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Preface

In the areas of hydrology and hydroclimatology, usage of different statistical
methods is inevitable due to inherent uncertainty. Hydrology and climatology are
two areas of science that involve studies related to hydrologic and climatic
systems/subsystems, respectively. In connection with the climate change and its
impacts on water resource engineering, hydrologic and hydroclimatic problems are
now being addressed hand in hand. Random variability of hydrologic variables has
a long history since its recognition, and several statistical techniques are currently in
use. Further, the correspondence between climatic variability and hydrologic
variability has produced a relatively new interdisciplinary field, known as hydro-
climatology. It provides a platform to analyze the relationship between climatic
factors and hydrologic variables over space and time. Spatio-temporal evolution of
such relationship is essential in the context of climate change. Several statistical
methodologies are currently being developed and introduced in this subject area to
tackle new emerging challenges.

This book focuses on a wide range of statistical methods ranging from funda-
mental concepts to advanced theories that are found to be potential and essential to
deal with the real-life problems in the fields of hydrology and hydroclimatology.
Besides other advanced theories, the book also introduces the theory of copulas and
its applications in a chapter with many illustrative examples and MATLAB-based
small codes to deal with the problems and solutions in hydrology and
hydroclimatology.

Part of the book is intended to serve as a textbook for graduate courses on
stochastic methods in hydrology and related disciplines. The book may also be a
valuable resource for researchers, professionals, and doctorate students in the areas
of hydrology, hydroclimatology, and related fields. This book is broadly organized
as follows: Chapter 1 provides a basic introduction on the subject area and role of
statistical methods in it. Chapters 2 and 3 are introductory in nature and present a
thorough discussion on the basic concepts of random experiment, random variables,
and some basic exploratory statistical properties. Chapter 4 provides mathematical
and conceptual foundations of commonly used probability distributions in the
domains of hydrology and hydroclimatology. Chapter 5 deals with frequency
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analysis, risk, and uncertainty in hydroclimatic analysis. Hypothesis testing and
nonparametric tests are discussed in Chap. 6. Regression analysis and multivariate
analysis including ANOVA and wavelet analysis are covered in Chaps. 7 and 8,
respectively. Chapter 9 presents the concepts of hydroclimatic time series analysis
and forecasting including stationarity, homogeneity, periodicity. Chapter 10 por-
trays the potential of copula theory in hydrology and hydroclimatology. Copulas
help to develop the joint distribution between multiple associated hydroclimatic
variables. Its potential in frequency analysis, multivariate modeling, simulation, and
prediction is discussed for hydroclimatic problems.

Kharagpur, India Rajib Maity
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Chapter 1
Introduction

It is oblivious to state the need of statistical methods in any field of engi-
neering and science. In the area of hydrology and hydroclimatology, use
of different statistical methods is inevitable due to inherent uncertainty.
This chapter starts with some basic definitions and scope in hydrology,
climatology, and hydroclimatology. Role of statistical methods in the
context of inherent variability and uncertainty is discussed afterward.
Organization of the book is also presented at the end of this chapter.

1.1 Definitions and Scope

Hydrology is the science that involves studies related to occurrence and movement
of water (in any phase of solid, liquid, or vapor) in the combined system of surface,
subsurface, and atmosphere. Hydrologic cycle, also known as water cycle, is the
basis of the hydrologic science. It offers a platform to manage the available water in
the context of water use, water control, and water pollution.

Climatology is the field of study related to exchange of mass, momentum, and
energy between land/ocean surface and atmosphere. Vertical and horizontal fluxes of
these quantities drive the interaction between earth surface (both land and ocean) and
atmosphere. These fluxes also control the atmospheric circulation at different scales.
Atmospheric component of hydrologic cycle is coupled with climatic phenomena,
and thus, any change or variability may affect each other through different feedback
systems.

Hydroclimatology is an interdisciplinary area of study that deals with the inter-
action between hydrology and climatology to identify the influence of the climatic
system on different hydrologic processes, which are the parts of hydrologic cycle.
For example, hydrologic variables, such as rainfall, soil moisture, streamflow, etc.,
are significantly influenced by various global or local scale atmospheric circulations.
In the context of climate change, role of hydroclimatic studies has become crucial
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in many applications. In general, hydroclimatology provides a platform to analyze
the relationship between climatic factors and hydrologic variables over space and
time. Such relationship and their possible changes vary over time and space and are
essential in the context of climate change.

1.2 Role of Statistical Methods

1.2.1 Hydrologic and Hydroclimatic Variability

Hydrologic and climatic systems, and their combination, i.e., hydroclimatic systems,
consist of several interrelated processes. Such processes are not amenable to deter-
ministic analysis. In most of the cases, if not all, hydrologic and hydroclimatic vari-
ables are associated with randomness/uncertainty and should be treated as random
variables. Examples include peak discharge, streamflow, annual maximum rainfall,
number of rainy days, etc. It is rather hard to identify any hydroclimatic variable that
is free from any randomness.

1.2.2 Need of Statistical Methods

Statistical methods deal with the uncertainty and provide the ways to take practi-
cal decisions or choosing mitigation strategies. Role of statistical methods in the
context of uncertainty includes evaluation and quantification of uncertainty, making
inferences based on the available data, frequency analysis, forecasting, and so on.

Need of statistical methods in hydrology was felt long back. Recently, in the
context of climate change and its possible impact on hydrology and water resources
engineering, statistical methods are inevitable. In general, numerous hydrologic and
hydroclimatic variables are associated with each other. Several considerations come
into play for the development of statistical models. These include the nature of the
associated variable(s) (precipitation, temperature, streamflows, storage levels, etc.),
data availability, scale of analysis.

The utility of statistical methods in analysis of hydroclimatic systems is beneficial
for understanding the interrelated processes involved and to perform risk and vulner-
ability analysis. Though there is a plethora of deterministic models available, yet the
presence of several source and types of uncertainties associated with spatial and tem-
poral variability in hydroclimatic variables demands statistical methods. However,
most of the statistical methods, if not all, depend on some parametric assumptions of
data sets and the predefined nature of correspondence. Thus, it is essential to extract
the characteristics of the data using different statistical tools. Any statistical model-
ing approach involves exploring the mutual relationship between the input and target
hydroclimatic variables.



1.2 Role of Statistical Methods 3

Prediction of hydroclimatic variables is another important aspect to be accom-
plished through statisticalmodeling. Reliable prediction is always helpful in resource
management and impact assessment studies in the context of climate change. In gen-
eral, some of the variables are considered as inputs (also known as predictors or
independent variables) from which information is extracted and rest are consid-
ered as the response variables (also known as predictands or dependent variables).
Sometimes information of the same variable from the previous time steps (lagged
values) is also considered in the set of inputs. The role of inputs may vary in both
space and time. Traditionally, the selection of predictors has been accomplished
by some statistical methods, such as regression or cross-correlation analysis. For
instance, monthly streamflow prediction at a basin scale is a challenging problem
because of the complex roles of multiple interacting hydroclimatic variables, such
as precipitation, evaporation, soil moisture, temperature, pressure, wind speed that
directly or indirectly contribute to flow generation. While several target variables,
such as rainfall, streamflows are known to depend on various hydroclimatic variables,
dependence patterns may not be known with certainty and vary from one basin to
another. Statistical methods are required for the competent predictor selection, and it
is an important part of the development of effective prediction or simulation models.
Apart from selecting variables based on our understanding of the physical system,
temporal relations between the predictor set and predictand need to be accounted
for using techniques such as time series autocorrelation and partial autocorrelation
and/or cross-correlation analysis.

Another issue concerns about numerous hydroclimatic variables that may have
possible influence on the target variable at multiple lags, which may yield a pro-
hibitively large number of variables in the predictor set. This leads to curse of dimen-
sionality and may pose serious challenges in parameter estimation and lead to a
highly complex prediction model. Sometimes it may also be burdened with redun-
dancy in information frommultiple inputs. In such situation, some techniques related
to multivariate analysis are helpful in prioritizing the relevant features in the set of
potential predictor variables. It has several advantages including better understand-
ing of the data and dimensionality reduction of multivariate data to avoid the curse
of dimensionality. Examples include principal component analysis (PCA), super-
vised principal component analysis (SPCA), canonical correlation analysis (CCA),
empirical orthogonal function (EOF) analysis, analysis of variance (ANOVA).

A substantial impact on the availablewater resources due to climate change is real-
ized almost everywhere across the world. Such impacts may vary spatio-temporally
that influence the characteristics of the extreme events, such as droughts and floods,
including number, magnitude, severity, duration. Spatio-temporal variation in any
hydroclimatic variables may cause spatio-temporal variation in other associated
hydroclimatic variables also. The characteristics of hydrologic extreme events are
influenced by triggers that may be manifested in specific patterns of hydroclimatic
variables. Identification of these triggers also requires statisticalmethods for devising
effective mitigation plans against extreme phenomena.
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The development of joint probability distribution among the associated hydro-
climatic variables is needed in many modeling schemes. It may be noted that mul-
tivariate Gaussian distribution ensures that the marginal distribution of each of the
associated variables is normally distributed. However, reverse is not true; i.e., when
the distributions of all the associated variables are normal, joint distribution is not
necessarily multivariate Gaussian. In general, even though the marginal distributions
of each of the associated variables are known, their joint distributions may not be
easy to derive from these marginal distributions. However, copula can be used to
obtain their joint distribution, using scale-free measures of dependence between the
variables. Kendall’s tau and Spearman’s rho are the most commonly used scale-
free measure of association, and these are nonparametric, i.e., free from any specific
parametric assumption. In most of the hydroclimatic analysis, some interrelation-
ship among the associated variables may exhibit more prominence as compared to
others even though other factors may influence the target variable. For example,
rainfall and runoff may exhibit more prominent association but other hydroclimatic
variables, such as spatial variation of soil moisture, may also influence the runoff
generation. In such cases, multivariate copulas are helpful. In some cases, combina-
tion of several statistical methods is also found beneficial, for instance, extraction of
principal components from the set of input variables and then application of copulas
using the principal components as inputs.

In brief, probabilistic assessment in the field of hydrology and hydroclimatology
is unavoidable. This requires a thorough knowledge on wide range of statistical tools
from basics to advanced theories and their applications.

1.3 Organization of the Book

Keeping all the aspects in consideration as discussed in the last section, the book
is organized in such a way the readers will build up their knowledge from basic
concept to advanced theories and apply to the real-life hydrologic and hydroclimatic
problems and interpret the results. It starts with some basic concepts of probability
and statistics (Chaps. 2 and 3). All the statistical methods discussed in the subsequent
chapters require in-depth knowledge of probability theory. Chapter2 presents a thor-
ough discussion on the basic concepts of random experiment, random variables,
events, and assignment of probability to events with relevant examples. Chapter3
starts with some basic exploratory statistical properties, which is the first step of any
statistical method to be attempted. Concept of moment and expectation, moment
generating, and characteristic functions is considered afterward. Different methods
for parameter estimation build the foundation for many statistical inferences in the
field of hydrology and hydroclimatology.

As mentioned before, presence of uncertainty is unavoidable in any hydrologic
and hydroclimatic variable. First step to deal with it is to probabilistically represent
the data using different probability distributions. In Chap. 4, commonly used distri-
butions with their parameters, properties of the distribution supported by graphical
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representation, and their plausible applications in hydrology and hydroclimatology
are explained. Discussion on each distribution is presented in the order of their basics,
interpretation of the random variable, parameters, probability mass/density function,
description, potential applications, and illustrative examples. This order is expected
to help the readers to understand the distribution and to develop the knowledge base
for its further applications.

Frequency of extreme events like severe storms, floods, droughts is an essential
component of hydrology and hydroclimatology. In the context of climate change,
such events are found to occur more frequently. It is oblivious to state that more
extreme events have catastrophic impact on the entire agro-socioeconomic sector of
the society. Chapter5 deals with frequency analysis, risk, and uncertainty in hydro-
climatic analysis.

Hypothesis testing and nonparametric tests are discussed in Chap.6. Available
data is generally limited in the domain of hydrology and hydroclimatology. Hypoth-
esis testing is useful to assess the changes that might have occurred owing to climate
change. It helps to make statistical inferences about some parameter of the popula-
tion based on the available data. Nonparametric tests also help to assess the change
in the data over time or space using the concept of hypothesis testing. Such tests are
useful in absence of long data and/or if the available data does not fit any known and
commonly used distribution.

Rest of the book covers the modeling of relationship/association/dependence
between the associated variables. Many applications in hydrology and hydroclima-
tology, such as simulation, prediction, depend on the relationship between the asso-
ciated variables. In Chap. 7, the procedure of developing such relationship between
dependent and independent variables through regression analysis and curve fitting is
discussed. Multivariate analysis techniques are taken up next in Chap. 8, since it is
often noticed that many hydroclimatic variables are associated with each other. Gen-
erally such associations are complex and are required to be analyzed simultaneously
using multivariate hydroclimatic analysis.

Hydroclimatic time series vary with space and time due to continuously evolving
nature of hydroclimatic variables. The objective of Chap.9 is to introduce different
types of time series analysis techniques. This requires an understanding of time
series analysis techniques and time series properties like stationarity, homogeneity,
periodicity, which is the subject matter of this chapter.

Chapter10 portrays the potential of copula theory in hydrology and hydroclima-
tology. This chapter starts with an introduction to basic concept and the theoretical
background. Copulas help to develop the joint distribution between multiple vari-
ables that are associated with each other. Basic mathematical formulations for most
commonly used copulas are discussed and illustrative examples are provided. Its
potential in frequency analysis, multivariate modeling, simulation, and prediction is
discussed for hydroclimatic problems.

Throughout the book, the illustrative examples are of three types – (i) with very
small data showing the calculations very clearly so that readers can get an idea
on the computing procedure, (ii) with sufficiently large data so that the results
can be interpreted and the theory can be applied to other similar problems, and
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(iii) with real data and computer code (MATLAB platform). The illustrative exam-
ples with very few data points help to show the calculation steps explicitly. Please
note that any statistical analysis should be done with sufficiently long data. Once
the readers understand the steps, computer codes can be written easily for large data
sets. Examples of MATLAB codes are also provided at the end of each chapter.



Chapter 2
Basic Concepts of Probability
and Statistics

Probability is the measure of chance of occurrence of a particular event.
The basic concept of probability is widely used in the field of hydrology
and hydroclimatology due to its stochastic nature. The inferences like
the expected frequency of events, prediction of hydrologic phenomena
based on the dependent variables, risk assessment and modeling require
in-depth knowledge of probability theory. This chapter starts with the
basic concepts of probability that is required for a clear understand-
ing of random experiment, random variables, events, and assignment
of probability to events. The axioms of probability and the fundamental
rules are explained with the help of Venn diagrams. Later, the concepts
of univariate and bivariate random variables along with their respec-
tive forms of probability distribution function, cumulative distribution
function, and joint probability distribution are discussed. Application of
the probability theories in the field of hydrology and hydroclimatology
is illustrated with different examples.

2.1 Concepts of Random Experiments and Random
Variables

2.1.1 Random Experiments, Sample Space, and Events

An experiment is a set of conditions under which behavior of some variables is
observed. Random experiment is an experiment, conducted under certain conditions,
in which the outcome cannot be predicted with certainty. Each run of a random
experiment is generally referred as a trial. Possible outcome(s) of each trial varies
(vary); reason to call it random. In the domain of hydrology and hydroclimatology,
counting the number of rainy days in a particular month (say June), measuring the
rainfall depth, soilmoisture content, wind speed, etc., are the few examples of random
experiments.
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All possible outcomes of a random experiment constitute sample space, and each
outcome is called a sample point. For example, for the random experiment, ‘counting
the number of rainy days in June’, the sample space consists of only integers from
0 to 30. Outcome of ‘measuring the rainfall depth’, ‘soil moisture content’, or ‘wind
speed’ at a location may take any nonnegative values. Thus, the sample space of
these random experiments consists of any real number in the range of 0 to ∞.

The sample space can be classified either as discrete or continuous sample space.
A sample space is discrete if it has finite or countably infinite elements. For example,
the sample space of the random experiment, ‘counting the number of rainy days in
June’, consists of discrete numbers only (0–30). This is an example of discrete sample
space that contains finite number of elements. Another example of ‘inter-arrival time
(in days) between two rainfall events’ is also a discrete sample space. However, this
sample space contains countably infinite elements. On the other hand, the sample
space that consists of a continuum, i.e., all possible values within a range of real
numbers, is known a continuous sample space. The sample spaces of ‘measuring the
rainfall depth’, ‘soil moisture content’, or ‘wind speed’ at a location are the examples
of continuous sample space that consist of any real number in the range of 0 to ∞.

An event can be defined as a subset of a sample space. Event may consist of a
single/multiple sample points (discrete sample space) or a range from the sample
space (continuous sample space). Number of rainy days in June equal to 10 is an
example of event from the sample space of ‘counting the number of rainy days in
June’. Similarly, wind speed greater than 100km/h is an event from the continuous
sample space of ‘wind speed’ at a location.

2.1.2 Concept of Random Variables and Events

According to classical concept, a random variable (RV) is a function that maps each
outcomes of an experiment over a sample space to a numerical value on the real line
(Fig. 2.1). Thus aRV is not a variable, rather a function.A randomvariable is generally
denoted by an uppercase letter, say X , and the corresponding lowercase letter, i.e.,
x is used to represent a specific value of that random variable. The convention of
course varies; however, it will be uniformly followed in this book. Thus, X denotes
a random variable and x denotes a specific value of the random variable X . Random
variable may be discrete or continuous depending on the nature of the associated
sample space. The random variable associated with a discrete (continuous) sample
space is a discrete (continuous) random variable. Thus, if the set of values a random
variable can assume is finite or countably infinite, the random variable is said to be
discrete random variable. If the set of values a random variable can assume is a
continuum, i.e., all possible values within a range of real numbers, then the random
variable is known as continuous random variable. An example of a discrete random
variable would be the ‘number of rainy days in June’ at a particular location, whereas
‘the rainfall depth’ at a location is a continuous random variable. Any function of a
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Sample space

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭

Random Variable

Random Variable

Number line

Fig. 2.1 Representation of random variable

random variable is also a random variable. If X is a random variable, then Z = g (X)

is also a random variable.
Since the subset of a sample space forms an event, a specific value or a range

of values of a random variable is also an event. For example, X = 3, X ≥ 5,
0 ≤ X ≤ 50 are the examples of events of the random variable X . Probability is
assigned to the events, and this assignment of probability to events is the key for
any probabilistic assessment. It requires the concept of set theory that includes the
inter-relationships between events, such as union (symbolized as A∪B), intersection
(symbolized as A ∩ B or AB), and complement (symbolized as Ac). It is expected
that the readers are well aware of these concepts. Graphical representation of sample
space, events, and their inter-relationships is generally depicted by Venn diagram. A
typical Venn diagram showing sample space (S), events (E1, E2, . . . etc.), and their
inter-relationships is shown in Fig. 2.2. Further details can be referred to any basic
book on probability and statistics.

Mutually Exclusive Events

Two events E1 and E2 are called mutually exclusive when none of the outcomes in
E1 belongs to E2 or vice versa. This is denoted as: E1 ∩ E2 = φ, where φ indicates
a null set. In Fig. 2.2a, mutually exclusive events are shown by no overlap between
them.

Collectively Exhaustive Events

When union of all events (E1, E2, . . . En) comprise the whole sample space, ‘S’,
then E1, E2, . . . , En are called collectively exhaustive events. This is denoted as:
E1 ∪ E2 ∪ · · · ∪ En = S. However, the intersection of any two events need not be
null set.
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S

E1 E2

(a)
S

E

(b)

S

E1 E2

(c) (d)

Fig. 2.2 Venn diagrams showing sample space, events (E, E1, E2), and their inter-relationships:
a The events E1 and E2 are mutually exclusive; b the hatched area is complement of event E ; c the
shaded area is intersection of events E1 and E2; and d the shaded area is union of events E1 and
E2

Mutually Exclusive and Collectively Exhaustive Events

When the entire sample space is partitioned by n different events in such a way that
intersection between any two of them is a null set and the union of all the events forms
the entire sample space, the events are known as mutually exclusive and collectively
exhaustive events. It is denoted as: E1 ∪ E2 ∪ · · · ∪ En = S where Ei ∩ E j = φ for
∀ i �= j . The Venn diagram is shown in Fig. 2.3.

Fig. 2.3 Venn diagram
showing mutually exclusive
and collectively exhaustive
events

S

E1

E2
En
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In hydrology and hydroclimatology, the categorization of any variables into dif-
ferent groups is the example ofmutually exclusive and collectively exhaustive events.
For example, daily rainfall depth (X in mm) can be grouped as X = 0mm, 0mm
< X ≤ 5mm, 5mm ≤ X ≤ 10mm, and X ≥ 10mm. These events are mutually
exclusive and collectively exhaustive events.

2.2 Basic Concepts of Probability

In any random experiment, there is always uncertainty as to whether a specific event
will occur or not. The probability concept was proposed originally to explain the
uncertainty involved in the outcome of a random experiment. Probability is assigned
to the events, and this assignment of probability to events is the key for any proba-
bilistic assessment.

As a measurement of the chance or probability, with which an event can be
expected to occur, it is convenient to assign a number between 0 and 1. Accord-
ing to the classical definition, the probability of an event A, denoted as P (A), is
determined a priori without actual experimentation. It is given by the ratio

P(A) = NA

N
(2.1)

where N is the number of possible outcomes and NA is the number of outcomes that
are favorable to the event A.

The definition of probability in hydrology and hydroclimatology is more effec-
tively expressed in terms of relative frequencies. If a random event occurs a large
number of times N and the event A occurs in n of these occurrences, then the prob-
ability of the occurrence of the event A is:

P(A) = lim
N→∞

n

N
(2.2)

2.2.1 The Axioms of Probability

Probability of any event A in a sample space S, denoted as P(A), is assigned in such
a way that it satisfies certain conditions. These conditions for assigning probability
are known as axioms of probability. There are three such axioms defined as follows.

Axiom 1: 0 ≤ P(A) ≤ 1 for each event A in S.
This states that the probabilities are real numbers in the interval from 0 to 1,
including the boundary, i.e., 0 and 1.
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Axiom 2: P (S) = 1
This states that the sample space as a whole is assigned a probability of 1. Since
S contains all possible outcomes, one of these must always occur.
Axiom 3: If A and B are mutually exclusive events in S, then P (A ∪ B) =
P (A) + P (B)

This states that the probability functions must be additive, i.e., the probability of
union is the sum of the two probabilities when the two events have no outcome
in common. All conclusions drawn on probability theory are either directly or
indirectly related to these three axioms.

2.2.2 Some Elementary Properties on Probability

From the axioms of probability, some elementary property can be proved that are
important in further work.

Property 1: If E1, E2, . . . , En are mutually exclusive events, then probability of
union of all these events is equal to summation of probability of individual events.
This is mathematically denoted as,

P (E1 ∪ E2 ∪ . . . ∪ En) = P (E1) + P (E2) + . . . + P (En) (2.3)

This is basically the extension of Axiom 3, considering any number of mutually
exclusive events. This is known as property of finite additivity.
Property 2: If an event E2 belongs to another event E1, then probability of E2,
P (E2)will be less than or equal to probability of E1, P (E1). And the probability of
difference between these two events, P (E1 − E2), will be equal to the difference
between probability of E1 and E2, i.e., P (E1) and P (E2). In other words, if
E2 ∈ E1, then P (E2) ≤ P (E1) and P (E1 − E2) = P (E1) − P (E2). The
visualization is given in Venn diagram (Fig. 2.4).

Fig. 2.4 Venn diagram
related to elementary
Property 2

S

E1

E2
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Property 3: If any event E1 is complementary to another event E2, then prob-
ability of E1 can be determined using probability of E2 from Axiom 1. This is
mathematically denoted as, if E1 = Ec

2 then P (E1) = 1 − P (E2).

Property 4: If an event, E is the union of events E1, E2, . . . , En , where E1,

E2, . . . , En are mutually exclusive, then probability of E is the summation of
probability of each of these events. This is mathematically denoted as,

P (E) = P (E1) + P (E2) + . . . + P (En) (2.4)

The visualization is given in Fig. 2.3.

Property 5: For any two events, E1 and E2 that belong to sample space S, prob-
ability of E1, (P (E1)) can be determined as summation of probability of E1

intersection E2 and the probability of E1 intersection the complement of E2. It is
mathematically denoted as:

P (E1) = P (E1 ∩ E2) + P
(
E1 ∩ Ec

2

)
(2.5)

Property 6: If E1 and E2 are any two events in sample space, S, then probability
of union of E1 and E2 can be determined by deducting the probability of inter-
section of E1 and E2 from the summation of their individual probabilities. It is
mathematically denoted as:

P (E1 ∪ E2) = P (E1) + P (E2) − P (E1 ∩ E2) (2.6)

The visualization is shown in Fig. 2.2d. This property can be proved using axioms
and other properties. From Fig. 2.2d, considering the different parts of the shaded
areas,

P (E1 ∪ E2) = P (E1 ∩ E2) + P
(
E1 ∩ Ec

2
) + P

(
Ec
1 ∩ E2

)

= [
P (E1 ∩ E2) + P

(
E1 ∩ Ec

2
)] + [

P (E1 ∩ E2) + P
(
Ec
1 ∩ E2

)] − P (E1 ∩ E2)

= P (E1) + P (E2) − P (E1 ∩ E2) (2.7)

Extending this property, if E1, E2, and E3 are any three events,

P (E1 ∪ E2 ∪ E3) = P (E1) + P (E2) + P (E3) − P (E1 ∩ E2) − P (E2 ∩ E3)

− P (E3 ∩ E1) + P (E1 ∩ E2 ∩ E3) (2.8)

This can be visualized graphically in Fig. 2.5.
Property 7: For mutually exclusive and collectively exhaustive events, E1,

E2, . . . , En in the sample space S, the probability of another event E is equal
to the sum of probabilities of intersections between E and each of the event
E1, E2, . . . , En . It is mathematically expressed as,

P (E) = P (E ∩ E1) + P (E ∩ E2) + . . . + P (E ∩ En) (2.9)
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Fig. 2.5 Venn diagram
related to Property 6 for
three events

Fig. 2.6 Venn diagram
related to elementary
Property 7

The visualization is presented in Fig. 2.6.

Example 2.2.1
A field is irrigated using the supply from either of canal water or groundwater or
rainfall. At any given time, the probability of failure due to inadequate supply of
water from at least one of these sources is 0.4. Assuming that the probability of
failure of canal supply, groundwater, and rainfall individually are 0.2, 0.05, and 0.25,
respectively, information on their simultaneous failures is as follows:

(a) Probability of simultaneous failure of canal supply and groundwater is 0.1.
(b) Probability of simultaneous failure of groundwater and rainfall is 0.01.
(c) Probability of simultaneous failure of canal supply and rainfall is 0.3.

What is the probability of simultaneous failure of all the sources?

Solution Let us denote,

E1 = Failure of canal supply;
E2 = Failure of groundwater source;
E3 = Failure of rainfall source (no rainfall occurs).



2.2 Basic Concepts of Probability 15

Thus,

P (E1) = 0.2

P (E2) = 0.05

P (E3) = 0.25

P (E1 ∩ E2) = 0.1

P (E2 ∩ E3) = 0.01

P (E1 ∩ E3) = 0.3

P (E1 ∪ E2 ∪ E3) = 0.4

Thus, from Property 6,

P (E1 ∪ E2 ∪ E3) =P (E1) + P (E2) + P (E3) − P (E1 ∩ E2) − P (E2 ∩ E3)

− P (E3 ∩ E1) + P (E1 ∩ E2 ∩ E3)

⇒ 0.4 =0.2 + 0.05 + 0.25 − 0.1 − 0.01 − 0.3 + P (E1 ∩ E2 ∩ E3)

or, P (E1 ∩ E2 ∩ E3) =0.31

Thus, the probability of failure of all the sources is 0.31.

2.3 Conditional Probability Theorem

If A and B are two events in a sample space S, and P(B) �= 0, the conditional prob-
ability of B given that A has already occurred is obtained as the ratio of probability
of intersection of A and B, and probability of A. It is mathematically expressed as,

P
(
B

/
A
) = P (A ∩ B)

P (A)
(2.10)

For any three events E1, E2, and E3, the probability that all of themoccur is the same
as the probability of E1 times probability of E2 given that E1 has occurred times
the probability of E3 given that both E1 and E2 have occurred. It is mathematically
expressed as,

P (E1 ∩ E2 ∩ E3) = P (E1) P
(
E2

/
E1

)
P

(
E3

/
E1 ∩ E2

)
(2.11)

This theorem can be generalized for any n number of events E1, E2, . . . , En .
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Example 2.3.1
Daily rainfall records are obtained from two rain gauge stations A and B, located
150km apart. The probability of occurrence of wet day (rainfall > 2.5mm/day) at
each station is 0.1. However, the probability of occurrence of wet day at one station,
given that the other station experience wet day is 0.80. What is the probability of
occurrence of wet day either at station A or B?

Solution Let the event A denote the wet day at station A and the event B denote wet
day at station B. The probability of occurrence of wet day at either station A or B is
the union of the events A and B. Using property 6,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

= P(A) + P(B) − P(A)P
(
B

/
A
)

= 0.1 + 0.1 − 0.1 × 0.8

= 0.12

Example 2.3.2
The probabilities that the rain gauge instruments at stations A and B will function
uninterruptedly for 20 months are 0.8 and 0.9, respectively. Proper functioning of
the rain gauge instruments is independent. Find the probability that in 20 months (a)
both, (b) neither (c) at least one, will be in function.

Solution Considering A and B are the events that the rain gauges instruments func-
tion uninterruptedly for 20 months at stations A and B, respectively.

Thus, P(A) = 0.8 and P(B) = 0.9. Since the events A and B are independent,

(a) P(both will be in function) = P(A ∩ B) = P(A)P(B) = 0.8 × 0.9 = 0.72.
(b) P(neither will be in function) = P(Ac ∩ Bc) = P(Ac)P(Bc) = (1 − 0.8) ×

(1 − 0.9) = 0.02.
(c) P(at least one will be in function) = 1 − P(neither will be in function) = 0.98.

Example 2.3.3
The probability of occurrence of rainfall on a particular day in monsoon is 0.4. The
probability of occurrence of rainfall on two consecutive days is 0.1. What is the
probability of occurrence of rainfall on 26th July given that the rainfall occurred on
25th July?

Solution Let X and Y be the event of occurrence of rainfall on 25th and 26th July,
respectively.

P
(
Y

/
X

) = P (X ∩ Y )

P (X)
= 0.1

0.4
= 0.25

Hence, probability of rainfall on 26th July given that rainfall occurs on 25th July is
0.25.
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Example 2.3.4
An embankment may fail either due to releasing the excess water from the upstream
reservoir or due to the heavy rainfall or due to their simultaneous occurrences. The
probability of failure due to excess water release from upstream reservoir is 0.01, and
the same due to heavy rainfall is 0.08. However, probability of failure of embank-
ment due to excess release during heavy rainfall is quite high and estimated as 0.5.
Determine

(a) The probability of failure of the embankment.
(b) The probability that the failure due to heavy rainfall only (no excess release from

upstream reservoir).

Solution Let E and R represent the events of failure due to excess water release
from upstream reservoir and due to heavy rainfall, respectively.

P (E) = 0.01, P (R) = 0.08 and P
(
E

/
R
) = 0.5

(a) Probability of failure of the embankment is given as,

P(F) = P(E ∪ R) = P(E) + P(R) − P(E ∩ R)

= P(E) + P(R) − P
(
E

/
R
)
P(R)

= 0.01 + 0.08 − 0.5 × 0.08

= 0.05

(b) The probability that the failure due to heavy rainfall only (no excess release from
upstream reservoir) is given as,

P(R ∩ Ec) = P(Ec
/
R)P(R)

= [1 − P(E
/
R)]P(R)

= (1 − 0.5) × (0.08)

= 0.04

Example 2.3.5
There are several industries located on the bank of a river. It is observed that the
wastes from those industries are mixing in the river without proper treatment. The
water samples are collected every day from two different sections 1 and 2 on the
river to check the pollution level. Let X denotes the event that pollution is detected
at section 1 and Y denotes the same for section 2. Following information is obtained
from laboratory test: P(X) = 0.158, P(Y ) = 0.25 and the probability that at least
one section is polluted on any given day is 0.27. Determine the probability that

(a) Section 1 is polluted given that section 2 is already found polluted.
(b) Section 2 is polluted given that section 1 is already found polluted.
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Solution First, the probability of both the reaches are polluted is to be computed

P(X ∪ Y ) = P(X) + P(Y ) − P(X ∩ Y )

⇒ P(X ∩ Y ) = P(X) + P(Y ) − P(X ∪ Y )

= 0.158 + 0.25 − 0.27

= 0.138

(a) Probability of reach 1 is polluted given that reach 2 is already found polluted is

P(X
/
Y ) = P(X ∩ Y )

P(Y )
= 0.138

0.25
= 0.552

(b) Probability of reach 2 is polluted given that reach 1 is already found polluted is

P(Y
/
X) = P(X ∩ Y )

P(X)
= 0.138

0.158
= 0.873

2.4 Total Probability Theorem and Bayes’ Rule

Let E1, E2, . . . , En represent a set of mutually exclusive and collectively exhaustive
events as shown in Fig. 2.3. Also, consider another event A that belongs to the same
sample space. The probability of occurrence of the event A depends on the events
(Ei ) that have already occurred. Probability of the event A can be evaluated using
the Property 7 as follows:

P(A) = P (A ∩ E1) + P (A ∩ E2) + . . . + P (A ∩ En) (2.12)

Next, using the conditional probability theorem (Eq.2.10):

P (A/Ei ) = P (A ∩ Ei )

P (Ei )
(2.13)

⇒ P (A ∩ Ei ) = P (Ei ) P (A/Ei ) (2.14)

Now, P(A) can be evaluated as (from Eqs. 2.12 and 2.14)

P(A) = P(E1)P(A
/
E1) + P(E2)P

(
A
/
E2

) + · · · + P(En)P
(
A
/
En

)

⇒ P(A) =
n∑

i=1

P (Ei ) P
(
A
/
Ei

)
(2.15)

This is known as the Theorem of Total Probability.
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Bayes’ Rule: Next, if we are interested to know the probability of occurrence
of any particular event Ei , given that event A has occurred, conditional probability
theorem (Eq.2.10) can be used to evaluate the same as follows,

P (A ∩ Ei ) = P (Ei ∩ A) ⇒ P (Ei ) P
(
A
/
Ei

) = P (A) P
(
Ei

/
A
)

Therefore, the desired probability is,

P
(
Ei

/
A
) = P (Ei ) P

(
A
/
Ei

)

P (A)
(2.16)

Utilizing the total probability theorem from the expression P (A) =
n∑

i=1
P (Ei )

P
(
A
/
Ei

)
, it can be written as,

P
(
Ei

/
A
) = P (Ei ) P

(
A
/
Ei

)

n∑

i=1
P (Ei ) P

(
A
/
Ei

) (2.17)

This is known as the Bayes’ rule.

The denominator on the r.h.s., i.e.,
n∑

i=1
P (Ei ) P

(
A
/
Ei

)
, is a constant term. Thus,

using proportionality,
P

(
Ei

/
A
) ∝ P (Ei ) P

(
A
/
Ei

)

In this expression, the term P (Ei ) is the probability of occurrence of Ei , without
knowing any other information. This term is referred as prior. Next, knowing that
event A has occurred, probability of occurrence of Ei , i.e., P

(
Ei

/
A
)
, is updated.

Thus, this term is referred as posterior. The probability of occurrence of the event A,
given that Ei has occurred, is generally evaluated/estimated from historical record-
s/experience. This term, P

(
A
/
Ei

)
is, referred as likelihood. Using these terms, the

Bayes’ rule is often expressed as,

Posterior ∝ Prior × Likelihood

Example 2.4.1
Municipality of a city uses 70% of its required water from a nearby river and remain-
ing from the groundwater. There could be various reasons of not getting the required
supply from either sources including pump failure, non-availability of sufficient
water. If probability of shortage of water from river is 0.3 and that from groundwater
is 0.15, what is the probability of insufficient supply of water to the city?
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Solution Let us first denote the events mentioned in the example,

Event A: insufficient supply of water to the city;
Event R: sufficient supply of water from the river;
Event G: sufficient supply of water from groundwater.

Thus, we get P(R) = 0.7, P(G) = 0.3, P(A
/
R) = 0.3, P(A

/
G) = 0.15

Using Theorem of Total Probability,

P (A) = P (R)× P
(
A
/
R
)+ P (G)× P

(
A
/
G

) = 0.7×0.3+0.3×0.15 = 0.255

Example 2.4.2
A series of rainfall record is assimilated from the measurements obtained from three
different instruments. 30% measurements are taken by instrument A that yields one
missing data out of 200 on an average, 45% measurements are taken by instrument
B that yields one missing data out of 150 on an average and rest by instrument C
that yields one missing data out of 100 on an average. One measurement is found
to yield a missing data, what is the probability that the measurement was taken by
instrument A.

Solution The probability that themeasurement wasmade by instrument A on condi-
tion that the measurement is wrong can be calculated using Bayes’ theorem. Let X1,
X2, and X3 represent the events that the measurement was made by instrument A, B,
and C, respectively. Let Y represents the event that the measurement was missing.

P(X1/Y ) = P(Y/X1)P(X1)
∑3

i=1 P(Y/Xi )P(Xi )

P(X1/Y ) = (1/200) × 0.3

(1/200) × 0.3 + (1/150) × 0.45 + (1/100) × 0.25
= 0.214

The probability that the measurement was made by instrument A given that the
measurement is wrong is 0.214.

Example 2.4.3
A series of soil moisture data is prepared by collecting samples from two different
sources. Though the sources are random for any month, a total of 600 samples are
obtained from source-A that contains 3% erroneous data and a total of 400 samples
are obtained from source-B that contains 1% erroneous data.

(a) What is the probability that the data for a month selected at random is obtained
from source-A?

(b) What is the overall percentage of erroneous data?
(c) An erroneous data is selected at random, what is the probability that it is from

source-A?



2.4 Total Probability Theorem and Bayes’ Rule 21

Solution Let us denote the following events:

A: data obtained from source-A;
B: data obtained from source-B;
E : selected data is erroneous.

(a) Thus, the probability of data obtained from source-A, i.e., P(A) is given by,

P(A) = 600

(600 + 400)
= 0.6

(b) The erroneous data may come from either source-A or source-B. Therefore, we
need to apply the total probability theorem to calculate the probability of event
E ; i.e., the selected value is erroneous:

P(E) = P(E
/
A)P(A) + P(E

/
B)P(B)

= 0.03 × 0.6 + 0.01 × 0.4

= 0.022

(c) If the sample data selected at random is erroneous, probability that it comes
from source-A is not 0.6 as in case of solution (a), it is because of the change
of sample space. Instead of entire data, the new sample space consists of only
erroneous data. Thus, using Bayes’ rule,

P(A
/
E) = P

(
E

/
A
)
P (A)

P
(
E

/
A
)
P (A) + P

(
E

/
B

)
P (B)

= 0.03 × 0.6

0.03 × 0.6 + 0.01 × 0.4
= 0.818

Example 2.4.4
The flood damages at a location are causedmainly due to poor management of differ-
ent measures. These measures can be classified into two major groups—structural
and non-structural measures. The Flood Management Authority (FMA) analyzes
various issues involved and found that the possibility of improving the structural
and non-structural measures to prevent flood are 70 and 55%, respectively, consider-
ing various socioeconomic factors. If only one of these two measures is successfully
implemented, the probability of preventing the flood damages is 80%. Assuming that
flood damages caused by poormanagement of structural and non-structural measures
are independent,

(a) What is the probability of preventing the flood damages?
(b) If the flood damages are not prevented, what is the probability that it is entirely

caused by the failure due to poor management of non-structural measures?
(c) If the flood damages are not prevented, what is probability that it is caused by

the failure due to poor management of non-structural measures?
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Solution Let us define the events as follows:

A: prevention of flood damages due to improvement of structural measures;
B: prevention of flood damages due to improvement of non-structural measures;
E : prevention of the flood damages.

Since the events A and B are independent, we have,

P(AB) = 0.70 × 0.55 = 0.385

P(AcB) = 0.30 × 0.55 = 0.165

P(ABc) = 0.70 × 0.45 = 0.315

P(AcBc) = 0.30 × 0.45 = 0.135

It is also known that if only one of the two measures is successfully implemented,
the probability of reducing the flood damages is 80%. Thus,

P
(
E

/
AcB

) = 0.8 and P
(
E

/
ABc

) = 0.8

It is also implied that prevention of flood damages due to improvement of both
structural and non-structural measures is certain and that due to no improve-
ment either structural or non-structural measures is 0, i.e., P

(
E

/
AB

) = 1 and
P

(
E

/
AcBc

) = 0.

(a) Thus, using the total probability theorem, the probability of prevention of the
flood damages is

P(E) = P
(
E

/
AB

)
P(AB) + P

(
E

/
AcB

)
P(AcB) + P

(
E

/
ABc

)
P(ABc)

+ P
(
E

/
AcBc

)
P(AcBc)

= 1 × 0.385 + 0.8 × 0.165 + 0.8 × 0.315 + 0 × 0.135

= 0.769

(b) Next, if the flood damages are not prevented, i.e., Ec, the probability that it is
entirely caused by the failure due to poor management of non-structural mea-
sures, i.e., ABc

P
(
ABc

/
Ec

) = P
(
Ec

/
ABc

)
P(ABc)

P(Ec)
= (1 − 0.8) × 0.315

(1 − 0.769)
= 0.273

(c) In this question the word ‘entirely’ is not used. Thus, we need to calculate the
probability of P(Bc

/
Ec).
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P
(
Bc

/
Ec

) = P
(
ABc ∪ AcBc

/
Ec

)

= P
(
ABc

/
Ec

) + P
(
AcBc

/
Ec

)

= P
(
Ec

/
ABc

)
P(ABc)

P(Ec)
+ P

(
Ec

/
AcBc

)
P(AcBc)

P(Ec)

= 0.2 × 0.315

(1 − 0.769)
+ 1 × 0.135

(1 − 0.769)
= 0.857

2.5 Univariate and Bivariate Probability Distribution
of Random Variables

As mentioned before, the random variable is a function on the sample space that
maps the outcomes of a random experiment to a real number. There are two types of
randomvariables, namely discrete randomvariable and continuous randomvariable.
In general, the probability distribution is expressed as a function of the random
variable showing the distribution of probability corresponding to all possible values
of random variable. All possible values of a random variable constitute the support of
the random variable. Generally, the term probability density function (pdf ) is used
for continuous random variable, and probability mass function (pmf ) is used for
discrete random variable.

The term univariate and bivariate signifies the number of random variables
involved in the distribution function. Univariate probability distributions deal with a
single random variable, and bivariate probability distributions deal with two random
variables. Similarly, distribution functions involving more than two random vari-
ables are called multivariate probability distribution. In the following section, we
will explain univariate and bivariate probability distribution for discrete and contin-
uous random variables.

2.5.1 Discrete Random Variable

As stated before, a discrete random variable can take only finite or countably infinite
distinct values. Examples may include number of rainy days in a month, number of
occurrences of an extreme event during monsoon season, etc.
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Fig. 2.7 Typical plot of a pmf and b CDF of a discrete random variable

Discrete Univariate Probability Distribution

Probability Mass Function (pmf): Let us consider X to be a discrete random
variable taking values in a set θ = {x1, x2, . . . , xn}. The probability mass function
(pmf ) of X is pX (•) satisfying,

(i) pX (xi ) ≥ 0 ∀ xi ∈ θ

(ii)
∑

all i
pX (xi ) = 1

A typical plot of a pmf is shown in Fig. 2.7a, where filled circles indicate the prob-
ability masses concentrated at a point. The vertical lines as such do not indicate
anything except showing the position of the values on the x-axis.

Cumulative Distribution Function (CDF): TheCDF (FX(xi )) represents the prob-
ability that X is less than or equal to xi . This can be represented as,

FX(xi ) = P (X ≤ xi ) =
i∑

j=1

P(X = x j ) ∀ x ∈ {x1, x2, . . . , xn} (2.18)

A typical plot of CDF for the discrete random variable is shown in Fig. 2.7b. It is
a non-decreasing, discontinuous, staircase-like functions with irregular rise. Filled
and open circles in this plot indicate inclusive and exclusive boundaries, respectively.
The jump at each xi indicates the value of pX (xi ) or the probability that X = xi .
This probability can be determined from the CDF as follows:

pX (xi ) = FX (xi ) − FX(xi−1) (2.19)
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Example 2.5.1
Number of rainy days in the last week of December (traditionally a dry month) at a
location is found to follow the following distribution.

pX (x) =

⎧
⎪⎨

⎪⎩

C for x = 0
e−1

2x for x = 1, 2, . . . , 7

0 elsewhere

Evaluate the value of C for pX (x) to be a valid pmf and the probability of more than
two rainy days in the last week of December.

Solution Let us consider X to represent the number of rainy days in the last week
of December. The value of C can be evaluated as follows:

∑

all i

pX (xi ) = 1

Thereby,

C +
7∑

x=1

e−1

2x
= 1

⇒C = 1 − 0.477 = 0.523

Hence, the complete pmf is

pX (x) =

⎧
⎪⎨

⎪⎩

0.523 for x = 0
e−1

2x for x = 1, 2, . . . , 7

0 elsewhere

The probability of more than two rainy days can be evaluated as,

P(X > 2) = 1 − P(X ≤ 2)

= 1 − [P(X = 0) + P(X = 1) + P(X = 2)]

= 1 −
[
0.523 + e−1

2
+ e−1

2 × 2

]

= 0.201

Thereby, the probability of more than two rainy days in the last week of December
is 0.201
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Discrete Bivariate Probability Distribution

Let us consider X and Y are two discrete random variables, and let pX, Y (x, y) be their
joint probability mass function (pm f ). For a valid joint pmf of two discrete random
variables X and Y , following conditions are to be fulfilled:

pX,Y (x, y) > 0 for all x and y
∑

all x

∑

all y

pX,Y (x, y) = 1

⎫
⎪⎬

⎪⎭
(2.20)

If FX,Y (x, y) be the corresponding cumulative probability distribution function, then

FX,Y (x, y) =
∑ ∑

pX,Y (xi , y j ) for all (xi , yi ) s.t. xi < x and yi < y (2.21)

Example 2.5.2
The joint pmf of two random variables X and Y is given by

pX,Y (x, y) =
{
k(2x + 5y) for x = 1, 2; y = 1, 2

0 otherwise

What is value of k to be a valid joint pmf ?

Solution From the properties of joint pmf,

∑

(x,y)∈S
pX,Y (x, y) = 1

∑

allx

∑

ally

pX,Y (x, y) =
2∑

x=1

2∑

y=1

k(2x + 5y)

1 = k {(2 + 5) + (2 + 10) + (4 + 5) + (4 + 10)}
Hence, k = 1

42

2.5.2 Continuous Random Variable

As stated before, if the set of values a randomvariable can assume is a continuum, i.e.,
all possible values within a range of real numbers, is known as continuous random
variable. In hydrology and hydroclimatology, most of the variables are continuous
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e.g., streamflow, rainfall depth, evapotranspiration, temperature, wind speed, rela-
tive humidity, soil moisture. Support of these variables may be unbounded (e.g.,
temperature), bounded at one side (e.g., streamflow, rainfall depth), or both sides
(e.g., relative humidity, soil moisture).

Univariate Probability Distribution

In case of a continuous random variable, the probability density function (pdf ) is
generally denoted by fX (x), where the subscript X denotes the random variable and
the variable x within the parentheses denotes a specific value of the random variable.
For any function to be a valid pdf, it has to satisfy two conditions as follows:

(i) fX (x) ≥ 0 for all x
(ii)

∫ ∞
−∞ fX (x) dx = 1

It may be noted that, unlike pmf, fX (x) does not directly provide the value of prob-
ability, rather it is probability density. Integration over any range of x provides the
probability of X being within that range.

Cumulative Distribution Function (CDF)

The CDF (FX (x)) represents the probability that X is less than or equal to a specific
value of x , i.e.,

FX (x) = P (X ≤ x)

The CDF is obtained from the pdf by integrating it from the left extreme of the
support to x . Thus, the expression of CDF, FX (x) is obtained as:

FX (x) =
∫ x

−∞
fX (x) dx

To obtain pdf from CDF, the CDF has to be differentiated with respect to x as
follows:

d

dx
FX (x) = fX (x) (2.22)

The probability that X lies between [a, b] is given by the following equation and
illustrated in Fig. 2.8.

P (a ≤ X ≤ b) =
∫ b

a
fX (x) dx = FX (b) − FX (a) (2.23)

Note:

(i) In general, for continuous random variables, probability that the random variable
takes a specific value is zero, i.e., P (X = d) = ∫ d

d fX (x) dx = 0. Thereby,
P (X ≤ x) = P (X < x). This is not valid for discrete random variables.
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Fig. 2.8 Typical pdf for a
continuous random variable
(X ) showing the probability
of X lies between [a, b]
(shaded area)
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(ii) Aforementioned point is also not valid for piecewise continuous distribution
or mixed distribution. Without violating the requirements of a valid pdf, it is
possible that P (X = d) is not zero. TheCDF of such distribution can be defined
as follows:

FX (x) =
{
F1 (x) for X < d

F2 (x) for X ≥ d
(2.24)

where F2 (d) > F1(d), F1 (−∞) = 0, F2 (∞) = 1, and F1 (x) and F2 (x) are
non-decreasing functions of X . For this situation, the P (X = d) is equal to the
magnitude of the jump �F at X = d or is equal to F2 (d)− F1(d). Zero inflated
daily rainfall values can be an example of such case where P (X = 0) is not
zero, and for the range X > 0, it is continuous. This situation will be dealt in
Chap.4.

Relative frequency and CDF

Let us consider fX (x) to be the probability density function of X . The probability
that X lies between X = a and X = b is given by:

P (a ≤ X ≤ b) =
∫ b

a
fX(x)dx = FX (b) − FX (a) (2.25)

If there are N data available, the expected number of data to fall in the interval
[a, b] would be

nab = N [FX (b) − FX (a)] (2.26)

Thereby, the expected relative frequency of outcomes in the interval [a, b] is

fab = nab
/
N = FX (b) − FX (a) (2.27)
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In general, if xi represents the midpoint of an interval of X given by xi − �xi
/
2 to

xi + �xi
/
2 then the expected relative frequency of the data is given by

fxi = FX

(
xi + �xi

/
2
) − FX

(
xi − �xi

/
2
)

(2.28)

This equation represents the area under fX(x) between xi −�xi
/
2 and xi +�xi

/
2,

and it can be approximately written as,

fxi = �xi fX (xi ) (2.29)

Example 2.5.3
The annual maximum discharge at a gauging station follows the following distribu-
tion.

fX(x) =
{

1
x2 x > 1

0 elsewhere

Evaluate the following,

(a) What is the probability of annual maximum discharge greater than 5 units?
(b) What is the probability of annual maximum discharge between 2 and 10 units?

Solution (a) The probability of annual maximum discharge greater than 5 units can
be evaluated as follows,

P (X > 5) = 1 − FX(5) = 1 −
∫ 5

1

1

x2
dx = 1

5

The probability of annual maximum discharge greater than 5 units is 0.2.
(b) The probability of annual maximum discharge between 2 and 10 units can be

evaluated as follows,

P (2 < X < 10) = FX(10) − FX(2)

=
∫ 10

1

1

x2
dx −

∫ 2

1

1

x2
dx

= 0.9 − 0.5

= 0.4

The probability of annual maximum discharge between 2 and 10 units is 0.4
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Continuous Bivariate Probability Distribution

Let us consider X and Y to be continuous random variables with joint pdf, fX, Y (x, y).
For a valid joint pdf, the following conditions are to be fulfilled:

fX,Y (x, y) > 0 ∀ x and y (2.30a)
∫ +∞

−∞

∫ +∞

−∞
fX,Y (x, y) dxdy = 1 (2.30b)

The corresponding cumulative probability distribution function is expressed as:

FX,Y (x, y) = P (X ≤ x, Y ≤ y) =
∫ x

−∞

∫ y

−∞
fX, Y (t, s) dsdt

The pdf
[
fX,Y (x, y)

]
and the CDF

[
FX,Y (x, y)

]
are related as follows:

fX,Y (x, y) = ∂2

∂x∂y
FX,Y (x, y) (2.31)

Some of the properties of continuous bivariate cumulative distribution are:

(i) FX,Y (x,∞) is the cumulative marginal probability function of X .
(ii) FX,Y (∞, y) is the cumulative marginal probability function of Y .
(iii) FX,Y (∞,∞) = 1
(iv) FX,Y (−∞, y) = FX,Y (x,−∞) = 0

Example 2.5.4
A storm event occurring at a point in space is characterized by two variables, namely
the duration X of the storm and the depth of rainfall Y . The variables X and Y follow
following distribution, respectively:

FX (x) = 1 − e−x x ≥ 0

FY (y) = 1 − e−2y y ≥ 0

The joint CDF of X and Y is assumed to follow the bivariate distribution given as:

FX,Y (x, y) = 1 − e−x − e−2y + e−x−2y−xy x, y ≥ 0

Find out the cumulative marginal probability function of X and Y . Also, find out the
joint pdf of X and Y .

Solution From the properties of continuous bivariate cumulative distribution, we
know,
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Marginal CDF of X ,

FX(x) = FX,Y (x,∞)

FX(x) = 1 − e−x − e−2∞ + e−x−2∞−x∞ x ≥ 0

FX (x) = 1 − e−x x ≥ 0

Similarly, Marginal CDF of Y ,

FY (y) = FX,Y (∞, y)

FY (y) = 1 − e−∞ − e−2y + e−∞−2y−∞y y ≥ 0

FY (y) = 1 − e−2y y ≥ 0

We know, fX,Y (x, y) = ∂2

∂x∂y FX,Y (x, y)

Differentiating the joint CDF w.r.t x , we get

∂F

∂x
= ∂

(
1 − e−x − e−2y + e−x−2y−xy

)

∂x
= e−x − (1 + y) e−x−2y−xy

Again differentiating the above equation w.r.t y

fX,Y (x, y) = ∂2F

∂x∂y
= ∂

(
e−x − (1 + y) e−x−2y−xy

)

∂y

= [(1 + y) (2 + x) − 1] e−x−2y−xy

Hence, joint pdf of X and Y is

fX,Y (x, y) = [(1 + y) (2 + x) − 1] e−x−2y−xy x, y ≥ 0

2.6 Marginal and Conditional Probability Distribution

Marginal and conditional probability distributions are discussed in the context of
multivariate distributions. It is a very useful concept to be used in hydrologic and
hydroclimatic prediction and simulation since many variables are associated with
each other. The concept of these distributions will be discussed in the context of
bivariate distribution (two randomvariables) andwill be extended for themultivariate
cases with more than two random variables.
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2.6.1 Marginal Probability Distribution

Discrete Random Variables

Let us consider X and Y to be two discrete random variables with their joint pmf as
pX, Y (x, y) . Thus, the joint distribution with pX,Y

(
xi , y j

) = P
(
X = xi ,Y = y j

)
for

i = 1, 2, . . . ,m and j = 1, 2, . . . , n appears as a m × n two-dimensional table of
probability values corresponding to a pair of X and Y values (Table2.1).

The marginal distribution is the distribution of one of the two random variables,
i.e., either X or Y , irrespective of the distribution of the other variable. Thus, the
marginal probability of X is obtained by summing up the probability values for
all possible values of Y . In other words, the random variable is marginalized out.
Mathematically, it is obtained as:

pX (xi ) =
n∑

k=1

pX,Y (xi , yk) for i = 1, 2, . . . ,m

Similarly, the marginal distribution of Y is obtained as:

pY

(
y j

) =
m∑

k=1

pX,Y

(
xk, y j

)
for j = 1, 2, . . . , n

The corresponding cumulative marginal distributions are:

FX (x) =
∑

xi≤x

pX (xi ) =
∑

xi≤x

∑

all y j

pX, Y

(
xi , y j

)

FY (y) =
∑

y j≤y

pY

(
y j

) =
∑

y j≤y

∑

all xi

pX, Y

(
xi , y j

)

Continuous Random Variables

Let us consider X and Y to be two continuous random variables with their joint
pdf as fX,Y (x, y). Following the similar concept, the marginal distribution of X can
be obtained by marginalizing Y out. Mathematically, Y is integrated out to get the
marginal distribution of X from the joint pdf fX,Y (x, y). Thus,

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy (2.32)

Similarly, marginal distribution of Y is expressed as:

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx (2.33)
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The corresponding cumulative marginal distributions are:

FX (x) =
∫ x

−∞
fX (x) dx =

∫ x

−∞

[∫ ∞

−∞
fX, Y (x, y) dy

]
dx

FY (y) =
∫ y

−∞
fy (y) dy =

∫ y

−∞

[∫ ∞

−∞
fX,Y (x, y) dx

]
dy

⎫
⎪⎪⎬

⎪⎪⎭
(2.34)

Example 2.6.1
Let X denotes the number of rainy days at station A and Y denotes the number of
rainy days at station B. The joint pmf of X and Y is given as follows. Find out the
marginal distribution of X and Y .

Random Y
Variables 0 2 5 7

0 36/120 18/120 12/120 1/120
X 2 18/120 4/120 9/120 0

5 12/120 9/120 0 0
7 1/120 0 0 0

Solution The marginal pmf of X can be evaluated using equations shown in
Table2.1.

P (X = xi ) =
∑

all j

P
(
X = xi ,Y = y j

)

pX (0) = 67

120

pX (2) = 31

120

pX (5) = 21

120

pX (7) = 1

120

The marginal pmf of Y is as follows,

P
(
Y = y j

) =
∑

all i

P
(
X = xi ,Y = y j

)

pY (0) = 67

120

pY (2) = 31

120
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pY (5) = 21

120

pY (7) = 1

120

Example 2.6.2
Streamflows at two gauging stations on two nearby tributaries are categorized into
four different states, i.e., 1, 2, 3, and 4. These categories are represented by two
random variables X and Y , respectively, for two tributaries. Joint pmf of streamflow
categories (X and Y ) are shown in the following table. Calculate the probability of
X > Y .

Random Y
Variables 1 2 3 4

1 0.310 0.060 0.000 0.000
2 0.040 0.360 0.010 0.000

X 3 0.010 0.025 0.114 0.030
4 0.010 0.001 0.010 0.020

Solution Let P(A) represent the probability of the event X > Y . This will include
the set {2, 1}, {3, 2}, {3, 1}, {4, 3}, {4, 2} and {4, 1}.

Thus, probabilities of these sets should be added up to obtain the required proba-
bility.

Thus, the probability is given by:

P(A) = P [X > Y ]

=
∑

all possible x>y

pX, Y (x, y)

= pX, Y (2, 1) + pX, Y (3, 2) + pX, Y (3, 1) + pX, Y (4, 3) + pX, Y (4, 2) + pX, Y (4, 1)

= 0.040 + 0.025 + 0.010 + 0.010 + 0.001 + 0.010

= 0.096

Example 2.6.3
The joint pdf of two random variables X and Y is given by

fX,Y (x, y) =
{
2 0 ≤ x ≤ 1; y ≤ x

0 otherwise

Determine their marginal pdf s.
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Solution The marginal pdf s are given by

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy = 2

∫ x

0
dy = 2x for 0 ≤ x ≤ 1

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx = 2

∫ 1

y
dx = 2(1 − y) for 0 ≤ y ≤ 1

Example 2.6.4
Two random variables X and Y have joint distribution as follows

fX,Y (x, y) =
{
k(x + y) 0 < x ≤ 2 and 0 < y ≤ 4

0 otherwise

Find out the value of k and marginal pdf s for X and Y .

Solution We know that

∫ 4

0

∫ 2

0
k(x + y)dxdy = 1

∫ 4

0

[
k
x2

2
+ kyx

]2

0

dy = 1

∫ 4

0
[2k + 2yk] dy = 1

[
2ky + ky2

]4
0 = 1

8k + 16k = 1

Thus, we obtain k = 1
24

The marginal distribution of X is given by

fX(x) =
∫ ∞
−∞

fX, Y (x, y) dy =
∫ 4

0

x + y

24
dy =

⎡

⎣ xy + y2

2
24

⎤

⎦

4

0

= x + 2

6
0 < x < 2

The marginal distribution of Y is given by

fY (y) =
∫ ∞
−∞

fX, Y (x, y) dx =
∫ 2

0

x + y

24
dx =

⎡

⎣
x2
2 + yx

24

⎤

⎦

2

0

= 1 + y

12
0 < y < 4

Example 2.6.5
A storm event occurring at a point in space is characterized by two variables, namely
the duration X of the storm and the depth of rainfall Y , as illustrated in Example2.5.4.
Determine the marginal pdf and CDF of X and Y .
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Solution From Example2.5.4, we know the joint bivariate pd f of X and Y is as
follows:

fX,Y (x, y) = [(1 + cy) (2 + cx) − c] e−x−2y−cxy x, y ≥ 0

Hence, the marginal pdf of storm duration X is:

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy

=
∫ ∞

0
[(1 + y) (2 + x) − 1] e−x−2y−xydy

=
∫ ∞

0
[(1 + y) (2 + x)] e−x−2y−xydy −

∫ ∞

0
e−x−2y−xydy

= [− (1 + y) e−x−2y−xy
]∞
0

= e−x for x ≥ 0

So, the marginal CDF of storm duration X is:

FX (x) =
∫ x

−∞
fX (x) dx

=
∫ x

0
e−x (x) dx

= 1 − e−x for x ≥ 0

(Result matches with Example 2.5.4)

Similarly, the marginal pdf of rainfall depth Y is

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx

=
∫ ∞

0
[(1 + y) (2 + x) − 1] e−x−2y−xydx

=
∫ ∞

0
[(1 + y) (2 + x)] e−x−2y−xydx −

∫ ∞

0
e−x−2y−xydx

= [− (2 + x) e−x−2y−xy
]∞
0

= 2e−2y for y ≥ 0

So, the marginal CDF of rainfall depth Y is:
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FY (y) =
∫ y

−∞
fY (y) dy

=
∫ y

0
2e−2y (y) dy

= 1 − e−2y for x ≥ 0

(Result matches with Example 2.5.4)

2.6.2 Conditional Distribution Function

It may be recalled that marginal distribution of a random variable completely
marginalizes out the other variable. However, conditional probability distribution
of a random variable is the probability distribution of one variable (say X ) for a
specific value/range of other variable (say Y ). For example, the distribution of X
given Y = y0, the distribution of Y given x1 ≤ X ≤ x2 and so on.

Let us also recall the conditional probability of event A, conditioned on event B
expressed as Eq.2.10,

P
(
A
/
B

) = P (A ∩ B)

P (B)
(2.35)

This theorem can be utilized to obtain the conditional distribution function of the
random variables.

Discrete Random Variable

If X and Y are two discrete random variables and we have the events (X = x) and
(Y = y), then using the conditional probability theorem the conditional probability
of Y given X under the said conditions can be expressed as:

P
(
Y = y

/
X = x

) = P (X = x,Y = y)

P (X = x)
(2.36)

where P (X = x,Y = y) is the joint pmf of X and Y , i.e., fX, Y (X = x,Y = y) =
fX,Y (x, y) and P (X = x) is the marginal probability distribution of X , i.e.,
pX (X = x) = pX (x). Thereby, using joint pmf and marginal probability distri-
bution, the conditional distribution function of Y given X can be written as,

pY/X

(
y
/
x
) = pX,Y (x, y)

pX (x)
(2.37)

Similarly, the conditional distribution function of X given Y can be expressed as,
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pX/Y

(
x
/
y
) = pX,Y (x, y)

pY (y)
(2.38)

Extending this concept, the condition may be over a range of values, such as X ∈ R̃
(R̃may containmultiple values of X ). In such cases, the expression of the conditional
distribution function of Y given that X ∈ R̃ is expressed as,

pY/X

(
y
/
X ∈ R̃

)
=

∑

xi∈R̃

pX, Y (xi , y)

∑

xi∈R̃

pX (xi )
(2.39)

Similarly, the expression of the conditional distribution function of X given that
Y ∈ R̃ is expressed as

pX/Y

(
x
/
Y ∈ R̃

)
=

∑

y j∈R̃

pX, Y

(
x, y j

)

∑

y j∈R̃

pY

(
y j

) (2.40)

Continuous Random Variable

Concept of conditional distribution in case of continuous random variables remains
same as for discrete variables. If X and Y are two continuous random variables
with their joint pdf as fX,Y (x, y) and marginal distributions as fX (x) and fY (y), the
conditional probability distribution of Y given X can be expressed as:

fY/X (y/x) = fX,Y (x, y)

fX (x)
(2.41)

In the above expression, the conditioning variable remains as an unspecified value (x)
in the conditional distribution function.Most often this is convenient if the conditional
distributions are required to derive for different values of conditioning variable.

Similarly, the conditional distribution function of X given Y can be expressed as,

fX/Y (x/y) = fX,Y (x, y)

fY (y)
(2.42)

When the conditioning variable belongs to a range R̃ (say R̃ ∈ x1 ≤ X ≤ x2),
the conditional distribution function of Y , conditioned on X ∈ R̃, is expressed as
follows,

fY/
X

(
y
/
x1 ≤ X ≤ x2

) =
∫ x2
x1

fX, Y (x, y)dx
∫ x2
x1

fX(x)dx
(2.43)
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Similarly, the expression of the conditional distribution function of X , conditioned
on Y ∈ R̃ (say R̃ ∈ y1 ≤ Y ≤ y2), is expressed as,

fX/
Y

(
x
/
y1 ≤ Y ≤ y2

) =
∫ y2
y1

fX, Y (x, y)dy
∫ y2
y1

fY (y)dy
(2.44)

Example 2.6.6
Utilizing the data given in Example2.6.2, estimate the conditional probability of X
when Y ≥ 2.

Solution The conditional probability of X when Y ≥ 2 can be evaluated using the
conditional probability theorem as follows,

pX
/
Y ≥ y = P

(
X = x

/
Y ≥ y

) =
∑

yi≥y
pX, Y (x, yi )

∑

yi≥y
pY (yi )

pX
/
Y ≥ 2 =

∑

yi≥2
pX,Y (x, yi )

∑

yi≥2
pY (yi )

The marginal probability of Y ≥ 2 (denominator of pX
/
Y ≥ y) can be evaluated using

the data given in Example2.6.2 as,

∑

yi≥2

pY (yi ) = 0.446 + 0.134 + 0.05 = 0.63

The numerator of pX
/
Y ≥ y can be evaluated for each xi (values taken up by the random

variable X ) using the data provided in Example2.6.2 as,

X 1 2 3 4∑

yi≥2
pX, Y (x, yi ) 0.0600 0.3700 0.169 0.031

Knowing the denominator and the numerator of pX
/
Y ≥ y , the probability of X given

Y ≥ 2 can be evaluated for each xi is as follows,

X 1 2 3 4
pX

/
Y

(
x
/
y ≥ 2

)
0.0952 0.5873 0.2683 0.0492
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Example 2.6.7
Let X denotes the average rainfall intensity in a particular catchment and Y denotes
the peak discharge from the catchment. The joint pdf of X and Y is given as follows.

fX,Y (x, y) =
{
x2 + xy

3 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

0 elsewhere

(a) Find out the marginal distribution of X and Y .
(b) Find out the probability of peak discharge being greater than 1 unit.
(c) Find out the probability of peak discharge being greater than 1 unit, given that

average rainfall intensity is 0.5 units.

Solution (a) The marginal distribution of X can be evaluated as follows,

fX(x) =
∫

f (x, y)dy

=
∫ 2

0

(
x2 + xy

3

)
dy

=
[
x2y + xy2

6

]2

0

= 2x2 + 2x

3
0 ≤ x ≤ 1

The marginal distribution of Y can be evaluated as follows,

fY (y) =
∫

f (x, y)dy

=
∫ 1

0

(
x2 + xy

3

)
dx

=
[
x3

3
+ x2y

6

]1

0

= 1

3
+ y

6
0 ≤ y ≤ 2

(b) The probability of peak discharge being greater than 1 unit can be evaluated
from the marginal distribution of Y , as follows,

P (Y > 1) = 1 − P (Y ≤ 1)

= 1 −
∫ 1

0

(
1

3
+ y

6

)
dy

= 1 − 5

12
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= 0.583

(c) The probability of peak discharge being greater than 1 unit, given that average
rainfall intensity is 0.5 units, can be evaluated using the conditional distribution
function. The conditional distribution function of Y given X can be expressed
as,

fY/X (y/x) = fX,Y (x, y)

fX (x)

= x2 + xy
3

2x2 + 2x
3

= 3x2 + xy

6x2 + 2x
for 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

Thus, the conditional distribution function of Y given X = 0.5

fY/X = 0.5 (y/X = 0.5) = 3x2 + xy

6x2 + 2x

∣
∣∣∣
x=0.5

= 3 × 0.52 + 0.5 × y

6 × 0.52 + 2 × 0.5
= 0.3 + 0.2y for 0 ≤ y ≤ 2

Thereby, the probability of peak discharge being greater than 1 unit, given that
average rainfall intensity is 0.5 unit, can be evaluated as,

P (y > 1/x = 0.5) = 1 −
∫ 1

0
fY/X = 0.5 (y/X = 0.5) dy

= 1 −
∫ 1

0
(0.3 + 0.2y) dy

= 1 − [
0.3y + 0.1y2

]1
0

= 0.6

Note: It may be noted that when some information on average rainfall intensity is
available, the probability of peak discharge being greater than 1 unit is higher than
that without any information of the other variable. That is, we are more confident
about the peak discharge with some known value of average rainfall intensity (con-
ditional probability) that without any information (unconditional probability).
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2.7 Independence between Random Variables

Let X and Y be two discrete random variables. These are independent if and only if
their joint pmf, pX,Y (x, y) can be expressed by multiplying the respective marginal
distributions as follows:

pX,Y (x, y) = pX (x) × pY (y) (2.45)

where pX (x) and pY (y) are the marginal distribution of X and Y , respectively.
Similarly for continuous random variable, fX,Y (x, y) the joint pdf between them

are independent if and only if,

fX,Y (x, y) = fX (x) × fY (y) (2.46)

where fX (x) and fY (y) are the marginal distribution of X and Y , respectively.
In other words, if two random variables are independent, their joint distribution

can be obtained by multiplying their respective marginal distributions. However,
if the associated random variables are dependent, it is often difficult to ascertain
their joint distribution. One possibility is to use copula theory, which is discussed in
Chap.10.

Example 2.7.1
Use the data from Example2.6.7 to check if X and Y are independent.

Solution X and Y are said to be independent if the given condition is fulfilled.

fX,Y (x, y) = fX (x) fY (y)

As evaluated in Example 2.6.7, the marginal distribution of X is

fX (x) = 2x2 + 2x

3
0 ≤ x ≤ 1

and, the marginal distribution of Y is

fY (y) = 1

3
+ y

6
0 ≤ y ≤ 2

Thus,

x2 + xy

3
�=

(
2

3
x + 2x2

)(
1

3
+ y

6

)

Thereby, we can conclude that X and Y are not independent.
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2.8 Functions of Random Variables

Sometimes functional relationship between two or more associated variables is
known. If the distribution of one variable is known, it is possible/convenient to
determine the distribution of other variable. The functional relationship could be of
logarithmic, nth root transformation, or simple algebraic functions. The distribution
of the transformed function is called derived distribution.

2.8.1 Univariate Random Variable

Let X be a random variable with CDF FX(x) and y = g(x) then,

FY (y) = P (Y ≤ y)

= P (g (x) ≤ y)

= P
(
X ∈ g−1 ((−∞, y])

)
(2.47)

Let X be a discrete random variable with pmf pX(xi ) and y = g(x) then,

P (Y = y) = P (g (x) = y)

=
∑

g(x)=y

P
(
X = g−1 (y)

) (2.48)

Let X be a continuous random variable with CDF FX(x) and y = g(x) then,

Case 1: Let g be an increasing function then,

FY (y) = P (Y ≤ y) = P (g (x) ≤ y)

= P
(
X ≤ g−1 (y)

) = FX

(
g−1 (y)

) (2.49)

So, the pdf of Y is as follows,

fY (y) = fX
(
g−1 (y)

)
∣∣∣∣
d

dy
g−1 (y)

∣∣∣∣ (2.50)

Case 2: Let g be a decreasing function then,

FY (y) = P (Y ≤ y) = P (g (x) ≤ y)

= P
(
X ≥ g−1 (y)

) = 1 − FX

(
g−1 (y)

) (2.51)

So, the pdf of Y is as follows,
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fY (y) = − fX
(
g−1 (y)

) d

dy
g−1 (y) (2.52)

However, in this case d
dy g

−1 (y) is negative. Thus,

fY (y) = fX
(
g−1 (y)

)
∣∣∣∣
d

dy
g−1 (y)

∣∣∣∣ (2.53)

2.8.2 Bivariate Random Variables

Let us assume the joint pdf of X1 and X2 is fX1, X2
(x1, x2). Let us also consider that

Y and Z are the functions of X1 and X2,

Y = H1(X1, X2) and Z = H2(X1, X2) (2.54)

The joint pdf of Y and Z , represented as fY, Z(y, z), is expressed as,

g (y, z) = fX1, X2
(y, z)|J | (2.55)

where fX1, X2
(y, z) is the pdf of X1 and X2 represented in terms of y and z, i.e., x1

= G1(y, z) and x2 = G2(y, z), obtained from Eq.2.54. J is known as Jacobian and
expressed as,

J = ∂ (G1,G2)

∂ (y, z)
=

∣∣∣∣
∣∣

∂G1
∂y

∂G1
∂z

∂G2
∂y

∂G2
∂z

∣∣∣∣
∣∣

(2.56)

Example 2.8.1
Let X follows a distribution shown below,

fX (x) =
{

λe−λx x > 0

0 elsewhere

What will be the distribution of Y = e−λx ?

Solution Given Y = e−λx which can be written as,

x = − 1

λ
ln y = g−1 (y)

d

dy

(
g−1 (y)

) = − 1

λy
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fY (y) = λy

∣∣
∣∣−

1

λy

∣∣
∣∣ = 1

fY (y) =
{
1 0 < y < 1

0 elsewhere

Example 2.8.2
Two streams A and B meet at a point C. The streamflow for stream-A (X ) and
stream-B (Y ) follows the given distributions. What is the distribution of streamflow
for stream C given by U = X + Y . Consider streamflow for stream A and B to be
independent.

fX(x) =
{
e−x x > 0

0 elsewhere

fY (y) =
{
e−y y > 0

0 elsewhere

Solution Given that streamflow for stream A and B are independent thereby,

fX,Y (x, y) = fX (x) fY (y) = e−(x+y)

GivenU = X+Y andwe can assume another function V = X as per convenience. In
order to find out the distribution ofU first we evaluate the joint pdf ofU and V . Then
we evaluate the marginal distribution of U . We can write X = V and Y = U − V .

|J | = ∂ (x, y)

∂ (u, v)
=

∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣
=

∣∣∣∣
0 1
1 −1

∣∣∣∣ = 1

Thereby,

g (u, v) = fX,Y (x, y) |J | =
{
e−u 0 < v < u < ∞
0 elsewhere

The distribution of U is as follows,

fU (u) =
∫ u

0
e−udv =

{
ue−u u > 0

0 elsewhere
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2.9 MATLAB Examples

MATLAB (abbreviation for MATrix LABoratory) is a popular mathematical tool
used for statistical analysis. A brief introduction to the concepts related to MATLAB
is presented here.

In MATLAB, the memory location where data is stored is called workspace.
Further, MATLABGUI provides commandwindowwhere commands can be issued.
The commands can be stored in text files also known as M-files (having extension
of ‘*.m’). These M-files are of two types:

(i) Script file: A script file is collection of instruction/commands which is executed
together. The script works on the data in the workspace and cannot have any
function definition; i.e., it neither accept any input argument nor return any
output. However, any predefined function can be called.

(ii) Function files: Function file on the other hand contains at least one function.
There can be multiple function definitions in single function file; however, only
the function having same name as file name of M-file can be called from any
external script file or MATLAB command window. Function files can accept
input argument(s) and return output(s). It should be noted that usually the func-
tions in MATLAB has a separate workspace. Hence, to use any data in main
workspace in function, it needs to be transferred to the function as input argu-
ment.

MATLABprovidesmany built-in functions and toolboxes that can be used for hydro-
climatological analysis. Toolbox is collection of functions for a particular purpose
or domain. Symbolic toolbox, Statistics and Machine Learning Toolbox, Wavelet
toolbox, Financial toolbox, etc., are some of the popular toolboxes available inMAT-
LAB. This section (and similar section in other chapter) mostly deals with sample
MATLAB script(s) for solving examples in the chapter. Sample function files are
presented in Sect. 8.8 of Chap.8. Some of the commonly used functions/commands
in script presented in this book are ‘disp’, ‘fprintf’, and ‘diary’. The func-
tions ‘disp’ and ‘fprintf’ are used to display output in MATLAB command
window. The command ‘diary’ is used for saving the output in command window
to text file.

Example 2.6.7 can be solved using the sample script provided in Box2.1. A brief
description of each command line is provided at the end of each line after % symbol.

Box 2.1 Sample MATLAB script for solving Example 2.6.7
� �

1 c l e a r a l l
2 c l c
3

4 %Inputs i.e definition of all the distribution
functions

5 syms x y
6 joint_fun =(x^2)+(x*y)/3; % Given
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7

8 %Evaluation of marginal distribution of X and Y
9 marg_x=int(joint_fun ,y,0,2); % marginal

distribution of X
10 marg_y=int(joint_fun ,x,0,1); % marginal

distribution of X
11

12 %Evaluation of probability of peak discharge (Y)
being greater than 1 unit.

13 prob_y_l1=int(marg_y ,y,0,1); % probability oy Y
less than 1 %unit.

14 prob_y_g1= e v a l (1-prob_y_l1);
15

16 % Evaluation of probability of peak discharge (Y)
greater %than 1 unit given

17 %average rainfall intensity (X) is 0.5 units.
18 cond_y_x=joint_fun/marg_x; %expression for

conditional %probability of Y given X
19 xvalue =0.5;
20 cond_y_xvalue=subs(cond_y_x ,xvalue);
21 prob_y_l1_xvalue= e v a l (1-int(cond_y_xvalue ,y,0,1));
22

23 % Output
24 d i s p ([’The probability of Y greater than 1 units is

’ n um2 s t r (prob_y_g1)])
25 d i s p ([’The probability of Y greater than 1 units

given X is 0.5 is ’ n um2 s t r (prob_y_l1_xvalue)])
� �

The output of the code mentioned in Box2.1 is as follows:
The probability of Y greater than 1 unit is 0.58333.
The probability of Y greater than 1 unit given X is 0.5 is 0.6.

The solution obtained using the MATLAB code is same as the conclusions drawn
from the solution of Example2.6.7.

Exercise

2.1 Time length (inmonths) of uninterrupted functioning of soil moisturemeasuring
sensors until failure follows a distribution, 1/7e−x/7. The sensors are inspected at
every 2 months.

(a) What is the probability that the sensors need to be replaced at the first inspection?
(Ans 0.249)
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(b) What is the probability of proper functioning of the sensors till the second sched-
uled inspection? (Ans 0.564)

2.2 Monthly evaporation at a location is measured for last 10 years. Overall 5% data
is erroneous.

(a) What is the probability that none of the measurements are erroneous out of 10
randomly selected data? (Ans 0.586)

(b) What is the probability that there will be at least one erroneous data out of 10
randomly selected data? (Ans 0.414)

2.3 On an average, five flood events in every 2 years are recorded at a location due
to heavy rainfall. Number of occurrences of flood events in a year is found to follow
a distribution, λx e−λ

x ! where λ is the expected number of flood events in a year. What
is the probability of occurring not more than two flood events in a particular year at
that location? (Ans 0.543)

2.4 Droughts in a region are categorized as severe and moderate based on the last 60
years of record. The number of severe and moderate droughts are noted as 6 and 16,
respectively. The occurrence of each type of droughts is assumed to be statistically
independent and follows a distribution, λx e−λ

x ! where λ is the expected number of
droughts over a period.

(a) What is the probability that there will be exactly four droughts in the region over
the next decade? (Ans 0.193).

(b) Assuming that exactly one drought actually occurred in 2 years, what is the
probability that it will be a severe drought? (Ans 0.164).

(c) Assuming that exactly three droughts actually occurred in 5 years, what is the
probability that all will be moderate droughts? (Ans 0.104).

2.5 During summer season number of extremely hot days in a city follows a distri-
bution (pdf ) shown in the Fig. 2.9.

(a) Determine the value of ‘a’ as shown in the pdf. (Ans 0.08).
(b) What is the probability ofmore than 15 extremely hot days in a particular summer

season? (Ans 0.067).

Fig. 2.9 Probability density
function for number of
floods in a year

fX(x)

x(m)0 5 10 15 20

a
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2.6 The annual maximum flood level (H ) at a river gauging station is approximated
to follow a symmetrical triangular distribution over 5–7m. Values of the pdf at the
ends and at the midpoint are given in the following table;

Annual maximum flood level (H ) in ‘m’ 5 6 7
fH (h) 0 1 0

(a) Determine the pdf and CDF of the flood level.
(b) Determine the maximum flood level that will be exceeded by a probability of

0.05. (Ans 6.68 m).

2.7 A random variable X follows the given distribution,

fX(x) =
{
Cx5 0 < x < 1

0 elsewhere

EvaluateC such that fX,Y (x, y) is a valid pdf. Find the probability that the proportion
of X is more than 75%. (Ans 6, 0.088)

2.8 The joint pdf of random variables X and Y is given as follows,

fX,Y (x, y) = 6x2y 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Evaluate the marginal distributions of X and Y .

2.9 The joint pdf of random variables X and Y is given as follows,

fX,Y (x, y) = 4xy 0 < x < 1, 0 < y < 1

If random variable U = X2 and V = XY , then evaluate the joint pdf of U and V .
Also evaluate the marginal distribution of U and V .

2.10 The joint pmf of X and Y is given as follows. Find out the marginal distribution
of X and Y ,

Random Y
Variables -1 0 1

-1 0.00 0.25 0.00
X 0 0.25 0.00 0.25

1 0.00 0.25 0.00
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2.11 A random variable X follows the given distribution,

fX,Y (x, y) =
{
6x 0 < x < y < 1

0 elsewhere

Evaluate the marginal distributions of X and Y and the expressions for conditional
distribution of Y given X .



Chapter 3
Basic Statistical Properties of Data

This chapter starts with some basic exploratory statistical properties
from sample data. Concept of moment and expectation, and moment-
generating and characteristic functions are considered afterwards. Dif-
ferent methods for parameter estimation build the foundation for many
statistical inferences in the field of hydrology and hydroclimatology.

3.1 Descriptive Statistics

The probabilistic characteristics of random variables can be described completely if
the form of the distribution function is known and the associated parameters are spec-
ified. However, in the absence of knowledge of any parametric distribution, approx-
imate description about the population is assessed through sample statistics. These
are also known as descriptive statistics. Some of the most commonly used descrip-
tive statistics are central tendency, dispersion, skewness, and tailedness. Respective
population parameters are the properties of the underlying probability distribution
(Fig. 3.1). Expressions for sample estimates and population parameters are presented
simultaneously to facilitate the readers.

3.1.1 Measures of Central Tendency

The measure of central tendency of a random variable can be expressed in terms of
three quantities, namelymean,median, andmode. Themean can be further expressed
in different forms as discussed in the following sections.

© Springer Nature Singapore Pte Ltd. 2018
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Springer Transactions in Civil and Environmental Engineering,
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Sample estimates are computed from
data (xi where i = 1, 2, . . . , n)

Population estimates are computed
from underlined distribution
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Fig. 3.1 Frequency plot of a data set with the underlying distribution used to evaluate the sample
estimates (from the data) and population parameters (from the underlying distribution)

Arithmetic Mean

Arithmetic mean can be defined as the sum of the observations divided by sample
size. Let us consider a sample data set with n observations x1, x2, . . . , xn for a random
variable X . The sample estimate of the population mean (μ) is the arithmetic average
�x , calculated as

�x =
∑n

i=1 xi

n
(3.1)

In case of grouped data, let us consider k as the number of groups, n as the total
number of observations, ni as the number of observations in the i th group, and xi as
the class mark of the i th group. Class mark is defined as midpoint of the group, i.e.,
mean of upper and lower bounds of group. For the grouped data, the�x is given by

�x = 1

n

k∑

i=1

xi ni (3.2)

For population, considering pX (xi ) as the underlying distribution (pmf ) of a discrete
random variable X , the population mean μ is expressed as

μ =
n∑

i=1

xi pX (xi ) (3.3)

and considering fX(x) as the underlying distribution (pdf ) of a continuous random
variable X , the population mean μ is expressed as
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μ =
∫ ∞

−∞
x fX (x) dx (3.4)

Expressions for population mean are further discussed later with respect to the con-
cept of moment.

Geometric Mean

The geometric mean indicates the central tendency of a data set by using the product
of their values. The geometric mean can be defined as the nth root of the product of
n observations. The sample geometric mean,�xG , can be evaluated as

�xG =
(

n∏

i=1

xi

)1/n

(3.5)

where the symbol
∏

implies multiplication. The geometric mean can also be
expressed as the exponential of the arithmetic mean of logarithms. Thereby, the log-
arithm of�xG is equal to the arithmetic mean of the logarithms of the xi ’s. Geometric
mean of the population is expressed as:

μG = antilog
[
E (log X)

]
(3.6)

where E(•) stands for expectation, which is discussed later in Sect. 3.2.

Weighted Mean

The weighted mean is similar to an arithmetic mean except some data points con-
tribute more than others. The calculation of the arithmetic mean of grouped data
as explained before is an example of weighted means where ni

/
n is the weighted

factor. In general, the weighted mean is

�xw =
∑k

i=1 wi xi
∑k

i=1 wi

(3.7)

where wi is the weight associated with the i th observation or group and k is the
number of observations or groups.

Median

The median is the value of the random variable at which the values on both sides
of it are equally probable. This can be particularly used if one desires to eliminate
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the effect of extreme values as mean is highly influenced by the extreme values.
The median of n observations can be defined as the value of (n + 1)

/
2 numbered

observation (the observations are arranged in ascending order) in case n is odd and
average of two observations in position n

/
2 and n

/
2 + 1 in case n is an even number.

Thereby, we can say that sample median�xmd is the observation such that half of the
values lie on either side of�xmd .

Considering X to be a discrete random variable, the population median μmd = xd

where d is determined from
d∑

i=1

pX (xi ) = 0.5 (3.8)

Considering X to be a continuous randomvariable, the populationmedianμmd would
be the value satisfying ∫ μmd

−∞
fX (x) dx = 0.5 (3.9)

Mode

The mode is the most probable or most frequently occurring value of a random
variable. It is the value of the random variable with the highest probability density
or the most frequently occurring value. A sample or a population may have none,
one, or more than one mode. Thus, the population mode, μmo, would be a value of
X maximizing pmf or pdf.

Considering X to be a discrete random variable with pmf pX(x), the mode is the
value of xi for which pX(xi ) is maximum, i.e.,

μmo = argmax
xi

[pX (xi )] (3.10)

Considering X to be a continuous random variable with pdf fX(x), the mode is the
value of X that satisfies the following equation

d fX(x)

dx
= 0 and

d2 fX(x)

dx2
< 0 (3.11)

3.1.2 Measure of Dispersion

The dispersion of a random variable corresponds to how closely the values of a
random variable are clustered or how widely it is spread around the central value.
Figure 3.2 shows two random variables, X and Y , with same mean but dispersion of
Y is more than X .
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Fig. 3.2 Random variables
X and Y with same mean but
different dispersion
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Range

The range of a sample is the difference between the maximum and the minimum
values in the sample. Theminimumand themaximumvalues also convey information
about the variability present in data. The range has the disadvantage of not reflecting
the frequency or magnitude of values that deviate either positively or negatively from
the mean since only the largest and smallest values are used in its determination.
Occasionally, the relative range is used which is the range divided by the mean.

Variance

Variance (S2) is a measure of the dispersion of a random variable taking the mean as
the central value. For a sample of size n, the variance is the average squared deviation
from the sample mean.

Considering X as a random variable and a sample x1, x2, . . . , xn with sample
mean �x , the differences x1 − �x, x2 − �x, . . . , xn − �x are called the deviations from
the mean. The sample estimate of variance can be defined as the average of the
squared deviations from the mean. The sample estimate of population variance σ2 is
denoted by S2 and is given as

S2 =
∑n

i=1 (xi − �x)2

n − 1
(3.12)

The reason for dividing by n − 1 instead of n is to make the estimator unbiased.
Unbiasedness is one of the four properties that an estimator should possess. These
properties are explained later in Sect. 3.6. For the time being, readers may note that
one degree of freedom is lost while estimating the sample mean (�x) from the data.
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For the grouped data with x1, x2, . . . , xk as the class mark, the variance can be
estimated from the following formula

S2 =
∑k

i=1 (xi − �x)2 ni

n − 1
(3.13)

where k is the number of groups, n is the total number of observations, xi is the class
mark, and ni is the number of observations in the i th group.

Standard deviation, another measure of dispersion, is the positive square root of
variance, and the unit for standard deviation is the same as the unit of the X . The
formula for S is as follows:

S =
√∑n

i=1 (xi − �x)2

n − 1
(3.14)

A dimensionless measure of dispersion is the coefficient of variation defined as the
standard deviation divided by the mean. The coefficient of variation is estimated as

Cv = S

�x (3.15)

Higher values indicate more dispersed data, i.e., high variability about mean and vice
versa. Population estimate of variance (denoted asσ2) is discussed later in Sect. 3.2.1.

3.1.3 Measure of Symmetry

Distributions of data may not be symmetrical with respect to its mean; i.e., they
may tail off to the right or to the left. Such distributions are said to be skewed
(Fig. 3.3). Skewness of the data is measured using the coefficient of skewness (γ).
For positive skewness (coefficient of skewness, γ > 0), the data is skewed to the
right and similarly for negative skewness (γ < 0) the data is skewed to the left. The
difference between the mean and the mode indicates the skewness of the data. The
sample estimate skewness is normally made dimensionless by dividing by S3 to get
the coefficient of skewness. A sample estimate of coefficient of skewness (denoted
as Cs) is expressed as

Cs = n
∑n

i=1 (xi − �x)3

(n − 1) (n − 2) S3
(3.16)

Population estimate for coefficient of skewness (denoted by γ) is discussed later in
Sect. 3.2.1.
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Fig. 3.3 Typical pdf plots of a a symmetric, b positively skewed distribution, and c negatively
skewed distribution

3.1.4 Measure of Tailedness

The measure of tailedness of a probability distribution function is referred to as
kurtosis. Being a measure of tailedness, kurtosis provides important interpretation
about the tails, i.e., outlier. For a sample, kurtosis shows the effect of existing outliers.
However, for a distribution, kurtosis shows the propensity to produce outliers. The
kurtosis is made dimensionless by dividing by S4 to get the coefficient of kurtosis.
Coefficient of kurtosis is a convenient non-dimensional measure of tailedness. The
sample estimate of the coefficient of kurtosis is given by

k = n2 ∑n
i=1 (xi − �x)4

(n − 1) (n − 2) (n − 3) S4
(3.17)

Aparticular distribution can be classified on the basis of its tailednesswhen compared
with a standard value. Generally, the standard value taken is the kurtosis of normal
distribution that has a value of 3. Thus, sometimes another estimate, ε = k − 3, is
also used as a measure of kurtosis. Based on the measure of kurtosis, data or the
associated distribution can be divided into three types (Fig. 3.4) as follows:

(i) Mesokurtic: If any distribution has same kurtosis as compared to normal distri-
bution, the distribution is calledmesokurtic. Thus, for amesokurtic distribution,
k = 3 and ε = 0.

(ii) Leptokurtic: In case a distribution has a relatively greater concentration of prob-
ability near the mean than the normal distribution; the kurtosis will be greater
than 3. The value of ε will be positive.

(iii) Platykurtic: In case a distribution has a relatively smaller concentration of prob-
ability near the mean than the normal distribution; the kurtosis will be less than
3. The value of ε will be negative.

Population estimate for coefficient of kurtosis is discussed later in Sect. 3.2.1.
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Fig. 3.4 A typical pdf plot
showing the three zones of
kurtosis, namely leptokurtic,
mesokurtic, and platykurtic
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Example 3.1.1
Consider the following sample data for annual peak discharge (cumec) at a gaug-
ing station A. Evaluate the mean, variance, coefficient of skewness, and coefficient
of kurtosis for the given sample data. Also, comment regarding the coefficient of
skewness and coefficient of kurtosis.

Year 2000 2001 2002 2003 2004 2005 2006 2007
Annual peak discharge (cumec) 4630 2662 1913 3655 3670 4005 4621 1557
Year 2008 2009 2010 2011 2012 2013 2014 2015
Annual peak discharge (cumec) 2405 1625 6216 2602 2157 3120 6403 2934

Solution The mean for the given sample data for peak annual discharge can be
evaluated as

�x =
∑n

i=1 xi

n

= 4630 + 2662 + · · · + 2934

16
= 3385.93 cumec

The variance of the sample data can be evaluated as
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S2 =
∑n

i=1(xi − �x)2

n − 1

= (46330 − 3385.93)2 + (2662 − 3385.93)2 + · · · + (2934 − 3385.93)2

15
= 2214860.86 ≈ 2.2 × 106 cumec2

The coefficient of skewness of the sample data can be evaluated as

Cs = n
∑n

i=1 (xi − �x)3

(n − 1) (n − 2) S3

= 16
[
(46330 − 3385.93)3 + (2662 − 3385.93)3 + · · · + (2934 − 3385.93)3

]

15 × 14 × (2214860.86)3/2

= 0.745

The coefficient of kurtosis of the sample data can be evaluated as

k = n2 ∑n
i=1 (xi − �x)4

(n − 1) (n − 2) (n − 3) S4

= 162
[
(46330 − 3385.93)4 + (2662 − 3385.93)4 + · · · + (2934 − 3385.93)4

]

15 × 14 × 13 × (2214860.86)2

= 2.628

As the value of coefficient of skewness is positive so the data is positively skewed
and coefficient of kurtosis is less than 3, so it is platykurtic.

3.2 Concept of Moments and Expectation

In physics, moment is the product of a physical quantity and the distance from a
fixed point of reference. While considering mass as the physical quantity, it can be
used to locate the center of gravity of any irregularly shaped object. Higher order
of moments can also be evaluated. Similar concepts can be utilized to extract some
meaningful information from a data set (Fig. 3.5a).

Suppose that the data x1, x2, . . . , xn is located according to their values on the
real line as shown in Fig. 3.5a. Assuming that each data value is equiprobable, the
mass of each data can be assumed to be 1

/
n, when n is the length of the data. Now,

the total moment with respect to origin can be evaluated as
∑

all i
xi

(
1
/

n
)
. Wemay find

out the locations say x̃ of the equivalent total mass, i.e., the mass that will create the
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Fig. 3.5 First moment (mean) of the data for a discrete data and b probability density function of
continuous data

same moment (as the total moment) about the origin, expressed as
(

n × 1/
n

)
x̃ = x̃ .

