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Chapter 1
Introduction

Buildings are the major structures that are exposed to damage when earthquakes are
triggered. This damage can cause losses including lives and properties. In past
earthquake events, such as the Kobe earthquake in 1995, the Aceh earthquake in
2004, and the Kashmir earthquake in 2005, buildings and infrastructures were
severely damaged and collapsed (Petal et al. 2008). During these events, the worst
damages were often recorded in cities. For example, many people were killed by
falling building debris. Therefore, building damage is the main source of seismic
losses during earthquakes.

To solve this problem, fragility curves were introduced by researchers to serve as
one of main tool in assessing damage and loss during earthquakes. In general, the
curves are generated from real earthquake damage data to estimate or predict
whether the damage meets or exceeds a certain performance level for a given set of
ground motion parameters. In addition, the curves can be applied to predict both
pre- and post-earthquake situations. These curves are unique because every building
has specific fragility analysis (Hancilar et al. 2014).

Previous studies have reported different methodologies used to develop fragility
curves. The upcoming sections provide a comprehensive review of these method-
ologies and the importance of the fragility curves. These sections focus on the
seismic fragility assessment of buildings. Based on prior investigations, these
sections present the significant elements that influence building vulnerability; it also
aims to briefly discuss the fragility background, introduce the method, and sum-
marize the existing methodologies.

The purpose of this book is to develop fragility curves for regular and irregular
frames based on concrete (MRCF) and steel frames (MRSF) for low-, mid-, and
high-rise. These frames were designed based on Eurocode 2, Eurocode 3, and
Eurocode 8. The pushover analysis (POA) and incremental dynamic analysis
(IDA) were performed by using the SAP2000 software. For the dynamic analysis,
three sets of near-field (NF) and far-field (FF) ground motion records were used.

© The Author(s) 2018
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to Earthquake Excitation, SpringerBriefs in Computational Mechanics,
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Chapter 2
Fragility Curves

2.1 Historical Background

Many previous studies, such as those of Kiremidjian (1992), Kumitani and Takada
(2004), Akkar et al. (2005), Frankie et al. (2012), Bakhshi and Asadi (2013),
Modica and Stafford (2014), Silva et al. (2014), Pragalath et al. (2015), Cutfield
et al. (2016), and Joy et al. (2016), present a brief historical background of fragility
curve. In these book, fragility curves are defined as the probability of reaching or
exceeding a specific damage state under earthquake excitation.

The general equation to develop fragility or conditional probability is expressed
by Billah and Alam (2014)

Fragility ¼ P LSjIM ¼ y½ �; ð2:1Þ

where,

LS is the limit state or damage state (DS),
IM is the intensity measure (ground motion), and
Y is the realized condition of ground motion IM.

Various equations were derived from previous research (Table 2.1). However,
all the equations are based on Eq. (2.1), which is a general equation for generating a
fragility curve.

Although most of these studies used different equations to generate their versions
of the seismic fragility curves (Table 2.1), most researchers such as Yamaguchi and
Yamazaki (2000), Kirçil and Polat (2006), and Ibrahim and El-Shami (2011) used
Eq. (2.2) in their studies. This equation is the simplest one in the group. Yamaguchi
and Yamazaki (2000) tested Eq. (2.2) for different types of structures and found it
to be suitable for use in all structural types. This equation is given below:

© The Author(s) 2018
F. M. Nazri, Seismic Fragility Assessment for Buildings due
to Earthquake Excitation, SpringerBriefs in Computational Mechanics,
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P xð Þ ¼ U
ln X � k

1

� 	
ð2:2Þ

where,

U �½ � is the standardize normal distribution,
k is the mean of ln x, and
1 is the standard deviation of ln x.

The fragility curves are established to provide a prediction of potential damage
during an earthquake. These curves represent the seismic risk assessment and are
used as an indicator to identify the physical damage in the strongest mainshock.
Apart from the mainshock, probability aftershock must also be investigated to
decide whether or when to permit re-occupancy of a building. The fragility function
is also directly used to reduce damage cost and loss of life during a seismic event.
Therefore, fragility curves can be used as a decision-making tool for both pre- and
post-earthquake situations. Moreover, these curves may help develop future local
code provisions.

Two main components in the probabilistic seismic risk assessment have been
identified. These components include information about ground motion hazard on
the location of structure and fragility knowledge with respect to the intensity of the
ground motion. Polese et al. (2014) stated four important factors available for a
large database, which include the number of storeys, age of construction, regularity
(in plan, elevation, and in-fill), and position of building in the block. Silva et al.
(2014) proposed vulnerability curves using the HAZUS tool (HAZUS 1999) for
risk assessment. The curves were created specifically for buildings in the US.

2.2 Structural Types

Fragility curves were discussed based on three types of structures, namely, steel,
reinforced concrete, and timber. Most studies covered steel and reinforced concrete
structures. However, less research has been conducted on timber structure. Many
studies developed fragility curves for infrastructures, including those of Shinozuka
et al. (2000), Alessandri et al. (2011), Billah and Alam (2014), and Siqueira et al.
(2014). However, the fragility curves for buildings are categorized into three types.
These types are low-, mid-, and high-rise buildings based on the number of storeys
(Table 2.2).

The important factors of vulnerability, which are also available for large data-
bases, include a number of storeys, age of construction, regularity in plan and
elevation, infill regularity, and building position in the block (Polese et al. 2014).
Thus, classifying buildings is one of the significant factors that must be considered
in developing fragility curve. Differences in materials, height, and number of bays
also result in different shapes of vulnerability curves. Researchers from different

10 2 Fragility Curves



countries have developed their respective versions of the curve. Table 2.3 shows
the synopsis of fragility analysis performed by several researchers.

2.3 Earthquake Records

Ground motion records play the main role in establishing fragility curves. Selecting
an appropriate ground motion and scaling the ground motions are very important in
generating this curve. If the ground motion is randomly scaled up to a specific
spectral acceleration, Sa, at a period, T, over conservative structural response may
occur (Baker et al. 2014).

A few parameters must be considered in selecting ground motion, including
event magnitude, peak ground acceleration (PGA), distance between epicenter/
source and affected area, and soil type (Nazri and Alexander 2012). In addition,
ground motion characteristics must be considered to obtain accurate prediction and
to minimize the dispersion of the analytical behavior of buildings. Ground motion
characteristics that must be considered include, ground motion intensity, spectral
shape, duration, frequency content, near-fault, amplitude, and number of cycles
(Ibrahim and El-Shami 2011; Ruiz-García and Negrete-Manriquez 2011; Song et al.
2014).

The selected ground motion must come from previously recorded earthquake
events. Ground motion can be selected from certain websites, such as Pacific
Earthquake Engineering Research (PEER) NGA database website, Consortium of
Organization for Strong Motion Observation System, or K-NET. Silva et al. (2014)
list other websites where ground motion records can be obtained, including the
European Strong Motion database, the French Accelerometric Network, and the
Swiss Earthquake Database.

The suitable number of ground motions depends on the application and struc-
tural response prediction. Two types of ground motions are considered as fore-
shocks: near-field site and far-field site. Researchers discuss a few important factors
in selecting ground motion. For far-field site, the important factors include spectral
shape over the period range of interest, magnitude, site-to-source distance, and
hazard curve at a period, T. Meanwhile, for near-field site, the factors to be

Table 2.2 Classification of Building by Number of Storeys

Authors Building Classification

Low-rise Mid-rise High-rise

Number of storeys

Singhal and Kiremidjian (1996), Akkar et al. (2005),
Uma et al. (2011)

1–3 4–7 8 and up

Modica and Stafford (2014), Silva et al. (2014a) 1–3 4–6 7 and up

Hancilar et al. (2014) 1–4 5–8 9 and up

2.2 Structural Types 11



Table 2.3 Summary from Prior Studied

Authors Highlight Type of structure Number
of storeys

Number
of bays

Hwang and
Jaw (1990)

Show a simplified analytical
method to develop fragility
curve and give an overview
about fragility background

Shear wall 5 –

Seya et al.
(1993)

Generate fragility curve for
steel frame

MRSF 5 3

Holmes
(1996)

Show a general step and
provide information about
fragility curve

– – –

Singhal and
Kiremidjian
(1996)

Use nonlinear history
analysis to generate fragility
curve

MRCF 2, 5, 12 5

Kircher et al.
(1997)

Describe general
information about damage,
methods to estimate
probability on both
structural and nonstructural
parts developed for the
FEMA/NIBS

– – –

Yamaguchi
and
Yamazaki
(2000)

Five different types of
materials, namely,
wood-frame,
wooden-fabricated,
reinforced concrete (RC),
steel-frame, and light-gauge
steel-prefabricated, were
tested to develop fragility
curve based on Kobe
earthquake in 1995

Frame – –

Lee and
Rosowsky
(2006)

Develop an appropriate
percentage of design snow
loads for fragility seismic
assessment

Shear wall
(wood-frame)

1 and 2 1

Ibrahim and
El-Shami
(2011)

Discuss the method to
develop fragility curve for
low- and mid-rise concrete
frame

MRCF 3 and 8 3

Uma et al.
(2011)

Present the different
parameters in the structural
model and their impact on
vulnerability risk
assessment for mainshock
and aftershock records.
Typical building model in
New Zealand and the
United States was generic
for this study

MRCF 5 –

(continued)
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Table 2.3 (continued)

Authors Highlight Type of structure Number
of storeys

Number
of bays

Jeon et al.
(2012)

Evaluate the seismic
cumulative damage
potential of non-ductile
reinforced concrete and
their performance and
increase the vulnerability
after multiple earthquakes

MRCF 3 3

Sudret et al.
(2013)

Generate seismic
vulnerability curve by using
polynomial chaos
expansions for steel frame

MRSF 3 3

Goda and
Salami
(2014)

Study the impact of
aftershock on seismic
vulnerability of
conventional timber frame
houses by using a set of real
mainshock and aftershock
earthquake records

Timber frame 2 1

Kumar et al.
(2014)

Propose a simple
methodology to assess the
probabilistic seismic
damage of RC buildings by
using nonlinear pushover
analysis

MRCF 4 1

Farsangi
et al. (2014)

Develop fragility curve and
estimate mean annual
seismic loss for MRSF in
the Middle East area

MRSF 2 2

Ebrahimian
et al. (2014)

Develop vulnerability curve
and investigate adaptive
aftershock risk assessment
in terms of daily limit state
first-excursion probabilities.
In this study, cloud analysis
was implemented to
develop the fragility curve

MRCF 3 2

Jalayer et al.
(2014)

Introduce Bayesian cloud
analysis in the fragility
curve. Then, this analysis
was compared with IDA
analysis

MRCF 4 4

Shin et al.
(2014)

Propose a methodology to
assess the effectiveness of
retrofitting with buckling
resistance brace

MRCF 5 2

Silva et al.
(2014a)

Develop fragility curve for
Portuguese RC building

MRCF – 3

(continued)
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Table 2.3 (continued)

Authors Highlight Type of structure Number
of storeys

Number
of bays

Barbat et al.
(2014)

Develop fragility curve and
investigate the seismic
damage in RC in terms of
probability by using Monte
Carlo

MRCF 8 6

Silva et al.
(2014b)

Estimate the nonlinear
response of building by
using static and dynamic
procedure and investigate
the effectiveness of the
capacity, fragility, and risk

MRCF 4 3

Hancilar
et al. (2014)

Assess and develop a
probabilistic curve for a
public school in Istanbul

MRCF 4 11

Li et al.
(2014)

Study the collapse
probability mainshock
damage to steel building in
aftershock

MRSF 4 4

Aiswarya and
Mohan
(2014)

Develop fragility curve for
flat slab structure and
evaluate the seismic
vulnerability. Then,
determine a method to
improve the seismic
performance. Unretrofitted
and retrofitted structure
fragility curves were
compared for an office
located in Mid-American
region

Reinforced
concrete flat slab
building

5 4

Pragalath
et al. (2015)

Propose two techniques to
develop seismic fragility
curve based on time history
analysis and IDA. Both
methods have different
assumptions and
methodologies

MRCF 4 4

Banihashemi
et al. (2015)

A newly developed
performance-based plastic
design (PBPD)
methodology was applied to
steel special concentric
braced frames.
Reliability-based
assessment based on FEMA
351 indicated that PBPD
frames have much higher

Steel
concentrically
braced frames
(SCBF)

6, 9 1

(continued)
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Table 2.3 (continued)

Authors Highlight Type of structure Number
of storeys

Number
of bays

confidence levels against
global collapse than those
of corresponding SCBFs
designed by current seismic
codes and the results are
proved by the seismic
fragility curves of model
frames

Wijayanti
et al. (2016)

Seismic vulnerability
assessment for Indonesian
reinforced concrete frame
building with steel truss
roof by using fragility curve

MRCF 4 –

Akhavan
et al. (2016)

The seismic response of
2-D MRSF buildings
incorporating soft storey is
evaluated. The fragility
curves for different
placement of soft storey in
the first, middle, and top
floor for 4, 8 and 16-storey
buildings are developed and
compared

MRSF 4, 8, 16 3

Lin et al.
(2017)

Seismic and progressive
collapse designs for RC
frames are performed
independently according to
the corresponding design
codes. Fragility curves are
used to assess the seismic
and progressive collapse
resistance

MRCF 6 4

McCrum
et al. (2016)

Demonstrates the
development of fragility
curves at different damage
states using a detailed
mechanical model of an
MRCF structure typical of
Southern Europe. The
mechanical model consists
of a complex 3-DFEM of
the MRCF structure and is
used to define the damage
states through pushover
analysis

MRCF 3 1

(continued)
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considered include spectral shape and the possible presence of velocity pulses.
Table 2.4 presents an overview of recommendations for selecting and scaling
ground motion (Haselton et al. 2012).

