAD forming a radical pair with a superoxide molecule
[41, 42], although the latter seems unlikely due to the extremely fast relaxation of
the superoxide radical as a result of its spin-orbit coupling [43].

5.1.3 The Magnetite Hypothesis

An alternative hypothesis of magnetoreception contends that chains of magnetite
particles, crystals of Fe3O4, are affected by the Earth’s magnetic field and provide
directional information for a biological compass. Particles as small as 50nm possess
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a large enough permanent dipole moment that they will align with a 50µT field
[44, 45]. Chains of these particles are found in a number of bacteria which align
themselves with and swim along an Earth-strength magnetic field [46]. By contrast
to avian magnetoreception, this alignment is passive; killed bacteria continued to be
aligned with an external field, but no longer moved along its field lines.

These particles are present in a wide variety of organisms, and so have been
proposed as a possible mechanism for avian magnetoreception [47, 48]. However,
magnetite chains have not been found in any species of bird, and the mere presence
of magnetite does not necessarily imply its involvement in magnetoreception[37].
Furthermore, it is hard to see how magnetite would be affected by a RF field –
the crystals are far too large to re-align themselves a million times a second – and
therefore difficult to reconcile the magnetite mechanism of magnetoreception with
the experimental observation that RF fields disorient birds [19, 49]. Instead, it is
possible that magnetite is involved in a magnetic “map”, rather than a magnetic
compass [14, 32].

5.2 A Prototypical Magnetoreceptor

The first experiment which demonstrated that an Earth-strength magnetic field could
influence the outcome of a radical pair reaction was performed by Maeda et al. on a
carotenoid-porphyrin-fullerene (CPF) triad, which is shown in Fig. 5.3 along with its
photochemical reaction scheme [2]. The radical pair C•+PF•− is formed by photoex-
citation of the porphyrin ring followed by two rapid electron transfers, firstly from the
porphyrin to the fullerene, then from the carotenoid to the porphyrin. These electron
transfers preserve the singlet character of the initial photoexcited state [50], since
singlet-triplet conversion is inhibited by the large exchange interaction in the precur-
sor excited states, so the radical pair is formed predominately in the singlet state. It
then undergoes coherent intersystem crossing to the triplet state due to the hyperfine
interactions between the electron and nuclear spins on the carotenoid radical. The
singlet and triplet radical pairs recombine at different rates, kS and kT.

Maeda et al. followed the recombination of the radical pairs at 113 K using
transient absorption spectroscopy,measuring the total (singlet and triplet) radical pair
population as a function of time after the initial photoexcitation. The magnetic field
effect on the reaction was then found by subtracting the transient absorption curve
obtained in the absence of a field from those found in 39 and 49µT magnetic fields.
This measurement is proportional to the difference in the survival probability of the
radical pair, 1(B, t) − 1(0, t). Note that if the recombination rates were symmetric,
this quantitywould equal ek̄t − ek̄t = 0 at all times; the observationof amagnetic field
effect on the survival probability is dependent on the asymmetry of the recombination
rates.

Here, we will reproduce the experimental results presented in Ref. [2] with the
semiclassical method described in Sect. 3.1, in which the survival probability 1(B, t)
is given by Eq. (3.14) where Ā = 1̄. This demonstrates the utility of our semiclassical
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Fig. 5.3 The carotenoid-porphyrin-fullerene triad studied inRef. [2], alongwith a diagram showing
the photochemistry which precedes the coherent electron spin evolution and asymmetric recombi-
nation of the C•+PF•− radical pair

method, since the problem is too complex to handle quantum mechanically: the
carotenoid contains 45 magnetic hydrogen nuclei, and so the Hilbert space of the
radical pair contains 1.4 × 1014 states. We will then use our approach to shed some
light onto the underlying spin dynamics of the C•+PF•− radical pair.

5.2.1 Simulation Details

In order to simulate this radical pair, several pieces of information are required:
the singlet and triplet recombination rates, the fraction of radical pairs formed in the
singlet state,whichwewill callλ, the hyperfine coupling constants, and the relaxation
times of the electron spins on the two radicals. The first three have been determined
from EPR experiments at 110 K to be kS = 1.8 × 107 s−1, kT = 7.1 × 104 s−1,
and λ = 0.93 [50]. We shall assume that these values are unchanged at 113 K,
the temperature at which the transient absorption experiments were performed. To
account for the small initial population of triplet radical pairs, the classical density
variable in Eq. (3.14) is given by2

ρ̄(0) = λP̄S(0) + 1 − λ

3
P̄T(0). (5.11)

2Note that any initial density of this form will still satisfy the condition in Eq. (5.10), since P̂T =
1̂ − P̂S.
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Table 5.1 The isotropic hyperfine coupling constants of the carotenoid cation radical, calculated
using the B3LYP functional and the EPR-II basis set

k a1k/|γe|
(mT)

k a1k/|γe|
(mT)

k a1k/|γe|
(mT)

k a1k/|γe|
(mT)

k a1k/|γe|
(mT)

1 0.04879 10 −0.021817 19 0.480492 28 0.015707 37 0.018443

2 0.046328 11 −0.140593 20 0.015702 29 0.49151 38 0.001563

3 −0.115098 12 −0.087963 21 0.490845 30 0.407741 39 −0.017735

4 −0.111317 13 −0.071456 22 0.332346 31 0.17369 40 0.014287

5 −0.361254 14 0.050581 23 0.306659 32 0.579152 41 −0.028314

6 0.130081 15 −0.275215 24 0.011857 33 0.057321 42 0.003183

7 0.094903 16 0.056448 25 0.008375 34 0.006161 43 0.246942

8 −0.316911 17 0.111917 26 0.246503 35 −0.005099 44 0.442049

9 0.094676 18 −0.385563 27 0.257005 36 −0.003271 45 0.027488

There are 45 hydrogen nuclei with significant hyperfine interactions on the
carotenoid, and none on the fullerene. We will assume that the electron and hole are
localised on these two species, and so neglect the hydrogen and nitrogen nuclei on the
porphyrin ring. The hyperfine interactions of the carotenoid radical cation (CH•+)
can be obtained from a density functional theory calculation using the B3LYP func-
tional [51, 52] and the EPR-II basis set [53], which is optimised for this type of
problem, and are listed in Table 5.1. Terminating the carotenoid simply with a H
atom ensures that the hole will indeed be localised on the carotenoid radical; it has
been shown that the self-interaction problem leads to excessive delocalisation if the
porphyrin linker is included in the DFT calculation [54]. Note that positions of the
nuclei corresponding to each of these hyperfine interactions have no effect to the
spin dynamics of the radical.

Finally, wemust consider the relaxation of the spins in the radical pair. This can be
treated phenomenologically using four parameters, the transverse and longitudinal
relaxation times of each radical, as described in Sect. 3.4. Here we may make two
simplifying assumptions: firstly, that the transverse and longitudinal times will be
equal (T (i)

1 
 T (i)
2 ) since the external field is so weak, and secondly that the primary

mechanism of relaxation will be modulation of the hyperfine interactions, and so
the spin of the electron on the fullerene will not relax (T (2)

1 = T (2)
2 = 0). The con-

sequences of this second assumption will be analysed in more detail later. These
approximations reduce the description of relaxation to a single parameter, the relax-
ation rate of the unpaired electron on the carotenoid radical, kR = 1/T (1)

1 = 1/T (1)
2 .

We shall take this to be a free parameter to fit our simulations to the experimental
data, since it is very challenging to determine theoretically or from experiments.



5.2 A Prototypical Magnetoreceptor 93

Fig. 5.4 Upper panel:
Computed SC magnetic field
effects on the total survival
probability of the C•+PF•−
radical pair at B = 39 and
49µT, multiplied by
α = 821 to bring the positive
peak in the 49µT signal to 1,
and then shifted by 0.1 to
mimic the experimental
background and delayed by
50ns to mimic the
experimental instrumental
delay. Lower panel: Changes
in the transient absorption
signal of the carotenoid
radical in C•+PF•− at 113K
caused by these applied
magnetic fields;
experimental data from
Ref. [2]
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5.2.2 Results and Discussion

With these values established, we can compare the results of our semiclassical theory
to the experimental data from Ref. [2]. This comparison is shown in Fig. 5.4, with the
optimised carotenoid relaxation rate kR = 2.3 × 107 s−1. With this single parameter,
both the timescale and the relative intensity of the positive and negative peaks of
the transient absorption curve are reproduced quantitatively at both magnetic field
strengths by the SC theory. Furthermore, the absolutemagnitude of themagnetic field
effect is also reproduced reasonably well: at 0.70µs, the experimentally measured
difference in absorption is approximately 1.5% of the absorption in the absence of
a field [2], and the percentage magnetic field effect in the calculations at 0.65µs
(which allows for a ∼50ns instrumental delay) is also 1.5%.

The value of kR required to fit the experimental data appears to be reasonable.
It is five times larger than that obtained by Maeda et al. in a separate experiment,
measuring the magnetic field effect on the same triad at 1.28mT [50]. Given the
huge difference in field strength between that experiment and the one discussed here,
and the relatively crude model they used to obtain the relaxation rate, we consider
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Fig. 5.5 Dependence of the
simulated magnetic field
effect in the survival
probability of C•+PF•− at
49µT on the relaxation rate
kR of the electron spin on the
carotenoid radical. Red
curves: kR = 1.6 × 107 s−1

to 2.2 × 107 s−1 in steps of
2 × 106 s−1. Green curve:
kR = 2.3 × 107 s−1, which
gives the best fit to the
experimental data. Blue
curves: kR = 2.4 × 107 s−1

to 3.0 × 107 s−1 in steps of
2 × 106 s−1
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our relaxation rate to be consistent with the value they found. Furthermore, our
calculations do not show a particularly strong dependence on the value of kR chosen.
The variation of the magnetic field effect at 49µTwith the relaxation rate is shown in
Fig. 5.5. Themagnitude and timescale of themagnetic field effect both decrease as the
relaxation rate increases, as one might expect. The behaviour is monotonic, making
it easy to precisely identify the optimal value of kR. However, once normalised, the
fit is not that sensitive to the precise value of kR chosen – while kR = 2.3 × 107 s−1

is definitely the best fit, none of the curves shown in Fig. 5.5 show terrible agreement
with the experimental data.

The biphasic form of the magnetic field effect on the transient absorption signal
is intriguing. The initial increase in the survival probability is easy to understand –
it is a consequence of the low field effect discussed in Sect. 1.3.2 [55, 56]. Since
kS � kT, the larger the proportion of radical pairs in the triplet state the larger the
survival probability will be. The application of a magnetic field breaks the symme-
try of the zero-field triplet eigenstates, allowing more pathways for singlet-triplet
interconversion. Since the radical pair is formed predominantly in the singlet state,
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Fig. 5.6 The effect of (artificially) moving the electron spin relaxation from the carotenoid radical
(1) to the fullerene radical (2) in the C•+PF•− radical pair, compared to no relaxation at all. a
Relaxation of the carotenoid electron spin: k(1)

R = 2.3 × 107 s−1 and k(2)
R = 0. b Relaxation of both

electron spins: k(1)
R = 1.15 × 107 s−1 and k(2)

R = 1.15 × 107 s−1. c Relaxation of the fullerene

electron spin: k(1)
R = 0 and k(2)

R = 2.3 × 107 s−1. (d) No relaxation of either electron spin: k(1)
R =

k(2)
R = 0. In panels a–c, α = 1000; in panel d, α = 50

this leads to a larger triplet radical pair population, and hence an increased survival
probability, provided that the applied field is not so large as to open a significant
energy gap between the triplet and singlet states.

It is harder to understandwhy at later times the survival probability decreaseswhen
a magnetic field is applied. It was originally suggested that this was due to relaxation
transferring population from the T+ and T− states to the the S and T0 states [2].
However, Fig. 5.6 shows that this explanation is insufficient: biphasic behaviour is still
observed in panel (d) where relaxation is completely neglected. Nevertheless, while
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relaxation is not necessary for the observation of biphasic behaviour, the experimental
data cannot be accounted for without it. Furthermore, it appears that the origin of
the relaxation is important. For example, if relaxation occurs (unphysically) on the
fullerene radical rather than on the carotenoid radical, as in panel (c), the biphasic
behaviour disappears. Including relaxation on both radicals in panel (b) also severely
reduces the magnitude of the negative peak. Figure 5.6 also justifies our earlier
assumption that the primary relaxation mechanism in the triad is the modulation of
hyperfine interactions and so the spin of the unpaired electron on the fullerene radical
does not relax, since this is only way to reproduce the experimental data.