Equating these two moments, we get

x̃ =
∑

all i

xi (1
/

n) (3.18)

This location (x̃) is equivalent to the mean of the data (�x).
In case of the population which is represented by a pdf, mean can be identified

following the sameconcept.Referring toFig. 3.5b, consider a deltawidth (dx) located
at a distance x from the origin. The total probability mass is equal to the area above
dx and below the pdf (shaded area= d A). Total moment for this area with respect to
origin is x .d A = x . fX(x)dx . Integrating for the entire range of the data (−∞,∞),

the total moment can be written as
∞∫

−∞
x fX(x)dx . If it is assumed that the total

probability mass is located at a distance x from origin that produces same amount
of moment, we may write

μ ×
∫ ∞

−∞
fX(x)dx =

∫ ∞

−∞
x fX(x)dx

Since
∞∫

−∞
fX(x)dx = 1

μ =
∫ ∞

−∞
x fX(x)dx (3.19)

Following the same concept, higher order moments with respect to origin can also
be evaluated using some power of distance from the origin; for example, x2 and x3

can be used to evaluate the second- and third-order moments, respectively. The x in
Eq.3.19 can be replaced with xi to evaluate the i th moment with respect to origin.
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However in probability theory, second moment onwards are calculated with respect
to themean. Firstmomentwith respect to themean is zero. The second-ordermoment
with respect to the mean can be evaluated as

E
[
(X − μ)2

] =
∫ ∞

−∞
(x − μ)2 fX (x) dx (3.20)

In general, the i th-order moment with respect to the mean can be evaluated as

E
[
(X − μ)i

] =
∫ ∞

−∞
(x − μ)i fX (x) dx (3.21)

3.2.1 Expectation

The expected value of a random quantity intuitively means the averaged value of the
outcome of the corresponding random experiment carried out repetitively for infinite
times. Mathematically, the expected value of a random variable (X ), represented as
E(X), can be defined as the first moment about the origin and represented as follows:

E(X) = μ (3.22)

Considering X to be a discrete random variable, the expected value of X is given as

E (X) =
∑

all j

x j pX

(
x j

)
(3.23)

and for continuous random variables, the expected value of X is given as

E (X) =
∫ ∞

−∞
x fX (x) dx (3.24)

Any function of X , say g(X), is also a random variable. Thus, the expected value of
g(X) is given as

E [g (X)] =
∑

all j

g
(
x j

)
pX

(
x j

)
for discrete RV (3.25)

E [g (X)] =
∫ ∞

−∞
g (x) fX (x) dx for continuous RV (3.26)

Relating the concept of moment with expectation, following points can be noted
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(i) The first moment about origin is the mean, i.e.,

E (X) = μ =
{∑

all j x j pX

(
x j

)
for discrete RV

∫ ∞
−∞ x fX (x) dx for continuous RV

(3.27)

(ii) The second moment about the mean is the variance

E
[
(X − μ)2

] = σ2 =
{∑

all j

(
x j − μ

)2
pX

(
x j

)
for discrete RV

∫ ∞
−∞ (x − μ)2 fX (x) dx for continuous RV

(3.28)

It can also be shown that

V (x) = E
(
x2) − [E (x)]2 (3.29)

(iii) The third moment about the mean is the skewness

E
[
(X − μ)3

] =
{∑

all j

(
x j − μ

)3
pX

(
x j

)
for discrete RV

∫ ∞
−∞ (x − μ)3 fX (x) dx for continuous RV

(3.30)

It can also be shown that

E
[
(x − μ)3

] = E
(
x3

) − 3E
(
x2

)
E (x) + 2 {E (x)}3 (3.31)

The measure of skewness is non-dimensionalized using variance and termed as
coefficient of skewness (γ). Thus, γ is expressed as

γ = E
[
(X − μ)3

]

σ3
(3.32)

(iv) The fourth moment about the mean is the kurtosis (measure of tailedness)

E
[
(X − μ)4

] =
{∑

all j

(
x j − μ

)4
pX

(
x j

)
for discrete RV

∫ ∞
−∞ (x − μ)4 fX (x) dx for continuous RV

(3.33)

It can also be shown that

E
[
(x − μ)4

] = E
(
x4

) − 4E
(
x3

)
E (x) + 6E

(
x2

)
(E(x))2 − 3 {E (x)}4

(3.34)
Themeasure of tailedness (kurtosis) is also non-dimensionalized using variance
and termed as coefficient of kurtosis (κ). Thus, κ is expressed as

κ = E
[
(X − μ)4

]

σ4
(3.35)
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Table 3.1 Population parameters and sample statistics

Property Parameter name Population parameter Sample statistic

Central
tendency

Arithmetic mean For discrete case,
μ = ∑

xpX (x)

For continuous case,
μ = ∫ ∞

−∞ x fX(x)dx

�x =
∑n

i=1 xi
n

Geometric mean μG = antilog
[
E (log X)

] �xG = (∏n
i=1 xi

)1/n

Median X such that F (x) = 0.5 50th percentile value of
data

Mode For discrete case,
μmo = argmax

xi

[pX (xi )]

For continuous case,
μmo is the root of
d fX (x)

dx = 0 and
d2 fX (x)

dx2
< 0

Most frequently
occurring data

Variability Variance σ2 = E
[
(X − μ)2

]
S2 =

∑n
i=1(xi −x̄)2

n−1

Standard deviation σ = E
[
(X − μ)2

]1/2 S =
√∑n

i=1(xi −�x)2

n−1

Coefficient of
variation

cv = σ
μ CV = S

�x

Symmetry Coefficient of
skewness

γ = E
[
(X−μ)3

]

σ3 Cs = n
∑n

i=1(xi −�x)3

(n−1)(n−2)S3

Tailedness Coefficient of kurtosis κ = E
[
(X−μ)4

]

σ4 k = n2
∑n

i=1(xi −�x)4

(n−1)(n−2)(n−3)S4

Population parameters and corresponding sample estimates of different descriptive
statistics are shown in Table3.1.
Some useful information on the expected values is:

(i) Expectation of a constant is same as that constant, i.e., E (C) = C .
(ii) Expectation of a modified random variable obtained by multiplying with a

constant is equal to the product of the constant and the expectation of the
original random variable, i.e., E (C X) = C E (X).

(iii) Expectation of a random variable obtained by addition/subtraction of two ran-
dom variables is equal to the sum/difference of their individual expectations,
i.e., E (X ± Y ) = E (X) ± E (Y ).

Some useful information on the variance values is:

(i) Variance of a constant is zero, i.e., V (C) = 0.
(ii) Variance of amodified random variable obtained bymultiplyingwith a constant

is equal to the product of the square of constant and the variance of the original
random variable, i.e., V (C X) = C2 V (X).
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(iii) Variance of amodified random variable obtained bymultiplyingwith a constant
(a) and addition to another constant (b) is equal to the product of the square of
constant (a) and the variance of the original randomvariable, i.e.,V (aX + b) =
a2 V (X).

Example 3.2.1
The number of thunderstorms per year (X ) and its pmf obtained from the historical
data are shown in the following table:

X 0 1 2 3
pmf (pX(x)) 0.3 0.4 0.2 0.1

What is the mean and variance of the number of thunderstorms in a year?

Solution The mean of number of thunderstorms per year can be evaluated as

E(x) =
∑

xpX (x)

= 0 × 0.3 + 1 × 0.4 + 2 × 0.2 + 3 × 0.1

= 1.1

The variance of storms can be evaluated as

V (x) = E(x2) − {E(x)}2
= [12 × 0.4 + 22 × 0.2 + 32 × 0.1] − 1.12

= 0.89

Example 3.2.2
The time (T ) between two successive floods follows following pdf

fT (t) =
{

λe−λt for t ≥ 0

0 for t < 0

Find the mean, mode, median, and the coefficient of variation of T .

Solution The mean time between successive floods is given by

E(T ) =
∫ ∞

0
tλe−λt dt = −

∫ ∞

0
t d

(
e−λt

)

Integrating by parts (i.e.,
∫

udv = uv − ∫
vdu), we get
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E(T ) = −te−λt
∣
∣∞
0 +

∫ ∞

0
e−λt dt =

[

−e−λt

λ

]∞

0

= 1

λ

Hence, the mean time between successive floods is�t = 1
/
λ.

The mode is the value of t with the maximum value of pdf. From the pdf, it can be
observed that the probability density is highest at t = 0. Thus, the mode is μmo = 0
The median can be evaluated as

∫ μmd

0
λe−λt dt = 0.5

or, 1 − e−λμmd = 0.5

or, μmd = − ln (0.5)

λ
= 0.693

λ

Therefore, median is μmd = 0.693
λ

.
The variance can be evaluated as

σ2
T =

∫ ∞

0

(

t − 1

λ

)2

λe−λt dt =
∫ ∞

0

(

λt2 − 2t + 1

λ

)

e−λt dt

Integrating by parts (as done for E(T )), we get

First term,
∫ ∞

0
t2λe−λt dt = −

∫ ∞

0
t2d

(
e−λt

) = − 2

λ

Second term, − 2
∫ ∞

0
te−λt dt = 2

∫ ∞

0

t

λ
d

(
e−λt

) = 2

λ

Third term,
∫ ∞

0

1

λ
e−λt dt = 1

λ2

Hence, σ2
T = 2

λ
− 2

λ
+ 1

λ2
= 1

λ2

The standard deviation is given by σT = 1
λ
.

The coefficient of variation of the given distribution is cv = σT
μT

= 1/λ
1/λ = 1.

Example 3.2.3
The rainfall depth (in cm) received during thunderstorms at a place (X ) is a random
variable with the following density function

fX (x) =
{

3
2500 (x − 10) (x − 20) 0 ≤ x ≤ 10

0 elsewhere
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Determine the following

(a) Mean value of X ;
(b) Median of X ;
(c) Mode of X ;

(d) Standard deviation of X ;
(e) Coefficient of variation of X ; and
(f) Skewness coefficient.

Solution The density function is fX (x) = 3
2500 (x − 10) (x − 20) for 0 ≤ x ≤ 10.

(a) Mean (μ)

μ =
∫ 10

0
x fX(x)dx = 3

2500

∫ 10

0
x (x − 10) (x − 20) dx

= 3

2500

[
x4

4
− 10x3 + 100x2

]10

0

= 3

(b) Median (μmd )

∫ μmd

0
fX(x)dx = 0.5

or,
3

2500

∫ μmd

0
(x − 10) (x − 20) dx = 0.5

or,
3

2500

[
x3

3
− 15x2 + 200x

]μmd

0

= 0.5

or, μmd = 2.5398

(c) Standard deviation σ

σ2 =
∫ 10

0
(x − �x)2 fX(x)dx

or, σ2 = 3

2500

∫ 10

0
(x − 3)2(x − 10)(x − 20)dx

or, σ2 = 1

12500

[
3x5 − 135x4 + 1945x3 − 11025x2 + 27000x

]10
0

Hence, σ = √
5 = 2.2361

(d) Coefficient of variation is calculated as

cv = σ

μ
= 2.236

3
= 0.7454 ≈ 74.5%.

(e) Coefficient of skewness is obtained as
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γ =
(∫ 10

0
(x − μ)3 fX(x)dx

)/

σ3

= 3

2500 × 5
√
5

∫ 10

0
(x − 3)3 (x − 10) (x − 20) dx

= 1

250000
√
5

[
x(10x5 − 468x4 + 7455x3 − 52740x2 + 186300x − 324000)

]10

0

= 0.7155

3.3 Moment-Generating Functions

Moment-generating function of a random variable is generally treated as an alter-
native to its probability distribution. Though all the random variables may not have
moment-generating functions, however, if available, these are sometimes easier to
compute moments of the random variables of any desired order.

Expectation of et X , which is a function of the random variable X , is known as
moment-generating function of the random variable X . It can be represented as

MX (t) = E
(
et X

)
(3.36)

In case of discrete randomvariable, themoment-generating function can be evaluated
as

MX (t) =
∑

all j

etx j pX

(
x j

)
(3.37)

In case of continuous random variable, the moment-generating function can be eval-
uated as

MX (t) =
∫ ∞

−∞
etx fX (x) dx (3.38)

We can show that the Taylor series expansion of MX (t) is

MX (t) = 1 + μ t + μ
′
2

t2

2
+ · · · + μ

′
k

tk

k
+ · · · (3.39)

The kth moment about origin is then found to be the kth derivative of MX (t) with
respect to t and evaluated at t = 0.

μt
k = dk MX (t)

dtk

∣
∣
∣
∣
t=0

(3.40)



70 3 Basic Statistical Properties of Data

Usefulness of the moment generation function can be explored by evaluating the
derivatives of the function. First derivative of MX (t), evaluated at t = 0, results in
the expected value, which is first moment of the random variable with respect to
origin. Mathematically,

d MX (t)

dt

∣
∣
∣
∣
t=0

=
∫ ∞

−∞
x fX (x) dx (3.41)

Similarly, second derivative of MX (t), evaluated at t = 0, results in second moment
of the random variable with respect to origin. Thus,

d2MX (t)

dt2

∣
∣
∣
∣
t=0

=
∫ ∞

−∞
x2 fX (x) dx (3.42)

In general, nth derivative of MX (t), evaluated at t = 0, results in nth moment of the
random variable with respect to origin.

dn MX (t)

dtn

∣
∣
∣
∣
t=0

=
∫ ∞

−∞
xn fX (x) dx (3.43)

Example 3.3.1
Consider a data set to follow the given distribution where λ is a constant. Evaluate
the first moment with respect to origin, the second moment with respect to the mean
and the moment-generating function.

pX (x) = e−λλx

x ! x = 0, 1, 2, . . .

Solution Calculation for the first moment with respect to origin otherwise known
as mean

E (x) =
∞∑

0

x
e−λλx

x ! = λ

∞∑

1

e−λλx−1

(x − 1) ! = λe−λ
∞∑

1

λx−1

(x − 1) ! = λ

Calculation for the secondmomentwith respect tomean otherwise known as variance

V (x) = E
(

x2
)

− [E (x)]2

In above expression, E
(

x2
)
can also be expressed as

E
(

x2
)

= E[x(x − 1)] + E(x)

E[x(x − 1)] =
∞∑

0

x (x − 1)
e−λλx

x ! = λ2
∞∑

1

e−λλx−2

(x − 2) ! = λ2e−λ
∞∑

1

λx−1

(x − 1) ! = λ2
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V (x) = λ2 + λ − λ2 = λ

Calculation for the moment-generating function

E
(
etx

) =
∞∑

x=0

etx e−λλx

x ! = e−λ
∞∑

x=0

(
λet

)x

x ! = e−λeλet = eλ(et −1)

3.4 Characteristic Functions

Similar to moment-generating function, characteristic function of a random variable
may also serve as another alternative to its probability distribution. It is the Fourier
transform of the probability density function of the random variable.

The expectation of eit X (where i = √−1), which is a complex function of the
random variable X , is known as characteristic function of that random variable X . It
can be defined as

φX (t) = E
(
eit X

) = MX (i t) (3.44)

The characteristic function for X can be expressed as

φX (t) =
∑

all j

eit x j pX

(
x j

)
for discrete RV (3.45)

φX (t) =
∫ ∞

−∞
fX (x) eitx dx for continuous RV (3.46)

Using the characteristic function, the nth moment of X can be expressed as

E
(
Xn

) = 1

i n

dnφX (t)

dtn

∣
∣
∣
∣
t=0

(3.47)

Example 3.4.1
Consider a random variable X that follows the given distribution. Evaluate the mean,
variance, skewness, and kurtosis.

X 0 25 60 75 100
pX (x) 0.5 0.24 0.12 0.08 0.06

Solution Mean can be evaluated as
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E (x) = 0 × 0.5 + 25 × 0.24 + 50 × 0.12 + 75 × 0.08 + 100 × 0.06 = 24

Variance can be evaluated as

V (x) = E
[
(x − μ)2

]
= E

(
x2

)
− {E (x)}2

E
(

x2
)

= 02 × 0.5 + 252 × 0.24 + 502 × 0.12 + 752 × 0.08 + 1002 × 0.06 = 1500

V (x) = 1500 − 242 = 924

Skewness can be evaluated as

E
[
(x − μ)3

]
= E

(
x3

)
− 3E

(
x2

)
E (x) + 2 {E (x)}3

E
(

x3
)

= 03 × 0.5 + 253 × 0.24 + 503 × 0.12 + 753 × 0.08 + 1003 × 0.06 = 112500

E
[
(x − μ)3

]
= 112500 − 3 × 1500 × 24 + 2 × 243 = 32148

Kurtosis can be evaluated as

E
[
(x − μ)4

]
= E

(
x4

)
− 4E

(
x3

)
E (x) + 6E

(
x2

)
(E(x))2 − 3 {E (x)}4

E
(

x4
)

= 04 × 0.5 + 254 × 0.24 + 504 × 0.12 + 754 × 0.08 + 1004 × 0.06 = 9375000

E
[
(x − μ)4

]
= 9375000 − 4 × 112500 × 24 + 6 × 1500 × 242 − 3 × 244 = 2763672

Example 3.4.2
Consider a continuous randomvariable X having the followingmarginal distribution.
Evaluate the mean, variance, and median.

fX (x) =
{

2
x3 for x > 1

0 elsewhere

Solution Mean can be evaluated as

E (x) =
∫

x fX(x)dx

=
∫ ∞

1
x × 2

x3
dx

=
[−2

x

]∞

1

= 2

Variance can be evaluated as
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V (x) = E
(
x2

) − {E (x)}2

=
∫

x2 fX (x) dx − {E (x)}2

where
∫

x2 fX (x) dx =
∫ ∞

1
x2 × 2

x3
dx

The integral does not exist; thereby, the variance does not exist.
For the calculation of median, we first need to calculate the CDF of X .

FX (x) =
∫ x

1
fX(x)dx = 1 − 1

x2

Hence, FX (x) =
{
1 − 1

x2 x ≥ 1

0 elsewhere

Median can be evaluated as

FX(μmd) = 0.5

or, 1 − 1

μ2
md

= 1

2

or, μmd = √
2

Example 3.4.3
Evaluate the coefficient of variation, coefficient of skewness, and coefficient of kurto-
sis for the data supplied in Example 3.4.1. Also, provide an insight into the skewness
and tailedness of the distribution.

Solution Calculation for coefficient of variation:

cv = σ

μ
=

√
924

24
= 1.266

Calculation for coefficient of skewness:

γ = E
[
(x − μ)3

]

σ3
= 32148

9243/2
= 1.144

Calculation for coefficient of kurtosis:

κ = E
[
(x − μ)4

]

σ4
= 2763672

9242
= 3.237

As γ is positive, so the distribution is positively skewed, and κ-3 is positive so the
distribution is leptokurtic.
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Example 3.4.4
The 30 years of monthly rainfall data (mm) at rain gauge stations A and B are found
to follow the given distribution.

fX(x) =
{

λe−λx x ≥ 0

0 elsewhere

If the probability of rainfall exceeding 50 mm is 0.135 for station A and 0.188 for
station B, which station receives higher mean rainfall?

Solution In order to determine the station receiving higher mean rainfall, we first
have to evaluate the mean for the above-mentioned distribution, i.e., E(X). Hence,
from Example 3.2.2,

E(X) =
∫ ∞

0
xλe−λx dx = 1

λ

Further, the probability that rainfall exceeds 50 mm is given by

P(x > 50) =
∫ ∞

50
λe−λx dx = e−50λ

For station A:

e−50λ = 0.135

λ = 0.04

Thus, fX(x) = 0.04e−0.04x

μ =
∫ ∞

0
x fX(x)dx = 25

Similarly, for station B:

e−50λ = 0.188

λ = 0.033

Thus, fX(x) = 0.033e−0.033x

μ =
∫ ∞

0
x fX(x)dx = 30.30

Therefore, station B receives higher mean rainfall.
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3.5 Statistical Properties of Jointly Distributed Random
Variables

3.5.1 Expectation

If X and Y are considered to be jointly distributed continuous random variable and
U is some function of X and Y , U = g(X, Y ), then expectation of U , E(U ) can be
written as

E (U ) = E [g (X, Y )] =
∫

u fU (u) du (3.48)

In case of continuous random variables,

E [g (X, Y )] =
∫ ∫

g (x, y) fX, Y (x, y) dx dy (3.49)

In case of discrete random variables,

E [g (X, Y )] =
∑

i

∑

j

g
(
xi , y j

)
pX, Y

(
xi , y j

)
(3.50)

In all the cases, the result is the average value of the function g(X, Y ) weighted by
the probability that X = x and Y = y or the mean of the random variable U .

3.5.2 Moment about the Origin

A general expression for the (r, s)th moment of the jointly distributed continuous
random variable X and Y is

μ1
r,s =

∫ ∫

xr ys fX, Y (x, y) dx dy for continuous RV (3.51)

μ1
r,s =

∑

i

∑

j

xr
j ys

i pX, Y

(
xi , y j

)
for discrete RV (3.52)

3.5.3 Moment about the Mean (Central Moment)

The central moment for jointly distributed continuous random variables X and Y is
given by
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μr,s =
∫ ∞

−∞

∫ ∞

−∞
(x − μX )r (y − μY )s fX, Y (x, y) dx dy for continuous RV

(3.53)

μr,s =
∑

i

∑

j

(xi − μX )r
(
y j − μY

)s
pX, Y (x, y) for discrete RV

(3.54)

3.5.4 Moment-Generating Function

Similar to moment-generating function of a single random variable defined in previ-
ous section, the moment-generating function for two random variables is defined for
discrete and continuous cases. The moment-generating function for two continuous
random variables can be obtained as

MX,Y (t, u) = E
(
et X+uY

) =
∫ ∞

−∞

∫ ∞

−∞
etx+uy fX, Y (x, y) (3.55)

The moment-generating function for two discrete random variables can be obtained
as

MX,Y (t, u) = E
(
et X+uY

) =
∑

all x

∑

all y

etx+uy pX, Y (x, y) (3.56)

Example 3.5.1
A reservoir has two inflow points A and B. The streamflow gauging records at station
A and B show that inflow at station A (designated by X ) and the same at station B
(designated by Y ) follow the given distributions.

fX(x) =
{

1
50 (10 − x) 0 ≤ x ≤ 10

0 elsewhere

fY (y) =
{

1
300 (25 − y) 0 ≤ y ≤ 20

0 elsewhere

Considering the inflow at station A and B to be independent, evaluate the mean of
total inflow to the reservoir and the moment-generating function for the same.

Solution As given, X designates the inflow at station A and Y designates the inflow
at station B. The total inflow to the reservoir can be designated by another random
variable, say Z . Thus, Z is a function of random variables X and Y such that Z =
g(X, Y ) = X + Y .
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As the inflows at station A and B are independent, their joint pdf can be evaluated
as the product of their individual, i.e., fX, Y (x, y) = fX(x) fY (y). Themean of the total
inflow to the reservoir can be evaluated as

E(Z) =
∫ 20

0

∫ 10

0
(x + y)

(
10 − x

50

) (
25 − y

300

)

dx dy

=
∫ 20

0
− (3y + 10)(y − 25)

900
dy

= 100

9
= 11.11

The moment-generating function can be written as

MZ (t, u) = E(et X+uY )

=
∫ 20

0

∫ 10

0
etx+uy

(
10 − x

50

)(
25 − y

300

)

dx dy

= (10t − e10t + 1)(25u − e20u − 5ue20u + 1)

15000t2u2

3.5.5 Covariance

The covariance of jointly distributed random variables X and Y can be written as the
expected value of the product of their deviations from their respective mean values
as follows:

Cov (X, Y ) = σX,Y = E [(X − μX ) (Y − μY )] (3.57)

By using the linearity property of expectations, r.h.s. of Eq. 3.57 can be transformed
to a simpler form, which describes as the expected value of their product minus the
product of their expected values, as shown in Eq.3.58.

E [(X − μX ) (Y − μY )] = E (XY ) − E (X) E (Y ) (3.58)

For continuous random variables, covariance can be expressed as

σX,Y =
∫∫

(x − μX ) (y − μY ) fX, Y (x, y) dx dy (3.59)

For discrete random variables, covariance can be expressed as
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σX,Y =
∑

all x

∑

all y

(x − μX ) (y − μY ) pX, Y (x, y) (3.60)

If X and Y are independent, then fX, Y (x, y) = fX (x) fY (y) for continuous random
variable and pX, Y (x, y) = pX (x) pY (y) for discrete random variable.

Thus, covariance for independent continuous random variables can be expressed
as

σX,Y =
∫∫

(x − μX ) (y − μY ) fX, Y (x, y) dx dy

=
∫

(x − μX ) fX (x) dx
∫

(y − μY ) fY (y) dy = 0
(3.61)

Thus, covariance for independent discrete random variables can be expressed as

σX,Y =
∑

all x

∑

all y

(x − μX ) (y − μY ) pX, Y (x, y)

=
∑

all x

(x − μX ) pX (x)
∑

all y

(y − μY ) pY (y) = 0
(3.62)

since first central moment with respect to mean is 0. This implies covariance of
two independent variables is always 0. However, the reverse is not true, i.e., zero
covariance does not necessarily indicate that the variables are independent.

The sample estimate for the covariance σX,Y is SX,Y computed as

SX,Y =
∑n

i=1 (xi − �x) (yi − �y)

(n − 1)
(3.63)

Example 3.5.2
The joint distribution of two random variables X1 and X2 is given as follows. Find
out the covariance of X1 and X2.

fX1, X2
(x1, x2) =

{
6x1 0 < x1 < x2 < 1
0 elsewhere

Solution The marginal distributions of X1 and X2 are as follows:

fX (x1) =
∫ 1

x1

6x1dx2 = [6x1x2]
1
x1 = 6x1 (1 − x1) 0 < x1 < 1

fX (x2) =
∫ x2

0
6x1dx1 =

[

6
x2
1

2

]x2

0

= 3x2
2 0 < x2 < 1
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The covariance of X1 and X2 can be calculated as follows:

Cov (X1, X2) = E (X1, X2) − E (X1) E (X2)

Expectation for X1 and X2 can be calculated as follows:

E (X1) =
∫ 1

0
x16 (x1) (1 − x1) dx1 = 1

2

E (X2) =
∫ 1

0
x2

(
3x2

2

)
dx2 = 3

4

Expectation of joint distribution of X1 and X2 can be evaluated as

E (x1x2) =
∫ 1

0

∫ x2

0
x1x26x1dx1dx2 = 2

5

Thereby, the covariance can be evaluated as

Cov (X1, X2) = 2

5
− 1

2
× 3

4
= 1

40

3.5.6 Correlation Coefficient

Correlation coefficient is a normalized form of covariance which is obtained by
dividing the covariance by the product of standard deviation of X and Y .

ρX,Y = σX,Y

σXσY
(3.64)

The range of ρX,Y is −1 ≤ ρX,Y ≤ 1. Actually, ρX,Y is the measure of linear depen-
dence between X and Y . Thereby, if ρX,Y = 0, and X and Y are linearly independent,
however, they might be related by some nonlinear functional form. In this case, X
and Y are said to be uncorrelated. A value of ρX,Y equal to ±1 implies that X and Y
are perfectly related by Y = a + bX . In this case, X and Y are said to be correlated.
The sample estimate of the population correlation coefficient ρX,Y is rX,Y computed
from

rX,Y = SX,Y

SX SY
(3.65)

where SX and SY are the sample estimates of σX and σY , respectively, and SX,Y is
the sample covariance.
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Example 3.5.3
Let X units denote the rainfall intensity in a particular catchment and Y units denote
the runoff from the catchment. The joint pdf of X and Y is given as follows. Evaluate
the covariance and the correlation coefficient.

fX, Y (x, y) =
{

x2 + xy
3 0 ≤ x ≤ 1; 0 ≤ y ≤ 2

0 elsewhere

Solution Evaluation of the marginal pdf of X and Y is carried out in Example 3.5.2.
In order to evaluate the correlation coefficient, we have to evaluate the variance of
X , variance of Y , and covariance of X and Y .

Cov(XY ) = E(XY ) − E(X)E(Y )

E(X) =
∫ 1

0
x

(
2

3
x + 2x2

)

dx =
[
2

9
x3 + 1

2
x4

]1

0

= 13

18

E (Y ) =
∫ 2

0
y

(
1

3
+ y

6

)

dy =
[
1

6
y2 + 1

18
y3

]2

0

= 10

9

E(X, Y ) =
∫ 1

0

∫ 2

0
xy

(
x2 + xy

3

)
dy dx

=
∫ 1

0

[
1

2
x3y2 + 1

9
x2y3

]2

0
dx =

∫ 1

0
2x3 + 8

9
x2 dx =

[
1

2
x4 + 8

27
x3

]1

0
= 43

54

Cov(XY ) = 43

54
−

(
13

18

) (
10

9

)

= − 1

162

As Cov(X, Y ) 	= 0, thereby, X and Y are correlated.
Calculation of variance of X and Y ,

Var(X) = E(X2) − [E (X)]2

Var(Y ) = E(Y 2) − [E (Y )]2

E(X2) =
∫ 1

0
x2

(
2

3
x + 2x2

)

dx =
[
1

6
x4 + 2

5
x5

]1

0

= 17

30

E
(
Y 2) =

∫ 2

0
y2

(
1

3
+ y

6

)

dy =
[
1

9
y3 + 1

24
y4

]2

0

= 14

9
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Var (X) = 17

30
−

(
13

18

)2

= 0.045

Var (Y ) = 14

9
−

(
10

9

)2

= 0.321

Calculation of correlation coefficient,

ρ = Cov(X, Y )√
Var(X)

√
Var(Y )

= −1
/
162√

0.045
√
0.321

= −0.051

The correlation coefficient is −0.051.

3.5.7 Further Properties of Moments

If Z is a linear function of two random variables X and Y such that Z = aX + bY ,
then

E (Z) = E (aX + bY ) = aE (X) + bE (Y ) (3.66)

Var (Z) = a2V ar (X) + b2V ar (Y ) + 2ab Cov (X, Y ) (3.67)

We can generalize the above equations considering Y as a linear function of n random
variables such that Y = ∑n

i=1 ai Xi , then,

E (Y ) = E

(
n∑

i=1

ai Xi

)

=
n∑

i=1

ai E (Xi ) (3.68)

Var (Y ) =
n∑

i=1

a2
i V ar (xi ) + 2

∑

i< j

ai a j Cov
(
Xi , X j

)
(3.69)

Now for a special case considering ai = 1
/

n in Y , we get Y = �X . Since xi form a
random sample, the Cov(Xi , X j ) = 0 for i 	= j and Var(Xi ) = Var(X). Thereby,

Var (Y ) = Var
(�X) =

n∑

i=1

1

n2
Var (X) = n

n2
V ar (X)

or,

Var
(�X) = Var (X)

n
(3.70)
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If we consider X and Y to be independent random variables, then the variance of
their product XY is given by:

Var (XY ) = E (XY )2 − E2 (XY ) (3.71)

Now, E (XY )2 = E
(
X2

)
E

(
Y 2

) = (
μ2

X + σ2
X

) (
μ2

Y + σ2
Y

)
.

And E2 (XY ) = E2 (X) E2 (Y ) = μ2
X μ2

Y .
Thus, variance of the product X and Y can also be expressed as

Var (XY ) = μ2
Xσ2

Y + μ2
Y σ2

X + σ2
Xσ2

Y (3.72)

3.6 Properties of the Estimator

In general, the probability distribution functions are the functions of a set of param-
eters and the random variable. To use the probability distribution for the estimation
of probability, it is important to calculate the values of the parameters. The general
procedure for estimating a parameter is to obtain a random sample from the popu-
lation and use it to estimate the parameters. Now if we consider θ̂i as the estimate
for the parameter θi , then θ̂i is a function of the random variables since θ̂i is itself
a random variable possessing mean, variance and probability distribution. An ideal
estimator should possess the following four characteristics, namely unbiasedness,
consistency, efficiency, and sufficiency.

3.6.1 Unbiasedness

An estimator (θ̂) of a parameter (θ) is said to be unbiased if the expected value of the

estimate is equal to the parameter
(

E(θ̂) = θ
)
. As unbiased, estimator implies that

an average of many independent estimators for the parameter will be equal to the
parameter itself. In case the estimate is biased, the bias can be evaluated as E(θ̂) − θ.

3.6.2 Consistency

An estimator (θ̂) of a parameter (θ) is said to be consistent if the probability that the
estimator differs from the parameter (θ̂ − θ) by more than a constant (ε) approaches
to 0 as the sample size approaches infinity.
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3.6.3 Efficiency

An estimator (θ̂) is said to be more efficient estimator for a parameter (θ) if the
estimator is unbiased and its variance is at least as small as that of another unbiased
estimator θ̂1. The relative efficiency (RE) of θ̂ with respect to another estimator θ̂1
can be evaluated as follows:

RE =
V

(
θ̂
)

V
(
θ̂1

) (3.73)

If the value of the relative frequency is less than 1, then θ̂ is a more efficient estimator
of θ than θ̂1.

3.6.4 Sufficiency

An estimator (θ̂) is said to be a sufficient estimator for a parameter (θ) if the estimator
utilizes all of the information contained in the sample and is relevant to the parameter.

Example 3.6.1
Consider a random variable X such that X ∼ N

(
μ,σ2

)
. Check if the estimators of

mean �X = 1
n

∑
i Xi and variance S2 = 1

n−1

∑
i

(
Xi − �X)2

are biased or unbiased.

Solution Estimator of mean (μ) is given as follows:

�X = 1

n

∑

i

Xi

Expectation of the estimator E
(�X) = 1

n

∑n
i=1 E (Xi ) = 1

n

∑n
i=1 μi = μ, which is

equal to population mean. Therefore, �X is an unbiased estimator of μ.
Estimator of variance

(
σ2

)
is given as follows:

S2 = 1

n − 1

∑

i

(
Xi − �X)2

Expectation of the estimator can be evaluated as
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E
(
S2

) = 1

n − 1

∑

i

(
Xi − μ + μ − �X)2

= 1

n − 1

∑

i

(Xi − μ)2 + (
μ − �X)2 + 2 (Xi − μ)

(
μ − �X)

= 1

n − 1

∑

i

(Xi − μ)2 + (
μ − �X)2 + 2n

(�X − μ
) (

μ − �X)

= 1

n − 1

∑

i

(Xi − μ)2 − n
(
μ − �X)2

= 1

n − 1

(
nσ2 − σ2

)

= σ2

Therefore, S2 is an unbiased estimator of σ2.

3.7 Parameter Estimation

3.7.1 Method of Moments

The method of moments is a popular method of estimation of population parameters.
It considers that a good estimate of a probability distribution parameter is that for
which central moments of population equal with corresponding central moment of
the sample data. Finally, an equation is derived that relates the population moments
to the parameters of interest. For this purpose, a sample is drawn and the population
moments are estimated from the sample. Then, the equations are solved for the
parameters of interest, after replacing (unknown) population moments by sample
moments. In case of a distribution with m parameters, the first m moments of the
distribution are equated to the sample moments to obtain m equations which can
be solved for the m unknown parameters. In other words, let us consider a random
variable X that follows a distribution function fX (x; θ1, . . . , θk), with parameters
θ1, . . . , θk and a random sample x1, . . . , xn , and then as per the assumptions of the
method of moment, the r th population moment can be equated to the r th sample
moment. Thus, we finally get the estimates of that parameter (see Example 3.7.1).

Example 3.7.1
Consider an exponential distributionwhose pdf is given by fX(x) = λe−λx for x > 0.
Determine the estimate of the parameter λ.
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Solution Equating the first-order central moment of population to that of sample,
we get

μ = E(X) =
∫ ∞

−∞
x fX(x)dx =

∫ ∞

0
xλe−λx dx

Using integration by parts (Example 3.2.2)

μ = 1

λ

That yields, λ = 1
/
μ, and thus the corresponding sample estimate is λ = 1

/�x .

3.7.2 Maximum Likelihood

Maximum-likelihood (ML) method assumes that the best estimator of a parameter of
a distribution shouldmaximize the likelihood or the joint probability of occurrence of
a sample. Let us consider, x = (x1, . . . , xn) is a set of n independent and identically
distributed observed sample and f (x, θ) is the probability distribution function with
parameter θ. The likelihood function can be written as follows:

L =
n∏

i=1

fX(xi ) (3.74)

where the symbol
∏

indicates multiplication. Sometimes, it becomes convenient to
work with logarithmic of likelihood function, i.e,

ln L =
n∑

i=1

ln [ fX(xi )] (3.75)

In this case, θ̂ is said to be the maximum-likelihood estimator (MLE) of θ if θ̂
maximizes the function L or ln(L).

Example 3.7.2 Consider x1, . . . , xn to follow the following distribution

fX (x) = 1

σ
√
2π

e− 1
2σ2

(x−μ)2 − ∞ < x < ∞

Evaluate MLE for μ and σ2.
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Solution The likelihood function is to be evaluated as follows:

L = L
(
μ,σ2 |x1, . . . , xn

)

=
n∏

i=1

fXi
(xi )

=
n∏

i=1

1

σ
√
2π

e− 1
2σ2

(x−μ)2

= 1
(√

2π
)n (

σ2
)n/2

e
−1/2σ2

n∑

i=1
(xi −μ)2

Thereby, the log-likelihood function can be evaluated as follows:

log L = −n

2
log 2π − n

2
log σ2 − 1

2σ2

n∑

i=1

(xi − μ)2

The estimator of μ can be evaluated by maximizing the log-likelihood function

∂ log L

∂μ
= 0

1

σ2

n∑

i=1

(xi − μ) = 0 μ =
∑n

i=1 xi

n
= μ̂

Therefore, the estimator of the mean is μ̂ =
∑n

i=1 xi

n .

∂ log L

δσ2
= 0

(
− n

2σ2

)
+ 1

2σ4

n∑

i=1

(xi − μ)2 = 0

1

2σ2

(

−n + 1

σ2

n∑

i=1

(
xi − μ̂

)2
)

= 0

σ2 =
∑n

i=1

(
xi − μ̂

)2

n
= σ̂2

Therefore, the estimator of the variance is σ̂2 =
∑n

i=1(xi −�x)2

n .
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3.8 Chebyshev Inequality

Certain general statements about random variables can be made without fitting a
specific distribution to the random variable. One such statement can be provided by
the Chebyshev inequality. It ensures that not more than a certain fraction of values
can be away from the mean by certain distance. The Chebyshev inequality states that
the probability of getting a value which is away from μ by atleast kσ is at most 1

/
k2,

where μ is the population mean and σ is the population standard deviation. Thus,

P (|X − μ| ≥ kσ) ≤ 1

k2
(3.76)

The Chebyshev inequality provides an upper limit for the probability of a deviation
of a specific value from the mean.

3.9 Law of Large Number

Chebyshev’s inequality can be written in terms of sample mean (sample size n) as
follows:

P

(

|�x − μ| ≥ kσ√
n

)

≤ 1

k2
(3.77)

where �x is the sample mean for a sample of size n. For the above inequality, if
1
/

k2 = δ and the sample size is selected such that n ≥ σ2
/
ε2 where ε < 0 and

0 < δ < 1, then we get the law of large number. It can be stated as

P
(∣
∣�X − μ

∣
∣ ≥ ε

) ≤ δ (3.78)

The law of large number ensures that by selecting a large enough sample, we can
estimate the population mean with the desired accuracy.

3.10 MATLAB Examples

For solving examples in this chapter, symbolic toolbox of MATLAB is required.
Some of the important function/commands are listed below.

• syms: This command is used for defining new algebraic symbol. For example,
syms x will define an algebraic symbol x.

• [output1,...,outputN] = eval(expr): This function evaluates the
expression (expr argument). In case of symbolic expressions, this function can
be used for simplifying them.
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• [y1,...,yN] = solve(eqns,vars): This function is used for solving
univariate or multivariate equations (eqns argument) for variables vars. The
variables argument is optional. In case of multiple equations, they are passed as
string separated by comma like [x_value,y_value] = solve(‘x+y =
7,x-y = 3’) yields x_value = 5 and y_value = 2.

• output_expr = int(expr,var): This function is used for indefinite inte-
gration of expression (expr argument) with respect to variable (var argument).
Further, int(expr,var,a,b) is used for definite integration of expression
(expr argument) between the variable (var argument) value a and b.

• output_expr = diff(expr,var): This function is used for symbolic dif-
ferentiation of expression (expr argument) with respect to variable (var argu-
ment).

Using the functions discussed above, sample MATLAB script for solving
Example 3.5.3 is provided in Box 3.1.

Box 3.1 Sample MATLAB script for solving Example 3.5.3
� �

1 c l e a r a l l ; c l c
2

3 %% Inputs , i.e, definition of all the distribution
functions.

4 syms x y
5 x_fun =(2/3)*x+2*(x^2);
6 y_fun =(1/3) +(y/6);
7 joint_fun =(x^2)+(x*y)/3;
8

9 %% Evaluation of expectation of x, y and the joint
distribution %of x and y.

10 exp_x=int(x*x_fun ,x,0,1); % Expectation of x within
the %defined support

11 exp_y=int(y*y_fun ,y,0,2); % Expectation of y within
the %defined support

12 exp_joint=int(int(x*y*joint_fun ,y,0,2),x,0,1);
13 cov_xy=exp_joint -( exp_y*exp_x); % Covariance of a

and y
14

15 %% Evaluation of the correlation coefficient
16 exp_x2=int((x^2)*x_fun ,x,0,1);
17 exp_y2=int((y^2)*y_fun ,y,0,2);
18 var_x=exp_x2 -( exp_x ^2); %Evaluation of variance of x
19 var_y=exp_y2 -( exp_y ^2); %Evaluation of variance of y
20 cc_xy= e v a l (cov_xy /( s q r t (var_x)* s q r t (var_y))); %

Evaluation of %the correlation coefficient
21

22 %% Display Results
23 output_file =[’output ’ filesep () ’code_1_result.txt’

];
24 d e l e t e (output_file); d i a r y (output_file); d i a r y on;
25 % Output stating if the variables are correlated
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26 i f cov_xy ==0
27 d i s p (’The random variables X and Y are not

correlated.’);
28 e l s e
29 d i s p (’The random variables X and Y are

correlated.’);
30 e nd
31 f p r i n t f (’The correlation coefficient of X and Y is

%2.3f.\n’,cc_xy)
32 d i a r y off;

� �

The output of the code mentioned in Box 3.1 is provided in Box 3.2. The solution
obtained using theMATLABcode is same as the conclusions drawn from the solution
of Example 3.5.3.

Box 3.2 Results for Box 3.1
� �

1 The random variables X and Y are correlated.
2 The correlation coefficient of X and Y is -0.051.

� �

Exercise

3.1 Considering the number of storms in an area for the month of June to follow
the following distribution

pX(x) =
{

2x e−2

x ! x = 1, 2, . . . , 5

0.152 x = 0

Evaluate the mean and median for the number of storms in the given month. (Ans:
0.848; median lies between 1 and 2)

3.2 Soil samples are collected from 15 vegetated locations in a particular area. The
moisture content of the samples as obtained from the laboratory tests is shown in
the following table. Evaluate the arithmetic mean, geometric mean, range, variance,
coefficient of skewness, and coefficient of kurtosis of the soilmoisture data.Comment
regarding the skewness and kurtosis of the data. (Ans: 0.3207; 0.2926; 0.490; 0.018;
0.4136; 3.496)

Sample no 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SMC 0.25 0.40 0.11 0.45 0.36 0.24 0.26 0.31 0.50 0.60 0.39 0.28 0.19 0.14 0.33
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3.3 The maximum temperature (in ◦C) at a city in the month of May follows the
distribution as given below

fX(x) = 1

β − α
40 ≤ x ≤ 45

Evaluate themean, variance, and coefficient of variation of themaximum temperature
in the city. (Ans: 42.5 ◦C; 2.083; 0.034)

3.4 The discharge at a gauging station follows the given distribution

fX(x) = 5e−5x x ≥ 0

Determine the nature of the distribution in terms of its coefficient of variation, skew-
ness, and tailedness. (Ans: 1/5; 2; 6)

3.5 A city supplied water from two sources. The joint pdf of discharge from two
sources is as follows:

fX, Y (x, y) =
{

x2 + xy
3 0 ≤ x ≤ 1; 0 ≤ y ≤ 2

0 elsewhere

Evaluate the marginal probability density of each source and the mean discharge
from the two sources. Also, evaluate the covariance and the forms of conditional
distribution of X given Y = y. (Ans: 13/18 units; 30/27 units; −1/162)

3.6 Consider a random variable X to follow a two-parameter distribution. The pop-
ulation mean (μ) and standard deviation (σ) are the parameters of the distribution.
Evaluate an unbiased estimation of μ and unbiased and biased estimation of σ.

3.7 Let x1, x2, . . . , xn be a random sample for a distribution with pdf

fX(x) = e
−x/β × xα−1

βα � (α)
α > 1; x,β > 0

Find estimators for α and β using method of moments.

3.8 Let x1, x2, . . . , xn ∼ U (0, θ). Find the maximum-likelihood estimate of θ?

3.9 If x1, x2, . . . , xn ∼ e−λλx

x ! . Find the maximum-likelihood estimate of λ?

3.10 Considering the peak annual discharge at a location to have a mean of 1100
cumec and standard deviation of 260 cumec. Without making any distributional
assumptions regarding the data, what is the probability that the peak discharge in any
year will deviate more than 800 cumec from the mean? (Ans: 0.106)
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3.11 The random variable X can assume the values 1 and −1 with probability 0.5
each. Find (a) the moment-generating function and (b) the first four moments about
the origin. (Ans: (a) E(et X ) = 1

2 (e
t + e−t ), (b) 0, 1, 0, 1)

3.12 A random variable X has density function given by

fX(x) =
{
2e−2x x ≥ 0

0 x < 0

Find (a) the moment-generating function and (b) the first four moments about the
origin. (Ans: (b) 1/2, 1/2, 3/4, 3/2)

3.13 Find the first four moments (a) about the origin and (b) about the mean, for a
random variable X having density function

fX(x) =
{
4x(9 − x2)/81 0 ≤ x ≤ 3

0 otherwise

(Ans: (a) 8/5, 3, 216/35, 27/2 (b) 0, 11/25, 32/875, 3693/8750)

3.14 Find (a) E(X), (b) E(Y ), (c) E(X, Y ), (d) E(X2), (e) E(Y 2), (f) Var(X), (g)
Var(Y ), (h) Cov(X, Y ) if the joint pdf of random variables X and Y is given as

fX, Y (x, y) =
{

c(2x + y) 2 < x < 5; 0 < y < 5

0 otherwise

Use c = 1/210. (Ans: (a) 268/63, (b) 170/63, (c) 80/7, (d) 1220/63, (e) 1175/126,
(f) 5036/3969, (g) 16225/7938, (h) −200/3969)

3.15 Joint distribution between two random variables X and Y is given as follows:

fX, Y (x, y) =
{
8xy 2 ≤ x ≤ 1; 0 ≤ y ≤ x

0 otherwise

Find the conditional expectation of (a) Y given X and (b) X given Y . (Ans: (a) 2x
3

(b) 2(1+y+y2)
3(1+y)

)

3.16 The density function of a continuous random variable X is

fX(x) =
{
4x(9 − x2)/81 0 ≤ x ≤ 3

0 otherwise

Find the (a) mean, (b) median, and (c) mode. (Ans: (a) 1.6 (b) 1.62 (c) 1.73)
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3.17 Find the coefficient of (a) skewness and (b) kurtosis of the standard normal
distribution which is defined by

fX(x) = 1√
2π

e−x2/2 − ∞ < x < ∞.

(Ans: (a) 0, (b) 3).



Chapter 4
Probability Distributions and Their
Applications

Use of probability distributions in hydrology and hydroclimatology is
inevitable. This is mostly due to the presence of uncertainty and lack of
complete knowledge from the data. In this chapter, two types of probabil-
ity distributions, namely discrete probability distribution and continuous
probability distribution are discussed elaborately. Commonly used dis-
tributions with their parameters, properties of the distribution supported
by graphical representation, and their plausible applications in hydrol-
ogy and hydroclimatology are explained. Each distribution is explained
in the following order—basics, interpretation of the random variable,
parameters, probability mass/density function, description, potential
applications, and illustrative examples. This order is expected to help
the readers to understand the distribution and to develop the knowledge
base for its further applications.

4.1 Discrete Probability Distributions

A discrete probability distribution describes the probability of occurrence of each
value of a discrete random variable. A discrete random variable is a random variable
that can only take finite or countably infinite specific values (see Sect. 2.5.1). For
example, let X be a random variable representing the number of rainy days in a
month at a location. It is obvious that X can take up values belonging to the set
of nonnegative integers only. Thus, X follows a discrete probability distribution. In
this book, discrete probability distribution functions are referred as probability mass
function (pmf ) and denoted as pX(x). In the following sections, we will explain some
of themost commonly used discrete probability distributions in the field of hydrology
and hydroclimatology. Mathematical details of all the distributions are summarized
at the end of the chapter in Table 4.2 to facilitate the readers.
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4.1.1 Binomial Distribution

Basics: Binomial distribution is a discrete probability distribution of the number of
occurrences of an event in a sequence of n independent trials of a random experiment
with a probability of occurrence of the event be p in each trial. Thus, the interpretation
could be as follows:

Random Variable: The number of occurrences (X ) in a sequence of n independent
experiments.
Parameters: n and p, where n is the number of trials and p is the probability of
occurrences in each trial.
Probability mass function: pX(x; n, p) = nCx px (1− p)n−x x = 0, 1, 2, . . . , n

Descriptions: Any process that may occur with the probability p at discrete points
in time or space or individual trials may be a Bernoulli Process if the following
assumptions hold:

(i) There are two and only two possible outcomes in each trial. These outcomes
may be termed as ‘occurrence’ and ‘non-occurrence.’1

(ii) The probability of occurrence is the same for each trial. This implies that the
probability of non-occurrence is also same for each trial.

(iii) The outcome of any trial is independent of the history of any prior occurrence
or non-occurrence.

Let us consider X to be a random variable that represents the number of occurrence
in the sequence of n number of trials of a Bernoulli Process. X is supposed to follow
the Binomial Distribution. Occurrence of flood in a year, number of rainy days in a
month, failure of embankment in a year might be possible Bernoulli processes if the
aforementioned assumptions are satisfied.

To obtain the probability concerning X , we proceed as follows: If p and (1− p) are
the probability of occurrence and non-occurrence for each trial, then the probability
of getting x occurrences (i.e., (n − x) non-occurrences) in any order is px (1 −
p)(n−x). This is by the virtue of the generalized multiplication rule for more than
two independent events. Now, the number of different orders in which x number of
occurrences can happen is nCx , i.e., the number of combinations of x objects selected
from a set of n objects. Thus, the probability of x occurrences out of n trials can be
expressed as:

pX (x; n, p) = nCx px (1 − p)n−x x = 0, 1, 2, . . . , n (4.1)

This is the pmf of binomial distribution for X with parameters n and p. The cumu-
lative binomial distribution is expressed as,

1Some mathematical textbook may refer these outcomes as ‘success’ and ‘failure.’ We prefer to
use ‘occurrence’ and ‘non-occurrence’ since it may be embarrassing to refer some of the extreme
events, such as ‘floods,’ ‘droughts,’ ‘overtopping an embankment’ as success.
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FX (x; n, p) =
x∑

i=0

pX (i; n, p) (4.2)

The mean, variance, and coefficient of skewness of the binomial distribution are as
follows:

E (X) = np (4.3)

V ar (X) = npq (4.4)

γ = (q − p)√
npq

(4.5)

where q = 1− p. Hence, the distribution is symmetric for p = q, positively skewed
for p < q, and negatively skewed for p > q. The probabilities p and q may also
referred as exceedance and non-exceedance probabilities.

Applications:

Probability of exceedance: An extreme event, such as heavy rainfall, high river
discharge or flood, is said to have occurred if X ≥ xT , where X is the random
variable and xT is a fixed level. The probability of occurrence of such an extreme
event is known as probability of exceedance. Binomial distribution is often used
to compute the probability of occurrences for such extreme events.

Design return period: The time between the occurrences of two events is known
as recurrence interval or return period of that event. Theoretically, return period
(T ) is the inverse of the probability (p) that the magnitude of event (xT ) will
be equalled or exceeded in any year (T = 1

/
p). Concept of return period is

discussed in Sect. 5.1 of Chap.5. The design return period of an extreme event
should be much greater than the design life of a hydraulic structure such as a
dam or an embankment. Reasonably high design life assures that an exceedance
may not occur within the life span of a structure. The fact however remains that no
matter the value of design return period considered to design a hydraulic structure;
there remains a chance for an exceedance to occur. Several statistical assessments
regarding design return period can be done using binomial distribution.

Example 4.1.1
Find the average occurrence of a 10-year flood (return period of the flood is 10 years)
in a 100 year period?What is the probability that exactly this number of 10-year flood
will occur in a 100-year period?

Solution The probability of occurrence of 10-year flood in any year = 1/10 = 0.1.
Thus, the average number of occurrences in 100 years = E(X) = np = 100 ×

0.1 = 10
The probability of 10 occurrences of 10-year flood in 100 years can be evaluated

using binomial distribution,
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pX(x; n, p) = nCx px (1 − p)n−x

pX(10 ; 100, 0.1) = 100C10(0.1)
10(1 − 0.1)100−10 = 0.1319

Example 4.1.2
A hydrologist has two possible proposals to consider for the construction of an
embankment. The details of the two proposals are given as follows. Which proposal
should be considered for an economic design?

Design Parameters/Information Proposal 1 Proposal 2
Return period 5 years 10 years
Flood magnitude 1400 m3/s 2200 m3/s
Time period of occurrence of the event once, such that the
facility can be repaired with the revenue earned without
any loss

Once in 8 years Once in 15 years

Solution Let X be the number of occurrences of flood.
Proposal 1: If flood of the given magnitude occurs once or does not occur at all, then
there will be no loss. So X can take up values 0 and 1. Now as this is a Bernoulli
process, we can use the binomial distribution where p = 1/5 = 0.2 and n = 5. The
probability that there is no loss,

pX (x = 0; 8, 0.2) + pX (x = 1; 8, 0.2) = 8C0 (0.2)0 (0.8)8 + 8C1 (0.2)1 (0.8)7

= 0.168 + 0.335

= 0.503

Therefore, the probability of loss,
= (1 − 0.503) = 0.497.

Proposal 2: Similarly, in this case p = 1/10 = 0.1 and n = 10. The probability that
there is no loss,

pX (x = 0; 15, 0.1) + pX (x = 1; 15, 0.1) = 15C0 (0.1)0 (0.9)15 + 15C1 (0.1)1 (0.9)14

= 0.206 + 0.343

= 0.549

Therefore, the probability of loss,
= (1 − 0.549) = 0.451.
For the 2nd proposals, probability of loss is lower than the 1st proposal. Therefore,

the 2nd proposal is more economic.

Example 4.1.3
If the probability of a design flood not exceeding in 20 years is 0.8, what should be
the return period of the design storm?
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Solution Using binomial distribution,

pX (0; 20, p) = 20C0 p0 (1 − p)20

or, 0.8 = (1 − p)20

hence, p = 1 − (0.8)1/20 = 0.0111

T = 1
/

p = 90 years

The return period of the design flood is 90 years.

4.1.2 Negative Binomial Distribution

Basics: Negative binomial distribution is another discrete probability distribution of
the random variable that denotes the number of trials in a Bernoulli process before a
specific number (denoted by j) of occurrences. Thus, the interpretation could be as
follows:

Random variable: The number of occurrence (X ) in a sequence of independent and
identically distributed Bernoulli trials before a specific number of non-occurrences
occurs.
Parameters: j and p, where j is the number of non-occurrences and p is the
probability of occurrence in each independent trial.
Probability mass function: pX (x; j, p) = x−1C j−1 p j (1 − p)x− j x = j, j +
1, . . .

Description: The probability that the j th occurrence happens at the X th (X is the
random variable here) trial can be calculated by noting that there must be ( j − 1)
occurrences in the x − 1 trials preceding the X th trial. The probability of ( j − 1)
occurrences in x −1 trials can be computed from the binomial distribution (explained
before) as pX (x; j − 1, p) = x−1C j−1 p j−1 (1 − p)x− j , where p is the probability
of occurrence in each trial as defined in binomial distribution.

Next, the probability of occurrence in X th trial is p. As all the trials are inde-
pendent, the joint probability distribution function is obtained by multiplying these
probabilities (x−1C j−1 p j−1 (1 − p)x− j and p). Thus, probability of X = x , i.e., pmf
of the negative binomial distribution is given by,

pX (x; j, p) = x−1C j−1 p j (1 − p)x− j x = j, j + 1, . . . (4.6)

Thus, different functional forms will result for different values of j . The CDF is
expressed as,
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FX (x; j, p) =
x∑

i= j

pX (i; j, p) (4.7)

Themean, variance, and coefficient of skewness of the negative binomial distribution
are

E (X) = j

p
(4.8)

V ar (X) = j (1 − p)

p2
(4.9)

γ = 1 + p√
pj

(4.10)

Applications: The number of occurrences of extreme events within the life span of
a hydraulic structure can be determined using the negative binomial distribution.

Rare Events Probabilities: Number of rare events like thunderstorm and hail days
over certain period may fit the negative binomial distribution.
Tropical cyclone frequency distributions: The occurrence of cyclones and hurri-
canes in a year is identified as a rare event. Negative binomial distribution may be
used for the annual frequencies of these events.

Example 4.1.4
What is the probability that the 10th occurrence of a 10-year flood will be on the
100th year?

Solution Using negative binomial distribution,

pX (100; 10, 0.1) = 99C9 (0.1)10 (0.9)90 = 0.013

The probability that the 10th occurrence of a 10-year flood will occur on the 100th
year is 0.013.

Example 4.1.5
The probability of non-occurrence of a hurricane in the state of Orissa once in 20
years is 0.05. Determine the probability of 5th occurrence of the hurricane in the
50th year?

Solution Using the binomial distribution with n = 20 and x = 0, the probability of
occurrence of hurricane in a year can be evaluated as follows,

pX (0; 20, p) = 20C0 p0 (1 − p)20

0.05 = (1 − p)20

p = 1 − (0.05)1/20 = 0.139
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Thus, the return period,

T = 1

p
= 7.19 ≈ 7 years

The probability of 5th occurrence in 50th year can be evaluated using negative bino-
mial distribution,

pX (50; 5 , 0.139) = 49C40.139
5 (0.861)45 = 0.013

Thus, the probability of five occurrences of a hurricane with 7-year return period in
a span of 50 years is 0.013.

4.1.3 Multinomial Distribution

Basics: Multinomial distribution is the generalized form of a binomial distribu-
tion by assuming each trial to have more than two (i.e., k) possible outcomes. The
interpretation could be as follows:

Random Variable: The number of occurrences (X1, . . . , Xk) in a sequence of n
independent experiments.
Parameters: n and pi (i = 1, . . . , k), where n is the number of trials and pi is the
probability of occurrences of the i th outcome (Xi ) in each experiment.
Probability mass function:p (x1, x2, . . . , xk) = n !

x1 ! x2 !.... xk ! px1
1 px2

2 . . . pxk
k

for xi = 0, 1, . . . , n and
∑k

i=1 xi = n

Descriptions: Let us consider n independent trials, with each trial permitting k
mutually exclusive outcomes whose respective probabilities are p1, . . . , pk such
that

∑k
i=1 pi = 1. Considering the outcomes of the first kind, second kind, and so

on, we are interested in the probability p (x1, . . . , xk) of getting x1 outcomes of the
first kind, x2 outcomes of the second kind, and so on. Using the arguments similar
to the ones in Sect. 4.1.1, probability mass function can be developed. The pmf can
also be expressed using gamma function as,

p (x1, x2, . . . , xk) = �
(∑

i xi + 1
)

�i� (xi + 1)

k∏

i=1

pxi
i for xi = 0, 1, . . ., n

(4.11)
where � (•) is the gamma function (refer Sect. 4.2.5). The CDF is expressed as,

FX (xi ) =
∑

Xi <xi

p (x1, x2, ..., xk) (4.12)
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The mean and the variance of the multinomial distribution are,

E (Xi ) = npi (4.13)

V ar (X) = npi (1 − pi ) (4.14)

When the parameters are n = 1 and k = 2, the multinomial distribution becomes
the Bernoulli distribution, i.e.,

p (x1, x2) = 1

x1 ! × x2 ! px1
1 × px2

2 (4.15)

When n > 1 and k = 2, the multinomial distribution becomes the binomial distri-
bution (presented before).

When n = 1, and k > 2, it becomes the categorical distribution.

Applications: Categorical variables targeting multiple outcomes including rainfall,
streamflow can be considered to follow multinomial distribution. For example, if the
amount of rainfall at a particular region is divided into five categories based on the
depth of rainfall such as very low, low, normal, high, and very high and we wish to
evaluate the probability of a particular category of rainfall in that region, the multi-
nomial distribution can be used.

Example 4.1.6
The probability of the annual maximum peak discharge less than 140 m3/s is 0.4, and
the probability for the same between 140 and 280m3/s is 0.3. What is the probability
of occurrence of 4 peak flows less than 140 m3/s and 2 peak flows between 140 and
280m3/s for a 10-year period?

Solution The first outcome (discharge less than 140 m3/s) and the second outcomes
(discharge between 140 and 280m3/s) are fixed as per the example. The third outcome
can be considered as the peak discharge is greater than 280 m3/s.

The probability of occurrence of the third outcome = 1 − 0.4 − 0.3 = 0.3.
The event must occur = 10 − 4 − 2 = 4 times.
Now, using multinomial distribution,

p (4, 2, 4; 10, 0.4, 0.3, 0.3) = 10! × (
(0.4)4 (0.3)2 (0.3)4

)

(4! 2! 4!) = 0.059

The probability of occurrence is therefore 0.059 which is basically very low.

Example 4.1.7
At a given location, years are considered to be below-normal if their respective
annual total rainfall depths are lower than 500 mm, normal if it lies between 500
and 1100 mm, and above-normal if it lies above 1100 mm. Frequency analysis of
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annual rainfall record shows that the probability of normal, below-normal, and above-
normal rainfall is 0.6, 0.3, and 0.1, respectively. Considering a randomly selected 20
years, determine the probability that 13 normal, 5 below-normal, and 2 above-normal
rainfall years will occur.

Solution This example defines three outcomes, namely normal (r1), below-normal
(r2), and above-normal (r3) rainfall. The sought probability can be evaluated using
multinomial distribution,

p (13, 5, 2; 20, 0.6, 0.3, 0.1) = 20! × (
(0.6)13 (0.3)5 (0.1)2

)

(13! 5! 2!) = 0.052

The probability of occurrences of 13 normal, 5 below-normal, and 2 above-normal
rainfall years is therefore 0.052.

4.1.4 Hypergeometric Distribution

Basics: Hypergeometric distribution is a discrete probability distribution. The inter-
pretation is as follows:

Random variable: The number (X ) of occurrences of an event in a sample of size
n (drawn without replacement), from a population of size N containing k-specific
possibilities of occurrences.
Parameters: N , n, and k, where N is the size of the population, n is the size of
the sample to be selected, and k is the number of specific events in the population,
occurrence of which is calculated.
Probability mass function: pX(x; N , n, k) = k Cx ×N−k Cn−x

N Cn

for x = max (0, n + k − N ) , . . . , min(n, k)

Descriptions: Let us consider a sample of size n selected from a population of
size N . The total possible outcome of the selection is N Cn . The number of ways x
occurrences may happen is kCx , k being the specific possibilities of occurrences. The
number of ways (n − x) non-occurrences may happen is N−kCn−x , where (N − k) is
the total number of possible non-occurrences. Thus, considering all the possibilities
to be equally likely and for sampling without replacement, the probability of getting
‘x occurrences in a sample size of n’ is as follows:

pX (x; N , n, k) =
kCx × N−kCn−x

N Cn
for x = max (0, n + k − N ) , . . . , min(n, k)

(4.16)
where x cannot exceed k and (n − x) cannot exceed (N − k).The CDF is expressed
as,
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FX (x; N , n, k) =
x∑

x=max(0,n+k−N )

pX (i; n, p) (4.17)

The mean, variance, and coefficient of skewness of the hypergeometric distribution
are,

E (X) = nk

N
(4.18)

V ar (X) = nk (N − k) (N − n)

N 2 (N − 1)
(4.19)

γ = (N − 2k) (N − 1)1/2 (N − 2n)

[nk (N − k) (N − n)]1/2 (N − 2)
(4.20)

Applications: Applications of hypergeometric distribution are general in nature.
Generally, wherever total number of events/cases (N ) with the number of total favor-
able cases (k) in it and a sample size of (n) are known, and it is required to calculate
the probability of favorable cases in the sample, hypergeometric distribution is used.
Sometimes, significance of relationship between climate indices and hydrologic vari-
ables is tested with hypergeometric distribution.

Example 4.1.8
Assume that during the month of July, 20 rainy days occurred. The occurrence of
rain on a particular day is independent of occurrence of rain on any other day.

(a) What is the probability that 8 out of any 10 days are rainy days?
(b) What is the probability that less than 8 out of any 10 days are rainy days?

Solution

(a) The month of July has 31 days. So we are selecting 10 days out of 31 days. It is
also given that the number of rainy days is 20 days. Using the hypergeometric
distribution considering N = 31, n = 10 and k = 20.

pX (8; 31, 10, 20) =
20C8

11C2
31C10

= 0.156

Therefore, probability that 8 of these days are rainy is 0.156.
(b) Using the cumulative hypergeometric distribution considering N = 31, n = 10

and k = 20.

FX (7; 31, 10, 20) =
20C0

11C10 + 20C1
11C9 + · · · + 20C7

11C3
31C10

= 0.798

Therefore, probability that less than 8 of these days are rainy is 0.798.
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Example 4.1.9
From a record of annual rainfall data for a particular station, 24 years are found to
be above-normal. Among those 24 years, flood was observed for 6 years. Now if 10
above-normal annual rainfall data are chosen out of 24 years, what is the probability
that 2 of the years will be flood years?

Solution For the given situation, hypergeometric distribution can be applied. Let
us define a random variable X as number of observed flood years, which follows
hypergeometric distribution with the following pmf

P (X = x) =
kCx

(N−k)C(n−x)

N Cn

In the example, following data are given,
Total above-normal rainfall years (N ) = 24
Total no of flood years (k) = 6
Above-normal rainfall years chosen as sample (n) = 10
Number of observed flood years out of this sample (x) = 2

Hence, probability of observing 2 flood years out of 10 above-normal annual rainfall
years is

P (X = 2) =
6C2

(24−6)C(10−2)
24C10

=
6C2

18C8
24C10

= 15 × 43758

1961256
= 0.335

Example 4.1.10
Assume over a 100 years of record, 23 and 20 years were recorded as El Niño
and La Niña years, respectively, out of which 20 and 13 years were found to have
above-normal and below-normal rainfall at a region respectively. Overall, out of
100 years, 32 and 31 years were found to receive above-normal and below-normal
rainfall respectively, at that region. Fifteen random above-normal and below-normal
years are selected. To establish that El Niño and La Niña events are associated with
above-normal and below-normal rainfall for that region respectively, what should be
the number of selected El Niño and La Niña years in the sample? Assume 0.95 as
the threshold probability to establish the fact.

Solution Let us define a random variable X as number of El Niño/La Niña years
in the randomly selected 15 years. Thus, for the given situation, hypergeometric
distribution can be applied, for which the pmf and CDF are as follows:

p (X = x) =
kCx

(N−k)C(n−x)

N Cn

P (X ≤ x) =
∑

x

kCx
(N−k)C(n−x)

N Cn
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For the first part of the example, following data are given,
Total above-normal rainfall years (N ) = 32,
Total no of El Niño years (k) = 20,
Number of above-normal rainfall years chosen as sample (n) = 15,
Minimum number of observed El Niño years out of this sample to establish the

fact that El Niño events are associated with above-normal rainfall (x) = ?

Now according to the example, the threshold probability to establish the fact that
El Niño events are associated with above-normal rainfall is given as 0.95, hence

P (X ≤ x) ≥ 0.95

or,
x∑

x=1

20Cx
(32−20)C(15−x)

32C15
≥ 0.95

or,
x∑

x=1

20Cx
12C(15−x)

32C15
≥ 0.95

By solving the above equation by trial and error, x = 12.
For the second part of the example, following data are given,
Total below-normal rainfall years (N ) = 31,
Total no of La Niña years (k) = 13,
Number of below-normal rainfall years chosen as sample (n) = 15,
Minimum number of observed La Niña years out of this sample to establish the

fact that La Niña events are associated with above normal rainfall (x) =?

Now according to the example, the threshold probability to establish the fact that
La Niña events are associated with above-normal rainfall is given as 0.95, hence

P (X ≤ x) ≥ 0.95

or,
x∑

x=1

13Cx
(31−13)C(15−x)

31C15
≥ 0.95

or,
x∑

x=1

13Cx
18C(15−x)

31C15
≥ 0.95

By solving the above equation by trial and error, x = 9.
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4.1.5 Geometric Distribution

Basics: Geometric distribution is another discrete probability distribution of a ran-
dom variable that defines the number of trials to get the first occurrence of a particular
event in a Bernoulli process. Thus, the interpretation could be as follows:

Random variable: The number of trials (X ) in the sequence of a Bernoulli process
to get the first occurrence.
Parameters: p, where p is the probability of occurrence.
Probability mass function: pX (x : p) = p (1 − p)x−1 for x = 1, 2, . . . , n

Descriptions: The probability that the first success of a Bernoulli trial occurs on
the x th trial can be found using the geometric distribution. In order to attain the
first occurrence on the x th trial, there must be (x − 1) preceding trials whose out-
come is non-occurrence. Since the successive outcomes in the Bernoulli process are
independent, the desired probability distribution is given by:

pX(x : p) = p(1 − p)x−1 for x = 1, 2, . . . , n (4.21)

The CDF is expressed as,

FX (x; p) =
x∑

i=1

pX (i; p) (4.22)

The mean, variance, and coefficient of skewness of the geometric distribution are as
follows:

E (X) = 1

p
(4.23)

V ar (X) = (1 − p)

p2
(4.24)

γ = 2 − p√
1 − p

(4.25)

Applications: Application of geometric distribution is also general. Wherever the
calculation involves, consecutive non-occurrences and/or first occurrence of any
hydrologic events, such as embank overtopping, cyclones, extreme rainfall, geo-
metric distribution is used.

Example 4.1.11
A dam is constructed across a river to prevent the flooding in the downstream region.
What is the probability that a 20-year flood will occur for the first time in the 10th
year after the completion of the project? What is the probability that the same will
not occur at least within 10 years?
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Solution Using the geometric distribution, the probability that the first occurrence
is in the tenth 10th year is,

pX = (10, 0.05) = (0.05) (0.95)9 = 0.031

This is explained as nine consecutive non-occurrences followed by 1 occurrence.
These events are independent to each other, so the probability is obtained by multi-
plying these individual probabilities.

The probability that it will not occur at least within 10 years can also be interpreted
as non-occurrence in the first 10 years.

(0.95)10 = 0.599

4.1.6 Poisson Distribution

Basics: Poisson distribution is a discrete probability distribution of a randomvariable
that describes the probability of a particular number of events occurringwithin a fixed
time interval. Thus, the interpretation could be as follows:

Random variable: The number of occurrences (X ) of an event (outcomes of a
Bernoulli Process) in a fixed interval of time.
Parameters: λ, also known as the shape parameter, indicates the average number
of events per unit time interval or the expected number of occurrences of the event.
Probability mass function: pX (x;λ) = λx e−λ

x ! for x = 0, 1, . . . ; λ > 0

Descriptions: Let us consider a Bernoulli process defined over an interval of time,
and let p be the probability of occurrence of an event in a particular interval of time. If
the time interval becomes shorter, the probability of occurrence of the event (p) in the
interval also becomes smaller; on the other hand, the number of trials (n) increases.As
a result, np (denoted byλ) remains constant, i.e., the expected number of occurrences
in a time interval remains the same. In such case, the binomial distribution approaches
to a Poisson distribution and is given by:

pX (x;λ) = λx e−λ

x ! for x = 0, 1, . . . ; λ > 0 (4.26)

The mean, variance, and coefficient of skewness of the Poisson distribution are as
follows:
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E (X) = λ (4.27)

V ar (X) = λ (4.28)

γ = λ−1/2 (4.29)

A process is defined as aPoisson process if the events occurring over time/area/space
satisfy the three assumptions;

(i) The number of events occurring in disjoint time intervals is independent.
(ii) The probability of a single occurrence in a small time interval is proportional

to the length of the interval.
(iii) Probability of more than one occurrences in a small interval is negligible.

Applications:

Thunderstorm and Hail days Probabilities: Number of occurrences of the rare
events like thunderstorm and hail days during certain period may fit the Poisson
distribution. Whether the occurrences of such events are changed over time can
be checked through parameters of this distribution.
Tropical cyclone frequency distributions: The occurrence of cyclones and hur-
ricanes in a year is identified as a rare event. Poisson distribution shows good
statistical fit with the annual frequencies of these events.
Number of rainy days in a particular monsoon month: Number of rainy days in
a particular month can be modeled using Poisson distribution. Sometimes, the
characteristics of monsoon with respect to number of rainy days may change at a
location over time due to climate change. Such investigation can be done through
the distributional properties over two time periods using Poisson distribution.

In fact, any such similar application as mentioned above can be modeled using
Poisson distribution.

Example 4.1.12
What is the probability that a flood with return period 10 years will occur once in 4
years?

Solution Probability of occurrence of a flood with return period T = 10 year is
1/10 = 0.1

This example can be solved assuming two distributions—Binomial and Poisson
distributions.

Using Binomial distribution

The probability of single occurrence (x = 1) of 10-year flood (p = 0.1) in 4 years
(n = 4),

pX (x = 1) = nCx px (1 − p)n−x = 4C1 (0.1)1 (1 − 0.1)3 = 0.292
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Using Poisson distribution

Expected number of 10-year flood (p = 0.1) in 4 years (n = 4) is λ = np =
4 × 0.1 = 0.4

The probability of single occurrence (x = 1) of 10-year flood,

pX (x = 1) = λe−λ

x ! = 0.4e−0.4

1! = 0.268

It can be noted that both the distributional assumptions provide approximately same
answer.

Example 4.1.13
What is the probability of fewer than 2 occurrences of a 10-year storm in a 50-year
period?

Solution Using the Poisson distribution, expected number of 10-year storm (p =
0.1) in 50 years (n = 50), λ = np = 50 × 0.1 = 5

Thus, probability of fewer than 2 occurrences of 10-year storm in a 50 year

= Prob (x < 2) = Prob (x ≤ 1) =
1∑

x=0

λx e−λ

x ! =
1∑

x=0

5x e−5

x ! = 50e−5

0! + 51e−5

1! = 0.04

Therefore, the probability is 0.04.

4.2 Continuous Probability Distributions

If a random variable can take any possible real value from the range of real num-
bers, its probability distribution is called a continuous probability distribution (see
Sect. 2.5.2). Let X be a random variable representing the annual streamflow at a par-
ticular station. It can take any possible value from 0 to∞. Such random variables (X )
will follow a continuous probability distribution. In this book, continuous probability
distribution functions are referred as probability density function (pdf ) and denoted
as fX(x). In the following section, we will explain some of the most commonly used
continuous probability distributions.

4.2.1 Uniform Distribution

Basics: Uniform distribution is the simplest and symmetric continuous probability
distribution function. It is defined over a range (known as support) such that its
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Fig. 4.1 Probability density
function of uniform
distribution with parameters
α and β

x

f X
(x

)

1/(  - )

occurrence is equally possible (equiprobable) over any subinterval of same length
within the support. Thus, the interpretation could be as follows:

Random Variable: X that is equiprobable over any subinterval of same length
within its support.
Parameters: α and β, where α and β are the minimum and maximum limit of the
support respectively.
Probability density function: fX (x) = 1

β−α
α ≤ x ≤ β

Descriptions: Let us consider a continuous random process restricted to a finite
interval [α,β], and the probability of an outcome lying within a subinterval of [α,β]
is proportional to the length of the subinterval. Such processes are said to be uniformly
distributed over the interval α to β as shown in Fig. 4.1. The probability density
function for the uniform distribution is as follows:

fX (x) = 1

β − α
α ≤ x ≤ β (4.30)

The cumulative density function for the continuous uniformdistribution is as follows:

FX (x) = x − α

β − α
α ≤ x ≤ β (4.31)

The mean, variance, and coefficient of skewness of the uniform distribution are,

E (X) = (β + α)

2
(4.32)

V ar (X) = (β − α)2

12
(4.33)

γ = 0 (4.34)
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Applications:

General application: Many a times, random numbers are generated in hydrologic
simulation. A random number is uniformly distributed over 0–1.
Statistical test: In statistical analysis, p-value is commonly utilized to assess the
significance of a statistical test (refer to Chap.6). The p-value is uniformly dis-
tributed between 0 and 1 if the null hypothesis is true and distribution of the test
statistic is continuous.

Example 4.2.1
What is the probability of getting a number between 50 and 60 from a uniformly
distributed series with support 0 to 100?

Solution Interval of probability distribution is 0–100.Thereby, density of probability
is,

fX (x) = 1

100 − 0
= 1

100

Interval of probability distribution of success event is 50–60.
The probability ratio is thereby

P (50 ≤ x ≤ 60) = 10

100
= 0.1

Hence, probability of getting a number between 50 and 60 is 0.1.

Example 4.2.2
Number of hurricanes at a location per year is found to vary between 0 and 10 over last
50 years. If it is assumed to be uniformly distributed between these two limits, what
is the probability of getting more than six hurricanes at that location in a particular
year?

Solution Interval of probability distribution is 0–10. Therefore, the probability den-
sity function,

fX (x) = 1

10 − 0
= 1

10

And the cumulative probability distribution function is

FX (x) = x − 0

10 − 0
= x

10

Interval of probability distribution of success event is 7–10.
Thus, the probability of getting more than six hurricanes at the location in a

particular year is
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P (x > 6) = 1 − P (x ≤ 7) = 1 − FX (7) = 1 − 7

10
= 3

10
= 0.3

4.2.2 Exponential Distribution

Basics: Exponential distribution is a continuous probability distribution that may
take any value between 0 and ∞, with higher probability of occurrence for lower
values. It is an asymmetric distribution. The interpretation could be as follows:

Random Variable: The time (X ) between two successive events, occurrences of
which follow a Poisson process. It can also be spatial length (X ) between two
events if the events occur over space.
Parameters: λ, also known as the rate parameter, which is the average interarrival
time (or space) between two successive events.
Probability density function: fX (x) = λe−λx for x > 0, λ > 0

Descriptions: Let us assume that the interarrival times of an event are being noted.
The event follows a Poisson process as discussed in Sect. 4.1.6

Since the probability that the event occurs during a certain time interval is propor-
tional to the length of that time interval, it follows an exponential distribution. The
continuous probability distribution of the interarrival time, i.e., the time between the
occurrences of two successive events, can be evaluated by noting the P (X ≤ t) is
equal to 1 − P (X > t). Thus, the CDF is

FX(x) = 1 − e−λx for x > 0 (4.35)

and the corresponding probability density function is given by:

fX (x) = d

dx
FX (x) = λe−λx for x ≥ 0, λ > 0 (4.36)

The mean, variance, and coefficient of skewness of the exponential distribution are
as follows:

E (X) = 1

λ
(4.37)

V ar (X) = 1

λ2
(4.38)

γ = 2 (4.39)

Applications:

Temporal: The interarrival time of hydrologic and other natural events like rainy
day (>2.5 mm of rainfall in a day), earthquake, hurricane.
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Categorical: Rainfall depth over different categories (0–10 mm, 10–20 mm, and
so on).
Spatial: Many a times, variation of rainfall intensity from a rain gauge to any radial
direction is considered to follow exponential distribution.

Example 4.2.3
Daily rainfall was recorded at a particular location for a period of 1 year. The data
for rainy days are grouped into magnitude and number of days. The grouped data is
presented in the following table. Plot a relative frequency histogram of the grouped
data. Fit the exponential distribution to the histogram. Estimate the probability that
a day selected in random will have rainfall greater than 45mm.

Rainfall (mm) Rainy Days Rainfall (mm) Rainy Days
0–10 90 50–60 5
10–20 49 60–70 3
20–30 34 70–80 2
30–40 17 80–90 1
40–50 13 90–100 1

Solution The relative frequency can be calculated by dividing the number of rainy
days in each class with the total number of rainy days. These are the observed relative
frequencies.

The best-fitted exponential curve can be fitted by the following method. The
expected relative frequency in each class can be calculated as,

fxi = �xi pX (xi )

Here, �xi = 10 and xi is the midpoint of each class interval.

Using exponential distribution,

pX (xi ) = λe−λx

with λ = 1/�x . The magnitude of�x can be calculated using the expression to evaluate
the mean for grouped data.

�x = 1

n

k∑

i=1

ni xi

where n in the total number of events and k is the total number of class intervals.
Here, n = 215 and k = 10. Therefore, �x = 18.674 and corresponding λ = 0.054.
The expression for pX (xi ) is
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Fig. 4.2 Histogram plot of
observed relative frequency
of the data and the best-fitted
exponential distribution
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pX (xi ) = 0.054 × e(−0.0535xi )

and the expression of expected relative frequency is

fxi = 10 × 0.054 × e(−0.0535xi )

Histogram plot of observed relative frequency of the data and the best-fitted expo-
nential distribution is shown in Fig. 4.2.

The estimated probability that a day will have rainfall greater than 45mm is,

PX (X > 45) = 1 − PX (X ≤ 45) = 1 − (
1 − e−0.054×45

) = 0.088

4.2.3 Normal Distribution

Basics: Normal distribution, also known as Gaussian distribution or bell curve, is a
continuous probability distribution. The interpretation could be as follows:

Random Variable: A continuous variable (X ) that can take any value in the real
line with a symmetrical (with respect to its mean) bell-shaped distribution of
probability.
Parameters: μ and σ2, where μ is the mean and σ2 is the variance.
Probability density function: fX

(
x;μ,σ2

) = 1√
2πσ2

e−(x−μ)2
/
2σ2 − ∞ < x < ∞

Descriptions: Normal distribution is themost frequently used continuous probability
distribution function. When mean is zero and variance is 1, the distribution is called
as standard normal distribution. A pdf of standard normal distribution is shown in
Fig. 4.3. It can be noticed that it is symmetrical with respect to mean and the typical
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Fig. 4.3 Bell-shaped pdf of
standard normal distribution
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shape is known as a bell-shaped curve. The line of symmetry and the shape will
change depending on the values of mean and variance, respectively.

The pdf of the normal distribution is given by:

fX

(
x;μ,σ2) = 1√

2πσ2
e−(x−μ)2

/
2σ2 − ∞ < x < ∞ (4.40)

The CDF of the Normal Distribution is given by:

FX

(
x;μ,σ2

) =
x∫

−∞

1√
2πσ2

e−(x−μ)2
/
2σ2

dx − ∞ < x < ∞ (4.41)

As stated before, the mean and the variance of the distribution are μ and σ2 respec-
tively, and the coefficient of skewness is 0, as it is a symmetric distribution.

Some properties:

(i) If X is normally distributed with mean μ and standard deviation σ, Y = aX +b
is another random variable that also follows normal distribution. However, the
mean and standard deviation of Y are aμ + b and aσ.

(ii) Central Limit Theorem: The central limit theorem (CLT ) specifies the condi-
tions under which a random variable might be expected to follow a normal dis-
tribution. Under general conditions, it can be stated that if Xi (i = 1, 2, . . . , n)
are n different independent and identically distributed (popularly known as iid)
random variables with E(Xi ) = μi and Var(Xi ) = σ2

i , then the sum of the ran-
dom variables Sn = X1 + X2 + · · · + Xn approaches to a normal distribution
as n approaches infinity. The mean and variance of Sn are as follows:
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μSn =
n∑

i=1

μi (4.42a)

σSn =
n∑

i=1

σ2
i (4.42b)

This generalized theorem is applicable irrespective of the parent distribution,
i.e., distribution of Xi ’s. This is an attractive property to apply CLT in many
fields of applications including hydrology and hydroclimatology.
In practical cases, if Xi are independently and identically distributed, n does
not have to be very large for Sn to approximately follow normal distribution. If
interest lies in the central part of the distribution, even small number of values
can result into normal distribution producing reasonable approximations to the
true distribution of Sn . If interest lies in the tail of the distribution of Sn , a large
number of values are required.

Evaluation of probability for Normal distribution:

Since the normal probability distribution cannot be integrated in closed form
(Eq.4.41) between two limits, say a to b, the probabilities related to normal distribu-
tion are generally computed numerically. These values are provided in Table B.1 in
Appendix B at the end of the book (p. 434). This table pertains to standard normal
distribution, i.e., the normal distribution with μ = 0 and σ = 1, and its entries are
the values of,

FZ (z) = P (Z ≤ z) = 1√
2π

∫ z

−∞
e−t2

/
2dt (4.43)

where z = x−μ
σ

. From the properties 1 (mentioned above), if X follows normal
distribution with mean μ and standard deviation σ, Z follows standard normal dis-
tribution. As stated in Eq.4.43, the table provides cumulative probability value from
left extreme (−∞) to z.

To find the probability that a random variable having the standard normal distri-
bution will take on a value between a and b, we use the equation P (a < Z ≤ b) =
F (b) − F (a) as shown in the Fig. 4.4.

If a random variable X follows normal distribution with mean μ and variance σ2,
then a random variable Z given below follows normal distribution with mean 0 and
variance 1, i.e., the standard normal distribution.

Z = X − μ

σ
(4.44)

Thus, when X follows normal distribution with mean μ and variance σ2, the proba-
bility of X being between p and q is given by,
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Fig. 4.4 The standard
normal probability density
function showing the shaded
area as the probability
P(a < Z < b)

-4 -3 -2 -1 0 1 2 3 4
x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

f X
(x

)

F(b)-F(a)

a b

P (p < X ≤ q) = P

(
p − μ

σ
<

X − μ

σ
≤ q − μ

σ

)

= P

(
p − μ

σ
< Z ≤ q − μ

σ

)

= F

(
q − μ

σ

)
− F

(
p − μ

σ

)
(4.45)

This probability is indicated by the shaded area in Fig. 4.4 if
( q−μ

σ

) = b and( p−μ
σ

) = a. An example is shown later on how to use the standard normal table
to compute the values.

Applications: In hydrology and hydroclimatology, many variables may be found
to follow normal distribution, e.g., temperature, relative humidity, wind velocity.
The distribution of long duration river discharge or rainfall, e.g., monthly and yearly
totals, is often found to follow normal distribution. Moreover, many statistical meth-
ods are developed under the assumption that the sample data follows normal distribu-
tion. However, many of the hydrologic variables may not follow normal distribution.
Sometimes, some transformation techniques (discussed in Chap.9, Sect. 9.6) are
applied on these data so that transformed data follows normal distribution. Statisti-
cal inferences are made based on these transformed data.

Example 4.2.4
Considering mean daily temperature (X ) at a location to follow normal distribution
with mean 10 ◦C and standard deviation 5 ◦C,

(a) What is the probability of the mean daily temperature to be between 15 ◦C and
24 ◦C?

(b) What is the probability of the mean daily temperature is greater than 5 ◦C?
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(c) What is the probability of the mean daily temperature is less than 20 ◦C?

Solution Using standard normal distribution, we can transform the limits of X to
limits of Z and then use standard normal tables.

(a) x = 15 transforms to z = x−μ
σ

= 15−10
5 = 1

Similarly, x = 24 transforms to z = 24−10
5 = 2.8

From Table B.1, it can be seen that Fz(1) = 0.841 and Fz(2.8) = 0.997. Thus,
the probability is,

P (15 ≤ X ≤ 24) = P (1 ≤ Z ≤ 2.8) = FZ (2.8) − FZ (1) = 0.997 − 0.841 = 0.156

(b) x = 5 transforms to z = 5−10
5 = −1

Thus, the desired probability is,

P (X > 5) = 1 − P (X ≤ 5)

= 1 − P

(
X − μ

σ
≤ 5 − 10

5

)

= 1 − P (Z ≤ −1)

= 1 − FZ (−1)

= 1 − 0.159 = 0.841

(c) x = 20 transforms to z = 20−10
5 = 2

P (X < 20) = P

(
X − μ

σ
≤ 20 − 10

5

)

= P (Z ≤ 2)

= FZ (2)

= 0.977

4.2.4 Lognormal Distribution

Basics: Lognormal distribution is a continuous probability distribution of a random
variable which is such that its logarithmic transformation follows a normal distribu-
tion. Thus, the interpretation could be as follows:

Random Variable: A random variable (X ) that can take only positive values, asym-
metric (positively skewed) and its logarithmic transformation ensures a normal
distribution.
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Parameters: α and β, where α is the mean and β is the variance of the logarithmic
transformation of the random variable.

Probability density function: fX(x) =
⎧
⎨

⎩

1

x
√

2πβ2
e
− (ln x−α)2

2β2 for x > 0, β > 0

0 elsewhere

Descriptions: The product of many independent random variables each of which is
positive may result in a lognormal distribution. This is justified by considering the
central limit theorem (as discussed earlier) in the logarithmic domain. The probability
distribution of lognormal distribution is as follows:

fX(x) =
⎧
⎨

⎩

1

x
√

2πβ2
e
− (ln x−α)2

2β2 for x > 0, α,β > 0

0 elsewhere
(4.46)

where ln x is the natural logarithmof x . The probability that a randomvariable having
a lognormal distribution will lie between a and b (0 < a < b) is given by,

P (a ≤ x ≤ b) =
∫ b

a

1

x
√
2πβ2

e
− (ln x−α)2

2β2 dx (4.47)

Now, considering y = ln (x) and identifying the integrand as the normal density
with μ = α and σ = β, the desired probability is given by,

P (a ≤ X ≤ b) = P (ln a ≤ ln X ≤ ln b)

= P (ln a ≤ Y ≤ ln b)

=
ln b∫

ln a

1√
2πβ2

e
− (y−α)2

2β2 dy

= F

(
ln(b) − α

β

)
− F

(
ln(a) − α

β

)
(4.48)

where F is the cumulative distribution function of standard normal distribution.
Typical pdf curves of the lognormal distribution with different combinations of α
and β are shown in Fig. 4.5. It is very clear from the graph that the distribution is
positively skewed.

The mean, variance, and coefficient of skewness of the lognormal distribution are
as follows:

μ = e(α+β2
/
2) (4.49)

σ2 =
(

eβ2 − 1
)

e(2α+β2) (4.50)

γ =
(

eβ2 + 2
) √

eβ2 − 1 (4.51)
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Fig. 4.5 Probability
distribution functions of
lognormal distribution for
different combinations of α
and β
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Applications: The lognormal distribution is mostly applicable for hydrologic vari-
ables likemonthly rainfall depth, river discharge volumes. The lognormal distribution
is used to determine the extremes of variables at monthly and annual scales.

Example 4.2.5
Peak discharge at a particular river gauging station is found to have a mean of
130 m3/s and standard deviation of 30 m3/s. Considering the peak discharge to
follow lognormal distribution evaluated the following,

(a) Probability of peak discharge being greater than 180 m3/s.
(b) Probability of peak discharge lying in between 120 and 150 m3/s.

Solution Given�x = 130 and SX = 30.
As the peak discharge follows lognormal distribution, the parameters (�y and SY )

can be evaluated from the sample statistics (�x and Sx ) as follows,

Cv = SX

�x = 0.231

�y = 1

2
ln

[ �x2

C2
v + 1

]
= 4.841

SY =
√
ln

(
C2

v + 1
) = 0.228

(a) For x = 180, the reduced variate is,

Z = y − �y
SY

= ln x − �y
SY

= ln 180 − 4.841

0.228
= 1.544
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The probability of peak discharge being greater than 180 m3/s can be evaluated
as follows: P (Y > ln 180) = 1 − P (Z < 1.544) = 1 − 0.939 = 0.061

(b) For x = 120 and 150, the corresponding reduced variate are,

Z1 = y − �y
SY

= ln x − �y
SY

= ln 120 − 4.841

0.231
= −0.232

Similarly,

Z2 = ln 150 − 4.841

0.231
= 0.734

The probability of peak discharge lying in between 120 and 150 m3/s can be
evaluated as follows,

P (ln 120 < Y < ln 150) = P (−0.232 < Z < 0.734) = 0.360

4.2.5 Gamma Distribution

Basics: Gamma distribution is a continuous probability distribution that is positively
skewed over the positive side of the real line. The interpretation could be as follows:

Random Variable: A continuous, positively skewed random variable (X ) that takes
nonnegative values only.
Parameters: α and β are the shape and rate parameters respectively.

Probability density function: fX(x)=
{

1
βα�(α)

xα−1e−x/β for x ≥ 0, α > 0, β > 0

0 elsewhere

Descriptions: The gamma distribution can be treated as the sum of exponentially
distributed random variables each with the same parameter. The parameter α is
the number of random variables following exponential distribution and β is the
parameter of the exponential distributions. Gamma distribution has the probability
density function as follows:

fX(x) =
{

1
βα�(α)

xα−1e−x/β for x ≥ 0, α > 0, β > 0

0 elsewhere
(4.52)

where γ(α) is the value of the gamma function defined by,

γ (α) =
∫ ∞

0
xα−1e−x dx (4.53)

integrating by parts results in,
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Table 4.1 Values of gamma function, γ (α) for α ∈ [0, 1]
(a) for α ∈ [0.1, 1]
α 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 ∞ 99.43 49.44 32.78 24.46 19.47 16.15 13.77 12.00 10.62

0.1 9.51 8.61 7.86 7.23 6.69 6.22 5.81 5.45 5.13 4.85

0.2 4.59 4.36 4.15 3.96 3.79 3.63 3.48 3.34 3.22 3.10

0.3 2.99 2.89 2.80 2.71 2.62 2.55 2.47 2.40 2.34 2.28

0.4 2.22 2.16 2.11 2.06 2.01 1.97 1.93 1.88 1.85 1.81

0.5 1.77 1.74 1.71 1.67 1.64 1.62 1.59 1.56 1.54 1.51

0.6 1.49 1.47 1.45 1.42 1.40 1.38 1.37 1.35 1.33 1.31

0.7 1.30 1.28 1.27 1.25 1.24 1.23 1.21 1.20 1.19 1.18

0.8 1.16 1.15 1.14 1.13 1.12 1.11 1.10 1.09 1.09 1.08

0.9 1.07 1.06 1.05 1.05 1.04 1.03 1.02 1.02 1.01 1.01

(b) for α ∈ [0, 0.1]
α 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.0 ∞ 999.42 499.42 332.76 249.43 199.43 166.10 142.29 124.43 110.54

0.01 99.43 90.34 82.77 76.36 70.87 66.10 61.94 58.26 55.00 52.07

0.02 49.44 47.06 44.90 42.92 41.11 39.45 37.91 36.49 35.16 33.93

0.03 32.78 31.71 30.70 29.76 28.87 28.03 27.24 26.49 25.77 25.10

0.04 24.46 23.85 23.27 22.72 22.19 21.69 21.21 20.74 20.30 19.88

0.05 19.47 19.08 18.70 18.34 17.99 17.66 17.33 17.02 16.72 16.43

0.06 16.15 15.87 15.61 15.35 15.11 14.87 14.64 14.41 14.19 13.98

0.07 13.77 13.57 13.38 13.19 13.00 12.83 12.65 12.48 12.32 12.15

0.08 12.00 11.84 11.69 11.55 11.40 11.27 11.13 11.00 10.87 10.74

0.09 10.62 10.49 10.38 10.26 10.15 10.04 9.93 9.82 9.72 9.61

γ (α) = (α − 1) γ (α − 1) (4.54)

andγ (α) = (α − 1) !whenα is a positive integer excluding 1. The value ofγ (1) = 1
and γ (0.5) = √

π. For α between 0 and 1, values of γ(α) can be found from any
standard gamma function table (Table4.1).

Shape of gamma distribution is shown in Fig. 4.6 for different combinations of α
and β. The graphs shown in the figure exhibit that gamma distributions are positively
skewed and the skewness decreases as α increases for any fixed value of β. It may
also be noticed that the exponential distribution is a special case of gamma distri-
bution with α = 1. The mean, variance, and coefficient of skewness of the gamma
distribution are given as follows:
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Fig. 4.6 Probability
distribution functions of
gamma distribution for
different combinations of α
and β
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μ = αβ (4.55)

σ2 = αβ2 (4.56)

γ = 2√
α

(4.57)

Applications: In hydrology, the gamma distribution has the advantage of having only
positive values, since hydrological variables such as rainfall and runoff are always
positive and lower bounded by zero.

Example 4.2.6
Engineers designed a hydroelectric power station with two pumps—one active and
the other in reserve. If the primary pump malfunctions, the second is automatically
brought to use. Suppose in a typical day, it is expected that the pump runs for 10h.
According to the specification of the manufacturer, the pumps are expected to fail
once every 100h. What are the chances that such a pump system fails to last for 8
days, i.e., 80h?

Solution The average number of failures in a 100h interval is 1. Therefore, the
mean of interarrival time between two failures is 1

/
λ or 100h. Interarrival time

between two successive failures for each pump is expected to follow an exponential
distribution with λ = 1/100. Since the system failure indicates the simultaneous
failure of both the pumps, the interarrival time for the system failure can be assumed
to follow gamma distribution with α = 2 and β = 100. Knowing this, let Y denote
the time elapsed until the system failure (failure of both the pumps). The probability
density function of Y is as follows:

fY (y) = 1

1002� (2)
e−y/100y2−1 = 1

10000
ye−y/100
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Therefore, the probability that the system fails to last 80h is,

P (Y ≤ 80) = FY (y = 80) =
∫ 80

0

1

10000
y × e−y/100dy

Solving it by integration by parts

1

10000

∫
y × e−y/100dy = 1

10000

[
y
∫

e−y/100dy −
∫

dy

dy

(∫
e−y/100dy

)
dy

]

= 1

10000

[
y

e−y/100

−1/100
−

∫
1

(
e−y/100

−1/100

)
dy

]

= 1

10000

[
y

e−y/100

−1/100
− e−y/100

(−1/100)2

]

Thus, P (Y ≤ 80) = 1
10000

[
y e−y/100

−1/100 − e−y/100

(−1/100)2

]80
0

= 0.191

4.2.6 Extreme Value Distribution

Extreme value distribution is a continuous probability distribution used for the
analysis of extreme values. The extreme values from a set of random variables can
also be assumed to be random. The probability distribution of these extreme values
depends on the size of the sample (n) and the distribution from which the sample is
drawn. Considering a random sample of size n, let Y be the largest of the sample
values.

Now, P(Y ≤ y) = FY (y) and P(Xi ≤ x) = FXi
(x)

Hence, FY (y) = P(Y ≤ y) = P(all possible values of x ≤ y)

If the x’s are independently and identically distributed, we have,

FY (y) = [FX (y)]n (4.58)

fY (y) = d FY (y)

dy
= n [FX (y)]n−1 fX (y) (4.59)

However, the parent distribution from which the extreme value is observed is not
known and cannot be determined. In such cases, if the sample size is large, we can
use certain general asymptotic results that depend on limited assumptions concerning
the parent distribution of extremevalues. Three types of asymptotic distributions have
been developed based on different parent distributions, and they are as follows:

(i) Type I—Parent distribution unbounded in direction of the desired extreme, and
all the moments of the distribution exist.
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(ii) Type II—Parent distribution unbounded in direction of the desired extreme, and
all the moments of the distribution do not exist.

