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Preface

This book is a summary of my long and extensive research experiences in many
forums, of which the following are probably the most important: Statistics Finland,
the statistical office of the European Commission (Eurostat); the Social and Health
Research Institute of Finland (Stakes); the University of Southampton; and the
University of Helsinki.

At the same time, I have participated in many international networks and projects
and have acted as a consultant on statistical issues in several places—most recently
in Ethiopia—as noted in a few of the book’s comments. One of the important
networks is the Household Survey Nonresponse Network, which was founded in
Stockholm in 1990 and continues to meet every year. I have often participated in
these meetings. The other long-term group that I have been involved in is the expert
sampling team of the European Social Survey (ESS); I have been a member since
2001. This book very much focusses on the ESS, which is a good framework for all
social surveys, and I recommend that its standards are followed. Another useful
network is the Programme for International Student Assessment (PISA). I was a
member of the Finnish team that was responsible for the 2006 PISA survey. Thus, I
learned quite a lot about it, and since then always have used the PISA data in my
teaching and, to some extent, in my research.

For approximately 10 years around the year 2000, I was a Finnish coordinator of
several European Union (EU) research projects, many concerning survey methods.
In this book, the imputation methodology is based directly on two EU projects:
Automatic Imputation Methods (AUTIMP) and Development and Evaluation of
New Methods for Editing and Imputation (EUREDIT). The main data in Chap. 12
are derived from the second project, although greatly modified in the examples.

The impact of the EU’s project, Data Quality of Complex Surveys within the New
European Information Society (DACSEIS), on variance estimation also can be seen
in this book, but not as explicitly. Later, around 2010, I was a member of the Finnish
team that collated a representative data file on security and crime victimisation. We
tested three survey modes, which is not a common approach. The findings were
exciting, some of which are included here too.

I have presented short and long survey courses in all the institutions at which I
have worked, and in other places as well, although the first comparatively complete
version of this methodology was written in 1999 while I was at Stakes. It was the
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basis for the first course I taught at Helsinki University in 2002. Since then I have
given survey courses there in various forms, including a recent one that covered all
the main survey topics. Some of them, however, were at only a rather general level
because it was anticipated that certain methods would be too difficult for students
with not much background in statistical and/or other quantitative methods.

As a result, I also have given specialised courses on, for example, ‘Advanced
weighting and reweighting methods’, ‘Editing’, ‘Imputation methods’ and ‘Statisti-
cal disclosure limitation methods’. Course participants had a good background in
statistical methods and informatics. The structure of this book is derived mostly from
these experiences. That is, some parts are expected to be relatively easy for most
social scientists, but the more sophisticated parts will be demanding for them, and for
specialists as well, because the courses also include new methodologies.

Given that most students in general survey methodology courses have not been
statisticians or mathematicians but have tended to be, for example, sociologists,
social psychologists, economists, psychologists, demographers, geographers, and
political scientists, the course is not formula-focussed. I have found that this can help
when attempting to understand the main aspects of surveys. Another goal has been to
ensure that students learn survey methodology well at a general level so that they are
able to ask advice from specialists as early and knowledgeably as possible.

Often, I have found that a beginner may collect data but forget many important
things when doing so. Some eventually understand that they need to contact a
specialist for help. Unfortunately, the specialist then finds it difficult to make useful
improvements because the mistakes made in the early stages frequently are fatal.
This book should help to avoid such awkward situations, even if the reader does not
completely understand everything in it. I believe that empirical, real data examples
help to establish a basic understanding, if a participant has been paying attention
sufficiently, before he or she started a survey. In addition, the students of my courses
have done some of their own data handling and have reported on their outcomes.
This book can be used for these purposes too.

Some years ago, I decided to write a full survey methodology book in Finnish. Its
first version was published as an open access e-book by a Danish publisher, Ventus
Publishing, in 2010. A new edition was issued in 2013. These books have helped
with my teaching a great deal, although it was soon recommended that I use English
more in teaching. When Springer contacted me in 2015, I suggested that I should
write an English version as well. I have tested this version twice with my recent
Helsinki University students. They have very much inspired my work, and some
corrections have been made as a result. The comments of anonymous reviewers
naturally have been taken into account as well.

I hope that readers will be pleased with my approach to survey methodology, with
its focus on handling missing data. The history of sample surveys is not long, the first
being implemented in the 1930s. Their use began to expand after the Second World
War in the developed countries. Missing data at that time was not a great problem,
but this issue has become increasingly worse as time has gone on.

This has led to the development of new research strategies and methods, many of
which have been successful. Unfortunately, the strategies have not been able to solve
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everything. In particular, it is still difficult to obtain sufficiently accurate information
about marginal groups. This is a nuisance that is evident in several examples in this
book, the goal of which is to describe the newest methodologies for handling
missing data. My focus here is more on post-survey adjustments; nevertheless, all
the planning and fieldwork for surveys are just as important.

Helsinki, Finland Seppo Laaksonen
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Introduction 1

From the start road some steps forward

This textbook is on quantitative survey methodology, and it is written in such a way
that survey beginners will be able to follow most of it. Nevertheless, they are
expected to have some background knowledge about statistics and related issues,
and to be interested in learning more about survey methods and practices. What is
covered in this book is extensive. It includes fields such as advanced weighting,
editing, and imputation, that are not covered well in corresponding survey books
(cf. Bethlehem, 2009; Biemer & Lyberg, 2003; De Leeuw, Hox, & Dillman, 2008;
Gideon, 2012; Groves et al., 2009; Valliant, Dever, & Kreuter, 2013; Wolf, Joye,
Smith, & Fu, 2016). These subjects, naturally, are covered in specialized books and
articles—see Chaps. 8, 11, and 12. On the other hand, we do not give much
consideration here to statistical tools and methods relating to limitations caused by
confidentiality, which are important in practice.

To help the reader without advanced statistical knowledge, we do not use many
statistical formulas, but the necessary formulas are still included. This is possible

# Springer International Publishing AG, part of Springer Nature 2018
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because it does not take much space to explain the basic ideas in formulas. All of the
more detailed and important formulas, however, can be found in the References
included in this book. They are cited at the end of each chapter, but the Appendix
entitled ‘Further Reading’ contains other bibliographical references on surveys in
journals, books, and articles.

This book also will be useful for more experienced or even sophisticated users
because some parts include methodologies that are not generally known even among
survey experts. This is very much a result of the book’s focus, which is on dealing
with missing data. This focus is the result of survey practice, which has been
becoming more awkward just because various types of missing data problems
have been getting worse during recent decades. At the same time, new tools have
been developed. Some of these tools and technologies are valuable, it is clear, but
some are not, or their quality is not known. If the recommendations in this book are
followed and implemented in a survey process, the outcome definitely will be good,
or at least its quality will be known.

It is important to recognize that the book must be considered as a whole. In
particular, this means that it will be beneficial to learn the terms used in each chapter,
although Chap. 2 includes their core pattern. New terms are introduced later; thus, it
might be difficult to go directly to the most sophisticated chapters—Chaps. 8 and 12.
It should be noted that these authors’ terms are not new, as they have been used
earlier; however, terms seem to vary to some extent from one source to the next. It
therefore would be useful to understand the terms in this book in order to understand
its key points.

Survey Methodology and Missing Data presents many empirical examples that
are, in most cases, from real surveys, particularly multinational ones. Two such
surveys are used most generally. The first is the European Social Survey (ESS),
which is an academically driven biannual survey (europeansocialsurvey.org). Its
initial round was conducted in late 2002 or early 2003. The other survey, which has
often been applied, is the Organization for Economic Cooperation and
Development’s (OECD) Program for International Student Assessment (PISA) that
has been conducted every three years since 2000. The micro data from both surveys
are publicly available and consequently are easy to use around the world, but they
require adequate knowledge of survey methodology. We use much the same
variables in examples throughout the book, which should help readers follow the
methodology. Many examples have not been published elsewhere, as far as we
know. The authors think that some results are also interesting from the subject matter
point of view (e.g., Chap. 14).

Using examples just from one survey, either the ESS or the PISA, would not be
reasonable in this textbook because these surveys are different. The ESS is used most
commonly in the book’s first part and the PISA is used toward the end, where we pay
the most attention to survey analysis. The reason for this is that the public ESS files
only include the survey weights, not two other important ‘instruments’—stratum and
cluster. Consequently, we cannot use the ESS in many examples, thus, the PISA is
chosen when explaining the importance of other the instruments.

2 1 Introduction
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We are able to use examples that require the sampling data, given that the author
had access to this material. Unfortunately, we cannot publish the related data file
because it is confidential. We have passed over this problem by creating an artificial
file that consists of two of the domains that have been used in almost all ESS
countries. We include the description of this micro file in Chap. 6.

We use some additional survey data too. The Finnish Security Survey is used for
two reasons: (1) some of its questions are special, and (2) it is based on three survey
modes, which is not usual. We also use another special data file for imputation
because neither the ESS nor the PISA survey is illustrative of this methodology.
There are a few small-scale examples outside these main data files. In general, the
examples are from social or human surveys, but some comparisons to business
surveys are given.

An understanding of surveys and survey terms is demanding and takes time to
gain such knowledge. It is not possible to write a book in a way that all terms will be
immediately understood when they are explained. The authors use many ‘graphical’
and other schemes that we hope will facilitate understanding. The empirical
examples are, then, for deeper comprehension. It would be beneficial if a user
could use real data at the same time. This is possible in most cases since the ESS
and the PISA files are publicly available.

Each survey should be conducted in the best way. This book is focused on the
methods that help with the process so that the outcome is of as high a quality as
possible. Second, the book’s purpose is to give reasonable starting tools for using
and analyzing a file once a survey has been conducted. This file should be reasonably
well cleansed. The core of the book thus is focused on survey data collection and
cleaning methods, which cover the following key steps:

• Designing the survey, which includes determining the target population
• Designing the questionnaire
• Designing the sample or samples
• Processing the fieldwork so that the data collection is productive, and the quality

is high
• Entering data as much as possible during the fieldwork, or automatically
• Editing the raw data as much as possible during the fieldwork, with final editing

afterward
• Inputing missing and implausible values, if this is believed will improve the

results
• Including relevant auxiliary variables for the sampling design data file
• Creating the sampling design data file during and after the fieldwork
• Analysing nonresponse and other gaps found
• Weighting the micro data using the most advanced methods and the best possible

auxiliary variables available and/or were gathered
• Documenting everything during the process, in a digital form to the extent that

this is possible
• Adding other features into the data file that will help a user analyse it as easily as

possible.
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After creating the well cleaned survey micro file, it is possible to begin survey
data analysis. Chapter 14 covers the basic methods for correctly performing the
analysis so that the survey data ‘instruments’ are considered. More demanding
survey analysis is not covered in this book.

The penultimate chapter, Chap. 13, contains a summary of all the key terms in the
book. We recommend that readers look at this chapter from time to time, maybe after
finishing each of the other chapters. It might be a good idea to read this whole
chapter quite early, even though many of the concepts would not yet be understood.

The role of the photos at the beginning of each chapter are meant to give an image
of the survey terms at a general level. They offer an opportunity to take a break
between chapters and to start the next one without any prejudices. All the photos are
from nature (not just from Finland) and are without people; they were taken by the
author.
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Concept of Survey and Key Survey Terms 2

Forest Mode and Garden Mode

2.1 What Is a Survey?

We determine the survey in its relatively short form, as follows, but it can be defined
in many other forms as well (Laaksonen, 2012):

A survey is a methodology and a practical tool used to collect, handle, and
analyse information from individuals in a systematic way. These individuals, or
micro units, can be of various types (e.g., people, households, hospitals, schools,
businesses, or other corporations). The units of a survey can be simultaneously
available from two or more levels, such as from households and their members.

Information in surveys may be concerned with various topics such as people’s
personal characteristics, their behaviour, health, salary, attitudes and opinions,
incomes, impoverishment, housing environments, or the characteristics and perfor-
mance of businesses. Survey research is unavoidably interdisciplinary, although the
role of statistics is extremely influential because the data for surveys is constructed in
a quantitative form. Correspondingly, many survey methods are special statistical
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applications. Nevertheless, surveys substantially utilize many other sciences such as
informatics, mathematics, cognitive psychology, and theories of subject-matter
sciences of each survey topic.

A survey is a series of tasks that finally results in a statistical file of numerical
units and their characteristics (variables); the units may be:

• Individual people
• Households and dwelling units (‘register households’ in registered countries)
• Families
• Schools and other public institutions
• Enterprises
• Plants (local units of enterprises)
• Local kinds-of-activity units of enterprises
• Villages, municipalities, and other administrations
• Other areas, including grid squares
• Societies, associations, and corporations

Such a data file may cover basically the entire desired population, or it can be based
on a sample (i.e., the terms ‘survey sampling’ and ‘survey statistics’ are used,
respectively). A survey often is considered to be only a sample survey, but similar
methodologies and tools can be applied if a register or another administrative file has
been created and handled.

Therefore, the authors use a relatively broad definition for surveys here; however,
it is important to recognize that a final survey file may be a combination of various
data collections, and several organizations may have participated in conducting
it. Naturally, we concentrate mainly on surveys and their methods when collected
and handled by one survey organization.

This chapter focusses on determining precisely five cross-sectional populations in
surveys. We briefly continue to longitudinal and panel surveys, but our focus in this
book is on cross-sectional studies. At the same time, we present other terms needed
in later chapters. At this stage, they will not yet be understood thoroughly.

2.2 Five Populations in Surveys

A population is a key concept of statistics, as determined by Adolphe Quetelet in the
1820s. It is not just one population in surveys where we need even five. In addition,
before the first one, a target group that the survey will be concerned with is in mind.
That group is usually rather rough, but it may be close to one or more of the
following five populations:

1. Population of interest is the population that a user would like to get or estimate
ideally, but it is not always possible to completely reach; consequently, the
researcher determines the second population—target.
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2. Target population is a population that is realistic. Naturally, it should be exactly
determined, including its reference period (i.e., a point in time or a time period).

The following are examples of target populations used in this book. We do not
mention any year because it varies in the first two cases.

• The European Social Survey (ESS): ‘Persons 15 years or older who are
residents within private households in the country on the 1st of November’.

• The European Finnish Security Survey (EFSS): Non-Swedish-speaking
15–74-year-old residents in Finland on the 1st of October.

• The Programme for International Student Assessment (PISA) survey:
15-year-old school students (i.e., specified so that the full calendar year is
covered).

• The grid-based study of Finland: People from 25–74 years of age living in
south Finland.

" Discussion of the First Two Populations We think that first it is better to
try to find an ideal population (i.e., a population of interest). This is not
possible in most cases. For instance, if the target is to get the voting
population, it is not possible. Therefore, the population that is eligible to
vote is reasonable, but it can be difficult to achieve as well because the
survey institute may be using telephone interviewing with random digit
dialing. Thus, it is not known in advance who will be willing to participate
(e.g., vote). A good point is that people who do not participate in this
survey do not vote well either. Consequently, the quality of such surveys
is often satisfactory.

3. Frame population and the frame from which the statistical units for the survey
can be found. Usually, the frame is not exactly from the same period as data from
the target population. The delay in population surveys is rather short (i.e. 1–5
months), but enterprise surveys take much longer, even years. This frame is not
always at the element level available, as in the case of the central population
register-based surveys. Instead, the frame population can be created from several
frames (multiframe), often from three—not all of which may be available when
starting the survey fieldwork. Yet, the first frame is necessary to be able to begin.
This often consists of the regions, or the areas, or the schools, or the addresses, but
later other frames are needed. Fortunately, only the ones of those who were
selected in the first stage.
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A Multiframe Example

• Stage 1: List of the electoral sections (this number might be thousands).
• Stage 2: Lists of all household addresses of the units selected during the

first stage. The address might be complex because there can be more than
one dwelling at one address, and more than one household in one dwelling.

• Stage 3: One or more members at the selected household and/or address.

We thus observe that the Stage 1 frame should be available centrally, but
the other frames are needed only for those units that are selected. This means
that these frames need to be created at this stage. Sometimes this is possible
using a local population register; however, from time to time it is created by
the survey organization.

" Comment To get a realistic target population all important targets are
not achieved, but because survey quality is crucial, a certain optimum is
good to keep in mind. Respectively, it is advantageous to optimize the
target population from the point of view of the availability of the frame
or the frames. If the quality of the frames is inferior, the target population
might be difficult to determine.

Any frame population is not completely up to date. Fortunately, when the survey
fieldwork and the data collection are done some months later, it is possible to get a
new frame, which is the fourth population.

4. Updated frame population is useful for better estimating the results. Usually, the
initial frame population has been used for estimation too. This may lead to biased
estimates. Fortunately, this bias is not severe in most human surveys. By contrast,
old frames can lead to dramatic biases in business surveys should these concern
large business organizations.

Bias

A bias is a systematic error. It is not random like a sampling error. A biased estimate is thus
systematically inaccurate. There can be several reasons behind it, due either to an incorrect
estimator or more likely to problems in the data.

Finally, we will have the fifth population when we also know how much the
fieldwork has succeeded.

5. Survey population or study population. It is ideal if this fifth population
corresponds to the target population or even the population of interest. If not,
however, the estimates are somewhat biased.
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If there are clear gaps in the final data, this should be made known to the users
(i.e., how much the survey population differs from the target population). This might
be problematic to know exactly, but the main problems should not be difficult to
identify.

2.3 The Purpose of Populations

Before continuing with survey terms, it is useful to discuss the purpose of these
populations. Naturally, the first point is to approach to the targets of the survey as
well as possible, so it is necessary to know all the steps and possible gaps passed or
hopefully solved.

The final target is to estimate the desired estimates, such as averages, standard
deviations, medians, distributions, ratios, and statistical model parameters. This can
be done by just calculating in of any kind of way, but such figures cannot be
generalized at any population level without using the survey instruments that are
explained in this book. If all coverage and related problems are solved, the results
can be generalized at the target population level. These results are called point
estimates. This means that they are not ‘true values’ as in the case of the entire target
population without sampling or missingness gaps.

To better understand the quality of these estimates, it is necessary to estimate their
uncertainty as well. Indicators for uncertainty are standard errors, confidence
intervals (margins of error), and p-values, among others. Standard software
programs give such figures but it cannot be guaranteed that they are correct unless
survey instruments are applied (see Chap. 14).

If this population cannot be achieved satisfactorily, it is best to talk about
generalization at the survey population level. It is not common to report the surveys
in this way, although the reality is that certain groups are not really represented
among the respondents. For example, homeless, disabled, and other marginalized
people who do not understand the language used in the survey are not well
represented in most surveys. It is possible to attempt a generalization in another
way, for example using modelling, but this issue is special and cannot be considered
in this book. This generalization mainly is concerned with certain connections or
explanations found in the data. Thus, it is possible to try to generalize such
‘estimates’ or other outcomes in some way.

The units of the target population are equal to those of the survey population, but
the units of the frame population(s) can be essentially different, except in element-
based sampling. The ESS survey designs vary a lot from one country to the next.
There are countries where all the units are equal to individuals age 15 and older (i.e.,
in register countries such as Sweden and Denmark) but many countries have several
units (e.g., small areas, addresses, dwellings, individuals 15+ years old).

PISA and other student surveys typically use two units: (1) ‘PISA’ schools
(or school classes) and (2) students themselves who are needed from those classes
sampled.
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2.4 Cross-Sectional Survey Micro Data

We next present three schemes to illustrate the nature of the cross-sectional survey
data. The first scheme is the simplest and is never found in practice (Scheme 2.1).
Nevertheless, it is good to consider because it starts by presenting the concepts and
symbols used in this book.

If the whole target population has been examined and no missingness’s occur,
there are four groups of concepts:

1. Statistical units that are often identifiers in surveys. Our general symbol of the
statistical unit is k. The identifiers are of two types:
• Ones known to be needed in survey institutions for several purposes.
• Anonymous ones that are given for outsiders in order to protect the individuals

2. Frame variables X or x that are used in collecting the data.
3. Outcome or survey variables Y or y that are obtained by the fieldwork.
4. The sampling weights that are all equal to one because all are included in the

survey and all are replied to. Such weights are not needed in the analysis.

The simplest scheme is thus never found in real life but is a micro-survey file
based on a sample. This means that only a certain proportion of the frame population
and of the target population is fully achieved. On the other hand, missingness
because of unit non-response occurs. Other gaps are appearing as well and new
concepts are needed. The following scheme illustrates these and are explained,
respectively. See also Scheme 2.3.

The measures of this scheme are not the same as in real life because the sample
fraction is not as big as it is here but may be 1–5% of the target population size N.
(Note that the symbol U is used as the reference population of N.) The sample size,
respectively, is symbolized by n, and the number of the respondents by r. The
symbol for overcoverage units or ineligibles is D in the frame and d in the sample.
These two concepts are helpful to distinguish because the sample ineligibles are
often known if they are contacted; however, the entire D population is not necessar-
ily well known. This may cause biases in estimates.

Scheme 2.2 includes three groups of auxiliary variables. All their symbols are X,
but we now have more such variables. The auxiliary group X1 corresponds to the

Scheme 2.1 Micro data for the entire target population
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frame variables, X, in Scheme 2.1. These are used in sampling and should be
available for the entire population. They are considered in more detail in the chapters
on sampling—Chaps. 4, 5, and 6.

The frame is not usually complete, one reason being undercoverage. There can be
other types of auxiliary variables than those for sampling. Variables X2 often are
available from the same source as sampling frame variables, but also from other
registers if a general register is available. Some auxiliary variables can be obtained
for the gross sample. We go into detail with examples of auxiliary variables in
Chap. 6, in particular. The following explains what is behind the other concepts of
the Scheme 2.2.

2.4.1 Specific Examples of Problems in the Data File

• Unit non-response: not contacted, unable to participate, refusals (hard and soft),
fieldwork mistakes.

• Item non-response: These are missing values for survey variables. There can be
many reasons for this, such as ‘do not know’, ‘too confidential to answer’, ‘refusal
to answer’, ‘not applicable’. These are considered further in other chapters and, in
particular, in empirical examples.

• Overcoverage (ineligible): Examples—died, emigrants, living outside the target
population, errors in the frame. Some of these can be observed during the
fieldwork, although not all. This is a worsening problem nowadays because, if
the unit (person) is not contacted, it is difficult to know whether a unit is ineligible
or a unit non-respondent.

Scheme 2.2 General structure of a micro-level cross-sectional survey data file (The weights
variables are not given here)
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• Undercoverage: Examples—new-born, new immigrants, illegally living in a
country, errors in the frame. The updated frame helps to discover them. If it is
not available, an effort should be made to assess its importance using external
statistical sources.

A real survey file is not the same as the scheme in Scheme 2.2, except in some
special cases such as methodological experiments using simulations. There are two
real files:

• A sampling design (data) file that covers the gross sample units and auxiliary
variables. This file is considered in detail in Chap. 6. From this file we usually
create the sampling weights and other sampling design variables and merge these
into the following.

• The file of the respondents, which is used in the analysis shown in Chap. 14, in
particular. The scheme of this file is given next (Scheme 2.3).

It is possible that there are other data outside this scheme; for example, para data and
content data. Good meta data should be available for all variables. If the file is
released to outsiders, the identifiers should be anonymous. Initial variables rarely can
be used as such in analysis.

We present examples in subsequent chapters of how either the new variables can
be created from each initial variable using a different scaling or another transforma-
tion, or a new variable can be combined from several initial variables. Two larger
examples of such transformations are given at the end of this chapter, thus this relates
to the E variables.

Sampling weights are of two types:

Scheme 2.3 General structure of a micro-level cross-sectional survey data file that consists of
r respondents (That is, rows in a matrix)
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• Their average for each target population ¼ one (1) and therefore their sum ¼ the
number of the respondents. They are called analysis weights. Thus, they are
relative weights and are good to use in comparing the weights of different
surveys.

• Their sum ¼ the number of the target population units (e.g., households or
individuals), and each weight indicates how many units one unit represents in
the target population; thus, these weights are for generalizing (estimating) the
results.

" Comment on Variables

• As noted earlier, there are X and Y variables, and they have a special
role. Yet, a certain X variable also can be used as a Y variable in
the analysis; however, in this case their values are only for the
respondents. If a variable, such as age, is used in the sampling and
is thus being an X variable, and is also included in the survey ques-
tionnaire, it cannot be guaranteed that their values will be equal.

• There also can be aggregated information (e.g., from characteristics of
a living area—village, block, municipality, locality). Their value is equal
for all those living in that area.

This book does not focus on panels and longitudinal studies; nonetheless, the
authors briefly illustrate such survey data in Scheme 2.4. It also mentions
non-response to items, but the main missingness is because of unit non-response.
It is usually highest in the first wave (e.g., a round in cross-sectional studies) of the
panel, but still occurs in consecutive waves as in the waves t + 1 and t + 2 here.

Scheme 2.4 General structure of cohort type of panel or longitudinal data
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Naturally, some ineligibility occurs at the same time. The cohort panel therefore
decreases over time. Consequently, various types of rotating panels are created.
Their purpose is to update the data with new panels to estimate both cross-sectional
and change estimates as well as those that are possible. Scheme 2.5 illustrates a
rotating panel that has been used in several countries for the Eurostat EU Living and
Income Survey (EU SILC).

The best cross-sectional estimates of Scheme 2.5 can be obtained from four files
of the same year, thus for t + 3 in this scheme. Each wave gives an opportunity to
estimate some cross-sectional figures, but the number of valid respondents is not as
large in most cases. Each rotation group, such as A and B here, can be used for
change estimations of individuals or households if the unit is the household. These
are therefore cohort surveys. Because each rotation group is decreasing, estimates
may be more and more biased. They are less biased if changes between only two
consecutive years are estimated.

The cross-sectional estimates can be calculated from each wave, but they are not
very accurate because of the small number of respondents. It is beneficial to cover
more data files in order to improve accuracy. For example, it is possible to get four
datasets for time t + 3. If the sampling weights are calculated correctly for this
reference time, the estimates are the best possible. We do not give any concrete
example of such a case in this book.

One problem when calculating the appropriate weights is that there are more
problems in long panels with updating the missingness of older waves, because it is
possible that the non-respondents of one wave do not remain as the non-respondents,
but change to ineligibility groups, for example. The opposite movement also is
possible. Getting complete missingness information is difficult in such cases.

Scheme 2.5 Example of a rotating panel of the four waves
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2.5 X Variables—Auxiliary Variables in More Detail

These variables can be found, collected, and/or downloaded from different sources,
as follows:

• Population register (e.g., age, gender, members living at the same address, house
type and size, kitchen type) there are many regional or areal options are available
as well, including grids.

• Other registers, such as a tax register or a job seekers’ register, formal education
register (e.g., taxable income, unemployed, education level).

• Other administrative sources, often at an aggregate level (e.g., percentage of
owners’ occupations, percentage of social renting, percentage of detached hous-
ing, percentage of people divorced, percentage of undercrowding, percentage
who own two or more cars and/or one or more cars, percentage of owners’
occupation, percentage of those unemployed, percentage of long-term unem-
ployed individuals, percentage of those who are highly educated); the aggregate
here may vary as a result of municipality, postal area code, grid square, block,
and/or village.

• In panels and longitudinal analysis, the variables of preceding points in time can
be used as auxiliary variables if their values are believed to remain correct.

It is possible to use interviewer observations of the immediate vicinity of the
houses in the sample units about visible signs of neighbourhood disorder. Such
observations of disorder or decay can be linked to the ‘broken windows’ hypothesis.
The neighbourhood has been classified into one or more variables by an interviewer
using harmonised rules. This type of X variable is becoming more common, but it is
difficult to get, regularly in particular.

X variables have several roles that will be discussed in more detail later in this
book; nevertheless, we mention the following important things as an introduction:

• Quality analysis of the survey data themselves
• Quality analysis of the data-collection process
• Identify reasons for non-response and ineligibility
• Compute ineligibility rates ¼ number of ineligibles/gross sample size
• Compute response rates¼ number of respondents (gross sample size� ineligibles)
• Compute items’ non-response rates and other characteristics of them
• Use the data for weighting and reweighting
• Use the data for checking and other editing
• Use the data for imputations

Meta data means information about the data. This information is available in
diverse formats, including:

• The questionnaire is the most important concerning survey variables
• The survey methodology documentation is as important, including sampling,

fieldwork, and IT tools.
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Meta data of a survey’s micro file currently readily are available in SPSS, SAS,
and other general software packages, including:

• The variable label meta data that usually gives a short description of the
corresponding questionnaire text.

• In the case of a categorical variable, their labels, respectively.
• Possibilities to include the information about missingness and the range of the

values; this information can be called para data. If the specific values, such as
9, 99 or 999, are marked as missing, they are not included in the ordinary analysis.
If one wants to use them in the analysis, it is possible to change this option or to
create a new variable of a different kind.

Table 2.1 is a piece of meta data from the European Social Survey. The column
‘Name’ is the variable name and is used in all further operations. The column
‘Label’ is the meta data of this variable. The column ‘Values’ includes both proper
values and their meta data as the text. The same applies to the column ‘Missing’,
which is an example of para data at the same time, indicating the missingness
codes. These can be fairly automatically excluded from the analysis but can be
included as well.

Para data may be of many other things, giving information about the
survey process, its problems and successes. Such data can be like ordinary data;
however, it is often supplementary data and is thus described separately. For
example:

• Reasons for non-response and ineligibility
• The date and time when the interviewing/replying began and ended, and its

length
• Opinion of interviewers about the quality of an answer from the respondent
• Data of a survey for interviewers after the fieldwork
• Number of attempts to contact an interviewee
• Interviewer code
• Incentives given to interviewees and interviewers
• Mode of the survey

In addition to the preceding data, it is beneficial to collect separate data about the
following:

• Survey climate and the variables tried for use in this measurement.
• Contextual data that describe the environment in which individuals reside and

behave.
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Table 2.1 A small extract from the SPSS micro data variables of the European Social Survey with
meta data

Name Type . . . . . . Label Values Missing

cntry String 6 0 Country {AT,
Austria}. . .

None

ppltrst Numeric 2 0 Most people can be
trusted, or you cannot be
too careful

{0, You cannot
be too
careful}. . .

77,
88, 99

pplfair Numeric 2 0 Most people try to take
advantage of you or try to
be fair

{0, Most people
try to take
advantage of
me}. . .

77,
88, 99

trstlgl Numeric 2 0 Trust in the legal system {0, No trust at
all}. . .

77,
88, 99

trstplt Numeric 2 0 Trust in politicians {0, No trust at
all}. . .

77,
88, 99

vote Numeric 1 0 Voted last national
election

{1, Yes}. . . 7, 8, 9

imsmetn Numeric 1 0 Allow many/few
immigrants of same race/
ethnic group as majority

{1, Allow many
to come and live
here}. . .

7, 8, 9

imbgeco Numeric 2 0 Immigration bad or good
for country’s economy

{0, Bad for the
economy}. . .

77,
88, 99

happy Numeric 2 0 How happy are you? {0, Extremely
unhappy}. . .

77,
88, 99

health Numeric 1 0 Subjective general health {1, Very
good}. . .

7, 8, 9

ctzcntr Numeric 1 0 Citizen of country {1, Yes} 7, 8, 9

almuslv Numeric 1 0 Allow many or few
Muslims to come and live
in country

{1, Allow many
to come and live
here}. . .

7, 8, 9

cgtsday Numeric 3 0 How many cigarettes
smoked on typical day?

{666, Not
applicable}. . .

666–999

alcfreq Numeric 2 0 How often drink alcohol? {1, Every
day}. . .

77,
88, 99

height Numeric 3 0 Height of respondent (cm) {777,
Refusal}. . .

777,
888, 999

weight Numeric 4 1 Weight of respondent (kg) {777,0,
Refusal}. . .

777,0,
888,0,
999,0

hhmmb Numeric 2 0 Number of people living
regularly as member of
household

{77, Refusal}. . . 77,
88, 99

gndr Numeric 1 0 Gender {1, Male}. . . 9

gndr2 Numeric 1 0 Gender of second person
in household

{1, Male}. . . 6, 7, 9

agea Numeric 4 0 Age of respondent,
calculated

{999, Not
available}. . .

999

(continued)
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2.6 Summary of the Terms and the Symbols in Chap. 2

• U ¼ target population (universe)
• D ¼ overcoverage or ineligibles at the frame level
• N ¼ size of the target population (undercoverage may be a problem)
• d ¼ number of ineligibles in the gross sample
• r ¼ number of (unit) respondents ¼ net sample size
• n ¼ number of units of the target population in the gross sample
• n + d ¼ gross sample size
• k ¼ statistical unit—for example, for the respondents, k ¼ 1, . . ., r or k¼1, . . .,

n for the gross sample
• r(y) ¼ number of responses to the variable y

2.7 Transformations

This section deals with transformations, thus concerns variables E of Scheme 2.3.
Each single variable can be transformed into another scale or into categories
different from the initial ones. The simplest transformation is linear and only changes
the scaling, even though the results are similar. The purpose of this linear transfor-
mation is to make the results easier to interpret. The following are examples of other
typical transformations that lead to a new (and hopefully better) interpretations, or
that satisfy the model conditions:

• Logarithmic for ratio–scale variables, such as income and wage, in which case the
outcomes are relative (log-percentages)

• Exponential, which is most often used to return from the logarithmic to the initial,
but this transformation, in a few cases, can be possible, such as if the distribution
is ‘peculiar’

• Categorization into two or more categories, the most common being a binary
(dichotomous) variable

We will come back to these cases in examples later in this book.
The two most commonly used transformations for several initial variables are

given at the end of this chapter. The outcome of such transformations is called the

Table 2.1 (continued)

Name Type . . . . . . Label Values Missing

yrbrn Numeric 4 0 Year of birth {7777,
Refusal}. . .

7777,
8888,
9999

yrbrn2 Numeric 4 0 Year of birth of second
person in household

{6666, Not
applicable}. . .

6666–
9999
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‘summary variable’ or ‘compound variable’. The two most common techniques for
constructing this variable are:

• Linear transformations of each initial variable into an equal scale, and then taking
the average of them; see Example 2.1 that follows.

• Exploratory factor analysis of the variables with the same phenomenon that leads
to a smaller number of variables (e.g., Fabriger & Wegener, 2012); see Example
2.2 that follows.

The two examples of these summary variables are given next. The data are from
Round 7 of the European Social Survey.

Example 2.1 Summary Variable with Linear Transformations
The core questionnaire of the European Social Survey includes six variables
on the attitudes towards foreign-based people living in the country. These
variables have two scales:

1. The three variables IMPCNTR, IMSMETN, and IMDFETN have four
categories, and three missingness categories, similar to the variable
IMPCNTR.

Question B 31
How about people from the poorer countries outside Europe?
Variable name and label: IMPCNTR
Allow many/few immigrants from poorer countries outside Europe.
Values and categories

• Allow many to come and live here
• Allow some
• Allow a few
• Allow none
• Refusal
• Don’t know
• No answer

The variables IMSMETN and IMDFETN, respectively, concern either the
same or different ethnic groups. The three other variables IMBGECO,
IMUECLT, and IMWBCNT include 11 response categories in addition to
the missingness categories.

(continued)
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Example 2.1 (continued)
Question B 32

2. Would you say it is generally bad or good for [country]’s economy that
people come to live here from other countries?

Variable name and label: IMBGECO
Immigration bad or good for country's economy
Values and categories

• 00 Bad for the economy
• 01 1
• 02 2
• 03 3
• 04 4
• 05 5
• 06 6
• 07 7
• 08 8
• 09 9
• 10 Good for the economy
• 77 Refusal
• 88 Don't know
• 99 No answer

The variables IMUECLT and IMWBCNT, respectively, concern either
cultural enrichment versus undermining or better versus worse living
conditions.

We can see that the meaning of the first variable group is different from that
of the second. This should be considered first. The authors decided to consider
the phenomenon from the perspective of positiveness, therefore we call the
new summary variable ‘Foreigner_Positiveness’. On the other hand, the direc-
tion of these scales is different. This requires one to make linear
transformations so that the re-scales are equal. Because the scale [0, 100]
often is easiest to interpret, this scale is used. The final question concerns
missingness codes. Without imputation, the only rational strategy is to exclude
these values when making the linear transformation for each individual
variable.

This transformation for the first group is obtained with the function
(100/3) � (4-IMBGECO) and then analogously for the two other variables,
while multiplying with ten for the second group.

(continued)
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Example 2.1 (continued)
Finally, the average of all these linearly transformed variables is our new

summary variable. Because there are slightly different amounts of
missingness, the authors’ recommended strategy is to average over valid
values. We therefore lose only those respondents who did not reply to any
of these six questions. Fortunately, the item non-response rates are relatively
low for these variables (around 1–2%).

Figure 2.1 shows the results that indicate fairly big differences between
countries, even though the average of seven countries (i.e., Lithuania,
Belgium, Slovenia, United Kingdom, Estonia, France, and Portugal) does
not differ from the ‘neutral score’ of 50. We leave further interpretation to
the readers.
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Fig. 2.1 The ‘Foreigner_Positiveness’ of the 21 ESS countries as the average of the six initial
variables; confidence intervals of 95% are included
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Example 2.2 Summary/Compound Variable Using Exploratory Factor Analysis
and Factor Scores
It is common for the survey/study to include many questions/variables that
can, of course, be analysed individually, but to do so does not always make
sense. Therefore, it is appropriate to find the ‘dimensions’, or summary
variables, that can be used for further analysis.

This strategy is used even in school assessment studies such as the PISA.
There is a special reason in the PISA as well: the examination questions and
some real survey questions are not exactly equal for all students, but the final
scores needed to have the same scales. For this reason, the PISA uses basically
a similar solution to the one we present here for the ESS—that is, the ‘variable
aggregation’ based on factor scores. The factor scores can be linearly
transformed further as in the PISA student assessments, in which their average
of the OECD countries is equal to 500 and the standard deviation, respectively,
is 100. The exploratory factor analysis presented here in its ordinary way so
that the factor scores are normally distributed with the zero average and one
standard deviation. These can be linearly transformed further into another
interval if that is considered more illustrative, as in the PISA.

The initial factorised variables are Shalom Schwartz’s Human Values of the
ESS, of which there are 21 altogether (Schwartz, 2012). There are six
alternatives in the questionnaire to answer, so there can be no completely
neutral category (see also Chap. 3). Thus, we want to find a much smaller
number of dimensions of human values by exploratory factor analysis. The
step here is to omit values with missingness codes. Fortunately, their number is
quite small (around 0.5–2.0%).

Table 2.2 shows the VARIMAX rotated factor pattern of all 21 questions
for the four factors. This same number has been obtained in each round, but the
order of the factors varies to some extent. The table also includes the factor
loadings that help in the interpretation of these four dimensions. The highest
loadings are marked.

The factors of the factor analysis are sorted by their significance. Thus, the first
factor is the most significant and then the others, respectively. All four factors
explain 49% of the variation. The respective percentages by each factor are 13.4,
13.0, 11.5, and 11.1—that is, their importance does not differ substantially.

The second step is to interpret the factors. It is useful to try to find as simple a
variable name as possible, even if it does not describe all the characteristics of each
dimension extremely well. When using these factors later, it is important to
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Table 2.2 Rotated factor pattern of the human values of Schwartz. Derived from data from
21 countries in the ESS Round 7

Factor 1 Factor 2 Factor 3 Factor 4

ipcrtiv Important to think new ideas
and being creative

0.50039 �0.19926 0.36534 0.19092

imprich Important to be rich, have
money and expensive things

�0.19119 0.05636 0.67597 0.20425

ipeqopt Important that people are
treated equally and have equal
opportunities

0.68608 0.03273 0.04745 �0.06398

ipshabt Important to show abilities
and to be admired

0.16097 0.10197 0.72829 0.17537

impsafe Important to live in secure and
safe surroundings

0.19957 0.57004 0.27976 �0.17525

impdiff Important to try new and
different things in life

0.32647 �0.05826 0.26154 0.57487

ipfrule Important to do what is told
and follow rules

�0.01832 0.63355 0.09810 0.03434

ipudrst Important to understand
different people

0.65828 0.12926 �0.08800 0.16965

ipmodst Important to be humble and
modest, not draw attention

0.28233 0.49916 �0.26870 0.02342

ipgdtim Important to have a good time 0.14466 0.04653 0.16798 0.71054
impfree Important to make own

decisions and be free
0.47514 �0.01510 0.25188 0.21841

iphlppl Important to help people and
care for others’ well-being

0.62314 0.27703 �0.04811 0.17742

ipsuces Important to be successful and
that people recognise
achievements

0.10018 0.17724 0.70252 0.27157

ipstrgv Important that government is
strong and ensures safety

0.24328 0.54689 0.21960 �0.05419

ipadvnt Important to seek adventures
and have an exciting life

0.05952 �0.16632 0.31919 0.67231

ipbhprp Important to behave properly 0.14602 0.70628 0.06306 �0.01267

iprspot Important to get respect from
others

�0.00533 0.42353 0.53092 0.14803

iplylfr Important to be loyal to
friends and devoted to people
close

0.56952 0.27867 �0.05466 0.24730

impenv Important to care for nature
and environment

0.57448 0.26809 0.00743 �0.01528

imptrad Important to follow traditions
and customs

0.04373 0.64219 0.02138 0.04902

impfun Important to seek fun and
things that give pleasure

0.09437 0.08629 0.10504 0.79910
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understand the meaning of each factor more broadly than in its wording. The list in
Table 2.3 helps in this interpretation; however, everyone can do his or her own
naming and interpretation.

We thus give the variable name for each factor. The final step is to compute the
factor scores of each factor variable. This can be done easily with standard software
so that the average of each score is zero and the standard deviation is equal to one.
This is not enough. It also should be ensured that the score values match with the
factor names. For example, if we use the name ‘Equality’, it is expected that a higher
score means that that respondent thinks that the Equality is for him or her is more
important than for another person whose score is lower. Consequently, it is neces-
sary to check the question itself. We see that the highest score for the question is
equal to one if this value is the most important, whereas the higher value of the
question means it’s the least important. Thus, the final step is consequently to change
the sign, as shown in Table 2.4.

Now it is possible to use these new variables in all analyses of the micro data. We
do not illustrate everything but give two examples. Figure 2.2 is from the two most
important factors, ‘Equality’ versus ‘Tradition’. The average equality for Lithuania
(LT) and the Czech Republic (CZ) differs greatly from the other countries, meaning
that it is not considered so important that people are treated equally, or it is not very
important to understand different people and help other people in these two
countries. On the other hand, the respondents from these countries do not differ
much from the others in the variable ‘Tradition’. Nevertheless, such things are
relatively important in Slovenia (SI), Poland (PL), and Israel (IL), while less
important in Sweden (SE), France (FR), and the Netherlands (NL).