The equation of motion of T12, the classical tensor corresponding to the two-
electron spin operators, is identical in each of scenarios (a)–(c), precluding any
simple population-based interpretation of the effect of relaxation. The equations of
motion of the individual electrons are of course different in each case, which gives
rise to the different behaviour in Fig. 5.6 through indirect coupling to T12 through
the motion of the nuclear spins. Incidentally, this implies that SW theory would be
insufficient to reproduce this biphasic signal accurately. All that can be said about the
biphasic response for now, then, is that it is the result of a delicate balance between
the asymmetry of the recombination rates and the rate and source of relaxation in
the radical pair. We will return briefly to this topic in Sect. 7.2.1.

5.3 Anisotropy

Having used the semiclassical theory to reproduce the response of a prototype mag-
netoreceptor to a magnetic field, we will now apply it to the cryptochrome radical
pair proposed as the receptor in European robins. In particular, we will attempt to
calculate the anisotropy in the singlet yield of the radical pair, defined as

α(B) = �S(B) − 〈�S(B)〉, (5.12)

where 〈�S(B)〉 is the average of the singlet yield over all direction of the applied
field B = B(sin θ cosφ, sin θ sin φ, cos θ).

It is convenient to express the anisotropy as a linear combination of spherical
harmonics,

Ym
l (θ,φ) = Nm

l e
imφPm

l (cos θ) (5.13)

where l can take any non-negative integer,m may take any integer value in the range
−l ≤ m ≤ l, N is a normalisation constant, and Pm

l (x) is the associated Legendre
polynomial,

Pm
l (x) = (−1)m

(
1 − x2

)m/2

2l l!
dl+m

dxl+m

(
x2 − 1

)l
. (5.14)
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Since �S(B) = �S(−B), the singlet yield may be expressed as function of just the
even spherical harmonics,

�S(B, θ,φ) 

L∑

l=0,2,4,...

min(M,l)∑
m=−min(M,l)

clm(B)Ym
l (θ,φ), (5.15)

where L andM control the accuracy of the approximation, andM ≤ L . The orthonor-
mality of the spherical harmonics gives

clm(B) =
∫ 2π

0
dφ

∫ π

0
sin θ dθ Ym

l (θ,φ)∗�S(B, θ,φ), (5.16)

and since Y00(θ,φ) is spherically symmetric the anisotropy is

α(B, θ,φ) =
L∑

l=2,4,...

min(M,l)∑
m=−min(M,l)

clm(B)Ym
l (θ,φ). (5.17)

Assuming �S(B, θ,φ) may be represented exactly by the expansion in Eq. 5.15, the
integrals in Eq. 5.16 can be evaluated using a 2M + 1 point quadrature rule in φ
with weights wk = �φ = 2π/(2M + 1) and nodes φk = k�φ, and an L + 2 point
Gauss-Legendre quadrature rule in cos θ. Since the singlet yield is symmetric with
respect to inversion, one can restrict the L + 2 point rule to its (L + 2)/2 nodes in
the upper hemisphere, and multiply the corresponding weights by 2. The quadrature
grid therefore contains a total of (2M + 1)(L + 2)/2 magnetic field directions.

5.3.1 Simplified Cryptochrome Models

We began by calculating the anisotropy in the singlet yield of three simplified cryp-
tochrome models with three, seven and eleven nuclear spins in each radical at a
field strength of B = 1 mT, both semiclassically and quantum mechanically. In
each model, the nuclei whose hyperfine coupling tensors have the largest traces
were retained. These anisotropic hyperfine tensors were calculated using unrestricted
B3LYP density functional theory [51, 52] with the EPR-II basis set [53], relative to
the axis system defined in Fig. 5.2. The hyperfine tensors of the tryptophan were then
rotated relative to those of the flavin to bring them into the relative alignment of the
DmCry crystal structure in Fig. 5.1. The resulting tensors are listed in Appendix E.

We took the recombination rate constant of both the singlet and triplet radical
pairs to be k = 106 s−1, since this is slow enough to allow for significant competition
between the singlet and triplet reaction pathways [1, 13, 32, 40], and is similar
to the recombination rates found experimentally for [FAD•− Trp•+

C ] radical pairs
in related cryptochromes [31, 34]. The singlet yield is defined in Eq. (3.16), and



98 5 Avian Magnetoreception

the singlet probability is given within the semiclassical theory by Eq. (3.14) with
Ā = P̄S, and quantummechanically by Eq. (2.48)with Â = P̂S. For the semiclassical
calculations, the integrals in Eq. (3.14) were evaluated by Monte Carlo integration,
with one million samples of the orientations of each initial spin vector. The resulting
statistical error in the maximum anisotropy of the singlet yield was found to be
less than 1%. Both the classical and quantum spin dynamics were run for 11.5µs.
Following preliminary convergence tests, we settled on a quadrature grid of L = 30
and M = 10, giving a grid of 336 field directions at which the singlet yield was
evaluated in the calculations reported below. Increasing M to L (= 30) was found
to give results that were indistinguishable to graphical accuracy, at the expense of a
significantly larger grid of field directions.

The results of these preliminary calculations are shown in Fig. 5.7, which com-
pares the quantummechanical (QM) and semiclassical (SC) anisotropies of the three
simplified cryptochromemodels. The axis system is defined inFig. 5.2,with the flavin
ring system in the xy plane. The QM results are shown on the left and the SC results
on the right, for radical pairs with a total of with 6 (top), 14 (middle) and 22 (bot-
tom) nuclear spins. The blue and red regions indicate orientations of B for which
the anisotropy is positive and negative, respectively. The distance between the origin
and the surface of the plot gives the magnitude of the anisotropy when B is in that
direction. The axes of all six plots have the same scale.

There is a significant difference between the QM and SC calculations of the
anisotropy in the singlet yield of the 6-spin cryptochrome model in panels (a) and
(b) of Fig. 5.7. The fact that the sharp features in the QM anisotropy are completely
absent in the SC anisotropy implies that they are the result of a quantum mechanical
interference effect which is not captured by the SC theory. On moving from 6 to
14 to 22 nuclear spins in the radical pair, however, the spikes in the QM anisotropy
first shrink and then disappear: the interference effects are removed by increasing
the number of nuclear spins. This is consistent with the observations we made when
we first introduced the SC theory in Sect. 3.1. The quantum mechanical interference
effects in the electron spin dynamics are rapidly quenched as the number of nuclear
spins increases, so there is no need to use a full QM calculation which includes
them. All that survives by the time there are 22 nuclear spins in the radical pair is
the average semiclassical precessional behaviour, which a comparison of panels (e)
and (f) in Fig. 5.7 shows the SC theory captures extremely well.

Unfortunately, investigating the singlet yield anisotropy at lower field strengths
is more difficult in the SC theory, because of the statistical error involved in eval-
uating the the integrals in Eq. (3.14) by a Monte Carlo sampling method. In an
Earth-strength magnetic field (∼50µT), the difference between the maximum and
minimum anisotropies is only a small fraction of the spherically averaged singlet
yield 〈�S(B)〉, and therefore the ratio of signal-to-statistical noise in the relative
anisotropy is very low. Many more Monte Carlo points have to be sampled to over-
come this, and since the precise calculation of the anisotropy requires a dense grid of
magnetic field directions, the calculation becomes unreasonably expensive. There-
fore, at very low fields we cannot validate the SC anisotropy against exact QM results
in the same way as we have in Fig. 5.7.
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Fig. 5.7 Anisotropies in the singlet yields of three simplified cryptochrome models. Blue indicates
a positive value of α, red a negative value. The QM results are shown on the left and the SC results
on the right, for [FAD•−Trp•+

C ] radical pairs with 6 (top), 14 (middle) and 22 (bottom) nuclear spins.
The axis scales are the same in all six plots, with the axes oriented relative to the flavin radical as
illustrated in Fig. 5.2. The maximum and minimum anisotropies, αmax and αmin, are: a 0.0169 and
−0.0124; b 0.0136 and −0.0042; c 0.0126 and −0.0046; d 0.0110 and −0.0031; e 0.0104 and
−0.0038; and f 0.0101 and −0.0029
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Inspection of Fig. 5.7 suggests a simple solution to this problem: in this particular
radical pair the direction of maximum anisotropy is close to the z axis and that
of minimum anisotropy is close to the x axis. These axes are defined relative to
the orientation of the FAD•− radical, which is independent of the magnetic field
strength, so we would expect the same to be true for lower applied magnetic fields.
This suggests that subtracting the singlet yield obtained when the applied magnetic
field is along the x axis from the singlet yield calculated with the field aligned with
the z axis will provide a reasonable estimate of the magnitude of the anisotropy,

�α 
 αz − αx = �z
S − �x

S. (5.18)

Despite the crudeness of this approximation, we have found that �α is within 15%
of the true magnitude of the anisotropy at magnetic field strengths of 1, 0.75, 0.5,
and 0.25 mT, with no systematic degradation in the accuracy of the approximation
as the field strength is reduced.

With this simplified approach, we were able to use the SC theory to estimate the
magnitude of the anisotropy in the singlet yield of the 22-spin model of the cryp-
tochrome radical pair down to geomagnetic field strengths. In Fig. 5.8 we compare
its performance against exact calculations of �α. The good agreement between the
SC theory and QM simulations shows that the semiclassical approach can at the very
least be relied upon to provide a reasonable estimate of magnitude of the anisotropy
in the singlet yield at an Earth-strength magnetic field.

At 50µT, the anisotropy in the singlet yield of the 22-spin model of the cryp-
tochrome radical pair is �α = 3.1 × 10−4. This is about a quarter of the value
quoted by Lee et al. in Ref. [38], where they calculated the anisotropy of a 14-spin

Fig. 5.8 Magnetic field
dependence of the QM and
SC �α 
 αz − αx for the
22-spin cryptochrome
model. In all cases the
statistical errors in the SC
calculation are smaller than
the sizes of the plotted points
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Fig. 5.9 The anisotropy in
the singlet yield of the full
cryptochrome system,
including dipolar and
exchange coupling between
the electron spins, in a 50µT
magnetic field;
αmax = 3.5 × 10−5 and
αmin = −2.7 × 10−5

cryptochrome model. It is striking that the inclusion of even very small hyperfine
interactions has a significant effect on the properties of the anisotropy. However,
this calculation still neglects five hyperfine interactions and, more importantly, the
exchange and dipolar coupling between the electron spins. These have not been
included until now because doing so makes the QM calculation intractable, since
the techniques described in Sect. 2.6 can no longer be used. However, they may be
straightforwardly included in the SC theory with very little computational cost, as
described in Appendix C.

5.3.2 The Full Cryptochrome Radical Pair

Figure 5.9 shows the anisotropy in the singlet yield of the full cryptochrome radical
pair at 50µT using spherical harmonics of order up to 4 (using L = M = 4 in
Eq. (5.15) and a grid of 27 magnetic field directions), averaging over 100 million
trajectories for each field direction. The dipolar coupling constant was given by the
point dipole approximation as D = −0.4mT, and we took the exchange coupling
constant to be J = −2/3D = 0.27mT, close to that determined experimentally for a
related cryptochrome radical pair [33]. The resulting anisotropy has a similar shape
to the anisotropy in a 1 mT field in Fig. 5.7, and is even smaller in magnitude than
that of the 22-spin model of the radical pair: αmax − αmin = (6.2 ± 1.1) × 10−5.3

3The cruder estimate for the anisotropy used earlier is αz − αx = (4.5 ± 1.2) × 10−5.
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This represents a (0.022 ± 0.004)% change in the total singlet yield, far smaller than
all previous estimates of the anisotropy of the cryptochrome radical pair at this field
strength, which have been obtained from simplified models and have ranged from
0.5 to 10% [13, 38].

This response to the direction of the applied magnetic field can be used to pro-
vide a rough estimate the number of receptors required to achieve a signal to noise
ratio of 1, for a given angular resolution [39, 40, 57]. These estimates are based on
the assumption that the radical pair reaction leads to the production of signalling
molecules that bind to receptors on the optic nerve [1], and therefore that the orien-
tation of the magnetic field determines the quantity of these signalling ligands. This
orientation-dependent variation in the number of ligand-receptor complexes must
be distinguishable from simple stochastic fluctuations in the concentration of bound
receptors. This leads to an expression adapted from Weaver et al. for the required
number of receptors [40, 57],

R = 4

(λθ�θ)2
, (5.19)

where �θ is the angular resolution of the proposed compass in degrees, and

λθ = 1

90◦
αz − αx

〈�〉 . (5.20)

Using this expression, we determine that for cryptochrome to provide a geomagnetic
compass accurate to 1◦, between 5 × 1011 and 1012 receptors would be required in
the retina of the bird. This is significantly higher than all previous estimates, which
have ranged from 105 to 109 [58]. Furthermore, in this estimate we have assumed a
perfectly ordered arrangement of cryptochrome proteins; if there is some disorder in
their orientation, more receptors would be required to compensate for this [59].