Apart from obtaining data from the aforementioned databases, ground motion
records can also be generated based on the equation. For example, Sudret et al.
(2014) generated ground motion records from several equations. The procedure to
simulate synthetic ground motion is briefly explained because stimulating synthetic
ground motion usually takes too long. In their study, they concluded there are three
temporal parameters, three spectral parameters, and a standard Gaussian random
vector of size that must be considered to generate a seismic model. Compared with
synthetic ground motion, real accelerograms are more widely used as ground
motion records and then scaled to cover the range of ground motion level that might
occur (Ay and Akkar 2014).

Reasenberg and John (2005) reported that earthquakes occur in clusters, that is,
when one earthquake strikes, another earthquake will occur in the nearby locations.
According to Uhrhammer (1986), events that only occur in a zone approximately
parallel to the fault rupture or surround the main events are considered foreshocks
or aftershocks. In an earthquake event, the magnitude can be classified into three
terms, namely, foreshock, mainshock, and aftershock. The largest magnitude is
called mainshock, whereas the earthquakes that occur before and after the main-
shock are called foreshock and aftershock, respectively. However, mainshocks are
often redefined as foreshock if a subsequent earthquake in a cluster has a larger
magnitude.

Table 2.3 (continued)

Authors Highlight Type of structure Number
of storeys

Number
of bays

Pejovic and
Jankovic
(2016)

Seismic fragility assessment
of RC high-rise buildings
for seismic excitation,
typical for Southern
Euro-Mediterranean zone.
20-, 30-, and 40-storey RC
high-rise buildings with
core wall structural system
were chosen. Since no
probabilistic fragility curves
exist for this class of
buildings and for this
seismic zone, this work
partially fills the void in
Southern
Euro-Mediterranean seismic
risk assessment

MRCF (high-rise
building with
core wall
structural
system)

20, 30, 40 –
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Table 2.4 Recommendations for ground motions selecting and scaling modified from Haselton
et al. (2012)

Steps for
response
history
analysis

Design/assessment method

ASCE7-05 ASCE-10 LATBSDG PEER TBI

Ground
motion
selection

– – – –

Number of
motions

� 7 (or 3) pairs � 7 pairs

Types of
motion

Recorded and/or simulated Record or simulated
(ref to ASCE7-05)

Recorded and/
or simulated

Other None Appropriate num. of
motion with
directivity effects

Directivity if
needed

Scaling/
modification
of motions to
match target
spectrum

– – – –

General
approach

Scaling (spectral matching not
mentioned)

Scaling or spectral matching

Specific
instructions
for far-field
sites

SRSS is
above target
1.17 � target
spectrum

SRSS is
above target
spectrum

SRSS is above
target 1.17 � target
spectrum (ref to
ASCE7-05)

Match records
to the target
spectrum

Specific
instructions
for near-field
sites

None Average of
FN is above
target

None (ref to
ASCE7-05)

None

Period range
for matching

0.2–1.5 T 0.2–1.5 T (ref to
ASCE7-05)

Not specified

Application of
ground
motions to
structural
model

– – – –

Far-field sites Apply only horizontal motions
together; no rules for
orientation

Orient motions
randomly; no need
for multiple
orientations of GMs

Apply along
principle
directions if
directivity
effects
dominate

Near-field
sites

No rules for
orientation

Apply in
FN/FP
direction if
site >5 km
from fault

Apply in FN and FP
directions

Apply in FN
and FP
directions if
directivity
effects
dominate

SRSS—Square-Root-Sum-of Squares Spectrum (Ground motion scaling ground motion method)
FN—Fault Normal
FP—Fault Parallel

2.3 Earthquake Records 17



Most prior research used mainshock records as inputs in their seismic risk
assessment. For example, Farsangi et al. (2014) evaluated the seismic vulnerability
of moment-resisting steel frame (MRSF) using mainshock ground motion records.
They explicitly explained the whole process starting from selecting ground motion
records from the PEER website. Seven sets of ground motions were used and the
basic characteristics of earthquakes, such as strikes and frequencies, were consid-
ered in the selection. Then, the records were scaled to the elastic response spectrum
with 5% damping.

Wells and Coppersmith (1994) explained that aftershocks can occur within a few
hours to a few days after the mainshock. The fault produces most of the aftershocks
when the stress on the mainshock fault changes drastically during the mainshock.
These earthquakes can be regarded as aftershocks if they are located within a
characteristic distance from the mainshock. This distance usually takes one or two
times the length of the fault rupture associated with the mainshock.

In a recent study, aftershock records have been considered in developing the
fragility curve. Such aftershock has big potential to induce massive damages and
losses. Several aftershock events have been recorded, such as the Chi-Chi earth-
quake in Taiwan. During this time, a gas station survived the mainshock and then
collapsed during the aftershock. Therefore, aftershock events must also be con-
sidered in seismic risk assessment.

The methods for selecting and scaling ground motions have been investigated by
several researchers (Haselton et al. 2012; Ay and Akkar 2014; Wang and Rosowsky
2014). Haselton et al. (2012) highlighted the best method for selecting and scaling
ground motions. They reported that these tasks depend on three types of assess-
ments, namely, intensity-, scenario-, and risk-based (time-based) assessments in
ATC-58-1. Of these, the most commonly used is the intensity-based assessment.
For selecting and scaling ground motions, proper methods are based on structural
response parameter(s) of interest, and either record-to-record variability in structural
response or maximum response (collapse response) must be predicted.

Wang and Rosowsky (2014) introduced three new approaches for scaling
ground motions. The first approach involves selecting ground motion from the real
historic seismic records. The second approach is initially selecting ground motion
from the real historic seismic, and then modifying this to satisfy the given site using
an amplitude scaling method or spectrum matching method. The third approach
involves initially selecting ground motion from seismological model with some
information and then generating synthetic ground motions.

Meanwhile, two alternative procedures have been explicitly discussed in the
paper of Ay and Akkar (2014). The first proposed procedure is based on the
conditional mean spectrum. The second method is based on empirical
elastic-to-inelastic conversion factors. In this method, the target inelastic spectral
coordinates are initially estimated, and then, the records are scaled to the estimated
inelastic target level. In the study of Barbat et al. (2014), 20 acceleration records
were selected. Then, these records were scaled to different levels of the peak ground
acceleration. Figure 2.1 shows the mean spectrum and spectrum of Eurocode 8
corresponding to the 20 selected ground motions.
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2.4 Simulation Methods

To develop the fragility curves using the analytical method, a few popular simu-
lation methods need to be applied. The assessment can be categorized into two main
groups, namely, NSA and NDA. Some researchers use NSA (Mosalam et al. 1997;
Frankie et al. 2012; Polese et al. 2013; Vargas et al. 2013; Garcia 2014; Kumar
et al. 2014; Lee et al. 2014; Lee and Moon 2014), nonlinear time history analysis
(NTHA) (Aiswarya and Mohan 2014; Farsangi et al. 2014; Wang and Rosowsky
2014), and incremental dynamic analysis (IDA) (Luco et al. 2011; Ryu et al. 2011;
Uma et al. 2011; Bakhshi and Asadi 2013; Charalambos et al. 2014; Raghunandan
et al. 2014; Sudret et al. 2014). The next sections will present a review of different
simulation methods employed to develop fragility curve. Some software are
available to perform this analysis. Table 2.5 shows some of such software used by
researchers.

2.4.1 Nonlinear Static Analysis

Nonlinear static analysis or pushover analysis (POA) is one of the methods used to
develop fragility seismic curves. Polese et al. (2013) initially evaluated the
appropriateness of POA in damage analysis, from which they developed the

Fig. 2.1 Mean spectrum of selected earthquake events scaled to the spectrum of Eurocode 8
(Barbat et al. 2014)
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fragility curve. They conducted the analysis of intact structures and damaged
buildings, resulting in a capacity curve. Moreover, Kumar et al. (2014) mentioned
that capacity curves can represent mean or mean plus/minus with one/two/three
times the standard deviation of capacity curves. From these capacity curves, the
results can be compared with those of the Performance-Based Seismic Design
(PBSD) in generating fragility curve.

2.4.2 Nonlinear Dynamic Analysis

It is important to choose a nonlinear analysis tool while considering its limitation.
Such a toll can provide an accurate investigation and stable NTHA of the structure

Table 2.5 Available software used by researchers

Authors Structural type Software

Seya et al. (1993) MRSF DRAIN-2D

Singhal and Kiremidjian (1996) MRCF DRAIN-2DX

Akkar et al. (2005), Hancilar et al. (2014) MRCF SAP2000

Kirçil and Polat (2006) RC residential
building (3D)

IDARC

Lee and Rosowsky (2006) Wood-frame (shear
wall)

SAW and
CASHEW

Lupoi et al. (2006), Ryu et al. (2011), Uma et al.
(2011), Jeon et al. (2012), Réveillère et al.
(2012), Shome et al. (2014), Silva et al. (2014),
Hancilar et al. (2014)

MRCF (2D and 3D) OpenSees

Ibrahim and El-Shami (2011) MRCF SeismoStruct

Ruiz-García and Negrete-Manriquez (2011) MRSF Ruaumoko

Bakhshi and Asadi (2013) MRSF IDARCV7.0

Sudret et al. (2013), Li et al. (2014), Farsangi
et al. (2014)

MRSF OpenSees

Negulescu et al. (2014) Masonry building
reinforced by tie-rods

TREMURI

Goda and Salami (2014), Shome et al. (2014) Wood-frame SAWS for
wood structure

Garcia (2014) MRSF SAP2000

Banihashemi et al. (2015) Steel concentrically
braced frames
(SCBF)

OpenSees

Wijayanti et al. (2016) MRCF HAZUS

Akhavan et al. (2016) MRSF HAZUS-MH

McCrum et al. (2016) MRCF ABAQUS

Pejovic and Jankovic (2016) MRCF PERFORM-3D
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(Farsangi et al. 2014). The NDA or NTHA method considers geometric nonlin-
earity and material inelasticity in predicting the displacement behavior and collapse
load. In addition, this method requires a ground motion. A suitable set of ground
motions is needed to ensure the accuracy of the fragility curves. However, the
suitability of the set of ground motion is a significant issue (Billah and Alam 2014).

Vona (2014) investigated fragility curves based on different methods of analysis,
namely, POA and NDA. According to this study, it has been shown that NDA is the
most accurate method for investigating the moment resisting concrete frames
(MRCF) performance. This method can consider the real characteristics as inputs,
from which it can evaluate structural response.

In addition, Silva et al. (2014) reported that NDA applies acceleration time
history analysis, which then leads to accurate results. However, they found that
NDA is time-consuming. Thus, they introduced several methods, such as capacity
spectrum method, displacement coefficient method (DCM) and N2 method, as
alternatives. In conclusion, they suggested use of NSA as a valid alternative for
obtaining results rapidly and accurately.

Billah and Alam (2014) argued that NTHA requires a large number of ground
motions, making the computational analyses expensive. Thus, they introduced IDA
to replace NTHA. They mentioned that Luco and Cornell (1998) first developed
this method, which used to be a part of NTHA (both are found to be similar).
However, ground motion in IDA is scaled in increments, thereby, resulting in a
different performance depending on the intensity level.

The aforementioned assumption is supported by Colapietro et al. (2014), who
argued that IDA is an extension method of NTHA or NDA. This method properly
estimates the performance of structure under seismic load through certain sets of
ground motion records and scales the ground motion records to obtain the response
curve. Upon comparing the results of IDA and POA methods, they concluded that
POA shows good correlation with IDA. However, the POA is more conservative
than the latter, especially in predicting higher mode effects in the post-elastic range,
which considers irregular buildings with limited capabilities of fixed load distri-
butions. IDA can be used to investigate complexities and extreme irregularities of
analyzed buildings. Given that the reliability of an analysis is related to the level of
knowledge, the authors suggest that destructive and non-destructive tests should be
performed to obtain more realistic estimations of seismic variability.

