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Preface
Civil	engineering	structures	such	as	bridges	and	buildings	are	typically	large	and	are	built	with
uncertainties.	Their	behaviour	during	the	construction	phase	should	be	monitored	to	control	the
quality	and	safety	of	the	construction	processes.	After	civil	structures	have	been	constructed,
the	construction	materials	are	subjected	to	degradation	over	time,	leading	to	a	decrease	in
structural	capacity	and	serviceability.	Monitoring	during	the	service	phase	offers	useful
information	on	structural	performance	under	gradual	material	degradation	and	expected	loads,
and	also	records	the	structural	responses	of	unexpected	sudden	overloading.	Data	collected
from	real	time	monitoring	can	then	be	used	for	damage	assessment	and	health	evaluation	of	the
civil	engineering	structures	in	service.	The	continuously	measured	data	from	the	monitoring
system	can	provide	the	basis	for	predicting	future	performance	and	determining	optimum
maintenance	strategy	for	the	existing	structures.

Structural	health	monitoring	(SHM)	is	a	process	of	inservice	damage	identification	and
health	evaluation	for	an	engineering	structure	through	an	automated	monitoring	system.	SHM
uses	sensing	systems	and	necessary	hardware	and	software	facilities	to	monitor	structural
responses	and	operational	conditions	of	the	structure.	A	typical	SHM	strategy	comprises
several	key	components,	including	sensors,	data	acquisition,	data	transmission,	data
processing,	data	management,	health	evaluation	and	decision	making.	Sensing	technology	and
the	signal	interpretation	algorithms	are	two	critical	factors	in	developing	successful	SHM
strategies	for	large	civil	engineering	structures.	Damage	assessment	methods	using	vibration
measurements	such	as	modal	parameters	show	promise	for	the	health	evaluation	of	the	civil
structures.

The	development	of	a	structural	health	monitoring	strategy	requires	a	multidisciplinary
approach	involving	many	fields,	such	as	sensors	and	sensor	networks,	signal	processing,
modal	testing,	numerical	modelling,	probabilistic	analysis,	damage	diagnosis	and	damage
prognosis.	Each	of	these	topics	is	a	disciplinespecific	subject	by	itself,	and	is	equally
important	in	developing	effective	SHM	strategies.	Sensing	systems	are	critical	for	accurate
data	acquisition	and	transmission,	and	the	acquired	data	is	used	for	signal	processing	to	extract
key	features	sensitive	to	local	damage.	Modal	testing	and	analysis	is	adopted	to	identify	modal
parameters	from	vibration	measurements,	and	the	obtained	modal	data	can	be	used	for	model
updating	and	damage	assessment.	Probabilistic	approaches	are	needed	for	numerical
modelling	to	account	for	uncertainties,	and	provide	an	essential	framework	for	reliability
analysis	and	damage	prognosis.	The	objective	of	this	book	is	to	integrate	these	topics	with	the
specific	focus	on	developing	SHM	strategies	for	large	civil	engineering	structures.

This	book	aims	to	explain	the	principles	of	the	SHM	strategy,	and	so	it	covers	all	aspects	of
sensing	system,	data	processing	and	analysis,	damage	assessment	and	decision	making	for
structural	monitoring	and	health	evaluation	of	large	civil	engineering	structures.	The	book
consists	of	four	major	parts.	First,	sensors	and	sensing	technology	and	data	transmission
systems	are	introduced	for	monitoring	of	civil	structures.	From	the	data	measured	from	the



monitoring	system	on	the	structure,	modal	analysis	techniques	are	presented	to	extract	modal
parameters,	which	are	used	to	update	and	validate	the	associated	finite	element	numerical
model.	Then,	various	methods	are	provided	for	identifying	the	existence,	location	and	extent	of
damage	in	civil	structures	using	the	measured	data	and	their	derivatives.	Finally,	from	the
continuously	monitored	data,	probabilistic	approaches	are	utilised	for	deterioration	modelling
and	reliability	analysis,	giving	the	basis	for	decision	making.	The	techniques	for	the	SHM
strategy	are	well	explained	in	a	number	of	examples	and	are	also	demonstrated	in	many	real
case	studies.

This	book	can	be	used	as	the	textbook	for	a	graduate	level	course	on	structural	health
monitoring	with	emphasis	on	civil	engineering	structures.	Also,	the	book	can	be	used	as	a
guide	for	the	practising	engineers	who	want	to	apply	SHM	techniques	in	practice.	The	book	is
written	with	an	assumption	that	the	reader	has	a	basic	engineering	background	and	needs
knowledge	of	little	more	than	undergraduate	level	mathematics.	Furthermore,	the	book	is	an
invaluable	reference	for	those	undertaking	research	in	the	areas	of	structural	monitoring	and
health	evaluation	of	civil	engineering	structures.

In	this	book,	several	real	case	studies	on	health	monitoring	of	civil	engineering	structures,	such
as	Tsing	Ma	Bridge,	Ting	Kau	Bridge	and	Canton	Tower,	are	generously	contributed	by
Professor	YiQing	Ni,	The	Hong	Kong	Polytechnic	University.	These	practical	applications
cover	various	areas	in	structural	health	monitoring	technology	including	sensors	and	sensing
networks,	data	transmission	and	processing	systems,	structural	damage	identification
techniques	and	usage	monitoring	systems,	which	are	used	as	examples	in	several	chapters,	such
as	Chapter	2,	Chapter	3,	Chapter	7	and	Chapter	10.	The	book	would	not	be	complete	without
these	practical	examples,	thus	deepest	gratitude	must	go	to	Professor	YiQing	Ni	and	his
colleagues,	in	particular	Professor	J.M.	Ko,	Dr.	K.Y.	Wong	and	Dr.	X.W.	Ye.

Finally,	the	author	is	indebted	to	many	people	for	their	direct	and	indirect	assistance	in	the
preparation	of	this	book.	The	author	would	like	to	thank	the	former	and	current	colleagues,
research	fellows	and	PhD	students	for	their	support	and	useful	works,	particularly	Dr.	T.L.
Huang,	Dr.	T.S.	Maung,	Dr.	J.	Nepal	and	Mr.	C.	Zhang.	The	author	deeply	thanks	his	family	for
their	continuous	patience	and	understanding;	especially	Chengheng	Xiao,	Helen,	Alice	and
Xuezhang	have	been	the	constant	supporters.

November	2017

HuaPeng	Chen,	in	London
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1
Introduction	to	Structural	Health	Monitoring
Structural	Health	Monitoring	(SHM)	is	a	process	of	inservice	health	assessment	for	a
structure	through	an	automated	monitoring	system,	and	it	is	a	key	element	of	costeffective
strategies	for	conditionbased	maintenance.	A	SHM	strategy	consists	of	many	important
components	including	sensing	network,	data	processing	and	analysis,	damage	assessment	and
decision	making.	SHM	technology	has	the	great	potential	to	offer	significant	economic	and
lifesafety	benefits.	However,	the	application	of	the	SHM	technology	to	actual	civil
engineering	structures	is	still	in	its	infancy,	and	it	requires	advancements	in	various	fields	due
to	its	multidisciplinary	nature.	Extensive	further	works	are	therefore	needed	to	ensure	that
infrastructure	managers	benefit	from	this	emerging	technology.	This	chapter	first	introduces	the
development	of	SHM	technology	and	the	framework	and	strategy	of	SHM	systems.	The	critical
issues	and	potential	benefits	of	the	application	of	SHM	to	large	civil	engineering	structures	are
presented.	Finally,	the	challenges	of	SHM	technologies	in	civil	engineering	applications	and
the	required	further	studies	are	discussed.

1.1	Advances	in	Structural	Health	Monitoring
Technology
The	structural	health	monitoring	process	involves	the	observation	and	evaluation	of	a	structure
over	time	using	periodically	sampled	measurements	from	a	sensing	system.	Structural	health
monitoring	is	a	popular	and	growing	research	field,	providing	a	powerful	tool	for	damage
assessment	and	performance	evaluation	of	engineering	structures.

1.1.1	Structural	Health	in	Civil	Engineering
Civil	infrastructure	comprises	bridges,	buildings,	towers,	pipelines,	tunnels,	dams	and	other
types	of	structures.	Their	continued	safe	and	economical	operation	largely	depends	on	proper
maintenance	and	management.	In	order	to	evaluate	optimal	management	strategies	for	existing
civil	infrastructure,	accurate	assessment	of	present	and	future	safety	is	important	and	necessary
(Ettouney	and	Alampalli	2012).	Maintaining	safe	and	reliable	civil	infrastructure	for	daily	use
is	critical	to	the	wellbeing	of	the	society.	Thus,	structural	health	can	be	stated	as	its	current
capacity	for	providing	intended	level	of	service	in	a	safe	and	costeffective	manner	against
the	expected	hazards	during	its	service	life.

Despite	the	necessary	design	methodology	initially	used,	civil	engineering	structures
deteriorate	with	time.	This	deterioration	is	due	to	various	reasons,	including	failure	caused	by
cyclic	traffic	loads,	effects	of	environmental	factors	(e.g.	steel	corrosion,	concrete
carbonation)	and	aging	in	the	construction	materials.	Also,	the	deterioration	can	be	caused	by
infrequent	extreme	events	such	as	earthquakes,	hurricanes	and	floods.	Therefore,	structural



health	will	be	affected	by	operational	and	environmental	factors,	including	normal	load
conditions,	current	and	future	environments	and	expected	hazards	during	the	lifetime.	All	these
factors	are	variables	with	uncertainties,	so	it	is	difficult	to	define	the	structural	health	in	terms
of	its	age	and	usage	and	its	level	of	safety	to	resist	severe	natural	actions.	In	order	to	reliably
assess	structural	health	and	maintain	structural	safety,	continued	inservice	monitoring	of	the
structure	is	essential.

Catastrophic	structural	failures,	such	as	sudden	collapse	of	the	I35	highway	bridge	(NTSB
2008),	have	highlighted	problems	associated	with	aging	critical	civil	infrastructure.	Severe
natural	disasters	such	as	earthquakes	and	typhoons	result	in	demands	for	quick	condition
assessment	of	civil	structures	(Brownjohn	et	al.	2011).	Currently,	the	condition	assessment	of
existing	civil	infrastructure	such	as	bridges	largely	depends	on	visual	inspection.	This
subjective	and	inaccurate	condition	assessment	methodology	has	been	identified	as	the	most
critical	technical	barrier	to	effective	infrastructure	management.	For	example,	condition	of
bridges	is	typically	expressed	in	terms	of	subjective	indices	on	the	basis	of	visual	inspection
alone.	Thus,	it	is	difficult	to	accurately	evaluate	structural	condition	from	the	inaccurate	visual
inspection	data,	even	when	this	may	be	conducted	by	experts	(Aktan	et	al.	1998).	These	issues
have	driven	the	research	and	development	on	the	continuous	observation	and	interpretation	of
fullscale	performance	of	civil	engineering	structures	during	their	service	life.

Health	monitoring	applications	based	on	advanced	sensors	and	realtime	monitoring	for	civil
infrastructure	offer	great	potential	for	informed	and	effective	infrastructure	management.	Health
monitoring	is	necessary	for	civil	engineering	structures	since	they	may	exhibit	premature
deterioration,	structural	damage	and	performance	problems,	or	they	may	even	have	aged
beyond	their	expected	design	life.	Health	monitoring	can	be	utilised	for	tracking	the	responses
of	a	structure	along	with	inputs,	if	possible,	over	a	sufficient	duration	to	determine	anomalies,
to	detect	deterioration	and	to	assess	damage	for	decision	making.	Damage	assessment	methods
using	measured	vibration	modal	data,	such	as	natural	frequencies	and	mode	shapes,	show
promise	for	the	health	evaluation	of	engineering	structures	(Bicanic	and	Chen	1997,	Chen
1998).	Health	monitoring	can	assess	the	performance	of	civil	structures	in	a	proactive	manner
using	measured	data	and	data	interpretation	algorithms,	in	order	to	correctly	evaluate	the
current	condition	and	to	predict	the	remaining	service	life.

1.1.2	Aims	of	Structural	Health	Monitoring
Structural	health	monitoring	is	defined	as	the	process	of	implementing	a	damage	identification
and	health	evaluation	strategy	for	engineering	structures.	SHM	uses	sensing	systems	and
associated	hardware	and	software	facilities	to	monitor	the	structural	performance	and
operational	environments	of	engineering	structures.	SHM	involves	the	observation	of	a
structure	over	time,	using	periodically	sampled	structural	response	and	operational
environment	measurements	from	an	array	of	sensors	and	then	the	evaluation	of	the	current	state
and	future	performance	of	the	structure.	For	longterm	 SHM,	the	output	of	this	process	is
periodically	updated	information	regarding	the	capability	of	the	structure	to	perform	its
intended	function,	by	considering	the	inevitable	aging	and	degradation	resulting	from
operational	environments	(Farrar	et	al.	2003).	Furthermore,	SHM	is	adopted	for	rapid



condition	assessment	to	provide	prompt	and	reliable	information	regarding	the	integrity	of	the
structure	after	extreme	events,	such	as	an	earthquake	or	blast	loading.

SHM	aims	to	identify	structural	damage	and	evaluate	the	health	of	the	structure	using	monitored
data.	Damage	is	defined	here	as	changes	to	the	material	and/or	geometric	properties	of	a
structure,	which	affects	the	current	state	and	future	performance	of	the	structure.	The	objectives
of	an	SHM	strategy	can	be	outlined	as	the	following	five	levels	(Farrar	et	al.	2009).

Level	I:	Damage	detection,	giving	a	qualitative	indication	that	damage	might	be	present	in
the	structure

Level	II:	Damage	localisation,	giving	information	about	the	probable	position	of	damage

Level	III:	Damage	classification,	giving	information	about	the	type	of	damage

Level	IV:	Damage	assessment,	giving	an	estimate	of	the	extent	of	damage

Level	V:	Damage	prognosis,	giving	information	about	the	safety	of	the	structure,	e.g.
estimate	of	remaining	useful	life

The	level	in	the	order	given	above	represents	increasing	knowledge	of	the	damage	state.	A
higher	level	usually	requires	information	available	about	all	lower	levels.	The	first	two	levels,
damage	detection	and	localisation,	can	be	generally	achieved	using	vibration	based	damage
detection	methods	from	structural	dynamic	response	measurements.	To	identify	the	type	of
damage,	data	from	structures	with	the	specific	types	of	damage	must	be	available	for
correlation	with	the	measured	data.	Analytical	models	are	usually	needed	to	achieve	the	fourth
and	fifth	levels,	damage	assessment	and	prognosis.	In	general,	these	two	levels	may	not	be
achieved	without	first	identifying	the	type	of	damage	present.	Estimates	of	the	future	loading,
together	with	predictive	deterioration	models,	are	necessary	to	accomplish	the	final	level	for
damage	prognosis.

SHM	strategies	offer	useful	information	for	optimising	maintenance	planning	of	engineering
structures	in	service.	To	ensure	a	reliable	operation	and	to	schedule	maintenance	and	repair
work	in	a	costeffective	manner,	it	is	necessary	to	continuously	monitor	and	assess	the
structural	performance	and	to	have	an	accurate	estimation	of	the	remaining	useful	life.	Thus,	the
SHM	strategy	integrated	with	lifecycle	management	is	necessary	to	calibrate	structural
assessment	and	predictions,	to	enable	optimal	operation	and	maintenance	of	engineering
structures	and,	eventually,	to	operate	the	structures	beyond	their	original	design	life.

1.1.3	Development	of	SHM	Methods
Structural	damage	identification	based	on	changes	in	the	dynamic	response	of	the	structure	has
been	practised	in	a	qualitative	manner	for	a	long	time.	The	beginnings	of	this	damage	detection
method	as	an	area	of	interest	to	engineers	can	be	traced	back	as	far	as	the	time	when	tap
testing	(e.g.	on	train	wheels)	for	fault	detection	became	common.	This	field,	however,	did	not
really	become	established	in	research	communities	until	the	1980s,	when	much	interest	was
generated	in	the	structural	condition	of	offshore	platforms,	and	later	in	the	health	of	aerospace
structures.	Recently,	the	development	of	quantifiable	SHM	methods	has	been	closely	linked



with	the	evolution	and	cost	reductions	of	digital	computing	hardware	and	sensing	systems.	In
conjunction	with	these	developments,	SHM	has	received	considerable	attention	in	the	technical
literature.	The	details	of	literature	surveys	on	SHM	development	can	be	found	in
comprehensive	reviews	by	Doebling	et	al.	(1996)	and	Sohn	et	al.	(2004).

The	civil	engineering	community	has	investigated	vibration	based	damage	identification	of
bridge	structures	and	buildings	since	the	early	1980s.	Modal	properties,	and	the	associated
quantities	derived	from	these	properties,	such	as	mode	shape	curvature	and	dynamic	flexibility
matrix	indices,	were	the	primary	features	used	to	identify	damage	in	the	civil	engineering
structures.	Environmental	and	operational	condition	variability	(e.g.	variation	of	temperature)
presents	significant	challenges	to	the	health	monitoring	of	the	civil	structures.	The	physical	size
of	the	civil	structures,	typically	in	large	scale	with	numerous	components,	also	presents	many
practical	challenges	for	vibration	based	damage	assessment.	Furthermore,	the	requirement	for
realtime	structural	condition	assessment	after	severe	discrete	events	(e.g.	aerodynamic	gust
loads	on	long	span	bridges,	earthquake	loading	on	civil	infrastructure)	is	also	a	major
challenge	for	SHM	technology.	Regulatory	requirements	in	Asian	countries	such	as	in	China
are	driving	current	research	and	commercial	development	of	SHM	systems	for	large	civil
engineering	structures	(Farrar	and	Worden	2007).	Nowadays,	SHM	is	a	popular	and	still
growing	research	field,	which	is	more	and	more	becoming	a	focus	of	the	civil	engineering
community.

Recently,	advances	have	been	made	in	various	branches	of	technology,	including	sensing
instrumentation,	signal	acquisition	and	transmission,	data	processing	and	analysis	and
numerical	simulation	and	modelling.	These	technological	advancements	enable	the	required
current	and	historical	information	of	the	civil	structures	to	be	collected	and	analysed
effectively.	SHM	strategies	take	advantage	of	the	technological	advancements	for	accurately
evaluating	the	health	of	civil	structures	using	realtime	monitored	data.

1.2	Structural	Health	Monitoring	System	and	Strategy
A	health	monitoring	system	for	civil	structures	often	includes	observation	by	sensing	systems
and	the	evaluation	by	data	interpretation	algorithms.	In	general,	both	global	and	local	health
monitoring	strategies	are	important	for	effective	damage	identification	and	safety	assessment	of
large	civil	engineering	structures.

1.2.1	SHM	System	and	its	Components
The	development	of	successful	SHM	methods	generally	depends	on	two	key	factors:	sensing
technology	and	the	associated	signal	analysis	and	interpretation	algorithms.	An	SHM	system
generally	consists	of	many	key	components,	including	sensors,	data	acquisition,	data
transmission,	data	processing,	data	management,	health	evaluation	and	decision	making.	Each
of	these	components	is	equally	important	in	assessing	the	health	state	of	a	civil	structure.	The
sensing	component	of	the	SHM	system	includes	the	selection	of	sensor	types,	their	number	and
location.	The	data	acquisition	component	involves	selecting	the	excitation	methods,	signal



conditioning	and	data	acquisition	hardware.	The	measured	data	needs	to	be	transmitted	by
wired	or	wireless	transmission	networks.	The	data	processing	component	typically	includes
data	validation,	normalisation,	cleansing,	fusion	and	compression.	This	preprocessed
monitoring	data	is	then	stored	and	managed	properly.	From	this	data,	the	health	of	the	structure
can	be	evaluated	and	then	a	decision	will	be	made	on	the	basis	of	the	health	assessment.

Bridges	are	major	applications	of	SHM	systems	due	to	their	largescale	and	structural
complexity.	In	general,	bridge	health	monitoring	process	involves	the	collection	and	analysis
of	data	for	the	execution	of	the	following	four	categories	of	works:

Observation,	e.g.	collection,	processing,	analysis	and	reporting	of	all	observed	(measured
and	derived)	data	from	the	sensory	systems

Evaluation,	e.g.	realtime	or	near	realtime	performance	analysis	of	the	structure	under
monitoring,	and	offtime	diagnostic	and	prognostic	analyses	of	the	structure	under	normal
operations	or	after	extreme	events

Rating,	e.g.	ranking	and	prioritisation	of	structural	components	for	planning	and	scheduling
of	inspection	and/or	maintenance	activities

Management,	e.g.	systematic	storage	and	fast	retrieval	of	all	observation,	evaluation	and
rating	data	for	subsequent	interfacing	analysis	and	display

The	SHM	system	architecture	of	a	bridge	is	generally	composed	of	four	key	subsystems,	as
demonstrated	in	the	applications	to	longspan	bridges	(Wong	and	Ni	2009)	and	as	shown	in
Figure	1.1:

Structural	health	observation	system	(SHOS),	devised	as	an	onstructure	instrumentation
system	including	sensory	system	and	equipped	with	appropriate	data	processing,	analysis
and	reporting	software	tools

Structural	health	evaluation	system	(SHES),	devised	as	a	computation	system	equipped
with	relevant	preconstructed	analytical	models	to	carry	load	demand	analysis	and	load
resistance	analysis

Structural	health	rating	system	(SHRS),	devised	as	an	analytic	database	system	equipped
with	relevant	customised	software	tools	and	databases	for	evaluating	the	condition	ratings
of	the	structure	and	its	components

Structural	health	data	management	system	(SHDMS),	devised	as	a	data	and	information
management	system	for	systematic	storage	and	fast	retrieval	of	all	data	by	means	of	data
warehouse	platform	and	data	warehouse



Figure	1.1	System	architecture	and	operation	diagram	of	a	SHM	system	for	a	bridge.

1.2.2	SHM	Strategy	and	Method
SHM	strategies	can	broadly	be	categorised	into	two	groups:	global	and	local.	In	general,	both
global	and	local	monitoring	strategies	provide	different	types	of	information,	and	support
different	types	of	analysis.	Figure	1.2	shows	global	and	local	monitoring	strategies,	the	types
of	information	collected	and	the	associated	measurement	types	(Frangopol	and	Messervey
2009).



Figure	1.2	Structural	health	monitoring	strategies	for	civil	engineering	structures	(after
Frangopol	and	Messervey	2009).

Selecting	an	appropriate	monitoring	strategy	largely	depends	on	the	structure	concerned,	the
type	of	analysis,	or	both.	For	example,	a	global	monitoring	approach	has	to	be	chosen	when
accessibility	to	specific	parts	of	the	structure	is	impossible.	For	a	global	monitoring	system,
accelerometers	would	be	an	appropriate	instrument	for	measuring	the	dynamic	response	(i.e.
accelerations)	of	the	structure	subjected	to	forced	or	ambient	vibration.	The	measured
acceleration	data	can	be	used	for	extracting	modal	parameters	such	as	natural	frequencies	and
mode	shapes.	This	extracted	modal	data	then	can	be	used	for	updating	the	structural	parameters
of	the	analytical	model,	or	for	identifying	structural	damage	using	global	SHM	techniques.
However,	in	the	cases	when	analysing	a	specific	structural	failure	mechanism	at	local	area
such	as	crack	or	fatigue,	information	on	the	local	material	and	geometrical	properties	as	well
as	stress	state	may	be	needed	to	assess	the	structural	condition	at	the	local	level.	Typically,
nondestructive	testing	techniques	such	as	ultrasound	could	be	used	to	identify	the	local
damage	in	the	structure.

Global	monitoring	strategies	have	been	the	traditional	tool	used	to	assess	the	safety	of	large
civil	engineering	structures	such	as	bridges.	Ideally,	by	use	of	measured	parameters,	health
monitoring	of	civil	structures	has	the	ability	to	identify	the	location	and	severity	of	damage	in
the	structures	when	damage	occurs.	However,	existing	global	SHM	methods,	such	as	some
vibration	based	damage	detection	methods,	may	only	determine	whether	or	not	damage	is



present	somewhere	in	the	entire	structure.	These	global	methods	are	important	for	checking	if
damage	has	occurred	in	the	structure.	Once	damage	presence	is	detected,	further	examination
of	the	structure	to	determine	the	exact	location	and	severity	of	the	damage	can	be	undertaken.
Then,	local	SHM	methods,	such	as	guided	waves	to	measure	the	state	of	stress	or	eddy	current
techniques	to	locate	cracks,	are	adopted	to	determine	the	exact	location	and	extent	of	the
damage.	Nondestructive	testing,	used	here	as	a	local	SHM	method,	is	often	timeconsuming
and	expensive,	and	access	is	not	always	possible	(Chang	et	al.	2003).	Therefore,	both	global
and	local	SHM	strategies	are	necessary	in	health	monitoring	of	large	civil	structures.

1.3	Potential	Benefits	of	SHM	in	Civil	Engineering
Civil	engineering	structures	are	typically	large	and	are	constructed	with	uncertainties.	Their
inservice	behaviour	is	often	affected	by	environmental	factors.	These	issues	make	SHM
strategies	in	civil	engineering	a	challenge.	However,	the	application	of	SHM	strategies	to	civil
structures	will	bring	many	benefits,	such	as	structural	safety	and	cost	savings.

1.3.1	Character	of	SHM	in	Civil	Engineering
Unlike	aerospace	or	automotive	structures,	civil	structures	are	not	built	with	the	same	level	of
precision.	In	many	cases,	because	of	onsite	construction	constraints	and	varying	ground
conditions,	the	structure	may	not	be	constructed	according	to	the	archived	design.	Accuracy	of
implementation	and	uncertainty	of	workmanship	are	often	an	issue.	Total	uniformity	of	material
can	never	be	achieved	when	concrete	materials	are	used.	Furthermore,	the	behaviour	of	civil
structures	is	usually	affected	by	environmental	factors	such	as	temperature	and	moisture.	For
example,	the	natural	frequencies	of	a	bridge	are	often	related	to	the	temperature	variation
around	the	bridge	due	to	thermal	effects.	For	health	evaluation	of	civil	structures,	physical
models	based	on	idealised	behaviour	such	as	perfect	pin	or	rigid	connections	can	never	reflect
what	is	achieved	in	practice.	It	is	often	not	possible	to	obtain	the	data	necessary	for	building	an
accurate	physical	model	(Chang	et	al.	2003).	These	problems	make	the	health	monitoring	and
evaluation	of	civil	infrastructure	a	challenge,	in	particular	for	modelbased	(physicsbased)
SHM	techniques.

Civil	structures	deteriorate	with	time	due	to	operational	loads	and	environmental	effects.
Structural	damage	such	as	fatigue	caused	by	repetitive	traffic	loads	often	occurs	in	the
structure.	Meanwhile,	largescale	discrete	events	such	as	earthquakes	and	 hurricanes	can
cause	serious	structural	damage.	Typical	examples	are	aerodynamic	gust	loads	on	long	span
bridges	and	earthquake	loading	on	all	types	of	civil	infrastructure.	Thus,	the	following
assessment	through	an	SHM	strategy	would	typically	be	necessary	(Karbhari	2009):	(a)
damage	to	the	structure	and	changes	in	the	structural	resistance,	(b)	probability	of	failure	or	of
the	structure’s	performance	falling	below	a	certain	threshold,	(c)	evaluation	of	the	severity	of
damage	and	the	remaining	service	life.

Vibration	based	damage	identification	methods	show	promise	for	global	damage	assessment	of
large	civil	structures	(Chen	and	Maung	2014).	These	damage	identification	methods	can	be



broadly	divided	into	two	groups:	databased	and	modelbased	techniques.	Databased
techniques	adopt	measurements	directly	to	assess	the	current	state,	but	may	only	be	able	to
detect	the	existence	of	damage.	Modelbased	techniques	require	a	validated	initial	physical
model	of	the	structure	(baseline)	for	locating	and	assessing	damage	in	the	structure	(Chen	and
Bicanic	2000,	Chen	2008).	Their	dependence	on	baseline	data	can	be	an	issue	in	global
damage	assessment,	since	environmental	effects	such	as	temperature	can	change	the	vibration
measurements	from	an	undamaged	structure.	Thus,	the	environmental	effects	need	to	be	treated
properly	in	the	damage	identification	process.

Although	the	field	of	SHM	as	applied	to	civil	structures	is	still	in	its	infancy,	it	is	already
demonstrating	significant	advantages	not	only	in	the	safety	assessment	of	existing	structures	but
also	in	paving	the	way	for	both	a	better	understanding	of	structural	response	and	the
development	of	design	codes.	It	is	expected	that	the	further	development	of	SHM	systems	in
civil	engineering	will	lead	to	the	establishment	of	a	comprehensive	methodology	for	automated
health	monitoring	of	civil	structures,	so	that	true	condition	based	inspection	and	maintenance
would	become	a	reality	(Karbhari	2009).	The	integration	of	advanced	sensing	networks	with
the	development	of	effective	tools	for	realtime	data	analysis	provides	useful	tools	for	current
condition	assessment,	remaining	life	prediction	and	optimal	repair	planning	of	civil	structures,
as	illustrated	in	Figure	1.3.	In	addition,	the	use	of	an	appropriately	designed	SHM	system
would	enable	further	understanding	of	structural	response	through	data	analysis	and
interpretation.	This	would	also	lead	to	better	and	more	refined	methods	of	structural	design.	As
a	result,	all	of	these	would	generate	innovations	in	the	design	and	maintenance	of	civil
structures,	leading	to	the	development	of	a	modern	field	of	smart	civil	infrastructure.

Figure	1.3	Integrated	framework	for	health	monitoring	and	evaluation	of	civil	structures.

1.3.2	Potential	Benefits	of	SHM



Structural	health	monitoring	technologies	have	the	potential	to	improve	the	design	and
management	of	civil	structures	in	several	ways	(Frangopol	and	Messervey	2009,	Ko	and	Ni
2005):

performance	based	design	can	be	undertaken	by	recording	sitespecific	environmental
conditions	such	as	wind,	load	demands	or	temperature

design	assumptions	and	parameters	can	be	validated	with	the	potential	benefit	of	improving
design	specifications	and	guidelines	for	future	similar	structures

inspections	can	be	scheduled	on	an	“as	needed”	basis	informed	by	structurespecific	data
when	indicated	by	monitoring	data

performance	thresholds	can	be	established	to	provide	warning	when	prescribed	limits	are
violated,	such	as	for	anomalies	in	loading	and	response

realtime	safety	assessment	can	be	carried	out	during	normal	operations	or	immediately
after	disasters	and	extreme	events

accuracy	of	structural	assessments	can	be	improved	by	analysing	recorded	structural
response	data

more	accurate	information	can	be	used	for	optimally	scheduling	maintenance	and	repair
activities,	leading	to	cost	savings.

Among	these	potential	benefits,	the	first	and	most	obvious	benefit	is	increased	human	safety.
Unsurprisingly,	the	majority	of	the	research	on	SHM	strategies	has	been	motivated	by	disasters
such	as	bridge	collapses.	Even	at	the	lowest	level	of	SHM	strategies,	e.g.	detection	of	damage
existence	or	strength	degradation,	they	can	be	hugely	beneficial	if	used	to	provide	an	early
warning	for	safety	issues	(Cross	et	al.	2013).	In	addition,	with	an	automated	SHM	system,	any
inaccessible	areas	of	a	structure	can	be	assessed	to	increase	safety,	while	these	areas	may	have
been	neglected	in	a	visual	inspection	routine.

Other	arising	benefits	will	come	from	the	policy	change	that	sophisticated	SHM	systems	could
generate.	Currently,	most	civil	structures	undergo	routine	inspection	and	maintenance	at
specific	time	intervals.	For	example,	bridge	inspections	in	the	USA	are	scheduled	every	two
years.	A	time	based	approach	to	management	of	civil	structures	has	the	implication	that	any
unexpected	faults	occurring	in	between	scheduled	inspections	may	be	ignored	and	cause
danger	to	life.	On	the	other	hand,	the	set	timescales	for	inspections	of	civil	structures	may	be
unreasonably	conservative.	If	a	structure	continues	to	be	in	good	health,	the	costs	of	thorough
inspections	could	have	been	saved.	In	the	case	of	routine	maintenance,	where	structural
components	may	be	replaced	even	if	they	are	in	excellent	condition,	the	economic	impact	may
be	even	greater.	SHM	strategies	have	the	ability	to	solve	both	sides	of	this	issue,	since
structural	monitoring	has	the	potential	to	become	continuous,	and	maintenance	could	become
condition	based	(Cross	et	al.	2013).	Use	of	condition	based	maintenance	could	also	reduce	the
downtime	that	a	structure	may	undergo	for	routine	and	emergency	maintenance.	This,	in	turn,
would	be	of	economic	and	environmental	benefit.

SHM	is	an	emerging	technology	that	will	allow	existing	time	based	maintenance	policies	to



evolve	into	potentially	more	costeffective	condition	based	maintenance	strategies.	The
concept	of	condition	based	maintenance	is	based	on	the	philosophy	that	SHM	on	a	structure
will	monitor	the	structural	response	and	notify	the	operator	that	damage	has	been	detected.	Life
safety	and	economic	benefits	associated	with	such	a	philosophy	will	only	be	realised	if	the
SHM	system	provides	sufficient	warning,	so	that	corrective	actions	can	be	taken	before	the
damage	evolves	to	a	failure	level	(Farrar	and	Worden	2007).	The	tradeoff	associated	with
implementing	an	SHM	system	is	that	it	requires	a	more	sophisticated	monitoring	system	to	be
deployed	on	the	structure	and	a	more	robust	data	analysis	procedure	to	be	used	for	interpreting
the	measured	data.

1.4	Challenges	and	Further	Work	of	SHM
The	development	of	SHM	methods	for	structural	damage	identification	has	now	achieved	some
degree	of	maturity.	However,	the	application	of	SHM	methods	for	practical	structural	health
evaluation	and	condition	based	maintenance	is	still	in	its	infancy.	Further	work	is	needed	to
ensure	that	infrastructure	managers	benefit	from	the	emerging	SHM	strategies.

1.4.1	Challenges	of	SHM	in	Civil	Engineering
Although	SHM	technology	has	advanced	significantly	over	the	past	decade,	there	are	still	many
significant	barriers	to	the	general	implementation	of	SHM	systems.	The	common	technical
challenges	to	the	adaptation	of	SHM	systems	in	practice	are	discussed	by	Farrar	and	Lieven
(2007)	and	Farrar	et	al.	(2009),	and	are	summarised	as	follows.

The	philosophy	of	vibration	based	SHM	methods	is	that	damage	will	alter	structural
parameters	such	as	stiffness	of	a	system,	which	in	turn	will	alter	the	measured	global
dynamic	response	properties	of	the	system.	Although	vibration	based	methods	appear
promising,	their	actual	application	in	civil	engineering	raises	many	significant	technical
challenges.	The	most	fundamental	challenge	for	vibration	based	methods	is	the	fact	that
damage	is	typically	a	local	phenomenon.	Damage	may	not	significantly	influence	the	lower
frequency	global	structural	dynamic	response,	which	is	normally	measured	during	system
operation.

Another	fundamental	challenge	for	SHM	methods	is	that	in	many	situations	feature
selection	and	damage	detection	must	be	performed	when	data	from	damaged	systems	is	not
available.	Moreover,	the	selected	feature	must	be	sensitive	to	small	damage	sizes,	e.g.	a
fatigue	crack	at	a	structural	component.	Large	complex	civil	structures	are	usually	made	up
of	numerous	components,	and	they	may	have	multiple	damage	present.	An	SHM	system	that
is	suitable	for	detecting	one	type	of	damage	may	not	be	useful	for	detecting	other	damage
types.

A	significant	challenge	for	SHM	systems	is	to	choose	properly	the	required	sensing	system
before	field	deployment,	and	to	ensure	that	the	sensing	system	itself	will	not	be	damaged	in
service.	The	number	and	location	of	the	sensors	need	to	be	optimally	determined,	and	a
certain	amount	of	redundancy	must	be	implemented	into	the	sensor	network.	Sensors	need



to	be	inexpensive	and	easy	to	implement,	so	that	they	can	be	attached	to	existing	civil
structures	with	little	effort.

Civil	structures	in	their	service	life	are	usually	subjected	to	changing	operational	and
environmental	conditions,	e.g.	temperature	and	moisture.	The	varying	conditions	will
generate	changes	in	structural	response	measurements,	which	should	not	be	interpreted	as
indications	of	damage.	For	example,	temperature	variation	can	affect	the	stiffness	of	a	civil
structure,	and	moisture	variation	can	influence	the	mass	of	concrete	and	pavements.	Thus,
these	changing	operational	and	environmental	conditions	must	be	accounted	for	during	the
damage	identification	process.

Damage	in	civil	structures	can	accumulate	over	a	long	timescale,	which	poses	significant
challenges	for	an	SHM	sensing	system.	This	problem	generates	many	practical	issues	for
accurate	and	repeatable	measurements	from	the	sensing	system	over	long	periods	of	time.
The	sensing	system	is	usually	expected	to	operate	for	the	life	of	the	civil	structure,	which
may	be	as	long	as	50	or	100	years.	Thus,	robust	sensing	system	is	needed	to	perform
reliably	for	lifetime	of	the	structure.

Finally,	there	are	other	nontechnical	issues	in	the	applications	of	SHM	technology	to
actual	practice.	For	example,	SHM	technology	has	to	provide	asset	managers	with	an
economic	benefit	over	current	maintenance	approaches.	In	the	meantime,	this	technology
has	to	provide	regulatory	agencies	with	a	significant	lifesafety	benefit.	Furthermore,
SHM	systems	need	more	effort	to	be	undertaken,	owing	to	its	multidisciplinary	nature.	It
requires	people	with	diverse	technical	expertise	and	a	significant	amount	of	technology
integration	and	validation.

As	SHM	technology	evolves,	it	is	anticipated	that	the	SHM	strategies	in	civil	engineering	will
be	used	for	many	purposes,	such	as	to	assess	structural	integrity	to	normal	and	extreme	loading
conditions,	to	estimate	the	reliability	of	the	structural	system	and	its	components	over	its
lifetime,	to	predict	the	remaining	service	life	and	to	determine	the	optimal	times	for
inspections	and	repairs.	SHM	strategies	in	actual	engineering	applications	will	become	a	huge
challenge	for	engineers	in	the	coming	decades,	because	of	their	multidisciplinary	and
complex	nature.

1.4.2	Further	Work	on	SHM	for	Practical	Applications
Although	extensive	efforts	have	been	made	in	research	on	SHM	technology,	this	technology	is
still	in	its	current	embryonic	stages	of	development.	For	real	applications	of	an	SHM	strategy,
more	studies	are	needed	for	the	health	evaluation	and	maintenance	planning	of	civil	structures
over	their	lifetime,	as	illustrated	in	Figure	1.4.	Further	works	for	the	development	of	effective
SHM	strategies	are	discussed	in	Miyamoto	(2009)	and	Farrar	and	Lieven	(2007),	and
summarised	as	follows.

Advance	of	sensing	systems	with	optimised	placement	of	networkable	sensors.	More
efforts	are	needed	to	develop	largescale,	selforganising	and	embedded	sensing
networks	for	a	wide	variety	of	applications.	Investigations	should	focus	on	developing



costeffective	dense	sensing	arrays	and	novel	approaches	to	powering	the	sensing
systems.	The	number	and	location	of	sensors	must	be	optimally	determined.	Sensors	must
be	properly	selected	and	be	sensitive	to	changes	in	structural	condition	caused	by	damage.
The	sensing	system	itself	must	be	more	reliable	than	the	structure	and	its	components	under
monitoring.

Advanced	signal	processing	techniques	for	robust	damage	identification.	The	accurate
definition	of	damage	and	novel	sensitive	features	(e.g.	damage	indices)	should	be
developed.	These	features	could	be	able	to	distinguish	not	only	the	location	and	the	extent
of	damage	but	also	the	types	of	damage	in	a	structure.

Predictive	modelling	for	future	loading	estimates.	A	successful	damage	prognosis
requires	the	current	state	assessment	and	the	strength	deterioration	prediction	when
subjected	to	future	loading.	Future	loading	should	be	forecast	from	the	analysis	of	previous
loading	histories	and	reliable	predictive	modelling	techniques.

Verification	and	validation	of	initial	and	damage	models	of	a	structure.	Reliable
identification	of	the	location	and	extent	of	damage	in	a	structure	largely	depends	on	the
quality	of	the	initial	physical	model	of	the	undamaged	structure.	Accurate	future
performance	predictions	are	based	on	the	predictive	deterioration	model	of	the	structure
subjected	to	cumulative	damage	over	time.	Thus,	the	initial	physical	model	and	the
predictive	damage	model	must	be	verified	and	validated.

Reliability	analysis	for	infrastructure	management	decision	making.	From	the	future
loading	estimate	and	the	predictive	deterioration	model,	the	probability	of	failure	over
lifetime	can	be	determined	using	timedependent	reliability	analysis.	As	a	result,	the
remaining	useful	life	can	be	estimated,	and	the	optimal	maintenance	strategy	can	be
determined	using	lifecycle	cost	analysis.

Need	for	longterm	proofofconcept	studies	on	SHM	systems .	There	are	very	limited
longterm	SHM	investigations	performed	on	actual	civil	structures.	These	investigations
are	difficult	to	undertake	due	to	their	costs	and	the	rapid	evolution	of	sensor	technology.
However,	such	investigations	are	necessary	to	deal	with	the	environmental	and	operational
variability	issues	and	to	develop	a	methodology	for	condition	based	maintenance.



Figure	1.4	SHM	strategy	for	health	evaluation	and	maintenance	planning	of	civil	structures.

These	topics	for	further	work	are	currently	the	main	focus	of	various	research	efforts	by	many
industries,	including	civil	infrastructure,	defence,	instrumentation	and	communication,	where
multidisciplinary	approaches	are	adopted	to	advance	the	current	capabilities	of	SHM
strategies.

1.5	Concluding	Remarks
The	development	of	robust	SHM	technology	for	costeffective	infrastructure	management	has
become	a	major	challenge	for	the	engineering	community.	For	a	civil	structure,	it	is	important
and	necessary	to	identify	damage	in	the	structure	at	the	earliest	possible	time.	Obviously,	SHM
technology	has	the	potential	to	offer	tremendous	economic	and	lifesafety	benefits.	However,
there	are	still	limited	examples	of	where	SHM	technology	has	made	the	successful	transition
from	research	to	practice.

Currently,	extensive	techniques	exist	for	structural	damage	assessment,	including	local	non
destructive	testing	techniques	and	global	vibration	based	damage	identification	methods.	Since
all	the	techniques	have	their	own	advantages	and	disadvantages,	there	is	no	general	approach
that	can	be	used	for	tackling	all	kinds	of	problems	in	various	structures.	In	general,	only
damage	above	a	certain	size	can	be	detected.	It	should	be	noted	that	a	reduction	in	stiffness
does	not	necessarily	mean	that	there	is	a	decrease	in	structural	strength.	The	quantification	of
damage	and	the	prediction	of	the	remaining	useful	lifetime	are	definitely	the	most	challenging
problems	in	SHM	strategies	(Montalvão	et	al.	2006).	Other	major	challenges	of	SHM
strategies	include	developing	and	integrating	advanced	sensing	networks,	robust	monitoring
systems	and	powerful	data	processing	and	analysis	algorithms.