While there are (necessarily) a great many simplifications in an argument such
as this, the calculation of a ∼0.02% change in the singlet yield of the cryptochrome
radical pair upon changing the orientation of the applied magnetic field is hardly
compelling evidence for the cryptochrome radical pair described acting as a biolog-
ical magnetoreceptor. Two suggestions have been made which would increase the
anisotropic sensitivity of the radical pair, making it more plausible as a magnetore-
ceptor. The first is the possibility of an alternative counter-radical for FAD•−, ideally
with few or no hyperfine interactions, as discussed in Sect. 5.1.2.While an alternative
radical pair of this type would certainly have a greater anisotropic sensitivity [38],
and be consistent with some of the RF experiments [2, 23], it is not currently obvious
what the identity of the new counter-radical might be. The second suggestion is the
possibility that the [FAD•− Trp•+

C ] radical pair is much longer-lived than previously
thought, which is implied by some of the RF experiments on European robins [13,
21]. The consequences of reducing the recombination rate of this radical pair are
discussed briefly in the following section.



5.3 Anisotropy 103

Fig. 5.10 The variation of
the singlet yield of the
14-spin cryptochrome model
as a function of the
orientation of the 50µT
applied field for a series of
decreasing recombination
rates. θ is measured relative
to the z axis in the xz plane.
Data is reproduced with
permission from Ref. [60]
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5.3.3 A Compass Needle?

A recent study by Hiscock et al. investigated the effect of increasing the lifetime of
the cryptochrome radical pair [60]. They performed QM calculations of the singlet
yield of the 14- and 22-spin models of the [FAD•− Trp•+

C ] radical pair with a series of
decreasing symmetric recombination rates. The effect of rotating the applied 50µT
field through an angle θ from the z axis in the xz plane are shown in Fig. 5.10, which
shows data taken from Ref. [60]. At short lifetimes, the singlet yield shows only a
weak, smooth dependence on θ, consistent with the results in Sects. 5.3.1 and 5.3.2,
as well as earlier work [38]. However, as the lifetime of the radical pair increases,
muchmore structure emerges, most notably a strong “spike” in the singlet yield when
θ = 90◦. It has been suggested that this spike could act as a compass needle for birds,
a mechanism which would allow them to orient themselves precisely in the Earth’s
magnetic field [27, 49, 60].

This spike arises from an avoided crossing of the quantum mechanical energy
levels arising from the N5 and N10 hyperfine tensors [60]. There are several con-
ditions which must be met for the spike to be observed. The first, as demonstrated
in Fig. 5.10, is a small recombination rate constant k. In addition, the Axx and Ayy

components of the N5 and N10 hyperfine tensors must be small relative to Azz ,
but non-zero, otherwise the avoided crossings become level crossings. Finally, if
the counter-radical to FAD•− has no anisotropic hyperfine interactions, no spike is
observed for any value of the recombination rate.

The lifetime of the radical pair required for the spike in the anisotropy to be
observed appears at first sight to be implausibly long. While the recombination rate
of the radical pair could well be significantly smaller than previously assumed [1,
13], it seems less likely that the relaxation rate and corresponding decoherence of
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the radical pair could be slow enough to allow the spike to emerge [26]. In order for
relaxation to be sufficiently slow for the spike to be observed, the librations of the
tryptophan radical in particular would have to be extremely fast [27]. Furthermore,
the calculations in Ref. [60] neglect electron spin coupling; it would be interesting
to know if the avoided crossing, and hence the spike, is still observed when coupling
is included. Unfortunately, at present the QM calculation required to investigate this
is not feasible.

Nevertheless, the natural emergence of this spike in the anisotropy of the sin-
glet yield of the cryptochrome radical pair which was originally proposed as the
magnetoreceptor in the avian compass is fairly compelling. This mechanism of mag-
netoreception would provide a satisfying account of the precision of the compass [7,
8], and could possibly explain its response to RF fields [19–22]. Finally, it should be
noted that this is a genuinely quantum mechanical effect: no spike is observed in the
equivalent semiclassical calculations. If this were indeed the mechanism of magne-
toreception, the needle of the avian compass would be a true example of quantum
biology [61–63].

5.4 Conclusion

In this chapter, we began by considering the experiments which have been performed
to investigate the compass sense of migratory birds. These provide some evidence for
the radical pair mechanism of magnetoreception, and indicate some properties which
a candidate radical pair must possess in order to function as a suitable magnetore-
ceptor. We then introduced the cryptochrome-based radical pair thought to provide
directional information to European robins.

Using the semiclassical theory introduced in Sect. 3.1, we were able to reproduce
the experiments ofMaeda et al. which demonstrated an Earth-strength magnetic field
effect on a radical pair reaction for the first time [2]. In doing so, we were able to
shed light on the biphasic nature of the MFE they found. This results from a delicate
balance between the asymmetry in the singlet and triplet recombination rates, and
the rate and source of electron spin relaxation.

We then calculated the anisotropy of the cryptochrome radical pair. We began by
validating our semiclassical results against exact quantum mechanical calculations,
and then used the SCmodel to investigate a more detailedmodel of the cryptochrome
radical pair than it is possible to simulate with a fully quantum mechanical method.
We found that once all of the hyperfine interactions and the electron spin coupling are
accounted for, only a very small anisotropy remains. It is hard to see how this weak
effect could translate into useful directional information for migrating birds.We have
ended the chapter by briefly discussing a recent development which has suggested
that the radical pair could exhibit a much more precise anisotropic response if it were
very long-lived [60].
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Chapter 6
Magnetoelectroluminescence

Electroluminescence is an important and much studied property of semiconducting
films of conjugated organic polymers [1–4], and is the basis of their commercial
application in organic light emitting diodes (oLEDs) [5–8]. These have the potential
to be more efficient, more easily scalable, and more flexible than their inorganic
counterparts [7, 9, 10]. oLEDs are constructed in four layers: a thin film of the
semiconducting polymer is sandwiched between an electron-injecting metal cathode
and a transparent hole-injecting layer, which is then covered by a transparent anode.
Calcium and aluminium are commonly used for the cathode and indium tin oxide for
the anode, with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-
PSS) a typical hole-injecting layer [11–15]. In this chapter, we are concerned with
the properties of the semiconducting polymer layer which affect the efficiency of
electroluminescence.

As a result of the commercial applications of oLEDs, there is significant interest
in understanding the mechanism of the electroluminescence of organic semiconduc-
tors and the factors which influence it [2–4, 9]. The observation of magnetoelec-
troluminescence (MEL) – that is, a change in the electroluminescence of a polymer
upon application of a magnetic field – has provided evidence for the polaron pair
(PP) mechanism of electroluminescence described in Sect. 6.1 [9, 16]. However, the
physical interactions which govern the spin dynamics of the polaron pair are less well
understood. Recent isotopic substitution experiments have strongly suggested that
the hyperfine interactions between the electron spin and the spins of the hydrogen
nuclei in the polymer play a crucial role [13, 14], but it remains unclear whether
other physical effects are also important.

In this chapter we will describe the polaron pair mechanism of magnetoelectro-
luminescence, and analyse the connection between MEL and magnetoconductance
(MC) in order to define a general relationship between these two properties and the
singlet yield of the polaron pair recombination reaction. With this expression, we
will reproduce the results of the pioneering deuteration experiments of Nguyen et
al.[13, 14] using Schulten–Wolynes (SW) theory, which was introduced in Sect. 3.2,
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to describe the spin dynamics of the polaron pair. This simple approach is expected
to be reasonably reliable, since each polaron contains around N ∼ 100 nuclear spins.
Finally, we will discuss how the singlet-triplet dephasing arising from the modula-
tion of the exchange interaction between the polarons affects magnetoelectrolumi-
nescence. We will show that including this phenomenon in our theoretical model, in
addition to the hyperfine interactions, resolves some of the discrepancies between
theory and experiment.1

6.1 The Polaron Pair Mechanism

It is widely believed that electroluminescence in organic polymers occurs through
the polaron pair mechanism [9, 14, 16–19]. A polaron is simply an electron (or hole)
which is coupled to the nuclear degrees of freedom of the polymer on which it resides
[20]. Polarons become localised on a conjugated polymer chain by a distortion of
the carbon bond framework. This is either described as “self-localisation”, if the
localisation results from nuclear displacements induced by the interaction between
the electronic and nuclear degrees of freedom [21, 22], or “Anderson localisation”,
if the localisation is due to conformational disorder in the polymer [23, 24]. We
expect the polarons in the semiconducting polymers considered in this chapter to be
primarily localised by torsional Anderson disorder, so nuclear motions can be safely
neglected [21].

A pair of weakly bound polarons of opposite charges localised on adjacent poly-
mer chains are called a polaron pair [16]. The existence of polaron pairs in films
of semiconducting polymers has been shown using photoinduced absorption exper-
iments [25, 26], and reaction yield detected magnetic resonance (RYDMR) and
electron spin resonance (ESR) experiments have demonstrated that they may have
either singlet or triplet character [27, 28]. A simplified reaction scheme for polaron
pairs in oLEDs is given in Fig. 6.1. Positive and negative polarons are injected into
and move through a polymer film until they encounter a polaron of opposite charge
on an adjacent polymer chain, when they form a loosely bound polaron pair. Since
the spins of the polarons are initially uncorrelated, singlet and triplet polaron pairs are
formed in a statistical ratio of 1:3. A singlet (or triplet) polaron pair may then form
an intra-chain exciton at a rate kSE (kTE), with the electron hopping onto the polymer
chain on which the hole resides. Alternatively, the polaron pair could dissociate to
reform free polarons at a rate kSD (kTD). If the total decay rates kS = kSD + kSE and
kT = kTD + kTE are sufficiently small, significant interconversion between the sin-
glet and triplet states of the polaron pair is possible, due to the hyperfine interactions
within each polaron. This description of polaron pairs is almost entirely equivalent

1Parts of this chapter have been reproduced with permission from Lawrence, J. E., Lewis, A. M.,
Manolopoulos, D. E. & Hore, P. J. Journal of Chemical Physics 144, 214109 (2016), https://aip.
scitation.org/doi/10.1063/1.4953093

https://aip.scitation.org/doi/10.1063/1.4953093
https://aip.scitation.org/doi/10.1063/1.4953093
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Fig. 6.1 Reaction scheme for polarons. SPP and TPP refer to coulombically bound polaron pairs
on neighbouring chains in the singlet and triplet state respectively; the curved arrows represent
hyperfine-mediated intersystem crossing between the two spin states. SE and TE refer to intra-
chain singlet and triplet excitons respectively. Only the singlet exciton state is emissive. The total
singlet and triplet decay rates are kS = kSE + kSD and kT = kTE + kTD

to that of the radical pair mechanism, and so we may apply any of the techniques
outlined in Chaps. 2 and 3 to this problem.

Provided that kS �= kT, changes in the rate of interconversion will affect the singlet
exciton yield. Therefore, since only the singlet exciton is emissive, and the application
of a magnetic field alters the rate of interconversion between spin states, the polaron
pair mechanism gives rise to magnetoelectroluminescence (MEL),

MEL(B) = EL(B)

EL(0)
− 1, (6.1)

where EL(B) is the electroluminescence in the presence of a magnetic field of
strength B. Indeed, the observation of MEL in organic semiconductors is good evi-
dence for the polaron pair mechanism of electroluminescence [9, 16], because the
singlet and triplet intra-chain excitons are well separated in energy by the exchange
interaction and so do not easily interconvert [29].

A magnetic field effect in the conductance of organic polymers has also been
observed.However, the origin of this effect is notwell understood, and is the subject of
continuing debate [27, 30–33]. We shall attempt to avoid this issue in this chapter by
making as few assumptions as possible about themechanism ofmagnetoconductance
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Fig. 6.2 The repeat unit of
2,5-dioctyloxy-
paraphenylene vinylene
(DOO-PPV)

(MC),

MC(B) = C(B)

C(0)
− 1, (6.2)

where C(B) is the conductance in the presence of a magnetic field of strength B.
Both the MEL and MC have been measured in a variety of materials. In this

work, we will consider poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV),
whose repeat unit is shown in Fig. 6.2. This polymer was chosen because the impact
of deuteration on its MEL and MC has been studied [13, 14]. The observation of
an isotope effect on MEL and MC has provided evidence for a hyperfine-mediated
mechanism of intersystem crossing of the polaron pairs, since D has a different
spin quantum number and gyromagnetic ratio to H and hence different hyperfine
interactions. The experimentally determined MEL and MC in both undeuterated
DOO-PPV (denoted H-DOO-PPV) and deuterated DOO-PPV (denoted D-DOO-
PPV) are shown in Fig. 6.3. In order to compare these experimental measurements
to theoretical calculations, we must now to relate the MEL and MC to the singlet
yield of the polaron pair recombination reaction.