Table 2.3 An interpretation of the four factors on Schwartz’s Human Values Scale

Factor name Interpretation: It is important that

Factor1 ¼ (Equality) People are treated equally, understand different people, help people

Factor2 ¼ (Tradition) Behave properly, follow traditions and rules

Factor3 ¼ (Success) Show abilities and be admired, be successful and rich

Factor4 ¼ (Enjoy) Seek fun and things that give pleasure, have a good time

Table 2.4 The final
factor score variables

Equality ¼ � Factor1

Tradition ¼ � Factor2

Success ¼ � Factor3

Enjoy ¼ � Factor4
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Figure 2.3 uses the aggregates of both datasets of this section, thus both
‘Foreigner_Positiveness’ and the third important human values factor, ‘Success’.
Sweden is an outlier on both variables.

People in France (FR) and Finland (FI) do not regard either richness or success as
very important in their lives, whereas Lithuanians do. The aggregate correlation is
negative, but it cannot be interpreted in a straightforward way.

Fig. 2.2 The scatter plot of 21 ESS countries between the two first factors of Schwartz’s Human
Values Scale, Round 7, with the two-digit country codes
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Designing a Questionnaire and Survey
Modes 3

Europos Parkos, Lithuania

We start from the cornerstones of survey research that give a general understanding
of this chapter (Scheme 3.1) based on Salant and Dillman (1994) and De Leeuw,
Hox, and Dillman (2008b). This chapter concentrates on measurement in surveys,
the target being specifically to avoid measurement error or to evaluate its impact on
estimates.

The best results are achieved only if the questionnaire and its validity are optimal
and well connected to the survey mode used. This is the major part of data
collection, but the three other cornerstones are considered in more detail in follow-
ing, although:
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– Non-response may be because of a bad measurement if a potential respondent is
not sufficiently motivated to participate, the survey mode used is inappropriate, or
he or she does not like the questions in a questionnaire or considers them incorrect
or invalid.

– Coverage cannot be equally achieved with all types of survey data-collection
modes. For example, phone numbers are not available for all people, while the
web is not used by all as some have no available device or are unable to use it
correctly.

– Using interviewers or not—that is, using self-administered answering—there can
be an influence both for non-response and measurement, and even for coverage.

" Remark The topic of this chapter is so broad that the author only can
consider basic things that are necessary from the point of view of the
other chapters. The hope is that you will read other books and articles,
not only those that are in the reference list at the end of the chapter,
including those by de Leeuw et al. (2008a), Schaeffer and Dykema
(2011a, b), Schaeffer et al. (2013), Couper and Zhang (2016). Look also
at the references in what you read.

3.1 What Is Questionnaire Design?

Questionnaire design is a big part of the whole process of data collection and should
be implemented completely before the fieldwork begins. At the same time, the
potential respondents should be selected by sampling and a more or less complete
list of them should be available. This is not always the case, as in ad hoc surveys.
These issues are not considered to a great extent in this chapter, where first we
discuss survey modes. Then, we try to give a summary on designing the questions
themselves for the survey. The final section focusses on examples of various survey
types, but mainly on the European Social Survey (ESS); it is useful to look at the
ESS methodology from its website, for example concerning data collection, at http://
www.europeansocialsurvey.org/methodology/ess_methodology/data_collection.
html

Scheme 3.1 The
cornerstones of survey
research
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Survey Modes
There are several modes or platforms to be used in survey data collection—that is, in
the survey fieldwork. We present here a summary that includes their acronyms.

Face-to-face (f2f) interviewing was used first in surveys because it does not
require that an interviewee is able to read and write, but that the individual
understands the questions with the help of an interviewer. The questionnaires and
the response files were in a paper format. Thus, this mode is known as a ‘Paper and
Pencil Interview’ (PAPI).

The PAPI is still used in countries where computer-assisted systems are not
developed well enough, as in many developing countries, and it can be the best
method for certain specific surveys. If the interviewees cannot read and write well
enough, it may necessarily be the only valid mode.

Nevertheless, a postal or mail survey with the paper questionnaire is appropriate
and relatively inexpensive in population groups who can read and understand the
questions and write/mark their answers. The answers to a mail survey can also be
saved into an electronic file and then submitted to the survey institute.

Nowadays, face-to-face interviewing is applied using computer-assisted equip-
ment, thus the term Computer-Assisted Personal Interview (CAPI) is its most
common tool. This term applies also if telephone (phone) or SKYPE is the technical
equipment used; however, the term Computer-Assisted Telephone Interview (CATI)
is then the usual term. Such data collection is done in so-called CATI centres, where
sophisticated IT technologies are applied for selecting and contacting interviewees.

Computer-assisted technologies are naturally the only workable tools in web or
Internet surveys. These technologies have being developed since the 1990s, when
the mode was first implemented in some countries. The best technologies are those
that are more or less as user-friendly as personal interviews. This means that all the
required information is easily available in the computer system (including pop-ups
for delivering information).

On the other hand, the questionnaire needs to be able to motivate respondents to
participate and to reply. An obstacle to the success of web surveys is smartphone
technology, which is being used more and more as a web tool. Unfortunately, the
electronic questionnaire cannot be easily adjusted in smartphones to make
responding user-friendly. The main reason is its small screen. If the questionnaire
is short and the response categories are limited, smartphones work better; however,
this is not the case in most ordinary surveys.

A general term for self-administered interviewing is Computer-Assisted Self-
Interview (CASI). Web surveys are included in this group, but it is also common
in CAPI face-to-face surveys that include sensitive questions. In this case, the
interviewer gives a computer, laptop, or tablet to the interviewee to reply anony-
mously, similar to ordinary web surveys. This strategy with two modes was used in
the Finnish Security Survey, for instance, and helped to get more reliable results
(Laaksonen & Heiskanen, 2014) for sensitive questions.
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The Frame for Web Surveys
If the correct email addresses are available, a web survey can be conducted more easily than without
them. Still, the same frame as in f2f or mail surveys can be attempted for web surveys as well. In
such a case, the invitation letter should include the necessary information for replying via the web.
Naturally, the respective website should be given to the individual too. This was the procedure used
in Laaksonen and Heiskanen (2014) and Laaksonen et al. (2015).

Contact via email is possible whenever the address is known, which is common within a
workplace, a student group, or clients. Yet, this is rarely possible for general surveys covering the
whole country, for example. There are, however, fairly complete email address lists in some register
countries that have been collected using contacts made for taxation, allowances, or other public
purposes by such administrations. Such email registers cannot be easily used by all for confidenti-
ality reasons.

Addresses from the population register commonly used for surveys maybe excluding a few
security or other special persons. Telephone numbers can be obtained from telephone companies to
some extent, depending on the country. Thus, email addresses are obviously becoming more
commonly used but only in a few countries.

3.2 One or More Modes in One Survey?

Using a single mode has traditionally been the most common strategy for surveys of
persons or households—that is, when only mail, f2f, phone, or web has been used.
Business surveys often use multiple modes (multimode surveys) so that large
businesses participate with electronic modes since this is easy for them; respectively,
small businesses might participate with more manual modes because they cannot
invest in high-level technologies. It is also feasible for the interviewer to call these
small businesses and get reasonable answers. The multimode methodology thus
means that a different mode is applied for diverse target population groups. It is
possible in social surveys as well if several frames are required to reach the entire
target population.

This book does not go into detail about multimode surveys. On the other hand, we
pay more attention to mixed-mode strategies. A survey is mixed-mode if the use of
two or more modes has been attempted to approach a target population. This may
mean that we have one gross sample that has been approached such that the potential
respondent can choose whether to reply, for instance, by web or PAPI, f2f, or phone,
or even using several alternatives.

The big question in mixed-mode surveys is how to approach gross sample units
and how to motivate them. The most common strategy is to send an invitation by
mail and motivate individuals to participate preferably in one mode such as via the
web, because this helps to get the first data file easily. If the preferred mode is not
chosen, the second mode is the only other option. If this mode is a paper question-
naire, it should already be enclosed with the invitation letter; however, if it is a phone
questionnaire, it is enough to advise that the interviewer will make contact soon.

The mixed-mode strategy is rational in longitudinal surveys wherever the first
interview is made by f2f but the second one is by phone or web. Thus, this means
that the interviewer will outline this strategy in the first interview and motivate the
individual to participate later by another mode.
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Examples of Mixed-Mode Surveys
The following are examples of mixed-mode surveys:

– The European Social Survey is mainly a face-to-face (f2f) survey, but it
includes a supplementary questionnaire as well. At the end of the interview,
the interviewer gives this second part to the respondent and invites the
individual to fill in this paper questionnaire and submit it later. The supple-
mentary part includes the pattern of Shalom Schwarz’s Human Value Scale
questions and those being tested. The item non-response rates are relatively
low in this part.

– The budget is often small for academic surveys. Consequently, the face-to-
face mode has fallen out of favour as it is the most expensive, although the
quality is often the best. The second most expensive mode, phone, has been
rejected for the same reason, but also because of the problems in frame
coverage. The pure web survey is problematic in general social surveys as
well, but if this mode is combined with the traditional paper questionnaire
using the mail invitation, the results can be satisfactory. The good point is
that the frame can be complete, but high response rates are not ensured.
This mixed-mode is less expensive than a pure mail survey because the data
entry is done by the interviewee for the web part. The biggest issue is how
to motivate people to participate as much as possible for this web part.

– The response rate is expected to be higher than in the pure mail survey
because certain people are more willing to participate electronically than
manually. This was the case in the Southern Finland Grid-based Survey
(Laaksonen et al., 2015). Nevertheless, the response rate was not high, but
this was anticipated, and the gross sample size was adjusted accordingly.

Estonian Pilot Mixed-Mode Survey 2012 for the ESS
The Estonian mixed-mode experiment (Ainsaar, Lilleoja, Lumiste & Roots,
2012) consisted of a sequential online mode followed by a f2f mode. They
compared the results of the mixed-mode survey to the main ESS in terms of
cost, response rates, response distributions, mode effects, and data quality.

The survey staff concluded that, despite the overall expectations that an
online survey would be less expensive, the total cost related to the mixed-
mode survey were effectively equal to the financial benefits. Some of the
expenses of the mixed-mode survey were related to the novelty of the online
survey design and technical difficulties. The central distribution of an online
survey programme can essentially reduce these costs. Another source of
additional expenses is the heavy workload related to the preparation of two

(continued)
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data-collection modes in diverse languages. These costs increase exponen-
tially with the number of languages in a country.

Mixed-mode surveys can become less expensive if the wording and struc-
ture of the questionnaire in both survey modes can be kept as similar as
possible. The total benefits of surveys, which combine online and other
modes, depend on the Internet and computer access in a country, but in the
extended perspective, the effectiveness of online surveys may increase thanks
to the spread of Internet access and related skills.

The experiment proved that the online mode does indeed capture the
younger and educated urban population better. This population is difficult to
reach with the traditional face-to-face mode. Several data quality indicators
proved the benefits of the online mode as well. Nevertheless, preliminary
analyses also detected mode effects, which could make it challenging to
combine the data of the two modes.

The success of the Estonian mixed-mode experiment stemmed from active
data collection via the Internet. Mixed-mode surveys are rare in Estonia, but all
Estonians are informed about this approach because the latest Population
Census in 2011 used the same principle (mixing web and f2f modes). Sixty
percent of Estonians filled out the Population Census survey online. The
impressive work of the census team, who advocated the use of the
web-based survey environment, might have had an impact on the ESS experi-
ment as well because it could take advantage of the frame of the census.
Several ESS interviewers indicated that people do not know the differences
between the various international surveys and ESS might have benefitted
partially from the image and trust created by the Population Census a year
earlier.

Mode Effects in Estimates
It has been realized that estimates can vary by mode. A big factor here is how
confidentially an interviewee can give her or his answer. In CATI surveys, it is
not possible, but the results can be satisfactory if the interviewee trusts the
interviewer. CAPI face-to-face with CASI for sensitive questions has been
found to be reliable. For example, Laaksonen and Heiskanen (2014) received
very similar results with this mode using the web, which is completely
anonymous. CATI gave estimates that were downward-biased for sensitive
victims of crimes. The researchers could not test any mixed-mode strategy, but
they think that this confidential survey could work with a mixed-mode that
exploits both the web, CAPI, and CASI.

(continued)
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It has been found in several surveys that the web often leads to slightly less
conventional estimates than CATI or CAPI, without CASI, does. In crime
victimization surveys, this means lower crime rates, while in opinion polls
extreme opinions are rare. The big question is which ones are correct? Why is
the answer in an extreme category not correct? This is often a reason not to
adopt a mixed-mode survey because the estimates of the web part are less
desirable, as is the whole estimate as well. Of course, the result itself should be
a reason to change, not the mode, but the quality of the survey. In some cases,
this is difficult to know.

3.3 Questionnaire and Questioning

This section summarises and extends the preceding discussion about the questions
that need to be considered by the fieldwork team. Basically, questions 1, 2, 3, and
4 should be answered:

1. How to contact/approach a potential respondent?

Alternatives:

– Invitation letter by mail
– Direct contact at home (door) or another location
– Phone, SMS, e-mail
– General invitation in media, web, social media, poster
– Automatic invitation on a website to those who are join the site
– A respondent who has been contacted in the street, at a shop, sports event, cultural

event, training course, outside the voting location—as in exit polls
– After using a service, customers often are asked to answer a few questions about

the service quality
– A respondent has been contacted when outside (e.g., driving, walking, or stand-

ing at a certain area); the individual does not necessarily know that she or he has
been picked for survey data. This may lead to confidentiality problems if entering
sensitive information in the data but counts or other aggregates are not so
sensitive (e.g., how many students, teachers, and others entered the building
today?).

– Shops and other commercial companies or their groups contact their clients and
offer bonuses or bonus cards, which gives them an opportunity to collect data on
the clients or potential clients; a client cannot know exactly which data company
is collecting and how the data are to be used; in this case, points 2, 3, and 4 in the
following are done easily.
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Advance Letter and Invitation Letter
If the gross sample has been selected, and the survey format is known, it should have been carefully
considered as to how to get access to potential respondents. If the contact address (i.e., postal
address, phone, email) is not correct, making contact is more difficult, but everything should be
attempted. We assume that the address is correct, and that the survey principles have been decided.
Now, there are two options; in both cases, it is good to indicate in some way that the respondent is
lucky to have the opportunity to participate in the survey:

1. Contact so that the survey begins as soon as possible
2. Contact preliminarily to inform about the survey and how important it is, and when it is expected

that the individual will be contacted again, and when the survey will start.

This latter case is called an ‘advance letter’. It is useful in tending to increase the response rate.
Note that if any incentives are to be given to the respondents, this should be mentioned in both

letters. The incentives can be unconditional—that is, even to those who do not answer—or
conditional, which is much more common.

2. How is the information saved/uploaded into the file?

Alternatives:

– An interviewer asks and saves the answers into a paper or other manual file
– An interviewer asks and saves the answers into an electronic file
– A respondent reads, looks at, and/or listens to the questions and saves the answers

into an electronic file (self-administered survey)
– A respondent reads, looks at, and/or listens to the questions and the interviewer

saves the answers into a file
– An IT system submits the questions to a respondent and she or he answers by

email or by web questionnaire
– An IT system collects the data automatically from the database of the respondents

(this should be accepted by the respondent or his or her representative); this is
typical for business surveys and employer–employee surveys.

3. What kind of formats do the questionnaires use?

Note that the format can be converted into a new format after initial data collection.

– A paper questionnaire that can be filled in manually or printed from an electronic
file

– An electronic local format such as a memory stick
– SMS, email, attachment to the email
– Specific driver on the web, open or closed

" Comments on Web Driver The Closed driver is the only acceptable
solution for proper surveys. The address of this driver should be given
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to each respondent, and access to the questionnaire should require a
password that is unique for each. It is not possible for anyone to respond
without this password. It is, of course, possible that an outsider can reply
even if the unique password is used, but this is illegal.

There are surveys that have an Open driver. This means that everyone
can participate and as many times as the individual desires, unless any
restriction is used (e.g., allowing only one answer from each computer).
This technology is easily possible but not always used. A survey with
open access is called a self-selection survey. In a few special cases it may
be the only strategy to get reasonable results, but it gives the opportu-
nity to manipulate surveys as well, as Bethlehem (2015) illustrates for the
Netherlands.

4. How to submit the data?

Alternatives:

– If the data are already uploaded into an electronic file, it is ready.
– The paper responses can be submitted by mail or after scanning by email, for

instance.
– Electronic files also can be submitted, forwarded by mail or email, or uploaded to

an appropriate location.
– It is possible in small-scale surveys to submit the answers by phone; this means

that they are then saved electronically.

3.4 Designing Questions for the Questionnaire

This is, of course, a very big area within the whole survey process. The questions are
implementations of the measurement that it is desired to study—that is, they should
be valid. At the same time, the measurement instruments should be reliable. How to
succeed satisfactorily in measurement? The following are some practical strategies:

1. Try to find appropriate questions from earlier studies. This is often possible unless
your field is very new and/or never tested or validated. Still, it is good to search
for good questions, question models, or question banks. Go and look at the
surveys done in your interest area. There are, of course, many websites, and do
not forget the questionnaires of the European Social Survey (http://www.
europeansocialsurvey.org/methodology/questionnaire/) or the PISA (https://
nces.ed.gov/surveys/pisa/pdf/MS12_StQ_FormA_ENG_USA_final.pdf).

2. If you have a new type of target, it is still good to utilize general models, but then
try to develop your own strategy by reusing questionnaire bank questions, for
example; however, not alone but in the team. Next, test it in your neighbourhood
first, and after that pilot the whole questionnaire with appropriate people. This is
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called a pretest. There are two main strategies for selecting the ‘sample’ for this
pretest:
– If the purpose is to get preliminary estimates of the survey field, the sample

should be as good as in the ordinary survey, even though somewhat smaller,
leading to more uncertain estimates. Some questions can be revised before the
final survey is done if they do not work well enough.

– Usually, the representativeness of the pretest survey is not important, but it
might be when testing the questions among diverse types of potential
respondents. Thus, it is often good to find respondents who are not ‘ordinary’
but important from the point of view of the survey. For instance, it is
advantageous to include respondents who have problems in answering in
this ‘sample,’ and to exploit this survey in order to improve the questions
and the questionnaire. For tips for testing questionnaires, see for example,
Radhakrishna (2007).

3.5 Developing Questions for the Survey

It is beneficial to answer at least the following seven questions:

1. How well does the question address your research target, and how well
formulated is it in this direction (validity)?

2. Is the question definitely useful? The question should add some value for your
analysis.

3. Are you sure that the respondents understand the target of the question?
4. Does the respondent have reasonable information to answer the question correctly

(i.e., can the terminology be understood—tools such as pop-ups might help)?
5. Are the respondents willing to answer the question?
6. Should the question be presented to all or just a certain group of the sample?
7. Can you find other information in order to analyze the answers given, and how

reliable are they?

As soon as your team can answer ‘Yes’ to the first five questions, the question-
naire is satisfactory. Question 6 should be considered carefully, and a ‘Yes’ answer
should be possible (see the following section on ‘Screening’). The author thinks that
you can find some positive answers to Question 7.

Size of the Questionnaire
The size of the questionnaire is a big issue. It should not be too long, but neither
should it be too short to avoid losing useful information. How do we select the
optimal size?

1. First, it does not matter much whether you initially have all possible questions in
the list, but later it will be necessary to choose the best combination so as to avoid
overlapping, for example.
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2. Finally, your team will make the first selection, which should be piloted with ‘real
respondents’.

3. Always check that the question is valid and that the estimates you intend to
compute using it are applicable.

4. It is possible that some subjects cannot be measured with one question but need a
pattern of questions using the same formulation. Do not avoid this because a good
pattern may help in getting reliable data for your measurement. Later, you may be
able to create some factors from this pattern and to interpret and use these
correctly.

5. Estimate the time needed to fill in the questionnaire; also take into account the
response burden of the average interviewer.

It is good to remember that there are useful validated patterns for several fields
such as Shalom Schwarz’s Human Values Scale in the ESS. His pattern consists of
21 questions that were discussed at the end of this book’s Chap. 2. When analyzing
this pattern with exploratory factor analysis, we found four factors: Equality, Enjoy,
Tradition, and Success.

It is best to use validated patterns rather than trying to create a new pattern that
needs much work and a new validation. Shalom Schwartz’s pattern seems to work
well, so why not use it or others that have been validated? Still, in each case it is good
to think about which pattern corresponds best to your study target. If you do not trust
any of them, create your own pattern. It may take several years to become
completely validated.

Order of Questions
The order of questions is also essential, but we cannot recommend any single
optimal order. Consider at least these points.

1. The first real question is important. It is good if it already concerns one big issue
of the survey, but it should not be too difficult to answer. Naturally, this question
should be for all respondents, not for just some.

2. Where should you put so-called background questions (i.e., gender, age, educa-
tion, occupation, marital status)? Some prefer to put all these at the end, but others
include them at a quite early stage as far as nonconfidential questions are
concerned, although confidential questions (i.e., salary, income) it is better to
place them at the very end. Note that if you already know the preceding variables
from registers, for example, do not ask them again, except for testing purposes.

3. Each survey should have certain specific key areas/subjects and attention should
be concentrated on these. Thus, it is good to design the questionnaire carefully so
that such key questions are in an optimal position, not at the very end. It does not
matter where ‘side’ questions are, if such are needed, but they mainly should be in
the last part of the questionnaire.

Two Types of Question
Fortunately, there are only two types of possible questions. They concern either
(1) facts (i.e., age, gender, area of residence, industry class, occupation, salary,
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income, partnership status, education) or (2) subjective features (i.e., attitudes,
opinions, assessments, purposes, arguments).

Naturally, the questionnaire layout often is essentially different with regard to
these two questions. Basically, the first ones are easier to formulate, and their scaling
is often initially clear. Of course, different groupings can be used for categorical
variables such as for partnerships, occupations, or education. Constant variables
either can be asked as continuous, or they can be categorised, even age or salary.
Logically, using them as continuous gives more options to categorise them later, but
how satisfactorily it is possible to get correct answers is another point.

As far as attitudes, opinions, assessments, purposes, and arguments are
concerned, there are various standards in the literature—for example, concerning
scales. The earlier ordinal scales seem to be shorter than currently in the ESS, for
instance. The ESS scales often have 11 categories (0 ¼ minimum and 10 ¼ maxi-
mum), whereas just five categories (1¼minimum, 5¼maximum) were used earlier
(see Example 3.5). Nevertheless, the scale remained the same in such questions
when it was difficult to change the scale without violating the time series (see
Example 3.1).

Example 3.1 Instance in Which the Scale Was Kept Similar to Earlier Social
Surveys
The following question has been used in many other surveys, including Earlier
Social Surveys (ESS). This seems to be rather easy to answer. A question with
more alternatives would be difficult to formulate.

How safe do you—or would you—feel walking alone in this area after
dark?
Variable name and label: AESFDRK

Feeling of safety of walking alone in local area after dark

Values and categories

1. Very safe
2. Safe
3. Unsafe
4. Very unsafe?

Show Cards
Show cards are cards that facilitate a respondent’s understanding of the scale of the
survey question. Basically, such a card is present automatically in a paper questionnaire
and a web questionnaire, but not at all in telephone ‘questionnaires’. Their use is not
necessary in f2f surveys, but it is useful and used regularly in the ESS, for instance. The
respondent does not even need to say his or her answer, but only to show which
category is correct. Two ESS examples of show cards are shown in Figs. 3.1 and 3.2.
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Screening
It is better to ask certain questions, often about facts, in the following way:

The first question concerns whether you have been involved in or experienced or met
a phenomenon. There are two possible categories here: 1. Yes, 2. No. This also is
called the ‘filter’ question.

The second question is only addressed to those who answered ‘Yes’ to the first
question.

Unfortunately, this strategy is not always applied, but a respondent may be asked, for
example, for an opinion about a public service even though he or she has never used
it or not used it recently. Thus, the opinion is not based on the experience of this
service at all but on a general feeling. Such results can therefore be very biased.

Fortunately, screening is used in effective surveys such as the Finnish Security
Survey, which was the pilot survey of the European Union (EU). Its experiences will
be used in forthcoming EU surveys. The example that follows is from this survey.

Example 3.2 Screening Example of the Finnish Security Survey
The information here is from Laaksonen and Heiskanen (2014), Appendix 1.

A12 –Over the last year, has anyone in your household had a car, van, or truck
for private use? [Yes; No]

(continued)

Fig. 3.2 The ESS scale about spending time watching television

Fig. 3.1 A typical ESS scale with 11 categories
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Example 3.2 (continued)
A13 – If A12 ¼ Yes, How many cars has your household had use of for most

of the time? Number of Cars: [1–5]
C1 – If A12¼ Yes: During the last 12 months have you or anyone else in your

household had a car or a van stolen or driven away without permission?
[Yes; No] (Company Cars Included)

C2 – If C1 ¼ Yes: How many times did this happen? [1–9]
C3 – If A12 ¼ Yes (apart from this): During the last 12 months have you or

anyone else in your household had anything stolen from (your/their)
vehicle or out of it (parts of the vehicle, personal possessions or other
things)? [Yes; No]

C4 – If C3 ¼ Yes: How many times did this happen? [1–9]

How to Put the Answers in the Questionnaire
It is not possible to give any sufficient answer to this question, but the following
notes are relevant:

If a continuous variable is used as continuous: There should be a maximum number
of digits, not more; if the decimal is needed, this already should be there. In the
computerized questionnaire, it is possible to include some edit rules so that the
accepted answer may vary by respondents, but this is often difficult to do well. If
this variable is in the paper questionnaire or in the respective web one, a value box
also can be used. This enables the respondent to answer correctly.

A categorical variable in the electronic questionnaire should be organized so that the
answer can only be marked in a correct category. If several categories are
accepted, it may work, but it is better to request an answer in each category
with either ‘Yes’ or ‘No’.

3.6 Satisficing

The response burden is a big problem to some extent, even in short questionnaires.
The expected time is always indicated in advance to the respondent, and in the web
survey there should be a measurement indicator that tells the user how far the survey
has proceeded.

An interesting side effect relating to the response burden is known as satisficing.
Some types of this are described here:

Since I have started to reply but it seems to take a longer time than expected or the
questions are too boring, I will continue to answer even though I am too tired to
really think about my answers.
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OK, I will answer, although too many questions are not smart; my solution is that I
will reply with ‘I don’t know’ or ‘I don’t wish to state my opinion’, or I just put in
an average score.

Satisficing has not been examined widely, and it is not easy either. Typical cases can
be found under the themes ‘No Answer’ and ‘Straightlining’.

No Answer
There are various options for getting ‘no answer’, including the folloiwng:

Doesn’t know
Isn’t willing to answer (refusal)
Question does not concern the respondent
Unable to answer correctly
No time to answer correctly
Lost answer
Other reason

Naturally, it is desirable to avoid ‘No Answer’ answers and formulate the
questionnaire so that the number of such answers is as low as possible except in
the third case, which in some cases can often be a key indicator (e.g., if this is a
second question relating to details of crimes that occurred, when the first question
already gives information that some crime occurred). Thus, if the relative number of
‘No Answer’ answers is high, the questionnaire or interviewing is not working well,
and any estimates should not be published.

Filtering ‘Don’t Know’
There are three ways of dealing with ‘Don’t know’.

Standard format: The ‘Don’t know’ option is not presented to the respondent, but is
recorded if the respondent volunteers it.

Quasi filter: The ‘Don’t know’ option is included among the possible responses.
Full filter: First the respondent is asked whether they have an opinion. Then, if ‘Yes’,

the question is asked.

Basically, similar filtering can be applied for the ‘Isn’t willing to answer’ alternative.
Some questionnaires do not give an opportunity to choose any of these alternatives at
all. It has even been known for someone to stop filling in such a questionnaire and to
try to write an opinion somewhere For example, ‘I cannot give my opinion, since your
questionnaire is catastrophic. Do not publish anything based on such violated data!’
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3.7 Straightlining

Straightlining seems to be a general problem when using a pattern of questions with
the same scales. It is common in paper questionnaires where there is a pattern of the
21 questions on the basic values in Shalom Schwartz (2012) and also when using the
web; however, it is easy to avoid this format in the web by showing only one
question on the screen at a time. This problem is illustrated with the first six
questions in Schwartz’s European Social Survey (Tables 3.1 and 3.2). Answering

Table 3.1 Possibly Correct Replies to Some Human Values Questions from Schwartz

Table 3.2 Possibly Incorrect Replies to Some Human Values Questions from Schwartz
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the questions in Table 3.1 might be possible if the respondent really thinks enough
before responding.

If the respondent just wants to fill in the quis not really thinking about the
questions, it is possible to get the answers shown in Table 3.2. This is a case of
straightlining.

Example 3.3 Textual Versus Coded Categories
The ESS tests new questions as well as those used already, in which case a
different scaling may be applied. This example concerns exactly the same
scaling but in two formats: (1) completely textual categories (‘Text’ in graph),
and (2) the same 11 categories but where only the extreme categories are given
in the textual format and similarly to case (1)—that is, 0 ¼ Extremely
Unimportant, . . ., 10 ¼ Extremely Important (‘Codes’ in graph).

Figure 3.3 shows that the distributions are quite different when the question
is ‘whether it should be required that immigrants can speak a language of the
country’. The average in case (1) ¼ 5.98 and in case (2) ¼ 6.08, respectively.
Thus, it does matter how the categories are coded as far as the average is
concerned; nonetheless, there are clear differences in categories. The
completely textual format is not used in the ESS if the number of categories

(continued)
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Fig. 3.3 Should immigrants who can speak a language of the country—textual versus coded
alternative
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Example 3.3 (continued)
is large. It also could be more difficult for the interviewer to explain even when
show cards are used. The author recommends using the current scales and
codes.

3.8 Examples of Questions and Scales

The remaining part of this chapter consists of two larger examples that illustrate the
questions and scales. They are based on real survey data—the first on the ESS and
the second on both the ESS and the World Values Survey (WVS).

Example 3.4 Two Alternative Lengths of Scales
This is from the European Social Survey test questionnaire, when the two
different scales are used for the same question: ‘How easy is to take part in
politics?’ The alternative (1) gives the opportunity to answer in 11 categories:
0 ¼ Extremely difficult, 1, . . ., 9 without text, and 10 ¼ Extremely easy.
Respectively, alternative (2) includes five textual categories: Not at all easy, A
little easy, Quite easy, Very easy, and Extremely easy.

It is not clear how to compare these results because only one category is
exactly the same (i.e., ‘Extremely easy’). The results of this category are about
equal as well. Still, we wish to compare the frequencies in all categories, which
is not easy. We decide that ‘Extremely difficult’ corresponds to ‘Not at all
easy’, and the categories in between are merged together as linearly as
possible.

The categories of Fig. 3.4 are from case (1) in which the first category ‘Not
at all easy’ is much more common than in the first case with several categories

(continued)
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Example 3.4 (continued)
in this part. This suggests using many categories rather than a few. When the
categories are rescaled within [0, 100] so that the easiness increases, then the
averages are very different: 24.6 with 5 categories and 40.5 with 11 categories.

The author’s interpretation is that the form of the regular survey with
11 categories is better.

Example 3.5 Different Scales for ‘Happiness’ in the Two Questionnaires
Happiness and life satisfaction have been examined in several surveys but not
always in the same way. Here, the two multinational surveys are compared: the
World Values Survey (WVS) and the European Social Survey (ESS). The history
of the WVS is much lengthier than that of the ESS. The first results from the
website (http://www.worldvaluessurvey.org/WVSDocumentationWV1.jsp) are
from 1981, whereas the first ESS files (http://www.europeansocialsurvey.org/
data/) are from 2002.

There are differences concerning various points in these surveys. We
compare two variables that are inquired about broadly in a similar way by
the questionnaires’ text, but with scales that differ. The scales both for
‘happiness’ and ‘life satisfaction’ are from 0–10 (11 categories) in the ESS;
however, the WVS has different scales for both variables: 0 ¼ ‘Extremely
dissatisfied/Unhappy’, . . ., 10 ¼ ‘Extremely satisfied/Happy’. The WVS
categories for ‘happiness’ are: 1 ¼ ‘Very happy’, 2 ¼ ‘Rather happy’,
3 ¼ ‘Not very happy’, 4 ¼ ‘Not at all happy’. Respectively, there are ten
categories for life satisfaction: 1 ¼ ‘Completely dissatisfied’, 2 ¼ ‘2’, . . ..,
10 ¼ ‘Completely satisfied’.

When comparing the results of the two surveys, the scales should be equal.
We use a linear transformation so that the WVS scales are transformed to be
equal to the ESS scales. The linear function for ‘happiness’ is thus
‘ESS_Happiness’¼ (4�WVS_Happiness) � (10/3); and for ‘life satisfaction’
is ‘ESS_Lifesatisfaction’ ¼ (WVS_Lifesatisfaction�1) � (10/9). As we can
see, the latter scale of the WVS is not satisfactory because a respondent cannot
give a neutral answer, which would be 5.5; instead, the individual more often
chooses alternative 5 rather than alternative 6.

The ESS scaling is in this respect good because the neutral alternative 5 can
be chosen. We do not think that this small problem has much influence on the
results, even though the linear transformation slightly reduces the ‘Life satis-
faction’ scores. The difference in the case of ‘happiness’ is more influential
because the selection of the four categories in the WVS might be more difficult
than the 11 alternatives in the ESS. This can be seen from the fact that the

(continued)
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Example 3.5 (continued)
alternative ‘Rather happy’ is selected relatively more often, whereas the ESS
respondents seem to choose one of the alternatives—6, 7, or 8.

We compare the results for four countries that participated in both the
2012–2013 ESS and the closest WVS—that is, 2011–2012 (Tables 3.3 and
3.4). We do not present medians or other distribution figures that are automat-
ically different because the ESS medians, for instance, are integers (e.g., for
the Netherlands both are ¼ 8.0), while the WVS medians include decimals
(e.g., for the Netherlands 6.666 and 7.777).

The averages do not differ substantially, but the ranking of the countries is
also interesting. The ranking of the countries shown in Tables 3.3 and 3.4 is
based on the ESS. As far as ‘happiness’ is concerned, the order is not the same
as that seen in the WVS. The ‘happiness’ average is thus higher in Poland than
in Germany, which is not the case for any other estimate. The scale of the four
alternatives only is one reason for this result, which also can be seen from a
low variation based on the coefficient of variation because 71% of the Polish
respondents answered ‘Very happy’, while only 63% give the same answer in
Germany.

The Netherlands seems to differ from the other countries so that ESS means
are higher than those of the WVS. On the contrary, the difference is opposite in
Russia and Poland. The German estimates of both surveys are relatively close
to each other. These differences obviously are not only because of the scaling
but the survey format including sampling as well. We do not try to solve the
question further, although the author’s opinion is clear: The ESS scales are
better.

Table 3.3 ‘Happiness’ results both from the WVS and the ESS for four countries

WVS 2011 or 2012 ESS 2012–2013

Country Mean Coeff. of variation Mean Coeff. of variation

Russia 6.34 34.7 6.20 35.5

Poland 7.20 24.3 6.95 31.0

Germany 6.90 31.4 7.03 26.9

Netherlands 7.50 26.2 7.84 16.8

Table 3.4 ‘Life satisfaction’ results from both the WVS and the ESS for four countries

WVS 2011 or 2012 ESS 2012–2013

Country Mean Coeff. of variation Mean Coeff. of variation

Russia 5.75 42.2 5.58 44.1

Poland 6.76 32.3 6.59 37.2

Germany 7.07 30.9 7.03 31.7

Netherlands 7.21 20.9 7.71 19.6
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Sampling Principles, Missingness
Mechanisms, and Design Weighting 4

Various sample units

The schemes of Chap. 2 showed that sample survey data can have some missingness,
both intentional missingness and inevitable missingness. Intentional missingness is
mostly because of sampling, while inevitable missingness arises from
non-responses, ineligibility, undercoverage, and measurement errors. Intentional
missingness is, or should be, mostly random, but inevitable missingness is virtually
systematic or selective.

This chapter focusses on sampling, which is used for several reasons. The most
important being that the target population is large, whereas resources are limited so
that a 100% sample is rarely achievable. On the other hand, it is possible to get more
precise estimates by sampling because the most moderate workload gives the
opportunity to collect data more carefully. The third key point is that sampling in
its efficient form gives an opportunity to obtain the desired estimates sufficiently
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fast. Here, we include some missingness questions in the sampling because this is the
reality in all surveys.

We present a compact framework for sampling here. This is called sampling
design. Often a narrower framework is given. The framework is for probability
sampling, not for quota or other nonprobability sampling. Nowadays, voluntary
sampling is becoming too common, especially when using web arsenals. Such
methods are often nonprobability methods from a sampling point of view. Before
looking at the details of probability sampling, we present some views about
nonprobability sampling, focussing on principles that do not work too improperly,
or that may be the only alternatives for certain inquiries. In general, it is effective to
try to be as close as possible to probability-based sampling even when using
nonprobability approaches. This means, specifically, that the selection of the sample
units should be as randomized as possible.

This chapter also covers the principles of design-based weighting. Such weights
can be calculated in a fairly straightforward way as the inverses of the inclusion
probabilities, thus not taking advantage of the proper auxiliary variables; those
weights are considered in Chap. 8. This term, ‘design weight’, definitely is correct
if all the inclusion probabilities exist. Unfortunately, this is not always the case,
which leads to the problems that are discussed later in this chapter. Nevertheless, we
still use this same term, even for the sampling weights of the respondents, in which
case selective missingness occurs. One example of this is the European Social
Survey (ESS).

The reason for using this somewhat incorrect term is obviously that the simpler
term ‘design weight’ is more easily understood by many users. We use the term for
the respondents, and for this we assume that the missingness is ignorable. Valliant,
Dever, and Kreuter (2013) use a very similar label, ‘base weight’, but mention
‘design weight’ in parentheses.

4.1 Basic Concepts for Both Probability and Nonprobability
Sampling

The following are examples of probability and nonprobability sampling concepts:
Sampling stage: Sampling can be done in one or several stages, and it is then

called single-stage, two-stage, three-stage, or multistage sampling. The sampling
method can be different in each stage.

Sampling phase: It may be enough to take one sample only, or it may be
necessary to continue so that a new sample is drawn from the first sample. This
rarely is done several times, but two phases might be possible. Usually, there is one
phase only.

Sample/sampling unit: This is a unit that is drawn at a certain stage and then
included in the gross sample.

Primary sampling unit (PSU): This is a sample unit that has been included in the
sample at the first step or stage. The PSU may be a final sample unit (if there is
single-stage sampling) or a cluster (if there is multistage sampling).

50 4 Sampling Principles, Missingness Mechanisms, and Design Weighting



Secondary sampling unit (SSU): This is a unit that has been selected at the second
stage within a particular PSU. SSUs are skipped in single-stage sampling.

Cluster: This is a group of ‘individuals’ who are close enough to each other. The
following are examples in surveys:

– A small area, where residents, birds, or businesses are the individuals
– An enumeration area or census district, where people or businesses are the

individuals
– A grid square (e.g., 250 m � 250 m), where people or businesses are the

individuals
– A school, where the students or teachers are the individuals
– A household, where its members are the individuals
– An address, where the residents or employees are the individuals
– An enterprise, where the employees are the individuals

Stratum: This is the group or subpopulation, or quota, that will definitely be
included in the sample. Each stratum is independent of the others. This means that a
different sampling method can be used in each stratum. Even if the method is the
same, the rules may vary by strata.

Selection probability: This is the probability that one sample unit will be included
in each stage, as follows:

• (Single) Inclusion probability: This is the probability that a PSU or an SSU, and
so on, will be included in the gross sample of this stage or phase. In probability
sampling, the probability must be greater than zero (the maximum of one is
naturally true) because otherwise some units cannot be drawn in the sample,
leading automatically to undercoverage. If this is intentional, it should not be
allowed, but to some extent it might be accepted if data are absent.

• Final inclusion probability: An inclusion probability is first determined for each
stage, stratum, phase, or quota, and then, using these probabilities, the final
inclusion probability is found at the entire gross sample level. In the simplest
case, only one stage/level is needed, and this inclusion probability is the final one;
however, in the case of a more complex design, a new calculation is needed. If the
sampling at each stage is independent, the final inclusion probability is the
product of all the single inclusion probabilities. This is so even though a general
problem is that all the single inclusion probabilities are not known for all the units.
It is possible that these probabilities are not independent, but here we do not
consider such cases in detail (see, e.g., Laaksonen et al., 2015). The final
inclusion probability basically relates to a phase, but it may be more complex.
The stratum and the quota are like subtarget populations, and therefore their own
rules apply within them.

• Sampling fraction: This is the number of gross sample units divided by the
number of the target population. This fraction can be the same in each stratum,
or it may vary depending on the precise targets of the survey.
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• Design weight or basic sampling weight: This is the inverse of the final inclusion
probability (design weight) or its conversion for the respondents (basic weight),
assuming that missingness can be ignored. These mechanisms are explained in
Sect. 4.2.

Second-order inclusion probability: This is the probability that two sample units
belong to the target population. This is not considered in detail in this book.
Nevertheless, it is good to know that this probability is particularly needed for
calculating the variance estimate and its square root (i.e., the standard error and
the confidence interval, respectively). Fortunately, the estimates of these in ordinary
cases can be found with good software that can be used without knowing the detailed
techniques. Readers who are interested in learning about these should read relevant
books and articles from the reference list at the end of this chapter and the list at the
end of the book.

" Remark The literature is not clear as far as selection probability is
concerned. Some earlier authors do not use the term ‘inclusion probabil-
ity’ at all—that is, the selection probability is the same as the inclusion
probability. This is not ideal because the inclusion probability requires a
decision to be made about the gross sample size even though the
selection method is the same. This decision about the sample size thus
is crucial in calculating the inclusion probability.

4.2 Missingness Mechanisms

In this introduction to sampling, it is beneficial to discuss missingness as well. As we
said earlier, some missingness always occurs, particularly as a result of
non-responses and ineligibility. Undercoverage or measurement errors cannot easily
be included during the sampling process.

The terms ‘missingness mechanism’ and ‘response mechanism’ are practical
terms that we use here. The terms that follow are commonly used in ordinary
literature, but we have extended the list slightly.