Significant	future	development	of	an	SHM	strategy	requires	multidisciplinary	research
efforts	involving	fields	such	as	sensor,	signal	processing,	data	telemetry,	data	interpretation,
numerical	modelling,	probabilistic	analysis	and	computational	hardware.	In	general,	these
topics	are	the	focus	of	significant	disciplinespecific	research	efforts.	Thus,	these
technologies	must	be	advanced	and	integrated	with	the	specific	focus	of	developing	SHM
strategies.	Finally,	the	problem	of	global	SHM	methods	is	very	complex	and	diverse,	and	it	is
difficult	to	see	it	being	solved	in	the	immediate	future.	Advancements	in	SHM	will	be	made	in
increments,	requiring	focused	and	integrated	research	efforts	over	long	periods	of	time.
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2
Sensors	and	Sensing	Technology	for	Structural
Monitoring

2.1	Introduction
Sensors	are	instruments	that	detect	the	state	of	the	system	and	produce	the	appropriate
information	(e.g.	structural	responses	and	environmental	quantities)	for	health	assessment	of
civil	engineering	structures.	The	sensors	are	typically	used	for	(a)	safety	monitoring	and	active
safety	control	of	the	structure,	(b)	usage	monitoring	such	as	accumulating	strain	load	data	for
condition	assessment	and	future	design,	(c)	health	monitoring	for	current	state	estimate	and	(d)
deterioration	monitoring	for	future	performance	prediction	and	optimum	maintenance	strategy.

There	are	many	types	of	sensor	available	for	various	applications	of	health	monitoring	of	civil
infrastructure.	Traditional	sensing	techniques	such	as	piezoelectric	sensors	have	been
extensively	used	in	practice	for	many	decades.	Advanced	sensing	methods	such	as	micro
electromechanical	systems	(MEMS)	have	become	popular	in	civil	engineering	applications.
Recently,	emerging	sensing	techniques	such	as	fibre	optic	sensors	have	shown	superior
performance	compared	to	traditional	sensors.	Sensors	have	to	be	robust	and	must	operate
stably	and	reliably.	The	quality	of	sensors	should	not	be	altered	by	environmental	effects	such
as	temperature,	humidity	and	electromagnetic	fields.	Currently,	choosing	sensors	is	mainly	a
qualitative	process	based	on	the	expert’s	judgement.	Such	a	qualitative	process	has	the
advantage	of	simplicity,	but	it	may	provide	ineffective	solutions.

Sensors	should	be	properly	selected	on	the	basis	of	the	measurands	to	be	monitored.	In	order
to	identify	the	measurands	of	structural	health	monitoring,	important	issues	such	as	type	of	the
structure,	construction	materials,	environmental	conditions	and	expected	damage	and
degradation	phenomena,	must	be	accounted	for.	In	SHM	for	civil	engineering	structures,	the
most	common	measurands	are	mechanical	(e.g.	strain,	deformation,	displacement,	crack
opening,	stress	and	load),	environmental	(e.g.	temperature,	humidity	and	pore	pressure),	and
chemical	(e.g.	corrosion,	carbonation, pH	and	oxidation).	A	specific	measurand	can	often	be
monitored	by	various	types	of	sensor,	thus	proper	selection	of	sensors	is	important	for	a
successful	SHM	strategy.

Recently,	a	wide	range	of	work	using	SHM	systems	based	on	fibre	optic	sensing	technologies
has	been	carried	out	on	civil	engineering	structures,	e.g.	bridges,	tunnels,	highrise	buildings
and	pipelines.	Fibre	optic	sensors	use	light	as	both	a	transduction	and	signal	transmission
mechanism	by	modulating	light	parameters,	such	as	phase,	polarisation	state,	intensity	and
wavelength.	Fibre	optic	sensors	offer	many	advantages,	including	the	capability	for	embedment
in	solids	(e.g.	concrete),	wider	measuring	sensitivity	and	range,	insensitivity	to
electromagnetic	interference,	capability	for	continuous	(distributed)	sensing	and	ease	of
installation	(LopezHiguera	et	al.	2011).	In	addition,	fibre	optic	sensors	can	be	used	for



sensing	most	needed	measurands,	such	as	strain,	acceleration,	displacement	and	temperature.

In	response	to	the	high	costs	associated	with	tethered	SHM	systems,	the	use	of	wireless
communication	has	been	investigated	for	the	transfer	of	data	between	sensors	and	the	data
storage.	Such	wireless	monitoring	systems	are	assembled	from	lowcost	wireless	sensors	that
offer	sensing,	communication	and	computing	in	a	single	device	(Lynch	and	Loh	2006).
Compared	to	tethered	sensors,	wireless	sensors	have	several	advantages	including	limited
demands	for	connecting	hardware,	capability	for	higher	number	of	sensors,	lower	cost	per
sensor	and	power	sources	via	innovative	methods	(e.g.	solar,	ambient	vibration).

The	quality	of	the	measurements	and	thus	the	quality	of	SHM	achieved	largely	depends	on
which	sensors	are	selected	and	where	the	sensors	are	placed	on	the	structure.	Although
advances	continue	on	innovative	sensor	systems,	there	is	still	considerable	uncertainty	over
deciding	on	the	number	of	sensors	required	and	their	location,	in	order	to	obtain	adequate
information	on	structural	condition.	Thus,	deciding	on	an	optimal	sensor	placement	is	a	critical
issue	in	the	construction	and	implementation	of	an	effective	monitoring	system.	An	optimal
sensor	configuration	can	minimise	the	number	of	sensors	required,	increase	accuracy	and
provide	a	more	robust	monitoring	system.

This	chapter	first	explores	categories	of	sensors	for	health	monitoring	of	civil	engineering
structures.	The	most	common	physical	and	chemical	parameters	measured	in	structural
monitoring	are	discussed.	To	measure	these	parameters,	different	types	of	sensors	for	the
measurements	are	presented	with	practical	applications.	Emerging	sensing	techniques	such	as
fibre	optic	sensors	and	wireless	sensors	are	introduced	with	real	civil	engineering
applications.	Principles	for	appropriate	sensor	selection	and	optimal	sensor	placement	are
provided.	Finally,	a	case	study	is	given	to	show	the	application	of	sensors	and	sensing	systems
for	the	health	monitoring	of	a	constructed	highrise	structure.

2.2	Sensor	Types
Sensors	are	one	of	the	most	critical	components	of	an	SHM	strategy,	since	the	quality	of	the
analysis	results	directly	depends	on	the	quality	of	the	data	collected.	Sensing	is	a	process	that
produces	certain	information	about	the	state	of	a	system	by	interrogating	the	system	(Wong	and
Ni	2009),	as	illustrated	in	Figure	2.1.	Sensors	can	be	categorised	according	to	measurand	or
operating	principle.	Detailed	summaries	of	various	sensors	used	for	structural	monitoring	can
be	found	from	various	sources,	such	as	Doebelin	1990,	Glisic	and	Inaudi	2007,	Huston	2011,
and	Reese	and	Kawahara	1993.



Figure	2.1	Schematic	diagram	of	a	typical	sensory	system,	converting	measured	quantities	into
analogue	or	digital	signals.

Typical	sensing	methods	for	structural	monitoring	include	traditional	methods	(e.g.	ceramics
and	oxides	and	electromagnetic),	advanced	methods	(e.g.	microelectromechanical	and
thin/thick	film)	and	emerging	techniques	(e.g.	fibre	optic	and	wireless).	Table	2.1provides
typical	sensing	techniques	for	SHM	applications	along	with	their	measurement	types,	physical
principles	and	reliability	issues	(Blackshire	and	Jata	2009).



Table	2.1	Typical	sensing	methods	for	structural	health	monitoring.

Sensor	group Sensor	type Measurement
type

Physical	principle Reliability
issue

Ceramics	and
oxides

Piezoelectric Strain,
vibration,
ultrasound

Electromechanical Brittle	fracture,
disbond

Pyroelectric Temperature Thermoelectric Brittle	fracture,
disbond

Ferroelectric RFIDs,
vibration,
temperature

Dipole	moment Brittle	fracture,
disbond

Electromagnetic MWM,	Foil	EC Cracks,	fatigue,
corrosion

Dielectric,	eddy
currents

Electrical
short,
disbond

Microelectro
mechanical

MEMS Strain,
vibration,	force

Micromechanical
motions

Fracture,	wear,
short

Thin/thick	film Strain/crack	gauges Strain,	crack
growth

Electrical
resistance

Electrical
short,
disbond

Thermocouples Temperature Electrical
resistance

Oxidation,
disbond

Electrochemical Corrosivity,
chemical

Electrical
resistance

Electrical
short,
disbond

Fibreoptic EFPI,	Bragg	grating Strain,
temperature,
chemical

Optical
reflectance

Brittle	fracture,
pullout

Wireless Passive	sensor,
active	sensor

Strain,
vibration,	force

Sensing	interface Power	fault,
electrical	short

Traditional	sensing	techniques,	such	as	piezoelectric	(PZT)	sensors	and	meandering	winding
magnetometer	(MWM)array	sensors,	have	been	proven	to	be	reliable	and	stable.	Such
sensors	are	relatively	expensive,	and	they	are	typically	not	integrated	with	microprocessors.
Recently,	advanced	sensing	methods	have	progressed,	such	as	microelectromechanical
systems	(MEMS)	and	thin/thick	film.	MEMS	sensors	have	the	potential	to	impact	a	variety	of
sensing	activities,	based	on	their	versatility,	small	size	and	low	cost	when	manufactured	in
large	numbers.	MEMS	can	be	integrated	with	onboard	computing	to	make	these	sensors
selfcalibrating	and	selfdiagnosing.	The	thinfilm	strain	gauges	and	corrosivity	sensors	are
useful	for	structural	monitoring.	Fibre	optic	and	wireless	sensing	methods	are	emerging
technology	available	for	practical	applications.	Distributed	fibre	optic	sensors	are	capable	of



continuous	sensing,	and	cover	a	large	range	without	loss	of	accuracy.	Wireless	sensors	are	not
sensors	by	their	very	nature,	but	rather	are	autonomous	data	acquisition	nodes.	Such	sensors
can	be	used	to	perform	their	own	data	interrogation	tasks.
In	the	SHM	of	civil	engineering	structures,	various	types	of	sensors	are	often	adopted	for
measuring	different	types	of	physical	and/or	chemical	quantities.	The	key	factors	considered	in
the	selection	a	proper	type	of	sensor	for	monitoring	include:	type	of	measurand,	type	of	output
signal,	type	of	excitation,	measuring	range,	measuring	resolution,	measuring	accuracy,
measuring	linearity,	sampling	rate,	environmental	operation	limits	and	service	life.	Table	2.2
provides	the	examples	of	some	usual	factors	for	selecting	sensor	types	used	for	monitoring	of
operation	loads	and	structural	responses	of	civil	structures	such	as	bridges	(Wong	and	Ni
2009).	Table	2.3	gives	the	examples	of	sensor	types	used	for	monitoring	of	environmental
factors.



Table	2.2	Examples	of	sensors	used	for	monitoring	of	structural	responses	and	operation
loads.

Sensor	type Measurand Measuring
range

Measuring
accuracy

Resolution Sampling
rate

Excitation
/Signal
type

Triaxial
servotype
accelerometer

Acceleration	in
three	orthogonal
directions

±30 g — 1 µg ≥100 Hz Voltage/
Analogue

Vibration	type
strain	gauge

Strain	in
concrete

±4000 με 0.1%	of	full
scale

1 με ≥20 Hz Voltage/
Analogue

Load	cell Stress	in	tendon 100 kN	to
10,000 kN

0.25%	of
full	scale

— ≥20 Hz Voltage/
Analogue

Weldable	foil
type	strain
gauge

Stress	in
structural	steel

±3500 με 0.1%	of	full
scale

1 με ≥100 Hz Voltage/
Analogue

Global
position	system
(GPS)

Displacement	in
in	three
orthogonal
directions

— Horizontal:
3 mm	±0.5 
ppm
Vertical:	5 
mm	±1 ppm

— ≥20 Hz Voltage/
Digital

Biaxial
tiltmeter

Rotation	in	μ
radian

Low	gain:
±8000 µ
radian
High	gain:
±800 µ
radian

— ±0.1 µ
radian

≥20 Hz Voltage/
Digital

Displacement
transducer

Uniaxial
displacement

±500 mm ±0.5%	of
full	scale

1 mm ≥20 Hz Voltage/
Analogue

Dynamic
weightin
motion	station

Axleload;
Axlespeed

0.5–20 ton;
5–200 kph

±0.6%;
≥9.0%

— ≥215 Hz Voltage/
Analogue

High	definition
video	cameras

Image	of
highway	traffic
composition

— — — — Voltage/
Digital

Table	2.3	Examples	of	sensors	used	for	monitoring	of	environmental	factors.

Sensor	type Measurand Measuring
range

Measuring
accuracy

Resolution Sampling
rate

Excitation
/Signal
type



Triaxial
ultrasonic	type
anemometer

Wind	speed	in	three
orthogonal	direction

0–100 m/s ±1%RMS 0.01 m/s ≥20 Hz Voltage/
Digital

Ambient
temperature	and
relative
humidity	sensor

Ambient	air
temperature

−20 °C	to
+60 °C

0.1 °C — 0.02 Hz Voltage/
Analogue

Relative	humidity 0–100% ±2% 0.1% — Voltage/
Analogue

Temperature
inside	structural
components

Temperature	in
steel/concrete/pavement
section

−40 °C	to
+60 °C

±0.1 °C 0.01 °C 0.02 Hz Voltage/
Analogue

Temperature	in	cable −40 °C	to
+200 °C

— — Slow Optical	/
Digital

Strain	in	cable Distributed
type	(in
km)

±100 με — Slow Optical/
Digital

Electrochemical
corrosion	cells
for	embedded
steel
reinforcement

Corrosion	potential −200 mV
to	+2000 
mV

±0.2 mV 0.2 mV Slow Voltage/
Analogue

Corrosion	current −2 mA	to
+2 mA

±200 nA 200 nA Slow Voltage/
Analogue

Concrete	resistivity 0	to	7 mΩ ±1 Ω 1 Ω Slow Voltage/
Analogue

Linear	polarisation
resistance

−1 kΩ	to
+1 kΩ

±1 Ω 1 Ω Slow Voltage/
Analogue

Concrete	relativity
humidity

0–100% ±2% 0.1% Slow Voltage/
Analogue

Concrete	temperature −40 °C	to
+60 °C

±0.1 °C 0.01 °C Slow Voltage/
Analogue

Electrochemical
gas	detector

Carbon	dioxide 0–5000 
ppm

±5%	of
full	scale

±1%	of
full	scale

30 
seconds
per
sample

Voltage/
Digital

Oxygen 0–25 vol%
Chloride 0–3 ppm
Hydrogen	chloride 0–6 ppm
Carbon	monoxide 0–150 ppm

2.3	Sensor	Measurements	in	Structural	Monitoring
Sensors	are	typically	chosen	according	to	the	measurand	–	the	quantity	to	be	measured.	Three



categories	of	physical	and	chemical	quantities	should	be	considered	for	measuring	in	structural
monitoring	of	civil	engineering	structures:	structural	responses,	environmental	quantities	and
operational	quantities.

2.3.1	Structural	Responses
The	structural	responses	of	civil	structures	typically	include:	acceleration;	displacement;
velocity;	strain,	stress	or	force;	pressure	and	tilt.

Acceleration	–	Accelerometers	are	sensors	that	use	different	principles	for	measuring
accelerations.	There	is	a	wide	range	of	different	accelerometer	types	available	(Chen	and
Maung	2014,	Wong	and	Ni	2011),	as	shown	in	Figure	2.2.	However,	many	types	of
accelerometers	are	not	suitable	for	insitu	applications.	The	main	types	of	accelerometers
include:

piezoelectric	accelerometer

servoaccelerometer

capacitive	accelerometer

strain	gauge	accelerometer

MEMS	(capacitive	and	piezoresistive)	accelerometer

FBG	(fibre	Bragg	grating)	accelerometer

LVDT	(linear	variable	differential	transformers)	based	accelerometer

laser	vibrometer.

Figure	2.2	Accelerometers	used	in	vibration	monitoring	of	civil	engineering	structures.

The	selection	of	accelerometers	for	civil	infrastructure	applications	depends	on	cost,	dynamic
range,	resolution,	noise	floor,	frequency	range,	power	consumption,	cabling	requirements	and
limitations	and	conditioning	requirements	(Catbas	et	al.	2012).	During	the	selection	process,
the	challenging	civil	structure	environments,	such	as	low	frequency	and	low	level	vibrations,



need	to	be	considered.

Displacement	–	Structural	movements	may	comprise	both	dynamic	components,	caused	by
seismic,	wind	and	vehicular	loading,	and	quasistatic	components,	caused	by	thermal	effects,
settlement	and	variation	of	static	loading.	Displacements	are	usually	relative	values	and
require	definition	of	a	reference	datum.	They	are	typically	determined	with	respect	to	an
unloaded	or	undeformed	state.	Dynamic	displacements	related	to	vibrations	can	be	calculated
from	accelerations	by	double	integration	after	highpass	filtering.	Measurement	techniques
include	conventional	survey	techniques	and	advanced	methods	(Catbas	et	al.	2012),	such	as:

laser	and	LED	devices,	e.g.	laser	Doppler	vibrometers	(LDVM)

global	positioning	system	(GPS)

image	tracking	via	CCD	arrays

surveying	and	total	station

optical	marker	tracking

microwave	interferometry,	e.g.	radar	system

pneumatic	system

contacting	displacement	measurements,	e.g.	LVDT.

Laser	Doppler	vibrometers	are	useful	for	bridge	dynamic	testing	for	both	displacement	and
velocity	measurements.	However,	LDVMs	have	limitations	to	applications	for	modal	testing
since	they	cannot	measure	multiple	locations	simultaneously.	The	global	positioning	system	has
been	successfully	applied	for	measuring	displacements	of	large	civil	infrastructure,	such	as
long	span	bridges,	landslides	and	highrise	structures	(Ni	2014),	as	shown	 Figure	2.3.	GPS
can	offer	measurements	with	an	accuracy	of	a	few	millimetres	at	sample	rates	as	high	as	20 Hz.
GPS	is	a	promising	but	relatively	expensive	sensing	technology.	Alternatively,	displacements
could	be	derived	from	other	measurements,	such	as	acceleration,	velocity,	strain	or	rotation
signals.



Figure	2.3	Global	positioning	system	(GPS,	Leica	Geosystems	Model	1230)	used	in
construction	monitoring	of	Canton	Tower.

Velocity	–	Velocity	measurements	are	a	common	feature	of	seismic	studies.	LDVMs	can
measure	velocity	by	Doppler	shifting	of	light	frequencies.	They	are	noncontacting	and	can
operate	at	both	short	and	long	ranges,	but	they	are	generally	expensive	and	can	only	measure	at
a	single	point	at	a	time.	Alternatively,	velocities	can	be	measured	indirectly	by	integrating	the
accelerations	measured	from	LVDT	accelerometers.

Strain	–	Strain	gauges	are	widely	used	to	measure	strains	in	critical	structural	components,
such	as	girders,	rebar	and	concrete	decks.	The	measured	strain	data	can	then	be	utilised	to
calculate	stresses	and	evaluate	load	bearing	capacity	of	the	structure.	Only	differential	strain
can	be	measured	without	knowledge	of	a	baseline	value.	Due	to	thermal	effects,	self
temperature	compensating	type	sensors	are	preferred	in	the	cases	with	temperature	variations.
Typical	methods	used	for	measuring	strains	include:

foil	strain	gauges	or	piezoelectric	foil	gauges

demountable	strain	gauges

strain	transducers



vibrating	wire	gauges

fibre	optic	sensors,	e.g.	fibre	Bragg	grating	(FBG).

Electrical	resistance	strain	gauges	are	cheap	but	often	noisy.	Vibrating	wire	strain	gauges	are
popular	because	of	their	reliability	and	repeatability,	as	shown	in	Figure	2.4.	The	fibre	optic
sensing	method	is	an	emerging	technology;	it	can	provide	integrated,	quasidistributed	or	fully
distributed	strain	measurements.

Figure	2.4	Vibrating	wire	strain	gauges	(Geokon	Model	GK4200)	installed	at	the	inner	tube	of
Canton	Tower.

Stress	or	force	–	Direct	stress	measurement	instruments	are	relatively	rare.	Vibrating	wire
stress	cells	are	often	used	for	measurements	in	tunnel	linings,	and	in	concrete	boxgirder
bridges	(Catbas	et	al.	2012).	A	form	of	stress	cell	using	elastomagnetic	effects	can	be	used
for	monitoring	of	cable	forces,	such	as	for	posttensioning	tendons	and	stays,	main	cables	and
hangers	of	suspended	bridges.

Load	cells	are	mechanical	devices	for	measuring	naturally	or	mechanically	induced	loads	on
structures.	There	are	several	types	of	load	cells,	such	as	mechanical	load	cells	(hydraulic	or
pneumatic),	strain	gauge	based	load	cells	(shear	beam,	ring	and	pancake	and	bending	beam)



and	other	load	cells	(e.g.	fibre	optic	and	piezoresistant).	Currently,	most	commonly	used
load	cells	are	transducers	made	based	on	strain	gauges	and	their	principles.

Pressure	–	Pressure	measurement	technology	is	similar	to	force	measurement	technology,	such
as	by	using	vibrating	wire	pressure	sensors	for	static	measurements	and/or	piezoelectric
pressure	sensors	for	dynamic	measurements,	as	described	in	detail	in	Doebelin	(1990).	High
speed	pressure	on	surfaces	can	be	measured	via	pressure	taps,	a	standard	technology	in	wind
tunnel	testing.	Static	water	pressure	measurements	are	common,	for	example	in	piezometers	for
water	level	measurement	(Catbas	et	al.	2012).	Dynamic	water	pressure	measurements	are
required	to	understand	fluid–structure	interactions,	particularly	for	dams.

Tilt	–	Inclinometers	are	used	to	measure	inclination	(tilt)	of	structural	components	due	to
distress	in	the	system.	For	example,	they	are	often	utilised	to	assess	fixity	of	bridge	girders	at
supports	and	to	monitor	longterm	movements	of	bridge	piers,	abutments	and	girders.	There
are	several	types	of	inclinometers,	including	hydraulically	and	electrically	based.	The
hydraulic	inclinometers	are	simple,	but	not	suitable	for	dynamic	measurements.

2.3.2	Environmental	Quantities
Environmental	quantities,	such	as	temperature,	wind	and	corrosion	(due	to	aggressive
environments),	should	be	measured	during	monitoring	of	civil	engineering	structures.

Temperature	–	Temperature	measurements	are	often	needed	in	structural	monitoring,	since
many	structural	responses	and	parameters,	such	as	strains,	displacements	and	frequencies,	are
related	to	temperature	due	to	thermal	effects.	There	are	several	methods	for	measuring
temperature,	including

biomaterial	temperature	sensors

electrical	resistance	thermometers

thermocouple	thermometers

pyroelectric	thermometers.

Other	types	of	thermometers	include	fibre	optic	temperature	sensors	and	infrared
thermometers.	Temperature	sensors	are	often	installed	in	other	instruments,	such	as	in	vibrating
wire	and	fibre	optic	strain	gauges,	in	order	to	compensate	for	thermal	effects	on	instrument
performance.

Wind	–	Various	types	of	anemometer	are	widely	used	in	fullscale	tests	of	structures,
including	cupandvane,	windmill,	propeller	and	sonic	anemometers.	Other	types	include	hot
wire	and	laser	Doppler	anemometers	(for	wind	tunnels)	and	Doppler	sonar	for	meteorology
(Catbas	et	al.	2012).	Cupandvane	anemometers	are	the	conventional	standard,	measuring
the	horizontal	component	of	wind	speed	and	the	compass	bearing.	Measuring	all	three
components	of	wind	requires	devices	with	propellers	along	three	axes,	or	sonic	anemometers,
as	shown	in	Figure	2.5.	Technical	factors	affecting	the	choice	of	an	anemometer	include	the
number	of	components	resolved	and	the	frequency	response.	Practical	factors	include	cost,	use
of	moving	parts,	susceptibility	to	electromagnetic	interference	and	data	output	type.	For	long



term	monitoring,	reliability	should	be	the	main	consideration.

Figure	2.5	Anemometer	(R.M.	Young	Model	05103L)	installed	on	Canton	Tower.

Corrosion	–	Steel	corrosion	affects	the	durability,	serviceability	and	safety	of	civil
engineering	structures,	such	as	bridges.	Corrosion	is	a	major	problem	with	bridge	structural
components,	such	as	stay	cables,	tendons,	steel	structural	members	and	the	reinforcement	in
concrete	structures.	Corrosion	measurement	methods	vary	in	complexity	and	size,	from	use	of
polarisation	resistance	to	timedomain	reflectometry.	A	popular	corrosion	measuring	method
is	the	half	cell	technique,	owing	to	its	simplicity	and	ease	of	implementation.	But	the	method
cannot	be	used	for	posttensioned	construction	and	often	gives	localised	corrosion	rate.	Other
corrosion	measurement	techniques	include	electrochemical	techniques,	electrical	resistance
probes,	measurement	of	chloride	concentration	in	concrete	and	destructive	(coring)	techniques.

2.3.3	Operational	Quantities
Operational	quantities	include	such	factors	as	traffic	volume	for	a	bridge	and	mass	loading	of
an	offshore	oil	platform.	Highway	traffic	loading	can	be	measured	by	a	weighinmotion
system.	Figure	2.6	shows	the	implementation	of	dynamic	weighinmotion	stations	on	Tsing



Ma	Bridge	(Ni	et	al.	2015).	The	information	generated	from	the	weighinmotion	systems
includes	the	vehicle	arrival	date	and	time,	bound	number,	sequence	number,	lane	number,
vehicle	speed,	vehicle	class,	number	of	axles,	axle	weight	and	axle	spacing.

Figure	2.6	Deployment	of	weighinmotion	(WIM)	sensors	on	Tsing	Ma	Bridge.

2.3.4	Typical	Quantities	for	Bridge	Monitoring
The	physical	and	chemical	quantities	for	monitoring	of	civil	engineering	structures	such	as
bridges	depend	on	the	structural	configurations,	such	as	structural	arrangement,	geometry,
materials	and	site	location.	For	bridges,	the	physical	and	chemical	quantities	for	the	SHM
strategy	can	be	classified	into	following	types,	as	detailed	in	Wong	and	Ni	(2009).

Bridge	responses,	including	the	forces	in	cables,	the	geometrical	profiles	in	decks,	towers
and	piers,	the	load	or	stresshistories	and	the	accumulative	fatigue	damage	in	instrumented



and	key	components,	and	the	displacement	and	stress	histories	in	articulated	components.
Table	2.4	summarises	the	details	of	typical	physical	quantities	for	monitoring	of	structural
responses,	required	monitoring	sensory	systems	and	monitoring	parameters	for	a	bridge.
Environmental	factors,	including	wind,	temperature,	seismic	actions,	humidity,	ship	impact,
settlement,	scouring,	corrosion	status,	etc.	Table	2.5	summarises	the	details	of	typical
physical	and	chemical	quantities	for	monitoring	of	environmental	factors.

Operational	loads,	including	highway	traffics,	railway	traffics,	ship	impacting	loads	and
permanent	loads.	Table	2.6	summarises	the	details	of	typical	physical	quantities	for
monitoring	of	bridge	operational	loads.

Bridge	characteristics,	including	the	static	characteristics	(e.g.	static	influence	coefficients,
creep	or	relaxation	effects)	and	the	dynamic	characteristics	(e.g.	modal	frequencies,	mode
shapes,	modal	damping	ratios	or	modal	mass	participation	factors).	Table	2.7	summarises
the	details	of	typical	physical	quantities	for	monitoring	of	structural	characteristics.

Table	2.4	Typical	physical	quantities	of	structural	responses	for	monitoring.

Monitoring
quantity

Monitoring	sensory
systems

Monitoring	parameters/plots

Cable
parameters

Portable	servo
type
accelerometers

Load	cells

Cable	frequencies,	cable	forces

Cable	damping	ratios	and	Scruton	numbers

Tendon
forces

Load	cells

Static	strain	gauges

Electromagnetic
gauges	(for
unbonded	tendons)

Tendon	forces

Tendon	relaxation

Geometry
configuration

GPS	and	tiltmeters

Level	sensing
stations

Displacement
transducers

Servotype
accelerometers

Static	strain	gauges

Dynamic	monitoring	of	deformation	and	stress
distribution	in	global	bridge	structural	system	due
to	instant	movements	at	monitoring	locations

Loadeffects	(xy	plots)	at	key/monitoring
locations

Stress/force Dynamic	strain Stress	histories	at	key/monitoring	locations



distribution gauges

Static	strain	gauges

Stress/force	demand	ratios	at	key/monitoring
locations

Principal	and	VonMises	stresses	at
key/monitoring	locations

Strain/stress	profiles	at	key/monitoring	sections

Fatigue	life
estimation

Dynamic	strain
gauges

Dynamic	weigh
inmotion	stations
(bendingplate
type)

Fatigue	life	estimation	due	to	combined	effects	of
loadinduced	fatigue	and	distortion	induced
fatigue

Fatigue	life	estimation	due	to	highway	traffic
loadeffects

Articulation
component
responses

Dynamic	strain
gauges

Displacement
transducers

Bearing	sensors

Buffer	sensors

Load	histories	in	bearings

Stress	demand	ratios	in	bearing

Motion	histories	in	movement	joints

Stress	and	motion	histories	in	buffers

Notes:	Static	strain	gauges	should	be	used	for	concrete	structures;	Dynamic	strain	gauges	should	be	used	for	steel
structures;	Dynamic	monitoring	of	deformation	and	stress	distribution	must	be	worked	with	the	finite	element	model	of
the	global	bridge	structural	system.

Table	2.5	Typical	physical	and	chemical	quantities	of	environmental	factors	for	monitoring.

Monitoring
quantity

Monitoring	sensory	systems Monitoring	parameters/plots

Wind	loads Ultrasonic	type	anemometers

Propeller	type	anemometers

Barometers

Precipitation	and	visibility	sensors

Hygrometers

Wind	speeds	and	wind	directions

Wind	speeds	(mean	and	gust)	and
directions

Extreme	wind	speeds	derivation

Terrain	factors	and	wind	speed
profiles

Wind	rose	diagrams	and	wind
incidence	diagrams

Wind	turbulence	components	and
mean	wind	resultant

Wind	turbulence	intensities	and



intensity	profiles

Wind	turbulent	time	and	length
scales

Wind	turbulent	spectrum	and	co
spectrum

Wind	turbulent	horizontal	and
vertical	coherences

Wind	responses	(xy	plots)

Wind	transfer	functions	at
key/monitoring	locations

Histograms	of	air	pressure,
rainfall	and	humidity

Temperature
loads

Temperature	sensors	for	structural
steel	sections,	structural	concrete
sections,	asphalt	pavement	and	air

Thermocouplers	or	fibre	optic
sensors	for	steel	cables

Effective	temperatures	in	typical
structural	components

Differential	temperatures	in
typical	structural	components

Air	temperatures	and	asphalt
pavement	temperatures

Extreme	temperatures	derivation

Thermal	responses	in	typical
structural	components

Temperature	transfer	functions	at
key/monitoring	locations

Seismic	and
ship	impacting
loads

Servotype	accelerometers Response	spectra	(in	terms	of
acceleration,	velocity	and
displacement)	at	bases	of
substructures

Seismic	and	ship	impacting
transfer	functions	at
key/monitoring	locations

Settlement
loads

Settlement	sensors/systems

Liquid	levelling	system

Settlements	at	monitoring
locations

Derivation	of	settlement	loads	on
bridge	and	components



Scouring
loads

Scouring	sensors/systems Speeds	and	depths	of	scouring

Derivation	of	scouring	loads	at
storm	and	flood	conditions

Corrosion
status	of
embedded
steel	rebar

Corrosion	cells

Hygrometers

Temperature	sensors

Gas	concentration	detectors

Open	circuit	potentials	and
corrosion	current

Concrete	resistance	and	linear
polarization	resistance

Relative	humidity	and
temperature	in	structural	concrete

Potential	risk	of	corrosion	in
structural	concrete

Potential	risk	of	crack	formation
in	concrete	cover

Note:	For	avoidance	of	measuring	errors	due	to	wind	turbulent	flow	around	the	structure,	anemometers	should	be
located	at	≥7.5 m	away	from	the	structure.

Table	2.6	Typical	physical	quantities	of	operational	loads	for	monitoring.

Monitoring
quantity

Monitoring	sensory	systems Monitoring	parameters/plots

Highway
traffic
loads

Dynamic	weighinmotion
stations	(bendingplate	type)

Dynamic/static	strain	gauges

Highdefinition	video
cameras

Highway	traffic	composition	in	each
traffic	lane

Highway	traffic	loading	spectrum	in	each
traffic	lane

Daily	highway	traffics	characteristics

Highway	traffic	loadeffects	in
key/monitoring	locations	during	traffic
jams

Railway
traffic
loads

Dynamic/static	strain	gauges

Highdefinition	video
cameras

Railway	traffic	composition	at	each	rail
track

Railway	traffic	loading	spectrum	at	each
rail	track

Daily	railway	traffics	characteristics
Notes:	Static	strain	gauges	should	be	used	for	concrete	structures;	Dynamic	strain	gauges	should	be	used	for	steel
structures.



Table	2.7	Typical	physical	quantities	of	structural	characteristics	for	monitoring.

Monitoring
quantity

Monitoring
sensory	systems

Monitoring	parameters/plots

Static	influence
coefficients

Level	sensing
stations

GPS	and
tiltmeters

Dynamic/static
strain	gauges

Influence	lines	(displacement	and	stress)	of	each
key/monitoring	location	due	to	moving	traffic	loads
on	each	traffic	lane	or	rail	track

Global	bridge
dynamic
characteristics

Fixed	servo
type
accelerometer

Portable
servotype
accelerometers

Global	bridge	natural	frequencies

Global	bridge	vibration	mode	shapes

Global	bridge	modal	damping	ratios	(derived)

Global	bridge	modal	mass	participation	factors
(derived)

Notes:	Static	strain	gauges	should	be	used	for	concrete	structures;	Dynamic	strain	gauges	should	be	used	for	steel
structures.

2.3.5	Example	of	an	SHM	System	–	a	Suspension	Bridge	(I)
The	Tsing	Ma	Bridge	is	a	twospan	suspension	bridge	carrying	both	highway	and	railway
traffic.	The	lengths	of	the	two	suspended	spans	(the	main	span	and	the	Ma	Wan	side	span)	is
1377 m	and	352.5 m	respectively.	The	key	structural	feature	of	the	bridge	is	the	2160 m
continuous	spanlength	of	the	steeltrussgirdertype	stiffening	deck	system.	The	deck
system	is	designed	to	have	two	trussactions,	namely,	the	Warren	trussaction	in	the
longitudinal	direction,	and	the	Vierendeel	trussaction	in	the	transverse	or	lateral	direction.

A	bridge	health	monitoring	system,	called	wind	and	structural	health	monitoring	system
(WASHMS),	has	been	installed	and	operated	on	the	Tsing	Ma	Bridge	since	its	opening	to
public	traffic	in	1997	(Wong	and	Ni	2011).	The	monitoring	system	for	Tsing	Ma	Bridge	is
composed	of	a	total	number	of	283	sensors	in	eight	types:	anemometers,	servotype
accelerometers,	temperature	sensors,	weldable	foiltype	strain	gauges	(or	dynamic	strain
gauges),	global	positioning	systems,	displacement	transducers,	level	sensing	stations	and
dynamic	weighinmotion	stations.	The	layout	of	these	sensory	systems	and	their	associated
data	acquisition	outstations	on	the	Tsing	Ma	Bridge	are	illustrated	in	Figure	2.7.



Figure	2.7	Instrumentation	layout	of	sensory	systems	for	structural	monitoring	in	Tsing	Ma
Bridge.

The	structural	monitoring	system	is	devised	to	monitor	four	major	categories	of	parameters:
bridge	responses,	environments,	traffic	loads	and	bridge	features.	The	key	monitoring	parts
include	highway	traffic	load	monitoring,	railway	traffic	load	monitoring,	stress	monitoring	and
fatigue	life	monitoring.	Other	parts	of	the	monitoring	include	wind	load,	temperature,	geometry,
global	dynamic	features,	articulation	and	static	influence	coefficient.	The	bridge	health
monitoring	system	WASHMS	is	composed	of	six	integrated	modules	for	monitoring	structural
condition	and	evaluating	structural	deterioration	(Wong	and	Ni	2009),	as	illustrated	in	Figure
2.8:

Module	1	(sensory	system),	referring	to	the	sensors	and	their	corresponding	interfacing
units	for	input	signals	recorded	from	various	monitoring	equipment	and	sensors,	discussed
in	detail	in	Section	2.3.4;

Module	2	(data	acquisition	and	transmission	system),	composed	of	data	acquisition	units
and	cabling	network	systems	for	acquisition,	processing,	temporary	storage	and
transmission	of	signals,	further	discussed	in	Sections	3.2.2	and	3.3.3

Module	3	(data	processing	and	control	system),	referring	to	hardware	and	software	for
executing	the	functions	of	system	control,	system	operation	display,	bridge	operation
display	and	postprocessing	and	analysis	of	data,	further	discussed	in	 Section	3.4.3



Module	4	(structural	health	evaluation	system),	as	the	core	of	the	bridge	monitoring	system
to	provide	analysis	tools	for	damage	diagnosis	and	prognosis	from	the	measured	and
simulated	data,	further	discussed	in	Sections	7.3.7,	7.4.4,	7.5.3,	7.6.4,	9.2.4,	and	9.5.4

Module	5	(structural	health	data	management	system),	composed	of	a	highperformance
server,	equipped	with	data	management	software,	and	the	interfacing	platform	for	the
interoperability	of	data	and	information,	further	discussed	in	Section	3.5.2

Module	6	(inspection	and	maintenance	system),	composed	of	a	set	of	portable	computers
and	a	toolbox	for	carrying	out	the	inspection	and	minor	maintenance	works	on	the	sensory
system,	data	acquisition	units,	local	and	global	cabling	networks	and	all	display	facilities.
All	information	on	system	design,	installation,	operation	and	maintenance	is	stored	and
retrieved	for	references	in	the	computers.	The	toolbox	carries	out	system	inspection
activities	and	minor	remedial	works	in	Modules	1	and	2	only.

Figure	2.8	Modular	architecture	and	input/output	block	diagrams	of	the	monitoring	system	of
Tsing	Ma	Bridge.

The	sensory	systems	(Module	1)	used	for	stress	and	traffic	loads	monitoring	include:	dynamic
strain	gauges,	dynamic	weighinmotion	stations	and	servotype	accelerometers.	These



sensory	systems	generate	three	types	of	timeseries	data	of	strain,	acceleration	and	axle
weight	and	axlespeed,	respectively.	The	systems	include	three	categories	(Wong	and	Ni
2011):

stiffening	deck	system	stress	monitoring,	including	statistical	processing	of	stress	history,
stress	demand	ratios,	stress	influence	coefficients	and	fatigue	life	estimation

traffic	loads	monitoring,	including	commercial	vehicles	spectrum,	equivalent	standard
fatigue	vehicle	spectrum,	accumulated	vehicleinduced	fatigue	damage	and	train	loading
estimation

cable	force	monitoring,	including	tension	forces	in	the	main	suspension	cables	and
suspenders.

2.4	Fibre	Optic	Sensors
Fibre	optic	sensors	are	becoming	popular	in	health	monitoring	applications	for	civil
infrastructure.	Such	sensors	have	many	advantages,	particularly	because	of	their	insensitivity	to
external	perturbations	and	electromagnetic	interference.	The	principles	and	detailed
descriptions	of	fibre	optic	sensors	can	be	found	in	many	books,	such	as	Glisic	and	Inaudi
(2007)	and	LopezHiguera	(2002).

2.4.1	Classification	of	Fibre	Optic	Sensors
In	general,	an	optical	fibre	is	a	thin	flexible	strand	of	dielectric	material	that	is	protected
mechanically	by	a	polymer	coating,	which	is	further	protected	by	a	multilayer	cable	structure
designed	to	protect	the	fibre	from	the	installation	environment.	Since	glass	is	inert	and	resistant
to	almost	all	chemicals,	even	at	extreme	temperatures,	it	is	ideal	for	use	in	harsh	environments
and	is	particularly	useful	for	civil	engineering	applications.	Since	the	light	confined	in	the	core
of	the	optical	fibres	does	not	interact	with	any	surrounding	electromagnetic	field,	fibre	optic
sensors	are	immune	to	any	electromagnetic	interferences	and	are	intrinsically	safe.	The	fibre
optic	sensing	technology	overcomes	most	of	the	limitations	encountered	in	other	forms	of
sensor	(Casas	and	Cruz	2003)	and	it	offers	several	advantages:

it	is	free	from	corrosion,	having	longterm	stability	and	allowing	continuous	monitoring

it	is	free	from	electromagnetic	interference,	avoiding	undesirable	noise

it	has	an	excellent	transmission	capabilities,	allowing	remote	monitoring

many	measuring	points	can	be	multiplexed	along	a	single	optical	fibre,	allowing	fully
distributed	measures

cabling	and	sensors	are	very	small	and	light,	making	it	possible	to	permanently	incorporate
them	into	the	structures.

Depending	on	the	spatial	distribution	of	the	measurand,	fibre	optic	sensors	can	be	generally
classified	as	point,	integrated,	quasidistributed	and	distributed	(LopezHiguera	et	al.	2011).



In	principle,	fibre	optic	sensors	are	based	on	measuring	changes	in	the	physical	properties	of
the	guided	light.	There	are	four	main	parameters	of	the	light	that	can	be	modulated:	phase,
polarisation	state,	intensity	and	wavelength.	Thus,	according	to	the	modulated	optical
parameter,	the	sensors	can	be	classified	in	four	different	categories:	interferometric,
polarimetric,	intensity	modulated	and	spectrometric.

2.4.2	Typical	Fibre	Optic	Sensors	in	SHM
For	structural	monitoring	of	civil	infrastructure,	typical	fibre	optic	sensors	include	SOFO
interferometric,	FabryPérot	interferometric,	fibre	Bragg	grating	(FBG)	and	distributed
Brillouin	and	Raman	scattering	sensors	(Glisic	and	Inaudi	2007).

SOFO	interferometric	sensors	(both	static	and	dynamic	systems)	are	longbase	sensors,	with
a	measurement	base	ranging	from	200 mm	to	10 m	or	more.	The	SOFO	system	uses	low
coherence	interferometry	to	measure	the	length	difference	between	two	optical	fibres	installed
on	the	structure	to	be	monitored	(LopezHiguera	et	al.	2011),	as	illustrated	in	 Figure	2.9.