6.2 The Relationship Between MEL and MC

The electroluminescence of a semiconducting polymer at a given magnetic field
strength depends not only on the singlet exciton yield, but also on the number density
of polaron pairs present in the device, nPP. Previous analyses of MEL have all been
undertaken with an implicit assumption that the number of polaron pairs in the
device is independent of the applied magnetic field [13, 16, 17]. This leads to a very
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Fig. 6.3 A comparison of
the experimental magnetic
field effect on the
electroluminescence (MEL)
and conductance (MC) of a
H-DOO-PPV and b
D-DOO-PPV, taken from
Refs. [13, 14]. Also shown is
the magnetic field effect on
the singlet yield (MSY), as
defined by the relationship in
Eq. (6.18)
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simple connection between the experimentally accessible electroluminescence and
the singlet exciton yield, �SE,

MEL(B) ≈ �SE(B)

�SE(0)
− 1. (6.3)

Alternatively, since

�SE(B) = kSE
kS

�S(B), (6.4)

where �S(B) is the total singlet yield (the fraction of polaron pairs which either
recombine to form a singlet exciton or dissociate to give free polarons in the singlet
state), Eq. (6.3) may be rewritten as

MEL(B) ≈ MSY(B) = �S(B)

�S(0)
− 1. (6.5)
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That is, under the assumption that the number of polaron pairs is not a function of the
magnetic field strength, the magnetoelectroluminescence is identical to the magnetic
field effect on the overall singlet yield of the polaron pair reaction, MSY(B).

However, the assumption that nPP is independent of the applied magnetic field
strength B is not easily justified; the observation of magnetoconductance in DOO-
PPV implies that the number of polarons is a function of the applied field. Further-
more, neither quantum mechanical nor semiclassical simulations of the polaron pair
model which have relied on this approximation to analyse MEL have been able to
even qualitatively reproduce experimental results [13, 16, 17]. MSY(B) is found to
plateau at high fields (see Fig. 6.6 and the discussion in Sect. 1.3.1), while Fig. 6.3
shows thatMEL(B) continues to increase with themagnetic field strength, indicating
that the approximate equality in Eq. (6.5) is not reasonable. Therefore, we shall now
derive a new expression relating MEL and �S without this assumption.

We begin by introducing the normalised density operator of the polaron pair, ρ̂(B),
and defining the number density operator as

n̂(B) = nPP(B)ρ̂(B). (6.6)

where nPP(B) is the number of polaron pairs, and

tr
[
n̂(B)

] = nPP(B)tr
[
ρ̂(B)

] = nPP(B). (6.7)

From Fig. 6.1, the evolution of n̂(B) is given by

d

dt
n̂(B) = − ˆ̂L(B)n̂(B) + kFn−(B)n+(B)ρ̂0, (6.8)

with ρ̂0 = 1̂/4Z so that the final term generates triplet and singlet polaron pairs in

the correct 3:1 ratio with a first order rate constant kF.
ˆ̂L(B) is the Liouville super-

operator defined in Eq. (3.39) which accounts for the spin evolution, recombination,
and dissociation processes of the polaron pair, n±(B) are the number densities of
positively and negatively charged free polarons, 1̂ is the unit operator on the Hilbert
space of the polaron pair, and 4Z = tr[1̂] is the total number of electron and nuclear

spin states in this space. Note that ˆ̂L(B) depends on the magnetic field strength as a
consequence of the Zeeman interaction in the Hamiltonian.

At a steady state,
d

dt
n̂(B) = 0, (6.9)

and so the total polaron pair number density operator is

n̂(B) = kF n−(B)n+(B)
ˆ̂L(B)−1ρ̂0. (6.10)

The number of singlet polaron pairs, nS(B), is therefore simply
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nS(B) = tr
[
P̂Sn̂(B)

]

= kF
kS

n−(B)n+(B)�S(B),
(6.11)

where P̂S is the singlet projection operator defined in Eq. (2.32), kS = kSE + kD is
the first order rate constant for loss of population of singlet polaron pair, and

�S(B) = kS tr[P̂S ˆ̂L(B)−1ρ̂0], (6.12)

which we demonstrated in Sect. 3.2 is precisely the singlet yield of the polaron pair
recombination reaction.

From Fig. 6.1, the steady state electroluminescence must clearly be proportional
to kSE nS(B), and so the magnetic field effect on the luminescence is given by

MEL(B) = n−(B)n+(B)�S(B)

n−(0)n+(0)�S(0)
− 1. (6.13)

If we now assume that electrons are injected into and removed from the polymer
film through Ohmic contacts, then there will only be a very small net space charge
within the film [34],

δn(B) = n+(B) − n−(B) ≈ 0,

n±(B) ≈ n(B) = 1

2
(n+(B) + n−(B)) . (6.14)

This has been shown to be a reasonable assumption in oLEDs based on PPV
derivatives which use calcium cathodes and poly(3,4-ethylenedioxythiophene)-
poly(styrenesulfonate) (PEDOT-PSS) hole injecting layers [11], like those employed
in the experiments of Nguyen et al. [13, 14] With this assumption,

MEL(B) = n(B)2 �S(B)

n(0)2 �S(0)
− 1. (6.15)

Using this assumption and the further assumption that the mobilities of the positive
and negative free polarons, μ+ and μ−, are independent of the applied magnetic field
strength, we may write an expression for MC:

MC(B) = μ+n+(B) + μ−n−(B)

μ+n+(0) + μ−n−(0)
− 1

≈ n(B)

n(0)
− 1.

(6.16)

Combining Eqs. (6.15) and (6.16) we find an expression for MEL in terms of MSY
and MC:
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MEL(B) + 1 = (MC(B) + 1)2 (MSY(B) + 1) , (6.17)

where MSY has been defined in Eq. (6.5).
This relationship between MEL(B), MC(B), and MSY(B) has been derived

making only two assumptions: firstly, that the contacts are approximately Ohmic,
and secondly that the mobilities μ+ and μ− of P+ and P− are independent of the
applied magnetic field. Given these assumptions, the result is a direct consequence
of the polaronpairmechanism formagnetoelectroluminescence illustrated inFig.6.1.
Notice in particular that we have not made any assumptions about the mechanism of
the magnetoconductance, other than that the applied magnetic field does not change
the mobilities of the free polarons. This approximation is consistent with many of
the mechanisms that have been proposed for magnetoconductance in polymer films,
including the polaron pair mechanism [27], the bipolaron mechanism in the regime
of positive MC [31, 35], and a more recently suggested mechanism involving the
trapping of polarons at defect sites [33]. In all three of these scenarios, the mag-
netic field effect on the conductance is believed to arise from a change in the free
polaron number density in the presence of the magnetic field rather than a change in
the free polaron mobility. Indeed, it is explicitly stated in Ref. [27] that no magnetic
field effect is found experimentally on the mobilities of the free polarons in PPV
derivatives.

The curves labelled MSY(B) in Fig. 6.3 were obtained from the experimental
MEL(B) and MC(B) curves by rearranging Eq. (6.17) into the form

MSY(B) = MEL(B) + 1

(MC(B) + 1)2
− 1. (6.18)

Therefore, another way of viewing Eq. (6.17) is that it provides a link between the
experimentally measurable magnetoelectroluminescence and magnetoconductance
and the theoretically calculablemagnetic field effect on the singlet yield of the polaron
pair recombination reaction. We shall now take this view, and in the next section
calculate �S(B), and hence MSY(B), for DOO-PPV.

6.3 Simulating the Singlet Yield

Wehave shown in Sect. 3.2 how the singlet yield defined inEq. (6.12)may be straight-
forwardly evaluated within Schulten–Wolynes theory,

�S(B) =
∫

dI1 g(I1)
∫

dI2 g(I2) kS trS[P̂S ˆ̂L(B, I1, I2)−1ρ̂0]. (6.19)

Since each polaron contains Ni ∼ 100 nuclear spins, we expect SW theory to be
reasonably accurate for this problem. In order to use this expression, we need to
define the distribution of the magnitude of the resultant vector of the nuclear spins,
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g(Ii ). It is convenient here to express g(Ii ) in terms of the effective hyperfine field,

Bhyp,i =
√√√√

Ni∑

k=1

a2ik Iik(Iik + 1), (6.20)

so that the distribution becomes

g(Ii ) =
(

3

2πBhyp,i

)3/2

e−3I 2i /2B2
hyp,i . (6.21)

Therefore, within SW theory the hyperfine couplings of a polaron in DOO-PPV
reduce to a single parameter, Bhyp,i .

6.3.1 Hyperfine Fields in DOO-PPV

The hyperfine field of a polaron in DOO-PPV may be found from ESR experiments.
In fact, this is all that may be deduced from such experiments, since the spectra do
not exhibit resolved hyperfine splittings [36, 37]. Instead, the integrated ESR signal
has a broad approximately Gaussian lineshape, whose full width at half maximum
(FWHM) is related to Bhyp,i by

FWHM =
√
8 ln 2

3
Bhyp,i , (6.22)

as expected from Eq. (6.21). Kuroda et al. [36] have measured the light-induced
electron spin resonance spectra of thin films of two different dialkoxy derivatives
of PPV (MEH-PPV and CN-PPV). They found a FWHM of 0.66mT for one and
0.45mT for the other, with no evidence for any difference between the contributions
of positive and negative polarons to either ESR signal. More recently, Zezin et al.[37]
havemeasured anESR linewidth of 0.5mT for the positive polarons in long oligomers
of DOO-PPV in an irradiated glassy toluene solution at 77K in the presence of an
electron scavenger, and performed similar experiments in the presence and absence
of the scavenger to deduce that the positive and negative polarons of MEH-PPV have
somewhat different ESR linewidths (0.37 and 0.59mT, respectively).

Since all of these linewidths are fairly similar, and since the resultswe shall present
below are fairly insensitive to the precise choice of Bhyp,i , we shall avoid introducing
too many free parameters into our calculations by assuming a FWHMESR linewidth
of 0.5mT for both the positive and the negative polarons in thin films ofH-DOO-PPV.
The use of 0.5mT for the positive polarons is consistent with the long DOO-PPV
oligomer experiments of Zezin et al. [37] The assumption that this is the same for
both positive and negative polarons is consistent with the thin film experiments of
Kuroda et al. [36] and with the particle-hole symmetry of the Pariser-Parr-Pople
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Hamiltonian for PPV that was used to interpret their results [38]. Strictly speaking,
particle-hole symmetry will be broken by the electronegative oxygen atoms that are
α to the conjugated framework of DOO-PPV. However, explicit density functional
theory calculations on short oligomers of a more manageable compound suggest
that this is only a minor effect: the computed hyperfine field strengths Bhyp,i of the
positively and negatively charged n = 3 oligomers of DOE-PPV (where E = ethyl)
differ by less than 10%.

According to Eq. (6.22), a FWHM of 0.5mT gives Bhyp(H) = 0.37mT for H-
DOO-PPV, and the corresponding parameter for D-DOO-PPV can be worked out
as follows. Neglecting 13C nuclei, which will be present throughout the polymer
with just ∼1% natural abundance [39], the only magnetic nuclei in H-DOO-PPV are
protons. Since H has I = 1/2 and D has I = 1, and the hyperfine coupling constants
aik in Eq. (6.20) are proportional to the gyromagnetic ratios γH and γD of the two
nuclei, the effect of deuteration will be to reduce Bhyp to

Bhyp(D) = γD

γH

√
8

3
Bhyp(H) ≈ 1

4
Bhyp(H), (6.23)

which gives Bhyp(D) = 0.093mT. This assumes that D-DOO-PPV is fully deuter-
ated. In fact, the material used in Refs. [13, 14] was only partially deuterated: the
H atoms directly bonded to the conjugated π system were deuterated whereas those
in the DOO side chains were not. However, the explicit DFT calculations on n = 3
oligomers of DOE-PPV indicate that the hyperfine couplings in the side chains make
up less than 0.25% of Bhyp, as one would expect on the basis of chemical intuition.
Therefore, we will neglect their contribution and take the ratio Bhyp(H)/Bhyp(D) to
be 4.