(iii) Type III—Parent distribution bounded in the direction of the desired extreme.

In the field of hydrology, many times interest exists in the extreme values of a
particular event especially in the cases of flood and drought. The extreme value
distribution is specifically used for description of such tail-risk values. Some of such
frequently used distributions in hydrology and hydroclimatology are discussed in the
following sections.

Example 4.2.7
Assume that time between rains follows an exponential distribution with a mean of 5
days. Also assume that time between rains is independent from one rain to the next.
Irrigators might be interested in the maximum time between rains. Over a period of
15 rains, what is the probability that the maximum time between rains is 9 days?

Solution Since the parent distribution is known, we may use Eq.4.58.
Fifteen rain events mean 14 inter-rain periods or n = 14. From Eq.4.58, the

probability that the maximum inter-rain time is less than 9 days is,

P (Y ≤ 9) = FY (y) = [FX (y)]n

Using exponential distribution, i.e., λ = 1
�X = 1

5

FX (y) = 1 − e−yλ ⇒ FX (9) = 1 − e− 9
5

Thus,
P (Y ≤ 9) = [FX (y)]n = [

1 − e−9/5]14 = 0.08

Therefore, the probability that the maximum inter-rain time will be greater than 9 is
= 1 – 0.08 = 0.92.

Extreme Value Type I (Gumbel Distribution)

Basics: Extreme value type I (EV-I) distribution, also known as Gumbel distribution,
is a limiting probability distribution which is used to model the maximum or mini-
mum values from a sample of independent, identically distributed random variables,
as the size of the sample increases. Thus, the interpretation could be as follows:

Random Variable: A continuous random variable (X ) which is the maximum/min-
imum of a number of samples of various distribution (e.g., normal or exponential).
Parameters: α and β are the scale and location parameters, where β − α ln (ln 2)
is the median of the distribution and β is the mode of the distribution.
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Probability density function: fX (x) = exp
[∓(x − β)

/
α − exp

(∓(x − β)
/
α
)] /

α
where −∞ < x < ∞; −∞ < β < ∞; α > 0. The –ve sign implies maximum
value, and the +ve sign implies minimum value.

Descriptions: The EV-I distribution for maximum/minimum values is the limiting
model as n approaches infinity for the distribution of the maximum/minimum of n
independent values from an initial distribution whose right/left tail is unbounded,
that is, the initial cumulative distribution approaches unity (zero) with increasing/
decreasing values of the randomvariable at least as fast as the exponential distribution
approaches infinity. The normal, lognormal, exponential, and gamma distribution all
meet the requirement for the maximum values, whereas only normal distribution
satisfies the conditions for minimum values.

The probability density function of the EV-I distribution is as follows:

fX (x) = 1

α
exp

[∓(x − β)
/
α − exp

(∓(x − β)
/
α
)]

(4.60)

where −∞ < x < ∞;−∞ < β < ∞;α > 0. The –ve sign implies maximum
value, and the +ve sign implies minimum value. The CDF of the EV-I is as follows:

FX (x) = exp
[∓ exp

(∓(x − β)
/
α
)]

(4.61)

where −∞ < x < ∞;−∞ < β < ∞;α > 0. The –ve sign implies maximum
value, and the +ve sign impliesminimumvalue. The parametersα and β are scale and
location parameters with β being the mode of the distribution. The mean, variance,
and the skewness coefficient are as follows:

E (X) = β ± 0.5772α (4.62)

V ar (X) = 1.645α2 (4.63)

γ = ±1.1396 (4.64)

where +ve sign implies maximum, and –ve sign implies minimum.

Applications: In hydrology, the Gumbel distribution is used to analyze variables
such as monthly and annual maximum values of daily rainfall or river discharge
volumes. It is also used in the frequency analysis of floods.

Example 4.2.8
In a certain stream, the annualmaximumdaily discharge followsGumbel distribution
with mean value of 12000 m3/s and standard deviation of 4000 m3/s. What is the
probability that the annual maximum daily discharge will exceed 16000 m3/s? What
is the magnitude of annual maximum daily discharge with a return period of 100
years?
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Solution As given, annual maximum daily discharge (X ) follows Gumbel distribu-
tion. The mean and the standard deviation of the distribution are given as 12000 and
4000 m3/s, respectively. The parameters α and β can be calculated as follows,

We know V ar (X) = 1.645α2

⇒ α =
√
40002

1.645
= 3118.7

Also, E (x) = β + 0.5772α

12000 = β + 0.5772 × 3118.7

β = 10199.88

The required probability can be evaluated as,

FX (x > 16000) = 1− FX (x ≤ 16000) = 1− exp
(− exp

(−(16000 − 10199.88)
/
3118.7

)) = 0.144

The probability that the annual maximum daily discharge will exceed 16000 m3/s is
0.144.

Let the magnitude with return period 100 years be x .
Then, the P (X > x) = 1/100 = 0.01, hence,

P (X > x) = 1 − P (X ≤ x)

or, 1 − exp

(
− exp

(
− (x − 10199.88)

3118.7

))
= 0.01

or, x = 24546m3/s

Extreme Value Type III (Weibull Distribution)

Basics: In general, extreme value type III (EV-III) distribution can be utilized for
the extremes in the direction toward which the parent distribution is limited. It is
generally used for minimum values in hydrology and hydroclimatology. EV-III for
minimum values is also known as Weibull distribution . The interpretation could be
as follows:

Random Variable: A continuous random variable (X ) which is the minimum of a
sample from an asymmetric distribution and takes nonnegative values.
Parameters: α and β are the scale and location parameters.
Probability density function: fX (x) = αxα−1β−α exp

[− (
x
/
β
)α]

x ≥ 0;α,

β > 0
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Fig. 4.7 Probability
distribution functions of
Weibull distribution for
different combinations of α
and β

0 1 2 3 4 5
x

0

0.5

1

1.5

2

f X
(x

)

=1, =0.5

=1, =2

=1, =1

=2, =2

Descriptions: The nature of the distribution varies with the change in the shape and
scale parameters. Figure 4.7 shows the variation of the nature of the distribution
keeping the value of α constant and varying value of β.

The pdf and CDF of the Weibull distribution are given as follows:

fX(x) = αxα−1β−α exp
[− (

x
/
β
)α]

x ≥ 0;α,β > 0 (4.65a)

FX (x) = 1 − exp
[− (

x
/
β
)α]

x ≥ 0;α,β > 0 (4.65b)

The mean, variance, and the coefficient of skewness are as follows:

E (X) = β�
(
1 + 1

/
α
)

(4.66)

V ar (X) = β2
[
�

(
1 + 2

/
α
) − �2

(
1 + 1

/
α
)]

(4.67)

γ = �(1 + 3
/
α) − 3�(1 + 2

/
α)�(1 + 1

/
α) + 2�3(1 + 1

/
α)

[
�(1 + 2

/
α) − �2(1 + 1

/
α)

]3/2 (4.68)

where � (•) is the gamma function as described before (Sect. 4.2.5). Sometimes, in
a few applications, the lower bound may not be zero. In such cases, a displacement
parameter (ε) must be added to the EV-III distribution for minimums, and the density
function becomes:

fX (x) = α (x − ε)α−1 (β − ε)−α exp
[− {

(x − ε)
/
(β − ε)

}α]
(4.69a)

FX (x) = 1 − exp
[− {

(x − ε)
/
(β − ε)

}α]
(4.69b)

Equations 4.69a and 4.69b are also known as three-parameter Weibull distribution.
The corresponding mean and variance are as follows:
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E (X) = ε + (β − ε) �(1 + 1
/
α) (4.70)

V ar (X) = (β − ε)2
[
�(1 + 2

/
α) − �2(1 + 1

/
α)

]
(4.71)

The coefficient of skewness is again given by Eq.4.68.

Applications: The Weibull distribution can be used most efficiently in hydrology
for analysis of low flows in the rivers, as the low flows are naturally lower bounded
by zero.

4.2.7 Beta Distribution

Basics: Beta distribution is a continuous probability distribution that represents
outcomes for percentages or proportions over an interval, parameterized by two
shape parameters. Thus, the interpretation could be as follows:

Random Variable: A continuous random variable (X ) which is generally defined
within the interval [0, 1].
Parameters: α and β are the shape parameters.
Probability density function:

fX (x) =
{

�(α+β)

�(α)�(β)
xα−1 (1 − x)β−1 for 0 < x < 1,α > 0, β > 0

0 elsewhere

Descriptions: Beta distribution has both upper and lower bounds. Thus, if a random
variable takes values specifically in the interval (0,1), one choice of probability den-
sity can be beta distribution. However, the beta distribution can also be transformed
to any interval (a, b). The shape parameters of the distribution vary with the nature of
the distribution and are shown in Fig. 4.8. Sometimes, if the limits of the distribution
are unknown, it becomes a four-parameter distribution.

Considering the usual case of limits as 0 and 1, the density function is as follows:

fX (x) =
{

�(α+β)

�(α)�(β)
xα−1 (1 − x)β−1 for 0 < x < 1,α > 0, β > 0

0 elsewhere
(4.72)

The mean, variance, and coefficient of skewness of the beta distribution are given
by,

E (X) = α

(α + β)
(4.73)

V ar (X) = αβ

(α + β)2 (α + β + 1)
(4.74)
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Fig. 4.8 Probability
distribution functions of beta
distribution for different
combinations of α and β
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Applications: The beta distribution has been applied tomodel the behavior of random
variables limited to intervals of finite length, for example, volumetric soil moisture
content that varies between 0 and 1.

Example 4.2.9
Fifty soil samples are collected from a region and tested in the laboratory for soil
moisture content. The data is found to have a mean value of 0.375 and standard
deviation of 0.361. If the data follows a beta distribution, develop the probabilistic
model for the data. What is the probability of the soil moisture content being below
permanent wilting point (PWP), which is 0.11 for that location?

Solution As given, soil moisture (X ) follows beta distribution. The mean and the
variance are given as 0.375 and 0.361 respectively. The shape parameters (α , β) of
the beta distribution can be evaluated as follows,

E (X) = α

(α + β)

⇒ 0.375 = α

(α + β)

Var (X) = αβ

(α + β)2 (α + β + 1)

0.3612 = αβ

(α + β)2 (α + β + 1)

Solving these equations simultaneously, we get α = 0.3 and β = 0.5.
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Thus, the probabilistic model for the data can be written as follows:

f (x) =
{

�(0.3+0.5)
�(0.3)�(0.5) x0.5−1 (1 − x)0.3−1 for 0 < x < 1, α > 0, β > 0

0 elsewhere

Next, solving numerically,

P (X ≤ 0.11) = FX (0.11) =
∫ 0.11

0

� (0.3 + 0.5)

� (0.3) � (0.5)
x0.3−1 (1 − x)0.5−1 dx = 0.382

So, the probability of soil moisture being below the PWP is 0.382.

4.2.8 Pearson and Log-Pearson Type III Distribution

Basics: Pearson type III distribution is a continuous probability distribution. The
interpretation could be as follows:

Random Variable: A continuous random variable (X ) is such that the distribution
is skewed and the mode of the data is at zero.
Parameters: α and β are the scale and shape parameter, respectively.
Probability density function: fX (x) = λβ(x−ε)β−1e−λ(x−ε)

�(β)
for x ≥ ε

Descriptions: It is one of the seven different types of Pearson distribution. The
Pearson type III distribution is a three-parameter distribution from the family of
Pearson distributions. It is sometimes called the three-parameterGammadistribution.
The pdf is given by,

fX (x) = λβ (x − ε)β−1 e−λ(x−ε)

� (β)
for x ≥ ε (4.76)

The lower bound is at x = ε.
If a random variable Y = log (X) follows Pearson type III distribution, then the

random variable X follows the log-Pearson type III distribution. The pdf of log-
Pearson type III distribution is given by,

fX (x) = λβ (y − ε)β−1 e−λ(y−ε)

� (β)
for y ≥ ε (4.77)

where y = log(x).

Applications: Both Pearson and log-Pearson type III distributions are used in hydrol-
ogy and hydroclimatology for frequency analysis. Detailed description is provided
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in Chap.5. Pearson distribution can be utilized to evaluate the flood peaks or fre-
quency analysis. Annual maximum flood peaks are generally described by Pearson
type III distribution. If the observations present a very highly positively skewed data,
then log-Pearson type III distribution is used for modeling. This log transformation
reduces the skewness and can even change a positively skewed data to a negatively
skewed one.

4.3 Mixed Distribution

Basics: When a random variable has discrete as well as continuous part, it is called
a mixed random variable.

Descriptions: Data for some of the hydrologic and hydroclimatic variables may
be continuous over a specific range but frequently come across a specific value. For
example, daily rainfall data may contain significant number of zero values though
it is continuous over nonnegative values. Such data is commonly known as zero-
inflated data. Many a times, the nonzero values from such data are treated separately.
However, a theoretically sound method of analysis would be to use the Theorem of
Total Probability that is given by,

P (X ≥ x) = P ( X ≥ x | X = 0) P (X = 0) + P ( X ≥ x | X �= 0) P (X �= 0)
(4.78)

Since P ( X ≥ x | X = 0) P (X = 0) = 0, the above expression is reduced to

P (X ≥ x) = P ( X ≥ x | X �= 0) P (X �= 0) (4.79)

In this relationship, P(X �= 0) would be estimated by the fraction of nonzero values
and P(X ≥ x |X �= 0) would be estimated by a standard analysis of the nonzero
values with the sample size taken to be equal to the number of nonzero values.

Applications: Many hydrologic variables are bounded on the left by zero. For exam-
ple, if we wish to find out the distribution of daily rainfall at a particular location,
there will be a considerable percentage of zero values. The zero values will follow
a discrete distribution, and the nonzero values will follow a continuous distribution.
Thereby, overall it will be a mixed distribution. This theory is useful in frequency
analysis if data contains significant number of zeros. This is explained in Chap.5

Example 4.3.1
Consider the proportion of zero daily rainfall in the year 2012 is 0.4. If the nonzero
values follow exponential distribution with mean 5 cm, find out the mean of the daily
rainfall and the probability of rainfall less than 3 cm.
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Solution The pdf will be of the form,

f (x) =
{
0.4 x = 0

0.6λe−λx x > 0

Here, λ = 1/5 = 0.2. Thereby the pdf can be written as,

f (x) =
{
0.4 x = 0

0.12e−0.2x x > 0

Mean of the daily rainfall can be calculated as,

E(x) =
∫ ∞

0
x fX (x) dx = 0.4 × 0 +

∫ ∞

0
x × 0.12e−0.2x = 3 cm

Probability of rainfall less than 3 cm can be calculated as,

P(x < 3) = 0.4 +
∫ 3

0
0.12e−0.2x = 0.4 + 3

5
(1 − e−0.2×3) = 0.67

4.4 Some Important Distributions of Sample Statistics

4.4.1 Chi-Square Distribution

Basics: The chi-square distribution describes the distribution of a sum of the squares
of ν independent standard normal random variables. It is a special case of the gamma
distribution and is one of the most widely used probability distributions in inferen-
tial statistics like hypothesis testing and construction of confidence intervals. The
interpretation could be as follows:

Random Variable: A random variable (X ) which is the sum of squares of standard
normal distribution and takes positive values always.
Parameters: ν, known as the degree of freedom.
Probability density function: fχ2 (x) = x (ν/2−1)e(−x/2)

2(ν/2)�(ν/2) x, ν > 0

Descriptions: Let us consider the random variables Z1, Z2, . . ., Zν follow standard
normal distribution, then

Y =
ν∑

i=1

Z2
i (4.80)
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follows chi-square distribution with ν degree of freedom. The pdf and CDF of the
chi-square distribution are as follows:

fχ2 (x) = x (ν/2−1)e(−x/2)

2(ν/2)�
(
ν
/
2
) (4.81a)

Fχ2 (x) =γ
(

ν
2 ,

x
2

)

�
(

ν
2

) (4.81b)

where x, ν > 0 and γ (p, q) is a lower incomplete gamma function that is defined
as

γ (p, q) =
∫ q

0
t p−1e−t dt (4.82)

The chi-square distribution may be linked to gamma distribution. In gamma distri-
bution, if α = ν

/
2 and β = 2, it becomes a chi-square distribution with a single

parameter ν, known as the degree of freedom. The mean, variance, and coefficient
of skewness of chi-square distribution are,

E (X) = ν (4.83)

V ar (X) = 2ν (4.84)

γ =
√
8

ν
(4.85)

Application: The chi-square distribution is mostly used for statistical inference of
variance of a small sample with certain conditions. It could be stated as follows:

If S2 is the variance of a random sample of size n drawn from normally distributed

population with some mean and variance σ2, then the random variable
(

(n−1)S2

σ2

)

follows a chi-square distribution with degree of freedom ν = n − 1, where S is the

sample standard deviation, computed as S =
n∑

i=1
(Xi −�X)

2

n−1 . In Chap.6 on hypothesis
testing, further applications of chi-square distribution has been explained.

4.4.2 The t-Distribution

Basics: The t-distribution (also known as Students’ t-distribution) is a continuous
probability distribution utilized when estimating the mean of a normally distributed
population in situations where the sample size is small and the variance of the pop-
ulation is unknown. The interpretation could be as follows:

Random Variable: A random variable (X ) which is defined as the ratio of two ran-
dom variables following standard normal distribution and chi-squared distribution,
respectively.
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Parameters: ν is the degree of freedom.
Probability density function:

fT (t) = �
[
(ν + 1)

/
2
] (
1 + t2

/
ν
)−(ν+1)/2

[√
πν �

(
ν
/
2
)] − ∞ < t < ∞; ν > 0

Description: Let us consider a random variable Z to follow standard normal distri-
bution and a random variable U to follow chi-square distribution with ν degrees of
freedom. Considering Z and U to be independent we may state that,

T = Z
√

ν√
U

(4.86)

follows t-distribution with ν degrees of freedom. The expression of pdf and CDF of
t-distribution is as follows:

fT (t) =�
[
(ν + 1)

/
2
] (
1 + t2

/
ν
)−(ν+1)/2

[√
πν �

(
ν
/
2
)] (4.87a)

FT (t) =
∫ t

−∞

�
[
(ν + 1)

/
2
] (
1 + t2

/
ν
)−(ν+1)/2

[√
πν �

(
ν
/
/2

)] dt (4.87b)

where −∞ < t < ∞; ν > 0. The pdf of t-distribution is also symmetrical (bell-
shaped) like normal distribution. Like standard normal distribution, it has zero mean
but the variance depends on the degree of freedom (ν). The mean, variance, and
coefficient of skewness of the t-distribution are,

E (T ) = 0 (4.88)

V ar (T ) = ν

ν − 2
(4.89)

γ = 0 (4.90)

Thus, as ν → ∞, variance approaches to 1 and t-distribution approaches to standard
normal distribution. Approximately, t-distribution and standard normal distribution
are essentially same for a sample size of 30 or more.

Application: The t-distribution is mostly used for statistical inference of mean of a
small sample with certain conditions. It could be stated as follows:

If �X is the mean of a random sample of size n drawn from normally distributed

population with mean μ and variance σ2, then the random variable
( �X−μ

S
/√

n

)
follows

a t-distribution with degree of freedom ν = n − 1, where S is the sample standard
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deviation, computed as S =
n∑

i=1
(Xi −�X)

2

n−1 . In Chap.6 on hypothesis testing, further
applications of t-distribution have been explained.

4.4.3 The F Distribution

Basics: The F distribution is another continuous probability distribution that is
asymmetric and takes only positive values. It is the ratio of two random variables
following chi-square distribution. The interpretation could be as follows:

Random Variable: A random variable (X ) which is defined as the ratio of two
random variables following chi-squared distributions.
Parameters: ν1 and ν2 are the degrees of freedom.
Probability density function:

fF (x) = �
[
(ν1 + ν2)

/
2
]

ν
ν1/2
1 ν

ν2/2
2 x (ν1−2)/2 (ν2 + ν1x)−(ν1+ν2)/2

[
�

(
ν1

/
2
)

�
(
ν2

/
2
)] ν1, ν2, x > 0

Descriptions: Let us consider two independent random variables U and V to follow
chi-square distribution with degree of freedom ν1 and ν2, respectively. Then,

X =
(
U

/
ν1

)
(
V

/
ν2

) (4.91)

follows F distribution with ν1 and ν2 degrees of freedom. The pdf and CDF of F
distribution are as follows:

fF (x) = �
[
(ν1 + ν2)

/
2
]

ν
ν1/2
1 ν

ν2/2
2 x (ν1−2)/2 (ν2 + ν1x)−(ν1+ν2)/2

[
�

(
ν1

/
2
)

�
(
ν2

/
2
)] (4.92a)

FF (x) =
∫ x

0

�
[
(ν1 + ν2)

/
2
]

ν
ν1/2
1 ν

ν2/2
2 x (ν1−2)/2 (ν2 + ν1x)−(ν1+ν2)/2

[
�

(
ν1

/
2
)

�
(
ν2

/
2
)] dx

(4.92b)

where ν1, ν2, x > 0. The mean, variance, and coefficient of skewness of the F
distribution are

E (X) = ν2

(ν2 − 2)
(4.93)

V ar (X) = 2ν2
2 (ν2 + ν1 − 2)[

ν1 (ν2 − 2)2 (ν2 − 4)2
] (4.94)

γ = 2 (ν2 + 2ν1 − 2)

ν2 − 6

√
2 (ν2 − 4)

ν1 (ν2 + ν1 − 2)
(4.95)
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One nice property of F distribution is that

F1−α (ν1, ν2) = 1

Fα (ν1, ν2)
(4.96)

where Fα (ν1, ν2) and F1−α (ν1, ν2) are the values of the random variable such that
P (F > Fα (ν1, ν2)) = α and P (F > F1−α (ν1, ν2)) = 1 − α respectively.

Applications: The F distribution is mostly used for statistical inference of vari-
ance of two small samples with certain conditions. It could be stated as follows:

If S1 and S2 are the standard deviations of two random samples of sizes n1 and

n2, then the random variable
(

S2
1

S2
2

)
follows a F distribution with degrees of freedom

ν1 = n1 − 1 and ν2 = n2 − 1. In Chap.6 on hypothesis testing, further applications
of F distribution have been explained.

Asmentioned before, mathematical details of all the distributions are summarized
in Table 4.2 to facilitate the readers.

4.5 MATLAB Examples

Examples solved in this chapter can also be solved usingMATLABscripts. Following
MATLAB built-in functions can be used for fitting different distributions over the
data:

• pd = fitdist(x,dist_name)
fitdist function is used for fitting parametric distribution over data ‘x.’ The
argument ‘dist_name’ is the name of distribution to be fitted. This function
returns a probability distribution object ‘pd’ having the details of fitted distribution
and its parameters.

• y = pdf(’dist_name’,x,A) or y = pdf(pd, x)
This function can be used for calculating the probability mass/density function. In
form of y = pdf(’dist_name’,x,A), pdf or pmf is calculated for single-
parameter distribution. ‘dist_name’ is the distribution name, x is the value for
which pdf or pmf is calculated, and A is the distribution parameter. Commonly
used distribution is supported by this function. In form of y = pdf(pd, x),
this function can be used for any probability distribution object ‘pd’ (fitted using
fitdist function). Hence, when pd is used, the scope of pdf is not limited for
one-parameter distributions.

• y = cdf(’dist_name’,x,A) or y = cdf(pd, x)
This function calculates cumulative probability function for x. Its arguments are
same as pdf function.

Apart from these generic functions applicable to commonly used distributions,MAT-
LAB also has many built-in functions for calculating pdf, pmf and CDF for specific
distribution. Some of these functions are following:
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• normcdf, norminv, and normpdf
These functions are used for calculating cumulative distribution function, inverse
cumulative distribution function, and probability density function for normal or
Gaussian distribution.

• gamcdf, gaminv, and gampdf
These functions serve the similar purpose as above discussed function for gamma
distribution.

• expcdf, expinv, and exppdf
Similar functions for exponential distribution.

Further, many functions having suffix ‘rnd’ exist for generating random number fol-
lowing different distributions in MATLAB. These functions are discussed in details
in Sect. 8.8 in Chap.8.

Sample MATLAB scripts for solving examples using the above-mentioned func-
tions are presented here. For instance, the Example 4.1.12 can be solved using script
that is shown in Box 4.1.

Box 4.1 Sample MATLAB script for Example 4.1.12
� �

1 c l e a r a l l
2 c l c
3

4 % Inputs
5 n=4; % number of trials
6 p=0.1; % probability of success
7 x=1; %number of flood events
8

9 %% Calculation of required probabilities
10 %Evaluation of the required probability using %

Binomial distribution
11 binomial_prob=binopdf(x,n,p);
12

13 %Evaluation of the required probability using
Poisson %distribution

14 lamda=n*p; %shape parameter
15 poission_pdf = poisspdf(x,lamda);
16

17 %% Display Results
18 output_file =[’output’ filesep () ’code_1_result.txt’

];
19 d e l e t e (output_file); d i a r y (output_file); d i a r y on;
20 d i s p (’Probability that a flood with 10 years return

period’)
21 d i s p (’will occur once in 4 years’)
22 f p r i n t f (’\t Using the Binomial distribution is %2.3

f.\n’, binomial_prob)
23 f p r i n t f (’\t Using the Poisson distribution is %2.3f

.\n’, poission_pdf)
24 d i a r y off;

� �
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The result of the code provided in Box 4.1 is provided in Box 4.2. The answers match
with the solution of the Example 4.1.12.

Box 4.2 Results for Box 4.1
� �

1 Probability that a flood with 10 years return
period

2 will occur once in 4 years
3 Using the Binomial distribution is 0.292.
4 Using the Poisson distribution is 0.268.

� �

Similarly, the Example 4.2.4 based on normal distribution can be solved using sample
script provided in Box 4.3.

Box 4.3 Sample MATLAB script for Example 4.2.4
� �

1 c l e a r a l l ; c l c
2

3 %% Inputs
4 mean_temp =10; % mean value
5 std_temp =5; % variance value
6

7 %% Calculate and Display Result
8 output_file =[’output’ filesep () ’code_2_result.txt’

];
9 d e l e t e (output_file); d i a r y (output_file); d i a r y on;

10 d i s p (’The probability of mean monthly tmeperature
being’);

11 f p r i n t f (’\t a) between 15C and 24C is %2.3f.\n’ ,...
12 normcdf (24,mean_temp ,std_temp)-normcdf (15,

mean_temp ,std_temp))
13 f p r i n t f (’\t a) greater than 5C is %2.3f.\n’ ,...
14 1-normcdf(5,mean_temp ,std_temp))
15 f p r i n t f (’\t a) less than 20C is %2.3f.\n’ ,...
16 normcdf (20,mean_temp ,std_temp))
17 d i a r y off;

� �

The output of sample code provided in Box 4.3 is provided in Box 4.4. The results
obtained using code provided in Box 4.3 are same as obtained in the solution of
Example 4.2.4.

Box 4.4 Results for Box 4.3
� �

1 The probability of mean monthly tmeperature being
2 a) between 15C and 24C is 0.156.
3 a) greater than 5C is 0.841.
4 a) less than 20C is 0.977.

� �
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Exercise

4.1 A weir is designed for a flood with 20-year return period. The design life of the
weir is 30 years. What is the probability of at least 1 exceedance during the life of
the project? (Ans: 0.215)

4.2 What return period should be used to ensure an 80% chance that the design will
not be exceeded in a period of 20 years? (Ans: 90 years)

4.3 In 90 years, the following number of flood was recorded at a specific location.
Draw a relative frequency histogram of the data. Fit a Poisson distribution to the
data and plot the relative frequencies according to the Poisson distribution on the
histogram. Evaluate

(a) The probability of 6 successive years without a flood. (Ans: 0.012)
(b) The probability of exactly 4 years between floods. (Ans: 0.014)

No. of floods in a year No. of years No. of floods in a year No. of years
0 49 4 1
1 25 5 1
2 10 6 0
3 4

4.4 Two widely separated watersheds are considered to study the peak discharge at
the outlet. Considering the peak discharge from the twowatersheds to be independent,
what is the probability of experiencing a total of 4-year, 10-year events in a 6-year
period? (Ans: 0.021)

4.5 A spillway was built to a certain height above the mean water level in the river
and has a probability of 0.15 of being overtopped. If the spillway is overtopped,
then the probability of damage is 70%; what is the probability that the dam will be
damaged within three years? (Ans: 0.283)

4.6 A dam is designed against a flood with 30-year return period. What is the
probability that the first such flood will occur within 3 years after the structure is
built? (Ans: 0.097)

4.7 The following table presents data for the mean number of days with rainfall
more than 10 mm at a particular station.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
No of Days 3 3 3 2 1 3 8 8 4 3 3 3

If the occurrence of rainfall more than 10 mm in any month can be considered as
an independent Poisson process, what is the probability of fewer than 40 days with
more than 10 mm of rainfall in one year? (Ans: 0.253; Note: Numerical solution may
be required)
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4.8 The time span before first breakdown (T years) of a specialized pump used to
extract groundwater follows exponential distribution with mean of 10 years. Find the
time span L which a typical pump is 80% certain to exceed. If six pumps are used at
a sight, find the probability that at least one of them will breakdown before L years.
(Ans: 2.231 years, 0.738)

4.9 The time between occurrences of successive rainstorms at a particular station
during monsoon is considered to be exponentially distributed with mean 5 days.
What is the probability that the time elapsed for 3 such storms will exceed 40 days?
(Ans: 0.014)

4.10 The following table provides the number of rainy days for themonsoonmonths
(June, July, August, and September) over a period of 10 years.

Month Year
1 2 3 4 5 6 7 8 9 10

June 5 9 7 2 1 9 13 1 7 8
July 10 15 17 8 9 10 17 14 20 4
Aug 4 9 8 3 0 10 12 2 8 6
Sep 3 10 6 2 0 11 11 3 10 9

Assuming the number of rainy days to follow normal distribution, what is the
probability of 10 or more rainy days in the month of August and September? What
is the probability of 30 or more rainy days in the monsoon season (combined for all
four months)? (Ans: 0.162, 0.202, 0.536)

4.11 The annual rainfall at a location is considered to follow normal distribution
with a mean of 1050 mm and standard deviation of 246 mm at a certain location. The
runoff coefficient based on the physical characteristics of the area is considered to
vary between 0.75 and 0.9. What is the probability that the annual runoff will exceed
800 mm based on the maximum value of runoff coefficient? (Ans: 0.767)

4.12 The peak discharge at a particular gauging station is considered to be 600
cumec. Discharge at the station is found to be lognormally distributed with mean 500
cumec and standard deviation 85 cumec. What is the probability that the discharge
at the station will exceed the peak discharge? (Ans: 0.122)

4.13 At a rain gauge station last 30 years, data indicates the distribution of monthly
rainfall as gamma distribution. The sample mean and standard deviation are 18.3 and
5.271cm respectively. What is the probability that the rainfall will exceed 25 cm in
a month? (Ans: 0.108; Note: Numerical solution may be required)

4.14 The interarrival time between two droughts follows an exponential distribution
with a mean of 6 years. Assuming the interarrival time of drought to be independent
events, find the probability that the maximum time between two droughts exceeds
20. (Ans: 0.036)
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4.15 The lifetime (in years) of a rain gauge followsWeibull distribution with α = 1
and β = 2. What is the probability that the rain gauge will be in working condition
after 3 years. (Ans: 0.223)



Chapter 5
Frequency Analysis, Risk, and
Uncertainty in Hydroclimatic Analysis

Analysis of extreme events like severe storms, floods, droughts is an
essential component of hydrology and hydroclimatology. The extreme
events have catastrophic impact on the entire agro-socioeconomic sec-
tor of a country as well as of the whole world. It has aggravated in a
changing climate. Thus, it has become really important to predict their
occurrences or their frequency of occurrences. This chapter focuses on
different methods to analyze these extreme events and forecast their pos-
sible future occurrences. At the very beginning of the chapter, the concept
of return period has been discussed elaborately which is the building
block of any frequency analysis. However, identification of the best-fit
probability distribution for a sample data is essential for any frequency
analysis. Concept of probability paper is important in this regard, and
its construction is discussed along with graphical concept of frequency
factor. Next, the concept of frequency analysis is discussed using dif-
ferent parametric probability distributions, such as normal distribution,
lognormal distribution, log-Pearson type III distribution, Gumbel’s dis-
tribution. Basic concepts of risk, reliability, vulnerability, resiliency, and
uncertainty are also explained which are inevitable in any kind of hydro-
logic design based on frequency analysis of extreme events.

5.1 Concept of Return Period

The concept of return period (also sometimes known as ‘average recurrence interval’
or ‘repeat interval’) of any hydrologic event (e.g., flood, rainfall, river discharge,
landslide, wind storms, tornadoes) plays a key role in risk and uncertainty analysis
in hydroclimatic studies. The return period can be defined as the average length of
time for an event of given magnitude to be equalled or exceeded in a statistical sense.
It is basically a statistical measurement typically based on historic data denoting the
average recurrence interval of an event over an extended period of time.
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Table 5.1 Annual maximum discharge data at a gauging station in a river, 1950–1989

Year Flood
discharge
(cumecs)

Year Flood
discharge
(cumecs)

Year Flood
discharge
(cumecs)

Year Flood
discharge
(cumecs)

1950 7065 1960 3345 1970 1569 1980 1356

1951 3456 1961 1987 1971 1862 1981 2944

1952 4215 1962 1689 1972 2592 1982 1541

1953 2435 1963 3200 1973 3059 1983 2111

1954 3218 1964 5067 1974 1595 1984 774

1955 4767 1966 4369 1975 1768 1985 911

1956 5368 1966 2589 1976 2987 1986 1123

1957 3891 1967 1306 1977 3679 1987 2884

1958 2015 1968 3761 1978 4597 1988 3868

1959 2498 1969 2450 1979 5582 1989 1812

Let us take an example; consider Fig. 5.1 which show the time series of maximum
annual discharge values at some river gauging station from 1950 to 1989, plotted
using data given in Table5.1. Suppose we want to find out the return period of
annual maximum discharge of 4000 cumec or more. Now observing Table5.1 or
Fig. 5.1, we can clearly see annual maximum discharge exceeds 4000 cumec 8 times
in this period of record. Years of exceedance are 1950, 1952, 1955, 1956, 1964, 1966,
1978, and 1979. Thus, the recurrence intervals (τ ) are 2, 3, 1, 8, 2, 12, 1 years. Now
according to the definition, return period is the average or expected value of these
recurrence intervals, E(τ ). Here, for 4000 cumec discharge magnitude, there are 8
time gaps covering a total period of 29 years, so the return period of ‘4000 cumec
annual maximum discharge’ will be = 29

/
8 = 3.625 years. However, this estimate

is very rough and simple way of calculating return period directly from the data.
This estimate may vary significantly unless the length of data is very large. However,
several other procedures are available to compute the return period through some
probabilistic assumptions. Such examples are shown later in Examples5.2.1, 5.4.3,
5.4.4, and 5.4.6 with the same data set.

Let us consider another issue. If it is said that ‘at a river gauging station, the stage
height with 50 year return period is 2m above maximum flood level,’ that means the
event, i.e., stage height of 2m above maximum flood level, or greater, should occur
only once in every 50 years on an average at that location. It does not mean that the
event will definitely occur once in every 50 years; rather, it indicates average time
gap between two such successive events is 50 years.

The definition of return period explained before may slightly be modified in
case of lower extreme hydrologic events, e.g., low flows, drought, shortages. For
such extreme events, the definition may read as the average time gap (τ ) between
events with a magnitude equal to or less than a certain value. But still the concept of
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Fig. 5.1 Time series of annual maximum discharges at a river gauging station

‘exceedance’ can be used to indicate the severity of drought or low flow that exceeds
some predefined level toward lower extreme side.

The return period of a hydrologic event can be related to probability of exceedance
of that hydrologic event in the following way. Let us consider a hydrologic event as
a random variable X , and suppose an extreme event is defined to have occurred if
magnitude of X is greater than (or equal to) a level xT . Now for each observation, there
are two possible outcomes, either ‘exceedance’ (i.e., X ≥ xT ) or ‘non-exceedance’
(i.e., X < xT ). Let us designate probability of exceedance as P(X ≥ xT ) = p
and that of non-exceedance as (1 − p). As all the observations are independent,
probability mass function (pmf) of τ will be the product of probabilities of τ − 1
times non-exceedance followed by one exceedance.

Hence,

p(τ ) = (1 − p)τ−1 p1

And the expectation of τ , E(τ ) =
∞∑

τ=1

τ (1 − p)τ−1 p

= p + 2(1 − p)p + 3(1 − p)2 p + . . .

= p
[
1 + 2(1 − p) + 3(1 − p)2 + . . .

]

Expanding by power of expansion,1 E(τ ) = p

{1 − (1 − p)}2 = 1

p
= 1

P(X ≥ xT )

1By power series expansion, (1+ x)n = 1+ nx + [n(n − 1)/2]x2 + [n(n − 1)(n − 2)/6]x3 + . . . .
So, here, x = −(1 − p) and n = −2.
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Now by the definition of return period (T ), it is the average or expected value of
recurrence interval and hence

T = 1

P(X ≥ xT )
(5.1)

Example 5.1.1
Determine the probability that the annual maximum discharge at the river gauging
station (Table5.1) will equal or exceed 4000 cumec at least once in the next five
years. Assume the return period of 4000 cumec discharge is 3.625 years.

Solution Return period of 4000 cumec discharge (T ) = 3.625 years. Hence,
exceedance probability P(X ≥ 4000) can be evaluated as

p = 1

T
= 1

3.625
= 0.276

Thus, the probability that the annual maximum discharge will never exceed in 5 years
= (1 − p)5.

Thus, the probability of the same to exceed at least once in 5 years

= 1 − (1 − p)5 = 1 − (1 − 0.276)5 = 0.801.

Example 5.1.2
If the return period of a severe hurricane in North America is 243 years, then find out
the probability that no such severe hurricane will occur in next 10 years. Consider
occurrence of severe hurricane in North America follows Poisson distribution.

Solution Return period of the event T = 243 years.
Hence, exceedance probability p = 1

T = 1
243 = 0.0041.

Number of years n =10.
So, for Poisson distribution, λ = np = 10 × 0.0041 = 0.041.
Probability of non-occurrence of severe hurricane in next 10 years is

pX (0, 10) = 0.0410 × e−0.041

0! = 0.96.

Example 5.1.3
If the exceedance probability of a particular flood is 1/50th of its non-exceedance
probability, then find out its return period. Also, find out the probability of such an
event occurring exactly once in 10 successive years. Consider that the flood follows
binomial distribution.
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Solution Let us consider exceedance probability = p.
Non-exceedance probability = q = 50× p (according to the example statement).
Again, we know

p + q = 1

or, p + 50p = 1

or, p = 0.0196

so, q = 50 × 0.0196 = 0.98

Now, return period T = 1
/
p = 51 years.

The probability of such an event occurring exactly once in 10 successive years is

p (1, 10, 0.0196) = 10C1 (0.0196)
1 (0.98)9 = 0.163.

5.2 Probability Plotting and Plotting Positions Formulae

A probability plot is a plot of magnitude of a particular event versus its probability of
exceedance. This type of plot helps to check if a data set fits a particular distribution or
not. The plot can be used for interpolation, extrapolation, and comparison purposes.
It can be useful for estimating magnitudes with specified return periods. However,
any kind of extrapolation must be attempted only when a reasonable fit is assured
for the distribution.

The primary step to obtain a probability plot for a given set of data is to determine
the probability of exceedance of each data point. Commonly, this technique of deter-
mining exceedance probability of a data point is referred to as plotting position. In
case of population, the procedure is to determine the fraction of observations greater
than or equal to the givenmagnitude. Thus, exceedance probability of zero is assigned
to the largest observation and exceedance probability equal to one is assigned to the
smallest observation in the population. However, in case of sample data the range
of the population is unknown. So, we cannot assign exceedance probability equal to
zero to the largest and exceedance probability equal to one to the smallest data in the
sample. So for sample data, this can be analyzed either by empirical methods or by
analytical methods. In Table5.2, plotting position formulae for some of the common
empirical methods are listed.

For application of these plotting position formulae, the first task is to arrange the
sample data (of size = N ) in descending order of magnitude and to assign an order
number or rank (m). Thus, for the firstmember of the arranged data, i.e., for the largest
data, m = 1 will be assigned, for the second largest data m = 2 and so on. Hence,
for the smallest data in the sample, m = N will be assigned. Then, using any of the
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Table 5.2 Different available plotting position formulae m = rank, N = number of observations,
p = probability of exceedance

Name of the method Plotting position formula

California p = m
N

Hazen p = m−0.5
N

Weibull p = m
N+1

Chegodayev p = m−0.3
N+0.4

Blom p = m−0.44
N+0.12

Gringoten p = m−0.375
N+0.25

above-mentioned formulae (Table5.2) probability of exceedance (p) is to be calcu-
lated for all data in the series. Here, it can be noted that Weibull formula is the most
popular among the others and hence only this formula is used for further discussion
in this book. After determining p (hence, T which is equal to 1/p, see Sect. 5.1), we
can obtain the probability plot for the given data by plotting its different magnitudes
with corresponding probability of exceedance. Plotting different magnitudes of the
events with their corresponding return period (T ) in semilog or log–log graph (shown
in Example5.2.1) is another popular and useful way of presenting the probability
plot. When such probability plot is prepared for flood events (with magnitude Q),
then this kind of plot is known as flood frequency plot. Depending upon the range
of parameters Q and T , the scales in Y - and X -axes can be arithmetic or logarith-
mic. A best- fit curve (trend line) is drawn through the plotted points, and then by
suitable extrapolation of the line, we can either find out the return period of a certain
magnitude of the event (which is absent from the sample data series) or find out the
magnitude of the event for a particular return period.

This simple procedure yields reasonably good results for small extrapolation, but
with increase in extrapolation error increases. Some analytical methods are available
for more accurate analysis using Gumbel’s extreme value distribution, log-Pearson
type III distribution, etc., explained later in this chapter.

There is another common practice to designate a particular magnitude (M) of a
hydrological event with percentage dependability. For example, ‘90% dependable
annual precipitation’ means on an average for 90% times the annual precipitation to
be exceeded or be equalled to that particular magnitude M . In other words, we can
expect to observe annual precipitation exceeded or equal to M for on average for 90
years out of 100-year time period.

Example 5.2.1
Consider the annual maximum flood discharge data at a river gauging station over
a time period of 40 years as shown in Table5.1. Construct the flood frequency plot,
and estimate the following:
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Fig. 5.2 Flood frequency plot for Example5.2.1

(a) Flood magnitude with return period 10 years, 50 years, and 100 years;
(b) Return period of a flood with 4000 cumec magnitude.

Solution First, the given flood discharge series is arranged in descending order and
a rank (m) is assigned to each data point. Here, data length (N ) is 40. Exceedance
probability of each flood data is calculated by Weibull formula,

P = m/(N + 1) = m/41

Similarly, return period is determined for each flood discharge magnitude. The rank,
ordered flood magnitude, exceedance probability (P), and return period (T ) are
shown in Table5.3. A graph is drawn by plotting flood discharge magnitudes (Q) in
Y axis (in arithmetic scale) versus return period (T ) in X axis (in logarithmic scale),
shown in Fig. 5.2. A best-fit line is drawn for the plotted points, and equation of the
line is obtained as Q = 1605.70 ln(T )+ 1398.29, with coefficient of determination
R2 as 0.966.

(a) From flood frequency plot in Fig. 5.2 or from the equation of trend line, we get
For return period 10 years, flood magnitude is 5095.6 cumec.
For return period 50 years, flood magnitude is 7679.8 cumec.
For return period 100 years, flood magnitude is 8792.8 cumec.

(b) Return period of annual flood of 4000 cumec magnitude is approximately 5
years.
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Table 5.3 Calculation for flood frequency plot

Rank m Flood
discharge
in
descend-
ing order
(cumecs)

Exceedance
probability
by Weibull
formula
P = m

N+1

Return
period
(years)
T = 1

P

Rank m Flood
discharge
in
descend-
ing order
(cumecs)

Exceedance
probability
by Weibull
formula
P = m

N+1

Return
period
(years)
T = 1

P

1 7065 0.024 41.000 21 2592 0.512 1.952

2 5582 0.049 20.500 22 2589 0.537 1.864

3 5368 0.073 13.667 23 2498 0.561 1.783

4 5067 0.098 10.250 24 2450 0.585 1.708

5 4767 0.122 8.200 25 2435 0.610 1.640

6 4597 0.146 6.833 26 2111 0.634 1.577

7 4369 0.171 5.857 27 2015 0.659 1.519

8 4215 0.195 5.125 28 1987 0.683 1.464

9 3891 0.220 4.556 29 1862 0.707 1.414

10 3868 0.244 4.100 30 1812 0.732 1.367

11 3761 0.268 3.727 31 1768 0.756 1.323

12 3679 0.293 3.417 32 1689 0.780 1.281

13 3456 0.317 3.154 33 1595 0.805 1.242

14 3345 0.341 2.929 34 1569 0.829 1.206

15 3218 0.366 2.733 35 1541 0.854 1.171

16 3200 0.390 2.563 36 1356 0.878 1.139

17 3059 0.415 2.412 37 1306 0.902 1.108

18 2987 0.439 2.278 38 1123 0.927 1.079

19 2944 0.463 2.158 39 911 0.951 1.051

20 2884 0.488 2.050 40 774 0.976 1.025

5.3 Probability Paper

Several probability distribution functions are available in statistics, and some of them
have already been discussed in the previous chapter. A set of hydrologic data (sample)
is tested with different distribution functions to identify the most suitable probability
distribution that best fits the data set.

Probability paper uses a graphical technique to assess whether a given data set
follows a certain probability distribution or not. A probability paper is a graph
paper representing data and exceedance probability represented in two orthogonal
axes. Probability paper is different for different probability distribution functions.
In general, the probability axis (generally the Y-axis) is transformed (linearly or
non-linearly) in such a way that the resulting cumulative density function appears
as a straight line if the data follows that particular distribution. Deviations from this
straight line indicate deviations from the specified distribution. In this way, the best-
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fit distribution is selected for the data set. There are two techniques to transform the
probability axis, viz. mathematical construction and graphical construction.

5.3.1 Mathematical Construction of Probability Paper

Probability paper can also be constructed analytically so that the cumulative distri-
bution function F(x) plots as a straight line, on the paper. This can be achieved by
transforming the cumulative distribution function to the form

Y = mX + c (5.2)

where Y is a function of parameter(s) of the distribution and F(x). X is a function
of parameter(s) of the distribution and x . m and c are functions of parameters.

For demonstration, let us consider exponential distribution, and the detailed proce-
dure for construction of probability paper is explained. For exponential distribution,
the CDF is given by

FX (x) = 1 − e−λx x > 0,λ > 0 (5.3)

or, 1 − FX (x) = e−λx (5.4)

Taking log on both sides
ln(1 − FX (x)) = −λx (5.5)

Now comparing Eqs. 5.5 and 5.2, we can write

Y = − ln(1 − FX (x))

m = λ

X = x

c = 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(5.6)

Next, assuming a specific value of λ, a set of X and Y is generated to prepare a
graph. However, the axes of the graph are labeled with the corresponding values of x
and FX(x), respectively. This is the probability paper for exponential distribution. If
any data follows exponential distribution and the corresponding value of cumulative
distribution is plotted on this probability paper, it will appear as a straight line. As it
is clear from Eq.5.6, the slope of the line gives the λ value. The entire procedure is
illustrated through Example5.3.1.

Example 5.3.1
Construct probability paper for exponential distribution with λ = 1

5 .
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Table 5.4 Coordinates of exponential probability paper

Fx (x)
(assumed)

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

Y
(Eq.5.6)

0.01 0.11 0.22 0.36 0.51 0.69 0.92 1.20 1.61 2.30 3.00 4.61

X = x
(Eq.5.5)

0.05 0.53 1.12 1.78 2.55 3.47 4.58 6.02 8.05 11.51 14.98 23.03
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Fig. 5.3 Probability paper for exponential distribution. Straight line for different values of param-
eter (lambda, λ) is also shown

Solution To construct probability paper, first a table (shown in Table5.4) is prepared
containing FX(x), Y , and X . The values of F(x) are assumed, and corresponding Y
and X values are calculated considering λ = 1

/
5. Then, Y is plotted against X , the

Y axis is labeled with the corresponding values of F(x) and the X axis is labeled
with corresponding values of x in Fig. 5.3. Plots are also shown for λ = 1

/
3 and

λ = 1
/
7 for comparison purpose.
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Fig. 5.4 Probability paper for normal distribution

5.3.2 Graphical Construction of Probability Paper

Construction of probability paper can be carried out graphically also. Let us take
the example of normal probability paper, which is most widely used to test whether
the sample data belongs to a normal population or not. The procedure of graphical
construction of normal probability paper is as follows.

The normal probability paper is constructed on the basis of standard normal proba-
bility distribution function.Most often, the random variable X (or its standard normal
variate Z ) is represented on the horizontal arithmetic scale and the vertical axis rep-
resents the cumulative probability values φ(x) or F(z) ranging from 0 to 1 (for a
general description of normal distribution, refer to Chap.4).

First, we consider some random numbers (x) ranging from−∞ to +∞ and calcu-
late their respective z values. Now, from standard normal distribution table (TableB.1
p. 434), we can obtain correspondingCDF values, i.e., F(z) values. Then on a simple
arithmetic graph paper, these z values are plotted against their F(z) values. For this
particular example, we have considered −3 to 3 as the range of Z , as 99% prob-
ability is occupied within this limits (for further description, refer to Sect. 4.2.3 in
Chap.4). Then, cumulative distribution function is drawn by plotting z values against
their F(z) values, as shown in Fig. 5.4. This distribution generally takes a particular
curvilinear shape, which is asymptotic to 0 at −∞ and asymptotic to one at ∞.

Now if we want to test whether a given set of sample data (X ) follows normal
distribution or not, we can plot theCDF of standardized data,(X−μ)

/
σ, and check if

it follows approximately this curvilinear shape as shown in Fig. 5.4 (thin continuous
line). However, as in general probability paper, the probability axis is transformed
in such a way that the CDF appears as a straight line.
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The concept to transform the probability axis is as follows. First a straight line
from (−1.96, 0.025) to (1.96, 0.975) line (thick continuous line in Fig. 5.4) is drawn
and extended to cover the entire probability axis. It can be noted that quantile −1.96
corresponds to cumulative probability of 0.025 for standard normal distribution.
Similarly, 1.96 corresponds to cumulative probability of 0.975 (TableB.1, p. 434).
Next, starting from a particular value of F(z) (e.g., 0.2), a straight line (dashed line
in Fig. 5.4), parallel to X -axis (Z ), is drawn till it hits theCDF (thin continuous line).
Then, a right-angle bend is taken toward the 45◦ line (thick continuous line). After
hitting the 45◦ line, another right-angle bend is taken to make it parallel to X -axis
(Z ) again. Next, the line is extended to the secondary Y -axis, the transformed axis,
and the point of intersection is labeled as the same value of F(z) from where it was
started (i.e., 0.2). In this way, the procedure is repeated for all possible values of
F(z) to locate the respective values on the transformed axis. If the transformed axis
is noticed carefully, the central part of the axis may be found as more compact than
both ends. The combination of X -axis (Z ) and the obtained transformed probability
axis provides the standard normal probability paper. If a normally distributed set of
data is plotted on this probability paper, it will appear as a straight line. Generally,
real-life data may not exactly fall on the straight line, and in such cases probabilistic
decision is taken from some statistics based on these deviations from the straight
line. This requires a hypothesis testing which is discussed in Chap.6.

Aforementioned concept is general, and probability paper for any distributions
can be prepared following the same steps.

Example 5.3.2
The following table shows 20-year annual rainfall data (mm) for a catchment. Check
whether this rainfall data follows normal distribution, by using normal probability
paper.

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
Annual rainfall (mm) 515.5 257.2 277.3 498.6 806.5 346.1 574.3 454.9 723.5 282.2
Year 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
Annual rainfall (mm) 506.5 610.5 720.1 808.8 517.2 201.7 351.5 287.7 970.1 376.9

Solution First, the rainfall data is sorted in descending order and the exceedance
probability is calculated using the Weibull formula. For probability paper, we need
to plot the random variable against their cumulative probability which is actually
their non-exceedance probability. All the calculations are listed in Table5.5. Then
on a normal probability paper, rainfall data is plotted against cumulative probability.
From Fig. 5.5, we can see that the given data points (. sign) are found to follow an
approximate straight line. Hence, we can conclude that the given annual rainfall data
approximately follows a normal distribution. There are some statistical tests to check
goodness-of-fit, i.e., how good the data fits the distribution. However, knowledge of
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Fig. 5.5 Normal probability paper used for Example5.3.2

hypothesis testing is required, which is discussed in Chap.6. Thus, statistical tests to
check the goodness-of-fit are explained in Chap.6.

5.4 Frequency Analyses of Hydroclimatic Extremes

When the magnitude of a hydroclimatic event differs significantly from the average
or usual range of magnitudes, then such events are termed as extreme events. This
may take place over one day or a period of time, e.g., severe storms, flash floods,
droughts. These types of hydroclimatic extreme events influence the system to a
great extent. Frequency analysis is done to determine the frequency of occurrence
(or probability of occurrence) of such extreme events.

Frequency analysis generally refers to stationary frequency analysis that assumes
the data to be stationary.Most of the frequency distribution functions in hydroclimatic
studies can be expressed in the form of the following equation, known as the general
equation of frequency analysis, given by

xT = �x + K S (5.7)

where
xT = magnitude of the hydrologic variable with a return period of T ;
�x = mean of the hydrologic variable;
S = standard deviation of the hydrologic variable; and
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K = frequency factor, a function of the return period T and the assumed frequency
distribution function.

Different probability distribution functions are available for the prediction of
extreme events. Some of them are listed below

(i) Normal distribution
(ii) Lognormal distribution
(iii) Log-Pearson type III distribution
(iv) Extreme value type I distribution (or Gumbel’s distribution)
(v) Mixed distribution.

Estimation of frequency factors using all these above-mentioned distributions is
discussed in the following sections of this chapter.

5.4.1 Normal Distribution

General description of normal distribution is explained in Chap.4. If a hydrologic
variable (X ) follows normal distribution, the frequency factor K equals its standard
normal variate Z . From Eq.5.7, we can express K as K = (xT − �x)/S, which is
the standard normal variate Z . So, in order to determine an extreme event with a
particular return period, we have to calculate its exceedance probability (hence non-
exceedance probability) and corresponding Z value using a standard normal table.
Now using this Z value as frequency factor K , the extreme event can be determined
from Eq.5.7 (shown in Example5.4.1).

Example 5.4.1
Consider a 50-year data of annual maximum 24h rainfall depth at a particular place
follows normal distributionwithmean 92.5mmand standard deviation 34mm.Deter-
mine the magnitude of annual maximum rainfall with return period of 20 years.

Solution For the given 50-year data, mean�x = 92.5mm and standard deviation S =
34mm.

Now, for 20-year return period, T = 20; P(X > x20) = 1
20 = 0.05

P(X ≤ x20) = 1 − 0.05 = 0.95

From a standard normal table (TableB.1), for φ(Z) = 0.95, Z = 1.645
Thus, the frequency factor K = 1.645.
From Eq.5.7, x20 = �x + K S = 92.5 + (1.645 × 34) = 148.43mm.

Example 5.4.2
Consider the data used in Example5.2.1, and determine the 10-, 50-, and 100-year
floods using normal distribution.
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Solution For the given maximum flood data series (X ), the mean floodmagnitude �X
is 2932.6 and standard distribution (Sx ) of 1427.2. Now, for a 10-year flood, T = 10;
P(X > x10) = 1

10 = 0.1

P(X ≤ x10) = 1 − 0.1 = 0.90 = φ(Z)

From a standard normal table (TableB.1), we got Z = 1.282 = the frequency factor
K .

Hence, x10 = 2932.6 + 1.282 × 1472.2 = 4762.3 cumec
Similarly, we can obtain x50 = 5863.7 cumec and x100 = 6252.8 cumec.

5.4.2 Lognormal Distribution

General description of lognormal distribution is explained in Chap.4. If a hydrologic
variable (X ) follows lognormal distribution, we have to transform the X values into
a series of Y values where Y = ln (X). As X follows lognormal distribution, Y will
follow normal distribution. Then, we have to follow the same procedure explained in
Sect. 5.4.1 to determine the frequency factor for Y series. Then using Eq.5.8 (same
as Eq.5.7 but for variable Y ), we can determine the magnitude yT for a particular
return period T and from yT we can compute xT by taking antilog(yT )

yT = �y + KySy (5.8)

Just like the previous case, here yT=magnitude of the variable Y with a return period
of T ,�y= mean of the magnitudes of Y , Sy= standard deviation of the magnitudes of
Y , and Ky= frequency factor for Y .

The values of �y and Sy can also be computed from the mean (�x) and standard
deviation (Sx ) of the original data. The equations are as follows:

�y = 1

2
ln

[ �x2
C2
v + 1

]

Sy =
√
ln

(
C2
v + 1

)
(5.9)

where Cv = Sx
�x .

Example 5.4.3
Consider the Example5.2.1, and determine the 10-, 50-, and 100-year floods using
lognormal distribution.

Solution For the given maximum flood data series (X ), convert the X values into a
series of Y values where y = ln(x). Now, mean and standard deviation are calculated
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for this Y series and obtained as mean (�y) = 7.862 and standard deviation (Sy) =
0.514.

Now, for a 10-year flood, T = 10; P(Y > y10) = 1
10 = 0.1

P(Y ≤ y10) = 1 − 0.1 = 0.90 = φ(Z0.1)

From a standard normal table (TableB.1), we got Z10 = 1.282 = the frequency
factor K .

From Eq.5.8, y10 = �y + KySy = 7.862 + (1.282 × 0.514) = 8.52.
Thus, y10 = ln

(
x10

) = 8.52, hence, x10 = 5014 cumec.
Similarly, we can obtain x50 = 7445 cumecs and x100 = 8566 cumec.

5.4.3 Log-Pearson Type III Distribution

Pearson and log-Pearson type III distribution are discussed in Chap. 4. Asmentioned,
these distributions are popularly used for flood frequency analysis. The idea to esti-
mate frequency factor by these distributions is verymuch similar to that of lognormal
distribution, discussed in previous Sect. 5.4.2. First, we have to convert the X values
into a series of Y values where y = log10 (x). Then, three statistical parameters are
calculated for this transformed data series Y , namely mean (�y), standard deviation
(Sy), and coefficient of skewness (Cs). Now, frequency factors are obtained from
Table5.6 for a particular return period or exceedance probability. When Cs takes the
value zero, log-Pearson type III distribution becomes lognormal distribution. Next,
the magnitude yT for a particular return period T can be computed using Eq.5.8. The
value of xT can be computed from yT , using antilog(yT ). The formula to calculateCs

from the sample data is shown in Table3.1 (p. 65) and reproduced here as follows:

Cs = n

(n − 1)(n − 2)

∑
(y − �y)3
S3y

(5.10)

where n is the total number of data.

Example 5.4.4
Consider the Example5.2.1, and determine the 10-, 50-, 100-year floods using
log-Pearson type III distribution.

Solution For the given flood data series (X ), convert the X values into a series of Y
values where y = log10 (x). Now, three parameters are calculated for this Y series
and obtained as mean (�y) = 3.415, std. deviation (sy) = 0.224, and coefficient of
skewness (Cs) = −0.33.Now, for a 10-year flood, T = 10; P(Y > y10) = 1

10 = 0.1.
From Table5.6, we got K10= 1.245 for Cs= −0.3 and K10= 1.231 for Cs= −0.4
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Table 5.6 Frequency factors for log-Pearson type III distribution

Coefficient
of skewness
Cs

Return period in years

1.0101 2 5 10 25 50 100 200

Exceedance probability

0.99 0.5 0.2 0.1 0.04 0.02 0.01 0.005

3.0 −0.667 −0.396 0.42 1.18 2.278 3.152 4.051 4.97

2.9 −0.69 −0.39 0.44 1.195 2.277 3.134 4.013 4.904

2.8 −0.714 −0.384 0.46 1.21 2.275 3.114 3.973 4.847

2.7 −0.74 −0.376 0.479 1.224 2.272 3.093 3.932 4.783

2.6 −0.769 −0.368 0.499 1.238 2.267 3.071 3.889 4.718

2.5 −0.799 −0.36 0.518 1.25 2.262 3.048 3.845 4.652

2.4 −0.832 −0.351 0.537 1.262 2.256 3.023 3.8 4.584

2.3 −0.867 −0.341 0.555 1.274 2.248 2.997 3.753 4.515

2.2 −0.905 −0.33 0.574 1.284 2.24 2.97 3.705 4.444

2.1 −0.946 −0.319 0.592 1.294 2.23 2.942 3.656 4.372

2.0 −0.99 −0.307 0.609 1.302 2.219 2.912 3.605 4.298

1.9 −1.037 −0.294 0.627 1.31 2.207 2.881 3.553 4.223

1.8 −1.087 −0.282 0.643 1.318 2.193 2.848 3.499 4.147

1.7 −1.14 −0.268 0.66 1.324 2.179 2.815 3.444 4.069

1.6 −1.197 −0.254 0.675 1.329 2.163 2.78 3.388 3.99

1.5 −1.256 −0.24 0.69 1.333 2.146 2.743 3.33 3.91

1.4 −1.318 −0.225 0.705 1.337 2.128 2.706 3.271 3.828

1.3 −1.383 −0.21 0.719 1.339 2.108 2.666 3.211 3.745

1.2 −1.449 −0.195 0.732 1.34 2.087 2.626 3.149 3.661

1.1 −1.518 −0.18 0.745 1.341 2.066 2.585 3.087 3.575

1.0 −1.588 −0.164 0.758 1.34 2.043 2.542 3.022 3.489

0.9 −1.66 −0.148 0.769 1.339 2.018 2.498 2.957 3.401

0.8 −1.733 −0.132 0.78 1.336 1.993 2.453 2.891 3.312

0.7 −1.806 −0.116 0.79 1.333 1.967 2.407 2.824 3.223

0.6 −1.88 −0.099 0.8 1.328 1.939 2.359 2.755 3.132

0.5 −1.955 −0.083 0.808 1.323 1.91 2.311 2.686 3.041

0.4 −2.029 −0.066 0.816 1.317 1.88 2.261 2.615 2.949

0.3 −2.104 −0.05 0.824 1.309 1.849 2.211 2.544 2.856

0.2 −2.178 −0.033 0.83 1.301 1.818 2.159 2.472 2.763

0.1 −2.252 −0.017 0.836 1.292 1.785 2.107 2.4 2.67

0.0 −2.326 0 0.842 1.282 1.751 2.054 2.326 2.576

−0.1 −2.4 0.017 0.846 1.27 1.716 2 2.252 2.482

−0.2 −2.472 0.033 0.85 1.258 1.68 1.945 2.178 2.388

−0.3 −2.544 0.05 0.853 1.245 1.643 1.89 2.104 2.294

(continued)
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Table 5.6 (continued)

Coefficient
of skewness
Cs

Return period in years

1.0101 2 5 10 25 50 100 200

Exceedance probability

0.99 0.5 0.2 0.1 0.04 0.02 0.01 0.005

−0.4 −2.615 0.066 0.855 1.231 1.606 1.834 2.029 2.201

−0.5 −2.686 0.083 0.856 1.216 1.567 1.777 1.955 2.108

−0.6 −2.755 0.099 0.857 1.2 1.528 1.72 1.88 2.016

−0.7 −2.824 0.116 0.857 1.183 1.488 1.663 1.806 1.926

−0.8 −2.891 0.132 0.856 1.166 1.448 1.606 1.733 1.837

−0.9 −2.957 0.148 0.854 1.147 1.407 1.549 1.66 1.749

−1.0 −3.022 0.164 0.852 1.128 1.366 1.492 1.588 1.664

−1.1 −3.087 0.18 0.848 1.107 1.324 1.435 1.518 1.581

−1.2 −3.149 0.195 0.844 1.086 1.282 1.379 1.449 1.501

−1.3 −3.211 0.21 0.838 1.064 1.24 1.324 1.383 1.424

−1.4 −3.271 0.225 0.832 1.041 1.198 1.27 1.318 1.351

−1.5 −3.33 0.24 0.825 1.018 1.157 1.217 1.256 1.282

−1.6 −3.88 0.254 0.817 0.994 1.116 1.166 1.197 1.216

−1.7 −3.444 0.268 0.808 0.97 1.075 1.116 1.14 1.155

−1.8 −3.499 0.282 0.799 0.945 1.035 1.069 1.087 1.097

−1.9 −3.553 0.294 0.788 0.92 0.996 1.023 1.037 1.044

−2.0 −3.605 0.307 0.777 0.895 0.959 0.98 0.99 0.995

−2.1 −3.656 0.319 0.765 0.869 0.923 0.939 0.946 0.949

−2.2 −3.705 0.33 0.752 0.844 0.888 0.9 0.905 0.907

−2.3 −3.753 0.341 0.739 0.819 0.855 0.864 0.867 0.869

−2.4 −3.8 0.351 0.725 0.795 0.823 0.83 0.832 0.833

−2.5 −3.845 0.36 0.711 0.711 0.793 0.798 0.799 0.8

−2.6 −3.899 0.368 0.696 0.747 0.764 0.768 0.769 0.769

−2.7 −3.932 0.376 0.681 0.724 0.738 0.74 0.74 0.741

−2.8 −3.973 0.384 0.666 0.702 0.712 0.714 0.714 0.714

−2.9 −4.013 0.39 0.651 0.681 0.683 0.689 0.69 0.69

−3.0 −4.051 0.396 0.636 0.66 0.666 0.666 0.667 0.667

So, for Cs = −0.33, by linear interpolation, K10=1.245 − 1.245−1.231
0.4−0.3 × (0.33 −

0.3) = 1.241.
From Eq.5.10, y10 = �y + K10sy = 3.415 + (1.241 × 0.224) = 3.690
y10 = log10

(
x10

) = 3.690. Hence, x10 = 4898 cumec.
Similarly, we can obtain x50 = 6832 cumec and x100 = 7613 cumec.
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5.4.4 Extreme Value Type I Distribution

Details of extreme value type I distribution, also known as Gumbel distribution, is
discussed in Chap. 4. In hydrology and hydroclimatology, extreme value type I distri-
bution is mostly used to analyze extreme events like flood peaks, maximum rainfall.
For a hydrologic extreme event X , following Gumbel’s distribution, exceedance
probability of X = x0 is given by

P(X ≥ x0) = 1 − e−e−(x−β)/α

(5.11)

Let us simplify the equation by introducing a dimensionless variable y known as
Gumbel’s reduced variate, given by y = (x − β)

/
α, where α and β are scale

and location parameter of Gumbel’s distribution, respectively. So, Eq. 5.11 can be
rearranged as

P(X ≥ x0) = 1 − e−e−(x−β)/α

⇒P(X ≥ x0) = 1 − e−e−y = 1

T

or, y = −
[
ln

(
ln

T

T − 1

)]
(5.12)

For Gumbel’s distribution, standard deviation and mean are given by

Sx = 1.2825α ⇒ α = Sx
/
1.2825

�x = β + 0.5772α ⇒ β = �x − 0.5772α ⇒ β = �x − 0.4501Sx

Using above equations of α and β, we can express y as

y = (x − β)

α
= 1.2825(x − �x)

Sx
+ 0.5772

Now for a particular return period T , let us designate y as yT and x as xT , then

yT = 1.2825(xT − �x)
Sx

+ 0.5772

or, xT = �x + (yT − 0.5772)

1.2825
Sx or, xT = �x + K Sx (5.13)

Equation5.13 is the general equation for hydrologic frequency analysis (Eq.5.7),
where the frequency factor K = (yT −0.5772)

1.2825 .
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Table 5.7 Frequency factors of Gumbel’s extreme value for different return periods and finite
sample sizes

Samplesize
(N)

Return periods (T years)

2.33 5 10 25 50 100

15 0.06 0.97 1.70 2.63 3.32 4.01

20 0.05 0.91 1.63 2.52 3.18 3.84

25 0.04 0.89 1.58 2.44 3.09 3.73

30 0.04 0.87 1.54 2.39 3.03 3.65

40 0.03 0.84 1.50 2.33 2.94 3.55

50 0.03 0.82 1.47 2.28 2.89 3.49

60 0.02 0.81 1.45 2.25 2.85 3.45

70 0.02 0.80 1.43 2.23 2.82 3.41

80 0.02 0.79 1.42 2.21 2.80 3.39

100 0.02 0.77 1.40 2.19 2.77 3.35

200 0.01 0.74 1.33 2.08 2.63 3.18

400 0.00 0.70 1.27 1.99 2.52 3.05

Equation5.13 constitutes basic Gumbel’s equations and is only applicable to a
sample of infinite size (i.e., sample size N → ∞). But in practice, annual data series
of extreme hydrological events like maximum flood, maximum rainfall are of finite
sample size. Hence, Eq.5.13 is modified to take care of the finite sample size N as
shown below.

xT = �x + K Sx (5.14)

K = (yT − �yn)
Sn

(5.15)

where yT = − [
ln

(
ln T

T−1

)]
is reduced variate for return period T and�yn is reduced

mean, a function of T and sample sizeN ; as N → ∞,�yn → 0.5772. Sn is the reduced
standard deviation, a function of T and sample size N ; as N → ∞, Sn → 1.2825.

Tables are available for determining �yn and Sn for a certain sample size (N ) and
return period (T ). Reduced variate yT can be directly calculated from Eq.5.12. Then,
K can be calculated by Eq.5.15. All these steps of determining frequency factors
(K ) have been summed up and listed in Table5.7, which directly gives the values of
frequency factors (K ) for different sample size (N ) and return period (T ). Instead
of doing all the steps shown above, readers can directly estimate the values of K
from this table and use to predict some T years extreme event, for a given finite
sample size. If the given sample size is said to be infinite (practically very large),
then we do not need to use this table, and we can directly use Eq.5.13 to calculate
K . Examples5.4.5 and 5.4.6 illustrate the process further.
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Example 5.4.5
The mean annual maximum daily rainfall in a city is 105mm and standard deviation
is 45mm. Determine the depth of daily rainfall with 5-year return period in that city.
Use Gumbel’s method and assume sample size to be very large.

Solution If X is a random variable which describes mean annual maximum daily
rainfall in a city, then mean (�x) = 105 and standard deviation (Sx ) = 45. For 5-year
return period, reduced variate will be

yT = −
[
ln

(
ln

T

T − 1

)]
= −

[
ln

(
ln

5

5 − 1

)]
= 1.5

As the sample size (N ) is very large,we candirectly useEq.5.13 to evaluate frequency
factor K as shown below

K = (yT − 0.5772)

1.2825
= 1.5 − 0.5772

1.2825
= 0.72

Now, the depth of annual maximum daily rainfall with 5-year return period in the
city xT = �x + K Sx = 105 + (0.72 × 45) = 137.40 mm.

Gumbel or Extreme Value Probability Paper

TheGumbel or extreme value probability paper helps to verifywhether the given data
follows the Gumbel distribution or not. In this probability paper, the X-axis is used to
represent return period (T ). First, yT values are plotted on an arithmetic scale parallel
to X-axis, say from −2 to 5, as shown in Fig. 5.6. Then, some values of T (e.g., 2,
10, 50, 100 years) are chosen and corresponding yT values are marked on X-axis.
Thus, the X-axis is prepared. The Y-axis of the probability paper is used to represent
the value of the variate xT either in arithmetic scale or in logarithmic scale. From
Eqs. 5.14 and 5.15, we can see yT varies linearly with xT . So, a Gumbel distribution
will plot as straight line on a Gumbel paper and linear interpolation/extrapolation is
carried out to evaluate any other value including extreme values with certain return
period.

In order to check if a given set of data follows Gumbel’s distribution, value of xT
for some particular T (maybe 2–3 values of T , where T < N ) is calculated using
Eqs. 5.14 and 5.15 and those 2–3 computed data points are plotted on the Gumbel
probability paper. As per the linear property explained in previous paragraph, these
points will lie on a straight line.

So, for the theoretical Gumbel distributions curve, only two points are enough to
draw the straight line. In case of unavailability of the Gumbel paper, a semilog plot
with logarithmic scale of T can be used but then a large set of (xT , T ) values are
required to identify the theoretical curve. Next, it is checked whether the theoretical
Gumbel distribution curve fits the observed data points or not. Gumbel’s distribution
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Fig. 5.6 Flood frequency analysis by the Gumbel distribution for Example5.4.6

has one important property; i.e., the value of xT at T = 2.33 years gives the average
value of the data series if N is very large. Hence, the theoretical plot of xT versus T
must pass through this point.

Example 5.4.6
Consider the Example5.2.1, and verify whether the Gumbel extreme value distri-
bution fits this data series. Then, determine 50-year flood and 100-year flood using
linear extrapolation.

Solution For the givenmaximum flood data series (X ), mean and standard deviation
are calculated as mean,�x = 2932.625 cumec and standard deviation, Sx = 1427.193
cumec.

As in this case, we are using a semilog plot for verifying the given data, and we
need to estimate xT values for different T values. The sample size (N ) is 40 here,
and hence consider T < 40. Let us take T = 5, 10 and 25 years. The values of K
from Table5.7 for N = 40 are as follows: K5 = 0.84, K10 = 1.5, and K25 = 2.33

Now, we can calculate x10 = �x + K10 Sx = 2932.6 + (1.5 × 1427.2) = 5073.4
cumec.

Similarly, we get x5 = 4131 cumec and x25 =6258 cumec.
Figure5.6 shows a semilogarithmic graph paper, where all the observedmaximum

annual flood data (as perWeibull formula) and above computed seven points are plot-
ted alongwith their return periods. A best-fit line is drawn through these seven points.
This straight line basically indicates the theoretical Gumbel distribution. Observing
this figure, we can see how well the given data series fits the theoretical Gumbel
distribution.
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Fig. 5.7 Graphical comparison of results obtained from different methods

Table 5.8 Comparison of results obtained in different methods

Annual maximum
flood (cumec)

Return period

10 years 50 years 100 years

Plotting position
(Weibull formula)

5197 7677 8789

Normal distribution 4761 5863 6252

Lognormal
distribution

5014 7445 8566

Log-Pearson
distribution

4920 6832 7607

Gumbel’s distribution 5073 7600 8700

Now, by linear extrapolation of the line we get

50-year annual maximum flood = 7600 cumec;
100-year annual maximum flood = 8700 cumec.

Note: In this chapter, we have seen that the same set of annual maximum flood
data at a particular river gauging station (given in Table5.1) is analyzed in different
methods and considering different distributions, Table5.8 shows a comparison of
results obtained by different methods (Fig. 5.7).



5.4 Frequency Analyses of Hydroclimatic Extremes 169

Confidence Limits of the Gumbel Distribution

The estimation of the magnitude of a random variable xT for a particular return
period T for Gumbel’s extreme value distribution is shown in the previous section.
However, the xT value obtained in this way is uncertain due to the limited sample
size. Hence, it is useful to compute a range of xT , say x1 and x2, which is termed
as confidence limit or confidence interval (CI). The CI is always associated with a
probability measure, known as level of confidence (Chap.6 for more discussion).
Thus, the confidence interval can be defined as the limits of the estimated value of
the variable xT between which the actual value will lie with a probability of c, known
as confidence level.

If x1 and x2 be the upper and lower bounds of the confidence interval, then

x1,2 = xT ± f (c)Se (5.16)

where xT = estimated extreme value of the variable with the return period T ;
f (c) = a function of confidence probability/level c, which is the standard
normal variate Z value for the non-exceedance probability c; Se = standard
error = b Sx√

N
; b = √

1 + 1.3K + 1.1K 2 N = sample size; K = frequency
factor for the Gumbel distribution; and Sx = Standard deviation of the sam-
ple.

The values of f (c) can be read from a standard normal table.

Example 5.4.7
Consider the annual maximum flood data series given in Table5.1, and estimate the
95 and 99% confidence interval for 100-year maximum annual flood. Use Gumbel’s
extreme value distribution.

Solution UsingGumbel’s extreme value distribution, the 100-yearmaximumannual
flood is already calculated in Example5.4.6 and obtained as x100 = 8700 cumec.

The frequency factor K100 can be read from Table5.7 for sample size N = 40
and obtained as K100 = 3.55

b =
√
1 + 1.3K100 + 1.1K 2

100 =
√
1 + (1.3 × 3.55) + (1.1 × 3.552) = 4.413.

From Example5.4.6, Sx = 1427.193, and hence the standard error can be calculated
as

Se = b
Sx√
N

= 4.413
1427.193√

40
= 995.8.

For 95% confidence interval, f (c) = 1.96 and hence,

x1,2 = xT ± f (c)Se = 8700 ± (1.96 × 995.8)
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Fig. 5.8 Confidence intervals (95 and 99%) for annual maximum discharge obtained using Gum-
bel’s extreme value distribution

x1= 10652 cumec and x2 = 6748 cumec. So, 95% confidence interval of the esti-
mated value of 100-year maximum annual flood is 6748 cumec and 10652 cumec.

For 99% confidence interval, f (c) = 2.575 and hence,

x1,2 = xT ± f (c)Se = 8700 ± (2.575 × 995.8)

x1 = 11264 cumec and x2 = 6136 cumec. So, the calculated value of 100-year
maximum annual flood 8700 cumec has a 99% confidence probability of lying
between 11264 cumec and 6136 cumec.

In Fig. 5.8, the black points indicate the values of annual maximum floodmagnitudes
for different return periods and a straight line is fitted to these points, shown by black
thick line. The 95% and 99% confidence intervals for various values of return period
are also shown. It can be observed that the range of confidence interval increases
with the increase in confidence level. It can also be noted that the range of confidence
interval increases as T increases.

Frequency Analysis for Zero-Inflated Data

Zero-inflated data contains many zero values apart from other values over a contin-
uous range. For example, daily rainfall data or peak flow values from an ephemeral
river may contain significant number of zero values and positive values over the
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range of 0 to ∞. Presence of significant number of zeros in a set of data needs some
special treatment, especially if logarithmic transformation is required. Treatment of
zeros can be done by any of the following ways

(i) Addition of small constant to all of the observations. Hence, logarithmic trans-
formation becomes feasible.

(ii) Analysis of the nonzero values only and conditioned probabilistic assessment
is carried out. Among the nonzero values is the condition.

(iii) Using the total probability theorem to handle zero values along with nonzero
values. This method is more accurate and discussed here.

The distribution of zero-inflated data will have a probability mass at x = 0 and
continuous density function over x > 0. Such a distribution is known as mixed
distribution (refer Chap.4, Sect. 4.3). Application of total probability theorem is as
follows.
Range of the random variable is grouped into two parts, x = 0 and x 
= 0. Next, by
Theorem of Total Probability, we can write

P(X ≥ x) = P( X ≥ x | x = 0) P(x = 0) + P( X ≥ x | x 
= 0) P(x 
= 0) (5.17)

Now, P( X ≥ x | x = 0) = 0, and hence,

P(X ≥ x) = P( X ≥ x | x 
= 0) P(x 
= 0) (5.18)

In Eq.5.18, P(x 
= 0) can be determined based on fraction of nonzero values (k)
in the data. Estimation of P( X ≥ x | x 
= 0) needs analysis of nonzero values only
with sample size equal to number of nonzero values.

Suppose pdf andCDF of X are given by fX(x) and FX(x). Also, consider a random
variable Xnz which takes all nonzero values of X with pdf and CDF as gX (x) and
GX (x). So, Eq.5.18 can be rewritten as

1 − FX (x) = k(1 − GX (x))

⇒ FX (x) = (1 − k) + kGX (x) (5.19)

Example 5.4.8
In a set of 100 records of daily rainfall data, 30 values are found to be zero. The rest
of the data have a mean of 50mm and standard deviation of 12.5mm. Consider the
nonzero daily rainfall values to follow a lognormal distribution.

(a) Estimate the probability of daily rainfall exceeding 60mm.
(b) Estimate the magnitude of daily rainfall with an exceedance probability of 0.01.

Solution

(a) Here, we have to find out P(X > 60) = 1 − P(X ≤ 60) = 1 − FX(60)
From Eq.5.19, we get FX(60) = (1 − k) + kGX (60)
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Here, fraction of nonzero values k = 70/100 = 0.7
Now for the nonzero values, �xnz = 50, Snz = 12.5, and hence, CVnz =
12.5/50 = 0.25
�xnz , Snz , andCVnz indicate mean, standard deviation, and coefficient of variation
of nonzero values, respectively.
As Xnz follows lognormal distribution, let us consider another variable Y =
log(Xnz), which follows normal distribution with mean μy and σ2

Y

μY = 0.5 ln

[ �x2nz
1 + CV 2

nz

]
= 0.5 ln

[
502

1 + 0.252

]
= 3.882

σ2
Y = ln

[
1 + CV 2

] = ln
[
1 + 0.252

] = 0.0606 ⇒ σY = 0.246

Now, GX (60) = P(Xnz ≤ 60) = P(ln Xnz ≤ ln 60) = P(Y ≤ 4.094)

⇒ P

(
Y − μY

σY
≤ 4.094 − 3.882

0.246

)
= P(Z ≤ 0.862) = 0.806

Hence,

P(X > 60) = 1 − P(X ≤ 60) = 1 − FX (60) = k(1 − GX (60)) = 0.7(1 − 0.806) = 0.136

So, the probability of daily rainfall exceeding 60mm is 0.136.

(b) For daily rainfall with exceedance probability 0.01, P(X > x) = 0.01

FX (x) = 1 − P(X > x) = 0.99

From Eq.5.19,

GX (x) = (FX (x) − 1 + k)/k = (0.99 − 1 + 0.7)/0.7 = 0.9857

Further, GX (x) = P(Xnz ≤ x) = P(ln Xnz ≤ ln x) = P(Y ≤ ln x)

Hence,

⇒ P

(
Y − μY

σY
≤ ln x − 3.882

0.246

)
= 0.9857

⇒ P

(
Z ≤ ln x − 3.882

0.246

)
= 0.9857

⇒ ln x − 3.882

0.246
= 2.189

⇒ ln x = 4.42
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⇒ x = 83.14

Hence, the magnitude of daily rainfall with exceedance probability of 0.01 is
83.14 mm.

5.5 Risk and Reliability in Hydrologic Design

Hydrologic design is always subject to risk due to uncertainty present in the available
record. Risk (R) is defined as the probability of occurrence of an event [P

(
X > xT

)
]

at least once over a period of n successive years. Thus,

R = P(occurrence of the event X > xT at least once over a period of n successive years)

= 1 − P(non-occurrence of the event X > xT in n successive years)

= 1 − (1 − p)n = 1 −
(
1 − 1

T

)n
(5.20)

where P = P(X > xT ), return period T = 1
p , and n is the design life of the structure.

On the other hand, reliability (Re) is opposite of risk. It may be defined as the
probability that no extreme event X > xT will occur during the lifetime of the
structure. So, it is given by

Re = P(non-occurrence of the event X > xT in n successive years)

Re =
(
1 − 1

T

)n

= 1 − R (5.21)

In design practice, a factor of safety (Fs) is also used to take care of uncertainties
arising from various sources. Fs is expressed as

Fs = Pa
Pe

(5.22)

where Pa is the actual value of the parameter adopted in design and Pe is the esti-
mated value of the parameter obtained from hydrological analysis. Sometimes, the
difference (Pa − Pe) is termed as Safety margin.

Example 5.5.1
A flood embankment has an expected life of 20 years. (a) For an acceptable risk of
5% against the design flood, what design return period should be adopted? (b) If the
above return period is adopted and the life of the structure is revised to be 50 years,
what is the new risk value?
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Solution Expected life of the flood embankment, n = 20 years

(a) Acceptable risk

R =1 −
(
1 − 1

T

)n

= 0.05

⇒ 1 −
(
1 − 1

T

)20

= 0.05

⇒ T = 390.4 ≈ 400 years

(b) If the life of the embankment (n) becomes 50 years and adopted return period is
400 years, new value of risk is given by

R = 1 −
(
1 − 1

T

)n

= 1 −
(
1 − 1

400

)50

= 0.118

So, the new value of risk is 11.8%.

Example 5.5.2
A barrage is constructed for 75-year design life on a river with a 10% risk. Analysis
of annual peak flow in the river gives a sample mean of 1000 cumec and standard
deviation of 300 cumec. Estimate design flood of the barrage assuming peak flows
follow a Gumbel’s extreme value distribution. If factor of safety Fs = 2, then what
will be the design flood?

Solution For the river,

Mean annual peak flow (�x) = 1000 cumec.
Standard deviation (Sx ) = 300 cumec.

The design considers 10% risk for a design life of 75 years.
Hence,

R = 1 −
(
1 − 1

T

)75

= 0.1

⇒ T = 712.34 ≈ 720 years

Using Gumbel’s extreme value distribution method,

yT = − ln

(
ln

T

T − 1

)
= − ln

(
ln

720

719

)
= 6.578

K = yT − 0.5772

1.2825
= 6.578 − 0.5772

1.2825
= 4.679
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So, the design flood xT = �x + K Sx = 1000 + (4.679 × 300) = 2404 cumec.
Considering a factor of safety of 2, the design flood= Fs ×xT = (2×2404) = 4808
≈ 5000 cumec.

5.6 Concept of Uncertainty

Uncertainty in hydrology can be defined as a situation which involves imperfect
and/or lack of information about any hydrological variable. Uncertainty is to be
dealt with in various aspects of hydrologic design and analysis. There are several
factors that cause uncertainty in hydrologic system, as stated below.

(i) Uncertainty due to inherent randomness of any hydrological event: Intrin-
sic dynamics of hydrologic processes are not known and perhaps could never
be known with certainty. Inherent variation of different hydrologic variables is
influenced by several physical, chemical, biological, and socioeconomic pro-
cesses. As a consequence, uncertainty due to inherent randomness is very com-
plex, unavoidable, and can never be eliminated. Spatio-temporal variation of
hydrological events like flood, rainfall is significantly caused by the natural
inherent uncertainty of the system.

(ii) Uncertainty due to the model: Assumptions are always necessary to model
or design any complex system. Hydrologic phenomena are very complex, and
often some simple assumptions are made to develop any model. These simplifi-
cations bring uncertainty into the developed model due to the lack of complete
representationof physical processes in the real system.Model uncertainty canbe
reduced to some extent by improving such representations closest to the reality.
For example, model uncertainty may be more in a simple linear rainfall–runoff
model as compared to physically based rainfall–runoff model.

(iii) Uncertainty due to model parameters: Hydrological models consist of a few
to several model parameters that are estimated during model calibration. Inabil-
ity to accurately estimate model parameters due to lack of data and knowledge
leads to parameter uncertainty. Apart from estimation, if some changes occur
in operational conditions of a hydrologic system or hydraulic structure, it can
also cause parameter uncertainty. This kind of uncertainty is also reducible to
some extent.

(iv) Uncertainty due to data: Generally, a hydrologist has to work under unavoid-
able situation of data scarcity. Not only that, data uncertainty may arise due to
measurement errors, data handling errors, non-homogeneous and inconsistent
data. All these factors result in data uncertainty. Uncertainty due to data can
be avoided by improving the data quality and quantity through improved data
collection and data handling.

(v) Operational uncertainty: This kind of uncertainty is due to human errors
during the execution phase of a design. It incorporates randomness in manu-
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facturing, construction, and maintenance. All these factors lead to operational
uncertainty. Good workmanship and quality control can be adopted to reduce
such uncertainty.

5.6.1 Analysis of Uncertainty

Hydrologic models are always based on simpler approximations of the complex real
system. These models accept different hydrological inputs, operate internally using
some model parameters, and produce output. Both of these inputs and model param-
eters are stochastic in nature, i.e., associated with randomness. The focus of uncer-
tainty analysis is to quantify uncertainty in the model outputs. Uncertainty analysis
may provide two important results: firstly quantification of uncertainty associated
with output and secondly relative contribution of each stochastic input variable to
the overall uncertainty of the system output. The former result helps to quantify the
confidence in the overall output of the model. The latter helps the investigator to
identify the most sensitive input variable.

Uncertainty analysis has three components, namely qualitative uncertainty analy-
sis, quantitative uncertainty analysis, and communication of uncertainty. Qualitative
analysis identifies different uncertainties associated, and quantitative analysis mea-
sures effect of uncertainties of different variables on the system in quantitative terms.
Finally, communication of uncertainty analysis, i.e., how the uncertainty from input
variables and model parameters transfers to model outputs.

5.6.2 Measures of Uncertainty

Quantitative analysis of uncertainty needs to quantify the uncertainty associated with
a random variable. Several methods are available to measure uncertainty, and some
of them are listed below.

(i) In statistical analysis, uncertainty of a randomvariable can be expressed through
the statistical parameters of the distribution, which describes the stochastic
nature of that random variable. One common way to measure the uncertainty is
to use different orders of statistical moments of the distribution. In particular,
variance is themost commonly usedmeasures of uncertainty. Since the variance
is a measure of dispersion of a random variable (refer Chap.2), increase in
variance of data implies the increase in the associated uncertainty (Fig. 5.9).

(ii) Another measure of uncertainty of a random variable is to quantify it in terms
of confidence interval. A confidence interval is a numerical range that would
enclose the quantity of the variable with a specific level of confidence. Estima-
tion of confidence interval is discussed in Chap.6.
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Fig. 5.9 Variance and uncertainty

(iii) Uncertainty is also represented non-parametrically in terms of different quartile
values. When an ordered data set is divided into quarters, the division points
are called sample quartiles. The different quartiles in an ordered data set are:

First Quartile (Q1): It is a value of the data set such that one-fourth of the
observations are less than this value.
Second Quartile (Q2): It is a value of the data set such that half of the obser-
vations are less than this value. It is equivalent to the median.
Third Quartile (Q3): It is a value of the data set such that three-fourth of the
observations are less than this value.

Difference between first and third quartile is known as inter-quartile range
(IQR). Often the quantiles are represented through a boxplot.

Boxplot: The information regarding the quartiles and the inter-quartile range in
an ordered data set can be represented by a boxplot. The significant information
depicted in a boxplot is:

• Upper whisker (Q3 + 1.5 IQR)
• Third quartile (Q3)

• Median or second quartile (Q2)

• First quartile (Q1)

• Lower whisker (Q1 − 1.5 IQR).

During the construction of a boxplot, first, the range between Q1 and Q3 is
represented by a rectangle with a line at Q2. Then, the range between Q1 and
lower whisker, and Q3 and upper whisker are connected by lines. Sometimes,
5th and 95th quartile values may also be used as lower and upper whiskers
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Fig. 5.10 A typical boxplot

respectively, for large data sets. A typical example of boxplot is shown in
Fig. 5.10.

5.7 Reliability, Resilience, and Vulnerability of Hydrologic
Time Series

A chronological sequence of values of a hydrologic variable, collected over a period
of time, is termed as a hydrologic time series. Details of time series analysis are
discussed elaborately in Chap.9. Three properties of a typical hydrologic time series
are discussed in this section that help to characterize the variable with respect to
lower extreme events. Considering a threshold to delineate satisfactory and unsatis-
factory states, these measures describe how likely a system remains in satisfactory
state (reliability), how quickly it recovers from unsatisfactory state (resilience), and
how severe the consequences of satisfactory state may be (vulnerability). A typical
example could be the series of soil moisture and permanent wilting point (PWP) as
the threshold to determine the satisfactory state, since plants cannot extract water
from soil if the moisture falls below PWP. Let Xt (t = 1, 2, . . . , n) be the time
series of a hydrologic variable having a data length n.

5.7.1 Reliability

Reliability (α) is defined by the probability that a system remains in a satisfactory
state. It is expressed as:
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α = P(Xt ∈ S) (5.23)

where S is the set of all satisfactory states. For a time series, α can be computed as
follows

α = Lt
n→∞

1

n

n∑

t=1

Zt (5.24)

where Zt = 1, if Xt ∈ S; Zt = 0, if Xt ∈ F , and F is the set of all unsatisfactory
states.

5.7.2 Resilience

Resilience (γ) is a measure that indicates how quickly the system can return to a sat-
isfactory state after it has fallen in unsatisfactory state (below the threshold). This can
be defined as the ratio between the probability of transition from the unsatisfactory
to the satisfactory state to the probability of failure. Thus,

γ = P(Xt ∈ F, Xt+1 ∈ S)

P(Xt ∈ F)
(5.25)

where the numerator P(Xt ∈ F, Xt+1 ∈ S) is probability of transition from the
unsatisfactory to the satisfactory state (denoted as ρ). In the long run, the number of
times the system transforms from the satisfactory to the unsatisfactory state and from
the unsatisfactory to the satisfactory state will be same. Thus, it can be eventually
expressed as P(Xt ∈ F, Xt+1 ∈ S) = P(Xt ∈ S, Xt+1 ∈ F). From a time series,
ρ can be computed as

ρ = Lt
n→∞

1

n

n∑

t=1

Wt (5.26)

where Wt is the event of transformation from the satisfactory to the unsatisfactory
state (or vice versa) and Wt = 1, if Xt ∈ S, Xt+1 ∈ F , and Wt = 0 otherwise. The
denominator of Eq.5.25 can be expressed as P(Xt ∈ F) = 1− P(Xt ∈ S). Again,
P(Xt ∈ S) is expressed as reliability α as explained before. Thus, Eq.5.25 can be
expressed as

γ = ρ

1 − α
(5.27)

5.7.3 Vulnerability

Vulnerability is a measure of severity of an event in unsatisfactory state, once it has
occurred. It can be estimated in different ways. In the context of hydrologic time
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series analysis dealing with lower side extreme, one of the estimate could be

υ = 1

k

∑

j∈F
x j (5.28)

where x j is an observation that belongs to the unsatisfactory state and k is the number
of times the unsatisfactory state occurs.

Example 5.7.1
For a particular location, daily soilmoisturewas recorded since January1, 2017. From
the data set, first 100 daily soil moisture data is provided in TableA.5 of AppendixA.
If the permanent wilting point is 0.1, then estimate the reliability, resilience, and
vulnerability of this time series of soil moisture data.

Solution Figure5.11 shows the time series soil moisture data (θ) given in TableA.5.
As PWP is given as 0.1, the daily soil moisture values falling below PWP (θ = 0.1)
are considered to be falling in ‘unsatisfactory zone.’

For calculation of reliability of this data, we have to use Eq.5.24, i.e., α =
Lt

n→∞
1
n

∑n
t=1 Zt

Zt =
{
1 if Xt ∈ S(Non-filled points above the PWP line in Fig. 5.11)

0 if Xt ∈ F(Filled points below the PWP line in Fig. 5.11)

So, for each data points we can determine their Zt values and hence
∑n

t=1 Zt . Here,
n = 100. We are considering n = 100 is large enough to assume n → ∞. Thus, we
obtain

∑n
t=1 Zt = 85.
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Fig. 5.11 Time series of soil moisture data (θ) for Example5.7.1
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Table 5.9 Calculation of soil moisture deficit from PWP

Day Soil moisture
data

Deficit from
PWP

Day Soil moisture
data

Deficit from
PWP

0 0.0179 0.0821 42 0.0439 0.0561

5 0.0798 0.0202 50 0.049 0.051

9 0.0959 0.0041 56 0.0774 0.0226

12 0.0444 0.0556 70 0.0171 0.0829

14 0.0938 0.0062 76 0.0305 0.0695

15 0.0443 0.0557 94 0.0757 0.0243

16 0.0917 0.0083 98 0.0468 0.0532

31 0.0882 0.0118 Average deficit 0.04024

So, reliability α = 1
n

∑n
t=1 Zt = 85

100 = 0.85.
For calculation of resiliency of this data, we have to use Eq.5.27, i.e., γ = ρ

1−α

Where ρ = Lt
n→∞

1
n

∑n
t=1 Wt

Wt =
{
1 if Xt ∈ S, Xt+1 ∈ F or Xt ∈ F, Xt+1 ∈ S

Wt = 0 otherwise

Similarly, for each data point we can determine their Wt values and hence
∑n

t=1 Wt .
Here, also n = 100. Thus, we obtain

∑n
t=1 Zt = 24 and hence, ρ = 1

n

∑n
t=1 Wt =

24
100 = 0.24.

So, resilience γ = ρ
1−α

= 0.24
1−0.85 = 1.6.

As discussed earlier in Sect. 5.7.3, vulnerability is measured in terms of the mean
soil moisture deficit caused during the failure events. In this case, there are total 15
failure events. The deficit of soil moisture from PWP is calculated for all of those
15 data points (Table5.9). Average of these deficits, i.e., vulnerability, is obtained as
0.04.

5.8 MATLAB Examples

The frequency analysis of hydrological variable/events can be done in MATLAB
using a number of built-in functions. Some of the function related to distribution of
data is also discussed in Sect. 4.5. Apart from earlier discussed function, following
function is useful for this chapter:

• probplot(dist_name,y): This function can be used for plotting any data
(y argument) over probability paper of distribution specified by its name (dist_
name argument).
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This section will provide examples for solving examples using MATLAB. A brief
description of each command line is provided at the end of each line after % symbol.