Figure	2.9	Setup	of	SOFO	interferometric	sensor	system.
(Courtesy	of	Smartec)

The	sensor	consists	of	a	pair	of	singlemode	fibres	placed	in	the	structure	to	be	monitored.
The	measurement	fibre	is	pretensioned	and	mechanically	coupled	to	the	structure	at	two
anchorage	points,	in	order	to	follow	its	deformations,	while	the	reference	fibre	is	placed	loose
in	the	same	pipe.	The	sensors	have	excellent	longterm	stability	and	precision	of	±2 µm
independent	of	the	measurement	base.	Even	a	change	in	the	fibre	transmission	properties	does
not	affect	the	precision,	since	the	displacement	information	is	encoded	in	the	coherence	of	the
light	and	not	in	its	intensity.	Since	the	measurement	of	the	length	difference	between	the	fibres
is	absolute,	there	is	no	need	to	maintain	a	permanent	connection	between	the	reading	unit	and
the	sensors.

FabryPérot	interferometric	sensors	– 	FabryPérot	(FP)	cavities	(both	passive	and	active)
have	been	successfully	used	in	sensing	applications	exploiting	measurandinduced	changes	in
one	of	their	cavity	parameters.	The	cavity	can	be	active,	for	instance	integrating	a	fibre	laser



(2.1)

sensor,	or	passive.	An	extrinsic	FabryPérot	interferometer	(EFPI)	consists	of	a	capillary
glass	tube	containing	two	partially	mirrored	optical	fibres	facing	each	other,	but	leaving	an	air
cavity	of	a	few	micrometres	between	them	(Glisic	and	Inaudi	2007,	LopezHiguera	et	al.
2011),	as	illustrated	in	Figure	2.10.

Figure	2.10	Functional	principle	of	FabryPérot	sensors.
(Courtesy	of	Roctest)

When	light	is	launched	into	one	of	the	fibres,	a	backreflected	interference	signal	is	obtained
from	the	two	mirrors.	This	interference	can	be	demodulated	using	coherent	or	lowcoherence
techniques	to	reconstruct	the	changes	in	the	fibre	spacing.	Since	the	two	fibres	are	attached	to
the	capillary	tube	near	its	two	extremities	(with	a	typical	spacing	of	10 mm),	the	gap	change
will	correspond	to	the	average	strain	variation	between	the	two	attachment	points.	Many
sensors	based	on	this	principle	are	currently	available	for	monitoring	of	civil	infrastructure,
including	piezometers,	strain	gauges,	temperature	sensors,	pressure	sensors	and	displacement
sensors.

Fibre	Bragg	grating	(FBG)	sensors	–	Bragg	gratings	are	periodic	alterations	in	the	index	of
refraction	of	the	fibre	core,	produced	by	adequately	exposing	the	fibre	to	intense	ultraviolet
light	in	the	region	of	244–248 nm,	as	illustrated	in	Figure	2.11.	The	produced	gratings	typically
have	a	length	of	about	10 mm.	Light	at	the	wavelength	corresponding	to	the	grating	period	will
be	reflected,	while	all	other	wavelengths	will	pass	through	the	grating	undisturbed.	The	grating
period	(length)	changes	with	temperature	and	strain,	thus	both	parameters	can	be	measured
through	the	spectrum	of	the	reflected	light.	Light	traveling	down	the	Bragg	grating	core	that
leads	to	a	resonance	condition	is	a	special	case	of	the	Bragg	equation,	given	by

where	λB	is	the	Bragg	wavelength,	neff	is	the	effective	refraction	index	of	the	fibre	core	and	P
is	the	period	of	the	index	modulation.	As	a	consequence	of	the	coupling	between	the	forward
and	backward	propagating	modes,	a	portion	of	the	illuminated	light	is	reflected	by	the	grating
while	the	remainder	is	transmitted.	Both	neff	and	P	depend	on	temperature	and	strain,	thus	the
Bragg	wavelength	is	sensitive	to	both	strain	and	temperature.



Figure	2.11	Schematic	illustration	of	a	fibre	Bragg	grating	(FBG)	sensor.

One	of	the	most	significant	features	of	an	FBG	sensor	is	its	selfreferencing	capability.	It
means	that	no	recalibration	and/or	reinitialisation	are	needed	for	this	kind	of	sensor,	since
the	measurands	are	encoded	into	the	wavelength,	which	is	an	absolute	parameter.	The	main
benefit	with	FBG	sensors	is	their	multiplexing	potential,	with	several	gratings	in	the	same	fibre
at	different	locations	and	tuned	to	reflect	different	wavelengths.	Accuracy	of	the	order	of	1 με
and	0.1 °C	can	be	achieved	with	the	best	demodulators.

Distributed	Brillouin	and	Raman	scattering	sensors	–	Brillouin	and	Raman	scattering	effects
give	completely	different	spectral	characteristics,	because	they	are	associated	with	different
dynamic	inhomogeneities	in	the	silica	fibres	(LopezHiguera	et	al.	2011).	The	Brillouin
scattering	is	a	backward	process,	while	the	Raman	scattering	is	backward	and	forward
process.	If	an	intense	light	at	a	known	wavelength	is	shone	into	a	fibre,	a	very	small	amount	of
the	light	is	scattered	back	from	every	location	along	the	fibre	itself.	Besides	the	original
wavelength	(called	the	Rayleigh	component),	the	scattered	light	contains	components	at
wavelengths	that	are	higher	and	lower	than	the	original	signal	(called	the	Raman	and	Brillouin
components).

Distributed	fibre	optic	sensors	measure	physical	parameters,	in	particular	strain	and
temperature,	along	their	whole	length.	They	allow	the	measurements	of	thousands	of	points
from	a	single	readout	unit.	The	shifted	components	contain	information	on	the	local	properties
of	the	fibre,	in	particular	its	strain	and	temperature.	Systems	based	on	Raman	scattering
typically	exhibit	temperature	accuracy	of	the	order	of	±0.1 °C	and	a	spatial	resolution	of	1 m
over	a	measurement	range	up	to	8 km	(Catbas	et	al.	2012).	The	best	Brillouin	scattering
systems	offer	a	temperature	accuracy	of	±0.1 °C,	a	strain	accuracy	of	±20 με	and	a
measurement	range	of	30 km,	with	a	spatial	resolution	of	1 m.

2.4.3	Fibre	Optic	Sensors	for	Structural	Monitoring
Fibre	optic	sensors	can	be	used	for	monitoring	many	physical	or	chemical	quantities	of	civil
structures	(Glisic	and	Inaudi	2007).	The	practical	applications	of	FBG	sensors	in	civil
engineering	problems	such	as	the	SHM	of	a	supertall	structure,	monitoring	of	tunnel
construction	and	integrity	monitoring	of	water	pipes	are	discussed	in	Sections	2.7.2,	10.4	and
10.6,	respectively.

Crack	monitoring	–	The	current	state	of	many	critical	concrete	structures	can	be	assessed



through	the	detection	and	monitoring	of	cracking	in	concrete.	For	example,	in	concrete	bridge
decks,	crack	openings	beyond	0.15–0.2 mm	will	allow	excessive	penetration	of	water	and
chloride	ions	into	the	concrete	cover,	leading	to	reinforcement	corrosion.	So	far,	many	optical
crack	sensors	have	been	developed,	such	as	sensing	based	on	fibre	breakage	and	point	sensors,
but	they	may	be	limited	in	their	applications.	Distributed	fibre	optic	sensors	can	overcome	the
limitations	on	the	basis	of	the	measurement	of	the	intensity	loss	due	to	deformation.	They	do
not	require	prior	knowledge	of	the	crack	locations,	which	is	a	major	advantage	over	existing
crack	monitoring	techniques	(Casas	and	Cruz	2003).	Furthermore,	several	cracks	in	concrete
can	be	detected,	located	and	monitored	with	a	single	fibre.
Strain	monitoring	–	The	commonly	used	fibre	optic	sensors	for	strain	sensing	include	Fabry–
Pérot	sensors	and	FBG	sensors.	The	FabryPérot	sensing	technique	has	very	good	accuracy
with	a	maximum	resolution	of	±0.01 με.	However,	a	new	calibration	is	needed	every	time
when	the	readings	are	stopped.	The	FBG	technique	has	less	precision	with	a	resolution	around
±10 με	for	standard	equipment,	but	the	FBG	technique	has	the	advantage	of	reading	absolute
values,	and	thus	they	are	unaffected	by	interrupted	measurements.	Many	small	instruments	using
FBG	sensors	have	been	developed	to	be	embedded	into	concrete	and	to	monitor	the	strain.	In
structural	integrity	assessment,	the	strain	of	the	concrete	may	not	be	as	useful	as	the	strain	of
the	reinforcing	bars	in	the	tensioned	region	of	the	crosssection.	When	there	are	cracks
appearing	in	this	region,	the	concrete	releases	some	stress	and	the	rebar	is	more	strained
(Casas	and	Cruz	2003).	Thus,	it	should	be	more	useful	to	measure	the	strain	on	the	reinforcing
bars.

Temperature	monitoring	–	FBG	sensors	have	a	main	limitation	of	dual	sensitivity	to
temperature	and	strain.	This	creates	a	problem	for	sensors	used	for	strain	monitoring,	since
temperature	variations	along	the	fibre	can	lead	to	abnormal	strain	readings.	To	tackle	the
problem,	reference	gratings	are	used.	Such	reference	gratings	are	in	thermal	contact	with	the
structure,	but	do	not	respond	to	local	strain	changes.	Thus,	compensation	can	be	achieved	by
subtracting	the	shift	of	the	reference	gratings	from	the	shift	of	the	sensing	gratings.	Many	fibre
optic	sensors	are	available	for	temperature	monitoring.	However,	these	sensors	cannot	be
embedded,	unless	a	box	is	used	to	isolate	the	sensor	from	any	structural	strain.

Corrosion	monitoring	–	Fibre	optic	sensors	were	developed	to	directly	monitor	the	corrosion
of	the	steel	reinforcing	bars	in	concrete	structures.	Some	of	these	sensors	are	based	on	the
Bragg	grating	technology	which	is	also	used	for	strain	and	temperature	sensors.	The
measurements	from	corrosion	monitoring	can	be	read	by	the	same	optical	system	that	is	used
for	other	types	of	sensors,	such	as	corrosion,	strain	and	temperature	sensors	(Casas	and	Cruz
2003).	Fibre	optic	sensors	for	corrosion	monitoring	are	based	on	the	concept	that	the	corrosion
of	reinforcing	bars	generate	an	expansive	layer	of	corrosion	products	at	the	interface	of	rebar
and	the	surrounding	concrete.	Thus,	corrosion	can	be	measured	from	the	expansion	of	the
corroded	reinforcing	bar.

Monitoring	of	other	quantities	–	Since	FBG	sensors	have	many	advantages	such	as	low	self
weight,	multiple	measuring	points,	superior	performance	and	better	reliability,	they	can	also	be
used	for	monitoring	other	quantities	(Casas	and	Cruz	2003),	including	inclination	of	structural



components,	vibration	of	the	structure	by	measuring	acceleration,	force	by	using	FBG	load
cells,	ice	detection	on	pavements	and	traffic	conditions	on	bridges.

2.5	Wireless	Sensors
Wireless	sensors	are	gaining	popularity	for	monitoring	of	large	civil	engineering	structures
because	they	are	inexpensive	and	easy	to	install.	Wireless	sensors	have	the	ability	to	collect
data	in	place	of	traditional	cabled	sensors,	but	they	do	not	function	as	exact	replacements.
Strictly	speaking,	wireless	sensors	are	not	sensors,	but	rather	are	autonomous	data	acquisition
nodes	to	which	traditional	sensors	(e.g.	strain	gages	or	accelerometers)	can	be	attached.
Wireless	sensors	are	considered	as	a	platform	where	mobile	computing	and	wireless
communication	elements	converge	with	the	sensing	transducer.	Currently,	there	are	a	large
number	of	different	academic	and	commercial	wireless	sensors,	as	shown	in	Figures	2.12(a)
and	(b).	A	comprehensive	review	of	wireless	sensors	for	structural	monitoring	is	presented	in
Lynch	and	Loh	(2006).

Figure	2.12	Wireless	sensors	for	structural	monitoring.

2.5.1	Components	of	Wireless	Sensors
Wireless	sensors	are	generally	divided	into	two	groups:	passive	sensors	and	active	sensors.
Passive	sensors	measure	a	specific	physical	or	chemical	quantity	by	responding	passively	to
the	state	of	the	system	to	be	monitored.	Passive	wireless	sensors	consist	of	three	functional
subsystems:	sensing	interface,	computational	core	and	wireless	transceiver.	Active	sensors,	by
contrast,	generate	signals	in	a	controlled	manner,	and	then	they	sense	the	response	of	the	system
to	those	signals.	An	additional	subsystem,	(an	actuation	interface)	is	added	in	the	active
sensors	to	generate	the	signal	(Lynch	and	Loh	2006),	as	illustrated	in	Figure	2.13.	Without



wires,	wireless	sensors	require	internally	stored	power	for	operation.	Several	power	sources
can	be	used	in	wireless	sensing	systems,	such	as	conventional	batteries,	radio	frequency
identification	(RFID),	ambient	energy	sources,	such	as	solar,	vibration	and	thermal.

Figure	2.13	Functional	subsystem	and	block	diagrams	of	wireless	sensors	(after	Lynch	and
Loh	2006).

Wireless	sensors	contain	an	interface	to	which	sensing	transducers	can	be	connected.	The
sensing	interface	is	largely	responsible	for	converting	the	analog	output	of	sensors	into	a
digital	representation.	Once	measurement	data	has	been	collected	by	the	sensing	interface,	the
computing	core	undertakes	the	local	data	processing	and	computational	tasks.	Then,	the
computational	demands	on	the	central	data	processing	resources	are	reduced.	In	order	to
accomplish	these	tasks,	the	computational	core	is	provided	by	a	microcontroller	that	can	store
measurement	data	in	random	access	memory	and	data	interrogation	programs	in	read	only
memory.	In	order	to	have	the	capability	to	interact	with	other	wireless	sensors	and	to	transfer
data	to	remote	data	repositories,	a	wireless	transceiver	is	necessary	for	both	the	transmission
and	reception	of	data	(Lynch	and	Loh	2006).	Finally,	an	actuation	interface	provides	a	wireless
sensor	with	the	capability	of	interacting	directly	with	the	physical	system.	The	core	element	of
the	actuation	interface	is	the	digitaltoanalogue	converter	(DAC),	which	converts	digital
data	generated	by	the	microcontroller	into	a	continuous	analogue	voltage	output.

2.5.2	Field	Deployment	in	Civil	Infrastructure
The	academic	wireless	sensing	prototype	shown	in	Figure	2.12(b)	is	an	integrated	wireless
monitoring	system	that	supports	realtime	data	acquisition	for	structural	monitoring	(Wang	et
al.	2007).	This	prototype	wireless	monitoring	system	was	adopted	for	exploring	the	feasibility
of	wireless	sensing	technologies	in	the	ambient	vibration	monitoring	of	the	Canton	Tower	(Ni
et	al.	2011)	and	inconstruction	monitoring	of	a	highrise	building	(New	Headquarters	of



Shenzhen	Stock	Exchange)	discussed	in	Section	10.3.	This	system	incorporates	an	integrated
hardware	and	software	design	to	implement	a	simple	star	topology	wireless	sensor	network.
The	wireless	sensing	units	are	responsible	for	acquiring	sensor	output	signals,	analysing	data
and	transferring	data	to	the	base	station	for	storage	and	further	data	analysis.

The	wireless	sensing	unit	consists	of	three	functional	modules:	sensing	interface,
computational	core	and	wireless	transceiver.	The	sensing	interface	converts	analogue	sensor
signals	into	a	digital	format	as	used	in	the	computational	core.	The	main	component	of	the
sensor	signal	digitisation	module	is	a	4channel,	16bit	analoguetodigital	(A/D)
converter	(Texas	Instruments	ADS8341).	The	16bit	A/D	resolution	is	sufficient	for	most
applications	in	civil	engineering.	The	highest	sampling	rate	supported	by	this	A/D	converter	is
100 kHz.	The	digitised	sensor	data	is	then	transferred	to	the	computational	core	through	a	high
speed	serial	peripheral	interface	(SPI)	port.	Embedded	software	was	developed	for	the
ATmega128	microcontroller	to	allow	the	microcontroller	to	effectively	coordinate	the	various
hardware	components	in	the	wireless	sensing	unit.	An	extensive	algorithmic	library	has	also
been	embedded	in	the	computational	core	to	perform	data	processing	tasks,	such	as	modal
analysis	and	damage	detection,	on	the	sensor	node	itself.

The	wireless	sensing	unit	is	designed	to	be	operable	with	two	different	wireless	transceivers:
900 MHz	MaxStream	9XCite	and	2.4 GHz	MaxStream	24XStream.	Pintopin	compatibility
between	these	two	wireless	transceivers	makes	it	possible	for	the	two	modules	to	share	the
same	hardware	connection	in	the	wireless	unit.	This	dualtransceiver	support	offers	the
wireless	sensing	unit	the	opportunity	to	be	used	in	different	regions	around	the	world.	This
support	also	allows	the	sensing	unit	to	have	more	flexibility	in	terms	of	data	transfer	rate,
communication	range	and	power	consumption.	For	example,	although	the	9XCite	transceiver
requires	less	power	consumption,	it	can	only	be	used	in	the	region	where	the	900 MHz	band	is
for	free	public	usage.	For	this	reason,	the	24XStream	transceiver	operating	on	the	open	2.4 
GHz	was	employed	in	the	applications	of	structural	monitoring	of	the	Canton	Tower	and	the
highrise	building.	Through	the	associated	wireless	transceiver,	the	base	station	can
communicate	with	the	wireless	sensing	units	that	are	spatially	distributed	throughout	the
structure.

2.6	Optimum	Sensor	Selection	and	Placement
For	effective	monitoring	of	civil	structures,	selecting	the	most	appropriate	sensors	and
determining	an	optimal	sensor	placement	are	critical	issues.	An	optimal	configuration	of
sensors	can	reduce	the	costs,	increase	accuracy	and	provide	a	more	robust	sensing	system.

2.6.1	Factors	for	Sensor	Selection
There	are	many	factors	and	parameters	that	affect	the	selection	of	appropriate	sensors	for
monitoring	of	civil	structures.	The	sensor	selection	largely	depends	on	specific	conditions	of
the	structural	monitoring.	In	general,	the	following	factors	should	be	considered	in	selecting
sensors	(Ettouney	and	Alampalli	2012).



Objectives	of	sensing	–	Consideration	of	the	objectives	is	a	common	and	important	factor
in	any	SHM	project.	The	objectives	can	be	such	as	condition	assessment,	research,
validating	design	assumptions,	cost	implication	and	hazardspecific	safety.

Type	of	structure	–	The	type	of	sensors	to	be	used	generally	depends	on	the	type	of
structures	to	be	monitored.	Parameters	such	as	material	types	(e.g.	steel,	concrete),	design
life	of	structure,	site	location	of	structure	(e.g.	underground,	below	water)	have	to	be
considered	in	sensor	selection.

Quantities	to	measure	–	The	type	of	physical	and	chemical	quantities	for	sensing	decides
the	selection	of	appropriate	sensors.	For	example,	strains	can	be	directly	measured	using
strain	gauges,	while	stress	can	be	obtained	from	the	measurements	of	strain.

Sensor	physical	attributes	–	The	physical	attributes	of	sensors	include	size,	weight,
ruggedness	and	interaction	effects	with	the	structure.	These	attributes	can	affect	the
accuracy	of	test	results.

Sensor	properties	–	The	important	properties	of	sensors	include	bandwidth,	sensitivity,
range	and	resolution	of	sensing.	Sensors	with	a	high	frequency	range	tend	to	be	more
sensitive	to	local	response,	requiring	a	sensor	with	a	large	bandwidth.	In	general,	the
sensitivity	reduces,	as	the	bandwidth	increases.	The	range	of	measurements	needs	to	be
estimated	before	sensor	selection,	and	resolution	is	often	coupled	with	measurement	range.

Operational	environments	–	Some	sensors	are	designed	for	laboratory	tests	and	may	not
be	suitable	for	field	applications	under	aggressive	environments.	In	harsh	operating
conditions,	proper	protection	is	needed	to	meet	the	necessary	requirements	for	sensor
operation	against	hostile	conditions,	such	as	low	or	high	temperature,	humidity,	chloride
and	acid.

Cost	–	The	total	cost	for	a	structural	monitoring	system	includes	the	costs	for	sensors,
additional	hardware,	labour,	maintenance	and	expertise	for	data	analysis	and	report
preparation.	The	total	cost	also	depends	on	the	monitoring	time	period.

Number	of	sensors	and	sensor	locations	–	When	deciding	on	the	number	and	location	of
sensors,	two	main	considerations	are	whether	or	not	the	sensing	system	should	be	optimal
and	how	much	redundancy	is	desired.	It	is	important	that	the	expected	damage	type	gives
known,	observable	and	statistically	significant	effects	in	features	derived	from	the
measured	quantities	at	the	chosen	sensor	locations.

Calibration	and	stability	of	sensors	are	essential	for	providing	accurate	measurements.	Most
sensors	are	calibrated	at	a	specialised	calibration	facility.	Calibration	may	generate	several
important	issues,	including	both	precision	and	flexibility,	for	example	how	to	calibrate	a	32
bit	sensor	over	its	entire	dynamic	range,	and	how	to	calibrate	a	precise	sensor	versus	a	coarse
sensor	(Farrar	et	al.	2003).	Reliability	and	confidence	in	the	sensors	are	prime	considerations
for	successful	SHM	strategies.

2.6.2	Optimal	Sensor	Placement



In	health	monitoring	of	a	large	civil	structure,	the	number	of	sensors	is	typically	small	when
compared	with	the	size	and	complexity	of	the	structure.	Thus,	the	locations	of	the	sensors	need
to	be	determined	optimally	to	ensure	quality	of	damage	identification	and	efficiency	in	both
cost	and	computation.	Successful	sensor	placement	heavily	depends	on	the	knowledge	and
experience	of	the	users.	The	sensor	placement	optimisation	problem	has	been	investigated	in
many	studies,	such	as	by	Meo	and	Zumpano	(2005).

The	optimisation	problem	can	be	considered	as	threestep	decision	process:	number	of
sensors,	sensor	placement	optimisation	and	performance	evaluation	(Barthorpe	and	Worden
2009).	Firstly,	for	example,	in	vibration	testing	the	number	of	sensors	required	cannot	be	less
than	the	number	of	mode	shapes	to	be	identified,	with	an	upper	limit	usually	applied	either	by
the	cost	or	availability	of	a	testing	facility.	In	practice,	more	sensors	may	be	used	to	allow	the
mode	shapes	to	be	visualised	(Chen	et	al.	2012).	Then,	for	the	limited	number	of	sensors
available,	appropriate	deployment	of	these	sensors	should	be	chosen,	so	that	a	suitable	sensor
placement	performance	measure	is	optimised.	Finally,	the	performance	of	the	chosen	sensor
sets	should	be	assessed.

Many	methods	have	been	proposed	to	determine	the	optimum	locations	for	sensor	placement.
These	methods	mainly	rely	on	the	concept	of	assessing	all	the	locations	of	the	candidate	sensor
set	against	an	objective	function,	and	then	iteratively	deleting	those	sensors	that	perform	least
well,	until	the	required	number	of	measurement	locations	remain.	Typical	approaches	used	in
the	optimisation	problem	include:

effective	independence

average	drivingpoint	residue

effective	independence	drivingpoint	residue

kinetic	energy	method

eigenvalue	vector	product

mutual	information

information	entropy	method

sensitivity	based	methods.

The	details	of	the	above	approaches	are	described	in	Barthorpe	and	Worden	(2009)	and	Meo
and	Zumpano	(2005).	The	solution	for	the	sensor	placement	optimisation	problem	can	be
searched	by	using	the	genetic	algorithms	or	combinatorial	optimisation	algorithms	such	as	‘ant
colony	metaphors’.

In	practice,	other	factors	should	be	considered	in	searching	for	optimal	sensor	placement.	For
example,	for	bridge	structures,	appropriate	types	of	sensors	will	be	deployed	at	key	locations
where	the	measured	results	could	be	able	to	carry	out	the	following	functions:

validation	of	adopted	design	assumption	and	design	parameters:	sensors	should	be
deployed	at	locations	with	responses	(e.g.	strain,	stress,	displacement)	to	be	sensitive	to



damage	such	as	fatigueinduced	damage

monitoring	the	structural	condition	and	durability	performance	of	the	structure	at	key
locations	under	its	inservice	conditions

development	of	current	and	future	environmental	and	operational	load	models	for	the
evaluation	of	current	and	future	load	effects

validating	relevant	finite	element	models	for	structural	health	evaluation

carrying	out	structural	performance	assessment	of	the	global	structural	system

intercalibration	of	measurement	results	from	various	types	of	sensory	systems.

2.7	Case	Study
The	Canton	Tower	in	Guangzhou,	China,	is	a	supertall	tubeintube	structure	with	a	total
height	of	618 m,	as	shown	in	Figure	2.14.	The	main	tower,	454 m	high,	is	composed	of	a
reinforced	concrete	inner	structure	with	an	elliptical	crosssection	of	14 × 17 m	and	a	steel
lattice	outer	structure.	The	crosssection	of	the	outer	structure	has	a	profile	of	varying	oval
that	decreases	from	50 × 80 m	at	the	ground	to	the	minimum	of	20.65 × 27.5 m	at	a	height	of
280 m	(waist	level),	and	then	increases	to	41 × 55 m	at	the	top	of	the	main	tower.	There	are	37
floors	connecting	the	inner	and	outer	structures.	The	antenna	mast	of	164 m	high,	founded	on	the
top	of	the	main	tower,	is	a	steel	spatial	structure	with	an	octagonal	crosssection	of	14 m
maximum	diagonal	(Chen	and	Huang	2012,	Ni	et	al.	2008).	The	Canton	Tower	serves	multiple
functions,	including	TV	and	radio	transmission,	sightseeing	and	cultural	entertainment.





Figure	2.14	Photo	of	Canton	Tower.

2.7.1	Sensors	and	Sensing	System	for	SHM
The	SHM	system	for	the	Canton	Tower	consists	of	six	modules	(Ni	et	al.	2008,	Ni	2014):	(a)
sensory,	(b)	data	acquisition	and	transmission,	(c)	data	processing	and	control,	(d)	data
management,	(e)	structural	health	evaluation	(f)	inspection	and	maintenance.	There	are	a	total
number	of	16	types	of	sensors	installed	on	the	structure:	weather	station,	total	station,
anemometer,	wind	pressure	sensor,	zenithal	telescope,	level	sensor,	tiltmeter,	theodolite,
global	positioning	system	(GPS),	vibrating	wire	strain	gauge,	thermometer,	accelerometer,
seismograph,	corrosion	sensor,	digital	video	camera	and	fibre	optic	sensor.	These	sensors	are
deployed	for	monitoring	the	three	categories	of	parameters:	(a)	loading	sources,	e.g.	wind,
seismic	and	thermal,	(b)	structural	responses,	e.g.	strain,	displacement,	inclination,
acceleration	and	geometric	configuration,	(c)	environmental	effects,	e.g.	temperature,	humidity,
rain,	air	pressure	and	corrosion.

These	various	installed	sensors	offer	a	platform	to	explore	sensor	and	data	(information)
fusion	for	structural	monitoring.	In	order	to	calibrate	the	dynamic	displacement	measurement
data	acquired	by	a	GPS	system,	a	visual	inspection	system,	as	shown	in	Figure	2.15,	was
developed	and	used	together	with	the	GPS	system.	The	visual	inspection	system	is	capable	of
remote	longdistance	(500–1000 m)	dynamic	displacement	measurement	with	a	sampling
frequency	5–60 Hz.





Figure	2.15	Vision	inspection	system	of	Canton	Tower.

The	SHM	systems	for	the	Canton	Tower	are	designed	for	both	inconstruction	monitoring	and
inservice	monitoring.	 Figure	2.16	illustrates	the	deployment	of	sensors	and	data	acquisition
substations	for	inservice	monitoring.	The	inconstruction	monitoring	system	has	527
sensors,	while	the	inservice	monitoring	system	has	280	sensors.	Thirteen	data	acquisition
substations	are	employed	for	inconstruction	monitoring,	while	six	data	acquisition
substations	are	utilised	for	inservice	monitoring.	A	total	of	12	crosssections	have	been
selected	for	inconstruction	monitoring,	and	a	total	of	five	crosssections	have	been	selected
for	inservice	monitoring.	The	selected	sections	are	expected	to	suffer	large	stresses	under
certain	construction	and	inservice	loadings	or	to	experience	an	abrupt	change	in	lateral
stiffness.	These	monitoring	sections	were	determined	by	finite	element	analysis	on	the	structure
at	critical	construction	stages	and	the	completed	stage.	As	shown	in	Figure	2.16,
accelerometers	are	positioned	at	many	crosssections	to	capture	complete	modal	shapes	and
verify	the	effectiveness	of	vibration	control	devices	to	be	installed.





Figure	2.16	Deployment	of	sensors	and	data	acquisition	substations	on	Canton	Tower	for	in
service	monitoring.

2.7.2	Installation	of	FBG	Sensors
A	fibre	optic	sensing	system	based	on	fibre	Bragg	gratings	(FBGs)	is	implemented	on	the
Canton	Tower	to	provide	longterm,	realtime	strain	and	temperature	monitoring	(Ni	et	al.
2008,	Ni	2014).	The	FBG	sensors	designed	for	inservice	monitoring	are	also	deployed	in
synchronism	with	the	construction	progress.	The	sensing	system	comprises	120	FBG	sensors
which	can	be	monitored	at	speeds	of	up	to	50	samples	per	second.	Figure	2.17	shows	the
system	configuration	where	five	groups	of	24	FBG	sensors	are	employed	to	monitor	the	outer
tube	of	the	structure	at	different	heights.	Each	group	of	the	24	sensors	is	arranged	into	four
sixFBG	sensor	arrays.	Four	of	the	FBGs	in	each	array	are	allocated	for	strain	measurement
and	the	other	two	for	temperature	measurements.	Both	the	FBG	strain	and	temperature	sensors
employed	are	specifically	designed	to	cope	with	the	hostile	environment	outside	the	tower.
Each	FBG	sensor	is	attached	to	0.8 mm	thick	SS	302	stainless	steel	to	protect	it	from	handling
and	to	ensure	longterm	reliability.	The	steel	packaged	FBGs	permit	them	to	be	welded
directly	onto	the	structure.	The	sensing	system	is	designed	to	measure	temperature	with	an
accuracy	of	0.1 °C	over	the	temperature	range	of	−40 °C	to	+120 °C	and	strain	with	an
accuracy	of	1 με	and	strain	limits	of	±2500 με.





Figure	2.17	Fibre	Bragg	gratings	(FBG)	sensing	system	for	Canton	Tower.

The	FBG	interrogation	system	adopts	a	wavelengthtunable	fibre	laser.	Its	emission
wavelength	can	be	tuned	at	speed	of	200 Hz	with	each	cycle	covering	the	entire	reflection
wavelength	of	the	FBG	sensors.	The	FBG	interrogator	has	a	wavelength	tuning	range	of	80 nm.
The	interrogator	has	four	outputs	that	are	increased	to	16	outputs	using	an	optic	multiplexer.
Each	of	the	16	channels	covers	80 nm	but	operates	at	a	quarter	of	the	original	sampling	speed
(i.e.	50 Hz).	Armoured	optic	fibres	are	used	to	connect	all	the	FBG	sensors	to	the	FBG
interrogation	system.	The	FBG	sensors	are	secured	to	a	stainless	steel	tray	which	also	keeps
the	armoured	optic	cables	in	position.	During	installation,	the	two	metal	stubs	are	welded	onto
the	surface	of	steel	structural	members.	Then,	the	FBG	sensor	tray	is	placed	around	the	metal
stubs	before	welding	the	FBG	package	onto	the	structure.	A	metal	cover	measuring	10 × 70 × 
140 mm	for	protecting	the	FBG	sensor	is	screwed	onto	the	metal	stubs	and	sealed	with	a
sealant	to	prevent	water	seeping	into	the	sensor	housing.

2.8	Concluding	Remarks
Sensors	are	an	integral	and	essential	component	in	the	SHM	system	of	civil	engineering
structures.	Various	types	of	sensors	are	normally	adopted	for	measuring	different	types	of
physical	and	chemical	quantities.	The	usual	factors	considered	in	selecting	a	proper	type	of
sensors	for	monitoring	include:	type	of	measurand,	type	of	output	signal,	type	of	excitation,
measuring	range,	measuring	resolution,	measuring	accuracy,	sampling	rate,	environmental
operation	limits	and	service	life.	From	the	installed	sensors,	physical	and	chemical	quantities
that	can	describe	the	state	of	the	structure	are	transmitted	to	the	enduser	by	sensing	networks.
These	measurable	quantities	can	be	structural	responses,	environmental	quantities	and
operational	quantities	of	the	structure	concerned.	There	are	several	different	ways	for	any
given	physical	or	chemical	quantity	to	be	measured.	When	choosing	sensors	for	specific	tasks,
the	sensor	properties	need	to	be	considered.

Fibre	optic	sensing	technology	is	attractive	in	the	cases	where	it	offers	superior	performance,
compared	to	the	more	proven,	conventional	sensors	offering.	Fibre	optic	sensors	offer	many
advantages,	such	as	improved	quality	of	measurement,	better	reliability	in	challenging
environments,	no	recalibration	of	sensors	required,	long	signal	transmission	lines	and	multiple
sensors	on	a	single	transmission	line.	Techniques	have	been	developed	that	allow	optical
fibres	to	be	bonded	onto	steel	and	concrete	surfaces,	or	embedded	within	concrete,	and	to
monitor	internal	and	external	parameters.	However,	there	are	several	challenging	tasks	for
fibre	optic	sensing	technology,	such	as	to	reduce	the	sensor	crossed	sensitivities,	to	improve
the	resolution	and	the	measurement	range,	to	improve	the	stability	in	practical	applications	and
to	achieve	costeffective	sensors	through	more	advanced	techniques.

An	obvious	benefit	of	wireless	sensors	is	that	they	are	inexpensive	to	install,	since	extensive
wiring	is	no	longer	required	between	sensors	and	the	data	acquisition	system.	A	significant
advantage	of	wireless	sensor	networks	over	traditional	cable	based	monitoring	systems	is	the
collocation	of	computational	power	with	the	sensing	transducer.	However,	wireless	sensors



have	limitations	that	require	novel	system	architectures	and	modes	of	operation.	The	majority
of	existing	wireless	sensors	are	passive	devices	that	only	record	the	response	of	the	structure.
In	the	future,	wireless	sensors	with	actuation	interfaces	should	be	adopted	to	offer	more
powerful	techniques	for	monitoring	civil	structures.

The	selection	of	appropriate	sensors	for	structural	monitoring	depends	on	many	parameters	and
factors,	such	as	operating	environment,	cost	and	sensor	properties.	The	basic	criteria	for
selection	of	sensors	include	minimal	change	of	the	measurand	(e.g.	resolution,	linearity	and
accuracy),	measuring	range,	type	of	measurement	(e.g.	static,	dynamic),	test	duration	(e.g.
shortterm,	longterm),	test	environment,	installation	environment	and	financial	resources.
Since	the	number	of	sensors	adopted	is	often	limited,	the	locations	of	these	sensors	need	to	be
selected	optimally.	Intuitively,	sensors	should	be	placed	near	expected	damage	locations.	In
practice,	higherdensity	sensor	arrays	are	required	to	provide	localised	information	relating
to	damage,	also	to	provide	for	redundancy.	It	is	important	to	ensure	that	the	sensing	system	is
more	reliable	than	the	structure	being	monitored.	As	the	number	of	sensors	increases,	the	cost,
reliability	and	perhaps	power	requirements	may	become	significant	issues.
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3
Data	Acquisition,	Transmission	and	Management

3.1	Introduction
Structural	health	monitoring	systems	for	applications	in	civil	engineering	generally	consist	of
some	or	all	of	following	components	(Farrar	et	al.	2009):

various	sensors	measuring	specific	physical	and	chemical	parameters

data	acquisition	units,	including	signal	conditioning	devices	and	analoguetodigital
(A/D)	converters	that	transform	the	analogue	electrical	signal	into	a	digital	signal

networks	for	data	transmission,	e.g.	wired	networks	and	wireless	networks

processing	facilities	for	data	validation,	normalisation,	cleaning	and	fusion	as	well	as	data
analysis	and	compression

storage	devices	to	save	the	acquired	data	and	to	manage	files

tools	for	structural	health	evolution	using	the	monitored	data

power	for	the	SHM	system

The	implementation	of	an	SHM	system	typically	starts	with	designing	a	modular	architecture.
First,	a	sensory	system	for	the	SHM	framework	should	be	determined.	The	physical	quantities
to	be	measured,	the	type	and	number	of	sensors	and	the	sensor	placement	need	to	be	decided.
Next,	the	issue	of	data	acquisition	should	be	addressed,	such	as	how	often	the	data	should	be
collected	and	how	to	select	the	resolution	and	dynamic	ranges	of	the	measured	quantities.	The
selection	of	data	acquisition	and	signal	processing	devices	is	application	specific,	and	their
costs	need	to	be	considered	in	the	decision	making	process.	Then,	the	measured	parameters	are
transmitted	safely	by	means	of	wired	or	wireless	transmission	systems	to	central	monitoring
facilities.	This	monitored	data	is	processed	and	analysed	for	evaluating	the	health	of	the
structure.	Finally,	this	data	is	stored	and	the	files	are	archived	in	the	storage	devices.

The	SHM	systems	vary	depending	upon	the	specific	SHM	activity.	Traditional	SHM	systems
often	have	a	starlike	network	where	each	deployed	sensor	is	connected	via	long	cable
networks	to	a	central	computer	acting	as	data	acquisition	and	storage	device.	The	installation
of	such	SHM	systems	tends	to	be	timeconsuming	and	therefore	expensive.	In	particular,	in	the
case	of	large	and	complex	civil	structures,	the	sensors	may	be	located	far	way	away	from	the
data	acquisition	unit,	resulting	in	high	installation	costs.	The	costs	could	be	a	major	problem,
limiting	broad	applications	of	SHM	techniques	to	largescale	civil	infrastructure	(Bischoff	et
al.	2009).	Recent	advances	in	wireless	communication	can	overcome	most	of	these	limitations.
With	wireless	sensor	network	techniques,	the	local	sensing	and	processing	units	can
communicate	with	a	centralised	processing	unit	and	with	each	other.



The	SHM	systems	for	civil	structures	are	typically	designed	for	continuous,	realtime	and
longterm	operation.	During	operation,	massive	high	dimensional	data	is	acquired	and	a	file
based	approach	is	usually	adopted	in	the	management	of	the	data.	Due	to	the	massive	quantity
and	high	dimensionality	of	the	monitoring	data,	the	file	based	approach	often	makes	the	data
interrogation	slow	and	timeconsuming.	Therefore,	it	is	important	for	a	data	management
system	to	have	the	capability	of	effective	storage,	query,	visualisation,	swap	and	retrieval	of
the	monitoring	data.	Recently,	the	data	management	system	has	become	an	integral	component
of	the	SHM	framework.

This	chapter	introduces	several	key	systems	in	a	framework	of	the	structural	health	monitoring
of	civil	engineering	structures.	First,	data	acquisition	systems	are	presented	for	acquiring
various	physical	and	chemical	measurements	from	the	installed	sensors.	The	monitored	data	is
then	transmitted	by	data	transmission	systems.	Traditional	wire	transmission	systems	and
recently	developed	wireless	communication	are	discussed.	The	necessary	procedures	for	data
processing	and	analysis	before	structural	health	evolution	are	explored.	Data	management
systems	are	introduced	for	effective	data	storage	and	file	management.	These	key	systems	of
the	structural	monitoring	framework	are	demonstrated	by	their	applications	to	a	suspension
bridge.	Finally,	a	case	study	shows	the	actual	application	of	these	key	systems	to	a	constructed
supertall	structure.

3.2	Data	Acquisition	Systems
Data	acquisition	is	the	procedure	for	converting	analogue	or	digital	signals,	transmitted	from
sensors	by	wired	or	wireless	networks,	to	digital	data.	Such	data	may	be	permanently	stored
locally	(e.g.	on	a	computer	disk	drive)	or	may	be	processed	locally	to	a	reduced	quantity	of
higher	level	data.

3.2.1	Data	Acquisition	for	Structural	Monitoring
In	health	monitoring	of	civil	structures,	a	wide	range	of	measurements	may	be	covered,	ranging
from	slowly	sampled	(static)	digital	signals	to	conventional	analogue	(voltage)	signals	at
varying	dynamic	sample	rates	(Catbas	et	al.	2012,	Chen	and	Maung	2014).	For	example,
capturing	day	and	night	variation	of	static	response	parameters	(e.g.	temperature)	can	be
undertaken	by	sampling	as	slowly	as	once	per	hour.	For	dynamic	signals,	sample	rates	depend
on	the	structure	size	and	frequency	range	of	the	external	loading.	For	global	response	of	long
span	bridges	(>500 m)	and	tall	buildings	(>200 m)	10 Hz	bandwidth	should	be	adequate.	This
requires	sample	rates	approximately	2.5	times	larger	to	provide	room	for	antialias	filtering.
For	short	span	highway	bridges,	bandwidth	up	to	40 Hz	will	be	sufficient.	Seismometers
typically	are	set	to	100 Hz	bandwidth.	General	purpose	logger	systems	usually	have	a	pure
data	acquisition	function.	This	function	can	be	configured	to	read	a	wide	range	of	sensor	types
(e.g.	vibrating	wire	gauges	and	thermocouples)	at	slow	sample	rates,	but	sometimes	with	high
speed	acquisition	capabilities.	Seismometers	and	the	loggers	or	interfaces	for	fibre	optics,
GPS	and	other	signal	types	often	have	limited	functionality.	Such	loggers	may	be	networked
and	interrogated	directly	or	controlled	by	a	computer.



Reliability	and	longevity	of	data	acquisition	systems	requires	robust	hardware,	that	is,
protection	from	harsh	environments	(e.g.	dust,	overheating	and	moisture),	rugged	computers
and	redundant	data	storage.	In	general,	upgrade	paths	may	be	needed	for	monitoring	systems
expected	to	last	a	long	time	(e.g.	over	a	decade).	Reliable	and	clean	power	supplies	with
uninterruptible	power	supply	protection	have	to	be	provided,	as	well	as	communication	via
high	speed	broadband	links.

3.2.2	Data	Acquisition	in	Bridge	Monitoring
In	the	wind	and	structural	health	monitoring	system	(WASHMS)	of	the	Tsing	Ma	Bridge
discussed	in	Section	2.3.5,	the	data	acquisition	system	is	a	key	component	of	the	data
acquisition	and	transmission	system	(Module	2).	The	data	acquisition	system	is	composed	of
fixed	data	acquisition	units	(DAUs),	portable	DAUs	and	digital	video	converters	(DVCs)	for
collecting	respective	random	and	digital	video	signals.	All	DAUs	and	DVCs	are	PC	based
equipment.	The	fixed	DAUs	and	DVCs	are	permanently	installed	in	the	bridge	deck	and	bridge
towers	for	collection	and	processing	of	the	signals	received	from	sensory	system	(excluding
corrosion	cells).	The	portable	DAUs	are	used	to	collect	signals	from	portable	servotype
accelerometers	and	corrosion	cells	during	ambient	vibration	measurements	and	specified	field
measurement	works.	Figure	3.1	shows	the	schematic	layout	of	a	typical	connection	between
sensory	system,	DAU	and	fibreoptic	cable	(Wong	and	Ni	2009a).	The	major	components	in
the	DAU	include	the	peripheral	components	interconnect	(PCI)	controller,	the	signal
conditioning	device	and	the	analoguetodigital	converter.	The	proper	design	of	these
components	is	the	key	to	obtaining	measurement	data	with	high	quality.