While direct ESRmeasurements of the hyperfine fields in thin films of DOO-PPV
have not been performed, optically detected magnetic resonance (ODMR) experi-
ments have [14]. However, these experiments produce complicated lineshapes which
are open to multiple interpretations. For example, some studies assume that the
polarons have significantly different hyperfine fields and fit the lineshape to two
Gaussians [12, 35, 40]. On the other hand, the authors who measured the ODMR in
DOO-PPV fit the data to a Voigt profile, which is the convolution of a Gaussian line-
shape to account for the distribution of the hyperfine interactions and a Lorentzian
lineshape to account for lifetime broadening [14]. Therefore, we prefer to use ESR
experiments performed on thin films of similar dialkoxy PPVs and on solutions of
oligomers of DOO-PPV to estimate the hyperfine fields of the polarons in DOO-PPV,
which are straightforward to interpret having almost perfectly Gaussian lineshapes.
Nevertheless, we can show that our ESR-based values of Bhyp are consistent with the
ODMR experiments. Figure6.4 shows that the ODMR signals of both H-DOO-PPV
and D-DOO-PPV from Ref. [14] can be fit to Voigt profiles [41],
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Fig. 6.4 Voigt fits to the
ODMR signals of a
H-DOO-PPV and b
D-DOO-PPV. The Voigt
profile is defined in
Eq. (6.24), with σ determined
by the Bhyp values taken
from ESR experiments. The
experimental data is taken
from Ref. [14]
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V (B;σ, �) =
∫ ∞

∞
G(B ′;σ) L(B − B ′;�)dB ′,

G(x;σ) = e−x2/2σ2

σ
√
2π

,

L(x;�) = �

π
(
x2 + �2

) , (6.24)

where the standard deviation of the Gaussian distribution, σ, is chosen to correspond
to the hyperfine fields of Bhyp(H) = 0.37mT and Bhyp(D) = 0.093mT, and the scale
parameters of the Lorentzian components of the Voigt profiles, �, are taken to be
free parameters.

While Fig. 6.4 demonstrates that the hyperfine fields deduced from the ESR exper-
iments are consistent with the ODMR data, there are other combinations of σ and
� which produce a fit of similar quality. Since the lifetime broadening is difficult
to quantify, this makes it very difficult to extract a unique value of σ and therefore
Bhyp from ODMR experiments alone. This is the main reason for our preference for
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deducing the hyperfine interactions from ESR experiments on stable polarons, in
which lifetime broadening is entirely avoided.

6.3.2 Singlet-Triplet Dephasing

Careful inspection of Fig. 6.3 reveals that the hyperfine interactions alone are insuffi-
cient to explain the MSY obtained using Eq. (6.18) and the experimentally measured
MEL andMC of H-DOO-PPV and D-DOO-PPV. Both curves tend towards the same
asymptote, but they have very different values of B1/2, the magnetic field strength at
which MSY(B) is half of MSY(∞) introduced in Sect. 1.3.1. If the spin evolution of
the polaron pair were governed solely by the Zeeman and hyperfine interactions, we
would expect B1/2 to conform to the Weller equation introduced in Sect. 1.3.1 [42],

B1/2 = 2
B2
hyp,1 + B2

hyp,2

Bhyp,1 + Bhyp,2
. (6.25)

In the case that the positive and negative polarons have the same hyperfine fields,
this reduces to

B1/2 = 2Bhyp. (6.26)

However, plotting the magnetic field effect on the singlet yield on an expanded
scale in Fig. 6.5 clearly shows that the values of B1/2 in H-DOO-PPV and D-
DOO-PPV are not consistent with the Weller equation. Both B1/2(H) = 5.3mT
and B1/2(D) = 2.0mT are an order of magnitude larger than our estimates of the
hyperfine fields strengths, Bhyp(H) = 0.37mT and Bhyp(D) = 0.093mT. Further-
more, the ratio B1/2(H)/B1/2(D) = 2.65 is significantly smaller than the factor of 4
predicted by Eq. (6.23).

Clearly some additional phenomenon plays an important role in the spin dynam-
ics of the polaron pairs in these oLEDs. A number of processes have already been
considered and discounted [16], but relatively little attention has been given to the
role of electron spin relaxation. This is perhaps unsurprising, since the most com-
mon mechanism of relaxation, the modulation of the hyperfine interactions, leads to
extremely long relaxation times of polarons in solid state organic polymers [43, 44].
However, other relaxation mechanisms may be significant, such as modulation of
the exchange interaction between the two electrons in the polaron pair. As discussed
in Sect. 2.1.1, the strength of the exchange interaction depends exponentially on the
separation between the two spins, which varies due to the migration of the polarons
within the pair along their polymer chain [45, 46]. This modulation causes singlet-
triplet dephasing, introduced in Sect. 2.7.2, which in other contexts has been shown
to lead to B1/2 values significantly larger than those predicted by theWeller equation
[47].
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Fig. 6.5 The magnetic field
effect on the singlet yield of
the polaron pair
recombination reaction in
both H-DOO-PPV and
D-DOO-PPV, with the values
of MSY(∞), B1/2(H), and
B1/2(D) highlighted
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This singlet triplet dephasing may be easily accounted for in our semiclassical
calculations, since it is phenomenologically described by Eq. (2.74). Adding this
term to the Liouvillian defined in Eq. (3.39) gives

− ˆ̂L(B, I1, I2)ρ̂ = −i[Ĥ(B, I1, I2), ρ̂] − {K̂ , ρ̂} − kR
(
P̂Sρ̂P̂T + P̂Tρ̂P̂S

)
,

(6.27)
where kR is a singlet-triplet dephasing rate constant, the recombination operator K̂
is described in Sect. 2.2.1, and within SW theory the Hamiltonian is

Ĥ(B, I1, I2) = (ω1 + I1) · Ŝ1 + (ω2 + I2) · Ŝ2 (6.28)

It should be noted that the average exchange interaction has been neglected in this
Hamiltonian, even though its modulation is included in the final term of Eq. (6.27).
There are three reasons for this. Firstly, the average strength of the exchange coupling
constant is extremely difficult to determine in these organic polymers [48], and we
do not want to add any additional parameters to our simulation unless absolutely nec-
essary. Secondly, the exponential dependence of the exchange coupling on polaron
separations suggests that even if the average exchange coupling is very small, brief
periods of time during which the polarons are in close proximity would cause a large
modulation effect. Finally, we found that the spin dynamics of the problem were
largely unaffected by the inclusion of a physically reasonably constant exchange
coupling. Therefore, we have neglected the average coupling for simplicity.
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6.4 Results and Discussion

We are now in a position to simulate the experimental results in Fig. 6.3. This requires
us to find three free parameters: the singlet and triplet decay rate constants, kS and
kT, and the dephasing rate constant, kR, which we shall assume are all unaffected by
deuteration. We therefore performed a least squares fit to the experimental MSY(B)

of both deuterated and undeuterated DOO-PPV simultaneously in the {kS, kT, kR}
parameter space using the downhill simplexmethod. This found a single minimum at
kS = 4.84 × 105 s−1, kT = 4.94 × 105 s−1, and kR = 1.50 × 108 s−1. The resulting
simulated MSY(B) curves are compared to the experimental magnetic field effect in
Fig. 6.6. The agreement between theory and experiment is clearly excellent for H-
DOO-PPV at all but the very lowest magnetic field strengths. The agreement is also
good for D-DOO-PPV, although the experimental curve does have a kink between
B = 2.5 and 20mT that is not captured by the theoretical calculation. Assuming that
this can be dismissed as an artefact, the agreement between theory and experiment is
clearly very good for both isotopologues of DOO-PPV over a wide range of applied
magnetic fields.

Figure6.6 both justifies our expression for MEL(B) in Eq. (6.17) and shows that
singlet-triplet dephasing plays an important role in the polaron pair spin dynamics.
If, as has been done in the past [13, 16, 17], Eq. (6.5) is used to fit the computed
MSY(B) to the experimental MEL(B) by optimising the same three parameters, kR,
kS, and kT, the results show nowhere near as good agreement as the fits in Fig. 6.6.
In addition, if kR is set to zero and singlet-triplet dephasing is not included, it is not
possible to reproduce the B1/2 values of the experimental MEL(B) curves without
invoking infeasibly large and unrelated hyperfine fields Bhyp(H) and Bhyp(D).

Our simulations do not capture the experimentally observed low field effect (LFE)
[49] – more commonly referred to as an ultra-small magnetic field effect (USMFE)
in the context of organic semiconductor devices [16, 50] – which results in a negative
dip in MSY(B) below 1.3mT for H-DOO-PPV and 0.5mT for D-DOO-PPV. This
LFE has been captured in earlier calculations [13, 16, 17], and we too have found
that it can be captured by optimising the parameters kR, kS, and kT to fit just the
low field region. However, the resulting MSY(B) curves do not give nearly such
good agreement with experiment over the full range of magnetic field strengths as
those in Fig. 6.6. It should also be noted that the Schulten–Wolynes approximation
is expected to be least reliable in the low field region, as discussed in Sect. 3.3.

We found that in order to fit our simulations to the experimental data kS was
required to be smaller than kT. This is at odds with theoretical calculations of the
recombination rate of polaron pairs [29], but is demanded by the experimental data,
since MSY(B) is positive at high fields [17]. When kT = kS, �S(B) = 1/4 for all B,
and thereforeMSY(∞) = 0. However, when kT > kS, the triplet states of the polaron
pair decaymore rapidly than the singlet state, and�S(B) is less than 1/4. The decrease
in �S(B) is most pronounced at low field strengths, where singlet population can be
lost through intersystem crossing to all three components of the triplet, as described in
Sect. 1.3.2. At high field strengths, the Zeeman splittings of the T± triplet components
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Fig. 6.6 Comparison of the
simulated and experimental
magnetic field effect on the
singlet yield (MSY) of a
H-DOO-PPV and b
D-DOO-PPV. The
experimental curve was
obtained from Eq. (6.18)
using the
magnetoelectroluminescence
and magnetoconductance
data reported in Refs. [13,
14]
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make them energetically inaccessible to singlet-triplet interconversion, so singlet
population can only be lost through interconversion to T0, as discussed in Sect. 1.3.1.
Therefore �S(0) < �S(∞) < 1/4 and MSY(∞) > 0. Conversely, when kT < kS, a
similar argument gives �S(0) > �S(∞) > 1/4 and MSY(∞) < 0.

Finally, while we have deliberately avoided making any assumptions about the
mechanismof themagnetoconductance inDOO-PPV, our results do in fact shed some
light on this. One of the most widely discussed mechanisms of magnetoconductance
is the polaron pair mechanism, in which the effect of the magnetic field on the
conductance is assumed to arise from its effect on the dissociation yield of the polaron
pair back to free charge carriers (P+ and P−) [16, 27]. However, it is clear from
Fig. 6.3 that the magnetic field effect on the overall singlet yield of the polaron pair
recombination reaction, which includes both the singlet exciton yield and the yield
of free charge carriers in the singlet state, has already saturated at a field strength of
20mT, whereas the magnetoelectroluminescence and magnetoconductance continue
to increase at higher field strengths (up to 40mT). Since the overall triplet yield
(including the yield of free charge carriers in the triplet state)must also have saturated
when the overall singlet yield has saturated, this clearly implies that the change in the
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magnetoconductance beyond 20mT cannot come from the polaron pair mechanism.
So although it seems likely, given the similarities between the MC(B) and MSY(B)

curves in Fig. 6.3, that the polaron pair mechanism of magnetoconductance does
play an important role in DOO-PPV, there must also be some other mechanism in
operation at high magnetic field strengths.

6.5 Conclusion

In this chapter, we have used the polaron pairmechanism outlined in Fig. 6.1 to derive
an expression in Eq. (6.17) which relates the theoretically calculable magnetic field
effect on the singlet yield of the polaron pair recombination reaction, MSY(B),
to the experimentally accessible magnetoelectroluminescence MEL(B) and mag-
netoconductance MC(B) of the polymer film. We have argued that this expression
holds independently of the mechanism of the magnetoconductance, provided that
the mobilities of the positive and negative polarons are not affected by the magnetic
field.