Ryu et al. (2011) performed IDA analysis to develop fragility curves using a
typical New Zealand 5-storey MRCF. This paper shows the process application of
IDA. The first step is choosing the mainshock and aftershock ground motion
records. In this study, 30 sets of ground motions were selected. Then, IDA was
performed in sequence using the mainshock and aftershock records. The fragility
curves were finally computed from the analysis results. Meanwhile, other authors
such as Ibrahim and El-Shami (2011) and Shome et al. (2014) used IDA as an input
to develop seismic vulnerability curve.
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2.5 Performance-Based Seismic Design (PBSD)

Manafpour and Moghaddam (2014) reviewed the advantages and disadvantages of
probabilistic PBSD by considering all its constraints and limitations. They found
that PBSD provides a quantitative measure for structural damage by considering
specific earthquake level.

PBSD can be used for several purposes to:

(i) obtain better performance results for new buildings,
(ii) determine performance in accordance with code provisions with the subse-

quent development of the required adjustment,
(iii) enhance current provisions to obtain good designs, and
(iv) provide an efficient retrofit design procedure.

These authors argue that the performance of seismic assessment depends on
three factors, namely, the ground motion types, resisting lateral load, and height of
the buildings. Meanwhile, PBSD can be determined based on the percentage of
maximum interstorey drift. Interstorey drift was used because this factor can be
easily measured during the analysis and provides a clear result. Interstorey drift can
be classified into five categories, namely, operational phase (OP), immediate oc-
cupancy (IO), damage control (DC), life safety (LS), and collapse prevention (CP)
(Ibrahim and El-Shami 2011). By contrast, other authors, such as Uma et al. (2011),
classified interstorey drift into slight, moderate, extensive, complete, and collapse.
Table 2.6 summarizes each limit state with the percentage of maximum drift.

Table 2.6 Summary of performance level and percentage of maximum drift

Authors Performance level (%)

OP IO DC LS CP

Rosowsky and Ellingwood (2002) 0.5 1.0 – <5.0 >5.0

Lee and Rosowsky (2006) – 1.0 – 2.0 3.0

Uma et al. (2011) for New Zealand
model

0.7 0.14 2.0 2.6 3.9

Uma et al. (2011) for US model 0.5 0.14 3.0 3.5 5.3

Ibrahim and El-Shami (2011) 0.5 1.0 1.5 2.0 2.5

Ruiz-García and Negrete-Manriquez
(2011)

– 0.7 – 2.5 5.0

Li et al. (2014) – 0.7 – 2.5 5.0

Silva et al. (2014) 0.05 0.3 1.15 2.8 >4.36

Shin et al. (2014) – 1.0 2.0 4.0 >4.0

Aiswarya and Mohan (2014) – 1.0 – 2.0 4.0

Negulescu et al. (2014) 0.0031 0.004 0.0066 0.0119 0.0207

Pragalath et al. (2015) – 1.0 – 2.0 4.0
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Ibrahim and El-Shami (2011) defined each limit state. The building is at an OP
state when it is suitable for normal use with least or no damage. At an IO state, the
building has minimal or no structural damage and minor non-structural damage.
The LS state is when the building appears to have structural and non-structural
damages, which require repairs before re-occupancy. At a CP state, the structural
and non-structural parts of the building are prevented from collapsing. Meanwhile,
Silva et al. (2014) define drift as slightly damaged when 50% of maximum base
shear capacity is achieved. The drift is in a moderate state when 75% of maximum
base shear capacity is achieved and is in a collapsed state when the ultimate drift
taken from the pushover curve is decreased by 20 or 75% (whichever comes first).

A few guidelines, such as FEMA-356 and ATC-40, have been established to
improve building performance (Charalambos et al. 2014). The PEER center
methodology has been proposed to gain an overall assessment of building perfor-
mance at any intensity level and limit state by integrating data related to seismic
hazard and damage from the structural analysis and loss.

2.6 Methods to Develop Fragility Curves

The fragility curves are an important tool to assess seismic risk. Every building or
structure has its own fragility curve. This seismic fragility curves can be used as
follows:

(i) for assessing potential effects and risks, including functional and loss in
economic and lives,

(ii) for emergency or disaster response planning, and
(iii) for risk mitigation efforts (retrofitting).

Based on the literature review, four methods to develop fragility curves can be
identified, namely: (i) expert-based or judgmental, (ii) empirical, (iii) analytical, and
(iv) hybrid. Billah and Alam (2014) present the advantages and disadvantages of
each method to develop fragility curves (Table 2.7).

Figure 2.2 shows the flowchart of the commonly used methodologies to develop
fragility curve. Among these methods, analytical fragility curves are the most
widely used (Lee and Moon 2014). All of these methods will be explained in detail
in the subsequent sections.

2.6.1 Expert-Based Method

Expert-based method or heuristic method is the oldest and simplest one among
those mentioned above. Here, the damage distribution of a building subjected to
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different earthquake intensities is estimated by civil engineers, who are deemed
experts in the field of earthquake engineering.

Fragility estimates are found from the probability distribution of the damage
state at each intensity level. ATC-13 and ATC-40 reports have been specifically
prescribed for methods based on expert opinions (Farsangi et al. 2014).

Billah and Alam (2014) added information about ATC-13; in their report, the
damage matrices and risks for typical infrastructures in California were documented
by 42 expert opinions. In accordance with their responses, the probability damage
matrix was developed based on the modified Mercalli intensity value. Expert

Table 2.7 Advantages and disadvantages of each method (Billah and Alam 2014)

Method Advantages Disadvantages

Expert
based

Simple method
All factors may be
included

Very subjective
Totally dependent on the panel expertise
Not so accurate

Empirical Show the actual
vulnerability
Represent a realistic
picture

Lack of data
Inconsistency in damage observation

Analytical Less biased
All types of uncertainties
are considering

Costly computation
Takes too long

Hybrid Consider post-earthquake
data
Computational effort can
be reduced

Require multiple data because of combination of
experimental and analytical
High inconsistency in demand model

Method of 
Fragility Curve

Expert-Based 
Method

Empirical 
Method

Analytical 
Method

Hybrid
Method

Selection of 
expert panel

Create 
questionnaire

Statistical 
analysis

Create damage 
probability 
matrices

Selection of 
damage 

distribution 
function

Assign limit 
state to 

structural class 

Selection of 
IM from shake 

map

Create damage 
probability 

matrix

Selection of 
damage 

distribution 
function

Generate 
structural 

model

Determine 
seismic hazard

Ground
motion

Response
spectra

Performed 
nonlinear analysis

NSA NDA

Obtain component 
response

Compare PBSD

Establish Probabilistic 
Seismic Demand Model

Obtain damage 
probability 
matrix use 
empirical 
method

Experimental
method

Obtain damage 
probability 
matrix use 
analytical 
method

Selection of 
Ground motion

Real Synthetic

Collect 
Ground
motion

Generate 
synthetic 

Ground motion

Scaled ground 
motion

Selection of 
IM

Shake table 
experiment

Observed
damage and 

IM

Development of Fragility Curve

Fig. 2.2 Methods and steps to develop the fragility curve
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opinion is the only source for this method. Thus, this method depends on the use of
questionnaires, the experiences of experts, and the number of experts consulted. In
general, their judgments or opinions may contain uncertainties and may be less
accurate, thus affecting the quality of the result.

2.6.2 Empirical Method

The fragility curve developed by this empirical method is based on previous
earthquake events. For example, the fragility curves were developed using damage
data from the 1995 Kobe earthquake. The curves were established by assuming the
measurement error; the intensity measure is insignificant.

Ioannou et al. (2015) used this approach to generate seismic curves for a rein-
forced concrete frame. The whole process is clearly explained in their paper. They
initially determined the seismic damage by modeling two uncertainties, after which
they simulated ground motions. Finally, they used Eq. (2.1) to generate the fragility
curves based on the empirical method. The resulting equation is given by Eqs. (2.3)
and (2.4).

YjkjIM0true0 ¼ iml0true0�k � n
yjk

� 	
ljk

yjk 1� ljk
� �g�yjk ð2:3Þ

where,

ljk ¼ P DS� dsijiml0true0�kð Þ ¼ U
ln iml0true0 �kð Þ � kk

fk

� 	
ð2:4Þ

kk is the lognormal mean and
fk is the lognormal standard deviation for realization k [estimated from Eq. (2.3)].

In conclusion, they argued that variability ground motion may result in flat
curves and wide confidence level. A very dense network of ground motion in the
recorded data is required to reduce the uncertainty in the empirical fragility curves
(Cunha et al. 2014).

2.6.3 Analytical Method

The fragility curves can be generated using this technique even if damage data are
insufficient. The analytical method is the most popular method in developing
vulnerability seismic curves because this approach has less bias. This approach is
developed using simulated data from time history analysis of structural model for
real or synthetic ground motions (Farsangi et al. 2014).
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2.6.4 Hybrid Method

Kammula et al. (2014) reported that the weakness of the analytical method is its
requirement to produce a realistic model, that is, if the model is improperly
designed or unrealistic, then it may result in inaccurate estimation that can affect the
fragility curve. Considering this problem, some researchers introduced a hybrid
approach to improve the analytical method.

The hybrid fragility curves are derived by combining experimental and analyt-
ical methods. According to Kappos et al. (2006), the hybrid approach is a calibrated
empirical and analytical method, which is conducted by integrating numerical
method to solve a numerical structural model equation. This equation considers the
analytical and physical components of a structural system.

By considering both the analytical and physical components, the effect of
earthquakes on the structures (e.g., buildings and bridges) can be determined. They
showed the step-by-step development of fragility curves for a 6-storey structure
with telescoping self-centering energy dissipative bracing systems based on hybrid
approach. The establishment of the framework, formulation model, ground motion,
and result simulation of the hybrid method was briefly discussed in their paper.

Billah and Alam (2014) reported that the hybrid approach involves large aleatory
and epistemic uncertainties, which are important elements in generating a proba-
bilistic curve. According to Cunha et al. (2014), aleatory uncertainties include
material properties and wind loads that cannot be reduced by collecting additional
information. Meanwhile, epistemic uncertainties include the lack of knowledge and
incorrect modeling. However, these uncertainties can be reduced by obtaining more
information.
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Chapter 3
Moment-Resisting Frames (MRFs)

3.1 Structural Model

In this section, six sets of model moment-resisting frames (MRF) were analyzed with
different types of geometry (regular and irregular frames), material, and heights.
These frames abide by the Eurocodes (EC). Each frame had three bays measuring
6 m each and identical height of 3 m for 3-, 6-, and 9-storey regular and irregular
frames. The materials used are concrete and steel. Figure 3.1 shows the flowchart of
the analysis, while Figs. 3.2 and 3.3 show the illustrated model for all storey heights.

The structures will use soil class A with peak ground acceleration (PGA), agr,
which was assumed to be 0.5 g or 5 m/s2. Based on EC8 (BSI 2004), type soil A is
rock or other rock-like geological formations with at least 5 m of weaker material at
the surface. Thus, to avoid the soil–structure interaction in the analysis, soil class A
will be used. The importance value used was 1 and the behavior factor, q, was 4 for
regular moment-resisting frame with medium ductility class (DCM). However, EC8
states that the behavior factor for irregular buildings decreases to 80% of the
corresponding regular building.

The designs for MRCF were based on the existing building by using EC2 (BSI
2004) and EC8 (BSI 2004) standards. Several assumptions were made during the
design of MRCF. Compressive stress of concrete was 30 N/mm2 and yield stress of
reinforcing steel was 460 N/mm2. Tables 3.1 and 3.2 show the size of beam and
column for regular MRCF and irregular MRCF, respectively.

3.2 Design Loads

All frames were imposed by the dead, live, and lateral loads. The lateral loads were
designed based on EC8. The self-weight of the structures, weight of the permanent
partition such as finishes, brick wall, and all permanent constructions are under
dead load effect. The details of dead and live loads are as follows:
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By assuming concrete density = 24 kN/m3,
The area of slab = 36 m2 (6 m � 6 m)
Thus, the self-weight of the slab = concrete density � slab thickness (0.15 m)

= 3.6 kN/m2.

Ground Motion 
Records

Near and Far 
Field

Ranau 
Earthquake

Moment Resisting Frame Design

Eurocode(s)

Concrete Frame Steel Frame

Regular Frame Irregular Frame Regular Frame Irregular Frame

SAP2000

Static Load Dynamic Load

Pushover Analysis 
(POA) Incremental

Dynamic Analysis
(IDA)

Fragility Curve

Drift Limit State

Fig. 3.1 General flow of chart methodology

Fig. 3.2 Regular MRF
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Tables 3.3 and 3.4 show the loads considered as the dead load and the live load,
respectively.