Following sample script can be used for solving Examples5.2.1, 5.4.2, 5.4.3, and
5.4.4.

Box 5.1 Sample MATLAB code for Example5.2.1 and associated examples
� �

1 c l e a r a l l ; c l o s e a l l ; c l c
2

3 %% Input
4 obs_flood =[7065 , 3456, 4215, 2435, 3218, 4767, 5368, 3891, 2015,

2498 ,...
5 3345, 1987, 1689, 3200, 5067, 4369, 2589, 1306, 3761, 2450 ,...
6 1569, 1862, 2592, 3059, 1595, 1768, 2987, 3679, 4597, 5582 ,...
7 1356, 2944, 1541, 2111, 774, 911, 1123, 2884, 3868, 1812];
8

9

10 %% Flood Magnitude for given return period
11 required_return_periods =[10;50;100];
12 n= l e n g t h (obs_flood);
13 % start logging output in a file
14 output_file =[’output ’ filesep () ’code_1_result .txt’];
15 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;
16

17 %% Evaluation return period flood using Weibull formula
18 % Example 5.2.1
19 sorted_obs_flood= s o r t (obs_flood ,’descend ’);
20 r a n k =1:n;
21 exceedence_prob = r a n k /(1+n);
22 return_period_sorted =1./ exceedence_prob ;
23

24 regress_coeff = [ones(n,1) l o g (return_period_sorted) ’]\
sorted_obs_flood ’;

25 intercept = regress_coeff (1);
26 slope = regress_coeff (2);
27

28 %Evaluation of flood magnitude with given return periods
29 flood_return_period_10 =slope* l o g (required_return_periods (1))+

intercept;
30 flood_return_period_50 =slope* l o g (required_return_periods (2))+

intercept;
31 flood_return_period_100 =slope* l o g (required_return_periods (3))+

intercept;
32

33 %Evaluation of return period for given flood magnitude
34 flood_threshold =4000;
35 return_period_flood_4000 = e x p (( flood_threshold -intercept)/slope);
36

37 % Display Results
38 d i s p (’Using Weibull Formula ’)
39 d i s p (’ The flood magnitude with return periods of’)
40 f p r i n t f (’\t 10 years is %3.1f cumec .\n’,flood_return_period_10 );
41 f p r i n t f (’\t 50 years is %3.1f cumec .\n’,flood_return_period_50 );
42 f p r i n t f (’\t 100 years is %3.1f cumec .\n’,flood_return_period_100 );
43 f p r i n t f (’ The return period for flood magnitude of 4000 cumec\n’)
44 f p r i n t f (’ is %1.0f years .\n\n’,return_period_flood_4000 );
45

46

47 %% Evaluation return period flood using normal Distribution
48 % Example 5.4.2
49 mean_obs_flood=mean(obs_flood);
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50 std_obs_flood = s t d (obs_flood);
51

52 %Evaluation of flood magnitude with given return periods
53 K_10=norminv (1-1/ required_return_periods (1));
54 flood_return_period_10 =mean_obs_flood+K_10*std_obs_flood ;
55 K_50=norminv (1-1/ required_return_periods (2));
56 flood_return_period_50 =mean_obs_flood+K_50*std_obs_flood ;
57 K_100=norminv (1-1/ required_return_periods (3));
58 flood_return_period_100 =mean_obs_flood+K_100*std_obs_flood ;
59

60

61 %Evaluation of return period for given flood magnitude
62 flood_threshold =4000;
63 Z_threshold =( flood_threshold -mean_obs_flood)/std_obs_flood ;
64 return_period_flood_4000 =1/(1 - normcdf(Z_threshold ));
65

66 % Display Results
67 d i s p (’Using normal distribution ’)
68 d i s p (’ The flood magnitude with return periods of’)
69 f p r i n t f (’\t 10 years is %3.1f cumec .\n’,flood_return_period_10 );
70 f p r i n t f (’\t 50 years is %3.1f cumec .\n’,flood_return_period_50 );
71 f p r i n t f (’\t 100 years is %3.1f cumec .\n’,flood_return_period_100 );
72 f p r i n t f (’ The return period for flood magnitude of 4000 cumec\n’)
73 f p r i n t f (’ is %1.0f years .\n\n’,return_period_flood_4000 );
74

75 %% Evaluation return period flood using lognormal Distribution
76 % Example 5.4.3
77 Y= l o g (obs_flood);
78 mean_Y=mean(Y);
79 std_Y= s t d (Y);
80

81 %Evaluation of flood magnitude with given return periods
82 K_10=norminv (1-1/ required_return_periods (1));
83 flood_return_period_10 = e x p (mean_Y+K_10*std_Y);
84 K_50=norminv (1-1/ required_return_periods (2));
85 flood_return_period_50 = e x p (mean_Y+K_50*std_Y);
86 K_100=norminv (1-1/ required_return_periods (3));
87 flood_return_period_100 = e x p (mean_Y+K_100*std_Y);
88

89

90 %Evaluation of return period for given flood magnitude
91 flood_threshold =4000;
92 Z_threshold =( l o g (flood_threshold )-mean_Y)/std_Y;
93 return_period_flood_4000 =1/(1 - normcdf(Z_threshold ));
94

95 % Display Results
96 d i s p (’Using lognormal distribution ’)
97 d i s p (’ The flood magnitude with return periods of’)
98 f p r i n t f (’\t 10 years is %3.1f cumec .\n’,flood_return_period_10 );
99 f p r i n t f (’\t 50 years is %3.1f cumec .\n’,flood_return_period_50 );

100 f p r i n t f (’\t 100 years is %3.1f cumec .\n’,flood_return_period_100 );
101 f p r i n t f (’ The return period for flood magnitude of 4000 cumec\n’)
102 f p r i n t f (’ is %1.0f years .\n\n’,return_period_flood_4000 );
103

104 %% Evaluation return period flood using log -Pearson Distribution
105 % Example 5.4.4
106 Y= l o g 1 0 (obs_flood);
107 mean_Y=mean(Y);
108 std_Y= s t d (Y);
109 coeff_skewness_Y=skewness(Y);
110

111 %Evaluation of flood magnitude with given return periods
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112 K_10 =1.245 -(1.245 -1.231) /( -0.1)*( skewness(Y)- r o u n d (skewness(Y) ,1))
;

113 flood_return_period_10 =10^( mean_Y+K_10*std_Y);
114 K_50 =1.89 -(1.89 -1.834) /( -0.1)*( skewness(Y)- r o u n d (skewness(Y) ,1));
115 flood_return_period_50 =10^( mean_Y+K_50*std_Y);
116 K_100 =2.104 -(2.104 -2.029) /( -0.1)*( skewness(Y)- r o u n d (skewness(Y) ,1)

);
117 flood_return_period_100 =10^( mean_Y+K_100*std_Y);
118

119

120 %Evaluation of return period for given flood magnitude
121 flood_threshold =4000;
122 Z_threshold =( l o g 1 0 (flood_threshold )-mean_Y)/std_Y;
123 return_period_flood_4000 =1/(1 - normcdf(Z_threshold ));
124

125 % Display Results
126 d i s p (’Using log -Pearson distribution ’)
127 d i s p (’ The flood magnitude with return periods of’)
128 f p r i n t f (’\t 10 years is %3.1f cumec .\n’,flood_return_period_10 );
129 f p r i n t f (’\t 50 years is %3.1f cumec .\n’,flood_return_period_50 );
130 f p r i n t f (’\t 100 years is %3.1f cumec .\n’,flood_return_period_100 );
131 f p r i n t f (’ The return period for flood magnitude of 4000 cumec\n’)
132 f p r i n t f (’ is %1.0f years .\n\n’,return_period_flood_4000 );
133 d i a r y off;

� �

The output of sample code provided in Box5.1 is provided in Box5.2. Barring
inconsistency due to rounding off, the results match with the solution obtained in
respective examples.

Box 5.2 Results for Box5.1
� �

1 Using Weibull Formula
2 The flood magnitude with return periods of
3 10 years is 5095.5 cumec.
4 50 years is 7679.8 cumec.
5 100 years is 8792.8 cumec.
6 The return period for flood magnitude of 4000 cumec
7 is 5 years.
8

9 Using normal distribution
10 The flood magnitude with return periods of
11 10 years is 4761.6 cumec.
12 50 years is 5863.7 cumec.
13 100 years is 6252.8 cumec.
14 The return period for flood magnitude of 4000 cumec
15 is 4 years.
16

17 Using lognormal distribution
18 The flood magnitude with return periods of
19 10 years is 5024.8 cumec.
20 50 years is 7477.6 cumec.
21 100 years is 8604.1 cumec.
22 The return period for flood magnitude of 4000 cumec
23 is 5 years.
24

25 Using log -Pearson distribution
26 The flood magnitude with return periods of
27 10 years is 4923.8 cumec.
28 50 years is 6832.6 cumec.
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29 100 years is 7613.1 cumec.
30 The return period for flood magnitude of 4000 cumec
31 is 5 years.

� �

Similarly, Example5.4.8 can be solved by using sample code produced in Box5.3.

Box 5.3 Sample MATLAB code for Example5.4.8
� �

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2

3 %% Inputs
4 zero_rainfall_mass =30/100;
5 mean_non_zero_rainfall =50;
6 std_non_zero_rainfall =12.5;
7

8 %% Probability of daily rainfall exceeding 60 mm
9 x=60;

10 k=1- zero_rainfall_mass ;
11 CV=std_non_zero_rainfall/mean_non_zero_rainfall ;
12 mean_Y =0.5* l o g (mean_non_zero_rainfall ^2/(1+ CV^2));
13 std_Y= s q r t ( l o g (1+CV^2));
14

15 % if G_X is the probability of nonzero rainfall being less than 60
16 % see example 5.4.8
17 G_X=normcdf( l o g (x),mean_Y ,std_Y);
18

19 prob_rainfall_more_than_60 =k*(1-G_X);
20

21 %% Magnitude of daily rainfall with an exceedence probability of
0.01

22 exceedence_prob =0.01;
23 rainfall_cdf =1- exceedence_prob ;
24

25 % if G_X is the probability of nonzero rainfall being less than x
26 % see example 5.4.8
27 G_X=( rainfall_cdf -1+k)/k;
28 rainfall_with_exceedence_prob = e x p (norminv(G_X ,mean_Y ,std_Y));
29

30 %% Display Result
31 output_file =[’output ’ filesep () ’code_2_result .txt’];
32 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;
33 f p r i n t f (’The probability of daily rainfall exceeding 60 mm is %1.2

f.\n’ ,...
34 prob_rainfall_more_than_60 )
35 f p r i n t f (’Magnitude of daily rainfall with an exceedence

probability of 0.01 is %1.2f.\n’ ,...
36 rainfall_with_exceedence_prob )
37 d i a r y off

� �

The output of sample code provided in Box5.3 is provided in Box5.4. The result
matches with the solution obtained in Example5.4.8.

Box 5.4 Results for Box5.3
� �

1 The probability of daily rainfall exceeding 60 mm is 0.14.
2 Magnitude of daily rainfall with an exceedence probability of 0.01

is 83.16.
� �

The Example5.5.2 can be solved using the sample script given in Box5.5.
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Box 5.5 Sample MATLAB code for Example5.5.2
� �

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2

3 %% Inputs
4 mean_peak_flow =1000;
5 std_peak_flow =300;
6 design_life =75;
7 FOS =2; % Factor of safety
8

9 T= e v a l (solve ([’1-(1-1/x)^’ n u m 2 s t r (design_life ) ’=0.1’]));
10 y_T=- l o g ( l o g (T/(T-1)));
11 K=(Y_T -0.5772) /1.2825;
12 design_flood=mean_peak_flow+K*std_peak_flow ;
13 design_flood_with_FOS=design_flood*FOS;
14

15 %% Display Result
16 output_file =[’output ’ filesep () ’code_3_result .txt’];
17 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;
18 f p r i n t f (’The required design flood is %3.2f.\n’ ,...
19 design_flood_with_FOS)
20 d i a r y off

� �

The sample code presented in Box5.5 calculated the design flood of barrage to be
4808 cumec which matches with the Example5.5.2.

Exercise

5.1 If the return period of a hurricane is 500 years, find out the probability that no
such hurricane will occur in next 10 years. Consider occurrence of such hurricanes
follows Poisson distribution. Ans:0.98

5.2 The annual rainfall magnitudes at a rain gauge station for a period of 20 years
are given below in the table

Year Annual rainfall (cm) Year Annual rainfall (cm)
1975 120 1985 100
1976 85 1986 108
1977 67 1987 105
1978 95 1988 113
1979 108 1989 98
1980 92 1990 93
1981 98 1991 76
1982 87 1992 83
1983 79 1993 91
1984 86 1994 87

Determine the following

(a) The probability of occurrence of an annual rainfall more then 100 cm.Ans:0.286
(b) Dependable (80%) rainfall at this rain gauge station. Ans:79.84 cm.
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5.3 The records of peak annual flow in a river are available for 25 years. Plot the
graph of return period versus annual peak flow, and estimate the magnitude of peak
flow for (a) 50 year and (b) 100 year return period. Use Weibull plotting position
formula. Ans: (a) 6991 cumec, (b) 7912 cumec.

Year Annual peak flow (cumec) Year Annual peak flow (cumec)
1960 4780 1973 989
1961 2674 1974 1238
1962 4432 1975 1984
1963 1267 1976 2879
1964 3268 1977 2276
1965 3789 1978 3256
1966 2348 1979 3674
1967 2879 1980 4126
1968 3459 1981 4329
1969 4423 1982 2345
1970 5123 1983 1678
1971 4213 1984 1198
1972 3367

5.4 Use the annual peak flow data in Exercise5.3, and find out the best-fits distribu-
tion for the data using probability paper among (a) normal distribution, (b) lognormal
distribution, and (c) Gumbel’s distribution.

5.5 From analysis of flood peaks in a river, the following information is obtained

(a) The flood peak data follows lognormal distribution.
(b) Flood peak of 450 cumec has a return period of 50 year.
(c) Flood peak of 600 cumec has a return period of 100 year.

Estimate the flood peak in the river with 1000-year return period. Ans:1347 cumec.

5.6 Repeat the Exercise5.5 if the flood peak data follows Gumbel’s extreme value
distribution. Ans:1096 cumec

5.7 Maximum annual flood at a river gauging station is used for frequency analysis
using 30-year historical data. The frequency analysis performed byGumbel’smethod
provides the following information.

Return period (years) Max. annual flood (cumec)
50 1060
100 1200

(a) Determine the mean and standard deviation of sample data used for frequency
analysis. (Ans: mean = 385 cumec, std. deviation = 223 cumec)
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Sl. No. Station Sample size
(years)

Mean annual
flood (cumec)

Std. deviation of annual
flood (cumec)

1 A 92 6437 2951
2 B 54 5627 3360

(b) Estimate themagnitude of floodwith return period 500- year (Ans: 1525 cumec).

5.8 Consider the following annual flood data at two river gauging stations

(a) Estimate the 100- and 1000-year floods for both the stations. Use the Gumbel
method.

(b) Determine the 95% confidence interval for the predicted value.

Ans: (a) Q100 = 16359 ± 2554 cumec and Q1000 = 22023 ± 3744 cumec and (b)
Q100 = 17298 ± 3885 cumec and Q1000 = 23935 ± 5721 cumec.

5.9 A structure is proposed to be built within the 50-year flood plain of the river. If
the life of the industry is 25 years, what is the reliability that the structure will never
face flood. (Ans: 0.603)

5.10 A bridge with 25 years expected life is designed for a flood magnitude of 100
years. (a) What is the risk involved in the design? (b) If only 10% risk is acceptable
in the design, what return period should be adopted in the design? (Ans: (a) 0.222
(b) 240 years).

5.11 Frequency analysis of flood data at a river gauging station is performed by
log-Pearson type III distribution which yields the following information

Coefficient of skewness = 0.4

Return period (years) Max. annual flood (cumec)
50 10600
100 13000

Estimate the magnitude of flood with return period of 1000 years (Ans:23875
cumec).

5.12 The following table gives annual peak flood magnitudes in a river. Estimate the
flood peaks with return period 10, 100, and 500 years using (a) Gumbel’s extreme
value distribution, (b) log-Pearson type III distribution, and (c) lognormal distribution
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Year Q (cumec) Year Q (cumec) Year Q (cumec) Year Q (cumec)
1950 1982 1965 1246 1980 2291 1995 1252
1951 1705 1966 2469 1981 3143 1996 983
1952 2277 1967 3256 1982 2619 1997 1339
1953 1331 1968 1860 1983 2268 1998 2721
1954 915 1969 1945 1984 2064 1999 2653
1955 1557 1970 2078 1985 1877 2000 2407
1956 1430 1971 2243 1986 1303 2001 2591
1957 583 1972 3171 1987 1141 2002 2347
1958 1325 1973 2381 1988 1642 2003 2512
1959 2200 1974 2670 1989 2016 2004 2005
1960 1736 1975 1894 1990 2265 2005 1920
1961 804 1976 1518 1991 2806 2006 1773
1962 2180 1977 1218 1992 2532 2007 1274
1963 1515 1978 966 1993 1996 2008 2466
1964 1903 1979 1484 1994 1540 2009 2387

(Ans: (a) Q10 = 2829 cumec, Q100 = 4066 cumec, Q500 = 4672 cumec, (b)
Q10 = 2762 cumec, Q100 = 3351 cumec, Q500 = 3553 cumec, (c) Q10 = 2851
cumec, Q100 = 4142 cumec, Q500 = 5045 cumec)

5.13 The following table gives soil moisture (SM) data at a particular location.
Consider PWP as 0.12 and evaluate reliability, resilience, and vulnerability of the
data.

Day SM Day SM Day SM Day SM
1 0.0816 11 0.4080 21 0.0717 31 0.2834
2 0.2253 12 0.3745 22 0.2253 32 0.2953
3 0.1944 13 0.1647 23 0.4149 33 0.1647
4 0.3370 14 0.2654 24 0.3370 34 0.1190
5 0.1208 15 0.1300 25 0.2500 35 0.0655
6 0.0954 16 0.2703 26 0.1423 36 0.0532
7 0.0562 17 0.3837 27 0.1258 37 0.0296
8 0.2382 18 0.3152 28 0.1228 38 0.2145
9 0.1949 19 0.1448 29 0.2948 39 0.1526
10 0.3500 20 0.1152 30 0.4024 40 0.1210

(Ans: Reliability = 0.775, resilience = 0.889, vulnerability = 0.044).



Chapter 6
Hypothesis Testing and Nonparametric
Test

It is often required to make some inferences about some parameter of
the population on the basis of available data. Such inferences are very
important in hydrology and hydroclimatology where the available data
is generally limited. This is done through hypothesis testing. However,
hypothesis testing requires the knowledge of sampling distribution of
different statistics and parameter estimation. Sampling distribution of
mean and variance and two types of parameter estimation – point esti-
mation and interval estimation – are discussed at the starting of this
chapter. Next, the hypothesis testing is taken up. Different cases are dis-
cussed elaborately with illustrative examples. Later, a few statistical tests
are discussed that deal with the goodness-of-fit of a probability distri-
bution to the data using the knowledge of hypothesis testing. Some of
the commonly used nonparametric tests are also explained along with
appropriate examples in the field of hydrology and hydroclimatology.

6.1 Populations and Samples

The concept of sample and population is very important. A population is a complete
set of items that share at least one attribute in common that is the subject of a
statistical analysis, for example mean soil moisture content (SMC) over a field. As
we can imagine, we can collect countably infinite soil samples to measure the SMC.
The entire set of suchmeasurements (data), which is infinite (over a range), forms the
population. Practically, we may collect some samples and have as many as possible
but finite number of SMC data. This finite number of data forms the sample. It may
also be noted that the population need not be always infinite. Number of rainy days
over some span of periods is an example of finite population.

A population is characterized by the probability distribution function of the asso-
ciated random variable X . If a population is infinite, it is impossible to observe all
the values, and even if the population is finite, it is impractical to observe all the
values. Thereby it is necessary to use a sample, which is a part of a population. To
obtain a reliable assessment of the population, it is very important for the sample to
be representative of the entire population that is called random samples.
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6.2 Random Samples

Random samples can be defined as a set of observations X1, X2, . . . , Xn drawn from
finite or infinite population in such a way that each element has equal probability
of being selected or there is no biasness to any subset. This ensures that the sample
represents the same statistical properties of the population. The reliability of con-
clusions drawn from a sample depends on whether the sample is properly chosen
following the aforementioned criteria so as to properly represent the population.

Different sample statistics are computed from the samples (Chap.3). However,
variation of sample statistics from sample-to-sample is inevitable. This is true for any
application field including hydrology and hydroclimatology. This sample-to-sample
variation gives rise to sampling distribution of different statistics.

6.3 Sampling Distribution

Consider the same example of a random sample of n soil samples that has been
collected for soil moisture estimation, and let �x and S2 be the calculated mean and
variance from the sample. Now if we consider another random sample of same size
n, it is almost unlikely that the�x or S2 will have same values as the first sample. The
difference among these sample statistics may be attributed to many issues includ-
ing chance of selecting the samples and experimental procedure. The variation is
a very important aspect, and a sample statistic is computed from a random sample
(X1, X2, . . . , Xn). Refer to Chap.3 for details. A sample statistic itself is a random
variable since it varies from sample to sample. The sample statistics summarizes the
characteristics of the sample and estimate population parameters through statistical
inference. In other words, the properties of the population are inferred from the prop-
erties of the sample. It requires the knowledge of probability distribution of a sample
statistic.

The probability distribution of a sample statistic is called the sampling distribution
of the statistic. Sampling distributions of two most commonly used statistics—mean
and variance are discussed in this section.
Note: A sample statistic is a random variable, while a population parameter is a fixed
value.

6.3.1 Sampling Distribution of the Mean

Let fX(x) be the probability distribution of the population fromwhichwe have drawn
the samples of size n each. Then, it is natural to look for the probability distribution
of the mean (�x), which is called the sampling distribution of the mean. The following
theorems are important in this connection:
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Theorem 1 The mean of the sampling distribution of means, denoted by μ�x , is given
by:

E
(�X) = μ�x = μ (6.1)

where μ is the mean of the population.

Theorem 2 If the population is infinite, then the variance of the distribution, denoted
by σ2

�x , is given by:

σ2
�x = σ2

n
(6.2)

where σ2 is the variance of the population and n is the sample size.

Theorem 3 If the population is finite, then the variance of the distribution, denoted
by σ2

�x , is given by:

σ2
�x = σ2

n

(
N − n

N − 1

)
(6.3)

where σ2 is the variance of the population, N is the size of the population, and n
is size of the sample. The factor (N − n)

/
(N − 1) is called the finite population

correction factor, close to 1 (and can be omitted for most practical cases) unless the
sample constitutes a substantial portion of the population.

Theorem 4 If the population from which samples are taken is normally distributed
with mean μ and variance σ2, then the sampling distribution of mean is normally
distributed with mean μ and variance σ2

/
n. In this case, larger the sample size,

closer we can expect �x to be to the mean of the population. In this sense, we can say
that the mean becomes more and more reliable as an estimate of μ as the sample
size is increased.

Theorem 5 Suppose that the population from which the samples are taken has a
probability distribution with mean μ and variance σ2 that is not necessarily a normal
distribution. Then, the standardized sample mean is given by:

Z = �x − μ

σ
/√

n
(6.4)

where Z is a random variable whose distribution function approaches that of the
standard normal distribution as n→∞.

Theorem 6 Aforementioned theorems assume that the variance is known. However,
in case of unknown variance, the variance is to be evaluated from a sample of the
population (S2). Then, the standardized sample mean is given by:

Z = �x − μ

S
/√

n
(6.5)
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6.3.2 Sampling Distribution of the Variance

Similar to mean, the variance will also vary from sample to sample that can be
estimated through its sampling distribution. Following theorems can be considered
for the sampling distribution of variance:

Theorem 7 If S2 is the variance of a random sample of size n taken from a normal
population having the variance σ2, then

(
(n − 1) S2

/
σ2

)
is a random variable that

follows a chi-square distribution
(
χ2

)
with degree of freedom υ = n − 1.

Theorem 8 If S2
1 and S2

2 are the variances of two independent random samples of
size n1 and n2, respectively, taken from two populations that follow normal distribu-
tion having the same variance, then

(
S2
1

/
S2
2

)
follows F distribution with degrees of

freedom υ1 = n1 − 1 and υ2 = n2 − 1.

Caution: The procedures for making inferences on variance are not robust. It must be
ensured that the underlying population follows normal distribution. For non-normal
populations samplingdistribution of variance (S2)not only depends on the population
variance (σ2) but also on higher-order moments (e.g., μ3, μ4). Thus, for the samples
drawn from non-normal population, aforementioned procedure of making inference
on variance is not applicable.

6.4 Statistical Inference

Recall that a sample statistic is a random variable, while a population parameter
is a fixed value. Statistical inference is the method of quantitative assessment of
population parameter in a statistical sense based on the sample data set which can
be considered to represent the entire population. For example, following questions
need statistical inference to answer based on the sample data:

(i) Is the mean seasonal rainfall lies between 750 mm and 900 mm?
(ii) Is the mean streamflow at a gauging site is greater than another gauging site?
(iii) Is the wind speed more in season A than in season B?
(iv) Is the variation of soil moisture over a region lies within the limit of a specific

range?

Thus, propositions about a population, using sample data (drawn from the popula-
tion), are made through the statistical inference. In other words, the characteristics
of the population are learnt through a statistical inference from a sample. Statistical
inference mainly deals with parameter estimation and hypothesis testing. Parameter
estimation is generally of two types—point estimation and interval estimation. All
these methods are explained in the following sections.
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Table 6.1 Examples of point estimates most commonly used in statistics

Serial No. Statistical parameter (θ) Estimator (θ̂)

1 Population mean (μ) �x = 1
n

∑
i xi

2 Population variance (σ2) S2 = 1
n−1

∑
i (xi − �x)2

3 Coefficient of skewness (γ) Cs = n
(n−1)(n−2)

1
S3

∑
i (xi − �x)3

4 Coefficient of kurtosis (K) k = n2
(n−1)(n−2)(n−3)

1
S4

∑
i (xi − �x)4

6.4.1 Point Estimation

Point estimation can be defined as a statistic, which is a single value evaluated
from the sample data. The statistic can be considered to be reasonably close to the
population parameter (e.g., mean and variance) it is supposed to estimate. Let us
consider a random variable X , such that X ∼ fX (x; θ) with θ as its parameter.
Also, let x1, x2, . . . , xn is a random sample drawn from this population. Then, we
can estimate a statistic θ̂ (where hat signifies a sample-based estimate, or sample
estimate) such that θ̂ = h

(
x1, x2 .... xn

)
which can be considered as an estimate of θ

(population parameter). A statistic θ̂ can be an unbiased (if on an average, the value

of sample estimate is equal to the parameter, i.e., E
(
θ̂
)

= θ) or biased estimator

(E
(
θ̂
)

�= θ). Some very common examples of point estimation are given in Table6.1

(or Table3.1 p. 65 in Chap.3). There are different methods for parameter estimation
like mean square error, method of moments, and maximum likelihood method as
explained elaborately in Chap.3.

6.4.2 Interval Estimation

Interval estimation provides a range for a statistic evaluated from the sample data.
It is estimated such that the corresponding parameter of the population will lie in
this interval with certain statistical confidence. Let us consider a random variable X ,
such that X ∼ fX (x; θ) and x1, x2,, . . . , xn is a random sample. The probability that
θ lies within an interval (L , U ), also referred to as confidence interval, is given as,

P (L < θ < U ) = 1 − α (6.6)

where α is the probability that θ will not lie in the given interval, also known as
the significance level. The statistical confidence level of the estimated interval is
100 (1 − α)%. The interpretation is shown in Fig. 6.1. For α = 0.05, i.e., 95%
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L U
Sample Means, X

95% Confidence Limit
of Mean

Fig. 6.1 Representation of 95% confidence interval of mean. The curve line indicates a probability
density function for which 95% probability is within the upper and lower limits (dotted lines)

confidence interval of mean will capture 95% of means (considering many samples)
within it in a statistical sense.

Single Sample Confidence Interval Estimations

In this section, we will discuss the confidence interval (CI) for statistical parameters
of a population. Let us consider a random variable X , such that X ∼ N

(
μ,σ2

)
and

x1, x2, . . . , xn is a random sample (n is the sample size). The following cases provide
the expression for two-sided 100 (1 − α)% CI of different statistical parameters.

• Case 1: 100 (1 − α)% CI of mean when variance (σ2) is known,

(
�x − Zα/2

σ√
n
,�x + Zα/2

σ√
n

)

where�x = 1
n

∑
i xi and P

(
x > Zα/2

) = P
(
x < −Zα/2

) = α/2.
• Case 2: 100 (1 − α)% CI of mean when variance is unknown,

(
�x − tα/2,n−1

S√
n
,�x + tα/2,n−1

S√
n

)

where �x = 1
n

∑
i xi , S2 = 1

n−1

∑
i (xi − �x)2 and P

(
x > tα/2,n−1

) =
P

(
x < −tα/2,n−1

) = α/2 at (n − 1) degrees of freedom.
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100(1 − α)%
Upper CI

α%

Lower limit of upper CI

100(1 − α)%
Lower CI

α%

Upper limit of lower CI

Fig. 6.2 Different one-sided confidence interval

• Case 3: 100 (1 − α)% CI of variance,

(
(n − 1) S2

χ2
α/2,n−1

,
(n − 1) S2

χ2
1−α/2,n−1

)

where S2 = 1
n−1

∑
i (xi − �x)2 and P

(
x > χ2

α/2,n−1

)
= P

(
x < χ2

1−α/2,n−1

)
=

α/2 at (n − 1) degrees of freedom.
Note that in case of one-sided CI (contrasted against two-sided CI, mentioned
before) as shown in Fig. 6.2, the upper (or lower) limit of 100 (1 − α)% lower (or
upper) confidence interval for each of the above cases can be evaluated from the
respective distributions, e.g., normal, t or chi-square distribution.

• Case 4: Upper limit of 100 (1 − α)%lowerCI ofmean is�x+Zα
σ√
n
, when variance

(σ2) is known. The corresponding one-sided lower CI is
(
−∞, �x + Zα

σ√
n

)
. Note

that the lower limit of this CI is −∞ since the lower bound of the sampling
distribution of mean (Normal distribution) is −∞.

• Case 5: Lower limit of 100 (1 − α)%upperCI ofmean is�x−Zα
σ√
n
, whenvariance

(σ2) is known. The corresponding one-sided upper CI is
(
�x − Zα

σ√
n
,∞

)
. Note

that the upper limit of this CI is ∞ (same reason as in case 4).
• Case 6: Similarly, in case of variance, upper limit of the 100 (1 − α)% one-

sided CI is (n−1)S2

χ2
1−α,n−1

, and the lower bound of sampling distribution of variance (χ2

distribution) is zero. Thus, the one-sided lower CI of variance is
(
0, (n−1)S2

χ2
1−α,n−1

)
.

• Case 7: Conversely, lower limit of 100 (1 − α)% one-sided upper CI of variance is
(n−1)S2

χ2
α,n−1

, and the upper bound of sampling distribution of variance (χ2 distribution)

is ∞. Thus, the one-sided upper CI of variance is
(
(n−1)S2

χ2
α,n−1

,∞
)
.
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Example 6.4.1
The rainfall data for the summer monsoon rainfall at a gauging station in the recent
years is as follows,

Year 2010 2011 2012 2013 2014 2015 2016
Rainfall (mm) 443 456 503 480 536 600 545

Evaluate the 90% confidence interval of variance and upper limit of 95% confi-
dence interval of mean.

Solution The sample mean and variance as calculated from the data are,

�x = 509 and S2 = 3058

The CI of variance can be evaluated using the chi-squared distribution as follows:

(
(n − 1) S2

χ2
α/2,n−1

,
(n − 1) S2

χ2
1−α/2,n−1

)

=
(
(7 − 1) 3058

χ2
0.05,6

,
(7 − 1) 3058

χ2
0.95,6

)

= (1457, 11222)

Therefore, the 90%confidence interval of variance for the givendata is (1457, 11222).
The upper limit of 95% CI of mean can be evaluated using the t-distribution as

follows,

�x + tα,n−1
S√
n

= 509 + t0.05,6

√
3058√
7

= 509 + (1.943) ×
√
3058√
7

= 549.61

Therefore, the 95% upper confidence interval of mean for the given data is
(−∞, 549.61).

Two-Sample Confidence Interval Estimations

In this section, we will discuss the confidence interval (CI) for statistical parameters
involving two independent normal distributions. Let us consider two random vari-
ables X1 and X2, such that X1 ∼ N

(
μ1,σ

2
1

)
and X2 ∼ N

(
μ2,σ

2
2

)
. Also, consider

x11, x12, . . . , x1n1 is a random sample of size n1 and x21, x22, . . . , x2n2 is a random
sample of size n2.

Case 1: 100 (1 − α)% CI of difference in mean when variances (σ2
1 and σ2

2) are
known,

⎛

⎝(�x1 − �x2) − Zα/2

√
σ2
1

n1
+ σ2

2

n2
, (�x1 − �x2) + Zα/2

√
σ2
1

n1
+ σ2

2

n2

⎞

⎠
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Case 2: 100 (1 − α)% CI of difference in mean when variances are unknown,

(

(�x1 − �x2) − tα/2 Sp

√
1

n1
+ 1

n2
, (�x1 − �x2) + tα/2 Sp

√
1

n1
+ 1

n2

)

where Sp = S2
1 (n1−1)+S2

2 (n2−1)
n1+n2−1

Case 3: 100 (1 − α)% CI of ratio of variance,

(
1

Fα/2(n1 − 1, n2 − 1)

S2
1

S2
2

,
S2
1

S2
2

Fα/2(n2 − 1, n1 − 1)

)

where P
(
x < F1−α/2(n2 − 1, n1 − 1)

) = P
(
x > Fα/2(n2 − 1, n1 − 1)

) = α/2
Case 4: Upper limit of 100 (1 − α)%lowerCI of difference inmean is (�x1 − �x2)+
Zα

√
σ2
1

n1
+ σ2

2
n2
, when variances are known. The corresponding one-sided lower CI

is

(
−∞, (�x1 − �x2) + Zα

√
σ2
1

n1
+ σ2

2
n2

)
. Note that the lower limit of this CI is −∞

since the lower bound of the sampling distribution of difference in mean (Normal
distribution) is −∞.
Case 5: Lower limit of 100 (1 − α)%upperCI of difference inmean is (�x1 − �x2)−
Zα

√
σ2
1

n1
+ σ2

2
n2
, when variances are known. The corresponding one-sided upper CI is

(
(�x1 − �x2) − Zα

√
σ2
1

n1
+ σ2

2
n2
,∞

)
. Note that the upper limit of this CI is ∞ (same

reason as in case 4).
Case 6: Similarly, in case of ratio of variance, upper limit of the 100 (1 − α)%

one-sided CI is S2
1

S2
2

Fα(n2−1, n1−1), and the lower bound of sampling distribution
of ratio of variance (F distribution) is zero. Thus, the one-sided lower CI of ratio

of variance is
(
0, S2

1

S2
2

Fα(n2 − 1, n1 − 2)
)
.

Case 7: Conversely, lower limit of 100 (1 − α)% one-sided upper CI of ratio of

variance is 1
Fα(n1−1,n2−2)

S2
1

S2
2
, and the upper bound of sampling distribution of ratio of

variance (χ2 distribution) is ∞. Thus, the one-sided upper CI of ratio of variance

is
(

1
Fα(n1−1,n2−2)

S2
1

S2
2
,∞

)
.

Example 6.4.2
The mean of maximum temperature (in ◦C) at locations A and B are observed to be
10 and 12, respectively. Evaluate the 95% confidence interval of difference in mean
considering the data size at each location is 40. Variances are known to be 420 and
560 for location A and B, respectively.
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Solution Given,�x1 = 10, σ2
1 = 420 and�x2 = 12, σ2

2 = 560

Sampling distribution of �x1 follows N
(�x1,σ1

/√
n1

)
and �x2 follows

N
(�x2,σ2

/√
n2

)

Hence, the sampling distribution of the difference in mean (�x1 − �x2) is a ran-
dom variable that follows a normal distribution with mean (�x1 − �x2) and standard

deviation
√

σ2
1

n1
+ σ2

2
n2
.

Thus, the CI of difference in mean can be evaluated using the standard normal
distribution as follows,

(
(�x1 − �x2) − Zα/2

√
σ2
1

n1
+ σ2

2
n2
, (�x1 − �x2) + Zα/2

√
σ2
1

n1
+ σ2

2
n2

)

=
(
(10 − 12) − z0.025/2

√
420
40 + 560

40 , (10 − 12) + z0.025/2
√

420
40 + 560

40

)

= (−11.85, 7.85)

Therefore, the 95% confidence interval of difference in mean is (−11.85, 7.85).

6.4.3 Hypothesis Testing

Hypothesis testing is the process of accepting or rejecting an assumption regarding
a population parameter, which may or may not be true. Often, we need to make
decisions about population parameters on the basis of a sample. Such decisions are
called statistical inferences. There are many problems in which we must decide
whether a statement concerning a parameter is true or false; that is, we must test
the hypothesis about a parameter. A procedure that enables us to accept or reject
a hypothesis or to determine whether observed sample statistics differ significantly
from population parameters are called test of hypothesis.

Null and Alternative Hypothesis

In attempting to reach a decision, it is always useful to make assumptions about
the population involved. Initially, it is needed to decide the neutral or by default
assumptions. This is denoted as null hypothesis (Ho). The opposite of it, that we
want to test is assigned as alternative hypothesis (Ha). For instance, if we want
to show that one irrigation technique is better than the other (Ha); initially, we
hypothesize that both the techniques are equally effective (Ho). Similarly, if we want
to decide whether rainfall at a location is greater than another location (Ha), we
formulate the hypothesis that there is no difference in rainfall at two locations (Ho).
Such hypothesis is often called null hypothesis denoted as Ho.
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Table 6.2 Types of error in hypothesis testing

True fact Decision making

Accept Reject

Hypothesis is true Correct Type I error

Hypothesis is false Type II error Correct

Type I and Type II Errors

If null hypothesis H is true and not rejected or the hypothesis is false and rejected,
the decisions in either case are correct. If hypothesis H is true but rejected, it is called
Type I error . If Hypothesis H is false but not rejected, this is also an error and known
as Type II error. These are shown in Table6.2.

The probability of committing Type I error when the hypothesis is true is desig-
nated by α also known as level of significance. The probability of committing Type
II error when the hypothesis is false is designated by β. Our major aim is to minimize
the error which is generally achieved by fixing the value of α and minimizing β as
far as possible.

Tests of Hypotheses

To approach the problem of hypotheses testing systematically, it will help to proceed
as outlined in the following steps:

(i) Formulation of null hypotheses and appropriate alternative hypotheses which
can be accepted when the null hypotheses are rejected.

(ii) Specification of the probability of Type I error or significance level, designated
by α.

(iii) Based on the sampling distribution of an appropriate statistic, a criterion for
testing the null hypothesis against the alternative is constructed.

(iv) From the data, the value of the test statistic on which the decision is to be based
is evaluated.

(v) The final decision is whether to reject the null hypotheses or whether to fail to
reject it.

Note that it is generally not concluded that the null hypothesis is accepted, instead it
states whether one can or cannot reject the null hypothesis. This decision is based on
the value of the test statistic and the significance level. The significance level decides
the critical zone. If the test statistics fall within the critical zone, the null hypothesis
is rejected; otherwise, it cannot be rejected. Explanation of critical zone is as follows.

There are two types of test—namely one-sided and two-sided test. Considering α
as the significance level, the critical zone or rejection zone for one-sided test is either[
lb, x1−α

]
or [xα, ub] based on the hypothesis to be tested. The zone

[
lb, x1−α

]
is

for ‘greater than’ and [xα, ub] is for ‘less than’. In these limits, lb and ub are the
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Fig. 6.3 Pictorial representation of rejection zone or critical zone for the two-sided (left panel) and
one-sided (left sided–middle panel and right sided–right panel) test in hypothesis testing
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Fig. 6.4 Pictorial representation of p-value with respect to the test statistic (xt ) for two-sided (left
panel) or one-sided (left sided—middle panel and right sided—right panel) tests. In case of two-
sided, summation of the two regions is the p-value. Note: If the distribution is asymmetric (e.g., χ2

or F distribution), the values of two limits of the shaded zone will not be same with opposite sign

lower and upper bound of the sampling distribution, respectively, x1−α and xα are the
values such that P (X ≥ x1−α) = (1 − α) and P (X ≥ xα) = α. For a symmetrical
sampling distribution, such as normal distribution, critical zone or rejection zone for
one-sided test is either (−∞,−xα] or [xα,∞) based on the hypothesis to be tested,
i.e., (−∞,−xα] is for ‘greater than’ and [xα,∞) is for ‘less than’.

For the two-sided test, the critical zones are
[
lb, x1−α/2

]
and

[
xα/2, ub

]
with the

same notations explained before. For a symmetrical sampling distribution, such as
normal distribution, critical zones for two-sided test are

(−∞,−x α
2

]
and

[
x α

2
,∞)

.
The representations of critical zones are shown in Fig. 6.3. In all the cases, the null
hypothesis is rejected if the test statistic lies in the critical zone.
p-value:

In each of these cases while carrying out the hypothesis test, a p-value can be
evaluated. The p-value is the probability of obtaining a value of the test statistic
that is as extreme as or more extreme than the value actually observed. Figure6.4
explains the concept of p-value with respect to the test statistic (x) for one-sided or
two-sided tests.

The following section explains the approach for selection of an appropriate test
statistics and the rejection region for different cases.
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Single Sample Test

In this section, we will discuss the criterions for hypothesis testing of statistical
parameters for a normally distributed population. Let us consider a random variable
X , such that X ∼ N

(
μ,σ2

)
and x1, x2, . . . xn are a random sample of size n.

Case 1: Hypothesis concerning one mean when variance is known
Testing of the null hypothesis where a population mean equals/is greater than/is

lesser than a specified constant value with suitable one-sided or two-sided test when
the variance of the population is known.

Test Statistic: z = �X − μ0

σ
/√

n
∼ N (0, 1) (6.7)

where �X is the sample mean and μo is a particular value of mean for which the
hypothesis is to be tested.

The rejection criterion for three different cases is shown as follows,

Ho Ha Rejection Region
μ = μo μ �= μo |z| > Zα/2
μ ≥ μo μ < μo z < −Zα

μ ≤ μo μ > μo z > Zα

Example 6.4.3
50 years of annual record is used to compute the mean annual rainfall at a gauging
station. The mean is equal to 1460 mm. Is the population mean (μ) significantly
different from 1500 mm at a level of significance of 0.05? Assume the population
standard deviation as 150 mm.

Solution Null hypothesis Ho : μ = 1500mm
Alternative hypothesis Ha : μ �= 1500mm
Level of significance: α = 0.05 (given)
As the standard deviation of the population is given, the z statistics can be used.

z = �x − μ

σ
/√

n
= 1460 − 1500

150
/√

50
= −1.88

Based on the alternative hypothesis, it is a two-sided test, thereby at 0.05 significance
level Zα/2 = ±1.96 (P

(
z > zα/2

) = 0.025). Thus, the critical zone is (−∞,−1.96]
and [1.96,∞).

Since the value of the test statistic does not lie in the critical zone, the null hypoth-
esis cannot be rejected at a level of significance 0.05.
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Therefore, the mean annual rainfall at the gauging station may be considered to
be equal to 1500 mm at a level of significance of 0.05.

Example 6.4.4
It is found from the long-term historical data that the mean wind speed of a region is
51.35 km/h and standard deviation is 11 km/h. It is required to test whether the mean
has increased or not. To test this, a sample of 80 stations in that region is tested and
it is found that the mean wind speed is 54.47 km/h.

(a) Can we support the claim at a 0.01 level of significance?
(b) What is the p-value of the test?

Solution According to the example, the null and alternative hypothesis can be for-
mulated as follows:

Null hypothesis Ho : μ ≤ 51.35 km/h
Alternative hypothesis Ha : μ > 51.35 km/h
Level of significance: α = 0.01(given)

As the standard deviation of the population is same as that obtained from historical
data, the z statistics can be used.

z = �x − μ

σ
/√

n
= 54.47 − 51.35

11
/√

80
= 2.537

(a) Based on the alternative hypothesis, it is a one-sided test, thereby at 0.01 signif-
icance level Zα = 2.325. The critical zone is [2.325,∞).
Since the value of the test statistic lies in the critical zone, the null hypothesis
must be rejected at a level of significance 0.01.
Therefore, it can be concluded that the wind speed is increased at a significance
level of 0.01.

(b) The p-value of the test is P(Z ≥ 2.537) = 0.0056, which is the probability that
the mean wind speed equal to or more than 54.47 km/h would occur by chance
if Ho is true.

Case 2: Hypothesis concerning one mean when variance is unknown
This case is same as case 1, but the variance of the population is unknown. In such

case, the variance is calculated from the sample and the test statistic is modified as:

Test statistic: t = �x − μ0

S
/√

n
(6.8)

where �x is the sample mean, S is the sample variance, and μo is a particular value
of mean for which the hypothesis is to be tested. Note that the test statistic follows
student’s t distribution with degrees of freedom n − 1 instead of standard normal
distribution as in case 1.
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The rejection criterion for three different cases is shown as follows:

Ho Ha Rejection Region
μ = μo μ �= μo |t | > tα/2(n − 1)
μ ≥ μo μ < μo t < −tα/2(n − 1)
μ ≤ μo μ > μo t > tα/2(n − 1)

Note:When the variance is unknown but the sample size is large enough (n > 30),
then the test statistic approaches z. Thus, z statistic (Eq.6.7) may also be used in such
cases.

Example 6.4.5
The rainfall data for monsoon period at a gauging station is as follows:

Year 2000 2001 2002 2003 2004 2005 2006
Rainfall (mm) 543 496 523 450 576 590 505

Test the null hypothesis that the mean is greater than 570 mm at a confidence level
of 95%. Also, evaluate the p-value.

Solution Null hypothesis H0 : μ > 570 mm
Alternative hypothesis Ha : μ ≤ 570 mm
The confidence level is 95%. Thus, level of significance α = 1 − 95/100 = 0.05
(given)
As the standard deviation is to be calculated from the sample data, the t statistics

is used.
Mean of the sample is �x = 526.14 mm and standard deviation of the sample is

S = 48.32 mm

t = �x − μ

S
/√

n
= 526.14 − 570

48.32
/√

7
= −2.401

Based on the alternative hypothesis, it is a one-sided test, thereby at 0.05 significance
level tα(n − 1) = −1.943. The critical zone is (−∞,−1.943].

Since the value of the test statistic lies in the critical zone, the null hypothesis
must be rejected at significance level 0.05.

The p-value of the test is P (t < −2.401) = 0.027.
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Case 3: Hypothesis concerning one variance
This case considers the test of the hypothesiswhere a population variance equals/is

greater than/is lesser than a specified constant value with suitable one-sided or two-
sided test.

Test statistic: χ2 = (n − 1) S2

σ2
o

(6.9)

where S is the sample variance and σo is a particular value of variance for which
the hypothesis is to be tested. The test statistic follows chi-square distribution with
n − 1 degrees of freedom. The rejection criterion for three different cases is shown
as follows:

Ho Ha Rejection Region

σ2 = σ2
o σ2 �= σ2

o χ2 > χ2
α/2(n − 1) or χ2 < χ2

1−α/2,(n−1)

σ2 ≥ σ2
o σ2 < σ2

o χ2 < χ2
1−α(n − 1)

σ2 ≤ σ2
o σ2 > σ2

o χ2 > χ2
α(n − 1)

Example 6.4.6
Test the claim that the standard deviation of the streamflow at a gauging station is 220
cumec at the significance level of 0.01. The mean and standard deviation, calculated
from a sample of size 16, are 8652 cumec and 200 cumec, respectively.

Solution Null hypothesis Ho : σ2 = 2202

Alternative hypothesis Ha : σ2 �= 2202

Level of significance: α = 0.01(given)
In this case, the χ2 statistics can be used.

χ2 = (n − 1) S2

σ2
o

= (16 − 1) 2002

2202
= 12.396

Based on the alternative hypothesis, it is a two-sided test, thereby at 0.01 significance
level, χ2

α/2(n − 1) = χ2
0.005(15) = 32.801 and χ2

1−α/2(n − 1) = χ2
0.995(15) = 4.601.

Thus, the critical zone is (0, 4.601] and [32.801,∞).
Since the value of the test statistic does not lie in the critical zone, the null hypoth-

esis cannot be rejected at a level of significance 0.01.
Therefore, it can be concluded that at a significance level of 0.01, the claim cannot

be supported.
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Two Sample Test

In this section, we will discuss about hypothesis testing involving two independent
random samples that are drawn from normally distributed population. Let us consider
two random variables X1 and X2, such that X1 ∼ N

(
μ1,σ

2
1

)
and X2 ∼ N

(
μ2,σ

2
2

)
.

Also, consider x11, x12, · · · , x1n1 is a random sample of size n1 for first random
variable and x21, x22, · · · , x2n2 is a random sample of size n2 for second random
variable.

Case 1: Hypothesis concerning two means when the variances are known
There are many statistical problems in which a decision is to be made about the

comparison between themeans of two ormore samples when the population variance
is known. In such cases, the test statistics are defined as

Z = (�x1 − �x2) − δ
√

σ2
1

n1
+ σ2

2
n2

(6.10)

where�x1 and�x2 are the sample means and δ is the difference between the means for
which the hypothesis is to be tested. The Z statistic is considered to follow standard
normal distribution.

The rejection criterion for three different cases is shown as follows:

Ho Ha Rejection Region
μ1 − μ2 = δ μ1 − μ2 �= δ |z| > Zα/2
μ1 − μ2 ≥ δ μ1 − μ2 < δ z < −Zα

μ1 − μ2 ≤ δ μ1 − μ2 > δ z > Zα

Example 6.4.7
Test the claim that the mean rate of evapotranspiration at station 1 is greater than that
of station 2 by a magnitude of 0.5 mm/day. If the mean and standard deviation at the
two stations are given as�x1 = 4.59mm/day,σ1 = 2.2mm/day,�x2 = 4.23mm/day,
and σ2 = 2.56mm/day. The sample size for both the stations is 50; consider a
significance level of 0.05.

Solution Let μ1 and μ2 are the mean values of evapotranspiration at stations 1 and
2, respectively.

Null hypothesis Ho : μ1 − μ2 ≤ 0.5
Alternative hypothesis Ha : μ1 − μ2 > 0.5
Level of significance: α = 0.05 (given)

As the standard deviation of the population is known, we can use the z statistics.
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z = (�x1 − �x2) − δ
√

σ2
1

n1
+ σ2

2
n2

= (4.59 − 4.23) − 0.5
√

2.22
50 + 2.562

50

= −0.293

Based on the alternative hypothesis, it is a one-sided test, thereby at 0.05 significance
level, z0.05 = 1.645. The critical zone is [1.645,∞).

Since the value of the test statistic does not lie in the critical zone, the null hypoth-
esis cannot be rejected at significance level of 0.05.

Therefore, it can be concluded that at a significance level of 0.05, the claim cannot
be supported.

Example 6.4.8
The maximum daily temperature values are recorded at a weather station since last
100 years. The data is divided into two epochs (50 years each). The following cal-
culations are made,

Time period Mean (◦C) Standard deviation (◦C)
Epoch 1 35.21 3.48
Epoch 2 35.94 3.20

(a) Test the hypothesis that the mean of the maximum temperature is increasing
from epoch 1 to epoch 2 at a significance level of 0.05.

(b) Calculate the p-value of the test.

Solution According to the example, the null and alternative hypothesis can be for-
mulated as follows:

Let μ1 and μ2 are the mean temperature during epoch 1 and 2, respectively.

Null hypothesis Ho : μ1 − μ2 ≥ 0
Alternative hypothesis Ha : μ1 − μ2 < 0
Level of significance: α = 0.05 (given)

As the standard deviation of the population is given, the z statistics can be used.

z = (�x2 − �x1) − δ
√

σ2
1

n1
+ σ2

2
n2

= (35.21 − 35.94) − 0
√

3.482
50 + 3.202

50

= −1.09

(a) Based on the alternative hypothesis, it is a one-sided test, thereby at 0.05 signif-
icance level z0.05 = 1.645. The critical zone is (−∞,−1.645].

Since the value of the test statistic does not lie in the critical zone, the null
hypothesis cannot be rejected at a level of significance 0.5.

Therefore, the claim that themeanmaximum temperature is increasing for epoch
1 to epoch 2 cannot be supported at a significance level of 0.05.
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(b) The p-value of the test is P(z) < −1.09 = 0.138, the probability that the tem-
perature during epoch 2 is not more than epoch 1.

Case 2: Hypothesis concerning two means when the variances are unknown
This is same as case 1, but the population variances are unknown. In such cases, a
pooled variance

(
S2

p

)
is computed using the sample statistics. The test statistic is as

follows:

t = (�x1 − �x2) − δ

Sp

√
1
n1

+ 1
n2

(6.11)

where Sp is the pooled standard deviation and it is expressed as Sp =√
S2
1 (n1−1)+S2

2 (n21−1)
n1+n2−2 ,�x1 and�x2 are the sample means and δ is the difference between

themeans forwhich the hypothesis is to be tested. The t statistic follows t-distribution
with n1 + n2 − 2 degrees of freedom. The rejection criterion for three different cases
is shown as follows:

Ho Ha Rejection Region
μ1 − μ2 = δ μ1 − μ2 �= δ |t | > tα/2,(n−1)
μ1 − μ2 ≥ δ μ1 − μ2 < δ t < −tα,(n−1)
μ1 − μ2 ≤ δ μ1 − μ2 > δ t > tα,(n−1)

Example 6.4.9
Annual rainfall received on the leeward side (A) andwindward side (B) of amountain
is as follows. Test the claim that the mean rainfall received on the windward side is
higher than that on the leeward side. Consider the confidence level of 95%.

Year 1998 1999 2000 2001 2002 2003 2004 2005
Rainfall A (mm) 1225 1075 1260 1100 1125 1275 1300 1205
Rainfall B (mm) 1276 1135 1288 1255 – 1365 1345 1310

Solution Considering μA and μB as the mean rainfall on leeward side (A) and wind-
ward side (B), respectively.

Null hypothesis Ho : μB − μA ≤ 0
Alternative hypothesis Ha : μB − μA > 0
Level of significance: α = 0.05 (given)

As the standard deviation is to be calculated from the sample data, we will use the t
statistic.
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Mean rainfall for case A,�xA = 1195.62 mm
Mean rainfall for case B,�xB = 1282.00 mm
Standard deviation for case A, SA = 85.33 mm
Standard deviation for case B, SB = 75.33 mm
The pooled standard deviation,

Sp =
√

S2A (n1 − 1) + S2B (n2 − 1)

n1 + n2 − 2
=

√
85.332 (8 − 1) + 75.332 (7 − 1)

8 + 7 − 2
= 80.87 mm

t = (�xB − �xA) − δ

Sp

√
1
n1

+ 1
n2

= (1282.00 − 1195.62) − 0

86.81
√

1
8 + 1

7

= 1.922

Based on the alternative hypothesis, it is one-sided test, thereby at 0.05 significance
level tα(n1 + n2 − 2) = 1.771. The critical zone is [1.771,∞).

Since the value of the test statistic lies in the critical zone, the null hypothesis
must be rejected at a level of significance 0.05. Therefore, it can be concluded that
at a significance level of 0.05, the claim can be supported.

Case 3: Hypothesis concerning two variances
This case deals with the testing of the null hypothesis if a population variance

equals/is greater than/is less than that of another population variance with suitable
one-sided or two-sided test.

F = S2
1

S2
2

(6.12)

where S1 and S2 are the sample variances. The F statistics follows F distribution
with n1 − 1, n2 − 1 degrees of freedom.

The rejection criterion for three different cases is shown as follows:

Ho Ha Test Statistic Rejection Region

σ2
1 ≤ σ2

2 σ2
1 > σ2

2 F = S21
S22

F > Fα (n1 − 1, n2 − 1)

σ2
1 ≥ σ2

2 σ2
1 < σ2

2 F = S22
S21

F > Fα (n2 − 1, n1 − 1)

σ2
1 = σ2

2 σ2
1 �= σ2

2 F = S2M
S2m

F > Fα (nM − 1, nm − 1)

For the last case (H0 : σ2
1 = σ2

2 and Ha : σ2
1 �= σ2

2), the sample having
higher standard deviation is identified and its standard deviation (SM ) is placed
in the numerator. Other one (Sm) is in the denominator. This is to ensure that the
rejection region is F > Fα (nM − 1, nm − 1). Relaxation of this criterion is also
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mathematically possible,but rejection region will have to be modified accordingly.
It is recommended to stick to this rule to avoid confusion.

Example 6.4.10
Determine whether the variance of rainfall at a gauging station A is more than
that at another gauging station B. Use the data given in Example6.4.9. Consider
a significance level of 0.01.

Solution Null hypothesis Ho : σ2
A ≤ σ2

B
Alternative hypothesis Ha : σ2

A > σ2
B

Level of significance: α = 0.01(given)
Standard deviation for the station A, SA = 85.33

Standard deviation for the station B, SB = 75.33
The test statistic

F = S2
A

S2
B

= 85.332

75.332
= 1.283

Since the alternative hypothesis is one-sided test, thereby at 0.01 significance level
Fα(n1 − 1, n2 − 1) = F0.01(7, 6) = 8.26. The critical zone is [8.26, ∞).

Since the value of the test statistic does not lie in the critical zone, we cannot reject
the null hypothesis at a significance level of 0.01. Thereby, the variance of rainfall
at gauging station A may not be concluded to be more than that at rainfall gauging
station B at a significance level of 0.01.

Test Concerning Proportion

Some hydrologic or hydroclimatic problems deal with the proportion or percentage
of certain attributes. In such cases, it is often required to verify the null hypothesis
that a proportion/percentage equals some specific value either for a single sample or
among multiple samples.

Case 1: Hypothesis concerning one proportion
This case deals with testing the null hypothesis if a proportion/percentage based

on a population is equal to some specific value with suitable one-sided or two-sided
test. The test statistic

Z = X − npo√
npo (1 − po)

(6.13)

where n is the size of the sample, X is a subset of the sample which satisfies a given
condition, and po is the constant value for which we have to test the hypothesis.
Assuming that the sample size is sufficiently large, the statistic Z is a random variable
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that approximately follows standard normal distribution. The rejection criterion for
three different cases is shown as follows:

Ho Ha Rejection Region
p = po p �= po |z| > Zα/2
p ≥ po p < po z < −Zα

p ≤ po p > po z > Zα

Example 6.4.11
The probability of failure of the dam due to quick sand condition is 10%. A study is
carried out on dams built under similar conditions following the same design details
shows that 2 out of 50 dams fail. On the basis of this study, test the claim that
the probability of not failing due to quick sand condition is greater than 90% at a
significance level of 0.05.

Solution Null hypothesis Ho : p ≤ 0.9
Alternative hypothesis Ha : p > 0.9
Level of significance: α = 0.05 (given)

In this case, the z statistics can be used as follows.

Z = X − npo√
npo (1 − po)

= 48 − 50 × 0.9√
50 × 0.9 (1 − 0.9)

= 1.414

Based on the alternative hypothesis, it is one-sided test, thereby at 0.05 significance
level Zα = 1.645. The critical zone is [1.645,∞).

Since the value of the test statistic does not lie in the critical zone, we cannot
reject the null hypothesis at a significance level of 0.05. Thereby, the claim cannot be
supported at a significance level of 0.05; i.e., the probability of success is not more
than 90%.

Case 2: Hypothesis concerning multiple proportions
This case deals with the several proportions (p1, p2, . . . , pk). The null hypothesis

considers several proportions/percentages based on multiple populations. It is tested
whether all the proportions are equal to one another with suitable one-sided or two-
sided test. The null hypothesis considered for the test is that p1 = p2 = · · · = pk

against the alternative hypothesis which states that the proportions are not equal.
Two or more proportions from multiple populations can be compared using the

test statistic

χ2 =
2∑

i=1

k∑

j=1

(
oi j − ei j

)2

ei j
(6.14)
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is a random variable that follows an approximate chi-square distribution with (k-1)
degrees of freedom. The null hypothesis should be rejected if χ2 > χ2

α, where α is
the significance level. The magnitudes of oi j and ei j can be computed by arranging
the available data as follows:

Description Sample#1 Sample#2 · · · Sample#k Total

Total sample size n1 n2 · · · nk n
Number of Success (o1 j ) x1 x2 · · · xk x
Number of Failures (o2 j ) n1 − x1 n2 − x2 · · · nk − xk n − x
Expected cell frequency for success (e1 j ) n1x

/
n n2x

/
n … nk x

/
n

Expected cell frequency for failure (e2 j ) n1(n − x)
/

n n2(n − x)
/

n … nk (n − x)
/

n

Here, x is the total number of successes and n is the total number of trials for all
the samples. The number of successes or failure (category) is known as observed cell
frequency

(
oi j

)
where i = 1, 2 and j = 1, 2, . . . , k. The values of ei j (i = 1, 2 and

j = 1, 2, . . . , k) are the expected cell frequencies that are evaluated by multiplying
the total of the column to the total of the row to which it belongs and then dividing
by the grand total n.

Example 6.4.12
Number of rainy days in the year 2016 at three stations (A, B, and C) can be catego-
rized as follows:

Station A Station B Station C Total
High 70 60 60 190
Low 180 170 190 540
Total 250 230 250 730

Use the 0.05 level of significance to test whether the probability of high rainfall days
is the same for the three stations.

Solution Null hypothesis Ho : p1 = p2 = p3

Alternative hypothesis Ha : p1, p2 and p3 are not all equal.
Level of significance: α = 0.05 (given)
The expected frequencies for each cell can be evaluated as follows:
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Description Station A Station B Station C Total
Total number of rainy
days

250 230 250 730

Number of high rain-
fall days (O1 j )

70 60 60 190

Number of low rainfall
days (O2 j )

180 170 190 540

Expected cell
frequency for high
rainfall days (e1 j )

250×190
730 = 65.07 230×190

730 = 59.86 250×190
730 = 65.07

Expected cell
frequency for low rain-
fall days (e2 j )

250×540
730 = 184.93 230×540

730 = 170.14 250×540
730 = 184.93

In this case, the χ2 statistics can be evaluated as follows.

χ2 =
2∑

i=1

k∑

j=1

(
oi j − ei j

)2

ei j

= (70 − 65.07)2

65.07
+ (60 − 59.86)2

59.86
+ (60 − 65.07)2

65.07

+ (180 − 184.93)2

184.93
+ (170 − 170.14)2

170.14
+ (190 − 184.93)2

184.93
= 1.04

The value of χ2
0.05 for degrees of freedom of 3 − 1 = 2 is 5.991. As the value of

test statistic is less than 5.991, the null hypothesis cannot be rejected. Therefore, the
probability of high rainfall days is the same for the three stations.

6.4.4 Goodness-of-Fit Test

The goodness-of-fit of a statistical model describes how well it fits a set of obser-
vations. Measures of goodness of fit typically summarize the discrepancy between
observed values and the values expected under the model in question. Such measures
can be used in statistical hypothesis testing, e.g., to test for normality of residuals,
to test whether two samples are drawn from population with identical distributions
or whether outcome frequencies follow a specified distribution.
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Chi-Square Goodness-of-Fit Test

Chi-square goodness-of-fit test is used to test how well a theoretical distribution fits
the empirical distribution. It is used to compare the observed sample distributionwith
expected probability distribution. The sample data is divided into intervals, and the
number of points in the interval is compared with expected number of points in each
interval using hypothesized distribution. In the case of relative frequency function,
the χ2 test is used. The sample value of the relative frequency of i th interval is

fS (xi ) = ni
/

n (6.15)

where ni is the observed number of occurrences in the i th interval and n is total
number of observations. The theoretical value of relative frequency is

P (xi ) = F (xi ) − F (xi − 1) (6.16)

The χ2 test statistics is given by,

χ2
c =

m∑

i=1

n [ fs (xi ) − P (xi )]
2

P (xi )
(6.17)

where m is the number of intervals and the degree of freedom ν = m − p −1, where
p is the number of parameters used in fitting the distribution.

It may be noted that n fs (xi ) = ni is the observed number of occurrences in the
interval i and n P (xi ) is the corresponding expected number of occurrences in the
interval i . A confidence level is chosen for the test which is often expressed as (1 − α)
where α is termed as significance level. The null hypothesis for the test is that the
proposed probability distribution fits the data adequately, and alternative hypothesis
states that the data does not follow the proposed probability distribution. The null
hypothesis should be rejected if χ2

c > χ2
α.

Example 6.4.13
The following table provides the range of rainfall during Indian summer monsoon
months (total rainfall for four months) at a gauging station with the frequency of
occurrence. The mean and standard deviation are given as 397 mm and 92 mm,
respectively. Use the χ2 test to determine whether the normal distribution adequately
fits the data at a significance level of 0.05.

Range (mm) <200 200–250 250–300 300–350 350–400 400–450 450–500 >500
Frequency 1 2 6 14 11 10 5 3
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Solution The range of rainfall is divided into eight intervals, starting from less than
200 to more than 500, with intermediate intervals each covering a range of 50. The
total number of observations/sample size evaluated as the sum of each frequency is
52.

Null hypothesis H 0: The data fits the normal distribution
Alternative hypothesis, H a: The data does not fit the normal distribution

The χ2 test statistics is as follows:

χ2
c =

m∑

i=1

n [ fs (xi ) − P (xi )]
2

P (xi )

It follows an approximate chi-square distribution with degrees of freedom ν = m −
p − 1. For evaluation of the test statistic, the following table is to be formulated. As
an example, each expression for the 5th interval is solved.

The relative frequency function,

fs (x5) = n5

n
= 11

52
= 0.211

The cumulative frequency function,

FS (x5) =
5∑

i=1

fS (xi ) = 0.654

The standard normal variate,

z5 = x5 − μ

σ
= 400 − 397

92
= 0.033

The cumulative normal probability function,

P (x5) = P (350 ≤ X ≤ 400)

= F (400) − F (350)

= 0.5130 − 0.3047

= 0.2083

The χ2 test statistic,

χ2
c = n [ fs (xi ) − P (xi )]

2

P (xi )
= 52 × (0.2115 − 0.2083)2

0.2083
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The final test statistic can be evaluated by evaluating the sum of the last column of
the table.

Interval Range (mm) ni fs (xi ) Fs (xi ) zi F (xi ) P (xi ) χ2
c

1 <200 1 0.0192 0.0192 -2.1413 0.0161 0.0161 0.0311
2 200-250 2 0.0385 0.0577 -1.5978 0.0550 0.0389 0.0003
3 250-300 6 0.1154 0.1731 -1.0543 0.1459 0.0908 0.3455
4 300-350 14 0.2692 0.4423 -0.5109 0.3047 0.1589 3.9875
5 350-400 11 0.2115 0.6538 0.0326 0.5130 0.2083 0.0026
6 400-450 10 0.1923 0.8462 0.5761 0.7177 0.2047 0.0391
7 450-500 5 0.0962 0.9423 1.1196 0.8686 0.1508 1.0306
8 >500 3 0.0577 1.0000 1.6630 1.0000 0.1314 2.1521

Sum = 7.588

In this case, the last column sums up to be 7.588, i.e., χ2
c = 7.588.

The degree of freedom ν = m − p − 1 is equal to five. The value of α is given
as 0.05. Thereby, χ2

0.05(5) = 11.07, so the rejection zone is [11.07,∞). As χ2
c does

not lie in the rejection zone, the null hypothesis cannot be rejected at a significance
level of 0.05. Hence, it can be concluded that the data fits normal distribution.

6.4.5 Nonparametric Test

So far, some parametric form of distribution is assumed for data to perform the
hypothesis tests. However, in many cases of hydrology and hydroclimatology, the
data may not fit to any specific probability distribution assumption and it is required
to opt for nonparametric tests.

Sign Test

This nonparametric test is used as an alternative to the one-sample t test or paired t
test. The sign test is applicable for the large samples from symmetrical distribution.
This property of symmetry may not be always possible to check with small sample
(mean divides the data into equal halves). Thus, median is chosen for the test instead
of mean. The null hypothesis μ̃ = μ̃o is tested against an appropriate alternative
hypothesis, where μ̃ is the median of the sample. To carry out the test, each sample
value greater than μ̃o is replaced with ‘+’ and each value less than the same is
replaced with ‘−’. Any value equal to μ̃o is discarded. The null hypothesis that these
plus and minus signs are outcomes of binomial trials with p = 1

/
2 is tested.



218 6 Hypothesis Testing and Nonparametric Test

Example 6.4.14
The following data for maximum temperature (in ◦C) at a location is recorded for
10 days. Test the null hypothesis μ̃ = 30 against the alternative hypothesis μ̃ > 30
at the 0.01 level of significance.

Day 1 2 3 4 5 6 7 8 9 10

Temperature (◦C) 30 36 34 32 29 28 31 34 36 36

Solution Null hypothesis: μ̃ = 30
Alternative hypothesis: μ̃ > 30
Level of significance α = 0.01
Replacing each value greater than 30 with a plus sign, each value less than 30 with

minus sign and discarding any value equal to 30, the following table is obtained,

Temperature 30 36 34 32 29 28 31 34 36 36

Sign discarded + + + − − + + + +

The number of plus signs(x) is equal to seven. Considering n = 9 and p = 0.5,
the probability of X ≥ 7 can be evaluated using binomial distribution.

P(X ≥ 7) = 1 − P(X < 7) = 1 − nCx px (1 − p)n−x

= 9C70.5
70.52 = 1 − 0.91 = 0.089

As 0.089 is greater than 0.01, the null hypothesis cannot be rejected.
Thereby, the median of maximum temperature at the location does not exceed

30◦C.

Rank-Sum Test

The rank-sum test includes two types of test, namely U test and H test. The U test
(also known as Wilcoxon test or Mann–Whitney test) is used as an alternative to two
sample t test and H test (also known as Kruskal–Wallis test) is used to check whether
n samples come from identical population against an alternative hypothesis that the
populations are not identical.

U Test/Wilcoxon test/Mann–Whitney test

In case of U test, the null hypothesis to be tested is that the two samples come from
identical population. To satisfy the above condition, the sum of the ranks assigned to
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the values of both the samples should be more or less same. The test statistics used
for the study is

Z = U1 − μU1

σU1

(6.18)

where μU1
= n1n2

2 and σU1
=

√
n1n2(n1+n2+1)

12 , n1 and n2 are the respective sample
size for sample 1 and 2. U1 is evaluated as follows:

U1 = W1 − n1 (n1 + 1)

2
(6.19)

To compute W1, first the data from both the samples are considered together and
ranks are provided. Next W1 is computed as the sum of the ranks values for the data
in the first sample. We can also compute W2 (and subsequently U2) in the same way
for the second sample but either one of the W1 and W2 is sufficient for the test. Hence,
only W1 is computed.

Conditions for rejection of the null hypothesis: The Z statistic in Eq.6.18 follows
approximate standard normal distribution. If the null hypothesis states that population
1 is stochastically identical to population 2, then the rejection zones are (−∞,−Zα/2]
and [Zα/2,∞), where α is the significance level. When the alternative hypothesis
states that population 2 is stochastically larger than population 1, then the rejection
zone is [−Zα,∞), as small values ofU1 corresponds to small values ofW1. Similarly,
when the alternative hypothesis states that population 1 is stochastically larger than
population 2, then the rejection zone is (∞, Zα]. Considering p1 as population 1 and
p2 as population 2, the rejection criteria are shown in the following table:

Ho Ha Rejection Region
p1 and p2 p1 and p2 are not stochastically identical |z| > Zα/2
are stochastically p1 is stochastically less than p2 z < −Zα

identical p1 is stochastically greater than p2 z > Zα

Example 6.4.15
Let us consider the data provided in Example6.4.9. Use the U test to show that the
rainfall values at two stations belong to same/identical population at a significance
level of 0.05. The table is shown here again

Year 1998 1999 2000 2001 2002 2003 2004 2005
Rainfall A (mm) 1225 1075 1260 1100 1125 1275 1300 1205
Rainfall B (mm) 1276 1135 1288 1255 − 1365 1345 1310
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Solution Null hypothesis: Population are identical.
Alternative hypothesis: The population are not identical.
Level of significance: α = 0.05 (given)
The data from both the stations (A and B) are considered together, and ranks are

provided. The ranks are shown in the parentheses below each data in the following
table:

Year 1998 1999 2000 2001 2002 2003 2004 2005

Rainfall A (mm) 1225 (6) 1075 (1) 1260 (8) 1100 (2) 1125 (3) 1275 (9) 1300 (12) 1205 (5)
Rainfall B (mm) 1276 (10) 1135 (4) 1288 (11) 1255 (7) − 1365 (15) 1345 (14) 1310 (13)

The sum of ranks assigned to the first sample designated as W1 is 46. In this case,
the Z statistics can be used as follows:

Z = U1 − μU1

σU1

U1 = W1 − n1 (n1 + 1)

2
= 46 − 8 (8 + 1)

2
= 10

μU1 = n1n2

2
= 28

σ2
U1

= n1n2 (n1 + n2 + 1)

12
= 74.67

Therefore,

Z = U1 − μU1

σU1

= 10 − 28√
74.67

= −2.083

At a significance level of 0.05 for two-sided test, the rejection zone is
(−∞,−1.96] and [1.96,∞). As the Z statistic falls in the rejection zone, the null
hypothesis should be rejected.

Thereby, it can be concluded that the rainfall at both the stations are not essentially
from identical population at a significance level of 0.05.

H Test/Kruskal–Wallis test

H test is a generalized form of U test, used to test if k-independent random samples
are drawn from identical populations. The null hypothesis to be tested is that the
populations are identical against alternative hypothesis that all populations are not
identical. The test statistic used is as follows:

H = 12

n(n + 1)

k∑

i=1

R2
i

ni
− 3(n + 1)
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where ni is the number of observations of the i th sample, n = n1+n2+· · ·+nk , and
Ri is the sum of ranks occupied by the observations of the i th sample. It is to be noted
that all the observations from each sample are jointly ranked before calculation of
the test statistic. The H statistic is approximated by the chi-square distribution with
k − 1 degrees of freedom. The null hypothesis can be rejected if H > χ2

α(k − 1),
where α is the significance level.

Example 6.4.16
Three sets of soil moisture (in %) are recorded as follows:

Set A 11.0 24.8 13.7 39.7 19.6 31.4 24.7 34.7
Set B 23.7 18.6 22.5 42.5 29.0 21.4 25.6 22.3
Set C 21.4 26.0 22.8 14.6 39.6 25.3 11.3 −

At significance level of 0.05, can we conclude that all the sets of data are collected
from statistically similar regions, so that they belong to the same population?

Solution Null hypothesis: Populations are identical.
Alternative hypothesis: The populations are not identical.
Level of significance: α = 0.05(given)
The observations from all the three sets (A, B, and C) are considered together,

and ranks are provided. The ranks are shown in the parentheses below each data in
the following table:

Set A 11.0 (1) 24.8 (13) 13.7 (3) 39.7 (21) 19.6 (6) 31.4 (18) 24.7 (12) 34.7 (19)
Set B 23.7 (11) 18.6 (5) 22.5 (9) 42.5 (22) 29.0 (17) 21.4 (7) 25.6 (15) 22.3 (8)
Set C 21.4 (7.5) 26.0 (16) 22.8 (10) 14.6 (4) 39.6 (20) 25.3 (14) 11.3 (2) –

The sum of ranks assigned to the three sample designated as R1, R2, and R3 are
93, 94, and 73.5, respectively. The H statistics can be evaluated as follows:

H = 12

n(n + 1)

k∑

i=1

R2
i

ni
− 3(n + 1)

= 12

23(23 + 1)

3∑

i=1

R2
i

ni
− 3(23 + 1)

= 12

552

(
932

8
+ 942

8
+ 73.52

7

)
− 72

= −7.71
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At significance level of 0.05, the χ2
0.05(3 − 1) = 5.991. The rejection zone is

[5.991,∞). As the H statistic does not fall in the rejection zone, the null hypothesis
cannot be rejected.

Thereby, it can be concluded at a significance level of 0.05, the three sets of data
are collected from same population.

Kolmogorov–Smirnov Goodness-of-Fit Test

The Kolmogorov–Smirnov (KS) test is a nonparametric test to access the differ-
ence between cumulative distributions. Two types of tests, namely one-sample and
two-sample tests can be carried out. In one-sample test, the difference between the
observed/empirical CDF and a specific CDF (e.g., normal distribution, uniform dis-
tribution) is tested. This test is generally considered more efficient than chi-square
goodness-of-fit test for small samples. In case of two-sample test, the hypothesis
whether two independent samples come from identical distributions is tested.

One-sample test is based on the maximum absolute difference between the empir-
ical CDF and the specific theoretical CDF. The null hypothesis to be tested is if the
sample follows the theoretical distribution against the alternative hypothesis that the
sample does not follow the specific distribution.

Rejection criteria of the null hypothesis: If Dmax < Dα, the null hypothesis cannot
be rejected, where Dmax is the maximum absolute difference between the empirical
CDF and the theoretical CDF. The values of Dα can be obtained from TableB.8.

Example 6.4.17
Daily maximum monthly temperature at a location, for ten months is as follows:
14.8, 25.0, 28.2, 28.7, 23.1, 4.8, 4.4, 2.4, 6.2, and 19.5. It is desired to check whether
the data set is uniformly distributed between 0 to 30◦C at a significance level of 0.01.

Solution Null hypothesis: Sample follows the given uniform distribution
Alternative hypothesis: Sample does not follow the given uniform distribution
Level of significance: α = 0.01(given)
The evaluation of the empirical CDF (PX (x)) and the CDF considering the given

uniform distribution with α = 0 and β = 30 (FX (x)) for the given data is shown in
the following table:

Data 2.4 4.4 4.8 6.2 14.8 19.5 23.1 25 28.2 28.7
PX (x) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FX (x) 0.080 0.147 0.160 0.207 0.493 0.650 0.770 0.833 0.940 0.956
D 0.020 0.053 0.140 0.193 0.007 −0.05 −0.07 −0.03 −0.04 0.043

The value of Dmax can be observed from the last row of the table as 0.193. The
value of Dmax can also be evaluated using the following figure:
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=0.193

Dmax = 0.4 − 6.2

30
= 0.193

For α = 0.01, the value of Dα = 0.410. Since Dmax does not exceed 0.410, the null
hypothesis cannot be rejected. Thereby, the generated data can be assumed to follow
uniform distribution.

Anderson–Darling Goodness-of-Fit Test

The KS tests are not effective for all the cases. Difference in the tails can be easier
to detect if the difference between the empirical cumulative distribution Fn

X (n) and
FX (x) is divided by

√
FX (x) (1 − FX (x)). In particular, the Anderson–Darling test

is based on large values of the statistic,

A2 =
∫ ∞

−∞

[
Fn

X (x) − FX (x)
]2 1

FX (x) (1 − FX (x))
fX (x) dx (6.20)

The intergration may appear to be different, but A2 can be computed as

A2 =
∑n

i=1 (2i − 1) (ln (ui ) + ln (1 − un+1 − i))

n
− n (6.21)

where ui = FX (xi ) is the value of the theoretical cumulative distribution at the i th
largest observation xi . The null hypothesis is rejected for the large values of the
statistic A2. As a guideline, the large sample 5% point is 2.492 and the 1% points
is 3.857. It has been suggested that these critical values are quite accurate even for
samples as small as 10.
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Example 6.4.18
Using the data provided in Example6.4.17, check whether the data set follows uni-
form distribution using Anderson–Darling test at a significance level of 0.01.

Solution Null hypothesis: Sample follows the given uniform distribution
Alternative hypothesis: Sample does not follow the given uniform distribution
Level of significance: α = 0.01 (given)
For α = 0.01, the value of A2

α = 3.857. The test statistic can be evaluated as

A2 =
(
(2 − 1)

[
ln

(
2.4

30
×

(
1 − 28.7

30

))]
+ (4 − 1)

[
ln

(
4.4

30
×

(
1 − 28.2

30

))]
+ · · · − 10

)
/10

= 0.5267

As A2 < A2
α, the null hypothesis cannot be rejected at a significance level of 0.01.

Thereby, it can be concluded that the given sample follows uniform distribution.

6.5 MATLAB Examples

This section will provide sample scripts for solving examples using MATLAB. A
brief description of each command line is provided at the end of each line after %
symbol. The sample code for solving Example6.4.5 is given in Box6.1.

Box 6.1 MATLAB script to solve Example6.4.5
� �

1 c l e a r a l l ; c l c ; c l o s e a l l
2 % Inputs
3 m=570; % mean value
4 x=[543 , 496, 523,450, 576, 590, 505];
5 % Rainfall depth in mm (Sample data)
6

7 % Test the null hypothesis that the data comes from a
8 %population with mean equal to or greater than 570, against
9 %the alternative that the mean is less than 570.

10 [h,p,ci ,stats] = ttest(x,m, ’Alpha ’ ,0.05,’Tail’,’left’);
11 % t statistics is used as the standard deviation is to be
12 %evaluated from the sample.
13

14 % Display results
15 output_file =[’output ’ filesep () ’code_1_results.txt’];
16 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;
17 f p r i n t f (’ h= %d\n p= %0.4f \n ci = (%d, %2.3f)\n’,h,p,ci(1),ci(2))

;
18 f p r i n t f (’ stats\n\t tstat= %1.3f\n\t df=%d\n\t sd =%2.3f\n’ ,...
19 stats.tstat ,stats.df ,stats.sd);
20 d i a r y off;

� �
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The result for script provided in Box6.1 is given in Box6.2. The returned value
of h = 1 indicates that ‘ttest’ rejects the null hypothesis at the 5% significance
level, in favor of the alternate hypothesis The value of p signifies the p-value. The
concluding remark and the p-value are the same as evaluated in the solution of
Example6.4.5.

Box 6.2 Results for script provided in Box6.1
� �

1 h= 1
2 p= 0.0266
3 ci = (-Inf , 561.634)
4 stats
5 tstat= -2.401
6 df=6
7 sd =48.323

� �

Similarly, the sample code for solving Example6.4.17 is provided in Box 6.3.

Box 6.3 MATLAB script to solve Example6.4.17
� �

1 c l e a r a l l ; c l c ; c l o s e a l l
2

3 % Generation of random variables
4 x=[4.8 , 14.8, 28.2, 23.1, 4.4, 28.7, 19.5, 2.4, 25.0, 6.2];
5

6 %Defining the CDF of the uniform distribution
7 test_cdf = makedist(’Uniform ’,’lower ’,0,’upper ’ ,30);
8

9 %Fitting the given uniform distribution using KS Test
10 [h,p,ksstat] = kstest(x,’CDF’,test_cdf ,’Alpha ’ ,0.01);
11

12 % Display results
13 output_file =[’output ’ filesep () ’code_2_results.txt’];
14 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;
15 f p r i n t f (’ h=%d\n p=%0.4f \n ksstat = %0.4f\n’,h,p,ksstat);
16 d i a r y off;

� �

The output of Box6.3 is provided in Box6.4. The returned value h = 0 indicates that
‘kstest’ does not reject the null hypothesis at the 1% significance level. There-
fore, the data follows uniform distribution as concluded from the solution of Exam-
ple6.4.17.

Box 6.4 Results for script provided in Box 6.3
� �

1 h=0
2 p=0.7827
3 ksstat = 0.1933

� �

Exercise

6.1 Test the claim that the mean annual rainfall in a semiarid region is 750 mm
considering significance level of 5%. Also, evaluate the p-value. Using 20 sample
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data, the mean and standard deviation are calculated as �X = 725.5 mm, S = 200
mm. (Ans: Can’t reject the claim; p-value: 0.6.)

6.2 The 25 years record of observed wind data at a location shows the standard devi-
ation is 76.85 km/h. Considering 95% confidence level, test the hypothesis whether
the standard deviation of wind speed at that location is less than 72.53 km/h. (Ans:
Reject the hypothesis at the given confidence level.)

6.3 The mean annual evaporation from a reservoir is estimated as 1360 mm with
standard deviation of 204 mm using 40 years data. Test the hypothesis that μ = 1500
mm considering the level of significance as 0.01. (Ans: Reject the hypothesis at the
given confidence level.)

6.4 Test the hypothesis that annual average local sea level at station A is 30 mm
higher than another station B at significance level of 0.01 and 0.05. Also, determine
whether the variability at station A is greater than station B at 0.01 significance level.
Estimated sample statistics are obtained as �X A = 76 mm, SA = 15 mm and �X B =
59.6 mm, SB = 12.5 mm using 60 years of data. (Ans: Reject the hypothesis at both
levels of significance; Yes, variability at station A is greater than station B.)

6.5 The temperature data during the month of June at a city is given in the following
table.

Year 2010 2011 2012 2013 2014 2015 2016

Temperature (◦C) 43.6 46.4 44.9 45.7 47.1 44.2 42.8

Test the claim that the mean temperature is greater than 45◦C at a significant level
of (a) 0.01 and (b) 0.05. (Ans: Can’t reject the claim at both levels of significance.)

6.6 The meteorologists claimed that at least 95% of the stream-flow measuring
devices are functioning properly. 160 gauges are examined, and 15 gauges are found
to be damaged. Test the claim of meteorologists using a significance level of 0.01
and 0.05. (Ans: Reject the claim at both levels of significance.)

6.7 Two teams A and B went to collect soil samples for field measurements of soil
moisture. 200 and 120 samples were collected by them, respectively. Later, it is found
that 16 and 8 samples are not usable, collected by team A and B, respectively. Test
the hypothesis that (a) both the teams were showing equal proficiency in collecting
the samples (proportions are equal), (b) If not, which team is more efficient in terms
of collecting usable samples? Use α = 0.05 for both the cases. (Ans: (a) Reject
the hypothesis that both the teams are showing equal proficiency in collecting the
samples, (b) Team A is better.)

6.8 Two groups of groundwater measuring wells are considered depending on the
topographical characteristics. Group I shows a mean depth of 10.32 m and standard
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deviation of 1.18 m. Similarly, Group II shows a mean depth of 13.30 m and standard
deviation of 0.96 m. Find out whether the difference between two groups is signif-
icant, using α = 0.01 and 0.05. Also, calculate the p-value. (Ans: The difference
between two groups is significant at both significance level; p-value = 6.9× 10−80.)

6.9 The following streamflow measurements are taken from two different outlets.

Outlet 1 (cumec) 7268 7130 7351 7070 7346
Outlet 2 (cumec) 6954 7332 7043 6825 7350

Test whether the difference between the means of both the outlets is significant
using α = 0.01. (Ans: The difference between observations of two outlets is not
significant at given significance level.)

6.10 Themean annual rainfall at a locationwas estimated as 1100 cmwith a standard
deviation of 120 cm during pre-industrialization period. Recently, 20 observations
are considered and the mean is estimated as 1030 cm. Test the hypothesis that the
mean annual rainfall has not changed, using 0.05 and 0.01 significant levels. Assume
that standard deviation remains same. (Ans: The mean annual rainfall has changed.)

6.11 60 observations on July rainfall are taken at rainguage station A, and variance
is estimated 240mm2. Similarly, 100 observations are taken at rain gauge station B
and variance is estimated as 160mm2. Test the hypothesis that variance at station A
is greater than station B using (a) α = 0.05 and (b) α = 0.01. (Ans: Variance at
station A is not greater than station B at both significance level.)

6.12 Number of rainy days is obtained from three stations. At station A, 41 out of
120, at station B, 27 out of 80, and at station C, 22 out of 100 days were found to be
rainy days. Use 0.05 level of significance to test whether the proportion of rainy days
is same at all three stations. (Ans: The proportions are same at significance level of
0.05.)

6.13 Before and after the installation of a new rain gauge station, the variances
are estimated as 106 mm and 128 mm using monthly data for 1 year. Check if the
rainfall measurement remains consistent with respect to the variance before and after
the installation, at a significance level of 0.05 and 0.01. (Ans: There is no significant
increase in variability at both the significance level.)



Chapter 7
Regression Analysis and Curve Fitting

Manyapplications in hydrology andhydroclimatology dealwith studying
the relationship between the associated variables. The target variable
is known as dependent variable, whereas other variables are known as
independent variables. In statistics, the procedure of developing such
relationship between dependent and independent variables is called
regression analysis. The fitted statistical model is termed as regression
model. Such models can be used for assessment of the dependent vari-
able, knowing the independent variables. There are different types of
regression models, and every regression model consists of some mathe-
matical formulation with parameters to relate independent variables to
dependent variable. All these types of regression models are discussed
in this chapter.

7.1 Simple Linear Regression

One of the most commonly used models in hydrology is based on the assumption of
a linear relationship between two variables. In this particular model, we aim toward
representing a dependent variable in terms of linear equation of single independent
variable. For example, let us estimate runoff using precipitation. In this case, runoff
is the dependent variable Y , whereas precipitation is the independent variable X .
It can be noted that observed values of dependent variable Y may vary even for a
specific value of independent variable X owing to the uncertainty associated with
it arising from unknown factors. Hence, Y is a random variable whose distribution
is dependent on X . In such cases, the relationship between X and the mean of the
distribution of Y is referred to as regression curve of Y on X .

Considering the regression curve to be linear, the regression equation is given by,

Y = α + βX + ε (7.1)
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where ε is the difference between observed Y and the estimated Y (represented as
Ŷ ), termed as residual. The value of ε will depend on the error in measurement
and the influence of unknown factors on Y . For fitting a linear regression, following
assumptions are made,

(i) The relationship between the X and mean of Y is a straight line. Hence, for a
specific value of X and Y (represented by xi and yi , respectively), the regression
model is given by,

yi = α + βxi + εi

the random variables yi are independently normally distributed with a mean
of α + βxi and variance equal to standard error (represented by σ 2), for i =
{1, 2, . . . , n}

(ii) The residuals (εi ) are independent and normally distributed with a mean of zero
and the variance of σ 2.

For Eq.7.1, the estimates of α and β (say a and b) can be calculated using observed
values. Hence, the estimated dependent variable (denoted as Ŷ ) is given by,

Ŷ = a + bX (7.2)

Here, it should be noted that the estimated Y is the most expected value of Y given
X . In other words, Ŷ is mean of distribution of Y given X .

The above equation is a equation of straight line with slope b and intercept a.
This line is called fitted or estimated regression line. Further, due to uncertainty of
Y , the Ŷ differs from Y (the difference is termed residual, as stated before). The i th
residual (εi ) is given by,

εi = yi − ŷi (7.3)

where ŷi is the estimate for yi (i.e., i th observation of Y ) using the Eq. 7.2. The
aim of regression line fitting is to get the estimate of α and β (say a and b), such
that the prediction errors are minimum. It is not possible to minimize all the errors
simultaneously, and thereby, the sum of squared errors is minimized. However, pre-
diction error may have positive or negative values. Therefore, a sign-independent
criterion is needed, such as minimization of either

∑n
i=1 |εi | or ∑n

i=1 ε2i . Mathemat-
ically, working with absolute values is difficult as compared to working with square
function. Hence,

∑n
i=1 ε2i is minimized to get the estimate of α and β (i.e., a and b).

As the sum of squared errors is minimized for estimation of regression parameters,
this method is called the method of least squares and estimated parameters are
called least square estimates . The method of least square is described as follows.
The sum of squared errors can be expressed as a function of parameters as,

S(α, β) =
n∑

i=1

ε2i =
n∑

i=1

[yi − (α + βxi )]
2 (7.4)
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If a and b are estimate of α and β such that the sum of squared errors is minimized
when α = a and β = b, then partial derivative of S with respect to α and β at α = a
and β = b should be zero.

∂S

∂α

∣
∣
∣
∣
α=a, β=b

= −2
n∑

i=1

(yi − a − bxi ) = 0

Hence,
n∑

i=1

(yi − a − bxi ) = 0 (7.5)

∂S

∂b

∣
∣
∣
∣
α=a, β=b

= −2
n∑

i=1

xi (yi − a − bxi ) = 0

Hence,
n∑

i=1

xi (yi − a − bxi ) = 0 (7.6)

Thereby, by eliminating a and solving Eqs. 7.5 and 7.6 for b, the least square
estimates of b can be written as,

b =
[

n∑

i=1

xi yi −
n∑

i=1

xi

n∑

i=1

yi/n

] / ⎡

⎣
n∑

i=1

x2i −
(

n∑

i=1

xi

)2 /

n

⎤

⎦ (7.7)

b = Sxy
Sxx

(7.8)

where

Sxy =
n∑

i=1

xi yi −
∑n

i=1 xi
∑n

i=1 yi
n

and Sxx =
n∑

i=1

x2i −
(∑n

i=1 xi
)2

n
(7.9a)

Alternatively, if the i th deviation of X and Y from their respective means is given by
xdi and ydi , respectively, then,

Sxy =
n∑

i=1

xdi ydi and Sxx =
n∑

i=1

x2di (7.9b)

Further, the least square estimates of a can be written as,

a = 1

n

(
n∑

i=1

yi − b
n∑

i=1

xi

)

= �Y − b�X (7.10)

The individual deviations of the observations yi from their fitted values ŷi = a+bxi
are called the residuals. Thus, i th residual is expressed by,
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εi = yi − a − bxi (7.11)

The minimum value of the sum of square prediction errors is called the residual sum
of squares (RSS) or sum of squared errors (SSE).

SSE =
n∑

i=1

(yi − a − bxi )
2 (7.12)

Example 7.1.1
For a large catchment, the precipitation and runoff are being recorded monthly. The
records for 2 years are tabulated in the following table:

The variables are assumed to be linearly related. Work out a relationship between
the monthly precipitation and runoff for the location and use the relationship to
estimate the expected amount of runoff generated when monthly precipitation is
14 cm (Table7.1).

Solution The runoff and precipitation at monthly scale are assumed to be linearly
related. A scattergram (Fig. 7.1) between the variables reveals that the relationship
is linear. Let us consider Y to be a random variable for monthly runoff and X to be
a random variable for monthly precipitation. Relationship between X and expected
value of Y , being linear, is expressed as (Eq.7.2),

Ŷ = bX + a

The parameters b and a can be estimated using the Eqs. 7.8, 7.9a and 7.10, respec-
tively. These calculations are tabulated in Table7.2.

Table 7.1 Monthly precipitation (X in cm) and runoff (Y in cm) for 2years

Month X Y Month X Y

January, 2010 6.9 2.4 January, 2011 5.5 1.4

February, 2010 6.4 1.1 February, 2011 11.4 6.3

March, 2010 6.5 1.7 March, 2011 10.8 4.4

April, 2010 5.1 0.5 April, 2011 7.5 1.8

May, 2010 7.1 1.8 May, 2011 8.2 4.2

June, 2010 7.1 2.0 June, 2011 7.9 2.9

July, 2010 10.2 4.2 July, 2011 4.1 0.0

August, 2010 9.9 3.0 August, 2011 5.0 1.3

September, 2010 8.4 4.7 September, 2011 6.7 1.3

October, 2010 5.8 3.4 October, 2011 4.3 0.0

November, 2010 10.1 4.4 November, 2011 10.4 5.9

December, 2010 7.3 2.8 December, 2011 3.9 2.4
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Fig. 7.1 Scattergram between monthly runoff and monthly precipitation

From the table, n = 24,
n∑

i=1
xi = 176.5,

n∑

i=1
yi = 63.9,

n∑

i=1
x2i = 1410.51,

n∑

i=1
xi yi =

544.62 and
n∑

i=1
y2i = 239.09.

Using Eq.7.8, the parameter b can be calculated as,

Sxy =
[

n∑

i=1

xi yi −
(

n∑

i=1

xi

n∑

i=1

yi

)/

n

]

= 544.62−(176.5×63.9)
/
24 = 74.689

Sxx =
⎡

⎣
n∑

i=1

x2i −
(

n∑

i=1

xi

)2 /

n

⎤

⎦ = 1410.51 − (176.5)2/24 = 112.5

b = Sxy
Sxx

= 74.689

112.5
= 0.664

Using Eq.7.10, the parameter a is calculated as,

a = 1

n

(
n∑

i=1

yi − b
n∑

i=1

xi

)

= (63.9 − 0.664 × 176.5)
/
24 = −2.220

Hence, the relationship between the expected monthly runoff (Ŷ in cm) and
monthly precipitation (X in cm) is expressed as (Eq.7.2),

Ŷ = 0.664X − 2.220
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Table 7.2 Calculation for estimating SLR coefficients

S. No. yi xi x2i xi yi y2i
1 2.4 6.9 47.61 16.56 5.76

2 1.1 6.4 40.96 7.04 1.21

3 1.7 6.5 42.25 11.05 2.89

4 0.5 5.1 26.01 2.55 0.25

5 1.8 7.1 50.41 12.78 3.24

6 2.0 7.1 50.41 14.20 4.00

7 4.2 10.2 104.04 42.84 17.64

8 3.0 9.9 98.01 29.70 9.00

9 4.7 8.4 70.56 39.48 22.09

10 3.4 5.8 33.64 19.72 11.56

11 4.4 10.1 102.01 44.44 19.36

12 2.8 7.3 53.29 20.44 7.84

13 1.4 5.5 30.25 7.70 1.96

14 6.3 11.4 129.96 71.82 39.69

15 4.4 10.8 116.64 47.52 19.36

16 1.8 7.5 56.25 13.5 3.24

17 4.2 8.2 67.24 34.44 17.64

18 2.9 7.9 62.41 22.91 8.41

19 0.0 4.1 16.81 0.00 0.00

20 1.3 5.0 25.00 6.50 1.69

21 1.3 6.7 44.89 8.71 1.69

22 0.0 4.3 18.49 0.00 0.00

23 5.9 10.4 108.16 61.36 34.81

24 2.4 3.9 15.21 9.36 5.76

Total 63.9 176.5 1410.51 544.62 239.09

The expected amount of runoff generated by monthly precipitation of 14 cm

= 0.664 × 14 − 2.220 = 7.08 cm

Example 7.1.2
In a large district, the average monthly air temperature and the average monthly
evaporation over 15 water bodies are given below.