We have also discussed the parameters required for a semiclassical calculation of
MSY(B) in polymers such as DOO-PPV, the standard deviations of the hyperfine
fields in which can be extracted from ESR linewidth measurements. Once these
hyperfine fields are known, the calculation of MSY(B) involves just three empirical
parameters: the overall singlet and triplet decay rate constants kS and kT of the polaron
pair and a singlet-triplet dephasing rate constant kR. The last of these parameters has
not been included in any previous theory of magnetoelectroluminescence, but we
have argued on the basis of the Weller equation [42] that its inclusion is necessary to
reproduce the experimental results of Nguyen et al. for H-DOO-PPV and D-DOO-
PPV [13, 14]. The fits to the experimental data obtained from these calculations are
shown in Fig. 6.6. The agreement between theory and experiment is very good for
both H-DOO-PPV and D-DOO-PPV over a wide range of magnetic field strengths.
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Chapter 7
Conclusions and Further Work

There has been significant interest in radical pair reactions for a number of years
[1–5], due to their relevance to a number of biological and technological systems
[6–11]. In particular, the effect of magnetic fields on radical pair reactions has been
widely studied [12–16], with even very weak magnetic interactions able to dramati-
cally change the rate and yield of a reaction [17, 18]. In this thesis, we have developed
both quantummechanical and semiclassical methods of simulating radical pair reac-
tions, and then applied those methods to three real systems in order to obtain some
physical insight into their behaviour. Here we shall summarise our findings, before
suggesting two areas for further work where the application of the semiclassical
theory introduced in Sect. 3.1 has shown promising early results.1

7.1 Conclusions

7.1.1 Theory

The quantum mechanical description of a radical pair reaction is relatively straight-
forward, and is outlined in Chap.2. However, fully quantum mechanical simulations
of realistic radical pairs are very difficult to perform, since the Hilbert space of the
radical pair grows exponentially with the number of nuclear spins in the radical pair.
The CPU time required for a deterministic evaluation of the ensemble average of an
observable scales as Z2 log Z , where Z is the total number of nuclear spin states of the
radical pair. Therefore, the goal of Chap. 2 was to find a quantummechanical method
which improves upon this scaling, and in Chap.3 we set out to develop approximate

1Parts of this chapter have been reproduced with permission from Lewis, A. M. et al. Journal of
Chemical Physics 149, 034103 (2018), https://aip.scitation.org/doi/10.1063/1.5038558.
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semiclassical methods which avoided the exponential scaling altogether. These new
methods allow us to simulate the spin dynamics of realistic systems.

In Sect. 2.5 we demonstrated that the computational time of a fully quantum
mechanical simulation can be reduced by a factor of O(Z) by using a stochastic
method. We introduced coherent spin states, and showed that the ensemble average
of an observable of the radical pairmay bewritten as amultidimensional integral over
the coherent spin state basis of each nuclear spin. These integrals may be evaluated
by Monte Carlo sampling of the directions of the initial coherent nuclear spin states.
If the number of samples required to converge the integrals, M , is smaller than
Z , then this method will be significantly faster than a deterministic evaluation. We
demonstrated that for a model radical pair which included 20 I = 1/2 nuclear spins,
only M = 200 samples are required to obtain converged results over a wide range of
applied field strengths. Since the total number of nuclear spin states Z = 1, 048, 576,
the stochastic calculation is over 5000 times faster than deterministic one would be
in this case.

The reason for the efficiency of this method lies in the fact that the observables of
interest in radical pairs are typically probabilities or yields. Since these are bounded
between zero and one, the standard deviation can be at most 1/2, and is often much
smaller. As a result, only a small number of samples are required to obtain well
converged results. In addition, when evaluating an ensemble average stochastically
it is advantageous to sample coherent spin states, rather than eigenstates of the total
spin projection operator, Ĵz . When anisotropic interactions are neglected, the spin
Hamiltonian commutes with Ĵz , which divides the Hilbert space into independent
sectors of different MJ , with the evolution of any eigenstate of Ĵz confined to a
single one of these sectors. However, each coherent spin state contains a contribution
from each of these sectors, so sampling these states leads to a faster convergence of
ensemble average.

In Sect. 3.1 we introduced our semiclassical theory, which eliminates the expo-
nential scaling problem altogether. This method treats the electron and nuclear spins
as classical vectors, and derives equations of motion for these vectors from the
Heisenberg equations of motion for the corresponding quantum mechanical opera-
tors. We found that a small modification to the equations of motion of the nuclear
spins is required in order to produce the correct behaviour in the limit of symmetric
recombination rates, but that this correction is both unique and physically motivated.
This produces a set of 3N + 16 coupled differential equations, which can be solved
numerically. As a result, the computational time required for semiclassical simula-
tions scales only linearly with the number of nuclear spins in the radical pair, rather
than exponentially. We found that for radical pairs which contain N > 12 nuclear
spins, the results of the semiclassical theory are in good agreement with exact quan-
tum mechanical calculations, and are expected to become increasingly accurate as
N increases.

In Sect. 3.2, we described howour semiclassical theory reduces to an earlier theory
by Schulten and Wolynes under two additional approximations [2]: firstly that the
resultant of the nuclear spin vectors is constant, and secondly that the magnitude
of this resultant vector has a Gaussian distribution. Both of these approximations
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become exact in the limit that N → ∞. However, away from that limit the first
approximation violates Newton’s third law, since there is no torque exerted on the
nuclear spins by the electron spin, despite the electron spin experiencing a torque
from the nuclear spins. As a result, Schulten and Wolynes’ theory is not usually
accurate for radical pairs which contain fewer than 100 nuclear spins. However, with
these approximations the complexity of the problems is reduced even further – at
most, a system of 16 coupled equations must be solved, and in the case of symmetric
recombination rates SW theory gives closed form expressions for the singlet and
triplet probabilities of radical pairs.

7.1.2 Applications

In Chap.4, we used the stochastic quantum mechanical method to simulate PTZ•+–
Phn–PDI•− molecular wires of varying lengths, which have a donor-bridge-acceptor
structure. There are two possible mechanisms by which charge recombination along
this type of molecular wire can occur: the super-exchange mechanism, in which
recombination occurs in a single step, or incoherent hopping, in which an electron
hops from the bridge to the cation to form an intermediate radical pair, followed by a
second electron hopping from the anion to the bridge. Experimental measurements
of the overall recombination rate of the PTZ•+–Phn–PDI•− molecular wires have
recently been made [19], which suggested that there may be a change in the mech-
anism of charge recombination as the length of the wire increases. Unfortunately,
from these experiments alone it is not possible to determine the relative contributions
of the singlet and triplet recombination pathways to the overall recombination rate.

By comparing the experiments of Weiss et al. to the results of our quantum
mechanical spin dynamics calculations, we were able to extract rate constants for
the recombination of the singlet and triplet radical pairs. These in turn shed light on
the recombination mechanisms of each pathway. We found that recombination of
the triplet radical pairs is dominated by the super-exchange mechanism, while the
singlet radical pairs recombine by incoherent hopping in all but the shortest molec-
ular wires. The difference in rates can be explained using Marcus theory [20]: direct
singlet recombination lies deep in the Marcus inverted region, strongly disfavouring
the superexchange mechanism. However, the triplet product is higher in energy than
the singlet product, and as a result recombination of the the triplet radical pair by
superexchange is far more favourable.

There are two other interesting features of our simulations of the PTZ•+–Phn–
PDI•− molecular wires. Firstly, the very broad resonance peaks seen in the magnetic
field effect on the triplet yield of the shorter molecular wires are likely to be the result
of lifetime broadening. While the lifetime of the singlet radical pair is reasonably
long, the triplet radical pair in these short wires recombines rapidly, which leads to
significant broadening of its energy levels. As a result there is a non-zero density
of triplet states at the energy of the singlet state over a wide range of magnetic
field strengths around the resonance peak, increasing the efficiency of intersystem
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crossing and hence altering the triplet yield in that range. Secondly, we were unable
to even qualitatively explain the experimental magnetic field effect on the triplet yield
without introducing a field independent background contribution to the triplet yield,
produced by some mechanism outside the normal radical pair reaction scheme. In
Sect. 4.4.3 we discussed four possible sources of this background contribution, but
none of them appear particularly plausible. Therefore, its origin remains an open
question.

In Chap.5 we applied the semiclassical theory to the problem of avian magne-
toreception.We began by reproducing the experimental results of Maeda et al. which
demonstrated that an Earth-strength magnetic field could influence the recombina-
tion of a carotenoid-porphyrin-fullerene radical pair. By including relaxation in a
phenomenological way, we were able to achieve quantitative agreement with experi-
ment at two different magnetic field strengths. Furthermore, we were able to examine
the effect of electron spin relaxation on the spin dynamics of the radical pair, and
found that both the rate and the origin of the relaxation play an important role.

We then turned our attention to the cryptochrome-based radical pair thought to be
responsible formagnetoreception inEuropean robins.We found that the anisotropy in
the singlet yield of the [FAD•− Trp•+

C ] recombination reaction was extremely small.
Indeed, we found an anisotropy far smaller than all previous estimates for this radical
pair [9, 21]. This difference is due to the fact that, by using the semiclassical theory,
we were able to include the electron spin coupling and all of the hyperfine interac-
tions in the radical pair in our simulations, whereas previous quantum mechanical
calculations have had to use simplified models of [FAD•− Trp•+

C ]. The absence of
a strong anisotropic response to an Earth-strength magnetic field casts doubt on the
plausibility of the [FAD•− Trp•+

C ] radical pair acting as a magentoreceptor, although
recent theoretical work has suggested that a much larger anisotropy in its singlet
yield is exhibited if the radical pair is longer-lived than has been previously thought.

Finally, in Chap.6 we considered the spin dynamics of the polaron pairs found
in the semiconducting polymer layer of organic light emitting diodes. These devices
exhibit both magnetoelectroluminescence (MEL), a change in the electrolumines-
cence intensity upon application of amagnetic field, andmagnetoconductance (MC),
a magnetic field dependence of their conductance.We derived a relationship between
these two properties and the singlet yield of the polaron pair recombination reaction,
and used it to infer the magnetic field effect on the singlet yield (MSY) from the
experimentally measured MEL and MC.

Examining the singlet yield of the polaronpair reaction in undeuterated anddeuter-
ated DOO-PPV revealed that the hyperfine interaction alone could not account for
the magnetic field dependence observed. We proposed that singlet-triplet dephas-
ing, which is the result of the modulation of the exchange interaction between the
two polarons, may also play a significant role in the spin dynamics of the polaron
pairs. When this dephasing was included in our Schulten-Wolynes calculations of
the singlet yield of the polaron pairs in DOO-PPV, the results showed good agree-
ment with experiment, apart from at the very lowest magnetic field strengths. The
results also indicated that although it seems likely that the polaron pair mechanism
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Fig. 7.1 On the left, the magnetic field effect on the experimentally measured absorption of the
carotenoid-porphyrin-fullerene radical pair introduced in Sect. 5.2 at a range of applied magnetic
field strengths, and on the right the field effect on the simulated survival probability of the radical
pair. Experimental data taken from Ref. [22]

plays a significant role in the magnetoconductance of DOO-PPV, it cannot be solely
responsible for the observed magnetic field dependence.

7.2 Further Work

7.2.1 Triphasic Magnetic Field Effects

In Sect. 5.2.2 we discussed the magnetic field effect on the transient absorption of the
carotenoid-porphyrin-fullerene radical pair, and the biphasic behaviour it exhibits.
More recent experiments [22] have shown that at certain magnetic field strengths
triphasic behaviour of the magnetic field effect is observed, as shown on the left of
Fig. 7.1. Using the semiclassical theory, we have been able to qualitatively reproduce
this effect on the simulated survival probability of the radical pair, shown on the
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Fig. 7.2 The probability of
finding the carotenoid-
porphyrin-fullerene radical
pair in a the |T+ 〉 state and
b the |T0 〉 state as a function
of time, at a range of applied
magnetic field strengths
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right of Fig. 7.1, albeit at slightly different magnetic field strengths. This difference
is primarily because we have neglected relaxation in these simulations, unlike in
Sect. 5.2. There are two reasons for this. Firstly, the relaxation rate will depend
on the applied field strength in way that is very hard to predict. As a result, we
would need to introduce two free parameters at every magnetic field strength to
describe the relaxation, which would not be reasonable. Secondly, we would like to
understand the origin of this triphasic behaviour, and interpreting the results produced
by the semiclassical theory becomes very difficult when relaxation is accounted for
phenomenologically, as discussed in Sect. 5.2.2. Therefore, we have not included it
in our simulations.

We found that the triphasic behaviour can be explained by examining the how the
probability of finding the radical pair in the |T0 〉, |T+ 〉, and |T− 〉 states changes
with the magnetic field strength. The magnetic field dependence of the probability of
being in the |T+ 〉 state, PT+, is shown in Fig. 7.2a, and is nearly identical to PT−, not
shown. This is relatively straightforward to understand – it is simply the high field
effect described in Sect. 1.3.1. As the magnetic field strength increases, the |T+ 〉 and
|T− 〉 states become increasingly separated in energy from the |S 〉 state the radical
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pair is formed in, and so the rate of |S 〉 → |T+ 〉 and |S 〉 → |T− 〉 interconversion is
reduced. As a result, the height of the maximum in PT+ and PT− seen at short times
decreases as the strength of the magnetic field increases, while at later times PT+ and
PT− increase with the magnetic field strength, because the backward |T+ 〉 → |S 〉
and |T− 〉 → |S 〉 transitions become less likely.

By contrast, Fig. 7.2b shows that the probability of being found in the |T0 〉 state at
short times is larger when a field is applied than in the absence of a field, although the
strength of the applied field does not seem to have an effect. This is a manifestation of
the low field effect described in Sect. 1.3.2. Applying a magnetic field does not affect
the energy of the |T0 〉 state, but does break the symmetry of the system and allow
more paths for interconversion between the |S 〉 and |T0 〉 states. This also results in
a smaller PT0 in the presence of a magnetic field at longer times, since |T0 〉 → |S 〉
back conversion is more likely.