Figure	3.1	Schematic	layout	of	a	typical	data	acquisition	unit	and	its	associated	equipment.

3.3	Data	Transmission	Systems
Data	transmission	system	is	required	in	the	SHM	framework	to	transmit	the	data,	so	that	the
acquired	raw	data	can	be	transformed	into	useful	information.	The	selection	of	the	data
transmission	system	largely	depends	on	the	specific	SHM	activities.	In	general,	there	are	two
types	of	the	data	transmission	systems	available:	wired	and	wireless.

3.3.1	Wired	Transmission	Systems
Data	transmission	using	wired	technology	can	telemeter	data	and	transfer	power	to	the	sensors
over	a	direct	wired	connection	from	the	transducer	to	the	central	data	analysis	facility	(Straser
et	al.	1998),	as	illustrated	in	Figure	3.2(a).	The	installed	common	sensors	output	analogue
signals	that	are	sampled	and	digitised	for	use	in	modern	discrete	signal	processing	systems.
The	distance	from	the	sensors	to	the	data	acquisition	system	can	range	from	10	to	300 m	in
practice.	As	the	signal	transmission	distance	becomes	longer,	the	analogue	signals	become
noisier	and	degrade	owing	to	coupled	noise	sources	near	the	cable	path	(Sohn	et	al.	2004).
When	the	analogue	signals	arrive	at	the	centralised	data	acquisition	and	storage	system,	the
signals	will	be	discretised	and	then	used	for	extracting	the	relevant	engineering	quantities	from
the	data.



Figure	3.2	Comparison	of	wired	and	wireless	configurations	of	a	structural	monitoring	system
(after	Straser	et	al.	1998).

There	are	a	wide	range	of	commercially	available	wired	systems	for	generalpurpose	data
transmissions	and	for	SHM	applications.	The	wired	systems	for	general	purpose	data
transmission	can	typically	interface	with	a	wide	variety	of	transducers	and	also	have	the
capability	to	drive	actuators.	Most	wired	systems	have	integrated	signal	conditioning,	data
processing	and	data	storage	capabilities	and	runoff	of	alternating	current	(AC)	power.	The
wired	systems	designed	to	run	off	batteries	typically	have	a	limited	number	of	channels,	and
they	have	limited	ability	to	operate	for	long	periods	of	time	(Farrar	et	al.	2009).	Wired	systems
for	temporary	and	time	limited	studies,	such	as	forced	vibration	testing,	require	robust	and
foolproof	but	quickfit	connectors.

For	permanent	SHM	applications,	cables	with	appropriate	ratings	must	also	be	structurally
robust	(particularly	when	exposed	on	wind/rainblown	faces	of	structures)	and	have	the
required	electrical	characteristics	of	low	resistance	and	shielding	of	conductors.	High	quality
cables	will	minimise	problems	due	to	electromagnetic	interference	and	crosstalk.	Lightning
protection	is	also	needed	for	exposed	wiring,	sensors	and	housings,	requiring	careful
arrangements	for	grounding	(avoiding	earth	loops)	and	surge	suppression.	In	cases	where
multiple	loggers	need	to	be	networked	using	local	area	network	connections,	or	where	modems
and	logger	are	separated,	fibre	optic	links	may	be	required	for	distances	over	100 m	(Catbas	et
al.	2012).	Synchronisation	of	signals	from	loggers	is	a	major	problem	for	dynamic	testing,
most	usually	dealt	with	by	using	hardwired	analogue	connections.

3.3.2	Wireless	Transmission	Systems
In	order	to	avoid	the	high	costs	and	limited	flexibility	associated	with	wired	transmission
systems,	wireless	communication	has	been	used	for	the	transfer	of	data	between	sensors	and	a
data	repository	in	structural	monitoring	systems.	Such	wireless	monitoring	systems	are



assembled	from	lowcost	wireless	sensors	that	collocate	sensing,	communication	and
computing	in	a	single	device	(Catbas	et	al.	2012).	Wireless	communication	can	tackle	the
recurring	cabling	problem	of	the	conventional	wired	data	transmission	systems.	With	the
wireless	communication	and	embedded	processors,	it	is	possible	to	move	the	data	acquisition
and	a	portion	of	data	processing	towards	the	wireless	sensors.	A	schematic	system	architecture
view	of	a	wireless	monitoring	system	(Straser	et	al.	1998)	is	shown	in	Figure	3.2(b).	A
comprehensive	review	of	the	applications	of	wireless	sensors	and	sensor	networks	for	SHM
applications	is	provided	in	Lynch	and	Loh	(2006).
A	wireless	sensor	network	is	essentially	a	computer	network	comprising	several	small,
intercommunicating	computers	equipped	with	one	or	more	sensors	(Bischoff	et	al.	2009).	Each
small	computer	represents	a	sensor	node	of	the	network.	The	communication	within	the
network	is	established	using	radio	frequency	transmission	techniques.	The	sensor	nodes
usually	form	a	multihop	mesh	network	by	establishing	communication	links	to	neighbour	nodes.
Multihop	networks	offer	various	advantages	when	monitoring	data	has	to	be	transmitted	over
long	distances.	Because	of	the	network	robustness	to	sensor	node	failure	and	the	high	power
efficiency,	multihop	networks	are	attractive	for	SHM	applications.	All	sensor	nodes	are
equipped	with	specific	sensors	selected	for	the	required	measurements.	These	nodes	act	as
data	sources,	and	also	act	as	relaying	stations,	receiving	and	forwarding	data	from	adjacent
nodes.	A	base	station	needs	to	be	selected	from	particular	sensor	nodes	to	aggregate	all	the
data	obtained	within	the	network.	The	base	station	establishes	a	communication	link	to	a	data
logging	unit	or	a	remote	site,	using	standard	wired	or	wireless	communication	technologies
such	as	universal	mobile	telecommunications	system	(UMTS)	or	a	wireless	local	area	network
(WLAN).

A	major	concern	in	using	a	dense	sensor	array	in	SHM	systems	for	civil	engineering
applications	is	the	problem	of	providing	power	to	the	sensors.	In	the	cases	where	power	can
only	be	provided	by	direct	cable	connections,	wireless	protocols	become	impractical,	since
the	cabled	power	link	could	also	be	used	for	the	transmission	of	data.	Therefore,	micropower
generators	embedded	in	the	hardware	are	essential	for	wireless	communication.	The	problem
of	localised	power	generation	could	be	solved	by	harvesting	ambient	energy,	such	as	using
thermal,	vibration,	acoustic	and	solar	sources.

3.3.3	Data	Transmission	in	Bridge	Monitoring
In	the	WASHMS	of	the	Tsing	Ma	Bridge	discussed	in	Section	2.3.5,	the	data	transmission
system	is	another	key	component	of	the	data	acquisition	and	transmission	system	(Module	2).
The	data	transmission	system	includes	local	cabling	network	system,	global	cabling	network
system	and	commercial	cabling	network	system.	The	local	cabling	network	system	is
composed	of	two	local	cabling	networks:	the	fibre	optic	cabling	network	for	transmission	of
the	signals	from	global	positioning	systems	and	digital	video	cameras,	and	the	copper	cabling
network	for	transmission	of	the	signals	from	other	sensors	of	the	sensory	system	to	data
acquisition	units	(DAUs)	for	random	signals	and	digital	video	converters	(DVCs)	for	digital
video	signals	(Wong	and	Ni	2009a,	2009b),	as	illustrated	in	Figure	3.3.



Figure	3.3	Schematic	layout	of	data	acquisition	and	transmission	system.

The	global	cabling	network	system	is	composed	of	two	backbone	cabling	networks:	(1)	the
random	signal	transmission	cabling	network	for	transmission	of	digitised	signals	(excluding
digital	video	cameras)	from	individual	DAUs	to	a	data	processing	and	control	system
(DPCS1)	and	(2)	the	digital	video	signal	transmission	cabling	network	for	transmission	of
digital	video	signals	from	individual	DVCs	to	another	data	processing	and	control	system
(DPCS2).	Both	backbone	cabling	networks	are	ringshaped	single	mode	fibreoptic
cabling	networks	with	a	data	transmission	capacity	of	1 GB/s.	The	commercial	cabling
network	system	is	the	high	speed	line	with	a	data	transmission	rate	of	not	less	than	40 MB/s	for
data	communication.	The	commercial	cabling	network	system	is	used	for	data	transmission
between	the	bridge	monitoring	room	in	the	Tsing	Yi	administration	building	and	the	bridge
monitoring	room	in	the	Tsing	Ma	control	area	of	the	Tsing	Ma	Bridge.

3.4	Data	Processing	Systems
Data	processing	systems	are	the	key	and	challenging	components	of	the	SHM	framework.	Such
systems	convert	the	data	acquired	from	the	sensors	into	information	about	the	state	of	the
structure	concerned.	The	data	processing	procedure	typically	includes	data	preprocessing
and	data	interpretation.



3.4.1	Data	PreProcessing	for	SHM
In	SHM	systems	for	civil	engineering	structures,	sensor	measurements	need	to	be	pre
processed	before	their	application	to	structural	condition	assessment.	The	preprocessing
procedure	includes	data	validation,	normalisation,	cleansing	and	fusion.	First	of	all,	the	data
obtained	from	sensing	devices	has	to	be	inspected.	The	data	validation	process	ensures	that	the
sensor	data	possesses	information	relevant	to	subsequent	analyses.	For	example,	measured
acceleration	data	may	have	anomalies	because	of	electromagnetic	interference,	and	it	may	have
missing	values	because	of	disrupted	radiofrequency	transmission	or	a	constant	offset	caused	by
drift	(Farrar	et	al.	2003).	Statistical	inference	techniques	such	as	outlier	analysis	and	novelty
detection	can	be	used	in	this	data	validation	process.

Because	data	is	often	measured	under	varying	conditions,	the	ability	to	normalise	the	data
becomes	critical	for	the	SHM	strategy.	For	example,	the	measured	natural	frequencies	of	a
bridge	usually	vary	with	change	in	temperature	due	to	thermal	effects.	Data	normalisation	is	the
process	of	distinguishing	between	changes	in	sensor	readings	caused	by	damage	and	changes
caused	by	varying	operational	and	environmental	factors.	Typically,	data	normalisation	is
accomplished	through	some	combination	of	sensing	system	hardware	and	data	processing
software	(Sohn	et	al.	2004).	However,	these	hardware	and	software	approaches	are	not
optimal	if	they	are	not	done	in	a	coupled	manner.

Data	cleansing	is	the	process	of	selectively	choosing	data	to	accept	or	reject	from	the	process,
for	the	feature	selection	for	damage	identification.	The	data	cleansing	process	usually	depends
on	knowledge	gained	by	individuals	directly	associated	with	the	data	acquisition	(Sohn	et	al.
2004).	For	example,	manual	signal	processing	techniques	such	as	filtering	and	decimation	can
be	considered	as	data	cleansing	processes	applied	to	data	acquired	during	dynamic	tests.

Data	fusion	is	the	process	of	combining	information	from	various	sensors	in	an	effort	to
enhance	the	reliability	of	the	SHM	process.	The	purpose	of	data	fusion	is	to	integrate	data	from
a	number	of	sensors	with	the	objective	of	making	a	more	robust	and	confident	decision,
compared	with	a	decision	made	from	any	one	sensor	alone.	In	many	cases,	data	fusion	is
undertaken	in	a	simple	manner,	similar	to	examining	relative	information	between	various
sensors	(Sohn	et	al.	2004).	However,	complex	analyses	of	information	from	sensor	arrays	may
be	required	in	the	data	fusion	process	for	some	cases,	such	as	those	provided	by	artificial
neural	networks.

3.4.2	Data	Analysis	and	Compression
After	data	preprocessing,	the	data	can	be	used	for	feature	extraction	and	damage
identification.	Feature	extraction	is	the	process	of	identifying	damagesensitive	properties,
derived	from	the	measured	data	such	as	vibration	response	measurements.	The	extracted
feature	has	the	ability	to	distinguish	between	the	undamaged	and	damaged	structure.	Various
methods	have	been	proposed	for	identifying	features	for	damage	identification.	Past	experience
with	measured	data	from	a	structure,	particularly	data	recorded	before	and	after	damaging
events,	is	often	the	basis	for	feature	selection.	Alternatively,	numerical	simulations	of	the
structural	responses	of	the	undamaged	and	damaged	structure	can	be	used	for	identifying



features.	Also,	fitting	linear	or	nonlinear,	physics	based,	or	nonphysics	based	models	of	the
structural	response	to	measured	data	can	help	identify	damagesensitive	features.
The	implementation	of	an	SHM	system	in	civil	engineering	structures	typically	produces	a
large	amount	of	data.	Almost	all	feature	extraction	procedures	inevitably	perform	some	form	of
data	compression.	Data	compression	is	the	process	of	reducing	the	dimensionality	of	the	data,
or	the	feature	extracted	from	the	data,	in	order	to	facilitate	efficient	information	storage.	In
addition,	condensation	of	the	data	is	advantageous	and	necessary,	particularly	if	many	data	sets
over	structural	lifetime	are	compared	(Sohn	et	al.	2004).	Data	may	be	acquired	from	a
structure	over	an	extended	period	of	time	and	in	an	operational	environment,	and	so	reliable
data	reduction	techniques	must	retain	sensitivity	of	the	selected	features	to	the	structural
changes	under	varying	environmental	and	operational	conditions.

3.4.3	Data	Processing	in	Bridge	Monitoring
For	the	WASHMS	of	the	Tsing	Ma	Bridge	discussed	in	Section	2.3.5,	the	data	processing	and
control	system	(DPCS)	refers	to	the	hardware	and	software	for	executing	the	following
functions:	system	control,	system	operation	display,	bridge	operation	display	and	post
processing	and	analysis	of	data	(Wong	and	Ni	2009a).	This	data	processing	and	control	system
is	composed	of	two	subsystems	–	DPCS1	and	DPCS2	–	to	carry	out	the	processing	and
control	of	onedimensional	signals	and	twodimensional	signals,	respectively.

The	system	control	includes	the	control	of	all	the	operation	modes	in	facilities,	including
sensory	systems,	data	acquisition	units	(DAUs),	digital	video	converters	(DVCs),	cabling
network	systems	and	associated	display	tools,	in	particular	for	the	functions	of	data	collection,
data	processing,	data	archiving	and	data	display,	as	well	as	failure	or	fault	reporting.	The
system	operation	display	includes	the	display	of	all	the	operation	modes	in	the	facilities,	in
particular	for	displaying	and	activating	the	alarming	signal.	The	bridge	operation	display	in
DPCS1	and	DPCS2	has	different	functions.	The	DPCS1	displays	the	environmental
conditions	at	the	bridge	site,	the	operational	loads	on	the	bridge	and	the	variation	of	kinematic
quantities;	it	also	activates	the	alarm	signals	when	the	measurands	exceed	the	defined
threshold.	The	DPCS2	displays	the	traffic	flow	conditions	and	characteristics	of	the	bridge,
including	the	near	realtime	display	of	overloaded	vehicles	and	overspeeding	vehicles.

The	postprocessing	and	analysis	of	data	in	DPCS1	and	DPCS2	also	have	different
functions.	The	DPCS1	performs	the	environmental	loads	and	status	derivation,	operation
loads	derivation,	bridge	features	extraction	and	bridge	responses	derivation	by	an
unsupervised	learning	mode	of	statistical	analysis.	The	DPCS2	performs	the	image	analysis
of	the	selected	digital	video	records	and	it	transfers	the	analysed	results	into	spreadsheet	data
formats	for	subsequent	traffic	features	and	potential	traffic	loadeffect	analyses.	 Figure	3.4
shows	the	block	diagram	of	data	analysis	in	the	DPCS2	(Wong	and	Ni	2009b),	where	raw
data	is	acquired	from	various	sensors	such	as	dynamic	weighinmotion	(DWIM),	digital
video	converter	(DVC)	and	global	positioning	system	(GPS).



Figure	3.4	Block	diagram	of	traffic	data	analysis	in	DPCS2,	combined	digital	video
converter	(DVC)	and	dynamic	weighinmotion	(DWIM)	data.

3.5	Data	Management	Systems
The	implementation	of	sophisticated	SHM	systems	will	generate	vast	amounts	of	high
dimensional	data.	For	the	purpose	of	structural	health	evaluation,	this	data	must	be	efficiently
assessed	and	processed.	Thus,	the	collected	and	generated	data	has	to	be	managed	in	an
effective	manner	by	the	use	of	data	management	systems.

3.5.1	Data	Storage	and	File	Management
At	the	final	stage,	the	processed	and	condensed	data	needs	to	be	archived	and	managed
properly.	The	most	efficient	data	storage	format	is	binary	files,	generated	directly	by
acquisition	software.	Rather	than	saving	directly	to	a	database,	an	efficient	procedure	is	to	use
individual	files	saved	at	convenient	intervals	with	dataembedded	file	names.	File	sizes	for
raw	data	from	sensor	measurements	depend	on	channel	count	and	sample	rate.	The	disk	storage
should	not	be	a	critical	constraint	except	when	dealing	with	video	recordings	(Catbas	et	al.
2012).	Use	of	sensible	sample	rates	will	speed	up	internet	transfer	and	processing.

The	raw	data	typically	remains	on	the	local	storage	systems,	and	it	needs	to	be	accessed	and



observed,	in	order	to	investigate	the	behaviour	and	response	of	the	structure	under	operational
loading	and	extreme	events	(e.g.	earthquake	or	hurricane).	For	shorttime	measurements,	raw
test	data	has	high	value	for	structural	condition	assessment.	Hence,	careful	and	logically
organised	data	archiving	is	necessary,	along	with	all	the	records	of	the	testing,	including
specifications,	plans,	method	statements,	notes	on	sensor	configurations	and	calibrations,
photographs,	videos	and	drawings.	When	the	processed	results	are	saved,	the	version	of
software	used	to	generate	them	should	also	be	saved.	For	raw	binary	data,	a	version	of	reader
software	and	details	of	the	file	structure	ensure	future	accessibility.

Large	data	sets	generally	require	sophisticated	storage	capabilities	to	physically	store	the
information	and	also	to	access	it	efficiently	(Farrar	et	al.	2003).	Storage	and	accessibility	are
therefore	important	components	of	the	SHM	strategy	of	civil	structures.	Compression
algorithms	are	often	needed	to	improve	the	efficiency,	so	that	large	data	sets	can	be	effectively
stored	and	accessed.	For	example,	data	compression	can	link	directly	into	the	pattern
recognition	and	feature	extraction	technology.	Archiving	as	much	as	possible	the	collected	and
generated	data	is	also	critical.	Historic	data	sets	have	to	be	available	for	revisiting	for	further
indepth	investigations,	if	an	abnormality	is	detected	in	the	future.	These	data	sets	also	can
provide	useful	information	about	the	evolution	of	structural	performance	over	the	life	of	the
structure.

3.5.2	Data	Management	in	Bridge	Monitoring
In	the	WASHMS	of	the	Tsing	Ma	Bridge	discussed	in	Section	2.3.5,	the	structural	health	data
management	system	(SHDMS)	has	the	functions	of	data	storage	and	management.	The	data
management	system	is	composed	of	a	highperformance	server	equipped	with	data
management	software.	This	system	is	the	interfacing	platform	for	the	interoperability	of	data
and	information,	so	that	the	efficiency	of	the	fusion	of	data	and	information	for	decision	making
can	be	significantly	enhanced,	as	illustrated	in	Figure	3.5	(Wong	and	Ni	2009a).	The	following
five	major	databases	are	devised	for	the	storage	and	retrieval	of	data	and	information:

realtime	structural	health	data	database	(RSHDDB)	for	all	preprocessed	time
series	data	obtained	from	data	acquisition	units	(DAUs)

statistical	and	probabilistic	analysed	data	database	(SPADDB)	for	all	data	generated
from	signal	or	data	processing	and	analysis	software	tools

finite	element	analysis	data	database	(FEADDB)	for	all	input	and	output	finite	element
data	generated	by	finite	element	solvers

structural	health	rating	data	database	(SHRDDB)	for	all	new	or	updated	rating	indices
(or	criteria),	generated	by	the	structural	health	rating	system	(SHRS)

structural	health	evaluation	data	database	(SHEDDB)	for	all	concise	historical
monitoring	and	evaluation	results	and	all	reports,	generated	by	the	structural	health
evaluation	system	(SHES)



Figure	3.5	Architectural	layout	of	structural	health	data	management	system	(SHDMS)	and	its
interfaces.

These	five	databases	are	manipulated	and	managed	by	a	data	warehouse	management	system.
This	system	is	equipped	with	online	analytical	processing	tools	for	integrating	a	wide	range
of	corporate	data	into	a	single	repository.	From	this	repository,	users	or	engineers	can	easily
run	queries,	perform	different	types	of	analyses	and	generate	monitoring	and	evaluation
reports.	The	data	warehouse	management	system	in	the	SHDMS	is	devised	to	carry	out	the
following	functions:

systematic	cleansing,	reconciliation,	derivation,	matching,	standardisation,	transformation
and	conformity	of	data	and	information	from	all	data	source	systems	such	as	data
processing	and	control	system	(DPCS)servers,	SHESservers	and	SHRSservers

manipulation	of	all	types	of	correlation	analyses	and	features	extraction	plots,	by	online
analytical	processing	tools	and	appropriate	data	mining	tools

creation	of	data	marts,	based	on	the	results	of	the	correlation	analyses	and	plots,	for	the
execution	of	the	monitoring	and	evaluation	works,	including	reporting	the	current	and	future
environmental	and	operational	loads,	reporting	the	current	and	future	corrosion	status,
reporting	the	current	and	future	structural	health	conditions,	planning	and	scheduling	bridge
inspection	and	maintenance	activities	and	updating	the	bridge	rating	system	and
computational	models

forming	the	centre	of	data	interrogation	and	metamodelling	for	bridge	damage	diagnosis



and	prognosis,	through	the	integration	of	data	and	information	from	both	measurement	and
computational	systems

3.6	Case	Study
The	SHM	system	of	the	Canton	Tower	discussed	in	the	case	study	in	Section	2.7	consists	of	six
standard	modules	(subsystems).	The	sensory	system	and	data	acquisition	and	transmission
system	are	located	in	the	structure.	The	data	processing	and	control	system,	data	management
system	and	structural	health	evaluation	system	are	placed	in	the	monitoring	centre	room.	The
inspection	and	maintenance	system	is	a	portable	system.	The	integrated	inconstruction	and
inservice	sensory	system	is	composed	of	16	types	of	sensors	with	over	600	sensors	(Chen
and	Tee	2014,	Ni	2014,	Ni	et	al.	2011),	as	discussed	in	detail	in	Section	2.7.	As	illustrated	in
Figure	3.6,	this	online	SHM	system	has	been	devised	to	possess	the	following	features:

modular	architecture	for	easy	maintenance	and	upgrade

lifecycle	SHM	with	the	integration	of	inconstruction	monitoring	and	inservice
monitoring

dual	function	of	online	health	monitoring	and	realtime	feedback	control	with	the
integration	of	SHM	and	vibration	control

integration	with	renewable	energy	technology	(solar	photovoltaic	and	wind	turbine
systems)	to	monitor	the	power	generation	efficiency	and	operational	condition

innovative	sensors	and	customised	design	fit	for	special	circumstances

hybrid	tethered	and	wireless	data	transmission	network	customised	for	harsh	operational
conditions

userfriendly	graphical	user	interface	for	easy	operation

innovative	structural	health	evaluation	methodologies	catering	for	structural	maintenance
and	management	purposes

allround	protection	customised	for	severe	surrounding	environment

remote	expert	service	through	the	web	based	data	collection	around	the	world

popularisation	of	scientific	knowledge	through	a	virtual	reality	system	integrated	with
sightseeing



Figure	3.6	Integrated	inconstruction	and	inservice	SHM	system	for	Canton	Tower.

The	SHM	system	has	a	special	function	of	monitoring	and	verifying	the	effectiveness	of
vibration	control	devices	installed	on	the	structure.	It	is	a	unique	and	interesting	practice	of
SHM.	A	hybrid	control	system,	consisting	of	two	tuned	mass	dampers	coupled	with	two	active
mass	dampers,	was	installed	at	a	floor	of	438 m	high	for	mitigating	windinduced	vibration	of
the	main	tower.	To	online	command	the	active	mass	dampers	(made	from	linear	motion
actuators)	it	is	necessary	to	establish	a	structural	response	feedback	system	for	providing
thorough	information	for	realtime	vibration	control.	As	illustrated	in	 Figure	3.7,	the	SHM
system	has	been	devised	to	integrate	with	the	vibration	control	system,	so	that	reliable	and
realtime	monitoring	data	can	be	obtained	for	feedback	vibration	control	to	enhance	the
control	effectiveness.





Figure	3.7	Integration	of	SHM	and	vibration	control.

The	supertall	structure	provides	a	unique	testbed	for	investigating	the	optimal	design	of
sensor	network	and	the	technique	for	longrange	wireless	monitoring	(Ni	et	al.	2011).	A
hybrid	tethered	and	wireless	data	acquisition	network	in	conjunction	with	13	data	acquisition
units	(DAUs)	during	inconstruction	monitoring	and	five	DAUs	during	inservice	monitoring
has	been	adopted	in	the	SHM	system.	Wireless	systems	have	been	implemented	in	the	SHM
system	for	both	static	and	dynamic	monitoring.	As	shown	in	Figure	3.8,	the	wireless	system	is
operated	for	synchronous	acquisition	of	strain	and	temperature	data	and	for	realtime	data
transmission	from	the	DAUs	to	the	site	office.	The	vibration	of	the	structure	is	monitored
mainly	by	using	a	wired	cabling	network,	while	the	wireless	system	is	also	adopted	in	situ	for
complementary	vibration	monitoring.	The	hybrid	network	enables	the	verification	of	the
wireless	monitoring	data.





Figure	3.8	Wireless	data	transmission.

3.7	Concluding	Remarks
The	health	monitoring	system	for	civil	engineering	applications	should	be	designed	using	a
modular	architecture.	The	architecture	of	the	monitoring	system	typically	includes	several
modules,	such	as	sensory	system,	data	acquisition	system,	data	transmission	system,	data
processing	system,	data	management	system,	as	well	as	structural	health	evolution	system.	The
structural	health	evolution	system	is	a	critical	module	for	damage	diagnosis	and	prognosis,	and
it	will	be	discussed	in	detail	in	following	chapters.

The	sensory	system	should	be	able	to	monitor	properly	the	health	status	of	civil	structures
under	normal	condition	and	to	evaluate	structural	health	after	infrequent	extreme	events.
Different	types	of	sensors	may	be	deployed	at	the	key	locations	and	components,	such	as	where
large	displacements	and	stresses	are	expected	to	occur,	so	that	the	measured	data	can	be
validated	through	correlation	studies.	To	ensure	data	quality,	the	data	acquisition	system	should
have	an	appropriate	hardware	configuration,	particularly	the	signal	conditioning	devices.	The
performance	requirements	on	the	linearity,	temperature	drift,	accuracy,	direct	current
resolution,	bandwidth,	and	so	on,	of	the	signal	conditioning	devices	and	the	data	acquisition
devices	should	be	identified	and	quantified.	Appropriate	customised	software	systems	should
be	developed	and	configured	to	process	the	measured	data	in	the	data	formats	applicable	to
SHM	strategies.

Depending	on	the	application,	data	transmission	can	be	accomplished	by	either	wired	or
wireless	systems.	Wired	systems	can	offer	robust	and	accurate	data	transmission	for	SHM
techniques.	However,	this	approach	can	impose	serious	limitations	on	application	of	an	SHM
system	to	a	large	civil	structure,	since	for	such	a	structure	it	is	highly	desirable	to	have	a	very
large	number	of	sensors.	Wired	systems	also	tend	to	have	a	limited	flexibility	in	terms	of	the
rearrangement	of	sensors	and	scalability.	The	adoption	of	wireless	sensor	network	techniques
to	SHM	applications	should	overcome	the	drawbacks	of	wired	systems.	It	has	been
demonstrated	that	wireless	sensing	technologies	can	be	deployed	reliably	in	monitoring	the
low	frequency	and	low	amplitude	ambient	vibration	of	the	Canton	Tower.	However,	wireless
data	appears	to	be	more	strongly	influenced	by	environmental	noise	than	with	a	wired	system.
Potential	constraints	on	wireless	systems	include	maximum	range,	amount	of	bandwidth
available,	energy	requirement	and	susceptibility	to	electromagnetic	interference.

Structural	health	monitoring	and	evaluation	tasks	should	be	executed	through	the	correlation
analyses	and	feature	extractions	of	the	measured,	derived	and	analysed	results.	These
correlation	analyses	and	feature	extractions	often	involve	the	synchronised	processing	of	two
or	more	data	sets.	Thus,	the	use	of	a	data	warehouse	management	system,	for	managing	the
storage	and	retrieval	processes	of	data	and	information,	facilitates	the	automatic	execution	of
such	synchronised	data	processing	and	analysis.
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4
Structural	Damage	Identification	Techniques

4.1	Introduction
Damage	in	civil	engineering	structures	can	be	represented	by	a	reduction	of	the	structural
bearing	capacity	during	their	service	period.	This	reduction	is	usually	caused	by	degradation
of	materials,	structural	components	or	connections	due	to	environmental	or	loading	effects.	All
loadcarrying	civil	engineering	structures,	such	as	bridges,	buildings	and	offshore	platforms,
continuously	accumulate	damage	during	their	service	life.	Typical	types	of	damage	in	civil
engineering	structures	include	cracks,	fatigue,	steel	corrosion,	concrete	spalls,	scour	and
deterioration.	Undetected	damage	may	lead	to	structural	failure	and	loss	of	human	life.	It	is
therefore	important	and	necessary	to	detect	damage	within	a	structure	and	to	undertake
appropriate	repairs	as	early	as	possible.

Visual	inspection	is	the	most	common	method	of	damage	detection.	However,	this	method	is
unreliable	for	complex	civil	structures,	because	critical	damage	can	occur	in	inaccessible
areas	or	it	may	be	concealed	by	paint.	Visual	inspection	also	cannot	provide	quantitative
assessment	for	damage	in	the	structure.	Very	often,	loose	connections	or	cracking	of	structural
components	can	be	difficult	to	detect	visually,	but	can	considerably	weaken	the	structural
capacity.	In	order	to	tackle	the	shortcomings	of	visual	inspections,	nondestructive	testing
(NDT)	techniques	have	been	extensively	employed	to	assess	the	integrity	of	a	structure
(Michaels	and	Michaels	2006),	including	acoustic	emission,	ultrasound,	guided	(Lamb)	waves,
thermography,	electromagnetic	methods,	capacitive	methods,	laser	Doppler	vibrometer	and
global	positioning	system	(GPS).	However,	these	NDT	techniques	differ	greatly	in	their	range
of	applicability,	and	may	only	be	suitable	for	damage	assessment	in	local	areas.	They	have
certain	kinds	of	limitation	in	practical	applications,	particularly	for	large	complex	civil
engineering	structures.

The	need	for	effectively	identifying	damage	in	complex	civil	structures	has	motivated	the
development	of	structural	health	monitoring	methods.	Structural	health	monitoring	is	an
emerging	method	for	assessing	the	current	state	and	predicting	the	future	performance	of
existing	engineering	structures.	A	comparatively	recent	development	in	SHM	methods	is
vibrationbased	damage	identification.	The	basic	premise	of	common	vibrationbased
damage	identification	methods	is	that	damage	in	a	structure	will	alter	the	stiffness,	mass	or
energy	dissipation	properties	of	the	structure,	which	in	turn	will	alter	the	measured	dynamic
response	of	the	structure	(Chen	1998,	Farrar	and	Worden	2007).	For	example,	the	method	used
to	monitor	the	condition	of	train	wheels	is	much	the	same	today	as	it	was	100	years	ago:
tapping	each	wheel	with	a	hammer	and	listening	to	its	response.

Vibrationbased	damage	identification	methods	show	great	promise	for	online	damage
assessment	of	large	civil	engineering	structures.	These	methods	rely	on	vibration



measurements,	such	as	accelerations	of	a	structure,	which	are	associated	with	damage	in	the
structure	(Montalvão	et	al.	2006).	From	this	vibration	measurement	data,	signal	processing
techniques,	such	as	Fourier	transforms,	wavelet	transforms	and	Hilbert–Huang	transform,	can
be	employed	to	directly	detect	structural	damage.	Alternatively,	modelbased	techniques,
based	on	a	structural	model	or	modal	model,	can	be	adopted	for	identifying	the	location	and
extent	of	the	structural	damage.	By	using	vibrationbased	methods,	damage	can	be	identified
in	a	global	sense,	even	when	the	location	of	damage	is	inaccessible	and	not	known.	Although
their	successful	application	has	been	developed	recently,	the	damage	assessment	of	large
complex	civil	engineering	structures,	such	as	bridges	and	buildings,	still	remains	a	challenging
task	in	practice	for	civil	engineers.

This	chapter	first	classifies	types	of	damage	in	civil	engineering	structures.	Traditional	non
destructive	testing	techniques	are	introduced	for	detecting	damage	in	structures.	The	nature	of
various	NDT	techniques	and	their	application	to	civil	engineering	practices	are	discussed.
Then,	the	recently	developed	SHM	methods	for	damage	identification	of	civil	engineering
structures	are	reviewed.	NDT	techniques	and	SHM	methods	are	compared	for	structural
damage	identification	in	practice.	For	SHM	methods,	two	types	of	damage	identification
approaches	are	further	discussed:	databased	and	modelbased.	Typical	databased
approaches	such	as	signal	processing	techniques	are	presented	for	structural	damage	detection.
Finally,	the	philosophy	and	development	of	vibrationbased	damage	identification	in	civil
engineering	applications	is	discussed.

4.2	Damage	in	Structures
Damage	can	be	defined	in	general	terms	as	changes	introduced	into	a	system	that	adversely
affect	its	current	or	future	performance.	Here,	the	main	focus	is	the	study	of	damage
identification	in	civil	engineering	structures.	Thus,	the	definition	of	damage	is	limited	to	any
deviation	in	the	geometric	or	material	properties	of	a	structure,	which	has	an	adverse	effect	on
current	or	future	performance	of	the	structure,	such	as	undesirable	stresses,	displacements	or
vibrations	of	the	structure.	These	deviations	may	develop	due	to	a	variety	of	causes	such	as:

failure	of	the	material,	i.e.	corrosion,	fatigue,	plasticity	and	cracking

flaws,	voids,	cracks	and	weak	spots	caused	during	manufacture

loss	of	structural	connections,	i.e.	loose	bolts	and	broken	welds

improper	assembly	or	misfits	during	construction.

Damages	in	civil	engineering	structures	vary,	depending	on	the	cause	of	the	damage.	The
causes	of	damage	can	be	operational	factors	and/or	environmental	factors.	The	common	types
of	damage	include	material	cracks,	degradation	of	material	properties,	change	in	geometric
properties	or	loss	of	structural	strength.	Location	of	damage	can	be	almost	anywhere	in	the
structure,	and	is	associated	with	the	cause	of	the	damage.	The	extent	of	damage	can	range	from
the	microscopic	scale	to	the	global	scale.	The	severity	of	damage	can	be	a	minor	effect	or	a
severe	effect	on	structural	safety	(Ettouney	and	Alampalli	2012).	In	the	damage	assessment



process,	the	key	damage	parameters,	such	as	the	cause,	type,	location,	extent	and	severity,	need
to	be	determined.

Damage	can	accumulate	incrementally	over	long	periods	of	time,	such	as	fatigue	or	corrosion.
Damage	can	also	result	from	unexpected	discrete	events,	such	as	fire	or	earthquake.	Damage
usually	starts	at	the	material	level	(Farrar	and	Worden	2007).	As	the	damage	grows,	it	reaches
a	point	where	it	affects	the	structural	performance,	eventually	to	an	unacceptable	point	to	the
user	(i.e.	failure).	If	a	structure	has	sustained	damage,	and	the	damage	remains	undetected,	the
damage	could	progressively	increase	until	the	structure	fails.	In	order	to	detect	damage	at	an
early	stage,	appropriate	damage	identification	methods	should	be	selected,	on	the	basis	of
technical	issues	(e.g.	damage	size,	failure	modes,	temporal	and	spatial	considerations),	utility
(e.g.	size	of	equipment,	simplicity,	labour	needs,	health	and	safety)	and	cost–benefit.

Since	damage	in	a	structure	is	a	change	in	an	initial	state,	damage	can	be	identified	in	two
different	methodologies:	directly	by	inspection	or	through	a	comparison	between	a	baseline
(undamaged)	state	and	a	changed	state.	Methods	for	direct	damage	detection	include	most
conventional	NDT	techniques.	NDT	techniques	do	not	require	a	baseline,	and	they	are	usually
carried	out	offline	in	a	local	manner	after	the	damage	has	been	located.	Thus,	the	NDT
techniques	are	primarily	used	for	damage	characterisation	and	as	a	severity	check	when	there
is	a	priori	knowledge	of	the	damage	location.

Another	damage	identification	methodology	is	based	on	the	change	in	structural	state.	This
methodology	often	involves	a	comparison	between	two	different	states	of	the	structural	system
–	an	initial	(undamaged)	state	and	a	changed	state	–	so	as	to	quantify	the	difference	between	the
two	states	due	to	the	damage.	For	civil	infrastructure,	damage	in	a	structure	will	cause	changes
in	the	geometric	or	material	properties	of	the	structure,	for	example,	a	structural	crack
(stiffness	change),	bridge	pillar	silting	(boundary	condition	change),	counterweight	balancing
loss	(mass	change)	or	looseness	in	a	bolted	joint	(connectivity	change).	These	changes
between	initial	and	current	state	can	be	used	to	assess	the	damage	in	the	structure.	This	concept
is	often	used	in	health	evaluation	of	the	structure	from	monitored	data.

4.3	NonDestructive	Testing	Techniques
Traditional	nondestructive	testing	techniques	have	been	extensively	employed	for	detecting
damage	in	engineering	structures,	as	discussed	in	the	book	by	Heller	(2001).	These	NDT
techniques	give	the	effective	damage	detection	results	in	local	areas,	in	particular	when	the
approximate	damaged	location	is	known.	There	are	many	NDT	techniques	available,	and
different	methods	target	different	ranges	of	the	wave	spectrum	(Ettouney	and	Alampalli	2012),
as	illustrated	in	Figure	4.1.	And	the	NDT	techniques	reside	in	various	frequency	ranges,	since
the	frequency	is	inversely	proportional	to	the	wavelength.	For	example,	ultrasound	locates	in
the	lower	wave	frequency	range,	and	thermography	targets	the	infrared	frequency	range.	The
penetrating	radiation	of	Xrays	is	at	much	higher	frequency	range.	By	using	the	properties	of
these	waves,	damage	in	a	structure	can	be	detected	by	observing	the	interaction	of	different
wave	types	and	the	structure	concerned.



Figure	4.1	Traditional	NDT	techniques	depending	on	wave	types	(after	Ettouney	and
Alampalli	2012).

4.3.1	Acoustic	Emission
Acoustic	emission	(AE)	is	initially	used	to	investigate	the	physical	parameters	and	damage
mechanisms	of	materials.	Acoustic	emission	can	also	be	utilised	as	an	NDT	technique.	The
philosophy	of	AE	is	that	damage	events	in	a	material	or	structure	create	stress	waves
propagating	throughout	the	structure.	These	stress	waves	are	called	acoustic	emission	with	a
frequency	range	typically	from	20 kHz	to	1.0 MHz.	The	properties	of	these	stress	waves
depend	on	the	nature	of	structural	damage	and	the	properties	of	the	structure.	By	analysing	the
measured	acoustic	emission	signals,	structural	damage	can	be	detected	and	the	state	of	the
structure	can	be	estimated.

Acoustic	emission	is	a	passive	NDT	method,	and	depends	on	the	propagation	of	damage
signals.	Processes,	such	as	cracking,	deformation,	impacts	and	crushing,	all	produce	localised
transient	changes	in	stored	elastic	energy	with	a	broad	spectral	content	(Ciang	et	al.	2008).	A
typical	source	of	an	AE	wave	within	a	material	is	the	appearance	of	a	crack	from	an	initial
defect	when	a	preexisting	crack	grows.	Acoustic	emission	is	initiated	when	energy	is
released	from	a	local	source	due	to	these	processes	within	a	material	or	structure.	Thus,	this
technique	makes	it	possible	to	detect	the	crack	growth	in	real	time.	There	are	several	important
properties	of	AE	signals,	including	amplitude,	frequency	content	and	rate	of	decay.	The	most
common	sensor	type	used	in	monitoring	stress	waves	in	materials	is	based	on	a	surface



mounted	piezoelectric	crystal.	When	high	accuracy	of	damage	evaluation	is	needed,	the	number
of	sensors	must	be	increased,	and	subsequently	the	amount	of	data	output	to	the	signal
processing	system	is	also	increased.

Acoustic	emission	testing	has	been	used	extensively	in	various	civil	engineering	structures,
including	bridges,	tunnels,	dams,	pipelines	and	nuclear	structures.	The	AE	method	is	very
powerful	in	detecting	any	damage	mode	up	to	the	microscale.	However,	since	acoustic
emission	energy	can	be	extremely	small,	this	can	be	a	severe	limitation,	especially	when	used
in	an	in	situ	structural	monitoring	where	the	background	noise	can	interfere	with	the	AE
signals.	Also,	this	method	is	less	capable	of	damage	characterisation	and	further	damage
evaluation.	For	realtime	health	monitoring	of	civil	structures,	damage	detection	that	is	based
on	wave	speed	in	a	complex	structure	may	not	be	the	most	effective	method,	since	the	wave
speed	in	a	structure	is	a	function	of	the	geometric	and	material	parameters	of	the	structure.	An
inservice	structural	neural	system	can	be	used	to	improve	the	damage	evaluation	capability
of	the	AE	method	(Kirikera	et	al.	2007).	The	passive	structural	neural	system	has	high
sensitivity	to	damage	and	simple	instrumentation	of	the	monitoring	system.

4.3.2	Ultrasound
Ultrasound	is	a	wellestablished	and	very	popular	NDT	technique	for	investigating	the	inner
structure	in	a	solid	test	object.	The	basic	principle	of	the	technique	is	that	as	an	ultrasonic
wave	propagates	through	the	object,	the	wave	changes	its	form	through	reflection,	refraction
and	scattering	(Ettouney	and	Alampalli	2012).	In	ultrasound	scanning,	a	transmitter	transfers
ultrasound	waves	into	the	material	and	its	signal	is	collected	by	a	receiver,	once	the	transmitter
has	passed	through	the	material.	The	transmitter	and	receiver	can	be	simply	placed	on	opposite
surfaces	of	the	material.	Then,	the	signals	collected	by	the	receiver	can	be	processed	and	the
damage	in	the	test	object	can	be	detected.