The presence of masses associated with all gravity loads must be considered in
the combination of actions. Therefore, from EC8 under Clause 3.2.4, the combi-
nation of seismic action is

WGQ ¼ RGk;j
00 þ 00 RwE;i � Qk;i; ð3:1Þ

Fig. 3.3 Irregular MRF

Table 3.1 Size of beam and column for regular MRCF

Number of storey 3-Storey 6-Storey 9-Storey

Section Beam Column Beam Column Beam Column

Size (mm) 350 � 500 500 � 500 350 � 500 500 � 500 350 � 500 500 � 500

Reinforcement 5T16 5T32 5T16 5T32 5T16 6T32

Shear link 8 mm @ 150 c/c 8 mm @ 150 c/c 8 mm @ 150 c/c

Table 3.2 Size of beam and column for irregular MRCF

Number of storey 3-Storey 6-Storey 9-Storey

Section Beam Column Beam Column Beam Column

Size (mm) 350 � 500 400 � 400 350 � 500 400 � 400 350 � 500 400 � 400

Reinforcement 4T16 3T20 5T16 4T20 5T16 4T20

Shear link 8 mm @ 150 c/c 8 mm @ 150 c/c 8 mm @ 150 c/c

Table 3.3 Dead loads (Gk) Dead load (Gk) kN/m2

Finishes 1.2

Self-weight slab 3.6

Services 0.5

Total 5.3
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where

wEi ¼ u � w2i ð3:2Þ

For category A, storeys with correlated occupancies

u ¼ 0:8

For category A, domestic and residential areas

w2i ¼ 0:3

Thus, moment can be obtained by using Eq. (3.3):

MGQ ¼ WGQ � L
12

; ð3:3Þ

where L is the length of bay in meter (m).
For horizontal components of seismic action, the design spectrum Sd(T) , base

shear force, and horizontal forces were evaluated based on EC8.
Table 3.5 summarizes the parameters used in the development of elastic

response spectrum for ground type A. Type 1 elastic response spectra were chosen
since surface wave magnitude, Ms, is greater than 5.5.

3.3 Ground Motion Records

To perform IDA, one of the most important parameters in the analysis is the
selection of ground motions. Thus, from the previous studies, three sets of ground
motions were used in this research. The ground motions were chosen from the
Pacific Earthquake Engineering Research Centre (PEER).

There are two types of ground motions considered in this study which are
near-field (NF) and far-field (FF) ground motion. The criteria used to categorie NF

Table 3.4 Live loads (Qk)

Live load (Qk) kN/m2

Imposed load 1.5

Total 1.5

Table 3.5 Parameters recommended for type 1 elastic response spectra according to EC8

Ground type S Tb (s) Tc (s) Td (s)

A 1.0 0.15 0.4 2.0
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and FF are based on Joyner–Boore distance (Rjb). The NF is less than 20 km,
whereas the FF is more than 20 km (Li et al. 2015). The magnitude of ground
motion records chosen was more than 5 since most of the earthquakes felt in
Malaysia were having magnitude more than 5–7 which was categorized as mod-
erate region earthquake. The summary of parameters of the selected ground motion
records as tabulated in 13 (Table 3.6).

Based on the criteria aforementioned, three sets of ground motion records for the
NF and FF were used as tabulated in Tables 3.7 and 3.8, respectively.

3.4 Development of Elastic Response Spectrum

Based on EC8, the elastic response spectrum can be developed. The value of
parameters used is mentioned in Table 3.5. The elastic response spectra were
developed from 0.4 to 2.0 g with an increment of every 0.4 g. Figure 3.4 shows the
elastic response spectra for ground type A. The elastic response spectrum is used to
scale-up or scale-down the ground motions.

Table 3.6 Summary parameters of selected ground motion records for NF and FF

Type of Ground Motion NF FF

J–B distance Less than 20 km More than 20 km

Magnitude 5–7 5–7

Location Any location Any location

Table 3.7 Selective ground motion records for NF

Earthquake Record
name

Year Station Magnitude (Mw) Rjb (km)

Imperial
valley

RSN18 1953 El-Centro
Array #9

5.50 15.11

San Fernando RSN71 1971 Lake Hughes 6.61 17.22

Coyote lake RSN146 1979 Gilray Array #1 6.74 10.21

Table 3.8 Selective ground motion records for FF

Earthquake Name
record

Year Station Magnitude
(Mw)

Rjb

(km)

Northwest
Calif

RSN7 1941 Ferndale City Hall 6.60 91.15

Park Field RSN32 1966 San Luis Obispo 6.19 63.34

Santa Barbara RSN135 1978 Cachuma Dam
Toe

5.92 23.75
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3.5 Scaling for Ground Motion Records

Before the scaling, the ground motion records from PEER NGA database were
converted to the acceleration response spectrum (g) by using seismosignal software
(Seismosoft 2011). After that, the acceleration time-history data were scaled
according to the developed elastic response spectrum in order to match the char-
acteristics of the ground motion to the soil type. The scaling was dependent on the
value of frame fundamental period, T1. Then, the scale factor will be used in
SAP2000 to run IDA.

3.6 Fragility Curve

Five performance levels were studied which are operational phase (OP), immediate
occupancy (IO), damage control (DC), life safety (LS), and collapse prevention
(CP). Every limit state has their maximum drift limit. Xue et al. (2008) suggested
the maximum drift limit and tabulated in Table 3.9.

Fig. 3.4 Example type 1 elastic response spectra for ground type A (5% damping) (BSI 2004)

Table 3.9 Maximum drift
limit (%) (Xue et al. 2008)

Limit state Drift (%)

OP 0.5

IO 1.0

DC 1.5

LS 2.0

CP 2.5
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Then, mean and standard deviation for every limit state were calculated. For this
study, Eq. (3.4) was used as it has already been simplified by Ibrahim and El-Shami
(2011):

P D=PGA½ � ¼ U
ln ðPGAÞ � l

r

� �
; ð3:4Þ

where

D damage
PGA peak ground acceleration
Ф standard normal cumulative distribution
M mean
R standard deviation of the natural logarithm of PGA .

Figure 3.5 shows the general steps to develop fragility curve.

Fig. 3.5 General flow to develop fragility curve
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Chapter 4
Performance of MRFs Due to Nonlinear
Analysis

4.1 Performance of Regular and Irregular MRF
Due to POA

4.1.1 Capacity Curves

Pushover analysis (POA) was carried out on six different types of frames. In this
analysis, lateral load acts as the main role in evaluating the structure performance
according to the pushover analysis. In this analysis, as suggested by Eurocode 8
(BSI 2004), the triangle lateral load was applied to perform the analysis.

POA was performed by incrementally increasing the magnitude of lateral load
and analyzed using SAP2000 software (CSI 2004). Based on the results of this
analysis, the capacity curve managed to be developed.

The percentage of drift was calculated using Eq. (4.1). In this study, the per-
centage of drift is limited to 3% because the maximum drift limit for the structure to
collapse is 2.5% as suggested by Xue et al. (2008).

Driftð%Þ ¼ Dmax storeyP
height of storey

ð4:1Þ

where,

D displacement of maximum storey

From the capacity curve, the drift performance will then be compared with the
specific limit state mentioned earlier in Table 3.9. Figure 4.1 shows the capacity
curves for moment resisting concrete frame (MRCF) for 3-storey, 6-storey, and
9-storey. According to the graph, maximum base shear for regular frame 3-storey is
413 kN at the drift of 1.60% while the maximum base shear for irregular frame is
277 kN at the drift of 1.00%. Maximum base shear for 6-storey regular frame is
370 kN at the drift of 1.30% while for the irregular frame is 301 kN at the drift of
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1.80%. Furthermore, the base shear of 9-storey regular frame is 333 kN at the drift
of 1.10% which is greater than the base shear of 251 kN at the drift of 1.20%. From
the result, it can be seen that the base shear of 3-storey is the highest compared to
the 6-storey and 9-storey. This proves that low-rise frames have higher post-yield

(a)

(b)

(c)

Fig. 4.1 Capacity curve for
MRCF of a 3-storey,
b 6-storey, and c 9-storey
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stiffness compared to the mid-rise and high-rise frames as stated by Nazri et al.
(2015). In addition, most of the maximum base shear of MRCF regular and
irregular frames occur from IO to DC state.

As compared to the irregular frames, the base shear of the regular 3-storey frame
is 33% greater than the irregular whereas the base shear of the regular 6-storey
frame is 19% greater than the irregular. Next, for the 9-storey frame structure, the
base shear for regular is 25% greater compared to the irregular frame. In general, it
can be concluded that regular frame shows the highest base shear for the 3-storey,
6-storey, and 9-storey frames. This shows the stiffness of structure and the irreg-
ularity frame affect the value of base shear.

As shown in Fig. 4.2, for the case of moment resisting steel frame (MRSF) , the
maximum base shear for 3-storey, 6-storey, and 9-storey regular and irregular
frames successfully achieved the collapse prevention state or CP with the limit drift
of 2.5%. For the 3-storey regular and irregular base shear at the CP level are 320
and 190 kN, respectively. For 6-storey, the base shear of CP level for regular is
230 kN and the irregular is 170 kN. The base shear at CP stage for 9-storey regular
is 300 kN while for the irregular is 170 kN. The results for MRSF indicate that the
low-rise structure has the highest base shear compared to the mid-rise and high-rise.

When compared to the regular and irregular capacity curve, it can be seen that
the regular frame has higher base shear compared to the irregular frame. For the
case of regular 3-storey frame, the base shear increases to 41% compared to the
irregular frame while for the 6-storey regular, it increases to 26%. Next, for the
9-storey frame, the base shear is 43% greater than the irregular frame. The pattern
of the result was found similar to the MRCF result. The result shows that the
irregularity influences the value of base shear, whereas the low-rise provides a
higher base shear value.

4.1.2 Plastic Hinges

Apart from the capacity curve, plastic hinges can also be evaluated from the POA
because it is one of the crucial properties in the analysis. The plastic hinges are
based on the default hinge model which is defined in SAP2000. For beam section,
the moment M3 hinge type was used as well as the column section, which is the
Interacting P-M3. From the plastic hinges properties, the performance level for the
structure can be known through color coding. The color coding will then be used to
represent the performance level. Table 4.1 shows the type of color coding and its
performance level. The status damage of the structure can be identified by
observing the coloring code.

The performance level based on hinges properties of MRCF for regular and
irregular frames with various heights are presented in Figs. 4.3, 4.4, and 4.5. As can
be seen from the figures, most of the damage occurs at the beam section. However,
not all frames are in the damage state because some are only in the collapse state.
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In addition, the deformations for all the regular frames happen at the bottom storey,
while the deformation for the irregular frame starts at the top of the storey. This
shows that the top storey for irregular frame is less stable and less stiff compared to
the regular frame.

(a)

(b)

(c)

Fig. 4.2 Capacity curve for
MRSF a 3-storey, b 6-storey,
and c 9-storey
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Table 4.1 Type of color coding with the plastic hinges

Type of color coding Performance level Definition

Red E Fail

Orange D Damage

Green C Collapse

Cyan CP Collapse prevention

Blue LS Life safety

Purple IO Intermediate occupancy

Pink B Yield

(a) (b)

Fig. 4.3 Plastic hinges for MRCF 3-storey a regular and b irregular

(a) (b)

Fig. 4.4 Plastic hinges for MRCF 6-storey a regular and b irregular

(a) (b)

Fig. 4.5 Plastic hinges for MRCF 9-storey a regular and b irregular
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However, the regular frame is more critical than the irregular frame because the
deformation that occurs at the bottom storey has a higher potential to collapse all
the structure.

Figures 4.6, 4.7, and 4.8 represent hinges properties of the regular and irregular
MRSF for low-rise, mid-rise, and high-rise. According to the figure, all the frames
only managed to achieve the collapse state. Similar to MRCF, the figure shows that
most of the collapse states are formed at the beam sections, which cause failure start

(a) (b)

Fig. 4.6 Plastic hinges for MRSF 3-storey a regular and b irregular

(a) (b)

Fig. 4.7 Plastic hinges for MRSF 6-storey a regular and b irregular

(a) (b)

Fig. 4.8 Plastic hinges for MRSF 9-storey a regular and b irregular
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at the beam section before the column section. In addition, the hinges distribution
shows that the collapse state occur at the bottom storey for all frames except the
regular 3-storey frame. This proves that the frames have low foundation stiffness
and tend to collapse. However, the irregular for low-rise frame shows critical
deformations because all the beam sections for every level are in the collapse state.
In general, the regular frames for MRSF show a better performance compared to the
irregular frame. It can also be clearly seen that the regular frame is stiffer than the
irregular frame.

All the distributions of the hinges deformation are from maximum drift and base
shear. The behavior of detailed MRCF and MRSF frames are adequate as indicated
by the intersection of the demand capacity curves and the distribution of hinge in
the beams and columns.

4.1.3 Interstorey Drift

The interstorey drift for MRCF and MRSF were plotted as illustrated in Figs. 4.9
and 4.10, respectively. The interstorey drift shows the drift for every storey and the
comparison between the regular and irregular frames.