Together, these observations explain the triphasic behaviour observed in Fig. 7.1.
At low fields, the LFE in PT0 dominates the survival probability, which is larger than
the survival probability in the absence of a field at short times and smaller at longer
times. The reverse is true at high fields, when the HFE in PT+ and PT− dominates.
Since the application of a magnetic field affects the different triplet states in different
ways, at intermediate fields there is competition between the two effects, resulting
in the triphasic behaviour observed. While including relaxation in our semiclassical
theory will certainly complicate this picture, we believe that even when relaxation is
accounted for this qualitative description will remain the same.

The semiclassical theory has given us a deep mechanistic insight into the spin
dynamics of this radical pair, and the origin of the low and high field effects. However,
the question of why the low field effect promotes |S 〉 ↔ |T0 〉 interconversion and
not conversion between the |S 〉 and |T± 〉 states still requires some further analysis
before this work can be written up for publication.2

7.2.2 Relaxation

The relaxation of the electron spins in a radical pair is extremely complicated to
describe, as it involves the coupling of the spin system to the nuclear motions of the
radical pair. The reasons for the difficulty in accounting for this system-environment
coupling in quantum mechanical simulations are outlined in Sect. 2.7.1. In the semi-
classical theory, it is relatively straightforward to include electron spin relaxation in
a crude, phenomenological way, as shown in Sect. 3.4. However, this approach may
not produce accurate results, and provides no information about the microscopic
origin of relaxation.

A newly developed method by Lindoy and Manolopoulos has aimed to incorpo-
rate themolecular motions of the radical pair directly into spin dynamics calculations

2Since this thesis was written this work has been completed and published in Journal of Chemical
Physics 149, 034103 (2018).
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Fig. 7.3 The magnetic field
effect on the survival
probability of the carotenoid-
porphyrin-fullerene radical
pair introduced in Sect. 5.2
tumbling around the long
axis of the carotenoid with a
range of different correlation
times, τC. Data reproduced
with permission from
Ref. [24]
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by explicitly simulating the nuclear motion of the radical pair and re-evaluating the
interactions which contribute to the spin Hamiltonian after each step [23, 24]. For
example, since rotating the radical pair changes the anisotropic dipolar components
of the hyperfine tensors, rotational motion modulates these hyperfine tensors, caus-
ing the spin Hamiltonian to become time-dependent and inducing relaxation of the
electron spins. This approach is extremely general: so far, the nuclear motion has
only been treated using a simple classical stochastic model [23, 24], but in principle
more sophisticated simulations of the nuclear dynamics could be coupled to the spin
dynamics.

This approach has been used to try to account for the relaxation of the carotenoid-
porphyrin-fullerene radical pair introduced in Sect. 5.2 by coupling the spin dynamics
of the radical pair to its rotational motion around the long axis of the carotenoid
[24]. The effect of a 49µT magnetic field on the survival probability of a C•+PF•−
radical pair tumbling with a range of rotational correlation times, τC, is shown in
Fig. 7.3. The signal produced in the fast tumbling limit (corresponding to a small τC)
differs significantly from that observed in the slow tumbling limit (large τC), and the
most efficient relaxation is observed at some intermediate tumbling rate, shown in
green. While including this source of relaxation does improve the agreement with
the experimental results shown in Fig. 5.4, accounting for the rotation around the
long axis alone is not sufficient to quantitatively reproduce the experiments. Clearly
a more detailed description of the nuclear motion is required.

It is clearer to see that coupling the rotational motion to the spin dynamics does
indeed result in the relaxation of the electron spins in Fig. 7.4, which shows the
probability of finding the carotenoid-porphyrin-fullerene radical pair in the singlet
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Fig. 7.4 The singlet
probability of the carotenoid-
porphyrin-fullerene radical
pair tumbling around the
long axis of the carotenoid
after 1.5µs as a function of
the rotational correlation
time. The equilibrium value
of PS is 1/4. In all cases the
statistical errors are smaller
than the sizes of the plotted
points. Data reproduced with
permission from Ref. [9]
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state 1.5µs after it is formed, in the absence of either an applied magnetic field or
any recombination of the radical pair. The effect of relaxation is always to cause
the singlet probability to tend towards its equilibrium value of 1/4. Therefore, the
closer the singlet probability is to this value after a certain amount of time, the more
efficiently relaxation is occurring. In this case, Fig. 7.4 shows that relaxation is fastest
when the rotational correlation time τC is between 10−7 s and 10−8 s−1, and becomes
less efficient in both the slow and fast tumbling limit. This type of behaviour is
expected when the rotational motion is Brownian, in which case the relaxation rate
is proportional to [25]

kR ∝ 2τC
1 + ω2

t τ
2
C

, (7.1)

where ωt is the transition frequency of the electron spin.
While this technique is still in its infancy, it has great potential. Firstly, rather than

coupling the molecular motions of the radical pair to a semiclassical simulation of
their spin dynamics, as has been done in this example, it is also possible to use an
exact quantum mechanical method in a Hilbert space formulation to treat the spin
dynamics of the radical pair, such as the method described in Sect. 2.5. This approach
to accounting for relaxation is far more efficient than existing quantum mechanical
techniques, which require calculations to be performed in Liouville space. Secondly,
there are significant advantages to describing relaxation by explicitly considering the
molecular motion of the radical pair, as information about these motions is typically
easier to obtain than the relaxation times themselves, and unlike T1 and T2 nuclear
motions are independent of the applied magnetic field. Alternatively, by taking the
parameters which describe the motion of the radical pair to be free and then fitting
the simulated results to experimental data, it may be possible to use this technique
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to deduce information about the molecular motions of a radical pair from its spin
dynamics.
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Appendix A
Wavepacket Propagation Techniques

Both the deterministic and stochastic quantum mechanical methods of evaluating
the ensemble average of an observable described in Chap.2 involve propagating a
number of wavefunctions to time t . This propagation is described by

|�; t〉 = e−i Ĥ t−K̂ t |�; 0〉, (A.1)

where Ĥ is the spin Hamiltonian and K̂ is the recombination operator. While there
exist a range of sophisticated techniques designed for solving equations of this form,

they must be slightly modified for use here because the operator
(
Ĥ − i K̂

)
is not

Hermitian. We will now briefly describe two methods which can be used to carry out
this propagation.

A.1 The Short Iterative Arnoldi Method

The Short Iterative Arnoldi (SIA) method [1, 2] is a generalisation of the Short
Iterative Lanczos method of solving the Schrödinger equation [3, 4] which allows for
non-Hermitian effective Hamiltonians Ĥ. It is based on the Taylor series expansion
of the propagator,

e−iĤδt =
∞∑
k=0

1

k!
(
−iδtĤ

)k
. (A.2)

By truncating this expansion when k = p − 1, we may write the wavefunction at
time t + δt as

|�; t + δt〉 =
p−1∑
k=0

1

k!
(
−iδtĤ

)k |�; t〉 + O
(
(δtĤ)p

)
|�; t〉. (A.3)
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Therefore, within an error ofO(δt p), |�; t + δt〉 may be written as linear combina-
tion of wavefunctions which form a p dimensional Hilbert space called the Krylov
subspace,

Kp ≡
{
|�; t〉, Ĥ|�; t〉, · · · , Ĥp−1, |�; t〉

}

≡ {|q0〉, |q1〉, · · · , |qp−1〉
}
,

(A.4)

with time dependent coefficients ck(t):

|�; t + δt〉 �
p−1∑
k=0

ck(t)|qk〉. (A.5)

In order to calculate the coefficients ck(t), we must find the matrix representation
A of the effective Hamiltonian Ĥ in the basis of orthogonal Krylov vectors, whose
elements are defined by

A j,k = 〈q j |Ĥ|qk〉. (A.6)

The Arnoldi algorithm outlined in Algorithm 1 is used to construct both the Krylov
subspaceKp and the representation of the effective Hamiltonian in that basis, A. The
time propagation during the interval τ < δt is then described by

c(t + τ ) = e−iAτ c(t), (A.7)

where c(t) is the p-dimensional vector of the coefficients ck(t). Since p is chosen
to be far smaller than the size of the Hilbert space, the propagation between times t
and t + δt is inexpensive.

Algorithm 1 Arnoldi’s algorithm, adapted from Ref. [2].
|q0〉 ← |�; t〉/√〈�; t |�; t〉
for k = 0 to p − 1, do

|p〉 ← Ĥ|qk〉
for j = 0 to k, do

A j,k ← 〈qk |p〉
|p〉 ← |p〉 − A j,k |q j 〉

end for
if k < p − 1 then

Ak+1,k ← √〈p|p〉
|qk+1〉 ← |p〉/Ak+1,k

end if
end for

This approximation to the wavefunction will remain accurate provided that the
action of Ĥ on |�; t + τ 〉 is accurately described by a linear combination of the
Krylov states. Since Ĥ|qk〉 is anotherKrylov state for all k except k = p − 1, this con-
dition will be satisfied as long as cp−1(t) is small compared to the norm of the vector
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of coefficients, |c|. Once cp−1(t)/|c| reaches some cut-off ε, a new Krylov subspace
is generated and the processes is restarted. Hence by reducing ε, this method allows

the propagation of wavefunctions under the effective Hamiltonian Ĥ =
(
Ĥ − i K̂

)

with arbitrary precision.

A.2 The Split Operator/Symplectic Integrator Method

The split operator approach is based on an alternative expansion of the propagator.
In this case, the propagator is approximately factorised into a product of exponen-
tials [5],

e−i Ĥδt−wK̂ δt ≈ e−K̂ δt/2e−i Ĥδt e−K̂ δt/2, (A.8)

where e−i Ĥδt is a unitary, Hermitian propagator which describes the spin evolution
of the radical pair, and e−K̂ δt/2 is a non-unitary propagator which describes the
recombination of the radical pair. Since Ĥ and K̂ do not in general commute, this
approximation is only accurate toO(δt3). The action of the two separate propagators
on a wavefunction is much more straightforward to evaluate than that of the exact
propagator, as we shall now demonstrate.

The Haberkorn recombination operator K̂ is defined in Sect. 2.2.1 as [6]

K̂ = kS
2
P̂S + kT

2
P̂T. (A.9)

Using this definition of K̂ , we may write

e−K̂ δt/2 = e−kS P̂Sδt/4e−kT P̂Tδt/4, (A.10)

since P̂S + P̂T = 1̂ and so P̂S and P̂T commute. A projection operator must be idem-
potent (P̂2 = P̂)[7], and so the exponential of a projection operatormay be expressed
as

eβ P̂ =
∞∑
k=0

(β P̂)k

k!

= 1̂ + P̂
∞∑
k=1

βk

k!
= 1̂ + P̂

(
eβ − 1

) = P̂eβ +
(
1̂ − P̂

)
.

(A.11)

Using these results, and the fact that P̂S P̂T = P̂S(1̂ − P̂S) = 0, the non-unitary prop-
agator becomes

https://doi.org/10.1007/978-3-030-00686-0_2
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e−K̂ δt/2 = e−kS P̂Sδt/4e−kT P̂Tδt/4

=
[
P̂Se

−kSδt/4 +
(
1̂ − P̂S

)] [
P̂Te

−kTδt/4 +
(
1̂ − P̂T

)]

=
[
P̂Se

−kSδt/4 + P̂T
] [

P̂Te
−kTδt/4 + P̂S

]

= P̂S P̂T
(
e−(kS+kT)δt/4 + 1

) + P̂2
S e

−kSδt/4 + P̂2
Te

−kTδt/4

= P̂S e
−kSδt/4 + P̂T e

−kTδt/4.

(A.12)

The projection operators P̂S and P̂T are diagonal in the coupled basis of the electron
spins used in Chap.2, and so the action of the non-unitary propagator e−K̂ δt/2 on a
state represented in this basis is straightforward to calculate exactly.