The evaporation is expected to increase with temperature. Determine the linear
regression equation for estimating the expected evaporation (Y ) on the basis of tem-
perature (X ) information. Also, calculate the standard error of estimate (Table7.3).

Solution A linear regression model between the expected monthly evaporation (Y )
and average monthly air temperature (X ) is given by:
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Table 7.3 Average monthly air temperature and evaporation for 15 different water bodies

Location no. Average monthly
temperature (◦C)

Average monthly
evaporation (mm)

1 22.6 5.2

2 22.1 4.7

3 20.1 2.8

4 29.0 11.3

5 26.7 9.1

6 21.8 4.4

7 23.2 5.8

8 25.6 8.1

9 23.9 6.4

10 26.7 9.1

11 28.4 10.8

12 24.3 6.8

13 29.0 11.3

14 23.6 6.2

15 22.3 4.9

Ŷ = a + bX

The parameters a and b can be estimated using the Eqs. 7.8, 7.9b and 7.10. These
calculations are tabulated in Table7.4.

Hence, n = 15,
n∑

i=1
xi = 369.3,

n∑

i=1
yi = 106.9, Syy =

n∑

i=1
y2di = 101.03, Sxx =

n∑

i=1
x2di = 110.14, and Sxy =

n∑

i=1
xdi ydi = 105.48

b = Sxy
Sxx

= 105.48

110.14
= 0.958

a = �Y − b�X = (106.9 − 0.958 × 369.3)
/
15 = −16.451

Hence, linear regression model between the expected monthly evaporation (Ŷ in
mm) and average monthly air temperature (X in ◦C) is given by:

Ŷ = 0.958X − 16.451

Standard error of estimate (se) is the sample estimate of σ .
(
s2e

)
being an estimate of

σ 2, is given by dividing sum of squared errors by (n − 2).
From the table, sum of squared errors= ∑(

yi − ŷi
)2 = ∑

(e)2 = 0.013. Hence,
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Table 7.4 Calculation of SLR parameters for Example 7.1.2

Location
no.

yi
(mm)

xi (◦C) ydi
(yi −�y)

xdi
(xi −�x)

(ydi )3 (xdi )2 xdi ydi ŷi εi
(yi− ŷi )

ε2i

1 5.2 22.6 −1.93 −2.02 3.71 4.08 3.89 5.199 0.001 0.000

2 4.7 22.1 −2.43 −2.52 5.89 6.35 6.12 4.720 −0.020 0.000

3 2.8 20.1 −4.33 −4.52 18.72 20.43 19.56 2.804 −0.004 0.000

4 11.3 29.0 4.17 4.38 17.42 19.18 18.28 11.330 −0.030 0.001

5 9.1 26.7 1.97 2.08 3.89 4.33 4.10 9.127 −0.027 0.001

6 4.4 21.8 −2.73 −2.82 7.43 7.95 7.69 4.432 −0.032 0.001

7 5.8 23.2 −1.33 −1.42 1.76 2.02 1.88 5.774 0.026 0.001

8 8.1 25.6 0.97 0.98 0.95 0.96 0.95 8.073 0.027 0.001

9 6.4 23.9 −0.73 −0.72 0.53 0.52 0.52 6.444 −0.044 0.002

10 9.1 26.7 1.97 2.08 3.89 4.33 4.10 9.127 −0.027 0.001

11 10.8 28.4 3.67 3.78 13.49 14.29 13.89 10.755 0.045 0.002

12 6.8 24.3 −0.33 −0.32 0.11 0.10 0.10 6.827 −0.027 0.001

13 11.3 29.0 4.17 4.38 17.42 19.18 18.28 11.330 −0.030 0.001

14 6.2 23.6 −0.93 −1.02 0.86 1.04 0.95 6.157 0.043 0.002

15 4.9 22.3 −2.23 −2.32 4.96 5.38 5.17 4.911 −0.011 0.000

Total 106.9 369.3 0.00 0.00 101.03 110.14 105.48 107.01 −0.11 0.013

s2e = 1

n − 2

∑ (
yi − ŷi

)2 = 0.013

15 − 2
= 0.001

Standard error of estimate (se) = √
0.001 = 0.032

7.2 Curvilinear Regression

In the previous section, the regression equation is considered to be linear that is for
a particular value of X , the mean of the distribution of Y is given by α + βx . In
this section, we will consider cases where the regression curve is nonlinear, but the
least square method of analysis is still applicable. Such cases of regression are called
curvilinear or nonlinear regression. These regression models are classified into two
categories:

(i) Model transformable to linear regression;
(ii) Model not transformable to linear regression.
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7.2.1 Model Transformable to Linear Regression

Some of the curvilinear regressionmodel, if transformed, can be converted into linear
regression model. After transformation, the least square estimates of parameter can
be obtained by the method explained in the previous section. Two very commonly
used relationships that can be fitted using the least squaremethod after transformation
are as follows:

(i) Reciprocal Function:

y = 1

α + βx
(7.13)

It represents a linear relationship between x and 1
/
y, namely

1

y
= α + βx (7.14)

(ii) Power Function:
y = αxβ (7.15)

It represents a linear relationship between log(x) and log(y), namely

log y = log α + β log x (7.16)

Example 7.2.1
Multiple models exist for modeling infiltration rate with respect to time. In a flooding
type infiltration test, following infiltration capacity data is given in Table7.5.

The maximum rate at which soil can absorb water at a given time is defined as
infiltration capacity. It is denoted by ft . For most of soil, the infiltration capacity at
initial time is highest (known as initial infiltration capacity, denoted by f0), which
gradually decreases to steady-state infiltration capacity (also known as constant or
ultimate infiltration capacity, denoted by fc) at t = tc.

(a) Plot the curves for

(i) infiltration capacity versus time;
(ii) infiltration capacity versus cumu-

lative infiltration;

(iii) cumulative infiltration versus
time;

(iv) ln( ft − fc) versus time.

(b) Find the least square estimate of Horton’s infiltration model parameter given by,

ft = fc + ( fo − fc) e
−kt
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Table 7.5 Time since start of infiltration experiment and corresponding cumulative infiltration
depth

Time since experiment
start (minutes)

5 10 20 30 45 60 75 90 105 120

Cumulative infiltration
depth (cm)

1.30 2.50 4.30 5.75 7.40 8.75 9.90 10.95 11.90 12.85

where ft is the infiltration capacity at time t . Similarly, f0 is the infiltration
capacity at t = 0 and fc is the constant infiltration capacity at t = tc.

(c) Fit a Kostiakov infiltration model over the data given by,

Ft = atb

where Ft is the cumulative infiltration capacity at time t .

Solution (a) Incremental infiltration depths along with various other parameters
are calculated and shown in following table.

Time in
(t)
(min)

Cum. depth
(Ft )
(cm)

Incremental
depth (Ft−1
−Ft )
(cm)

t in (hrs) Infiltration
capacity ( ft )
(cm/h)

(1
/
Ft ) ln( ft− fc)

0
5 1.30 1.30 0.08 15.6 0.77 2.47
10 2.50 1.20 0.17 14.4 0.40 2.36
20 4.30 1.80 0.33 10.8 0.23 1.95
30 5.75 1.45 0.50 8.7 0.17 1.59
45 7.40 1.65 0.75 6.6 0.14 1.03
60 8.75 1.35 1.00 5.4 0.11 0.47
75 9.90 1.15 1.25 4.6 0.10 −0.22
90 10.95 1.05 1.50 4.2 0.09 −0.92
105 11.90 0.95 1.75 3.8 0.08
120 12.85 0.95 2.00 3.8 0.08

The relationship between different quantities is shown graphically in following
figures.
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(b) The Horton’s infiltration equation can be transformed to linear equation as,

ft = fc + ( fo − fc) e
−kt

ft − fc = ( fo − fc) e
−kt

ln( ft − fc) = ln ( fo − fc) − kt

Hence, by comparing this form of Horton’s equation and a linear regression
model with ln( ft − fc) as y and t as x ,

ŷ = a + bx

From the table, fc = 3.8, fo = 15.6, a = ln ( fo − fc) = ln(15.6−3.8) = 2.468
and b = −k.
Form Eq.7.10,

a = �y − b�x
or, 2.468 = �y + k�x
or, 2.468 = 1.091 + k(0.6975)

or, k = (2.468 − 1.091)
/
0.6975 = 1.9742

Note that�x is computed using only first 8 values of x , i.e., t , since only 8 values
of y, i.e., ln ( ft − fc), are available.
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Hence, fitted Horton’s equation is given by

ln( ft − 3.8) = 2.468 − 1.974t

or, ft − 3.8 = e2.468e−1.974t

or, ft = 3.8 + 11.8e−1.974t

(c) The Kostiakov infiltration model can be transformed to linear equation as,

Ft = atb

ln (Ft ) = ln (a) + b ln (t)

Hence, ln(Ft ) are ln(t) in following table.

Time
(min)

Cum. Depth
(Ft )
(cm)

t in
(hrs)

ln(Ft ) ln(t)

5 1.30 0.08 0.26 −2.48
10 2.50 0.17 0.92 −1.79
20 4.30 0.33 1.46 −1.10
30 5.75 0.50 1.75 −0.69
45 7.40 0.75 2.00 −0.29
60 8.75 1.00 2.17 0.00
75 9.90 1.25 2.29 0.22
90 10.95 1.50 2.39 0.41
105 11.90 1.75 2.48 0.56
120 12.85 2.00 2.55 0.69

The estimates of parameters of this equation (ln (a) and b) can be obtained using
the Eqs. 7.8 and 7.10 as done in Example7.1.1.

ln (a) = 2.141 and b = 0.702

or, a = exp (2.141) = 8.508

So, Kostiakov infiltration model for the observed infiltration data is given by

Ft = 8.508t0.702

7.2.2 Model Not Transformable to Linear Regression

Secondly, we will consider the case where the functional form of the regression Y on
X is not transformable to linear regression. For example, a polynomial fit between
Y and X is given by:
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y = β0 + β1x + β2x
2 + · · · + βpx

p + ε (7.17)

where the degree of the equation is determined by inspecting the data. The corre-
sponding coefficients can be calculated by the method of least square as discussed
in the previous section. The coefficients of fit (βi ) can be obtained by considering
different powers of independent variable as separate independent variable and using
the concept of multiple linear regression, which will be discussed in the next section.

7.3 Multiple Linear Regression

In the previous section, we have discussed the relation between a dependent and a
single independent variable. However, in many cases, the dependent variable may
depend onmore than one independent variables. For example, the runoff is dependent
on precipitation depth, duration of rainfall, initial losses, and infiltration indices. A
general multiple linear regression (MLR) model can be represented as,

Y = β0 + β1X1 + β2X2 + · · · + βp X p + ε (7.18)

where Y is the dependent variable and X1, X2, . . . , X p are the independent variables
and β0, β1, β2, . . . , βp are the unknown parameters. It should be noted that while
fitting MLR, assumptions of simple linear regression should hold, and additionally,
the data should not have multicollinearity. Multicollinearity represents a situation
that linear combination of some inputs (independent variables) results in zero.

Now, a set of observed data will consist of n observations of Y and corresponding
n observations of p independent variables. Thereby, the Eq.7.18 can be written as,

Yi = β0 +
p∑

j=1

β j Xi, j (7.19)

whereYi is the i th observation of the dependent variable and Xi, j is the i th observation
of the j th independent variable. In the form of matrix, it can be written as,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Y1
Y2
Y3
...

Yn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
...

1

X1,1 X1,2 X1,3 · · · X1,p

X2,1 X2,2 X2,3 · · · X2,p

X3,1 X3,2 X3,3 . . . X3,p
...

...
...

. . .
...

Xn,1 Xn,2 Xn,3 · · · Xn,p

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

β0

β1

β2
...

βp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(7.20)

or,
Y = Xβ (7.21)
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where Y is an n × 1 vector of the dependent variable, X is an n × (p + 1) matrix of
the independent variables, and β is a (p+ 1)× 1 vector of the unknown parameters.
In order to find out the values of the parameters, we can use the least square method
as utilized in the earlier sections. Hence by minimizing

∑n
i=1 ε2i , we can obtain β̂.

In matrix form, the sum of squared error can be written as,

n∑

i=1

ε2i = eT e =
(
Y − X β̂

)T (
Y − X β̂

)
(7.22)

Differentiating the above equation with respect to β̂ and setting the value of the
expression to zero, we get

XTY = XT X β̂ (7.23)

The solution for β̂ can be obtained by multiplying both sides of the equation with
(
XT X

)−1
. We finally obtain

β̂ = (
XT X

)−1
XTY (7.24)

Example 7.3.1
The average monthly evapotranspiration is estimated using the average temperature
and average wind speed by the following model using the data given in Table 7.6.

E (Y |X1, X2) = β0 + β1X1 + β2X2

where Y : average monthly evapotranspiration (in mm)
X1: average wind speed (in kmph)
X2: average temperature (in ◦C)

Determine β0, β1, and β2.

Table 7.6 The average monthly evapotranspiration and wind speed and temperature for 10months

Observation no. Evapotranspiration (Y )
(mm)

Wind speed (X1)
(kmph)

Temperature (X2)
(◦C)

1 7 12 22.30

2 6 10 24.50

3 5 8 22.30

4 11 15 21.90

5 13 19 25.60

6 12 22 26.20

7 26 25 27.80

8 11 14 23.80

9 13 18 29.00

10 11 13 27.40
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Solution The transpose of independent variable matrix X is given by

X =
⎡

⎣
1 1 1 1 1 1 1 1 1 1

12 10 8 15 19 22 25 14 18 13
22.30 24.50 22.30 21.90 25.60 26.20 27.80 23.80 29.00 27.40

⎤

⎦

T

Similarly, the transpose of dependent variable matrix is given by:

Y = [
7 6 5 11 13 12 26 11 13 11

]T

β̂ = (
XT X

)−1
XTY =

⎡

⎣
−8.507
0.882
0.249

⎤

⎦

Hence, the relationship is given by

E (Y |X1, X2) = −8.507 + 0.882X1 + 0.249X2

Example 7.3.2
At any given location, the mean annual temperature is estimated from the average
elevation (in m) above mean sea level (MSL) and the latitude (◦N) by the following
model using the data given in Table 7.7.

E (Y |X1, X2) = β0 + β1x1 + β2x2

where Y : mean annual temperature (in ◦C)
X1: average elevation (in m) above MSL
X2: latitude (◦N)

Determine the coefficients β0, β1, and β2, respectively.

Solution The independent and dependent variables matrix (X and Y , respectively)
is given by,

X =
⎡

⎣
1 1 1 1 . . . 1 1 1 1

600 587 651 574 . . . 591 601 577 629
33.54 26.77 31.37 29.66 . . . 30.66 29.58 27.51 34.28

⎤

⎦

T

Y = [
25.5 30.0 26.7 28.1 . . . 27.4 28.1 29.5 24.9

]T

(
XT X

) =
⎡

⎣
20.00 12058.00 597.53

12058.00 7297068.00 361654.95
597.53 361654.95 18000.43

⎤

⎦
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Table 7.7 Mean annual temperature, average elevation, and latitude for 20 places

Observation no. Mean annual
temperature (◦C)

Average elevation (m) Latitude (◦N)

1 25.5 600 33.54

2 30.0 587 26.77

3 26.7 651 31.37

4 28.1 574 29.66

5 29.1 621 27.92

6 26.2 623 32.37

7 26.0 644 32.48

8 25.0 670 33.90

9 24.9 676 33.86

10 28.3 592 29.21

11 28.5 583 29.01

12 29.0 539 28.61

13 30.0 599 26.69

14 30.3 600 26.09

15 31.0 548 25.48

16 29.0 553 28.54

17 27.4 591 30.66

18 28.1 601 29.58

19 29.5 577 27.51

20 24.9 629 34.28

(
XT X

)−1 =
⎡

⎣
13.3815 −0.0228 0.0149
−0.0228 0.00007 −0.0006
0.0149 −0.0006 0.0131

⎤

⎦

(
XTY

) =
⎡

⎣
557.500

335081.400
16553.339

⎤

⎦

β̂ = (
XT X

)−1
XTY =

⎡

⎣
50.002
−0.004
−0.651

⎤

⎦

Hence, the relationship is given by

E (Y |X1, X2) = 50 − 0.004X1 − 0.651X2
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Example 7.3.3
For the data presented in Example 7.2.1, the cumulative infiltration depth and time are
found to follow second-degree polynomial regression. Develop a curvilinear regres-
sion model for predicting cumulative infiltration depth using time as independent
variable.

Solution From Example7.2.1

Cumulative
Depth (Ft )
(cm)

t
(hr)

t2

(hr2)

1.30 0.08 0.0064
2.50 0.17 0.0289
4.30 0.33 0.1089
5.75 0.50 0.2500
7.40 0.75 0.5625
8.75 1.00 1.0000
9.90 1.25 1.5625
10.95 1.50 2.2500
11.90 1.75 3.0625
12.85 2.00 4.0000

Taking t as first independent variable and t2 as second independent variable, the
transpose of independent and dependent variable matrix is given by:

X =
⎡

⎣
1 1 1 1 1 1 1 1 1 1

0.08 0.17 0.33 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0064 0.0289 0.1089 0.2500 0.5625 1.0000 1.5625 2.2500 3.0625 4.0000

⎤

⎦

T

Y = [1.30 2.50 4.30 5.75 7.40 8.75 9.90 10.95 11.90 12.85]T

β̂ = (
XT X

)−1
XTY =

⎡

⎣
0.9253
9.9545

−2.0674

⎤

⎦

So the regression model is given by

F̂t = 0.9253 + 9.9545t − 2.0674t2.

7.4 Evaluation of Regression Model

After fitting the regression model over the data, the adequacy of the fitted regression
model is required to be checked. This can be checked by determining how much
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of the variability in dependent variable is explained by the regression model. The
individual value of observed Y , i.e., yi can be expressed as sum of three components
as,

yi = �Y + (ŷi − �Y ) + (yi − ŷi )

or,
(
yi − �Y ) = (

yi − ŷi
) + (

ŷi − �Y )
(7.25)

Squaring both sides and summing for all values of Y ,

∑ (
yi − �Y )2 =

∑ (
yi − ŷi

)2 +
∑ (

ŷi − �Y )2 +2
∑ (

yi − ŷi
) (

ŷi − �Y )
(7.26)

As
∑ (

yi − ŷi
) (

ŷi − �Y ) = 0 and
∑ (

yi − �Y )2 = ∑
y2i − n�Y 2, so above equation

can be written as,

∑
y2i = n�Y 2 +

∑ (
yi − ŷi

)2 +
∑ (

ŷi − �Y )2
(7.27)

Hence, from Eq.7.27, the total sum of squares of dependent variables (
∑

y2i ) can be
expressed into three following components:

(a) n�Y 2 – sum of squares due to mean (SSM);
(b)

∑(
yi − ŷi

)2
– sum of squared errors or regression residual (SSE);

(c)
∑(

ŷi − �Y )2
– sum of squares due to regression (SSR).

So, total variability in the dependent variable is the sum of variability explained
by regression and variability due to residuals/errors. The adequacy of regression
model can be expressed as ratio of variability explained by the regression model
∑(

ŷi − �Y )2
and total variability in observed dependent variable

∑(
yi − �Y )2

. The
ratio is called coefficient of determination and represented as r2 or R2.

R2 = Sum of variability in dependent variable explained by regression

Total variability in dependent variable

= 1 − Sum of Squared Error

Total variability in dependent variable

=
∑(

ŷi − �Y )2

∑(
yi − �Y )2 =

∑(
a + bxi − a − b�X)2

∑(
yi − �Y )2 = b2

Sxx
Syy

= S2xy
Sxx Syy

(7.28)

The ratio of variability explained by the regression model can never be greater than
total variability of the dependent variable. Hence, the coefficient of determination
ranges between 0 and 1. Closer the R2 to 1, the better the model is.

In the case of multiple linear regression, coefficient of determination also called
coefficient of multiple determination can be calculated using Eq.7.28. However,
with increase in independent variables, the R2 will automatically and spuriously
increase. This may lead to wrong interpretation for the model having large number
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of independent variables. Hence, R2 need to be adjusted for increased number of
independent variables. The adjusted R2 is always smaller than R2 andmaybenegative
also. Adjusted R2 (R2

ad j ) is expressed as

R2
ad j = 1 − Sum of Squared Error

Total variability in dependent variable
× n − 1

n − p − 1

= 1 − (
1 − R2

) × n − 1

n − p − 1

(7.29)

It should be noted that R2
ad j , unlike R2, does not show measure of fit. Rather, R2

ad j
is useful for selecting the variables to be included in a MLR model.

Example 7.4.1
Find the coefficient of determination for the linear regression model obtained in
Example7.1.1.

Solution Variability in X is given by Sxx = ∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

n

where,
(∑n

i=1 xi
)2 = (176.5)2 = 31152.25,

∑n
i=1 x

2
i = 1410.51 and n = 24.

Hence, Sxx = 1410.51 − 31152.25
24 = 1410.51 − 1298.01 = 112.5

Similarly, for Y ,

Syy =
n∑

i=1

y2i −
(∑n

i=1 yi
)2

n
= 239.9 − (63.9)2

24
= 68.956

R2 = (b)2
Sxx
Syy

= (0.664)2
112.5

68.956
= 0.719

Coefficient of determination for linear regression model developed in Example7.1.1
is 0.719, or in other words, the developed model is able to explain 71.90% of
variability in dependent variable.

Example 7.4.2
Find the coefficient of determination for themultiple linear regressionmodel obtained
in Example7.3.1.

Solution Sum of squared of error (SSE) =
∑ (

Y − Ŷ
)2 = ∑

(Y − Xβ)2 = 70.246

Total variance in dependent variable =
∑(

Y − �Y )2 = 308.50

Coefficient of determination = 1 −
∑(

Y−Ŷ
)2

∑
(Y−�Y)2

= 1 − 70.246
/
308.50 = 0.7723

Adjusted coefficient of determination can be calculated using Eq. 7.29.

R2
ad j = 1 − (

1 − R2
) × n − 1

n − p − 1
= 1 − (1 − 0.7723)

10 − 1

10 − 2 − 1
= 0.7072.



248 7 Regression Analysis and Curve Fitting

7.5 Correlation and Regression

Coefficient of correlation is a measure of linear association between dependent and
independent variable. Mathematically, sample correlation coefficient is defined as
the sum of product of standardized variable divided by (n − 1).

r = 1

n − 1

∑ (
xi − �X√

Sxx

) (
yi − �Y
√
Syy

)

= Sxy
√
Sxx Syy

=
√
Sxx

√
Syy

Sxy
Sxx

=
√
Sxx

√
Syy

b

(7.30)
where b is least square estimate of slope for simple linear regression model (β). It
can be observed that if most of the deviation frommean in either of X or Y is of same
sign, then the r will be having positive value. In other words, if both the variables
deviate from mean in similar trend (one increases then other also increases and vice
versa), then the linear association is high. The correlation coefficient can also become
negative if most of the deviation from mean in either of X or Y has opposite signs.
The magnitude of r ranges between −1 and 1. Following inferences about the linear
relationship between the variables can be drawn based on the value of correlation
coefficient.

(i) The magnitude and sign of r represent the strength of linear association and
direction of slope of straight line fit between variables.

(ii) A value of r closer to zero represents very weak linear association between the
variables involved. In such cases, linear regression may not be able to model the
relationship between the variables.

7.6 Correlation and Causality

A high observed correlation does not suggest anything about a cause-and-effect
relationship. Hence, the observation that two variables tend to vary simultaneously in
the same direction does not imply a direct relationship between them. Both variables
may depend upon on unknown variables, and positive correlation is being produced
due the mutual relationship with other variables. These unknown variables are called
lurking variables. Lurking variables are often overlooked when mistaken claims are
made about X causing Y . Hence, the correlation coefficient should not be taken as a
measure of relationship or causality. Sometimes, a causal relationship may also exist
that is opposite to the observed correlation.
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7.7 Confidence Interval

The confidence interval of least square estimates ofα andβ depends upon the estimate
of standard error. The standard error σ 2 is estimated from the deviation of sample
points from the estimated least square line. The estimate of σ 2 from a sample is given
by standard error of estimate (Se). Standard error of estimate is the residual sum of
squares or the sum of squared errors divided by n − 2 and is expressed as,

S2e = 1

n − 2

∑ (
yi − ŷi

)2 = Syy − (
Sxy

)2 /
Sxx

n − 2
(7.31)

For studying the statistics for inference about α and β, i.e., the least square estimators
of the regression coefficients, two following random variables are defined as,

ta = a − α

Se

√
nSxx

Sxx + n (�x)2 and tb = (b − β)

Se

√
Sxx (7.32)

These statistics ta and tb follow t distribution with n − 2 degrees of freedom. To
construct confidence intervals of (1 − α)100% for the regression coefficients α and
β, we substitute for themiddle term of−tα/2 < t < tα/2 for the appropriate t statistic,
leads us to,

− tα/2 <
a − α

Se

√
nSxx

Sxx + n (�x)2 < tα/2 and − tα/2 <
(b − β)

Se

√
Sxx < tα/2

α : a ± tα/2Se

√
1

n
+ (�x)2

Sxx
and β : b ± tα/2Se

1√
Sxx

(7.33)

The estimate ŷ (= a + bx) follows a t−distribution with mean a + bx , variance

S2e
(
1
n + (x−�x)2

Sxx

)
, and degrees of freedom n − 2. Thus, (1 − α)100% confidence

interval of the estimated value (ŷ) is given by,

Y : (a + bx) ± tα/2Se

√
1

n
+ (x − �x)2

Sxx
. (7.34)

Example 7.7.1
For the Example7.1.1, find the 95% confidence interval of the parameter α.

Solution From the solution of Examples7.1.1 and 7.4.1, Sxx = 112.499, Syy =
68.956, Sxy = 74.689,

∑n
i=1 xi = 176.5, and n = 24
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S2e =
Syy − (

Sxy
)2

/
Sxx

n − 2
= 68.956 − (74.689)2/

112.499
24 − 2

= 0.8805

Se = √
0.8805 = 0.9383

For (n − 2) = 24 − 2 = 22 degrees of freedom t0.975 = 2.0739, so 95% confidence
limit for parameter α

α : a ± tα/2Se

√
1

n
+ (�x)2

Sxx
= (−2.220) ± 2.0739 × 0.9383

√

1

24
+ (176.5/24)2

112.499

Hence, the confidence interval is given by,

−3.6265 ≤ α ≤ −0.8134.

Example 7.7.2
For the Example7.1.1, is parameter β equal to unity at 5% level of significance?

Solution The null and alternate hypothesis can be expressed as

• Null hypothesis: β = 1;
• Alternative hypothesis: β �= 1;
• Level of significance = 0.05.

For (n−2) = 24−2 = 22 degrees of freedom, t0.975 = 2.0739 and t0.025 = −2.0739.
Hence, the critical zone is given by (∞, 2.0739] ∪ [−2.0739,−∞).
The test statistic is given by

tb = (b − β)

Se

√
Sxx = (0.664 − 1)

0.9383

√
112.499 = −3.799

Since the statistic fall in the critical zone, the null hypothesis must be rejected.

Example 7.7.3
For the Example7.1.2, check whether the regression line passes through origin at
0.01 level of significance?

Solution If the regression line passes through origin, then its intercept on the y-axis
should be 0. Hence,

• Null hypothesis: α = 0;
• Alternative hypothesis: α �= 0;
• Level of significance = 0.01.

Given (from Example7.1.2): n = 15,
∑n

i=1 xi = 369.3,
∑n

i=1 yi = 106.9,
Syy = ∑n

i=1 y
2
di = 101.029, Sxx = ∑n

i=1 x
2
di = 110.14 and

Sxy = ∑n
i=1 xdi ydi = 105.482
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�x =
∑n

i=1 xi
n

= 369.3

15
= 24.62

se =

√
√
√
√ Syy −

(
Sxy

)2/

Sxx
n − 2

=
√

101.029 − (105.482)2/
110.144

15 − 2
= 0.030

For (n−2) = 15−2 = 13 degrees of freedom, t0.995 = 3.0123 and t0.005 = −3.0123.
Hence, the critical zone is given by (∞, 3.0123] ∪ [−3.0123,−∞).
The test statistic is given by,

ta = a − α

Se

√
nSxx

Sxx + n (�x)2 = −16.459 − 0

0.030

√
15 × 110.14

110.14 + 15(24.62)2
= −232.46

Since the test statistics fall in critical zone, the null hypothesis is rejected at 1%
significance level.

7.8 MATLAB Examples

Simple and multiple linear regression can be done in MATLAB using ‘regress’
function. The ‘regress’ function needs at least two inputs and produces a number
of outputs like regression parameters, their confidence interval, etc. The ‘regress’
function for solving Y = Xβ (Eq. 7.21) is expressed as:

[b,bint,r,rint,stats] = regress(y,X,alpha)

Inputs:

y – vector of values of dependent variables (n × 1),
X – (n× (p+ 1)) matrix of n values of p independent variable where first column
contains all ones and 2nd to (p + 1)th column contain values of independent
variables,
alpha (optional) – level of significance for least square estimates. If user do not
provide ‘alpha’ then its default value is 0.05.

Outputs:

b – vector of regression parameter,
bint – confidence interval of regression parameter at given level of significance,
r –residual for each value of dependent variable,
rint - confidence interval of residual for each value of dependent variable,
stats – some statistical measures (R2), F statistic, p-value, and estimate of
standard error about the fitted regression model.
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A sample code for solving simple linear regression Example7.1.1 and related Exam-
ples7.4.1, 7.7.1 and 7.7.2 is shown in Box7.1. The output of above code is shown in
Box7.2.

Box 7.1 Sample MATLAB code for Example7.1.1 and related examples
� �

1 c l c ; c l o s e a l l ; c l e a r
2

3 %% Inputs
4 precipitation =[6.9;6.4;6.5;5.1;7.1;7.1;10.2;9.9;8.4;5.8;...
5 10.1;7.3;5.5;11.4;10.8;7.5;8.2;7.9;4.1;5;6.7;4.3;10.4;3.9];
6 runoff =[2.4;1.1;1.7;0.50;1.8;2;4.2;3.0;4.7;3.4;4.4;2.8;...
7 1.4;6.3;4.4;1.8;4.2;2.9;0;1.3;1.3;0;5.9;2.4];
8

9 %% Scattergram
10 scatter(precipitation ,runoff);box on;
11 x l a b e l (’Monthly Precipitation (cm)’);
12 y l a b e l (’Monthly Runoff (cm)’);
13 max_val= c e i l (max(max(precipitation ),max(runoff)));
14 h=lsline; s e t (h,’color ’,’r’);
15 l e g e n d (h,’least square fit line’)
16 a x i s ([0 max_val 0 max_val ]);
17

18 %% Regression Fitting
19 Y=runoff;
20 X=[ones( s i z e (precipitation ,1) ,1) precipitation ];
21 alpha =0.05;
22 [b,bint ,r,rint ,stats] = regress(Y,X,alpha);
23

24 %% Display Results
25 output_file =[’output ’ filesep () ’code_1_result .txt’];
26 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;
27 d i s p (’The regression Parameters:’);
28 f p r i n t f (’a = %2.3f and b = %2.3f\n’,b(1), b(2));
29 d i s p (’The confidence Interval of parameters:’);
30 f p r i n t f (’a : %2.3f and %2.3f\n’,bint (1,1), bint (1,2));
31 f p r i n t f (’b : %2.3f and %2.3f\n’,bint (2,1), bint (2,2));
32 f p r i n t f (’Residuals: ’); f p r i n t f (’%2.2f, ’,r); f p r i n t f (’\n’);
33 d i s p (’Statistical Measures for the developed model ’);
34 f p r i n t f (’R^2: %1.3f, \nF Statistics: %1.3f, \np -value: %1.3f, \

nError Variance estimate: %3.2f \n’,stats);
35 d i a r y off;

� �

Box 7.2 Output of sample MATLAB code provided in Box7.1
� �

1 The regression Parameters:
2 a = -2.220 and b = 0.664
3 The confidence Interval of parameters:
4 a : -3.626 and -0.813
5 b : 0.480 and 0.847
6 Residuals: 0.04, -0.93, -0.40, -0.67, -0.69, -0.49, -0.35, -1.35,

1.34, 1.77, -0.09, 0.17, -0.03, 0.95, -0.55, -0.96, 0.98,
-0.12, -0.50, 0.20, -0.93, -0.63, 1.22, 2.03,

7 Statistical Measures for the developed model
8 R^2: 0.719 ,
9 F Statistics: 56.318 ,

10 p-value: 0.000 ,
11 Error Variance estimate: 0.88

� �
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As we can see from Box7.2, the regression model is

Ŷ = 0.664X − 2.220

which we also obtained in Example7.1.1. Other output of the code can be cross
checked with the Examples7.7.1 and 7.7.2.

Similarly, the regress function can be used for solving examples based onmultiple
linear regression, e.g., Example7.3.1. A sample code to solve the Examples 7.3.1
and 7.4.2 is given in Box7.3. The output of above code is shown in Box7.4.

Box 7.3 Sample MATLAB code for Example7.3.1 and associated examples
� �

1 c l c ; c l o s e a l l ; c l e a r
2

3 %% Inputs
4 wind_speed =[12;10;8;15;19;22;25;14;18;13];
5 temperature

=[22.30;24.50;22.30;21.90;25.60;26.20;27.80;23.80;29;27.40];
6 evapotranspiration =[7;6;5;11;13;12;26;11;13;11];
7

8 %% Regression Fitting
9 Y=evapotranspiration ;

10 X=[ones( s i z e (wind_speed)) wind_speed temperature ];
11 alpha =0.05;
12 [b,bint ,r,rint ,stats] = regress(Y,X,alpha);
13

14 %% Display Results
15 output_file =[’output ’ filesep () ’code_2_result .txt’];
16 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;
17 d i s p (’The regression Parameters:’);
18 f p r i n t f (’%2.2f, ’,b); f p r i n t f (’\n’);
19 d i s p (’The confidence Interval of parameters:’);
20 d i s p (bint)
21 f p r i n t f (’Residuals: ’); f p r i n t f (’%2.2f, ’,r); f p r i n t f (’\n’);
22 d i s p (’Statistical Measures for the developed model ’);
23 f p r i n t f (’R^2: %1.3f, \nF Statistics: %1.3f, \np -value: %1.3f, \

nError Variance estimate: %3.2f \n’,stats)
24 d i a r y off;

� �

Box 7.4 Output of sample MATLAB code provided in Box7.3
� �

1 The regression Parameters:
2 -8.51, 0.88, 0.25,
3 The confidence Interval of parameters:
4 -35.6356 18.6208
5 0.2844 1.4806
6 -1.0222 1.5198
7

8 Residuals: -0.63, -0.41, 0.90, 0.82, -1.63, -5.43, 5.53, 1.23,
-1.59, 1.22,

9 Statistical Measures for the developed model
10 R^2: 0.772 ,
11 F Statistics: 11.871 ,
12 p-value: 0.006 ,
13 Error Variance estimate: 10.04

� �
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The developed regression model is

E (Y |X1, X2) = −8.51 + 0.88X1 + 0.25X2

The other outputs of the MATLAB code can be cross-checked from the Exam-
ples7.3.1 and 7.4.2.

Exercise

7.1 In a certain catchment of area 40 km2, the following rainfall and direct runoff
depth over the catchment has been observed for 16 isolated rainfall events.

Rainfall
Event no.

Rainfall
Depth (mm)

Runoff (mm) Rainfall
Event no.

Rainfall
Depth (mm)

Runoff (mm)

1 42.39 13.26 9 47.08 22.91
2 33.48 3.31 10 47.08 18.89
3 47.67 15.17 11 40.89 12.82
4 50.24 15.50 12 37.31 11.58
5 43.28 14.22 13 37.15 15.17
6 52.60 21.20 14 40.38 10.40
7 31.06 7.70 15 45.39 18.02
8 50.02 17.64 16 41.03 16.25

These measurements are made at a culvert present in the downstream of the catch-
ment. Develop a linear regression model taking runoff as dependent and rainfall as
independent variable. Using the developed relationship, answer the following:

(a) A precipitation event generated direct runoff of 1.2 Mm3 from the basin. What
is the corresponding rainfall depth? (Ans 6.24 mm)

(b) For a rainfall event of 3 hr with average intensity 12.7 mm
/
hr, what is the

corresponding direct runoff depth? (Ans 11.49 mm)
(c) How much percentage of variance in runoff is being accounted for in the devel-

oped model? (Ans 65.94%).
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7.2 For a catchment, following observations are made for 24 consecutive months.

Precipitation (mm) Surface Air Temper-
ature (◦C)

Precipitable Water
Content (kg/m2)

Pressure at surface
(mb)

0.00 19.11 11.15 964.00
0.03 20.43 12.39 964.21
5.99 21.81 15.54 961.21
4.97 28.66 15.59 960.19
9.50 31.61 20.99 957.69
3.94 34.45 21.41 954.03
145.06 32.41 36.46 951.22
241.36 25.58 49.36 951.11
413.60 24.08 49.66 952.21
216.46 24.14 41.48 956.19
41.37 24.19 31.27 961.91
44.43 22.40 20.99 963.17
0.81 21.58 20.30 964.59
1.94 22.36 18.51 963.70
6.50 24.52 21.08 963.30
1.56 28.55 17.42 960.72
0.57 34.27 23.29 955.75
2.50 36.26 23.74 952.15
67.74 31.10 43.73 950.79
422.32 24.28 53.09 949.85
370.69 23.86 51.05 951.75
237.83 23.75 48.86 955.06
210.00 23.04 39.29 958.84
0.00 20.13 18.09 962.57

Taking precipitation as dependent variable, check:

(a) Whichvariable between surface air temperature and surface pressure has stronger
linear relationship with the precipitation? (Ans Pressure at surface)

(b) Derive a linear regression model between precipitation (Y ) and precipitable
water content (X ), and evaluate its adequacy? (Ans Ŷ = −169.18 + 9.24X ,
R2 = 0.82).

7.3 From historical records, for rainfall depth of 15 cm, the runoff generated along
with basin characteristics for 10 basins is tabulated below.

Basin Area (km2) Length of longest
Stream (km)

Drainage Density
(km

/
km2)

Generated Runoff
(cm)

118.71 20.02 14.42 10.8
92.72 15.22 14.95 8.5
81.14 17.43 14.87 8.4
64.90 8.18 16.31 6.8
58.71 10.17 16.00 6.1
68.20 9.82 16.29 7.0
85.89 19.03 16.50 8.6
73.08 14.60 16.81 8.0
106.66 19.84 13.97 8.3
102.96 18.89 13.86 9.8
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(a) Fit a simple regression model for drainage density (Y ) using basin area (X ) as
input. Also, calculate the percentage of variance in drainage density explained by
the fitted simple linear regressionmodel. (Ans Ŷ = 19.22−0.045X , R2 = 0.64)

(b) The generated runoff from the basin area is expected to follow power relationship
as expressed below,

Q = J Ab

where Q and A are runoff and basin area, respectively, and J and b are model
parameters. Fit a curvilinear regression model for generated runoff using basin
area as input. (Ans J = 0.41 and b = 0.674).

7.4 For the infiltration data given in Example 7.2.1, fit a Philip two-term model.
The model is expressed as:

ft = S

2
√
t

+ A

where ft is the infiltration capacity at time t . S and A are the model parameters.
Also, find the coefficient of determination for the developed model. (Ans S = 9.59,
A = 0.89, R2 = 0.93).

7.5 For the data presented in Exercise 7.2, develop an MLR model taking precipi-
tation as dependent variable (Y ) and all other variables as independent (X1: surface
air temperature, X2: precipitable water content and X3: pressure at surface). Calcu-
late the coefficient of determination and SSE for the developed model. Compare the
developed MLR model with the SLR model developed in Exercise 7.2 (in terms of
goodness-of-fit). Is the inclusion of extra variables justified?

(Ans Ŷ = 14103.7 − 13.77X1 + 5.30X2 − 14.41X3

R2 = 0.89,
∑

ε2i = 51830.6
MLR model is fitting better than SLR model fitted in Exercise7.2.
R2
ad j = 0.87 is higher as compared to Exercise7.2, so inclusion of extra

variables is justified.)

7.6 Develop an MLR model for predicting direct runoff (Y ) by using length of
longest stream (X1), drainage density (X2) as inputs for the data presented in Exercise
7.3. Calculate the coefficient of determination and SSE for the developedmodel. (Ans
Ŷ = 7.54 + 0.23X1 − 0.19X2, R2 = 0.73,

∑
ε2i = 4.66).

7.7 Air temperature and evaporation for awater body are recorded for 20 consecutive
summer days at a location.
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Days Temperature (◦C) Evaporation (mm/day)
1 25.64 3.4*
2 32.67 10.6
3 31.71 10.2
4 32.15 11.2
5 31.42 10.4
6 29.19 8.9*
7 28.91 2.1*
8 33.16 11.7
9 28.17 4.2*
10 33.15 10.9
11 32.89 10.6
12 33.52 12.3
13 30.06 4.5*
14 31.36 11
15 34.51 13
16 29.44 6.8*
17 25.60 3.6*
18 33.67 10.9
19 31.31 9.8
20 28.55 4.7*

Evaporation (Y ) is dependent upon the temperature (X ). Develop a SLR model
for the data and check if

(a) The regression line between the evaporation and the temperature has a slope of
45◦ at 5% level of significance.

(b) The intercept of regression line is 0 mm at 1% level of significance.
(c) The evaporation corresponding to 25◦C air temperature is 0 mm at 99% confi-

dence interval.

(Ans Ŷ = 1.21X − 28.70.

(a) At α = 0.05, the regression line has a slope of 45◦.
(b) At α = 0.01, the intercept is not 0 mm.
(c) Yes, the evaporation corresponding to 25◦C air temperature is 0 mm at 99%

confidence interval.)

7.8 For the data presented in Exercise7.7, the rows having * show the cloudy days.
Develop an SLRmodel using data from cloudy days only, considering daily evapora-
tion as dependent (Y ) and daily air temperature as independent variable (X ). Check
that the slope and intercept of developed SLR model differ from the value of slope
and intercept, respectively, of SLR model developed in Exercise7.7 at 5% level of
significance. Comment on the statement that “on cloudy days evaporation rate with
respect to air temperature is lower compared to average/normal condition”.

(Ans Ŷ = 0.54X − 10.44. At α = 0.05 the slope and intercept of developed
SLR model is not different compared to model developed in Exercise7.7. Hence, on
cloudy days, evaporation rate with respect to air temperature is not lower compared
to average/normal condition.)



Chapter 8
Multivariate Analysis

Often many hydroclimatic variables are associated with each other and
such associations are complex. Many a times several hydroclimatic vari-
ables are required to be analyzed simultaneously. Several techniques
related to multiple hydroclimatic variables are discussed in this chapter.
Different techniques include principal component analysis, supervised
principal component analysis, canonical correlation analysis, empiri-
cal orthogonal function, one-way and two-way analysis of variance. All
these techniques are explained in this chapter with illustrative examples.

8.1 Principal Component Analysis

Principal component analysis (PCA) is the transformation of p correlated variables
into p uncorrelated orthogonal components through their linear combination. The
resulting uncorrelated orthogonal components are known as principal components
(PCs). Most often, a set of hydrologic or hydroclimatic variables (used as input for
another target variable) may be significantly correlated with each other. This implies
that information available in one variable may also be partially available from other
variables. In general, the objective of PCA is data compression, in such a way that
resulting PCs are uncorrelated to each other and total variance of the original data is
redistributed. The 1st PC containsmaximumamount of variance, and variance gradu-
ally decreases for the subsequent components. In hydroclimatology, the PCA is used
for either dimensionality reduction or identification of covariance structure. PCA
reduces the dimensionality as the first few components explain most of the variance
of the original data set. The PCA for p variables tries to reorient the pth dimensional
space (or Cartesian orthogonal coordinate system) to satisfy the aforementioned
redistribution of variance. The transformation of axes is geometrically illustrated for
two variables in Fig. 8.1. For a set of p variables, X = [X1, X2, . . . , X p] each having
n observations, the set of principal components [Z1, Z2, . . . , Z p] are:
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X2

X1

Z2 Z1

Original Axis
Transformed Axis
Data

Fig. 8.1 Projection of axis in PCA (Z1 and Z2 are principal components of X1 and X2)

Z1 =Xa1 = a11X1 + a12X2 + · · · + a1p X p

Z2 =Xa2 = a21X1 + a22X2 + · · · + a2p X p

...

Z p =Xap = ap1X1 + ap2X2 + · · · + appX p (8.1)

where ai (i = 1, 2, . . . , p) is a p × 1 vector, [ai1, ai2, . . . aip]T , known as loading
vector (also called projection or transformation vector) for i th principal component
(Zi ). Geometrically, the loading vector shows the direction of orientation of the PC
axis. Being a direction vector, its magnitude, i.e., sum of squared terms given by
aT
i ai is 1. IfU = [a1, a2, . . . , ap] is the orthogonal projection matrix, the PC matrix
can be expressed as:

Z = XU (8.2)

PCs being uncorrelated, the covariance of any two different principal components is
zero. From Eq.8.1, the variance of the PCs can be calculated as:

Var(Zi ) = Var(Xai ) = aT
i Cov(X)ai = aT

i Sxai (8.3)

where Sx represents the covariance matrix of X .

8.1.1 Determination of Principal Components

PCs can be determined by maximizing the variance of i th principal component with
the constraint that sum of square of loadings is unity. This optimization problem can
be expressed as
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maximize Var(Zi ) or, maximize aT
i Sxai (8.4)

subjected to aT
i ai = 1

Further, the estimated i th and j th principal component should be such that aT
i Sxai ≥

aT
j Sxa j for i < j . The optimization problem can be solved by using the method of

Lagrange multiplier. Method of Lagrange multiplier is an optimization technique to
find maxima/minima for a function subjected to equality constraint. If the optimiza-
tion problem is expressed as:

maximize f (x) (8.5)

subjected to g(x) = 0

then the Lagrangian function with Lagrange multiplier λ is given by:

L(x,λ) = f (x) − λg(x) (8.6)

The solution of the optimization problem is given by:

dL

dx
= 0 (8.7)

Hence, the solution of Eq.8.4 is given by:

L = aT
i Sxai − λ(aT

i ai − 1) (8.8)

dL

dai
= 0

or, (Sx − λI )ai = 0 (8.9)

The characteristic equation is obtained by taking determinant of the above equation.

|Sx − λI | = 0 (8.10)

The roots obtained from the above equation (λi , for i ∈ {1, 2, . . . , p} and λ1 ≥ λ2 ≥
· · · ≥ λp) are eigenvalues of covariance matrix of X . The variance of i th principal
component is given by λi . Hence, by arranging the eigenvalues in descending order,
one can ensure that the variance of i th principal component is more compared to
j th principal component if i < j . The principal component loading vector for i th
principal component (ai ) is given by:
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(Sx − λi I )ai = 0 Such that aT
i ai = 1 (8.11)

Thus, the principal component is obtained using following expression:

Zi = Xai (8.12)

where Zi is the principal component with variance λi . According to properties of
covariancematrix, the trace of matrix (sum of diagonal elements) is the total variance
of all the variables in X variable (X1, X2, . . . , X p). Moreover, from the properties
of matrix, sum of all eigenvalues is equal to the trace of matrix. Hence, the variance
explained by i th principal component is given by:

Variance explained by Zi = λi
∑p

j=1 λ j
= λi

tr(Sx)
(8.13)

Similar expression can be obtained for the principal components from the correlation
matrix. However, the principal components obtained from correlation and covariance
matrix are not same.

Example 8.1.1
Calculate the principal component loading vectors using covariance matrix of
observed monthly hydroclimatic data given in TableA.1 (p. 429). Also, find the
variance explained by each principal component.

Solution From the data given in TableA.1, suppose that X = [X1, X2, . . . , X9]
represent the data such that X1 represents precipitation, X2 represents surface air
temperature and so on. The covariance matrix of X is given by:

Cov(X) = Sx =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

21878.87 −73.79 2031.88 . . . −4463.97 199.33 −18.61
−73.79 23.27 4.14 . . . −114.67 4.86 0.66
2031.88 4.14 235.45 . . . −570.38 22.14 0.01
−491.46 −14.84 −63.88 . . . 226.8 −9.38 −0.49
−105.98 22.95 −0.10 . . . −103.39 4.44 0.58
673.09 −1.95 77.12 . . . −168.49 5.93 −0.36

−4463.97 −114.67 −570.38 . . . 1951.57 −80.89 −4.13
199.33 4.86 22.14 . . . −80.89 4.54 0.17
−18.61 0.66 0.01 . . . −4.13 0.17 0.71

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

9×9

Hence, the characteristic equation for calculating eigenvalues of Sx is given by:
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|Sx − λI | = 0

or,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

21878.87 − λ −73.79 2031.88 . . . 199.33 −18.61
−73.79 23.27 − λ 4.14 . . . 4.86 0.66
2031.88 4.14 235.45 − λ . . . 22.14 0.01
−491.46 −14.84 −63.88 . . . −9.38 −0.49
−105.98 22.95 −0.10 . . . 4.44 0.58
673.09 −1.95 77.12 . . . 5.93 −0.36

−4463.97 −114.67 −570.38 . . . −80.89 −4.13
199.33 4.86 22.14 . . . 4.54 − λ 0.17
−18.61 0.66 0.01 . . . 0.17 0.71 − λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0

or, λ = 23063.59, 1062.88, 35.89, 5.79, 1.06, 0.63, 0.17, 0.02 and 0.01.

Hence, loading vector corresponding to first principal component (a1) is given by:

(Sx − λ1 I )a1 = 0 subjected to aT
1 a1 = 1

or,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1184.72 −73.79 . . . 199.33 −18.61
−73.79 −23040.32 . . . 4.86 0.66
2031.88 4.14 . . . 22.14 0.01
−491.46 −14.84 . . . −9.38 −0.49
−105.98 22.95 . . . 4.44 0.58
673.09 −1.95 . . . 5.93 −0.36

−4463.97 −114.67 . . . −80.89 −4.13
199.33 4.86 . . . −23059.05 0.17
−18.61 0.66 . . . 0.17 −23062.88

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11
a12
a13
a14
a15
a16
a17
a18
a19

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0

or, a1 = [ 0.97 0 0.09 −0.02 0 0.03 −0.21 0.01 0 ]T

Similarly,

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.97 0.22 −0.08 0 −0.01 0.01 0 0 0
0 −0.12 −0.36 0.59 0.11 0.05 −0.07 0.69 −0.14
0.09 −0.13 0.77 0.43 0.32 0.01 −0.29 −0.06 0.02

−0.02 0.12 0.04 −0.06 0.01 0 −0.03 0.29 0.95
0 −0.12 −0.38 0.58 0.05 −0.04 0.11 −0.65 0.27
0.03 −0.02 0.33 0.23 −0.42 −0.19 0.78 0.13 0

−0.21 0.94 0.03 0.22 0.08 −0.02 0.01 −0.03 −0.1
0.01 −0.04 −0.08 −0.17 0.76 −0.49 0.37 0.05 −0.02
0 −0.01 0.02 −0.05 0.34 0.85 0.4 −0.02 0.01

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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The variance explained by first principal component = λ1
/∑

λ = 0.954.

Similarly, the variance explained by second and third principal components is 0.044
and 0.001, respectively. For all other principal components, the explained variance
is negligible.

Example 8.1.2
Calculate the loading vectors of principal components using correlation matrix for
the data set used in the last example. Are the loading vectors obtained same as last
example? Also, find the variance explained by each of the principal components.

Solution Correlation matrix can be calculated from covariance matrix using the
following equation:

Ci, j = Si j
√
Sii S j j

where Ci j and Si j represent the elements of correlation and covariance matrix in i th
row and j th column. Hence, the correlation matrix (Cor(X) or Cx ) is given by:

Cx =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −0.103 0.895 −0.645 −0.15 0.886 −0.683 0.633 −0.149
−0.103 1 0.056 −0.598 0.997 −0.079 −0.538 0.473 0.161
0.895 0.056 1 −0.809 −0.001 0.979 −0.841 0.677 0.001

−0.645 −0.598 −0.809 1 −0.553 −0.705 0.997 −0.855 −0.114
−0.15 0.997 −0.001 −0.553 1 −0.133 −0.491 0.437 0.143
0.886 −0.079 0.979 −0.705 −0.133 1 −0.743 0.542 −0.082

−0.683 −0.538 −0.841 0.997 −0.491 −0.743 1 −0.860 −0.111
0.633 0.473 0.677 −0.855 0.437 0.542 −0.860 1 0.093

−0.149 0.161 0.001 −0.114 0.143 −0.082 −0.111 0.093 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Corresponding characteristic equation for eigenvalues are given by:

|Cx − λI | = 0

or,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 − λ −0.103 0.895 −0.645 −0.15 0.886 −0.683 0.633 −0.149
−0.103 1 − λ 0.056 −0.598 0.997 −0.079 −0.538 0.473 0.161
0.895 0.056 1 − λ −0.809 −0.001 0.979 −0.841 0.677 0.001

−0.645 −0.598 −0.809 1 − λ −0.553 −0.705 0.997 −0.855 −0.114
−0.15 0.997 −0.001 −0.553 1 − λ −0.133 −0.491 0.437 0.143
0.886 −0.079 0.979 −0.705 −0.133 1 − λ −0.743 0.542 −0.082

−0.683 −0.538 −0.841 0.997 −0.491 −0.743 1 − λ −0.860 −0.111
0.633 0.473 0.677 −0.855 0.437 0.542 −0.860 1 − λ 0.093

−0.149 0.161 0.001 −0.114 0.143 −0.082 −0.111 0.093 1 − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0

or, λ = 5.139, 2.453, 0.958, 0.302, 0.109, 0.032, 0.004, 0.000 and 0.000.
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The corresponding loading vectors are given by

a1 = [ −0.349 −0.195 −0.398 0.430 −0.173 −0.361 0.433 −0.386 −0.026 ]T

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.349 −0.341 −0.047 0.191 0.831 −0.178 −0.027 0.014 0.006
−0.195 0.559 −0.146 −0.175 0.220 0.209 0.194 0.68 −0.075
−0.398 −0.252 0.073 −0.235 −0.115 0.327 0.739 −0.222 0.036
0.430 −0.123 0.000 0.106 0.195 0.447 0.055 0.116 0.731

−0.173 0.572 −0.169 −0.155 0.234 0.194 −0.187 −0.661 0.159
−0.361 −0.333 0.030 −0.407 −0.122 0.434 −0.605 0.151 0.003
0.433 −0.082 −0.019 0.080 0.252 0.535 0.032 −0.119 −0.659

−0.386 0.098 0.002 0.819 −0.244 0.323 −0.087 0.025 −0.005
−0.026 0.194 0.970 −0.014 0.132 0.028 −0.041 −0.002 0.001

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

These loading vectors are different from the loading vectors obtained using covari-
ance matrix.

Variance explained by 1st principal component is λ1
/∑

λ = 0.571.
Similarly, the variance explained by next five principal components is 0.272,

0.106, 0.033, 0.012, and 0.003, respectively. The variance explained by last two
principal components is negligible, as evident from corresponding eigenvalues. It
should be noted that the variance explained by different principal components is
different from previous example.

8.2 Supervised Principal Component Analysis

Supervised principal component analysis (SPCA) is a technique to find the linear
combination of independent variables that leads to maximum correlation with target
or response variable. SPCAdiffers fromPCAby the fact that there is no target variable
involved in PCA; hence, the obtained loading vector maximizes the individual vari-
ance of principal components. However, in SPCA the loading vectors are such that
they maximize the association with the target variables. Hence, SPCA is more useful
in studies which try to establish relationship between two data sets. Interestingly,
PCA can be considered as one of the special cases of SPCA where target variable is
identity matrix. SPCA has similar loading equation as PCA (Eq.8.1). However, the
procedure to estimate loading vector (ai ) differs as it takes target variable data set in
consideration.

Let us assume that there are p independent variables (Xi , i ∈ {1, 2, . . . , p})
and l dependent or response variables (Y j , j ∈ {1, 2, . . . , l}) each having n obser-
vations with individual mean of zero. Let X = [X1, X2, . . . , X p]T and Y =
[Y1,Y2, . . . ,Yl ]T . Hence, the matrices X and Y are of sizes p × n and l × n, respec-
tively. Then, the correlation between X and Y as per Hilbert–Schmidt Independence
Criterion (HSIC) is given by (n−1)2tr(K HLH), where K and L are kernel forUT X
and Y , respectively; i.e., K = XUUT X , and L = Y T Y , and H is a centering matrix
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(H = I − n−1eeT , where I is identity matrix of order n and e is an all-ones matrix
of size 1 × n). The details about HSIC and Hilbert spaces can be found elsewhere.
Hence, the SPCA can be obtained by solving the following optimization problem:

maximize tr(K HLH) Subjected to UTU = 1

or, maximize tr(UT XHLHXTU ) Subjected to UTU = 1 (8.14)

The difference between SPCA and PCA is evident from the above equation. In
PCA, the covariance matrix of X is used for optimization; however, in SPCA, the
covariance of XHY T is optimized. Similar to PCA, the above-stated optimization
problem can be solved using Lagrangian multiplier discussed in Sect. 8.1.1. The
Lagrangian function for optimization problem using the Lagrangian multiplier λ is
given by:

L(X,Y,U,λ) = tr(UT XHLHXTU ) − λ(UTU − 1) (8.15)

After maximizing the Lagrangian function (differentiation with respect to U and
equating it to zero), the following expression is obtained:

(XHLHXT − λI )U = 0 (8.16)

The characteristic equation is given by:

|XHLHXT − λI | = 0 (8.17)

Corresponding to p roots of above equation (λi such that i ∈ {1, 2, . . . , p} and λ1 ≥
λ2 ≥ · · · ≥ λp), p projection or loading vectors (ai such that i ∈ {1, 2, . . . , p}) can
be calculated using the following relationship:

(XHLHXT − λi I )ai = 0 Subjected to aT
i ai = 1 (8.18)

Using the i th loading or projection vector, the i th supervised principal component
(Zi ) is given by:

Zi = aT
i X = ai1X1 + ai2X2 + · · · + aip X p (8.19)

Example 8.2.1
From the TableA.1 (p. 429), considering the monthly precipitation as target variable
and other variables as independent variables and calculate the SPCA loading vectors
and corresponding Supervised Principal Component (SPC).

Solution Let Y be the monthly precipitation, and X1, X2 . . . , X8 are independent
variables; hence, X = [X1, X2, . . . , X8]T . The characteristic equation for calcula-
tion of SPCA is given by:
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|XHLHXT − λI | = 0

where L = Y T Y , and H = I − n−1eeT = I − 1
24ee

T = I − 0.0417eeT

Hence,

XHLHXT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.29 −7.93 1.92 . . . 17.43 −0.78 0.07
−7.93 218.40 −52.83 . . . −479.82 21.42 −2.00
1.92 −52.83 12.78 . . . 116.06 −5.18 0.48
0.41 −11.39 2.76 . . . 25.03 −1.12 0.10

−2.63 72.35 −17.50 . . . −158.95 7.10 −0.66
17.43 −479.82 116.06 . . . 1054.14 −47.07 4.39
−0.78 21.42 −5.18 . . . −47.07 2.10 −0.20
0.07 −2.00 0.48 . . . 4.39 −0.20 0.02

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

8×8

× 107

The first eigen value (λ1) is 13.123× 109 and all other eigenvalues are insignificant.
As the number of response variable is one and only the first eigenvalue is sig-

nificant, so, only one SPC is selected. The corresponding SPC loading vector is
calculated by Eq.8.18.

(XHLHXT − λ1 I )a1 = 0

or, a1 = [−0.148 0.407 −0.098 −0.021 0.135 −0.896 0.040 −0.003 ]

Corresponding SPC is calculated using Eq.8.19.

Z1 = aT
1 X

Hence, Z1 = [−807.04, −798.28, −786.16, −758.74, −731.69, −692.21, −691.27,
−701.56, −737.46, −778.75, −805.80, −803.13, −810.25, −802.53, −787.62,
−758.28, −723.20, −688.51, −694.76, −694.19, −734.85, −780.34, −795.36,
−820.96].

8.3 Dimensionality Reduction using PCA and SPCA

PCA and SPCA can be used for dimensionality reduction. Many a times, a threshold
for explained variance is used for the PCA and SPCA analysis. Minimum number
of principal components is selected that explain the threshold variance. In practice,
for many studies, first two or three PCs are enough to explain most of the variance
required for analysis. Similarly, the first l SPCs may found to be enough if target
variable (Y ) is of size (l × n). Some of the techniques used to select the number of
PC are as follows:



268 8 Multivariate Analysis

(i) Total variance explained criteria: Depending upon the prediction problem
and accuracy of the data measurement, a threshold cumulative percentage of
total variance can be selected (say VT ). First, k PCs are selected if they are
able to explain at least the threshold amount of total variance as expressed
below:

Select the minimum value of k for which

∑k
j=1 λ j

∑p
i=1 λi

≥ VT (8.20)

(ii) Average eigen value criteria: First k PCs corresponding to which the eigen
value is above mean eigenvalue are selected.

Select k PC, if λk ≥ �λ and λk+1 < �λ (8.21)

(iii) Scree plot: Plot between PCs and variance explained by each PC is called
scree plot. Thefirst i thPCs are selected forwhich scree plot shows significant
slope.

Based on the scree plot, a hypothesis test can be used for selecting PCs. If k is
number of selected PCs, then the null hypothesis is the equality of all remaining
eigen vectors (as they are measure of variance explained by any PC). The test
statistics is given by:

D = n

⎡

⎣(p − k) ln(�λk) −
p∑

j=k+1

ln(λ j )

⎤

⎦ (8.22)

where�λk =
p∑

j=k+1
λ j

p−k . The test statistics D followsχ2 distributionwith 0.5(p−k−
1)(p−k+2) degrees of freedom. For a hypothesis test atα level of significance,
the null hypothesis is rejected if D > χ2

(α)(0.5(p − k − 1)(p − k + 2)).

Example 8.3.1
For the Examples8.1.1 and 8.1.2, select the minimum number of principal compo-
nents required to explain 95% variance of the data.

Solution From the Example8.1.1, the variance explained by first principal com-
ponent is 95.4%, so only one principal component is enough for explaining 95%
variance. From the Example8.1.2, cumulative variance explained by different prin-
cipal components is given by:
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Principal component Variance explained Cumulative variance explained
1st 0.571 0.571
2nd 0.272 0.843
3rd 0.106 0.949
4th 0.033 0.982
5th 0.012 0.994
6th 0.003 0.997

It should be noted that the last two principal components are insignificant and are only
explaining 0.3% of total variance. From the table, for explaining 95% of variance,
first four principal components are enough.

Example 8.3.2
For a data set having 40 observations and 8 variables, the eigenvalues of its covariance
matrix are given by20.75, 13.88, 7.57, 1.07, 1.02, 0.93, 0.87, and 0.71.Checkwhether
the last five eigenvalues differ significantly at 5% level of significance.

Solution According to question,

λ1 = 20.75,λ2 = 13.88,λ3 = 7.57,λ4 = 1.07,λ5 = 1.02,λ6 = 0.93,λ7 = 0.87

and λ8 = 0.71.

Null Hypothesis: Last five eigenvalues are equal, i.e., (λ4 = λ5 = λ6 = λ7 = λ8)
Alternative Hypothesis: At least one eigen value out of last five is not equal to
other.
Level of Significance: α = 5%.

The test statistics is given by Eq.8.22. For Eq.8.22, p=8 and k = 8 − 5 = 3.

�λ3 =

p∑

j=k+1
λ j

p − k
=

8∑

j=4
λ j

8 − 3
= 0.92

p∑

j=k+1

ln(λ j ) =
8∑

j=4

ln(λ j ) = −0.47

D = n

⎡

⎣(p − k) ln(�λk) −
p∑

j=k+1

ln(λ j )

⎤

⎦ = 40

⎡

⎣(8 − 3) ln(�λ3) −
8∑

j=4

ln(λ j )

⎤

⎦

= 40(5 ln(0.92) + 0.47)

= 2.12

Test statistics D is supposed to follow χ2 distribution with 0.5(p − k − 1)
(p − k + 2) = 14 degrees of freedom.
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χ2
α(0.5(p − k − 1)(p − k + 2)) = χ2

0.05(14) = 23.68

As D < 23.68(χ2
0.05(14)); hence, null hypothesis of the eigenvalues being equal is

accepted.

8.4 Canonical Correlation Analysis

Canonical correlation analysis is a procedure to find a linear combination of two
different set of variables X and Y such that their correlation is maximum. Suppose
that X is n× p1 and Y is n× p2 where n is the number of observations and p2 < p1.
Further, suppose Z = [X Y ] with variance Sz . The variance Sz can be partitioned
into variance of X (Sxx ), variance of Y (Syy), and covariance of X and Y (Sxy).

Sz =
[
Sxx Sxy
Syx Syy

]

(8.23)

where Sxx and Syy are of size p1 × p1 and p2 × p2. Sxy and Syx are of size p1 × p2
and p2 × p1, respectively. Suppose that ai and bi are linear transformation vector
(with variance 1) for X and Y , respectively, which result in series Ui and Vi having
maximum correlation. The correlation between the Ui and Vi is given by

Cor(Ui , Vi ) = Cov(Ui , Vi )√
Var(Ui )Var(Vi )

= aT
i Sxybi√

aT
i Sxxaib

T
i Syybi

(8.24)

As correlation can be negative, so the square of correlation (�) is required to be
optimized for highest value. Using the technique of Lagrangemultiplier (Sect. 8.1.1),
the characteristic equation of this optimization problem is written as:

|� − λI | = 0 (8.25)

where � = S−1
yy S

T
xy S

−1
xx Sxy and λ is Lagrange multiplier. The transformation vector

bi for transforming Y to Vi is given by:

(� − λI )bi = 0 (8.26)

The corresponding transformation vector ai can be found as:

ai = S−1
xx Sxybi Syx√

λi
(8.27)
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Example 8.4.1
Holehonnur town is situated 50 km downstream of Bhadra Reservoir. The tem-
perature in Holehonnur town is assumed to be affected by the air temperature at
Bhadra Reservoir, as it is a major water body in vicinity. Using the data provided in
TableA.3 (p. 432), calculate the canonical correlation loading vectors by consider-
ing the minimum and maximum temperature for Holehonnur town as target variable
and observed temperature at Bhadra Reservoir (both minimum and maximum) as
independent variable.

Solution Assume minimum and maximum temperature at Bhadra reservoir as X
and temperature at Holehonnur town as Y . Further, Z = [XY ], and the covariance
of Z is given by:

Sz =

⎡

⎢
⎢
⎣

5.54 −0.11 −0.62 1.65
−0.11 2.95 −3.50 −0.45
−0.62 −3.50 5.71 0.25
1.65 −0.45 0.25 2.94

⎤

⎥
⎥
⎦

Hence,

Sxx =
[

5.54 −0.11
−0.11 2.95

]

and Syy =
[
5.71 0.25
0.25 2.94

]

Similarly, as the Sz is symmetrical so STxy = Syx =
[−0.62 −3.50

1.65 −0.45

]

.

Loading vector for Y (bi ) can be found by using Eqs. 8.25 and 8.26.

� = S−1
yy S

T
xy S

−1
xx Sxy =

[
0.74 0.04
0.04 0.18

]

The corresponding eigenvalues are 0.75 and 0.18. The loading vectors are given by

column of matrix B =
[
0.997 −0.084
0.079 0.996

]

. The loading vectors for X can be calcu-

lated by Eq.8.27 as column of matrix A =
[
0.924 0.007
0.381 0.999

]

.

8.5 Empirical Orthogonal Function

Hydroclimatic data, apart from time-variability, also has spatial variation. PCA can
also be utilized for studying these spatio-temporal variation in hydroclimatic data.
PCA helps in understanding the contribution of each of the variables (Xi ) to total
variability (Sxx ) (through the coefficient of loading vector). If same hydroclimatic
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variable across many locations is treated as different variables, then PCA can be used
to study the relative contribution of different locations in total variability. This spatial
analysis is known as empirical orthogonal function (EOF) analysis.

For EOF analysis, hydrological data set is collected in 3-D matrix. First two
dimensions show the grid on which the hydroclimatic variable is observed, and the
last dimension shows the time steps. Hence, data set for a hydroclimatic variable
has dimensions of p1 × p2 × n, where p1 and p2 are the number of grid points
in x and y directions, respectively, and n is the number of time steps. First, the
data is converted to p × n matrix where p = p1 × p2 by rearranging all the grid
points. PCA loadings and corresponding principal components are calculated using
the procedure discussed in Sect. 8.1.1. Further, the variance explained by each of
the principal component is obtained by Eq.8.13. The loading vector obtained for i th
principal component has p loadings. If the square of loading vector is arranged in
p1 × p2 matrix, it shows the relative contribution of hydroclimatic variable at a grid
point to the spatial distribution of variance of i th principal component. On the other
hand, principal components obtained in EOF analysis shows the variability across
the space.

Example 8.5.1
Average monthly sea surface temperature (SST) for 25 locations in Arabian Sea is
recorded for 2 years as given in TableA.2. Calculate the EOF loading for SST and
variance explained by individual EOFs.

Solution The monthly average sea surface temperature for 25 monitoring station
is 24 × 25 matrix (say X ). Empirical orthogonal functions are calculated from the
corresponding anomaly matrix (say Xd ) which is obtained by subtracting each of
the column with its mean. The mean of different columns of X represented by �X is
[26.92, 27.20, 27.45, 27.60, 27.63, 27.03, 27.32, 27.63, 27.90, 28.05, 27.19, 27.46,
27.78, 28.08, 28.33, 27.39, 27.68, 27.97, 28.27, 28.50, 27.68, 27.97, 28.25, 28.50,
28.70].

The covariance matrix of the matrix Xd is given by:

Cov(Xd) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.13 2.13 2.05 1.97 . . . 1.25 1.09 0.94 0.79
2.13 2.18 2.14 2.09 . . . 1.17 1.02 0.88 0.72
2.05 2.14 2.15 2.12 . . . 1.05 0.92 0.78 0.62
1.97 2.09 2.12 2.1 . . . 0.96 0.85 0.72 0.56

...
...

...
...

. . .
...

...
...

...

1.25 1.17 1.05 0.96 . . . 0.98 0.86 0.76 0.69
1.09 1.02 0.92 0.85 . . . 0.86 0.76 0.67 0.6
0.94 0.88 0.78 0.72 . . . 0.76 0.67 0.59 0.54
0.79 0.72 0.62 0.56 . . . 0.69 0.6 0.54 0.5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

25×25
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The first five highest eigenvalues of the covariance matrix are 31.50, 2.95, 0.11, 0.03,
and 0.02. All other eigenvalues are close to zero and hence are insignificant. The sum
of all eigenvalues is 34.66. The loadings for EOFs corresponding to the eigenvalues
can be obtained by using Eq.8.11. The loading matrix thus obtained is

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.26 0.1 0.41 0.22 . . . −0.12 0.06 −0.33 0
0.25 0.22 0.17 −0.04 . . . 0.05 0.02 0.22 −0.05
0.24 0.32 −0.07 −0.21 . . . 0.14 −0.28 0.14 0.29
0.23 0.38 −0.19 −0.12 . . . 0.22 0.01 −0.12 −0.22

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.

0.16 −0.21 −0.12 −0.25 . . . 0.2 0.39 0.11 −0.02
0.14 −0.18 −0.23 −0.24 . . . −0.08 0.01 −0.04 −0.39
0.12 −0.18 −0.29 −0.01 . . . −0.17 −0.16 0.07 −0.08
0.11 −0.21 −0.29 0.2 . . . −0.21 0.09 −0.19 0.07

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

25×23

Last two eigenvectors could not determined since corresponding eigenvalues are
zero. The variance explained by any EOF is the ratio of corresponding eigen value
and trace of covariance matrix (Eq. 8.13). Hence, variance explained by first EOF is
λ1

/ ∑
λ×100% = 90.88%, and similarly, the variance explained by the other EOFs

(2nd to 5th) is 8.51%, 0.32%, 0.08% and 0.06%, respectively. It can be observed that
the variance explained by first two EOFs is more than 99%; hence, the EOF analysis
also leads to dimensionality reduction (instead of using data from 25 locations, two
EOFs are sufficient).

8.6 Data Generation

In hydroclimatology, sometimes we need to generate data based on statistical proper-
ties of observed data. Data generation is specially needed if the observed data is less;
however, the length of observed data should be sufficient to draw inferences about its
population statistics. Data generation in general depends upon the fact that the cumu-
lative probability of any random variable is uniformly distributed between 0 and 1
irrespective of nature of probability distribution function. Data can be generated for
univariate and multivariate (with required correlation) case.

8.6.1 Univariate Data Generation

For generating the data for single variable, its probability distribution should be
known. In general the univariate data can be generated as:

(i) From the observed data set, fit a probability distribution and calculate the param-
eters of cumulative distribution function.

(ii) Generate uniformly distributed random number between 0 and 1.
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(iii) Taking the generated random number as the value of the CDF, calculate the
value of the random variable by taking the inverse of the CDF.

For generating uniformly distributed random numbers between 0 and 1, random
number generator of the following form is used.

Ri+1 =Remainder of (aRi + b)
/
m

Yi+1 = Ri+1

m
(8.28)

where a and b are some integers and m is a very large integer (m >> a, b). The
range of random variable Ri is 0 tom−1, and hence, the range of Yi is 0 to 1−1/m.
Sincem is very large, the range of Yi is effectively 0 to 1. Using the above expression,
a series of Yi can be generated.

For the last step the series of Yi is equated to cumulative distribution function and
the values of the variable are generated through inverse CDF. Hence, if FX is the
CDF for random variable X , then the value of Xi given Yi is calculated as:

Yi =FX (Xi )

Xi =F−1
X (Yi ) (8.29)

For the distributions, if the associated cumulative distribution function is not directly
invertible like normal, gamma, and other, solution of Eq.8.29 is done numerically.

Example 8.6.1
At a location, the daily average air temperature is found to be normally distributed
withmean 15◦Cand standard deviation 2◦ C.Generate 20 newvalues of daily average
air temperature.

Solution The 20 random numbers between 0 and 1 (using Eq.8.28) generated are
0.44, 0.38, 0.77, 0.80, 0.19, 0.49, 0.45, 0.65, 0.71, 0.75, 0.28, 0.68, 0.66, 0.16, 0.12,
0.50, 0.96, 0.34, 0.59, and 0.22.

From normal distribution table, the corresponding standard normal variate (Z )
is −0.151, −0.305, 0.739, 0.842, −0.878, −0.0250, −0.126, 0.385, 0.553, 0.674,
−0.583, 0.468, 0.412, −0.994, −1.175, 0, 1.751, −0.412, 0.228, and −0.772.

The standard normal variate can be converted into normally distributed random
variable having mean 15 and standard deviation 2 as:

Y = 15 + 2Z

Hence, corresponding daily average air temperature (in ◦C) is 14.698, 14.390, 16.478,
16.684, 13.244, 14.950, 14.748, 15.770, 16.106, 16.348, 13.834, 15.936, 15.824,
13.012, 12.650, 15.000, 18.502, 14.176, 15.456, and 13.456.
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Example 8.6.2
At a location, the daily rainfall is following a mixed distribution with a probability
mass at 0. The nonzero daily rainfall is found to follow exponential distribution with
λ = 1.5. Generate 15 values of nonzero daily rainfall for the location.

Solution The 15 random numbers (between 0 and 1) generated are 0.595, 0.262,
0.603, 0.711, 0.222, 0.117, 0.297, 0.319, 0.424, 0.508, 0.086, 0.262, 0.801, 0.029,
and 0.929.

The cumulative distribution function for exponential distribution with λ = 1.5 is
given by:

FX (x) = 1 − e−x/λ

or, x = −λ ln(1 − FX (x)) = −1.5 ln(1 − FX (x))

Replacing FX (x) with the 15 generated random numbers will generate the exponen-
tially distributed randomnumbers,which are 1.356, 0.456, 1.386, 1.862, 0.377, 0.187,
0.5290, 0.576, 0.8270, 1.064, 0.1350, 0.456, 2.422, 0.044, and 3.968,
respectively.

8.6.2 Multivariate Data Generation

Multivariate data may have a correlation structure associated with them. For the case
in which little or no correlation exists between the variable, the univariate data gen-
eration procedure is repeated multiple times. For multivariate data having significant
correlation among them, depending upon whether to follow normal distribution or
not, different procedures are used. It should be noted that the techniques discussed in
this section are simple and can always yield the desired results. For more generalized
approach for multivariate data generation (to conserve nonlinear association if any
using the joint distribution), the copula is used as discussed in Sect. 10.10.1.

Correlated and Normally Distributed Random Variables

In this case, the correlation matrix along with the mean and standard deviation of all
variables to be generated should be known. To conserve the correlation structure, the
theory of Principal Component Analysis is used during data generation. Suppose that
the observedmultivariate data set is X having a size n× pwithmean [μ1,μ2, . . . ,μp]
and standard deviation [σ1,σ2, . . . ,σp]. The matrix X can be standardized into Y
by subtracting respective column mean and dividing by respective column standard
deviation. Suppose Z is principal component matrix of Y with transformation matrix
U and eigen values [λ1,λ2, . . . ,λp]; hence, Z = YU . Y can be calculated as ZUT

as the transformation matrix is orthogonal. Further, if size of Y is n × p, then size
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of Z is n × p with i th column or i th principal component has a mean of zero and
standard deviation of λi . These observations can be utilized in data generation. The
procedure of data generation for p correlated and normally distributed variables is
given below:

(i) From the observed data set, calculate the mean and standard deviation vectors
and correlation matrix.

(ii) Principal component transformation matrix (U ) and corresponding eigenvalues
[λ1,λ2, . . . ,λp] are calculated from known correlation matrix.

(iii) p different normal distributed random variables with mean 0 and standard devi-
ation λi are generated for the length n. The matrix of these variables (Z ) is
considered principal components as they are uncorrelated.

(iv) The standardized variable matrix Y is calculated from Z and U .

Y = ZUT (8.30)

(v) The standardized variable Y can be transformed into the X by multiplying i th
columnwith the corresponding standard deviation and adding the columnmean.

As the linear transformation does not change the correlation structure, the above
procedure provides the multivariate normally distributed data with required mean,
standard deviation, and correlation structure.

Correlated and Non-normal Random Variables

Correlated non-normal data can be generated by generating the normally distributed
data and transforming it to other distribution. The procedure of data generation is
explained below:

(i) From the observed data, fit an appropriate distribution.
(ii) Calculate the correlation matrix from the observed data.
(iii) Using the procedure discussed in the last section, the correlated standard normal

multivariate data set is obtained.
(iv) The data set so obtained is converted to the cumulative probability using the

standard normal distribution.
(v) The cumulative probability is back-transformed into the multivariate data set

using the known probability distribution of observed data.

It should be noted that if the last step of transformation is nonlinear, the correlation
structure may change in generated data set.
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Example 8.6.3
From a historical records of daily precipitation anomaly, precipitable water anomaly
and pressure anomaly, the following correlation structure is obtained.

Cor(X) =
⎡

⎣
1 0.776 0.623

0.776 1 0.637
0.623 0.637 1

⎤

⎦

Assuming that all of three variables are distributed normallywithmean 0 and standard
deviation 1, generate the anomaly data set for 12 months in such a way that the
correlation structure is preserved.

Solution Considering the steps of normally distributed multivariate data set gener-
ation with defined correlation structure, calculation is done in the following steps:

Step 1 Calculation of correlation structure
According to the example, the correlation matrix is given by

Cor(X) =
⎡

⎣
1 0.776 0.623

0.776 1 0.637
0.623 0.637 1

⎤

⎦

Step 2 Calculation of principal component loadings
Corresponding to correlation matrix Cor(X), the eigenvalues and principal
component loading matrix are calculated using the methodology of Exam-
ple8.1.2. The eigenvalues for the correlation matrix is

λ = [2.360, 0.417, 0.223]

Correspondingly, the loading matrix is

U =
⎡

⎣
0.590 −0.416 −0.692
0.593 −0.358 0.721
0.548 0.836 −0.036

⎤

⎦

Step 3 Generation of randomprincipal componentswith requiredmean and standard
deviation.
For generating the normally distributed variable anomaly, first three principal
components (normally distributed) are generated with mean 0 and variance
λ. Using the procedure discussed in Example8.6.1 the following set of prin-
cipal components are generated.
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Z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.08 0.57 −0.24
0.26 0.54 −0.09

−0.99 −0.4 0.94
1.85 1.18 −0.3

−2.42 −1.22 0.41
1.83 −0.14 −0.01
1.18 −0.12 −0.01
1.68 −0.38 −0.98

−0.75 −0.34 0.48
0.64 0.57 0.05
0.22 −0.51 −0.24

−2.42 0.24 −0.01

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Step 4 Calculate the values following standard normal distribution with the correla-
tion matrix (CorX ) (Eq.8.30)

Hence, Y = ZUT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.71 −1.02 −0.11
−0.01 −0.1 0.6
−1.07 0.23 −0.91
0.81 0.46 2.01
−1.2 −0.7 −2.36
1.14 1.13 0.89
0.75 0.74 0.55
1.83 0.43 0.64

−0.63 0.02 −0.71
0.11 0.21 0.83
0.51 0.14 −0.3

−1.52 −1.53 −1.13

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Step 5 Transform Y by multiplying with standard deviation and mean to each of the
column.
As variables are already standardized (has a mean 0 and standard deviation
1), so no transformation is required. Hence, Y is the required generated data
set.

Example 8.6.4
In the last example, assume the standardized precipitable water and standardized
pressure for a season are the following exponential distribution with λ = 2 and
λ = 0.6, respectively. Generate the data set preserving the correlation structure.

Solution From Example8.6.3
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Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.71 −1.02 −0.11
−0.01 −0.1 0.6
−1.07 0.23 −0.91
0.81 0.46 2.01
−1.2 −0.7 −2.36
1.14 1.13 0.89
0.75 0.74 0.55
1.83 0.43 0.64

−0.63 0.02 −0.71
0.11 0.21 0.83
0.51 0.14 −0.3

−1.52 −1.53 −1.13

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The corresponding normal distribution cumulative probability is

F(Y ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.24 0.15 0.46
0.50 0.46 0.72
0.14 0.59 0.18
0.79 0.68 0.98
0.11 0.24 0.01
0.87 0.87 0.81
0.77 0.77 0.71
0.97 0.66 0.74
0.26 0.51 0.24
0.54 0.58 0.8
0.69 0.56 0.38
0.06 0.06 0.13

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The second and third columns of F(Y ) (corresponding to standardized precip-
itable water and standardized pressure) can be transformed back using the inverse
function of their cumulative distribution function as done in Example8.6.2. Hence,
the generated data is

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.71 0.33 0.37
−0.01 1.23 0.76
−1.07 1.78 0.12
0.81 2.28 2.35
−1.2 0.55 0.01
1.14 4.08 1.00
0.75 2.94 0.74
1.83 2.16 0.81

−0.63 1.43 0.16
0.11 1.74 0.97
0.51 1.64 0.29

−1.52 0.12 0.08

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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8.7 Analysis of Variance in Hydrology
and Hydroclimatology

Analysis of variance (ANOVA) is a statistical procedure to check the significance of
variance in different samples of same population, and thus, check the null hypoth-
esis that mean of all samples is equal. ANOVA is also used to study the spatial
homogeneity of hydroclimatic data. Under ANOVA, the variance is partitioned into
a number of sources/factors. Depending upon the number of sources of variance
(referred as attributes), apart from the system error (experimental or measurement
errors), one-way ANOVA or two-way ANOVA is used.

8.7.1 One-Way Analysis of Variance

One-wayANOVA is used when apart from system error, only a single factor/attribute
contributes to the variance. Due to this attribute, the sample mean differs from popu-
lation mean. The sample mean can be written as sum of population mean and effect
of attribute.

�xi = μ + αi (8.31)

where�xi is sample mean of i th sample, μ is the mean of all the samples or population
mean and αi is effect of attribute on the sample mean. In one-way ANOVA, the null
hypothesis is that all the sample means are equal to population mean.

H0 : �x1 = �x2 = · · · = �xa = μ

or, H0 : αi = 0 for all i ∈ {1, 2, . . . , a} (8.32)

where αi = �xi − μ for i = 1, 2, . . . , a.
Correspondingly, the alternative hypothesis states that at least one sample mean

is not equal to the population mean.

H1 : αi �= 0 for at least one value of i (8.33)

Null hypothesis can only be true if all the variability is primarily contributed due to
chance or random error. Hence, the variance in the data set needs to be separated into
variance due to attribute and variance due to random error. Ratio of mean variance
contribution from these two categories is the test statistic for testing null hypothesis.
UsingEq.8.31, an observation from i th sample can be expressed as sumof population
mean, attribute effect, and the random error.

xi j = �xi + ei j = μ + αi + ei j (8.34)
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where ei j is the random error associated with the element xi j . This equation can be
written in terms of deviation from sample or population mean as:

xi j − μ = αi + ei j
or, (xi j − μ) = (�xi − μ) + (xi j − �xi ) (8.35)

If different samples are available and i th sample contains ni observations, then the
total sum of squares (sum of squared deviation of all observations from the popula-
tion mean) is obtained by squaring both sides and taking the summation for all the
observations.

a∑

i=1

ni∑

j=1

(xi j − μ)2 =
a∑

i=1

ni∑

j=1

(�xi − μ)2 +
a∑

i=1

ni∑

j=1

(xi j − �xi )2 (8.36)

SST =SSA + SSE (8.37)

where a is the number of different attributes/samples, ni is the number of elements
in i th sample, SSA shows the variance contributed by attribute, and SSE shows
the variance due to random error. Hence, Eq.8.37 shows that the total variance is
partitioned into variance due to attribute and random errors. Degrees of freedom
for each term can be evaluated as follows. While calculating SSA one mean, μ is
computed from all SSA attributes (total a). So, one degree of freedom is lost. Hence,
degrees of freedom for SSA is a− 1. Similarly, if total number of observations is N ,
then degrees of freedom for SSE and SST are N − a and N − 1, respectively. Using
these degrees of freedom, the mean square error and attribute can be calculated.

MSE = SSE

N − a
MSA = SSA

a − 1
(8.38)

The test statistics in one-way ANOVA is given by the ratio of MSA and MSE.

F = MSA

MSE
(8.39)

A large value of test statistics (F) indicates the effect of attribute is prominent as
compared to the effect of the random error over total variance, and thus, all the sample
means are not equal. The test statistics follows F-distributionwith (a−1) and (N−a)

degrees of freedom. Hence, the null hypothesis is rejected if F > Fα(a − 1, N − a)

atα level of significance. Details of the one-wayANOVA is summarized in Table8.1.
Sum of square can be obtained using the following equations also.

SST =
a∑

i=1

ni∑

j=1

x2i j − C (8.40)
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Table 8.1 A typical one-way ANOVA table

Source of
variation

Degree of
freedom

Sum of squares Mean square F

Attribute a − 1 SSA MSA MSA/MSE

Error N − a SSE MSE

Total N − 1 SST

SSA =
a∑

i=1

T 2
i

ni
− C (8.41)

SSE =SST − SSA (8.42)

C =

(
a∑

i=1
Ti

)2

N
(8.43)

where Ti represents the sum of observations in i th sample

(

Ti =
ni∑

j=1
xi j

)

and C is

called correction term for the mean.

Example 8.7.1
For three different locations, the following average monthly meridional wind speed
(in m/s) was recorded for a year (Table8.2).

Test at 0.05 level of significance whether the difference among the means is
significant or not.

Solution In this dataset, the location is the only source of variation; hence, it can be
termed as the attribute for ANOVA analysis. Denoting xi (i = 1, 2, 3) as the wind
speed variable from i th location, μ as overall mean and αi = �xi − μ

Null Hypothesis: Means do not differ significantly. αi = 0 for i ∈ {1, 2, 3}
Alternative Hypothesis: αi �= 0 for at least one value of i .
Level of Significance: α = 5%

Table 8.2 Monthly meridional wind speed (in m/s)

Location Months

1 2 3 4 5 6 7 8 9 10 11 12

1 2.21 0.62 2.03 0.8 0.84 1.52 0.57 1.39 2.3 1.78 2.17 1.72

2 0.87 1.65 0.74 3.52 2.27 2.15 1.33 1.87 1.93 2.48 1.44 1.03

3 1.89 3.03 1.85 −0.29 0.68 2.76 1.03 0.88 1.03 2.49 0.88 1.17
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Different quantities of one-way ANOVA table can be calculated using Eq.8.37.
Let X1, X2 and X3 represent average monthly meridional wind speed. Further, the
individual value for j th month for i th location is denoted by xi, j .

Overall mean(μ) =

3∑

i=1

12∑

j=1
xi, j

12 × 3
= 1.573

Mean of monthly meridional wind at different locations are given by:

�x1 =

12∑

j=1
x1, j

12
= 1.496 m/s

Similarly,�x2 = 1.773 m/s and�x3 = 1.450 m/s.

SST =
3∑

i=1

12∑

j=1

(xi, j − μ)2 = 22.393

SSA = 12
3∑

i=1

(�xi − μ)2 = 0.734

SSE =
3∑

i=1

12∑

j=1

(xi, j − �xi )2 = 21.659

The degrees of freedom for SST, SSA, and SSE are 36 − 1 = 35, 3 − 1 = 2, and
36 − 3 = 33, respectively. Hence,

MSA = SSA

2
= 0.734

2
= 0.367

MSE = SSE

33
= 21.659

33
= 0.656

F = MSA

MSE
= 0.367

0.656
= 0.559

The one-way ANOVA table shown in Table8.3.
The test statistics for ANOVA analysis (F) follows F-distribution with (a − 1)

and (N − a) degrees of freedom.

Fα((a − 1), (N − a)) = F(0.05)(2, 33) = 3.285
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Table 8.3 One-way ANOVA table for Example8.7.1

Source of
variation

Degree of freedom Sum of squares Mean square F

Attribute 2 0.734 0.367 0.559

Error 33 21.659 0.656

Total 35 22.393

As 0.559 < 3.285 (F(0.05)(2, 33)); hence, null hypothesis cannot be rejected; i.e.,
the mean of monthly meridional wind speed does not differ across the locations at
5% significance level.

Example 8.7.2
The average annual sea surface temperature is recorded for four locations and is given
in Table8.4. Test at 1% significance level whether the mean sea surface temperature
differs across the locations.

Solution Different locations are the only source of variance in sea surface tem-
perature; hence, they can be considered as the attribute for the ANOVA analysis.
Denoting xi (i = 1, 2, 3, 4) as the annual sea surface temperature from i th location,
μ as overall mean and αi = �xi − μ

Null Hypothesis: Means do not differ significantly across the locations, i.e.,αi = 0
for i ∈ {1, 2, 3, 4}
Alternative Hypothesis: αi �= 0 for at least one value of i .
Level of Significance: α = 1%

Let X1, X2, X3 and X4 represent average annual sea surface temperature at locations
1, 2, 3, and 4, respectively. Further, the individual value for year 2005 at i th location
is denoted by xi,1 and value for year 2010 is denoted by xi,6. Different quantities of
one-way ANOVA table can be calculated using Eqs. 8.40–8.43.

T1 =
6∑

j=1

x1, j = 129.95

Table 8.4 Sea surface temperature for 6 years

Location Year

2005 2006 2007 2008 2009 2010

A 20.39 19.84 20.48 20.56 25.51 23.17

B 31.57 30.52 25.64 25.97 28.53 22.68

C 27.94 26.71 24.94 28.47 26.20 23.97

D 23.45 18.68 20.65 24.19 26.57 24.67
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Similarly, T2 = 164.91, T3 = 158.23 and T4 = 138.21

C =

(
a=4∑

i=1
Ti

)2

N
= (129.95 + 164.91 + 158.23 + 138.21)2

4 × 6
= 14568.15

SST =
a∑

i=1

ni∑

j=1

x2i, j − C = 14840.07 − 14568.15 = 271.92

SSA =
a∑

i=1

T 2
i

ni
− C = 14703.51 − 14568.15 = 135.35

SSE = SST − SSA = 271.92 − 135.35 = 136.57

TheMSE andMSA can be calculated by dividing SSE and SSAwith their respective
degrees of freedom. The degrees of freedom for SSA and SSE are (a − 1) = 3 and
(N − a) = 24 − 4 = 20. Hence,

MSA = SSA

a − 1
= 135.52

3
= 45.17

MSE = SSE

N − a
= 136.57

20
= 6.83

F = MSA

MSE
= 45.17

6.83
= 6.61

Summarizing this, one-way ANOVA is shown in Table8.5:
The test statistics F is supposed to follow F-distribution with (a−1) and (N −a),

i.e., 3 and 20 degrees of freedom.

Fα(a − 1, N − a) = F(0.01)(3, 20) = 4.94

Table 8.5 One-way ANOVA table for Solution8.7.2

Source of variation Degree of freedom Sum of squares Mean square F

Attribute 3 135.35 45.17 6.61

Error 20 136.57 6.61

Total 23 271.92



286 8 Multivariate Analysis

As 6.61 > 4.94 (F(0.01)(3, 20)); hence, null hypothesis must be rejected at 1% level
of significance; i.e., sea surface temperature at different locations is different.

8.7.2 Two-Way Analysis of Variance

Two-way ANOVA is used when apart from random error (white noise), two other
factors, called as the attribute-1 and attribute-2, also contribute to the variance. Under
this condition, the sample mean for i th attribute-1 and j th attribute-2 is given by:

�xi = μ + αi + β j (8.44)

where�xi is sample mean of i th sample, μ is the mean of all the samples or population
mean, αi and β j are the effects of i th component of attribute-1 and j th component
of attribute-2 on sample mean. In two-way ANOVA, the null hypothesis is that the
effects across the different components of each attribute are same. Thus,

H0 : αi = 0 and β j = 0 for all i ∈ {1, 2, . . . , a} and j ∈ {1, 2, . . . , b}
(8.45)

where a and b are the number of components of attribute-1 and attribute-2, respec-
tively. Correspondingly, the alternative hypothesis states that at least one sample
mean is not equal to population mean.

Ha : Null hypothesis is not true (8.46)

Null hypothesis can only be true if all the variability is primarily contributed due to
chance or random error. Hence, the variance in the data set needs to be separated into
variance due to components of attribute-1 and attribute-2 and random error. Using
Eq.8.44 an observation from i th sample is expressed as:

xi j =�xi + ei j = μ + αi + β j + ei j (8.47)

where ei j show the random error associated with the element xi j . Using the above
equation, the total variance can be expressed as:
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Table 8.6 A typical two-way ANOVA table

Source of
variation

Degree of
freedom

Sum of squares Mean square F

Attribute-1 a − 1 SSA1 MSA1 MSA1
/
MSE

Attribute-2 b − 1 SSA2 MSA2 MSA2
/
MSE

Error (a − 1)(b − 1) SSE MSE

Total N − 1 SST

a∑

i=1

b∑

j=1

(xi j − �x)2 = b
a∑

i=1

(�xi − �x)2 + a
b∑

j=1

(�x j − �x)2

+
a∑

i=1

b∑

j=1

(xi j − �xi − �x j + �x)2 (8.48)

SST = SSA1 + SSA2 + SSE (8.49)

where �x is overall mean, �xi is mean of all the observations for i th component of
attribute-1, �x j is the mean of all the observations for j th component of attribute-
2, a is the number of components in attribute-1 and b is number of components
in attribute-2. SSA1 and SSA2 represents variance contributed due to the effect of
attribute-1 and attribute-2, respectively. The degrees of freedom for SSA1, SSA2 and
SSE are (a − 1), (b − 1) and (a − 1)(b − 1), respectively. The degrees of freedom
for SST are ab−1. Using the degrees of freedom, the mean of SSA1, SSA2 and SSE
(i.e., MSA1, MSA2 and MSE) is calculated. The test statistics for two-way ANOVA
is defined by:

F1 = MSA1

MSE
(8.50)

F2 = MSA2

MSE
(8.51)

F1 followsF-distributionwith (a−1) and (a−1)(b−1)degrees of freedom.Similarly,
F2 follows F-distribution with (b − 1) and (a − 1)(b − 1) degrees of freedom. Null
hypothesis of no significant difference in mean cannot be rejected at α significance
level if F1 > Fα((a − 1), (a − 1)(b − 1)) and F2 > Fα((b − 1), (a − 1)(b − 1)).
Details of two-way ANOVA are summarized in Table8.6.