According to the graph in Fig. 4.9, it can be concluded that the regular frames
are stiffer than the irregular frames. On top of that, the irregular frames provide a
large percentage of drift. This proves that the irregular frames are unstable in design
and only able to perform less compared to the regular frame.

Furthermore, the maximum storey drift occurs at the top of the storey for all
frames. The maximum drift that occurs at the top of the 3-storey concrete frame for
regular and irregular are 5 and 6%, respectively.

Meanwhile, the maximum drift for the 6-storey MRCF regular frame is 4% and
the irregular frame is 11%, while for the 9-storey regular frame is 2.40% and the
irregular frame is 7.40%. When comparing the drift percentage for the regular and
irregular frames, the mid-rise and high-rise structures give a big difference in the
drift percentage.

For MRSF shown in Fig. 4.10, the maximum drift that occurs at 3-storey are 4%
for regular frame and 8% for the irregular frame. Meanwhile, the maximum drift for
regular frame of 6-storey is 5% and irregular frame is 9%. The 9-storey MRSF for
regular frame is 7.20% and irregular frame is 7.40%. For steel frame, a slight
difference for regular and irregular frames only occur at 9-storey. According to the
limit state, the drift for low-, mid-, and high-rise MRCF and MRSF exceeded the
collapse prevention level.

4.1 Performance of Regular and Irregular MRF Due to POA 45



(a)

(b)

(c)

Fig. 4.9 Interstorey drift for
MRCF a 3-storey, b 6-storey,
and c 9-storey
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(a)

(b)

(c)

Fig. 4.10 Interstorey drift for
MRSF a 3-storey, b 6-storey,
and c 9-storey
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4.2 Performance of Regular and Irregular MRFs
Due to IDA

4.2.1 Near-Field (NF) Ground Motion Records

Figure 4.11 presents sample of the IDA curves obtained from the analysis of
near-field (NF) records for MRCF regular and irregular frames structure under used
ground motions, namely Imperial Valley, San Fernando, and Coyote Lake which
labeled as RSN18, RSN71, and RSN146.

To evaluate the performance of structure, the mean drift was calculated from the
IDA curve for every PGA and compared to the limit state as shown in Fig. 4.12.
Based on the graph, the pattern is quite similar for the 3-, 6-, and 9-storey. The
difference of PGA between the regular and irregular frame for 3-storey and 9-storey
at DC state are 7 and 1%, respectively, which are considered as quite small.
Meanwhile, for 6-storey, the difference of PGA at DC state is quite large which is
27%. This indicates that regular frame provides better performance compared to the
irregular frame, which might be related to the selection of sizing and the ground

(a) 3-storey regular

(b) 3-storey irregular

Fig. 4.11 IDA curves for
MRCF based on NF
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motion itself. For instance, a regular frame for 3-storey needs 1.50 g to achieve the
DC limit state while only 1.40 g is needed for the irregular 3-storey frame.

Figure 4.13 shows sample of the IDA curves for regular and irregular MRSF
under NF ground motion records.

The average IDA graph was plotted as shown in Fig. 4.14. From the graph,
regular MRSF shows better performance compared to the irregular frame. As
clearly shown, the drift difference at PGA 0.8 g of 3-storey MRSF between the
regular and irregular frame shows a larger difference which is 38%. Generally, the
pattern of IDA curve is different for each ground motion; hence, the pattern for IDA

(a) 3-storey

(b) 6-storey

(c) 9-storey

Fig. 4.12 Mean IDA based
on NF for MRCF
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3-storey curve is a bit wavy compared to the 6-storey and 9-storey. This indicates
that sometimes the lower damage measure values may be obtained for an increasing
value of intensity measure compared to the one previously obtained for a lower
intensity measure as stated by Kirçil and Polat (2006).

4.2.2 Far-Field (FF) Ground Motion Records

The pattern of IDA curves under far-field ground motions for 3-storey of regular
and irregular frame is shown in Fig. 4.15. Another three sets of ground motion were
used, namely Northwest Calif, Park Field, and Santa Barbara which are denoted as
RSN7, RSN32, and RSN135, respectively.

Similar to NF ground motions, the mean of drift for FF ground motions are
calculated and illustrated in Fig. 4.16. For FF analysis, the result is similar to NF
ground motions. Overall, the result for 3-, 6-, and 9-storey show that the regular
frame MRCF performs better than the irregular frame. Based on the mean result,
6-storey shows a larger difference between the regular and irregular frame com-
pared to the low-rise and high-rise. For example, the mid-rise regular frame was
achieved at CP state with PGA 1.90 g and PGA 1.60 g for the irregular frame.

(a) 3-storey regular

(b) 3-storey irregular

Fig. 4.13 IDA curves for
MRSF based on NF
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(a) 3-storey

(b)6-storey

(c) 9-storey

Fig. 4.14 Mean IDA based
on NF for MRSF
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Figure 4.17 represents the graph for MRSF results under FF ground motions
with different types of 3-storey height. It displays a wide range of behavior with
large variation from a record to another record.

Following it, the mean IDA was calculated and the graph was plotted as shown
in Fig. 4.18. Based on the observation, the obtained results show that the regular
frame performs better. Among the low-, med-, and high-rise frame, the low-rise is
unstable and might collapse first before other levels of storey. For example, a
3-storey regular frame needs 1.60 g while the irregular needs 1.40 g to reach the
DC limit state. 1.60 g is needed for the regular and irregular 6-storey frames,
whereas 1.70 g is needed for the regular 9-storey frame and 1.60 g for the irregular
9-storey.

4.3 Fragility Curve

The PGA was selected because it was used in the Incremental Dynamic Analysis
(IDA). Next, Eq. (3.4) was applied to develop fragility curve. In this equation, two
main parameters which are mean and standard deviation of PGA were calculated for
every point which crosses the limit state vertical gridlines at the drift of 0.5, 1.0, 1.5,
2.0, and 2.5%. All the calculated parameters are tabulated in Tables 4.2, 4.3, 4.4,
and 4.5.

(a) 3-storey regular

(b) 3-storey irregular

Fig. 4.15 IDA curves for
MRCF based on FF
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(a) 3-storey

(b) 6-storey

(c) 9-storey

Fig. 4.16 Mean IDA based
on FF for MRCF
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In this study, the seismic fragility is presented in the damage probability curve
(fragility curve). All set of fragility curves were plotted. For instance, Fig. 4.19
shows the fragility curve for low-rise regular MRCF based on the near-field ground
motions.

According to the figure illustrated, the performance of structure can be deter-
mined in terms of probability. For example, the probability of OP level is 0% when
the PGA is 0.2 g which is considered as weak ground motions, but the probability
of OP level is 98% when exposed to strong ground motion at PGA 1.8 g. In CP
level, it starts to occur at PGA 1.6 g. The probability of CP level is 100% when the
PGA is more than 2 g. Hence, this fragility curve can provide some ideas about the
condition of the structure, in which the PGA starts from 0.2 g until 2.0 g based on
the percentage of drift. In addition, the loss of damage can also be predicted using
the fragility curve.

4.3.1 Fragility Curve for Near-Field (NF) Ground Motion
Records

The fragility curves were compared according to different types of regularity.
Figures 4.20, 4.21 and 4.22 show the fragility curve of MRCF for 3-storey,
6-storey, and 9-storey regular and irregular frame under NF.

(a) 3-storey regular

(b) 3-storey irregular

Fig. 4.17 IDA curves for
MRSF based on FF

54 4 Performance of MRFs Due to Nonlinear Analysis



The illustrated figures show the comparison between the regular and irregular
frame. Based on Fig. 4.20, when the weak ground motions are exposed at 0.2 g, the
probability of reaching or exceeding the regular low rise is 0% and the irregular
frame is 0%. At the CP level, the probability for regular frame is 100% when the
ground motion is more than 2.0 g and the irregular frame is 1.90 g.

For 6-storey, the probability of OP level is 100% for regular frame when the
ground motion is 1.0 and 1.70 g for irregular frame. Meanwhile, for CP level, 100%

(a) 3-storey

(b) 6-storey

(c) 9-storey

Fig. 4.18 Mean IDA based
on FF for MRCF
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Table 4.2 Parameters of log-normal distribution for concrete frame based on near-field records

No. of
storeys

OP IO DC LS CP

M r l r l r l r l r

Regular frame

3 0.14 0.39 0.21 0.20 0.42 0.11 0.51 0.08 0.59 0.05

6 0.32 0.11 0.29 0.04 0.45 0.03 0.48 0.01 0.50 0.02

9 0.40 0.14 0.13 0.32 0.47 0.05 0.53 0.03 0.056 0.03

Irregular frame

3 0.28 0.42 0.08 0.20 0.35 0.04 0.48 0.06 0.56 0.05

6 0.34 0.07 0.01 0.15 0.13 0.16 0.51 0.03 0.53 0.02

9 0.37 0.23 0.18 0.41 0.32 0.19 0.51 0.03 0.53 0.02

Table 4.3 Parameters of log-normal distribution for concrete based on far-field records

No. of
storeys

OP IO DC LS CP

M r l r l r l r l R

Regular frame

3 0.26 0.35 0.07 0.43 0.06 0.39 0.16 0.36 0.24 0.33

6 0.30 0.13 0.01 0.03 0.24 0.09 0.52 0.03 0.63 0.05

9 0.42 0.23 0.02 0.19 0.20 0.05 0.26 0.04 0.31 0.05

Irregular frame

3 0.53 0.15 0.12 0.40 0.01 0.38 0.09 0.35 0.23 0.30

6 0.45 0.22 0.15 0.16 0.12 0.08 0.34 0.06 0.45 0.03

9 0.61 0.15 0.15 0.13 0.14 0.06 0.22 0.03 0.28 0.06

Table 4.4 Parameters of log-normal distribution for steel frame based on near-field records

No. of
storeys

OP IO DC LS CP

M r l r l r l r l R

Regular frame

3 1.11 1.32 0.44 0.94 0.17 0.71 0.12 0.61 0.23 0.59

6 0.23 0.05 0.47 0.15 0.51 0.10 0.56 0.09 0.61 0.09

9 0.40 0.41 0.27 0.21 0.42 0.13 0.50 0.10 0.63 0.05

Irregular frame

3 0.65 1.23 0.26 0.84 0.05 0.53 0.10 0.66 0.24 0.47

6 0.14 0.13 0.33 0.13 0.48 0.10 0.58 0.08 0.64 0.04

9 0.04 0.42 0.36 0.28 0.39 0.23 0.52 0.12 0.59 0.06
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probability can be achieved when the ground motion is 1.70 g for the regular while
for the irregular frame is 1.80 g. For 9-storey, when the PGA is 0.60 g, the 20%
probability indicates that OP performance level can occur for regular frame and
24% for irregular frame. For regular frame, the ground motion which is more than
1.90 g will give 100% probability of reaching and exceeding the CP level and
1.80 g ground motion for the irregular.

Generally based on the graph, it can be concluded that irregular frames provide
less performance compared to regular frames when the weak or strong ground
motions are exposed to low-, mid-, and high-rise MRCF.

Figures 4.23, 4.24 and 4.25 present the fragility curve for 3-, 6-, and 9-storey for
regular and irregular frame based on steel frame under NF.

According to Fig. 4.23, when the PGA is 0.4 g, the OP level for regular frame
has the probability of approximately 55% while the irregular frame is 40%. At the
CP level, the probability is 2% for regular and 0% for irregular frame. However,
when the PGA is 1.8 g, the probability of reaching or exceeding the OP level for

Table 4.5 Parameters of log-normal distribution for steel frame based on far-field records

No. of
storeys

OP IO DC LS CP

M r l r l r l r l r

Regular frame

3 0.36 0.16 0.15 0.04 0.45 0.07 0.55 0.03 0.63 0.04

6 0.17 0.03 0.12 0.03 0.44 0.12 0.61 0.06 0.66 0.04

9 0.40 0.51 0.16 0.39 0.42 0.22 0.52 0.17 0.56 0.16

Irregular frame

3 0.36 0.17 0.18 0.05 0.35 0.06 0.43 0.09 0.48 0.10

6 0.09 0.11 0.26 0.22 0.42 0.23 0.50 0.18 0.59 0.12

9 0.05 0.37 0.41 0.16 0.50 0.12 0.58 0.07 0.67 0.03

Fig. 4.19 Fragility curve for low-rise regular MRCF based on near-field ground motions
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both the regular and irregular is approximately 90 and 84% respectively, whereas at
the CP level, the probability for regular is 70% and irregular is 76%.

However for 6-storey MRSF, when PGA at 0.8 g was triggered, the probability
of OP level for regular and irregular frame are 40 and 20% respectively, while the
probability of CP level for both the regular and irregular frame is 0%. However,
when the PGA is 2.0 g, the probability of reaching and exceeding the OP is 100%
for both frames and CP level is approximately 84 and 90% for regular and irregular

Fig. 4.20 Fragility curve for concrete 3-storey regular and irregular frames under NF

Fig. 4.21 Fragility curve for concrete 6-storey regular and irregular frames under NF
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frame. For 9-storey, the probability of CP level with 100% occur when the PGA is
2.1 g for both the regular and irregular frames.