MN (Missing Not in the entire population): This is a survey with a 100% sample,
and without missingness, and is not encountered in real life.

MIG (Missing Ignorable in the entire population): The sampling fraction is 100%
but some missingness occurs. Nevertheless, missingness is not considered, and all
calculations are done on the assumption of a full response. This is not ideal, but the
method is used and leads to some bias in the estimates.

MCAR (Missing Completely At Random): If this was true, it would be quite easy
to handle the data. The assumption of MCAR is used often even though it does not
hold true. It could be accepted if some auxiliary variables do not exist, or if they are
useless. On the other hand, it means that the survey has not been done carefully.
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MARS (Missing at Random Conditional to Sampling Design): This means that the
missingness only depends on the sampling design. This is used often with the
assumption that MCAR holds true within strata or quotas, but not between them.
These strata are therefore auxiliary variables. The first sampling weights, the basic
weights, usually follow the MARS assumption.

MAR (Missing at Random Conditionally): In this case the missingness depends
on both the sampling design variables and all the other possible auxiliary variables.
If many good auxiliary variables exist, it is possible to obtain a substantial reduction
in the bias in the estimates by, for example, creating new weights (see Chap. 8);
however, if such variables are missing, we can only assume that the mechanism is
either MCAR or MARS.

MNAR (Missing Not at Random): Unfortunately, this is, to some extent, the most
common situation in real life. This means that when all the auxiliary variables have
been exploited, the quality of the estimates has been improved; nonetheless, it is still
quite clear that the estimates are not ideal. It is possible to know something about the
problems and the direction of the bias, and one should try to describe this in the
report. In the case of MNAR, the missingness depends on the survey variables, Y. It
is hoped that this correlation is as small as possible.

4.3 Nonprobability Sampling Cases

A good article on nonprobability sampling is the one by Baker et al. (2013). They
say in their introduction:

A wide range of nonprobability designs exist and are being used in various settings,
including case control studies, clinical trials, evaluation research designs, intercept surveys,
and opt-in panels. Generally speaking, these designs have not been explored in detail by
survey researchers even though they are frequently used in other applied research fields.

Because of their limited use in surveys, the assumptions required to make valid
inferences from nonprobability samples are not thoroughly understood by survey
researchers.

Baker and colleagues discuss ‘statistical inference’ in detail because this phrase
has many meanings and implications. They define it as a set of procedures that
produces estimates about the characteristics of the target population and provides
some measure of the reliability of those estimates. A key feature of statistical
inference is that it requires some theoretical basis and an explicit set of assumptions
to make the estimates and judge the accuracy of them. The Baker et al. authors
consider that methods for collecting data and producing estimates without a theoret-
ical basis are not appropriate for making statistical inferences.

This section next presents several concrete cases that follow nonprobability
principles.

4.3 Nonprobability Sampling Cases 53



Cases When There Is a Desire to Generalise to a Target Population Afterward
A survey that does not have a proper sampling design when survey data are collected
is not unusual. For instance, a subject matter researcher may create a questionnaire
that she first uses for her own clients in social services. Given that the results look
interesting, but no reference group exists for comparison, she invites the clients of
other institutions to participate as well. Now the number of respondents is growing,
and the results look more interesting; nevertheless, when she wishes to publish them,
this is not automatically possible without making a generalisation to a target
population.

What should she do? The first step is to determine the target population and to
obtain the statistics for it. The second step is to decide on the sampling design. It is
not possible to do this well, of course, but if the selection of the respondents is
random within each subgroup (stratum), weights can be created. If the selection is
not random, this leads to bias, and the results should not be accepted in any
respectable forum; maybe this could be used as a pilot study instead. Still,
generalisation is possible if the assumption (MARS) holds true or has at least been
assumed to hold true.

Opinion polls by market research institutes are often based on CATI surveys.
The institute may create strata or quota before calling. The quota are based on, for
example, the cross-classification of two genders, five age groups and four regions, or
2 � 5 � 4 ¼ 40 quotas altogether. It is known from recent population statistics how
many people in the target population belong to each quota—let us say this is Nh,
where h is a quota. The client of the survey institute decides the overall number of
respondents (e.g. r ¼ 2000). The survey institute calculates the proportions for each
quota, qh ¼ Nh

N , and the basic option is to allocate the number of the respondents
relatively equally (proportionally) to each quota, that is rh ¼ rqh.

There is no guarantee that exactly this number will be reached during a relatively
short fieldwork period. Therefore the survey institute states at least a certain mini-
mum and a maximum for its CATI centre. This method works well if every random
attempt to contact a person is successful and each of these contacts participates in the
survey, but usually this will not be the case. It means that, in fact, some
non-responses will be encountered. If the respondents are a random selection of
each quota target population, the MARS mechanism holds true and the survey
institute can be content with the data quality, but it is actually difficult to know
how good the quality is.

Thus, this method is partially probability-based, and the survey weights will be
calculated on the assumption that the respondents were selected at random within
each quota. This may hold true reasonably well but is not completely true for the
following reasons: (1) If a person does not answer the telephone, he or she will be
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automatically out of the survey. (2) If a person refuses to participate, he or she also
will be left out.

These preceding points mean that in some sense there are no non-responses at all
because a non-respondent is replaced by a voluntary respondent. The market
research institutes do not usually disclose how many attempts are made before
there is a response. Some have argued that the actual response rate is
around 10–20%.

A Quota Sample May Work Reasonably Well in a Few Cases
The response mechanism for quota sampling is unclear. It has been found that quota sampling
works relatively well in voting behaviour surveys. The target population of such surveys includes
those who are eligible to vote in the next election. The sampling frame of this population cannot
exist, but attempts have been made to approach it with telephone calls. It has been possible to use
the voting register to evaluate who does not vote in elections. These analyses have shown that
people who do not vote are almost identical to people who do not respond in social surveys.

It is, of course, not clear whether the same is true for quota sampling surveys, but one would
expect so. If this is the case, quota-sampling estimates of voting behaviour are relatively satisfac-
tory. The same cannot be said of surveys that attempt to give a good estimate of figures for the
ordinary population. These estimates, in most cases, are very biased because marginal groups (e.g.,
homeless people, people with low education levels, single males, underprivileged people, extremely
rich people, and mobile people) rarely participate.

Self-Selection Sampling
Self-selection ‘sampling’ is being more commonly performed using web
questionnaires because it is easy and basically inexpensive. The method may be
acceptable for online television programmes in which a journalist invites the audi-
ence to comment on a certain topic using a simple binary question with a ‘Yes’ or
‘No’ answer. Such answers cannot be generalised to any concrete population. This is
well understood by most of the audience, but it is possible that some people believe,
for example, that the result represents the opinion of the population of the country.
This bias is more obvious if the journalist becomes convinced that the result is
reliable, saying, for instance, that a large number of answers (e.g., several thousand)
were received, so the result looks fine. Nevertheless, it is not possible to say anything
about the quality of such a study. All such estimates can be close to a true value only
with good luck. For more information see a Dutch case study by Bethlehem (2015)
in which he describes how self-selection can be used for manipulating estimates.

Self-selection sampling, in some cases, may be the only way to shed some light
on a certain phenomenon. If no good sampling frame exists for approaching a target
population, a preliminary estimate might be obtained using a well-managed invita-
tion to participate in a survey. The invitation could be published in media that have
been followed by those who would be expected to participate in and to respond to a
survey. There is still a danger that one respondent may reply more than once. This
can be avoided to some extent in web surveys, at least, by ensuring that an answer
cannot be given twice from the same computer.

The quality of a self-selection survey could be thoroughly checked if a proper
probability survey of the same target population could be conducted at about the
same time with several of the same questions. On the other hand, it is possible to

4.3 Nonprobability Sampling Cases 55



collect a good pattern of auxiliary variables for the same purpose and to use these to
adjust for the weights of the self-selection survey.

Snowball Sampling and/or Respondent-Driven Sampling
Snowball sampling and/or respondent-driven sampling (RDS) methods are closely
related and are used when no reasonable sampling frame exists but when, fortu-
nately, some units are known to belong to the target population. Using these units, or
the people behind them, an attempt is made to find new eligible persons—that is, to
create a sampling frame step-by-step with the help of the respondents (see, e.g.,
Heckathorn, 2002; Lee, Suzer-Gurtekin, Wagner, & Valliant, 2017). This method-
ology can be applied in various circumstances, such as the following:

– If it has been found that people in the target population are living in certain
villages and at least one member has been identified who is willing to recruit and
interview other people in his/her village. This person may be a coresearcher for
the study and also may be paid.

– If each respondent is asked whether she or he knows similar persons and can
legally give their contact details. This technique is used mainly for populations of
rare individuals or hard-to-reach populations such as anonymous narcotics users,
participants in special hobbies for which no registration is required, or illegal or
nonregistered migrants.

The main criticism about such chain-referral, or snowball sampling, is the bias
toward recruiting subjects who are more cooperative and the tendency toward
masking (protecting close friends or relatives by not referring them, especially if
there is a strong privacy concern associated with the study’s subject). In addition, it
is suggested that those with extended personal networks tend to be oversampled and
isolated people tend to be excluded from such studies.

Adaptive Sampling
Adaptive sampling is a technique that is implemented while the fieldwork for a
survey is being performed—that is, the sampling design is modified in real time, as
data collection continues, based on what has been learned from earlier completed
sampling. The purpose is to improve the selection of elements during the remainder
of the sampling, thereby improving the representativeness of the data generated by
the entire sample.

This technique also has been used when trying to find new respondents if the lack
of responses from particular subpopulations is too high after a certain period of
fieldwork. It then means that more attempts are made to approach such units (i.e.,
persons or through certain persons). This technique, which also is called responsive
design, is being studied and used more and more (e.g., Lundquist & Särndal, 2013).
This design can, for example, take advantage of response propensities, which are
thus estimated based on both the respondents and the non-respondents. Then, the
first attempts at contact are made with non-respondents with low propensities. For
further detail about propensities, see Chaps. 7 and 8.
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Online, Internet, or Web Panels
An online panel is a selected group of participants who have agreed to reply over a
reasonable period to survey questions on a website. What the reasonable period is
depends on the survey organization, but usually it could be expected to last more
than one year. Typically, incentives, which increase as participation time increases,
are given.

An Internet panel is not usually a single web survey, although it can
be. Recruitment to the panel can be done using a survey conducted earlier, with a
respondent being asked at the end of the interview, for example, whether he would
be willing to be a member of a panel in the future. Naturally, people who respond to
the survey are more often asked to be on the panel than non-respondents. On the
other hand, if a person has access to the Internet and is sufficiently able to use it, she
or he could be a good person to recruit.

These requirements mean that the representativeness of Internet panels may not
be reliable. People without Internet access or with low competence with computers
are seldom on such panels. This is so even though certain statistical characteristics of
the population can be satisfied so that, for example, the distributions by gender, age
group, and region may be like those in the target population.

It is, of course, possible to recruit individuals to the panel so that those gaps are
filled, by giving computers with Internet access to those who do not have them, and
by training them to use the Internet to give their replies. If they can use the computer
for their own purposes at the same time, this is a good incentive. This investment is
naturally expensive and is rarely used, but one exception is the Dutch LISS panel
(see https://www.lissdata.nl/lissdata/) and obviously more are coming.

The number of registered persons in online panels can be large, numbering
several tens of thousands. This gives the opportunity for a special sample to be
drawn for each survey, and it enables the workload for each person to be suitable.

It has been discussed as to whether a respectable online panel could replace an
ordinary survey because it may ensure a reasonable response rate compared to that
for an ordinary repeated survey. The problem is that the panel cannot easily be used
for a single cross-sectional case, which is the most common survey type.

Some Features of the Dutch LISS Panel
The reference population for the Longitudinal Internet Studies for the Social Sciences (LISS) panel
is the Dutch-speaking population permanently residing in the Netherlands who are 16 years old or
older. The initial wave of the survey is very representative because Internet technology is given to
those who do not already have it. Panel members complete online questionnaires every month,
taking about 15–30 min in total.

Naturally, new recruits are needed all the time in order to maintain the quality. On the other
hand, non-responses are still a problem, and this often gets worse as the duration of participation
increases.
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4.4 Probability Sampling Framework

The framework/taxonomy shown in Table 4.1 gives a comprehensive understanding
of the factors that need to be considered for sampling and for implementing the
sampling design. This is not always used in practice to describe which questions
should be considered when planning the sampling. It is useful to point out that even
though this taxonomy looks long, it is not difficult because there are not many
questions to think about in each box.

Thus, an optimal alternative should be chosen and all the preceding questions/
tasks (i.e., A to H) implemented to produce a gross sample. Next, we look in more
detail at the most commonly used sampling methods. We also use symbols and
formulas here, but we try to give descriptions of the methods so that the basic points
can be understood by non-mathematicians too. This explanation is given in two
steps: (1) everything is described for a single stage or phase or stratum, and (2) some
of these are combined for our survey examples.

The first part concerns single inclusion probabilities for the most common types
of sampling. They can be applied in the same way for strata, sampling phases, and
sampling stages. For this reason, we do not use a subscript in the first part, but we do
so later when the various methods put together. Any available subscript to indicate
stratum, phase, or stage can be added if there is not one there.

4.5 Sampling and Inclusion Probabilities

In this subsection we present the most commonly used sampling selection methods
and their inclusion probabilities (see also Lohr, 2010). These are both presented here
without missingness so that if there is missingness, its mechanism is assumed to be
ignorable, or MARS. The sample size, n, or its other forms are set separately, with
the aim of achieving a good quality survey, but we do not discuss these issues here.
The number of respondents is given the symbol r. The formulas in this subsection
can be called ‘design-based’.

Simple Random Sampling
The inclusion probability is constant for each k. The second term here, and later, is
for the selection probability:

πk ¼ n
1
N

¼ n

N

If the assumption that the missingness mechanism is MARS holds true, the conver-
sion to the respondents leads to the ‘conditional’ inclusion probability:

πk ¼ r
1
N

¼ r

N
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Table 4.1 General outline of the probability sampling framework

Sampling question Description

A. Frame(s) If one frame only is required to get sampling/
sample units, it is called ‘element sampling’. But if
several frames are required to get those units, it is
more complex; see Question B

B. Stage Hierarchy used to approach the study/survey units
by using probability sampling, initially going to
the first-stage units (¼ PSUs), and then to the
second-stage units (SSUs), and so on. Terms:
one-stage sampling, two-stage sampling, three-
stage sampling. The first-stage method is usually
different from those used at later stages

C. Phase First a probability sampling is applied for drawing
a first-phase sample, and afterward a new sample is
drawn at the second phase from the first sample.
The method may vary in each phase. The number
of phases is rarely more than two, except in panels

D. Stratification The entire population is divided into several
subpopulations, and the sample is drawn from
each of them separately and independently. The
inclusion probability of each stratum is thus equal
to one. If the sampling design methods of two
strata are different, this is called two-domain
design

E. Sample allocation into strata How has a desired (target) gross sample been
shared into each stratum? Alternatives: equal,
proportional, minimum, Neyman-Tschuprow.
Anticipated response rates can be considered as
well (by strata); see Question H

F. Panel vs. cross-sectional study If a panel is desired, the sampling needs to be
designed also for how to follow up the first sample
units, and how to maintain the sample. Where a
cross-sectional study is desired, it is good to design
it so that a possible repeated survey can be
conducted (thus getting a correct time series)

G. Selection method—leads to inclusion
probabilities when sample size is decided

How to select the study units:
– probability equal in all: simple random selection
(SRS), equidistance, Bernoulli), or
– probability varies unequally, typically by size, or
¼ probability proportional to size (PPS)

H. Missingness anticipation or prediction Trying to anticipate response and ineligibility rates
and allocate a gross sample so that the net sample
is as optimal as possible in order to get as accurate
results as possible. Anticipation is good to do by
strata if possible, but for the whole sample at a
minimum
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Bernoulli Sampling
Bernoulli Sampling (BS) is the same as SRS, but the sample size that is achieved is
not necessarily of a fixed n because it varies randomly. The variation is relatively
small.

Equidistance Sampling
The inclusion probability of Equidistance Sampling (EDS) for each k is constant:

πk ¼ 1
l
¼ 1

N
n

¼ n

N

Here l is the constant interval for the selection. The first k should be selected
randomly. This interval is decided as soon as n is known, as can be seen in the
preceding formula. The interval cannot be changed for the respondents, but some
sample units are now missing. If this is not selective, it is possible to apply the same
formula as for SRS. The conversion to the respondents gives the same formula as in
SRS, assuming that certain k’s are missing randomly.

" Remark We use the term ‘equidistance’ instead of the word ‘systematic’
that is often used in sampling literature. This is because ‘systematic’ is not
as clear as ‘equidistance,’ since many strategies can be ‘systematic’ but
do not have ‘equidistance’.

Conclusion on Equal Inclusion Probabilities
Each kεU has an equal inclusion probability of being selected in a sample, whether
we use SRS, BS, or EDS. This is a necessary condition for probability sampling.

How Is This Done in Practice?

1. If the frame is in an electronic form and an appropriate software package is
available with a random number generator, a uniformly distributed random
number in the interval (0, 1) for each k is needed to create a data file (e.g., the
variable ran). This number can be used for EDS to select the first sample, and
then, using the interval, to choose all the others so that the entire frame is covered.
In the case of SRS, a technical option is to sort the units using the random
ordering and then draw as many as are needed from an arbitrary place, working
forward and/or backward. BS works such that if ran < the desired sampling
fraction, the unit has been taken in a sample. For example, if ran < 0.01, then the
sample size is about 1% of the sampling frame size.
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Implicit Stratification
A common practice in some register countries is to use EDS with the order of
the population register. Because the members of any particular dwelling unit
appear one after the other, the length l is fairly long so that the method does not
draw several people from the same dwelling. This often is considered to be a
good point. The method also is called implicit stratification, but it has nothing
to do with proper stratification, which it is best to call it explicit stratification
to avoid misunderstanding.

2. If the frame is not in an electronic form, the best solution is to upload it into an
electronic form and to continue as in the preceding. This is rarely possible if the
survey concerns a large population. Still, it often is done at the PSU level, such as
villages and blocks where the number is not too sizable (e.g., below 300). This
strategy has been tried in several ESS countries when selecting addresses or
dwellings, but there is no guarantee about how well it works. In Ethiopia, the
houses with one or more households were marked on the first day of fieldwork,
and then an equidistance selection was used to select the sample households. The
interviewing started on the next day. This method could be considered ideal
because it is really up to date if it is done carefully.

3. There are several other strategies using advanced technical tools in which, for
example, coordinates are used and the ‘sampling points’ are selected randomly
from these coordinates. GPS, Google maps, and satellite images might have
advantages in this selection.

4. It is possible to select by individual without random numbers. Often, this is
needed in the last stage of multistage sampling, when an interviewer needs to
select a person older than 15 from all those who are over this age limit at an
address or a dwelling that has already been selected by the survey organization.
The most common method used by the ESS for this purpose is the last birthday
method. A better version is one in which a survey interviewing day is
randomized.

Unequal Inclusion Probabilities
Just for clarification: inclusion probabilities may vary by strata, quota, or phase. This
most common case is not considered in this subsection but is discussed later in this
chapter.

All methods require one or more auxiliary variables to be used for the inclusion,
and thus to be taken from the sampling frame. In this subsection an example of this
variable is in some sense ‘size’, which is correlated therefore with the inclusion
probability. The ‘size’ variable in most cases improves the precision of the estimates.
There are other reasons for this, which are mainly the result of survey practice. We
first present the case that has often been used in surveys where appropriate cluster
PSUs are available.
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Probability Proportional to Size
The size xc is inserted in the inclusion and selection probability proportional to size
(PPS), as follows:

πk ¼ n
xcP
Uxc

The subscript xc refers to a cluster PSU that is used at the first stage of sampling. The
ESS clusters are generally small areas, whereas for PISA they are school classes.
The PSU size n is thus decided separately. It is not usually necessary to convert to
the respondents because the missing sampled PSUs rarely are accepted. The
non-responses thus occur within these PSUs, concerning individuals.

This method seldom is used alone but is used in this way at the first stage. The
denominator is the sum of the x’s in the frame (e.g., the sum of all the school classes
of the entire country, or the sum of the small area of PSUs, respectively), and does
not relate to any figure for the target population units of the survey (e.g., the sum of
the students in all schools). When the second-stage units are added, the sum will be
the target population size, N, unless there are serious gaps in the survey fieldwork or
statistical information system.

PPS Alone, Not Together with a Second- or a Third-Stage Inclusion
Probability proportional to size usually has not been used alone, but if there is a need to do it in this
way, a special alternative should have been chosen. The most common such situation is that the sum
of the weights is equal to the number of clusters in the target population. This is not achieved with
the ordinary PPS strategy because it is not needed. The reason is that the target in most surveys is to
create weights that have a sum equal to the target population, which consists of second-stage
individuals. This target will be achieved after the later-stage inclusion probabilities. If the first- stage
population is needed, the sampling method should be one that gives this target population. A
common method for this purpose is PPS Sampford.

The PPS method can be used either with replacement or without replacement.
The first of these is used in most surveys, such as the ESS. This may lead to an
inclusion probability greater than one and therefore should not be accepted. How this
problem can be avoided is discussed in the following box.

PPS with Replacement, with a Valid Inclusion Probability
If PPS is used in one-stage sampling, it usually is best to apply another
selection method, but this is not necessary for ordinary surveys. The main
option for avoiding probabilities greater than one is to create a cluster pattern
so that the sizes do not vary too much. The following formula gives the
conditions for the maximum cluster size:

xc <

P
Uxc
n

Or, respectively, for the sample size:

(continued)
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n <

P
Uxc
xc

We can see that either the sample size or the maximum cluster size, or both,
should not be too large. This problem is never encountered when the PSU
clusters are census-enumeration areas; however, if administrative units (e.g.,
municipalities) are used, and there are both large and small municipalities in
the country, there is a great danger of getting unacceptable probabilities. The
best solution is either to divide up the large municipalities, or to use these as
explicit strata.

Special PPS Cases
The inevitable practical reason why there might be unequal inclusion probabilities is
that the frame units are available from a level other than the level of the study units.
The following two cases are the most common in practice:

1. Let N be the size of the target population taken as individuals, but suppose that the
purpose is to get a sample of households, thus of clusters of individuals, mk. This
is a good strategy if a frame of households is missing and difficult to create.
Fortunately, it can be created for a sample so that a sample of individuals is
selected and then a household is formed around the sampled person.

A sample with n individuals is drawn from their clusters. The inclusion
probability of each cluster varies by this cluster size at the target population level.

πk ¼ n
N=mk

¼ nmk

N

The numerator of the second part of the formula indicates more clearly that the
inclusion probability increases as the cluster size, mk, increases. The cluster itself is
such that it is available in the frame. It is not necessarily a household but is a
dwelling, which can consist of one or more households. This inclusion probability is
widely used in household surveys in countries with a central population register.

2. The study units k are individuals, but the frame consists of M clusters of these
individuals. The cluster size, mk, thus varies by the number of individuals in the
target population. It is easiest to draw one k from each sampled cluster. This
means that the inclusion probability of the individual k is linearly related to the
cluster size:

πk ¼ nmk

M

This formula resembles the formula in case 1, but the denominator is different. This
inclusion probability is relatively common in the ESS, where either the address
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register or the dwelling register is used to select a particular cluster and an individual
over the age of 15 is drawn randomly from each selected address or dwelling.

Both options 1 and 2 have the disadvantage that the inclusion probability varies
and does not always vary in the best way. It increases linearly with cluster size in the
first case. This is a good thing if one wishes to get more sample units from large
households, for instance. The number of single households will be smaller, but again
that is not always a bad thing.

The individual inclusion probability is equal to the household inclusion probabil-
ity in the second option. When the inclusion probability varies, it would be expected
that the respective sampling weight would vary as well. The variation is one
component of the accuracy of the survey estimates, and it is best to keep this
variation at a suitable level. Example 4.1 illustrates this situation.

Example 4.1 ESS Sampling of Dwellings
Several countries use an address or dwelling register, then select the sampled
addresses or dwellings, and then select the individuals aged over 15. This leads
to varying inclusion probabilities at the second stage. Table 4.2 illustrates the
practical situation from a dwelling register. We can see, for example, that the
most common dwelling is one that consists of two people over 15 years old.
The variability leads to variation in the inclusion probabilities at that level even
though the first probabilities are equal to one. The coefficient of the variation
of these inclusion probabilities is 43.7%, which is fairly common in countries
using this design. This leads to the approximate design effect because of
varying inclusion probabilities (DEFFp) at this stage—DEFFp ¼ 1 + 0.4372

¼ 1.191. DEFFp will be considered more fully in Chap. 5, but for now it is
enough to understand that if all the inclusion probabilities are equal,
DEFFp ¼ 1. This is therefore the design effect of simple random sampling
without missingness. If the inclusion probabilities are not equal, this automati-
cally leads to a larger DEFFp. It in turn leads to a greater confidence interval
than in the case of SRS without missingness.

Table 4.2 Example of inclusion probabilities in the third stage, selecting individuals

Number of individuals
over 15 years old

Inclusion probability
of the individual Frequency Percent

1 1.000 842 26.51

2 0.500 1595 50.22

3 0.333 423 13.32

4 0.250 246 9.25

5 0.200 49 2.20

6 0.167 15 0.47

7 0.143 3 0.09

8 0.125 2 0.06

9 0.111 1 0.03

Source: Test data (see Sect. 6.2)
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Stratification in Sampling
It is good to use stratification or, more exactly, ‘explicit stratification’, in almost all
sampling. There is a reason for using full simple random sampling in the case when
no auxiliary variable exists for stratification. Of course, it might be challenging to
find a good stratification, but an attempt should still be made. In the simplest case,
even when using proportional allocation, stratification requires certain statistics,
particularly the target population figures. This thus sheds some light on what is
going to be found in the final work.

Let us suppose that we have the target population statistics, Nh, in which h ¼ 1,
. . ., H are explicit strata. How large H could be is not clear, but it must be at least ten
or so. On the other hand, the maximum value for H also depends on the number of
respondents achieved in each stratum. It is therefore necessary that each stratum
contains enough respondents. It is not possible to give a simple answer to the
question ‘What is enough?’, because the answer depends on many things.

If the gross sample size is nh, then the inclusion probability, when using simple
random sampling within strata, is:

πk ¼ nh
Nh

This method also is called stratified (simple) random sampling. It is obviously the
most common method and is used in all kinds of surveys, including business surveys
where stratification is necessary so that the large businesses of each industry class,
whose impact on most statistics is enormous, are included in the sample.

After the fieldwork, when the number of respondents is known for each stratum,
the inclusion probability can be converted in straightforward fashion into this form:

πk ¼ rh
Nh

If rh is zero or small, there is a danger that the basic sampling weight is not plausible.
This weight is thus the inverse of the inclusion probability of the respondents
(assuming MARS):

wk ¼ Nh

rh
:

Naturally, if Nh ¼ rh ¼ 1, the basic weight is not problematic but there would be
problems if, for instance, Nh was equal to 10,000 and nh ¼ 10.

Inclusion Probabilities and Basic Weights for Designs with More than One
Stage
In the case of pure simple random sampling, or its stratified version, the final
inclusion probability is ready when the survey is implemented, and the respective
design and basic weights are as presented earlier.
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Nevertheless, if the sampling design includes more stages or phases, there are as
many single-stage (single-phase) designs and, accordingly, inclusion probabilities
(and not just one as there is in the preceding). Thus, the final inclusion probability
needs to be calculated. There are two alternatives between the single-stage designs:
(1) independent or (2) dependent. The reference for a dependent design is in
Laaksonen et al. (2015), but here we only consider independent designs in detail.

The final inclusion probability, assuming that the single-stage inclusion
probabilities are independent of each other, is in theory simple because the final
inclusion probability of the multistage design is the product of all single-stage
inclusion probabilities.

This simple product is not, in real life, simple because one or more probabilities
cannot be known for all the sample units as a result of missingness. This should not
occur in the first stage, as this would mean the whole sampling had problems. It
should not be common in the second stage either, if register or other information is
available. Unfortunately, in subsequent stages missingness is common because the
units need to be contacted to get the information for the probability calculation. This
means that the final inclusion probability can be calculated for the respondents only.
Example 4.2 illustrates this problem with our test data.

Example 4.2 Inclusion Probabilities and Weights of the Test Data with Three-
Stage Cluster Design
The example is based on the test data (see details in Sect. 6.2), which includes
two domains. SRS is used in the first domain, meaning that the final inclusion
probabilities are complete. By contrast, many inclusion probabilities of the
third stage in the second domain are missing. This domain follows three-stage
cluster sampling; see Table 4.3 (see also Sect. 6.2).

The final inclusion probability is therefore the product of these three
probabilities. There are only two complete probabilities because the third is
only given for the respondents. We thus do not know how many people over
age 15 there are in dwellings that were not contacted, or, even if we by chance
know this count for some units, this does not help much. Consequently, the
product can be calculated only for 1573 respondents. Fortunately, our test data
file is special because we have the full information about all probabilities. This
gives us the opportunity to compare the realized and the ideal probabilities. On
the other hand, we know the first two probabilities completely, and thus the
weights of dwellings. We see, for example, that the estimated number of
dwellings in this population is 4.84 million (Table 4.4).

We can see that the realised and ideal figures, except the sums, are very
close to each other but are not exactly the same. This means that the sampling
works similarly for both the complete units and the respondents. We will see
later that this does not hold very true for missingness. We have added the sum
to the table; this is not informative concerning probabilities, but the sum of the

(continued)
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Example 4.2 (continued)
weights should be the target population size. We can see that it is much too low
for the realised weights but is correct when calculated with the ideal weight,
which is without missingness.

Moreover, we can see from Table 4.4 that the sum of the realised design
weights is much lower than the correct sum, but that the other figures do not
differ substantially, with the minimums and the maximums being exactly
equal. We can therefore believe that the weights could be adjusted to be closer
to the correct ones, even to make the sums exactly the same, with the MARS
assumption. We will continue from these weights to the basic weights in
Sect. 7.

Table 4.4 Inclusion probabilities and weights of the cluster domain of the test data

Label n Mean Minimum Maximum
Coeff. of
variation Sum

Ideal inclusion
probability of person

3176 0.000447 0.00006 0.00125 66.3 1.42

Realised inclusion
probability of person

1573 0.000457 0.00006 0.00125 65.6 0.72

Ideal and realised
weight of dwelling

3176 1523.8 802.5 1854.3 32.0 4,839,616

Ideal design weight
of person

3176 3214.1 802.5 16,689 59.3 9,900,728

Realised design
weight of person

1573 3119.2 802.5 16,689 58.9 4,906,545

Table 4.3 Figures for single-stage inclusion probabilities in the cluster domain of the test data

Variable Label n Mean Minimum Maximum
Coeff. of
variation

PROB1 Inclusion probability
of first sampling stage
(PSU cluster)

3176 0.116 0.0015 0.813 145.2

PROB2 Inclusion probability
of second sampling
stage (dwelling)

3176 0.039 0.0007 0.417 175.2

PROB3 Inclusion probability
of third sampling stage
(individual person)

1573 0.596 0.1111 1.000 43.7

4.5 Sampling and Inclusion Probabilities 67



4.6 Illustration of Stratified Three-Stage Sampling

A multistage sampling design is thus common in social surveys of individuals, but it
is not easy for a beginner in surveys to understand. We illustrate this design in a case
in which the target population is stratified, usually by geographic region, and then
the sampling design within each stratum is used. This design can vary by stratum,
but it follows the same strategy in each stratum. In some cases, it has been found to
be effective to apply different designs for urban and rural regions. This is called a
two-domain design.

The illustration is for a stratified three-stage sampling design so that the design
strategy is equal in each stratum but all information naturally comes from each
stratum (Scheme 4.1).

This scheme begins from six explicit strata; this number often can be enough, but
a higher number of strata can work better, at least in larger countries. In the first
sampling stage, primary sampling units of small areas are selected by PPS with
replacement. Six out of 25 PSUs were selected here. These numbers often are higher
in practice, but this is reasonable for illustration.

In the second stage, ten dwellings of PSU A2 are drawn using simple random
sampling. The scheme does not indicate how many dwellings are in this stratum, but
this number is usually in the hundreds or thousands, and in large strata it can be many
more. Finally, just one individual is selected from each sampled dwelling, with
simple random sampling. This selected individual is marked in a different way,
rather than excluded, in the scheme. It is possible to take all individuals in the
sample. This may lead to household surveys. On the other hand, only an individual
of a certain age may be selected, like an individual over 15 in the ESS.

4.7 Basic Weights of Stratified Three-Stage Sampling

The basic weights are calculated based on the assumption that missingness is
ignorable. We already have presented the methodology in the case of a stratified
simple random sampling design. Example 4.2 earlier shows that the realised design
weights are not correct because their sum is not consistent with the target population
size. The only missingness in this example is in the third inclusion probability, but
there may be more missingness in other designs. This example case is, however,
relatively common and therefore we show how to get the correct basic weights in
this case.

We must calculate the two inclusion probabilities, for both the complete units and
the respondents. The subscripts of the following inclusion probabilities refer to
stages 1, 2, and 3. First, we need the inclusion probabilities over stages 1 and
2, which are completely known and are thus for n units:

π12k ¼ π1kπ2k ð4:1Þ
Second, we find the inclusion probabilities for the respondents—there are therefore
r units here, with r being less than n:
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π13k ¼ π1kπ2kπ3k ð4:2Þ
We now want to calculate the best possible inclusion probabilities and the basic

weights. We therefore start by calculating the preliminary basic weights after the
second stage, which are without missingness, as the inverse of formula (4.1):

w12k ¼ 1=π12k

On the other hand, we need the respective weights for the respondents, given that π3k
is missing:

w12k respð Þ ¼ 1=π12k

Accordingly, we calculate the preliminary basic weights using formula (4.3):

w13k preð Þ ¼ 1=π13k ð4:3Þ
These correspond to the realised design weights (see table in Example 4.4) and are
too small. Thus, we need to increase them so that their sum matches the ideal design
weights if any information is missing. These basic weights are obtained using
formula (4.4):

w13k ¼
X

n
w12k preð Þ=

X
r
w12k respð Þ

� �
w13k preð Þ ð4:4Þ

These calculations, including weights, should be made by strata if strata are used.
They work correctly if the missingness mechanism from stage 2 to stage 3 is
ignorable, even though this is not necessarily the case. Example 4.3 illustrates the
situation with the test data. It means that it is possible to improve the weights via
reweighting, using the methods presented in Chap. 8.

Example 4.3 Basic Weights of the Test Data for the Cluster Domain (see
Sect. 6.2)
We can calculate the complete inclusion probabilities and design weights for
the dwellings by strata. Table 4.5 gives the results for the only two strata
included in the data.

The ratio of the two sums in each stratum is used in calculating the final
basic weights from the preliminary ones. Table 4.6 shows the results for the
basic weights.

We can see that the sum of the final basic weights is basically ideal; that is,
it matches the sum obtained from the ideal basic weights for which we knew
all the inclusion probabilities. We can see that the variations of the weights
(i.e., the coefficients of variation) are close to each other as well, but the means
of the basic and ideal weights are very different.
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4.8 Two Types of Sampling Weights

The term ‘sampling weight’, ‘sample weight’, or ‘survey weight’ is a general label
for the weights used in estimating the target population parameters. These
parameters can be of two types:

1. They concern the totals of the target population or its sub-populations (domains),
and are thus sums, amounts, or quantities.

2. They concern means, medians, percentages, or other relative parameters.

The sampling weights presented above work well in both these cases, but it is
good to be careful with the software in order to know whether it is working correctly.
This is one reason for gaining an understanding of another type of sampling weight,
called the ‘analysis weight’ or ‘analytical weight’. This is obtained from the proper
or ordinary sampling weight wk by dividing it by the average of all the weights of
this target population. This weight is thus relative, whereas the proper sampling
weight indicates ‘amounts’ or ‘totals’.

wk analysis ¼ wk=
X

r
wk=r

� �
¼ wk=Wk ¼ wkr=

X
r
wk

The analysis weight is used more often than the proper (amount) sampling
weight, since it works well enough in most analyses, but it does not work when
the amounts are of interest. For example, the ESS weights are analysis weights only,
but they can be transformed to proper weights (Chap. 9).

The sum of the proper sampling weights is thus the target population size, but the
sum of the analysis weights is the number of respondents. The good thing about the
analysis weights is that they make it possible to compare the weights of all types of

Table 4.6 Figures for the basic weights of the cluster domain in the test data

Weight
Number of
observations Mean Minimum Maximum

Coeff. of
variation Sum

Basic final 1573 6294 1625 33,656 58.9 9,900,728

Basic
preliminary

1573 3119 802 16,689 58.9 4,906,544

Ideal basic 3176 3214 802 16,689 59.3 9,900,728

Table 4.5 Figures for the Dwellings of the Cluster Domain in the Test Data

Strata

Weighted number of dwellings

Complete Respondents

1 4,038,739.66 2,002,680.82

2 800,876.48 395,623.35
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surveys, since their average is equal to one. Table 4.7 gives the basic figures for the
four weights. The first two rows are the same as in Table 4.4, but the next two rows
are calculated from the simple random (SRS) domain of the same test data. The
weights are analytical except the ordinary weights in the last column.

The weights are fairly different in these two domains. The variation of the weights
in the SRS domain is much smaller than the variation in the cluster domain. The
logical reason is that there are three inclusion probabilities in the cluster domain
whereas there is only one in the SRS domain. In addition, there is some variation by
strata, and this is slightly higher in the SRS domain because there are six strata.

Example 4.4 The Weights of the 2012 PISA Survey
The public PISA data are not the same as the public ESS data in all respects,
even though all the methodological information can be found. The PISA
survey instruction variables are complete for most countries, which is not
the case for the ESS. This will be discussed further in the analysis in Chap. 14.
The sampling weights, however, can be used in both PISA and the ESS. The
main sampling weight of the ESS is analytical, and the average in each country
is one, but the PISA weights are ordinary ones. Their sum is thus the target
population of the country.

Table 4.8 gives an example for the 43 countries that participated in the
problem-solving exam, not just in the mathematics, science, and reading ones.
The analysis weights are computed from the initial student weights. It is useful
to compare these with all other surveys that have analysis weights to show how
the weights vary. The variation is often rather small, less than 40% for the
coefficient of variation. Although it is higher in some countries, for several
reasons, with the main one being that the country wants to get more precise
estimates for certain regions or domains. If the weights do not vary much, it is
possible to get relatively good point estimates even without weights in the
estimation, although this is not recommended, of course.

Table 4.7 Statistics for the weights in both the cluster domain and the srs domain of the test data

Weight
Number of
observations Mean Minimum Maximum

Coeff. of
variation

Sum of
ordinary
weights

Gross sample
of the cluster
domain

3176 1.00 0.250 5.193 59.3 9,900,728

Basic of the
cluster domain

1573 1.00 0.258 5.347 58.9 9,900,728

Gross sample
of the SRS
domain

1422 1.00 0.565 1.305 36.5 9,698,424

Basic of the
SRS domain

605 1.00 0.497 1.425 42.2 9,698,424
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Table 4.8 Statistics of the PISA 2012 weights for students in the countries that participated in most
survey parts

Country Weight Mean Minimum Maximum
Coeff. of
variation Sum

United Arab
Emirates

PISA student
weight

3.5 1.0 22.7 71.4 40,612

Analysis weight 1.0 0.3 6.4 71.4 11,500

Australia PISA student
weight

17.3 1.2 67.7 58.3 250,711

Analysis weight 1.0 0.1 3.9 58.3 14,481

Austria PISA student
weight

17.3 1.0 81.5 36.9 82,225

Analysis weight 1.0 0.1 4.7 36.9 4755

Belgium PISA student
weight

13.7 1.0 44.8 38.9 117,889

Analysis weight 1.0 0.1 3.3 38.9 8597

Bulgaria PISA student
weight

10.3 4.8 27.0 20.5 54,255

Analysis weight 1.0 0.5 2.6 20.5 5282

Brazil PISA student
weight

435.3 1.1 2837.7 72.4 2,397,036

Analysis weight 1.0 0.0 6.5 72.4 5506

Canada PISA student
weight

16.2 1.0 116.1 111.1 347,987

Analysis weight 1.0 0.1 7.2 111.1 21,544

Chile PISA student
weight

33.4 1.0 185.2 52.4 229,159

Analysis weight 1.0 0.0 5.5 52.4 6856

Colombia PISA student
weight

61.7 1.2 478.0 101.9 559,674

Analysis weight 1.0 0.0 7.7 101.9 9073

Czech Republic PISA student
weight

15.4 1.2 76.8 71.2 82,250

Analysis weight 1.0 0.1 5.0 71.2 5327

Germany PISA student
weight

151.4 70.5 314.1 22.8 756,907

Analysis weight 1.0 0.5 2.1 22.8 5001

Denmark PISA student
weight

8.8 1.0 77.5 81.7 65,642

Analysis weight 1.0 0.1 8.8 81.7 7481

Spain PISA student
weight

36.4 2.5 144.7 101.1 370,862

Analysis weight 1.0 0.1 4.0 101.1 10,175

Estonia PISA student
weight

2.4 1.3 8.0 44.0 11,627

Analysis weight 1.0 0.5 3.3 44.0 4779

(continued)
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Table 4.8 (continued)

Country Weight Mean Minimum Maximum
Coeff. of
variation Sum

Finland PISA student
weight

6.8 1.0 54.1 79.3 60,047

Analysis weight 1.0 0.1 7.9 79.3 8829

France PISA student
weight

151.7 103.4 293.9 15.1 699,779

Analysis weight 1.0 0.7 1.9 15.1 4613

United Kingdom PISA student
weight

138.5 47.6 457.9 31.8 579,422

Analysis weight 1.0 0.3 3.3 31.8 4185

Hong
Kong—China

PISA student
weight

15.1 8.3 55.3 25.2 70,636

Analysis weight 1.0 0.5 3.7 25.2 4670

Croatia PISA student
weight

9.1 4.1 23.4 24.6 45,506

Analysis weight 1.0 0.5 2.6 24.6 5008

Hungary PISA student
weight

19.0 8.5 91.7 43.3 91,179

Analysis weight 1.0 0.4 4.8 43.3 4810

Ireland PISA student
weight

10.8 1.4 31.9 32.3 54,010

Analysis weight 1.0 0.1 3.0 32.3 5016

Israel PISA student
weight

21.4 14.0 65.8 27.5 107,990

Analysis weight 1.0 0.7 3.1 27.5 5055

Italy PISA student
weight

95.0 1.3 871.2 64.4 521,902

Analysis weight 1.0 0.0 9.2 64.4 5495

Japan PISA student
weight

177.6 57.3 381.5 20.2 1,128,179

Analysis weight 1.0 0.3 2.1 20.2 6351

Korea PISA student
weight

119.9 49.7 251.6 13.1 603,632

Analysis weight 1.0 0.4 2.1 13.1 5033

Macao – China PISA student
weight

1.0 1.0 1.2 1.7 5366

Analysis weight 1.0 1.0 1.2 1.7 5335

Montenegro PISA student
weight

1.6 1.0 3.5 40.5 7714

Analysis weight 1.0 0.6 2.1 40.5 4744

Malaysia PISA student
weight

83.1 11.5 151.1 22.9 432,080

Analysis weight 1.0 0.1 1.8 22.9 5197

Netherlands PISA student
weight

44.0 7.2 161.1 47.3 196,262

Analysis weight 1.0 0.2 3.7 47.3 4460

(continued)
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Table 4.8 (continued)

Country Weight Mean Minimum Maximum
Coeff. of
variation Sum

Norway PISA student
weight

12.7 4.7 53.8 19.2 59,432

Analysis weight 1.0 0.4 4.2 19.2 4686

Poland PISA student
weight

82.4 18.2 199.2 27.1 379,545

Analysis weight 1.0 0.2 2.4 27.1 4607

Portugal PISA student
weight

16.8 2.3 71.3 51.2 96,034

Analysis weight 1.0 0.1 4.2 51.2 5722

Shanghai—China PISA student
weight

16.4 4.1 52.6 22.7 84,965

Analysis weight 1.0 0.2 3.2 22.7 5177

Russian
Federation

PISA student
weight

224.5 34.2 557.4 34.8 1,174,528

Analysis weight 1.0 0.2 2.5 34.8 5231

Singapore PISA student
weight

9.2 1.1 19.0 25.0 51,088

Analysis weight 1.0 0.1 2.1 25.0 5546

Serbia PISA student
weight

14.5 4.1 60.0 21.9 67,934

Analysis weight 1.0 0.3 4.1 21.9 4684

Slovak Republic PISA student
weight

11.7 4.1 47.3 36.7 54,636

Analysis weight 1.0 0.3 4.0 36.7 4678

Slovenia PISA student
weight

3.1 1.2 30.3 80.6 18,418

Analysis weight 1.0 0.4 9.7 80.6 5911

Sweden PISA student
weight

20.0 3.2 80.6 18.4 94,936

Analysis weight 1.0 0.2 4.0 18.4 4736

Chinese Taipei PISA student
weight

48.4 1.1 110.2 30.3 292,542

Analysis weight 1.0 0.0 2.3 30.3 6046

Turkey PISA student
weight

178.8 2.8 394.1 16.7 866,681

Analysis weight 1.0 0.0 2.2 16.7 4848

Uruguay PISA student
weight

7.5 2.8 17.7 28.7 39,771

Analysis weight 1.0 0.4 2.4 28.7 5315

United States
of America

PISA student
weight

710.9 134.5 2597.9 41.2 3,538,783

Analysis weight 1.0 0.2 3.7 41.2 4978
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Design Effects at the Sampling Phase 5

Clusters in two points of time

A ‘design effect’ is a useful and relatively compact term to indicate the influence of
the sampling design on the uncertainty of each estimate. It was introduced by Kish
(1994) and followed up on by other researchers (e.g., Gabler, Häder, & Lahiri, 1999;
Shackman, 2001; and the ESS sampling team). This chapter to a great extent takes
advantage of the work of this latter team (e.g., ESS Sampling Guidelines, 2017).