There	are	various	ultrasonic	testing	methods	available	for	practical	applications,	such	as
impactecho,	pulse	echo,	sonic	vibration,	guided	waves	and	laser	based	ultrasound.	Although
the	frequency	range	of	ultrasound	is	similar	to	acoustic	emission,	ultrasound	is	very	different
from	acoustic	emission.	The	ultrasound	technique	is	an	active	method,	and	it	generates	sound
signals	and	monitors	the	interaction	of	the	signals	with	the	test	objects.	Ultrasound	scanning
typically	reveals	planar	cracks	oriented	perpendicular	to	the	direction	of	sound	wave
propagation.	The	transmit	time	and	amplitude	of	the	ultrasound	are	often	obtained.	The	transmit
time	can	be	used	to	identify	the	location	of	the	defect	relative	to	the	position	of	the	transducers,
while	the	transmit	amplitude	can	be	used	to	assess	the	extent	of	the	defect.	Damage	of	size	as
small	as	a	few	millimetres	can	be	detected	using	ultrasonic	testing.

Ultrasonic	testing	has	proved	its	effectiveness	in	a	variety	of	applications	to	civil	engineering
structures,	such	as	condition	assessment	of	bridge	decks,	concrete	evaluation	for	locating	voids
and	discontinuities	and	properties	estimation	of	structural	geometries	and	materials.	In
practice,	it	is	important	to	choose	appropriate	ultrasound	methods	for	damage	detection	and
condition	assessment.	In	general,	higher	resolution	of	frequency	sampling	is	only	possible	with
lower	resolution	of	time	sampling,	and	vice	versa.	In	the	cases	for	large	civil	structures	such



as	bridges,	the	low	frequency	but	long	distance	ultrasound	methods	may	be	more	suitable	for
damage	assessment.	Damage	localisation	using	ultrasound	methods	may	be	inaccurate	for
complex	structures.	The	recently	developed	ultrasound	propagation	imaging	technique	can	be
very	promising.	When	a	laser	is	used	as	both	transmitter	and	receiver,	the	technique	can	be
used	as	a	remote	inservice	SHM	for	large	structures.	Recently,	acoustic	wavefield	imaging
has	been	proposed	for	damage	detection	(Michaels	and	Michaels	2006).	Since	this	technology
provides	a	scanned	movie	or	snapshots,	it	can	provide	easy	explanations	on	the	wave
propagation	mechanism	and	the	interaction	of	the	wavefield	with	damage	in	the	structure.

4.3.3	Guided	(Lamb)	Waves
Guided	wave	(GW)	testing	has	emerged	as	a	very	prominent	option	among	ultrasound	methods.
The	guided	wave	is	widely	acknowledged	as	one	of	the	most	encouraging	tools	for	estimating
the	location,	severity	and	type	of	damage	in	a	structure	(Lowe	et	al.	1998).	Guided	waves	are
defined	as	stress	waves	forced	to	follow	a	path	defined	by	the	material	boundaries	of	the
structure	(Raghavan	and	Cesnik	2007).	The	critical	elements	of	the	guided	wave	technique	for
damage	detection	include	transducers,	signalprocessing	methodology	and	arrangement	of	the
transducer	network	to	scan	the	structure.	Guided	waves	are	excited	and	received	in	a	structure
using	transducers	for	structural	damage	assessment	(Niu	et	al.	2017).	Figure	4.2	shows	the
equipment	and	applications	of	the	guided	wave	technique	developed	by	the	Teletest	of	TWI	for
structural	integrity	assessment	of	pipelines.	Guided	waves	have	also	shown	suitability	for
applications	in	the	field	of	SHM,	since	they	have	an	online	sensor	and	actuator	network	to
assess	the	state	of	a	structure	during	operation.	The	actuator	and	sensor	pair	in	GW	testing	has
a	large	coverage	area,	requiring	fewer	units	distributed	over	the	structure.

Figure	4.2	Equipment	and	applications	of	the	guided	wave	technique.
(Courtesy	of	Teletest,	TWI)

Lamb	waves	are	an	important	class	of	guided	waves,	and	they	can	propagate	in	a	solid	plate
with	free	surfaces.	Lamb	waves,	combinations	of	longitudinal	and	shear	modes,	are	available
in	a	thin	plate,	and	their	propagation	characteristics	vary	with	entry	angle,	excitation	and



structural	geometry.	These	waves	can	be	actively	excited	and	collected	by	a	variety	of	means,
including	ultrasonic	probe,	laser,	piezoelectric	element,	interdigital	transducer	and	optical
fibre	(Su	et	al.	2006).	Lamb	wave	based	damage	detection	is	essentially	subject	to
interpretation	of	the	captured	wave	signals.	Problems	often	arise	in	the	extraction	of	key
features	useful	for	damage	detection	from	the	collected	signals.	These	problems	include
contamination	by	diverse	noise,	interference	from	natural	structural	vibration,	confusion	of
multiple	modes	and	bulkiness	of	sampled	data.	An	appropriate	Lamb	mode	for	damage
detection	should	have	useful	features,	such	as	nondispersion,	low	attenuation,	high
sensitivity,	easy	excitability	and	good	detectability.	To	effectively	detect	damage	in	a	structure
using	Lamb	waves,	many	signal	processing	techniques	have	been	proposed,	including	time
series	analysis,	frequency	analysis	and	integrated	timefrequency	analysis.

Guided	waves	are	attractive	in	NDT	applications	because	of	their	superior	range	and	versatile
theoretical	background.	These	waves	can	travel	over	a	long	distance,	and	thus	a	broad	area	can
be	quickly	examined.	GW	based	damage	detection	methods	offer	many	advantages,	including:

dependence	of	the	stress	and	strain	distribution	on	frequency,	allowing	the	mode	selection
best	fitted	to	specific	damage	type

ability	to	inspect	large	structures	while	retaining	coating	and	insulation

ability	to	follow	complex	shaped	structures

ability	to	inspect	the	entire	crosssectional	area	of	a	structure

excellent	sensitivity	to	multiple	defects	with	high	precision	of	identification.

Some	applications	for	relatively	small	scale	civil	structures	have	been	examined	for	GW
damage	detection	with	promising	results.	Since	civil	engineering	structures	are	generally	large
and	complex,	in	situ	actuators	have	to	provide	high	actuation	stresses	to	cover	a	reasonable
area	(Su	et	al.	2006).	For	largescale	civil	structures	such	as	bridge	decks,	impact	can	be
used	to	generate	a	highenergy	pulse	and	high	penetration	of	the	stress	waves.

4.3.4	Thermography
Thermal	imaging	is	a	subsurface	defect	detection	method,	based	on	temperature	differences
measured	on	the	investigated	surface	during	monitoring	by	using	infrared	sensors	or	cameras
(Ciang	et	al.	2008).	Since	heat	flow	is	associated	with	material	properties,	it	is	possible	to
detect	material	damage	by	monitoring	how	heat	flows.	Thermal	imaging	methods	can	be
categorised	into	two	groups	in	terms	of	the	thermal	excitation	approach	used:	passive	and
active.	The	passive	method	is	used	to	investigate	materials	with	a	different	temperature	from
ambient.	This	method	is	not	commonly	used	in	damage	detection	in	civil	engineering	structures.
By	contrast,	the	active	approach	uses	an	external	source,	such	as	optical	flash	lamps	or	heat
lamps,	to	induce	relevant	thermal	contrasts	on	the	test	subject	(Stanley	1997).	One	of	typical
active	thermal	imaging	methods	is	the	thermoelastic	stress	method	based	on	the	thermo
elastic	effect.

Thermography	has	shown	great	promise	in	the	field	of	NDT	for	civil	engineering	structures.



These	methods	can	be	used	for	assessing	various	defects	in	civil	infrastructure,	such	as	fatigue,
reinforcement	corrosion	and	seismic	damage.	Thermal	imaging	needs	only	low	load
magnitudes,	and	it	can	be	utilised	to	validate	stress	distributions	predicted	by	finite	element
model	at	the	initial	stage	and	to	detect	the	spread	of	damage	during	failure.	Thermal	imaging
damage	detection	can	be	a	local	technique	or	a	global	technique,	because	this	method	is	able	to
assess	the	damage	from	a	single	or	fullfield	measurement	in	image	form,	depending	on
camera	resolution.	However,	the	thermal	excitation	method	is	the	main	problem	with	thermal
imaging	methods.	Passive	excitation	can	be	used,	but	it	is	limited	to	abnormal	electrical
components	that	produce	excess	heat	during	operation.	Active	excitation	is	expensive	and	it	is
labour	intensive	to	excite	the	structure	on	site.	Recently,	a	heat	source,	such	as	a	halogen	lamp
or	ultrasound	generated	by	contact	transducers	and	noncontact	pulsed	laser,	have	been	used
to	tackle	the	problem	based	on	the	mechanical	loading.	This	method,	particularly	the	non
contact	ultrasoundinduced	thermography,	is	potentially	promising	for	inservice	SHM	in	the
future.

4.3.5	Electromagnetic	Methods
Electromagnetic	methods	use	the	interaction	between	the	electromagnetic	flux	and	waves	and
the	flaws	in	the	test	material	(Ettouney	and	Alampalli	2012).	Typical	electromagnetic	methods
in	practice	include	eddy	current,	static	magnetic	field,	magnetic	particle	and	microwave
techniques.	These	techniques	are	able	to	detect	surface	or	subsurface	flaws	with	size	less	than
1 mm.	Among	these	methods,	eddy	current	and	microwave	techniques	can	be	used	for	insitu
automated	testing,	without	requiring	pretest	and	posttest	preparations.	Static	magnetic	field
techniques	detect	flaws	by	measuring	magnetic	field	perturbations,	while	microwave
techniques	can	detect	interior	damage	by	measuring	electromagnetic	wave	reflection	to
indicate	damage	states.	All	electromagnetic	methods	can	detect	fatigue	cracks	and	earthquake
damage	in	metals.	Microwave	techniques	can	detect	even	more	types	of	damage,	such	as
reinforcement	corrosion,	scour	and	bridge	security.	The	optimal	method	depends	on	geometry
and	size	of	the	expected	damage,	and	should	be	chosen	by	careful	decision	making	analysis.

Eddy	current	is	a	popular	NDT	method	for	inspecting	surface	or	near	surface	flaws	of
conductive	materials.	It	is	also	used	to	detect	material	properties,	such	as	conductivity,
corrosion	and	permeability.	A	basic	eddy	current	system	often	consists	of	a	coil	that	is	excited
by	an	alternating	current.	When	a	flaw	occurs	in	the	material,	the	flaw	will	cause	a	variation	in
the	eddy	current	flow,	leading	to	modification	of	the	second	magnetic	field.	By	observing	this
modification,	damage	detection	and	localisation	become	possible.	Eddy	current	techniques
offer	many	advantages,	including	simple	and	accurate	surface	defect	detection	and	high
efficiency	in	metallic	materials.	However,	some	a	priori	knowledge	of	damage	location	is
required	for	effective	use	of	the	eddy	current	technique.

Electromagnetic	methods	can	be	used	in	many	ways	in	structural	damage	detection.	Most	of
these	methods	can	only	be	applied	to	conductive	materials,	such	as	metals,	depending	on	the
type	of	test,	and	they	are	limited	to	detecting	surface	or	nearsurface	flaws.	They	are	suitable
for	direct	sensing	and	require	close	proximity,	thus	their	usefulness	in	remote	sensing
applications	for	SHM	is	limited.



4.3.6	Capacitive	Methods
Capacitive	methods	are	based	on	electromagnetic	techniques,	and	they	were	initially	used	for
assessing	water	content	in	civil	engineering	materials	such	as	concrete,	masonry	and	soils
(Balageas	et	al.	2006).	This	technique	uses	two	or	more	electrodes	on	the	surface	of	materials,
and	then	applies	a	voltage	between	them.	This	system	forms	a	capacitor,	and	the	changes	in
capacitance	indicate	internal	constituents,	such	as	material	properties	and	moisture	content.
Owing	to	its	simplicity,	the	system	can	be	designed	to	meet	special	requirements	in
applications.	Capacitive	methods	are	particularly	useful	for	assessing	concrete	materials	and
structures,	including	measurement	of	moisture	content	in	cover	concrete	and	diagnosis	of
external	posttensioned	steel	cables.	These	methods	are	also	well	suited	to	monitoring	the
health	of	historic	buildings	by	analysing	the	water	content	measurements	collected	from	the
system.	Capacitive	methods	have	the	potential	to	make	continuous	measurements	on	large	area
of	civil	engineering	structures.	These	measurements,	together	with	an	online	localisation
system,	enable	the	detection	of	variations	in	capacitance	associated	with	local	defects,	which
eventually	provides	information	about	the	location	and	size	of	defects.

To	improve	damage	diagnosis	of	civil	engineering	structures,	capacitive	methods	can	be	used
with	other	NDT	techniques,	such	as	ultrasound,	ground	penetrating	radar	(GPR)	and	the	impact
echo	technique	(Dérobert	et.	al.	2008).	Electromagnetic	waves	of	capacitive	methods	and	GPR
are	sensitive	to	the	water	and	chloride	contents,	potentially	to	porosity,	while	ultrasonic	waves
are	more	sensitive	to	mechanical	properties	and	porosity,	even	if	they	are	affected	by	changes
in	water	content	in	concrete.	A	combination	of	different	techniques,	based	on	the	propagation
of	waves	of	different	nature	(GPR	and	impact	echo)	and	different	frequency	range	(capacitive
technique	and	GPR),	reduces	the	uncertainty	of	damage	evaluation.	This	integrated	method	is
useful	for	damage	assessment	of	civil	engineering	structures,	in	particular	concrete	structures.

4.3.7	Laser	Doppler	Vibrometer
The	laser	Doppler	vibrometer	(LDV)	is	a	noncontact	velocity	transducer,	based	on	the
analysis	of	the	Doppler	effect	on	a	laser	beam	emerging	from	a	solid	surface	(Martarelli	et	al.
2001).	In	order	to	apply	this	method	to	damage	detection,	an	approach	using	modal	properties
can	be	employed,	by	assuming	that	damage	will	cause	detectable	changes	in	the	modal
properties.	These	measurements	can	then	be	used	to	extract	modal	parameters	such	as	natural
frequencies	and	mode	shapes.	The	obtained	modal	parameters	give	essential	information	for
structural	damage	assessment.	Comparing	these	parameters	allows	the	location	and	extent	of
damage	in	the	structure	to	be	determined	by	using	vibrationbased	damage	identification
methods	to	be	discussed	in	Chapters	7	and	8.	Figure	4.3	illustrates	the	system	of	a	laser
Doppler	vibrometer	for	structural	damage	detection	(Siringoringo	and	Fujino	2006).



Figure	4.3	Schematic	diagrams	of	a	laser	Doppler	vibrometer	system.
(Courtesy	of	Siringoringo	and	Fujino	2006)

The	use	of	scanning	LDV	as	a	vibration	transducer	has	many	advantages,	such	as	high
sensitivity	and	noncontact	capabilities	(Ciang	et	al.	2008).	Scanning	LDV	provides	a	high
spatial	resolution	of	measurement,	so	as	to	avoid	using	a	massive	number	of	transducers.	Also,
this	technique	allows	measurement	of	test	objects	that	are	inaccessible	by	conventional
transducers.	These	features	can	improve	the	quality	and	efficiency	of	modal	testing.	Scanning
LDV	can	identify	the	location	of	damage	on	a	structure	by	using	changes	of	operational
deflection	shapes	obtained	from	measurements.	This	technique	can	offer	very	accurate	results
for	detecting	damage,	because	of	the	use	of	the	operational	response	of	the	structure.

The	laser	Doppler	vibrometer	is	very	promising,	since	the	method	has	a	high	spatial	resolution
of	measurement.	It	is	a	noncontact	method	and	thus	is	easy	to	implement	in	practice.	For
practical	applications,	the	LDV	based	structural	condition	assessment	should	operate	under
ambient	excitation.	This	type	of	excitation	is	more	attractive	since	it	allows	modal	analysis	to
be	performed	under	service	condition	of	the	structure	and	does	not	require	any	artificial
exciters	(Siringoringo	and	Fujino	2006).	From	operational	modal	data	measurements,	the
method	can	be	used	with	most	vibrationbased	damage	identification	methods.	When	laser
pulse	excitation	is	used,	the	method	has	the	potential	for	a	remote	health	monitoring	strategy	of
civil	structures	in	service.	However,	the	laser	Doppler	vibrometer	is	still	uneconomic	for	civil
engineering	applications.

4.3.8	Global	Positioning	System
Global	positioning	system	technology	is	an	emerging	tool	that	can	measure	directly	both	static
and	dynamic	responses	(Yi	et	al.	2013).	GPS	is	a	satellitebased	positioning	system	that
allows	users	in	the	field	to	determine	their	location	without	the	need	to	transmit	and	hence
identify	their	position.	GPS	technology	can	provide	relative	displacements	measured	at	rates
of	20 Hz	and	even	higher	up	to	100 Hz.	The	accuracy	of	dynamic	displacement	measurements
using	GPS	is	at	a	subcentimetre	to	millimetre	level	and	at	a	maximum	distance	from	the
reference	GPS	receivers	to	the	structure	receivers	of	up	to	30 km.	These	provide	a	great



opportunity	to	monitor	the	displacement	or	deflection	behaviour	of	large	civil	engineering
structures	in	real	time	under	ambient	loading	conditions.
A	GPS	system	generally	consists	of	three	components:	satellites	orbiting	the	Earth,	control	and
monitoring	stations	on	Earth	and	GPS	receivers	owned	by	the	users	(KijewskiCorrea	et	al.
2006),	as	illustrated	in	Figure	4.4.	GPS	surveying	techniques	can	be	static,	faststatic	or
realtime	kinematic.	Kinematic	GPS	enables	the	rover	to	be	dynamic,	hence	allowing	the
instantaneous	position	of	a	moving	platform	to	be	obtained	at	precise	times	in	three
dimensions.	The	outcome	of	using	kinematic	GPS	is	that	the	position	of	any	point	at	any	time
can	be	recorded	(Brown	et	al.	2006).	GPS	techniques	have	several	major	advantages,
including

line	of	sight	is	not	required

one	base	unit	can	serve	several	rovers

the	data	can	be	collected	and	downloaded	directly	to	a	webbased	system	for	remote
interrogation

the	technique	can	be	used	where	access	is	difficult.



Figure	4.4	Schematic	diagrams	of	configuration	of	global	positioning	system	(GPS)
components.

(Courtesy	of	KijewskiCorrea	et	al.	2006)

Although	GPS	offers	many	advantages,	there	are	still	some	issues	to	be	solved	before	practical
applications,	such	as	determining	the	lower	limit	of	measurable	deflection	amplitude,	reducing
capital	cost	of	testing,	modifying	antenna	type	to	be	minimally	intrusive	and	understanding	the
limitations	of	constellation	geometry	(Brown	et	al.	2006).	Thus,	an	integrated	sensor	system,



consisting	of	GPS	receivers,	accelerometers,	displacement	transducers	or	even	groundbased
pseudosatellite	(pseudolite)	transmitters,	should	be	developed	to	increase	the	accuracy,
reliability	and	productivity	of	the	overall	monitoring	system.	The	GPS	technology	will
continue	to	evolve	and	become	more	costeffective,	such	that	insitu	monitoring	will	become
a	powerful	tool	for	assessing	the	performance	of	large	civil	engineering	structures.

4.3.9	Visual	Inspection
Visual	inspection	is	the	simplest	and	most	straightforward	NDT	method.	Visual	inspection	is
based	on	observing	the	condition	of	a	structure	visually	and	attempting	to	detect	its	current
state,	according	to	personal	experience	and	available	guidelines.	In	order	to	reduce	costs	and
time,	visual	inspection	should	be	an	integral	part	of	any	NDT	project	(Ettouney	and	Alampalli
2012).	Visual	inspection	has	many	advantages,	including	being	very	simple	and	quick,	able	to
apply	remotely	and	suitable	for	local	to	global	inspection.	However,	the	inspection	is
qualitative	and	may	require	special	equipment	for	access.

4.4	Comparison	of	NDT	and	SHM
Nondestructive	testing	provides	a	wide	range	of	powerful	techniques	for	detecting	damage
and	assessing	conditions	for	civil	engineering	structures.	NDT	techniques	have	been	in	use	and
in	continuous	development	for	a	long	time.	The	use	of	these	techniques	has	been	successful	in
condition	evaluation	of	civil	engineering	structures	such	as	bridges	(Ettouney	and	Alampalli
2012).	These	techniques	are	complementary	and	beneficial	tools	for	health	monitoring	of	civil
infrastructure.

SHM	is	an	emerging	method	for	realtime	health	evolution	of	engineering	structures	using
monitored	data.	SHM	can	provide	more	information	about	current	state	estimate	and	future
performance	prediction	of	a	structure,	so	as	to	make	appropriate	decisions	for	effective
management	of	the	structure.	SHM	methods	consists	of	key	components,	such	as	sensing
network,	system	identification,	damage	diagnosis	and	damage	prognosis.	SHM	methods	are
very	different	from	NDT	techniques	in	many	respects.

In	the	area	of	sensing	network,	sensing	technology	of	NDT	techniques	is	wellestablished	and
very	advanced.	A	single	type	of	sensor	is	typically	used	in	NDT	techniques.	Operations	of
NDT	techniques	are	usually	manual	and	relatively	simple.	NDT	techniques	are	generally
localised	in	nature,	and	they	generally	require	a	priori	knowledge	of	the	location	of	damage	in
a	structure.	By	contrast,	SHM	methods	often	use	various	types	of	sensors,	and	their	sensing
network	can	be	automated	through	advanced	data	transmission	systems	such	as	wireless
communications.	SHM	methods	can	cover	large	areas,	and	a	priori	knowledge	of	damage
location	is	not	needed,	which	is	particularly	suited	for	large	civil	engineering	structures.	SHM
methods	undertake	continuous	monitoring	and	offer	valuable	information	for	assessing	the	state
of	a	structure	in	service.	However,	advanced	and	reliable	sensing	technology	for	SHM
methods,	such	as	wireless	sensing,	is	still	in	development	for	implementation	to	large	civil
engineering	structures.



System	identification	approaches	are	not	very	useful	for	NDT	techniques,	since	these
approaches	identify	global	structural	behaviour	rather	than	behaviour	in	a	local	area.
However,	system	identification	approaches	are	an	essential	part	of	most	SHM	methods,	and
they	are	well	developed	for	evaluating	structural	and/or	modal	parameters	from	ambient
measurements.	System	identification	approaches	have	been	implemented	to	many	SHM
methods	in	civil	structures.

In	damage	diagnosis,	NDT	techniques	can	provide	localised	identification	of	damage	sites,
when	the	type	and	region	of	damage	is	available	before	identification.	The	global	structural
information	and	analytical	model	are	not	required	for	these	techniques	because	of	their
localised	nature.	NDT	techniques	often	need	relatively	simple	computational	algorithms,	and
provide	high	reliability	for	the	characteristics	of	the	damage.	By	contrast,	SHM	methods	can
offer	global	identification	of	damage	in	a	structure.	The	damage	identification	by	SHM
methods	often	requires	more	information	about	the	geometry	and	material	properties	of	the
structure,	which	is	often	not	easy	and	straightforward.	The	identification	procedure	of	SHM
methods	may	need	extensive	computational	efforts.	Reliable	and	efficient	algorithms	for
damage	identification	based	on	SHM	are	still	in	development.

Damage	prognosis	provides	informed	decision	making	for	civil	infrastructure	management.
NDT	techniques	can	evaluate	localised	damage	accurately,	thus	they	provide	reliability	at
local	area	or	at	structural	component	level.	Due	to	their	localised	nature,	the	reliability	of	the
overall	structural	system	may	not	be	obtained,	and	thus	the	consequences	of	global	failure	are
not	addressed.	Due	to	the	short	time	event	of	NDT,	stochastic	modelling	of	structural	capacity
and	loading	conditions	is	usually	not	possible,	but	SHM	methods	can	assess	the	performance
of	the	structural	system	due	to	their	global	nature.	SHM	methods	can	give	information	for
stochastic	modelling	on	the	basis	of	continuous	monitored	data,	which	is	useful	for	reliability
analysis	of	the	structural	system.	Based	on	the	evolution	of	models	(e.g.	strength	deterioration
and	future	loading	models)	from	SHM	methods,	timedependent	reliability	of	the	structure	can
be	determined,	which	can	be	used	for	optimising	the	maintenance	strategy	of	existing	civil
engineering	structures.

4.5	Signal	Processing	for	Damage	Detection
Most	structural	damage	detection	methods	are	based	on	measuring	and	analysing	time	signals
collected	from	sensors.	Such	time	signals	can	be	input	signals,	such	as	earthquakes,	wind
pressures	or	blast	pressures,	or	output	signals,	such	as	accelerations,	strains	or	displacements.
Signals	can	be	broadly	divided	into	two	types	according	to	signal	property:	stationary	and
nonstationary.	Stationary	signals	do	not	change	their	characteristics	with	time,	while	non
stationary	signals	change	their	characteristics.	Most	signals	acting	on	civil	infrastructure	are
nonstationary,	such	as	earthquakes	and	wind.	If	signals	are	analysed	in	the	frequency	domain
by	transforming	from	the	time	domain,	the	damage	identification	process	is	often	more
effective	(Ettouney	and	Alampalli	2012).	Therefore,	signal	processing	methods,	typically
Fourier	based	transforms,	wavelet	transforms	and	Hilbert–Huang	transform,	are	required	for
structural	damage	detection.
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4.5.1	Fourier	Based	Transforms
A	time	signal	can	be	represented	in	the	frequency	domain	by	various	Fourier	transforms.	The
details	of	these	methods	can	be	found	in	the	comprehensive	review	by	Boashash	(2003).	When
any	time	signal	x(t)	over	time	t	is	available,	the	most	popular	forward	and	inverse	continuous
Fourier	transforms	(FT)	can	be	expressed,	respectively,	as

where	ω	is	the	angular	frequency	and	 .	FT(ω)	is	necessarily	complex,	and	a	plot	of	the
amplitude	of	this	function	against	frequency	represents	the	frequency	content	of	the	time	signal.
From	Equation	(4.1),	the	discrete	Fourier	transform	is	obtained	by	representing	the	continuous
Fourier	transforms	in	terms	of	summations.

The	Fourier	transforms	have	many	advantages,	such	as	being	applicable	to	various	problems,
well	understood	and	explicit	inverse	transforms.	However,	their	major	disadvantage	is	that	the
Fourier	transform	spectra	do	not	reveal	any	information	regarding	the	time	dependency	of
frequency	content	of	the	signal.	Thus,	the	Fourier	transforms	are	not	applicable	for	non
stationary	signals,	such	as	wind	and	earthquake	signals,	or	nonlinear	problems.	Another
limitation	of	the	Fourier	transforms	is	the	loss	of	temporal	information	of	frequency	content.	To
avoid	this	limitation,	the	timeFourier	transforms	are	introduced	by	using	a	window	function.
However,	the	timeFourier	transforms	are	still	not	applicable	for	nonstationary	or	non
linear	problems.

4.5.2	Wavelet	Transforms
To	address	the	issues	in	the	Fourier	transforms,	wavelet	transforms	have	been	developed	for
effective	signal	processing,	as	described	in	detail	in	Graps	(1995).	The	wavelet	transforms	are
a	tool	that	can	cut	data,	functions	or	operators	into	different	frequency	components	with	a
resolution	matched	to	its	scale	(Daubechies	1988).	The	forward	and	inverse	continuous
wavelet	transform	(WT)	for	a	time	signal	x(t)	are	defined,	respectively,	as

The	basic	function	(wavelet	function)	ψ(s, τ, t)	includes	a	scaling	variable	(s)	and	a	translation
variable	(τ),	expressed	as

The	scaling	factor	controls	the	amplitude	of	the	wavelet	function,	and	the	translation	factor
controls	the	location	of	the	wavelet	function	on	the	time	scale.	As	the	scaling	factor	changes,
the	effective	width	of	the	wavelet	function	changes.	Unlike	Fourier	transforms,	wavelet
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transforms	can	be	designed	to	meet	the	requirements	of	particular	problems.

The	wavelet	transforms	enable	the	study	of	time	history	in	terms	of	its	frequency	content	in
signal	processing.	Although	the	windowed	Fourier	transforms	could	provide	the	time	location
by	windowing	the	signal,	the	window	lengths	are	always	the	same,	regardless	of	the	frequency
components.	By	contrast,	the	wavelet	transforms	allow	multiple	time	resolutions,	depending	on
the	frequency	components	(Ettouney	and	Alampalli	2012).	They	can	give	high	accuracy	in
numerical	differentiation	as	well	as	flexible	implementation	of	boundary	conditions.	The
wavelet	transforms	offer	many	advantages:	(a)	they	are	well	developed,	(b)	inverse	transforms
exist,	(c)	both	continuous	and	discrete	forms	exist,	(d)	they	do	not	have	limits	on	frequency	and
time	resolutions,	(e)	they	are	suitable	for	nonstationary	and	nonlinear	problems.

Wavelet	analysis	is	very	suited	to	analysing	nonstationary	signal,	so	it	can	be	used	as	a
feasible	method	for	processing	a	signal	to	construct	the	intended	feature	index	of	structural
damage.	Wavelet	analysis	has	various	applications	in	structural	damage	detection,	including
singular	signal	detection,	signaltonoise	separation,	frequencyband	analysis	and	so	on.
The	spectrum	graph	obtained	using	wavelet	transforms	can	indicate	the	damage	existence
directly.	In	the	review	by	Yan	et	al.	(2007),	a	study	was	undertaken	based	on	the	wavelet
transforms	for	structural	damage	detection.	By	comparing	the	discrete	wavelet	transforms	of
two	sets	of	vibration	signals	from	the	undamaged	and	damaged	structure	in	the	space	domain,
both	the	presence	and	the	location	of	the	damage	can	be	detected.	Numerical	results	show	that
even	a	minor	localised	defect	can	induce	significant	changes	in	the	wavelet	coefficients	of	the
vibration	signals.

Another	wavelet	based	approach	was	proposed	to	locate	damage	in	civil	engineering
structures,	on	the	basis	of	the	acceleration	timehistory	responses	(Zabel	2005).	By	use	of	the
Haar	mother	wavelet,	the	first	level	fast	wavelet	decomposition	of	the	measurements	was
applied	for	both	the	undamaged	and	damaged	prestressed	reinforced	concrete	frame
structure.	The	sensitive	feature	is	defined	as	the	standard	deviation	of	the	error	between	the
reconstructed	signal	and	the	actual	measured	signal.	This	method	does	not	require	the
knowledge	of	the	excitation	mechanism,	since	it	is	entirely	based	on	the	measured	responses.
However,	wavelet	transforms	have	several	limitations	in	structural	damage	identification,	such
as	low	accuracy	in	damage	localisation,	and	difficulty	in	quantification	of	damage	in	complex
structures.

4.5.3	Hilbert–Huang	Transform
The	Hilbert–Huang	transform	(HHT)	has	become	a	popular	method	for	signal	processing.	In
contrast	to	other	common	transforms,	such	as	Fourier	transforms,	HHT	is	an	empirical
approach	that	can	be	applied	to	a	data	set,	as	discussed	in	detail	in	Huang	and	Shen	(2014).
This	approach	is	based	on	the	Hilbert	transform,	which	is	defined,	for	an	arbitrary	time	signal
x(t)	with	the	Cauchy	principal	value	P,	as



HHT	is	the	result	of	the	Hilbert	spectral	analysis	and	the	empirical	mode	decomposition;	it
uses	empirical	mode	decomposition	to	decompose	a	signal	into	socalled	intrinsic	mode
functions	with	a	trend.	Then	HHT	applies	Hilbert	spectral	analysis	to	the	intrinsic	mode
functions	to	obtain	instantaneous	frequency	data.	The	HHT	keeps	the	characteristics	of	the
varying	frequency,	since	the	signal	is	decomposed	in	the	time	domain,	and	the	length	of	the
intrinsic	mode	functions	is	the	same	as	the	original	signal.	This	is	a	great	advantage	of	HHT
since	realworld	signals	usually	have	multiple	causes	happening	in	different	time	intervals.
HHT	offers	many	advantages,	such	as	being	applicable	to	nonstationary	signals	or	non
linear	problems,	able	to	produce	more	physically	meaningful	results	than	other	transforms,	and
able	to	produce	adequate	frequency	and	time	resolution	to	the	problem	concerned	within	the
time	and	frequency	ranges	of	interest.

HHT	is	very	useful	for	nonstationary,	nonzero	mean	and	nonlinear	real	signals.	It	makes
an	empirical	mode	decomposition	of	the	time	signal	into	narrow	band	components	with	zero
mean.	These	components	do	not	have	a	specific	analytical	representation,	but	each	component
can	be	associated	with	a	physical	meaning.	These	components	can	be	related	to	the	mode
shapes	of	dynamic	structural	systems	and	therefore	the	existence	of	damage.

HHT	has	been	used	in	damage	detection	in	civil	engineering	structures	with	many	successful
applications	(Montalvão	et	al.	2006).	From	the	results	of	its	application	to	the	ASCE
benchmark	problem	for	SHM,	HHT	is	able	to	identify	the	modal	data,	such	as	natural
frequencies,	damping	ratios	and	mode	shapes,	as	well	as	the	stiffness	matrix	with	reasonable
accuracy.	Damage	can	then	be	detected	by	comparing	the	stiffness	of	each	floor	before	and
after	introducing	damage.	Simulation	results	show	that	HHT	can	detect	the	assumed	damage
with	good	accuracy.	Furthermore,	fast	Fourier	transforms	have	been	used	for	nonlinear	and
nonstationary	data	processing	to	characterise	damage	in	civil	structures	such	as	structural
members	and	pile	foundations.	The	HHT	analysis	showed	a	more	significant	frequency
downshift	than	the	Fourier	based	approaches	for	measurements	near	the	damage	location.

An	experimental	investigation	of	the	applicability	of	the	empirical	mode	decomposition	has
been	undertaken	for	identifying	structural	damage	caused	by	a	sudden	change	of	structural
stiffness	(Yan	et	al.	2007).	Empirical	mode	decomposition	is	then	applied	to	measured	time
histories	to	identify	the	damage	occurring	time	instant	and	the	damage	location	for	various	test
cases.	By	comparing	identified	results	with	measured	ones,	the	damage	occurring	time	instants
could	be	accurately	detected	in	terms	of	damage	spikes	extracted	directly	from	the
measurement	data.	The	damage	location	could	be	determined	by	the	spatial	distribution	of	the
spikes	along	the	structure.

4.5.4	Comparison	of	Various	Transforms
Fourier	based	transforms	are	wellestablished	methods.	They	have	been	extensively	used	in
earthquake	engineering,	although	earthquake	signals	are	nonstationary.	Fourier	based
transforms	can	lose	either	frequency	resolution	at	low	frequency	or	time	resolution	at	high
frequency.	They	are	not	applicable	to	nonstationary	and	nonlinear	problems.

Wavelet	transforms	avoid	the	shortcomings	of	the	Fourier	based	transforms,	and	they	do	not



have	the	limitation	on	frequency	or	time	resolution.	The	wavelet	transforms	are	able	to	apply
to	nonstationary	signals	and	nonlinear	systems.	They	can	be	used	for	analysing	potential
nonstationary	and	nonlinear	responses	to	give	indication	of	damage	in	a	structure.
However,	the	wavelet	transforms	are	not	adaptive.

HHT	has	all	the	advantages	of	the	wavelet	transforms.	Also,	HHT	has	the	property	of
adaptivity,	which	can	produce	more	physically	meaningful	results	and	provide	adequate
frequency	and	time	resolution.	It	can	be	used	for	processing	nonstationary	signals	and	for
detecting	damage	in	nonlinear	structural	systems.

4.6	DataBased	Versus	ModelBased	Techniques
Structural	damage	assessment	techniques	can	generally	be	classified	as	either	databased	or
modelbased.	These	two	types	are	complementary,	and	a	combination	of	both	will	usually	be
applied,	since	one	is	more	appropriate	than	the	other	in	different	contexts.	The	applications	of
databased	and	modelbased	techniques	in	an	SHM	strategy	are	discussed	in	Farrar	and
Lieven	(2007)	and	illustrated	in	Figure	4.5.

Figure	4.5	Databased	and	modelbased	damage	assessment	techniques	in	structural	health
monitoring	strategies	(after	Farrar	and	Lieven	2007).

Databased	techniques	are	based	on	previous	measurements	from	the	system	to	assess	the
current	damage	state.	Such	techniques	are	typically	performed	by	means	of	some	sort	of	pattern
recognition	method.	They	do	not	require	the	development	and	use	of	a	behaviour	model	of	the
system.	Since	they	are	much	easier	to	implement,	they	have	the	potential	to	be	used	on	a	large
number	of	structures.	These	techniques	have	a	primary	goal	of	detecting	anomalies	in	structural



behaviour.	The	anomalies	are	detected	as	a	difference	in	measurements	with	respect	to
measurements	recorded	during	a	previous	period.	The	databased	methodology	is	completely
data	driven	in	the	sense	that	the	evolution	of	the	data	is	estimated	without	information	on	the
physical	processes.	Examples	of	the	datadriven	models	include	autoregressive	models	and
rational	polynomial	models.	These	models	typically	consist	of	many	approaches,	such	as
anomaly	detection	and	data	processing,	data	reduction	and	representation,and	feature
extraction	(Catbas	et	al.	2012).	Therefore	databased	techniques	can	indicate	a	change	in	the
presence	of	new	loading	conditions	or	system	configurations	such	as	damage	in	a	structure.
However,	databased	techniques	will	perform	poorly	when	trying	to	classify	the	nature	of	the
change	such	as	development	of	the	damage.

On	the	other	hand,	modelbased	(or	physicsbased)	techniques	are	especially	useful	for
predicting	system	responses	to	new	loading	conditions	and/or	new	system	configurations
(damage	states).	One	type	of	commonly	used	physical	model	in	structural	damage	assessment
is	the	structural	model	(e.g.	finite	element	model).	Structural	models	are	typically	initially
constructed	from	design	and	test	data.	The	initial	structural	models	have	to	be	calibrated	using
measurements	on	the	real	structure.	In	contrast	to	the	databased	techniques	used	for	direct
data	interpretation,	structural	models	are	formulated	to	explicitly	represent	the	underlying
physics	of	the	structural	system,	such	as	boundary	and	continuity	conditions,	equilibrium	and
kinematics.	These	models	can	be	used	to	explicitly	simulate	structural	behaviour	under	various
critical	loading	conditions.	Thus,	such	models	can	diagnose	the	causes	of	changes	in
behaviour,	and	they	identify	how	such	changes	may	impact	the	performance	of	the	overall
system	(Catbas	et	al.	2012).	Currently,	the	most	commonly	employed	structural	models	in
damage	identification	for	civil	engineering	structures	are	finite	element	models.	These	provide
structural	connectivity	and	property	information	in	the	form	of	elemental	force–displacement
relationships	and	material	constitutive	properties.	The	finite	element	models	can	be	updated
using	continuously	monitored	data,	so	as	to	produce	the	evolution	of	structural	models	with
time.	Therefore,	future	performance	of	the	structure	as	well	as	remaining	service	life	can	be
predicated	through	model	evolution	and	probabilistic	analysis.

Another	type	of	physical	model	commonly	used	in	structural	damage	identification	is	the	modal
model.	This	consists	of	modal	parameters,	i.e.	modal	frequencies,	mode	shapes	and	modal
damping	ratios.	The	modal	model	is	different	from	the	structural	model,	since	the	modal	model
does	not	contain	specific	information	about	the	structural	connectivity	or	the	geometric
distribution	of	mass,	structural	damping	and	stiffness.	Since	the	modal	parameters	describe	the
resonant	spatial	and	temporal	behaviour	of	the	structure,	the	modal	models	may	be	more
convenient	for	the	expression	of	the	structural	behaviour.

Compared	to	direct	data	interpretation	of	databased	techniques,	modelbased	techniques
can	provide	more	useful	information	in	structural	health	monitoring	strategies,	such	as	damage
evolution,	structural	reliability	analysis,	remaining	useful	life	estimate	and	optimal	repair
planning.	However,	modelbased	techniques	are	 typically	more	computationally	intensive
than	databased	techniques.	The	details	of	advantages	and	disadvantages	of	these	two	types	of
damage	assessment	techniques	are	given	in	Catbas	et	al.	(2012)	and	summarised	in	Table	4.1.
Typically,	the	balance	between	databased	techniques	and	modelbased	techniques	will



depend	on	the	amount	of	relevant	data	available	and	the	level	of	confidence	in	the	predictive
accuracy	of	the	modelbased	models.



Table	4.1	Comparison	of	databased	and	modelbased	damage	assessment	techniques.

Type Application Advantage Disadvantage

Databased
damage
assessment
(Direct	signal
analysis)

Most
appropriate
when

many
structures
need	to	be
monitored

there	is	time
for	training
the	system

it	is	difficult
to	construct
structural	or
modal
models

No	modelling	costs

May	not	need	for	damage
scenarios

Many	options	for	signal
analysis

Incremental	training	can
track	damage	accumulation

Good	for	longterm	use
on	structures	for	early
detection	of	situations
requiring	modelbased
interpretation

Physical
interpretation	of	the
signal	may	be	difficult

Weak	support	for
decisions	on
rehabilitation	and
repair

Indirect	guidance	for
structural	management
activities

Cannot	be	used	to
justify	replacement
avoidance

Modelbased
damage
assessment
(Structural	or
modal	models)

Most
appropriate
when

design
model	is	not
accurate

structure	has
strategic
importance

damage	is
suspected

damage
evolution	is
needed

there	are
needs	to
predict
future
performance

Interpretation	is	easy	when
links	between
measurements	and
potential	causes	are
explicit

Effects	of	changes	in
loading	and	usage	can	be
predicted

Guidance	for	further
inspection	and
measurement

Consequences	of	future
damage	can	be	estimated

Support	for	planning
rehabilitation	and	repair

Help	make	better	decision
in	maintenance

Modelling	is
expensive	and	time
consuming

Errors	in	models	and
in	measurements	can
lead	to	identification
of	the	wrong	model

Large	numbers	of
candidate	models	are
hard	to	manage

Identification	of	the
right	model	could
require	several
interpretation	–
measurement	cycles

Complex	structures
with	many	elements
have	combinatorial
challenges



4.7	Development	of	VibrationBased	Methods
For	large	and	complex	civil	engineering	structures,	it	is	very	difficult	to	accurately	identify
damage	using	local	damage	detection	methods	such	as	NDT	techniques.	In	order	to	identify
damage	in	these	civil	structures,	a	global	methodology	called	vibrationbased	damage
identification	has	been	developed	during	the	past	two	decades.	Vibrationbased	methods	are
among	the	earliest	and	most	common	damage	detection	methods	used,	principally	because	they
are	simple	to	implement	on	any	size	structure	(Ciang	et	al.	2008).	In	the	process	of	vibration
based	methods,	structures	can	be	excited	by	ambient	energy,	an	external	shaker	or	embedded
actuators.	Then,	accelerometers	can	be	used	to	monitor	the	dynamic	response	of	the	structure.
The	basic	principle	behind	this	methodology	is	that	modal	parameters	(i.e.	frequencies,	mode
shapes	and	modal	damping)	are	functions	of	the	physical	properties	of	the	structure	(i.e.	mass,
stiffness	and	structural	damping)	(Chen	1998).	Structural	damage	reduces	the	stiffness	of	the
structure	and	then	alters	its	modal	parameters.	Therefore,	measurement	and	monitoring	of
vibration	responses	should	theoretically	permit	the	identification	of	both	the	location	and
severity	of	the	structural	damage	(Chen	2005).