According to the observations conducted, the pattern is different from the fra-
gility curve based on the concrete material. For steel, the regular frame provides a
higher percentage of probability curves at the OP and CP level.

Fig. 4.22 Fragility curve for concrete 9-storey regular and irregular frames under NF

Fig. 4.23 Fragility curve for steel 3-storey regular and irregular frames under NF
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4.3.2 Fragility Curve for Far-Field (FF) Ground Motion
Records

Figures 4.26, 4.27, and 4.28 show the fragility curve for low-, mid-, and high-rise
of both the MRCF regular and irregular frames under FF.

Based on Fig. 4.26, the probability of reaching or exceeding the OP state at
0.6 gfor MRCF irregular frame for low-rise is 52% and regular frame is 24%.

Fig. 4.24 Fragility curve for steel 6-storey regular and irregular frames under NF

Fig. 4.25 Fragility curve for steel 9-storey regular and irregular frames under NF
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However, when the PGA is 1.8 g, the probability of OP is approximately 100% for
both the regular and irregular frames. Meanwhile, the probability of reaching or
exceeding the CP level is 2% for both frames when PGA is 0.6 g. Other than that,
the probability of CP for irregular frame is 90% and regular frame is 88% when the
PGA is 1.8 g.

For mid-rise frame with PGA 0.6 g, the probabilities of OP are 4 and 38% for
regular and irregular frame, respectively. The probability of OP is 100% for both
frames when PGA is more than 1.0 g. At the CP level, the probability is 100%

Fig. 4.26 Fragility curve for concrete 3-storey regular and irregular frames under FF

Fig. 4.27 Fragility curve for concrete 6-storey regular and irregular frames under FF
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when the PGA is 1.7 g for irregular frame and PGA is 2.1 g for regular frame. The
probability of OP for high-rise irregular MRCF is 72% and the regular frame is 38%
when the PGA is 0.6 g. The probability of OP is 100% when PGA is 0.8 g for
irregular frame. Aside from that, the probability of reaching or exceeding the CP
state is 100% when the PGA is 1.6 g for both frames.

Figures 4.29, 4.30, and 4.31 present the fragility curve for 3-, 6-, and 9-storey
MRSF for both the regular and irregular frames under FF round motions.

Fig. 4.28 Fragility curve for concrete 9-storey regular and irregular frames under FF

Fig. 4.29 Fragility curve for steel 3-storey regular and irregular frames under FF
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Hence, when the ground motions are exposed to PGA 0.6 g, the probability of
reaching or exceeding OP level is 20% for 3-storey regular and irregular MRSF,
whereas for PGA 1.1 g, the probability for both frames are similar which is 100%.
In addition, the probability of reaching and exceeding the CP level for 3-storey
irregular and regular frame is 100% when the ground motion of PGA is more than
2.0 g.

Fig. 4.30 Fragility curve for steel 6-storey regular and irregular frames under FF

Fig. 4.31 Fragility curve for steel 9-storey regular and irregular frames under FF
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For 6-storey with PGA 0.8 g, the probability of OP is 2% and 14% for regular
and irregular frame, respectively, while the probability of OP level is 100% when
the PGA is 0.9 g for regular and 1.2 g for irregular frame.

However, the probability of CP is 100% when the PGA is 2.2 and 2.4 g for
regular and irregular frame, respectively. The probability of reaching or exceeding
OP state is 40 and 10% for 9-storey regular and irregular frame with PGA of 0.6 g.
Meanwhile, the probability of reaching or exceeding CP state is 100% when the
PGA is 2.4 g for regular and 2.2 g for irregular frame.

For FF records, the irregular concrete frame has a higher probability of reaching
and exceeding both the OP and CP level for weak and strong ground motions. In
contrast, if the material is steel, the probability of reaching and exceeding the OP
and CP level for regular frame is higher compared to the irregular frame.
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Chapter 5
Closing Remarks

The purpose of this book is to develop fragility curves for regular and irregular
frames. Regular and irregular frames based on concrete (MRCF) and steel frames
(MRSF) for low-, mid-, and high-rise were designed based on Eurocode 2,
Eurocode 3, and Eurocode 8. The pushover analysis (POA) and incremental
dynamic analysis (IDA) were performed by using the SAP2000 software. For the
dynamic analysis, three sets of near-field (NF) ground motion and far-field
(FF) ground motion were used. Besides, the performance of regular and irregular
frames due to static and dynamic load was evaluated and included in this book. The
following conclusions can be drawn:

i. Based on the POA for MRCF, the capacity curves for regular and irregular
frames were compared. Regular frames show a higher base shear compared to
irregular frames for all storeys. The base shear increased by 33, 19, and 25%
for 3-, 6-,and 9-storey, respectively. While for the MRSF, it also shows the
same pattern in which the base shear for regular frames is higher compared to
irregular frames. The base shear increased by 41% for 3-storey, 26% for
6-storey, and 43% for 9-storey. It shows that regular frames have a higher
demand than irregular frames for both concrete and steel frames.

ii. The IDA curve for regular frames was compared with irregular frames. Based
on the observation of the IDA curve under NF ground motions, it shows that
regular frames give a better performance compared to irregular frames for low-,
mid-, and high-rise structures for both concrete and steel materials. For a
regular 3-storey MRCF, it can sustain up to 1.70 g before collapsing compared
to irregular frames that can only sustain 1.80 g. For 6-storey MRCF, regular
frames need 1.50 g to achieve the DC state and irregular frames need 1.10 g.
For 9-storey MRCF, regular frames need 1.70 g and irregular frames need
1.60 g to achieve the collapse state. Meanwhile, for frames made using steel
material, the difference between the IDA curves for regular and irregular
frames is not too significant. Meanwhile, for the analysis under the FF ground
motions, regular frames show a better performance for both MRCF and MRSF.
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iii. The fragility curves were developed for regular and irregular MRCF and
MRSF based on specific structural performance level. Fragility curve is a
unique curve at specific buildings which will have its own curve. As a com-
parison of fragility curves between regular and irregular frames based on the
ground motion records at NF for low-rise MRCF, the highest probability of
reaching and exceeding the performance levels was observed in irregular
frames at lower PGA. However, for mid-rise MRCF it was a bit different,
regular frames show a lower PGA as they achieved 100% of the OP and CP
levels at PGA 1.0 and 1.70 g. For high-rise, irregular frames demonstrate less
performance compared to regular frames. However, for all storeys of MRSF, it
can be concluded that regular frames give a higher percentage of probability
curve at the performance levels. Under FF ground motions, irregular MRCF
frames for all types of storey give higher probability of reaching the perfor-
mance levels. On the other hand, for MRSF, regular frames show higher
probability of reaching or exceeding the performance levels.
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Appendix A
Design of Regular and Irregular
Moment-Resisting Concrete Frames
(MRCF)
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By : Qila Din
Ref. / Code

Dead Load (Gk)

kN/m²
1.2
3.6
0.5
5.3 x Area (m²)

*Concrete density x thickness (0.15m)

Hence,
Total Gk = 190.8 kN

Live Load (Qk)

kN/m²
1.5
1.5 x Area (m²)

Hence,
Total Qk = 54 kN

EC 8
Cl 3.2.4 Combination of the seismic action with other load.

Eq 3.17
where,

Eq 4.2 ψ Ei = φ.ψ 2 i

Table 4.2 For category A, storeys with correlated occupancies;
φ = 0.8

EC 0 For category A, domestic and residential areas;
Table A1.1 ψ 2i  = 0.3

Thus,
ψ Ei = 0.24

203.76 kNTotal factored load, WGQ :

Dead Load (DL)
Finishes
S/w Slab*
Services

TOTAL

WGQ  = 203.76kN

Calculation

Live Load (LL)

TOTAL
Imposed load

WGQ = ΣGk '+' Σψ EiQk

1st Floor Slab Action Calculation:

Output

Seismic Concrete Frame Based on Eurocode for 3-storey
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Ref. / Code

Maximum bending moment (approx.) :

MGQ = (WGQ . L) /12 ; L = 6m 

MGQ = 101.88 kNm

Parameters:
EC 8
Eq 4.6 T1 = Ct.H3/4

where,
Ct (Concrete) = 0.075

Fig. 1(a) H = 9 m

Hence,
T1 = 0.39 s

Table 3.2 For type 1 elastic response spectra;

A
S : 1

Tb : 0.15s
Tc : 0.4s
Td : 2s

Thus,

Eq 3.15

Cl 3.2.1(3) ag =  agR. γ I

where,
Cl 3.2.1(3)  γI : 1
Cl 3.2.1(2) agR :

(Assume 0.5g)

so,  ag = 0.08 g              = 0.78 m/s²

Since Tb ≤ T1 ≤ Tc , use equation 3.15.

Sd(T1) = ag . S . (2.5/q)

Peak ground acceleration on type A ground*

Ground type :

T1  in range of Tb and Tc  (Tb ≤ T1 ≤ Tc)

MGQ  = 101.88kN

Horizontal Seismic Action:

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation Output
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Sheet : 4 of 10
Project : Date : 8/8/2015

By : Qila Din
Ref. / Code

Cl 6.3.2 Behaviour factor (q)

Table 6.2 q : 4

Eq 3.15 Sd(T1) = ag . S . (2.5/q)

Sd(T1) = 0.49 m/s²

Cl 4.3.3.2.2 λ = 1

For the total mass of the building, m

which,
nb : number of bays
ns : number of storeys

So,
m = 1833.84 kN

Cl 4.3.3.2.2 Base shear force, fb

Fb ₌

₌

Sd(T1) . m  . λ

Fb 893.997 kN Fb = 893.997 kN

Output

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation

; For moment resisting frame (DCM)

m = (WGQ.nb.ns)/g

Base Shear Force :
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Project : Date : 8/8/2015

By : Qila Din
Ref. / Code

Cl 4.3.3.2.2 Distribution of the horizontal seismic force

Σzi.mi =
Σzi.mi = 33009.12

Cl 4.3.3.2.3(3)
Eq 4.11 Fi =

F3 = 447.00 kN
F1 = 298.00 kN
F2 = 149.00 kN

So,
6Fa ₌ Fb
Fa ₌ 149.00 kN

and
6Fc ₌ 149.00 kN

Fc ₌ 24.83 kN

Output

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation

Horizontal sotrey seismic action calculatio:

(3 x 135.22) + (6 x 135.22) + (9 x 135.22)

Fb . (zi.mi/Σzi.mi )

Assume, the interrior column is twice as large as exterior column.

F 2Fc Lc/2 2Fc F

F1

F2

Fb
Fa 2Fa 2Fa Fa

F3
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By : Qila Din
Ref. / Code

ME =

ME = 484.25 kNm

MT = ME + MGQ ≥ Mstatic

Wstatic =

Mstatic = (Wstatic . L) / 12    ; L = 6m

Mstatic = 169.29 kNm

Thus,
MT = 586.13 ≥ Mstatic

MT ≥ Mstatic

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation Output

Fa.Lc + (Fc.Lc/2)         ; Lc = 3.0 m

Mstatic = 169.29kNm

OK

       Maximum bending moment from sway load :

        Total moment, MT

1.35G k  + 1.5Q k
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By : Qila Din
Ref. / Code

Assume,
₌ 20 mm
₌ 10 mm
₌ 25 mm
₌ 30 N/mm²
₌ 460 N/mm²
₌ 350 mm
₌ 500 mm

d ₌ 700 - 25 - 20/2 -10
d ₌ 455 mm

EC2
Cl 6.1 M

bd² fck

K ₌ 0.078 ≤ K' = 0.167

z ₌ d [ 0.5 + √(0.25 - K/1.134 )]
z ₌ 421.25 mm

0.95d ₌ 432.25 mm

z ≤ 0.95d

M
0.87 fyk Z

As ₌

₌

1004 mm²

Provide,
5 T 16

As ₌ 1010 mm²

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation Output

RC Beam Design :

Singly Reinforced

Bar diameter
Link diameter

Cover to reinforcement
Concrete strength
Steel yield stress

Beam width

Beam depth

K ₌

Since K ≤ K' . Therefore, compression reinforcement is not required.

     Therefore, use value z.