This effect can be estimated finally in the proper survey analysis when the data
and all the required design variables are available (see Chap. 14). An attempt should
have been made, however, to predict or anticipate this effect as much as possible
when designing and implementing the sampling. This chapter focusses on
explaining the core instruments for this anticipation. First, the key terms are
presented.
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The general formula for the design effect, symbolized by DEFF, is as follows:

DEFF ¼ var Sð Þ=var SRSð Þ
where

• var(S) ¼ the variance estimate of the particular sampling design S, and
• var(SRS) ¼ the variance estimate of the simple random design, or another

reference design

Both variances are estimated from the same data, and thus var(S) is based on the real
survey but necessarily var(SRS) is not. The latter is used as a reference, giving
information about how different the real variance is from that of the SRS design.
In practice, the latter variance, as well as the respective confidence intervals, is
calculated here without taking the sampling design into account. This bias can be
found in real life if everything is calculated as simply as possible. Unfortunately, this
is often the case.

The effect DEFF is therefore a relative ratio. If it is greater than one, then the
design S is less efficient than the SRS design; otherwise, it is more efficient. The
DEFF is thus quadratic. If one wishes to compare the standard errors, the square root
is needed. This is called DEFT, which stands for the square root of DEFF.

The DEFF varies with estimates that basically can be easily calculated in the
survey analysis, and thus each point estimate may have somewhat fluctuating
variance estimates or standard errors. There is therefore a need to find a compromise
between all the survey estimates for anticipating the DEFF in order to choose the
gross sample size. This also can be done for each stratum separately, but if too many
factors are considered, the work will be demanding, and the anticipations may fail.

Thus, we present the general lines for anticipating DEFF for the whole population
only, not for subpopulations. It is a good idea to divide the design effect in sampling
design into the two components:

• DEFF because of clustering ¼ DEFFc
• DEFF because of varying inclusion probabilities (consequently, attributable to

weights) ¼ DEFFp

The product of these is the whole design effect:

DEFF ¼ DEFFc∗DEFFp

Next, we explain how each of these components is anticipated for the sampling
design.
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5.1 DEFF Because of Clustering, DEFFc

To introduce this, we use two scatter plots from the 2012 PISA (Fig. 5.1). On the x-
axis is the mean of the success score for problem solving, and on the y-axis is the
standard deviation of this score. The plots are the PISA sample schools, and the
scales of the two graphs are equal so that they can be more easily compared.

The German scatter plot is much more stacked than the Finnish one. Figure 5.2 is
taken from the test dataset (see Sect. 6.2), which is a partially artificial ESS data file.
Now stratum 2 is more stacked than stratum 1, which slightly resembles the scatter in
the Finnish PISA. These scatters illustrate some features of clusters; in particular, the
x-axis shows the variation of the means of the clusters. Still, it is good to go forward
and to implement indicators for homogeneity. This requires specifying a linear-
mixed model and then estimating the intraclass correlation.

Fig. 5.2 Scatter plots between average ‘Happiness’ and standard deviation of ‘Happiness’ in
stratum 1 (left) and stratum 2 (right). Plots are primary sampling units ¼ small areas

Fig. 5.1 Scatter plots between average scores for problem solving and their standard deviations in
the PISA—Germany (left) and Finland (right). Plots are primary sampling units ¼ PISA schools
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" Remark The number of possible references for linear-mixed models is so
vast that it is impossible to mention a fair list of the good ones, so we do
not mention any references. On the other hand, there are many software
packages available, including R, SAS, SPSS, and MATLAB. It is relatively
easy to estimate the intraclass correlation in an ordinary survey case with
any of this software.

The intraclass correlation, rho (sometimes known as ICC) can be estimated
using a linear-mixed model. It is possible to estimate this conditionally so that
explanatory variables are included in the model, but the basic specification is enough
to estimate the ordinary rho. In this case, the model is without any explanatory
variable, and its form is:

yij ¼ μþ α j þ εij

Here yij is the variable with a rho that is being estimated (i ¼ individual and
j¼ cluster), μ is an unobserved overall mean or intercept, αj is the random effect shared
by all values in cluster j, and εij is an unobserved error term. The αj and εij are assumed
to be normally distributed (mean¼ 0, variance¼ σ2), and they are uncorrelated. When
the model is estimated, we are especially interested in two variance estimates:

• s2α ¼ the cluster variance.
• s2ε ¼ the residual variance

The cluster variance indicates how much the cluster means vary (conditional to
the mixed model) and can be found from the graphs. The residual variance reveals
how much of the variation is not explained by this clustering when the clusters are
used as random effects. Note that it is best to use the analysis weights when
estimating the linear-mixed model.

The intraclass correlation is now:

rho ¼ s2α= s2α þ s2ε
� �

The numerator indicates the variation in cluster means, and the denominator is the
sum of the explained and unexplained variations, thus a total variance. The rho is a
kind of homogeneity indicator for clusters. If the clusters are equal in their means,
rho is zero, indicating that the clusters are similar in their means but that there might
be some variation within clusters.

The minimum of rho is zero and the maximum is one. In real life, rho is often
close to the minimum, and fairly far from the maximum. Table 5.1 gives these values
in the case of the two scatter plots.

The graphs already show clearer clusters for the PISA data on problem solving
than for the ESS data on happiness. The scales of both graphs are equal, which
facilitates interpretation. The intraclass correlations give the numerical indicators for
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the homogeneity or lack of homogeneity. The differences between these rho’s are
huge. The largest rho is for the German PISA data, clearly implying that the
differences between schools for problem solving are substantial, especially when
German schools are compared with Finnish schools. On the other hand, the rho’s in
the ESS between small area PSUs are much smaller. The variable ‘Happiness’
usually shows very little clustering within small areas. Stratum 1 is fairly ordinary
for the ESS but stratum 2 is atypical because the highest intraclass correlations at the
country level are at about this same level. Some examples are given in Table 5.2.
This table also includes the design effects because of clustering, which are estimated
approximately using Kish’s formula:

DEFFc ¼ 1þ b� 1ð Þ rho where b ¼ average net cluster size

Intraclass correlation is therefore important in sampling when the PSUs are
clusters. If the PSU is a single unit, such as a person or an enterprise, one does not
need to worry about intraclass correlation because its value is equal to zero.
Intraclass correlation may still be used for examining the interviewer effect, for
example. Here, the interviewers form the ‘class’; it is not good if the rho is high
because this means that the interviewers are not doing their work with sufficient
objectively or consistently. If clusters are used in the sampling design, the design
effect must avoidably be considered. This is seen in the standard error, which in most
cases increases because the DEFFc is greater than one. On the other hand, intraclass
correlation also can be used in a special analysis if one wishes to estimate how
certain groups or clusters are stacked together.

Table 5.2 Intraclass correlations and the DEFFs because of clustering for some variables in the
ESS countries in Round 5, for the two-stage cluster design

Variable Rho DEFFc

Robbery rate 0.0294 1.43

Robbery fear 0.0198 1.29

Opinion: mothers should stay at home more, not go to work 0.0287 1.42

Opinion: talented students should be rewarded more 0.0028 1.04

Happiness 0.0005 1.01

Table 5.1 Intraclass correlations in the cases of Figs. 5.1 and 5.2

Variable Intraclass correlation

PISA problem solving for Germany 0.617

PISA problem solving for Finland 0.141

Happiness of stratum 1 in the test data 0.006

Happiness of stratum 2 in the test data 0.050
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5.2 DEFF Because of Varying Inclusion Probabilities, DEFFp

The variability in sampling weights has an influence on standard errors. From this
point of view, simple random sampling without unit non-responses is an ideal survey,
but it is not really possible to achieve this. If two or more stages are used, it is difficult
to achieve equal weights even for the design stage and thus for the gross sample. It is
possible that the weights will vary more after the fieldwork, but if anticipation of unit
non-responses is accurate, it is possible that the final DEFF will be decreased.

In the sampling stage, it is reasonable to anticipate the DEFFp using the expected
weights in this approximating formula:

DEFFp ¼ 1þ cv wð Þ2

where cv(w) is the coefficient of variation of the weight, w. The first approximation
of w could be the gross sample design weight based on the inclusion probabilities
anticipated in advance or using the weight of the reference survey that is based on the
same sample principles.

Still, it is better to anticipate by using the basic weights with the best realized
response rates. Unless any assumptions about response rates can be made, this DEFFp
is equal to the first version. Anticipation by explicit strata response rates can be
considered at this stage but is not often used—for example, it is not used in the ESS.

Examples 5.1 and 5.2 illustrate the values of these design effects. The weights of
the respondents for the test data do not vary much (see Example 5.1). The differences
between the countries in Example 5.2 are rather large, but the median is about 1.2. If
the DEFFp is much larger than this threshold, the design is unusual and far from
being proportional. Even so, Slovakia is an outlier, so the design cannot be entirely
trusted (i.e., the design and the inclusion probabilities should be checked). The
United Kingdom’s DEFFp is not low but can be trusted because it arises from the
UK’s three-stage design, in which the second stage in fact includes three stages (i.e.,
address, dwelling, and household) after PSU selection. Some designs are very
proportional but do not include more than two stages.

Example 5.1 Design Effects Because of Unequal Weights in the Test Data, by
Eight Strata

Stratum Respondents Coeff. of variation DEFFp

1 1080 0.394 1.155

2 493 0.411 1.169

3 228 0.369 1.136

4 68 0.400 1.160

5 44 0.394 1.155

6 74 0.389 1.151

7 133 0.349 1.122

8 58 0.372 1.138
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Example 5.2 Design Effects Because of Unequal Weights Based on the Design
Weights in Some Countries of the ESS, Round 6; Countries with Simple Random
Sampling Are Not Included Because Their DEFFp Is Equal to One

Country DEFFp Country DEFFp

Hungary 1.003 Ukraine 1.228

Spain 1.011 France 1.230

Poland 1.019 Ireland 1.237

Iceland 1.031 Czech Republic 1.266

Israel 1.035 United Kingdom 1.271

Germany 1.109 Lithuania 1.333

Bulgaria 1.170 Russia 1.336

Cyprus 1.201 Portugal 1.375

Netherlands 1.207 Slovakia 1.921

5.3 The Entire Design Effect: DEFF and Gross Sample Size

The whole DEFF is thus the product of the two DEFFs we have looked previously. It
is used when deciding on the gross sample size. In addition, one must consider two
other components: (1) the anticipated ineligibility rate and (2) the anticipated unit
non-response rate.

The concept of ‘effective’ sample size (neff) is useful for benchmarking these
components—that is, assessing how great their impact might be on the variance
estimates (i.e., the squares of the standard errors). It would be possible to consider a
fifth factor, ‘stratification’, as well, but this is not done by the ESS. There are two
reasons for this:

• It is not easy to do because all anticipations should be made at the stratum level
• Its impact is not usually great (one example is shown later in this chapter).

The neff corresponds to the sample size for which the micro data of the respondents
could give the same accuracy as the simple random design (SRS). Thus, if the net
sample data really can be interpreted to be drawn from a target population with SRS,
we do not even need sampling weights to get appropriate accuracy estimates.

Unfortunately, this is not the case in real life, but it is still good to compare the
data that have been obtained with the SRS data. Thus, no estimate can be calculated
based on an SRS design in real life. It is good to illustrate this, as shown next, using
the SRS standard error of the mean:
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stderr ¼ sqrt

P
rs

2

r

� �
ð5:1Þ

Here s2 is the ordinary sample variance and the data consists of the r respondents.
This formula holds true in the case of an SRS design with the MCAR missingness
mechanism.

At the beginning of this chapter, we learned that the DEFF is determined with
variances. Formula (5.1) in turn shows that the numbers of the sample units and the
respondents have the same dimension. Thus, both DEFF components can be used in
a straightforward manner when determining the gross sample size in Table 5.3. In
addition to the anticipation of the two DEFFs, ineligibility and unit non-response
rates need to be anticipated. None of these anticipations is easy, but if another similar
survey (reference survey) is available, this may be a great help. Nevertheless, we
cannot know in advance exactly how satisfactory our estimates will be.

5.4 How Should the Sample Size Be Decided, and How Should
the Gross Sample Be Allocated into Strata?

The effective target sample size has been determined in Table 5.3, which
corresponds to the minimum requirements of the ESS. This decision was based on
many criteria. One criterion is that the accuracy of each country estimate is about the
same. This gives good opportunities for comparing the results between countries.
Because the minimum number of respondents required is 1500, appropriate

Table 5.3 Sampling design summary for determining gross sample size if the desired effective
target sampling size is 1500

Operation
Example calculation (average-based, figures
may vary by stratum or another domain)

1. Target for the effective sample size (neff) 1500

2. Anticipated missingness because of
ineligibility (7%)

1500/0.93 ¼ 1613

3. Anticipated missingness because of unit
non-responses (35%)

1613/0.65 ¼ 2481

4. Anticipated design effect because of clustering
(DEFFc), including the anticipated intraclass
correlation (¼ 0.025); if the average gross cluster
size is 8, then the average net cluster size is
8 � 0.93 � 0.65 ¼ 4.83

DEFFc ¼ 1 + (4.83 � 1)*.025 ¼ 1.096
2481 * 1.096 ¼ 2719

5. Anticipated design effect because of varying
inclusion probabilities (DEFFp)—calculated for
the anticipated respondents if possible

DEFFp ¼ 1.2
2719*1.2 ¼ 3263

6. Anticipated and, it is hoped, realised minimum
gross sample size
Anticipated net sample size

3263
1973 ¼ 3263 * 0.65 * 0.93
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estimates between many population groups or domains are possible, but then again
these might be limited if the number of the respondents is not reasonably large.

The ESS is a general social survey without any specific target at the domain (i.e.,
subpopulation) level. If a survey has such a target, the best solution is to use
stratification and to allocate a target for each stratum so that the accuracy target is
achieved. This can be called minimum allocation; the other strata sizes can be
allocated flexibly. The following are other common allocation methods:

• Proportional allocation, which therefore has been recommended for the ESS
since Round 6. This does not allow the anticipated response rates to be consid-
ered. Still, such anticipation is usual in many other surveys. For example, it was
anticipated in the Finnish Security Survey (Laaksonen & Heiskanen, 2014) that
younger people and males would participate relatively poorly, while the target
was to get precise estimates for these domains too. The sampling fraction was
therefore higher for younger people and males. This anticipation was correct, so
the results were satisfactory. Similarly, a relatively high sampling fraction may be
used in urban areas, and a lower fraction in rural areas; such examples are very
common, including the Polish ESS until Round 7.

• Equal allocation, in which case the neff of each stratum is equal; the ESS
requirement by country therefore corresponds to this method of allocation.

• Neyman-Tschuprow (often called only Neyman) allocation in which the gross
sample size (or neff) nh of each stratum h is obtained with the following formula,
which can be converted to the net sample if the anticipated net sample sizes are
available:

nh ¼ n
NnSn
NhSh

: ð5:2Þ

Here n is the desired sample size of the whole sample, nh is the respective gross
sample size of stratum h, Nh is the size of the target population in stratum h, and Sh is
the anticipated standard deviation of the study variable, y. This standard deviation
can be taken from a similar previous survey, or it may be a proxy variable that is
clearly correlated with the survey variable y. Naturally, a big problem is that most
surveys have several y variables of interest. Thus, some type of compromise is
needed.

Discussion on Minimum Sample Size
If a user knows his or her accuracy requirement concerning the standard error and/or the confidence
interval, and if reasonable information about the expected variation exists, it is not difficult to
calculate the required sample size in the case of simple random sampling. This follows from
Formula (5.1) if the target population is large, say more than 10,000. If the population is small, a
finite population correction term ¼ (N�n)/N needs to be included. Basic arithmetic now gives the
required gross sample size in the case in which there is no missingness. Next, unit non-response and
ineligibility must be anticipated in the best way possible, and then the fieldwork should function
effectively to achieve these targets.
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Nevertheless, it is difficult to anticipate the dissimilarity of the survey variables because this
number might be huge (e.g., lying in the hundreds). The variation thus differs from one estimate to
the next. Because the sample size still needs to be decided, it is good to think more practically. For
example, if any estimates by domains are not needed, this suggests that one can be satisfied with a
smaller sample size, which is rarely the case. The estimates usually are desired by gender and/or age
group, and/or education, and/or region, for example. This means that each such category should
have enough respondents. As a result, the overall sample size required increases.

It often is asked what the minimum required number of respondents really is in any domain
category. This cannot be properly answered, but this author has heard the number 30 as a rule of
thumb. If using this number, you will be responsible for the results. This means that if there are
10 domain categories in a small-scale survey used for estimation, then the sample size could be
300 respondents. If the missingness rate is 50%, the minimum gross sample size would be 600. This
number was the minimum at the municipality level in the Southern Finland Grid-based Survey
(Laaksonen et al., 2015).

Design effects will be considered to some extent in all the future chapters,
particularly in Chap. 14—the analysis chapter. The present chapter ends with an
example that illustrates the different components of the DEFF in the context of PISA.
The example also includes stratification.

Example 5.3 Components of the Design Effect for the Variable ‘Plausible Value
of Science Literacy’ in PISA, 2015
This example is calculated from the final micro data of the 2015 PISA. The
two missingness DEFF components (i.e., ineligibility and unit non-response)
therefore cannot be included, but, on the other hand, we have included
stratification.

Table 5.4 includes the averages of the science literacy scores, with four
alternative options and all the methods together:

• SRS ¼ without any survey instruments, thus assuming that the sample is
drawn by simple random sampling, and the respondents were selected
accordingly

• Stratum ¼ only stratification has been considered, no weights or clusters
• Cluster ¼ only school clusters have been included
• Weight ¼ only student weights are included
• All ¼ all instruments (i.e., strata, clusters, and weights) are included in the

analysis; therefore, the results are the best ones

The means of the results do not vary much. The reason is that the sampling
is not far from being proportional in these countries. The standard errors vary
more. As can be seen, this is largely because of clustering. Using design
effects, DEFFs, it is easier to see the effects. This is shown in the second
table, Table 5.5.
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The design effect is the ratio of the two variances, so the denominator is the
variance of simple random sampling. The variance is the square of the standard error.
The DEFFs of Table 5.5 thus are calculated from the standard errors of Table 5.4.
This ensures that the DEFFs are correct, which is not necessarily true with all
software. Now, we can see from the first column that the number of strata for
Germany is one, which automatically gives the stratum DEFF¼ 1. In fact, Germany
used several strata, but the data are not available in the public dataset. Thus, it is not
possible to calculate the perfect DEFF in Germany; it would be expected that its
overall DEFF is somewhat too large. This is because stratification most often reduces
the DEFF, and it improves the accuracy, as occurs for all the other countries shown
in Table 5.5. This is just one reason to use explicit stratification and to construct the
strata so that they are more homogeneous than the full data without stratification.

Now, we can see clearly that the DEFFs because of clustering are the highest,
particularly in Japan and Germany. By contrast, the Finnish DEFF because of
clustering is relatively low. See Fig. 5.1 and Table 5.1, which show the same thing
for Germany and Finland. This also indicates how large the differences are between
schools in these countries. The DEFF because of unequal weights is highest for
Russia. This means that the weights vary more than in the other countries listed in the
table. The variation of weights depends on both the varying inclusion probabilities
and the weighting adjustments; however, we do not go into detail about them.

To clarify the cluster effect with intraclass correlation, we present Table 5.6. This
table tells quite a similar story to that shown in the DEFF Cluster column of

Table 5.6 Intraclass
correlations for the same
countries as in Tables 5.4
and 5.5 for plausible values
of science literacy of the
2015 PISA

Country Intraclass correlation

Finland 0.095

Sweden 0.177

Estonia 0.207

United States 0.210

Russia 0.240

Korea 0.272

Japan 0.483

Germany 0.510

Table 5.5 Design effects calculated from the standard errors of Table 5.4 for plausible values of
science literacy in the 2015 PISA—Countries sorted by last column

Number of strata DEFF stratum DEFF cluster DEFF weight DEFF all

Finland 10 0.99 3.95 1.07 4.05

Sweden 7 0.97 5.80 1.11 5.56

Estonia 3 0.94 7.74 1.19 6.08

Korea 4 0.90 9.66 1.03 6.58

Russia 42 0.92 8.47 1.24 6.94

USA 9 0.99 7.92 1.16 8.65

Germany 1 1.00 12.62 1.08 13.24

Japan 4 0.96 16.46 1.03 16.09
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Table 5.5, but the order of the countries is not the same. The intraclass correlations
are much higher here than when the clusters are small areas, as in the ESS, for
example.
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Sampling Design Data File 6

Designs in nature

The term ‘sampling design (data) file’ is not commonly used in survey sampling
literature. The methodology behind it is used, but only implicitly. An exception is in
the ESS sampling (ESS Sampling Guidelines, 2017) in which it was implemented
for the first time in 2002. This chapter makes use of this experience, which has been
described at a more general level by Laaksonen (2015).

The explicit determination of the sampling design file facilitates many things in
survey practice, and also gives a clear target for the two major parts of a survey—that
is, sampling and fieldwork.
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6.1 Principles of the Sampling Design Data File

The sampling design data file (SDDF) consists of all the gross sample units, and its
variables include those that allow the creation of sampling weights and the analysis
of survey quality. It is possible to complete the file after the fieldwork. Its most
important characteristics, including sampling design variables and weights, ulti-
mately will be merged with the real survey variables at the respondent level, then
one is ready to start the survey analysis. Scheme 6.1 explains this situation.

This scheme focusses on the survey weights of the respondents, which are created
from the sampling design file. We have already considered the basic weights in
Chap. 4. Chapter 8 continues by considering more advanced weights. The input of
all the survey weights is the sampling design data file. Scheme 6.1 does not include
all the important variables that can be taken from the SDDF at the same time as the
weights are merged with the survey’s plain variables. These variables, and others,
could be considered for merging:

• Other survey instrument variables, such as the codes of the strata and PSU
clusters; if the data will be made public, these codes should be anonymous in
the public file.

• If a particular SDDF variable is not included in the survey questionnaire, it can be
used in the survey analysis; examples are gender, age, geographical variable,
education, dwelling composition, housing characteristics.

Scheme 6.1 The role of the SDDF in obtaining the survey data used in the analysis
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The following is a list of the variables that should or could be included in the
sampling design file, together with good meta data:

1. Include probabilities for each stage.
2. Other variables directly related to the sampling design (the PSU, which can be a

cluster or an individual, explicit stratum, implicit stratum).
3. Outcome of the survey fieldwork (e.g., respondent, ineligible, non-respondent).
4. Macro auxiliary variables, statistics for the small area levels such as PSU,

stratum, or grid square, statistics (e.g., population by gender or by age group or
by degree of education).

5. Macro auxiliary variables—for example, rates for small areas like those listed in
point 4: percentage divorced, percentage of undercrowding, percentage with 2 or
more cars, percentage of owner occupation, percemtage of unemployed, percent-
age of long-term unemployed, percentage involved in social renting, percentage
of highly educated.

6. Micro auxiliary variables for individuals and their groups, such as gender, age,
degree of education, regional or areal codes, language, ethnic or other back-
ground, dwelling size, number of children, civil status, employment status,
register income group (see also Sect. 2.5).

The auxiliary variables described in (4), (5), and (6) have the following roles:

• Quality analysis of the survey data themselves
• Quality analysis of the data-collection process
• Identification of reasons for non-responses and ineligibility
• Computation of ineligibility rate ¼ number of ineligibles/gross sample size
• Computation of response rates ¼ number of respondents/(gross sample size �

ineligibles)
• Use of the data for weighting and reweighting
• Use of the data for checking and other editing
• Use of the data for imputations

We look at the details of these methodologies in the remaining chapters. At the end
of this chapter we comment on the test sampling design data.
The minimum requirements are satisfied for the test file, SDDF because there are
three inclusion probabilities, even though the probabilities are equal to one for the
SRS domain (i.e., for strata 3–8). The file therefore gives the opportunity to calculate
the final inclusion probabilities and the weights at the same time. Note, of course,
that the stratum variable is needed as well.

The second minimum requirement is the fieldwork outcome variable, OUT-
COME, which indicates those respondents whose weights are needed when two
files are merged. The test SDDF includes a good number of micro auxiliary
variables. Their quality and number are better than in ordinary surveys.

The file is without macro auxiliary variables, but the most important population
figures by strata can be estimated via inclusion probabilities, as described in Chap. 4.
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If the file does not include any other auxiliary variables, the advanced weights cannot
be created. Thus, the basic weights are then the only weights that can be used.
Therefore, these are correct if missingness is ignorable, or if the missingness
mechanism is MARS (see Chap. 4); however, this rarely occurs in real life.

The test file is partially artificial, but it corresponds well to an ordinary ESS
country file. Its auxiliary variables usually are derived from the proper survey, but
most of them can be found from good registers or other administrative records, in
particular. Among others, the following registers—the number of which is grow-
ing—can be used in the so-called register countries:

• Central population registers, which are the main source for the sampling variables
but also include many personal, dwelling, and housing variables

• Employment registers
• Job seekers registers
• Formal education registers, which includes those who have been educated in the

country
• Tax registers, which include income variables, although there are some

constraints on their use for reasons of confidentiality

6.2 Test Data Used in Several Examples in this Book

This micro data file was created from the micro file of Round 6 of the European
Social Survey (ESS). Its purpose is to illustrate an average country in this round
based on several aspects:

• The target population size is 19.9 million
• The response rate is 51.6%
• The ineligibility rate is 8.3%

The sampling follows a stratified two-domain design so that the design for six urban
strata is simple random sampling (target population 9.7 million); however, the
design for the two rural areas is three-stage cluster sampling (target population
10.2 million). These two designs are the most common in the ESS, and some
countries are even using a stratified two-domain design like this. We use the term
‘test file’ in the examples.
The pattern for the auxiliary variables is better than in any ESS country. Table 6.1
gives the list of the variables in the test file. These include sampling design variables
and fieldwork outcomes that are mandatory, as well as a good number of micro and
macro auxiliary variables that are used for reweighting, in particular (see Chap. 8). It
is beneficial to recognize that the second- and third-stage inclusion probabilities are
equal to one in the simple random sampling (SRS) domain. The sum of all
margins ¼ 19,906,273, which is the target population size (see Table 6.2).
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Table 6.3 illustrates the test file further, and we have included 20 random
observations from the file. That is, the variables needed for calculating the sampling
weights and the identifier needed to merge the respondents with the plain data.
Some, but not all, of the auxiliary variables to be used for missingness analysis and
for adjusted weights also are here.

Table 6.1 The micro variables of the SDDF of the test file

Variable Label Categories

IDNO Respondent’s identification number Unique

PROB1 Inclusion probabilitya for the first sampling stage
(small area)

Continuous

PROB2b Inclusion probability for the second sampling stage
(dwelling)

Continuous

PROB3c Inclusion probability for the third sampling stage
(individual aged over 15)

Continuous

age Age of sampled individual

citizen Domestic versus other citizenship 2

common_law_marriage Common law marriage 2

education Education level 6

gndr Gender of sampled individual 2

hinctnta Household’s total net income, all sources 10

maritalb Legal marital status, post-coded

member15 Household members below age 15 Count

members15Plus Household members aged over 15

outcome Fieldwork outcome (1 ¼ respondent, 2 ¼ non-
respondent, 3 ¼ ineligible)

3

PSU Primary sampling unit

stratum Explicit strata 8

agegroup 15–29, 30–44, 45–59, 60–74, 75+ 5
aInclusion probabilities: PROB1 ¼ PPS without replacement
bPROB2 ¼ simple random sampling in cluster domain; PROB2 ¼ 1 in SRS domain
cPROB3 ¼ simple random sampling in cluster domain; PROB3 ¼ 1 in SRS domain

Table 6.2 The macro
auxiliary variables
(calibration margins) of the
test file

Macro variable Number of categories

Stratum 8

Gender 2

Age group 5

Education 6 education levels

Income 10 deciles
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Missingness, Its Reasons and Treatment 7

This reason is not common in surveys

We have described many things relating to missing values in the previous chapters
but have not described them precisely. The focus of this chapter is how to deal with
missing values. The outcomes of this are then used in the remaining chapters,
particularly as they concern reweighting, imputation, and survey analysis. It there-
fore would be good to come back and look at this chapter if something is not clear
when one is reading the later chapters. The examples here are mainly taken from the
ESS, which includes missingness information. They thus have been calculated from
the fieldwork data available. Other considerations and examples can be found in
many sources and often in conference papers. We do not give many references,
nonetheless it is good, for example, to compare the two ESSs (the European
Statistical System, abbreviated to ESS). Stoop (2017) makes a useful comparison
between the two. Gideon (2012) is also a good book to read, particularly the chapter
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by Stoop and Harrison (2012). Koch, Halbherr, Stoop, and Kappelhof (2004) focus
on quality comparisons.

The methodologies for handling unit non-responses and item non-responses do
not differ much from each other, but there may be substantial differences in what one
should do after applying them. Thus, the analysis itself, in both cases, should be done
roughly as set out in the following:

1. Investigate the reasons for missing values.
2. Create indicator variables for unit responses or item responses.
3. Calculate all the missingness rates, by reasons and by domains (background

variables).
4. Report and interpret the results and publish the main findings of them.
5. Try to do everything better, if possible, in the next survey.

Nevertheless, there are many differences in the details, as described in Scheme 7.1.

Scheme 7.1 General framework for the reasons for non-responses and how to handle them
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7.1 Reasons for Unit Non-response

It is difficult to know the real reason for non-responses or ineligibility in self-
administered surveys (web or mail), but it should be possible to determine the reason
in interviewing surveys. Naturally, the codes can show more or less detail. If a gross
sample unit cannot be contacted directly or a proxy interviewee is used, it might be
difficult to know whether the unit is a non-respondent or is ineligible. The ESS can
code unit missingness with three possible codes, as shown in Table 7.1. The main
part of this table is from the third round when the response rates were higher than in
the later rounds. This latter point can be found from the table’s last column, which
includes the response rate of a later round (i.e., either Round 6 or 7).

The response rates have declined in most of the countries that have participated in
the survey (e.g., Estonia, Sweden, Slovenia, Ukraine, the United Kingdom,
Germany, and Poland). This is an unfortunate tendency. Luckily, the rate has
increased in a few countries (e.g., Spain, Switzerland, and France).

Table 7.1 Response rates and reasons for unit non-responses in some countries of ESS, Round 3

Ineligibility
rate (%)

Response
rate (%)

Noncontact
rate (%)

Refusal
rate (%)

Response rate in a
later round

Austria 1.7 62.5 7.8 28.6 51.9

Belgium 4.9 61.5 7.1 22.7 57.4

Denmark 6.4 65.1 5.6 23.9 51.9

Finland 1.5 70.8 2.8 21.2 62.9

France 7.1 44.2 12.1 39.5 51.6

Germany 7.2 52.7 6.2 27.4 31.4

Hungary 13.5 70.3 6.0 16.0 64.2

Ireland 8.1 62.5 9.5 22.3 60.7

Netherlands 3.0 64.5 2.7 28.0 58.6

Norway 3.4 66.2 2.1 25.5 54.3

Poland 3.8 74.4 2.3 18.2 66.0

Portugal 6.4 70.9 2.8 20.0 77.1

Slovenia 6.7 70.2 10.2 15.3 52.3

Spain 7.8 56.1 13.6 18.6 70.8

Sweden 2.3 66.5 4.3 22.6 50.5

Switzerland 6.5 47.1 2.9 39.7 52.7

United
Kingdom

7.9 51.1 8.0 34.0 40.3

Estonia 12.7 79.5 5.1 11.4 60.0

Slovakia 4.6 63.4 1.6 21.6 74.1

Ukraine 0 66.6 6.3 16.1 59.1
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7.2 Coding of Item Non-responses

It is not easy to know the reason for item non-responses in a self-administered
survey, but it is quite easy if alternative reasons for non-responses are given as a
category in the questionnaire. These alternatives should not be ‘too easily’ used. This
is therefore a big issue in all survey questionnaires. This chapter does not address this
problem, but it does discuss alternative codings. The list in Table 7.2 includes most
of the commonly used alternatives, and two types of code for each. The negative
codes are easier to recognize, but they are rarely used. Most of the positive codes
given are the same as those used in the European Social Survey.

It is not good to include some of these codes in the questionnaire, thus they are
given by the interviewer. She or he can include more codes too, as well as use textual
coding that can later be coded in another way.

In what follows we are not concerned about the reasons for non-responses, but
consider each missing value as belonging to just one category. This also includes
completely empty cells.

7.3 Missingness Indicator and Missingness Rate

In the case of unit missingness, two missingness indicators can be created:

1. The non-response indicator, which takes the value 0 if the unit responds and the
value 1 if the unit does not respond but belongs to the target population.

2. The ineligibility indicator, which takes the value 1 if the unit is ineligible, and the
value 0 if the unit responds or does not respond.

These indicators can be considered as complements of each other in most cases,
swapping the values 1 and 0. The first indicator is called the (unit) response
indicator. The same label is sometimes given to the second case, where the zero
category covers both the non-respondents and the ineligible units. This is the only
option if there are difficulties in distinguishing between these two alternatives, which
occurs if the unit cannot be contacted at all.

Table 7.2 Possible codes for item non-responses

Reason Positive code Negative code

Respondent refused to answer 7 or 77 or 777 �1

Don’t know 8 or 88 or 888 or 8888 �2

No answer 9 or 99 or 999 �3

Missing for other reasons 6 or 66 or 666 �4

Respondent not able to give a correct answer 5 or 55 �5

Question does not concern the respondent 3 or 33 �6

Not possible, or does not exist, or not applicable 6666 �9
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In the case of item missingness, only one type of indicator is needed, although this
might be determined from either the positive or the negative direction. We present it
from the positive direction here.

3. The item response indicator, which takes the value 1 if a valid answer to the
question y is obtained, and the value 0 if the respondent does not give a valid
answer. Note that this indicator concerns only the unit respondents. It means that
the complete missingness indicators are a sort of sum of both indicators.

These missingness indicators can be used when calculating the missingness or
response rates, respectively. The most important rate is the average of the indicator,
which indicates the relative frequency of either missingness or response. These rates
can be calculated from the background variables that have no missingness or only
minor missingness.

Figure 7.1 is an example of item non-responses for 20 ESS countries (Round 7).
The variable is ‘Household’s total net income, all sources’. The item non-response
for this variable is relatively high, which is the reason for presenting this example.
Country differences are fairly clear as well. The item response rate varies from 71%
in Hungary to 95% in Norway. The rate has usually, but not always, grown from
round to round.

Before proceeding to other examples, we present a general framework for
analyzing missingness, whether this concerns items or units, in Scheme 7.2. The
main objectives of this framework are:
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1. To understand the missingness of a survey
2. To learn from this about missingness for future surveys
3. To exploit the missingness information for post-survey adjustments of this survey

For more detail, see Chap. 8 for unit non-response and Chap. 12 for item
non-response.

We now concentrate on response indicators because they are more easily used in
the next steps. Thus, we take the response indicator and calculate its averages for
some auxiliary variables. First, the response rates for two test data domains are
presented, SRS and Cluster, in Table 7.3. The response rate of the three-stage cluster
design data is higher than that of the simple random design. Both rates are fairly low,
but lower rates are found when calculating the rates by auxiliary categories. We do
not present separate figures by domain but only figures for the whole dataset. These
results are shown in the graphs in Fig. 7.2.

The unit response rates vary fairly substantially by both education and age group,
but vary less by marital status. Note that the counts of some categories of marital
status are small, particularly the count for registered civil unions. The rates for
education are fairly similar to those in many other surveys: those with little education
are often the worst respondents, whereas the highly educated are the best. We give
another example in Fig. 7.3 based on a real survey in which the categories are about
the same as in Fig. 7.2. This figure clearly illustrates how the rates vary by survey
mode, with the highest differences being when using the web mode.

Scheme 7.2 A framework for analyzing missingness

Table 7.3 Unit response
rates by domains in the
test data

Domain Observations Mean (%)

Cluster 3176 49.5

SRS 1422 42.5
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7.4 Response Propensity Models

A response propensity model is usually a binary regression model in which the link
function is a logit, probit, log–log, or complementary log–log function. Refer to the
graphs in Fig. 7.4.

Another alternative is to build a classification tree model with similar variables,
but we do not go into detail here about this model. Instead, we describe and apply
response propensity models with the two most common links—that is, the logit and
probit functions. These can be implemented in the same way as any other statistical
model, trying to find the best explanatory variables for the response indicator, both
additively and with interactions. The first purpose is to obtain the model that best
illustrates which variables explain the response behaviour. The second purpose is to
predict the probabilities as effectively as possible; these predictions are then utilized
in both reweighting (Chap. 8) and imputation (Chap. 12).

Figure 7.4 does not include the log–log function, which is the mirror curve to the
Cloglog function. Logit and probit are symmetric, whereas the other two are
asymmetric. A linear function may give unacceptable estimated probabilities (i.e.,
probabilities that are negative or greater than one). We find the curves to be fairly
linear within the interval (0.3, 0.7), but far from linear at the margins. Thus, the linear
function does not work at all in the marginal areas (i.e., where the probabilities are
small or large).

The estimates of the response propensity model can be interpreted in the usual
way, but it is also good to calculate the estimated response probabilities, which are
also called the response propensities or the propensities or the propensity scores. We
begin to illustrate these models and scores using two examples, one for item
response (Example 7.1) and the other for unit response (Example 7.2). Both
examples continue from previous examples.
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Fig. 7.3 Unit response rates by education and survey modes in the Finnish Security Survey
(Laaksonen & Heiskanen, 2014)
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Example 7.1 Propensity Model for Item Response
This example uses the same ESS data as shown in Fig. 7.1, which gives the
response rates for 20 countries for income. We move forward by estimating a
logit regression for this response indicator, choosing the number of explana-
tory variables in the model. The best variables are those without missing
values. There are not many of these, but, in addition to country, the following
can be used:

– Age
– Gender
– Household size
– Interviewing time

On the other hand, it is also possible to test variables with missingness that
is minor. We find these three variables:

– Happiness (item non-response rate ¼ 0.3%)
– Marital status (1.0%)
– Subjective income—feeling about household’s income nowadays (0.9%)

(continued)
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Example 7.1 (continued)
If all three variables are included in the model, we lose 2% of the observations.
Thus, we can analyze the item response for ‘Objective’ income more or less
completely.

The estimation of the model indicates that only one explanatory variable is
not significant. This is ‘Subjective income’. It means that the item
non-responses for it does not depend on Subjective income. We use this
information in the example in Chap. 11 (see ‘Aggregate imputation’ in Sect.
11.4, including Table 11.1 and Fig. 11.1).