Vibrationbased	damage	identification	methods	show	great	promise,	in	particular	in	the
application	to	remote	damage	identification	for	large	civil	engineering	structures.	These
methods	offer	many	advantages	(Humar	et	al.	2006),	including

location	of	the	damage	is	not	required	to	be	known	a	priori

sensors	required	to	measure	the	vibration	responses	are	not	necessary	to	be	placed	in	the
vicinity	of	the	damage,	since	the	modal	parameters	are	global	properties

just	a	limited	number	of	sensors	can	provide	sufficient	information	to	locate	the	damage
and	assess	its	severity,	even	in	a	large	and	complex	civil	structure

vibration	measurements	do	not	require	the	use	of	bulky	equipment,	and	can	be	collected
under	ambient	environments	using	advanced	sensing	systems	on	the	structure.

However,	in	practice,	there	are	several	limitations	associated	with	vibrationbased	damage
identification	methods,	as	summarised	below.

Low	sensitivity	to	damage.	Modal	parameters	may	not	be	very	sensitive	to	local	damage,
although	they	are	associated	with	local	damage	in	a	structure.	Damage	in	a	structure
typically	is	a	local	phenomenon.	Local	response	is	captured	by	higher	frequency	modes,
whereas	lower	frequency	modes	tend	to	capture	the	global	response	of	the	structure	and	are
less	sensitive	to	local	changes	in	the	structure.	Consequently,	the	change	in	modal
parameters	caused	by	local	damage	may	be	difficult	to	identify,	unless	the	damage	is	very
severe	or	the	measurements	are	very	accurate.

Incomplete	nature	of	the	measured	modal	parameters.	A	real	civil	structure	typically
possesses	a	large	number	of	degrees	of	freedom	and	hence	a	large	number	of	frequencies
and	mode	shapes.	However,	the	higher	frequencies	and	mode	shapes	are	very	difficult	to
measure	accurately	in	practice.	In	addition,	due	to	limited	sensors	available,	only	limited



number	of	degrees	of	freedom	can	be	measured,	leading	to	incomplete	mode	shapes.
Measurement	errors	and	mode	truncation	and	incomplete	mode	shapes	introduce	errors	in
damage	identification,	may	lead	to	unreliable	predictions.

Complexity	of	the	damage	identification	algorithms.	Structural	damage	identification	can
be	considered	as	an	inverse	problem,	which	is	often	illconditioned	and	has	a	 non
unique	solution.	Sophisticated	computational	techniques	have	to	be	employed	to	obtain	the
most	appropriate	damage	identification	solution.

Effect	of	factors	other	than	damage.	For	civil	structures,	global	vibration	responses	are
often	affected	by	environmental	and	operational	factors	other	than	structural	damage,	such
as	thermal	effects	caused	by	temperature	variation,	varying	moisture,	variation	of	loading
conditions	and	change	in	boundary	conditions.

Therefore,	further	investigations	have	to	be	carried	out	to	address	the	difficulties	associated
with	the	practical	applications	of	vibrationbased	damage	identification	methods,	including

construction	and	extraction	of	sufficiently	sensitive	feature	index	from	structural	vibration
responses	for	local	damage

optimisation	of	the	position	and	number	of	sensors	to	provide	the	necessary	information	for
accurate	predictions	of	structural	damage

development	of	reliable	damage	identification	methods	through	multidisciplinary
approaches

full	understanding	and	reduction	of	the	effects	of	environmental	and	nonlinear	factors	on
damage	identification.

4.8	Concluding	Remarks
Damage	in	a	civil	engineering	structure	may	come	from	various	sources,	such	as	failure	of
materials,	defects	during	manufacturing,	loss	of	structural	connections	and	misfits	during
construction.	Nondestructive	testing	techniques	have	been	widely	applied	to	civil
engineering	structures	for	detection	of	structural	damage.	NDT	techniques	typically	include
acoustic	emission,	ultrasound,	guided	waves,	thermography,	electromagnetic	methods,
capacitive	methods,	laser	Doppler	vibrometer,	global	positioning	system,	and	visual
inspection.	Application	of	these	techniques	requires	a	priori	knowledge	of	the	possible
damage	sites	and	access	to	such	sites.	Thus,	NDT	techniques	are	generally	localised	in	nature,
and	only	suitable	for	detection	of	local	damage.	The	results	obtained	from	the	NDT	techniques
are	often	inconclusive	or	difficult	to	interpret.

In	contrast	to	the	NDT	techniques,	SHM	methods	avoid	the	limitation	of	NDT	and	provide	a
methodology	for	global	identification	of	damage	in	a	structure.	SHM	methods	offer	many
advantages,	such	as	global	nature,	limited	sensors	needed,	online	monitoring,	model
calibration	and	updating,	and	performance	predictions.	The	SHM	strategy	is	useful	for	damage
diagnosis	and	prognosis	of	large	complex	civil	engineering	structures	in	practice.



The	signals	measured	and	collected	from	SHM	systems	have	to	be	properly	analysed	for
structural	damage	detection.	Typical	signal	processing	methods	include	Fourier	based
transforms,	wavelet	transforms	and	the	Hilbert–Huang	transform.	Fourier	based	transforms	are
straightforward,	but	cannot	be	used	for	nonstationary	or	nonlinear	problems.	Wavelet	and
Hilbert–Huang	transforms	are	powerful	tools	for	signal	processing,	well	suited	for	damage
detection	in	nonstationary	or	nonlinear	problems.

Damage	in	a	structure	can	be	assessed	by	either	databased	or	modelbased	techniques.
Databased	methods	adopt	historic	measurements	to	assess	the	current	state	of	the	structure.
Such	methods	do	not	require	physical	models	of	the	structure	for	damage	assessment,	but	they
are	often	unable	to	provide	quantitative	information	on	the	development	of	the	damage.	On	the
other	hand,	modelbased	methods	use	models	that	are	constructed	from	structural	properties
or	modal	properties.	On	the	basis	of	continuous	monitoring	on	a	structure,	modelbased
methods	offer	useful	information	for	effective	infrastructure	management,	such	as	predictive
damage	evolution,	remaining	life	estimate	and	optimum	repair	planning.

Vibrationbased	damage	identification	methods	show	great	promise	for	onorbit,	remote
damage	assessment	of	large	civil	engineering	structures.	Such	methods	can	offer	information	on
the	location	and	quantification	of	damage	in	a	structure,	when	vibration	measurements	are	used
with	system	identification	algorithms.	A	structural	model	of	the	undamaged	structure,	usually
correlated	with	test	data	of	the	undamaged	structure,	is	adopted	with	vibration	measurements
from	the	damaged	structure	in	the	damage	identification	process.	The	vibrationbased	damage
identification	methods	are	in	principle	similar	to	the	verification	of	structural	properties	in
specific	locations	(often	referred	to	as	model	updating).	From	continuous	monitoring,	the
damage	evolution	of	the	structure	can	be	used	for	timedependent	reliability	analysis,	future
performance	predictions	and	risk	and	cost	balanced	maintenance	strategy.
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5
Modal	Analysis	of	Civil	Engineering	Structures

5.1	Introduction
The	design	and	construction	of	large	civil	engineering	structures,	such	as	longspan	bridges
and	highrise	buildings	has	become	increasingly	popular.	This	demands	the	development	of
reliable	experimental	tools	for	the	accurate	identification	of	the	most	relevant	dynamic	modal
properties:	natural	frequencies,	mode	shapes	and	damping	ratios.	Such	modal	identification
tools	can	provide	reliable	data	to	support	the	validation	of	finite	element	models	used	at	the
design	stage	(Cunha	and	Caetano	2006,	Cunha	et	al.	2001).	These	tools	also	offer	updated
information	to	support	identification	of	damage	in	civil	engineering	structures	through
structural	health	monitoring	strategies.

The	modal	properties	of	a	civil	engineering	structure	should	be	determined	in	normal
operational	conditions	to	represent	the	real	dynamic	response	of	the	structure.	There	are
generally	two	groups	to	identify	the	modal	properties:	the	inputoutput	identification	methods
and	the	outputonly	identification	methods.	The	inputoutput	methods	need	both	the	input
forces	(excitation)	and	output	measurements	(response)	to	identify	the	modal	parameters.
These	methods	have	been	developed	in	either	frequency	domain	or	time	domain,	such	as
rational	fraction	polynomial	(RFP),	polyreference	frequency	domain	(PRFD),	Ibrahim	time
domain	(ITD),	and	eigensystem	realisation	algorithm	(ERA),	as	discussed	in	detail	in	Ewins
(2000),	Heylen	et	al.	(1995)	and	Maia	et	al.	(1997).

The	outputonly	identification	methods,	also	called	operational	modal	analysis	(OMA),	are	a
useful	tool	for	identifying	modal	properties	of	a	structure,	since	they	only	need	the	response
measurements	of	the	structure	in	operational	condition	under	ambient	excitation.	Typical
outputonly	methods	include	the	frequency	domain	techniques,	e.g.	the	peakpicking	(PP)	and
the	complex	mode	indication	function	(CMIF)	(Peeters	and	Ventura	2003),	and	the	time
domain	techniques,	e.g.	the	Ibrahim	time	domain	(ITD),	the	covariancedriven	stochastic
subspace	identification	(SSICOV)	and	the	datadriven	stochastic	subspace	identification
(SSIDATA)	(Van	Overschee	and	De	Moor	1996).	These	outputonly	identification	methods
have	been	successfully	applied	to	many	real	civil	engineering	structures	such	as	the	Ting	Kau
Bridge	(Ni	et	al.	2005)	and	the	Canton	Tower	(Chen	et	al.	2012).

The	identified	modal	parameters	have	to	be	checked	with	the	associated	analytical	model	or
finite	element	model	using	various	criteria.	These	criteria	include	the	modal	assurance
criterion	(MAC),	orthogonality	checks	and	the	coordinate	modal	assurance	criterion
(COMAC)	(Friswell	and	Mottershead	1995).	Owing	to	the	limited	number	of	sensors
available	in	practice,	the	identified	mode	shapes	of	the	tested	structure	are	usually	incomplete.
To	overcome	this	problem,	mode	shape	expansion	or	model	reduction	should	be	considered	to
eliminate	the	requirement	of	complete	measurements	of	the	actual	tested	structure.	Traditional
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mode	shape	expansion	methods	involve	a	model	reduction	transformation	matrix	as	an
expansion	mechanism	to	obtain	the	unmeasured	mode	shape	components.	Recently,	the
perturbed	force	approach	has	provided	more	accurate	estimates	for	mode	shape	expansion,
particularly	in	the	cases	with	limited	modal	data	measurements,	large	modelling	errors	and
severe	measurement	noise	(Chen	2010).

This	chapter	reviews	structural	dynamic	testing	and	modal	analysis	of	civil	engineering
structures	under	controlled	forces	or	in	ambient	conditions.	Two	main	groups	of	modal
parameter	identification	methods	either	in	frequency	domain	or	in	time	domain	are	discussed:
inputoutput	and	outputonly.	These	methods	are	compared	for	evaluating	the	performance
for	modal	parameter	identification	under	various	conditions.	The	identified	modal	parameters
of	the	tested	structure	are	then	correlated	with	the	associated	analytical	model	using	various
criteria.	Because	of	the	incompleteness	of	measured	modal	data,	mode	shape	expansion
methods	or	model	reduction	methods	are	introduced	for	correlation	studies	and	model
validations.	Finally,	a	real	case	of	a	supertall	structure	is	studied	for	modal	parameter
identification	and	mode	shape	expansion	using	ambient	vibration	measurements.

5.2	Basic	Equations	for	Structural	Dynamics
The	equation	of	motion	for	the	linear	damped	forced	vibration	of	a	structural	dynamic	system
with	a	total	number	of	N	degrees	of	freedom	(DOFs)	can	be	expressed	as

where	f(t)	is	external	force	vector	applied	to	the	system	over	time	t.	Dynamic	responses	u,	
and	ü	are	nodal	displacement,	velocity	and	acceleration	vectors	associated	with	time	t	of	the
system,	respectively.	Structural	parameters	M,	C	and	K	are	the	N × N	global	mass,	damping
and	stiffness	matrices	of	the	dynamic	system,	respectively.	To	simplify	calculations,	the
damping	matrix	C	may	be	assumed	to	be	proportional	to	a	combination	of	the	corresponding
mass	and	stiffness	matrices,	expressed	as

in	which	cm	and	ck	are	proportionality	constants	associated	with	the	mass	and	stiffness	of	the
structural	systems,	respectively.	In	the	cases	without	the	presence	of	external	force	f(t),	it
becomes	free	vibration	and	then	the	equation	of	motion	Equation	(5.1)	is	rewritten	as

The	characteristic	equation,	using	Laplace	operator	s,	is	expressed	as

The	basic	Equations	(5.3)	and	(5.4)	are	often	adopted	in	modal	identification	procedures.
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5.2.1	Modal	Solution
For	a	nontrivial	solution	of	the	equation	of	motion	of	free	vibration	in	 Equation	(5.3),
assumes	that	the	displacement	response	is	harmonic	with	a	frequency	of	ω:

where	 	and	ϕ	is	a	modal	vector.	By	using	the	assumed	displacement,	Equation	(5.3)
becomes

The	above	is	a	quadratic	eigenvalue	problem	with	a	total	number	of	N	complex	conjugate	pairs
of	eigensolutions	of	eigenvalue	ω	and	eigenvector	ϕ	in	general.	By	using	the	eigensolution,	the
displacement	of	the	structural	dynamic	system	can	now	be	expanded	into	the	series

The	eigenvalues	are	obtained	in	complex	conjugate	pairs	for	viscous	damping	as

where	the	overbar	indicates	the	complex	conjugate,	and	ζi	is	the	ith	viscous	damping	ratio.
From	this	equation,	the	natural	frequency	and	the	modal	damping	can	be	determined.

For	an	undamped	structural	dynamic	system	 ,	the	eigenvalue	problem	in	Equation	(5.6)	is
simplified	as

where	 	and	ϕi	are	the	ith	eigenvalue	and	the	corresponding	eigenvector	for	the	free
vibration	system,	respectively.	The	eigensolution	of	a	total	number	of	N	eigenvalues	and
eigenvectors	is	real,	since	both	stiffness	and	mass	matrices	are	symmetric.	The	eigenvalues
and	the	corresponding	eigenvectors	of	the	free	vibration	system	can	be	obtained	from	finite
element	dynamic	analysis	by	solving	the	eigenproblem	in	Equation	(5.9).	These	eigenvectors
are	linearly	independent,	and	often	mass	normalised	in	the	following	form

where	superscript	T	denotes	the	transpose	of	a	vector	or	matrix	quantity	throughout	the	book.
As	a	result,	the	structural	stiffness	matrix	has	orthogonality	relations	as
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The	above	orthogonality	relations	can	be	used	for	assessing	the	quality	of	the	measured	modal
data	such	as	natural	frequencies	and	mode	shapes.

5.2.2	Frequency	Response	Function
In	forced	harmonic	vibration	with	the	external	force	fe jωt	of	a	driving	frequency	ω,	the
equation	of	motion	in	Equation	(5.1)	becomes

where	the	y	is	the	harmonic	displacement	vector,	obtained	from

in	which

The	matrix	H(ω)	is	named	as	frequency	response	function	(FRF).	Its	components	hpq(ω)
represent	the	harmonic	displacement	of	the	pth	degree	of	freedom	due	to	unit	harmonic	force	in
the	direction	of	the	qth	degree	of	freedom.	Physically,	the	FRF	represents	the	dynamic
flexibility	of	the	structural	system.	The	numerical	FRFs	can	be	obtained	from	the	calculated
modal	data	such	as	natural	frequencies	ωi,	mode	shape	vector	ϕi	and	damping	ratio	ζ:

For	frequency	domain	analyses,	the	dynamic	stiffness	Z(ω)	can	be	defined	as

In	structural	dynamic	testing,	FRFs	are	obtained	by	measuring	the	system	responses	at	different
locations	during	experiments	due	to	harmonic	external	forces,	and	then	they	can	be	used	in
modal	identification.

5.3	InputOutput	Modal	Identification
In	dynamic	test	of	a	structure,	input	sources	are	the	places	where	the	structure	is	excited	by	an
external	force,	and	output	stations	are	the	locations	where	the	structural	response	is	measured
(Avitabile	2001,	Friswell	and	Mottershead	1995).	There	are	several	input	and	output
combinations,	such	as	single	input	source	and	single	output	station	(SISO),	single	input	source
and	multiple	output	stations	(SIMO),	multiple	input	sources	and	single	output	station	(MISO)



and	multiple	input	sources	and	multiple	output	stations	(MIMO).	The	output	measurements,
together	with	the	input	data,	are	then	adopted	for	modal	identification	of	the	tested	structure.	In
practice,	the	inputoutput	modal	identification	techniques	have	been	wellestablished	to
accurately	identify	the	modal	parameters	of	engineering	structures,	such	as	natural	frequencies,
mode	shapes	and	damping	ratios.

5.3.1	Equipment	and	Test	Procedure
In	modal	testing,	the	frequency	response	functions	(FRFs)	are	constructed	from	the	relationship
between	the	applied	external	force	and	the	corresponding	response	at	several	pairs	of	points
on	the	structure.	The	construction	of	FRFs	needs	a	set	of	modal	testing	facilities,	including
structural	excitation,	data	acquisition	and	signal	processing,	as	described	in	Cunha	and
Caetano	(2006)	and	Ewins	(2000).

Small	and	mediumsize	civil	engineering	structures	can	be	excited	by	an	impulse	hammer,	as
shown	in	Figure	5.1(a).	The	impulse	hammer	has	the	advantage	of	providing	a	wideband	input
to	stimulate	different	modes	of	vibration.	However,	it	has	some	disadvantages,	such	as	lack	of
energy	to	excite	some	relevant	modes	of	vibration.	Alternatively,	large	electrodynamic	shakers
can	be	utilised	to	generate	a	large	variety	of	input	signals	(random,	multisine,	etc.)	with
controlled	frequencies	and	amplitudes.	The	shakers	are	capable	of	exciting	structures	in	a
lower	frequency	range	and	higher	frequency	resolution.	By	applying	sinusoidal	forces	on	a
structure,	resonance	frequencies	can	be	excited	and	identified,	together	with	a	direct
identification	of	mode	shapes.

Figure	5.1	Impact	hammer	and	accelerometers	for	vibration	testing.

Large	civil	engineering	structures	can	be	excited	by	using	heavy	excitation	equipment,	such	as
an	eccentric	mass	vibrator.	The	vibrator	generates	sinusoidal	forces	with	variable	frequency
and	amplitude	for	structural	dynamic	testing.	However,	the	equipment	has	some	drawbacks
including	low	force	amplitude	induced	at	low	frequencies.	To	overcome	the	drawbacks,	a
servohydraulic	shaker	can	be	used	to	provide	a	wideband	excitation	over	the	most
interesting	frequency	range	for	large	civil	engineering	structures.

The	dynamic	response	of	the	tested	structure	is	typically	measured	with	accelerometers,	such



as	piezoelectric	or	forcebalance,	as	indicated	in	 Figure	5.1(b).	Piezoelectric	accelerometers
do	not	need	a	power	supply	and	operate	well	over	a	wide	frequency	range.	However,	they	may
not	be	suitable	for	low	frequency	applications.	In	contract,	forcebalance	accelerometers	can
be	used	for	low	frequency	response	cases.	The	electrical	signals	generated	by	these	sensors
are	often	low	and	need	to	be	amplified	by	conditioning	units.	The	data	acquisition	and	storage
require	the	use	of	an	analoguetodigital	(A/D)	converter	in	the	measurement	system.	The
measured	acceleration	timehistory	can	be	multiplied	by	appropriate	time	windows	to	reduce
leakage	effects.	Finally,	frequency	response	functions	are	obtained	using	estimators	from	the
input	forces	and	acceleration	measurements.	Appropriate	software	may	be	required	for
efficient	evaluation	of	FRFs	for	analysis	and	signal	processing.

5.3.2	Modal	Identification	Techniques
Many	techniques	are	available	for	inputoutput	modal	identification,	on	the	basis	of	either
estimates	of	a	set	of	FRFs	or	the	corresponding	impulse	response	functions	(Ljung	1999).	The
impulse	response	functions	(IRFs)	are	obtained	through	the	inverse	Fourier	transform.	These
techniques	can	be	classified	according	to	various	factors,	such	as	domain	of	application	(time
or	frequency),	type	of	formulation	(indirect	or	direct),	number	of	modes	analysed	(single	DOF
or	multi	DOF)	and	number	of	inputs	and	type	of	estimates	(SISO,	SIMO,	MISO,	MIMO).	These
techniques	generally	require	some	fitting	between	measured	and	theoretical	functions	to
identify	modal	parameters.

5.3.2.1	FrequencyDomain	Techniques
The	frequencydomain	techniques	are	based	on	the	FRF	estimates	obtained	from	the	modal
testing.	For	a	simple	single	DOF	system,	typical	frequencydomain	methods,	such	as	peak
amplitude,	curvefit	and	inverse	methods,	perform	the	fit	between	a	measured	FRF	and	a
theoretical	FRF	of	the	single	DOF	system	in	the	vicinity	of	each	resonant	frequency.	For	more
complex	multiple	DOF	systems,	typical	frequencydomain	methods	include	rational	fraction
polynomial	(RFP),	complex	exponential	frequency	domain	(CEFD)	and	polyreference
frequency	domain	(PRFD).	Details	of	these	frequencydomain	techniques	are	discussed	in
Maia	et	al.	(1997).	These	techniques	carry	out	a	global	fit	between	measured	and	theoretical
FRFs	for	a	wide	range	of	frequencies.	The	frequencydomain	techniques	have	drawbacks	in
the	frequency	resolution	of	spectral	estimates	and	leakage	errors	in	the	estimates.

5.3.2.2	TimeDomain	Techniques
To	avoid	the	drawbacks	in	the	frequencydomain	techniques,	timedomain	methods	can
provide	better	results	when	a	large	frequency	range	or	a	large	number	of	modes	exist	in	the
data.	The	timedomain	techniques	are	either	direct,	such	as	autoregressive	movingaverage
(ARMA)	or	indirect,	such	as	polyreference	complex	exponential	(PRCE),	Ibrahim	time
domain	(ITD)	and	eigensystem	realisation	algorithm	(ERA).	All	these	methods	are	described
in	detail	by	Maia	et	al.	(1997).

5.3.3	Example	for	Modal	Identification	–	a	Steel	Space	Frame	(I)



In	the	laboratory	vibration	testing	for	a	space	steel	frame	structure	shown	in	Figure	5.2,	a	total
number	of	16	uniaxial	accelerometers	are	placed	at	the	beam–column	joints	to	measure
translational	accelerations.	These	sensors	are	used	to	record	the	response	of	the	frame
structure	excited	by	the	impulse	hammer.	A	supersoft	rubber	tip	is	attached	to	the	hammer	to
broaden	the	impulse	on	the	structure	in	order	to	better	excite	lower	frequency	modes.	The
dynamic	response	data	is	acquired	by	using	five	signal	processing	modules	with	fourchannel
24bit	AC/DC	input	modules	and	a	data	acquisition	chassis.	The	data	is	then	collected	by
Labview	Signalexpress	software.

Figure	5.2A	space	steel	frame	structure	used	for	laboratory	testing	with	test	equipment.

The	single	input	and	multiple	output	(SIMO)	test	procedure	is	utilised	for	the	vibration	testing
of	the	frame	structure.	Curve	fitting	is	employed	on	a	reference	set	of	FRFs	to	extract	modal



parameters	by	using	ME'Scope	VES	modal	analysis	software.	The	recorded	typical
acceleration	measurements	and	the	identified	natural	frequencies	for	the	laboratory	tested
frame	structure	are	shown	in	Figures	5.3(a)	and	(b).





Figure	5.3	Laboratory	vibration	test	results	for	the	space	steel	frame	structure.

The	first	three	measured	frequencies	and	the	corresponding	mode	shapes	for	the	laboratory
tested	structure	are	shown	in	Figure	5.4.	Among	these	three	identified	modes,	there	are	two
bending	modes	with	respect	to	the	weak	axis	(first	and	third	modes)	and	one	torsion	mode
(second	mode).

Figure	5.4	Experimental	modes	from	laboratory	vibration	test	for	the	space	frame	structure.

5.4	OutputOnly	Modal	Identification
The	main	problem	associated	with	forced	vibration	tests	on	large	civil	engineering	structures
is	the	difficulty	in	exciting	the	interested	low	frequency	modes	with	sufficient	energy	and	in	a
controlled	manner.	Existing	exciters	such	as	impact	hammers	and	shakers	may	not	be	suitable
for	use	with	large	civil	structures	such	as	longspan	bridges	and	highrise	buildings.	Thus,
outputonly	modal	identification,	also	known	as	operational	modal	analysis	(OMA),	is
required	to	accurately	identify	the	modal	properties	of	large	structures	at	the	construction	stage
or	during	their	service	life	without	interruption	of	normal	operation	(Hermans	and	Van	der
Auweraer	1999,	Heylen	et	al.	1995).

5.4.1	Equipment	and	Test	Procedure



(5.17)

Forcebalance	accelerometers	are	often	used	for	dynamic	response	induced	by	ambient
excitations	such	as	wind	and	traffic.	In	the	vibration	tests,	the	structural	ambient	response	such
as	acceleration	is	captured	by	a	few	reference	sensors	at	fixed	places	and	with	a	set	of	sensors
at	different	measurement	points	along	the	structure.	The	number	of	sensors	and	their	locations
need	to	be	optimised	to	characterise	appropriately	the	shape	of	the	most	relevant	modes	of
vibration.	The	optimised	sensor	array	should	be	able	to	provide	maximum	information	for	the
applications	of	modal	data,	such	as	finite	element	model	updating	and	vibrationbased
structural	damage	identification.

Forcebalance	accelerometers	need	sufficient	power	supply,	and	their	analogue	signals	are
usually	transmitted	to	a	data	acquisition	system	with	an	A/D	conversion	card.	The	data
acquisition	and	processing	systems	are	required	to	collect	and	analyse	the	data	measured	from
ambient	vibration	tests.	The	use	of	long	electrical	cables	in	the	outputonly	modal
identification	tests	in	large	civil	structures	is	timeconsuming.	Wireless	systems	have
therefore	been	developed	to	avoid	this	problem	and	to	provide	more	effective	signal
transmission.

5.4.2	Operational	Modal	Identification	Techniques
Ambient	excitation	usually	provides	multiple	inputs	and	a	wideband	frequency	content	(Bendat
and	Piersol	1993,	Brincker	et	al.	2000).	Due	to	the	lack	of	knowledge	of	the	input,	the	output
only	modal	identification	techniques	assume	that	the	excitation	input	does	not	contain	any
information	–	it	is	a	zeromean	Gaussian	white	noise.	The	assumption	of	white	noise	is	not
too	strict	in	practical	applications.	The	outputonly	techniques	will	work	well	in	the	cases
where	the	input	spectrum	is	quite	flat.	As	a	result	of	the	lack	of	knowledge	of	the	input,	the
estimated	mode	shapes	cannot	be	scaled	to	unity	modal	mass.	The	outputonly	modal
identification	methods	are	broadly	classified	as	two	groups:	nonparametric	methods
essentially	developed	in	the	frequency	domain	and	parametric	methods	in	the	timedomain.
The	details	of	the	outputonly	modal	identification	techniques	are	provided	in	Peeters	and	De
Roeck	(2001)	and	Peeters	and	Ventura	(2003).

5.4.2.1	FrequencyDomain	Methods
Nonparametric	frequencydomain	methods	use	either	FRFs	or	output	spectrum	for	output
only	modal	parameter	estimation	(Peeters	and	Ventura	2003).	Typical	frequencydomain
methods	are	described	as	follows.

Peakpicking	(PP)	method: 	The	PP	method	is	the	basic	frequency	domain	method	to	estimate
the	modal	parameters	of	a	structure.	This	method	is	named	after	its	key	step	–	the	identification
of	the	natural	frequencies	at	the	peaks	of	the	FRF	plot.	In	cases	with	low	damping	and	well
separated	frequencies,	the	output	power	spectrum	matrix	Sy	near	a	frequency	ωi	can	be
approximated	by
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where	αi	is	a	scale	factor,	vi	is	the	ith	mode	shape	and	superscript	H	represents	the	complex
conjugate	transpose	of	a	matrix	or	vector.	The	basic	assumptions	of	low	damping	and	well
separated	frequencies	in	the	PP	method	has	significant	influence	on	operational	modal
identification.	The	selection	of	the	frequencies	can	be	subjective	if	the	spectrum	peaks	are	not
very	clear.	Despite	these	disadvantages,	the	PP	method	has	been	successfully	applied	to	many
civil	engineering	cases	due	to	its	simple	implementation	and	its	effectiveness.

Complex	mode	indication	function	(CMIF)	method:	The	CMIF	method	uses	the	singular	value
decomposition	(SVD)	of	the	spectrum	matrix:

where	U	is	a	complex	unitary	matrix	containing	the	singular	vectors	as	its	columns.	The
diagonal	matrix	Σ	contains	the	real	positive	singular	values	in	descending	order.	This	method
is	based	on	the	diagonalisation	of	the	spectral	density	matrix	and	on	the	fact	that	the	spectrum
matrix	evaluated	at	a	certain	frequency	is	only	determined	by	a	few	modes.	The	CMIF	method
may	be	considered	as	an	SVD	extension	of	the	PP	method.

Rational	fraction	polynomial	(RFP)	method:	The	RFP	method	is	a	basic	modal	parameter
estimation	method	and	was	extended	to	the	multiple	input	case	by	Van	der	Auweraer	and
Leuridan	(1987).	It	is	found	that	the	FRF	matrix	can	be	parameterised	as	an	RFP	model:

where	αi	are	the	denominator	matrix	coefficients	and	βi	are	the	numerator	matrix	coefficients.
The	polynomial	order	p	is	related	to	the	number	of	modes.	These	matrix	coefficients	can	be
estimated	from	FRF	measurements,	and	then	are	used	for	estimating	the	modal	parameters.

5.4.2.2	TimeDomain	Methods
Timedomain	methods	adopt	an	appropriate	mathematical	model	to	idealise	the	dynamic
structural	behaviour,	e.g.	timediscrete	or	statespace	stochastic	models,	for	the	outputonly
modal	identification	(Peeters	and	De	Roeck	2001).	Typical	timedomain	methods	include
Ibrahim	timedomain	(ITD),	covariancedriven	stochastic	subspace	identification	(SSI
COV),	and	datadriven	stochastic	subspace	identification	(SSIDATA).

Ibrahim	timedomain	(ITD)	method: 	The	ITD	method	was	originally	proposed	for
identifying	the	modal	parameters	from	free	decay	responses,	and	then	to	a	polyreference	IRF
(impulse	response	function)driven	modal	parameter	estimation	method	(Ibrahim	and
Mikulcik	1977).	The	IRF	is	obtained	as	the	inverse	Fourier	transforms	of	the	FRF.	The	ITD
method	aims	to	compute	the	complex	eigensolutions:	complex	eigenvalues	and	associated
complex	eigenvectors.	From	the	obtained	complex	eigenvalues,	the	natural	frequencies	and
modal	damping	can	be	estimated.

Covariancedriven	stochastic	subspace	identification	(SSICOV)	method: 	The	SSICOV



method	deals	with	the	stochastic	realisation	problem,	that	is,	the	identification	of	a	stochastic
statespace	model	from	outputonly	data.	Stochastic	realisation	relies	on	a	fundamental
property	of	stochastic	statespace	systems.	Theoretically,	the	system	order	can	be	determined
by	inspecting	the	number	of	nonzero	singular	values	of	the	block	Toeplitz	matrix	(Peeters	and
De	Roeck	1999).	A	stabilisation	diagram	can	be	effectively	constructed	by	computing	the
singular	value	decomposition	of	the	covariance	Toeplitz	matrix.	The	constructed	stabilisation
diagram	is	then	employed	to	obtain	a	good	model	for	modal	analysis	applications,	by
identifying	a	whole	set	of	models	with	different	order.	However,	in	practice,	the	estimated
covariance	Toeplitz	matrix	is	considerably	affected	by	noise,	typically	caused	by	modelling
inaccuracies	by	a	statespace	model,	measurement	noise	by	the	sensing	system,	computational
errors	and	the	finite	amount	of	data.

Datadriven	stochastic	subspace	identification	(SSIDATA)	method: 	As	opposed	to	the
SSICOV	method,	the	SSIDATA	method	avoids	the	computation	of	covariances	between	the
outputs	(Van	Overschee	and	De	Moor	1996).	This	is	replaced	by	projecting	the	row	space	of
future	outputs	into	the	row	space	of	past	outputs.	Thus	the	SSIDATA	method	 directly	works
with	the	measured	time	histories,	without	requiring	IRFs	conversion	or	output	covariances.	It
has	been	shown	that	the	datadriven	algorithms	outperform	an	optimal	version	of	the
eigensystem	realisation	algorithms	(ERA).	The	SSIDATA	method	has	many	successful
practical	applications	for	outputonly	modal	analysis.

5.4.3	Damping	Estimation
In	structural	dynamics	and	modal	testing	problems,	the	precise	mechanisms	of	damping	are	not
well	understood.	In	general,	the	viscous	damping	assumption	does	not	match	exactly	the	real
damping	characteristics	of	the	structures.	The	modal	damping	ratios	increase	gradually	with
levels	of	oscillation	(Cunha	and	Caetano	2006,	Brincker	et	al.	2001).	Thus	there	is	a	major
problem	in	the	accurate	identification	of	modal	damping	ratios	due	to	the	considerably	larger
scatter	associated	with	various	natural	frequency	and	mode	shape	estimates.	In	many	practical
situations,	a	free	vibration	test	may	be	performed	to	effectively	identify	the	modal	damping
ratios.	For	example,	for	longspan	slender	bridges,	the	technique	with	a	drop	weight	is
particularly	useful,	since	the	knowledge	of	certain	damping	ratios	is	critical	for	assessing
aeroelastic	instability	problems.

5.4.4	Effect	of	Temperature	on	Modal	Data
Large	civil	engineering	structures	such	as	bridges	are	exposed	directly	to	ambient
environments,	such	as	traffic,	humidity,	wind	and	temperature,	during	their	service	lifetime.
The	operational	environments	such	as	temperature	may	affect	the	modal	parameters	of	the
structures	due	to	thermal	effects.	To	investigate	the	effect	of	temperature	on	natural
frequencies,	a	study	was	carried	out	for	the	Ting	Kau	cablestayed	bridge	using	longterm
monitoring	data	(Ni	et	al.	2005).	From	the	measured	modes,	the	values	of	natural	frequencies
reduce	slightly	with	increase	in	ambient	temperature,	although	the	variation	of	natural
frequencies	is	fairly	small.	The	relationship	between	frequencies	and	temperature	is	not	simply
linear	and	actually	is	highly	dispersed,	as	indicated	in	Figure	5.5.



Figure	5.5	Fundamental	frequency	versus	hourlyaverage	temperature	of	the	Ting	Kau	cable
stayed	bridge.

Temperature	is	the	critical	source	causing	variability	of	modal	parameters	such	as	natural
frequencies.	The	variations	of	natural	frequencies	caused	by	change	in	temperature	may	reach
5–10%	for	bridges.	In	general,	natural	frequencies	of	dynamic	structural	systems	decrease	as
structural	or	ambient	temperature	increases.	The	thermal	effects	on	the	associated	mode	shapes
are	usually	relatively	smaller	and	can	be	neglected.	This	is	also	confirmed	by	other	studies,
such	as	in	the	case	studies	by	Xia	et	al.	(2012).

5.4.5	Comparison	of	Methods
A	comparative	study	on	the	performance	of	various	modal	identification	techniques	was
undertaken	for	operational	modal	analysis	(Peeters	and	Ventura	2003).	The	Z24Bridge,	a
classical	posttensioned	concrete	box	girder	bridge,	is	used	in	their	comparative	study.	The
bridge	was	excited	by	controlled	external	forces	and	by	ambient	sources,	respectively.	Two
shakers	were	used	for	the	controlled	shaker	tests:	one	on	a	sidespan	and	another	at	mid
span.	A	drop	weight	was	also	used	to	excite	the	bridge	to	stimulate	the	free	vibration	of	the
structure.	The	ambient	excitation	sources	acting	on	the	bridge	were	typically	wind	and	traffic
on	the	highway.



The	differences	in	the	identified	natural	frequencies	between	the	excitation	types	are	generally
small,	as	summarised	in	Table	5.1.	This	discrepancy	may	be	caused	by	the	temperature
changes	during	the	measurement	period.	On	the	other	hand,	the	damping	ratios	identified	from
the	three	excitation	types	appear	very	consistent	with	consideration	of	their	higher	uncertainty.

Table	5.1	Comparison	of	identified	natural	frequencies	and	damping	ratios	between	the	three
excitation	types	(after	Peeters	and	Ventura	2003).

Mode	No. Natural	frequencies	(Hz) Damping	ratios	(%)
Shaker Drop	weight Ambient Shaker Drop	weight Ambient

1 3.87 3.85 3.86 0.9 0.8 0.9
2 4.82 4.81 4.90 1.7 1.6 1.4
3 9.77 9.74 9.77 1.5 1.7 1.3
4 10.5 10.4 10.3 1.6 1.8 1.4
5 12.4 12.2 12.5 3.1 3.8 2.5
6 13.2 13.2 13.2 4.6 4.1 3.0
7 17.2 16.9 — 5.0 4.9 —
8 19.3 19.2 19.0 2.5 2.3 2.0

The	performance	of	the	selected	outputonly	identification	methods	for	frequency
identification	using	ambient	data	is	rather	different,	as	indicated	in	Figure	5.6.	The	peak
picking	(PP)	method	identifies	the	first	six	frequencies	well	with	good	estimates.	The	complex
mode	indication	function	(CMIF)	method	gives	reasonable	estimates	for	the	first	five
frequencies.	The	rational	fraction	polynomial	(RFP)	method	can	only	identify	the	first	three
frequencies.	The	stochastic	subspace	identification	(SSI)	methods	provide	the	best	results	for
frequency	identification.	For	all	identification	methods,	lower	frequencies	–	say	the	first	three
modes	–	can	be	identified	from	ambient	vibration	data.	Some	higher	frequencies	failed	to	be
identified	because	these	modes	are	not	so	well	excited.	Stochastic	subspace	identification
(SSI)	methods	perform	well	since	they	can	deal	with	noisy	data.



Figure	5.6	Relative	frequencies	extracted	by	various	modal	identification	methods	from	the
ambient	vibration	data	(after	Peeters	and	Ventura	2003).

The	results	of	damping	ratios	from	the	drop	weight	data	are	diverse	and	depend	on	the	modal
identification	methods	used,	as	shown	in	Figure	5.7.	The	variations	of	estimated	damping
ratios	between	the	identification	methods	are	much	greater	than	those	of	frequencies	due	to
higher	uncertainty	in	damping	ratio	estimation.	The	Ibrahim	timedomain	(ITD)	method	gives
the	lowest	values	of	damping	ratios.	Again,	the	stochastic	subspace	identification	(SSI)
methods	provide	the	best	estimates	for	damping	ratios.

Figure	5.7	Relative	damping	ratios	extracted	by	various	modal	identification	methods	from	the
drop	weight	data	(after	Peeters	and	Ventura	2003).



5.4.6	Example	for	Modal	Identification	–	a	CableStayed	Bridge
The	Ting	Kau	Bridge	is	a	threetower	cablestayed	bridge	in	Hong	Kong.	Details	of	the
bridge	and	its	health	monitoring	strategy	will	be	discussed	in	Section	10.2.	In	the	bridge	health
monitoring	system,	there	are	a	total	of	24	uniaxial	accelerometers	installed	at	 eight	sections
(B,	D,	E,	G,	J,	L,	M,	O)	of	the	bridge	deck	(Ni	et	al.	2015),	as	shown	in	Figure	5.8.	The
accelerometers	that	are	installed	on	the	two	sides	of	the	bridge	deck	measure	the	vertical
accelerations,	while	the	accelerometers	installed	along	the	middle	of	the	bridge	deck	collect
the	transverse	acceleration	measurements.	The	sampling	frequency	of	these	accelerometers	is
25.6 Hz.

Figure	5.8	Deployment	of	accelerometers	on	Ting	Kau	Bridge.

Two	timedomain	modal	identification	methods	–	datadriven	stochastic	subspace
identification	(SSIDATA)	and	covariancedriven	stochastic	subspace	identification	(SSI
COV)	–	are	employed	to	extract	modal	properties,	such	as	natural	frequencies	and	mode
shapes,	from	the	collected	acceleration	measurements	under	strong	wind	conditions.	The
stabilisation	diagrams	for	the	SSIDATA	method	and	the	SSICOV	method,	as	shown	in
Figure	5.9,	are	constructed	to	identify	natural	frequencies,	together	with	the	associated	mode
shapes	and	damping	ratios.	The	first	eight	frequencies	are	clearly	indicated	on	both
stabilisation	diagrams.





Figure	5.9	Stabilisation	diagrams	for	the	SSIDATA	and	the	SSICOV	outputonly
identification	methods	for	Ting	Kau	Bridge.

The	influence	of	ambient	excitations,	such	as	wind	conditions,	on	modal	identification	is
investigated	using	monitored	data	(Huang	and	Chen	2017).	Table	5.2	summarises	the	identified
first	eight	natural	frequencies	under	various	strong	wind	conditions	(S7S10	with	wind
speeds	of	12.11–15.91 m/s).	The	results	are	very	close	to	each	other	for	different	wind
conditions.	The	difference	in	the	estimates	of	the	frequencies	identified	from	the	SSIDATA
method	and	the	SSICOV	method	is	small.	Both	identification	methods	give	reliable	and
consistent	results	for	frequency	estimates	from	various	ambient	vibration	measurements.

Table	5.2	Identified	natural	frequencies	(Hz)	of	the	first	eight	modes	under	various	wind
conditions	using	the	SSIDATA	method	and	the	SSICOV	method.