      Tension Reinforcement :

As

5T16
As = 1010 mm²
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Ref. / Code

As min = 

where,
fctm = 0.3 fck⅔
fctm = 2.90

So, As min = 260.71 mm²

As max = 0.04bh
As max = 7000 mm²

Eq 6.8 Asw VEd

s Z  fyk cot Θ

₌ 1.13 mm

Provide,

Asw,min 0.08(√fck)bw

s fyk

₌ 0.333 < 0.671

Deflection:
Span-effective depth ratio,

ρ  = 100 As,req ₌

₌

₌

₌

0.63
bd

Table 7.4N 14

14.08

13.19
< 14.08

Span-effective ratio provided, L/d

OK

Modified Ratio, 14 x (As,pro / As,req)

Basic span-effective depth ratio

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation Output

8mm links at 150mm centres, Asw/s = 0.671 Asw/s = 0.671

OKAs min ≤ As provide ≤ As max

Shear Links :

      Assume cot Θ = 2.5,

₌

8mm @ 150 c/c

     Checking As min and As max:

; for fck ≤ C50

Minimum link required by EC2:

₌

(0.26 x (fctm) x bd )/fyk 

OK
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Project : Date : 8/8/2015

By : Qila Din
Ref. / Code

Loading:
611.28 kN

586.13 kNm

Assume,
₌ 25 mm
₌ 32 mm
₌ 12 mm
₌ 600 X 600

d2/h ₌ 0.91166667

N ₌ 1.698
bh

M
bh²

₌ 2.714

By using design chart for rectangular column d2/h = 0.90

Total Ultimate Axial Load taken, N =

Total Ultimate Moment, MT = 

Cover
Bar diameter

Link diameter 
Column size 

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation Output

RC Column Design :
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Ref. / Code

100Asc
bh

As ₌ 3750 mm²

Provide, 
5 T 32

As ₌ 4020 mm²

As min ₌ 0.002bh
As min ₌ 720 mm²

As max ₌ 0.08bh
As max ₌ 28800 mm²

₌ 1.5

      Minimum area of reinforcement :

      Maximum area of reinforcement :

As min ≤ As provide ≤ As max OK

Output

5T32

As = 4020

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation

     From the design chart :
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Sheet : 1 of 9
Date : 8/8/2015

By : Qila Din

Floor height = 3 m
Bay width = 6 m

Area = 36 m²

Seismic Concrete Frame Design Based on Eurocode for 3-storey

UNIVERSITI SAINS MALAYSIA

School of Civil Engineering
Project :

78 Appendix A: Design of Regular and Irregular Moment-Resisting…



Sheet : 2 of 9
Project : Date : 8/8/2015
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Ref. / Code

Dead Load (Gk)

kN/m²
1.2
3.6
0.5
5.3 x Area (m²)

*Concrete density x thickness (0.15m)

Hence,
Total Gk = 190.8 kN

Live Load (Qk)

kN/m²
1.5
1.5 x Area (m²)

Hence,
Total Qk = 54 kN

EC 8
Cl 3.2.4 Combination of the seismic action with other load.

Eq 3.17
where,

Eq 4.2 ψ Ei = φ.ψ 2 i

Table 4.2 For category A, storeys with correlated occupancies;
φ = 0.8

EC 0 For category A, domestic and residential areas;
Table A1.1 ψ 2i  = 0.3

Thus,
ψ Ei = 0.24

203.76 kN

WGQ = ΣGk '+' Σψ EiQk

Total factored load, WGQ :

Dead Load (DL)
Finishes
S/w Slab*
Services

TOTAL

WGQ  = 203.76kN

Output

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation

Live Load (LL)

TOTAL
Imposed load

1st Floor Slab Action Calculation:
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By : Qila Din
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Maximum bending moment (approx.) :

MGQ = (WGQ . L) /12 ; L = 6m 

MGQ = 101.88 kNm

Parameters:
EC 8
Eq 4.6 T1 = Ct.H3/4

where,
Ct (Concrete) = 0.075

Fig. 1(a) H = 9 m

Hence,
T1 = 0.39 s

Table 3.2 For type 1 elastic response spectra;

A
S : 1

Tb : 0.15s
Tc : 0.4s
Td : 2s

Thus,

Eq 3.15

Cl 3.2.1(3) ag =  agR. γ I

where,
Cl 3.2.1(3)  γI : 1
Cl 3.2.1(2) agR :

(Assume 0.08g)

so,  ag = 0.08 g              = 0.8 m/s²

Ground type :

T1  in range of Tb and Tc  (Tb ≤ T1 ≤ Tc)

MGQ  = 101.88kN

Since Tb ≤ T1 ≤ Tc , use equation 3.15.

Sd(T1) = ag . S . (2.5/q)

Peak ground acceleration on type A ground*

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation Output

Horizontal Seismic Action:
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Cl 5.2.2.2 Behaviour factor (q) 
Cl5.2.2.2(3) q reduced by 20%, but not to be taken as smaller than 1.5

q : 3.2

Eq 3.15 Sd(T1) = ag . S . (2.5/q)

Sd(T1) = 0.63 m/s²

Cl 4.3.3.2.2 λ = 1

For the total mass of the building, m

which,
nb : number of bays
ns : number of storeys

So,
m = 1222.56 kN

Cl 4.3.3.2.2 Base shear force, fb

Fb ₌ Sd(T1) . m  . λ

Fb ₌ 764.1 kN Fb = 764.1 kN

Base Shear Force :

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation Output

m = ∑WGQ.ns

F1

F3

F2
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Cl 4.3.3.2.2 Distribution of the horizontal seismic force

Σzi.mi =
Σzi.mi = 8557.92

Cl 4.3.3.2.3(3)
Eq 4.11 Fi =

F3 = 491.21 kN
F2 = 218.31 kN
F1 = 54.58 kN

Based on calculation in SAP200,

MT = 852.34

Wstatic =

Mstatic = (Wstatic . L) / 12    ; L = 6m

Mstatic = 169.29 kNm

Thus,
MT = 852.34 ≥ Mstatic

MT ≥ Mstatic

1.35G k  + 1.5Q k

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation Output

Horizontal sotrey seismic action calculatio:

(3 x 203.76) + (6 x 203.76) + (9 x 203.76)

Fb . (zi.mi/Σzi.mi )

Mstatic = 169.29kNm
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Assume,
₌ 20 mm
₌ 10 mm
₌ 25 mm
₌ 30 N/mm²
₌ 460 N/mm²
₌ 350 mm
₌ 500 mm

d ₌ 500 - 25 - 20/2 -10
d ₌ 455 mm

EC2
Cl 6.1 M

bd² fck

K ₌ 0.051 ≤ K' = 0.167

z ₌ d [ 0.5 + √(0.25 - K/1.134 )]
z ₌ 433.68 mm

0.95d ₌ 432.25 mm

z ≥ 0.95d

M
0.87 fyk 0.95d

As ₌

₌

637 mm²

Provide,
4 T 16

As ₌ 804 mm²

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation Output

RC Beam Design :

Singly Reinforced

Bar diameter
Link diameter

Cover to reinforcement
Concrete strength
Steel yield stress

Beam width

Beam depth

K ₌

Since K ≤ K' . Therefore, compression reinforcement is not required.

     Therefore, use value 0.95d

      Tension Reinforcement :

As

4T16
As = 804mm²
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As min = 

where,
fctm = 0.3 fck⅔
fctm = 2.90

So, As min = 260.71 mm²

As max = 0.04bh
As max = 7000 mm²

Eq 6.8 Asw VEd

s Z  fyk cot Θ

₌ 0.19 mm

Provide,

Asw,min 0.08(√fck)bw

s fyk

₌ 0.333 < 0.503

Deflection:
Span-effective depth ratio,

ρ  = 100 As,req ₌

₌

₌

₌

0.40
bd

Table 7.4N 14

17.68

13.19
< 17.74

Minimum link required by EC2:

₌

OK

Modified Ratio, 14 x (As,pro / As,req)

Basic span-effective depth ratio

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation Output

8mm links at 200mm centres, Asw/s = 0.503 Asw/s = 0.503

OKAs min ≤ As provide ≤ As max

Shear Links :

      Assume cot Θ = 2.5,

₌

8mm @ 200 c/c

     Checking As min and As max:

; for fck ≤ C50

(0.26 x (fctm) x bd )/fyk 

OK
Span-effective ratio provided, L/d
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By : Qila Din
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Loading:
305.64 kN

123.00 kNm

Assume,
₌ 25 mm
₌ 20 mm
₌ 10 mm
₌ 400 X 400

d2/h ₌ 0.8875

N ₌ 1.910
bh

M
bh

Total Ultimate Axial Load taken, N =

Total Ultimate Moment, MT = 

Cover
Bar diameter

Link diameter 
Column size 

₌ 1.922

By using design chart for rectangular column d2/h = 0.10

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation Output

RC Column Design :
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By : Qila Din
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Asfyk

bhfck

As ₌ 640 mm²

Provide, 
3 T 20

As ₌ 943 mm²

As min ₌ 0.002bh
As min ₌ 320 mm²

As max ₌ 0.08bh
As max ₌ 12800 mm²

3T20

As = 943mm²

₌ 0.4

      Minimum area of reinforcement :

      Maximum area of reinforcement :

As min ≤ As provide ≤ As max OK

Output

Seismic Concrete Frame Based on Eurocode for 3-storey

Calculation

     From the design chart :

86 Appendix A: Design of Regular and Irregular Moment-Resisting…



Appendix B
Design of Regular and Irregular
Moment-Resisting Steel Frames (MRSF)

© The Author(s) 2018
F. M. Nazri, Seismic Fragility Assessment for Buildings due
to Earthquake Excitation, SpringerBriefs in Computational Mechanics,
https://doi.org/10.1007/978-981-10-7125-6

87



Sheet : 1 of 11
Date : 8/9/2015

By : Qila Din

Floor height = 3 m
Bay width = 6 m

Area = 36 m²

Project : Seismic Steel Frame Design Based on Eurocode for 3-storey

UNIVERSITI SAINS MALAYSIA

School of Civil Engineering
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Project : Date : 8/9/2015

By : Qila Din
Ref. / Code

Dead Load (Gk)

kN/m²
1.2
3.6
0.5
5.3 x Area (m²)

*Concrete density x thickness (0.15m)

Hence,
Total Gk = 190.8 kN

Live Load (Qk)

kN/m²
1.5
1.5 x Area (m²)

Hence,
Total Qk = 54 kN

EC 8
Cl 3.2.4 Combination of the seismic action with other load.

Eq 3.17
where,

Eq 4.2 ψ Ei = φ.ψ 2 i

Table 4.2 For category A, storeys with correlated occupancies;
φ = 0.8

EC 0 For category A, domestic and residential areas;
Table A1.1 ψ 2i  = 0.3

Thus,
ψ Ei = 0.24

203.76 kN WGQ  = 203.76kNTotal factored load, WGQ :

1st Floor Slab Action Calculation:

Output

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation

Dead Load (DL)

Live Load (LL)

TOTAL
Imposed load

WGQ = ΣGk '+' Σψ EiQk

Finishes
S/w Slab*
Services

TOTAL
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Maximum bending moment (approx.) :

MGQ = (WGQ . L) /12 ; L = 6m 

MGQ = 101.88 kNm

Parameters:
EC 8
Eq 4.6 T1 = Ct.H3/4

where,
Ct (Concrete) = 0.085

Fig. 1(a) H = 9 m

Hence,
T1 = 0.44 s

Table 3.2 For type 1 elastic response spectra;

A

S : 1
Tb : 0.15 s
Tc : 0.4 s
Td : 2 s

Thus,

Eq 3.15

Cl 3.2.1(3) ag =  agR. γ I

where,
Cl 3.2.1(3)  γI : 1
Cl 3.2.1(2) agR :

(Assume 0.5g)

so,  ag = 0.08 g              = 0.78 m/s²

MGQ  = 101.88kN

Since Tc ≤ T1 ≤ Td, use equation 3.15.

Peak ground acceleration on type A ground*

Ground type :

T1  in range of Tc and Td  (Tc ≤ T1 ≤ Td)

Horizontal Seismic Action:

Sd(T1) = ag . S . (2.5/q) . (Tc/T)

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation Output
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Cl 6.3.2 Behaviour factor (q)

Table 6.2 q : 4

Eq 3.15 Sd(T1) = ag . S . (2.5/q) . (Tc/T)

Sd(T1) = 0.44 m/s²

Cl 4.3.3.2.2 λ = 1

For the total mass of the building, m

which,
nb : number of bays
ns : number of storeys

So,
m = 1833.84 tonne

Cl 4.3.3.2.2 Base shear force, fb

Fb ₌

₌

Sd(T1) . m  . λ

Fb 809.65 kN Fb = 809.65 kN

m = (WGQ.nb.ns)

Base Shear Force :

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation

; For moment resisting frame (DCM)

Output
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Cl 4.3.3.2.2 Distribution of the horizontal seismic force

Σzi.mi =
Σzi.mi = 33009.12

Cl 4.3.3.2.3(3)
Eq 4.11 Fi =

F3 = 404.82 kN
F2 = 269.88 kN
F1 = 134.94 kN

So,
6Fa ₌ Fb
Fa ₌ 134.94 kN

and
6Fc ₌ 134.94 kN
Fc ₌ 22.49 kN

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation

Horizontal sotrey seismic action calculatio:

(3 x 135.22) + (6 x 135.22) + (9 x 135.22)

Output

Fb . (zi.mi/Σzi.mi )

Assume, the interrior column is twice as large as exterior column.