Different partitions of variance can be calculated using the following relationships
also.

SST =
a∑

i=1

b∑

j=1

x2i j − C (8.52)
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SSA1 =1

b

a∑

i=1

T 2
i• − C (8.53)

SSA2 =1

a

b∑

j=1

T 2
• j − C (8.54)

SSE =SST − SS(Tr) − SSB (8.55)

C =

(
a∑

i=1

b∑

j=1
xi j

)2

ab
(8.56)

where Ti• and T• j represent the sum of observations for i th component of attribute-1
and sum of observations for j th component of attribute-2, respectively, and C is
called correction term for the observation mean.

Example 8.7.3
It is required to analyze the effect of global circulation models (GCMs) and hydro-
logical models (HMs) on the variation of peak flow at the outlet of a study basin. The
following table shows the magnitude of peak flow (Mm3) at the outlet for different
GCM and HM combinations.

Global Circulation Models (GCMs) Hydrological Model (HM)
HM-1 HM-2 HM-3

GCM-1 450 435 515
GCM-2 480 461 525
GCM-3 495 505 537
GCM-4 435 372 497

Check whether that the mean of peak streamflow differs either due to GCM or
HM selected at 1% level of significance.

Solution There are two sources of variances, one being GCM and other being HM.
Different types of GCMs and different HMs can be considered as first and second
attribute. Hence, a = 4 and b = 3.

Null Hypothesis: Mean of peak streamflow does not differ significantly due to
GCM or HM selected. αi = 0 for i ∈ {1, 2, 3, 4} and β j = 0 for j ∈ {1, 2, 3}
Alternative Hypothesis: Null hypothesis is not true
Level of Significance: α = 1%

Different test statistics for two-way ANOVA can be calculated using Eqs. 8.52–8.56.

T1• = (450 + 435 + 515) = 1400
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Similarly, T2• = 1466, T3• = 1537, T4• = 1304, T•1 = 1860, T•2 = 1773 and
T•3 = 2074

C =

(
a∑

i=1

b∑

j=1
xi j

)2

ab
= 2714154.08

SST =
a∑

i=1

b∑

j=1

x2i j − C = 24378.92

SSA1 = 1

b

a∑

i=1

T 2
i• − C = 8171941

3
− 2714154.08 = 9826.25

SSA2 = 1

a

b∑

j=1

T 2
• j − C = 10904605

4
− 2714154.08 = 11997.17

SSE = SST − SSA1 − SSA2 = 2555.5

Themean square sum (MSA1,MSA2 andMSE) can be calculated by dividing respec-
tive sum of squares (SSA1, SSA2, and SSE) with their respective degrees of freedom.
The degrees of freedom for SSA1, SSA2, and SSE are (a− 1) = 3, (b− 1) = 2, and
(a − 1)(b − 1) = 6, respectively. Hence,

MSA1 = SSA1

a − 1
= 9826.25

3
= 3275.42

MSA2 = SSA2

b − 1
= 11997.17

2
= 5998.58

MSE = SSE

(a − 1)(b − 1)
= 2555.5

6
= 425.92

F1 = MSA1

MSE
= 3275.42

425.92
= 7.69

F2 = MSA2

MSE
= 5998.58

425.92
= 14.08

All these values are summarized in the following two-way ANOVA table.
The test statistics F1 is supposed to follow F-distribution with (a − 1) and

(a − 1)(b − 1), i.e., 3 and 6 degrees of freedoms.

Fα((a − 1), (a − 1)(b − 1)) = F0.01(3, 6) = 9.78
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Source of variation Degree of freedom Sum of squares Mean squares F
1st Attribute 3 9826.25 3275.42 7.69
2nd Attribute 2 11997.17 5998.58 14.08
Error 6 2555.5 425.92
Total 11 24378.92

The test statistics F2 is supposed to follow F-distribution with (b − 1) and (a − 1)
(b − 1), i.e., 2 and 6 degrees of freedoms.

Fα((b − 1), (a − 1)(b − 1)) = F0.01(2, 6) = 10.92

Since F1 < 9.78, it indicates that there is no significant difference between GCMs.
However, F2 > 10.92, it indicates that there is significant difference between hydro-
logic variables at 1% significance level.

8.7.3 Multiple Comparisons

The ANOVA discussed in last section checks the significance of null hypothesis that
sample mean does not differ from population mean; however, it does not provide
any information about the sample whose mean differs significantly. Many a time
in hydroclimatology, the investigator needs to investigate spatial inhomogeneity and
find the location that hasmean significantly different from overall mean. Significance
of difference in mean for data from two locations can be tested using t test. For
‘k’ different locations or k different variables, the difference in mean needs to be
tested for all possible pairs. Hence, a total of kC2 = k(k − 1)

/
2 two sample t

tests are required, which is very large number, even if k is relatively small. Other
issues for these tests will be to ensure the independence between the tests and to
assign an overall significance level. For overcoming these difficulties, many multiple
comparison procedures have been proposed. One of popular method for multiple test
is Boneferroni method. In this method, level of significance is equally distributed
between all the t tests; hence, each t test is conducted at 2α

/
k(k − 1) level of

significance.

8.8 MATLAB Examples

Examples solved in this chapter can also be solved usingMATLABscripts. Following
built-in function is helpful in this regard:

• Principal components can be calculated using ‘pca’ in-built function.
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– [loadings,pc,eigen_val]= pca(data)

This function can be used for calculating the principal component loading matrix,
principal component, and eigenvalues of covariance matrix. It should be noted that
this function calculate the principal components using covariance of anomaly of
‘data’ matrix. For calculating the principal components from correlation matrix,
the input matrix (‘data’) should be standardized (mean is subtracted from every
column and followed by division with column standard deviation), as done in
example script given in Box8.1. Different inputs and outputs of the function are
explained as the following:

data: n × p matrix of n observations and p variables.
loading: p × p loading matrix for principal components.
pc: Principal component matrix of size n × p.
eigen_val: Eigenvalues of covariance matrix corresponding to p principal
components.

• The random numbers following different distributions can be generated using
different in-built functions. Some of these functions are discussed as follows:

– X = rand(Sz1,Sz2,...,Szn)
The function generates uniformly distributed random number between 0 and 1.
The output matrix X is of size Sz1× Sz2× · · · × Szn. It should be noted that
for command X = rand(n), the output X will be n × n matrix.

– X = randi(Sz1,Sz2,...,Szn)
The function generates uniformly distributed random number greater than 1.

– X = randn(Sz1,Sz2,...,Szn)
The function generates normally distributed random number with mean 0 and
standard deviation 1.

– rng(seed)
The function initializes the function rand, randi and randn with a non-
negative number as seed.

– X = normrnd(mu,sigma,[Sz1,Sz2,...,Szn])
This function generate normally distributed random numbermatrix X withmean
mu and sigma. The mean (mu) and standard deviation (sigma) can be vector
also.

– X = exprnd(mu,[Sz1,Sz2,...,Szn])
This function generate exponentially distributed random number matrix X with
mean mu.

– X = gamrnd(A,B,[Sz1,Sz2,...,Szn])
This function generate gamma-distributed random number matrix X with α =
A and β = B.

• One-way or two-way ANOVA analysis can be done using anova1 and anova2
functions. These functions also generate standard ANOVA tables and return the
p-value of the tests.

For instance, Examples8.1.1, 8.1.2 and 8.3.1 can be solved using theMATLAB script
in Box8.1.
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Box 8.1 Sample MATLAB script for solving Example8.1.1 and associated examples
� �

1 c l e a r ; c l c ; c l o s e a l l ;
2 output_file =[’output ’ filesep () ’code_1_result.txt’

];
3 l o a d ([’data’ filesep () ’umb_diff_var.mat’]);
4

5 cov_data= c o v (data);
6 [cov_loading ,cov_PC ,cov_eig_val ]=pca(data);
7 variance_explain_cov_pc=cov_eig_val ./ sum(cov_eig_val

);
8

9 std_data =(data -mean(data))./ s t d (data);corr_data= c o v (
std_data);

10 [corr_loading ,corr_PC ,corr_eig_val ]=pca(std_data);
11 variance_explain_corr_pc=corr_eig_val ./ sum(

corr_eig_val);
12

13 Y=data (:,1) ’;X=data (:,2: e nd )’;
14 [spca_eigen_vec ,spc ,spca_eigen_val ]=SPCA(X,Y);
15

16 %Display results
17 d e l e t e (output_file); d i a r y (output_file); d i a r y on;
18 d i s p (’Covariance Matrix of the data’);
19 d i s p (cov_data)
20 d i s p (’Correlation Matrix of the data’);
21 d i s p (corr_data)
22 d i s p (’loading matrix for PC obtained from covariance

matrix ’);
23 d i s p (cov_loading)
24 d i s p (’Variance explained by PC obtained from

covariance matrix ’);
25 d i s p (variance_explain_cov_pc ’)
26 d i s p (’loading matrix for PC obtained from

correlation matrix ’);
27 d i s p (corr_loading)
28 d i s p (’Variance explained by PC obtained from

correlation matrix ’);
29 d i s p (variance_explain_corr_pc ’)
30 d i s p (’SPC loading considering precipitation as

dependent variable ’);
31 d i s p (spca_eigen_vec ’); d i s p (’SPC Values ’);
32 spc_val_text =[];
33 f o r i=1: l e n g t h (spc)
34 spc_val_text= s p r i n t f (’%s %3.2f, ’,spc_val_text ,

spc(i));
35 i f mod(i,6) ==0
36 spc_val_text= s p r i n t f (’%s\n’,spc_val_text);
37 e nd
38 e nd
39 d i s p (spc_val_text); d i a r y off;

� �
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It should be noted that the provided code calls a user-defined function ‘SPCA’. This
function is defined in a functionM-file, and it should be placed in the same directory.
The ‘SPCA’ function definition is provided in Box8.2

Box 8.2 MATLAB function for calculating SPCA
� �

1 f u n c t i o n [spca_eigen_vec ,spc ,spca_eigen_val ]=SPCA(X,
Y)

2 spca_eigen_vec =[]; spca_eigen_val =[]; spc =[]; %#ok <
NASGU >

3

4 %% Data validation
5

6 % X should be p*n matrix
7 % where p is number of independent variables , n is

number of observations
8

9 % Y should be l*n matrix
10 % where l is number of dependent variables , n is

number of observations
11

12 num_observations=max( s i z e (X));
13 num_dependent_var= s i z e (Y,1);
14 %%%% Data Check Complete
15

16 %% SPCA Part starts
17 H= e y e (num_observations) -(ones(num_observations ,1)*

ones(num_observations ,1) ’)/num_observations;
18 L=Y’*Y;
19 Q=X*H*L*H*X’;
20 [eig_vec , eig_val ]= e i g (Q);
21

22 %pick up top l eigen vector as SPCA coefficient
23 eig_vec= r e a l (eig_vec);
24 [eig_val_sorted ,previous_eig_loc ]= s o r t ( d i a g ( r e a l (

eig_val)),’descend ’);
25

26 spca_eigen_vec=eig_vec (:, previous_eig_loc);
27 spca_eigen_val=eig_val_sorted (1: num_dependent_var );
28

29 spca_eigen_vec=spca_eigen_vec (:,1: num_dependent_var )
;

30 f o r i=1: num_dependent_var
31 i f corr(( spca_eigen_vec (:,i)’*X)’,Y(i,:) ’) <0
32 spca_eigen_vec (:,i)=-spca_eigen_vec (:,i);
33 e nd
34 e nd
35

36 spc=spca_eigen_vec ’*X;
37 %%%%% SPCA part ends
38 e nd

� �
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The results for the script given inBox8.1 are provided inBox8.3. The results obtained
match with the Example8.1.1, 8.1.2 and 8.3.1.

Box 8.3 Results for Box8.1
� �

1 Covariance Matrix of the data
2 # Not shown as it is 9*9 matrix
3

4 Correlation Matrix of the data
5 # Not shown as it is 9*9 matrix
6

7 loading matrix for PC obtained from covariance
matrix

8 # Not shown as it is 9*9 matrix
9

10 Variance explained by PC obtained from covariance
matrix

11 0.9542 0.0440 0.0015 0.0002 0.0000
0.0000 0.0000 0.0000 0.0000

12

13 loading matrix for PC obtained from correlation
matrix

14 # Not shown as it is 9*9 matrix
15

16 Variance explained by PC obtained from correlation
matrix

17 0.5710 0.2727 0.1064 0.0336 0.0121
0.0036 0.0005 0.0001 0.0000

18

19 SPC loading considering precipitation as dependent
variable

20 -0.0148 0.4080 -0.0987 -0.0213 0.1351
-0.8963 0.0400 -0.0037

21

22 SPC Values
23 -807.04, -798.28, -786.16, -758.74, -731.69,

-692.21,
24 -691.27, -701.56, -737.46, -778.75, -805.80,

-803.13,
25 -810.25, -802.53, -787.62, -758.28, -723.20,

-688.51,
26 -694.76, -694.19, -734.85, -780.34, -795.36,

-820.96,
� �
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Similarly, Example8.5.1 can be solved using MATLAB script provided in Box8.4.

Box 8.4 Sample MATLAB script for solving Example8.5.1
� �

1 c l e a r ; c l c ; c l o s e a l l ;
2 l o a d ([’data’ filesep () ’arabian_sea_sst .mat’]);
3

4 cov_data= c o v (data);
5 [loading ,eof_score ,eig_val ]=pca(data);
6 variance_explained =eig_val ./ sum(eig_val);
7

8 %Display results
9 output_file =[’output ’ filesep () ’code_2_result.txt’

];
10 d e l e t e (output_file); d i a r y (output_file); d i a r y on;
11 d i s p (’Covariance Matrix for data’);
12 d i s p (cov_data)
13 d i s p (’Loading matrix for EOF’);
14 d i s p (loading)
15 d i s p (’Variance explained by EOF’);
16 d i s p (variance_explained ’);
17 d i a r y off;

� �

The results for the script given in Box8.4 are given in Box8.5. The results match
with the Example8.5.1.

Box 8.5 Results for Box8.4
� �

1 Covariance Matrix for data
2 # Not Shown as it is 25*25 matrix
3

4 Loading matrix for EOF
5 # Not Shown as it is 25*25 matrix
6

7 Variance explained by EOF
8

9 0.9089 0.0852 0.0034 0.0012 0.0007 0.0002
0.0001 0.0001 0.0001 0.0000 0.0000 0.0000

0.0000 0.0000
10 # Not shown as all other are zero

� �

For solving Example8.7.2, the sample MATLAB script is provided in Box8.6. It
should be noted that this example script does not use the built-in function to calculate
one-way ANOVA rather shows the steps for calculations.
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Box 8.6 Sample MATLAB script for solving Example8.7.2
� �

1 c l c ; c l e a r ; c l o s e a l l ;
2 alpha =0.01;
3

4 data =[20.39 ,19.84 ,20.48 ,20.56 ,25.51 ,23.17;...
5 31.57 ,30.52 ,25.64 ,25.97 ,28.53 ,22.68;...
6 27.94 ,26.71 ,24.94 ,28.47 ,26.20 ,23.97;...
7 23.45 ,18.68 ,20.65 ,24.19 ,26.57 ,24.67];
8

9 T= sum(data ,2);
10 C= sum(T)^2/ numel(data);
11 SST= sum(data (:) .^2)-C;
12 SS_Tr= sum(T.^2/ s i z e (data ,2))-C;
13 SSE=SST -SS_Tr;
14

15 MSE=SSE /20;
16 MS_Tr=SS_Tr /3;
17

18 F=MS_Tr/MSE;
19

20 %%% Display the results
21 output_file =[’output ’ filesep() ’code_3_result.txt’];
22 d e l e t e (output_file); d i a r y (output_file); d i a r y on;
23 f p r i n t f (’The test statistic (F) is %2.2f.\n’,F);
24 f p r i n t f (’The critical value of test statistic is %1.3f.\n’ ,...
25 finv(1-alpha ,3,20))
26 i f F > finv(1-alpha ,3,20)
27 i n f o = s p r i n t f (’%2.2f > %1.3f, so the null hypothesis is

rejected ’, ...
28 F, finv(1-alpha ,3,20));
29 e l s e
30 i n f o = s p r i n t f (’%2.2f < %1.3f, so the null hypothesis is

accepted ’, ...
31 F, finv(1-alpha ,3,20));
32 e nd
33 f p r i n t f (’%s at %0.2f level of significance .\n’, i n f o ,alpha);
34 d i a r y off

� �

The output of the code inBox8.6 is provided in theBox8.7. The decision for rejecting
the null hypothesis matches with the Example8.7.2.

Box 8.7 Results for Box8.6
� �

1 The test statistic (F) is 6.61.
2 The critical value of test statistic is 4.938.
3 6.61 > 4.938, so the null hypothesis is rejected at 0.01 level of

significance.
� �

Exercise

8.1 For Upper Mahanadi Basin, the mean monthly rainfall, air temperature, precip-
itable water, pressure, geo-potential height at 925 mb and wind speed at 925 mb are
presented for the year 1971 in Table8.7.
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Table 8.7 Monthly average data for upper Mahanadi basin

Month Precipitation
(mm)

Air
Temperature
(◦C)

Precipitable
water (kg/m2)

Pressure (mb) Geo-potential
height (m)

Wind
speed
(m/s)

1 9.51 20.1 18.65 962.88 788.11 33.98

2 15.42 22.61 17.81 960.73 770.48 27.96

3 8.72 26.52 14.9 961.25 778.71 22.81

4 29.55 31.5 24.61 955.72 731.13 17.91

5 36.77 33.25 29.84 953.51 712.47 12.12

6 375.43 26.94 50.06 950.38 678.67 11.82

7 331.02 24.52 52.71 950.7 681.07 13.80

8 312.48 23.84 50.57 952.33 695.3 13.32

9 103.19 23.9 44.11 955.3 722.38 9.26

10 104.47 22.43 38.7 959.04 755.85 2.21

11 0.54 20.06 15.81 964.97 806.14 22.69

12 0.00 19.11 11.15 964 797.28 23.47

Calculate the principal components for the data set. How many principal compo-
nents are enough for explaining 90% of total variance of the data set? (Ans. The
first principal component explains 97% of variability.)

8.2 In Bay of Bengal, the sea surface temperature, zonal andmeridional wind speed,
pressure and specific humidity are monitored for 3 years as presented in Table8.8.

Calculate the loading matrix for principal components (calculated using correla-
tion matrix of data) and variance explained by them.

Ans. U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.4582 0.1203 0.3245 0.0239 −0.0437 0.7108 −0.4032
0.3762 0.2086 0.5513 0.4130 −0.1914 −0.5511 0.0070
0.3807 −0.2796 −0.2631 0.3371 0.7498 −0.1187 −0.1330

−0.3805 −0.3416 0.0830 0.7577 −0.1660 0.3217 0.1627
−0.0676 0.7823 −0.4804 0.3693 −0.0206 0.0519 −0.1144
0.4851 0.0447 −0.1705 −0.0093 −0.1052 0.2175 0.8217

−0.3449 0.3649 0.5048 −0.0671 0.6001 0.1531 0.3241

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Variance explained by principal components in order is 56.12, 16.71, 12.51,
6.58, 5.67, 1.57, and 0.79%.

8.3 With respect to data presented in Exercise8.2, check that whether the last three
principal components do not explain same amount of variance. (Ans. The last three
principal components statistically explain same amount of variance.)

8.4 With respect to data presented in Exercise8.2, considering the sea surface tem-
perature as dependent variable and all other as independent variables, calculate the
loading vector for supervised principal component in the data set. (Ans. The SPC
loadings are 0.040, 0.995, −0.022, −0.003, 0.074, and −0.041.)
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Table 8.8 Monthly average sea surface temperature and other hydroclimatic variables

Month Sea surface
temperature
(◦C)

Air
temperature
(◦C)

Rainfall
(mm)

Zonal
wind
speed
(m/s)

Meridional
wind speed
(m/s)

Pressure
(mb)

Specific
humidity
(Kg/m3)

1 21.15 25.67 9.72 3.05 −0.37 951.46 13.08

2 21.66 27.59 0.65 3.45 −0.05 952.49 17.53

3 21.89 28.32 8.68 3.02 −0.47 953.89 17.6

4 22.68 30.15 0.26 −0.53 0.21 955.89 16.54

5 24.65 28.86 7.95 0.03 −1.48 960.02 11.17

6 24.59 30.89 278.70 −2.13 −1.99 964.55 7.71

7 26.04 31.76 229.60 −1.63 −0.47 965.82 5.66

8 25.32 33.32 239.60 0.22 −0.26 963.47 3.54

9 25.16 30.03 206.63 1.62 −1.55 962.94 3.02

10 23.08 28.35 7.70 0.52 −0.74 960.40 5.37

11 22.50 25.54 0.12 2.40 −2.79 957.02 3.81

12 21.20 24.11 16.17 0.91 −2.31 952.43 6.81

13 22.12 29.08 9.93 3.64 −0.33 951.99 13.35

14 23.05 29.31 0.00 2.85 −0.20 953.16 17.55

15 23.12 30.89 58.92 2.71 −1.84 952.71 17.63

16 24.15 28.95 0.10 2.19 −1.17 956.59 15.82

17 25.65 35.60 5.91 −1.25 −2.20 960.64 11.37

18 27.54 33.51 71.50 −1.69 −0.45 965.28 7.29

19 26.12 33.87 86.58 −1.69 0.15 966.31 6.58

20 25.61 30.50 261.97 0.59 −2.87 964.99 3.43

21 23.85 29.11 253.77 0.23 0.19 962.42 5.88

22 23.23 30.21 25.25 0.44 −0.56 961.14 6.04

23 24.36 31.01 1.92 2.17 −1.22 956.68 5.31

24 22.04 25.83 0.00 1.16 1.22 953.53 10.34

35 20.32 23.68 48.67 3.31 −0.26 953.75 14.26

36 21.94 26.56 30.87 1.25 −0.50 950.47 18.2

37 23.48 27.66 10.71 0.74 −2.64 952.79 20.12

38 23.37 30.21 4.51 −0.35 −0.52 954.92 17.24

39 25.73 31.15 35.19 −1.60 −0.88 959.69 12.43

30 25.06 30.08 73.87 −3.08 0.52 965.23 7.55

31 26.14 28.90 266.09 −3.39 −0.59 966.2 4.83

32 26.07 32.94 332.62 0.69 −3.19 963.52 3.11

33 23.14 29.39 152.16 −0.67 −0.51 963.46 3.69

34 23.50 28.84 74.71 0.59 −0.27 961.39 5.14

35 23.25 30.80 67.11 3.07 −2.23 957.50 5.12

36 20.68 24.73 0.98 1.03 −1.69 952.55 8.02
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8.5 Following observations are recorded daily for 20 consecutive days in a city.

Days Evaporation Air temperature Pressure Specific humidity Wind speed
(mm/day) (◦C) (mb) (Kg/m3) (m/s)

1 3.08 24.32 954.46 11.07 6.75
2 2.43 21.74 955.41 7.59 7.50
3 2.70 20.17 959.64 5.82 5.57
4 3.06 21.82 956.75 7.32 4.27
5 3.17 23.63 955.27 5.36 5.38
6 3.36 27.73 949.16 5.23 0.31
7 4.15 32.11 942.58 6.23 5.51
8 3.09 34.48 937.95 7.82 6.23
9 3.58 32.61 940.43 12.62 1.26
10 2.57 26.90 949.25 15.98 1.84
11 1.48 24.17 955.12 17.62 0.61
12 2.53 24.54 950.78 15.39 2.36
13 4.07 23.70 954.34 12.69 6.19
14 2.66 23.65 955.08 8.80 1.73
15 3.33 28.47 946.57 11.84 4.01
16 2.50 24.32 954.37 11.79 4.67
17 2.09 22.17 956.82 11.72 3.09
18 2.80 23.18 954.10 11.36 3.31
19 3.62 23.67 954.91 9.03 5.79
20 3.01 25.69 951.27 7.02 1.02

Calculate the supervised principal component considering evaporation as depen-
dent variable.

(Ans. Supervised principal component considering evaporation as dependent vari-
able is−679.7,−679.9,−683.3,−681.4,−678.3,−672.9,−665.4,−661.4,−667.3,
−677.8, −684.4, −679.7, −680.7, −680.4, −672.8, −680.3, −683.5, −680.8,
−679.6, and −676.)

8.6 Considering sea surface temperature and air temperature as dependent variables
and other variables as independent variable in Exercise8.2, calculate the loadings for

(a) Supervised principal component
(b) Canonical correlation component

Ans. (a) Loading vector for supervised principal component

U =
[

0.996 −0.022 −0.002 0.080 −0.037
−0.038 −0.013 0.051 0.769 0.636

]T

(b) Loading vector of independent variables for canonical correlation com-
ponent
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U =

⎡

⎢
⎢
⎢
⎢
⎣

−0.0046 0.0046 0.0044 −0.0046 0.0044
0.3234 −0.3242 −0.2895 0.3364 −0.2987

−0.4699 0.4694 0.4910 −0.4615 0.4853
0.7624 −0.7623 −0.7644 0.7613 −0.7640
0.3056 −0.3057 −0.3013 0.3071 −0.3025

⎤

⎥
⎥
⎥
⎥
⎦

Similarly, the loading vector for dependent variables is

V =
[

0.999 −0.779
−0.047 0.627

]

.

8.7 For nine different locations in lower Narmada Basin, the monthly average pre-
cipitation (in mm) for 2 years is presented in the following table.

Month Locations
A B C D E F G H I

1 16.06 17 27.67 16.63 11.07 19.69 10.49 10.62 11.82
2 13.52 15.47 19.62 17.15 8.44 18.09 9.86 10.84 8.69
3 10.55 8.08 14.91 17.93 7.01 9.66 5.01 5.98 8.23
4 6.00 7.26 15.84 13.6 9.68 8.57 6.28 11.55 10.32
5 17.73 12.26 20.84 22.98 9.81 14.96 13.45 10.35 14.15
6 166.7 163.38 199.45 214.83 182.77 192.6 221.41 179.13 176.47
7 286.17 335.33 331.95 350.86 343.31 336.88 438.6 335.86 312.03
8 298.75 287.19 332.08 351.87 309.21 324.8 461.72 351.64 306.51
9 156.47 159.31 217.76 171.27 189.43 190.72 178.17 170.56 171.18
10 50.04 52.69 54.46 57.13 43.08 49.79 60.96 49.19 46.49
11 7.13 7.01 12.69 10.34 5.39 6.93 4.73 9.11 6.54
12 10.3 7.08 9.82 8.74 5.23 6.65 2.98 3.55 5.49
13 72.11 119.22 26.42 28.08 26.42 0.64 6.81 46.87 29.25
14 49.10 76.07 74.23 27.95 34.45 97.57 32.46 33.77 42.73
15 0.58 26.98 67.47 50.9 36.08 32.61 11.06 61.04 3.85
16 17.69 3.86 14.44 4.37 24.96 16.71 20.41 60.04 2.39
17 17.52 5.23 19.08 59.96 20.29 28.52 58.06 63.06 32.37
18 209.51 178.79 186.59 224.1 203.91 237.33 285.77 172.05 190.35
19 300.24 380.61 320.12 340.26 329.33 356.18 350.21 360.4 312.54
20 250.33 282.35 280.6 288.46 363.54 300.78 288.54 322.15 371.04
21 198.59 195.46 240.21 201.8 286.6 213.29 178.09 211.15 197.2
22 34.64 18.37 80.24 44.21 80.05 80.36 97.56 74.69 43.22
23 18.91 17.44 15.03 19.3 9.8 8.39 12.53 53.68 34.25
24 31.63 23.56 25.63 34.72 16.71 36.64 4.24 16.3 9.53

Calculate the loadings for empirical orthogonal components.
Ans. The loadings for empirical orthogonal components are



Exercise 301

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.289 −0.047 0.297 −0.113 −0.295 −0.438 −0.152 −0.258 0.667
0.316 −0.369 0.756 −0.003 0.077 0.052 −0.082 0.180 −0.380
0.318 −0.063 −0.193 −0.491 0.429 −0.086 0.175 0.574 0.255
0.334 0.182 0.050 0.066 0.046 −0.129 0.834 −0.335 −0.147
0.348 −0.358 −0.481 −0.053 −0.044 −0.467 −0.257 −0.205 −0.434
0.335 0.020 −0.087 −0.503 −0.135 0.655 −0.145 −0.398 −0.006
0.394 0.792 0.048 0.101 −0.104 −0.099 −0.301 0.220 −0.213
0.329 −0.070 −0.082 0.566 0.601 0.213 −0.194 −0.211 0.266
0.327 −0.251 −0.229 0.394 −0.573 0.282 0.170 0.409 0.137

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

8.8 For the precipitation data given in Exercise 8.7, the locations ‘A’ and ‘B’ are in
downstream to all other points. Calculate the loading vector for canonical correlation
component considering precipitation at location ‘A’ and ‘B’ as dependent variable.

Ans. The canonical correlation loading for independent variables is

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.147 0.1470 0.1470 0.1470 0.1460 0.1470 0.147
0.582 0.5830 0.5820 0.5820 0.5870 0.5800 0.581

−0.324 −0.3230 −0.3240 −0.3240 −0.3200 −0.3260 −0.325
0.420 0.4200 0.4200 0.4200 0.4220 0.4190 0.420

−0.374 −0.3740 −0.3740 −0.3740 −0.3710 −0.3750 −0.374
0.375 0.3740 0.3740 0.3740 0.3710 0.3760 0.375
0.279 0.2800 0.2790 0.2790 0.2810 0.2790 0.279

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The canonical correlation loadings for dependent variables are

V =
[

0.9940 −0.7350
−0.1080 0.6780

]

8.9 Calculate the variance explained by EOFs of mean monthly air temperature
recorded in five cities (A to E as shown in Table8.9).

Table 8.9 Air temperature for five monitoring stations

Month Location

A B C D E

1 21.70 19.94 19.92 25.07 24.52

2 23.60 23.55 18.94 23.51 23.12

3 22.44 25.96 17.40 26.59 26.30

4 20.37 24.29 19.05 23.18 22.09

5 22.73 23.16 20.12 24.06 28.91

6 23.99 20.36 20.67 22.12 22.43

7 21.08 22.07 18.43 20.85 27.03

8 21.62 23.17 15.88 21.59 22.57

9 22.67 19.80 18.20 20.69 24.12

(continued)
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Table 8.9 (continued)

Month Location

A B C D E

10 24.39 23.08 19.86 20.60 25.23

11 21.11 21.91 17.80 23.11 25.94

12 22.02 21.54 15.76 21.95 21.43

13 18.79 22.33 23.05 19.45 19.56

14 22.12 20.06 13.86 22.36 21.55

15 19.31 19.55 18.49 21.54 20.76

16 20.11 21.94 16.10 24.39 22.58

17 21.96 20.54 18.55 20.40 23.24

18 21.01 20.18 20.13 22.29 23.29

19 21.78 19.20 20.52 22.85 21.68

20 23.45 22.25 16.85 24.52 25.62

21 25.23 19.64 21.57 21.06 25.83

22 23.77 23.34 19.55 22.84 23.84

23 22.06 25.86 20.23 19.80 27.33

24 22.57 22.82 17.35 17.92 23.71

(Ans. The variance explained by first five empirical orthogonal components in %
is 36.51, 25.59, 15.98, 14.43, and 7.50.)

8.10 At a gauging station, the monthly streamflow is found to follow exponential
distribution with λ = 0.5. Generate a streamflow data for a year.

(Answers may vary depending on random number generated. Refer to Sect. 8.6.)

8.11 Historical data for a location suggests that monthly average rainfall follows
exponential distribution with λ = 1.5 and streamflow follows normal distribution
with mean 15 m3/s and standard deviation of 2.5 m3/s. The correlation between
monthly average precipitation and streamflow is 0.55. Generate the data for 2 years
preserving the correlation structure. (Answers may vary depending on random num-
ber generated. Refer to Sect. 8.6.)

8.12 Following annual precipitation depths (in cm) is obtained from 4 GCMs for 6
consecutive years.

GCM Years
2025 2026 2027 2028 2029 2030

GCM-1 112.2 117.9 104.3 111.7 112.6 115.2
GCM-2 133.8 117.3 125.4 133.6 128.8 134.8
GCM-3 127.2 88.8 111.6 109.8 115.6 131.4
GCM-4 138.4 111.7 100.8 129.2 124.6 112.1
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Check whether the mean annual precipitation depth differs with GCMs at 5%
level of significance.

(Ans. Mean annual precipitation depth differs with GCMs at 5% significance
level.)

8.13 Different scenarios for GCM result in the different predictions for the hydro-
climatic variables. For a location following estimate for average annual streamflow,
(Mm3) is obtained for 4 GCM and four different scenarios.

GCM Scenarios
1 2 3 4

GCM-1 250 261 280 271
GCM-2 265 270 264 259
GCM-3 245 252 250 268
GCM-4 240 255 259 272

Checkwhether themean annual streamflowdifferswith different choices ofGCMs
and/or scenarios at 1% level of significance.

(Ans. Mean annual streamflow differs with GCMs and/or scenarios at 1% signif-
icance level.)



Chapter 9
Time Series Analysis

Hydroclimatic variables such as rainfall intensity, streamflow, air tem-
perature vary with space and time, due to different hydrological/climatic
phenomena/processes. As these processes are continuously evolving over
time, studying the interdependence in hydroclimatic data with proper
consideration of temporal information may lead to better insight into the
governing processes. Observations of any variable, recorded in chrono-
logical order, represent a time series. A time series is generally assumed
to consist of deterministic components (results can be predicted with
certainty) and stochastic components (results cannot be predicted with
certainty as the outcome depends on chance). Analysis of time series
helps to get an insight of the time series that in turn may enhance the
prediction of the hydroclimatic processes/variables. The objective of this
chapter is to introduce different types of time series analysis techniques.
This requires an understanding of time series analysis techniques and
time series properties like stationarity, homogeneity, periodicity, which
is the subject matter of this chapter.

9.1 Data Representation in Hydroclimatology

Most of the hydrologic time series are continuous in nature but they need to be
represented on a discrete time interval. For example, temperature, streamflow, or
rainfall depth may vary continuously over time but the records are taken over discrete
time interval. There are two methods to represent a continuous time series, f (t), on
a discrete time interval.

(i) Sample Data Representation: In this representation, value of the function for
i th time interval, X (i), is given by instantaneous value of f (t) at the time i�t .

X (i) = f (i�t) (9.1)

Dimension of the pulse data is L3T−1 or LT−1. Most common examples of
sample data representation include streamflow, wind speed that are recorded as
a series of instantaneous values.

© Springer Nature Singapore Pte Ltd. 2018
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Fig. 9.1 Different types of data representation a sample data representation b pulse data represen-
tation

(ii) Pulse Data Representation: In this representation, value of the function for i th
time interval, X (i), is given by accumulated value of f (t) during time i�t , i.e.,
between (i − 1)� and i�.

X (i) =
∫ i�t

(i−1)�t
f (t)dt (9.2)

Dimension of the pulse data is L3 or L . Most common example of pulse data
representation is precipitation that is recorded as a series of accumulated depths.
Sometimes pulse data can also be represented as average rate over the interval
�t as follows:

X (i) = 1

�t

∫ i�t

(i−1)�t
f (t)dt (9.3)

Example includes precipitation intensity that has a dimension LT−1.

Figure9.1 explains the two methods of data representation, i.e., sample data rep-
resentation and pulse data representation.

9.2 Stationary and Non-stationary Time Series

A time series is known to be stationary if the statistical properties of the time series
remain constant over time. This property is known as stationarity. The order of
the stationarity represents the highest central moment (moment around the mean),
which remain constant over time. For instance, first-order stationarity indicates time-
invariant mean or mean does not change over time. Similarly, if both mean and
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variance (second-order central moment) remain constant over time, the time series
is known to be second-order stationary or weakly stationary. If mean, variance,
and all higher-order moments are constant over time, the time series is called strict
sense stationary or simply stationary. In hydrologic and hydroclimatic applications,
second-order stationary can be safely assume to be satisfactory. However, impacts
of climate change may impart non-stationarity in many hydrologic time series.

If the statistical properties of a time series change or vary with time, it is known as
non-stationary time series. Apart from various other causes, presence of trend, jump,
periodicity, and a combination thereof, cause non-stationarity in the time series.
These are generally deterministic components that should be removed to obtain the
stochastic component of the time series. However, their removal does not always
guarantee stationarity. These deterministic components are discussed below:

(i) Trend: Trend refers to gradual but continuous change in mean of a time series.
Trend may be increasing or decreasing (Fig. 9.2) and may be linear or nonlin-
ear. The cause of trend in time series is gradual change in hydrological and
climatic factors or conditions. Sometimes anthropogenic changes (like change
in land use and land cover, regulation of river flow using weir) may also lead
to development of trend in hydroclimatic time series.
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(d) Periodicity

Fig. 9.2 Different types of deterministic components of time series
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(ii) Jump: An abrupt change in the mean of the time series at some time step is
termed as jump (Fig. 9.2). Jump in hydrological time series may occur due to
extreme conditions like natural hazards; system errors; inhomogeneity caused
by humans or change in experimental method/setup/tools. The removal of jump
requires identification of the time step of its occurrence.

(iii) Periodicity: Periodicity is a property of time series in which the same or sim-
ilar values get repeated after some time difference (Fig. 9.2). The periodicity
is observed in many hydrological or climatic variable due to seasonality. For
example, in India the rainfall is highly seasonal and mostly occurs in the mon-
soon months (June, July, August, September). On visualization, periodic time
series show wave like characteristics. The time series that do not exhibit peri-
odicity is termed as aperiodic.

9.3 Ensemble and Realization

Ensemble refers to a collection of time series representing the same variable. Each
of the constituting time series of an ensemble is termed as realization. The statistical
properties across the different realizations are known as ensemble properties. An
ensemble is said to be ‘ergodic’ if the statistical properties remain constant across
the realizations within the ensemble, otherwise the ensemble is termed as ‘non-
ergodic.’ Often ensembles are generated in many hydroclimatic simulations through
multiple runs of the model, and ensemble average properties are determined.

9.4 Trend Analysis

Deterministic components, if exist, should be treated separately. Thereby, the trend
in time series (if any) needs to be identified and removed before applying any time
series model.

9.4.1 Tests for Randomness and Trend

The trend (if any) is usually visible in the time series plot. The presence of trend in
time series can be checked using the following tests:

(i) Regression test for linear trend: If the time series fulfils the assumptions of
simple regression model, a linear regression model can be fitted by considering
the value of time series as dependent variable and time step as independent
variable as per Sect. 7.1. The regression equation is expressed as:
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X (t) = a + bt + ε (9.4)

where, X (t) is the value of time series at time t , a and b are the intercept and slope
parameters of regression model respectively. ε represents the residual or error.
Increasing and decreasing (linear) trend with fitted regression line is shown in
Fig. 9.2. If the slope of the fitted regressionmodel (b) is not significantly different
from zero, then no linear trend exists in the time series. This test for significance
of b is explained in Sect. 7.7.

(ii) Mann–Kendall Test: Mann–Kendall test is a nonparametric test that identifies
the trend in the time series. Being a nonparametric test, the test is widely applied
to detect trend in time series following any probability distribution. For a time
series X (t), the Mann–Kendall statistic is defined as:

S =
N−1∑
t=1

N∑
t ′=t+1

sign(X (t ′) − X (t)) (9.5)

where N is number of data and sign(•) represents a signum function given by:

sign(a) =
{

a
|a| , if x �= 0

0, if x = 0
=

⎧⎪⎨
⎪⎩
1, if a > 0

0, if a = 0

−1, if a < 0

(9.6)

Sign and value of the S statistic show the direction and intensity of the trend.
Under the null hypothesis of no trend, the distribution of S statistics is expected
to have zero mean. The variance of the statistics is given by:

Var(S) = 1

18

[
N (N − 1)(2N + 5) −

g∑
i=1

ti (ti − 1)(2ti + 5)

]
(9.7)

where g is the number of tied groups and ti represents the number of observations
in the tied group. Tied groups are groups having members tied, or, in other words
if the frequency of a value is greater than 1 in the frequency table, it constitutes
the tied group. For example, in the data set {15, 11, 10, 12, 10, 15, 13, 15} there
are two tied groups (10 and 15). Tied group for 10 has 2 members and tied
group for 15 has 3 members. However, continuous hydroclimatic variables like
precipitation, stream flow, temperature may have very less or no tied group.
Under the assumption that there is no tied group, the variance of S statistic
becomes:

Var(S) = N (N − 1)(2N + 5)

18
(9.8)
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The test statistics uc is given by:

uc = S − sign(S)√
Var(S)

(9.9)

uc statistic follows standardized normal distribution. The null hypothesis of no
trend can be rejected if |uc| > Z(α/2), where Z(α/2) is standardized normal variate
for the non-exceedance probability of (1 − α/2) × 100% and α is the level of
significance. For no tied group, the test is valid for N > 10.

(iii) Kendall tau (τ) Test (Rank Correlation Test): Suppose that for a pair in
(X (i), X ( j))with j > i in time series X (t), there are p pairs such that X ( j) >

X (i). These pairs are called concordant pairs.

p =
N−1∑
i=1

N∑
j=i+1

�(X ( j) > X (i)) (9.10)

where, �(•) = 1 if the argument is true, otherwise �(•) = 0. The pairs
(X (i), X ( j)) with j > i are called discordant, if X (i) > X ( j). It should
be noted that the pairs can be neither concordant or discordant if X (i) = X ( j).
The random variable p, i.e., number of concordant pairs, is supposed to have
uniform distribution between minimum possible value (i.e., 0) and maximum
possible value.Maximumpossible number of concordant pairs (p) will be equal
to the number of possible pairs in a strictly increasing time series (∀ j > i ,
X ( j) > X (i)). If the length of time series is N , then

p = (N − 1) + (N − 2) + · · · + 1 = N (N − 1)

2
(9.11)

Hence, expected value of p is given as:

E(p) = 1

2

(
0 + N (N − 1)

2

)
= N (N − 1)

4
(9.12)

Test statistic for testing the randomness is defined as Kendall rank correlation
coefficient or Kendall τ. The Kendall τ is defined as the difference between the
probability of concordant and discordant pairs. If the number of concordant and
discordant pairs are p and q, respectively, then the Kendall τ is given by:

τ = 2(p − q)

N (N − 1)
(9.13)

If there is no pair that is neither concordant or discordant, then p + q = Total
number of pairs = N (N − 1)

/
2. In that case, the Eq.9.13 reduces to,
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τ = 4p

N (N − 1)
− 1 (9.14)

Kendall τ varies between ±1 with an expected value of 0. The variance of τ is
given by:

Var(τ) = 2(2N + 5)

9N (N − 1)
(9.15)

With large N , the ratio τ−E(τ)√
Var(τ)

= τ√
Var(τ)

follows a standard normal distribution.

Hence, if
∣∣∣ τ√

Var(τ)

∣∣∣ < Z(α/2) at significance level α then the null hypothesis

(time series is random) cannot be rejected. Z(α/2) is the standard normal variate
at (1 − α/2) × 100% non-exceedance probability.

9.4.2 Trend Removal

The trend can be linear or nonlinear. Removing linear trend by fitting simple regres-
sion model is comparatively easier. In case of nonlinear trend, the major problem
becomes the estimation of degree of polynomial trend line. With the increase in
the degree of fitted polynomial the residual may decrease, however, it needs to be
checkedwhether addition of extra order is statistically significant or not. One alterna-
tive approach to remove nonlinear trend is piecewise polynomial regression fitting.
Hence, instead of fitting a global polynomial trend line, many lower-order polyno-
mials are fitted in piecewise manner. One popular polynomial fit for piecewise fitting
is spline. After fitting an appropriate trend line (either a simple linear regression or
polynomial fit) the value of trend can be calculated and subtracted from the observed
time series to remove the trend.

Example 9.4.1
The streamflow records (in Mm3) for 20 consecutive days are 1.1, 0.5, 2.7, 1.3,
1.5, 2.2, 2.1, 3, 2.9, 4.4, 4.6, 3.1, 4.7, 4, 4.6, 5.1, 6.1, 5.3, 6.7, and 5.6. Check the
streamflow data for linear trend by using linear regression and comment about the
significance of linear trend at 5% significance level.

Solution The given data can be analyzed for fitting a linear regression as given in
Table9.1 (see Example 7.1.2). From the table,

N = 20,
∑

t = 210,
∑

x = 71.5, Stt =
∑

td
2 = 665, and

Sxx =
∑

xd
2 = 60.73, Stx = Sxt =

∑
td xd = 188.115
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Table 9.1 Calculation for fitting linear regression

Days (t) Streamflow
(in Mm3) (x)

td xd t2d x2d xd td

1 1.1 −9.5 −2.48 90.25 6.13 23.56

2 0.5 −8.5 −3.08 72.25 9.46 26.18

3 2.7 −7.5 −0.88 56.25 0.77 6.6

4 1.3 −6.5 −2.28 42.25 5.18 14.82

5 1.5 −5.5 −2.08 30.25 4.31 11.44

6 2.2 −4.5 −1.38 20.25 1.89 6.21

7 2.1 −3.5 −1.48 12.25 2.18 5.18

8 3.0 −2.5 −0.58 6.25 0.33 1.45

9 2.9 −1.5 −0.68 2.25 0.46 1.02

10 4.4 −0.5 0.83 0.25 0.68 −0.415

11 4.6 0.5 1.02 0.25 1.05 0.51

12 3.1 1.5 −0.48 2.25 0.23 −0.72

13 4.7 2.5 1.13 6.25 1.27 2.825

14 4.0 3.5 0.42 12.25 0.18 1.47

15 4.6 4.5 1.02 20.25 1.05 4.59

16 5.1 5.5 1.52 30.25 2.33 8.36

17 6.1 6.5 2.52 42.25 6.38 16.38

18 5.3 7.5 1.72 56.25 2.98 12.9

19 6.7 8.5 3.13 72.25 9.77 26.605

20 5.6 9.5 2.02 90.25 4.10 19.19

Total
∑

:
210

71.5 665 60.73 188.155

Simple linear regression equation for trend is given by

x = a + bt

b = Stx
Stt

= 188.115

665
= 0.283

and, a = �x − b�t = 71.5 − 0.283 × 210

20
= 0.604

Hence, the developed linear regression model is

x = 0.604 + 0.283t
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The Sum of squared errors is given by

S2e = Sxx − (Stx )2
/
Stt

N − 2
= 60.73 − 188.1152

/
665

18
= 0.418

For checking the significance of the trend in the streamflow time series, we need to
prove that the parameter β (population estimate of b; Sect. 7.7) is statically different
from 0 at 5% significance level. Hence,

Null Hypothesis: β = 0
Alternative Hypothesis: β �= 0
Level of Significance: α = 5%

For N − 2 = 18 degrees of freedom, t0.025(18) = 2.10.
The test statistics is given by

t = b − β

Se

√
Stt = 0.283√

0.418

√
665 = 11.29

As11.29 > t0.025(18), so the null hypothesis is rejected.Hence, the trend is significant
in the streamflow time series at 5% significance level.

Example 9.4.2
For the time series given in Example 9.4.1, test the significance of trend using (a)
Mann–Kendall Test and (b) Kendall’s tau test at 10% significance level.

Solution The null and alternate hypothesis can be expressed as:

Null Hypothesis: Time Series does not have a trend.
Alternative Hypothesis: Time Series has a trend.
Level of Significance: α = 10%

(i) Mann–Kendall Test
From Eq.9.5, the Mann–Kendall statistics (S) is given by

S =
N−1∑
t=1

N∑
t ′=t+1

sign(X (t ′) − X (t)) = 157

The variance of S is given by

Var(S) = N (N − 1)(2N + 5)

18
= 950

The test statistics uc is

uc = S − sign(S)√
Var(S)

= 157 − 1√
950

= 5.06
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Z(α/2) = Z0.05 = 1.645

As |uc| > 1.6450 (Z0.05), so the null hypothesis of no trend is rejected.
(ii) Kendall tau Test

The number of pairs of concordant pairs (p) as defined by Eq.9.10 is 173 in the
streamflow time series. From Eq.9.14, the Kendall tau (τ) is given by

τ = 4p

N (N − 1)
− 1 = 4 × 173

20(20 − 1)
− 1 = 0.82

The variance of τ is given by (Eq.9.15)

Var(τ) = 2(2N + 5)

9N (N − 1)
= 0.0263

The test statistics (z) is

z = τ√
Var(τ)

= 0.82√
0.0263

= 5.06

As |z| > 1.645 (Z0.05), so the null hypothesis of no trend is rejected.

Example 9.4.3
For the years 1981 to 2010, the global mean annual temperature (in ◦C) was observed
as 0.33, 0.13, 0.30, 0.15, 0.12, 0.19, 0.33, 0.41, 0.28, 0.44, 0.43, 0.23, 0.24, 0.32,
0.46, 0.35, 0.48, 0.64, 0.42, 0.42, 0.55, 0.63, 0.62, 0.55, 0.69, 0.63, 0.66, 0.54, 0.64,
and 0.71. Check the claim that global mean annual temperature has no trend using
Kendall tau test at 5% significance level.

Solution The null and alternate hypothesis can be expressed as:

Null Hypothesis: Global mean annual temperature does not have a trend.
Alternative Hypothesis: Null hypothesis is not true.
Level of Significance: α = 5%

Kendall tau Test
The number of pairs of concordant (p) as defined by Eq.9.10 is 362 in the streamflow
time series. From Eq.9.13, the Kendall tau (τ) is given by

τ = 2(p − q)

N (N − 1)
= 4p

N (N − 1)
− 1 = 4 × 362

30(30 − 1)
− 1 = 0.66

The variance of τ is given by (Eq.9.15)

Var(τ) = 2(2N + 5)

9N (N − 1)
= 0.017
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The test statistics (z) is

z = τ√
Var(τ)

= 0.66√
0.017

= 5.06

As |z| > 1.96 (Z0.025), so the null hypothesis of no trend is rejected.

9.5 Analysis of Periodicity

In the domain of hydroclimatology, many time series are having periodicity due to
their seasonal behavior. For example, monthly rainfall or wind velocity at a location
is expected to have a periodicity of 12months. If the time period of periodicity is
known, then it can be removed using harmonic analysis, otherwise time period of
periodicity can be identified using autocorrelation or spectral analysis.

9.5.1 Harmonic Analysis

Any time series can be expanded into Fourier series, i.e., a function of series of sines
and cosines.

X (t) = a0 +
∞∑
i=1

ai cos(2πνi t) +
∞∑
i=1

bi sin(2πνi t) (9.16)

where νi is i th frequency and ai , bi are corresponding Fourier coefficients. If the
length of data is N , then the coefficients are given by,

ai = 1

N

N∑
t=1

X (t) cos

(
2πi t

N

)
dt for t = 0, 1, 2, . . . (9.17)

bi = 1

N

N∑
t=1

X (t) sin

(
2πi t

N

)
dt for t = 1, 2, 3, . . . (9.18)

If the periodicity is known (say p) then different harmonics or frequencies are
expressed as τ/p where τ = 1, 2, . . . , p. For hydroclimatic data p depends upon
the temporal resolution. For example, p for monthly scale data is 12 and for daily
scale data is 365. In discrete form, the harmonic fitted mean of such hydroclimatic
time series for a period τ (say mτ ) using first h harmonics is given by,
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mτ = μ +
h∑

i=1

ai cos

(
2πiτ

p

)
+

h∑
i=1

bi sin

(
2πiτ

p

)
(9.19)

where μ is the population mean, ai and bi are Fourier parameters and h is total
numbers of harmonics considered. The Fourier parameters can be obtained by min-
imizing the Sum of square of differences between the sample estimate of mean and
mean estimated using Eq.9.19. The parameters are given by:

ai = 2

p

p∑
τ=1

�Xτ cos

(
2πiτ

p

)
, for i = 1, 2, . . . , h (9.20)

bi = 2

p

p∑
τ=1

�Xτ sin

(
2πiτ

p

)
, for i = 1, 2, . . . , h (9.21)

If we consider all the harmonics, then the mτ will be equal to actual periodic mean
(xτ ). In practice only first few significant harmonics can explain most of the variance
in the data. The number of significant harmonics required can be ascertained by
plotting the ratio of cumulative variability explained by individual harmonics to total
variability in the time series. The plot of explained cumulative variance with respect
to order of harmonics is called cumulative periodogram.

Pj =
∑ j

i=1 Var(hi )

Var(x)
(9.22)

where Var(hi ) and Var(x) are the mean square of deviation of mτ (for harmonics
hi ) and x from their respective means. These quantities are given by:

Var(hi ) = 1

2
(a2i + b2i ), for i = 1, 2, . . . , h (9.23)

Var(x) = 1

p

p∑
τ=1

(�xτ − μ̂)2 where, μ̂ = 1

p

p∑
τ=1

�xτ (9.24)

Hence, the cumulative periodogram is plotted between Pj and j . The slope of the
cumulative periodogram helps in finding the significant number of harmonics. The
mτ thus obtained can be subtracted from the original time series to remove the
periodicity from the time series.

9.5.2 Spectral Analysis

Spectral analysis, also called spectral density estimation or frequency domain anal-
ysis, is the decomposition of a periodic time series in such a way that its constituent
frequency (and their amplitude) is revealed. Spectral density estimation can be done
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Fig. 9.3 Spectral analysis of periodic functions a sine wave b spectral density of sine function
c sum of four cosine functions d spectral density of sum of four cosine functions

using the Fourier transformation. The Fourier series is given by:

X (t) = a0 +
∞∑
i=1

ai cos(2πνi t) +
∞∑
i=1

bi sin(2πνi t)

= a0(cos(0t) + sin(0t)) +
∞∑
i=1

ai cos(2πνi t) +
∞∑
i=1

bi sin(2πνi t)

=
∞∑
i=0

(ai cos(2πνi t) + bi sin(2πνi t)) (9.25)

Substituting, ai = Ai sin(φi ) and bi = Ai cos(φi ), the Eq.9.25 can be written as:

X (t) =
∞∑
i=0

(Ai sin(2πνi t + φi )) (9.26)
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where Ai and φi are amplitude and phase for frequency νi . The sum of root mean
square of sin(•) is 1/

√
2, so the variance of the Ai sin(2πνi t + φi ) is A2

i /2. Hence,
a frequency of νi contributes/estimates A2

i /2 of total variance of X (t). The plot
of A2

i /2 with respect to frequency νi is called power spectrum of time series. For
instance, power spectrum of some of circular function is shown in Fig. 9.3. The power
spectrum can be used to find significant frequencies or presence of periodicity in a
time series. For instance, from power spectrum in Fig. 9.3b the wave has a frequency
of 0.25Hz and hence periodicity of 4 s. Similarly, the power spectrum in Fig. 9.3d
clearly shows the frequencies in the wave shown in Fig. 9.3c. These frequencies
are 0.2, 0.5, 0.8, and 1Hz. Generally, in hydroclimatic variables mostly one or two
frequencies (related to annual seasonality) will be prominent.

9.6 Data Transformation

Most of the parameter estimation methods are based on the assumption that the time
series follows normal probability distribution. Hence, we may need to transform the
time series to follow normal probability distribution for some applications.

If we have a time series, X (t) following lognormal distribution, the following
transformation yields normal series, Y (t):

Y (t) = ln(X (t)). (9.27)

If the time series X (t) follows gamma probability distribution, then the following
transformation may yield a normally distributed random variable Y (t).

Y (t) = √X (t) (9.28)

Power transformation, also known as Box-Cox transformation, can also be used for
transforming the data to normal distribution.One-parameterBox-Cox transformation
is given by

Y (t) =
{

(X (t))λ−1
λ

if λ �= 0 and X (t) > 0

ln(X (t)) if λ = 0
(9.29)

The other two transformation methods discussed before can be considered as special
cases of one-parameter Box-Cox transformation.

The two-parameter Box-Cox transformation is given by

Y (t) =
{

(X (t)+λ2)
λ1−1

λ1
if λ1 �= 0 and X (t) > −λ2

ln(X (t) + λ2) if λ1 = 0
(9.30)

The parameter λ1 or λ2 can be obtained by method of maximum likelihood. It should
be noted that any of the transformation procedure discussed in this section does not
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always result in a time series that is normally distributed. Hence, before further
analysis, transformed variable/time series need to be checked if they follow normal
distribution using the appropriate test (discussed in next section).

9.6.1 Test for Normal Distribution

For checking that the time series follow normal distribution, the time series can be
plotted on normal probability paper. If the plot is close to straight line with slope 1
and intercept 0, then the series can be considered normally distributed. A number
of statistical tests exist for checking normality in the data like chi-square (χ2) test,
Kolmogorov–Smirnov test, Anderson–Darling test, and skewness test. Former three
tests are discussed in Sect. 6.4.4. The skewness test is explained here.

For skewness test, the skewness coefficient of a time series X (t) is estimated as
follows:

Ŝ =
1
N

∑N
i=1(X (t) − �X)3[

1
N

∑N
i=1(X (t) − �X)2

]3/2 (9.31)

where N is the number of sample data and �X is the sample mean for time series
X (t). The skewness test is based on the fact that the skewness coefficient of a normal
variable is zero. If the series is normally distributed, Ŝ is asymptotically normally
distributedwith themean of zero, variance of 6/N , hence, (1−α)×100% confidence
limit on skewness is defined as,

S ∈
[
−Z(α/2)

√
6
/
N , Z(α/2)

√
6
/
N

]
(9.32)

where Z(α/2) is the (1−α/2) quantile of the standard normal distribution. There-
fore, if Ŝ falls within the limits of Eq.9.32, the hypothesis of normality cannot be
rejected. The test is found to be reasonably accurate for N > 150.

Example 9.6.1
At a location, the rainfall data is found to follow gamma distribution. For 20 consec-
utive days the recorded rainfall (in mm/day) are 2.89, 7.39, 23.88, 10.59, 5.91, 1.53,
3.48, 56.54, 26.19, 6.35, 38.09, 0.01, 3.03, 41.57, 44.73, 21.39, 15.87, 1.22, 21.75,
and 0.21, respectively. Transform the data such that it follows normal distribution.
Check whether the transformed data follow normal distribution using skewness test
at 5% significance level (as discussed in Sect. 9.6.1).

Solution A gamma distributed random variable can be transformed into normal
distribution using the Eq.9.28. Further, for checking the normality of data using
the skewness, the skewness is required to be calculated using the Eq.9.31. These
calculations are shown in Table9.2.
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Table 9.2 Calculation for data transformation and skewness test

S. No. Rainfall (mm)
X (t)

Normalized
series Y (t)

Normalized series
deviation Yd (t)

Yd (t)2 Yd (t)3

1 2.89 1.70 −1.76 3.10 −5.47

2 7.39 2.72 −0.74 0.55 −0.41

3 23.88 4.89 1.43 2.03 2.89

4 10.59 3.25 −0.21 0.04 −0.01

5 5.91 2.43 −1.03 1.06 −1.09

6 1.53 1.24 −2.22 4.95 −11.01

7 3.48 1.87 −1.60 2.55 −4.07

8 56.54 7.52 4.06 16.46 66.81

9 26.19 5.12 1.66 2.74 4.54

10 6.35 2.52 −0.94 0.89 −0.84

11 38.09 6.17 2.71 7.34 19.9

12 0.01 0.10 −3.36 11.30 −37.99

13 3.03 1.74 −1.72 2.96 −5.10

14 41.57 6.45 2.99 8.92 26.62

15 44.73 6.69 3.23 10.41 33.59

16 21.39 4.62 1.16 1.35 1.57

17 15.87 3.98 0.52 0.27 0.14

18 1.22 1.10 −2.36 5.56 −13.10

19 21.75 4.66 1.20 1.44 1.74

20 0.21 0.46 −3.00 9.02 −27.09

Total 332.62 69.23 0.00 92.94 51.62

From the table, the skewness can be calculated as:

S =
1
N

∑N
i=1(Y (t) − �Y )3[

1
N

∑N
i=1(X (t) − �X)2

]3/2 =
[
51.62

/
20
]

[
92.94

/
20
]3/2 = 0.26

Test for Normal distributed data using skewness (Sect. 9.6.1)

Null Hypothesis: Data is normally distributed.
Alternative Hypothesis: Data is not normally distributed.
Level of Significance: α = 5%

Null Hypothesis is acceptable for |S| < Z(α/2)

√
6/N (Eq. 9.32)

As, Z(α/2)

√
6/N = Z0.025

√
6/20 = 1.074

Since −1.074 < S < 1.074, so the null hypothesis of data being normally distributed
cannot be rejected.
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9.7 Time Series Modeling in Hydroclimatology

After removal of deterministic components (like trend, periodicity, or jump) of time
series, different time series modeling approaches can be used for modeling stochastic
component of the time series. Some of the popular linear models for time series
prediction/forecast are following:

(i) Autoregressive model
(ii) Moving average model
(iii) Autoregressive moving average model
(iv) Autoregressive integrated moving average model

Out of these, the first three are linear stationary models used for modeling stationary
time series. However, the last model is a linear non-stationary model and is used
to model a time series for which dth difference series (Sect. 9.7.2) is stationary.
Stationary and non-stationarymodels are discussed in Sect. 9.7.3. All of thesemodels
are linear regression model and try to relate the present value of time series with the
previous values. Being linear, thesemodels rely onmutual linear association between
time series values. These linear associations are expressed in term of autocorrelation
function and partial autocorrelation function in time series.

9.7.1 Measures of Linear Association in Time Series

Hydroclimatic time series often have linear association between its successive values.
These linear association can be utilized in developing the structure of the linear
models for analysis/prediction of the time series. Two linear association measures
for time series are autocorrelation and partial autocorrelation functions.

Autocorrelation Function

Autocorrelation is a measure of linear association between the values of same time
series separated by some time lag/steps (say k). For a time series X (t), and the same
time series with lag k (represented by X (t − k)), the linear association is measured
by autocovariance. The term auto is used as the values are from same series but with
some lags. The autocovariance function for lag k (represented by Ck) is given by:

Ck = E(X (t), X (t − k)) (9.33)

where E represents the expectation. The autocorrelation function for lag k is
defined as:

ρk = Ck√
E
[
(X (t) − �X(t))2

]
E
[
(X(t − k) − �X(t − k))2

] = Ck

σtσt−k
(9.34)
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Fig. 9.4 Typical autocorrelogram for a random/stationary time series b periodic time series

where σt and σt−k are standard deviation for time series X (t) and X (t − k), respec-
tively. If the time series is second-order or higher-order stationary (standard deviation
does not change over time), then the Eq.9.34 can be expressed as:

ρk = Ck

σ2
(9.35)

where σ is the standard deviation of time series X (t). A plot of autocorrelation func-
tion with corresponding lag is called autocorrelogram. For a stationary time series
the autocorrelation become insignificant with increasing lag (Fig. 9.4a). However,
for a periodic time series the autocorrelation is also periodic and decreases slowly
with damping peaks (Fig. 9.4b). Under the assumption of independent time series,
autocorrelation at lag k is normally distributed with zero mean and 1

/
(N − k) vari-

ance, N being the length of time series. The confidence limits of autocorrelation
function for α significance level are given as follows,

−Z(α/2)√
N − k

≤ ρk ≤ Z(α/2)√
N − k

(9.36)

where Z(α/2) is standard normal variate at (1−α/2)×100% non-exceedance proba-
bility, i.e., P(Z > Z(α/2)) = α

/
2. For large value of N (N � k) the Eq.9.36 further

reduces to, −Z(α/2)√
N

≤ ρk ≤ Z(α/2)√
N

(9.37)

Partial Autocorrelation Function (PACF)

Partial correlation is the measure of linear association between two random variables
when effect of other random variables is removed. For instance, let X , Y , and Z be
three random variables. The partial correlation between X and Y , when the effect of
Z is removed, represented as ρXY /Z , is the correlation between the residuals Ry and
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Rx resulting from linear regression of Y and X with Z , respectively. Hence, ρXY /Z
is expressed as:

ρXY /Z = E(Rx Ry)√
Var(Rx )Var(Ry)

(9.38)

With an assumption that all involved variables are multivariate Gaussian distributed,
if X is conditionally independent of Y given Z , then ρXY /Z is zero. Hence, partial
correlation is useful in linear models like multiple regression to figure out variables
that do not contribute significantly to the prediction.

Partial autocorrelation function (PACF) of a time series X at lag k is defined as:

ϕk = ρX0Xk/{X1,X2,...,Xk−1} (9.39)

The partial autocorrelation at lag 0 (ϕ0) is 1. The partial autocorrelation function at
higher lag (say k) (ϕk) is calculated usingYule–Walker equation,which is represented
as: ⎡

⎢⎢⎢⎢⎢⎣

1 ρ1 ρ2 . . . ρk−1

ρ1 1 ρ2 · · · ρk−2

ρ2 ρ1 1 · · · ρk−3
...

...
...

. . .
...

ρk−1 ρk−2 ρk−3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

�1

�2

�3
...

�k

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

ρ1
ρ2
ρ3
...

ρk

⎤
⎥⎥⎥⎥⎥⎦

(9.40)

where ρi is autocorrelation function at lag i and �i is i th parameter for autoregres-
sive model (discussed later in Sect. 9.7.4). For the Yule–Walker equation, the last
autoregressive parameter (�k) corresponds to ϕk . Thus, for the Eq.9.40, ϕk = �k .
However, it must be noted that ϕi �= �i , for i ∈ {1, 2, . . . , k − 1}.

The solution of Yule–Walker equation for calculating partial autocorrelation func-
tion at lag k is expressed as:

ϕk =

∣∣∣∣∣∣∣∣∣

1 ρ1 ρ2 · · · ρk−2 ρ1
ρ1 1 ρ1 · · · ρk−3 ρ2
...

...
...

. . .
...

...

ρk−1 ρk−2 ρk−3 · · · ρ1 ρk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1 ρ2 · · · ρk−1

ρ1 1 ρ1 · · · ρk−2
...

...
...

. . .
...

ρk−1 ρk−2 ρk−3 · · · ρ1

∣∣∣∣∣∣∣∣∣

(9.41)

Hence, partial autocorrelation function at lags 1 and 2 is defined as:

ϕ1 =ρ1 (9.42)

ϕ2 =ρ2 − ρ21
1 − ρ21

(9.43)
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Fig. 9.5 Typical partial autocorrelogram with confidence interval for a a random/stationary time
series, and a b periodic time series

The partial autocorrelation at lag k is expected to follow the normal distribution with
mean 0 and standard deviation 1/

√
N − k (like autocorrelation). Thus, (1 − α) ×

100% confidence interval is given by:

−Z(α/2)√
N − k

≤ ϕk ≤ Z(α/2)√
N − k

(9.44)

where Z(α/2) is standard normal variate at (1− α/2) × 100% non-exceedance prob-
ability, i.e., P(Z > Z(α/2)) = α

/
2. The null hypothesis of partial autocorrelation at

a lag k being equal to zero can be tested using above equation. For large value of N
(N � k) the Eq.9.44 further reduces to,

−Z(α/2)√
N

≤ ϕk ≤ Z(α/2)√
N

(9.45)

Typical examples of partial autocorrelogram with confidence interval for a random/
stationary time series and a periodic time series are shown in Fig. 9.5a and Fig. 9.5b
respectively.

Example 9.7.1
For the rainfall time series given in Example 9.6.1, calculate the autocorrelation at
lags 0, 1, and2.Calculate the 95%confidence limits for autocorrelation at lags 1 and2.

Solution Autocorrelation function at lag 0 is 1. Hence,

ρ0 = 1

For calculating the autocorrelation at lags 1 and 2, the covariance of the rainfall time
series (denoted as Xt ) with its 1- and 2-day lagged series (denoted by Xt−1 and Xt−2,
respectively) is calculated. Let the covariance of rainfall series with its kth lagged
series is represented as covk . Hence
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cov1 = cov
(
Xt , Xt−1

) = cov

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.89 7.39
7.39 23.88
23.88 10.59
10.59 5.91
5.91 1.53
1.53 3.48
3.48 56.54

56.54 26.19
26.19 6.35
6.35 38.09
38.09 0.01
0.01 3.03
3.03 41.57
41.57 44.73
44.73 21.39
21.39 15.87
15.87 1.22
1.22 21.75
21.75 0.21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
[
293.05 9.84
9.84 297.81

]

And the corresponding autocorrelation matrix at lag 1

=
[

1 0.033
0.033 1

]

Theoff-diagonalmember of autocorrelationmatrix at lag1 is autocorrelation function
at lag 1 (ρ1), hence

ρ1 = 0.033

Similarly, the autocorrelation function at lag 2 (ρ2) is found to be (−0.282).
The autocorrelation function at lag 1 (ρ1) is supposed to follow normal distribution

with mean 0 and standard deviation 1/
√
N − 1 = 0.229. Hence, the 95% confidence

interval for ρ1 is given by:

[−0.229Z0.025, 0.229Z0.025] = [−0.45, 0.45]

Similarly, the autocorrelation function at lag 2 (ρ2) follows normal distribution with
mean 0 and standard deviation 1/

√
N − 2 = 0.236. Hence, the 95% confidence

interval for ρ2 is given by:

[−0.236Z0.025, 0.236Z0.025] = [−0.46, 0.46]

Example 9.7.2
The autocorrelation coefficients for a monthly streamflow time series at a gauging
station at lags 0, 1, and 2 are 1.0, 0.79, and 0.52 respectively. Estimate the partial
autocorrelation at these lags. Also, check whether the partial autocorrelation at lag
2 is significant or not at 5% significance level. Assume the data length to be 60.
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Solution Partial autocorrelation function at lag 0 is 1. Hence,

ϕ0 = 1

According to Yule–Walker equation (9.40), the partial autocorrelation at lag 1 (ϕ1)
is given by

ϕ1 = ρ1 = 0.79

Similarly partial autocorrelation at lag 2 (ϕ2) can be calculated using Yule–Walker
equation as

[
1 ρ1
ρ1 1

] [
�1

�2

]
=
[

ρ1
ρ2

]

or, �1 + 0.79�2 = 0.79 and 0.79�1 + �2 = 0.52

or �1 = 1.00 and �2 = −0.28

Hence, ϕ2 = �2 = (−0.28)

Test for Significance of ϕ2

Null Hypothesis: Partial autocorrelation is not significant, i.e., ϕ2 = 0
Alternative Hypothesis: ϕ2 �= 0
Level of Significance: α = 5%

As partial autocorrelation at lag 2 is expected to follow normal distribution with
mean 0 and standard deviation 1

/√
N − k = 0.131 (as N = 60 and k = 2). Hence,

at 5% significance level the critical value of autocorrelation at lag 2 is given by,

± Z(α/2)√
N − 2

= ±1.96 × 0.131 = ±0.26

Since partial autocorrelation at lag 2 (i.e., −0.28) falls in critical zone
((−∞,−0.26] ∪ [0.26,∞)), the null hypothesis is rejected. Hence, the partial auto-
correlation at lag 2 is significant.

9.7.2 Statistical Operators on Time Series

Backward Shift Operator

Backward shift operator or Backshift operator (represented as B(•)) returns the
immediate previous value of time series. For a time series X (t), backshift operation
is represented by:
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BX (t) = X (t − 1)

B2X (t) = X (t − 2) (9.46)

BnX (t) = X (t − n)

Forward Shift Operator

Forward shift operator (represented as F(•)) returns the immediate next value of
time series. It works opposite of backshift operator, and thus, also represented as
B−1. For a time series X (t) it is represented by:

FX (t) = B−1X (t) = X (t + 1)

F2X (t) = B−2X (t) = X (t + 2) (9.47)

FnX (t) = B−n X (t) = X (t + n)

Difference Operator

Difference operator returns the difference of the current and previous time step value
in a time series. It is expressed as:

∇(X (t)) = (1 − B)X (t) = X (t) − X (t − 1)

∇2(X (t)) = (1 − B)2X (t) = (1 − 2B + B2)X (t)

= X (t) − 2X (t − 1) + X (t − 2) (9.48)

∇n X (t) = (1 − B)n X (t)

Moving Average—Low Pass Filtering

Moving average (also known as rolling or running average) tries to reduce the short-
term fluctuations in time series by taking the average of the neighboring (say n)
values of the time series. Moving average works as a low pass filter and reduces the
high-frequency oscillation in the time series. A n term or n windowMoving average
is expressed as:

Y (n) = 1

n
(X (1) + X (2) + · · · + X (n))

Y (n + 1) = 1

n
(X (2) + X (3) + · · · + X (n + 1)) (9.49)

Y (t + n − 1) = 1

n
(X (t) + X (t + 1) + · · · + X (n + t − 1))
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In the above equations, the moving average is assigned at the end of the window over
which average is captured. Sometimes, the moving average values are assigned to the
central value of the window selected. As the window of moving average increases,
the time series Y (t) gets smoother, i.e., low pass filtering effect of moving average
increases with increase in terms being used for averaging (n).

Differencing—High Pass Filtering

Differencing is a high pass filtering method that removes low-frequency oscillation
from the time series. The nth-order differencing is expressed as:

Y1(t) = X (t) − X (t − 1) for t = 2, 3, . . .

Y2(t) = Y1(t) − Y1(t − 1) for t = 3, 4, . . .

Yn(t) = Yn−1(t) − Yn−1(t − 1) for t = n + 1, n + 2, . . . (9.50)

Differencing can be used transforming the time series into normal distribution and
hence, differencing is also considered as ‘whitening filter’.

Example 9.7.3
For the rainfall time series given in Example 9.6.1, calculate a moving average with
window 2 and first order differencing. Check their respective behavior of being a low
and high pass filter by visualizing the results.

Solution Let us represent rainfall series as X . The moving average series with win-
dow 2 (Y ) is expressed as

Y (t) = 1

2
(X (t) + X (t + 1)) for t = 1, 2, . . . , (n − 1)

Similarly, the 1st-order differencing series (Z ) is given by,

Z(t) = X (t) − X (t − 1) for t = 2, 3, . . . , n

The moving average and differencing series are assigned at the end of window.
The calculation is shown in Table9.3. From Fig. 9.6, the moving average series is
smoother than rainfall (the peaks have reduced), thus moving average acts as a low
pass filter. However, the differencing operator shows higher values corresponding to
peak and hence acts as high pass filter.
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Table 9.3 Rainfall series and its moving average and differencing series

Rainfall Moving average window 2 1st-order differencing

2.89

7.39 5.14 4.5

23.88 15.63 16.49

10.59 17.23 −13.29

5.91 8.25 −4.68

1.53 3.72 −4.38

3.48 2.505 1.95

56.54 30.01 53.06

26.19 41.36 −30.35

6.35 16.27 −19.84

38.09 22.22 31.74

0.01 19.05 −38.08

3.03 1.52 3.02

41.57 22.3 38.54

44.73 43.15 3.16

21.39 33.06 −23.34

15.87 18.63 −5.52

1.22 8.545 −14.65

21.75 11.48 20.53

0.21 10.98 −21.54

Fig. 9.6 Rainfall along with
its moving average with
window 2 and 1st-order
differencing
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9.7.3 Properties of Time Series Models

Stationary and Non-stationary Time Series Models

A stationary model assumes that the process remains in equilibrium in terms of
its statistical properties over time. Hence, stationary time series models have finite
variance. For using the stationarymodel on any time series, the time series is required
to be stationary (i.e., statistical properties remain same over time). On the other hand,
non-stationary model do not assume that the process is in equilibrium with respect
to its statistical properties over time. Suppose that there is a mathematical model that
takes white noise (normally distributed uncorrelated series with zero mean, ε(t)) as
input and model the time series X (t). This type of model is called linear filter and
represented as:

X (t) = μ + ε(t) − θ1ε(t − 1) − θ2ε(t − 2) − · · · = μ + θ(B)ε(t) (9.51)

where μ is the mean of X (t), θi is i th parameter of model, and θ(B) = 1 − θ1B −
θ2B2−· · · = θ0−θ1B−θ2B2−· · · with (θ0 = 1) is a function of backshift operator
also called transfer function of the linear filter. If the absolute summation of sequence

of parameters is finite

( ∞∑
i=0

|θi | < ∞
)
, then the model is stationary and model is in

equilibrium around the mean μ. It should be noted that the condition
∞∑
i=0

|θi | < ∞
also employs that all roots of θ(B) = 0 fall outside the unit circle, i.e., |B| > 1.

Invertibility

Invertibility is another property of the time series model. Non-stationary models can
also be invertible or vice versa. A time series model is called invertible if error can be
expressed as function of backshift operator over the time series with finite variance.
Hence, a model that can be expressed in the form of,

(1 − �1B − �2B
2 + . . . )X (t) = ε(t)

�(B)X (t) = ε(t) (9.52)

is invertible, if the absolute sumof its parameters converges

(
∞∑
j=0

|� j | < ∞
)
. Invert-

ibility is also ensured if all roots of �(B) = 0 falls outside the unit circle, i.e.,
|B| > 1.
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9.7.4 Auto-Regressive (AR) Model

Autoregressive model tries to estimate the current value of time series using linear
combination of weighted sum of previous values of the same time series. ARmodels
are extensively used in hydroclimatic time series as current values of the time series
are expected to be affectedby the previous values. This characteristic of hydroclimatic
variables is also referred as memory component. The number of lagged values being
considered (say p) is called order of AR model. pth-order AR model (AR(p))is
given by

X (t) =
p∑

i=1

�i X (t − i) + ε(t) (9.53)

where �i ( for i ∈ {1, 2, . . . , p}) are called autoregressive coefficients and ε(t) is
uncorrelated identically distributed error with mean zero, also known as white noise.
Time series X (t) is obtained after removing the deterministic components like trend
and periodicity. Using the backshift operator ARMA(p) can also be written as,

X (t) − �1B(X (t)) − �2B
2(X (t)) − · · · − �p B

p(X (t)) = ε(t)

or, �(B)X (t) = ε(t) (9.54)

where �(B) = 1 − �1B − �2B2 − · · · − �p B p for AR(p) model.
As an initial guess, the order p is decided from partial autocorrelation function.

Number of lags for which partial autocorrelation is significant is considered as p.
Hence, for a AR(p) model, all partial autocorrelation with lag more than p should
be zero and autocorrelation decays exponentially to zero. Different AR models are
fitted using the slight variation in initial guess of AR order, the best model out of all
fitted models is chosen on the basis of their parsimony (Sect. 9.7.10).

Following assumptions are made while developing an AR model.

E(ε(t)) = 0 (9.55)

E(ε(t)ε(t − k)) = E(ε(t)X (t − k)) = 0 for k = 1, 2, . . . , p (9.56)

For an AR model, the coefficient of determination is given by

R2 =
p∑

i=1

�iρi = 1 − Var(ε)

Var(X)
(9.57)

The parameters of a pth-order AR model are obtained by Yule–Walker equations.
Yule–Walker equations are derived by taking expectation of p different equations
obtained by multiplying lagged values of time series, i.e., X (t − 1), X (t − 2),
. . . , X (t − p) with the general form of AR model given in Eq.9.53. The Yule–
Walker equations are given by
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⎡
⎢⎢⎢⎢⎢⎣

1 ρ1 ρ2 . . . ρp−1

ρ1 1 ρ2 · · · ρp−2

ρ2 ρ1 1 · · · ρp−3
...

...
...

. . .
...

ρp−1 ρp−2 ρp−3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

�1

�2

�3
...

�p

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

ρ1
ρ2
ρ3
...

ρp

⎤
⎥⎥⎥⎥⎥⎦

(9.58)

where ρi is autocorrelation coefficient at lag i . It should be noted that ρ0 = 1, hence,
the above Yule–Walker equation can also be written as:

⎡
⎢⎢⎢⎢⎢⎣

ρ0 ρ1 ρ2 . . . ρp−1

ρ1 ρ0 ρ2 · · · ρp−2

ρ2 ρ1 ρ0 · · · ρp−3
...

...
...

. . .
...

ρp−1 ρp−2 ρp−3 · · · ρ0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

�1

�2

�3
...

�p

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

ρ1
ρ2
ρ3
...

ρp

⎤
⎥⎥⎥⎥⎥⎦

or,
p∑

i=1

ρk−i�i = ρk (9.59)

It should be noted that �p is the partial autocorrelation at lag p (ϕp).

Properties of AR Model

Stationarity: The developed AR model is required to be a stationary model. For a
stationary AR(p) model, the autocorrelation matrix for order p should be positive-
definite, i.e., determinant of all minors of the correlation matrix is positive. Hence,
for an AR(2) model

⎡
⎣ρ0 ρ1 ρ2

ρ1 ρ0 ρ2
ρ2 ρ1 ρ0

⎤
⎦ should be positive-definite.

ρ0 > 0;
∣∣∣∣ρ0 ρ1
ρ1 ρ0

∣∣∣∣ > 0;
∣∣∣∣∣∣
ρ0 ρ1 ρ2
ρ1 ρ0 ρ2
ρ2 ρ1 ρ0

∣∣∣∣∣∣ > 0

ρ0 > 0;−1 < ρ1 < 1;−1 < ρ2 < 1; and − 1 <
ρ2 − ρ21
1 − ρ21

< 1 (9.60)

Using the above relationship, for anAR(1), to ensure stationarity�1 = ρ1 and hence,
|�1| < 1. AR(1) model can be expressed using backshift operator as:
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X (t) = �1X (t − 1) + ε(t)

X (t) = �1B(X (t)) + ε(t)

(1 − �1B)X (t) = ε(t)

�(B)X (t) = ε(t) (9.61)

The root of �(B) = 0 is B = 1/�1. For staionarity, the root of �(B) = 0 should
fall outside the unit circle (Sect. 9.7.3). This result is valid for AR model of higher
orders also. The equation�(B) = 0 is called characteristic equation of ARmodel.

Invertibility: A model is called invertible if error can be expressed as func-
tion of backshift operator over the time series with finite variance (Sect. 9.7.3).
In an AR model, the error can be related to time series by using a function of

backshift operator (Eq.9.61 with
p∑

i=0
|�i | < ∞), hence, all stationary AR models

are invertible.

Example 9.7.4
Derive the nature of autocorrelation function for AR(1) and AR(2) models. Also find
the error variance and stationarity condition.

Solution First-order AR model
For time series X (t), the first-order autoregressive model AR(1) is given by,

X (t) = �1X (t − 1) + ε(t)

From the Yule–Walker equation we can write,

⎡
⎢⎢⎢⎢⎢⎣

1 ρ1 ρ2 . . . ρn−1

ρ1 1 ρ2 · · · ρn−2

ρ2 ρ1 1 · · · ρn−3
...

...
...

. . .
...

ρn−1 ρn−2 ρn−3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

�1

�2

�3
...

�n

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

ρ1
ρ2
ρ3
...

ρn

⎤
⎥⎥⎥⎥⎥⎦

For AR(1) model �2 = �3 = · · · = �n = 0. Hence, the autocorrelation function is
given by:

ρ1 = �1,

ρ2 = �1ρ1 = ρ21
...

ρn = �1ρp−1 = ρ
p
1
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Hence, the autocorrelation function of AR(1) model decays exponentially to zero
for positive values of ρ1. For negative values of the autoregressive coefficient, the
autocorrelation function is damped and oscillates around zero.

The variance of the error series (σε) is given by,

ε(t) = X (t) − �1X (t − 1)

E
(
ε(t)2

) = E
[
(X (t) − ρ1X (t − 1))2

]
σ2

ε = σ2
X

(
1 − ρ21

)

For stationary condition the roots of equation�(B) should fall outside the unit circle.

1 − �1B = 0

B = 1

�1

For |B| > 1, the �1 < 1, hence, for AR(1) to be stationary the autoregressive
parameter should be less than 1.

Second-order AR model
The second-order autoregressive model AR(2) has the form,

X (t) = �1X (t − 1) + �2X (t − 2) + ε(t)

From the Yule–Walker equations,

⎡
⎢⎢⎢⎢⎢⎣

1 ρ1 ρ2 . . . ρn−1

ρ1 1 ρ2 · · · ρn−2

ρ2 ρ1 1 · · · ρn−3
...

...
...

. . .
...

ρn−1 ρn−2 ρn−3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

�1

�2

�3
...

�n

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

ρ1
ρ2
ρ3
...

ρn

⎤
⎥⎥⎥⎥⎥⎦

For AR(2) model �3 = �4 = · · · = �n = 0. Hence, the autocorrelation function is
given by:

ρ1 = �1 + �2ρ1
ρ2 = �1ρ1 + �2

ρ3 = �1ρ2 + �2ρ1
...

ρn = �1ρn−1 + �2ρn−2
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By solving the first two equations simultaneously, we get the following results,

�1 = ρ1(1 − ρ2)(
1 − ρ21

)

�2 =
(
ρ2 − ρ21

)
(
1 − ρ21

)

For k > 2 the nature of autocorrelation function depends upon the values of �1 and
�2. For instance, if �2

1 + 4�2 ≥ 0 and �1 > 0 then the autocorrelation function
decays exponentially to zero. However, if �2

1 + 4�2 ≥ 0 and �1 < 0 then the
autocorrelation function oscillates around zero. On the other hand, if �2

1 + 4�2 < 0
then the autocorrelation function is damped.

The variance of the error series ε(t) can be calculated by taking expectation of its
square as done in the case of AR(1) model.

σ2
ε = σ2

X (1 − ρ1�1 − ρ2�2)

For stationarity, the roots of equation �(B) should fall outside unit circle.

1 − �1B − �2B
2 = 0

B =
�1 ±

√
�2

1 + 4�2

2�2

Hence, for stationary AR(2) model |B| > 1 or

∣∣∣∣�1±
√

�2
1+4�2

2�2

∣∣∣∣ > 1. Alternatively,

for an AR(2) model to be stationary, the autocorrelation matrix should be positive-
definite. Hence, the stationary criteria is also given as (Eq.9.60).

−1 < ρ1 < 1;−1 < ρ2 < 1; and − 1 <
ρ2 − ρ21
1 − ρ21

< 1

Example 9.7.5
Check the stationarity for an AR(2) model, the parameters have been estimated as
�1 = 0.1 and �2 = 0.2.

Solution In order to satisfy the stationarity condition, the roots of characteristics
equation should lie beyond unit circle,

�(B) = 0

or, 1 − �1B − �2B
2 = 0

or, 1 − 0.1B − 0.2B2 = 0

or, B = 2 or (−2.5)
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The roots of the equation lie outside the unit circle, hence, AR(2) model with model
parameters �1 = 0.1 and �2 = 0.2 is stationary.

Example 9.7.6
Find out the model parameters for an AR(1) and AR(2) model if the estimated values
of the autocorrelation at first and second lags are 0.6 and 0.2, respectively. Compare
the AR models using the coefficient of determination. Also find the variance of
residual series by considering the variance of the time series to be 20.

Solution Case 1: AR(1) Model
Using the Yule–Walker Equation we can write,

�1 = ρ1 = 0.6

The coefficient of determination is given by (Eq. 9.57)

R2 = ρ1�1 = 0.36

The variance of the residual series as,

σ2
ε = σ2

X (1 − ρ1�1) = 20
(
1 − (0.6)2

) = 12.8

Case 2: AR(2) Model
Using the Yule–Walker equation (Eq.9.58),

[
1 ρ1
ρ1 1

] [
�1

�2

]
=
[

ρ1
ρ2

]

or,

[
1 0.6
0.6 1

] [
�1

�2

]
=
[
0.6
0.2

]

Therefore, �1 = 0.75 and �2 = −0.25.
The coefficient of determination is given by

R2 = ρ1�1 + ρ2�2 = 0.31

The variance of the residual series is given as,

σ2
ε = σ2

X (1 − ρ1�1 − ρ2�2) = 20(1 − 0.31) = 13.8

Hence, AR(2) model is marginally better than AR(1) model.

Example 9.7.7
For the sample inflow data given in the following table, determine the parameters of
an AR(2) model (assume that data is free from trend, periodicity, or jumps). Also,
find the variance of residual series.
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Year Flow Year Flow Year Flow
(×100 m3/s) (×100 m3/s) (×100 m3/s)

1 560 11 850 21 250
2 630 12 870 22 360
3 590 13 340 23 1200
4 660 14 560 24 950
5 580 15 190 25 880
6 490 16 250 26 560
7 300 17 380 27 450
8 350 18 670 28 320
9 470 19 990 29 170
10 900 20 840 30 580

Solution Following the methodology discussed in Example 9.7.1, the autocorrela-
tion function at lags 1 and 2 is

ρ1 = 0.408 and ρ2 = −0.108

The parameters of AR(2) model can be calculated by using Eq.9.58.

[
1 ρ1
ρ1 1

] [
�1

�2

]
=
[

ρ1
ρ2

]

or,

[
1 0.408

0.408 1

] [
�1

�2

]
=
[

0.408
−0.108

]

Solving the equation simultaneously, �1 = 0.54 and �2 = −0.33.
The variance of the inflow time series is calculated as,

σ2
X =

30∑
t=1

(X (t) − �X)
2

30 − 1
= 70456 × (100 m3/s)

2

The variance of the residual series is given by,

σ2
ε = σ2

X (1 − ρ1�1 − ρ2�2)

= 70456 (1 − 0.408 × 0.542 − (−0.108) × (−0.329))

= 52372 × (100 m3/s)
2

9.7.5 Moving Average (MA) Model

InMAmodel, the current time series values aremodeled using linear associationwith
the lagged residual values. The MAmodel of order q considers q lagged residual for



338 9 Time Series Analysis

developing the model. In general, the qth-order moving average model is expressed
as:

X (t) = ε(t) −
q∑

i=1

θiε(t − i) (9.62)

where θi and ε(t − i) are the MA parameter and residual at lag i respectively. Time
series X (t) is obtained after removing the deterministic components like trend and
periodicity. The above expression for MA(q) model can be expressed in terms of
function of backshift operator as,

X (t) = ε(t) − θ1B(ε(t)) − θ2B
2(ε(t)) − · · · − θq B

q(ε(t))

or, X (t) = θ(B)X (t) (9.63)

where θ(B) = 1 − θ1B − θ2B2 − · · · − θq Bq for MA(q) model.
The assumptions for AR model (Eqs. 9.55 and 9.56) also hold for MA model.

Under these assumptions, the relationship between the variance of residual and
parameters of the MA model can be obtained by calculating expectation after squar-
ing Eq.9.62. The relationship is expressed as,

σ2
ε = σ2

X

(1 + θ21 + θ22 + · · · + θ2q)
(9.64)

where σ2
ε and σ2

X are variance of residual series and time series, respectively. Hence,
the coefficient of determination (R2) for a MA(q) model is expressed as,

R2 = 1 − σ2
ε

σ2
X

= 1 − 1

(1 + θ21 + θ22 + · · · + θ2q)
(9.65)

Using the MA model given in Eq.9.62, time series value at k lag can be written as:

X (t − k) = ε(t − k) −
q∑

i=1

θiε(t − k − i) (9.66)

The expectation of product of Eqs. 9.66 and 9.62 and using the assumptions (Eqs. 9.55
and 9.56) gives:

ρk =

⎧⎪⎪⎨
⎪⎪⎩

−θk+
q−k∑
i=1

θi θk+i

1+
q∑

i=1
θ2i

for k = 1, 2, . . . , q

0 for k > q

(9.67)

Parameters of an MAmodel can be estimated by solution of the above equation. The
order of the MA model is estimated on the basis of autocorrelation function. The
number of lag for which the autocorrelation function is significant is taken as order of
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MA model as an initial guess. With a little modification in the initial guess, number
of different MA models with different model orders are fitted and then checked for
parsimony of model (Sect. 9.7.10). The model that is most suitable on the basis of
parsimony is selected.

Properties of MA Model

Stationarity: The variance ofMAmodel is given byEq.9.64, which is finite for finite
number of parameters. Hence, a finite MA process is always a stationary model.

Invertibility: The roots of characteristic equation of MA (θ(B) = 0) should lie
outside the unit circle, i.e., |B| > 1. Sometimes, the parameter estimation for MA
model may result in more than one solution for a single parameter (due to nonlin-
ear nature of equations). In such cases, invertibility criteria should be checked for
selecting the appropriate parameter values.

Example 9.7.8
Derive the nature of partial autocorrelation function for MA(1) and MA(2) models.
Also find the error variance and invertibility condition.

Solution First-Order Moving Average (MA(1)) model
An MA(1) model for a time series X (t) is given by,

X (t) = ε(t) − θ1ε(t − 1)

The autocorrelation function for MA(1) model is given as (Eq.9.67),

ρ1 = − θ1(
1 + θ1

2)

or, θ1 =
−1 ±

√
1 − 4ρ21

2ρ1

This equation gives two estimates of MA(1) model coefficient θ1. However, the
value that will conserve the invertibility condition will be used as estimate of θ1. For
invertibility, the roots of characteristic equation (θ(B)) should lie outside the unit
circle.

θ(B) = 0

or, 1 − θ1B = 0

or, B = 1

θ1
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As |B| > 1 so |θ1| < 1. For an MA(1) model, the partial autocorrelation function
(PACF) is given by,

ϕk = −θk1
(
1 − θ21

)
1 − θ2(k+1)

1

Hence, partial autocorrelation function for MA(1) model decays exponentially for
positive θ1. However, for negative θ1, the partial autocorrelation function oscillates
and damps around zero.

Second-Order Moving Average (MA(2)) model
An MA(2) model for a time series X (t) is given by,

X (t) = ε(t) − θ1ε(t − 1) − θ2ε(t − 2)

The autocorrelation function for the MA model with order 2 is given as (Eq.9.67),

ρ1 =−θ1 (1 − θ2)

1 + θ21 + θ22

ρ2 = −θ2

1 + θ21 + θ22

These equations give two estimates of MA(2) model coefficients (θ1 and θ2). How-
ever, the value pair that will conserve the invertibility condition will be used as esti-
mate of θ1 and θ2. Further, the partial autocorrelation function is given by (Eq.9.58):

ϕ1 =ρ1

ϕ2 =ρ2 − ρ21
1 − ρ21

ϕ3 = ρ31 − ρ1ρ2(2 − ρ2)

1 − ρ22 − 2ρ21 (1 − ρ2)

The nature of PACF for MA(2) is similar to the nature of ACF for AR(2) model. The
PACF for MA(2) decays exponentially or damps with oscillation depending on the
sign and magnitude of the MA model parameters.

For invertibility, the roots of characteristic equation (θ(B)) should lie outside the
unit circle.

θ(B) = 0

or, 1 − θ1B − θ2B
2 = 0

or, B =
θ1 ±

√
θ21 + 4θ2

−2θ2
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As |B| > 1, Hence

∣∣∣∣ θ1±
√

θ21 + 4θ2
−2θ2

∣∣∣∣ > 1, or

θ2 + θ1 < 1

θ2 − θ1 < 1

−1 < θ2 < 1

Example 9.7.9
Prove that MA(1) model is equivalent to AR(∞) model.

Solution A MA(1) model for a time series X (t) can be expressed as:

ε(t) =X (t) + θ1ε(t − 1)

=X (t) + θ1(X (t − 1) + θ1ε(t − 2))

=X (t) + θ1(X (t − 1) + θ1(X (t − 3) + θ1ε(t − 3)))

· · ·

=
∞∑
i=0

θi1X (t − i)

Hence, a MA(1) model is equivalent to AR(∞) model.

Example 9.7.10
Prove that AR(1) model is equivalent to MA(∞) model.

Solution For a time series X (t), an AR(1) model can be expressed using backshift
operator as following

X (t) =�1B(X (t)) + ε(t)

=�1(�1B
2(X (t)) + B(ε(t))) + ε(t)

=�1(�1(�1B
3(X (t)) + B2(ε(t))) + B(ε(t))) + ε(t)

· · ·

=
∞∑
i=0

�i
1B

i (ε(t))

Hence, an AR(1) model is equivalent to MA(∞) model.

Example 9.7.11
Check the invertibility condition for a MA(2) model, the parameters have been esti-
mated as θ1 = 0.2 and θ2 = 0.5.

Solution In order to satisfy the stationarity condition, the roots of following equation
should lie outside the unit circle,



342 9 Time Series Analysis

θ(B) = 0

or, 1 − θ1B − θ2B
2 = 0

or, 1 − 0.2B − 0.5B2 = 0

or, B = (−1.628) or 1.228

Both roots are lying outside the unit triangle (|B| > 1), so the MA(2) model with
parameters θ1 = 0.2 and θ2 = 0.5 is invertible.

Example 9.7.12
The first and second parameters of a MA(2) model are 0.65 and 0.3, respectively.
Calculate the values of the ACFs and PACFs.

Solution The values of the ACFs can be evaluated using Eq.9.67.

ρ1 = −0.65 (1 − 0.3)

1 + 0.652 + 0.32
= −0.3

ρ2 = −0.3

1 + 0.652 + 0.32
= −0.198

The values of the PACFs can be evaluated using Eq. 9.58.