Mode	No. SSIDATA SSICOV
S7 S8 S9 S10 S7 S8 S9 S10

1 0.167 0.164 0.164 0.164 0.166 0.164 0.165 0.166
2 0.228 0.228 0.227 0.227 0.227 0.227 0.227 0.226
3 0.264 0.264 0.260 0.260 0.263 0.264 0.259 0.260
4 0.291 0.292 0.287 0.287 0.290 0.293 0.287 0.289
5 0.298 0.301 0.297 0.297 0.298 0.301 0.297 0.302
6 0.324 0.324 0.319 0.319 0.322 0.323 0.319 0.317
7 0.361 0.361 0.358 0.358 0.361 0.361 0.358 0.359
8 0.374 0.374 0.375 0.374 0.374 0.372 0.374 0.373

The	mode	shapes	of	the	first	eight	modes	are	extracted	from	ambient	vibration	measurements
under	strong	wind	conditions,	as	plotted	in	Figure	5.10.	The	modal	responses	obtained	from
vertical	accelerometers	on	the	two	sides	of	the	bridge	deck	are	plotted	with	lines	with	square
and	triangle	symbols,	while	the	modal	responses	obtained	from	transverse	accelerometers
along	the	middle	of	the	bridge	deck	are	plotted	with	lines	with	diamond	symbols.



Figure	5.10	Identified	mode	shapes	of	first	eight	modes	for	Ting	Kau	Bridge.

5.5	Correlation	Between	Test	and	Calculated	Results
The	experimental	results	for	the	tested	structure	need	to	be	compared	with	the	calculated
results	usually	predicted	by	the	finite	element	(FE)	model.	Difficulties	arise	in	the	comparison
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since	the	number	of	sensors	adopted	for	the	dynamic	test	is	typically	less	than	the	number	of
degrees	of	freedom	(DOFs)	generated	by	the	associated	FE	numerical	model.	Due	to	noise	in
measurements	and	errors	in	FE	modelling,	there	may	be	considerable	discrepancy	between	the
test	results	and	the	numerical	predictions.

5.5.1	Modal	Assurance	Criterion
The	modal	data	obtained	from	experiments,	such	as	natural	frequencies	and	mode	shapes,	must
be	paired	with	those	predicted	by	the	associated	FE	model.	The	mode	pairing	must	be
undertaken	before	correlation	studies,	FE	model	updating	and	structural	damage	identification.
The	modal	assurance	criterion	is	widely	used	for	pairing	experimental	modes	with	the
associated	calculated	modes.

In	structural	dynamic	testing,	measured	modal	data	about	the	natural	frequency	 	and	mode
shape	readings	 	of	the	tested	structure	can	be	extracted	from	vibration	measurements.	The
measured	mode	shapes,	with	dimension	of	Ns,	where	Ns	is	the	total	number	of	effective
sensors	installed,	are	usually	incomplete	with	reference	to	the	FE	model	typically	having	a
large	number	of	DOFs.	The	measured	modes	should	be	paired	to	the	calculated	eigenvectors	of

dimension	Ns	(restricted	to	the	same	dimensions	as	 ),	 .	The	modal	assurance	criterion

(MAC)	between	the	measured	mode	shape	 	and	the	associated	calculated	mode	shape	 	is
defined	as

The	value	of	the	MAC	ranges	from	0	to	1.	Large	MAC	factors	indicate	a	high	degree	of
similarity	between	two	mode	shapes,	and	small	MAC	factors	represent	little	or	even	no
correlation	between	two	vectors.	If	all	measured	and	calculated	modes	are	paired	to	each
other,	then	the	MAC	matrix	is	obtained.	This	matrix	should	have	values	close	to	unity	at	the
diagonal,	and	values	close	to	zero	elsewhere.

The	MAC	may	be	modified	by	using	a	weighting	matrix,	such	as	a	mass	matrix,	rewritten	as

From	the	orthogonality	of	eigenvectors	with	respect	to	the	mass	matrix,	the	modified	MAC
matrix	should	have	values	of	zero	for	the	offdiagonal	entries,	when	the	measured	and
calculated	modes	are	identical.	The	modified	MAC	may	not	give	much	improved	results	in	the
cases	when	the	measured	modes	are	not	close	to	the	calculated	ones.

5.5.2	Orthogonality	Checks
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The	calculated	eigenvectors	from	the	FE	model	are	often	normalised	with	respect	to	the	mass
matrix,	thus	the	orthogonality	of	the	eigenvectors	with	respect	to	stiffness	matrix	is	expressed
as

where	Φ	is	the	matrix	of	eigenvectors,	I	is	the	identity	matrix	and	Λ	is	the	diagonal	matrix	of
eigenvalues.

The	orthogonality	performance	criteria	are	introduced	to	measure	the	cross	orthogonality	of	the
measured	mode	shapes	with	respect	to	the	mass	and	stiffness	(Chen	and	Maung	2014).	The
average	mass	and	stiffness	orthogonality	errors	for	a	total	number	of	Nm	measured	modes	are
defined,	respectively,	as

where	coefficients	 	and	 	are	defined	as

Two	problems	arise	in	the	use	of	orthogonality	checks:	measurements	of	complex	modes	and
incompleteness	of	the	measured	modes.	The	incompleteness	is	due	to	the	limited	sensors
installed	in	collecting	measurements.	Therefore,	the	mass	and	stiffness	matrices	need	to	be
reduced	by	model	reduction	techniques,	or	the	measured	modes	need	to	be	expanded	by	mode
shape	expansion	techniques.

5.5.3	Modal	Scale	Factor
The	measured	mode	shapes	are	often	mass	normalised,	as	given	in	Equation	(5.22).	However,
the	mass	normalised	mode	shape	is	not	unique	since	it	may	have	a	different	sign	(phase	shift
180°).	Thus	to	compare	the	measured	and	calculated	mode	shapes	a	consistent	scalar	is
required.	Assume	that	the	ith	measured	mode	shape	 	is	scaled	by	a	modal	scale	factor	(MSF)

with	respect	to	the	ith	calculated	eigenvector	 	restricted	to	the	same	dimensions	as	 .	The
ith	scaled	measured	mode	shape	 	with	the	MSF	is	expressed	as

The	MSF	for	the	ith	measured	mode	shape	is	defined	as
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Similarly,	a	weighted	MSF	for	the	ith	measured	mode	shape	using	mass	matrix	M	is	defined	as

The	modal	scale	factor	can	be	used	to	ensure	that	the	measured	incomplete	mode	shapes	of	the
actual	tested	structure	are	close	to	the	corresponding	part	of	the	FE	numerical	eigenvectors.

5.5.4	Coordinate	Modal	Assurance	Criterion
When	using	the	modal	assurance	criterion,	it	may	be	difficult	to	compare	modes,	when	the
modes	have	close	frequencies	and	are	measured	at	limited	sensor	places.	An	extension	of	the
MAC	is	the	coordinate	modal	assurance	criterion	(COMAC).	The	COMAC	attempts	to	identify
which	measured	DOFs	contribute	negatively	to	a	low	value	of	MAC.	The	COMAC	is
calculated	over	a	set	of	mode	pairs	ϕm	and	ψm.	For	each	DOF,	for	example	the	kth	DOF,	the
COMAC	is	calculated	by	summing	over	total	Nm	paired	modal	vectors,	defined	as

A	COMAC	value	of	unity	indicates	good	correlation.	Note	that	the	above	equation	assumes	that
there	is	a	match	for	every	mode	shape	in	the	two	sets.	Only	those	modes	that	match	between	the
two	sets	are	included	in	the	calculation.

5.6	Mode	Shape	Expansion	and	Model	Reduction
One	major	problem	arises	in	the	correlation	study	between	the	tested	results	and	the	analytical
model	or	finite	element	(FE)	numerical	model.	In	general,	the	calculated	mode	shapes	obtained
from	the	finite	element	numerical	model	contain	a	full	set	of	degrees	of	freedom	(DOFs)	of	the
numerical	model.	The	measured	data	set	of	a	dynamic	test,	however,	is	usually	incomplete	and
only	exists	at	the	DOFs	associated	with	the	test	points,	because	the	measurements	are	often
taken	at	a	limited	set	of	locations	in	selected	coordinate	directions.	In	many	structural
dynamics	applications	such	as	vibrationbased	model	updating	and	damage	identification,	it
is	desirable	to	expand	the	reduced	experimental	data	set	onto	the	associated	full	finite	element
coordinate	set.	The	alternative	would	be	a	model	reduction	process	that	destroys	the	original
sparse	pattern	in	mass	and	stiffness	matrices	and	propagates	modelling	errors	or	structural
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damage	all	over	the	reduced	mass	and/or	stiffness	matrices.

5.6.1	General	Expansion	and	Reduction	Methods
For	a	dynamic	structural	system,	the	full	set	of	analytical	DOFs	can	be	divided	into	two
complementary	sets:	the	measured	DOFs	at	the	test	points	and	the	remaining	unmeasured	DOFs
(Chen	2010).	The	characteristic	equation	for	an	N	DOFs	dynamic	system	with	global	stiffness
matrix	K	and	mass	matrix	M,	expressed	in	Equation	(5.9),	can	be	rewritten	in	a	partitioned
form	as

where	subscripts	a	and	u	denote	the	measured	and	unmeasured	DOFs,	respectively.	From	the
second	equation	of	the	partitioned	set,	the	unmeasured	part	of	the	mode	shape	can	be	obtained
from

Consequently,	the	ith	expanded	mode	shape	with	full	set	of	DOFs,	comprising	the	measured
part	ϕia	and	unmeasured	part	ϕiu,	is	expressed	as

where	T	is	the	transformation	matrix	between	the	reduced	set	of	measured	DOFs	and	the	full
set	of	DOFs,	depending	on	the	expansion	methods	adopted.

The	static	expansion	method	(Guyan	1965)	is	based	on	the	static	stiffness	by	neglecting	the
inertial	forces	at	the	unmeasured	DOFs.	The	static	transformation	matrix	Ts	is	given	by

The	Guyan	static	method	may	give	accurate	mode	shape	expansion	estimates	only	when	there
are	sufficient	DOFs	to	represent	the	mass	inertia	of	the	actual	tested	dynamic	system.

The	dynamic	expansion	method	(Kidder	1973)	is	the	same	as	the	static	expansion	method,
except	that	the	inertial	forces	at	the	unmeasured	DOFs	are	included	in	the	expansion	process	at
a	particular	frequency.	The	dynamic	transformation	matrix	Td	is	given	by
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The	system	equivalent	reduction	expansion	process	(SEREP)	is	not	directly	related	to	the
stiffness	and	mass	of	the	analytical	model,	and	depends	on	analytical	mode	shapes	to	develop
the	mapping	between	the	full	set	of	analytical	DOFs	and	the	reduced	set	of	measured	DOFs
(O’Callahan	et	al.	1989).	In	the	cases	where	the	number	of	measured	DOFs	is	greater	than	the
number	of	modes	of	the	tested	structure,	the	SEREP	transformation	matrix	Tu	is	expressed	as

In	the	SEREP	expansion	process,	the	initial	displacements	at	the	measured	DOFs	may	be
modified.	The	SEREP	method	could	produce	poor	expansion	estimates	if	the	experimental
mode	shapes	are	not	correlated	well	with	the	corresponding	analytical	mode	shapes,	which
often	happens	in	the	cases	with	large	modelling	errors	in	the	analytical	model.

For	model	reduction,	the	expansion	processes	can	be	inverted	to	reduce	the	analytical	model	to
the	measured	DOFs.	By	eliminating	the	displacements	at	unknown	DOFs,	the	reduced
structural	parameter	matrices	–	e.g.	stiffness	matrix	Kred,	mass	matrix	Mred	and	damping	matrix
Cred	–	can	be	written,	respectively,	as

The	transformation	matrix	T	depends	on	the	model	reduction	methods	adopted.	The
transformation	matrix	Ts,	Td	or	Tu	is	used	for	the	static,	the	dynamic	or	the	SEREP	model
reduction,	respectively.

The	general	expansion	and	reduction	methods	discussed	above	are	often	used	to	expand	the
measured	incomplete	mode	shapes	in	structural	dynamic	applications.	However,	these	methods
do	not	consider	the	discrepancy	between	the	analytical	model	and	the	actual	tested	structure,
since	only	the	structural	or	modal	parameters	associated	with	the	analytical	model	are	utilised
in	the	expansion	and	reduction	processes.	In	addition,	the	modal	data	at	the	measured	DOFs
are	directly	adopted	for	mode	shape	expansion,	and	the	influence	of	measurement	uncertainty
cannot	be	reduced.

5.6.2	Perturbed	Force	Approach
In	structural	dynamic	applications,	the	analytical	model	(or	FE	numerical	model)	usually	has
uncertainties	in	modelling	the	associated	actual	tested	structural	dynamic	system.	The
analytical	model	uncertainties	are	mainly	related	to	the	unknown	perturbations	of	stiffness	and
mass	between	the	analytical	model	and	the	tested	system.	In	order	to	include	the	modelling
errors	in	the	analytical	model	and	reduce	the	influence	of	noise	in	measured	modal	data,	a
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perturbed	force	approach	for	expanding	mode	shapes	is	proposed	in	the	study	by	Chen	(2010).
The	perturbed	force	approach	is	based	on	the	dynamic	perturbation	method	(Chen	2005),	as
discussed	in	detail	in	Section	6.5.	The	approach	has	been	successfully	applied	to	the	mode
shape	expansion	of	the	Canton	Tower	(Chen	et	al.	2012).	The	perturbed	force	approach	takes
the	perturbed	force	vector	containing	modelling	errors	as	basic	parameters,	which	can	be
obtained	from	modal	data	measurements,	and	then	applies	it	to	predicting	the	unmeasured	part
of	the	expanded	mode	shapes.

Define	a	perturbed	force	vector	for	the	ith	mode	of	the	tested	dynamic	system,	associated	with
the	unknown	perturbations	of	stiffness	(ΔK)	and	mass	(ΔM),	as

where	 	and	 	are	the	ith	natural	frequency	and	the	corresponding	mode	shape	for	the	tested
system,	respectively.	The	perturbed	force	vector	ri	becomes	zero	if	both	ΔK	and	ΔM	are	equal
to	zero,	that	is,	no	structural	modelling	errors	exist	in	the	analytical	model.	The	relation

between	the	perturbed	force	vector	ri	and	the	mode	shape	of	the	tested	dynamic	system	 	is
expressed	as

In	modal	testing,	modal	information	about	the	natural	frequency	 	and	limited	number	of
measured	DOF’s	readings	 	of	dimension	Ns	can	be	extracted.	In	order	to	make	the	measured
mode	shapes	close	to	the	corresponding	part	of	the	analytical	mode	shapes	ϕia,	the	incomplete
measured	mode	shapes	 	need	to	be	scaled	with	the	modal	scale	factor	(MSF)	defined	in

Equation	(5.25),	giving	the	scaled	known	mode	shape	 .

From	Equation	(5.37),	the	perturbed	force	vector	for	the	ith	experimental	mode	can	be	directly
calculated	from

where	 	is	the	Moore–Penrose	pseudoinverse	of	matrix	 Si,	and	Si	is	the	sensitivity
coefficient	matrix	of	dimension	Ns × N	for	the	ith	experimental	mode,	defined	as

Due	to	the	inevitable	noise	in	modal	data	measurements,	the	solution	of	the	perturbed	force
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vector	obtained	from	the	Moore–Penrose	pseudoinverse	in	 Equation	(5.38)	may	not	be
stable.	In	order	to	reduce	the	influence	of	noise	in	modal	data	measurements	on	the
performance	of	mode	shape	expansion,	a	regularisation	method	is	now	employed	to	obtain
reasonable	solutions	for	the	perturbed	force	vector.	The	Tikhonov	regularised	solution	for	a
continuous	regularisation	parameter	α	(Tikhonov	and	Arsenin	1977),	replacing	the	Moore–
Penrose	pseudoinverse,	is	given	in	terms	of	the	regularisation	parameter	 α	as

where	I	is	the	identity	matrix	and	Si#(α)	is	the	influence	matrix	associated	with	the	Tikhonov
regularisation	parameter	α.	This	regularisation	parameter	can	be	determined	using	Lcurve
criterion	(Hansen	and	O’Leary	1993).	Details	about	the	Tikhonov	regularisation	method	are
discussed	in	Section	6.5.2,	and	its	applications	to	the	mode	shape	expansion	are	provided	in
the	study	by	Chen	(2010).

Consequently,	the	ith	full	experimental	mode	shape,	comprising	the	measured	part	 	and	the

unmeasured	part	 ,	can	be	obtained	from

where	the	regularised	transformation	matrix	 	of	the	perturbed	force	approach	for	the	ith
mode	shape	expansion	is	defined	as

The	transformation	matrix	depends	on	the	individual	experimental	mode	to	be	expanded,	since
it	includes	the	associated	experimental	natural	frequency	 .

5.6.3	Comparison	of	Methods
A	plane	frame	structure	shown	in	Figure	5.11	is	used	for	comparing	the	general	mode
expansion	methods	with	the	perturbed	force	approach	(Chen	2010).	The	frame	structure	has	a
total	number	of	28	conventional	beam	elements	with	axial	deformations	and	a	total	number	of
81	DOFs.	The	structure	has	section	properties	of	area	A = 9.20 × 10−3 m2and	moment	of	inertia
I = 4.52 × 10−6 m4	as	well	as	material	properties	of	Young’s	modulus	E = 7.20 × 010 N/m2	and
density	ρ = 2700 kg/m3.	It	is	assumed	that	the	actual	tested	frame	structure	has	perturbations	of
stiffness	of 	+15%	and	mass	of	−10%	at	elements	1–16	for	the	columns,	and	additional



perturbations	of	stiffness	of	−10%	and	mass	of 	+10%	at	elements	17–28	for	the	beams.	The
incomplete	mode	shapes	of	the	tested	structure	are	assumed	to	be	obtained	from	the	possible
sensor	locations	measuring	only	translational	DOFs,	as	indicated	in	Figure	5.11.	The	noise	in
modal	data	measurements	is	simulated	by	corrupting	the	ideal	modal	data	with	additive
standard	normally	distributed	errors	at	different	levels.

Figure	5.11	Plane	frame	structure	with	possible	sensor	locations	marked	with	a	circle.

The	results	from	the	general	mode	expansion	methods	and	the	perturbed	force	approach	are



summarised	in	Figures	5.12	and	5.13.	The	mean	cumulative	errors	and	the	overall
orthogonality	errors,	defined	in	Chen	(2010),	for	the	first	10	expanded	modes	are	plotted	as	a
function	of	simulated	noise	level.	The	static	method	has	the	overall	worst	performance,	and
fails	to	produce	acceptable	mode	shape	expansion	estimates.	The	SEREP	method	is	the	most
sensitive	approach	to	the	noise	level	in	measured	DOF	readings,	generating	significant	mean
cumulative	errors	and	overall	orthogonality	errors	as	noise	level	increases.	The	dynamic
method	yields	substantial	mean	cumulative	errors	and	overall	orthogonality	errors	even	in	the
cases	with	low	noise	levels.	The	perturbed	force	approach	is	capable	of	expanding	mode
shapes	to	a	greater	level	of	accuracy	than	the	general	mode	expansion	methods,	giving	mean
cumulative	error	of	12.8%	and	overall	orthogonality	error	of	4.2%,	even	in	the	case	when	the
noise	level	reaches	10%.

Figure	5.12	Mean	cumulative	errors	in	mode	shape	expansion	as	a	function	of	noise	level	in
DOF’s	readings	for	the	frame	structure.



Figure	5.13	Overall	orthogonality	errors	in	mode	shape	expansion	as	a	function	of	noise	level
in	DOF	readings	for	the	frame	structure.

5.7	Case	Study
The	constructed	supertall	structure	Canton	Tower,	as	discussed	in	the	case	studies	in
Sections	2.7	and	3.6,	is	employed	here	for	the	case	study	on	the	outputonly	modal
identification	and	mode	shape	expansion,	as	shown	in	Figure	5.14.	In	order	to	obtain	the
operational	modal	properties	of	the	tower,	20	uniaxial	accelerometers	were	installed	at	eight
different	levels,	as	shown	in	Figure	5.14(b).	Four	uniaxial	accelerometers	were	placed	in	the
4th	and	8th	floors,	and	two	uniaxial	accelerometers	were	equipped	in	each	of	the	remaining
six	floors.	The	field	ambient	vibration	measurement	data	can	then	be	collected	through	the
installed	SHM	system.	In	order	to	undertake	structural	health	monitoring	and	associated
studies,	a	reduced	threedimensional	(3D)	beam	model	shown	in	 Figure	5.14(c)	was
established	on	the	basis	of	the	complex	3D	full	finite	element	model	shown	in	Figure	5.14(a)
(Ni	et	al.	2012).	For	this	case	study,	the	monitoring	data	recorded	from	18:00	on	19	January	to
18:00	on	20	January	2010	with	a	sampling	frequency	of	50 Hz	by	the	SHM	system	are	used.





Figure	5.14	Canton	Tower:	(a)	full	finite	element	model,	(b)	positions	of	installed
accelerometers,	(c)	reducedorder	finite	element	(FE)	model.

5.7.1	Operational	Modal	Analysis
First,	the	simple	outputonly	modal	identification	technique,	the	peakpicking	(PP)	method,
is	used	to	extract	modal	properties	such	as	natural	frequencies	from	the	recorded	ambient
vibration	measurements.	The	peakpicking	method	is	a	frequency	domain	based	technique.
This	method	is	often	used	for	operational	modal	identification	in	civil	engineering	practice
from	ambient	vibration	measurements	due	to	its	simple	implementation	and	fast	processing
speed.	A	practical	implementation	of	the	PP	method	can	be	realised	by	the	averaged
normalised	power	spectral	densities	(ANPSDs)	in	order	to	obtain	a	global	picture	of
frequencies.	The	ANPSDs	are	calculated	by	converting	the	acceleration	measurements	to	the
frequency	domain	by	a	discrete	Fourier	transform	and	then	by	averaging	the	individual	power
spectral	densities.	As	a	result,	the	natural	frequencies	could	be	simply	determined	from	the
observation	of	the	peaks	on	the	graphs	of	the	ANPSDs,	as	shown	in	Figure	5.15.	The	PP
method,	however,	can	only	provide	the	operational	deflection	shapes	and	is	unable	to	produce
mode	shapes.

Figure	5.15	Averaged	normalised	power	spectral	densities	(ANPADs)	of	the	measured
acceleration	data	used	for	the	peak	picking	(PP)	method.

The	sophisticated	stochastic	subspace	identification	(SSI)	method	is	now	used	to	extract	modal



properties	such	as	frequencies,	damping	ratios	and	mode	shapes	from	the	recorded	ambient
vibration	measurements.	This	method	is	a	timedomain	method	and	directly	works	with	time
dependent	data,	without	requiring	the	conversions	of	the	measured	data	into	correlations	or
spectra.	The	SSI	method	identifies	the	statespace	matrices	on	the	basis	of	the	measurements
by	using	robust	numerical	techniques,	such	as	singular	value	decomposition.	Once	the
mathematical	description	of	the	structure	(the	statespace	model)	is	determined,	it	is
straightforward	to	extract	natural	frequencies	from	the	stabilisation	diagram,	as	shown	in
Figure	5.16,	and	also	to	produce	the	associated	damping	ratios	and	mode	shapes.

Figure	5.16	Stabilisation	diagram	of	measured	acceleration	data	used	for	the	stochastic
subspace	identification	(SSI)	method.

The	modal	properties	identified	by	the	PP	method	and	the	SSI	method	are	summarised	in	Table
5.3.	The	frequencies	identified	by	the	SSI	method	are	very	close	to	those	from	the	PP	method.
The	MAC	diagonal	values,	computed	from	the	incomplete	mode	shapes	identified	by	the	SSI
method	and	the	calculated	eigenvectors	restricting	to	the	same	DOFs,	indicate	good	correlation
between	the	identified	and	calculated	modes,	except	for	two	torsion	modes:	6th	and	12th.	The
difference	between	the	frequencies	identified	from	the	ambient	vibration	measurements	and
those	predicted	by	finite	element	model	is	relatively	large,	with	the	largest	relative	error	in	the
fundamental	frequency.	The	significant	difference	between	the	measured	and	calculated
frequencies	requires	an	updating	of	the	finite	element	model	of	the	supertall	structure.



Table	5.3	Modal	data	identified	by	outputonly	identification	methods	from	ambient	vibration
data.

Mode PP
method
(Hz)

SSI
method
(Hz)

FE
model
(Hz)

Damping
(%)

MAC
value

Mode	description

1 0.094 0.090 0.111 2.97 0.904 Shortaxis	bending
2 0.138 0.131 0.159 6.18 0.938 Longaxis	bending
3 0.366 0.366 0.347 0.24 0.888 Shortaxis	bending
4 0.421 0.422 0.369 — 0.888 Longaxis	bending
5 0.476 0.474 0.400 0.07 0.869 Shortaxis	bending
6 0.505 0.504 0.462 0.38 0.104 Torsion
7 0.525 0.520 0.487 0.07 0.783 Long	and	shortaxis

bending
8 0.797 0.796 0.738 0.20 0.797 Shortaxis	bending
9 0.964 0.966 0.904 0.33 0.771 Longaxis	bending
10 1.151 1.151 0.997 0.10 0.701 Shortaxis	bending
11 1.190 1.191 1.037 0.03 0.753 Longaxis	bending
12 1.251 1.251 1.121 0.16 0.161 Torsion
13 1.392 1.390 1.245 0.35 0.793 Coupled	bending	and

torsion
14 1.642 1.643 1.504 0.25 0.623 Coupled	bending	and

torsion
15 1.947 1.946 1.726 0.59 0.609 Coupled	bending	and

torsion

5.7.2	Mode	Shape	Expansion
The	operational	modal	data	of	the	Canton	Tower	–	e.g.	natural	frequencies	and	incomplete
mode	shapes	identified	by	the	SSI	method	–	are	now	adopted	for	the	mode	shape	expansion.
The	reduced	3D	beam	model	shown	in	Figure	5.14(c)	is	used	for	the	analytical	model	in	the
mode	expansion	process.	The	perturbed	force	approach	with	Tikhonov	regularisation
incorporating	the	Lcurve	criterion	is	adopted	to	reduce	the	noise	effects.	The	first	and	fourth
bending	modes	are	considered	for	the	regularised	model	shape	expansion,	as	shown	in	Figure
5.17.





Figure	5.17	Expanded	first	and	fourth	bending	modes,	compared	with	the	modal	readings
identified	from	ambient	vibration	data	and	the	eigenvectors	of	the	reduced	finite	element
model.

The	perturbed	force	approach	provides	optimised	and	smooth	estimates	of	mode	shape
expansion,	without	simply	reproducing	the	measured	DOF	readings	for	the	known	part	of	the
complete	mode	shape	concerned.	The	results	of	expanded	mode	shapes	obtained	by	the
perturbed	force	approach	are	then	compared	with	the	results	calculated	from	the	reduced
order	finite	element	model	and	the	modal	data	identified	from	the	ambient	vibration
measurements.	The	expanded	mode	shapes	correlate	very	well	with	the	corresponding	original
analytical	eigenvectors.	They	also	have	better	correlation	with	the	measured	incomplete	mode
shapes	after	the	expansion.

5.8	Concluding	Remarks
Modal	data	of	civil	engineering	structures	can	be	identified	from	the	vibration	measurements
generated	by	controlled	forces	or	ambient	sources	through	the	installed	SHM	system.	Civil
engineering	structures	are	typically	large	in	size	and	generally	have	low	natural	frequencies.	If
a	structure	has	low	frequency	modes	(e.g.	below	1 Hz),	it	may	be	difficult	to	excite	the
structure	by	an	external	force,	such	as	a	shaker.	The	use	of	controlled	excitation	is	only
applicable	when	the	generated	response	surpasses	the	inevitably	exciting	ambient	responses.
For	very	large	civil	structures,	such	as	longspan	bridges	and	highrise	buildings,	the	use	of
controlled	excitation	becomes	almost	impossible.	These	large	structures	could	be	excited	by
other	excitation	types,	such	as	a	drop	weight	or	ambient	sources.	Ambient	sources,	however,
may	not	excite	well	the	high	frequency	modes	of	the	structures.

The	accelerations	of	a	civil	structure	associated	with	ambient	excitations	are	typically	very
small,	and	they	can	vary	considerably	due	to	the	operational	and	environmental	conditions.	The
accurate	identification	of	operational	modal	data	then	becomes	a	challenge	to	the	sensing
networks	and	identification	algorithms.	The	outputonly	modal	identification	methods	are	a
powerful	tool	for	accurate	identification	of	modal	data	under	normal	operational	conditions.
The	stochastic	subspace	identification	methods	are	reliable	with	noise	effects	and	generally
give	good	estimates	of	operational	modal	data	from	ambient	vibration	measurements.	If	only
ambient	vibration	measurements	are	available,	the	stabilisation	diagram	is	very	useful	and
provides	objective	selections	of	natural	frequencies,	since	it	does	not	need	to	find	often
unclear	peaks	in	the	spectrum	or	frequencydomain	singular	value	plots.	The	outputonly
methods	are	unable	to	provide	the	massnormalised	mode	shapes	from	ambient	excitations.
To	obtain	the	correct	scale	of	the	measured	mode	shapes,	the	controlled	force	has	to	be	known.

The	identified	modal	data	of	the	tested	structures	must	be	checked	against	the	analytical	model
(or	finite	element	numerical	model)	by	correlation	studies.	In	finite	element	model	updating	or
structural	damage	identification	procedures,	the	expansions	of	measured	mode	shapes	are	often
required	to	match	the	full	DOFs	of	the	analytical	model.	The	general	mode	shape	expansion
methods	may	not	perform	well	when	discrepancies	between	the	analytical	model	and	tested



results	are	large.	The	perturbed	force	approach	is	capable	of	successfully	expanding	mode
shapes	for	the	actual	complex	structure	and	produces	reliable	expansion	estimates,	where	large
modelling	errors	in	the	analytical	model	may	exist	and	only	limited	DOF	measurements	are
available.	The	perturbed	force	approach	gives	optimised	and	smooth	expansion	estimates	in
the	least	squares	sense,	and	reduces	the	influence	of	measurement	uncertainties	in	the
expansion	processes.	Each	mode	shape	can	be	expanded	independently,	and	the	expanded
results	only	depend	on	the	corresponding	measured	frequency	and	DOF	readings	of	the	tested
structure.	The	results	from	the	case	study	on	the	Canton	Tower	demonstrate	that	the	perturbed
force	approach	gives	accurate	estimates	of	mode	shape	expansion	for	the	measured	incomplete
modal	data.
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6
Finite	Element	Model	Updating

6.1	Introduction
The	finite	element	(FE)	method	is	a	powerful	tool	for	structural	design	and	analysis	in	civil
engineering	practices.	The	FE	method	can	also	be	used	for	many	other	applications,	including
predicting	static	and	dynamic	structural	behaviour	in	service.	Furthermore,	after	appropriate
experimental	validation,	FE	models	can	provide	essential	baseline	information	that	can
subsequently	be	compared	with	information	obtained	from	longterm	monitoring	systems	to
detect	structural	damage	and	forecast	future	performance	(Doebling	et	al.	1996).	In	general,	the
FE	model	of	an	actual	structure	is	constructed	on	the	basis	of	highly	idealised	engineering
design	and	construction,	which	may	not	fully	represent	all	physical	aspects	of	the	actual
structure.	As	a	result,	a	significant	discrepancy	may	exist	between	the	predictions	by	the	FE
model	and	the	measurements	on	the	actual	tested	structure.	This	problem	arises	not	only	from
the	modelling	errors	caused	by	simplified	assumptions	for	complex	structures,	but	also	from
the	parameter	estimation	errors	due	to	the	uncertainties	in	material	and	geometric	properties.	In
order	to	minimise	the	discrepancy	and	to	maximise	the	correlation	between	the	FE	model	and
the	actual	tested	structure,	structural	model	updating	methods	are	often	utilised	to	adjust	the	FE
model	by	using	the	measured	modal	data	of	the	actual	structure.

Many	investigations	have	been	undertaken	on	FE	model	updating	using	vibration	measurements
over	the	past	decades	(Mottershead	and	Friswell	1993,	Friswell	and	Mottershead	1995).
Existing	model	updating	methods	can	be	broadly	classified	into	two	major	groups:	direct
methods	and	iterative	methods.	The	direct	methods	directly	update	the	elements	of	stiffness	and
mass	matrices	and	are	a	onestep	procedure	(Friswell	et	al.	1998,	Kabe	1985).	These
methods	allow	the	updated	analytical	model	to	reproduce	measured	vibration	modal	data,	but
there	is	no	guarantee	that	the	updated	model	truly	represents	the	physical	properties	of	the
actual	structure	concerned.	On	the	other	hand,	the	iterative	parameter	updating	methods	adopt
the	sensitivity	of	the	parameters	to	update	the	analytical	model	(Link	1999,	Modak	et	al.	2002,
Mottershead	et	al.	2011).	Such	methods	set	the	errors	between	the	analytical	and	measured
data	as	an	objective	function,	and	attempt	to	minimise	the	chosen	objective	function	by
adjusting	the	preselected	set	of	physical	parameters	of	the	analytical	model	in	question.
Compared	with	the	direct	methods,	the	iterative	methods,	such	as	sensitivity	based	methods
and	dynamic	perturbation	method,	are	more	popular	since	they	can	be	implemented
conveniently	in	existing	FE	codes	(Chen	and	Maung	2014,	Farhat	and	Hemez	1993).
Furthermore,	there	is	a	readily	available	physical	explanation	for	each	structural	updating
parameter,	which	is	typically	associated	with	the	element	stiffness	and	mass	of	the	analytical
model.

The	sensitivity	based	methods	are	probably	the	most	successful	approach	with	many



applications	to	the	model	updating	problems.	For	a	sensitivity	based	updating	approach,	its
performance	largely	depends	on	the	selections	of	an	objective	function	and	constraints,
structural	updating	parameters	and	optimization	techniques	(Brownjohn	and	Xia	2000).	The
objective	function	can	be	taken	as	the	residuals	between	the	measured	modal	data	and	the
associated	predictions	from	the	initial	FE	model,	for	example	the	difference	in	frequencies	and
mode	shape	measurements.	The	selection	of	structural	parameters	to	be	updated	requires
considerable	physical	insight	into	the	tested	structure	so	as	to	correctly	characterise	the
physical	properties	at	local	level,	for	example	at	connections	of	structural	elements
(Palmonella	et	al.	2005).	Bayesian	updating	procedures	can	be	adopted	for	reducing	the
influence	of	uncertainties	in	structural	parameters	and	vibration	measurements,	and	for
improving	the	correlation	between	the	tested	structure	and	its	associated	FE	model	(Simoen	et
al.	2013).	Advanced	global	optimisation	techniques	such	as	simulated	annealing	method	and
genetic	algorithm,	combined	with	sensitivity	analyses,	are	powerful	tools.	These	techniques
are	often	employed	to	obtain	globally	optimised	structural	updating	parameters	for	complex
structural	systems	in	order	to	avoid	local	optimal	solutions.	However,	the	sensitivity	analysis
and	optimisation	techniques	used	in	the	sensitivity	based	model	updating	procedures	might	not
perform	well	since	they	require	significant	computational	efforts	in	the	model	updating
process.	These	problems	arise	particularly	in	the	cases	when	the	number	of	the	chosen
structural	parameters	to	be	updated	is	large	and	the	discrepancy	between	the	initial	FE	model
and	the	actual	tested	structure	is	significant.

The	dynamic	perturbation	method	can	directly	adopt	measured	incomplete	modal	data	for
evaluating	the	chosen	structural	updating	parameters	(Chen	1998,	Chen	and	Maung	2014).	This
method	is	based	on	the	exact	relationship	between	the	perturbation	in	structural	parameters	and
the	measured	modal	data	of	the	tested	structure.	This	method	therefore	does	not	require	the
sensitivity	analysis	and	the	construction	of	an	objective	function.	An	iterative	solution
procedure	is	then	used	to	estimate	the	chosen	structural	updating	parameters	in	the	least
squares	sense,	without	requiring	an	optimisation	technique.	This	method	has	been	successfully
applied	for	updating	FE	models	of	the	constructed	complex	structures,	such	as	the	supertall
structure	Canton	Tower	(Chen	and	Huang	2012,	Chen	and	Tee	2014).

This	chapter	presents	various	methods	for	finite	element	model	updating	to	improve	the
correlation	between	the	measurements	of	the	tested	structure	and	the	predictions	of	the	finite
element	model.	Problems	in	finite	element	modelling,	such	as	construction	of	finite	element
models	and	errors	in	modelling,	are	discussed.	Parameters	to	be	updated	are	studied	so	as	to
be	chosen	at	the	appropriate	level	to	reflect	the	physical	behaviour	of	the	structure.	The
popular	sensitivity	based	methods	are	introduced	for	model	updating,	by	minimising	the
difference	between	the	output	measurements	and	the	finite	element	predictions.	The	effective
dynamic	perturbation	method	avoids	limitations	in	sensitivity	based	methods,	requiring	only
limited	information	on	incomplete	modal	data	for	reliable	model	updating.	Finally,	case	study
on	model	updating	of	an	actual	supertall	structure	is	presented.

6.2	Finite	Element	Modelling
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The	finite	element	method	is	useful	for	many	applications	in	engineering	practice,	such	as
structural	analysis	and	structural	behaviour	predictions.	The	FE	model	is	generally	established
on	the	basis	of	the	details	of	the	design	and	construction	of	the	associated	actual	engineering
structure.	In	FE	modelling	processes,	a	structure	is	modelled	by	the	assemblage	of	small
pieces,	called	finite	elements.	The	FE	model,	however,	may	not	fully	represent	all	the	physical
and	geometrical	aspects	of	the	actually	built	structure.

6.2.1	Stiffness	and	Mass	Matrices
In	the	finite	element	method,	a	mathematical	model	is	discretised	by	dividing	it	into	a	mesh	of
finite	elements.	Thus	a	fully	continuous	field	over	a	structure	is	represented	by	a	piecewise
continuous	field.	A	continuum	problem	usually	has	an	infinite	number	of	unknowns.	FE
discretisation	procedures	reduce	the	problem	to	a	finite	number	of	unknowns.	Thus,	the	global
stiffness	matrix	K	and	mass	matrix	M	of	the	FE	model	can	be	obtained	by	assembling	the
element	stiffness	matrix	of	a	total	number	of	NE	elements	within	the	structure:

where	Ke	and	Me	are	the	eth	element	stiffness	and	mass	matrices,	respectively,	associated	with
element	type	and	size	and	material	properties.	The	element	stiffness	and	mass	matrices	of	the
eth	element	with	a	volume	of	Ve	can	be	calculated	by	a	general	form:

where	ρ	indicates	mass	density,	B	is	strain	matrix	representing	the	relationship	between	the
strains	and	the	displacements,	consisting	of	the	first	derivatives	of	the	shape	function	matrix	N,
and	D	is	the	material	matrix	representing	the	relationship	between	the	stresses	and	strains.

For	a	conventional	beam,	the	element	stiffness	and	mass	matrices	of	the	beam	with	cross
sectional	area	A,	bending	stiffness	EI	and	element	length	l	can	be	expressed	as

where	B(x)	now	contains	terms	consisting	of	the	second	derivatives	of	the	shape	function	N(x)
with	respect	to	x.

The	basic	equations	for	structural	dynamic	analyses	using	FE	methods	were	described	in
Section	5.2.	The	details	of	the	FE	methods	can	be	found	in	the	book	by	Zienkiewicz	and	Taylor
(1977).

6.2.2	Finite	Element	Modelling	Error
Finite	element	procedures	are	useful	for	the	analysis	and	design	of	complex	civil	engineering



structures.	Their	practical	applications,	however,	often	suggest	considerable	discrepancy
between	FE	predictions	and	test	results	(Chen	and	Huang	2012).	Relative	to	reality,	two
sources	of	error	are	introduced	in	finite	element	modelling:	discretisation	errors	and	modelling
errors.	Discretisation	errors	can	be	reduced	by	using	more	elements.	Modelling	errors	can	be
reduced	by	improving	the	FE	model,	using	a	model	updating	procedure.	It	should	be	noted	that
only	some	types	of	modelling	errors	can	be	adjusted	correctly	by	changing	the	values	of	the
chosen	updating	parameters,	as	discussed	in	Mottershead	et	al.	(2011).	The	model	updating
process	can	correct	certain	errors	in	FE	models,	including

material	parameters	such	as	Young’s	modulus	or	mass	density

crosssectional	properties	of	beams	such	as	area	and	second	moments	of	inertia

shell	or	plate	thicknesses

spring	stiffness	or	nonstructural	mass,	etc.

Other	errors	related	to	the	mathematical	representations	of	the	FE	models	may	not	be	corrected
by	typical	model	updating	processes,	including

idealisation	errors	resulting	from	the	assumptions	made	to	characterise	the	mechanical
behaviour	of	the	physical	structure,	e.g.	erroneous	modelling	of	boundary	conditions,
erroneous	modelling	of	joints,	simplifications	of	the	structure	or	a	nonlinear	structure
assumed	to	behave	linearly

discretisation	errors	introduced	by	FE	methods,	e.g.	discretisation	errors	caused	by	too
coarse	finite	element	meshes,	truncation	errors	in	order	reduction	methods	or	poor
convergence.

In	order	to	predict	the	structural	response	correctly,	all	types	of	modelling	errors	should	be
minimised	to	give	a	reliable	structural	analysis.	If	the	finite	element	model	is	not	properly
adjusted,	the	updated	model	may	not	be	useful	for	predicting	the	system	behaviour	beyond	the
frequency	range	used	in	the	updating,	although	it	may	be	able	to	reproduce	the	used	test	data
(Mottershead	et	al.	2011).	The	quality	of	the	updated	finite	element	model	can	be	evaluated	in
the	following	steps:

accessing	idealisation	and	numerical	method	errors	before	parameter	updating

selecting	appropriate	parameters	for	model	updating

correlating	analytical	model	predictions	and	test	results

reassessing	model	quality	after	parameter	updating,	such	as	assessment	of	structural
behaviour	under	various	load	conditions,	system	behaviour	beyond	the	frequency	range	or
effects	of	structural	modifications.

6.3	Structural	Parameters	for	Model	Updating
In	structural	model	updating	procedures,	system	parameters	to	be	updated,	such	as	parameters
for	material	and	geometric	properties,	are	selected	to	reflect	the	updating	of	structural
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parameters,	such	as	stiffness	matrix	and/or	mass	matrix.	The	parameters	for	updating	should	be
justified	by	physical	understanding	of	the	tested	structure,	and	they	should	have	a	direct
physical	meaning.	When	selecting	these	updating	parameters,	the	test	data	should	be	sensitive
to	small	changes	in	these	updating	parameters.	Difficult	features,	such	as	joints	and	boundary
conditions,	may	be	represented	more	or	less	sensitively	by	choosing	different	types	of
parameters	(Mottershead	et	al.	2011).	In	general,	structural	stiffness	is	more	difficult	to	model
than	mass,	thus	errors	in	stiffness	modelling	are	more	responsible	for	inaccurate	predictions
than	mass.	Joints	and	boundary	conditions	are	particularly	difficult	to	model	accurately.
Damping	is	in	many	respects	a	special	case,	and	it	is	even	more	difficult	to	obtain	its	accurate
estimate.