By contrast, the other explanatory variables are significant. We do not
present all the details of this result, but some of the main ones are as follows:

– Males were able to communicate the income of their households better than
females (odds ratio ¼ 1.12)

– Those in the middle age groups gave their income much more often than
those in the oldest and youngest age groups

– When the household size increases, item non-responses decline
– It was most difficult to get a response on income from those in the ‘Never

married’ group, but the differences between the marital status groups are
not large

– Happiness and Interviewing time are positively related to the responses on
income

Example 7.2 Response Propensity Probit Model of the Finnish Security Survey
This second example is for unit response. It comes from the Finnish Security
Survey, which includes a good number of auxiliary variables from two
registers—the central population register and the formal education register.
Figure 7.3 includes the response rates by formal education for the three survey
modes. We do not present the respective estimates from the multivariate
model: They are not exactly the same, but neither are they significantly
different. We also do not present the regional estimates because these are not
interesting for outsiders. Table 7.4 does not include age, either, but these probit
estimates are given in a separate graph in Fig. 7.5. This is more illustrative than
the four age estimates only. We use the four age variables, age itself, and three
of its powers in the model. One can see what this means graphically in Fig. 7.4.
The following variables are not included—Living area, Formal education, and
Age—however, Age is included in Fig. 7.5.

The categories are compared against one category. If the probit estimate is
greater than 0.1, it is roughly significant. None of the estimates are strongly

(continued)
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Example 7.2 (continued)
significant for gender, but the differences by mode are still interesting. Part-
nership is a specially created variable that is rarely used and that categorizes
marriage into four groups. This is done because one marriage variable is too
heterogeneous. Since the register includes the wedding year, this
re-categorization is possible, with the number of years since the wedding
(Old, Medium and Recent) being added, while people with more than one
marriage are included in their own group. We would have been happy to
categorize the group of single people as well, but this was not possible with
this register.

The differences between the modes are evident in several categories of
Table 7.4, but they are clearer for age, as demonstrated in Fig. 7.5. To
understand the y-axis, it should be noted that probit ¼ 0 corresponds to the
estimated response probability of 50%. This scale of the y-axis is good for a
graphical representation, whereas a linear scale could cause misunderstanding.

We present more examples in Chap. 8, where we apply response propensity
modelling for post-survey adjusted weights. In that chapter we estimate the
predicted values for each respondent from this model and use these in
reweightings.

Table 7.4 Probit estimates of the unit response model for the Finnish Security Survey

Auxiliary variable Web Phone Face-to-face

Male vs. female �0.0565 �0.0256 0.1038

Native language

Finnish vs. Russian 0.2599 0.2319 �0.1071

Other vs. Russian �0.1135 �0.1085 �0.3186

Partnership

Widowed vs. old marriage �0.2224 0.1060 �0.1071

Single vs. old marriage �0.3414 �0.2130 �0.3115

Many vs. old marriage �0.1236 �0.2956 �0.1181

Recent vs. old marriage �0.3011 �0.0946 �0.2245

Medium vs. old marriage �0.1526 �0.1472 0.1363

Children

No children vs. 1+ children 0.1835 �0.1360 �0.0015

Housing

1 room vs. 4+ rooms �0.0427 �0.4151 �0.1458

2–3 rooms vs. 4+ rooms �0.0374 �0.1151 0.0062

7.4 Response Propensity Models 109



References

Gideon, L. (Ed.). (2012). Handbook of survey methodology for the social sciences. New York:
Springer.

Koch, A., Halbherr, V., Stoop, I., & Kappelhof, J. (2004). Assessing ESS sample quality by using
external and internal criteria. Working Paper. Retrieved January 2017, from https://www.
researchgate.net/publication/316043128_Assessing_ESS_sample_quality_by_using_external_
and_internal_criteria

Laaksonen, S., & Heiskanen, M. (2014). Comparison of three modes for a victimization survey.
Journal of Survey Statistics and Methodology, 2(4), 459–483.

Stoop, I. (2017). The other ESS: The European social survey and the European statistical system.
New Techniques and Technologies for Statistics (NTTS). Retrieved December 2017, from
https://www.conference-service.com/NTTS2017/documents/agenda/data/abstracts/abstract_
238.html

Stoop, I., & Harrison, E. (2012). Classification of surveys. In L. Gideon (Ed.), Handbook of survey
methodology for the social sciences. Heidelberg: Springer.

Fig. 7.5 Probit estimates by age for the three survey modes in the Finnish Security Survey
(Laaksonen & Heiskanen, 2014)

110 7 Missingness, Its Reasons and Treatment

https://www.researchgate.net/publication/316043128_Assessing_ESS_sample_quality_by_using_external_and_internal_criteria?_iepl%5BviewId%5D=kwwYvpgEbE5VqkgKyvjwOVFU&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A316043128&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/publication/316043128_Assessing_ESS_sample_quality_by_using_external_and_internal_criteria?_iepl%5BviewId%5D=kwwYvpgEbE5VqkgKyvjwOVFU&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A316043128&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/publication/316043128_Assessing_ESS_sample_quality_by_using_external_and_internal_criteria?_iepl%5BviewId%5D=kwwYvpgEbE5VqkgKyvjwOVFU&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A316043128&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/publication/316043128_Assessing_ESS_sample_quality_by_using_external_and_internal_criteria
https://www.researchgate.net/publication/316043128_Assessing_ESS_sample_quality_by_using_external_and_internal_criteria
https://www.researchgate.net/publication/316043128_Assessing_ESS_sample_quality_by_using_external_and_internal_criteria
https://www.conference-service.com/NTTS2017/documents/agenda/data/abstracts/abstract_238.html
https://www.conference-service.com/NTTS2017/documents/agenda/data/abstracts/abstract_238.html


Weighting Adjustments Because of Unit
Non-response 8

Advance Reading
It is good to understand the following methodologies and tools before going
into this chapter, in addition to the terms and concepts of Chap. 2:

– Chapter 4: Sampling Principles, including inclusion probabilities,
missingness mechanisms

– Chapter 5: Design Effects at the Sampling Phase, including design-based
weighting from which we continue in this chapter to create better weights,
called reweights

(continued)
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– Chapter 6: Sampling Design Data File, including auxiliary variables; the
new weights are created from this file or its supplements

– Chapter 7: Missingness, Its Reasons and Treatment gives a priori informa-
tion for reweighting

8.1 Actions of Weighting and Reweighting

Weighting and reweighting can be considered to cover the following seven actions:

1. Sampling design before the fieldwork
2. Weights for the gross-sample (n units) using (1), the result being the ‘design

weights’
3. Creation of the sampling design data file (SDDF) before and after the fieldwork
4. Computation of ‘basic weights’ for the net sample or for the respondents (r units),

assuming missing at random under sampling design (MARS)
5. Reweighting assuming MAR(c): specification, estimation, outputs, checking

trustworthiness
6. Estimation: point-estimates, variance estimation ¼ sampling variance + variance

because of missingness
7. Critically look at the results, including benchmarking these against recent results

(how plausible are they?)

Toward Reweighting
Reweighting starts from the valid basic weights that need to be improved so that the
estimates will be less biased than those obtained by the basic weights. Usually, the
aim is not to improve all estimates but at a minimum some key estimates. The other
estimates are often improved at the same time, but not all of them may be. As it is
recognized, good auxiliary data are necessary to make reweighting successful. If you
have a small amount of good auxiliary variables, you cannot do much. So, you must
work actively with an auxiliary data service during the survey process. This may
require resources but not as much as often thought. An important point is that
auxiliary data are useful to include in the SDDF all the time during the survey
process.

8.2 Introduction to Reweighting Methods

We do not try to explain all the possible reweighting methods because there are too
many of them. Yet, it is difficult to recognize any specific method given that so many
different terms are used. This book is no exception. The terms here are rather new
but, in the author’s opinion, they are clear and logical.
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Therefore, we concentrate on the two core methodology families: (1) response
propensity weighting and (2) calibration weighting. Nevertheless, the strategy or
framework here is broader than is usually presented because calibration can start
either from basic weights or from response propensity weights. If the basic or other
simple weights are used as the starting weights in the calibration, this method is
known as ‘pure calibration’; this calibration the one that is most commonly used in
practice. If the propensity weights are used, the strategy is known as ‘joint propensity
and calibration weighting’; however, it is not necessary to use this term. The most
important thing is to specify whichweights are the starting weights for the calibration.

Because the simplest and most common calibration is post-stratification, we first
describe its principles, and then present response propensity weighting. Finally, the
methodology of calibration is described, one part of this being joint propensity and
calibration weighting.

The purpose of calibration, in general, is to create weights that give certain
benchmark values to macro auxiliary variables. If the benchmarks are true values,
these ‘estimates’ are definitely correct. For example, if the populationfigures are correct
after estimating by gender, age groups, and large regions, this increases confidence
about the results. Naturally, these true values can only be achieved for those
benchmarks; nothing is guaranteed for the other estimates, including the proper survey
estimates. One common drawback is that these benchmarks are not true values but are
approximations because true values are difficult to obtain. All weighting methods lead
to some true (or nearly true) values—for example, the sum of the weights is (or should
be) equal to the target population size. Accordingly, pure response propensity
weighting gives true values by explicit strata or post-strata as well.

" Real-Life Case
Some statistics, such as the gender distribution, are well known. If a survey
shows that there are 45%males and 55% females in the target population,
and it is known as a fact that there are about as many males as females, it
might be difficult to trust the survey at all. Calibration is useful here to give
a valid gender share. Thus, this does not mean that all the other estimates
automatically will be as correct. Similarly, some regional statistics might be
relatively well known, and it may be good to calibrate for these estimates.
Age group is also used as a benchmark in calibration. This is good, but age
distribution is not as well known by ordinary people.

8.3 Post-stratification

Post-stratification is a basic calibration method that is useful to apply if there are
population-level data (macro auxiliary data) that have not yet been utilized in the
sampling design. This is often the case. The following are the targets:
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– To reduce the bias because of frame error if the post-strata statistics (margins) are
more correct than the initial ones; if an updated frame exists, this helps because it
means that the frame error can be corrected to post-strata levels.

– To calibrate estimates at a more detailed level than initially, thus into post-strata
levels.

– To reduce the bias because of unit non-responses, although this it is not automati-
cally ensured.

– To reduce the sampling errors that occur if the post-strata are more homogeneous
than the initial strata.

The best known paper on post-stratification is by Holt and Smith (1979), but it also
would be good to read Smith’s 1991 paper. All these targets definitely cannot be
achieved but at least some should be reachable.

Post-stratification, unfortunately, is not simple because it is conditional on the
initial sampling design. This means that there may be difficulties in computing
appropriate post-stratified weights. A sizeable problem is often that the data are
too few in some post-strata, which means that there is no opportunity to create a high
number of post-strata. This is obviously the main reason why the other calibration
methods, which we consider later in this chapter, have been developed. First,
however, we explain how post-stratification can be implemented, or how to create
the post-stratified sampling weights.

If the sampling design is simple random sampling, we can very flexibly create the
post-stratified weights, provided that (1) the data file consists of one or more
categorical variables with target population statistics that are available, and (2) the
number of respondents is big enough, as required for ordinary stratification. The
post-stratified weights have the same form as the stratified weights, that is,

wk ¼ Ng

rg

where g is a post-stratum g ¼ 1, . . ., G; the number of post-strata thus is G.
This method is often used even when it is not known how close to simple random

sampling (SRS) the sampling design is. For example, when several respondents are
obtained by computer-assisted interviewing (CATI) more or less randomly, the
weights are calculated on the assumption that the respondents are selected randomly
within post-strata. This very commonly is applied by market survey institutes that
also decide the post-strata in advance and call them ‘quotas’. Early-stage researchers
act in a similar way when the target of generalising the results is imposed suddenly
and enough data from the respondents are available; however, there is no proper
sampling design. This gives some possibilities for estimation, but it is difficult to
know how biased the estimates will be.

The Most Common Post-stratification
Most commonly, the sample is drawn by explicit stratification and with a certain
allocation. The strata or pre-strata are symbolised by h. When the respondents are
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known, problems with responses are found. For example, if the stratification is
regional, as is often the case, the basic weights adjust for regional representativeness,
not for anything else. Nevertheless, it may be found that females participate better
than males, and educated people better than those with less education. This may lead
to post-stratification, given that the target population statistics are available by the
same categories as in the survey data file. Table 8.1 illustrates the situation.

This is not the most common strategy because it is easier to create post-strata by
cross-classifying the pre-strata and post-strata. This is not necessary because they
can be created more flexibly, as we have done here. In this case it was found that the
non-response varies greatly by the two education categories in pre-stratum ‘Region
1’, whereas gender is the best auxiliary variable in ‘Region 2’. Finally, it was found
that both gender and education predict non-response in Region R, as shown.

Naturally, the other regional pre-strata may need different post-stratification. This
flexible strategy also allows one to use some initial pre-strata if it is believed that
there will be no benefit from post-strata. These requirements therefore are revealed
by the non-response analysis (see Chap. 7). The form of the post-stratified weights is
like that of the stratified weights:

wk � Nhg

rhg

More up-to-date target population figures ‘Nhg’ of the post-stratum cells ‘hg’may
be available than the initial ones, and these should be used in this case (using the
updated frame population). The number of the respondents, rhg is calculated from the
sampling data file. It is important to avoid post-strata that are too small because then,
in particular, the denominator is too small. There is no problem, however, in the case
when Nhg ¼ rhg ¼ 1 because the weight is equal to one.

" Special Post-stratification Case
A special case occurs if explicit stratification is applied and, after the
fieldwork, outliers (extremely rich people or big businesses) are found in
one or more strata while the basic weights are large. This may have a
great impact on some estimates and mean that the initial stratum is not
homogeneous at all, thus such units are not in the correct stratum.

It is possible to try post-stratification so that such outliers are moved
into one special post-stratum and the others remain in the initial stratum,

Table 8.1 Example of post-stratification after regional pre-stratification when true values are
available by gender and education

Initial stratification ¼ Pre-stratification

Region 1 Region 2 Region R

Post-
strata
within
pre-strata

Less
educated

More
educated

Males Females Less
educated
males

Less
educated
females

More
educated
males and
females
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which is now classified as a post-stratum. The weights for the latter might
be obtained easily by reducing Nh but the weights for the special post-
stratum might be more difficult if no auxiliary information is available.
Such information could be the number of extremely rich people or big
businesses in this domain. Clearly, the minimum sampling weight is
equal to one if only one outlier is found and is moved to the post-
stratum. It follows that, in the case of several outliers derived from the
same pre-stratum, the weights will be larger.

Example 8.1 Post-stratification in the Test Data of the SRS Domain
The SRS domain of the test data is applied in this example. The initial sampling
design is stratified simple random sampling with six regional strata, or pre-strata.
Using the ordinary procedure, the basic weights are computed. A decision is then
made to improve the weights by post-stratification with one auxiliary variable,
‘gender’, because of a peculiar variation by gender that is shown in Table 8.2.
Females respond better in all the strata other than stratum 11.

Post-strata are made to adjust for gender differences in particular. It is easy to
create 2 � 6 post-strata as in Table 8.3, using the above formula. The first two digits
of the post-stratum in the table refer to the pre-stratum, and the third digit refers to the
gender (M ¼ Male, F ¼ Female).

There are enough respondents in each post-stratum, although not very many in
some. In Table 8.4 we continue to analyse these weights against the basic weights.

The coefficient of variation (CV) of the initial weights is 42%, which is relatively
high, but the CV for the post-stratified weights is higher, as expected. The analysis
weights (relative weights) clearly can be compared, even though the absolute
(amount) weights cannot be compared easily.

Table 8.2 Response rates
by gender and six pre-strata
of the SRS domain in the
test data

Stratum Gender Observations Response rate

10 Male 278 0.367

Female 307 0.410

11 Male 83 0.470

Female 80 0.363

12 Male 39 0.385

Female 49 0.592

13 Male 87 0.402

Female 81 0.481

14 Male 159 0.415

Female 139 0.482

15 Male 59 0.407

Female 61 0.557
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Now, we can see that the ratio of the maximum to the minimum of the basic
weights is 2.87 and that of post-stratified weights is 3.72. Such ratios are not
problematic. For example, the ESS only takes care of the weights, so analysis
weights above 4 are truncated into 4.0. This corresponds to the minimum weight
¼ ¼ 0.25, but many ESS weights are below this limit. If we calculate the similar
symmetric ratio, the acceptable ratio would be 4/0.25 ¼ 16, which is much higher
than that of this post-stratified example.

8.4 Response Propensity Weighting

This weighting begins from the analysis of unit non-responses using the auxiliary
variables available in the sampling design data file (SDDF). Chapter 7 considers the
core principles of this analysis. First, the analysis is done for every single auxiliary
variable, but then a multivariate response propensity model is estimated. The main
goal of this model is to predict response behaviour so that the estimated response

Table 8.3 Twelve post-strata and their respective reweights

Post-strata Respondents Target population size Post-stratified weights

10M 102 2,619,122 25,677.67

10F 126 2,587,880 20,538.73

11M 39 708,021 18,154.38

11F 29 742,842 25,615.24

12M 15 385,323 25,688.20

12F 29 397,965 13,722.93

13M 35 318,346 9095.60

13F 39 328,790 8430.51

14M 66 564,684 8555.82

14F 67 583,212 8704.66

15M 24 227,390 9474.58

15F 34 234,850 6907.35

Table 8.4 Basic and post-stratified sampling weights and their analysis weights on the same basis
as in Table 8.3

Weight
Number of
respondents Mean

Coeff. of
variation Minimum Maximum Sum

Basic 605 16,030 42.2 7970 22,837 9,698,424

Basic
analysis

605 1 42.2 0.50 1.43 605

Post-
stratified

605 16,030 45.1 6907 25,688 9,698,424

Post-
stratified
analysis

605 1 45.1 0.43 1.60 605
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propensities are calculated in the output file, which includes the identity code of each
respondent (see also Scheme 6.1, Chap. 6). The model itself takes advantage of the
non-respondents as well. It is not clear whether ineligible units also should be
included in the model, but this is not usually done.

To illustrate the modelling, we use the same test SDDF file as we did for post-
stratification (thus the design is stratified SRS), and then we build the model. This
SDDF is relatively good because there are more auxiliary variables than is usual in
surveys. Table 8.5 gives the results when using the logit, or logistic regression, link.
The data source for Table 8.5 and Fig. 8.1 is the test file in Chap. 6.

Table 8.5 does not give interactions, but we created the interaction between the
degree of education and gender. This is illustrated in Fig. 8.1, which shows that the
gender differences vary even though females replied slightly better in all groups.
Some differences are small. The whole interaction term is significant, and we
decided to keep it in the model used for reweighting. Note that it is not necessary
to include only the significant auxiliary variables there because an insignificant
variable has only a minor influence on the weight if the variables are categorical,
as they are here. Continuous variables with outliers might be problematic, however.

It is useful to look at response propensities by population groups to understand
their distribution. One appropriate way is to calculate their cumulative frequencies,
as in Figure 8.2 (see also Table 8.5 and Fig. 8.1). The categories of this figure are the
rounded estimated propensities (propensity scores) by 3%. The most dramatic

Table 8.5 Parameter estimates of the logistic regression model

Parameter Estimate Standard error p-value

Intercept 1.31 0.2966 <0.0001

Gender Male �0.3824 0.1292 0.0031

Female 0 0

Education Degree 2 �2.7349 0.2483 <0.0001

Degree 3 �1.2829 0.2072 <0.0001

Degree 4 �0.4259 0.2814 0.1301

Degree 5 0.8743 0.3071 0.0044

Degree 6 �0.1133 0.2623 0.6657

Degree 7 0 0

Citizen of the country Yes 0.2044 0.3011 0.4972

No 0 0

Members of household 1 0.5642 0.2985 0.0587

2 0.7966 0.2803 0.0045

3 0.0772 0.2745 0.7785

4 0.1825 0.2749 0.5068

5 0 0

Members below 15 0 �0.5185 0.1981 0.0089

1 0 0

Common law marriage No �0.5015 0.1392 0.0003

Yes 0 0
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difference is found between the lowest and highest degrees of education. The highest
propensities of the lowest group are below 40%, whereas the lowest propensities of
the highest education group are about 50%. The propensities of the other groups vary
much more than these, beginning at about the same level as those of the lowest
education group, but continuing to approximately the same level as those of the
highest education group.

Logit Es�mates by Educa�on and gender.
Reference: Males of Degree 2 = 0

4,5
4

3,5
3

2,5
2

1,5
1

0,5
0

Degree 2 Degree 3 Degree 4 Degree 5 Degree 6 Degree 7

Males Females

Fig. 8.1 Logit estimates of the response propensity model by education and gender

Fig. 8.2 Cumulative frequencies of response propensities for some response domains
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As soon as a survey data ‘cleaner’ knows the response behaviour well enough, it
is possible to go forward to calculate the response propensity weights. This consists
of the steps set out in the following for the case of a stratified simple random design.

Steps for Response Propensity Weighting When the Response Model Is
Estimated (see e.g., Laaksonen, 2007; Laaksonen & Heiskanen, 2014)
This procedure is for stratified simple random sampling:

1. Assume that the response mechanism within each stratum is ignorable and that
the initial (basic) weights thus have been calculated on this basis. These are
available only for the respondents k and are symbolized by wk.

2. Take those initial weights and divide them by the estimated response probability
of each respondent, which is obtained from the probit or logit model and is
symbolized by pk.

3. Before going forward, check that the probabilities, pk, are realistic—that is, that
they are not too small (which might mean below 0.05), for instance. All
probabilities are below one, naturally.

4. Given that the sum of the weights from the second step does not match the known
population statistics by strata h, they are calibrated, or scaled, so that the sums are
equal to the sums of the initial weights in each stratum. This is done by
multiplying the weights from the second step by the ratio in each stratum h:

qh ¼
P

hwk

w=p

5. It is also good to check these weights, comparing them against the basic weights
and possibly against the post-stratified weights. If the weights are not plausible,
the model should be revised.

Example 8.2 The Response Propensity Weighting of the Test SDDF Data
We continue from the SDDF with the stratified SRS domain. It is possible to
continue both from the basic weights and from the post-stratified weights. We
do both, using the response propensity model of Table 8.4 and Figs. 8.1 and
8.2. The results, including the earlier ones, are shown in Table 8.6.

We find that the variation of the weights increases after moving to more
advanced weights, with one small exception. When using the post-stratified
weights as the starting weights in the response propensity adjustment, the
variation is about the same. It is interesting that these weights are somewhat
smaller. The overall variation is fairly large; the reason for this lies in the big
differences between the response propensities predicted by the significant
auxiliary variables. It is expected that the new weights will give less biased
estimates.
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" Comment on Weighting with Response Homogeneity Groups
The response propensity weights in this chapter are applied to each
individual (i.e., every respondent). Naturally, because the auxiliary
variables most often are categorical, some weights may be equal for
more than one individual. As we have warned, continuous variables with
outliers might be problematic and therefore should be avoided.
Individual-level adjustments are naturally the most flexible and would
be expected to be the best; however, the results are not very different if
everything has been done at the aggregate level, given that the
aggregates are not small.

Response propensities are applied even more often at the aggregate
level than at the individual level. In this context, the aggregates are called
the response homogeneity groups, response homogeneity cells or adjust-
ment cells. In this case, the response propensities are constant for each
such aggregate/cell. These constant propensities are either like the
predicted values, as in the methodology, or they are empirical relative
frequencies, which is simpler. We recommend the first option. The
advantage of response homogeneity group weighting is that such
aggregates are easier to get in many surveys. The aggregated response
propensities are applied widely, including by Brick (2013), Brick and
Jones (2008), Haziza and Lesage (2016), Ekholm and Laaksonen (1991),
and Little (1986).

Table 8.6 Response propensity adjusted weights and their characteristics from the SDDF of the
stratified SRS

Sampling
weight Respondents Mean Minimum Maximum

Coeff. of
variation Sum

Ordinary/amount

Basic 605 16,030 7970 22,838 42.2 9,698,424

Post-stratified 605 16,030 6907 25,688 45.1 9,698,424

Adjusted
basic

605 16,030 3163 137,329 78.3 9,698,424

Adjusted
post-stratified

605 16,030 2273 108,195 78.0 9,698,424

Analysis/relative

Basic 605 1.0 0.5 1.4 42.2 605

Post-stratified 605 1.0 0.4 1.6 45.1 605

Adjusted
basic

605 1.0 0.2 8.6 78.3 605

Adjusted
post-stratified

605 1.0 0.1 6.7 78.0 605
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8.5 Comparisons of Weights in Other Surveys

To allow a greater understanding of these adjusted weights, we present two tables,
Tables 8.7 and 8.8. The first (Table 8.7) is from the ESS, Round 6, when the post-
stratified weights were published for the first time. This table thus provides an
opportunity to compare these two weights. The analysis weights can be compared
in a straightforward fashion because they are standardized so that their average is
equal to one.

The variation in weights does not correspond to reality in Table 8.7 because the
highest basic weights are truncated at 4.0. This means that the post-stratified weights
cannot be much greater than 4 either because the basic weights are the starting
weights for the post-stratification. The CV of the post-stratified weights, in all
countries other than Slovakia, is higher than that of the basic weights. The exception
of Slovakia is hard to explain, since the variation in most cases increases after
adjustment. If the sampling design takes into account the anticipated response
rates, it is expected that the change would be minor.

The second weighting comparison, in Table 8.8, includes the response propensity
adjusted weights (Laaksonen & Heiskanen, 2014; Laaksonen et al., 2015). It also
contains the response rates. It is expected that the variation of the well-adjusted
weights is high when the response rate is high. This is observed for both the web
survey and the grid-based survey, which have relatively low response rates. Because
there were good auxiliary variables, it was possible to carry out a beneficial adjust-
ment for the weights and to reduce the bias in the point estimates. As is shown in the
final example of this chapter, weighting does not always solve the non-response bias
problem.

Note that it is possible to calculate the approximate values of DEFFp from the last
column, in this way:

DEFFp ¼ 1þ CV=100ð Þ � CV=100ð Þ:
We see that the values for DEFFp vary from 1.13 (phone sub-survey) to 1.46
(Southern Finland Grid-based Survey). The variation of the last weights arises
from two main reasons: (1) there is a very disproportional sample allocation, and
(2) the weighting adjustment itself. The adjusted weights thus depend very much on
the response propensities.

The sample allocation includes a special case—that is, two special strata, one of
so-called ‘poor people grids’ (250� 250 m), and the other of ‘rich people grids’. The
sampling fraction was relatively high in both these strata and was highest in the rich
people grids. This allocation ensured that enough respondents were obtained of both
types because the study was focussed specifically on comparing the differences
between people living in these spacial domains. The largest domain—grids between
rich ones and poor ones—was not a focus here, and these people were well
represented even using relatively low sampling fractions.
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Table 8.7 The two analysis weights of the ESS by country, Round 6

Country
Sampling
weight Respondents Minimum Maximum

Coeff. of variation
(CV)

Bulgaria Basic 2260 0.20 3.09 41

Post-
stratified

2260 0.16 4.00 59

Cyprus Basic 1116 0.40 2.85 45

Post-
stratified

1116 0.22 4.01 60

Czech
Republic

Basic 2009 0.04 4.00 52

Post-
stratified

2009 0.00 4.03 63

Germany Basic 2958 0.54 1.24 33

Post-
stratified

2958 0.02 4.00 57

Spain Basic 1889 0.70 1.66 11

Post-
stratified

1889 0.50 4.00 31

France Basic 1968 0.21 4.00 53

Post-
stratified

1968 0.16 4.01 63

United
Kingdom

Basic 2286 0.51 4.00 52

Post-
stratified

2286 0.29 4.01 57

Hungary Basic 2014 0.87 1.17 5

Post-
stratified

2014 0.57 1.70 21

Ireland Basic 2628 0.45 3.63 49

Post-
stratified

2628 0.28 4.00 53

Israel Basic 2508 0.78 3.39 19

Post-
stratified

2508 0.42 4.00 34

Iceland Basic 752 0.91 1.92 18

Post-
stratified

752 0.83 2.09 19

Lithuania Basic 2109 0.23 4.00 58

Post-
stratified

2109 0.13 4.02 60

Netherlands Basic 1845 0.26 4.00 46

Post-
stratified

1845 0.25 4.00 54

Poland Basic 1898 0.62 1.27 14

Post-
stratified

1898 0.53 1.61 18

Portugal Basic 2151 0.12 4.00 61

Post-
stratified

2151 0.06 4.04 74

(continued)
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8.6 Linear Calibration

The basic idea of calibration is to find reweights so that certain margins (macro
auxiliary statistics) are as correct as the data given. There are several strategies that
can be used to achieve this target. Usually the algorithm is such that the distance
between the so-called starting weight and the calibrated weight is minimized. There
are various technical and methodological tools for this. The French INSEE software
CALMAR 2, uses Lagrange multipliers that give a mathematically easy way to
apply several distance functions; however, in the case of linear functions other tools
obviously are simpler (Deville & Särndal, 1992; Deville, Särndal, & Sautory, 1993;
Särndal, 2007, Särndal & Lundquist, 2014, Estevao & Särndal, 2006; Kott & Chang,
2010; Le Guennec & Sautory, 2005; Lundström & Särndal, 1999; McCormack,
2006; Sautory, 2003). Here we first apply the linear distance function that is most
frequently used. This can be called linear calibration.

The macro auxiliary variables are needed for calibration. We therefore wish these
to be true values or true margins of the target population. These variables are
symbolized by xp, with the number p being small—say between 3 and 7. Each
such variable includes several categories with these true values, thus they are

Table 8.7 (continued)

Country
Sampling
weight Respondents Minimum Maximum

Coeff. of variation
(CV)

Russia Basic 2484 0.16 4.00 58

Post-
stratified

2484 0.10 4.00 59

Slovakia Basic 1847 0.06 4.00 96

Post-
stratified

1847 0.04 4.04 72

Ukraine Basic 2178 0.29 4.00 48

Post-
stratified

2178 0.23 4.00 54

Table 8.8 Characteristics of the weights of the two Finnish surveys based on the response
propensity model

Survey
Response
rate Respondents Minimum Maximum

Coeff. of
variation

Finnish Security Survey

– Face-to-face sub-survey 50 366 0.10 4.01 48

– Web sub-survey 25 971 0.05 17.60 58

– Phone sub-survey 62 1866 0.08 4.79 37

Southern Finland Grid-
based Survey

36 9618 0.17 10.10 68
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vectors. The weight wk is the variable that will be calibrated and the calibration
weight is, respectively, ck. Both these weights are therefore for the respondents.

The first requirement is to minimize the distance function

D ck;wkð Þ ¼
X

U
wkG

ck
wk

� �

In the case of linear calibration, the distance function is

G ¼ 1
2

xn � 1ð Þ2

Finally, minimization is done so that the p calibration equations hold true,

X
r
ckxp ¼

X
U
xp

Some constraints can be added, so the ratio ck
wk

is within a desired interval.

The first step in calibration is to find the correct ‘true values’ of the desired
auxiliary variables. The following variables are often used in social surveys:

– Gender (two categories)
– Age group (5 to 10 categories)
– Large region (5 to 10 categories)
– Education level (4 to 7 categories).

These aggregates are then saved in a specific file and used in the calibration software,
so that the software does its best to get weights that satisfy these calibration margins.
The algorithm usually succeeds, but there is no guarantee that the calibrated weights
are desirable. It may be possible that they are negative or below one.

Example 8.3 From the Basic Weights to Linear Calibration in the Test Data
(Continued from Example 8.2)
The following calibration margins are used here:

– Two genders
– Five age groups
– Six explicit strata (regions)

The margins definitely are true values because we take them from the same
databases. We thus do not expect to meet any problems. The weights are fairly
large and, less obviously, do not lie below one. All starting weights give the
true values for the explicit strata, but calibration does not ensure that this
benchmark will be met again unless the same margin is included in the

(continued)
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Example 8.3 (continued)
calibration process (i.e., minimization of the weight changes). We therefore
have only the real calibration margins shown in Table 8.9. The three calibra-
tion margins used are Gender (2 categories), Age group (5) and Stratum (6).

When comparing this with Table 8.8 without calibration, we see that the
variation increases slightly after calibration but the order is the same, except
that the CV of the calibrated results with adjusted post-stratified weights is
now the largest, and their maximum weights are the highest. On the other
hand, all the weights are plausible and we can go forward to estimation.

As we have said, plausible weights are not guaranteed with linear calibra-
tion. In this case, negative weights are obtained easily. One strategy is to add a
fourth auxiliary margin. We do this using six education levels. The conse-
quence is that 2% of the weights are below one. In the analysis, there is no fair
solution; nonetheless, it is possible to increase the bad weights subjectively
above one, or to use a calibration that does the same thing so that the constraint
for the ratio between the initial and the calibrated weights is met. This is still
subjective, and there is no guarantee that the calibration algorithm always
will work.

Table 8.9 Linear calibration weights with four starting weights, stratified simple random domain
of the test data

Starting
sampling
weight Respondents Mean Minimum Maximum

Coeff. of
variation Sum

Ordinary

Basic 605 16,030 4877 35,424 49.8 9,698,424

Post-stratified 605 16,030 4344 61,579 58.4 9,698,424

Adjusted
basic

605 16,030 2103 106,926 79.6 9,698,424

Adjusted post-
stratified

605 16,030 2342 120,717 81.0 9,698,424

Analysis

Basic 605 1 0.30 2.2 49.8 605

Post-stratified 605 1 0.27 3.8 58.4 605

Adjusted
basic

605 1 0.13 6.7 79.6 605

Adjusted post-
stratified

605 1 0.15 7.5 81.0 605
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8.7 Non‐linear Calibration

Linear calibration seems to work often, but not always. The constraints for the
calibrated weights may be met, but this is not an objective solution. A more objective
solution is to use a distance function that does not lead to weights that are negative or
below one. The most common of such solutions is raking-ratio calibration. This
originated in the 1940s (Deming & Stephan, 1940), but now is implemented in a
different way. It is one calibration option in the French INSEE software, CALMAR
2, where the distance has the following logarithmic form:

G xð Þ ¼ x logx� xþ 1

CALMAR 2 offers another non-linear solution, called ‘sinus hyperbolicus’. We
only present the raking ratio here because it is used most commonly. It is close to
post-stratification, but more flexible than this. Raking ratio calibration allows one to
include the auxiliary margins in the calibration equation in the same way as linear
calibration methods.

We illustrate the case of negative weights derived from linear calibration in
Table 8.10. This example uses four calibration margins, so Education level has
been added to the six categories in Table 8.9. We thus can see that linear calibration
may result in negative weights even if one calibration margin is added. This is
awkward even though the value is not large. Fortunately, the raking ratio solves this
problem technically, but gives a higher variation of the weights. Both weights vary
more than when using only three calibration margins. This may be a general rule,
meaning that a calibration provider should be careful when trying to use many
calibration margins.

Figure 8.3 shows that the negative weights of the linear calibration have not been
moved far by the raking ratio calibration. The scatter is not linear, but is more or less
logarithmic, as expected. A few very high weights appear in both, but this is to a
great extent because of the high starting weights that are the basic weights here.

Table 8.10 Linearly calibrated and raking-ratio weights, stratified simple random domain of
test data

Sampling
weight Respondents Mean Minimum Maximum

Coeff. of
variation Sum

Ordinary

Linearly
calibrated

605 16,030 �2541 113,062 92.9 9,698,424

Raking ratio
calibrated

605 16,030 2079 165,733 99.7 9,698,424

Analysis

Linearly
calibrated

605 1 �0.16 7.05 92.9 605

Raking ratio
calibrated

605 1 0.13 10.34 99.7 605
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It is vital to find the best possible weights for estimation, but what these are is not
automatically clear. In any case, if the available auxiliary variables (both micro and
macro) are used completely for reweights, it is expected that the bias in the point
estimates will be reduced. The standard errors usually will be increased slightly,
while the variation in weights is increased. It is best to get an optimal solution
between these targets. Nevertheless, it is not clear how to achieve this.

If several weights are created, it is benefical to discuss these within the working
team and to decide which weight really may be the ‘best’. At the end of this chapter,
we present a case study that illustrates the situation. In this case we know the true
estimates, so it is possible to decide which weights are best fairly easily.

Analysis examples are given in Chap. 14. These include ones in which the
weights of the complete test data are used, thus covering both the SRS and the
cluster domains of the test data.

Example 8.4 Comparison of Four Weights in Simulated Data
The data behind this simulated dataset come from a real survey, the Finnish
Security Survey (FSS), which was considered in Chap. 7 (see Example 7.2)
and earlier in this chapter when considering unit non-responses.

(continued)

Fig. 8.3 The scatter plot between the raking-ratio weights and the linearly calibrated weights;
compare the results with those shown in Table 8.10
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Example 8.4 (continued)
The simulation universe here is extended to the respondents of the FSS,

consisting of nearly 200,000 persons. The missingness of this universe is as
close as possible to that of the real survey. The sampling design was stratified
simple random. The following four weights were created:

– Basic weights assuming that unit non-responses within strata is ignorable
– Linear calibration starting from the basic weights
– Response propensity weighting using eight micro auxiliary variables (see

Example 8.2)
– Linear calibration starting from the response propensity weights.

The three calibration margins were used in both calibrations: (1) four explicit
strata, (2) five age groups, and (3) two genders.
This pattern is easy to obtain in most countries because such margins can be
found as known population totals. Fortunately, they do not lead to negative
weights even when linear calibration is used; thus, we do not need to go on to
any non-linear distance function. More margins, or other types of margins,
may be problematic, as shown by the calibration method of the European
Social Survey (2014). The ESS found education level to have a significant
influence on response behaviour and wanted to apply this macro auxiliary
variable. It was possible to obtain a satisfactory variable only from another
sample—the EU Labour Force Survey. This therefore is not a true value, but it
is harmonized in some sense, so it was used. It was considered to be the ‘best
solution’. Fortunately, the weights were plausible because raking-ratio cali-
bration was applied.

One may wonder about the selection of explicit strata because this already
has been used in both the basic weights and the response propensity weights.
So why should it be included again? The reason is that this benchmark does
hold true then when calibrating only to two new margins (i.e., age group and
gender).

Eight different indicators were used in the estimation comparisons. We do
not present the initial estimates here, only their relative deviation from the true
value, corresponding to the relative bias. This is the most illustrative way to
compare results. These comparisons are presented in Table 8.11. The order is
by the success of the joint response propensity and linear calibration (last
column).

The last row of Table 8.11 shows an overall ranking of the methods. If we
interpret this in a straightforward way, we can see that the best method is the
combination of response propensity and calibration, with pure response pro-
pensity coming second, and pure basic weighting being the worst. Yet, there
are exceptions. Pure basic weighting actually is the best for Violence by

(continued)
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Example 8.4 (continued)
ex-partner, for which no method works well. Pure calibration works well for
another difficult indicator, Violence by partner. This indicator seems to be the
most difficult to estimate well with any method. We cannot explain why the
combined method is as bad as it is for this indicator, but it does work better
than basic weights, fortunately.

Another indicator that is difficult to estimate correctly is Violence by
stranger ever. It needs to be understood that it is not appropriate to use the
auxiliary variables to predict missingness if no method is reasonably good.
Fortunately, we see that the joint response propensity and calibration method
succeeds relatively well with some indicators, the best ones being Worry,
Income, Violence by stranger recently, and Harassment recently. In all these
cases, the basic weights do not lead to reliable estimates.

These weights are created without any auxiliary variables except region
(explicit stratum), which is used in the sampling design. It is clearly under-
stood that the bias in income can be reduced using the micro auxiliary
variables available. It is interesting that a similar reduction is found for
Worry as well. The joint method even gives slightly better results than the
pure response propensity weighting method.

In general, almost all weights with adjustments improve the estimates to
some extent, but they can be biased either upward or downward. Second, it
seems that even sophisticated weights do not always improve accuracy sub-
stantially. A good point is that they do not lead to worse accuracy either,
although the improvement is minor. In some cases, therefore, no weighting
methods give a guarantee that the bias because of missingness is reduced
substantially. This means that one should pay attention to finding auxiliary
variables that are tailored to each survey situation. This is easy to say, but not
to implement.

Table 8.11 Results for the relative bias with basic and response propensity weights, both
continued with linear calibration (see Laaksonen and Hämäläinen, 2018)

Indicator

Basic weight Response propensity

Pure Calibration Pure Calibration

Violence by ex-partner 0.60 �2.72 �0.83 �1.21

Harassment ever �1.36 �2.22 �0.53 �0.42
Worry 0.76 �0.84 0.16 �0.02
Violence by stranger recently �1.03 �0.10 0.12 0.15

Harassment recently 6.91 0.55 0.62 0.32
Income 2.06 1.79 0.39 0.33
Violence by partner 7.24 4.22 4.68 4.52

Violence by stranger ever 6.50 2.39 4.86 5.27

Average success ranking by four methods 3.38 2.50 2.25 1.88

Best estimates are bolded in the Table
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Bias, Standard Error and Mean Square Error
The concepts here are used commonly in sampling, but the standard error can be estimated more or
less effectively from ordinary data. It is good to try to assess the extent and the direction of the bias,
even though it cannot be estimated explicitly. Here we explain the two concepts of bias and standard
error, as well as their ‘sum’, which is called the mean square error (MSE). The MSE is presented in
the following formula, in which var(s) ¼ the variance estimate of the parameter estimated using the
best possible information:

MSE ¼ Bias2 þ var (s).

The square root of the MSE is often more illustrative, although it cannot be published in most
cases. Fortunately, we can do so in the case in Example 8.4. This illustration is presented in the
graph in the following scheme, where estimate A concerns Harassment ever and estimate B Income
in Table 8.11. We can see clearly that the estimate is approaching the true value when using the best
possible weights. The standard error does not change much, but the root MSE naturally will be
reduced; only one of these lines has been drawn on the graph, with the worst result (Scheme 8.1).

8.8 Summary of All the Weights

Scheme 8.2 includes all the weights introduced in Chaps. 4 and 8. This scheme does
not distinguish between the ordinary sampling weights, of the amounts or totals, and
the analysis weights, and does not cover how to choose between these. The scheme
includes seven actions that can be alternatives, and thus it is not usually necessary to
develop all of these in one survey. The best final weights always include some
calibration, but they can be calculated via the different preceding actions, the shortest
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Scheme 8.1 Illustration of the concepts ‘bias’, ‘standard error’ and ‘mean square error’ based on
the case in Table 8.11
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chain being first A and then B. This is called pure calibration. This is the only option
if no micro auxiliary data are available but only valid macro variables, that is, some
good calibration margins.