Calculating the action of the unitary propagator e−i Ĥδt on a state |�; t〉 is equiv-
alent to solving the Schrödinger equation,

i
d

dt
|�; t〉 = Ĥ |�; t〉. (A.13)

We chose to use a symplectic integrator to do this [8-11]. In this approach, the
wavefunction is expanded in a basis {|φk〉} in which the Hamiltonian is real and
symmetric,1

|�; t〉 =
∑
k

ak(t)|φk〉. (A.14)

ak(t) is a complex time dependent coefficient, which may be written in terms of its
real and imaginary parts, ak(t) = qk(t) + i pk(t). We may define

|p; t〉 =
∑
k

pk(t)|φk〉,

|q; t〉 =
∑
k

qk(t)|φk〉,
(A.15)

so that
|�; t〉 = |q; t〉 + i |p; t〉. (A.16)

Inserting this definition of |�; t〉 into the Schrödinger equation in Eq. (A.13) and
equating the complex and real coefficients gives

1It is also possible to treat complex and time-dependent Hamiltonians using a symplectic integrator
with a modified version of the following argument, as shown in Ref. [8].

https://doi.org/10.1007/978-3-030-00686-0_2
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d

dt
qk(t) =

∑
j

Hk j p j (t),

d

dt
pk(t) = −

∑
j

Hk jq j (t),
(A.17)

where Hkj = 〈φk |Ĥ |φ j 〉. Defining a classical Hamiltonian

HC(t) =
∑
j,k

Hjk
(
p j (t)pk(t) + q j (t)qk(t)

)
, (A.18)

the equations in Eq. (A.17) can be rewritten as Hamilton’s classical equations of
motion,

d

dt
qk(t) = ∂HC

∂ pk
,

d

dt
pk(t) = −∂HC

∂qk
,

(A.19)

These classical equations of motion may be solved by an mth order symplectic
integration scheme, given in Algorithm 2, which is accurate to O(δtm). Hence by
splitting the propagator into a unitary and non-unitary part and using a symplectic
integrator to perform the unitary propagation of the wavefunction, we can efficiently
and accurately solve Eq. (A.1).

Algorithm 2 A Symplectic Integrator algorithm, adapted from Ref. [8]. The real
coefficients a j and b j are given in Ref. [8] for integrators of various different values
of m.

|q〉 ← |q; t〉
|p〉 ← |p; t〉
for j = 1 to m, do

|p〉 ← |p〉 − b j δt Ĥ |q〉
|q〉 ← |q〉 + a j δt Ĥ |p〉

end for
|q; t + δt〉 ← |q〉
|p; t + δt〉 ← |p〉
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Appendix B
Rotationally Averaged Dipolar Coupling

In order to see the effect of tumbling in solution upon the dipolar coupling, it is
helpful to write out the coupling matrix D explicitly in spherical coordinates:

D = D

⎛
⎝
1 − 3 sin2 θ cos2 φ 3 sin2 θ cosφ sin φ 3 sin θ cos θ cosφ
3 sin2 θ cosφ sin φ 1 − 3 sin2 θ sin2 φ 3 sin θ cos θ sin φ
3 sin θ cos θ cosφ 3 sin θ cos θ sin φ 1 − 3 cos2 θ

⎞
⎠ . (B.1)

To average over all relative orientations of the two electrons spins, we must evaluate

∫ π

0
sin θdθ

∫ 2π

0
dφ D =

(∫ π

0
sin θdθ

∫ 2π

0
dφ di j

)
. (B.2)

Noting that

∫ 2π

0
sin φ dφ =

∫ 2π

0
cosφ dφ =

∫ 2π

0
sin φ cosφ dφ = 0, (B.3)

it is immediately apparent that the off-diagonal elements of this matrix equal zero.
Then, using the results

∫ π

0
sin θ dθ = 2,

∫ π

0
sin2 θ dθ = 4

3
,

∫ π

0
cos2 θ dθ = 2

3∫ 2π

0
dφ = 2π,

∫ 2π

0
sin2 φ dφ =

∫ 2π

0
cos2 φ dφ = π,

(B.4)

the diagonal elements can also be shown to equal zero. Therefore, when the relative
orientations of the electrons are changing rapidly, as is the case for a radical pair
tumbling in solution, the dipolar coupling averages to zero.
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Appendix C
Generalising the Semiclassical Equations
of Motion

The coupling between the two electron spins in a radical pair is described by the term
Ŝ1 · D′ · Ŝ2 in the spin Hamiltonian in Eq. (2.1), where D′ is a tensor which accounts
for both the dipolar and exchange coupling between the two electrons, as defined
in Sect. 2.1.1. For simplicity, this was neglected when we derived our semiclassical
equations of motion in Sect. 3.1. When it is included, the following additional terms
appear in the semiclassical equations of motion in Eqs. (3.4)–(3.6):

d

dt
S1 = · · · + D′ × T12, (C.1)

d

dt
S2 = · · · − D′ × T12, (C.2)

d

dt
T12 = · · · − S1 × D′ − D′ × S2. (C.3)

In Eqs. (C.1) and (C.2), D′ × T12 denotes the sum of the vector products of each
column ofD′ with the corresponding column ofT12, and in Eq. (C.3) S1 × D′ denotes
the vector product of S1 with each column of D′, and D′ × S2 denotes the vector
product of each row of D′ with S2.

In Sect. 3.1 we also assumed that the hyperfine interactions between the electron
andnuclear spinswere isotropic. Ifwe remove this assumption, the effectivemagnetic
field about which the electron spin in radical i precesses is

ω̄i = ωi +
Ni∑
k=1

A′
ik · Iik, (C.4)

where A′
ik is the hyperfine coupling tensor which accounts for both the Fermi contact

interaction and the dipolar coupling between the kth nuclear spin and the electron in
radical i , as defined in Sect. 2.1.4. The original equations of motion for the nuclear
spins in Eq. (3.3), which were derived from the Heisenberg equation of motion, are
replaced by
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d

dt
Iik = (

A′
ik · Si

) × Iik − k̄ Iik + 4�k tr[T12]Iik, (C.5)

and the modified equations of motion for the nuclear spins in Eq. (3.24) become

d

dt
Iik =

√
Si (Si + 1)

|Si |
(
A′

ik · Si
) × Iik . (C.6)

The equations of motion of the classical spin variables evolving under the full
Hamiltonian in Eq. (2.1) can alternatively be written in tensor notation, using the
Einstein summation convention for the Greek (Cartesian component) indices:

d

dt
S(1)

α = εαβγ

(
ω(1)

β S(1)
γ + D′

βδTγδ

)
− k̄ S(1)

α + �kS(2)
α , (C.7)

d

dt
S(2)

α = εαβγ

(
ω(2)

β S(2)
γ + D′

δβTδγ

)
− k̄ S(2)

α + �kS(1)
α , (C.8)

d

dt
Tαβ = εαγδ

(
ω(1)

γ Tδβ − 1

4
S(1)

γ D′
δβ

)
+ εβγδ

(
ω(2)

γ Tαδ − 1

4
S(2)

γ D′
αδ

)
−

k̄Tαβ + �kTβα + �kδαβ

(
1

4
1̄ − Tγγ

)
,

(C.9)

d

dt
1̄ = −k̄1̄ + 4�kTαα. (C.10)

Here εαγδ is the alternating tensor, δαβ is the Kronecker delta, S(i)
α is theα component

of Si , Tαβ is the classical variable corresponding to the quantummechanical operator
Ŝ(1)

α Ŝ(2)
β , k̄ and �k are still defined by Eqs. (3.8) and (3.9) respectively, and

ω(i)
α = −γi Bα +

Ni∑
k=1

A′(ik)
αβ I (ik)

β , (C.11)

where γi is the gyromagnetic ratio of the electron in radical i , and Bα is the α
component of the applied magnetic field B. The original equations of motion for the
nuclear spins in Eq. (C.5) are written as

d

dt
I (ik)
α = εαβγ A′(ik)

βδ S(i)
δ I (ik)

γ + (
4�kTββ − k̄

)
I (ik)
α (C.12)

in tensor notation, while our modified equations of motion in Eq. (C.6) become

d

dt
I (ik)
α =

√
Si (Si + 1)

|Si | εαβγ A′(ik)
βδ S(i)

δ I (ik)
γ . (C.13)

In Sect. 3.1 we showed numerically that the equations of motion in Eqs. (3.4)–
(3.7) are exact in the limit of a radical pair with no nuclear spins. This remains true
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Fig. C.1 Comparison of the
quantum mechanical (QM)
and semiclassical (SC)
singlet and triplet
probabilities of a radical pair
with ω̄1 = ω1 = (0, 0, 1),
ω̄2 = ω2 =
−(

√
1/2,

√
1/3,

√
1/5),

kS = √
1/7, and

kT = √
1/11. The electron

spin coupling tensor D′ is
defined in Eq. (C.14)
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when the coupling between the two electron spins in the radical pair is accounted
for. This is demonstrated by Fig.C.1, which shows the singlet and triplet probability
of a radical pair with no nuclear spins, asymmetric recombination rates, ω1 �= ω2,
and an anisotropic electron spin coupling tensor

D′ =
⎛
⎝

−0.9999847 −0.7369246 0.5112104
−0.7369246 −0.0826997 0.0655341
0.5112104 0.0655341 −0.5620818

⎞
⎠ . (C.14)

Figure C.1 is entirely analogous to Fig. 3.1, and shows that when the terms in
Eqs. (C.1)–(C.3) are added to Eqs. (3.4)–(3.6), the equations of motion remain exact
in the limit of no nuclear spins. Note that when the electron spin coupling tensor
is non-zero, Eqs. (C.1)–(C.3) couple the equations of motion of the one- and two-
electron classical spin variables, and so the singlet and triplet probabilities depend
on all 16 classical variables.

https://doi.org/10.1007/978-3-030-00686-0_3
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Appendix D
Schulten–Wolynes Expressions

The closed form expression for the ensemble average of the singlet probability of a
singlet-born radical pair within Schulten–Wolynes theory is [1]

PS(t) = 1

4
+ 1

4τ31 τ32ω6

[{
τ1ω

(
τ21ω2 + 4e−t2/τ21 cosωt − 4

)
+ 2

√
πe−τ21 ω2/4y(τ1)

}
×

{
τ2ω

(
τ22ω2 + 4e−t2/τ22 cosωt − 4

)
+ 2

√
πe−τ22 ω2/4y(τ2)

}]
+

1

2τ21 τ22ω4

[
e−t/τ21 e−t/τ22

{
2ωt cosωt +

(
τ21ω2 − 2

)
sinωt

}
×

{
2ωt cosωt +

(
τ22ω2 − 2

)
sinωt

}]
+

1

2τ21 τ22ω4

[{
z(τ1) − √

πe−τ21 ω2/4y(τ1)
}

×
{
z(τ2) − √

πe−τ22 ω2/4y(τ2)
}]

,

(D.1)
where

y(x) = −ierf

(
t

x
− i xω

2

)
+ ierf

(
t

x
+ i xω

2

)
− 2ierf

(
i xω

2

)
,

z(x) = xω

(
e−t2/x2

((
x2ω2 − 2

)
cosωt − 2ωt sinωt

) + 2

)
.

(D.2)

The Schulten–Wolynes approximations to the xx , xy, and zz components of the
spin correlation tensor are [2]
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R(i)
xx (t) = 1

2ω2τ2i

[
e−t2/τ2i

(
(ω2τ2i − 2) cosωt − 2ωt sinωt

)
+ 2 −

√
π

ωτi
e−ω2τ2i /4y(τi )

]
,

R(i)
xy (t) = e−t2/τ2i

2ω2τ2i

[
2ωt cosωt +

(
τ2i ω2 − 2

)
sinωt

]
,

R(i)
zz (t) = 1

2ω2τ2i

[ (
ω2τ2i + 4e−t2/τ2i cosωt − 4

)
+ 2

√
π

ωτi
e−ω2τ2i /4y(τi )

]
.

(D.3)
When the hyperfine interactions in a radical pair are isotropic, these are the only
components which need to be specified, since

R(i)
xx (t) = R(i)

yy (t),

R(i)
xy (t) = −R(i)

yx (t),

R(i)
xz (t) =R(i)

zx (t) = R(i)
yz (t) = R(i)

zy (t) = 0.

(D.4)

In Eqs. (D.1) and (D.3), τi describes the distribution of the resultant of the nuclear
spin vectors, and is defined in Eq. (3.29), ω = −γe B is Larmor frequency of the
electrons in the radical pair, and erf(x) is the error function,

erf(x) = 2√
π

∫ x

0
e−y2dy. (D.5)
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Appendix E
The Hyperfine Interactions of the Cryptochrome
Radical Pair

In Tables E.1 and E.2 we list the anisotropic hyperfine coupling tensors of the flavin
adenide nucleotide radical (FAD•−) and tryptophan radical (Trp•+

C ) respectively.
These form the cryptochrome-based radical pair described in Sect. 5.1.2 thought to
be responsible for avian magnetoreception. The hyperfine tensors were calculated
using B3LYP density functional theory[1, 2] and the EPR-II basis set [3]. FiguresE.1
and E.2 show positions of the magnetic nuclei in the FAD and TrpC radical which
correspond to the hyperfine coupling tensors listed in Tables E.1 and E.2.

Fig. E.1 The FAD cofactor
found in cryptochrome with
the magnetic nuclei labelled

Fig. E.2 The TrpC residue
found in cryptochrome with
the magnetic nuclei labelled
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