F 2Fc Lc/2 2Fc F

F1

F2

Fb

Fa 2Fa 2Fa Fa

F3
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By : Qila Din
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ME =

ME = 438.56 kNm

MT = ME + MGQ ≥ Mstatic

Wstatic =

Mstatic = (Wstatic . L) / 12    ; L = 6m

Mstatic = 169.29 kNm

Thus,
MT = 540.44 ≥ Mstatic

MT ≥ Mstatic

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation Output

Fa.Lc + (Fc.Lc/2)         ; Lc = 3.0 m

       Maximum bending moment from sway load :

        Total moment, MT

1.35G k  + 1.5Q k

Mstatic = 169.29kNm

OK

Appendix B: Design of Regular and Irregular Moment-Resisting… 93



Sheet : 7 of 11
Project : Date : 8/9/2015
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EC3

Eq 6.13 Mpl,Rd = Wpl.fy for class 1

Assume,
fy = 275 N/mm²

Wpl = M/fy

Wpl = 369.02 cm³

Properties,
Wpl = 393 cm³
Ix-x = 4410 cm⁴

weight of beam = 31.1 kg/m
D = 251.4 mm
t = 6 mm

T = 8.6 mm
B = 146.1
r = 7.6

A = 39.7
Thus,

Mpl,Rd = 108.075 kNm

Weight of beam = 1.866 kN

Factored weight of beam = 1.35 x 4.026kN
Factored weight of beam = 2.52 kN

Additional moment =
Additional moment, Madd = 1.89 kNm

Total moment = 103.35 kNm

Total Moment ≤ Mpl,Rd 

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation Output

Steel Beam Design :

OK

      Required plastic modulus, 

From the section properties, the size beam selected is 254x146x31

      Checking self-weight of beam,

(Factored weight of beam x L)/8

Mpl,Rd = 108.075kNm
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Max shear force, VED = 186 kN

Eq 6.18 Vpl,RD = Av(fy/√3)

where,
Av = A-2bT+(t+2r)T
Av = 1639.4 mm²

Thus,
Vpl,RD = 260.29 kN

Vpl,RD > VED

δ = (WL3/384EI)
δ = 14.87 mm

(due to unfactored DL +LL)

Cl 7.2
Annex A1.4 δmax = span/200

δmax = 30 mm

δ ≤ δmax OK

OK

δ = 14.87mm

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation Output

      Maximum shear force,

VED = 186kN

      Shear resistance of the section,

      Deflection checking,
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Total loading applied to column,  Ned = 305.64 kN

Area, A = Ned

fy

where,
fy = 275 N/mm²

so,
Area, A = 11.11 cm²

110 cm²
222.2 mm
209.1 mm
20.5 mm
12.7 mm
10.2 mm
977 cm³

9.28 cm
5.34 cm

Flange : 
Table 5.2 ε = 0.92

For bending = 72ε = 66.24
For compression = 33ε = 30.36

Depth of cross section,c = D - 2T-2r = 160.8 mm

for class 1,
c/t = 12.66 ≤ 72ε

≤ 33ε 

Therefore, the flange is class 1.

Class 1
Class 1

Properties,
Area of section, A =

Thickness of flange,T =
Thickness of web,t  =

Depth od section, D =
Width of section, B =

Root radius, r =
Plastic modulus, Sy = 

Radius of gyration, rx =

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation Output

Steel Column Design :

Radius of gyration, ry =

      Section classification,

      Loading,

From the section properties, the size column selected is 203x203x86
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Web :
ε = 0.92

For compression = 9ε = 8.28

Depth of cross section,c = B/2 -r = 94

for class1,
c/t = 7.43 ≤ 9ε 

VED = 161.63 kN

Eq 6.18 Vpl,RD = Av(fy/√3)
where,

Av = A-2btT+(t+2r)T
Av = 3105.45 mm²

so,
Vpl,RD = 569.33 kN

Vpl,RD > VED

Cl 6.2.3 (2)

Eq 6.6 Npl.Rd = A.fy 3025 kN

Moment design, MED = 103.35 kNm

For class 1,
Wpl,y  = 977000 mm³

So,
Mc,Rd = 268.675 kNm      > MED

Therefore, the web is class 1. Thus, the whole section is class 1.

      Maximum shear force,

      Shear resistance of the section,

      Resistance of cross section,

      Moment resistance,

OK

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation Output

Class 1
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Eq 6.50 λbar = L/(ix-x.λl) for class 1.
where,

λl = 93.9ε      = 86.39
so,

λbar = 1.30

Fig. 6.4 0.44

Eq 6.55 Mb,Rd = χLT.Wy.fy

where,
Mb,Rd = 1331 kN

< 1

0.38 < 1

< 1

0.23 < 1

Hence reduction factor =

      Combination of axial and bending,

Simplified equation in EC3.

(MED/Mc,Rd)

OK

OK

Output

      Bending and axial compression,

Slenderness for flexural buckling.

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation

(NEd/Mb,Rd)
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Ref. / Code

Dead Load (Gk)

kN/m²
1.2
3.6
0.5
5.3 x Area (m²)

*Concrete density x thickness (0.15m)

Hence,
Total Gk = 190.8 kN

Live Load (Qk)

kN/m²
1.5
1.5 x Area (m²)

Hence,
Total Qk = 54 kN

EC 8
Cl 3.2.4 Combination of the seismic action with other load.

Eq 3.17
where,

Eq 4.2 ψ Ei = φ.ψ 2 i

Table 4.2 For category A, storeys with correlated occupancies;
φ = 0.8

EC 0 For category A, domestic and residential areas;
Table A1.1 ψ 2i  = 0.3

Thus,
ψ Ei = 0.24

203.76 kN

Finishes
S/w Slab*
Services

TOTAL

1st Floor Slab Action Calculation:

Output

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation

Dead Load (DL)

Live Load (LL)

TOTAL
Imposed load

WGQ = ΣGk '+' Σψ EiQk

Total factored load, WGQ : WGQ  = 203.76kN
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Maximum bending moment (approx.) :

MGQ = (WGQ . L) /12 ; L = 6m 

MGQ = 101.88 kNm

Parameters:
EC 8
Eq 4.6 T1 = Ct.H3/4

where,
Ct (steel) = 0.085

Fig. 1(a) H = 9 m

Hence,
T1 = 0.44 s

Table 3.2 For type 1 elastic response spectra;

A

S : 1
Tb : 0.15 s
Tc : 0.4 s
Td : 2 s

Thus,

Eq 3.15

Cl 3.2.1(3) ag =  agR. γ I

where,
Cl 3.2.1(3)  γI : 1
Cl 3.2.1(2) agR :

(Assume 0.5g)

so,  ag = 0.08 g              = 0.78 m/s²

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation Output

MGQ  = 101.88kN

Since Tc ≤ T1 ≤ Td, use equation 3.15.

Peak ground acceleration on type A ground*

Ground type :

T1  in range of Tc and Td  (Tc ≤ T1 ≤ Td)

Horizontal Seismic Action:

Sd(T1) = ag . S . (2.5/q) . (Tc/T)
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Cl 6.3.2 Behaviour factor (q)
Cl 6.3.2(2) q should be reduced by 20% for non-regular in elevation

q : 3.2

Eq 3.15 Sd(T1) = ag . S . (2.5/q) . (Tc/T)

Sd(T1) = 0.55 m/s²

Cl 4.3.3.2.2 λ = 1

For the total mass of the building, m

which,
nb : number of bays
ns : number of storeys

So,
m = 1222.56 kN

Cl 4.3.3.2.2 Base shear force, fb

Fb ₌

₌

Sd(T1) . m  . λ

Fb 674.71 kN

m = (WGQ.nb.ns)

Base Shear Force :

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation

; For moment resisting frame (DCM)

Output

Fb = 674.71 kN
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Cl 4.3.3.2.2 Distribution of the horizontal seismic force

Cl 4.3.3.2.3(3)
Eq 4.11 Fi = Fb . (zi.mi/Σzi.mi )

F3 = 433.74 kN
F2 = 192.77 kN
F1 = 48.19 kN

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation

Horizontal sotrey seismic action calculatio:

Output

F1

F2

F3
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Based on calculation in SAP200,

MT = 475.97

Wstatic =

Mstatic = (Wstatic . L) / 12    ; L = 6m

Mstatic = 169.29 kNm

Thus,
MT = 475.97 ≥ Mstatic

MT ≥ Mstatic OK

Mstatic = 169.29kNm

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation Output

1.35G k  + 1.5Q k
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EC3

Eq 6.13 Mpl,Rd = Wpl.fy for class 1

Assume,
fy = 275 N/mm²

Wpl = M/fy

Wpl = 400.40 cm³

Properties,
Wpl = 483 cm³
Ix-x = 5540 cm⁴

weight of beam = 37 kg/m
D = 256 mm
t = 6.3 mm

T = 10.9 mm
B = 101.6
r = 7.6

A = 47.2
Thus,

Mpl,Rd = 132.825 kNm

Weight of beam = 2.22 kN

Factored weight of beam = 1.35 x 4.026kN
Factored weight of beam = 3.00 kN

Additional moment =
Additional moment, Madd = 2.25 kNm

Total moment = 112.36 kNm

Total Moment ≤ Mpl,Rd 

Mpl,Rd = 132.83kNm

      Required plastic modulus, 

From the section properties, the size beam selected is  254x146x37

      Checking self-weight of beam,

(Factored weight of beam x L)/8

OK

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation Output

Steel Beam Design :
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Max shear force, VED = 189.95 kN

Eq 6.18 Vpl,RD = Av(fy/√3)

where,
Av = A-2bT+(t+2r)T
Av = 2739.47 mm²

Thus,
Vpl,RD = 434.95 kN

Vpl,RD > VED

δ = (WL3/384EI)
δ = 11.84 mm

(due to unfactored DL +LL)

Cl 7.2
Annex A1.4 δmax = span/200

δmax = 30 mm

δ ≤ δmax 

OK

δ = 11.84mm

      Maximum shear force,

VED = 189.95kN

      Shear resistance of the section,

      Deflection checking,

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation Output

OK
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Total loading applied to column,  Ned = 305.64 kN

Area, A = Ned

fy

where,
fy = 275 N/mm²

so,
Area, A = 11.11 cm²

110 cm²
222.2 mm
209.1 mm
20.5 mm
12.7 mm
10.2 mm
977 cm³

9.28 cm
5.34 cm

Flange : 
Table 5.2 ε = 0.92

For bending = 72ε = 66.24
For compression = 33ε = 30.36

Depth of cross section,c = D - 2T-2r = 160.8 mm

for class 1,
c/t = 12.66 ≤ 72ε

≤ 33ε 

      Loading,

From the section properties, the size column selected is 203x203x86

Radius of gyration, ry =

      Section classification,

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation Output

Steel Column Design :

Properties,
Area of section, A =

Thickness of flange,T =
Thickness of web,t  =

Depth od section, D =
Width of section, B =

Root radius, r =
Plastic modulus, Sy = 

Radius of gyration, rx =

Therefore, the flange is class 1.

Class 1
Class 1
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Web :
ε = 0.92

For compression = 9ε = 8.28

Depth of cross section,c = B/2 -r = 94

for class1,
c/t = 7.43 ≤ 9ε 

VED = 161.55 kN

Eq 6.18 Vpl,RD = Av(fy/√3)
where,

Av = A-2btT+(t+2r)T
Av = 3105.45 mm²

so,
Vpl,RD = 569.33 kN

Vpl,RD > VED

Cl 6.2.3 (2)

Eq 6.6 Npl.Rd = A.fy 3025 kN

Moment design, MED = 112.36 kNm

For class 1,
Wpl,y  = 977000 mm³

So,
Mc,Rd = 268.675 kNm      > MED

Output

Class 1

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation

Therefore, the web is class 1. Thus, the whole section is class 1.

      Maximum shear force,

      Shear resistance of the section,

      Resistance of cross section,

      Moment resistance,

OK

OK
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Eq 6.50 λbar = L/(ix-x.λl) for class 1.
where,

λl = 93.9ε      = 86.39
so,

λbar = 1.30

Fig. 6.4 0.44

Eq 6.55 Mb,Rd = χLT.Wy.fy

where,
Mb,Rd = 1331 kN

< 1

0.42 < 1

< 1

0.23 < 1

Seismic Steel Frame Based on Eurocode for 3-storey

Calculation

      Bending and axial compression,

Slenderness for flexural buckling.

Output

Simplified equation in EC3.

(MED/Mc,Rd)

OK

OK

(NEd/Mb,Rd)

Hence reduction factor =

      Combination of axial and bending,
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