Calibration is thus a benchmarking technique that gives the desired margin
values, but it is not realistic to include too many margins. What ‘too many’ means
should be examined in each case. The target is that the margin values are as true as
possible. They are thus the best possible macro auxiliary variables for this particular
survey.

The scheme shows that the starting weights for calibration can be of three types.
Response propensity weights are the best option, since they are straightforwardly
related to the response behaviour of the gross sample units (proper sample). These
auxiliary variables should be available at micro level but can include macro variables
as well. In addition, they are benchmarked to the margins that are in the sampling
design, typically to the pre-strata. The method also works after post-stratification,
when the benchmarking is to post-strata margins.

What the final weights can be is the big question. They are often the basic weights
that are calculated assuming the response mechanism is negligible or is MARS.
These weights are naturally the only alternative if there are no auxiliary variables
other than those applied in the sampling design.

Nevertheless, it is possible that afterwards some macro auxiliary variables can be
found from statistics and exploited in post-stratification and in other calibration.
Only one requirement must be met: there must be true statistics for the benchmarking
margins for such variables that are in the same format in the survey data. These
benchmarks make the benchmarked estimates correct, but they do not ensure that all
the other estimates will be unbiased. The response propensity weights before
calibration can be assumed to lessen the bias further, since it is now possible to
take advantage of all the micro and macro auxiliary variables. It is possible that the
results will not change much, but everything has now been done to ensure a high
quality survey, using reweights.

Scheme 8.2 Summary of all the sampling weights of this book
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Note that linear calibration may give implausible weights that are negative or are
less than one. This may occur more often if one tries to use ‘too many’ calibration
margins (or their categories). Post-stratification, raking ratio and sinus hyperbolicus
methods never give implausible weights. Post-calibration corrections that techni-
cally remove the implausible weights to make them plausible are not recommended.

It is good to construct as many weights as possible, including by using different
variable patterns and link functions in the response propensity modelling, and then to
analyze them and to test some key survey estimates. Finally, a decision needs to be
made on which weights to insert into the final survey file. Usually, only one
alternative is accepted by ordinary users. This is not a difficult problem, since
some weights can easily be dropped out and rejected. On the other hand, some of
the best weights may not give substantially different estimates, and it might be
difficult to make the final decision. However, the survey team should ultimately find
a consensus.

Observation
We present examples in Chap. 14 using our test data file. We use the following labels
for the weights in these examples:

– The methods A and B correspond to ‘pure calibration’, which is recommended if
no micro auxiliary variables exist that have not already been used.

– Calibration after propensity weights includes the following weights: A, C, and D.
– The chain A, E, F, and D is not possible for a stratified simple random domain but

adding this partial post-stratification does not change those results very much, and
hence this weight is not shown in any example. However, see Table 8.6, which
includes weights A, E, and F for the ‘SRS’ domain.
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Special Cases in Weighting 9

Special weights

So far, several sampling weights have been presented, particularly in Chap. 8. The
general goal is to try to utilize all possible auxiliary variables to reduce any possible
and obvious bias in the point estimates by using weights that are as advanced as
possible. Not much can be done without appropriate micro and macro auxiliary
variables. This chapter does not continue any further into improving these weights,
but we present some special cases that can be used with any available weights—that
is, the best possible weights naturally lead to the best results. We thus write the
weights in this chapter more generally, using the symbols w_ or wk. Four different
cases are presented.

# Springer International Publishing AG, part of Springer Nature 2018
S. Laaksonen, Survey Methodology and Missing Data,
https://doi.org/10.1007/978-3-319-79011-4_9

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79011-4_9&domain=pdf


9.1 Sampling of Individuals and Estimates for Clusters Such
as Households

Question How can household level estimates, such as household composition or
average household size, be estimated if the sampling units are individuals?

This problem has been encountered in the European Social Survey (ESS), and it is
possible that a user will just make estimates the same as for individuals. Yet, this
leads to incorrect estimates. Why?

Given that the individual weights are summed up to the population of those aged
15 or over (15+), the estimates using these weights concern these individuals. We
need to know the estimates for the households, however. The number of households
for each unit is obtained by dividing the individual weight by the number of people
over 15. Thus, nothing is needed if the 15+ size is one; however, in the case of larger
households, the respective weight will be smaller. Table 9.1 is based on the ESS
individual basic (or design) weights, dividing these by the number of members of the
household age 15 or over for each responding individual:

w basic Households ¼ w basic individuals=members 15þ

Table 9.1 shows clearly that the pure individual weights in every country lead to
an average household size that is too high, although the difference varies to some
extent. The countries are sorted by how correct the estimates are.

The highest average household sizes nevertheless look quite large. They might be
biased, with the reason being not incorrect weighting but the selectiveness of the

Table 9.1 Average
household size by country
with correct and incorrect
weights, ESS Round 7

Country Individual weights Household weights

Austria 3.05 1.89

Finland 2.36 1.98

Estonia 2.50 2.06

Sweden 2.61 2.10

Denmark 2.55 2.16

Norway 2.62 2.19

Germany 2.84 2.19

Switzerland 2.76 2.30

Netherlands 2.84 2.42

Belgium 2.95 2.45

Czech Republic 2.83 2.46

Slovenia 3.14 2.55

Ireland 3.13 2.60

Poland 3.31 2.68

France 3.20 2.81

136 9 Special Cases in Weighting



respondents. This could be because of the low response rates of single people, for
example. Further interpretation remains for the reader to evaluate.

9.2 Cases Where Only Analysis Weights Are Available
Although Proper Weights Are Required

It is fairly common for survey researchers not to need proper sampling weights for
which the sum corresponds to the target population size. The reason is that these
weights are not necessary in estimating relative figures (e.g., averages and
percentages). They are not necessary, for ordinary multivariate analysis either. We
therefore use the term ‘analysis weight’ for the weights that are used.

Nevertheless, the proper weights often are needed to gain an understanding of the
estimates at the target population level. If such weights are not in the dataset, they
can be obtained easily if the average of the weights of the respondents is known. This
gives the following simple formula:

wk ¼ wk analysis� the average of the proper weightsð Þ:
It is not automatically clear how to get that average. It can be obtained by dividing

the target population size by the number of the respondents. In this phase, it therefore
is necessary to decide on and get to know the target population, if this has not been
done already.

The ESS micro file does not include these proper weights directly, but they can be
calculated because the file includes the so-called population weights for each
country. If one multiplies the population weight by 10,000, the target population
size is obtained. This, in turn, gives the proper weights with this formula:

wh ¼ 10; 000 wpdk

where dk ¼ the ESS analysis weight and wp ¼ the ESS population weight.
This weight can be used in all analyses if the estimates for the population domains

in the ESS countries (i.e., not the countries themselves) are of interest. Such analysis
is much less common because the country differences are more interesting. Never-
theless, if it is only ethnic or socioeconomic groups, among others, that are of
interest, these weights are correct. Chapter 14 includes two examples of the use of
such weights—see Tables 14.6 and 14.7.

9.3 Sampling and Weights for Households and Estimates
for Individuals or Other Subordinate Levels

Here we have the correct household-level weights, wk, used for household estima-
tion, concerning income, for instance. The file also includes the number of household
members, with their ages and positions in the household. It is possible to estimate
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some figures so that their importance can be seen at an individual level or another
subordinate level. The weights for individuals are obtained by multiplying by the
number of household members (or equivalent consumption units). This therefore
means that the sum of the weights is equal to the sum of individuals in the target
population, or to the sum of equivalent consumption units.

This weighting generally is applied when analysing household income
differences because otherwise the household income depends on the composition
of the household. For instance, an increase in the number of income recipients
increases the disposable income, but an increase in the number of children, and
other economically inactive persons (without income or with low income), leads to
increasing consumption. Disposable or cash income per consumption unit is thus the
ordinary indicator in studies of income differences. The weights therefore need to be
converted at the same time.

Another question is which estimates can now be calculated if these variable
values differ within households but we do not present details about this point here.

9.4 Panel Over Two Years

Let the weights of year t be wk(t), and those of year t+1 be wk(t+1). The number of
respondents in the year t is r(t) and the number in year t+1 is r(t+1). Note that the
period from 1 year to the next might be greater than one. Because of unit
non-responses, r(t+1) < r(t). Here, we discuss the weighting for the panel analy-
sis—that is, income or other changes from the first wave of the panel to the next. This
weighting can be done using the balanced or the unbalanced panel approach, but we
concentrate on the balanced case because this is the most common. In this case, the
weights wk(t) are not concerned with the number of respondents in the second wave,
thus r(t+1). These weights thus need to be converted first for this number of
respondents. We do not present all the possible weighting strategies here because
these also are dependent on the auxiliary data available. For example, it often is
difficult to get updated auxiliary data for the non-respondents of both years. We thus
assume here that both weights are such that their sum corresponds to the target
population of each year—t and t+1.

The weights concern the same households, but the household composition may
have changed. Moreover, we need to calculate the changes at unit level from t to t+1.
What is the best way to do this?

Three alternative weights can be applied: (1) the weights for year t (corresponding
to Laspeyres’ index), (2) the weights for year t+1 (corresponding to Paasche’s
index), and (3) the (geometric) average of the two weights (Fisher’s ideal index).
Which should be chosen?

The answer depends on the target of the study. Case (1) is a good choice for a
cohort-type study, or a follow-up, and is commonly used in ordinary index
calculations as well because survey-period weights (for the period t+1) are difficult
to obtain. Case (2) corresponds to a retrospective approach. It is interesting to
compare these two estimates and to learn how the phenomenon progresses. The
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weights in (3) are between these two alternatives and are best comparable with cross-
sectional estimates; these estimates can be considered to be the most ‘neutral’.

Example 9.1 Income Changes in a Two-year Panel
This example comes from the Finnish income distribution survey that was
performed in the mid-1980s (1984–1986) (Laaksonen, 1991). This survey was
for a two-year panel, so every year a new wave was added while an old wave
was omitted. The age of the data is not important because similar principles
apply everywhere to income panels. Because this is a two-year panel, the
principles are easier to observe given that the changes are more substantial.

It is not important how the weights were created, but the first panel year
(¼ t) weights were updated for the second year in order to make their sums
equal to the target population size of t+1 (i.e., concerning households). In turn,
the weights for the second year (¼ t+1) were calculated to correspond to the
same target population. Naturally, these latter weights are more closely related
to the sampling design (i.e., stratified SRS with unequal inclusion
probabilities). The first year weights for the second year were calculated for
the respondents of the first panel year, but it was assumed that the inclusion
probabilities were on the same basis (even though the composition of the
households often had changed). The weights are thus a type of conditional
weight, but they are the best possible ones.

The survey was interested both in the cross-sectional figures and in the
panel results, which are changes at an individual household level. To calculate
these, the weights are needed. Table 9.2 presents the main results for
households. Income differences are measured with the coefficients of varia-
tion. We find that the first year weights show decreasing differences, whereas
the second year weights show increasing ones. When calculating the same
with the average weights, the change is small, but slightly decreases. This
difference is not significant.

The last column of Table 9.2 is for income changes (Laaksonen, 1991).
These are fairly different with the two weights. The result resembles the
changes in the index calculation. The first year weights are similar to
Laspeyres’ weights, which also lead to a higher change in the index field.
On the other hand, the second year weights give results in the opposite

(continued)

Table 9.2 Income differences and changes with two types of weights

Weight
Coefficient of
variation, year t

Coefficient of variation,
year t+1

Mean income
change

Weights of year t 0.540 0.529 0.190

Weights of year t+1 0.529 0.535 0.107

Geometric average of
two weights

0.534 0.532 0.143
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Example 9.1 (continued)
direction, in the same way as Paasche’s weights in index theory
do. Consequently, the geometric average weight (i.e., Fisher’s ideal index)
would be recommended for cross-sectional purposes.

Reference

Laaksonen, S. (1991). Comparative adjustments for missingness in short-term panels. Applications
to questions of household income distribution. Studies 179, 66 pp. Helsinki: Central Statistical
Office of Finland.
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Statistical Editing 10

Nicely edited?

Statistical editing, or statistical data editing, is a significant and important part of a
survey process. If the raw data has not been edited in any way, editing may require a
great deal of time and resources. Typically, this is the case if a paper questionnaire
has been used; all other modes give an opportunity to do some pre-editing, therefore
the final editing ought to be easier.

This chapter presents the core methods and tools for editing; we start with its main
purpose. This topic has been specified more thoroughly and theoretically and
practically determined since the 1990s, the paper by Granquist (1997) being one
pioneer document. Later, much work in the field has been done as part of the United
Nations Economic Commission for Europe (UNECE) work sessions. The UNECE
published a useful document on data quality in 2006. Moreover, it maintains a
glossary of terms on statistical data editing, which is available on the Internet.
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This chapter uses this Commission’s work, but unlike the UNECE we do not
concentrate on this topic from the point of view of official statistics. For example,
we only use some key terms from the UNECE’s glossary (2017).

Statistical editing is a crucial part of the quality assurance of survey data as well as
survey processes. The first point is related to the quality control and improvement of
data, and we focus on it now. Yet, it also is necessary to look forward and to
document the strong and weak points of the survey process so that lessons can be
learned for future surveys. This often has been forgotten, and thus the same errors or
mistakes are repeated. In addition, it is useful to look at other similar types of
surveys, to take a glance at how they are edited, and to make use of the information
gained in the best way.

Specific tasks of statistical editing
– Evaluating and developing the survey process for the future, with the goal of

‘learning by doing’. It is good if similar surveys follow what has been done in
your specific one.

– Developing a system that helps to reduce the manual work in editing—by using
selective editing, for instance. The purpose of this is to concentrate on detecting
the most fatal errors in the data, such as those that may have a significant impact
on data quality.

– Detecting, checking, and correcting errors at the micro level so that the results at
the macro (aggregate) level also are plausible and reliable.

– Paying special attention to missing values so that they are coded with as many
codes as possible or are left as missing. At the same time, a preliminary decision
needs to be made on what to do about missing values in the data analysis. If a
decision is made to impute these partially or entirely, it is valuable to do this at
this stage, because thought also needs to be given to which auxiliary variables
could be used in imputation.

– Providing indicators that describe the changes made during editing and
explaining how some core estimates have been revised (‘improved’) by editing.

– Estimating the workload of the editing (and imputation).

10.1 Edit Rules and Ordinary Checks

Edit rules are the guidelines for checking the correctness of individual variable
values. The UNECE glossary (2006) describes an edit rule more broadly: ‘A
condition or algorithm used to detect, and possibly prescribe treatment for, anoma-
lous and erroneous data. Edit rules can be applied at unit or aggregate level.’

Edit rules may be more or less strict; this can be determined by gates given for
each value to be checked. If the gate is narrow, the values are checked more precisely
than in the other cases. This means that if the gate is wide, editing does not lead to
many changes or possible improvements. Thus, the edit workload depends signifi-
cantly on the width of the gates for editing.
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The quality is expected to be better if the gate is narrower, but everything depends
on how well a possibly erroneous value can be corrected. If it is possible to check all
suspect values with the respondent (using the list of suspect values), this is excellent;
however, it is not possible in most human surveys. Fortunately, it often is possible in
the case of surveys at large businesses.

If the suspect values cannot be checked against the true values, the only strategy is
to make the suspect values believable, plausible, or logical. This means first that they
should be at the correct level or (i) within the predetermined range of each variable.
It is relatively easy to do this as early as the time of data entry, thus as part of
pre-editing. This is the first edit rule and always should be followed, nonetheless it is
not always clear which values can be accepted. In the case of closed questions in
computer-assisted questionnaires—that is, when only certain categorical values are
accepted—it is quite easy to check whether the values are acceptable, but for
continuous variables it may be more difficult.

It is possible to have different acceptable values for different subgroups (e.g.,
gender, age, or education level). According to the UNECE, this is (ii): the second
edit rule, which states that one value may depend on the value of another variable.
This is a bit more demanding in computer-assisted surveys, but it is possible to apply
it. There is a danger that a respondent would not like it if his or her answer was not
accepted because of another answer the individual gave. The rule therefore should be
used carefully in pre-editing, but in the post-fieldwork editing stage it should be
applied; the solution may not be nice always because it will be necessary to change
one or both values in order to obey this edit rule.

To generalise, a third edit rule, (iii), thus can be one-, two-, three-, or multidi-
mensional. The number of suspect values obviously is growing at the same time;
consequently, the workload for checking and correcting implausible values is
increasing. Usually, the logic for various values seems to be more important than
that the value is absolutely right—for example:

– If the age of a person is 10, and he or she has a child, it may be best to change the
age but to keep the child there.

– If the age of a person is 20 and he or she is a university professor, either the age is
wrong, or the occupation is wrong.

– If a person is unemployed but has a wage of €5000, one of these values obviously
is incorrect. It is good to look at the other answers as well before correcting one
value.

– If a person’s occupation is a cleaner and he or she is well educated, this may be
possible but it also is possible that one of the answers is not correct. It is good to
look at the other answers before altering one of them, unless it is not possible to
ask the respondent again.

A special multidimensional edit rule—that is, rule (iv)—uses a linear or another
multivariate regression model in which the dependent variable is the one that
researcher wants to check, or the variable of interest; several explanatory variables
are selected, and the model is estimated. The residuals are then calculated and
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ordered. The extreme residuals are examined first. It is possible that these are the
result of an error in the dependent variable or an error in one or more explanatory
variables. Of course, all the extreme residuals are not errors, but they are still
interesting. If the responses are from a paper questionnaire, it is possible to check
these answers. By doing this, it may be found that there has been a data entry error.
This is easy to correct.

10.2 Some Other Edit Checks

Identifiers may play a significant role in surveys, particularly for survey institutions.
They are unique identifiers such as a personal identity code or business entity code.
In addition, an identifier may consist of several variables (e.g., first name, second
name, date of birth, and birth year). All these are confidential and should not be
released to outsiders without permission. On the other hand, they should be correct,
thus they should be checked and, if necessary, corrected. All correct identifiers
should be maintained in the survey institution’s files for as long as feasible.

Moreover, the confidential identifiers may be converted into a protected form so
that this file can be released to outsiders as well. The conversion rule should be
stored because it may be needed later. It is good to use some type of randomisation in
this conversion. Because of mistakes in data entry, it is possible, for example, that
when two sets of data are merged, the same two identifiers (duplicates) are found in
the new file. One of these should be deleted. This is part of the editing work.

Extreme or other exceptional values may be awkward. These are often called
outliers. On the other hand, the data file also contains inliers that look like ordinary
values until they are controlled against one or more other variables, then they no
longer look ordinary. In editing, it is most important to detect values that are not
correct. An erroneous outlier is called an out-error, and an erroneous inlier an
in-error. It is to be hoped that such errors will not exist in the cleaned data.

Unless the questionnaire and the data entry already have been given good codes
for missing values, such coding should be made at the editing stage. One rule is that a
missing value should never be coded as ‘zero’ because zero is usually a proper value.
Instead, the best codes for missingness are negative ones (e.g., �1, �2, �3, �4).
The ESS and many other surveys use codes that are very different from the proper
codes (e.g., 7, 8, 9, 77, 88, 99, 6666).

" Comment on Correcting Outliers It is important, of course, to correct
outliers if they are erroneous, but many such extreme values are correct.
How should these values be handled?

1. The best solution is to handle them in the same way as the other
values in relation to the aggregate statistics that are based on the
complete target population or the register, in particular.
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2. Although the complete target population is used, the average is not
always the best indicator for variables with a skewed distribution. The
median or another more robust indicator is better than the average in
the case of income or wages, for example. Laaksonen et al. (2015)
used the median and then determined ‘poor grids’ and ‘rich grids’
using register-based tax incomes; if they had not done this, it would
have been possible that one rich household would have determined
that a grid was ‘rich’.

3. In the case of a sample survey, one outlier can affect the estimate
significantly, especially if its sampling weight is large (e.g., in the
thousands). One solution is to change this weight so that it
corresponds to its share in the target population. The minimum
weight is naturally one, but often it may be somewhat higher. If
correct information is available, it is possible to determine this.

4. The simplest solution for handling an outlier is to categorise this
continuous variable into an appropriate number of categories so
that the last group includes all values above a certain threshold.
This does not work if, for example, one wishes to measure income
differences with the Gini coefficient or a similar good indicator.

10.3 Satisficing in Editing

In Chap. 3 we considered problems of replying and introduced the term ‘satisficing’.
One consequence of satisficing is ‘straightlining’, and the other is ‘item non-re-
sponse’ with no real reason. These may be found if editing is done well, but it is not
necessarily easy to do so.

What should be done if satisficing, or straightlining, has definitely been detected?
One reaction could be to mark the whole answer as a non-response because too many
answers are implausible, therefore code it as a unit non-response. If half of the
answers are not plausible, it is possible to change these to missing answers (i.e., item
non-response) and to use an applicable meta data code such as ‘deficient’.

10.4 Selective Editing

Selective editing is used successfully in business surveys where the fact variables are
common. It is possible to use it for other variables as well. There are several
approaches to selective editing, but the basic idea is to construct a model, which
can be a statistical model or a mathematical model such as a function, that predicts
the probability that a certain value is erroneous (i.e., error-localisation). In editing,
the values with the highest error probabilities are first checked and corrected the
most carefully, and those with low probabilities are checked less carefully or even
left as they are or allowed to be corrected automatically.
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When developing a selective editing model, it is good to train it with a so-called
training dataset that has first been checked against a smaller dataset, often more
manually, to test the workability of the model. When the model has been found to
work, it can be run over all the data.

Selective editing can be used more manually as well, keeping in mind those
values that may have a significant influence on the core estimates of the survey. In
practice, this can be organised so that the team members look separately at individual
values from various parts of the data and collect possible problematic values, at least
taking a (stratified) random sample. When a list of problematic cases is available, it is
possible to check for similar cases in the whole dataset using a computer program.

10.5 Graphical Editing

Graphical editing often is useful because it helps with detecting outliers that can be
out-errors or in-errors. Nowadays, there are more and more multidimensional statis-
tical graphs that can identify possible errors. Unfortunately, it still is not easy to
check whether it is just these values that are erroneous or whether there are others
connected with them.

Figure 10.1 shows a simple example of graphical editing. Its scatter plot is from
the ESS, the x-axis being for ‘Happiness’ and the y-axis for ‘Life satisfaction’; these
variables are well correlated (coefficient of correlation ¼ 0.71). The graph also
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includes the 95% confidence intervals of the linear predictions. It is obvious that the
values outside these intervals are often erroneous; however, which are the ones that
are errors and should they be corrected? It is difficult to answer this, and we do not
have a good answer. Anyway, it is good to look at and report such cases.

10.6 Tabular Editing

Table 10.1 shows the graph in Fig. 10.1 in tabular form, which may help when
thinking about whether to revise some values and how to handle them further in the
analysis. The values that are far away from the diagonal are not plausible. It is
difficult, for example, to understand that the score for Happiness could be 10 but the
score for Life satisfaction is 0. Fortunately, the number of such cases is relatively
small. To the author’s knowledge, most analysts do not revise these values, but it
would be possible to omit the strangest ones shown in Table 10.1.

10.7 Handling Screening Data during Editing

It is useful to create two variables if one filter is used, one for the entire target
population and the other for the restricted population with the filter variable (e.g., for
those who replied ‘yes’). Table 10.2 shows this case and continues from the example
on designing the questionnaire (see Example 3.2 in Chap. 3). The quantity estimates
are equal, but the prevalence is, in most cases, more interesting. We can see that the
prevalence is essentially different for the whole population and the population with
one or more cars.

10.8 Editing of Data for Public Use

Ordinary editing checks the range of individual values for each variable to see
whether it is plausible. It is more difficult to edit the data conditionally (i.e., checking
that the values of two or more variables are plausible). This means that the end-user
should do this checking himself or herself and therefore continue the editing if
implausible values are found.
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Example 10.1 Cross-Tabulation of the Two Categorical Variables for Logical
Checking (Two-Dimensional Edit Rule)
This example is from the ESS in which two variables were checked to see how
logical the values are. Both variables are for time spent watching TV; the rows
are for total watching time, and the columns are for time spent watching
politics, news, and current affairs. It is clear that the total watching time should
be at least as great as the time spent watching a particular type of program. By
cross-classifying the answers, it can be seen that not all the answers are logical.
This therefore shows that even when using face-to-face (f2f) interviewing not
everything works correctly (Table 10.3). The answers in red are not logical.

We may wonder about several things in the table, for example:

– Positive values in the upper right corner are not logical
– What does ‘not applicable’ mean because it is non-zero only in one cell;

does it mean that the respondent has no TV?
– ‘Don’t know’ for the total time spent watching TV looks strange if an

answer is given for the time spent watching TV news and so on.

How should the TV watching variables be edited? It is at least possible to
change all the values for total time watching TV to the same level as that for
time watching politics, news, and current affairs.
It is possible to use a specific categorisation based on the subject matter targets
of the study so that the missingness codes are in the group of ‘others’. If ‘not
applicable’ means that the respondent has no access to TV, this could be a
specific small-scale study. We checked what this conveys, and the result is
shown in Fig. 10.2. Most rates are rather low, but the one for Israel
(IL) resembles an outlier. We do not try to interpret this result here, but it
would be good to try to do so in a proper survey analysis. For example, if this
‘No TV_rate’ is correct, would it be useful to explain why it is so high in
Israel?

A categorical variable, such as ‘TV_Watching’, can be changed to a
continuous form, but this cannot be done very precisely, mainly because the

(continued)

Table 10.2 Example of the use of editing for screening: Car stolen in the last 5 years

Prevalence, % Number of stolen cars

Unweighted
Using adjustment
weights Adjustment weights

The entire target population 2.25 2.34 268,174

Households with one or
more cars

2.55 2.66 268,174
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Example 10.1 (continued)
last alternative has no upper limit. We carry out one transformation to give a
better understanding of the logic between those two variables. This transfor-
mation is as follows:

if tvtot ¼ 0 then TV_Watching_All ¼ 0;
else if tvtot ¼ 1 then TV_Watching_All ¼ 0.3;
else if tvtot ¼ 2 then TV_Watching_All ¼ 0.8;
else if tvtot ¼ 3 then TV_Watching_All ¼ 1.3;
else if tvtot ¼ 4 then TV_Watching_All ¼ 1.8;
else if tvtot ¼ 5 then TV_Watching_All ¼ 2.3;
else if tvtot ¼ 6 then TV_Watching_All ¼ 2.8;
else if tvtot ¼ 7 then TV_Watching_All ¼ 3.5;

The same transformation is made for ‘TV_Watching_Politics’. These
transformations can be criticised, but it is now possible to compare the
countries with each other, for example—see Table 10.4. The countries are
sorted by the last column.

The table clearly shows that watching news and politics on TV is much less
common than watching everything else on TV. These mean aggregates are
logical, although some individual answers were not. We do not interpret these
results further.
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Fig. 10.2 ESS countries by the rate of ‘not applicable’ (no TV) as an answer to the question about
watching TV news, politics, and current affairs.

Table 10.4 Averages of total TV watching and TV watching of news and politics for the ESS
countries, Round 7

Country Total TV watching TV watching politics Share of TV watching politics

Hungary 2.09 0.59 0.28

Czech Republic 2.24 0.66 0.30

Ireland 2.06 0.68 0.33

Austria 1.89 0.63 0.33

United
Kingdom

2.21 0.78 0.35

Belgium 1.92 0.69 0.36

Slovenia 1.61 0.60 0.37

Switzerland 1.38 0.52 0.38

Lithuania 2.11 0.80 0.38

Germany 1.80 0.68 0.38

Netherlands 2.03 0.83 0.41

Poland 1.73 0.73 0.42

Israel 1.64 0.70 0.43

Estonia 1.87 0.81 0.43

Sweden 1.59 0.70 0.44

Denmark 1.90 0.86 0.45

Finland 1.66 0.78 0.47

Spain 1.86 0.87 0.47

France 1.95 0.92 0.47

Norway 1.70 0.81 0.47

Portugal 1.72 0.85 0.49
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Introduction to Statistical Imputation 11

Impute or not, Athens

Chapters 11 and 12 are concerned with imputation methods and tools. The first of
them gives an introduction that explains the term itself and looks again at
missingness issues that have been considered already. Now the main concern is
whether to use imputation. Imputation is not automatically recommended: it should
be used only if the results are expected to become better.

The next chapter presents a framework for imputation methods and techniques.
We do not try to present all the possible methods, but we cover the subject in such a
way that a competent user can apply imputation with adequate knowledge of
informatics or by using a general or specialized software package. It is worth
studying other approaches to imputation as well, using the references of Chaps. 11
and 12.

# Springer International Publishing AG, part of Springer Nature 2018
S. Laaksonen, Survey Methodology and Missing Data,
https://doi.org/10.1007/978-3-319-79011-4_11
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Advance Reading
It would be good to understand the following methodologies and tools, in
addition to the terms and concepts of Chap. 2, before going further into this
chapter:

– Missingness mechanisms (Chap. 4)
– Item non-responses and the reasons for them (Chap. 7)
– Importance of auxiliary variables (Chaps. 2, 5, 6, 7, 8, 9)
– Linear regression models (Statistical books)
– Logistic (logit) regression models (Chap. 7)
– Probit regression (Chap. 7)
– Response propensity (Chap. 7)

Survey data can be complete in theory and, in simple cases, in practice. The
sample then covers all the target population units without any missing values (i.e.,
the MN mechanism, see Chap. 4). Even if the inclusion probability is one, but not
everyone replies, the case might be awkward unless the response mechanism is
ignorable. Most surveys are sample-based, thus missingness is intentional. If the
sampling design follows the correct probability rules, the gross sample allows one to
estimate the desired point and interval parameters without problems.

These formulas work well even in cases in which the response mechanism is
missing completely at random (MCAR). The only drawback is an increased interval
estimate (i.e., standard error, confidence interval) given that the number of
respondents is smaller than the number in the gross sample. There are basically
three techniques for dealing with non-responses: (1) weighting and reweighting (see
Chaps. 5–8), (2) analysis so that missingness is considered by modelling, and
(3) imputation.

We do not include any details in this book about (2) (see, e.g., Heckman, 1979;
Pfefferman, 1993; Vannieuwenhuyze et al., 2010), but do present a framework for
using imputation. This field is very broad, and there are many frameworks,
approaches, and methods for imputation that are applied both in theory and in
practice. It is not possible to include everything in one chapter, so readers should
look at the books and articles in the reference list as well.

The main ‘competitor’ for imputation is obviously ‘data deletion’, which could
be considered as the baseline method for imputation. In this case only the observed
values are used in the analysis. In one-dimensional analysis we leave out only the
missing values for this particular variable; however, in ordinary multivariate analysis
we only include those statistical units with variable values that are fully observed.
Thus, the amount of data may be reduced dramatically. Data deletion works, to some
extent only, if the response mechanism is MCAR, although standard errors will
increase.

In this chapter first defines the term imputation and the targets for imputation, and
then presents some data-handling tools that do not require any proper imputation.
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The main purpose of the chapter is to present an appropriate framework for imputa-
tion so that we can apply this in practice in the next chapter using concrete real-life
examples.

11.1 Imputation and Its Purpose

Imputation is the insertion of a value into the data in a more or less fabricated way
(i.e., ‘best proxy’) for the following reasons:

– There is no value in this cell—that is, it is completely missing.
– The existing value is partially missing (e.g., it is given as an interval), and there is a

desire to replace this with a unique value to get a more valid estimate of the
distribution (including percentiles, standard deviation, and coefficient of variation).

– The existing value does not seem to be correct; consequently, there is a desire to
get a more reliable value by replacing it with a more plausible imputed value.

– The current value seems to be too confidential so that the identity of this individ-
ual unit would be disclosed. The fabricated (i.e,, imputed) value can be consid-
ered less problematic, even though it is clear that it is not a true value.

Imputation can be performed for both macro and micro data, but here we only
consider the imputation methods for micro data. Nevertheless, basically the same
methods can be applied to macro data; usually, this imputation is more limited so that
simpler methods are enough.
A missing, or other inappropriate value, can be imputed once, which is called single
imputation (SI), or many times, leading to varying imputed values—that is, multiple
imputation (MI). We present SI methods first, and MI after that. We do not
concentrate on imputation because of confidentiality; thus, we focus mainly on
replacing a missing value with a best possible proxy.

" Imputation Because of Data Confidentiality Although we do not really
address this issue, it is worth remarking that multiple imputation might
be advantageous in this case. The reason is that there are then several
imputed values in the dataset, and it is therefore more difficult to identify
a respondent unless all the values are close to each other. This, of course,
also depends on the imputation methodology (see, e.g., Reiter 2010). The
following is the big question.

To Impute or Not to Impute?
It is possible that one survey party is more willing to perform imputation than
another. It, however, is easier to perform imputation within the survey institute
that is taking care of data quality. An outsider, who is also an end-user, sometimes
still has to impute values if he or she is not happy with the results. The reality is that
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the insiders have more auxiliary and other variables available, partly because some
data might be confidential, so cannot be given to outsiders. The insiders are also
more familiar with the data process. Yet, the most important reason to impute
values is:

The pattern of the imputed values should be of a standard that means that the estimate using
the partially imputed variable is more valuable than the data without imputation. Thus, if
imputation is advantageous from an estimation point of view, it should be used. This leads to
certain requirements for the imputation methodology.

Naturally, surveys have several estimation tasks, and it can be the case that a
certain imputation is not advantageous in all respects. Thus, it is possible that some
estimates are computed with, and some others without, imputed values. On the other
hand, a big question is which imputation is best for each estimate. It also should be
noted that a bad imputation may lower the quality of the estimate. Users should
therefore be careful and will need to convince themselves and their clients that
imputation leads to some improvement.

Note, however, that all users and clients are happy if the number of missing
values is decreased. It thus is not always necessary to impute all the missing values,
but only those that have an impact on the estimates are influential. Moreover, much
depends on the estimate being of interest. The next subsection specifies this question
in more detail.

" Reasons and Strategies for Imputation
The following are various imputation reasons and strategies:

1. The first reason is the number of missing values and the impact if
there is no imputation. This is the most important practical
question:

– If the missingness rate is high, say above 50%, the data quality is
in most Icases bad if data are deleted, so users are unhappy. If the
missingness mechanism is ignorable, the results obviously are
moderately good. On the other hand, imputation would be easier
in this case than in the case of a nonignorable mechanism.

– If the missingness rate is low, say below 5%, but it has been found
that one or more influential respondents are missing (e.g., big
businesses in business surveys, or extremely rich people in income
surveys), everything possible should be tried to improve the data
quality. Imputation might be the only option.

– A high missingness rate is not usually as awkward for categorical
variables as it is for skew continuous variables, given that
the categories are determined optimally. For example, if the
respondents with extremely high incomes are in the same cate-
gory as the ordinary high-income respondents, it is not fatal if
some values are missing. On the other hand, these missing values
can be quite easily imputed into this high-income category.
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2. There may be aesthetic reasons, in the sense that a data file with an
‘ugly’ pattern of missing values does not convince users about the
data’s quality. Nonetheless, this also can be a good point—that is, if
the quality is bad, the user might be more careful in his or her analysis.
Of course, if the quality of the imputation is high, this is the best result.

3. The worst strategy is to complete the data without giving proper
attention to the quality of the imputation and to give no indication
as to which values are imputed.

4. In all cases, the imputation methodology should be documented so
that the user knows how much the data can be trusted.

11.2 Targets for Imputation Should Be Clearly Specified

The first one in this list is quite trivial but the next ones often are more realis-
tic (Chambers 2003):

1. A user will be happy if the imputed values are as close as possible to the correct/
true values—that is, there is success at an individual level. Another point is that it
is difficult to know how close the imputed values are to the true ones, except in a
few cases. This often may be too demanding a target, thus somewhat lower
standards are more realistic in practice.

2. A user will still be relatively happy if the distribution of the imputed values is
close to the distribution obtained from the true values (success at a distributional
level). Of course, it is difficult to check this, as well, but easier than in case (1).

3. Meeting a target of success at an aggregate level also is satisfactory, specifically
in statistical institutes, or other survey institutes, where estimates, such as aver-
age, total, ratio, median, point of decile, and standard deviation, are typical. These
can be checked, to some extent, particularly in when surveys are repeated.

4. Some users hope to get the order of imputed values as correct as possible, but
examples of this are rare in journals.

5. Finally, success in preserving relationships (e.g., correlations and covariances)
also is important in many studies.

Target (5) often is simpler to satisfy using weighting methods because the data’s
individual relationships remain the same; however, the weights change them to
some extent (and, it is hoped, in the correct direction) in the indicators. Target (1) is
difficult to check in cross-sectional surveys unless there are excellent auxiliary
variables (as seen later in this chapter). In practice, targets (2) and (3) are preferred
because indicators for their performance often can be found, particularly in
repeated surveys. Thus, we mainly use these criteria in the empirical imputation
exercises.
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11.3 What Can Be Imputed as a Result of Missingness?

The following possible imputation situations can be found:

– Undercoverage requires a new up-to-date frame. This is very seldom possible.
– The units with missing data are not selected for the sample. This is done in

theoretical or simulation studies, but not really in practice.
– There are unit non-responses for all or some variables. Then we can use mass

imputation, which competes with weighting methods. The purpose of mass
imputation is to complete the data in order to estimate everything from one
dataset. This helps to make all the estimates consistent with each other. It is
enough to achieve success at the aggregate level in such cases.

– There is item non-response. This is the most common case in practice, and we
only present examples of this.

– There are deficient and sensitive values. This is quite common, but we do not
present any examples of it.

11.4 ‘Aggregate Imputation’

It is not always possible to perform adequate imputation, but it is good to know
something about the missingness categories. One possibility is to analyse
missingness at the aggregate level. Here, we give an example from the European
Social Survey (ESS) in which ‘Objective income’ was one of the more demanding
variables. Its quality in the first three rounds (2002–2006) was fairly inferior, and the
values were even completely missing in some countries; however, since then the
quality has greatly improved. The strategy since Round 4 has been to use ten
categories, by income deciles, for each country. These income categories are all
that is needed for most analyses, although the ESS documents indicate the deciles in
currencies as well.

Nevertheless, there are four categories for missing answers: ‘Refusal’, ‘Don’t
know’, ‘Other missing’, and ‘No answer’. The first three of these are in the
questionnaire, but the last was added later because some missing values were still
found. Table 11.1 gives the counts of the respondents in each category for
14 countries in the ESS Round 7. We can see that the ‘No answer’ group is very
small but that the other three are about as large as the proper income decile groups.

The missingness rate for Objective income is relatively high, at 14.7%. This
means that we will lose this number at a minimum in all the multivariate analyses in
which Objective income is included. It therefore would be nice to know something
about those missingness categories. One strategy is to use auxiliary variables without
missingness or for which the missingness rate is low. We test one variable, ‘Age’,
without missingness here and another with a low missingness rate, ‘Subjective
income’. The missingness rate for Subjective income is 0.8%. This latter variable
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at the same time could be considered to be close to Objective income; thus, it is a
good auxiliary variable.

The Subjective income of the ESS is computed from the answer to the following
question: ‘Which of the descriptions on this card comes closest to how you feel about
your household’s income nowadays?’

Living comfortably on present income ¼ 1
Coping on present income ¼ 2
Finding it difficult on present income ¼ 3
Finding it very difficult on present income ¼ 4
(Don’t know) ¼ 8

We have rescaled this variable linearly so that it varies from 0 (very difficult) to
100 (comfortably). Table 11.1 also includes the averages of this variable and ‘Age’
for ‘Objective income groups’. ‘Subjective income’ and ‘Age’ have been tested as
auxiliary aggregate variables. Now, it is possible to see which types of groups form
the missingness categories. Figure 11.1 facilitates this comparison.
Figure 11.1 shows that the Objective income for ‘Refusal’ is between the 3rd and 4th
deciles, but these respondents are older than the other groups. The group of ‘Other
missing’ is close to the 2nd decile but is a bit younger on average. The group of ‘No
answer’ is very small but not far from the ‘Other missing’ group. The last fairly large
group, the ‘Don’t know’, seems to be the youngest; however, on average their
Objective income is relatively high. We can conclude that this ‘aggregate imputa-
tion’ sheds some light on the missing categories for objective income. It is possible
to use these two auxiliary variables for micro-level imputation as well, but we do not
give any examples in this book.

Table 11.1 Examination of missing objective income groups of the ESS Round 7 for 14 countries

Objective income group Respondents

Mean

Subjective income Age

1st_Decile 2083 48.2 51.8

2nd_Decile 2329 58.6 55.1

3rd_Decile 2280 63.3 54.4

4th_Decile 2439 68.6 51.8

5th_Decile 2421 72.1 50.2

6th_Decile 2432 75.8 49.7

7th_Decile 2448 79.5 46.7

8th_Decile 2301 82.5 45.7

9th_Decile 1832 87.6 45.8

10th_Decile 1885 93.7 46.6

Don’t know 1645 76.2 36.6

No answer 19 62.9 48.5

Other missing 2051 58.3 53.1

Refusal 2056 66.8 58.2
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Another conclusion is that aggregation is a useful tool for reporting some results
because it also gives the opportunity to continue toward statistical graphing. It often
is useful to gather several results under the same file, with the same row aggregates,
and this may be a good summary of the results. ‘Aggregate imputation’ is a tool for
reviewing missingness without proper micro imputation. There are other tools that
can be used for the same purpose, as described in the next section.

11.5 The Most Common Tools for Handling Missing Items
Without Proper Imputation

The following list summarises the most common imputation tools:

1. In the case of mass missingness, the weighting, or the reweighting, is generally
exploited. This is possible only for the respondents. The respective imputed data
therefore cover the non-respondents too (or those non-respondents whom one
wishes to include in the estimation). Note that one imputation strategy is a kind of
weighting method but with more flexible weights than the standard reweighted
sampling weights (see Real-Donor Imputation in Chap. 12)

Fig. 11.1 Graphical illustration of Table 11.1
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2. Item non-responses are marked with a coding that gives good coverage, such as:
• �1 ¼ respondent candidate not contacted—a problem here may be that we do

not know whether this unit belongs to the target population; such cases are
rarely imputed

• �2 ¼ respondent refused to answer (main reason for imputation)
• �3 ¼ respondent was not able to give a correct answer (possible to impute)
• �4 ¼ missing for other reasons
• �6 ¼ question was not asked of the respondent (imputation using logical

rules); see the screening case in Chap. 9
• �9 ¼ question does not concern the respondent

These codes are not used often, but codes, such as 7, 8, 9, 66, 77, 88, and 99, 6666,
are used too. Negative values are easy to observe. A zero (0) must not be used as a
missing code.