ϕ1 =ρ1 = (−0.3)

ϕ2 =ρ2 − ρ21
1 − ρ21

= (−0.316)

ϕ3 = ρ31 − ρ1ρ2(2 − ρ2)

1 − ρ22 − 2ρ21 (1 − ρ2)
= (−0.211)

9.7.6 Auto-Regressive Moving Average (ARMA) Model

Auto-Regressive Moving Average (ARMA) Model is a linear regression model in
which current value of time series is estimated using lagged values of time series
and the lagged values of residuals. ARMAmodel is a combination of autoregressive
(AR) and moving average (MA) models. In general, ARMA model with pth-order
AR model and qth-order MAmodel (also represented as ARMA(p, q)) is expressed
as:

X (t) =
p∑

i=1

�i X (t − i) + ε(t) −
q∑

i=1

θiε(t − i) (9.68)
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where �i and θi represent the autoregressive and moving average parameters.
ARMA(p, q) is also represented as,

�(B)X (t) = θ(B)ε(t) (9.69)

where �(B) is characteristic function of AR(p) model (i.e., �(B) = 1 − �1B −
�2B2 − · · · − �p B p) and θ(B) is characteristic function of MA(q) model (i.e.,
θ(B) = 1 − θ1B − θ2B2 − · · · − θq Bq ).

Properties of ARMA Model

An ARMAmodel is composed of AR and MAmodel, so it inherits the properties of
these models. Any ARMA model of order (p, q) is stationary if AR(p) is stationary
(Sect. 9.7.3), i.e., corresponding characteristic equation �(B) = 0 has roots outside
the unit circle (|B| > 1). Similarly, ARMA (p, q) is invertible (Sect. 9.7.3), if the
characteristic equation for MA(q), i.e., θ(B) = 0 has roots outside the unit circle.

Selection of Order of ARMA Model

The estimation of order of ARMA model is done using various methods. Two of
those methods are discussed below:

(a) Order selection based on ACF and PACF: The order of the autoregressive com-
ponent (p) is decided (initial guess) by using PACF. For an AR model, if first p
partial autocorrelation coefficients are significant at given level of significance
and the autocorrelation function is exponentially decaying, then order is taken
as p. The confidence interval of partial autocorrelation function is given by
Eq.9.44. Similarly, order of moving average component (q) depends upon the
number of significant ACF of the time series. If the first q partial autocorrelation
functions are significant and autocorrelation function is exponentially decreas-
ing for a time series, then the order of MA model is taken as q. The significance
of autocorrelation function at any lag (say k) can be judged using Eq.9.36.

(b) Order selection using canonical correlation analysis: For estimating the ARMA
model order for time series X (t) using canonical correlation analysis, two data
sets Ym,t = [X (t)X (t − 1) . . . X (t −m)]T and Ym,t− j−1 = [X (t − j − 1)X (t −
j − 2) . . . X (t − j − m − 1)]T for various combinations for m = 0, 1, . . .
and j = 0, 1, . . . are considered. Using canonical correlation analysis, different
linear combination (loading vectors) of the two data set can be calculated such
that it maximizes the correlation coefficients for similar loading vector pairs.
Hence, if aT

i and bTk are loading vectors for Ym,t and Ym,t− j−1, respectively, then
correlation between aT

i Ym,t and bTk Ym,t− j−1 is maximized if i = k, otherwise
they are uncorrelated. Thus, for m ≥ p there exists one linear combination of
Ym,t
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X (t) −
p∑

i=1

ψi X (t − i) = [ 1 ψ1 ψ2 . . . ψp 0 . . . 0 ]Ym,t = aT
i Ym,t (9.70)

such that,

aT
i Ym,t = ε(t) −

q∑
i=1

θiε(t − i) (9.71)

which is uncorrelated with other linear combination of bTk Ym,t− j−1 (bTk =
[1 θ1 . . . θq 0 . . . 0] for k �= i being the loading vector for Ym,t− j−1) for
j ≥ q. Hence, the presence of zero or insignificant canonical correlation loading
(p ≤ m and q ≤ j) between Ym,t and Ym, j−t−1 for various values of m and j
helps in determining the order (p, q) of ARMA model.

It should be noted that the above two methods can be used for initial guess for the
order of ARMA model. One needs to generate different ARMA models considering
the some variation in the guessed order. The final selection of the most appropriate
model order is done based on parsimony of the developed model. A parsimonious
model aims to utilize a minimum number of parameters and adequately reproduce
the statistics with the least variance. Parsimony of the model is measured using either
Akaike Information Criteria (AIC) or Bayesian Information Criteria (BIC), which is
discussed in Sect. 9.7.10.

Parameter Estimation of ARMA(p, q) Model

Parameters of ARMA(p, q) model (as expressed in Eq.9.68) can be estimated either
by principle of least square or maximum likelihood. These methods are discussed
below

Principle of least square: In this method, the Sum of squared residuals is
minimized to get an estimate of ARMA model parameters. In terms of residual
ARMA(p, q) is expressed as:

ε(t) = X (t) −
p∑

i=1

�i X (t − i) +
q∑

i=1

θiε(t − i) (9.72)

Parameter estimation via maximum likelihood: Maximum-likelihood relation
of expectation of different moments can be used for parameter estimation. For
instance, some of the Maximum-likelihood relationships are expressed as:
AR(1)

Var(�1) � 1 − �2
1

n
(9.73)
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AR(2)

Var(�1) � Var(�2) � 1 − �2
2

n
(9.74)

Cov(�1,�2) � −�1(1 + �2)

n
(9.75)

Hence, correlation between �1 and �2 � − �1

1 − �2
= −ρ1 (9.76)

MA(1)

Var(θ1) � 1 − θ21
n

(9.77)

MA(2)

Var(θ1) � Var(θ2) � 1 − θ22
n

(9.78)

Cor(θ1, θ2) � −θ1(1 + θ2)

n
(9.79)

Hence, correlation between θ1 and θ2 � − θ1

1 − θ2
= −ρ1 (9.80)

ARMA(1, 1)

Var(�1) � 1 − �2
1

n

(
1 − �1θ1

�1 − θ1

)2

(9.81)

Var(θ1) � 1 − θ21
n

(
1 − �1θ1

�1 − θ1

)2

(9.82)

Cov(�1, θ1) � (1 − θ21)(1 − �2
1)(1 − θ1�1)

n(�1 − θ1)2
(9.83)

Hence, correlation between �1 and θ1 �
√

(1 − θ21)(1 − �2
1)

1 − θ1�1
(9.84)

Example 9.7.13
Check for stationarity and invertibility conditions for an ARMA(2, 2) model, if the
model parameters are �1 = 0.3, �2 = 0.5, θ1 = 0.3, and θ2 = −0.5.
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Solution Check for Stationarity Condition

�(B) = 0

or, 1 − �1B − �2B
2 = 0

or, 1 − 0.3B − 0.5B2 = 0

The roots of the equation are (−1.746) and 1.146. As both the roots lie outside the
unit circle (|B| > 1) therefore, the parameters satisfy the stationarity condition.

Check for Invertibility Condition

θ(B) = 0

or, 1 − θ1B − θ2B
2 = 0

or, 1 − 0.3B + 0.5B2 = 0

The roots of the equation are 0.3 ± 1.382i . As |B| > 1 therefore, the parameters
satisfy the invertibility condition.

9.7.7 Autoregressive Integrated Moving Average (ARIMA)
Model

Autoregressive Integrated Moving Average (ARIMA) model is used for modeling
non-stationary time series. The time series is transformed to a stationary time series
by using a series of differencing operator. ARMA is then applied on the resulting
time series. If p is the order of autoregressive model, d is the order of differencing
operator and q is the order of moving average model then the ARIMA is represented
as ARIMA(p, d, q). In general ARIMA(p, d, q) is expressed as:

�(B)∇d X (t) = θ(B)ε(t) (9.85)

where X (t) is non-stationary time series. �(B) = 1− �1B − �2B2 − · · · − �p B p

and θ(B) = 1 − θ1B − θ2B2 − · · · − θq Bq are characteristic functions for AR(p)
and MA(q) model, respectively. ∇ represents the differencing operation. The order
of differencing (d) is decided based on the stationarity of resulting time series. The
autoregressive andmoving average orders and parameters of the ARIMA are decided
in the same way as in ARMA. As after differencing in ARIMA the time series
is stationary and ARMA is then used, so stationarity and invertibility criteria for
ARIMA are same as that of ARMA. For stationarity and invertibility of ARIMA
model, the root of equations�p(B) = 0 and θq(B) = 0 should lie outside unit circle
(Sects. 9.7.3 and 9.7.3).
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Example 9.7.14
Fit an ARIMA(2,1,0) model over the data provided in Example 9.6.1.

Solution For fitting ARIMA(2,1,0), 1st differencing of the precipitation time series
is needed (Table9.3). The ARMA(2,0) or AR(2) model is fitted on the time series
obtained after differencing.

Covariance matrix at lag 1 for the differencing series (Table9.3) is given by:

cov1 = cov

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.50 16.49
16.49 −13.29

−13.29 −4.68
−4.68 −4.38
−4.38 1.95
1.95 53.06
53.06 −30.35

−30.35 −19.84
−19.84 31.74
31.74 −38.08

−38.08 3.02
3.02 38.54
38.54 3.16
3.16 −23.34

−23.34 −5.52
−5.52 −14.65

−14.65 20.53
20.53 −21.54

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
[

576.32 −193.55
−193.55 603.41

]

and the corresponding autocorrelation at lag 1 = −193.55
/√

(576.32 × 603.41) =
−0.328.

Hence, ρ1 = −0.328. Similarly,

cov2 =
[

587.21 −211.08
−211.08 622.24

]

and the corresponding autocorrelation matrix at lag 2, ρ2 = −0.349. For AR(2)
model, the parameters are given by Eq.9.58:

[
1 ρ1
ρ1 1

] [
�1

�2

]
=
[

ρ1
ρ2

]

or,

[
1 −0.328

−0.328 1

] [
�1

�2

]
=
[−0.328

−0.349

]
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Hence, �1 = −0.239 and �2 = 0.27. Thus, the model is expressed as

Y (t) = −0.239Y (t − 1) + 0.27Y (t − 2) + ε(t)

where Y (t) = X (t) − X (t − 1).

9.7.8 Autoregressive Moving Average Model with Exogenous
Inputs (ARMAX)

Themodels discussed above, i.e., AR,MA,ARMA, andARIMAare developed using
the information from the same time series, and thesemodels do not consider any other
variables/time series. However, in many cases in hydroclimatology, the time series
under study (say precipitation) associated with other influencing time series (like
air temperature, pressure), etc. Hence, for modeling these kind of interrelationships,
the model should be able to use the information from the causal variable/time series
known as exogenous input. Autoregressive Moving Average Model with Exogenous
Inputs (ARMAX) consists of an ARMA model and weighted sum of lagged values
of exogenous time series. For an ARMAXmodel, if the r lagged value of exogenous
time series is used and the ARMA part is of order (p, q), then the ARMAXmodel is
said to be of the order of (p, q, r ). In general, ARMAX model with order (p, q, r )
is expressed as:

X (t) =
p∑

i=1

�i X (t − i) + ε(t) −
q∑
j=1

θ jε(t − j) +
r∑

k=1

ψk I (t − k) (9.86)

where X (t) is stationary time series. ψk (k = 1, 2, . . . , r ) is the weighting coeffi-
cients associated with lagged values of exogenous stationary time series I (t). �i

(i = 1, 2, . . . , p) and θ j ( j = 1, 2, . . . , q) are autoregressive and moving average
parameters, respectively.

Estimation of ARMAX Parameters

The parameters of theARMAXmodel are estimated byminimizing the sumof square
of prediction errors. Sum of square of prediction errors for Eq.9.86 is given by:
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∑
(ε(t))2 =

∑
(X (t) − X̂(t))2

=
∑⎛
⎝X (t) −

p∑
i=1

�i X (t − i) +
q∑
j=1

θ jε(t − j) −
r∑

k=1

ψk I (t − k)

⎞
⎠

2

(9.87)

For minimizing the Sum of square error, the above equation is partially differentiated
with respect to each parameter and is equated to zero. Hence, a total of following
(p + q + r ) equations is obtained.

∂
∑

(ε(t))2

∂�i
= 0 for i = 1, 2, . . . , p

∂
∑

(ε(t))2

∂θ j
= 0 for j = 1, 2, . . . , q

∂
∑

(ε(t))2

∂ψk
= 0 for k = 1, 2, . . . , r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.88)

Simultaneous solution of all above equations will provide the estimate of parameters.

Identification of ARMAX Orders

With a initial guess of p, q, and r and its variation, a number of ARMAXmodel can
be estimated. The identification of most suited ARMAX model is done on the basis
of following three criteria:

(a) The prediction focus or the model fit (MF)
(b) The Mean Square Error (MSE) function
(c) The Akaike’s Final Prediction Error (FPE).

Let X̂(t) represents the estimated time series using ARMAX model for observed
time series X (t). The MF and MSE are expressed as,

MF = 100

⎛
⎜⎜⎝1 −

√∑n
i=1

(
X̂(t) − X (t)

)2
√∑n

i=1

(
X̂(t) − �X)

)2

⎞
⎟⎟⎠ (9.89)

MSE = 1

n

n∑
i=1

(
X̂(t) − X (t)

)2
(9.90)

where �X represents the mean of observed time series X (t) and n is number of
observations in X (t). Higher value of MF is considered favorable. However, the
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lower value of MSE indicates better model performance. The range of MF is 0 to
100%, whereas MAE may vary form 0 to ∞.

Akaike’s Final Prediction Error (FPE) compares both the error or residual of the
model and effect of number of model parameters. FPE is given by,

FPE = V

(
1 + m/n

1 − m/n

)
(9.91)

where m is the number of estimated parameters, i.e., p + q + r , n is number of
observation in time series X (t) and V is loss function. Mathematically, the loss
function is the determinant of error or residual series (ε(t)). Hence,

V = det(cov(ε(t))) (9.92)

If m � n, the FPE is approximated as,

FPE = V

(
1 + 2m

n

)
(9.93)

The range of FPE is 0 to ∞. The smaller the value of FPE is, the better is the fitted
model.

9.7.9 Forecasting with ARMA/ARMAX

Forecasting is the process of estimating future values of a time series, often using
the past (or lagged) values of the same or other causal time series. Forecasting of
hydroclimatic variables is important formaking future plans/policies or preparedness
for future extremes, if any. For instance, flood prediction system can be used for as
earlywarning systemand hence helps in evacuation. The procedure of forecasting can
be used to estimate the past values of time series, this process is called hindcasting.

The forecast depends on the time step till which the information is being used
(also known as origin of forecast). The difference in time step for which a forecast
is made and the origin of forecast is called lead period. With the increase in lead
period, the utility of forecast increases. However, the uncertainty in forecast also
increases with increase in lead period. Hence, a suitable lead period can be used
as compromise between two contrasting requirements. Further, a forecasting model
can be static or dynamic. For static forecasting model the parameters once estimated
do not change with time. However, for dynamic forecasting model the parameters
change with time. The change in parameters of dynamic forecasting model tries to
incorporate the information available in new observation(s) if any to enhance the
prediction performance.
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ARMA (or similar models) can be used for forecasting of hydroclimatic time
series. In general, ARMA model is given by (Eq.9.69):

�(B)X (t) = θ(B)ε(t) (9.94)

where �(B) is characteristic function of AR(p) model (i.e., �(B) = 1 − �1B −
�2B2 − · · · − �p B p) and θ(B) is characteristic function of MA(q) model (i.e.,
θ(B) = 1 − θ1B − θ2B2 − · · · − θq Bq ).

The forecast at a lead period of l with origin of t can be obtained using following
relationships.

Xt (t + l) =�1X (t + l − 1) + �2X (t + l − 2) · · · + �p X (t + l − p)

− θ1ε(t + l − 1) − θ2ε(t + l − 2) · · · − θqε(t + l − q) + ε(t + l)

X̂t (t + l) =E(Xt (t + l)) = �1X (t + l − 1) + �2X (t + l − 2) · · · + �p X (t + l − p)

− θ1ε(t + l − 1) − θ2ε(t + l − 2) · · · − θqε(t + l − q) (9.95)

where t is considered current time step or origin for forecast and l is lead period.
Forecast depends on origin, hence, with new observations available (shift in origin)
the forecast needs to be updated. The updated forecast can be obtained using the
Eq.9.94. One alternate method of correcting the forecast is to utilize the difference
(or error) in new observation and its earlier forecast. This process is described as
follows. Suppose that Xt (t + l) and Xt+1(t + l) are two different forecasts for time
step (t + l) using the information till t th and (t +1)th time steps. These forecasts can
be represented in the form of linear function of deviations or residuals as following:

X̂t+1(t + l) = λ jε(t + 1) + λ j+1ε(t) + λ j+2ε(t − 1) + · · ·
X̂t (t + l) = λ j+1ε(t) + λ j+2ε(t − 1) + · · ·

or, X̂t+1(t + l) = λ jε(t + 1) + Xt (t + l) (9.96)

where j = l − 1. The parameter λl can be obtained using following equation:

λ j = �1λ j−1 + �2λ j−2 + · · · + �pλ j−p − θ j (9.97)

where�i and θi are i th autocorrelation andmoving average parameters fromEq.9.94.
λ0 = 1, λl = 0 for l < 0 and θl = 0 for l > q. Hence, the correction parameters
(λi ) are given as:

λ0 = 1 (9.98)

λ1 = �1 − θ1 (9.99)

λ2 = �1λ1 + �2 − θ2 (9.100)
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λ3 =
3∑

i=1

�iλ3−i − θ3 (9.101)

λk =
k∑

i=1

�iλk−i − θk (9.102)

These parameters λ j for j ∈ {0, 1, 2, . . .} depend upon the fitted model, not on the
values of time series and do not change with new observations.

Confidence Interval of Forecast

Forecast at future time step t + l using the information of time series till t time step
has some uncertainty associated with it. The mean of time series (X (t)) can also be
taken as the forecasted value, i.e., X̂t (t + l). The forecasted values are assumed to
follow normal distribution. The standard deviation of the forecast can be estimated
by calculating expectation of square of Eq.9.96. The variance of forecast with lead

period (l) is given by

(
l−1∑
j=0

λ2
j

)
σ2

ε . Hence, the confidence interval of the forecast

with lead period of l at α level of significance is given by:

⎡
⎣X̂t (t + l) − Z(α/2)σε

√√√√1 +
l−1∑
j=1

λ2
j , X̂t (t + l) + Z(α/2)σε

√√√√1 +
l−1∑
j=1

λ2
j

⎤
⎦
(9.103)

where Z(α/2) is standard normal variate at (1 − α/2) × 100% probability. It can be
observed that with increase in forecast step the variance and hence the confidence
interval of the forecast increases very fast. So, forecast with longer lead period has
more uncertainty involved with them compared to shorter lead period forecast.

Analysis of Forecast Errors

Forecast errors are the measure of the deviation of forecast from the observation.
Suppose that for a time series X (t) if X (t + l) is observation and corresponding
forecast value using the time series information till time step t is Xt (t + l) then the
forecast error can be expressed as one of following statistics:

(i) Mean Square Error: This statistics represents the mean square deviation of
forecasted values from the observed values of time series.

MSE = 1

N

N∑
l=1

(X (t + l) − X̂t (t + l))2 (9.104)



9.7 Time Series Modeling in Hydroclimatology 353

where N is the number of elements in forecasted series X̂t (t + 1).
(ii) Mean Absolute Percentage Error: This statistics represents themean percent-

age deviation of forecasted values with respect to the observed values of time
series.

MAPE = 100

N

N∑
l=1

∣∣∣∣∣
X (t + l) − X̂t (t + l)

X (t + 1)

∣∣∣∣∣ (9.105)

where N is the number of elements in forecasted series X̂t (t + 1).
(iii) Mean Absolute Error: This statistics represents the mean absolute deviation

of forecasted values from the observed values of time series.

MAE = 1

N

N∑
l=1

∣∣∣X (t + l) − X̂t (t + l)
∣∣∣ (9.106)

where N is the number of elements in forecasted series X̂t (t + 1).

Example 9.7.15
Daily rainfall depth (X (t) in mm/day) at a location is found to follow an ARMA(3,1)
model given by:

X (t) = 0.9X (t − 1) + 0.5X (t − 2) − 0.3X (t − 3) + ε(t) − 0.3ε(t − 1)

If daily observed values of time series X (t) for a week are 0, 8.4, 11.84, 16.52, 17.12,
21.20, and 16.85, then

(a) Forecast daily rainfall depth for next week.
(b) If next observed value in X (t), i.e., X (8) is 14.70mm then update the forecast.
(c) Assuming the variance of residual to be 5, calculate the variance of the forecast

with lead periods of 1, 3 and 5.
(d) Find themean absolute deviation of forecast (with origin at X (7)), if the observed

rainfall for 8th–14th days are 14.7, 10.5, 6.7, 13.0, 0, 0, 2 respectively. Compare
it with the mean absolute deviation of forecast made at origin 8.

Solution

(a) From the observed values of series X (t), the error series can be calculated with
assumption that first three errors are assumed to be zero. Hence, ε(i) = 0 for
i ∈ {1, 2, 3}

ε(4) =X (4) − 0.9X (4 − 1) − 0.5X (4 − 2) + 0.3X (4 − 3) + 0.3ε(3)

=16.52 − 0.9 × 11.84 − 0.5 × 8.40 = 1.664

ε(5) =X (5) − 0.9X (4) − 0.5X (3) + 0.3X (2) + 0.3ε(4)

=17.12 − 0.9 × 16.52 − 0.5 × 11.84 + 0.3 × 8.40 + 0.3 × 1.664 = −0.649
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Similarly, ε(6) = 0.889 and ε(7) = −5.567. The forecasts for next 7days can
be obtained using Eq.9.95.

X̂7(8) =0.9X (7) + 0.5X (6) − 0.3X (5) − 0.3ε(7)

=0.9 × 16.85 + 0.5 × 21.20 − 0.3 × 17.12 + 0.3 × 5.567 = 22.30

X̂7(9) =0.9X̂7(8) + 0.5X (7) − 0.3X (6)

=0.9 × 22.30 + 0.5 × 16.85 − 0.3 × 21.20 = 22.135

Similarly, X̂7(10) = 26.016, X̂7(11) = 27.792, X̂7(12) = 31.380, X̂7(13) =
34.333 and X̂7(14) = 38.252.

(b) Now, the observed value of X (8) is 14.70, then residual for 8th day

ε =X (8) − 0.9X (7) − 0.5X (6) + 0.3X (5) + 0.3ε(7)

=X (8) − X̂7(8) = 14.70 − 22.30 = −7.6

The forecast can be updated using the new information provided as observed
value of daily rainfall for 8thday, i.e., X (8) by using Eq.9.96. We need to cal-
culate the correction parameters (λi for i ∈ {0, 1, . . . , 6}) by using Eq.9.97.

λ0 = 1

λ1 = �1 − θ1 = 0.9 − 0.3 = 0.6

λ2 = �1λ1 + �2 − θ2 = 0.9 × 0.6 + 0.5 − 0 = 1.04

λ3 =
3∑

i=1

�iλ3−i − θ3 = 0.9 × 1.04 + 0.5 × 0.6 − 0.3 × 1 = 0.936

λ4 =
4∑

i=1

�iλ4−i − θ4 = 0.9 × 0.936 + 0.5 × 1.04 − 0.3 × 0.6 = 1.182

λ5 =
5∑

i=1

�iλ5−i − θ5 = 0.9 × 1.182 + 0.5 × 0.936 − 0.3 × 1.04 = 1.220

λ6 =
6∑

i=1

�iλ6−i − θ6 = 0.9 × 1.220 + 0.5 × 1.182 − 0.3 × 0.936 = 1.408

As λ0 = 1, so X̂8(8) = X̂7(8)+λ1ε(8) = 14.70 = X (8). The updated forecasts
are

X̂8(9) =X̂7(9) + λ1ε(8) = 22.135 + 0.6(−7.6) = 17.57

X̂8(10) =X̂7(10) + λ2ε(8) = 26.016 + 1.04(−7.6) = 18.11

X̂8(11) =X̂7(11) + λ3ε(8) = 27.792 + 0.936(−7.6) = 20.68
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X̂8(12) =X̂7(12) + λ4ε(8) = 31.380 + 1.182(−7.6) = 22.40

X̂8(13) =X̂7(13) + λ5ε(8) = 34.333 + 1.220(−7.6) = 25.06

X̂8(14) =X̂7(14) + λ6ε(8) = 38.252 + 2.425(−7.6) = 27.55

The same forecast can be obtained by utilization of given ARMA model; how-
ever, this method has two advantages first being λi ’s do not change with new
observation and correction to the forecast is done by adding some factor of dif-
ference of new observation and its old forecast. In ARMA, one needs to calculate
the error series repeatedly for t = 1 for updating any forecast, which makes it
cumbersome.

(c) The variance of forecast with lead 1 is given by:

Var1 = σ2
ε = 5

Similarly,

Var3 =
⎛
⎝ 2∑

j=0

λ2
j

⎞
⎠σ2

ε = 5(1 + 0.62 + 1.042) = 12.21

Var5 =
⎛
⎝ 4∑

j=0

λ2
j

⎞
⎠σ2

ε = 5(1 + 0.62 + 1.042 + 0.9362 + 1.1822) = 23.57

Hence, with increase in lead period the variance of forecast increases.
(d) Mean Absolute error for the forecast made at origin 7 is,

MAE7 = 1

7

7∑
l=1

∣∣∣X (7 + l) − X̂7(7 + l)
∣∣∣ = 22.186

Mean Absolute error for the forecast made at origin 8 is,

MAE8 = 1

6

6∑
l=1

∣∣∣X (8 + l) − X̂8(8 + l)
∣∣∣ = 16.53

Hence, it can be observed that inclusion of new observations leads to decrease
in forecast error.

9.7.10 Parsimony of Time Series Models

Aparsimoniousmodel should utilizeminimumnumber of parameters and adequately
reproduce the statistics with least variance. Parsimony of the model can be used as
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selection criteria for themodel if they are reasonably close in prediction performance.
Parsimony can be measured using following two criteria:

(i) Akaike Information Criterion: For an ARMA(p, q) model, the Akaike Infor-
mation Criterion (AIC) is defined as:

AIC(p, q) = N ln(σ2
ε ) + 2(p + q) (9.107)

where σ2
ε is Maximum-likelihood estimate of variance of the residual series with

N elements. The model with least AIC is selected.
(ii) Bayesian Information Criterion: For an ARMA(p, q) model, the Bayesian

Information Criterion (BIC) is defined as:

BIC(p, q) = N ln

[
σ2

εM

N

]
+ (p + q) ln

⎡
⎣M

(
σ2
X

σ2
ε

− 1
)

p + q

⎤
⎦ (9.108)

where σ2
ε is Maximum-likelihood estimate of variance of the residual series, σ2

X
is variance of time series X (t) with N elements and M = N − (p + q). The
model with least BIC is selected.

For selecting the best-suited ARMA model from a pool of feasible ARMA models
(with different orders), AIC should be preferred over BIC.

Example 9.7.16
Calculate the Akaike Information Criteria for two ARmodels developed in Example
9.7.6. Assume that the length of time series is 40.

Solution For AR(1) model, length of residual series (N ) = 40 − 1 = 39, p = 1
and q = 0

AIC(1, 0) = N ln(σ2
ε ) + 2(p + q) = 39 ln(12.8) + 2 = 101.42

For AR(2) model, length of residual series (N ) = 40 − 2 = 38, p = 2 and q = 0

AIC(2, 0) = N ln(σ2
ε ) + 2(p + q) = 38 ln(12) + 4 = 98.43

Hence, as per lower AIC criteria, AR(2) is a better model.

Example 9.7.17
ThreeMAmodels are developed for a time series having unit variance. The length of
time series is 50. The parameter for MA(1) model is 0.7. The parameters of MA(2)
model are θ1 = 0.3 and θ2 = 0.45. The parameters of MA(3) model are θ1 = 0.2,
θ2 = 0.3, and θ3 = 0.37. Based on AIC criteria, select the best order for MA model.



9.7 Time Series Modeling in Hydroclimatology 357

Solution For MA(1) model, length of residual series (N ) = 50 − 1 = 49, p = 0
and q = 1. The variance of error is given by (Eq.9.64)

σ2
ε = 1

1 + θ21
= 1

1 + 0.72
= 0.671

AIC(0, 1) = N ln(σ2
ε ) + 2(p + q) = 49 ln(0.671) + 2 = −17.55

For MA(2) model, length of residual series (N ) = 50 − 2 = 48, p = 0 and q = 2

σ2
ε = 1

1 + θ21 + θ22
= 1

1 + 0.32 + 0.452
= 0.774

AIC(0, 2) = N ln(σ2
ε ) + 2(p + q) = 48 ln(0.774) + 4 = −8.29

For MA(3) model, length of residual series (N ) = 50 − 3 = 47, p = 0 and q = 3

σ2
ε = 1

1 + θ21 + θ22 + θ23
= 1

1 + 0.22 + 0.32 + 0.372
= 0.789

AIC(0, 3) = N ln(σ2
ε ) + 2(p + q) = 47 ln(0.789) + 6 = −5.13

Hence, as per lower AIC criteria, best order for MA model is 1.

9.7.11 Diagnostic Check for ARMA Models

Adequacy of an ARMA model can be checked by analysis of residual series (ε(t)).
The residual are the difference between observed and modeled time series. Most of
the models discussed in previous sections (AR, MA, ARMA, or ARMAX) are linear
regression models, so the residual series is assumed to be aperiodic, independent,
and identically distributed with zero mean. These assumptions about the residual
series are required to be checked for accessing the adequacy of model.

Test for Independence

The residual series is considered independent when the autocorrelation function
at nonzero lag is zero. This criteria can be checked using autocorrelogram or by
statistical test like Portmanteau lack of fit test. Portmanteau test statistic (Q) is
given by:

Q = N
k∑

i=1

(ρi (ε))
2 (9.109)
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where N is the length of residual series, ρi (ε) represent the autocorrelation in the
residual series, and k is highest lag considered, which is generally more than N/5.
The test statistic (Q) approximately followsχ2 distributionwith (k−q− p) degree of
freedom. If Q < χ2

α(k− p−q) at α level of significance then the residual series can
be considered independent. Some researchers have proposed a modified statistics
(modified Ljung–Box–Pierce statistics denoted as �Q) for this test. The modified
Ljung–Box–Pierce statistics is given by:

�Q = N (N + 2)
k∑

i=1

(ρi (ε))
2

N − i
(9.110)

The modified Ljung–Box–Pierce statistic is also recommended to be used in Port-
manteau test as it follows χ2(k − p − q) better as compared to Q (Eq. 9.109).

Test for Normal Distribution for Residual Series

The residual series from an ideal model should be independent and identically dis-
tributed. The residual from ARMA model should follow normal distribution. For
checking that the residual series follows normal distribution, normal probability
paper can be used. Some statistical tests like chi-square (χ2) test, Kolmogorov–
Smirnov test, Anderson–Darling test, skewness test (discussed in Sects. 6.4.4 and
9.6.1) can be used for checking that the residual series is normally distributed or
not. If the residual series does not follow normal distribution (i.e., null hypothesis is
rejected for above tests), then the original time series can be transformed using the
data transformation techniques given in Sect. 9.6.

Test for Periodicity

The periodicity in residual series (if any) can be observed in cumulative periodogram
(Sect. 9.5.1). The periodicity of frequency νi can be tested for statistical significance
using the following statistic:

F(ε(t)) = γ2(N − 2)

4β
(9.111)

where

γ2 = a2 + b2 (9.112)

β =

N∑
t=1

[ε(t) − a cos(2πνi t) − b sin(2πνi t)]2

N
(9.113)
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where a and b are Fourier transform parameters for frequency νi (Eqs. 9.17 and 9.18).
The statistic F(ε(t)) follows F-distribution with 2 and (N − 2) degree of freedom.
Hence, for α level of significance if F(ε(t)) ≤ Fα(2, N − 2), then the periodicity
corresponding to frequency νi is considered not significant.

Test for Zero Mean

To test whether the residual series has zero mean or not, the T (ε) can be calculated
using:

T (ε) = �ε(t) − με

SEε
(9.114)

where �ε(t) and SEε are the mean and standard deviation of residual series. με is
expected value of residual mean, hence, in case of checking whether the mean is
zero, με = 0. The statistics T (ε) approximately follows Student-t distribution with
N − 1 degree of freedom. At α level of significance, if |T (ε)| ≤ tα/2(N − 1), then
the mean is considered not to differ from με.

Example 9.7.18
The residual for the ARMA(2,2) model are 1.32,−1.97,−10.88,−5.98, 1.83, 12.06,
3.70, 1.55,−2.71, 0.61, 4.81,−1.27, 9.46,−6.10,−1.88, 0.260,−9.77, 2.83, 0.390,
0.400, 3.97, 5.22, 4.01, −2.34, −0.230, 1.77, −6.28, −5.18, −2.13, and 0.390,
respectively. Check that residual can be considered as white noise at a 5% level of
significance.

Solution
Test of Independence

Null Hypothesis: Residuals are independent.
Alternative Hypothesis: Residuals are not independent.
Level of Significance: α = 5%

For checking the independence, the 6 lagged autocorrelations are considered. The
autocorrelation function for lags 1 to 6 is 0.156, −0.049, −0.175, −0.311, 0.069,
and −0.150.

The test statistics �Q is given by

�Q = N (N + 2)
k∑

i=1

(ρi (ε))
2

N − i
= 6.614

For k − 2 = 4 degree of freedom χ2
α(4) = 9.488. As 6.614 < 9.488, so the null

hypothesis of data being independent cannot be rejected.
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Test for Normal distribution using skewness

Null Hypothesis: Data is normally distributed.
Alternative Hypothesis: Data is not normally distributed.
Level of Significance: α = 5%

The calculation of skewness of residual series is given in Table9.4. The skewness of
residual series is given by (Eq.9.31)

Table 9.4 Calculation for skewness test of residual series

S. No. Residual series
Y (t)

Residual series
deviation Yd (t)

Yd (t)2 Yd (t)3

1 1.32 1.39 1.94 2.69

2 −1.97 −1.9 3.6 −6.84

3 −10.88 −10.81 116.83 −1262.75

4 −5.98 −5.91 34.91 −206.29

5 1.83 1.9 3.62 6.87

6 12.06 12.13 147.17 1785.36

7 3.7 3.77 14.22 53.64

8 1.55 1.62 2.63 4.26

9 −2.71 −2.64 6.96 −18.37

10 0.61 0.68 0.46 0.32

11 4.81 4.88 23.83 116.31

12 −1.27 −1.2 1.44 −1.72

13 9.46 9.53 90.85 865.89

14 −6.1 −6.03 36.34 −219.11

15 −1.88 −1.81 3.27 −5.92

16 0.26 0.33 0.11 0.04

17 −9.77 −9.7 94.06 −912.3

18 2.83 2.9 8.42 24.42

19 0.39 0.46 0.21 0.1

20 0.4 0.47 0.22 0.1

21 3.97 4.04 16.33 66

22 5.22 5.29 28 148.15

23 4.01 4.08 16.66 67.98

24 −2.34 −2.27 5.15 −11.68

25 −0.23 −0.16 0.03 0

26 1.77 1.84 3.39 6.24

27 −6.28 −6.21 38.55 −239.33

28 −5.18 −5.11 26.1 −133.33

29 −2.13 −2.06 4.24 −8.72

30 0.39 0.46 0.21 0.1

Total −2.14 0 729.74 122.12
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S =
1
N

∑N
i=1(X (t) − �X)3[

1
N

∑N
i=1(X (t) − �X)2

]3/2 =
122.12
30(

729.74
30

)1.5 = 0.0339

Null hypothesis is acceptable for |S| < Z(α/2)

√
6/N (Eq. 9.32)

As, Z(α/2)

√
6/N = Z0.025

√
6/20 = 1.074

and |S| < 1.074, i.e., 0.033 < 1.074, so the null hypothesis of data being normally
distributed cannot be rejected.

Test for zero mean

Null Hypothesis: Population mean of residual series is zero, i.e., με = 0
Alternative Hypothesis: Population mean of residual series is zero, i.e., με �= 0
Level of Significance: α = 5%

The test statistics Tε = �ε/SEε = −0.0713/5.016 = −0.014.
Tε follows Student-t distribution with N − 1 = 29 degree of freedom.

tα/2(29) = 2.045

As | − 0.01| < 2.045, so the null hypothesis of data having zero mean cannot be
rejected.

Hence, the residual series is independent, normally distributed with zero mean at
5% level of significance and thus, can be considered as white noise.

9.8 Wavelet Analysis

Time series are represented in the timedomainwith their amplitude varyingwith time.
This representation is also known as amplitude–time representation. However, often
the frequency information is required to extract important information.Mathematical
tools like Fourier transform (FT) and wavelet transform (WT) aim to represent the
time series in frequency domain so that the information about constituent frequencies
are revealed. Whereas both FT and WT are potential in separating the frequencies
of a time series (also referred as signal), time information associated with different
frequencies can only be revealed byWT. This is the reason of popularity of WT over
FT in case of the non-stationary time series with respect to its frequency. In other
words, if the constituting frequencies of the time series do not change over time, both
FT and WT are equally useful but if it is not, WT is the essential to extract the time
information of constituting frequencies.

The WT is a mathematical tool that separates a time series into different consti-
tuting components, each corresponding to a particular frequency bands. Separated
components are called wavelet components of the original series. The WT utilizes
a specific function with zero mean and finite length having unit energy (variance),
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Table 9.5 Details of some mother wavelets

Name Mother wavelet function Graphical
representation

Haar or
Daubechies 1

�(t) =

⎧⎪⎨
⎪⎩
1 0 ≤ t ≤ 0.5

−1 0.5 ≤ t ≤ 1

0 otherwise.

-1 0 1 2
-2

-1

0

1

2

Meyer In frequency domain
�(ω) =⎧⎪⎪⎨
⎪⎪⎩

1√
2π

sin
(

π
2 ν
(
3|ω|
2π − 1

))
e jω/2 if 2π

3 < |ω| < 4π
3

1√
2π

cos
(

π
2 ν
(
3|ω|
2π − 1

))
e jω/2 if 4π

3 < |ω| < 8π
3

0 otherwise

where ν(x) =

⎧⎪⎨
⎪⎩
0 x ≤ 0

x 0 < x < 1

1 x ≥ 1

-5 0 5
-2

-1

0

1

2

Morlet �(t) = cσπ(−1/4)e(−1/2)t2 (eiσt − kσ)

where kσ = e−1/2σ2

cσ =
(
1 + e−σ2 − 2e−3/4σ2

)−1/2

-5 0 5
-1

-0.5

0

0.5

1

Ricker or
Mexican hat

�(t) = 2√
3σπ1/4

(
1 − ( tσ

)2) e− t2

2σ2

-5 0 5
-1

-0.5

0

0.5

1

Complex
Shannon 1–1

�(t) = √
Fbsinc(Fbx)e

(2iπFcx)

The wavelet is named as Fb − Fc
For figure Fb = Fc = 1

-20 0 20
-1

-0.5

0

0.5

1

known as ‘mother wavelet’. There are several mother wavelets with different math-
ematical forms, such as Haar, Meyer, Morlet, Mexican Hat. Details of some of these
wavelets are provided in Table9.5. Apart from the mother wavelet function given in
Table9.5, many families of wavelet functions exist like Daubechies, Bi-orthogonal,
Gaussian, Shannon.
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Any mother wavelet (�(t)) can be scaled and/or shifted (known as ‘daughter
wavelets’). For a particularmotherwavelet, the daughter wavelets (�a,b(t)) aremath-
ematically represented as:

�a,b(t) = 1√
a

�

(
t − b

a

)
(9.115)

where a and b are shifting and scaling parameters, respectively. The shifting param-
eter (a) shows the location of wavelet, as the wavelet window is gradually shifted
through the time series. Inverse of the scale parameter (b) provides the information
of frequency (νi ). Due to scaling, WT is able to recognize the frequencies in the
time series and due to shifting, the WT is able to extract the time varying feature
(amplitude) of those frequencies. It should be noted that the scaling as a mathemat-
ical operation either dilates or compresses a signal, i.e., larger scales (thus lower
frequency) correspond to the dilated (or stretched out) signals and small scales cor-
respond to the compressed signals. For instance, in Fig. 9.7 different scale of sine
wave with unit amplitude is shown. It can be observed that from Fig. 9.7a and 9.7d
that decrease in scale leads to contraction in signal and vice versa. Hence, by using
higher scale, WT extracts the slow moving changes or global information in signal
and by using lower scale, WT extracts the detailed information about local distur-
bances. It should be noted that the WT components at a particular frequency band
is obtained by convolution of shifted version of correspondingly scaled daughter
wavelet. Depending upon selection of the scaling and shifting parameters and trans-
formation procedure, many WT exist. Three of the most popular WT are discussed
here:

(a) Continuous Wavelet Transform (CWT): If shifting and scaling parameters
are considered to be continuous real number while applying wavelet transform,
the WT is called continuous wavelet transform (CWT). The CWT is computed
by changing the scale of the analysis window, shifting the window over time,
multiplyingwith the signal, and integrating it over the times. InCWT, thewavelet
transform is mathematically expressed as:

W f (a, b) = 1√
C�

∫
X (t)�∗

a,b(t)dt (9.116)

where �∗(t) denotes complex conjugate, C� = 2
∫ |F(�(ω))|2/ωdω and F(•)

denote the Fourier transform (Eq.9.16). If the basis wavelet or mother wavelet
(�(t)) is orthogonal, then the inverse of wavelet transformation is given by:

X (t) = 1√
C�

∫∫
W f (a, b)�(a,b)(t)

a2
da db (9.117)
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(b) Scale=0.2, νi = 5Hz
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(c) Scale=0.1, νi = 10Hz
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(d) Scale=0.05, νi = 20Hz

Fig. 9.7 Different scale/frequencies of unit amplitude sign wave

(b) Discrete Wavelet Transform (DWT):Discrete class ofwavelets is formedwhen
shifting and scaling parameters are considered discrete instead of continuous
variables while applying wavelet transform. If the discrete wavelet is sampled
over dyadic space, time grid, the resulting wavelets are called dyadic discrete
wavelets. These wavelets are denoted by:

� j,b(t) = 1√
2 j

�

(
t

2 j
− b

)
(9.118)

The wavelet transform is given by:

W f (a, b) = 1√
C�

∑
X (t)�∗

a,b(t)dt (9.119)

where �∗(t) denotes complex conjugate. Discrete wavelet component is
down-sampled or subband coded according to Nyquist–Shannon theorem. The
Nyquist–Shannon sampling theorem is a fundamental connection between con-
tinuous and discrete representation of time series or signal. This theorem is
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applicable to any signal having finite range of frequencies or in other words,
signal having zero Fourier transform coefficient outside some finite range of
frequencies. According to this theorem, if the signal is sampled two times, first
with a sampling rate of N1 at scale a1, second at a sampling rate of N2 at scale a2,
then the information contained in these two sampling procedures is equivalent,
given

N2 = a1
a2

N1 (9.120)

As the frequency range of wavelet components (generated by Eq.9.119) is
decreased by half, hence, the components can therefore be subsampled by 2, by
discarding every alternate sample or sample falling at even places from begin-
ning. As a result, each of the components has half the length that original time
series or signal had. Hence, DWT halves the time resolution, but doubles the
frequency resolution. Since, the frequency band of the signal now spans only
half the previous frequency band; it effectively reduces the uncertainty in the
frequency by half. This procedure is also known as subband coding (or down-
sampling). Subband coding, however, results in wavelet coefficients depending
on their location. As a result, a small change in input signal causes large changes
in wavelet coefficients. This is termed as transition-invariance of DWT and is
considered a major drawback which limits its application in signal analysis.
It should be noted that a discrete mother wavelet acts as a band-pass filter and
scaling it for each level (for dyadic space) effectively halves its bandwidth. This
creates the problem that in order to cover the entire spectrum (till the frequency
limiting to zero), an infinite number of scaling is required. Hence, to cover the
complete spectrum another function associated with the mother wavelet called
scaling function or ‘father wavelet’is used. Scaling function is also having finite
domain and unit energy. Further, dyadic wavelet functions are orthogonal so the
inverse of wavelet transform is given by:

X (t) = 1√
C�

∑
j,k∈Z

X (t)�a,b(t) (9.121)

Alternatively, DWT can also be carried out by using a pair of filters− a high pass
and a low pass filter. In DWT, signal convolution with low pass filter followed
by dyadic down-sampling gives an approximate coefficient, and one obtained by
using high pass filter and dyadic down-sampling is called detailed coefficients.
These filters are made using the mother wavelet and scaling function. The DWT
filter for Haar mother wavelet is discussed in Sect. 9.8.1.

(c) Stationary Wavelet Transform(SWT): StationaryWavelet Transform (SWT) is
specially designed to avoid the transition-invariance of DWT. For avoiding time-
invariance, SWT components are not down-sampled (as per Nyquist–Shannon
sampling theorem) and the filter coefficients are up-sampled by a factor of 2( j−1)
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in the j th level of algorithm. Hence, the SWT unlike DWT does not change the
time resolution at any stage. But lack of subband coding, results in redundancies
in components as SWT components have twice the number of elements needed
as per Nyquist–Shannon Theorem. However, SWT reduces the complexity of
signal analysis as both input signal and its components have equal length.

Wavelet transform depends upon the selected mother wavelet function. In the next
subsection, Haar mother wavelet is discussed in detail to show how the wavelet
transformation is carried out using filters.

9.8.1 Haar Wavelet

Haarwavelet is one of the ‘square-shaped’wavelet, proposed byAlfrédHaar in 1909.
A special case of Daubechies family of mother wavelet functions, the Haar wavelet
is considered first member of Daubechies family of wavelet and also regarded as
Db1. The Haar mother wavelet function H(t) is expressed as

H(t) =

⎧⎪⎨
⎪⎩
1 0 ≤ t ≤ 0.5

−1 0.5 ≤ t ≤ 1

0 otherwise.

(9.122)

The associated scaling function is given by:

S(t) =
{
1 0 ≤ t ≤ 1

0 otherwise.
(9.123)

The Haar wavelet and scaling function can be expressed as linear combination of
scaling function of different scales.

S(t) =S(2t) + S(2t − 1) (9.124)

H(t) =S(2t) − S(2t − 1) (9.125)

Any continuous real function on [0, 1] can be approximated by linear combinations of
dyadic Haar wavelet with different scales and shifts (1,H(t+b1),H(2t+b2),H(4t+
b3), . . . ,H(2nt − bn), . . . ). Similarly, any continuous real function with compact
support can be approximated by a linear combination of scale functionswith different
scale and shifts (S(t + b1),S(2t + b2),S(4t + b3), . . . ,S(2nt − bn), . . . ). As stated
earlier, thewavelet transformcan be carried out using a set of twofiltermatrices− low
pass and high pass filter. High pass filter is formulated on the basis of mother wavelet
function and separates the high frequencies from the data. Low pass filter matrix is
formulated on the basis of scaling function and allow low-frequency information
in data to pass. For stationary wavelet transform of time series of length ‘n’, Haar
wavelet high pass (G) and low pass (H ) filters are of (n × n) size. These filters are
constructed using following rules:
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hr,c =
{
1/

√
2 c ∈ {r, (r + 1) mod n}

0 otherwise.
(9.126)

gr,c =
{

(−1)r−c/
√
2 c ∈ {r, (r + 1) mod n}

0 otherwise.
(9.127)

where hr,c and gr,c are the elements of matrix H and G, respectively, r and c repre-
sent the row and column of filter matrix. Here, ‘mod’ represents a module function.
k mod n = n if k = n, otherwise k mod n = remainder of k divided by n. On
closer observation, the low pass filter is 2 term moving average operation and the
high pass filter is 1st-order differencing operation normalized with a factor of 1/

√
2.

When the time series is multiplied with these filters, two components are obtained.
The component obtained after multiplication with high pass filter is called detailed
SWT component (denoted by d) and component obtained after multiplication with
low pass filter is termed approximate SWT component (denote by a). For obtaining
DWT components, subband coding of SWT components is done by neglecting every
second component value or component values falling on even positions. These com-
ponents can further be separated into lower frequency bands by applying wavelet
transformation on them. This approach of applying wavelet transformation multiple
time to get wavelet components at even lower frequency bands is called multireso-
lution analysis (MRA).

9.8.2 Multiresolution Analysis

Multiresolution analysis or multiresolution wavelet transform (MRWT)can be per-
formed by using low pass filter component (approximate component) as input to
wavelet transform at each subsequent level. Hence, MRA helps in analysis of time
series or signal at smaller frequency bands. Multiresolution analysis of signal can
be carried out with both SWT or DWT. Depending on the wavelet transform used, it
is called multiresolution stationary wavelet transform (MRSWT) or multiresolution
discrete wavelet transform (MRDWT). By using MRA, a time series X (t) can be
represented as

X (t) =
∑
k

a0,kS0,k(t) +
∞∑
j=0

∑
k

d j,kH j,k(t) (9.128)

where S andH represent scaling function and mother wavelet function, respectively.
The subscript pair j, k shows scale and shift parameters of mother wavelet or scal-
ing function. The approximate component (a0,k) and detailed component (d j,k) are
expressed as:
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a0,k =
∑

X (t)S(t − k) (9.129)

d j,k =
∑

X (t)2− j
H
(
2− j t − k

)
(9.130)

If the level of decomposition is L then a0,k series is also represented as aL and d j,k

series are also represented as d j , where j ∈ 1, 2, . . . L . In the form of filters, the
components aL and d j are expressed as:

aL =GLGL−1 . . .G1X (9.131)

d j =HjG j−1G j−2 . . .G1X = Hja j−1 for j ∈ {1, 2, . . . , L} (9.132)

The low and high pass filters for Haar mother wavelet at any level l are given by:

hl,r,c =
{
1/

√
2 c ∈ {r, (r + 2(l−1)) mod n}

0 otherwise.
(9.133)

gl,r,c =
{

(−1)r−c/
√
2 c ∈ {r, (r + 2(l−1)) mod n}

0 otherwise.
(9.134)

where hl,r,c ∈ Hl , gl,r,c ∈ Gl , Hl and Gl are low pass and high pass filters at level l.
r and c represent row and column, respectively. It should be noted that for l = 1 the
above equations are same as Eqs. 9.126 and 9.127. The steps of MRA will be more
clear with an example as provided below.

Example 9.8.1
Monthly sea surface temperature (in ◦C) at a location for last 8months are 24.8,
23.6, 26.1, 28.4, 24, 22.8, 21.5, and 23. Decompose the time series into its MRSWT
components using Haar as mother wavelet upto level 2.

Note: This is just an illustrative problem to facilitate the reader to understand
the steps involved in MRSWT. In reality, the length of time series is sufficiently
long. However, once the basic steps are understood, the computer codes can be
written for longer hydroclimatic data set.

Solution Let the time series of sea surface temperature is represented as matrix X
having a size of 8 × 1. First-level Haar filters (high pass (Eq. 9.127) and low pass
(Eq.9.126)) for time series of length 8 are given by:
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G1 = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H1 = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1

−1 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similarly, the second-level Haar filters (high pass (Eq.9.134) and low pass
(Eq.9.133)) for time series of length 8 are given by :

G2 = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H2 = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1

−1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence, the second-level Haar MRSWT components are given by
(Eqs. 9.131 and 9.132):

a2 =G2G1X = [51.45 51.05 50.65 48.35 45.65 46.05 46.45 48.75
]

d2 =H2G1X = [−3.05 −1.35 3.85 4.05 1.15 −1.75 −1.95 −0.95
]

d1 =G1X = [0.85 −1.77 −1.63 3.11 0.85 0.92 −1.06 −1.27
]
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9.9 MATLAB Examples

MATLAB scripts can be written for solving various examples in this chapter. Fol-
lowing MATLAB built-in functions are helpful.

• Autocorrelation and partial autocorrelation functions for a time series can be cal-
culated by using following two functions:

[acf, lags, bounds] = autocorr(y, numLags)
[pacf, lags, bounds] = parcorr(y, numLags)

where acf and pacf are autocorrelation and partial autocorrelation functions,
lags and bounds are corresponding lag values and 95% confidence intervals.
y is the time series and numLags is number of lags till which the autocorrelation
or partial autocorrelation is calculated.

• The skewness of the data can be calculated using the ‘skewness’ built-in func-
tion.

• For fitting AR, MA, or ARMAmodel over time series, following functions can be
used:

– advice(data)
This built-in function suggests about the requirement of detrending, suitable
model structure, and its order.

– m = ar(y,n)
The function estimates an AR model on time series y with order n.

– sys = armax(data,[na nb nc nk])
This function can be used for estimating AR, MA, ARMA, ARX, MAX, or
ARMAX on time series data depending upon the second parameter. Differ-
ent components of the second parameter [na nb nc nk] specify different
parameters of the generalized ARMAX model.
na: order of autoregressive part
nb: number of term considered from exogenous input.
nc: order of moving average part
nk: lag (if any) in exogenous components.

• For estimation of ARmodel, Yule–Walker equation can also be solved easily using
built-in function ‘solve’ or by matrix division operation.

• For MRSWT decomposition the function ‘swt’ can be used.

SWC = swt(X,N,‘wname’)

where X is the one-dimensional matrix, N is level of MRSWT, and ‘wname’ is
name of mother wavelet function. SWC is component matrix having N+1 rows.

Some of the sample scripts to solve the example are provided in this section. These
scripts make use of some of above discussed built-in functions. For instance, the
Example 9.4.2 can be solved by script given in Box 9.1. For solving the associated
Example 9.4.1, Sects. 7.7 and 7.8 can be referred.
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Box 9.1 Test for Trend (Example 9.4.2)
� �

1 c l c ; c l e a r ; c l o s e a l l ;
2 alpha =0.1;
3 streamflow

=[1.10;0.50;2.70;1.30;1.50;2.20;2.10;3;2.90;4.40;4.60;...
4 3.10;4.70;4;4.60;5.10;6.10;5.30;6.70;5.60];
5

6 data_length = l e n g t h (streamflow);
7

8 %% Mann - Kendall Test
9 compare_mat = z e r o s (data_length );

10 f o r t=1: data_length
11 compare_mat (:,t)= s i g n (streamflow -streamflow(t));
12 e n d
13

14 compare_mat = t r i l (compare_mat );
15 mann_kenall_stat= sum( sum(compare_mat));
16 var_man_kendall_stat=data_length *( data_length -1) *(2* data_length +5)

/18;
17 u_c=( mann_kenall_stat - s i g n (mann_kenall_stat))/ s q r t (

var_man_kendall_stat);
18

19 %%% Display the results
20 output_file =[’output ’ filesep () ’code_1_result .txt’];
21 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;
22 f p r i n t f (’Results for Mann -Kendall Test:\n’);
23 f p r i n t f (’ The Mann -Kendall Statistics is %2.0f.\n’,

mann_kenall_stat);
24 f p r i n t f (’ The test statistics (u_c) is %2.2f.\n’,u_c);
25 i f a b s (u_c)>norminv(1-alpha /2,0,1)
26 f p r i n t f (’ As |u_c| > %1.3f (Z_%0.3f), so the null hypothesis of

no trend is rejected .\n’, ...
27 norminv(1-alpha /2,0,1), 1-alpha /2);
28 e l s e
29 f p r i n t f (’%s As |u_c| < %1.3f (Z_%0.3f), so the null hypothesis

of no trend can not be rejected .\n’, ...
30 norminv(1-alpha /2,0,1), 1-alpha /2);
31 e n d
32

33 %% Kendall Tau Test
34 compare_mat = z e r o s (data_length );
35 f o r t=1: data_length
36 compare_mat (:,t)=streamflow >streamflow(t);
37 e n d
38 compare_mat = t r i l (compare_mat );
39

40 p= sum( sum(compare_mat ));
41 tau =4*p/( data_length *( data_length -1)) -1;
42

43 var_tau =2*(2* data_length +5) /(9* data_length *( data_length -1));
44 test_stat_z =(tau)/ s q r t (var_tau);
45

46 %%% Display the results
47 f p r i n t f (’Results for Kendall Tau Test:\n’);
48 f p r i n t f (’ The Kendall tau is %2.2f.\n’,tau);
49 f p r i n t f (’ The test statistics is %2.2f.\n’,test_stat_z );
50 i f a b s (test_stat_z )>norminv(1-alpha /2,0,1)
51 f p r i n t f (’ As |z| > %1.3f (Z_%0.3f), so the null hypothesis of

no trend is rejected .\n’, ...
52 norminv(1-alpha /2,0,1), 1-alpha /2);
53 e l s e
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54 f p r i n t f (’ As |z| < %1.3f (Z_%0.3f), so the null hypothesis of
no trend can not be rejected.’, ...

55 norminv(1-alpha /2,0,1), 1-alpha /2);
56 e n d
57 d i a r y off

� �

The result for the script given in Box 9.1 is given in Box 9.2. The result matches
with inference drawn in Solution 9.4.2, i.e., the null hypothesis of no trend in data is
rejected.

Box 9.2 Results for Box 9.1
� �

1 Results for Mann -Kendall Test:
2 The Mann -Kendall Statistics is 157.
3 The test statistics (u_c) is 5.06.
4 As |u_c| > 1.645 (Z_0 .950) , so the null hypothesis of no trend is

rejected.
5 Results for Kendall Tau Test:
6 The Kendall tau is 0.82.
7 The test statistics is 5.06.
8 As |z| > 1.645 (Z_0 .950) , so the null hypothesis of no trend is

rejected.
� �

Sample script for solving Examples 9.6.1, 9.7.3, and 9.7.14 is provided in Box
9.3. In this example, script autocorrelation, partial autocorrelation, and skewness is
calculated using MATLAB built-in functions.

Box 9.3 Sample MATLAB script for solving Example 9.6.1 and associated examples
� �

1 c l e a r ; c l c ; c l o s e a l l ;
2

3 alpha =0.05;
4 rainfall

=[2.89;7.39;23.88;10.59;5.91;1.53;3.48;56.54;26.19;6.35;...
5 38.09;0.01;3.03;41.57;44.73;21.39;15.87;1.22;21.75;0.21];
6

7 y_skewness=skewness(rainfall);
8

9 % Calculate Moving average and differencing
10 [~,m]= movavg(rainfall ,1,2);
11 mov_avg_rainfall=m(2: e n d );
12 diff_rainfall = d i f f (rainfall);
13 f i g u r e (’Position ’ ,[0 0 500 450]);
14 p l o t (1: l e n g t h (rainfall),rainfall ,’k’); h o l d on;
15 p l o t ((1: l e n g t h (mov_avg_rainfall))+1,mov_avg_rainfall ,’--b’,’

LineWidth ’ ,1.5);
16 p l o t ((1: l e n g t h (diff_rainfall ))+1,diff_rainfall ,’-.r’,’LineWidth ’

,1);
17 a x i s ([1 20 -50 100]); x l a b e l (’Days’,’FontSize ’ ,14);
18 y l a b e l (’Magnitude ’,’FontSize ’ ,14);
19 h_l= l e g e n d (’Original Rainfall Series ’,’Moving Average with window

2’ ,...
20 ’1^{st} order Differencing ’); s e t (h_l ,’FontSize ’ ,11)
21

22 % Calculate autocorrelation and partial autocorrelation of
rainfall
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23 % till lag 5
24 [rain_autocorr ,autocorr_lags ,autocorr_bounds ]= autocorr(rainfall ,5)

;
25 [rain_parcorr ,parcorr_lags ,parcorr_bounds ]= parcorr(rainfall ,5);
26

27 %%% Display the results
28 output_file =[’output ’ filesep () ’code_2_result .txt’];
29 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;
30 f p r i n t f (’ The skewness is %2.2f.\n’,y_skewness);
31 i f a b s (y_skewness)>norminv(1-alpha /2,0,1)* s q r t (6/ l e n g t h (rainfall))
32 f p r i n t f (’As |S| > %1.3f , so the null hypothesis of data being

normal is rejected .\n’, ...
33 norminv(1-alpha /2,0,1)* s q r t (6/ l e n g t h (rainfall)));
34 e l s e
35 f p r i n t f (’ As |S| < %1.3f , so the null hypothesis of data being

normal can not be rejected .\n’, ...
36 norminv(1-alpha /2,0,1)* s q r t (6/ l e n g t h (rainfall)));
37 e n d
38 f p r i n t f (’\n ACF and PACF function for rainfall upto lag 5 is given

by:\n’);
39 f p r i n t f (’\n lag\t\t ACF \t\t PACF\n’);
40 f o r i=1: s i z e (autocorr_lags )
41 f p r i n t f (’%d \t\t %0.2f \t\t %0.2f\n’, autocorr_lags (i) ,...
42 rain_autocorr (i),rain_parcorr(i));
43 e n d
44 f p r i n t f (’\n The 95%% confidence interval for ACF and PACF are\n’);
45 f p r i n t f (’ ACF \t (%0.2f ,%0.2f)\n PACF \t (%.2f ,%0.2f)\n’,

autocorr_bounds (2) ,...
46 autocorr_bounds (1),parcorr_bounds (2),parcorr_bounds (1));
47 d i a r y off;

� �

The result for the script given in Box 9.3 is given in Box 9.4. The results match with
Solution 9.6.1, i.e., according to skewness test the transformed rainfall depth follow
normal distribution.

Box 9.4 Results for Box 9.3
� �

1 The skewness is 0.93.
2 As |S| < 1.074 , so the null hypothesis of data being normal can

not be rejected.
3

4 ACF and PACF function for rainfall upto lag 5 is given by:
5

6 lag ACF PACF
7 0 1.00 1.00
8 1 0.03 0.03
9 2 -0.26 -0.28

10 3 0.03 0.06
11 4 -0.20 -0.39
12 5 -0.01 0.02
13

14 The 95% confidence interval for ACF and PACF are
15 ACF ( -0.45 ,0.45)
16 PACF ( -0.46 ,0.46)

� �
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Solution of Example 9.7.7 can be obtained by matrix division as shown in Box 9.5.

Box 9.5 Sample MATLAB script for solving Example 9.7.7
� �

1 c l e a r ; c l c ; c l o s e a l l ;
2

3 flow =[560;630;590;660;580;490;300;350;470;900;850;870;340;...
4 560;190;250;380;670;990;840;250;360;1200;950;880;...
5 560;450;320;170;580];
6

7 flow_auto_corr=autocorr(flow ,2);
8 flow_auto_corr=flow_auto_corr (2: e n d ); % Remove lag 0 ACF
9

10 % Solution of Yule Walker Equation
11 AR_2_params =flow_auto_corr ’/[1, flow_auto_corr (1);flow_auto_corr

(1) ,1];
12

13 % Display Results
14 output_file =[’output ’ filesep () ’code_3_result .txt’];
15 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;
16 f p r i n t f (’The AR(2) parameters are: %2.3f\t%2.3f\n’ ,...
17 AR_2_params (1),AR_2_params (2));
18 d i a r y off;

� �

The results obtained by solution of Yule–Walker equation (Box 9.6) match with
Solution 9.7.7.

Box 9.6 Result of script provided in Box 9.5
� �

1 The AR(2) parameters are: 0.543 -0.331
� �

The white noise testing of residual (Example 9.7.18) can be carried out by using the
script presented in Box 9.7. Three tests are carried out on residual series in the script,
namely − test of independence, test for normality, and test for zero mean.

Box 9.7 Sample MATLAB script for solving Example 9.7.18
� �

1 c l e a r ; c l c ; c l o s e a l l ;
2

3 residual =[1.32; -1.97; -10.88; -5.98;1.83;12.06;3.70;1.55;...
4 -2.71;0.61;4.81; -1.27;9.46; -6.10; -1.88;0.260; -9.77;...
5 2.83;0.390;0.400;3.97;5.22;4.01; -2.34; -0.230;1.77;...
6 -6.28; -5.18; -2.13;0.390];
7

8 alpha =0.05;
9 % Test of independence

10 N= l e n g t h (residual);
11 k= c e i l (N/5);
12 res_autocorr=autocorr(residual ,k);
13 res_autocorr=res_autocorr (2: e n d );
14 sq_autocorr =res_autocorr .^2;
15 weighted_sum_sq_autocorr =0;
16 f o r i=1: l e n g t h (res_autocorr)
17 weighted_sum_sq_autocorr =weighted_sum_sq_autocorr +...
18 sq_autocorr (i)/(N-i);
19 e n d
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20 Q_bar=N*(N+2)*weighted_sum_sq_autocorr ;
21

22 % Calculate skewness
23 y=residual;
24 y_d=y-mean(y);
25 y_d_squared =y_d .^2;
26 y_d_cubic=y_d .^3;
27 y_skewness=mean(y_d_cubic)/( mean(y_d_squared ))^1.5;
28 table_skew_calc =[y,y_d ,y_d_squared ,y_d_cubic ];
29 table_skew_calc ( e n d +1,:)= sum(table_skew_calc );
30

31 % Test for zero mean
32 T_e=mean(residual)/ s t d (residual);
33

34 % Display results
35

36 %%% Display the results
37 output_file =[’output ’ filesep () ’code_4_result .txt’];
38 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;
39 i f Q_bar <chi2inv(1-alpha ,k-2)
40 f p r i n t f (’As %1.3f < %1.3f , so the null hypothesis of data being

independent can not be rejected .\n’, ...
41 Q_bar , chi2inv(1-alpha ,k-2));
42 e l s e
43 f p r i n t f (’As %1.3f > %1.3f , so the null hypothesis of data being

independent is rejected .\n’, ...
44 Q_bar , chi2inv(1-alpha ,k-2));
45 e n d
46 i f a b s (y_skewness)>norminv(1-alpha /2,0,1)* s q r t (6/ l e n g t h (y))
47 f p r i n t f (’As |%3.2f| > %1.3f , so the null hypothesis of data

being normal is rejected .\n’, ...
48 y_skewness , norminv(1-alpha /2,0,1)* s q r t (6/ l e n g t h (y)));
49 e l s e
50 f p r i n t f (’As |%3.2f| < %1.3f , so the null hypothesis of data

being normal can not be rejected .\n’, ...
51 y_skewness , norminv(1-alpha /2,0,1)* s q r t (6/ l e n g t h (y)));
52 e n d
53

54 i f a b s (T_e)<=tinv(1-alpha/2, l e n g t h (residual) -1)
55 f p r i n t f (’As |%2.2f| < %1.3f , so the null hypothesis of data

having zero mean can not be rejected .\n’, ...
56 T_e , tinv(1-alpha/2, l e n g t h (residual) -1));
57 e l s e
58 f p r i n t f (’%s As |%2.2f| > %1.3f , so the null hypothesis of data

having zero mean is rejected .\n’, ...
59 T_e , tinv(1-alpha/2, l e n g t h (residual) -1));
60 e n d
61 d i a r y off

� �

The result of white noise test script (Box 9.7) is provided in Box 9.8. Like Solution
9.7.18, the result suggest that residual can be considered white noise as it passes all
three tests.
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Box 9.8 Result of script provided in Box 9.7
� �

1 As 6.614 < 9.488 , so the null hypothesis of data being
independent can not be rejected.

2 As |0.03| < 0.877 , so the null hypothesis of data being normal
can not be rejected.

3 As | -0.01| < 2.045 , so the null hypothesis of data having zero
mean can not be rejected.

� �

A sample script for solving Example 9.8.1 using ‘swt’ built-in function ofMATLAB
is presented in Box 9.9.

Box 9.9 Sample MATLAB script for solving Example 9.8.1
� �

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2

3 %% Input
4 X=[24.8 , 23.6, 26.1, 28.4, 24, 22.8, 21.5, 23];
5 comp=swt(X,2,’haar’);
6

7 %%% Display and save the output
8 output_file =[’output ’ filesep () ’code_5_result .txt’];
9 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;

10 f p r i n t f (’The Haar MRSWT Components are \n’);
11 a_2 =[]; d_2 =[]; d_1 =[];
12 f o r i=1: l e n g t h (comp)
13 a_2=[a_2 s p r i n t f (’%2.2f’,comp(3,i)) ’, ’];
14 d_2=[d_2 s p r i n t f (’%2.2f’,comp(2,i)) ’, ’];
15 d_1=[d_1 s p r i n t f (’%2.2f’,comp(1,i)) ’, ’];
16 e n d
17 f p r i n t f (’ a_2=%s \n d_2=%s \n d_1=%s\n’, a_2 , d_2 , d_1);
18 d i a r y off

� �

The result of the script provided in Box 9.9 is provided in Box 9.10. The result of
the script matches with our Solution 9.8.1.

Box 9.10 Result of script provided in Box 9.9
� �

1 The Haar MRSWT Components are
2 a_2 =51.45 , 51.05 , 50.65 , 48.35 , 45.65 , 46.05 , 46.45 , 48.75 ,
3 d_2=-3.05, -1.35, 3.85, 4.05, 1.15, -1.75, -1.95, -0.95,
4 d_1 =0.85 , -1.77, -1.63, 3.11, 0.85, 0.92, -1.06, -1.27,

� �

Exercise

9.1 The annual evapotranspiration (in cm/year) for a basin in last 20 years are
61.04, 58.71, 60.02, 60.36, 62.65, 64.17, 62.82, 64.41, 64.6, 63.45, 65.35, 64.65,
67.37, 66.27, 68.39, 66.77, 68.24, 68.04, 66.53, and 68.02.
Check the evapotranspiration data for any trend using (a) Mann–Kendall test and (b)
Kendall tau test. Use 5% level of significance.
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(Ans. At 5% significance level null hypothesis of no trend is rejected for Mann–
Kendall. However, in the Kendall tau test null hypothesis of no trend cannot be
rejected at 5% significance level.)

9.2 The monthly average atmospheric pressure (in mb) measured at surface level
for 24 consecutive months are
963.65, 965.03, 961.18, 959.43, 957.68, 953.42, 950.11, 952.44, 952.25, 956.88,
963.66, 963.36, 965.56, 964.5, 963.66, 960.91, 956.9, 952.18, 950.71, 952.54,
951.43, 955.06, 959.01, and 962.60. Find the autocorrelation and partial autocor-
relation functions at lags 0, 1, 2, and 3.

Ans. Autocorrelation function at lag 0, 1, 2, and 3 are 1, 0.782, 0.414, and 0.008
respectively.
Partial autocorrelation function at lag 0, 1, 2, and 3 are 1, 0.807, −0.617, and
−0.481 respectively.

9.3 For the data, provided in Exercise 9.1, find the autocorrelation and partial auto-
correlation coefficient at lags 0, 1 and 2. Find the 95% confidence limit for the ACF
and PACF at lag 2.

Ans. Autocorrelation function at lag 0, 1, and 2 are 1, 0.784, and 0.678 respectively.
Partial autocorrelation function at lag 0, 1, and 2 are 1, 0.852 and 0.489 respec-
tively.
95% confidence interval of ACF and PACF is [−0.462, 0.462].

9.4 Streamflow at a section for 30 consecutive days is shown in the following table

Day Flow Day Flow Day Flow
(×1000 m3/s) (×1000 m3/s) (×1000 m3/s)

1 14.12 11 14.45 21 12.50
2 22.05 12 12.72 22 16.10
3 22.34 13 13.67 23 17.40
4 20.07 14 12.58 24 9.48
5 21.15 15 9.33 25 8.41
6 19.82 16 9.67 26 9.33
7 20.65 17 10.65 27 10.40
8 23.57 18 14.47 28 12.62
9 22.19 19 11.02 29 15.30
10 18.32 20 9.82 30 13.84

From historical records, streamflow is found to follow gamma distribution. The
rating curve for the section is given by:

Q = 59.5(G − 5)2

where Q is streamflow in m3/s and G is river stage at section in meters. Calculate the
river stage at the section and check whether river stage follows normal distribution
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at 5% level of significance or not.
(Ans. The river stage for the section (in m) are 20.4, 24.3, 24.4, 23.4, 23.9, 23.3,
23.6, 24.9, 24.3, 22.5, 20.6, 19.6, 20.2, 19.5, 17.5, 17.7, 18.4, 20.6, 18.6, 17.8, 19.5,
21.4, 22.1, 17.6, 16.9, 17.5, 18.2, 19.6, 21.0, and 20.3. At 5% significance level, the
null hypothesis of river stage follows normal distribution cannot be rejected.)

9.5 Fit AR(1) and AR(2) model on the river stage data given in Exercise 9.4. What
percentage of variance in the river stage time series is explained by these twomodels?
Calculate Akaike Information Criteria for the models and suggest the best model.

Ans. For AR(1) model �1 = 0.79, R2 = 0.626, AIC = 187.77
For AR(2) model �1 = 0.98 and �2 = −0.24, R2 = 0.647, AIC = 189.21
Hence, out of AR(1) and AR(2), AR(1) is better model.

9.6 Soil moisture is usually found to have high memory component. Using a sensor
the surface soil moisture was recorded daily at a location for 60days. For this time
series, PACF at successive lags from 0 to 4 are 1, 0.56, 0.41, 0.15, and 0.11 and
corresponding ACF are 1, 0.85, 0.62, 0.25, and 0.12. Suggest the appropriate order
ofARmodel and find the parameters of selectedARmodel. Check theARparameters
for model stationarity.
(Ans. On the basis of significance of PACF function highest order of AR model is
2. The AR(2) parameters are �1 = 1.164 and �2 = −0.370. The AR(2) model is
stationary.)

9.7 For a location, monthly average zonal wind is found to follow a moving average
model. From a monthly average zonal wind time series record of length 35, the
ACF function at lags 0 to 5 are found as 1, 0.45, 0.35, 0.25, 0.15, and 0.08. Suggest
an appropriate order for MA model and find corresponding parameters. Check the
invertibility of the selected model.
(Ans. On the basis of significance of ACF, MA(1) is an appropriate model. The
parameter for MA(1) model is −0.627. The MA(1) is invertible.)

9.8 The parameters of AR(2) model are �1 = 0.77 and �2 = −0.25. Calculate the
ACF till lag 2 for the corresponding time series.
(Ans. ρ1 = 0.616 and ρ2 = 0.224)

9.9 For a MA(2) model fitted on time series X (t), if parameters are θ1 = 0.57 and
θ2 = 0.36, calculate the PACF and ACF up to lag 2 for the time series X (t).
(Ans. ρ1 = −0.251, ρ2 = −0.247, ϕ1 = −0.251, and ϕ2 = −0.331)

9.10 Considering the following ARMA model,

X (t) = 0.63X (t − 1) − 0.45X (t − 2) + ε(t) − 0.58ε(t − 1) + 0.21ε(t − 2)

Check the invertibility and stationarity of the model.
(Ans. The model is stationary but not invertible.)
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9.11 At a location, the daily air temperature follows the ARMA(2,1) model given
below,

X (t) = 0.7X (t − 1) + 0.2X (t − 2) + ε(t) + 0.7ε(t − 1)

If the air temperature recorded in the last week (in ◦C) was 16.5, 15.2, 18.2, 16.3,
19.4, 17.8, and 15.7, then forecast air temperature and their 95% confidence limit
for next three days. Assume that the variance of residual is unity. Further, update
the forecast for remaining two days, if the temperature on eighth day is recorded as
14.5◦C.
(Ans. Forecasted temperatures (in ◦C) for next three days are 15.7, 14.1, and 13.0
respectively. Their confidence intervals are (13.7, 17.7), (10.8, 17.5), and (9.0, 17.1)
respectively. The update forecasts for next two days (in ◦C) are 12.4 and 11.6, respec-
tively.)

9.12 For the monthly average atmospheric pressure at surface data provided in
Exercise 9.2, check the data for any seasonality (periodicity of 12months) at 5%
level of significance.
(Ans. Data is seasonal at 5% level of significance.)

9.13 For AR(2) model developed in Exercise 9.5, check that the residual series is
white noise at 5% level of significance. A series is called white noise when it is
independent and normally distributed with zero mean.
(Ans. The residual is white noise at 5% level of significance.)

9.14 Decompose the annual evapotranspiration time series provided in Exercise 9.1
into its Haar MRSWT components up to level 2. [Hint: Code written in Box 1.9 may
be used]
Ans. The decomposed series are

a2 [120.1, 120.9, 123.6, 125.0, 127.0, 128.0, 127.6, 128.9, 129.0, 130.4, 131.8, 133.3, 134.4,
134.8, 135.7, 134.8, 135.4, 131.8, 127.2, 123.9]

d2 [−0.3, −2.1, −3.2, −2.0, −0.2, −1.0, −0.4, 0.1, −1.0, −1.6, −1.8, −1.3, −0.8, −0.2, −0.6,

0.2, 0.9, 2.8, 7.4, 5.2]
d1 [1.6, −0.9, −0.2, −1.6, −1.1, 1.0, −1.1, −0.1, 0.8, −1.3, 0.5, −1.9, 0.8, −1.5, 1.1, −1.0, 0.1,

1.1, −1.1, 4.9]



Chapter 10
Theory of Copula in Hydrology
and Hydroclimatology

This chapter deals with an introduction to copula theory and its appli-
cations in hydrology and hydroclimatology. The copula theory is rel-
atively new to this field but has already established itself to be highly
potential in frequency analysis, multivariate modeling, simulation and
prediction. Development of joint distribution between multiple variables
is the key to analyze utilizing the potential of copulas. The chapter starts
with the mathematical theory of copulas and gradually move on to the
application. If the readers are already aware of the background theory
and look for application of copula theory, they can directly proceed to
Sect.10.8. Basic mathematical formulations for most commonly used
copulas are discussed, and illustrative examples are provided. It will
enable the readers to carry out applications to other problems. All the
illustrative examples are designed with very few data points. This helps
to show the calculation steps explicitly. Please note that any statistical
analysis should be done with sufficiently long data. Once the readers
understand the steps, computer codes can be written easily for large
data sets. Example of MATLAB codes is also provided at the end.

10.1 Introduction

Theory of copula itself may need an entire book (Nelsen 1999). Focus of this chapter
is to introduce this theory for hydrologic and hydroclimatologic applications. The
word copula originates from a Latin word ‘copulare,’ which means ‘to join together.’
In many cases of statistical modeling, it is essential to obtain the joint probability dis-
tribution function between two or more random variables. Even though the marginal
distributions of each of the random variables are known, their joint distributions may
not be easy to derive from these marginal distributions. However, copula can be
used to obtain their joint distribution, if the information on scale-free measures of
dependence between random variables is available.
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10.2 Preliminary Concepts

10.2.1 Definition of Copula

Let X and Y be a pair of random variables with cumulative distribution function
(CDF) FX(x) and FY (y), respectively. Also, let their jointCDF be HX, Y (x, y). Hence,
each pair (x, y) of real numbers leads to a point (FX(x), FY (y)), in the unit square,
i.e., I2 or [0, 1]×[0, 1]. The ordered pair in turn corresponds to a number HX, Y (x, y),
in [0, 1]. This correspondence is a function, which is known as copula. Thus, cop-
ula (designated by C) is a function that joins or couples one-dimensional marginal
distributions of multiple random variables to their joint distribution function.

It is worthwhile to note here that such correspondence is irrespective of the
marginal distributions of the random variables. In other words, any form of marginal
distributions can be coupled to get their joint distribution, which is the reason for
the popularity of copula theory in many areas of research. Moreover, the theory of
copula can be extended to higher dimensions also.

10.2.2 Graphical Representation of Copula

An n-dimensional copula is represented in a In dimensional space. Graphically, only
two-dimensional copula can be shown as a surface in I3 space or as a contour plot in
I2. For example, a two-dimensional independent copula, given by C(u, v) = uv for
0 ≤ u, v ≤ 1, is graphically represented in Fig. 10.1. This copula function is called
independent copula, as it defines the joint distribution for two independent random
variables.

u0.0
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Fig. 10.1 Independent copula function represented as a three-dimensional surface plot, and b
contour plot
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10.3 Sklar’s Theorem

Application of copula to probability and statistics is achieved throughSklar’s theorem
(Sklar 1959). It states that if HX,Y (x, y) is a joint distribution function, then there exists
a copula C(u, v), such that, for all x, y ∈ R

HX,Y (x, y) = C(FX(x), FY (y)) (10.1)

where FX(x) and FY (y) are themarginal distribution of X and Y , respectively. Hence,
if FX(x) and FY (y) are continuous, then copula function is unique, otherwise copula
is uniquely determined on Ran(FX(x))×Ran(FY (y)), where Ran(•) represents range
for •. Sklar’s theorem is used for coupling two marginal distributions to obtain their
joint distribution.

Equation10.1 can be inverted as,

C ′(u, v) = H(F (−1)
X (u), F (−1)

Y (v)) (10.2)

where F (−1)
X (u) and F (−1)

Y (v) are called ‘quasi-inverse’ of FX(x) and FY (y), respec-
tively. If any marginal (FX(x) or FY (y)) is strictly increasing function, then the quasi-
inverse is same as its inverse (denoted by F−1

X or F−1
Y ). However, if any marginal

distribution FX(x) is not strictly increasing, then the quasi-inverse is given by,

(a) For any t ∈ Ran(FX(x)), then F
(−1)
X (t) is any number x ∈ R such that FX(x) = t ,

i.e., for all t in Ran(FX(x)),

FX

(
F (−1)

X (t)
) = t (10.3)

(b) If t is not in Ran(FX(x)), then,

F (−1)
X (t) = inf{x |FX(x) ≥ t} = sup{x |FX(x) ≤ t} (10.4)

where inf stands for infimum and sup stands for supremum. In Eq.10.2, if FX(x)
and FY (y) are continuous function, then C ′(u, v) is a valid copula function. Hence,
copula can be constructed using the information of marginal distributions and joint
distribution. This method of constructing copula is called inversion technique to
construct copula.

Example 10.3.1
If a joint distribution function is given by,

HX,Y (x, y) =

⎧
⎪⎨

⎪⎩

(x+1)(ey−1)
x+2ey−1 (x, y) ∈ [−1, 1] × [0,∞),

1 − e−y (x, y) ∈ [1,∞) × [0,∞),

0 elsewhere.
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with the marginal distribution functions as,

FX(x) =

⎧
⎪⎨

⎪⎩

0 x < −1,

(x + 1)/2 x ∈ [−1, 1],
1 x > 1.

and FY (y) =
{
0 y < 0,

1 − e−y y ≥ 0.

Find the corresponding copula function.

Solution If the reduced variate of X is u ∈ [0, 1] (i.e., FX(x) = u or F (−1)
X (u) = x),

then the quasi-inverse of FX(x) is given by,

u = F (−1)
X (u) + 1

2
or F (−1)

X (u) = 2u − 1

Similarly, if v is the reduced variate of Y , then the quasi-inverse of FY (y) is given
by,

F (−1)
Y (v) = − ln(1 − v)

Both FX(x) and FY (y) are both continuous functions with range I. Hence, the corre-
sponding copula C is given by (Eq.10.2),

C = HX,Y (F (−1)
X (u), F (−1)

Y (v)) = (2u − 1 + 1)(e− ln(1−v) − 1)

2u − 1 + 2e− ln(1−v) − 1
= uv

u + v − uv

10.4 Basic Properties of a Copula Function

Before discussing the basic properties of a copula function, some basic terminologies
are discussed in the following section.

10.4.1 Basic Terminologies

H − volume

Let us assume that S1 and S2 are two non-empty subsets of set of real numbers, R,
and H(x, y) is a function defined on S1× S2. For any two points (x1, y1) and (x2, y2)
in S1 × S2, the corresponding rectangle B can be defined as [x1, x2] × [y1, y2]. The
H − volume for rectangle B is the volume enclosed by H function and XY plane.
Mathematically, H − volume for rectangle B is expressed as

VH (B) = H(x2, y2) − H(x1, y2) − H(x2, y1) + H(x1, y1) (10.5)
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H − volume can also be expressed as second-order differencing of H on B.

VH (B) = �y2
y1�

x2
x1H(x, y) (10.6)

where �
y2
y1H(x, y) represents first-order differencing of function H(x, y) keeping

X constant, i.e., �
y2
y1H(x, y) = H(x, y2) − H(x, y1). Similarly, �x2

x1H(x, y) =
H(x2, y) − H(x1, y).

2-Increasing Function

The concept of 2-increasing function in two-dimensional case is analogous to
non-decreasing functions in one dimension. A two-dimensional real function is
2-increasing, if H -volume of any rectangle B is nonnegative, i.e., VH (B) ≥ 0 for
all rectangles B whose vertices lie in Dom(H). This is graphically represented in
Fig. 10.2.
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Fig. 10.2 a Rectangle B denoted as [x1, y1] × [x2, y2]; b Joint CDF HX,Y (x, y);
c H−volume of B denoted as VH (B)
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Fig. 10.3 Pictorial representation of a two-dimensional grounded function

Grounded Function

A two-dimensional function G(x, y) having domain S1 × S2 is called grounded, if
G(a1, y) = 0 = G(x, a2) for all (x, y) ∈ Dom(G(x, y)), where, a1 and a2 are
the least elements of S1 and S2, respectively. Copula functions are required to be
grounded. As domain of copula function is I2, so a1 = a2 = 0. The copula function
shown in Figs. 10.1 and 10.3 is grounded as the value of copula function at u and v

axes is zero, i.e., C(0, v) = C(u, 0) = 0.

Properties of Copula Function (C(u, v))

A copula having a domain of I2 has following properties:

(i) For every u1, u2, v1, v2 in I, if u1 ≤ u2 and v1 ≤ v2, then

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0 (10.7)

This property indicates that the copula functions are 2-increasing.
(ii) For every u, v in I

C(u, 0) = C(0, v) = 0 (10.8)

This property indicates that the copula functions are grounded.
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(iii) For every u, v in I

C(u, 1) = u (10.9)

C(1, v) = v (10.10)

Example 10.4.1
Check whether the following functions of u, v ∈ I can be considered a valid copula
function or not.

(a) C(u, v) = uv

(b) C(u, v) = 1
(c) C(u, v) = max (u + v − 1, 0)

(d) C(u, v) = u2+v2

2

(e) C(u, v) = [
max

(
u−1 + v−1 − 1, 0

)]−1

(f) C(u, v) = |u + v − 2|

Solution A valid copula function should follow all the properties listed in
Sect. 10.4.1.

(a) For the function C(u, v) = uv, for all u1, u2, v1, v2 ∈ I, such that u1 ≤ u2 and
v1 ≤ v2,

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) = u2v2 − u2v1 − u1v2 + u1v1

Assuming u2 = u1 + d, then u2v2 + u1v1 = (u1 + d)v2 + (u2 − d)v1 =
u1v2 + u2v1 + d(v2 − v1). Hence, the above expression reduces to d(v2 − v1).
As d ≥ 0 and (v2 − v1) ≥ 0, so

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0

Then, for copula C(u, v) = uv,

C(u, 0) = u × 0 = 0

C(0, v) = 0 × v = 0

and
C(u, 1) = u and C(1, v) = v

Hence, the function given by C(u, v) = uv is both grounded, 2-increasing in I.
C(u, v) = uv is a valid copula function.

(b) For the function C(u, v) = 1, for any u1, u2, v1, v2 ∈ I

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) = 1 − 1 − 1 + 1 = 0
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However, the function is not grounded on u and v axes as C(u, 0) = C(0, v) =
1 �= 0. Moreover, C(u, 1) = 1 �= u and C(1, v) = 1 �= v, and hence, the
function given by C(u, v) = 1 is not a valid copula function. Similarly, any
constant function cannot be a copula function.

(c) The function given by C(u, v) = [max (u + v − 1, 0)] should be 2-increasing
in I. For all u1, u2, v1, v2 ∈ I, such that u1 ≤ u2 and v1 ≤ v2, the function (by
definition) is lower bounded by 0 and upper bounded by 1.

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0

C(u2, v2) + C(u1, v1) ≥ C(u2, v1) + C(u1, v2)

By definition of C(u, v), no negative value of C(u, v) is possible, so there are
following four possibilities

(i) u2 + v2 ≤ 1, then C(u2, v2) = C(u1, v1) = C(u2, v1) = C(u1, v2) = 0
and hence, C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) = 0

(ii) u2+v1 ≥ 1 and u1+v2 ≤ 1, thenC(u2, v2) = u2+v2−1 ≥ 0 , C(u2, v1) =
u2 + v1 − 1 ≥ 0 and C(u1, v1) = C(u1, v2) = 0
and hence, C(u2, v2)−C(u2, v1)−C(u1, v2)+C(u1, v1) = u2 + v2 − 1−
u2 − v1 + 1 = v2 − v1 ≥ 0

(iii) u1+v2 ≥ 1 and u2+v1 ≤ 1, thenC(u2, v2) = u2+v2−1 ≥ 0 , C(u1, v2) =
u1 + v2 − 1 ≥ 0 and C(u1, v1) = C(u2, v1) = 0
and hence, C(u2, v2)−C(u2, v1)−C(u1, v2)+C(u1, v1) = u2 + v2 − 1−
u1 − v2 + 1 = u2 − u1 ≥ 0

(iv) u1 + v1 ≤ 1 then
C(u2, v2) −C(u2, v1) −C(u1, v2) +C(u1, v1) = u2 + v2 − 1− u2 − v1 +
1 − u1 − v2 + 1 + u1 + v1 − 1 = 0

Hence, the function given by C(u, v) = max(u + v − 1, 0) is 2-increasing.
The function is also grounded as C(u, 0) = C(0, v) = 0. Further, C(u, 1) =
max(u+1−1, 0) = u, and similarly, C(1, v) = v. Hence, theC(u, v) is a valid
copula function.

(d) The function given by C(u, v) = (u2 + v2)
/
2 is not grounded as C(u, 0) =

u2
/
2 �= 0 for all u ∈ I, and hence, it cannot be a valid copula function. It should

be noted that violation of even single property listed in Sect. 10.4.1 is enough to
declare the function unfit for being a copula function.

(e) The function C(u, v) = [
max

(
u−1 + v−1 − 1, 0

)]−1
can be proved to be 2-

increasing using the different cases as done in Example 10.4.1d above. The
function is grounded as C(u, 0) = C(0, v) = 0. Further, C(u, 1) = u and
C(1, v) = v, hence, the function C(u, v) = [

max
(
u−1 + v−1 − 1, 0

)]−1
is a

valid copula function. It should be noted that this copula function and function
discussed inExample 10.4.1d above are derived fromsameclass of copula known
as Clayton copula. The details of Clayton copula are discussed in Table10.1.

(f) The function C(u, v) = |u + v − 2| is not grounded as C(u, 0) = |u − 2|, and
hence, it is not a valid copula function.
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Frechet–Hoeffding Bounds

Let C be a copula, then for every (u, v) in Dom(C),

max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v) (10.11)

or, W (u, v) ≤ C(u, v) ≤ M(u, v) (10.12)

where W (u, v) = max(u + v − 1, 0) and M(u, v) = min(u, v). The functions
W (u, v) and M(u, v) are called lower and upper Frechet–Hoeffding bounds. The
graphical representation for these bounds is given in Figs. 10.4 and 10.5, respectively.
As copula couples two marginal distributions to obtain joint distribution, hence,
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Fig. 10.4 Graphical representation of W (u, v) – a 3-d representation b Contour Plot
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Frechet–Hoeffding bounds also apply as bounds to joint probability distribution.
Interestingly, for any t ∈ I, these bounds define the region in I2, forwhich copula/joint
distribution function can have a value equal to t .

10.5 Nonparametric Measures of Association

Correlation coefficient is used to quantify the linear association between two random
variables. However, if the variables are not linearly associated, then correlation coef-
ficient will be low despite the existence of association (nonlinear) between variables.
For example, the data pairs (x, y), where, y = mx + ε will show high correlation
coefficient (given ε is iid with zero mean). However, if z = ln(y) then y and z will
have correlation coefficient close to zero, though they are associated. Hence, other
measures of associations are needed that can suggest the existence of association
between two variables irrespective of the nature of their interrelationship. One way
to achieve this is by measuring the association between the ranks of the variable,
instead of their values. The nonparametric or scale-free measures of association
make use of the ranks of the variables, rather than their values (as done in correlation
coefficient). Two such nonparametric measures of association are as follows:

(a) Kendall rank correlation coefficient or Kendall’s Tau (τ)
Let (x1, y1), (x2, y2), . . . , (xn, yn) be the paired sample of two random variables,
X and Y . The ordered pair (xk, yk) can be transformed into their respective
ranks (Rx

k , R
y
k ). Two pairs (xi , yi ) and (x j , y j ) are known to be concordant

if (xi − x j )(yi − y j ) > 0 or (Rx
i − Rx

j )(R
y
i − Ry

j ) > 0 and discordant if
(xi −x j )(yi −y j ) < 0 or (Rx

i −Rx
j )(R

y
i −Ry

j ) < 0. Sample estimate of Kendall’s
tau is obtained as the difference between the probability of concordance and the
probability of discordance. Out of n paired samples, there are nC2 different ways
to select two pairs. If there are c number of concordant pairs and d number of
discordant pairs, sample estimate of Kendall’s tau is expressed as:

τ̂ = P[(xi − x j )(yi − y j ) > 0]− P[(xi − x j )(yi − y j ) < 0] = c − d
nC2

(10.13)

The Kendall’s tau is expected to follow normal distribution with mean 0 and
variance 2(2n+5)

/
9n(n−1)under the assumption that X andY are independent.

This information can be utilized to check the significance of Kendall’s tau. The
Kendall’s Tau (τ) for u, v is related to copula functionC , as given in the following
expression:

τ = 4
∫

C(u, v) dC(u, v) − 1 (10.14)

(b) Spearman’s rank correlation coefficient or Spearman’s rho (ρs)
Spearman’s rank correlation coefficient (ρs) is analogous to correlation coef-
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ficient and calculated in similar way with one difference that instead of using
the values of variables, their ranks are used. For a sample (xi , yi ) of size n, to
compute ρs the samples are first transformed to their respected ranks (Rx

i , R
y
i ).

Spearman’s rho (ρs) is expressed as:

ρs =
∑n

i=1(R
x
i − �Rx )(Ry

i − �Ry)
√∑n

i=1(R
x
i − �Rx )2

∑n
i=1(R

y
i − �Ry)2

(10.15)

If there is tie between two or more observations, an average of tie ranks is
assigned to all those ties. If all the ranks are distinct, ρs can be computed as

ρs = 1 − 6
∑n

i=1 di
n(n2 − 1)

(10.16)

where di = (Rx
i −Ry

i ) and n is the number of data. Rx
i and Ry

i stand for rank of xi
and yi in X and Y , respectively. For large samples, under the assumption that X
and Y are independent, Spearman’s rho follows normal distribution with mean
0 and variance 1

/
(n − 1), like correlation coefficient. Hence, the confidence

interval of Spearman’s rho can be calculated in similar fashion as correlation
coefficient. The Spearman’s rho between u and v is related to the copula function,
as given in the following expression

ρs = 12
∫∫

uv dC(u, v) − 3 (10.17)

Equations10.14 and 10.17 link the scale-free measures of association with copula
functions and hence can be used to derive relationship between copula parameter
and the scale-free measures of association.

Example 10.5.1
The daily temperature is measured for two towns (A and B). Following paired obser-
vations are obtained: (18.1, 23.3), (22.3, 26.0), (18.7, 25.5), (17.5, 30.0), and (24.5,
28.2). Calculate following measure of association for the ordered series.

(a) Kendall’s Tau (τ)

(b) Spearman’s Rho (ρs)

Note For drawing meaningful statistical inference, the data length should be suffi-
ciently large, which is not the case in this example. This example only illustrates the
procedure for calculating the scale-freemeasures of association. In the real world, the
data set can never be this small; however, the methodology for calculating the mea-
sures of association does not change and can easily be programmed using concepts
from this example.
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Solution Let us assume that random variables X and Y represent the temperature
for town A and B, respectively. The given data set can be arranged in increasing order
by considering the order of X as follows:

X 17.5 18.1 18.7 22.3 24.5
Y 30.0 23.3 25.5 26.0 28.2

The corresponding ranks are given by:

Rx 1 2 3 4 5
Ry 5 1 2 3 4

(a) Calculation of Kendall’s Tau τ

For the first pair in table (i.e., (17.5, 30.0)), all other pairs are discordant. Simi-
larly, for second observation, there are 3 concordant pair. Similarly, concordant
and discordant pairs can be counted for each pair. The total number of concor-
dant pairs is 3+ 2+ 1 = 6, and total number of discordant pairs is 4. Kendall’s
Tau is given by

τ = 2(c − d)

n(n − 1)
= 2(6 − 4)

5 × 4
= 0.2

(b) Calculation of Spearman’s Rho (ρs)

Here, �Rx = (1+2+3+4+5)
5 = 3 = �Ry . Hence,

n∑

i=1

(Rx
i − �Rx )2 = (−2)2 + (−1)2 + 22 + 12 = 10 =

n∑

i=1

(Ry
i − �Ry)2

n∑

i=1

(Rx
i − �Rx )(Ry

i − �Ry) = (−2) × 2 + (−1) × (−2) + 0 + 0 + 2 × 1 = 0

ρs =
∑n

i=1(R
x
i − �Rx )(Ry

i − �Ry)
√∑n

i=1(R
x
i − �Rx )2

∑n
i=1(R

y
i − �Ry)2

= 0

Example 10.5.2
Themonthly anomaly of outgoing long-wave radiation (OLR; inW/m2) andmonthly
precipitation (in cm) for last 6months are recorded as (18, 1), (−15, 10), (14, 1),
(−2, 7), (−23, 12), and (1, 2). Calculate the following measures of association for
the ordered series.
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(a) Kendall’s Tau (τ)

(b) Spearman’s Rho (ρs)

Solution Let us assume that random variables X and Y represent the OLR and
precipitation, respectively. The given data set can be arranged in increasing order by
considering the order of X as follows:

X −23 −15 −2 1 14 18
Y 12 10 7 2 1 1

The corresponding rank in increasing order is given by:

Rx 1 2 3 4 5 6
Ry 5 4 3 2 1.5 1.5

(a) Calculation of Kendall’s Tau τ

For the first pair in table (i.e., (−23, 12)), no pair is concordant and five pairs
are discordant. Similarly, for second observation, there are 4 discordant pairs.
Concordant and discordant pairs can be counted for each pair. Hence, the total
number of concordant pairs is 0 and number of discordant pair is 5+4+3+2 =
14. Hence, Kendall’s Tau is given by

τ = 2(c − d)

n(n − 1)
= 2(0 − 14)

6 × 5
= −0.93

(b) Calculation of Spearman’s Rho (ρs)
Here, �Rx = (1+2+3+4+5+6)

6 = 3.5. Similarly, �Ry = 2.67. Hence,
∑n

i=1(R
x
i − �Rx )(Ry

i − �Ry) = (−2.5) × 2.33 + (−1.5) × 1.33 + (−0.5) × 0.33
+0.5 × (−0.67) + 1.5 × (−1.67) + 2.5 × (−1.67)

= −15∑n
i=1(R

x
i − �Rx )2 = (−2.5)2 + (−1.5)2 + (−0.5)2 + (0.5)2 + 1.52 + 2.52

= 17.5∑n
i=1(R

y
i − �Ry)2 = 2.332 + 1.332 + 0.332 + (−0.67)2 + 2 × (−1.67)2

= 13.33

Hence,

ρs =
∑n

i=1(R
x
i − �Rx )(Ry

i − �Ry)
√∑n

i=1(R
x
i − �Rx )2

∑n
i=1(R

y
i − �Ry)2

= −15√
17.5 × 13.33

= −0.98
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10.6 Copula and Function of Random Variables

Function/transformation of random variable may change their nature of association.
From Eqs. 10.14 and 10.17, it is evident that copula is dependent upon the rank cor-
relation structure of the random variables. Hence, for any transformation of random
variable that does not change the rank dependence structure, copula function does
not change.