Good and illustrative codes also are useful when deciding on the imputation
method itself. When one is performing imputation, it is beneficial to try another
imputation technique for each missingness category because the nature of these units
might be different. This is rarely applied in this way in practice.

Moreover, it is good to state that the coded variable is then full, without missing
values. This kind of categorical variable can be used as an explanatory variable in
standard linear and linearized models, among others. Example 11.1 illustrates this
case in detail. If one wants to use a continuous variable, proper imputation is
required.

3. The values with missing codes are excluded from each analysis so that the
observation number may vary by variable.

4. This tool is like case (3), but now the units with missing values are excluded from
each analysis. In this latter case, the number of observations is always the same.
Standard multidimensional analysis does this automatically for those variable
patterns used in such an analysis. This strategy, ‘case deletion’, gives results that
are consistent with each other. This is still a relatively common strategy.

5. This tool uses pair-wise analysis for multivariate purposes, with the correlations
being the basis for further analysis. This operation first computes pair-wise
correlations as in case (3), then continues from the correlation matrix toward
multivariate analysis. We lose less information here than in case (4), but consis-
tent results are not easy to get.

Example 11.1 Multivariate Linear Regression for ‘Happiness by age’ Using
the ESS
Happiness by age is an interesting research topic among economists,
psychologists, and social scientists. Blanchflower and Oswald (2008) found
that happiness by age is U-shaped. This result has been obtained by others as

(continued)
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Example 11.1 (continued)
well, although not in all studies. The estimation is not based on any simple
frequency calculations, but on a linear regression model with some control
variables for personal characteristics. The explanatory variables can be differ-
ent, but usually they are things such as gender, education, and income. General
subjective health is used in some studies as well, but this is not accepted by all
researchers (Laaksonen, 2016).

We do not try to address the possibly critical questions here, but just
compare the Happiness by age with two types of model:

1. Applying case deletion, thus excluding all respondents without the com-
plete information.

2. Including the control variables in the model with missingness codes—that
is, with all variables being complete and without missing values. This
strategy is appropriate because all the control variables are categorical.

The dependent variable, Happiness, includes missing values. Fortunately, this
rate is low, less than 1%. The three control variables (i.e., Country, Gender,
and Age) are complete. We thus lose observations only in model (1), even
though there are missing codes in the other control variables.

Using the 2016 ESS data for 20 countries, the number of the observations is
37,845 in model (2) and declines by 16.7% to 31,551 in model (1). This
decrease is not very large, but it is still good to compare these alternative
models. We use a small model with the following control variables:

– Country
– Gender
– Age
– Age-squared
– Education level, with five codes and one missing category
– Objective income, with ten deciles and three missing categories

The Age variable thus includes two components that are commonly applied in
studies of Happiness by age (e.g., Blanchflower & Oswald, 2008; Laaksonen,
2016). This easily gives the possibility of checking whether Happiness by age
is U-shaped.
The variable Happiness is measured so that the minimum is 0, for ‘Extremely
unhappy’, and the maximum is 10, for ‘Extremely happy’. This variable is a
dependent variable in the linear regression model. Its R-square increases
slightly when the missing categories are deleted, from 11.4 to 12.6%. When
comparing the regression coefficients of the missingness codes of model
(2) against the codes of model (1), we find that the closest category for the

(continued)
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Example 11.1 (continued)
‘Refusal’ and ‘Don’t know’ groups is the 5th decile, whereas the closest for the
‘Other missing’ group is the 1st decile. In the case of education level, the only
missingness group is close to the lowest education group. We can therefore
conclude in general that the happiness of the respondents who do not want to
state their income, or who do not know it, are well educated and their income is
either average or lower.

The estimates of the observed categories do not differ much from each
other. Consequently, the age estimates also are relatively close. The U shape is
found with both models, as Fig. 11.2 shows. The minimum age for model
(2) is 55.3 years, whereas the minimum age is 53.7 years for model (1).

This difference is so small that we could be happy with both models if we
were only interested in whether there was a U shape. On the other hand, we
find that the model with missingness categories works correctly and gives
additional information about the behaviour of the happiness of the missingness
groups. The following colours are used in the graph:

Red ¼ Model with missingness categories for education and income
Blue ¼ Model without non-respondents

In addition, we estimate the same model only for those with missing categories,
the 16.7% of respondents mentioned earlier. Their U curve is compared with that for
all the respondents in Fig. 11.3. Now the minimum is higher, 61.9 years, and the
happiness level is a bit lower. Still, the U curve is found fairly easily. Now we can
conclude that the handling of missingness in this way matters, but not dramatically.
The following colours are used in the graph:

Red ¼ All respondents
Blue ¼ Respondents with missing codes for income and education
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Fig. 11.2 ‘Happiness by age’ in ESS Round 7 for 20 countries
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11.6 Several Imputations for the Same Micro Data

We present a number of appropriate imputation methods in Chap. 12, but often the
practical problem in surveys is to decide whether several incomplete variables
should be imputed on the same occasion. Naturally, one or two key variables
might be of the most interest. We cannot give any ‘perfect’ advice for those who
are concerned with the quality of micro data; nonetheless, we give some suggestions
using a general example first and follow them with comments.

Example 11.2 Possible Imputation Strategies in the Case of Item Non-responses
of Five Variables
This artificial example includes six variables altogether. Variable x1 is such
that it is completely observed. The data file can include other such variables as
well. They also can be used for weighting if they are available for the
non-respondents or for the target population. Here they can be used for
imputation. There are five variables—y1, y2, y3, y4, and y5—with item
non-responses that are of interest to users. The dataset includes 2000
respondents.

The ordinary task is to examine missingness. This is done here so that the
averages of the item response indicators are calculated. These indicators are
symbolised with the ending ‘_resp’. The last row of Table 11.2 gives these
item response rates. The order of the variables in the table is by these rates. We

(continued)
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Fig. 11.3 Happiness by age in the ESS Round 7 for 20 countries, for the missing category
respondents
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Example 11.2 (continued)
find that the rates for the first three variables are very high, but those for the
other two are much lower. Nevertheless, we can say that all the single rates are
relatively high and that it is therefore possible to think about imputing the
missing values. By contrast, if the rate was very low, say below 50%, it would
be more challenging to impute these values.

Complete responses are received from 73.2% of the unit respondents.
Multivariate analysis with these variables (case deletion) could thus violate
the estimates. The item response rates for each of the five variables are
substantially higher, but clearly vary. We should therefore think seriously
about imputation; Table 11.2 is a good starting point for this. Rows 13, 15,
and 16 of the table cover 21.7% of the observations, and only one variable is
missing for each. We thus have the opportunity to use all the complete
variables as auxiliary variables and to hope that they will help with imputation.
It is possible to continue to impute all the missing values, or if the completion
rate of 94.9% after the first three imputations is enough, to use these
observations only. Yet, it does not matter much if some imputations are not
very successful in all the analyses.

Row 1 in the table requires one imputation only, with the ‘x1’s as the
auxiliary variables. In practice, it can be necessary to impute more than one
value, as with this small artificial dataset. Using the table, it is helpful to
recognize the term ‘sequential imputation’, which means imputing one vari-
able first, then taking these imputed values as a new auxiliary variable when
imputing the second variable, and so on. Various strategies could be followed
for sequential imputation in the Table 11.2 case. For example, it would be
possible to impute row 16 (i.e., y5 ¼ 0 of it). These 207 values thus would be
the new auxiliary values when imputing row 15, and possibly the whole of the
column y5 ¼ 0. If the imputed variables are used as auxiliary variables, their
quality should be sufficiently high, or the imputation may deteriorate the
estimates. We do not present an example of sequential imputation in this
book (see, e.g., Kong, Liu, & Wong, 1994; Little & Rubin, 2002).
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Imputation Methods for Single Variables 12

Seasonal imputation

This chapter considers imputation methods for single variables. Naturally, it may be
necessary to impute the values of several variables in each dataset and to carry out
several imputations for each dataset. It is essential to understand the basics of
Chap. 11, which presents the starting point for imputation methods. It is helpful to
look at that chapter for the core terms, but an important question is also why one
should, or should not, use imputation. Before answering this question, it is necessary
to analyse the missingness and the reasons for it thoroughly. Then again, it is good to
remember that the imputation methodology always depends on the case; thus, each
variable should be separately imputed even though the principles of the method used
can be similar. Successful imputation therefore is ‘tailored’ to the specific case, and
the best results are obtained if the ‘imputation team’ has sound knowledge of the
basis of the data and its quality.

It is not advisable to put too much trust in automatic and mechanical imputation
software. It, technically, can be used if its quality has first been checked. Such
software easily can fill in the data gaps for several variables during the same run, but
this should not be a core target. As noted in Chap. 11, the minimum target is to
estimate some aggregates and distributions reasonably well using partially imputed
data. This possibly can be achieved using automatic tools; however, the user first has
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to convince himself or herself, and then the main users of the results, that the
estimates are less biased than if there had been no imputation.

The framework for imputation is not standard, but largely follows the terms of
Rubin (1987, 1996, 2004), for example. It also is worth reading other books and
articles—for example, those by Allison (2005), Carpenter and Kenward (2013),
Enders (2010), Muñoz and Rueda (2009), Laaksonen (2003), Laaksonen and Piela
(2003), Laaksonen et al. (2004) and Laaksonen (2016a, 2016b), Here, we approach
imputation methods more generally first, describing the imputation process.

12.1 Imputation Process

Imputation is part of the data-cleaning process. It can be considered to include the
following six actions:

1. Basic data editing, during which it is determined which values it is desired to
impute.

2. The acquisition and servicing of auxiliary data, including preliminary ideas to
exploit these. This mainly concerns those variables that are not in the survey
dataset, and thus also includes variables used for the unit non-respondents, which
may need to be downloaded from the same sets that contain the ordinary survey
variables. On the other hand, each micro data file includes other useful auxiliary
variables, and it is good to identify such values that are not completely missing
(item non-responses).

3. Imputation model(s): One or more models are needed for each imputation. At this
stage, the model should be specified and estimated, and the outputs saved for
further use.

4. Imputation task(s): The outputs of the imputation models and other tools are used
to impute the desired missing values. It is possible that new editing will be needed
if the imputed values do not match the edit rules.

5. Estimation: That is, point estimates, with the imputed values used as well. In
addition, the variance (i.e., sampling variance plus imputation variance) is
estimated.

6. Creation of the completed dataset, or several datasets: This includes good meta
data and information about the imputed values; if possible, the imputed values
should be flagged unless data confidentiality is an issue. The documentation for
the imputation process and the methodology should be available as well. It is not
necessary to include all the details in public files, but everything should be
available inside the survey institution.

This chapter now focusses on actions (3) and (4), but action (5), relating to the
results after imputation, repays attention. We only include estimates of the imputed
values in most examples because these better illustrate the performance of the
imputation method.
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These two core actions (i.e., imputation model and imputation task) should be
integrated appropriately into the imputations. This means, for example, that both are
programmed thoroughly, and that the imputation results can be immediately checked
if the model specification has changed. Next, we present the basic principles behind
these two actions.

12.2 The Imputation Model

There are two alternative imputation models:

1. The model may be determined using smart logical information so that it gives a
good prediction for the case for which imputation is required. It may use a
deterministic (or stochastic) function, such as y ¼ f(x) (+ a stochastic term e),
or a rule (as in editing) such as ‘if this but not the other, then the missing value is
that’.

2. The model may be estimated using either the same data for which imputation is
required or other data that is similar (at least in its structure and model variables)
to the present data.

The following is a recommended strategy. First, try to impute values using alterna-
tive (1) as far as possible—this is called logical or deductive imputation. Second,
impute the remaining values using alternative (2). We do not present any concrete
examples of alternative (1) because its applications are closely related to the specific
survey. We thus concentrate on alternative (2).

Imputation model (2) is always a model with a purpose that is to predict
something, using auxiliary variables as independent variables.

The dependent variable of the imputation model being estimated can be of two
types:

(A) The variable being imputed or
(B) The missingness/response indicator of the variable being imputed.

Case A can cover all possible forms of variables, both categorical (including
binary) and continuous, but in Case B the dependent variable is binary. The model is
‘single-level’ in the examples here but multilevel modelling can be used as well (see,
e.g., Lago & Clark, 2015).

These two models are estimated from two different datasets:

(A) from the respondents (observed units) and
(B) from the respondents and the non-respondents. Still, the explanatory variables

should be available from both the respondents (observed units) and the
non-respondents (unobserved units) in order to estimate the predictions of the
units without missing values.
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The predictions are of various kinds. In Case A, they correspond to the values
of the variable being imputed. In Case B, the predictions are the estimated
response probabilities or response propensities, which is like the position in
reweighting (see Chap. 8). Note that a categorical explanatory (i.e., auxiliary)
variable with missingness codes may work reasonably well in the imputation
model (see Example 11.1).

If Case A concerns a continuous variable, then the most common model is linear
regression or its logarithmic version. Recently, linear-mixed models also have been
applied, and these models may be better than linear ones if the measurements are
from two levels.

Regression models are easy to use, and the model fit (R-square) is a good general
indicator for the performance of it. It is therefore good to recognize this indicator
when searching for the best auxiliary variables, or covariates, in the model specifi-
cation phase. This will be the first real operation when carrying out imputation. Its
result can be used in the imputation models in Case B as well. The model fit also is
useful when comparing various methods.

It is, however, good to repeat that the predictions of the model are used later. For
this reason, their quality should be equal over all values of the variable. Case B
concerns a binary variable (1 ¼ responded/observed, 0 ¼ not), but a similar model
can be used for Case A if the dependent variable is binary (e.g., 1 ¼ employed,
0 ¼ unemployed).

When using a binary model (i.e., either Case A or Case B), the link function needs
to be selected, as in reweighting (see Chap. 8). This can be logit, probit, log–log, or
complementary log–log. There are no dramatic differences in explaining the models
between these link functions, but they are not exactly alike of course. Imputation
thus requires using this model for predicting the response propensities for all units
(i.e., respondents and non-respondents). That is, the first outputs are values between
0 and 1. In Case A when a binary variable is being imputed, the predicted values are
also between 0 and 1, but these indicate estimated relative frequencies.

In addition to ordinary models, such as linear regression or probit regression, the
imputation model can be nonlinear and nonparametric. An interesting example of the
latter type is tree modelling. If the dependent variable is categorical, we talk about a
classification tree (random forests is its newer version), whereas the model for a
continuous dependent variable is a regression tree (see the AUTIMP project in
Chambers et al., 2001).

Moreover, neural nets often create analogous groups of the gross sample. This
kind of a group is called an imputation class or imputation cell in imputation
terminology. Imputation cells also can be constructed manually or by using smart
statistical thinking. For example, strata or post-strata can be relatively good impu-
tation cells. Given that the imputation cells are homogeneous from the ‘imputational’
point of view (especially if MCAR holds true within cells), they offer many
advantages. Thus, imputation cells can be constructed with ‘smart thinking’— for
example, so that the model of Case A or Case B can be estimated twice by gender if
one thinks that the predictions vary by gender. Regions and age groups can be
suitable imputation cells as well.
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Concluding Points About Imputation Models
Predicted values will have a big role when beginning to impute—that is, at the stage
of the imputation task. The important point is that the predicted values should be
available both for respondents and non-respondents; specifically, the auxiliary
variables should be complete given that it is desirable to impute all missing values.
All the previous predictions can be attempted. We have observed that there are many
similarities as well as essential differences; however, we cannot say for sure which
method is finally going to be the best, or even whether there is a best method.

It would be expected, however, that some methods, even though they are used in
real life, are not good. If the imputation model is to be sound (i.e., to predict well),
most imputation task choices work quite well. Thus, if the imputation model is
effective, it does not matter much which imputation task is used. Still, most real-life
applications are not as easy, and imputation models therefore do not fit very well
with the empirical data. Nevertheless, it often is necessary to perform imputations.
This means that the best choice of methodology is frequently a compromise.

12.3 Imputation Tasks

Two alternatives can be utilized after the imputation model has been estimated:

• The model-donor approach, in which the imputed values are computed determin-
istically (or stochastically) from the predicted values of the model (adding noise
in the stochastic case).

• The real-donor approach, in which the predicted values (or the values with added
noise) are used to find the nearest or a near neighbour of a unit with a missing
value from whom an imputed value is borrowed.

The imputed values in the first case are not necessarily observed, except that they
often are for categorical variables—although they can be converted to possible
values after preliminary imputation. On the contrary, the imputed values of the
second case are always observed values, being observed at least once among the
respondents.

Scheme 12.1 Integrating the imputation model and the imputation task
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To integrate the model and the task, we have the options of those set out in
Scheme 12.1. This means that the predicted values of the missingness indicator
cannot be used directly for model-donor imputation.

" Comment on the Terms We can find the terms ‘hot deck’ and ‘hot
decking’ in the imputation literature. This mystic concept is derived
from the 1950s, when some US surveyors would randomly select a
donor from the observed values. This looked like a hot deck in which
the possible donors were moving around and suddenly one was selected
to replace the missing value.

The term ‘hot deck’ is not clear. It is historical, and it is good to know
its origin. In later years it also was used even when the donor was not
selected at random—for example, when the real donors were sorted into
a certain order. The title of the Laaksonen (2000) paper, for example, was
‘Regression-Based Nearest Neighbor Hot Decking’; however, now the
method would be described as ‘nearest neighbor real-donor imputation
when the imputation model is linear regression’. We therefore can see
that a certain near or nearest neighbour metric is needed to select the best
donor with an observed value that is to be borrowed for imputation.

Both the imputation tasks are first applied deterministically, as we will do in the
first examples, but also stochastically. If stochasticity has been used in the imputa-
tion model, then the imputation task is automatically stochastic, but certain random
numbers still must be used in the imputation task.

Stochasticity also can be added into the imputation task using appropriate random
numbers. It is necessary to assume how the random numbers behave or their notional
distribution; the most common assumptions are normal or uniform, but a lognormal
distribution also is used for a ratio-scaled continuous variable. If the real-life data do
not behave in this way, the imputation may violate the estimates. Stochastic imputa-
tion automatically means that there can be several imputed values, depending on the
random choice. If the imputation task is applied deterministically, each missing
value is replaced with one value. This is called single imputation (SI).

On the other hand, if a stochastic methodology is applied, this leads to an
additional uncertainty in the estimate. The uncertainty can be handled using the
tools of multiple imputation (MI). There is an introduction to MI in the last part of
this chapter. At this stage it is worth mentioning that, if stochasticity is applied only
for changing the random numbers, the multiple imputation is called non-Bayesian
multiple imputation; however, if specific Bayesian rules are included in the tool, this
is called Bayesian multiple imputation.

The imputed value of the model-donor method is simply either: (1) the predicted
value of the imputation model (i.e., deterministic imputation), or (2) the predicted
value plus a noise term of the imputation model (i.e., stochastic imputation). There
are several tools for including this ‘noise’ term, and some of these are presented in
the examples.
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In general, this issue can be difficult to deal with thoroughly in imputations in
which the imputation model is not robust. For example, when using a regression
model, it is often assumed that its distribution is normal, with a mean equal to zero
and a standard deviation equal to the root MSE. A problem is that there can be
outliers in random values, consequently, in imputed values. This requires one to
truncate the outliers in some way. Another option, which is less problematic, is to
use a pattern of the observed residuals estimated for the respondents and then
randomly to draw these residuals with noise for non-respondents. So, this strategy
is a kind of a real-donor method.

12.4 Nearness Metrics for Real-Donor Methods

Main Case of Nearness Metrics
The most common metrics are derived from the predicted values of the binary
regression model, therefore the link function should be chosen by the user. In the
case of a stochastic selection, some random noise needs to be added, but there are
various options for this. We do not go into detail about this here, but we want to
mention a couple common tool from books on imputation by Rubin (1987, 2004):

• Classify the predicted values by their values into a certain number of categories,
between 10 and 20, called imputation cells. These are relatively homogeneous
and thus their values are close enough to each other.

• Randomly select one observed value from each cell to replace a missing value.
This method is sometimes called cell-based random hot deck.

Observations of this kind of imputation cells also are called ‘donor pools’. There
is thus a pool, and the imputation maker goes to it to borrow a good value to replace a
missing value. Maybe it is good to create such donor pools in advance for imputing,
but the values in this pool should at least be from the same period.

" Comment The most common nearness metrics that use the binary
response propensity model work in the same way for all types of
variables being imputed because observed values are borrowed from
the respondents. The methodology can work well only if the distribution
of these observed values covers the target population appropriately. This
cannot be known for sure. Sometimes, it is possible to see that it does
not work.

Problems often are easier to recognize in business surveys,
concerning large businesses. For example, it may be found that all or
most of such businesses have not responded. When using real-donor
methodology, it is not possible to get optimal respondents from whom
to borrow the required values. The only option is to work with model-
donor methods to try to find useful auxiliary variables in the model. The
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solution could be to motivate such businesses to give the best possible
proper value.

Second Case of Nearness Metrics
The other rational strategy in many situations is to use model-donor imputation
values (e.g., the predicted values of a regression model) taken from both the
respondents and the non-respondents using the same nearness metrics. This thus
means that we technically impute values for the respondents too, using the same
strategy/model as for the non-respondents. The next step is to work in the same way
as in the previous case to select either the nearest donor or a near donor, which is the
usual method when there is a desire to randomise the procedure. Thus, the nearness
metric may be the previous model-donor output:

• Predicted value of the imputation model (deterministic imputation of the entire
dataset) or

• Predicted value plus a noise term of the imputation model (stochastic imputation)

To put this more clearly, we can work so that first we perform imputations using
the model-donor methodology but for the respondents (observed units) in addition to
the non-respondents (not observed). Now, we have a nearness metric that can be
used to find the nearest neighbour (or a reasonably near neighbour) for each
non-respondent from the respondents, and to borrow this neighbour’s value for
that unit. This also gives one the opportunity to compare the two strategies when
estimating figures from the imputed dataset.

The second strategy for the nearness metric works relatively well for continuous
variables, but as always performance naturally depends on the integrity of the
imputation model. The same principle also works if the variable being imputed is
binary (e.g., poor versus non-poor, unemployed versus employed, sick versus
non-sick). In this case, the working model is binary, but the dependent variable
differs in the response model. Thus, it is possible to use the two types of binary
model for imputing the missing values of that binary variable (Laaksonen, 2016b).

12.5 Possible Editing After the Model-Donor Method

As is known, the real-donor methods give observed values that are (or should be)
valid values. Consequently, nothing needs to be done before they can be used in
estimation. On the other hand the model-donor imputed values are calculated, and
there is no guarantee that they will be valid in all meanings. Sometimes they still can
be used as such, but this is not always true. Some examples are as follows:

• If we wish to impute a value for Happiness from integer values lying between
0 and 10, then using model-donor methods means that the imputed values will be

178 12 Imputation Methods for Single Variables



in decimals in most cases. No user would accept this. A simple solution, which is
sometimes used, is to round these figures to integers, but this is not necessarily the
best solution.

• The variable ‘Happy’ thus is categorical. In the case of a real continuous variable,
post-editing also can be important, although its influence on the end results is not
necessarily great. Nevertheless, most clients do not like to see, for example,
income figures with several decimal places of the sort that can be obtained
using model-donor imputation. To an expert such values also indicate clearly
that they are imputed. Thus, if confidentiality is important, as it often is, rounding
is a good solution; nonetheless, it is not clear what the best rounding is.

Mathematical rounding is not ideal, but statistical rounding that is carried out
probabilistically is better. For example, if the value is 455.7, and the rounded values
should be in the tens, the probability of rounding to 450 is (10–5.7)/10, and the
probability of rounding to 460 is (10–4.3)/10. Mathematical rounding always leads
to a fixed value of 460. This type of rounding also is called aesthetic imputation.

12.6 Single and Multiple Imputation

The point estimates of complete datasets that have been imputed multiple times are
given in a similar way by both Rubin (1987, 2004) and Björnstad (2007), among
others. The parameter being estimated thus may be any statistic of interest, including
the mean, the standard deviation, the coefficient of variation, or a regression
estimate.

To make the formulas simple, we denote the estimate by Q. Such an estimate is
calculated from a complete dataset after each single imputation (SI). Thus, the
estimate from a single imputed complete dataset is Ql, and the respective variance
is Bl, both calculated taking into account the sampling design and possibly adjusted
weights as discussed in Chap. 8. The multiple imputation (MI) point estimate is thus
simply the average of the L imputations:

QMI ¼
P

lQl

L
ð12:1Þ

In the same way, the variance estimate is:

BMI-within ¼
P

lBl

L
whereBl is aSIvariance: ð12:2Þ

There are two alternatives for calculating the MI variance of the L complete
datasets. The first term of the variance, called the within-imputation variance, is in
both cases equal to that obtained from Formula (12.2), but the second term, the
between-imputation variance, is larger in Björnstad’s version:
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BMI ¼ BMI-within þ k þ 1
L

� �
1

L� 1

X
l
Ql � QMIð Þ2 ð12:3Þ

The difference is in the term k ¼ 1/(1 � f ) in which f is the fraction of missing
values or the non-response rate. This increases as the fraction increases. Rubin’s
formula does not depend explicitly on the number of imputed values. His Bayesian
approach possibly takes this into account implicitly. Of course, it is not clear which
is the most correct in each case. It could be considered that Rubin’s formula works
with Bayesian MI, and Björnstad’s formula works with non-Bayesian MI; however,
we will not state any definite conclusion about this, even though we do not present
the details of Bayesian methods (see Rubin, 1987, 2004).

The MI thus requires a tool for a Monte Carlo type of simulations for SI to be
developed. This means that each MI imputation should be close to the initial SI, but
with a certain randomness added. Thus, the MI point estimate (i.e., the average of the
single MI estimates) should be close to the respective SI estimate.

The strategy for applying a multivariate linear regression for model-donor impu-
tation first estimates the model. Next, we compute the predicted values and then add
to each of them a normally distributed random term with zero mean and a standard
deviation equal to the estimated root mean square error (RMSE). It is possible to get
the RMSE as an output using appropriate statistical software.

In other words, this non-Bayesian method is not difficult to implement. Because
some stochastic predicted values may be very large, either positive or negative, we
have truncated this standard deviation within the range (�1, +1). This is one tool to
make the estimates robust. The procedure removes some annoying outliers to keep
the imputed data at an acceptable level. It is a good procedure in practice, unless a
better strategy can be found. In the experiments we used this robustness correction
before the imputation task, which is more objective than doing it after the task when
incorrect imputed values can be found. In the end, these incorrect values are
subjectively removed to a correct area, which is not a good strategy.

Nevertheless, plausible values are not ensured when making the model
predictions robust. Some bad values, such as negative imputed incomes, still can
be obtained. They can be removed into the minimum observed value. This is a
simple solution but is not objective. Nevertheless, we use it later for method
comparisons, and we call the results that apply this option ‘results with constraints’.

This ‘error-term’–based specification for MI in the regression models is logical.
For each repeated imputation, a seed number is changed. The point estimates are
expected to be close to the pure model-donor imputation, whereas the variance and
the standard error, respectively, are expected to follow the uncertainty of the
imputations in a correct way because they depend on the model fit. Thus, the better
fit leads to a smaller (imputation) variance.
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Example 12.1 PISA ‘Multiple Imputation’
The literacy scores for reading, science, mathematics, and problem solving are
not unique in the public micro dataset, but there were five ‘plausible values’
for each student in the PISA before 2015, and since then there have been ten
values. These values are calculated from the results of several exam tasks that
are not exactly the same for each student. This means that the score includes an
additional uncertainty. The PISA group therefore decided to give five (or now
ten) different ‘plausible values’ in the dataset.

When calculating the estimates, this can be considered as an additional
uncertainty component. Nevertheless, the means and other point estimates
without problems can be calculated as the average of the ‘plausible values’,
as in the case of MI. The impact of the variation in the means because of those
multiple values, fortunately, is not very large. This means that it is not
catastrophic to omit the MI component. The graph in Fig. 12.1 shows these
figures for some countries.
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Fig. 12.1 The coefficient of variation of the mean estimate for problem-solving scores in the 2012
PISA, in percentages; ‘Complex’ uses three survey instruments (stratum, cluster, and weights)
whereas MI is based on five plausible values
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12.7 Examples of Deterministic Imputation Methods
for a Continuous Variable

This section presents imputation results with deterministic methods first. The dataset
is not completely from real life but is relatively similar to the initial data of the
random sample of the Euredit test dataset (Laaksonen, 2016a; Wagstaff, 2003). We
have, however, taken a sample of only 200 respondents to show the elementary
methods more concretely. The variable ‘Income’ is the one for which 53 observations
are missing (26.5%). Here we have only two auxiliary variables, the categorical
Region, with five values, and the register income, which is fully correlated with the
survey income (correlation ¼ 0.97). This thus gives an opportunity to estimate a
strong linear regression imputation model that can be used in the imputation task.
We start from the model without any auxiliary variable, which gives the estimated
constant term, and the average income of the observed values that can be used as
such for those with missing values. This model-donor method, without any auxiliary
variable in the linear regression model, corresponds to mean imputation in the
standard literature.

We do not illustrate this simplest imputation by means of an illustration but show
a graph when using a slightly stronger model in which Region is the only explana-
tory (auxiliary) variable. Now the R-square of the linear regression model is low, at
1.6%. If the average of each Region category replaces the respective missing values,
the results are better. The scatter plot of Fig. 12.2 shows these values against the true

Fig. 12.2 Imputed values only with the deterministic model-donor method when one categorical
variable (Region, with five categories 1, 2, 3, 4, and 5) is the auxiliary variable of the linear
regression (i.e., cell-based mean imputation)
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survey incomes. This method sometimes is called cell-based mean imputation. In
most cases, we can see clearly how far those imputed values are from the true values.
A method like this thus is not recommended. When the number of those cells or
categories increases, the imputed values improve, but we do not take this further
here.

Given that we have this extremely robust auxiliary variable, we naturally use
it. We keep Region in the model as well. This gives much better imputed values, as
also can be observed from Fig. 12.3. It is helpful to keep in mind that the register
income is an extremely well-fitting auxiliary variable. Now the imputed values look
rather good.

The previous imputation model is linear, but it is possible to use the same method
with a logarithmic transformation that is very commonly used in econometrics. The
model itself is similar, but the logarithmic transformations are as follows:

the dependent variable ¼ log survey incomeð Þ
the main auxiliary variable ¼ log register incomeð Þ:

In addition, the model includes the constant term and the categorical Region
variable. Then the model is estimated, and the predicted values can be found. These
predicted values accordingly are logarithms, not incomes, but after exponential

Fig. 12.3 Both the observed and the imputed values with the deterministic model-donor method
when the Register income, in addition to the variable Region, is used as an auxiliary variable of the
linear regression (i.e., deterministic regression imputation). The marks for Region are as in Fig. 12.2
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transformation the imputed values can be obtained. Figure 12.4 shows the equivalent
scatter plots for the linear case as in Fig. 12.3. They are not similar, but it is not
possible to get the negative imputed values that might be found in the linear case if
the model is as weak as in the present case; fortunately, we do not see such
problematic values in Fig. 12.3 because the model is strong. The logarithmic
transformation thus ensures that no incorrect values can be obtained.

We now continue to the real-donor methods, first, using the same imputation
model as in the case in Fig. 12.3 (i.e., strong regression model). In this case, we
estimate the predicted values for all units—both for respondents and for
non-respondents. Consequently, it is important that these predicted values be derived
from the same basis, even though we could use the observed values for the
respondents. This would not lead to anything because now we finally have to use
the observed values for the non-respondents.

These completely available predicted values are used as the nearness metrics, as
illustrated in Scheme 12.2. This only shows one piece of the micro data. The
predicted values, ‘yhat_r’, are first sorted, then the algorithm searches for the nearest
respondent, and then takes that respondent’s value for the non-respondent. The
column ‘yhat_r’ also shows which value would have been taken in the case of the
deterministic model-donor method (i.e., deterministic regression imputation). As we
can see, all these values have figures after the decimal point and can be easily
recognized unless we perform ‘aesthetic imputation’ (see earlier in chapter).

Fig. 12.4 Scatter plot between true values and model-donor imputed values with logarithmic
regression
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Note that although Scheme 12.2 is for the linear regression method, it works for
all other real-donor methods, except when using imputation cells or imputation
classes. The other alternatives for the imputation model are: (1) linear regression
with noise term (stochastic) and (2) response propensity model, deterministically or
stochastically.

Scheme 12.2 is applied in Fig. 12.5. The scatter plot here is different from that of
Fig. 12.4, but not very different. It can be seen that some observed values are used as
imputed values more often than once.

Special Cases and an Example on Real Donors

• It is possible that there are two or more neighbours that are equally near. In
such a case, the logical solution is to select one at random.

• It is possible that one observed value is the nearest neighbour for several
non-respondents. This occurs more often if the proportion of missing values
is large, or if the auxiliary variables do not give good predictions. It

(continued)

Scheme 12.2 Illustration of how to find the nearest neighbour for real-donor imputation when the
deterministic linear regression model is used as the imputation model
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therefore is good to investigate how many times one respondent has been
used as the real-donor and, if this number is large, to try some type of
randomization. If no good solution can be found, the users should at least be
told that the quality is not good.

We checked in the case of the method in Fig. 12.5 how many times each
observed value had been used as an imputed value (see Table 12.1). Because
the maximum number is three, and eight observed values are not used as real-
donors at all, this case is not problematic.

Fig. 12.5 Scatter plot between true values and real-donor linear regression-based imputed values

Table 12.1 Use of
observed values as imputed
values in the example of
Fig. 12.5

Use of observed values Counts %

0 8 15.1

1 38 71.7

2 6 11.3

3 1 1.9

All 53 100.0

186 12 Imputation Methods for Single Variables



The real-donor method can be started from the logarithmic regression model
instead. There are two alternatives here for the nearness metrics: (1) the logarithmic
predicted values and (2) the exponential form of these. The order of the predicted
values is equal, but the differences can vary. In Fig. 12.6 we choose the first
alternative, which is easier. The results are not very different, but the variation
looks to be larger for higher incomes.

The real-donor imputation methodology can be based on the response propensity
model as well, in which case several link functions can be used. We present the
results with the two link functions—probit in Fig. 12.7 and logit in Fig. 12.8. We
find a relatively similar structure in these as in the earlier models, but some outliers
were found—more when using the logit link. Most of these are for the same units. It
is not clear how these outliers can be explained, but one explanation is that the
response propensity is more difficult to predict with these auxiliary variables than
with the survey income. Here, the latter model fits exceptionally well, but it is less
predictable for response behaviour.

The scatter plots give some information about the performance of each imputa-
tion method, but they do not tell the whole story. Given that we know the true values,
we can compare the diverse methods against them. Table 12.2 shows the results. It
compares the results with four indicators that are at least important in the case of
income. Income differences are measured mainly by the coefficient of variation but
also with the minimum and the maximum. The mean is the third indicator that is
commonly used for continuous variables.

Fig. 12.6 Scatter plot between true values and real-donor logarithmic linear regression-based
imputed values
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Fig. 12.8 Scatter plot between true values and real-donor imputed values with logit model

Fig. 12.7 Scatter plot between true values and real-donor imputed values with probit model
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First, we can see clearly how inferior method mean imputation is because it
cannot say anything about income differences; however, the results might be
satisfactory for some clients if missingness is low. The bias in income mean based
on mean imputation is also large and the same is true for cell-based mean imputation.
Now, some income differences can be found. All the results improve substantially
when using the good auxiliary variable, Register income. There still are differences,
and we can consider some methods to be unsatisfactory. Surprisingly, the model-
donor logarithmic regression method is the worst of all. The reason is that it cannot
predict higher incomes satisfactorily.

Real-donor methods seem to be best, although they are not always good. When
using a response propensity model, the income differences are overimputed by a fair
amount. If linear or logarithmic regression is the imputation model, the real-donor
methods work well according to all indicators.

Table 12.2 Summary of the values imputed for the first dataset using different imputation methods

Imputation model
and explanatory
variables

Imputation
task Imputations Mean Minimum Maximum

Coeff. of
variation

TRUE 53 46,768 2475 91,615 44.8

Linear regression
without auxiliary
variables (mean
imputation)

Model-
donor

53 49,454 49,454 49,454 0

Linear regression
with the
explanatory
variable Region

Model-
donor

53 49,675 41,577 51,489 5.5

Linear regression,
with Region and
register income

Model-
donor

53 48,112 4245 88,032a 41.8

Linear regression
with Region and
register income

Real-donor 53 47,000 2360 76,960 43.4

Logistic regression
with Region and
register income

Real-donor 53 46,594 2360 81,215 47.8

Probit regression
with Region and
register income

Real-donor 53 45,634 2360 81,215 49.3

Logarithmic linear
regression with
Region and register
income

Model-
donor

53 44,938 2962 77,375 33.6

Logarithmic linear
regression with
Region and register
income

Real-donor 53 47,619 2360 97,400 44.9

a The two best methods according to each indicator are in bold type
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12.8 Examples of Deterministic Imputation Methods
for a Binary Variable

It is good to repeat this sentence from the previous section: ‘The most common
metrics are derived from the predicted values of the binary regression model (then
the link function should be chosen by the user)’. If the dependent variable of this
model is the response indicator, the predicted values, or the response propensities,
can be used for all types of single variable and even for a group of several single
variables. In this latter case, the missing values are replaced by the observed values
of the group. If the variables of this group are correctly related to each other, this
real-donor imputation obviously works well. It thus does not matter which type of
variable is being imputed.

Thus, we do not consider real-donor methods with the response propensity model
in this subsection, but we look at other possible imputation methods in the case of a
binary variable such as ‘unemployed versus employed’, ‘poor versus non-poor’, or
‘sick versus non-sick’. If the variable being imputed includes more than two
categories, it is still possible to impute one category as the binary variable, and
then to continue toward the second category, and so on; however, this is not
convenient. We do not present any details about this case in this book but specify
a method for imputing a binary variable (see also Laaksonen, 2016b).

Model-Donor Methods
The first of these is simple rounding, which is sometimes used in practice. In this
case, the predicted values are estimated using the binary variable as the dependent
variable, and then these are rounded (1) to one if the predicted value is above 0.5 or
(2) to zero, otherwise. The result might be improved when using its adaptive
version—that is, when a normal distribution-based threshold is used when deciding
whether the unit takes the value one or zero.

The third simple method also uses a threshold, but this is taken from the predicted
values of the respondents. This method is here called ‘Threshold from the
respondents’. If the respondents and the non-respondents are similar, this method
works well (given that the missingness mechanism is MCAR).

The fourth method, which also works better in the case of nonignorable
missingness, follows a Bernoulli approach. In this case, the predicted values pk of
each unit k with a missing value are first estimated for the binary variable y being
imputed. Then, a uniformly distributed random number within (0, 1), uk, for the same
unit, is drawn. The imputed value for each k with a missing value is obtained as
follows:

if uk > pk theny imputed ¼ 1, otherwisey imputed ¼ 0:

This strategy gives the model-donor imputed values with the desired link func-
tion. By changing the random seed number ten times, ten non-Bayesian model-donor
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multiply imputed values are obtained. This last method is not deterministic, but a
single imputation result can be obtained by averaging the single imputed values.

The example is from a dataset in which the poverty line has been estimated from
the income distribution. If the income is below this line, the person is coded with a
one or as poor; otherwise, the person is coded with zero—that is, as non-poor. The
mean of this indicator gives the poverty rate.

Table 12.3 presents the results of these four methods, and the true values for each.
It has been shown that simple methods do not work because the missingness
mechanism is far from being ignorable. In this case, however, the poverty indicators
are relatively well predicted with a reasonably good set of the auxiliary variables.
The last row conveys that the poverty rate of the observed values is much lower than
the true value. Thus, without a good imputation method the poverty rate would be
greatly underestimated.

12.9 Example for a Continuous Variable When the Imputation
Model Is Poor

In the case of the examples of Sect. 12.7 with a continuous variable, all the imputation
methods work relatively well, although not perfectly. If the pattern of the auxiliary
variables is not as good as in these examples, the results cannot be expected to be
good. The preceding first dataset is a small sample of a larger dataset that covers
nearly 20,000 persons, 5315 of them (26.7%) with no observed income. We now
illustrate imputation methods with that dataset but without any clear auxiliary
variables, which is a more common situation in real life (Laaksonen, 2016a).

There are several categorical auxiliary variables here. The full list, which is used
in all the imputation models, with the number of categories in each is as follows:
gender (2), 5-year age group (11), marital status (2), civil status (2), education level
(4), region (12), Internet at home or not (2), socioeconomic status (4), unemployed or
not (2), and children or not (2).

All these auxiliary variables are statistically significant for income, with the best
ones being gender, education, and socioeconomic status. Nevertheless, the fit is
relatively low because no individual-level compelling variable is available. The
R-square of the income regression model is 39%, while it is about 97% in the first
dataset.

We initially concentrate only on point estimates, of which there are two in the
test: ‘mean income’ and ‘income differences measured with CVs’. This allows for

Table 12.3 Model-donor
imputation results for the
poverty rate based on
Laaksonen (2016b)

True 0.249

Logit Bernoulli, 10 imputations 0.246

Probit Bernoulli, 10 imputations 0.244

Logit simple rounding 0.124

Logit adaptive rounding 0.184

Logit threshold from the respondents 0.164
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comparison of both pure SI methods and MI methods, with the average of ten
imputations being used as a point estimate.

The true mean income is $46,606, which is not far from the mean in the first
example, and the mean income of the respondents is $52,857. This last average thus
would be the imputed average if we were using ‘mean imputation’; however, we do
not present these results here and neither do we present cell-based mean imputations,
which do not work well, as was found in the previous case.

We look next at the results of these methods, first presenting in Table 12.4 the
performance of the single imputation methods when the imputation model is linear
regression. This model-donor strategy may give impossible values because the
values are calculated in a straightforward way. Of course, it is not known exactly
which values are impossible, but it is certainly true that negative values are.

Several methods lead to values like these. They can be made robust simply by
removing them so that negative values are winsorised to the minimum of the
observed values, which is slightly above zero. There are other strategies for making
the values robust, but we do not present them here.

Most averages are relatively close to the true value, but the income differences
with CV are not, except for the MIs that have been made robust. This, unfortunately,
makes the average worse.

Negative imputed values can be avoided using log-transformation. Because we
found other problems when using these imputed values, we do not present this
method in the chapter. The results are like the preceding when applying a good
imputation model (see Sect. 12.7). The second group of results always gives
plausible values because we borrow the imputed values from observed ones.
Table 12.5 summarizes the findings.

Single real-donor methods work relatively well, and most are acceptable for both
estimates, the best being the method using a probit link function; this is more or less
as a result of good luck. Multiple imputation methods also are good for income
differences. It is not easy to see why the logit MI method gives such an upward bias
for the average. One reason is that in some groups there were not enough real donors
to borrow from, and the values had to be borrowed from observed values that were
too far away. This was not as problematic when using the other link functions.

Table 12.4 Single model-donor imputation results when the imputation model is linear regression

Method Average
Rate of negative
values, % CV, %

True 46,606 65.1

MI Robusta, No Constraints 46,142 5.1 71.8

MI Robust Constraints 47,380 65.1

MI Not Robust, No Constraints 46,576 8.4 57.5

SI 46,272 0.2 43.4
a
‘Robust’ means normally distributed random terms within (�1, +1); ‘Constraints’ means negative
imputed values changed to the minimum observed positive value
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12.10 Interval Estimates

It is possible to estimate variances for estimates when some values are imputed and
noMI methods are used—thus, for singly imputed data. The basic component here is
the imputation variance, which needs to be added to the ordinary sampling variance.
This section just presents the results of MI-based variances.

The variances are calculated by applying both Rubin’s and Björnstad’s formulas
(see Sect. 12.6). Given that the variances are not illustrative, the results are presented
as the standard errors of the mean and as their relative versions, respectively. The
mean here is the income average for the imputed values. It should be noted that the
results are not automatically interpretable because the standard error depends on the
mean and thus on its bias. We cannot know which standard error is true, but a kind of
minimum standard error can be estimated from the true values. This mean is 416, and
its relative version is 0.9%.

Table 12.6 presents the results of all the MI methods for the point estimates. The
methods are sorted by their relative standard errors. This facilitates the interpretation
of the interval estimates. It is not, however, automatic because the interval estimates
are conditional on the average estimates. The table therefore also includes the
averages. It is good to check how biased the estimate is when interpreting the
interval estimates. The random real-donor method is a benchmarking method at
this point. This is based on equal distances between all units, which leads to a
random selection of the real donor to be used as an imputed value. It gives an average
that is close to the mean of the respondents but therefore far from the true value.

Table 12.5 Single real-
donor imputation results

Method Average CV, %

True 46,606 65.1

Logit SI 45,890 65.3

Logit MI 47,345 65.5

Probit SI 46,801 64.8

Probit MI 46,152 65.8

Regressiona SI 47,264 65.9
aRegression means linear regression, which is now being used for a
real-donor search

Table 12.6 Interval estimates based on the two alternative formulas for MIs

Method Average

Standard error Relative standard error

Rubin Björnstad Rubin Björnstad

True values 46,606 416 0.90

Random real-donor (benchmark) 52,922 613 666 1.16 1.26

Regression model-donor robust 47,380 598 650 1.26 1.37

Regression real-donor 49,341 644 693 1.30 1.40

Regression model-donor 46,102 642 699 1.39 1.51

Probit real-donor 46,732 676 722 1.45 1.55

Logit real-donor 46,713 841 877 1.80 1.88
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Björnstad’s formula gives somewhat larger standard errors. It could be best to use
these because all the methods given here are non-Bayesian. Outside this exercise, we
know that Bayesian methods using the same formula give a higher standard error
than do non-Bayesian methods. This is because of an additional ‘Bayesian’ step in
their calculations. In some cases, these steps lead to very biased point estimates
(Laaksonen, 2016a). Nevertheless, we definitely cannot say which standard errors
are best, although some users prefer smaller ones.

Weighting and Real-Donor Imputation Are Related to Each Other
The sampling weights are created for the respondents, and the estimates are calculated from the
respondents as well. Real-donor imputations borrow the imputed values from the respondents. The
number of times the value for each respondent is used again varies from zero upward. The real-
donor imputed data thus resembles the weighting so that each respondent gives its own weight—
this can be sophisticated, as shown in Chap. 8. ‘Real-donor weights’ may vary for each variable
being imputed; in other words, this method is more flexible than the straightforward weighting
method.

The weighting, or reweighting, works well if the pattern of values (i.e., values for the
respondents) covers the whole target population adequately. It is then possible to adjust for the
weights so that the estimates are as unbiased as possible. In the case of real-donor imputation the
same opportunity arises. Nonetheless, this is not the case if the pattern of the observed values is not
representative—for example, if extreme units are mostly missing. The only possibility then is to try
a model-donor imputation methodology, but this requires auxiliary variables that can be predicted
thoroughly.
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Summary and Key Survey Data-Collection
and Cleaning Tasks 13

Good-quality surveys in all circumstances

This is a summary of survey actions and consists of a long list of steps and tasks in
the order that is roughly the one followed in practice. For further details, please refer
to the 12 earlier chapters.

(A) Statement of the purpose of the study, with a decision to use one or more
surveys or registers to obtain the necessary empirical data. A survey can be a
crucial tool for this purpose. The connections between the whole study and a
specific survey should be determined as clearly as possible before going on to
the next step.

(B) Specification of the survey design as much as possible. This specification is
made up of all the following phases of this summary; however, a rough
specification should be created at this stage. The most difficult tasks should
be investigated thoroughly at this stage, but it is good to leave some flexibility
in the design because it is not possible to know in advance how everything will
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work ultimately. An attempt should be made to predict or anticipate possible
problems.

(C) Determining the target population. This should be done as precisely as
possible and should be realistic. It is useful to consider first a population of
interest and a target group for the intended survey that may be ideal but are not
realistic in the strictest sense. Note that if there is a requirement to generalise
the results, a decision needs to be made about the target population. If there is
no intention to generalise, there is no need to go through the remaining steps in
this summary.

(D) Obtaining one or more frame populations or sampling frames in order to
approach the target population. These frames are the lists or registers that
consist of the units of the target population at the last stage of the survey
design. It is good to take any auxiliary variables from a frame that may be
useful in the further steps of the survey. If a frame includes all the study units
directly, this makes many things simpler; however, it is still good to note that
the frame is not current for the time or period of the survey—that is, is more or
less out of date. Therefore, it is valuable to try to get updates for the frame or
frames. These are called updated frame population(s). It is good to try to
update the auxiliary variables at the same time.

(E) Deciding whether to use sampling. Even if an attempt has been made to survey
the whole population, it is good to meet requirements similar to those of
sample-based surveys. It is mandatory to follow some survey methods if
missingness occurs, as it does in all proper surveys.

(F) Decision about sampling principles. It is recommended that probability-based
sampling principles be followed, but, if this is not possible, nonprobability-
based sampling that is close to probability principles may be acceptable. The
following phases of this summary are for probability-based sampling, but it is
useful to follow many similar requirements in the case of nonprobability-based
sampling, as much as possible. Case studies also could be used, but their
generalisation to the target population level is difficult. Nevertheless, they are
at least valuable for developing proper sample surveys, and as qualitative studies.

(G) Planning and decisions about the survey sampling design. This might take a
great deal of effort because it requires many things to be considered. The basic
target in this step is to decide what is a reasonable effective sample size and
then to use this to calculate the required gross sample size for the whole survey
as well as its subpopulations (e.g., strata). There are four main components that
need to be considered: unit non-response, ineligibility, design effect due to
varying inclusion probabilities or weights, and effect on design because of
clustering.

(H) Planning the data collection, including: survey mode (e.g., single-mode,
multimode, or mixed-mode), data-collection tools (e.g., mail, phone, face-to-
face, web), addressing questions of confidentiality during data collection and
when publishing the data and results, whether to have a cross-sectional or
longitudinal/panel survey, estimation of costs, and budget.

(I) Designing the questionnaire and preparing it should be completed at this stage,
but work on the task should be started at the beginning of the survey. If the
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survey is new, this may be the most demanding task. As part of the question-
naire design, it is good to perform a pre-test or a pilot survey, and if possible, the
survey process should be tested and taught at the same time.

(J) Sampling and the creation of the first-order sampling design data file. This file
contains the gross sample units and the sampling design variables, and as many
other useful auxiliary variables (i.e., macro and micro) as possible.

(K) Decision about the time and length of the fieldwork. The fieldwork should be
performed at a time when potential respondents are most willing to participate.
If the fieldwork is only short, there is less opportunity to be flexible and change
things. If it is long, such as a period of three months, it is possible to use, a
‘responsive design’ that endeavors to motivate any gross sample groups that
have not participated satisfactorily in the first half of the fieldwork period. A
long fieldwork period also gives an opportunity to rectify, to some extent, any
mistakes that are made.

(L) Data entry should be done as much as possible during the fieldwork. This gives
an opportunity to check certain basic meanings of the data, using so-called data
pre-editing. If the data entry is manual, the same basic editing can be done, but
this takes more time and requires more resources.

(M) Completing the sampling design data file. The most important new variable
from the fieldwork is the survey outcome—that is, who has responded
completely and who has responded only partially or not at all. Naturally, the
reasons for non-response, and other fieldwork experiences, should be
documented in the same file if feasible. The sampling design data file may be
completed with other auxiliary variables from registers and other administrative
sources, as well as from the macro statistics. It also is possible to include some
auxiliary information found by the interviewers, although this is not common.

(N) Completion of statistical editing, that is, examining how plausible the individual
values are and looking at their relationships with the core variable values. If the
values are not plausible, an attempt should be made to correct for them. It also is
good to code the missing values and the reasons for them as much as possible
(e.g., the value ‘zero’ is a real value but a missing value has a code: ‘�1’ or
‘99’).

(O) Imputation of any missing and deficient values that can be replaced with the best
possible fabricated values, or proxies, so that the core estimates of the survey are
more precise than without imputation (i.e., if they are left as missing values and
the number of observations is reduced).

(P) Construction of the sampling weights for respondents, which should be the best
possible by using the sampling design variables and auxiliary variables. These
weights are needed if there has been an attempt to survey the entire target
population but some missingness has been noted.

(Q) Putting the file into a good electronic format (e.g., SAS, SPSS, Stata, R, Excel).
The survey micro data file basically is ready after the previous stage, but this
step is needed in order for it to be used easily by all who will have access to
it. The file should have good meta data so that each user can know quickly what
each variable and its values (e.g., categories, ranges) mean. Para data for the
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variables of the survey process and the fieldwork also are useful. Survey
information that cannot be included in the file should be documented in another
way and should be publicly available.

The survey micro file for the respondents that is now available contains what are
called the cleaned survey data. This file gives the opportunity to make correct
estimations of the desired parameters and of the indicators of the accuracy of the
parameters (e.g., standard errors, confidence intervals). The cleaned data may be of
two kinds, with at least the following files:

– A file for the users of survey institutions
– A file for outside users, for which the best form is a public use file (PUF) such as

the ESS or PISA

The latter file should be made confidential using anonymised identity codes and
other statistical disclosure limitation methods.
It is important to bear in mind that no cleaned data file is completely clean, so it is
still possible that some values and their connections are not plausible. Thus, they will
need post-editing during the analysis.
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Basic Survey Data Analysis 14

From raw data forward

This chapter includes basic survey data analysis, such as estimating frequencies,
means, and statistical models, using ‘survey instruments’ but not going into most
complex cases. The purpose is to give instructions for survey analysis using general
statistical software, such as SAS, SPSS, STATA, or R, but without details about
them. Examples using PISA and ESS are the main part here, some being derived
from ESS-related test data as well (see Sect. 6.1). The chapter is primarily based on
these examples. They do not cover complex samples, but such can be rather
straightforwardly calculated using one of the software packages. The SAS, SPSS,
STATA, or R software work well with the following sampling designs in cross-
sectional surveys:
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• Simple or stratified random sampling
• Equidistance sampling, assuming that it corresponds to simple random sampling
• Unstratified or stratified two-stage cluster sampling

If the survey is longitudinal or panel-based, the respective solutions can be
applied, but we do not present such examples here. The same applies to three- or
four-stage designs. Fortunately, there are textbooks and articles available for more
complex circumstances (e.g., Chambers & Skinner, 2003; Lehtonen & Pahkinen,
2003; Lumley, 2010).

14.1 ‘Survey Instruments’ in the Analysis

The ‘survey instruments’ included are weighting, stratification, and clustering. The
general software is easy to use because one only needs to give the variable indicating
which of the three survey instruments is required, then run the program. If any of the
instruments is missing, this ‘box’ does not need to be filled in, and the program will
run correctly. The impact of each such instrument is presented in the following.

1. Survey weights
The purpose of using survey weights is to generalise the results at the level of

the target population (and its domain), thus to estimate the desired parameters as
well as possible. If the quality of the weights is high, the bias in these point
estimates can be expected to be minimised.

Nevertheless, the estimates still can be biased in real-life situations. The
objective is to select the weights that are the most advanced, as explained in
Chap. 8. To develop these weights, the auxiliary variables from both the micro
and the macro level are exploited as much as possible, including by calibration to
margins that are accurate enough and useful for users. A careful check should be
made of whether to use the analysis weights or the ordinary sampling weights.
This is because the software packages do not necessarily work correctly in all
cases. This problem does not affect averages or other basic estimates but is
important for more complex estimates, including standard errors and design
effects.

2. Explicit stratification
The number of explicit strata should not be so high that there are too few

primary sampling units (PSUs) and respondents to obtain sufficiently reliable
estimates. Even though the minimum size of a PSU that can be used to estimate
the variance is two, this does not mean that the estimates obtained from it are
plausible. It is better to try to obtain more clusters and respondents. If post-strata
are created to adjust for the weights, this variable should be used in the estimation
in the same way as explicit strata.

3. Clusters
The PSU clusters here are those used in the sampling design. It is beneficial if

there are a reasonably high number of these. The PISA guidelines, for example,
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require that at least 150 schools should be drawn in the sample. That number
varies greatly in ESS countries, often being higher but sometimes lower. This is
more common if a two-domain sampling design has been used so that the clusters
are only for rural areas.

Estimates
The survey estimates relate to either the points or the intervals. The best possible
survey weights therefore give the least biased point estimates. The accuracy of an
interval estimate depends on all three survey instruments: a variation in the weights
increases the standard error, but not necessarily by much; good stratification
decreases the standard error slightly; and clustering often clearly increases the
standard error (see the discussion on DEFFp and DEFFc in Chap. 5). Without
appropriate analysis for complex samples, it is possible that both the point estimates
and the interval estimates are biased.

This chapter gives concrete examples in which the estimates are not completely
different with or without the survey instruments, but in which it is possible to make
an incorrect decision about the results. It is beneficial to include the best instruments
for the data in the analysis. As we have learned, the public ESS data do not include
two of the instruments (i.e., stratum and cluster). Thus, it is good to assess the impact
of these. Fortunately, the cluster effect of small area PSUs is rather minor, so the ESS
interval estimates are not dramatically below what they should be. On the other hand,
the ESS-related test data include all the survey instruments and therefore help with
an understanding of their impact (see examples in Sect. 14.2.3).

14.2 Simple and Demanding Examples

We turn now to the examples, which are in the following order:

• One-dimensional frequencies
• Two-dimensional frequencies
• Means and other distributional figures for ordinal-scaled and continuous variables
• Linear regression models
• Binary regression models

These are selected because they are used commonly in survey analysis.

14.2.1 Sampling Weights That Vary Greatly

It is often the goal to use a sampling design that leads to a small variation in sampling
weights, which can be found from the design effects due to varying weights
(DEFFp), as described in Chap. 5. It may be possible to achieve this even by
using the anticipated response rates in stratified random sampling, if anticipation
works well. A small variation in sampling weight also is good in the sense that a
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less-qualified user can get quite accurate estimates without using the survey
instruments perfectly. It should be noted, however, that standard errors may be too
biased if the sampling is based on clusters.

On the other hand, proportional sample allocation is not rational in many cases.
We are not referring here to business surveys where the sampling weights for the
largest businesses are often very small (i.e., because there are a small number of such
businesses in the frame), whereas the weights are substantial for small businesses.
Self-weighting would lead in such cases to very biased estimates. Similar problems
can be encountered in social surveys. We give an example of a survey of elderly
people in which it was important to get enough respondents from the oldest age
groups, even though those over 90 were not included in the target population. There
was also a higher sampling fraction for males.

This allocation ultimately gave sampling weights for the respondents that vary
remarkably. Table 14.1 gives the population frequencies by age group. It illustrates
very well the bias in frequencies if weights are not used. Given that survey variables
are also very age-dependent, the estimates also are biased in most cases unless the
weights are not included.

14.2.2 Current Feeling About Household Income, with Two Types
of Weights

This example is from Round 7 of the European Social Survey (ESS). It concerns
subjective income, which is measured with four alternative categories as shown in
the table. Statistics for two countries are given—Table 14.2(a) for Switzerland and
Table 14.2(b) for Hungary. Selection of the countries is based on the design effects
due to varying sampling weights (DEFFp). Chapter 5 presents some results from
Round 6 for the DEFFp using the design weights; however, now we use the post-
stratified weights, including the design weights, which are available in the public
data. These design effects may be very different from each other. It is clear, however,
that the post-stratified weights give estimates that are much less biased than those
based on the design weights. Consequently, it is good to compare these two types of
estimates—those based on the ‘best’ weights and those without any weights.

The two countries were selected because Switzerland has the lowest DEFFp
(¼ 1.02), whereas Hungary has the highest (¼ 1.40). Table 14.2 presents the
frequency estimates and their standard errors for each subjective income category.
Thus, we have used one survey instrument, the best possible weight, that also gives

Table 14.1 Percentages of elderly people without and with using weights

Age group All weights are one Ordinary sampling weights

61–70 37.5 60.1

71–80 44.0 33.0

81–90 18.5 6.9

All 100.0 100.0
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the respective standard errors. Ordinary software without complex sampling tools
does not give these automatically.

As expected, the Swiss estimates are quite close to each other without and with
weights, the standard errors being equal to one decimal place. In contrast, the
Hungarian estimates change considerably. The general line is that the best weights
give higher frequencies for those who have more difficulties on their present income.
This tendency is shown in Table 14.3, in which the means are based on a linear
transformation into the interval from 0 to 100.

This result clearly shows how much higher the subjective income is in
Switzerland than in Hungary. The difference is large with the best weights, but the
Hungarian mean is significantly lower with these weights. This result is more
plausible. We can see that, even when the weights are advanced, they do not always
change any estimates completely unless the difference is clear; however, the target
should be to go toward the least-biased estimates—for both point estimates and
interval estimates.

14.2.3 Examples Based on the Test Data

We look next at two examples from the test data, using the adjusted weights created
in Chap. 8. These weights are merged with the plain survey data for the respondents,

Table 14.2 Current feeling about household income, with two types of weights

Country and Category

Without weights
Best weights (post-
stratified)

Percentage Std error Percentage Std error

(a) Switzerland

Living comfortably on present income 57.3 1.3 57.0 1.3

Coping on present income 31.9 1.2 32.0 1.2

Difficult on present income 8.5 0.7 8.6 0.7

Very difficult on present income 2.3 0.4 2,4 0.4

(b) Hungary

Living comfortably on present income 6.4 0.6 5.3 0.6

Coping on present income 51.4 1.2 46.2 1.4

Difficult on present income 33.1 1.2 35.9 1.4

Very difficult on present income 9.1 0.7 12.7 1.1

Table 14.3 Means and
CIs of subjective income
with and without the
sampling weights as in
Table 14.2(a) and (b)a

Mean 95% confidence interval

Switzerland Without 81.4 80.2 82.7

With 81.2 79.9 82.5

Hungary Without 51.7 50.5 52.9

With 48.0 46.5 49.6
a The range of the subjective income goes from 0 to 100
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as is illustrated in Chap. 6 (Sect. 6.1). The first example is for the frequencies and the
second for the means. We use complex sample tools in both estimations, thus both
the confidence intervals and the point estimates also should be less biased
(Table 14.4).

The differences are relatively large with these two weights, resembling the
changes for Hungary in Table 14.2(b). Thus, the non-respondents are coping less
favorably with their present income than the respondents. The same trend is common
in other surveys, but it is not always possible to investigate this because the auxiliary
variables are bad, and the weighting methods are not good.

Next, we present a table that illustrates this problem more broadly. The same test
data are used, but more variables are examined and one more weighting method—
pure calibration (see Chap. 8)—is used. The calibration margins here also are gender
(2 categories), age group (5), and explicit regional stratum (8).

Table 14.5 shows, first, that the confidence intervals are slightly higher when
using the adjusted weights than they are when using the basic weights. The second
point is that the estimates do not change very much when moving from basic weights
to pure calibration. The importance of calibration margins therefore is not significant
in the case of these estimates. The largest change concerns drinking alcohol, where

Table 14.4 Subjective income by its categories, with two weights

Category of subjective income

Basic weights
Calibration after propensity
weightsa

Low CI High CI Low CI High CI

Living comfortably on present income 41.9 46.8 36.8 41.8

Coping with present income 40.1 45.1 42.9 48.2

Difficult on present income 9.5 12.7 10.8 14.6

Very difficult on present income 1.4 2.7 1.7 3.3
a Calibration margins are two genders, five age groups, and eight explicit strata (see Chap. 8)

Table 14.5 The 95% CI of the mean for some ESS variables using three weights

Variablea

Basic
weight

Pure
calibration

Calibration
after
propensity
weight

95% CI 95% CI 95% CI

Most people try to be fair, or take advantage of
you

63.3 65.2 63.0 65.0 60.8 63.0

Trust in the legal system 61.6 63.9 61.6 63.9 60.0 62.4

Trust in politicians 43.5 45.7 43.4 45.7 41.2 43.5

Number of daily cigarettes 20.3 26.0 20.3 26.0 23.1 29.6

How happy are you? 75.1 76.8 74.9 76.6 72.9 74.9

Drinking alcohol every week, % 25.8 30.6 26.6 31.4 25.3 30.0
a The scale of all variables other than the one concerning cigarettes is from 0 to 100
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the rate is slightly higher using pure calibration. Interestingly, when using the
propensity weights before that, the rate is slightly lower.

In general, the impact of the adjusted weights is smallest for the variable ‘drinking
alcohol every week’ when using the propensity weights before linear calibration. A
similar tendency can be found in all other cases. That is, the basic weights lead to
higher averages in the trust and happiness variables, whereas the number of daily
cigarettes seems to be smaller when using these adjusted weights.

Some differences are even significant. On the other hand, it should be noted that
the calibrated weights give correct estimates for their margins, thus by gender, the
five age groups, and the eight explicit strata (regions), but nothing else is ensured.

Calibration Using the Test Data to Estimate Happiness
Chapter 8 includes reweighting methods, and we recommend using calibration as the
final method if the calibration margins are really the true values or are close enough
to them. This ensures that the margins are definitely correct, which often improves
confidence in the estimates. We gave an introduction to calibration in Chap. 8, and
recommended using the response propensity weights as the starting weights in
calibration if the quality of the micro auxiliary variables was good.

Now we illustrate this situation using the test data, in which we use both the basic
weights and the response propensity weights for the complete dataset (see Chaps. 4
and 8). Chapter 8 also includes the calculation of the post-stratified weights for the
simple random sample (SRS) domain (see Sect. 8.3). Table 14.6 shows results of the
type that can be used for calibration in most countries—that is, with three high-level
category margins included: gender (2), age group (5), and regional stratum (8).

Table 14.6 is the example for average happiness, but corresponding results are
obtained for the other estimates. The point estimates are ordered by their value. We
can see clearly that happiness declines as more auxiliary variables are included. This
is because unhappier people are less willing to participate in surveys. When using
only these three margins, no weight is negative. We do not include the estimates

Table 14.6 Happiness averages using calibrated and other weights with three margins for the
test data

Weight Auxiliary variables Mean Std error

Basic Stratum 7.596 0.043

Raking ratio after basic Three marginsa 7.581 0.043

Linear calibration after basic Three margins 7.580 0.043

Sinus hyperbolicus after basic Three margins 7.580 0.043

Post-stratified Post-strata 7.477 0.047

Linear calibration after response propensity probit Three margins 7.389 0.053

Response propensity logit Section 8.4 7.385 0.053

Linear calibration after response propensity probit Three margins 7.375 0.054
a The margins used were gender, age group, and regional stratum
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based on the probit response propensity weights because they are relatively similar
to those based on the logit weights.

It is interesting, too, that the estimates based on calibration after the basic weights
are about equal to those obtained with both raking ratio, linear, and sinus
hyperbolicus calibration. Post-stratification decreases the average because of happi-
ness differences by gender (i.e., females are happier, while males participate less in
surveys). It also is interesting that the last three estimates are at the same level.

The impact of the linear calibration is minor when continuing from these weights
to calibration. One obvious reason is that the same auxiliary variables are used in
both. In practice, it is recommended that the two estimates of these, based on
calibration, be used. The reason is that the margins are correct in this case. For
example, if a user observes that the male–female ratio is not correct, he or she will
not trust any of the estimates. Based on Table 14.6, the average happiness is about
7.38, not the result of 7.60 obtained with the basic weights.

We were able to continue the Happiness estimation because we also had Educa-
tion and Income in the sampling data file (see Sect. 6.1). It was unfortunate that the
linear calibration after the basic weights led to several negative weights. For this
reason, we did not estimate anything with these weights. It is a good thing that the
linear calibration after the response propensity weights gives the correct weights,
although this is not ensured in all cases. Table 14.7 now includes the main results.
The happiness average continues to decline although Happiness and Education are
correlated. By contrast, Income does not have much influence after education. The
estimates of the last two rows are the most plausible.

14.2.4 Example Using Sampling Weights for Cross-Country Survey
Data Without Country Results

If the cross-country data include the ordinary sampling weights—that is, their sum is
equal to the target population size—all types of domain analyses can be done using
these weights. This is automatically possible for the PISA data, but not for the ESS
data. Nevertheless, when creating the ordinary sampling weights, as presented in
Chap. 8, the correct estimates can be calculated. Many cross-country analyses still
can be done using the analysis weights, given that the statistical model includes the
country as a control variable. Examples of this are given later in this chapter.

Table 14.7 Happiness averages using calibrated and other weights with four or five margins for
the test data, adding education and income to Table 14.6

Weight Auxiliary variables Mean Std error

Raking ratio after basic Four margins 7.348 0.056

Raking ratio after basic Five margins 7.338 0.057

Linear calibration after response propensity probit Five margins 7.303 0.059

Sinus hyperbolicus after response propensity logit Four margins 7.286 0.059

Linear calibration after response propensity probit Four margins 7.279 0.059
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Here, we present two ESS examples in which the domain units can be in different
countries. This requires one to use the ordinary weights, but we present the same
results without any weights in Table 14.8. The dependent variable in both examples
(Tables 14.8 and 14.9) is the variable created in Example 2.1 (see Chap. 2), called
Foreigner_Positiveness, but the domains are different (i.e., Religion and Education).

The differences between the domains are quite clear. We will leave the interpre-
tation to the readers. It should be borne in mind that some confidence intervals are
relatively lengthy, which is very much because of the small size of the domains.

14.2.5 The PISA Literacy Scores

We have found that the PISA student weights vary by country in different ways
although the DEFFp is rather low (i.e., around 1.1–1.2). This means that the
estimates even without the weights give a rough understanding of the literacy and
other scores, for instance. We illustrate this situation in Table 14.10 with an example

Table 14.8 Foreigner_Positiveness by religion in 21 ESS round 7 countries, sorted by the mean
with the weights

Religion or denomination to which
respondent belongs at present

Without weights With weights

Mean
Low
CI

High
CI Mean

Low
CI

High
CI

Judaism 51.4 50.6 52.1 50.1 48.8 51.4

Roman Catholicism 49.6 49.3 50.0 52.2 51.6 52.8

Not applicable 53.5 53.2 53.9 53.5 52.8 54.1

Protestantism 55.5 54.9 56.0 54.9 54.0 55.9

Orthodox Christianity 50.4 49.1 51.7 56.2 53.0 59.3

Eastern religion 63.2 60.3 66.1 58.4 53.0 63.8

Other Christian denomination 57.4 55.4 59.4 58.6 55.9 61.4

Islam 50.7 49.3 52.1 60.1 58.2 62.0

No answer 53.8 46.4 61.1 61.1 49.9 72.2

Other non-Christian religion 58.7 55.1 62.3 61.3 53.3 69.4

Refusal 56.5 50.8 62.2 65.2 53.4 77.1

Table 14.9 Foreigner_
Poitiveness by education
for 21 ESS round
7 countries, sorted by mean

Education Mean 95% CI

Very little 42.7 41.2 44.3

Low 46.9 45.7 48.1

Missing 47.3 43.8 50.8

Basic 50.0 49.0 50.9

Low university 51.5 50.5 52.5

Middle university 55.4 54.5 56.2

Master’s degree 58.5 57.6 59.5

Doctoral 64.5 63.7 65.2

14.2 Simple and Demanding Examples 209



Table 14.10 Means and standard errors estimated without and with survey instruments for the
PISA variable ‘Problem solving’

Country Respondents

Simple random
sampling without
weights

All survey
instruments applied

Design effect
(DEFF)Mean

Std errora

of mean Mean
Std error of
mean

Czech
Republic

5327 528.3 1.2 509.0 3.2 6.7

Spain 10,175 488.5 1.0 476.8 3.9 16.9

Hungary 4810 467.7 1.4 459.0 4.2 8.8

Belgium 8597 513.6 1.1 507.8 3.2 8.7

Slovak
Republic

4678 486.8 1.4 483.3 4.2 9.0

United
Kingdom

4185 520.0 1.4 516.8 4.0 7.8

Israel 5055 456.4 1.6 454.0 5.2 10.0

France 4613 513.4 1.4 511.0 3.4 6.2

United Arab
Emirates

11,500 413.0 1.0 411.2 3.5 13.8

Poland 4607 482.7 1.4 480.8 4.6 11.3

Estonia 4779 516.8 1.2 515.0 3.0 6.4

Austria 4755 508.1 1.3 506.4 5.2 16.7

Russian
Federation

5231 490.8 1.1 489.1 4.2 13.4

Sweden 4736 492.1 1.3 490.7 3.3 6.3

United States 4978 509.2 1.2 507.9 4.6 13.6

Turkey 4848 455.6 1.1 454.5 4.2 15.2

Japan 6351 552.2 1.0 552.2 3.7 14.3

Korea 5033 561.1 1.2 561.1 3.8 9.3

Germany 5001 508.4 1.4 508.7 4.8 12.1

Ireland 5016 497.8 1.3 498.3 3.4 7.4

Norway 4686 502.5 1.4 503.3 3.7 6.8

Croatia 5008 465.4 1.2 466.3 3.6 8.6

Italy 5495 508.6 1.2 509.6 3.4 7.8

Montenegro 4744 404.9 1.2 406.7 9.5 64.7

Portugal 5722 491.6 1.1 494.4 4.1 13.0

Singapore 5546 558.4 1.2 562.4 4.7 15.1

Netherlands 4460 506.2 1.4 510.7 5.0 12.2

Canada 21,544 517.0 0.6 525.7 2.5 15.2

Australia 14,481 513.1 0.8 523.1 2.0 6.4

Finland 8829 510.5 1.0 522.8 2.3 5.3

Denmark 7481 481.3 1.1 497.1 3.5 10.8

Slovenia 5911 458.3 1.3 475.8 3.9 9.8
aThe overall design effect, including all its components, is calculated from the standard errors. The
countries are sorted by the relative differences between the means, with the top ones those for which
the means go below when using the weights, and the bottom ones are those for which the change is
in the opposite direction
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that also includes the standard errors of the means with and without the student
weights.

Seeing as the countries are sorted by relative change from the simple random
estimates to the correctly weighted estimates, the table illustrates clearly that the
change can go both ways. The mean score of the first country, the Czech Republic, is
substantially lower with the weights, but in contrast Slovenia’s score increases.
Nevertheless, it is very clear that the order of the countries will not change
dramatically.

The second, and more interesting, point is the substantial increase in standard
error when using all the survey instruments. The overall design effect, DEFF, is a
good indicator for this. Montenegro’s DEFF is rather large, but it is quite moderate in
all the other countries.

14.2.6 Multivariate Linear Regression with Survey Instruments

This type of regression works in the same way as tabulation or other basic
estimations if the software package includes these instruments. There are a smaller
number of such models in most packages, however. It is possible to use other tools in
those cases, but we do not consider them in this book. The purpose here is only to
present some basic information about multivariate statistical modelling. Because
linear regression is used most often, we present an example from the 2015 PISA first.
This illustrates the questions met in statistical modelling.

The dependent variable is ‘Science literacy score’ from the PISA study. In this
example we include the following seven OECD countries: Germany, Finland,
Sweden, Japan, Estonia, Korea, and the United States. The main thing of interest
is not in comparing the countries but in looking for some explanatory variables that
explain the variation in the dependent variable. The country, of course, is one such
variable, but it can be considered as a good and necessary control variable in such
models.

It should be borne in mind that this example is very technical; in other words, we
have no subject matter theory to use in the model specification, but we try to show
how the estimates vary between using a simple random-based model—that is,
without survey instruments or a similar model with three survey instruments. The
explanatory variables and their significance are shown in Table 14.11.

We can see that the goodness of the fit, R-square, is higher in the Complex model,
but we are not going to interpret this further because it is not the most important
observation. It is advantageous to recognise that most variables are quite significant
by p-values in both models, but some differences can be found too. First, it is
interesting that Subjective well-being is very significant in the SRS model, whereas
it is far from significant in the Complex model, which is therefore the only one that
can be trusted. This variable is created by the PISA team, and three dimensions are
covered: ‘one’s reflective assessment of one’s life (including the single “general life
satisfaction” question); affect—an emotional state, typically at a particular point of
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time; and eudaemonia—a sense of meaning and purpose in life’ (PISA, 2015;
Martela & Steger, 2016).

The other slight difference is for the interaction between gender and immigration
status. Because this is interesting in general, we present its details in Fig. 14.1.

Figure 14.1 illustrates the differences between the two models. First, we can see
that the differences are clearer in the Complex model than in the SRS model. The
Complex model plainly shows that the Science literacy score is higher for the first-
generation females than for respective males, and that native males seem to be best
qualified in science but the difference to native females is not significant. We do not
interpret further differences between the two alternative models, as they can be seen
in the graph.

We continue with some other regression estimates, but before that we compare
the country differences without any model and when the model is used—that is,
when those explanatory variables are used as control variables (Fig. 14.2). We can
see that the differences almost disappear when the control variables of the model are
included in the estimation.

Next, we present some results for these control variables. We start in Table 14.12
with the four continuous variables. The results are somewhat surprising. First, for
Environmental optimism the sign is negative in both models. It seems that the

Table 14.11 Significance of the two alternative linear regression models for the science literacy
score of the 2015 PISA survey for seven countries

Tests of model effectsa
Degrees of
freedom

F value p-value

SRS Complex SRS Complex

Model 30 246 86 <0.0001 <0.0001

Intercept 1 41,062 18,841 <0.0001 <0.0001

Country 6 191 57 <0.0001 <0.0001

Gender 1 41 41 <0.0001 <0.0001

Immigration status 2 189 18 <0.0001 <0.0001

Gender*Immigration
status

2 34,001 42,980 0.0532 0.1239b

Grade 2 449 105 <0.0001 <0.0001

Environmental optimism 1 743 337 <0.0001 <0.0001

Parents’ education 4 294 64 <0.0001 <0.0001

Noise in class 3 125 61 <0.0001 <0.0001

Parents’ support 1 61 42,856 <0.0001 0.0046

Material wealth 1 16,438 35 0.2281 <0.0001

Subjective well-being 1 14,062 0 0.0066 0.9408
Late to school 3 216 69 <0.0001 <0.0001

Feels outsider 3 55 42,948 <0.0001 <0.0001

R-square 0.166 0.217
aThe SRS model is without survey instruments, whereas the Complex model is calculated with all
three instruments
bThe p-values in bold are special
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students with a good knowledge in science are less optimistic than those whose
knowledge is not so good. The second surprise concerns Subjective well-being,
which is positively significant only in the SRS model. The other estimates differ to
some extent, with Material wealth being more important in the Complex analysis
than in the SRS analysis.
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Fig. 14.1 Interaction estimates between gender and immigration status in the model of Table 14.11
(SRS ¼ Blue, Complex ¼ Red). The reference group is “Unknown status” ¼ 0
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Fig. 14.2 Comparison of seven countries for the 2015 PISA Science scores with the initial scores
and those estimated using the linear regression model in Table 14.11. The reference country is the
United States
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The educational background of the students’ parents explains the science score
ably, as expected (Table 14.13). If a parent is well-educated, then the science score of
the student is better than if the parent is not. This main conclusion does not differ
essentially according to whether the SRS or the Complex sample model is used. It is
good to recognise that the three groups of parents with the lowest educational level
do not differ significantly from each other.

The final categorical-level consideration concerns the two explanatory variables
in Table 14.14. The impact of the variable ‘Arriving late at school’ is quite linear; the
scores decline with the number of times the student arrives late; and the difference is
minor between the SRS and Complex models. The second explanatory variable,
Feeling like an outsider in school, is more complex. The result for the category
‘Strongly agree’ is as expected in the SRS model because it seems to decrease the
science score, but this does not seem to be the case in the correct analysis, where it is
insignificant. The best scores are in the middle categories; however, it is not easy to
interpret this result.

14.2.7 A Binary Regression Model with a Logit Link

The last example is for logistic regression, with and without survey instruments. The
data are from the 2012 PISA, but now we are interested in how well students know
certain basic statistical terms that they are asked about in the questionnaire. The
terms are ‘Arithmetic mean’ and ‘Probability’. The student questionnaire gives the
following alternatives for the answer:

Table 14.12 Regression estimates for the four continuous variables in the model of Table 14.11

Explanatory variable

Complex SRS

Estimate Std error Estimate Std error

Environmental optimism �13.567 0.739 �11.267 0.413

Parents’ support 2.289 0.807 3.742 0.478

Material wealth 5.923 0.998 0.749 0.621

Subjective well-being �0.095 1.279 1.886 0.694

Table 14.13 Regression model for science literacy score of the 2015 PISA survey for seven
countries

Education categoriesa
SRS Complex

Estimate Std error Estimate Std error

Parents’ educationb more than 15 years 49.41 5.84 58.05 6.47

Parents’ education between 13 and 15 years 18.59 5.86 29.53 6.34

Parents’ education between 10 and 12 years 6.24 7.07 6.62 6.33

Parents’ education between 6 and 9 years 4.84 8.99 14.19 8,48

Parents’ education below 6 years 0 0 0 0
aThe reference group is those with the least education
bParameter estimates are for parents’ years in education
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1. Never heard of it
2. Heard of it once or twice
3. Heard of it a few times
4. Heard of it often
5. Know it well, understand the concept

Given that it is really very likely that the students know something about these
basic statistical concepts, we create a binary variable so that if the student’s answer is
5, then the variable ‘Good statistical understanding’ takes the value of 1; otherwise,
this value is 0 (zero). That's why it is possible to apply either logistic regression or
probit regression, and we chose the first of these. In this way, we will build a
multivariate model for the 17 OECD countries.

The specification of this logistic regression model is that it is very easy to
interpret. This leads to the requirement that a higher estimate means a high-level
of plausible knowledge of the statistical terms. This is the same as the reference
category, being 0, when the student gives the answer from 1 to 4, whereas it is 1 if the
answer ¼ 5.

The results are presented without country estimates, meaning that the country is a
control variable. We are interested in other explanatory variables and their
influences. Table 14.15 presents the general level results. There are two differences
in the significance.

The model with survey instruments shows that gender is significant, meaning that
females have a substantially better statistical knowledge. This is not found with the
SRS approach, even though the sign is the same. The other difference is in school
type—that is, whether the school is private or public. The SRS analysis clearly
shows that statistical knowledge is significantly better in private schools, whereas
this is not the case in the Complex survey case; this explanatory variable is not
significant at all.

Table 14.14 Regression model for science literacy score of the 2015 PISA survey for seven
countries

Complex SRS

Estimate Std error Estimate Std error

Arriving late at schoola

Never 45.76 5.01 43.02 2.49

One or two times 19.74 4.95 23.56 2.58

Three or four times 12.77 5.09 12.53 3.04

Five or more times 0 0 0 0

Feeling like an outsider in school

Strongly agree �1.27 4.90 �15.32 2.97

Agree 10.79 3.22 9.49 2.07

Disagree 9.93 2.23 9.52 1.26

Strongly disagree 0 0 0 0
aParameter estimates are for two explanatory variables
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Many results are similar with both models. For example, if the grade is lower than
the optimum, the score or the knowledge is lower than the optimum, whereas if the
grade is higher, the score is higher. This means that the student has succeeded when
moving up to an advanced class level. Table 14.16 gives an example for absences
from school. Here we present the results as the 95% confidence interval for the odds
ratios. We find that only the middle comparison is significant in the Complex
samples model, whereas the last one in the SRS is significant as well. It therefore
is possible to make an incorrect decision if one does not use complex sampling tools.

14.3 Concluding Remarks About Results Based on Simple
and Complex Methodology

We can see various types of examples in Sect. 14.2. It is not clear in advance whether
the results will give the same profile based on a SRS or a complex survey strategy
with correct ‘survey instruments’ (see Sect. 14.1). Interestingly, we find very similar
results quite often, but there are some exceptions as well. This means that it is best to
use the complex survey methodology. It, of course, is possible to continue from the
points presented here, thus to extend the analysis, including interpretation, as well as
so that it helps policymakers and others with their problems.

Table 14.15 Significance of the two alternative logistic regression modelsa for good statistical
understanding from the 2012 PISA for the 17 OECD countries

Effect Degrees of freedom

SRS Complex

p-value p-value

Country 17 <0.0001 <0.0001

Family structure 2 <0.0001 <0.0001

Gender 1 0.0881 <0.0001

Public vs. private 1 0.0174 0.4311

Grade 5 <0.0001 <0.0001

Absence from school 3 <0.0001 <0.0001

Parents’ years of education 4 <0.0001 <0.0001
aThe SRS model is without survey instruments, whereas the Complex model is calculated with the
three instruments

Table 14.16 Odds ratios from the two alternative logistic regression models for good statistical
knowledge

SRS Complex

Low CI High CI Low CI High CI

Five or more times vs. three or four timesa 0.838 1.026 0.794 1.231

None vs. three or four times 1.157 1.317 1.155 1.532

One or two times vs. three or four times 1.023 1.173 0.949 1.318
aAbsence from school is one of the explanatory variables
Source: The 2012 PISA of the 17 OECD countries
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