Let us assume two random variables X and Y with reduced variates u and v,
respectively, having a copula function CX,Y associated with them. Further, if α and
β are strictly monotonic function on Ran(X) and Ran(Y ) that transform X and Y ,
respectively, then

(i) Ifα and β are both strictly increasing (hence, they preserve the rank dependence
structure)

Cα(X)β(Y )(u, v) = CXY (u, v) (10.18)

(ii) If α is strictly decreasing and β is strictly increasing

Cα(X)β(Y )(u, v) = v − CXY (1 − u, v) (10.19)

(iii) If α is strictly increasing and β is strictly decreasing

Cα(X)β(Y )(u, v) = u − CXY (u, 1 − v) (10.20)

(iv) If α and β are both strictly decreasing

Cα(X)β(Y )(u, v) = u + v − 1 + CXY (1 − u, 1 − v) (10.21)

10.7 Survival Copula

For studying extreme events, the probability of hydroclimatic variables being higher
(or lower) than some threshold value, in other words, the tails of the distribution are
of more interest. In such cases, a reliability function or survival function is defined
as F̄X(x) = P(X > x) = 1 − FX(x), where FX(x) is CDF of random variable X .

The joint reliability function for a random variable pair (X,Y ) is given by
H̄X,Y (x, y) = P(X > x,Y > y). The corresponding survival functions are given by
F̄X(x) = H̄X,Y (x,−∞) and F̄Y (y) = H̄X,Y (−∞, y). The joint distribution function
is related to joint reliability function as,

H̄X,Y (x, y) = 1 − FX(x) − FY (y) + HX,Y (x, y) (10.22)
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It should be noted that the FX(x) and FY (y) are monotonically increasing function of
X and Y , respectively; hence, F̄X(x) and F̄Y (y) are monotonic decreasing function
of X and Y . IfC is the copula function for FX(x) and FY (y), then the copula function
Ĉ for F̄X(x) and F̄Y (y) can be expressed by using Eq.10.21 as,

Ĉ = u + v − 1 + C(1 − u, 1 − v) (10.23)

where u and v are reduced variates for X and Y . The copula function Ĉ is known as
survival copula of X andY . Hence, survival copula establishes a relationship between
the joint survival function and marginals of X and Y in similar manner as done by
copula C for joint distribution and marginal distribution. In hydroclimatology, the
survival copula has been used for studying extreme events and its return period
(Salvadori and De Michele 2007).

10.8 Most Commonly Used Copula Function

Many copula functions exist that follow the properties listed in Sect. 10.4.1 and lie
between the bounds defined by Frechet–Hoeffding bounds (Sect. 10.4.1). Copula
function can also be derived/constructed for different joint distributions on case by
case basis. However, some of families of the copula functions are commonly used.
Twopopular classes of copula families are Elliptical copula andArchimedean copula.

10.8.1 Elliptical Copula

Elliptical copulas constitute a family of copula derived from elliptical distributions,
such as normal distribution, Student’s-t distribution. An elliptical copula tries to
conserve the linear correlation between the data, and they use correlation coefficient
ρ as parameter. The elliptical copulas do not have close formed expressions and are
restricted to have a radial symmetry.

One of the popular elliptical copulas is Gaussian copula. A multidimensional
Gaussian copula CR(u1, u2, . . . , un) with correlation matrix R is given by:

CR(u1, u2, . . . , un) = �n
R

(
�−1(u1),�

−1(u2), . . . , �
−1(un)

)
(10.24)

where u1, u2, . . . , un represent the reduced variates, �−1 is the inverse cumu-
lative distribution function of a univariate standard normal distribution, and �n

R
is the joint cumulative distribution function of a multivariate normal distribution
with zero mean vector and covariance matrix equal to correlation matrix between
�−1(u1),�−1(u2), . . . , �−1(un), denoted as R. There is no analytical, closed-form
solution for this copula function CR(u1, u2, . . . , un).
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The bivariate Gaussian copula can be written as,

CR(u, v) = �2
R

(
�−1(u),�−1(v)

)
(10.25)

In bivariate case, the correlation matrix R stands for

[
1 ρ
ρ 1

]
, where ρ is correlation

coefficient between�−1(u),�−1(v). The copula density for the same can be written
as,

cR(u, v) = 1
√

ρ2 − 1
exp

{
2ρ�−1(u)�−1(v) − ρ2(�−1(u)2 + �−1(v)2)

2(ρ2 − 1)

}

(10.26)
and the bivariate gaussian copula can be written as,

CR(u, v) =
∫ �−1(u)

−∞

∫ �−1(v)

−∞
1

√
ρ2 − 1

exp

{
2ρst − ρ2(s2 + t2)

2(ρ2 − 1)

}
dsdt (10.27)

Another commonly used elliptical copula is t-copula. For a matrix X having n
different variables (X1, X2, . . . , Xn), if

X = μ +
√

ν√
S
Z (10.28)

where μ ∈ R
n , S ∼ χ2

ν and Z ∼ �n(0, �) are independent, then X follows n-variate
tν-distribution with mean μ and covariance matrix ν

ν−2� (for ν > 2). If ν ≤ 2, then
covariance of X is not defined. An n-dimensional t-copula Cν,R(u1, u2, . . . , un) for
X is represented as,

Cν,R(u1, u2, . . . , un) = tnν,R(t−1
ν (u1), t

−1
ν (u2), . . . , t

−1
ν (un)) (10.29)

where u1, u2, . . . , un represent the reduced variates for X1, X2, . . . , Xn , respectively,
t−1
ν is the inverse cumulative distribution function of Student’s t-distribution with
ν degrees of freedom, and tnν,R is the joint cumulative distribution function of a
multivariate Student’s t-distributionwith ν degrees of freedom and covariancematrix
equal to correlation matrix between t−1

ν (u1), t−1
ν (u2), . . . , t−1

ν (un), denoted as R. In
bivariate case, the t-copula expression can be written as,

Cν,R(u, v) =
∫ t−1

ν (u)

−∞

∫ t−1
ν (v)

−∞
1

2π
√
det(R)

{

1 + s2 − 2ρst + t2

ν det(R)

}−(ν+2)
/
ν

dsdt for ν > 2

(10.30)

where R is correlation matrix between t−1
ν (u), t−1

ν (v); thus, R =
[
1 ρ
ρ 1

]
, where ρ is

correlation coefficient between t−1
ν (u) and t−1

ν (v). det(R) represents the determinant
of matrix R.



10.8 Most Commonly Used Copula Function 397

10.8.2 Archimedean Copula

Archimedean copula is extensively used in hydrologic and hydroclimatic problems.
Any copula that can be expressed in terms ofC(u, v) = φ[−1](φ(u)+φ(v)) is known
as ‘Archimedean copula,’ where φ is known as generator function of copula. φ is
a convex, strictly decreasing, continuous function from [0, 1] to [0,∞), such that
φ(1) = 0 andφ[−1] is its ‘pseudo-inverse’φ[−1] : [0,∞) → [0, 1]. Ifφ(0) is ∞, then
φ is called strict generator function, and corresponding Archimedean copula is called
strict Archimedean copula. In case of strict generator function, the ‘pseudo-inverse’
(φ[−1]) is φ−1, otherwise ‘pseudo-inverse’ (φ[−1]) is defined as:

φ[−1](t) =
{

φ−1(t), 0 ≤ t ≤ φ(0)

0, φ(0) < t ≤ ∞ (10.31)

Any Archimedean copula C is symmetric and associative, i.e., if u, v, w ∈ I, then
C(u, v) = C(v, u) and C(C(u, v), w) = C(u,C(v,w)). Further, Kendall’s τ and
the generator function are related in case of Archimedean copula. The relationship
is expressed as,

τ = 1 + 4
∫ 1

0

φ(u)

φ′(u)
du (10.32)

This relationship is useful for obtaining joint distribution from sample measure of
dependence in terms of the estimate of Kendall’s tau. A list of fewArchimedean cop-
ulas, commonly used in hydrology and hydroclimatology, is provided in Table10.1.
There are several advantages of Archimedean class of copulas that made them pop-
ular among researchers in the field of hydrology and hydroclimatology. Some such
reasons are listed below.

(i) This class of copula can be easily constructed using generator function.
(ii) There are many different Archimedean copulas available that are applicable for

a range of dependence parameters.
(iii) The different varieties of Archimedean copulas have useful properties, such as

having an explicit expression based on generator and catering a high dimension
using single parameter derived from measure of dependence.

Multivariate Archimedean Copula

Due to symmetry of two-dimensional Archimedean copula, these copula can be
nested to get multivariate symmetrical Archimedean copula. For three-dimensional
case,

C(u1, u2, u3) = C(C(u1, u2), u3) = φ[−1] (φ(φ[−1](φ(u1) + φ(u2))) + φ(u3)
)

(10.33)
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If generator function (φ) is strict and its inverse φ−1 is strictly monotonic on [0,∞),
then n-dimensional Archimedean copula can be formed by nesting. It should also be
noted that in Eq.10.33, the generator functions are same. If generator function is not
same while nesting two Archimedean copulas, then the nested copula is asymmetric.
Some of the common nested asymmetric three-dimensional Archimedean copula is
listed in Table10.2 (after Joe 1997).

Example 10.8.1
Let φθ(t) = (1 − t)θ for 1 ≤ θ < ∞ is the generator of an Archimedean copula.
Formulate the corresponding Archimedean copula.

Solution The generator function is expressed as:

φθ(t) = (1 − t)θ for 1 ≤ θ < ∞

Thus,
φθ(0) = 1

The ‘pseudo-inverse’ of the generator function is expressed as,

φ[−1] =
{
1 − t

1
θ , 0 ≤ t ≤ 1

0, t > 1

and the corresponding Archimedean copula is expressed as,

C(u, v) = φ[−1](φ(u) + φ(v))

= φ[−1] ((1 − u)θ + (1 − v)θ
)

=
(
1 − [

(1 − u)θ + (1 − v)θ
] 1

θ

)
for u, v ∈ I

Here, it should be noted that C(u, v) is not a valid copula function as it is not

grounded, and there is chance that
(
1 − [

(1 − u)θ + (1 − v)θ
] 1

θ

)
< 0; hence, to

ensure that the function is bounded in I , the function C(u, v) is modified as

C(u, v) =
{
1 − [

(1 − u)θ + (1 − v)θ
] 1

θ for 1 − [
(1 − u)θ + (1 − v)θ

] 1
θ > 0

0 otherwise

= max
(
1 − [

(1 − u)θ + (1 − v)θ
] 1

θ , 0
)

Example 10.8.2
Formulate theArchimedean copulawith generator functiongiven asφθ(t) = (

1 − tθ
)

for 1 ≤ θ < ∞?
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Solution The generator function is expressed as:

φθ(t) = (1 − tθ) for 1 ≤ θ < ∞

At t = 0, φθ(0) = 1. Hence, the ‘pseudoinverse’ of the generator function is
expressed as,

φ[−1] =
{

(1 − t)1/θ, 0 ≤ t ≤ 1

0, t > 1

and the corresponding Archimedean copula is expressed as,

C(u, v) = φ[−1](φ(u) + φ(v))

= φ[−1] ((1 − uθ) + (1 − vθ)
)

= (
1 − [

(1 − uθ) + (1 − vθ)
])1/θ

= (
uθ + vθ − 1

)1/θ for u, v ∈ I

Here, it should be noted that C(u, v) is not a valid copula function as it is not
grounded, and there is chance that

(
uθ + vθ − 1

)
< 0; hence, to ensure that the

function is bounded in I, the function C(u, v) is modified as,

C(u, v) =
{(

uθ + vθ − 1
)1/θ for

(
uθ + vθ − 1

)
> 0

0 otherwise

= max
((
uθ + vθ − 1

)1/θ
, 0
)

Example 10.8.3
In context of Example10.5.1, the temperature for town A is found to follow nor-
mal distribution with mean of 17.5 ◦C and standard deviation of 2.7 ◦C. Similarly,
the temperature for town B is distributed normally with mean 22 ◦C and standard
deviation of 4.2 ◦C. Fit Clayton and Gumbel–Hougaard copula to the data.

Solution The observed temperature for both cities can be converted to reduced
variate (u, v) through their respective marginal distributions.

u 0.588 0.962 0.672 0.500 0.995
v 0.622 0.830 0.798 0.972 0.930

From Example 10.5.1, τ = 0.2.
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(a) Clayton Copula Fitting

The parameter for Clayton copula can be calculated as (Table10.1)

τ = θ

θ + 2
or, 0.2(θ + 2) = θ

or, θ = 0.5

The value of θ is valid for Clayton copula because the parameter for Clayton
copula must be in the range of [−1,∞)\{0}. Hence,

u−θ = u−0.5 = [
1.304 1.019 1.220 1.414 1.002

]

v−θ = v−0.5 = [
1.268 1.098 1.120 1.014 1.037

]

max(u−θ + v−θ − 1, 0) = [
1.573 1.117 1.340 1.429 1.039

]

So, Cθ(u, v) =
[
max(u−θ + v−θ − 1, 0)

]−1
/
θ = [

0.404 0.801 0.557 0.490 0.926
]

(b) Gumbel–Hougaard Copula Fitting

From Table10.1, the parameter for Gumbel–Hougaard copula in terms of τ is
given as

τ = θ − 1

θ

or, θ = 1

0.8
= 1.25

The value of parameter θ = 1.25 is valid for Gumbel–Hougaard copula (θ ∈
[1,∞))

(− ln u)θ = (− ln u)1.25 = [
0.453 0.017 0.316 0.632 0.001

]

(− ln v)θ = (− ln v)1.25 = [
0.395 0.123 0.156 0.012 0.038

]

[
(− ln u)θ + (− ln v)θ

]1
/
θ = [

0.704 0.877 0.548 0.207 0.074
]

So, Cθ(u, v) = exp

(
−
[
(− ln u)θ + (− ln v)θ

]1
/
θ
)

= [
0.416 0.813 0.578 0.495 0.928

]

Example 10.8.4
For the data given in Example10.5.2, monthly anomaly of OLR is distributed nor-
mally with mean 0 W/m2 and standard deviation 8W/m2. The monthly precipitation
is found to follow exponential distribution with mean 4cm. Fit Clayton, Frank, Ali–
Mikhail–Haq, and Gaussian copula over the data set.

Solution The observed monthly mean OLR (X ) and precipitation (Y ) can be con-
verted to their reduced variates (u and v, respectively).
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u 0.9878 0.0304 0.9599 0.4013 0.0020 0.5497
v 0.2212 0.9179 0.2212 0.8262 0.9502 0.3935

From Example10.5.2, τ = −0.93

(a) Clayton Copula Fitting

The parameter for Clayton copula can be calculated as (Table10.1)

τ = θ

θ + 2
or, − 0.93(θ + 2) = θ

or, θ = −0.964

As θ ∈ [−1,∞)\{0}, the value of θ is valid for Clayton copula. Hence,

u−θ = u0.964 = [
0.9882 0.0345 0.9614 0.4147 0.0025 0.5617

]

v−θ = v0.964 = [
0.2335 0.9207 0.2335 0.8319 0.9520 0.4069

]

max(u−θ + v−θ − 1, 0) = [
0.2218 0 0.1949 0.2466 0 0

]

So, Cθ(u, v) =
[
max(u−θ + v−θ − 1, 0)

]−1
/
θ = [

0.2096 0 0.1834 0.2341 0 0
]

(b) Frank Copula Fitting

Frank copula parameter (θ) is calculated as,

τ = 1 − 4

θ
[D1(θ) − 1]

or, 1.93 = 4

θ
[D1(θ) − 1]

where, D1(θ) = 1

θ

∫ θ

0

t

exp(t) − 1
dt

Solving the above equation numerically, θ = −55.45, which is a valid parameter
value for Frank copula. Hence,

Cθ(u, v) = −1

θ
ln

(

1 +
(
e−θu − 1

) (
e−θv − 1

)

e−θ − 1

)

= 1

55.45
ln

(

1 +
(
e55.45u − 1

) (
e55.45v − 1

)

e55.45 − 1

)

The value of u and v can be substituted, and the Frank copula values can be
calculated using above equation.
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Cθ(u, v) = [
0.2090 0.0008 0.1811 0.2275 0.0001 0.0008

]

(c) Ali–Mikhail–Haq Copula Fitting

From Table10.1, the parameter for Ali–Mikhail–Haq copula in terms of τ is
given as

τ =
(
3θ − 2

θ

)
− 2 ln(1 − θ)

3

(
1 − 1

θ

)2

Hence, θ = −353.3, and this value of parameter θ is invalid forAli–Mikhail–Haq
copula. SoAli–Mikhail–Haq copula cannot be used formodeling the relationship
between mean monthly OLR and precipitation.

(d) Gaussian Copula Fitting

The standard normal reduced variates (TableB.1, p. 434) corresponding to u and
v are,

�−1(u) = [
2.250 −1.875 1.750 −0.250 −2.875 0.125

]

�−1(v) = [−0.768 1.391 −0.768 0.939 1.647 −0.270
]

For fittingGaussian copula, the correlationmatrix needs to be calculated between
�−1(u) and �−1(v). As described in Sect. 3.5.6, the correlation coefficient is
given by

ρ = σ�−1(u),�−1(v)

σ�−1(u)σ�−1(v)

= −2.074√
3.972 × 1.200

= −0.95

Hence, the correlation matrix between �−1(u) and �−1(v) is given by

R =
[

1 −0.95
−0.95 1

]

Using R, the Gaussian copula function is expressed as (Eq.10.24)

CR(u, v) = �R
(
�−1(u),�−1(v)

)

where �R is bivariate Gaussian distribution CDF with zero mean vector and
covariance R. As bivariate normal distribution CDF cannot be solved analyti-
cally, hence, the numerical solution for the Gaussian copula for values of u and
v is given as

CR(u, v) = [
0.2090 0.0009 0.1812 0.2281 0.0000 0.0262

]
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10.9 Selection of Best-Fit Copula

Given the sample data, if there aremore than one potential copulas, best-fit copula has
to be selected. There are several goodness-of-fit (GOF) tests for statistically checking
the suitability of a copula. Most of these approaches use (a) empirical copula, (b)
Kendall’s transform, and (c) Rosenblatt’s transform.

10.9.1 Test Using Empirical Copula

These tests compare the distance between the empirical copula (Cn(u, v)) and para-
metric estimate

(
Cθ
n(u, v)

)
ofC , where u and v are the reduced variates of the sample

data X (x1, x2, . . . , xn) and Y (y1, y2, . . . , yn), respectively, and n is the number of
observations. The empirical copula (Cn) is defined as:

Cn(u, v) = 1

n

∑

∀u,v

�(U ≤ u, V ≤ v), u, v ∈ I (10.34)

where �(•) is the indicator function that takes a value of 1 if the argument (•) is true
and 0 if it is false. The Cramér-von Mises and Kolmogorov–Smirnov (KS) statistics
are based on the distance between fitted copula and empirical copula. The Cramér-
von Mises statistic (Sn) is a popular goodness-of-fit test statistic for copula models
(Genest et al. 2007). The statistic Sn is expressed as:

Sn =
∑

∀u,v

(
Cn(u, v) − Cθ

n(u, v)
)2

(10.35)

The KS statistic (Tn) is based on the absolute maximum distance between Cn and
Cθ
n . It is expressed as:

Tn = max
u,v∈I

∣∣√n
(
Cn(u, v) − Cθ

n(u, v)
)∣∣ (10.36)

10.9.2 Test Using Kendall’s Transform

For the best-fit copula selection procedure using Kendall’s transform, κ is obtained
from the joint distribution, derived parametrically using a particular copula, Cθ

n . It is
expressed as follows:

κ(t) = P(Cθ
n(u, v) ≤ t) (10.37)

The κ is determined either parametrically
(
κθ
n

)
or nonparametrically (κn). κn is

derived using the empirical distribution function Cn (Genest et al. 1993, 2009) as
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given below,

κn(t) = 1

n

∑

∀u,v

�(Cn(u, v) ≤ t) (10.38)

The test statistics
(
S(κ)
n and T (κ)

n

)
are basically the rank-based analogues of the

Cramér-von Mises and KS statistics (Genest et al. 2009). The test statistics S(κ)
n and

T (κ)
n are expressed as,

S(κ)
n =

∑

∀t
(κn(t) − κ(t))2 (10.39)

T (κ)
n = sup

∀t
|κn(t) − κ(t)| (10.40)

10.9.3 Test Using Rosenblatt’s Probability Integral
Transformation

The Rosenblatt’s probability integral transformation of the copula is defined as
R(u, v) = (e1, e2), where e1 = ∂Cθ

n

/
∂u, e2 = ∂Cθ

n

/
∂v. Based on the proper-

ties of Rosenblatt’s transform, (u, v) is approximately distributed as Cθ
n , if and only

if the R(u, v) is a bivariate independent copula, i.e., C⊥(e1, e2) = e1 × e2, where
e1, e2 ∈ I. The R is estimated either parametrically

(
Rθ
n

)
or nonparametrically (Rn).

The Rn is derived following Genest et al. (2009) as follows,

Rn(e1, e2) = 1

n

n∑

i=1

�(E1 ≤ e1, E2 ≤ e2) for e1, e2 ∈ I (10.41)

Rθ
n as stated above is given by C⊥. Further the two Cramér-von Mises statistics,

S(B)
n and S(C)

n , are estimated to check the distance between Rn and Rθ
n . S

(B)
n can be

calculated as:

S(B)
n = n

n∑

i=1

(
Rn(e1, e2) − C⊥(e1, e2)

)2
(10.42)

and S(C)
n can be estimated as

S(C)
n = n

n∑

i=1

(
Rn(e1, e2) − C⊥(e1, e2)

)2
Rn(e1, e2) (10.43)

For all themeasures
(
Sn , Tn , S(κ)

n , T (κ)
n , S(B)

n and S(C)
n

)
, the lower the value, the better

is the fit. Thus, the copula function with the lowest value of these statistics indicates
the best-fit copula. Further, when the best-fit copula is found to be different using
different statistics, the more preferable statistic is honored while selecting the best-fit
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copula. The preference order is S(B)
n � Sn � S(κ)

n � S(C)
n � Tn � T κ

n based on their
power (Genest et al. 2009). The copula showing best-fit based on these criteria is
selected for further analysis and denoted as C(u, v).

Example 10.9.1
For the two copula models fitted in Example 10.8.3, calculate the Cramér-von Mises
statistic and Kolmogorov–Smirnov (KS) statistic. Select the best copula based on
these statistics.

Solution The empirical copula function is given by (Eq.10.34)

Cn(u, v) = 1

n

∑

∀u,v

�(U ≤ u, V ≤ v) = [
0.2 0.6 0.4 0.2 0.8

]

(a) Goodness-of-fit statistics for fitted Clayton copula

The Cramér-von Mises statistic is given by (Eq.10.35),

Sn =
∑

∀u,v

(
Cn(u, v) − Cθ

n (u, v)
)2

= (0.404 − 0.2)2 + (0.801 − 0.6)2 + (0.557 − 0.4)2 + (0.490 − 0.2)2 + (0.926 − 0.8)2

= 0.207

The KS statistic is given by (Eq.10.36),

Tn = max
u,v∈I

∣∣√n
(
Cn(u, v) − Cθ

n(u, v)
)∣∣ = √

5 × 0.29 = 0.648

(b) Goodness-of-fit statistics for fitted Gumbel–Hougaard copula

The Cramér-von Mises statistic for fitted Gumbel–Hougaard copula is given by
(Eq.10.35),

Sn =
∑

∀u,v

(
Cn(u, v) − Cθ

n (u, v)
)2

= (0.416 − 0.2)2 + (0.813 − 0.6)2 + (0.578 − 0.4)2 + (0.495 − 0.2)2 + (0.928 − 0.8)2

= 0.227

The KS statistic is given by (Eq.10.36),

Tn = max
u,v∈I

∣∣√n
(
Cn(u, v) − Cθ

n(u, v)
)∣∣ = √

5 × 0.295 = 0.659

In this example, lower values of both Sn and Tn suggest that Clayton copula is better
compared to Gumbel–Hougaard copula. However, in some applications, both Sn and
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Tn may not agree on best copula, and then, copula should be selected on the basis of
Sn , as Sn has more power compared to Tn

(
S(B)
n � Sn � S(κ)

n � S(C)
n � Tn � T κ

n

)
.

10.10 Use of Copulas

Copula can be used in hydroclimatic studies for data generation, multivariate fre-
quency analysis, probabilistic prediction of hydroclimatic variables, and many other
applications. These uses of copula are discussed in the following subsections.

10.10.1 Data Generation

Data generation using copula preserves the dependence structure between the asso-
ciated variables. Two methods exist for data generation using copula: One is specific
to Archimedean copula and other can be applied to any copula. These methods are
discussed as follows:

(i) Simulation of random variates preserving the dependence structure using
Archimedean copula can be done using the following algorithm (Genest et al.
1986):

(a) For anArchimedean copula, functional forms ofφ[−1](•),φ′(•) andφ
′[−1](•)

are obtained using φθ(•), which is the generator function with parameter θ.
Equation10.31 is used to obtain φ[−1](•). Same can be used for φ

′[−1](•)

after obtaining φ′(•), which is derivative of φ(•) with respect to •.
(b) Two independent uniformly distributed (U (0, 1)) random variates, u and r ,

are generated.
(c) Twonewvariables, S andW , are obtained as s = φ′(u)

/
r andw = φ

′[−1](s).
(d) Another variable, v, is obtained as v = φ[−1](φ(w) − φ(u)) (Genest et al.

1986). The pairs u and v are the simulated pair, preserving the dependence
structure.

(e) Both these u and v are in the range [0, 1]. These simulated pairs of u and v

are then back-transformed through their corresponding cumulative marginal
distributions.

(ii) The more generalized approach for data generation uses the conditional prob-
ability function developed from copula. Hence, before applying this method,
marginal distribution of the associated variables and copula function or joint
distribution should be known. If the reduced variate of the variables is denoted
by u and v, respectively, then the steps are given as,

(a) Conditional distribution for v given u is obtained from the copula or joint
distribution (Eq.10.54).
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(b) Uniformly distributed (U (0, 1)) random variates u and p are generated.
(c) Substituting u in the expression for conditional distribution of v given u, the

expression is equated to p to solve for v. This gives the values of v based
on the dependence structure between u and v.

(d) Both u and v are in the range [0, 1]. These simulated pairs of u and v are then
back-transformed using their corresponding inverse cumulative marginal
distribution.

Example 10.10.1
From the historical records, monthly maximum rainfall duration (in hour) is found
to follow exponential distribution with mean maximum rainfall duration of 1

/
2h.

The monthly maximum discharge (in cumec) is found to follow a normal distribution
with mean 500cumec and standard deviation of 36.5cumec, if the joint distribution
between these variables can be obtained by using Ali–Mikhail–Haq copula with θ =
0.5. Generate monthly maximum rainfall duration and monthly maximum discharge
for a year.

Solution Let us assume that X and Y are two random variables (with corresponding
reduced variates u and v) representing the monthly maximum rainfall duration and
monthly maximum discharge, respectively. The CDF for X and Y is given by,

FX(x) = 1 − e−λx = 1 − e−2x x ≥ 0

FY (y) =
∫ y

−∞
1√
2πσ2

e−(y−μ)2
/
2σ2

dy −∞ < y < ∞

=
∫ y

−∞
1

91.49
e−(y−500)2

/
2664.5dy −∞ < y < ∞

The joint distribution of variables X and Y , using Ali–Mikhail–Haq copula with
θ = 0.5, can be evaluated using (Table10.1),

FX,Y (x, y) = uv

1 − 0.5(1 − u)(1 − v)
for u, v ∈ [0, 1]

The conditional distribution for Y conditioned on X is given by,

FY
/
X (y
/
X = x) = ∂FX, Y (x, y)

∂u
= uv(v/2 − 1/2)

((u/2 − 1/2)(v − 1) − 1)2
− v

(u/2 − 1/2)(v − 1) − 1

The 12 randomly generated values for u are 0.74, 0.08, 0.13, 0.10, 0.97, 0.33, 0.56,
0.03, 0.20, 0.70, 0.04, and 0.94. Similarly, 12 random values for p are 0.44, 0.38,
0.77, 0.80, 0.19, 0.49, 0.45, 0.65, 0.71, 0.75, 0.63, and 0.25. For estimating the values
of v, the conditional distribution of Y given X is solved by substituting u and equating
to p. The obtained values of v are,
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v = [
0.51 0.26 0.68 0.71 0.29 0.45 0.48 0.50 0.63 0.79 0.48 0.35

]

The reduced variates u and v can be transformed back to the variables X and Y using
the relationship given above. Hence, the back-transformed variables are given by,

X = [
0.67 0.04 0.07 0.05 1.75 0.20 0.41 0.02 0.11 0.60 0.02 1.41

]

Y = [
501.0 476.8 517.0 519.8 479.7 495.4 497.9 499.6 512.4 529.0 498.1 486.4

]

Example 10.10.2
For the best copula selected in Example10.9.1, generate 10 random data for temper-
ature of cities A and B by using the methodology proposed by Genest et al. 1986.

Solution The best selected copula is Clayton copula with θ = 0.5. Hence, the
generator function is given by:

φθ(t) = 1

θ
(t−θ − 1) = 2(t−0.5 − 1)

φ[−1]
θ (t) = (θt + 1)−1/θ = (0.5t + 1)−2

φ′
θ(t) = dφθ(t)

dt
= 2(−0.5t−1.5) = −t−1.5

Hence, φ′
θ(0) = ∞, so φ

′[−1]
θ (t) is given by,

φ
′[−1]
θ (t) = (−t)−1/1.5

Ten random numbers between 0 and 1 generated for u are 0.93, 0.69, 0.05, 0.18,
0.19, 0.75, 0.85, 0.36, 0.83, and 0.59. Similarly, the random numbers between 0 and
1 generated for r are 0.65, 0.01, 0.56, 0.51, 0.46, 0.75, 0.02, 0.07, 0.23, and 0.73. S
and W are obtained as s = φ′(u)

/
r and w = φ

′[−1](s). Hence,

S = [−1.7 −174.5 −159.7 −25.7 −26.2 −2.0 −63.8 −66.1 −5.7 −3.0
]

And

W = [
0.69 0.03 0.03 0.11 0.11 0.62 0.06 0.06 0.31 0.48

]

Simulated v can be obtained using the relationship v = φ[−1](φ(w) − φ(u)) =(
w−0.5 − u−0.5 + 1

)−2

v = [
0.75 0.03 0.19 0.36 0.34 0.8 0.06 0.09 0.35 0.77

]

The u and v can then be back-transformed to generate the temperature of cities A
and B using the information about their marginals as given in Example10.8.3,
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TA = [
21.48 18.84 13.06 15.03 15.13 19.32 20.30 16.53 20.08 18.11

]

TB = [
24.83 14.10 18.31 20.49 20.27 25.53 15.47 16.37 20.38 25.10

]

Example 10.10.3
In the last example, considering the same values of u, generate 10 values of temper-
ature of cities A and B by using the conditional relationship between the temperature
of two cities.

Solution The best copula fitted between temperature of cities A and B is Clayton;
hence, their joint distribution is given by,

FTA, TB
(tA, tB) = C(FTA

(tA), FTB
(tB)) = [

max
(
u−0.5 + v−0.5 − 1, 0

)]−1/0.5

where u = FTA
(tA) and v = FTB

(tB). The conditional distribution for temperature
variate for city B when temperature variate for city A is available is given by:

FTB
/
TA
(tB
/
TA = tA) = ∂

[
max

(
u−0.5 + v−0.5 − 1, 0

)]−1/0.5

∂u

=
{

∂(u−0.5+v−0.5−1)
−2

∂u for
(
u−0.5 + v−0.5 − 1

)
> 0

0 otherwise

=
{
u−1.5

(
u−0.5 + v−0.5 − 1

)−3
for

(
u−0.5 + v−0.5 − 1

)
> 0

0 otherwise

Ten random numbers between 0 and 1 generated for u are 0.93, 0.69, 0.05, 0.18,
0.19, 0.75, 0.85, 0.36, 0.83, and 0.59. Similarly, 10 random numbers for p between
0 and 1 are 0.35, 0.83, 0.59, 0.55, 0.92, 0.29, 0.76, 0.75, 0.38, and 0.57. For genera-
tion of random variates of temperature values at City B, the conditional distribution
for temperature of city B given temperature of city A should be equal to p, i.e.,
FTB

/
TA
(tB
/
TA = tA) = p. Hence, corresponding to the value of temperature variate

of city B, (v) is evaluated as,

v = [
0.49 0.86 0.29 0.43 0.88 0.40 0.82 0.73 0.50 0.62

]

The u and v can be converted into temperature values for the cities by using their
marginal distributions. According to Example10.8.3, the temperature for town A
follows normal distribution with mean of 17.5 ◦C and standard deviation of 2.7 ◦C.
Similarly, the temperature for town B is distributed normally with mean 22 ◦C and
standard deviation of 4.2 ◦C.

TA = [
21.48 18.84 13.06 15.03 15.13 19.32 20.30 16.53 20.08 18.11

]

TB = [
21.85 26.57 19.66 21.29 26.98 20.89 25.85 24.62 21.97 23.30

]
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10.10.2 Probabilistic Prediction Using Copulas

Another potential application of copulas is probabilistic prediction of hydrologic
and hydroclimatic variables. Major steps to be followed are presented in a flow chart
(Fig. 10.6). As shown in Fig. 10.6, there are three major steps: (A) data preprocessing
and analysis; (B) fitting suitable copula model; and (C) prediction of the dependent
variable. These steps are explained below in detail.

(A) Data preprocessing and analysis: Data preprocessing includes many general
statistical operations such asmissing value treatment, outlier removal. However,
these are general steps for any statistical modeling and should be carried out
with caution. For instance, outliers need not always be erroneous data. These
may be the data for extreme events.
Specific to application of copulas, estimation of scale-free measure of associa-
tion and fitting a suitable marginal distribution are essential.

(a) Estimation of scale-free measure of association:

As mentioned before (Sect. 10.5), there are two popular scale-free measures
of association (nonparametric measures of association), namely Kendall’s
tau (τ) and Spearman’s rho (ρs). Sample estimates of these statistics are
computed from the data.

(b) Estimation of marginal distributions: Fitting univariate parametric marginal
distribution to any random variable is discussed in Chap. 6, using the theory
from Chaps. 4 and 5. Readers may refer to chi-square test, Kolmogorov–
Smirnov test, Anderson–Darling test, etc., for this purpose (Sect. 6.4.4).
However, a parametric distribution may not always fit to hydrologic or
hydroclimatic data with reasonable accuracy. In such cases, a nonparametric
distribution may be adopted. Methodology to fit a nonparametric distribu-
tion to the data is explained as follows:
Kernel density estimator is the most popular method for estimation of non-
parametric density (Bosq 2012). The kernel estimate of probability density,
for a real-valued time series, xi , i = 1, 2, . . . , n, can be expressed as,

f̂ X(x) = 1

n

n∑

i=1

Kh(x − xi ) (10.44)

where Kh(z) = 1
/
hKr

(
z
/
h
)
, in which h is the smoothing parameter and

Kr is the kernel function. Different types of kernel functions are naïve, nor-
mal, and Epanechnikov. Mathematical formulations of these kernel func-
tions are shown below (Bosq 2012).



10.10 Use of Copulas 413

D
at

a
pr

e-
pr

oc
es

si
ng

an
d

an
al

ys
is

F
it

ti
ng

su
it

ab
le

co
pu

la
m

od
el

P
re

di
ct

io
n

of
th

e
de

pe
nd

en
t

va
ri

ab
le

Estimation of
marginal density

Estimation of
scale-free measure

of association

Estimation of de-
pendence parameter
for different copulas

Fitting different
copulas preserving
the dependence
among random

variables and esti-
mation of goodness-

of-fit statistics

Selection of
best-fit copula

Development of joint distribution
among the random variables us-
ing the most appropriate copula

Conditional distribution of
dependent variable, given
independent variable(s)

Probabilistic predic-
tion and quantification

of associated uncertainty
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Naive Kr(u) = 1 − 1
2 ≤ u ≤ 1

2

Normal Kr(u) = 1√
2π

exp
(
− u2

2

)
−∞ < u < ∞

Epanechnikov Kr(u) = 3
4
√
5

(
1 − u2

5

)
−√

5 ≤ u ≤ √
5

The cumulative probability density is obtained from the corresponding non-
parametrically estimated probability density. Either parametric or nonpara-
metric marginal probabilistic distribution is used to obtain the reduced vari-
ate of the random variable.

(B) Fitting suitable copula model: Once the reduced variates are obtained using the
fittedmarginal distribution, a number of candidate copula functions are selected.
These copula functions are fitted by estimating their parameters form the reduced
variates. The best-fitted copula is then selected from all fitted candidate copula.

(a) Copula fitting: Let us consider ordered pairs of random variables X and Y
represented as (x1, y1), . . . , (xn, yn). In general, parameter(s) of a copula
function (Cθ) can be estimated using different methods, such as:
(i) Inversion of scale-free measure of association,
(ii) Maximum likelihood estimate (MLE),
(iii) Inference from margin (IFM),
(iv) Canonical maximum likelihood (CML).

Inversion of Scale-Free Measure of Association
In case of one-parameter bivariate copulas, the popular approach is the inver-
sion of Spearman’s or Kendall’s rank correlation (Genest et al. 2007). The
relationship between Kendall’s tau (τ̂) and the dependence parameter θ is
provided in Table10.1 for some of the Archimedean copulas. After obtain-
ing the sample estimate of Kendall’s tau (τ), the copula parameter θ can be
estimated.

Maximum Likelihood Estimate
In general, the method of maximum likelihood is discussed in Chap. 3
(Sect. 3.7.2). Using themethod ofmaximum log-likelihood estimate (MLE),
the copula structure with the copula parameters and individual marginal
parameters can be estimated. For MLE of copula parameters, log-likelihood
function of joint pdf is maximized with respect to all the parameters. A
bivariate joint pdf can be expressed in terms of copula pdf as,

fX,Y (x, y) = c(FX(x), FY (y) : θ) fX(x : α1) fY (y : α2) (10.45)

where θ is copula parameter and α1 and α2 are the parameters for marginal
pdf ’s. The log likelihood of above expression is given by,
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∑
log ( fX,Y (x, y)) =

∑

i

log (c(FX(xi : α1), FY (yi : α2) : θ))

+
n∑

i=1

log fX(xi : α1) +
n∑

j=1

log fY (y j : α2)

L = LC + LM1 + LM2

L = LC + LM

(10.46)

where L , LC , LM show the total log likelihood of the joint pdf, copula pdf,
and marginals, respectively. For MLE of parameters, following equations
are required to be solved simultaneously:

(
∂L
/
∂α1, ∂L

/
∂α2, ∂L

/
∂θ
) = 0 (10.47)

Inference From Margins

Another approach to estimate the parameters is inference from marginal
(IFM). In IFM, Eq.10.46 decomposes the maximum log likelihood into
two parts: one from copula dependence (LC ) and other from the marginals
(LM ). In the first step of IFM, the marginal parameters are estimated
for each of marginal functions individually, i.e., for i th marginal: α̂i =
argmaxαi

LMi (αi ). In the second stage, using the estimated (α̂1, α̂2), LC is

maximized to get an estimate for θ: θ̂ = argmaxθ LC(θ). Hence, in IFM,
following set of equations are solved for getting the estimates of parameters.

(
∂LM1

/
∂α1, ∂LM2

/
∂α2, ∂LC

/
∂θ
) = 0 (10.48)

As per Joe (1997), the MLE and IFM estimation procedures are equivalent
when all the variables (X , Y , . . . ) follow univariate normal marginal and
have multivariate joint normal pdf associated with them along with having
a Gaussian copula.
The MLE and IFM can be extended to multivariate copula functions; how-
ever, it is computationally intensive to solve the equations simultaneously.
Canonical maximum likelihood may be another alternative.

Canonical Maximum Likelihood
In the multivariate–multiparameter case, canonical maximum likelihood
(CML) also known asmaximumpseudo-likelihood estimator (MPE)method
is a general estimation technique (Genest et al. 1995; Kojadinovic and Jun
Yan 2011). For example, the parameters of the nested 3-copula families
(Table10.2) (θ1 and θ2) may be estimated using the CML method. This
method performs a nonparametric estimation of the margins by using the
respective scaled ranks. The dependence parameters θ1 and θ2 are obtained
by simply maximizing the log-likelihood function given by:
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l(θ) =
n∑

i=1

log
[
cθ

(
u1i , u

2
i , . . . , u

d
i

)]
(10.49)

where cθ denotes the density of the copula Cθ and uki = F̂k (Xik) for
k = 1, 2, . . . , d is the rank-based nonparametric marginal probability of
kth variable given by:

F̂k(Xik) = 1

n + 1

n∑

i=1

�(Xik ≤ x) (10.50)

where �(•), as defined before, is the indicator function that takes a value 1
if the argument • is true and 0 if it is false.

(b) Selection of best-fit copula: Aforementioned procedure of parameter esti-
mation is carried out for all tentatively selected copulas. Among different
alternatives, the best-fit copula can be selected using the steps explained in
Sect. 10.9.

(C) Probabilistic prediction of dependent variable: The joint distribution is obtained
using the best-fit copula. If the best-fit copula is C , then the joint distribution is
obtained through Sklar’s theorem (Eq.10.1) as follows:

FX,Y (x, y) = C(FX(x), FY (y)) (10.51)

The probabilistic estimation is carried out by employing the conditional distri-
bution. In general, the conditional distribution is obtained from joint distribution
as follows:

fX/Y (x
/
Y = y) = fX,Y (x, y)

fY (y)

FX
/
Y (x
/
Y = y) =

x∫

−∞
fX,Y (u, y)du

fY (y)

FX
/
Y (x
/
Y ≤ y) = FX,Y (x, y)

FY (y)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10.52)

where fX/Y (x
/
Y = y) is the conditional pdf. FX

/
Y (x
/
Y = y) and FX

/
Y (x
/
Y ≤

y) conditional CDFs, respectively. These expressions become relatively easier
to execute through copula function. The conditional distribution function of U
(i.e., FX(x)) given V = v (i.e., FY (y)) can be expressed in terms of copulas as:

CU/V=v = ∂

∂v
C(u, v)

∣∣∣∣
V=v

(10.53)
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Similarly, the conditional distribution function of V (i.e., FY (y)) given U = u
(i.e., FX(x)) can be expressed in terms of copulas as:

CV /U=u = ∂

∂u
C(u, v)

∣∣∣∣
U=u

(10.54)

The conditional distribution function of U given V ≤ v can be expressed in
terms of copula as:

CU/V≤v = C(u, v)

v
(10.55)

Similarly, the conditional distribution function of V given U ≤ u can be
expressed in terms of copula as:

CV /U≤u = C(u, v)

u
(10.56)

Depending on the condition, the respective equation for conditional distribu-
tion function can be used. Different probabilistic assessment can be done using
this conditional distribution. For example, the expected value (EV) of the target
variable can be obtained from the 50th quantile value of the distribution. Assess-
ment of range of uncertainty can be obtained from different quantile values. For
instance, 95% confidence interval can be obtained from 2.5th quantile (used as
lower limit (LL)) and 97.5th quantile (used as upper limit (UL)).

Example 10.10.4
Using the joint distribution obtained in Example10.9.1, find the most expected and
95% confidence interval of the temperature in city B if the temperature (in ◦C) in
city A for 4 different days are 25, 22, 15.5, and 19, respectively.

Solution Using the marginal for temperature of city A (Example10.8.3), the tem-
perature of 4 different days can be converted to their reduced variate (say u). Hence,
u is given by,

u = [
0.997 0.952 0.229 0.711

]

According to the Example10.10.3, the conditional distribution for temperature of
city B given the temperature of city A is given by (Eq.10.54),

FTB
/
TA
(tB
/
TA = tA) =

{
u−1.5

(
u−0.5 + v−0.5 − 1

)−3
for

(
u−0.5 + v−0.5 − 1

)
> 0

0 otherwise

For the most expected temperature of city B, the conditional distribution is solved for
being equal to 0.5 using the values of u. Hence, the most expected values of reduced
variates of temperature of city B (say v) are given by,
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0.997−1.5
(
0.997−0.5 + v−0.5 − 1

)−3 = 0.5

v = 0.630

Similarly, v0.5 can be obtained for all other values of u.

v0.5 = [
0.630 0.623 0.420 0.584

]

Similarly, the 95% confidence interval for v can be obtained, and the conditional
distribution is solved for 97.5% and 2.5% probabilities.

v0.975 = [
0.983 0.983 0.966 0.980

]

v0.025 = [
0.085 0.083 0.027 0.067

]

These v values can be back-transformed into temperature for city B, as temperature
for city B follows normal distribution with mean 22 ◦C and standard deviation 4.2 ◦C
(Example10.8.3).

TB (0.025) = [
16.24 16.18 13.91 15.71

]

TB (0.50) = [
23.39 23.33 21.15 22.89

]

TB (0.975) = [
30.90 30.90 29.67 30.63

]

10.11 MATLAB Example

The examples discussed in this chapter can be solved using MATLAB. Some of the
important built-in functions in this regard are following:

• tau=corr(X,Y,’type’,’kendall’)
This built-in function returns Kendall’s tau (τ) between X and Y .

• theta = copulaparam(family,tau)
This built-in function gives the value of theta for selected copula. The parameter
family can either be Clayton, Gumbel, or Frank. The parameter tau is
Kendall’s tau (τ).

• paramhat = copulafit(family,u)
This built-in function is used to fit a copula family (either of Gaussian, t,
Clayton, Gumbel or Frank) over the data u. umust be a n × 2 matrix, where
n is number of observations. paramhat is estimate of parameter for selected
copula model.

• y = copulacdf(family,u,theta)
The copulacdf function is used to calculate the CDF for data set u using the
specified copula and theta.
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For instance, the following script (Box 10.1) can be used to solve Example10.5.1
and associated examples (Examples10.8.3, 10.9.1, 10.10.3, and 10.10.4).

Box 10.1 Sample MATLAB script for solving Example10.5.1 and associated examples
� �

1 c l o s e a l l ; c l e a r ; c l c ;
2 T_A =[18.1 ,22.3 ,18.7 ,17.5 ,24.5];
3 T_B =[23.3 ,26.0 ,25.5 ,30.0 ,28.2];
4

5 %% Measure of scale -free association and reduced variates
6 tau=corr(T_A ’,T_B ’,’type’,’kendall ’);
7 spearman_rho=corr(T_A ’,T_B ’,’type’,’spearman ’);
8 u_val=normcdf(T_A ,17.5 ,2.7);
9 v_val=normcdf(T_B ,22 ,4.2);

10

11 %% Fitting Clayton and Gumbel Copula
12 clayton_theta =copulaparam (’clayton ’,tau);
13 C_clayton=copulacdf(’clayton ’,[u_val ’ v_val ’], clayton_theta ) ’;
14 gumbel_theta=copulaparam (’gumbel ’,tau);
15 C_gumbel=copulacdf(’gumbel ’,[u_val ’ v_val ’], gumbel_theta) ’;
16

17 %% Empirical Copula
18 C_emp= z e r o s ( s i z e (C_gumbel));
19 f o r i=1: l e n g t h (u_val)
20 C_emp(i)= sum((u_val <= u_val(i)).*(v_val <= v_val(i)))/ l e n g t h (

u_val);
21 e n d
22

23 %% Goodness -of -fit for two copula
24 S_n (1)= sum((C_emp -C_clayton).^2);
25 S_n (2)= sum((C_emp -C_gumbel).^2);
26 T_n (1)= s q r t (5)*max( a b s ((C_emp -C_clayton)));
27 T_n (2)= s q r t (5)*max( a b s ((C_emp -C_gumbel)));
28 [~, S_n_min_index ]= min (S_n);
29 [~, T_n_min_index ]= min (T_n);
30 switch S_n_min_index
31 case 1
32 best_copula =" Clayton ";
33 case 2
34 best_copula ="Gumbel -Hougaard ";
35 e n d
36

37 %% Data generation using Clayton copula
38 % u_val_random=rand (10 ,1) % Generate random data , however we are
39 % using pre -generated random data
40 u_val_random =[0.93 , 0.69, 0.05, 0.18, 0.19, 0.75, 0.85, 0.36,

0.83, 0.59];
41 syms u v;
42 [~, copula_cdf ]= clayton_copula(u,v,clayton_theta );
43 cond_prob_v_given_u = d i f f (copula_cdf ,u);
44 v_val_generated = z e r o s ( s i z e (u_val_random));
45 f o r i=1: l e n g t h (u_val_random)
46 v_val_generated (i)= e v a l (solve(cond_prob_v_given_u (u_val_random

(i),v) -0.5));
47 e n d
48 T_A_random=norminv(u_val_random ,17.5 ,2.7);
49 T_B_generated =norminv(v_val_generated ,22 ,4.2);
50

51 %% Prediction using Clayton Copula - Problem 1
52 T_A_observed =[25, 22, 15.5, 19];
53 u_val_observed=normcdf(T_A_observed ,17.5 ,2.7);
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54 v_val_expected= z e r o s ( s i z e (u_val_observed));
55 v_val_ll=v_val_expected;v_val_ul=v_val_expected;
56 f o r i=1: l e n g t h (v_val_expected)
57 v_val_ll(i)= e v a l (solve(cond_prob_v_given_u (u_val_observed(i),v

) -0.025));
58 v_val_expected(i)= e v a l (solve(cond_prob_v_given_u (

u_val_observed(i),v) -0.5));
59 v_val_ul(i)= e v a l (solve(cond_prob_v_given_u (u_val_observed(i),v

) -0.975));
60 e n d
61 T_B_ll=norminv(v_val_ll ,22 ,4.2);
62 T_B_expected=norminv(v_val_expected ,22 ,4.2);
63 T_B_ul=norminv(v_val_ul ,22 ,4.2);
64

65 %% Display Results
66 output_file =[’output ’ filesep () ’code_1_result .txt’];
67 d e l e t e (output_file ); d i a r y (output_file); d i a r y on;
68 f p r i n t f ("tau=%2.2f\t Spearman ’s rho =%2.2f\n", tau , spearman_rho);
69 f p r i n t f ("v")
70 d i s p (v_val)
71 f p r i n t f ("u")
72 d i s p (u_val)
73

74 f p r i n t f (’\n\nGOF statistic\n’)
75 d i s p (’First row correspond to Clayton and other correspond to

Gumbel -Hougaard ’)
76 f p r i n t f ("\ tS_n\tT_n\n")
77 d i s p ([S_n ’ T_n ’])
78 f p r i n t f ("The selected copula is %s.\n", best_copula );
79

80 f p r i n t f ("\n\nRandom Data Generation\n")
81 f p r i n t f (" Random u\t"); d i s p (u_val_random);
82 f p r i n t f (" Generated v\t"); d i s p (v_val_generated );
83 f p r i n t f (" Random T_A\t"); d i s p (T_A_random);
84 f p r i n t f (" Generated T_B\t"); d i s p (T_B_generated );
85

86 f p r i n t f ("\n\nPrediction f o r temperature of city B\n")
87 f p r i n t f ("u\t"); d i s p (u_val_observed);
88 f p r i n t f ("v_0 .025"); d i s p (v_val_ll);
89 f p r i n t f (" Expected v\t"); d i s p (v_val_expected);
90 f p r i n t f ("v_0 .975"); d i s p (v_val_ul);
91 f p r i n t f (" T_B_0 .025\t"); d i s p (T_B_ll);
92 f p r i n t f (" Expected T_B\t"); d i s p (T_B_expected);
93 f p r i n t f (" T_B_0 .975\t"); d i s p (T_B_ul);
94

95 d i a r y off;
� �

Here, it should be noted that in the script, random values of u are generated and
used, as done in Example10.10.3. The output of Box 10.1 is shown in Box 10.2.
The results match with the solution obtained in the corresponding examples. Similar
scripts can be used to solve other examples in this chapter.

Box 10.2 Results for Box 10.1
� �

1 tau =0.20 Spearman ’s rho =0.00
2 v 0.6215 0.8295 0.7977 0.9716 0.9301
3

4 u 0.5879 0.9623 0.6716 0.5000 0.9952
5
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6

7

8 GOF statistic
9 First row correspond to Clayton and other correspond to Gumbel -

Hougaard
10 S_n T_n
11 0.2067 0.6482
12 0.2270 0.6593
13

14 The selected copula is Clayton.
15

16

17 Random Data Generation
18 Random u 0.9300 0.6900 0.0500 0.1800 0.1900

0.7500 0.8500 0.3600 0.8300 0.5900
19

20 Generated v 0.6205 0.5801 0.2139 0.3845 0.3924
0.5916 0.6085 0.4868 0.6053 0.5583

21

22 Random T_A 21.4846 18.8388 13.0589 15.0285 15.1297
19.3211 20.2984 16.5322 20.0762 18.1144

23

24 Generated T_B 23.2881 22.8494 18.6690 20.7668 20.8535
22.9729 23.1570 21.8614 23.1221 22.6155

25

26

27

28 Prediction for temperature of city B
29 u 0.9973 0.9522 0.2294 0.7107
30

31 v_0 .025 0.0853 0.0826 0.0273 0.0668
32

33 Expected v 0.6296 0.6236 0.4202 0.5842
34

35 v_0 .975 0.9832 0.9829 0.9655 0.9802
36

37 T_B_0 .025 16.2457 16.1706 13.9274 15.6983
38

39 Expected T_B 23.3894 23.3224 21.1543 22.8934
40

41 T_B_0 .975 30.9284 30.8898 29.6390 30.6426
� �

Exercise

10.1 Check whether the following functions are valid copula functions or not?

(a) C(u, v) = uv
u−v+uv

(b) C(u, v) = √
max(u2 + v2 − 1, 0)

(c) C(u, v) = max(eln(u) + eln(v) −1, 0)

(d) C(u, v) =
√
u2+v2

2
(e) C(u, v) = |u + v − 1|
(f) C(u, v) = uv

1−0.3(1−u)(1−v)

(Ans. Only (d) and (e) are not copula functions.)
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10.2 Using the first 6 values of total monthly precipitation depth and mean monthly
specific humidity in Table A.1 (p. 429), calculate the Kendall’s tau and Spearman’s
rho.
(Ans. Kendall’s τ = 0.20, Spearman’s rho (ρs) = 0.43)

10.3 A location is frequently hit by cyclone. For the location, in a cyclonic event, the
total rainfall depth and maximum pressure difference between eye and periphery of
cyclone are assumed to be associated. For last six cyclones, the maximum pressure
difference (in millibar) between the eye and periphery and total rainfall received (in
cm) are (30, 70), (35, 77), (27, 75), (32, 81), (37, 87), and (25, 70). Calculate the
Kendall’s tau and Spearman’s rho for the data set.
(Ans. Kendall’s τ = 0.69, Spearman’s rho (ρs) = 0.84)

10.4 For the data used in Exercise10.2, total monthly precipitation depth is dis-
tributed exponentially with mean 82mm and the specific humidity is distributed
normally with mean 10.7 and standard deviation of 2. Fit following copulas to the
data:

(a) Independent Copula
(b) Gaussian Copula

(c) Clayton Copula
(d) Frank Copula

(Hint: Numerical solution may be needed for fitting some of the copula functions.)

Ans. (a) For independent copula,C(u, v) = [
0.001 0 0 0 0.001 0.970

]

(b) For Gaussian copula, ρ = 0.994, C(u, v) = [
0.01 0 0 0 0.02 0.97

]

(c) For Clayton copula, θ = 0.5, C(u, v) = [
0.006 0 0 0 0.009 0.970

]

(d) For Frank copula, θ = 1.86, C(u, v) = [
0.001 0 0 0 0.002 0.970

]

10.5 For the data given in Exercise10.3, assume that the pressure difference (in
millibar) between the eye and periphery of cyclone follows normal distribution with
mean 30 and standard deviation 3.2. Similarly, the rainfall is gamma distributed with
α = 35 and β = 2.5. Fit following copula functions over the data,

(a) Frank Copula
(b) Gumbel–Hougaard Copula

(c) Clayton Copula
(d) Ali–Mikhail–Haq Copula

Ans. (a) For Frank copula, θ = 10.968,
C(u, v) = [

0.1112 0.2471 0.1301 0.3455 0.5089 0.0375
]

(b) For Gumbel–Hougaard copula, θ = 3.226,
C(u, v) = [

0.1103 0.2471 0.1253 0.3446 0.5090 0.0422
]

(c) For Clayton copula, θ = 4.45,
C(u, v) = [

0.1121 0.2471 0.1588 0.3447 0.5086 0.0583
]

(d) Ali–Mikhail–Haq copula cannot be fitted over the data.

10.6 From historical records, the daily rainfall depths (in mm) in two nearby cities A
and B are found to have Kendall’s tau as 0.45. Fit Gumbel–Hougaard, Ali–Mikhail–
Haq, and Clayton copulas between the daily rainfall depth of two cities.



Exercise 423

(Ans. For Gumbel–Hougaard θ = 1.818. For Clayton copula θ = 1.636. Ali–
Mikhail–Haq copula can not be fitted on the data.)

10.7 Select the best copula function for Example10.4 using Kolmogorov–Smirnov
statistic and Cramér-von Mises statistic. (Ans. Gaussian copula)

10.8 For a location A, monthly mean potential evaporation follows an exponential
distribution with mean 4mm/day, and mean monthly air temperature follows normal
distribution with mean 25 ◦C and standard deviation 3.7 ◦C. Clayton copula with
θ = 0.7 is found to be the best-fit copula. Generate the mean potential evaporation
and mean monthly temperature values for a year.

(Answers may vary depending on random number generated. Refer to Sect. 10.10.1.)

10.9 Using the Frank copula fitted in Exercise 10.6, predict the daily rainfall depth
(in mm) for city A, if the daily rainfall depths (in mm) for city B recorded in last week
are 0, 2, 5, 20, 8, 0, and 3. Also, calculate 90% confidence interval for predictions.
Assume that daily rainfall in cities A and B follows exponential distribution with
mean 4.5 and 3mm/day, respectively.
(Ans. Expected rainfall (in mm/day) for city A = [

1.7 3.1 4.3 5.2 4.9 1.7 3.6
]

and corresponding 90% confidence interval are (0.1, 9.7), (0.2, 13.0), (0.4, 15.2),
(0.5, 16.6), (0.5, 16.1), (0.1, 9.7), and (0.3, 14.0).)

10.10 For the last 5months due to some technical problem at site A (Exercise 10.8),
evaporation was not recorded. However, if the observed mean monthly air tempera-
ture (in ◦C) for last 5months is 24, 28, 30, 32, and 27, then using the copula function
given in Exercise 10.8, calculate the expected value of mean monthly evaporation
for these month along with their interquartile range (25–75% range).
(Ans. Expected evaporation (in mm/day) is 2.7, 3.9, 4.2, 4.32, and 3.7. The interquar-
tile range of evaporation is (1.3, 5.3), (2.0, 6.9), (2.2, 7.2), (2.3, 7.4), and (1.9, 6.6).)

10.11 In the Table A.1 (p. 429), model the association of the total precipitation
depth and mean monthly pressure using Frank copula. Assume that pressure is dis-
tributed normally and total monthly rainfall follows exponential distribution with
mean 95mm. Furthermore, predict the total monthly rainfall depth and 95% confi-
dence interval if the mean monthly pressure is 960mb.
(Hint: Numerical solution may be needed for fitting some of the copula function.)
(Ans. For Frank copula θ = −5. The expected total monthly rainfall depth for 960
mb pressure is 50mm and its 95% confidence interval is 6.2 and 182.3mm.)

10.12 In the Table A.2 (p. 431), the locations A1 and A2 are 50km apart, and
their monthly mean sea surface temperature is assumed to associated. Assuming that
SST at both the places are normally distributed, fit a Clayton copula to model the
relationship of SST between these two places. Using the fitted copula, generate the
monthly mean sea surface temperature for one year.
(Hint: Numerical solution may be needed for fitting some of the copula function.)
(Ans. For Clayton copula θ = 28.21.)
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Appendix A
Data Set

See TablesA.1, A.2, A.3, A.4 and A.5.

Table A.1 Different hydrocliamtic variables for Upper Mahanadi Basin for 24 consecutive months
(January, 1980–December, 1981)
Precipitation Surface air

temperature
Precipitable
water

Pressure Air tem-
perature*

Specific
humidity*

Geo-
potential
height*

Zonal
wind+

Meridional
wind+

6.33 21.49 17.76 964.42 20.96 5.64 802.36 0.21 0.09

0.86 23.27 15.04 962.91 23.27 4.48 791.30 1.02 −0.84

8.67 28.47 18.56 961.09 27.80 4.93 779.47 1.51 −0.32

7.31 33.78 20.81 957.42 33.06 5.40 750.21 2.38 −0.91

4.62 35.88 24.74 954.30 35.40 6.55 722.29 3.33 −1.20

287.65 27.90 52.12 951.67 27.02 16.91 692.85 2.76 0.47

387.35 24.66 56.61 952.05 23.44 17.51 694.13 4.88 −1.28

229.80 24.58 54.82 953.22 23.31 17.32 704.62 4.27 −0.84

404.99 24.48 44.21 956.97 23.66 15.38 739.06 2.51 −3.03

25.40 24.23 27.93 961.14 23.58 11.80 776.56 −1.01 −1.82

0.00 22.37 20.41 964.18 21.94 7.43 802.34 −2.13 −0.89

6.56 21.16 17.51 963.93 20.55 5.84 797.93 −1.14 −0.63

12.72 19.43 16.16 965.22 18.69 5.41 805.18 0.26 −0.08

0.45 24.45 13.13 963.36 23.93 3.83 794.97 0.60 −0.53

33.26 27.85 20.27 961.46 26.87 5.51 781.94 1.02 0.26

0.76 32.67 16.74 957.17 32.31 4.75 747.79 1.91 −0.71

5.99 35.27 29.69 953.51 34.11 8.23 715.36 1.48 0.63

79.17 33.34 39.07 950.13 31.96 11.05 681.90 3.57 −0.91

236.62 24.77 53.89 952.40 23.55 17.55 696.73 4.56 0.30

420.82 24.51 53.97 952.28 23.34 17.38 696.11 4.14 −0.83

231.00 24.64 47.04 956.70 23.38 16.24 737.47 −0.19 0.20

13.24 24.32 30.74 961.48 23.63 11.07 779.48 −0.75 −1.46

1.06 21.74 19.71 963.00 21.37 7.60 790.59 −1.43 −1.71

2.70 20.17 17.24 966.26 19.47 5.82 817.45 −1.82 −1.27

*measured at 925mb
+measured at 200mb

© Springer Nature Singapore Pte Ltd. 2018
R. Maity, Statistical Methods in Hydrology and Hydroclimatology,
Springer Transactions in Civil and Environmental Engineering,
https://doi.org/10.1007/978-981-10-8779-0
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Table A.3 Monthly minimum or maximum temperature (January, 2008–December, 2010) for
Bhadra Reservoir and Holehonnur* in Bhadra Basin

Months Bhadra Reservoir Holehonnur station

Max temperature Min temperature Max temperature Min temperature

1 30.79 15.75 32.67 21.43

2 30.68 17.75 32.68 21.99

3 31.41 19.10 28.65 20.81

4 32.42 21.11 28.08 20.94

5 31.96 21.36 26.92 20.22

6 27.82 20.83 27.97 21.03

7 27.06 20.61 30.62 21.30

8 26.14 20.26 30.16 18.05

9 27.83 20.22 29.87 18.41

10 29.72 20.33 30.27 15.40

11 30.12 17.97 32.40 17.52

12 29.79 17.85 33.64 20.78

13 30.24 15.55 34.28 22.44

14 31.99 16.99 33.04 22.17

15 33.21 19.84 29.38 21.21

16 33.75 21.71 26.14 21.02

17 32.54 21.91 27.75 21.41

18 28.93 21.03 28.32 20.72

19 25.88 20.46 29.57 20.63

20 27.49 21.00 30.25 20.78

21 26.99 20.37 30.08 18.70

22 28.47 20.11 30.08 18.65

23 29.58 19.88 31.45 16.88

24 29.98 18.42 35.23 19.67

25 29.89 18.36 35.36 22.14

26 31.25 16.92 33.89 22.73

27 33.62 19.84 30.35 22.58

28 34.07 21.78 27.63 21.97

29 33.13 22.44 27.21 21.84

30 29.89 21.79 27.61 21.02

31 27.68 20.70 29.26 20.75

32 26.52 20.55 28.56 21.01

33 26.24 20.44 29.10 19.56

34 28.99 20.57 28.93 18.74

35 28.23 20.04 30.85 20.63

36 28.67 18.75 30.23 18.41

*Holehonnur is a town 50km downstream from Bhadra Reservoir



428 Appendix A: Data Set
Ta

bl
e
A
.4

M
on

th
ly

av
er
ag
e
vo
lu
m
et
ri
c
so
il
m
oi
st
ur
e
co
nt
en
t*

in
U
pp

er
M
ah
an
da
iB

as
in

fo
r
26

ye
ar
s

Y
ea
r

Ja
nu
ar
y

Fe
br
ua
ry

M
ar
ch

A
pr
il

M
ay

Ju
ne

Ju
ly

A
ug
us
t

Se
pt
em

be
r

O
ct
ob

er
N
ov
em

be
r

D
ec
em

be
r

19
81

26
8.
4

22
5.
8

17
8.
6

14
2.
4

11
5.
3

32
7.
0

56
7.
4

62
7.
4

60
5.
5

51
8.
1

42
2.
7

37
3.
4

19
82

33
7.
3

28
2.
4

24
0.
8

20
2.
7

17
1.
3

20
4.
4

35
2.
9

51
1.
9

58
3.
5

52
3.
1

41
8.
8

36
7.
4

19
83

34
8.
1

35
0.
9

32
1.
9

26
0.
8

21
1.
6

23
3.
4

35
4.
4

53
9.
7

57
2.
7

49
5.
1

41
3.
2

34
8.
5

19
84

29
9.
8

26
3.
1

20
7

16
3.
3

14
5.
4

17
9.
0

28
5.
6

43
1.
9

52
4

51
0.
0

43
2.
8

38
2.
5

19
85

35
5.
0

32
8.
2

26
1.
1

20
4.
8

15
9.
3

20
8

41
4.
6

58
7.
2

56
9.
7

45
8.
9

36
9.
0

31
5.
3

19
86

28
4.
0

25
6.
2

20
0.
7

15
3.
1

11
7.
4

13
6.
8

29
1.
3

48
8.
2

57
4.
6

56
4.
3

48
5.
5

41
4.
1

19
87

37
6.
8

35
3.
8

30
2.
9

24
8.
7

20
2.
0

31
8.
8

48
8.
4

58
0.
4

57
8.
4

49
1.
9

42
7.
9

38
9.
6

19
88

35
1.
7

30
7.
6

26
2.
7

19
5.
6

15
6.
7

16
5.
6

30
8.
8

43
6.
1

45
2.
7

44
3.
6

41
4.
7

37
4.
3

19
89

32
5.
1

28
8.
4

24
0.
5

18
6.
1

13
8.
8

19
0.
1

28
6.
9

37
1.
7

41
5.
5

36
1.
4

29
6.
6

25
2.
7

19
89

21
8.
7

18
3.
7

15
4.
5

11
5.
3

86
.3
3

22
9.
0

42
9.
6

55
4.
0

57
9.
8

47
5.
5

38
0.
9

34
2.
7

19
90

29
7.
0

26
9.
1

22
9.
4

18
5.
2

19
3.
3

30
9.
9

45
3.
7

55
1.
2

60
7.
1

60
8.
2

52
8.
1

44
8.
1

19
91

38
7.
2

31
8.
1

24
3.
2

17
8.
4

12
7.
9

18
8.
6

36
2

54
9.
4

56
1.
5

45
6.
5

38
2.
5

33
3.
5

19
92

29
0.
0

24
6.
7

19
4.
6

15
7.
0

13
7.
0

15
4.
4

28
1.
1

50
3.
3

58
2.
4

48
7.
4

39
2.
9

33
5.
6

19
93

28
7.
5

25
1.
7

21
7.
3

16
8.
3

13
2.
4

18
9.
3

41
3.
4

59
6.
4

62
2.
9

54
4.
1

43
3.
7

37
3.
1

19
94

32
5.
8

28
9.
4

22
7.
3

17
9.
4

15
5.
2

28
4.
8

54
5.
8

65
1.
2

64
1.
7

57
0.
5

46
5.
7

39
9.
7

19
95

37
9.
2

34
8.
5

31
7.
1

25
2.
9

21
5.
1

21
9.
2

39
5.
9

57
7.
1

58
6.
6

51
4.
1

42
8.
1

36
7.
6

19
96

32
7.
2

29
0.
4

24
1.
3

19
9.
2

15
1.
3

16
1.
5

31
1.
2

50
5.
0

52
7.
3

45
7.
6

38
5.
7

32
9.
9

19
97

30
1.
5

25
8.
5

20
6.
3

18
0.
7

15
6.
9

17
8.
3

35
4.
6

57
8.
1

58
1.
2

49
5.
8

43
8.
4

41
3.
4

19
98

39
6.
7

35
8.
6

31
1.
9

25
2.
3

19
5.
9

19
4.
0

26
1.
7

36
9.
3

45
6.
7

45
6.
4

42
1.
9

37
6.
3

19
99

32
9.
1

28
3.
7

21
7.
3

15
7.
7

12
9.
4

17
2.
9

28
4.
5

47
9.
7

58
5.
5

53
3.
3

43
3.
3

37
0.
6

20
00

32
0.
3

28
8.
8

23
0.
1

16
8.
7

14
8.
9

25
9.
4

44
1.
8

49
5.
9

45
8.
2

36
5.
4

29
1.
0

24
6.
6

20
01

21
5.
8

17
8.
1

15
2.
0

12
8.
7

11
7.
1

25
3.
3

46
7.
8

58
1.
6

56
2.
2

49
1.
5

40
7.
6

34
4.
0

20
02

31
0.
1

26
8.
6

22
4.
2

16
6.
3

13
5.
9

21
1.
7

29
8.
8

41
2.
8

47
4.
9

40
8.
3

32
7.
8

27
3.
6

20
03

23
2.
7

21
9.
8

20
7.
0

17
3.
2

12
5.
2

14
6.
8

29
8.
3

53
3.
5

63
5.
3

60
2.
7

50
2.
6

44
2.
4

20
04

41
4.
3

36
3.
4

29
7.
5

23
6.
4

19
4.
7

27
0.
8

42
7.
0

51
5.
3

53
1.
1

47
6.
9

38
8.
6

33
2.
1

20
05

33
5.
8

31
0.
8

24
7.
9

19
2.
2

15
9.
7

19
2.
6

42
5.
5

60
8.
5

62
9.
8

59
3.
3

50
1.
7

43
0.
8

*T
he

so
il
m
oi
st
ur
e
co
nt
en
ti
s
ex
pr
es
se
d
as

(%
vo
lu
m
e
by

vo
lu
m
e
(%

v/
v)

so
il
m
oi
st
ur
e
co
nt
en
t×

10
00
)



Appendix A: Data Set 429

Table A.5 Daily soil moisture* data at a location since January 1, 2017

Days 0 1 2 3 4 5 6 7 8 9

0 0.0179 0.1157 0.3552 0.3363 0.1374 0.0798 0.1701 0.2167 0.1297 0.0959

1 0.1641 0.1222 0.0444 0.1326 0.0938 0.0443 0.0917 0.2501 0.1010 0.1474

2 0.1818 0.1298 0.1422 0.1699 0.2162 0.3209 0.2856 0.2008 0.1225 0.3459

3 0.3709 0.0882 0.1805 0.1251 0.2169 0.2009 0.1621 0.1234 0.2105 0.1754

4 0.3314 0.3665 0.0439 0.2603 0.1682 0.4307 0.1673 0.1552 0.1218 0.2349

5 0.0490 0.2135 0.3055 0.1900 0.3236 0.1797 0.0774 0.1162 0.4122 0.1960

6 0.3838 0.2368 0.1025 0.2296 0.1169 0.1199 0.2844 0.2500 0.2140 0.1634

7 0.0171 0.4016 0.2316 0.1554 0.1303 0.3428 0.0305 0.1393 0.3813 0.1853

8 0.1822 0.2350 0.3696 0.1001 0.2454 0.2072 0.1740 0.3359 0.1216 0.1097

9 0.2586 0.2536 0.3718 0.2753 0.0757 0.1131 0.2885 0.1540 0.0468 0.1662

*The soil moisture content is expressed as volume by volume fraction
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Table B.1 Standard normal table

0 z

P (Z ≤ z)

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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Table B.2 Student’s t-distribution percentage points

tα(ν)

α = P (X ≥ tα(ν))

ν
α

0.25 0.10 0.05 0.025 0.01 0.00833 0.00625 0.005 0.0025
1 1.250 3.178 6.364 12.731 31.831 38.212 50.929 63.662 127.324
2 1.066 1.986 2.970 4.328 6.975 7.659 8.866 9.930 14.092
3 1.015 1.738 2.403 3.207 4.551 4.866 5.398 5.846 7.456
4 0.991 1.633 2.182 2.801 3.757 3.970 4.321 4.609 5.600
5 0.977 1.576 2.065 2.596 3.375 3.543 3.816 4.037 4.776

6 0.968 1.540 1.993 2.472 3.153 3.296 3.527 3.712 4.319
7 0.961 1.515 1.945 2.390 3.008 3.136 3.342 3.504 4.032
8 0.956 1.497 1.910 2.331 2.906 3.024 3.212 3.360 3.835
9 0.953 1.483 1.883 2.287 2.831 2.942 3.117 3.255 3.692
10 0.950 1.472 1.862 2.253 2.774 2.879 3.044 3.174 3.584

11 0.947 1.463 1.846 2.226 2.728 2.829 2.987 3.111 3.499
12 0.945 1.456 1.832 2.204 2.691 2.788 2.941 3.060 3.431
13 0.944 1.450 1.821 2.185 2.660 2.754 2.902 3.017 3.375
14 0.942 1.445 1.811 2.170 2.634 2.726 2.870 2.982 3.328
15 0.941 1.441 1.803 2.156 2.612 2.702 2.843 2.952 3.289

16 0.940 1.437 1.796 2.145 2.593 2.682 2.819 2.926 3.254
17 0.939 1.433 1.790 2.135 2.577 2.664 2.799 2.903 3.225
18 0.938 1.430 1.784 2.126 2.562 2.648 2.781 2.883 3.199
19 0.938 1.428 1.779 2.118 2.549 2.634 2.765 2.866 3.176
20 0.937 1.425 1.775 2.111 2.538 2.621 2.751 2.850 3.156

21 0.936 1.423 1.771 2.105 2.528 2.610 2.738 2.836 3.138
22 0.936 1.421 1.767 2.099 2.518 2.600 2.726 2.824 3.121
23 0.935 1.419 1.764 2.094 2.510 2.591 2.716 2.812 3.106
24 0.935 1.418 1.761 2.089 2.502 2.582 2.706 2.802 3.093
25 0.934 1.416 1.758 2.085 2.495 2.574 2.698 2.792 3.081

26 0.934 1.415 1.756 2.081 2.489 2.567 2.690 2.784 3.069
27 0.934 1.414 1.753 2.077 2.483 2.561 2.683 2.776 3.059
28 0.933 1.413 1.751 2.073 2.477 2.555 2.676 2.768 3.049
29 0.933 1.411 1.749 2.070 2.472 2.549 2.669 2.761 3.041
30 0.933 1.410 1.747 2.067 2.467 2.544 2.664 2.755 3.032

40 0.931 1.403 1.734 2.046 2.433 2.507 2.622 2.709 2.974
50 0.929 1.399 1.726 2.034 2.413 2.486 2.598 2.683 2.939
60 0.929 1.396 1.721 2.025 2.400 2.471 2.581 2.665 2.917
120 0.927 1.389 1.708 2.005 2.368 2.436 2.542 2.622 2.862
1000 0.925 1.382 1.696 1.987 2.340 2.406 2.508 2.586 2.816
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Table B.3 χ2 distribution percentage points

χ2
α(ν)

α = P (X ≥ χ2
α(ν))

α
ν 0.999 0.990 0.950 0.900 0.500 0.100 0.050 0.010 0.005 0.001
1 0.000 0.000 0.004 0.016 0.455 2.706 3.841 6.635 7.879 10.828
2 0.002 0.020 0.103 0.211 1.386 4.605 5.991 9.210 10.597 13.816
3 0.024 0.115 0.352 0.584 2.366 6.251 7.815 11.345 12.838 16.266
4 0.091 0.297 0.711 1.064 3.357 7.779 9.488 13.277 14.860 18.467
5 0.210 0.554 1.145 1.610 4.351 9.236 11.070 15.086 16.750 20.515

6 0.381 0.872 1.635 2.204 5.348 10.645 12.592 16.812 18.548 22.458
7 0.598 1.239 2.167 2.833 6.346 12.017 14.067 18.475 20.278 24.322
8 0.857 1.646 2.733 3.490 7.344 13.362 15.507 20.090 21.955 26.125
9 1.152 2.088 3.325 4.168 8.343 14.684 16.919 21.666 23.589 27.877

10 1.479 2.558 3.940 4.865 9.342 15.987 18.307 23.209 25.188 29.588

11 1.834 3.053 4.575 5.578 10.341 17.275 19.675 24.725 26.757 31.264
12 2.214 3.571 5.226 6.304 11.340 18.549 21.026 26.217 28.300 32.910
13 2.617 4.107 5.892 7.042 12.340 19.812 22.362 27.688 29.819 34.528
14 3.041 4.660 6.571 7.790 13.339 21.064 23.685 29.141 31.319 36.123
15 3.483 5.229 7.261 8.547 14.339 22.307 24.996 30.578 32.801 37.697

16 3.942 5.812 7.962 9.312 15.338 23.542 26.296 32.000 34.267 39.252
17 4.416 6.408 8.672 10.085 16.338 24.769 27.587 33.409 35.718 40.790
18 4.905 7.015 9.390 10.865 17.338 25.989 28.869 34.805 37.156 42.312
19 5.407 7.633 10.117 11.651 18.338 27.204 30.144 36.191 38.582 43.820
20 5.921 8.260 10.851 12.443 19.337 28.412 31.410 37.566 39.997 45.315

21 6.447 8.897 11.591 13.240 20.337 29.615 32.671 38.932 41.401 46.797
22 6.983 9.542 12.338 14.041 21.337 30.813 33.924 40.289 42.796 48.268
23 7.529 10.196 13.091 14.848 22.337 32.007 35.172 41.638 44.181 49.728
24 8.085 10.856 13.848 15.659 23.337 33.196 36.415 42.980 45.559 51.179
25 8.649 11.524 14.611 16.473 24.337 34.382 37.652 44.314 46.928 52.620

26 9.222 12.198 15.379 17.292 25.336 35.563 38.885 45.642 48.290 54.052
27 9.803 12.879 16.151 18.114 26.336 36.741 40.113 46.963 49.645 55.476
28 10.391 13.565 16.928 18.939 27.336 37.916 41.337 48.278 50.993 56.892
29 10.986 14.256 17.708 19.768 28.336 39.087 42.557 49.588 52.336 58.301
30 11.588 14.953 18.493 20.599 29.336 40.256 43.773 50.892 53.672 59.703

35 14.688 18.509 22.465 24.797 34.336 46.059 49.802 57.342 60.275 66.619
40 17.916 22.164 26.509 29.051 39.335 51.805 55.758 63.691 66.766 73.402
45 21.251 25.901 30.612 33.350 44.335 57.505 61.656 69.957 73.166 80.077
50 24.674 29.707 34.764 37.689 49.335 63.167 67.505 76.154 79.490 86.661
55 28.173 33.570 38.958 42.060 54.335 68.796 73.311 82.292 85.749 93.168

60 31.738 37.485 43.188 46.459 59.335 74.397 79.082 88.379 91.952 99.607
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Table B.4 F distribution percentage points α = 0.1

Fα(ν1, ν2)

α = P (X ≥ Fα(ν1, ν2)) = 0.1

ν1/ν2 1 2 3 4 5 6 7 8 9 10 12 15 20 30 50 60
1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.26 62.69 62.79
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.46 9.47 9.47
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.17 5.15 5.15
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.82 3.80 3.79
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.17 3.15 3.14

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.80 2.77 2.76
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.56 2.52 2.51
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.38 2.35 2.34
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.25 2.22 2.21
10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.16 2.12 2.11

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.08 2.04 2.03
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.01 1.97 1.96
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.96 1.92 1.90
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.91 1.87 1.86
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.87 1.83 1.82

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.84 1.79 1.78
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.81 1.76 1.75
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.78 1.74 1.72
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.76 1.71 1.70
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.74 1.69 1.68

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.72 1.67 1.66
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.70 1.65 1.64
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.69 1.64 1.62
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.67 1.62 1.61
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.66 1.61 1.59

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.65 1.59 1.58
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.64 1.58 1.57
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.63 1.57 1.56
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.62 1.56 1.55
30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.61 1.55 1.54

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.54 1.48 1.47
50 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76 1.73 1.68 1.63 1.57 1.50 1.44 1.42
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.48 1.41 1.40
120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.41 1.34 1.32
1000 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64 1.61 1.55 1.49 1.43 1.35 1.27 1.25
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Table B.5 F distribution percentage points α = 0.05

Fα(ν1, ν2)

α = P (X ≥ Fα(ν1, ν2)) = 0.05

ν1/ν2 1 2 3 4 5 6 7 8 9 10 12 15 20 30 50 60
1 161 199 216 224 230 234 237 239 241 242 244 246 248 250 252 252
2 18.5 19.0 19.2 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.62 8.58 8.57
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.75 5.70 5.69
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.50 4.44 4.43

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.81 3.75 3.74
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.38 3.32 3.30
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.08 3.02 3.01
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.86 2.80 2.79
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.70 2.64 2.62

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.57 2.51 2.49
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.47 2.40 2.38
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.38 2.31 2.30
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.31 2.24 2.22
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.25 2.18 2.16

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.19 2.12 2.11
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.15 2.08 2.06
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.11 2.04 2.02
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.07 2.00 1.98
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.04 1.97 1.95

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.01 1.94 1.92
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 1.98 1.91 1.89
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 1.96 1.88 1.86
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.94 1.86 1.84
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.92 1.84 1.82

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.90 1.82 1.80
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.88 1.81 1.79
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.87 1.79 1.77
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.85 1.77 1.75
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.84 1.76 1.74

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.74 1.66 1.64
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.95 1.87 1.78 1.69 1.60 1.58
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.65 1.56 1.53
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.55 1.46 1.43
1000 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.76 1.68 1.58 1.47 1.36 1.33
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Table B.6 F distribution percentage points α = 0.025

Fα(ν1, ν2)

α = P (X ≥ Fα(ν1, ν2)) = 0.025

ν1/ν2 1 2 3 4 5 6 7 8 9 10 12 15 20 30 50 60
1 648 799 864 900 922 937 948 957 963 969 977 985 993 1001 1008 1010
2 38.5 39.0 39.2 39.2 39.3 39.3 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.5 39.5 39.5
3 17.4 16.0 15.4 15.1 14.9 14.7 14.6 14.5 14.5 14.4 14.3 14.2 14.2 14.1 14.0 14.0
4 12.2 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.46 8.38 8.36
5 10.0 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.23 6.14 6.12

6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.07 4.98 4.96
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.36 4.28 4.25
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.89 3.81 3.78
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.56 3.47 3.45
10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.31 3.22 3.20

11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.12 3.03 3.00
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 2.96 2.87 2.85
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.84 2.74 2.72
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.73 2.64 2.61
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.64 2.55 2.52

16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.57 2.47 2.45
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.50 2.41 2.38
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.44 2.35 2.32
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.72 2.62 2.51 2.39 2.30 2.27
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.35 2.25 2.22

21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.31 2.21 2.18
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.27 2.17 2.14
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.24 2.14 2.11
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.21 2.11 2.08
25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.18 2.08 2.05

26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.16 2.05 2.03
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.47 2.36 2.25 2.13 2.03 2.00
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.45 2.34 2.23 2.11 2.01 1.98
29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.09 1.99 1.96
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.07 1.97 1.94

40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 1.94 1.83 1.80
50 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38 2.32 2.22 2.11 1.99 1.87 1.75 1.72
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.82 1.70 1.67
120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.69 1.56 1.53
1000 5.04 3.70 3.13 2.80 2.58 2.42 2.30 2.20 2.13 2.06 1.96 1.85 1.72 1.58 1.45 1.41
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Table B.7 F distribution percentage points α = 0.001

Fα(ν1, ν2)

α = P (X ≥ Fα(ν1, ν2)) = 0.001

ν1/ν2 1 2 3 4 5 6 7 8 9 10 12 15 20 30 50 60
1 4052 4999 5403 5624 5763 5859 5928 5981 6022 6056 6106 6157 6209 6261 6302 6313
2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.4 27.2 27.0 26.9 26.7 26.5 26.3 26.3
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.0 13.8 13.7 13.6
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.0 9.89 9.72 9.55 9.38 9.24 9.20

6 13.8 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.23 7.09 7.06
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 5.99 5.86 5.82
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.20 5.07 5.03
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.65 4.52 4.48
10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.25 4.12 4.08

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 3.94 3.81 3.78
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.70 3.57 3.54
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.51 3.38 3.34
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.35 3.22 3.18
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.21 3.08 3.05

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.10 2.97 2.93
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.00 2.87 2.83
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 2.92 2.78 2.75
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.84 2.71 2.67
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.78 2.64 2.61

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.72 2.58 2.55
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.67 2.53 2.50
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.62 2.48 2.45
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.58 2.44 2.40
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.54 2.40 2.36

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.50 2.36 2.33
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.47 2.33 2.29
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.44 2.30 2.26
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.41 2.27 2.23

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.39 2.25 2.21
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.20 2.06 2.02
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.56 2.42 2.27 2.10 1.95 1.91
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.03 1.88 1.84
120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.86 1.70 1.66
1000 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.20 2.06 1.90 1.72 1.54 1.50
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Table B.8 Kolmogorov–Smirnov two-sided test

n α

0.10 0.05 0.01

1 0.9500 0.9750 0.9950

2 0.7764 0.8419 0.9293

3 0.6360 0.7076 0.8290

4 0.5652 0.6239 0.7342

5 0.5094 0.5633 0.6685

6 0.4680 0.5193 0.6166

7 0.4361 0.4834 0.5758

8 0.4096 0.4543 0.5418

9 0.3875 0.4300 0.5133

10 0.3687 0.4092 0.4889

11 0.3524 0.3912 0.4677

12 0.3382 0.3754 0.4490

13 0.3255 0.3614 0.4325

14 0.3142 0.3489 0.4176

15 0.3040 0.3376 0.4042

16 0.2947 0.3273 0.3920

17 0.2863 0.3180 0.3809

18 0.2785 0.3094 0.3706

19 0.2714 0.3014 0.3612

20 0.2647 0.2941 0.3524

21 0.2586 0.2872 0.3443

22 0.2528 0.2809 0.3367

23 0.2475 0.2749 0.3295

24 0.2424 0.2693 0.3229

25 0.2377 0.2640 0.3166

26 0.2332 0.2591 0.3106

27 0.2290 0.2544 0.3050

28 0.2250 0.2499 0.2997

29 0.2212 0.2457 0.2947

30 0.2176 0.2417 0.2899

31 0.2141 0.2379 0.2853

32 0.2108 0.2342 0.2809

33 0.2077 0.2308 0.2768

34 0.2047 0.2274 0.2728

35 0.2018 0.2242 0.2690

36 0.1991 0.2212 0.2653

37 0.1965 0.2183 0.2618

38 0.1939 0.2154 0.2584

39 0.1915 0.2127 0.2552

40 0.1891 0.2101 0.2521

>40 1.22/
√
n 1.36/

√
n 1.63/

√
n
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A
Akaike Information Criterion (AIC), 356
Alternative hypothesis, 200
Analysis of periodicity

harmonic analysis, 315
spectral analysis, 316

Analysis of Variance (ANOVA), 280
one-way, 280
two-way, 286

Anderson–Darling goodness-of-fit test, 223
Archimedean copula, 397, 398

generator function, 397, 398
multivariate, 397, 398

Arithmetic mean, 54
Autocorrelation function, 321

confidence interval, 322
Autocorrelogram, 322
Autocovariance function, 321
Autoregressive Integrated Moving Average

model, ARIMA (p, d, q), 346
Autoregressive model, AR (p), 331
Autoregressive Moving Average model with

Exogenous Inputs (ARMAX), 348
AutoregressiveMovingAveragemodel,AR-

MA (p, q), 342
diagnostic check, 357
forecast, 350

confidence interval, 352
error analysis, 352

order selection, 343
parameter estimation, 344
properties, 343

Axioms of probability, 11

B
Backshift, backward shift operator, 326
Bayes’ rule, 19
Bayesian Information Criterion, BIC, 356
Bell-shaped curve, 114
Bernoulli process, 94
Beta distribution, 128
Binomial distribution, 94
Boneferroni method, 290
Box-Cox transformation, 318

C
Canonical Correlation Analysis, 270
Central limit theorem, 114
Characteristic function, 71
Chebyshev inequality, 87
Chi-square distribution, 132
Coefficient of determination, R2, 246, 247
Coefficient of Kurtosis, 59
Coefficient of skewness, 58
Collectively exhaustive events, 9
Concept of moments, 61
Concordant pairs, 390
Conditional Distribution

from copula, 416
Conditional probability distribution, 38
Conditional probability theorem, 15
Confidence interval, 196
Continuous probability distribution, 108
Continuous random variable, 23
Copula, 382

data generation, 408
goodness of fit, 405
graphical representation, 382
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probabilistic prediction, 412
properties, 386

Copula Fitting, 414
Canonical Maximum Likelihood, 415
Inference from Margins, 415
Inversion of scale-free measure of asso-
ciation, 414

Maximum Likelihood Estimate, 414
Correlation

and causality, 248, 249
coefficient of, 248, 249

Correlation coefficient, 79
Covariance, 77
Cramér-von Mises statistic (Sn), 405
Cumulative distribution function, 24, 27
Cumulative periodogram, 316
Curvilinear regression, 236

D
Daughter wavelet, 363
Descriptive statistics, 53
Discordant Pairs, 390
Discrete probability distribution, 93
Discrete random variable, 23
Discrete wavelet

dyadic discrete wavelet, 364
transform, 364

E
Elliptical copula, 395
Empirical copula, 405
Empirical Orthogonal Function, 272
Ensemble, 308

ergodic, 308
Estimator, 82

consistency of, 82
efficiency of, 83
sufficiency of, 83
unbiasedness of, 82

Event, 8
Expectation, 63
Exponential distribution, 111
Extreme value distribution, 123

F
Factor of safety, 173
Father wavelet, 365
F distribution, 135
Flood frequency plot, 150
Forward shift operator, 327
Frechet–Hoeffding bounds, 389

Frequency analysis, 158, 171
zero inflated data, 170

G
Gamma distribution, 120
Gamma function, 120
Gaussian copula, 395
Geometric distribution, 105
Geometric mean, 55
Goodness-of-fit, 214
Grounded function, 386
Gumbel distribution, 124
Gumbel probability paper, 166

H
Haar wavelet, 366
H test, 220
H − volume, 384
Hypergeometric distribution, 101
Hypothesis testing, 200

single sample test, 203
two sample test, 207

I
2-Increasing function, 385
Independent copula, 382
Interval estimation, 195

K
Kendall rank correlation coefficient or K-

endall’s Tau (τ), 310, 390
Kendall’s transform, κ , 405
Kernel density estimator, 412
Kernel Function, 412
Kolmogorov–Smirnov (KS) statistic (Tn),

405
Kolmogorov–Smirnov (KS) test, 222
Kurtosis, 59

L
Law of large number, 87
Least square estimates, 230
Leptokurtic, 59
Linear regression

assumptions, 230
least square estimate, 231

Lognormal distribution, 117
Log-Pearson type III distribution, 161
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M
Marginal distribution, 32
Maximum likelihood method, 85
Measure of central tendency, 53
Measure of dispersion, 56
Measure of symmetry, 58
Measure of tailedness, 59
Median, 55
Mesokurtic, 59
Method of least square, 230
Method of moments, 84
Mixed distribution, 131
Mode, 56
Moment-generating function, 69
Mother wavelet, 362

scaling parameter, 363
shifting parameter, 363

Moving Average, 327
Moving Average model, MA(q), 337
Multinomial distribution, 99
Multiple comparison, 290
Multiple linear regression, 241
Multiresolution analysis, 367
Multiresolution Wavelet Transform, see

Multiresolution Analysis
Mutually exclusive events, 9

N
Negative binomial distribution, 97
Nonparametric tests, 217
Normal distribution, 113
Null hypothesis, 200
Nyquist–Shannon sampling theorem, 364

P
Parameter estimation, 84
Partial Autocorrelation Function, 322

confidence interval, 324
Pearson type III distribution, 130
Periodicity

test of, 358
Platykurtic, 59
Plotting position, 149
Plotting position formulae, 149
Point estimation, 195
Poisson distribution, 106
Poisson process, 107
Population, 191
Population parameters, 65
Power transformation, see Box-Cox trans-

formation
Principal component, 259, 260

determination, 260
variance explained, 262

Principal component analysis, 259
Probability density function, 23
Probability mass function, 23
Probability of exceedance, 147
Probability paper, 152
Probability plot, 149
Pulse data representation, 306

R
Random data generation

copula, 408
Random experiment, 7
Random samples, 192
Random variable, 8, 44

continuous, 26
functions of, 44
functions of bivariate, 45
functions of univariate, 44

Range, 57
Rank-sum test, 218
Realization, 308
Regression, 229
Reliability, 173, 178
Resilience, 179
Return period, 145
Risk, 173
Rolling Average, seeMoving Average
Rosenblatt probability integral transforma-

tion, 406
Rosenblatt’s probability integral transforma-

tion, 406
Running Average, seeMoving Average

S
Safety margin, 173
Sample data representation, 305
Sample space, 8
Sample statistics, 65
Sampling distribution, 192
Scaling function, see Father Wavelet
Scree plot, 268
Sign test, 217
Skewness, 58
Sklar’s theorem, 383
Spearman’s rank correlation coefficient or S-

pearman’s rho (ρs ), 390
Standard normal distribution, 113
Statistical inference, 194
Statistical properties, 75

jointly distributed random variables, 75
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Survival copula, 394

T
T-copula, 396
T-distribution, 133
Theorem of total probability, 18
Time series, 305

non-stationarity, 307
jump, 308
periodicity, 308
trend, 307

stationarity, 306
Time series model

invertibility, 330
non-stationary, 330
parsimony, 355
stationary, 330

Time series modeling, 321
Trend analysis, 308

Kendall tau test, 310
Mann–Kendall test, 309
regression test, 308
trend removal, 311

Type I error, 201

Type II error, 201

U
U test, 218
Uncertainty, 175
Uniform distribution, 108

V
Variance, 57
Vulnerability, 179

W
Wavelet transform, 361

types
continuous, 363
discrete, 364
stationary, 365

Weibull distribution, 126
Weighted mean, 55
White noise, 330
Whitening filter, 328
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