6.3.1	Updating	Parameters	for	Framed	Structures
The	parameters	for	model	updating	could	be	material	properties,	geometric	properties	and
nondimensional	scaler	multipliers	applied	at	element	level	or	at	integration	point	level.
Since	the	stiffness	modelling	plays	a	more	important	role	in	model	updating,	parameters	in
stiffness	updating	are	mainly	concerned,	while	mass	could	be	treated	in	a	similar	way.

6.3.1.1	Updating	Stiffness	and	Mass	at	Element	Level
In	the	cases	where	structural	updating	parameters	are	chosen	at	element	level,	such	as	for	bar
or	truss	elements,	the	change	in	element	stiffness	matrix	ΔKe	and	the	change	in	element	mass
matrix	ΔMe	can	be	expressed,	respectively,	by

where	αe	is	a	nondimensional	scaler	multiplier	for	stiffness	updating	characterised	at

element	level	and	Ke	and	 	are	the	eth	element	stiffness	matrices	for	the	initial	FE	model	and
the	actual	structure,	respectively.	Similarly,	βe	is	a	nondimensional	scaler	multiplier	for	mass

updating	characterised	at	element	level	and	Me	and	 	are	the	eth	element	mass	matrices	for
the	initial	FE	model	and	the	actual	structure,	respectively.

6.3.1.2	Updating	Stiffness	at	Integration	Point	Level
For	framed	structures,	it	is	difficult	to	accurately	model	beam–column	joints	in	the	FE
modelling,	and	the	stiffness	at	the	joints	is	often	estimated	with	uncertainty.	In	order	to
effectively	update	the	bending	stiffness	at	the	ends	of	beam	and	column	elements,	the	element
stiffness	matrix	is	now	calculated	from	an	integral	form.	The	element	stiffness	matrix	excluding
axial	stiffness	for	a	conventional	plane	beam	with	bending	stiffness	EI	and	element	length	l,	as
described	in	Equation	(6.3),	is	rewritten	here	as
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where	the	dimensionless	natural	coordinate	ξ	related	to	longitudinal	beam	axis	 	is	defined	as	

,	and	row	vector	b(ξ)	is	defined	as	
By	using	the	threepoint	Newton–Cotes	integration	rule	(Stoer	and	Bulirsch	1980),	the
element	stiffness	matrix	in	Equation	(6.5)	is	now	calculated	from	the	sum	of	the	contributions
of	integration	points	in	the	middle	and	at	both	ends	of	the	element	(Chen	and	Maung	2014):

in	which	index	r	denotes	the	integration	points	in	the	middle	and	at	both	ends	of	the	element,
where	 	and	 ,	respectively,	and	Nr	represents	the	total	number	of	integration
points.	Weight	coefficients	wr	for	the	threepoint	Newton–Cotes	integration	rule	in	the	middle
and	at	both	ends	are	 	and	 ,	respectively,	and	(EI)r	represents	bending
stiffness	at	integration	points,	i.e.	in	the	middle	and	at	both	ends	of	the	structural	element.	The
change	in	element	stiffness	matrix	 	between	the	element	stiffness	of	actual	structure	 	and
the	element	stiffness	of	the	initial	FE	model	 	for	the	beam	element	is	given	by

where	αr	is	a	nondimensional	scaler	multiplier	for	stiffness	updating	characterised	at
integration	point	level.

For	space	beam	elements,	the	same	method	described	above	with	similar	formulas	to	Equation
(6.5)	is	used	to	obtain	the	change	in	element	stiffness	matrices	related	to	axial	deformation	and
torsion.	Here,	the	elastic	stiffness	EA	and	torsion	stiffness	GJ	should	be	adopted	in	the
associated	element	stiffness	matrices	with	consideration	of	axial	deformation	and	torsion,
respectively.

6.3.1.3	Updating	Material	and	Sectional	Properties
The	most	common	material	property	parameters	for	framed	structures	are	Young’s	modulus	and
mass	density,	since	the	element	stiffness	and	mass	matrices	have	a	linear	relation	to	Young’s
modulus	and	mass	density,	respectively.	Use	of	material	properties	and	crosssectional
dimensions	is	powerful	for	model	updating,	since	they	often	apply	throughout	a	finite	element
mesh	with	the	same	material	and	sectional	properties	for	framed	structures.	Thus	a	small
change	in	material	properties	and	crosssectional	dimensions	often	cause	a	considerable
change	in	modal	parameters	such	as	natural	frequencies.
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6.3.1.4	Updating	Joints	and	Boundary	Conditions
For	framed	structures,	joints	and	boundary	conditions	are	difficult	to	represent	accurately	in
FE	modelling,	for	example	rigid	assumption	for	flexible	joints	and	fixed	assumption	for	spring
boundaries.	The	problem	of	introducing	flexibility	into	joints	and	boundaries	assumed	to	be
rigid	or	fixed	can	be	dealt	with	in	many	ways,	in	order	to	improve	the	dynamic	behaviour	of
the	model	and	its	physical	usefulness	(Mottershead	et	al.	2011).	One	of	useful	approaches	is	to
make	use	of	offset	finite	element	nodes	and	to	use	the	offset	dimensions	to	correct	the	finite
element	model.

6.3.2	Updating	Parameters	for	Continuum	Structures
For	continuum	structures,	the	parameters	adopted	for	updating	the	FE	model	can	be	mass
density,	plate	thicknesses	and	the	thicknesses	and	dimensions	of	thinwalled	sections.	Very
often,	nondimensional	scaler	multipliers	are	also	used	as	updating	parameters	of	continuum
structures.	Parameters	for	updating	stiffness	and	mass	matrices	can	be	chosen	at	element	level,
as	described	in	Equation	(6.4).

In	order	to	update	stiffness	locally,	stiffness	updating	parameters	can	be	chosen	at	integration
point	(Gauss	point)	level,	and	change	in	element	stiffness	matrix	is	expressed	as

where	αg	is	a	nondimensional	scaler	multiplier	for	stiffness	updating	characterised	at
integration	points	of	continuum	structures,	Kg	is	the	contribution	of	the	gth	integration	point	to
the	element	stiffness	matrix	and	NG	denotes	the	total	number	of	integration	points	adopted	in	a
structural	element.

Finally,	by	considering	changes	in	element	stiffness	matrix	ΔKe,	the	changes	of	global	stiffness
and	mass	matrices	between	the	actual	structure	and	the	initial	FE	model	can	be	expressed	in	a
general	form,	respectively,	as

where	NE	denotes	the	total	number	of	elements	within	the	structure,	Nα	and	Nβ	represent	the
total	number	of	stiffness	and	mass	updating	parameters	adopted	in	calculations,	respectively,	αj
and	βm	are	the	stiffness	and	mass	updating	parameters	characterised	at	element	level	or
integration	point	level,	respectively,	and	Kj	and	Mm	are	the	jth	and	mth	contributions
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associated	with	the	corresponding	structural	updating	parameters	to	the	global	stiffness	and
mass	matrices,	respectively.

6.4	Sensitivity	Based	Methods
Sensitivity	based	methods	for	model	updating	use	the	measurable	outputs	of	the	tested
structure,	for	example	natural	frequencies,	mode	shapes,	displacements	and	frequency	response
functions.	Such	methods	are	based	on	the	use	of	a	truncated	Taylor	series	of	the	measurable
outputs	as	a	function	of	the	unknown	updating	parameters,	since	the	relationship	between	the
measurable	outputs	and	the	updating	parameters	is	typically	nonlinear	(Mottershead	et	al.
2011).	On	the	basis	of	the	linearisation,	the	updating	parameters	associated	with	the	FE	model
are	then	corrected	to	bring	the	measurable	outputs	of	FE	model	closer	to	the	corresponding	test
results.

6.4.1	Sensitivity	Matrix
A	Taylor	series	of	expansion	truncated	after	the	linear	term	gives

where	δz	is	residual,	assumed	to	be	small	for	updating	parameters	p	in	the	vicinity	of	pa,	

	is	change	of	updating	parameters	and	zm	and	 	are	the	measured	outputs
and	the	corresponding	analytically	predicted	outputs,	respectively.	The	sensitivity	matrix	S
contains	the	first	derivative	of	the	outputs	z(p)	with	respect	to	the	updating	parameters	p:

where	i = 1,2,…,	Nq	represents	the	output	data	point,	and	j = 1,2,…,	Np	is	the	parameter	index.
The	sensitivity	matrix	S	is	calculated	at	the	current	value	of	the	updating	parameters	 .
Due	to	its	complexity,	the	sensitivity	matrix	S	may	be	obtained	from	numerical	approximations
by	the	simple	procedure	of	perturbing	the	updating	parameters	in	turn	by	a	suitably	small
quantity,	and	then	calculating	numerically	the	change	in	the	predicted	outputs.	Computing	the
sensitivity	coefficients	sij	by	numerical	methods	needs	intensive	computational	efforts.	For
natural	frequencies	and	mode	shapes,	the	sensitivity	matrix	can	be	given	by	the	analytical
approach.

6.4.1.1	Sensitivity	of	Eigenvalue
Natural	frequencies	are	often	chosen	as	the	outputs	in	updating	FE	models.	Here,	the
eigenvalue	is	defined	as	the	square	of	the	natural	frequency:	 .	The	measured
eigenvalues	must	be	paired	with	the	calculated	eigenvalues	of	the	initial	FE	model	by	using	the
modal	assurance	criterion,	as	defined	in	Equation	(5.20).	The	sensitivity	coefficients	are
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determined	analytically	from	the	derivative	of	the	ith	eigenvalue	λi	with	respect	to	the	jth
updating	parameter	pj	(Fox	and	Kapoor	1968),	giving

The	expression	is	easy	to	calculate	and	requires	only	the	ith	eigenvalue	and	eigenvector	of	the
initial	FE	model.

6.4.1.2	Sensitivity	of	Eigenvector
For	the	cases	where	mode	shape	readings	are	taken	as	the	outputs,	the	residual	is	the	difference
between	the	measured	incomplete	mode	shapes	restricted	to	readings	of	degrees	of	freedom
(DOFs)	at	the	location	of	sensors	and	the	FE	calculated	modes	shapes	at	the	same	coordinates.
Since	the	number	of	measured	DOFs	is	generally	much	less	than	the	number	of	finite	element
DOFs,	it	is	essential	that	either	the	measured	incomplete	mode	shapes	are	expanded	to	full
model	size	or	the	FE	full	model	is	reduced	to	the	number	of	measured	DOFs,	as	discussed	in
Section	5.6.	The	FE	calculated	and	experimental	mode	shapes	must	be	normalised	in	the	same
way,	for	example	with	respect	to	the	mass.

Eigenvector	derivatives	are	more	difficult	to	calculate.	The	method	given	by	Fox	and	Kapoor
(1968),	by	expressing	the	eigenvector	derivative	as	a	linear	combination	of	all	the
eigenvectors,	is	widely	used	due	to	its	simplicity	of	implementation:

Convergence	problems	may	arise	for	neighbouring	eigenvalues	 .	Other	methods	for
calculating	eigenvector	derivatives	are	also	available	in	Friswell	and	Mottershead	(1995).

6.4.1.3	Sensitivity	of	Input	Force
The	input	force	residual	is	generated	by	substituting	the	measured	displacements	xm	into	the
equation	of	motion	(Mottershead	et	al.	2011).	The	jth	column	of	the	sensitivity	coefficients	is
then	obtained	from	the	first	derivative	of	the	input	force	vector	f	with	respect	to	the	jth
updating	parameter	pj:

where	ω	is	the	excitation	frequency	and	 .	The	stiffness	matrix	K,	damping	matrix	C	and
mass	matrix	M	need	to	be	reduced	to	the	measured	DOFs	using	model	reduction	methods.	In
order	to	reduce	the	influence	caused	by	random	measurement	noise	and	systematic	errors	due
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to	model	reduction,	an	approach	by	weighting	the	force	residual	using	matrix	H(ωf, p0)	is
introduced.	Here,	H(ωf, p0)	is	the	frequency	response	function	matrix	of	the	initial	FE	model	at
selected	frequencies	ωf.	The	jth	column	of	the	sensitivity	coefficients	associated	with	the
weighted	force	is	given	by

in	which	the	frequency	response	function	matrix	at	the	measured	DOFs	expressed	by	modal
data	from	the	initial	model	 ,	by	assuming	modal	damping	or	proportional	damping	ζf,	is
calculated	from

The	force	residual	and	the	pseudoresponse	technique	have	been	investigated	in	many	studies
(e.g.	Imregun	et	al.	1995),	with	respect	to	the	bias	and	illconditioning	problems	as	well	as
the	optimal	choice	of	the	excitation	frequencies.

6.4.2	Direct	Parameter	Estimation
In	parameter	estimation,	the	residual	described	in	Equation	(6.10)	has	to	be	defined.	Optimum
parameters	are	then	sought	to	reproduce	the	FE	calculated	outputs	as	closely	as	possible	to	the
corresponding	measured	data.	The	objective	for	the	optimisation	problem	is	defined	to
minimise	the	weighted	residual	norm

where	the	positive	definite	symmetric	weighting	matrix	Wz	is	adopted	to	account	for	the
importance	of	each	individual	term	in	the	residual	vector	(Mottershead	et	al.	2011),	often	taken

as	diagonal	matrix	 .

In	parameter	updating,	the	number	of	output	measurements	should	be	made	larger	than	the
number	of	updating	parameters	(Nq > Np),	leading	to	overdetermined	equation	systems.	In	this
case,	the	weighted	residual	norm	J(p)	is	minimised	by	the	weighted	least	squares	technique	to
give	an	improved	parameter	estimate:

The	updating	parameters	and	output	measurements	should	be	scaled	to	improve	the
conditioning	of	matrix	inversion.	Since	the	equation	system	is	generally	illconditioned	and	is
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significantly	affected	by	the	noise	in	output	measurements,	a	sort	of	regularisation	method	is
introduced	to	give	better	estimate	for	parameters,	by	modifying	the	objective	function	defined
in	Equation	(6.17)	as

where	α	is	regularisation	parameter	to	be	determined.	The	parameter	weighting	matrix	Wp
should	be	chosen	to	reflect	the	uncertainty	in	the	initial	parameter	estimates,	and	to	allow	the
parameter	changes	to	be	constrained	according	to	their	sensitivity	(Link	1999),	given	as

When	the	parameter	weighting	matrix	 ,	it	becomes	the	classical	Tikhonov
regularisation	for	solving	illconditioned	equation	systems	(Tikhonov	and	Arsenin	1977).	A
regularised	parameter	estimate	is	then	obtained	by	minimising	the	objective	function	in
Equation	(6.19),	as

The	regularisation	parameter	α	can	be	estimated	by	using	the	Lcurve	criterion	(Hansen	and
O’Leary	1993),	which	provides	a	balance	between	the	measurement	residual	and	the
parameter	change.	The	optimum	value	of	the	regularisation	parameter	is	taken	at	the	point	with
maximum	curvature	at	the	corner	of	the	loglog	plot	of	the	Lcurve.	The	details	of	the
Tikhonov	regularisation	method	and	the	Lcurve	criterion	are	discussed	in	 Section	6.5.2.

Since	the	relationship	between	the	parameters	and	the	measurements	is	generally	nonlinear,
an	iterative	procedure	is	required	for	estimating	parameters	with	possible	associated
convergence	problems.	During	the	iterative	procedure,	the	optimum	regularisation	parameter
evaluated	at	the	first	iteration	may	be	retained.	The	FE	model	is	then	evaluated	at	every
iteration.	If	the	change	in	parameters	between	successive	iterations	is	sufficiently	small,	a
satisfactory	estimate	of	the	parameters	can	be	obtained	for	the	FE	model	updating.

6.4.3	Residual	Minimisation	Methods
The	finite	element	model	updating	problems	can	also	be	solved	by	directly	using	optimisation
techniques	by	minimising	the	residual	between	the	tested	data	and	the	finite	element
predictions.	In	modal	testing,	modal	data	about	the	natural	frequency	 	and	mode	shape
readings	 	of	the	tested	structure	can	be	extracted	from	vibration	measurements	by	modal
analysis	techniques.	The	measured	incomplete	mode	shapes	 	with	dimension	of	Ns	are
usually	incomplete	with	reference	to	the	FE	model.	The	measured	mode	shapes	are	paired	to
the	FE	calculated	eigenvectors	restricted	to	the	same	dimensions,	by	using	the	modal	assurance
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criterion	(MAC)	defined	in	Equation	(5.20).

In	order	to	ensure	that	the	measured	incomplete	mode	shapes	are	close	to	the	corresponding

part	of	the	original	FE	calculated	eigenvectors	 ,	the	measured	DOF	readings	 	are	scaled
by	a	modal	scale	factor	(MSFi)	described	in	Equation	(5.25).	When	a	total	number	of	Nm
measured	modes	are	available,	the	objective	function	can	be	chosen	as

The	first	term	in	the	objective	function	minimises	the	residual	between	the	measured	and	the
FE	calculated	natural	frequencies,	and	the	second	term	minimises	directly	the	residual	between
the	measured	and	the	FE	calculated	mode	shapes	(Balageas	et	al.	2006).	Both	terms	are
weighted	by	individual	weighting	coefficients,	wω	and	wϕ,	respectively.

In	some	model	updating	applications,	the	above	objective	function	can	be	revised	as

Here,	the	second	term	maximises	the	correlation	between	the	measured	and	the	FE	calculated
mode	shapes	by	minimising	the	difference	between	the	MAC	factors	and	unity.	The	MAC
values	do	not	compare	the	mode	shape	components	between	two	modal	vectors.

The	residual	minimisation	methods	allow	the	inclusion	of	linear	and	nonlinear	inequality
constraints	on	the	parameters.	In	order	to	ensure	physical	significance	for	the	updating
parameters	and	avoid	physically	impossible	updating	parameter	values,	the	lower	and	upper
bounds	for	the	parameter	values	may	be	applied.	When	a	parameter	reaches	its	allowable
extreme	values	during	iterative	model	updating,	the	parameter	becomes	ineffective	during	the
rest	of	the	procedure.	The	convergence	of	the	iterative	procedure	may	not	achieve	satisfactory
requirements	when	parameter	bounds	are	imposed	(Brownjohn	and	Xia	2000).	A	tradeoff
between	physically	acceptable	parameter	values	and	the	convergence	level	is	then	necessary.

6.4.4	Example	for	Model	Updating	–	a	Cantilever	Beam
An	experimental	cantilever	beam	is	used	here	to	show	the	applications	of	sensitivity	based
model	updating	methods,	as	discussed	in	detail	in	Friswell	and	Mottershead	(1995).	The	beam
flexibly	clamped	at	its	end	is	made	from	aluminium	alloy,	with	a	cantilevered	length	of	700 
mm.	The	joint	at	the	clamped	end	is	modelled	using	a	translational	spring	and	a	rotational
spring.	The	analytical	model	of	the	experimental	beam	consists	of	seven	beam	elements	of
equal	length,	as	illustrated	in	Figure	6.1.	Three	parameters	are	chosen	for	the	model	updating:
flexural	rigidity	of	the	beam	EI	with	an	estimate	of	EI = 450 Nm2,	translational	spring	stiffness
kt	with	an	estimate	of	kt = 30 MNm−1,	and	rotational	spring	stiffness	kr	with	an	estimate	of	kr = 



150 kNmrad −1.

Figure	6.1	A	cantilever	beam	structure	for	model	updating.

Table	6.1	gives	the	first	six	measured	natural	frequencies	and	the	corresponding	simulated
natural	frequencies,	as	well	as	the	MAC	values	between	the	measured	and	the	corresponding
simulated	modes.	The	average	absolute	error	for	the	first	six	simulated	natural	frequencies
with	respect	to	the	measured	values	is	4.46%.	Four	measured	frequencies	are	used	in	the
updating	procedure	given	in	Equation	(6.18),	and	are	weighted	with	a	standard	deviation	of
0.25%	for	the	first	two	frequencies	and	0.5	%	for	the	next	two	frequencies.	After	updating,	the
average	absolute	error	of	the	adjusted	first	six	frequencies	is	reduced	to	a	value	of	2.73%.

Table	6.1	Simulated,	measured	and	updated	frequencies	of	the	cantilever	beam	without
weighting	on	initial	parameter	estimates.

Mode Simulated
(Hz)

Measured
(Hz)

Error
(%)

MAC Updated	(Hz) Error
(%)

1 38.60 37.51# 2.91 1.000 39.09 4.21
2 240.3 246.2# −2.40 0.998 250.0 1.54
3 656.7 662.3# −0.85 0.999 685.7 3.53
4 1228 1287# −4.58 0.983 1273 −1.09
5 1927 2087 −7.67 0.916 2011 −3.64
6 2825 3083 −8.37 0.769 3011 −2.34
Average	absolute	error	(%) 4.46 2.73

#	Frequencies	used	for	model	updating.

A	systematic	error	may	exist	in	the	analytical	model,	since	the	analytical	model	is	significantly
different	from	the	tested	beam.	This	error	may	cause	poor	performance	of	the	model	updating
procedure.	Now	the	initial	parameter	estimates	are	weighted	on	the	basis	of	the	estimated
standard	deviation	of	1%	for	EI,	100%	for	kt	and	100%	for	kr.	Table	6.2	summarises	the
results	obtained	for	Equation	(6.21).	Here,	the	average	absolute	error	of	the	first	six
frequencies	is	further	reduced	to	a	value	of	1.52%.	The	updated	frequencies	are	closer	to	the
measured	frequencies	than	those	in	the	case	where	no	weighting	is	applied	to	the	initial
parameter	estimates.
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Table	6.2	Simulated,	measured	and	updated	frequencies	of	the	cantilever	beam	with	weighting
on	initial	parameter	estimates.

Mode Simulated
(Hz)

Measured	(Hz) Error
(%)

MAC Updated	(Hz) Error
(%)

1 38.60 37.51# 2.91 1.000 37.83 0.85
2 240.3 246.2# −2.40 0.998 241.6 −1.87
3 656.7 662.3# −0.85 0.999 674.1 1.78
4 1228 1287# −4.58 0.983 1290 0.23
5 1927 2087 −7.67 0.916 2055 −1.53
6 2825 3083 −8.37 0.769 2996 −2.82
Average	absolute	error	(%) 4.46 1.52

#	Frequencies	used	for	model	updating.

6.5	Dynamic	Perturbation	Method
Linear	or	firstorder	approximations	are	typically	considered	in	modal	sensitivity	analyses,
which	work	well	when	the	difference	between	the	predictions	by	the	FE	model	and	the	outputs
of	the	actual	structure	is	relatively	small.	However,	in	the	cases	where	such	difference	is
sufficiently	large,	the	linear	or	firstorder	approximations	may	be	inappropriate.	Therefore,
an	exact	relationship	between	the	perturbation	of	structural	parameters	and	the	perturbation	of
the	associated	modal	parameters	is	required.	This	exact	relationship	can	then	be	used	for
various	applications,	such	as	structural	reanalyses,	eigendata	modification,	model	updating	and
damage	identification	(Chen	2005).	In	the	inverse	problems	for	parameter	estimation,	such	as
model	updating	and	damage	identification,	the	generated	governing	equation	system	is	typically
illconditioned.	Thus,	some	sort	of	regularisation	of	the	illconditioned	problems	is
necessary	to	reduce	the	influence	of	noise	in	measured	modal	data.

6.5.1	Governing	Equations
Assume	that	K	and	M	are,	respectively,	the	global	stiffness	matrix	(N × N)	and	the	global	mass
matrix	(N × N)	for	the	original	dynamic	structural	system,	and	λi	and	ϕi	are	the	ith	eigenvalue
and	the	corresponding	eigenvector	for	the	original	structure,	respectively.	Suppose	that	the
perturbations	of	stiffness	matrix	and	mass	matrix	are	defined	as	ΔK	and	ΔM,	respectively.	The
stiffness	matrix	and	mass	matrix	for	the	modified	structural	system,	therefore,	can	be	written	as

Meanwhile,	the	perturbations	of	the	ith	eigenvalue	and	the	corresponding	eigenvector,	which
are	caused	by	the	perturbations	of	stiffness	matrix	and	mass	matrix,	are	defined	as	Δλi	and	Δϕi,
respectively.	The	eigenvectors	for	both	the	original	and	modified	structural	system	are	linearly
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independent,	since	the	stiffness	and	mass	matrices	are	symmetric.	The	ith	eigenvalue	and	the
corresponding	eigenvector	for	the	modified	structural	system	are

It	is	assumed	that	the	eigenvectors	of	the	original	structural	system	are	mass	normalised.	From
the	characteristic	equations	for	the	original	and	modified	structural	dynamic	system,	as
described	in	Equation	(5.9),	the	governing	equations	for	the	modified	structural	dynamic
system	are	given	in	the	study	by	Chen	(1998),	rewritten	here	as

where	 .	In	order	to	ensure	the	uniqueness	of	an	eigenvector	of	the	modified	structural
system,	the	modified	eigenvector	is	mass	normalised	in	the	form

By	use	of	the	above	formulation,	Equations	(6.26)	can	be	rewritten	as

where	the	mode	participation	factors	Cik	are	defined	as

Premultiplying	Equation	(6.29a)	by	ϕk,	then	summing	up	equations	from	1	to	N	and	using	the
mass	normalisation	of	the	original	eigenvectors	and	the	assumption	of	linearly	independent
eigenvectors	of	the	original	system,	gives

It	is	found	that	the	perturbation	of	an	eigenvector	of	a	structural	system	can	be	expressed	as	the
linear	combination	of	the	original	eigenvectors	except	the	corresponding	original	one.	From
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Equation	(6.28b),	the	mode	participation	factors	Cik	can	be	expressed	by

From	Equation	(6.31),	Equation	(6.30)	is	rewritten	as

The	governing	equations	of	the	nonlinear	dynamic	perturbation	method,	given	in	 Equations
(6.28a)	and	(6.32),	represent	the	exact	relationship	between	the	perturbation	of	structural
parameters	and	the	perturbation	of	modal	parameters.	It	should	be	noted	that	the	Taylor	series
expansion	procedure	is	not	employed	and	information	about	the	derivatives	of	eigenvalues	or
eigenvectors	is	not	required	to	develop	the	theory.

When	the	perturbation	of	structural	parameters	is	small	enough,	only	the	firstorder
approximation	may	be	sufficient.	The	set	of	nonlinear	 Equation	(6.28a)	and	Equation	(6.32)
can	then	be	simplified	to	linear	relationship	in	the	form

The	preceding	linear	relationship	is	very	commonly	utilised	for	sensitivity	analysis,	model
updating	and	damage	identification.	Note	that	the	set	of	linear	equations	might	be	insufficient	if
relatively	large	perturbation	of	structural	parameters	is	present.

When	the	perturbation	of	structural	parameters,	ΔK	and	ΔM,	is	known,	the	perturbation	of
modal	parameters,	Δλi	and	Δϕi,	can	be	computed	using	the	nonlinear	dynamic	perturbation
method	(Chen	2006).	This	is	considered	as	a	forward	problem	here.	Note	that	information	on
the	modal	parameters	of	the	modified	system	is	not	required	during	the	evaluation	of	the
perturbation	of	modal	parameters.

When	the	perturbation	of	modal	parameters,	Δλi	and	Δϕi,	is	known,	the	perturbation	of
structural	parameters,	ΔK	and	ΔM,	can	also	be	inversely	determined	using	the	nonlinear
dynamic	perturbation	method.	This	is	considered	as	an	inverse	problem	here.	Different
procedures	are	developed	for	model	updating	(Chen	and	Maung	2014)	and	damage
identification	(Chen	and	Bicanic	2010),	depending	on	information	about	modal	data	available.

System	parameters,	such	as	coefficients	of	stiffness	or	the	mass	matrix	as	well	as	parameters
for	material	properties	and	geometric	properties,	can	be	employed	to	represent	the
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perturbation	of	structural	parameters,	such	as	the	change	in	stiffness	matrix	and/or	mass	matrix.
Such	system	parameters	characterising	either	at	a	matrix	coefficient	level,	an	integration	point
level,	an	element	level	or	at	a	subsystem	level	can	be	utilised	for	model	updating	and	damage
identification.

6.5.2	Regularised	Solution	Procedure
In	the	inverse	problems	for	parameter	estimation,	e.g.	model	updating	and	damage
identification,	a	system	of	linear	equations	is	often	generated	from	the	dynamic	perturbation
governing	equations	to	be	solved	for	the	parameters.	This	system	may	be	determined,	under
determined	or	overdetermined,	depending	on	the	size	of	the	measured	modal	data.	The
system	of	linear	equations	is	expressed	in	a	general	and	simple	form	as

where	A	is	an	NM × ND	matrix	consisting	of	known	sensitivity	coefficients,	x	is	a	column
vector	containing	a	total	number	of	ND	unknown	parameters	(e.g.	updating	parameters	or
damage	indicators)	and	b	is	a	column	vector	containing	a	total	number	of	NM	modal	parameter
measurements.	Without	loss	of	generality	it	is	assumed	that	 ,	the	method,	however,
can	also	be	applied	when	NM	is	considerably	smaller	than	ND.	The	singular	value
decomposition	(SVD)	of	matrix	A	can	be	expressed	in	the	form

where	Σ	is	the	diagonal	matrix	of	singular	values	σj	that	are	nonnegative	and	nonincreasing

numbers,	i.e.	 .	U	and	V	are	the	matrices	of	orthonormal	left	and	right
vectors	uj	and	vj,	respectively.	The	ordinary	least	squares	solution	to	Equation	(6.34)	can	then
be	expressed	as	a	singular	value	expansion

In	the	inverse	parameter	estimation,	the	system	of	linear	equations	in	Equation	(6.34)	is
typically	illconditioned,	because	the	singular	values	of	the	sensitivity	coefficient	matrix	 A
decay	gradually	to	zero	and	the	ratio	between	the	largest	and	the	smallest	nonzero	singular
values	is	usually	large	(Chen	and	Bicanic	2010).

Hence,	some	sort	of	regularisation	of	the	illconditioned	problem	is	required	to	filter	out	the
contributions	of	the	inevitable	noise	in	b	consisting	of	measured	modal	data.	One	of	the	most
commonly	used	regularisation	methods	utilising	a	continuous	regularisation	parameter	is
Tikhonov	regularisation.	This	regularisation	method	replaces	the	original	operation	with	a
betterconditioned	but	related	one,	and	produces	a	regularised	solution	to	the	original
problem	(Tikhonov	and	Arsenin	1977).	The	Tikhonov	regularised	solution	is	given	in	terms	of
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the	SVD	by

where	fj(α)	are	the	Tikhonov	filter	factors,	which	depend	on	singular	values	σj	and
regularisation	parameter	α	through	the	expression

A	stable	solution	can	then	be	obtained,	since	the	Tikhonov	regularised	solution	coefficients
fj|ujTb|/σj	gradually	damp	out	as	singular	values	decrease.	The	filter	factors	fj	gradually	filter
out	the	contributions	to	xα	associated	with	the	small	singular	values,	while	the	contributions
associated	with	the	large	singular	values	are	almost	unaffected.

The	regularisation	parameter	α	needs	to	be	properly	chosen	in	order	to	filter	out	enough	noise,
without	losing	too	much	information	in	the	regularised	solution.	The	Lcurve	criterion	has
been	proven	to	be	a	robust	and	useful	method	for	choosing	a	regularisation	parameter	in	many
problems	(Hansen	and	O’Leary	1993).	This	criterion	does	not	require	the	a	priori	knowledge
of	noise	in	the	measured	data.	The	Lcurve	is	a	plot	in	loglog	scale	of	the	corresponding
values	of	the	residual	and	solution	norms	as	a	function	of	the	regularisation	parameter	α,
defined,	respectively,	in	terms	of	the	SVD	as

The	Lcurves	basically	consist	of	the	flat	and	the	steep	parts.	The	flat	part	corresponds	to	the
regularised	solutions	where	the	regularisation	parameter	is	too	large	and	the	solution	is
dominated	by	regularisation	errors.	The	steep	part	corresponds	to	the	solutions	where	the
regularisation	parameter	is	too	small	and	the	solution	is	dominated	by	perturbation	errors,	i.e.
noise	in	the	measured	modal	data	b.	The	balance	between	the	two	errors	must	occur	near	the
Lcurve’s	corner,	where	the	curvature	of	the	Lcurve	approximately	has	a	maximum	value.
Considering	the	definition	in	Equation	(6.39),	the	curvature	of	the	Lcurve	 κ(α)	as	a	function
of	α	can	be	expressed	by
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where	η′	denotes	the	first	derivative	of	η	with	respect	to	α.	A	onedimensional	optimisation
procedure	is	utilised	to	determine	the	optimum	regularisation	parameter	α,	corresponding	to
the	maximum	curvature.	The	same	optimum	regularisation	parameter	may	be	adopted	to	obtain
the	regularised	solutions	to	Equation	(6.37)	during	an	iterative	procedure,	because	the	change
of	the	sensitivity	coefficient	matrix	for	different	iterations	is	small.

6.6	Use	of	Dynamic	Perturbation	Method	for	Model
Updating
The	sensitivity	based	methods	for	structural	model	updating	may	not	perform	properly	when
either	the	number	of	the	chosen	updating	parameters	is	large	or	a	model	refinement	with
relatively	large	modifications	of	structural	parameters	is	required.	The	dynamic	perturbation
method	discussed	in	Section	6.5,	providing	the	exact	relationship	between	the	perturbation	of
structural	parameters	and	the	perturbation	of	modal	parameters,	is	used	here	for	updating	FE
models.

6.6.1	Use	of	Frequencies	Only
Assume	that	information	about	a	total	number	of	Nm	measured	natural	frequencies	is	available
from	vibration	testing	of	the	actual	structure.	The	measured	frequency	 	is	then	paired	to	the
FE	calculated	natural	frequency	by	using	the	modal	assurance	criterion	defined	in	Equation
(5.20).	From	the	dynamic	perturbation	method,	the	exact	relationship	between	the	change	in
structural	parameters	and	the	measured	frequencies	of	the	tested	structure,	given	in	Equation
(6.28a),	is	expressed	here	as

From	Equations	(6.25)	and	(6.30),	the	eigenvectors	of	the	tested	structure	with	dimension	of	N
can	be	expressed	as	a	linear	combination	of	the	FE	calculated	eigenvectors

where	mode	participation	factors	Cik	defined	in	Equation	(6.31)	are	rewritten	as

By	using	the	changes	of	global	stiffness	and	mass	matrices	between	the	tested	structure	and	FE



(6.44)

(6.45)

(6.46a)

(6.46b)

(6.47a)

(6.47b)

model	given	in	Equation	(6.9),	the	governing	equation	in	Equation	(6.41)	is	rewritten	as

Similarly,	the	mode	participation	factors	Cik	are	rewritten	as

Define	the	sensitivity	coefficients	associated	with	eigenmodes	and	structural	parameters	in	a
general	form	as

By	using	Equation	(6.42),	the	governing	equation	in	Equations	(6.44)	and	(6.45)	are	now
rewritten,	respectively,	as

Because	of	the	coupled	governing	equations,	an	iterative	solution	procedure	is	required	to
solve	for	the	updating	parameters	αj	and	βm.	The	iterative	solution	procedure	is	initiated	by

assuming	that	the	initial	mode	participation	factors	are	zero,	i.e.	 	where	 .	The
initial	sensitivity	coefficient	âiji(0)	is	calculated	from	Equation	(6.46a)	by	using	the	known
Cik(0).	The	first	approximation	for	the	updating	parameters,	αj(1)	and	βm(1),	can	then	be	obtained
from	the	governing	equations	Equation	(6.47a),	which	now	become	a	set	of	linear	equations
because	of	the	known	âiji(0).	The	Tikhonov	regularisation	algorithm	incorporating	the	Lcurve
criterion	method	for	determining	the	regularisation	parameter,	as	described	in	Section	6.5.2,	is
applied	to	find	a	reliable	solution.	After	the	estimate	of	updating	parameters	αj(1)	and	βm(1)	are
obtained,	the	next	approximations	for	Cik(1)	can	then	be	calculated	from	Equation	(6.47b).
Consequently,	the	set	of	governing	equations	is	used	recursively	to	compute	further
approximations	for	αj(n)	and	βm(n)	as	well	as	Cik(n).	The	above	recursive	process	is	repeated
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until	the	convergence	for	updating	parameters	αj(n)	and	βm(n)	is	achieved,	often	after	only	a	few
iterations.

6.6.2	Use	of	Incomplete	Modes
From	modal	testing,	modal	data	about	natural	frequencies	 	and	incomplete	mode	shapes	
with	dimension	of	Ns	can	be	identified	from	vibration	measurements.	The	measured

incomplete	mode	shapes	are	then	paired	to	the	associated	FE	calculated	eigenvectors	 ,	by
using	the	modal	assurance	criterion	defined	in	Equation	(5.20).	The	measured	DOF	readings	
	are	scaled	by	the	modal	scale	factor	(MSFi)	defined	in	Equation	(5.25),	giving	the	scaled

modal	measurement	vector	 	of	dimension	Ns,	i.e.	 .

The	unmeasured	part	of	the	experimental	mode	shapes	can	be	expressed	as	a	linear
combination	of	the	original	FE	calculated	eigenvectors,	as	expressed	in	Equation	(6.42).	The
remaining	(N − Ns)	unmeasured	components	 	are	then	calculated	from

where	 	is	original	FE	eigenvector	corresponding	to	the	entries	of	the	unmeasured
components.	The	mode	participation	factors	Cik	are	defined	in	Equation	(6.43).	Thus,	the	ith
complete	mode	shape	of	the	tested	structure,	consisting	of	the	measured	components	and	the
remaining	calculated	components,	is	given	by

where	 	is	a	known	vector	of	dimension	N,	defined	as

From	the	dynamic	perturbation	method	in	Equation	(6.32)	and	using	Equation	(6.28a),	the	exact
relationship	between	the	change	in	structural	parameters	and	the	modal	properties	of	the	tested
structure	is	expressed	as

By	using	the	constructed	eigenvector	in	Equation	(6.49),	Equation	(6.51)	is	now	restricted	to
the	dimension	for	the	measured	components	and	becomes
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Similarly,	from	Equation	(6.43)	the	mode	participation	factors	Cik	are	rewritten	as

The	governing	equations	in	Equation	(6.52)	represent	the	exact	relationship	between	the
change	in	structural	parameters	to	be	updated	and	the	mode	shape	readings	of	the	tested
structure.	These	equations	avoid	the	approximations	and	complexity	in	most	existing
eigensensitivity	based	methods	for	model	updating,	without	requiring	eigensolution
derivatives.

6.6.2.1	Iterative	Solution	Method
The	changes	of	global	stiffness	and	mass	matrices	in	Equation	(6.9)	are	now	used	in	Equations
(6.52)	and	(6.53).	To	minimise	the	computational	effort,	the	sensitivity	coefficients	associated
with	the	known	eigenmodes	and	structural	parameters	in	the	governing	equation,	Equation
(6.52),	are	defined	in	a	general	form	as

thus,	the	governing	equation,	Equation	(6.52),	for	the	ith	measured	mode	is	rewritten	as

Similarly,	define	the	sensitivity	coefficients	associated	with	the	known	eigenmodes	and
structural	parameters	in	Equation	(6.53)	in	a	general	form	as

the	mode	participation	factors	Cik	for	the	ith	measured	incomplete	mode	shape	in	Equation



(6.57)

(6.58)

(6.59)

(6.53)	are	thus	expressed	as

On	the	basis	of	the	governing	equations	(6.55)	and	(6.57)	developed	above,	an	iterative
solution	procedure	is	required	to	solve	for	a	total	number	of	 	structural
updating	parameters	αj	and	βm.	It	is	assumed	that	a	total	number	of	Nm	experimental	modes	are
measured	from	a	total	number	of	Ns	sensors	installed	on	the	tested	structure.	The	governing
equation	(6.55)	should	be	used	for	the	total	number	of	Nm	measured	modes	to	generate	a	total
number	of	 	equations	available,	in	order	to	find	a	solution	for	a	total	number
of	ND	structural	updating	parameters.	An	iterative	solution	procedure,	similar	to	the	procedure
for	the	use	of	only	frequencies	for	model	updating	discussed	in	Section	6.6.1,	is	required	for
finding	the	structural	updating	parameters	αj	and	βm.

6.6.2.2	Simplified	Direct	Solution	Method
In	order	to	avoid	the	iterative	solution	procedure	in	model	updating,	the	mode	participation
factors	Cik	are	simply	estimated	from	Equations	(6.29b)	and	(6.49),	by	using	the	mass
normalisation	and	ignoring	the	small	unknown	term	in	Equation	(6.49),	as

By	replacing	the	mode	participation	factors	Cik	in	Equation	(6.55)	with	the	estimated	 ,	the
governing	equations	for	the	ith	measured	mode	are	rewritten	in	a	set	of	linear	equations	as

Consequently,	the	structural	updating	parameters	αj	and	βm	are	now	directly	obtained	by
solving	the	set	of	linear	governing	equations	(6.59),	and	no	iterative	procedure	is	needed.

6.6.3	Example	for	Model	Updating	–	a	Plane	Frame
A	symmetric	plane	frame	illustrated	in	Figure	6.2	is	adopted	for	FE	model	updating	using	the
dynamic	perturbation	method	by	use	of	natural	frequencies	only	and	incomplete	modes,
respectively.	In	order	to	avoid	problems	associated	with	structural	symmetry,	a	non
symmetric	element	mesh	with	18	elements,	18	nodes	and	a	total	of	48	DOFs	is	generated.	All
structural	members	have	the	same	material	and	geometric	properties	with	Young’s	modulus	E 
= 2.1 × 1011 N/m2,	density	ρ = 7800 kg/m3,	crosssectional	area	 A = 0.092 m2,	and	second
moment	of	area	I = 4.52   10−5 m4.	The	geometry	of	the	structure	and	element	numbering	are
shown	in	Figure	6.2.	A	hypothetical	set	of	sensors	are	placed	at	nodes	3,	5,	7,	9	and	11–14,



and	only	translation	modal	readings	are	measured.	It	is	assumed	that	stiffness	values	at
elements	3,	11	and	16	are	modified	by	factors	+50%,	−30%,	and	+20%	for	the	simulated
‘tested’	structure,	respectively.	A	FE	dynamic	analysis	is	then	performed	for	both	the	original
FE	model	and	the	‘tested’	structure	to	calculate	the	original	FE	and	‘measured’	modal	data,	i.e.
natural	frequencies	and	incomplete	mode	shapes.

Figure	6.2	Finite	element	model	of	a	plane	frame	structure	for	model	updating.

Table	6.3	shows	the	adjusted	natural	frequencies	at	different	iteration	numbers	using	the
dynamic	perturbation	method.	The	information	about	only	eight	‘tested’	natural	frequencies	is



employed	to	update	the	original	FE	model.	The	results	show	that	the	convergence	of	the
iterative	solution	procedure	for	model	updating	is	achieved	rapidly.	The	first	eight	adjusted
natural	frequencies	are	in	excellent	agreement	with	the	exact	solutions.	The	other	natural
frequency	estimates	are	closer	to	the	exact	solutions,	compared	to	the	results	from	the	first
order	approximation	method	under	the	heading	of	first	iteration.

Table	6.3	Updated	natural	frequencies	at	different	iteration	numbers	for	model	updating	using
only	eight	‘tested’	frequencies.

Original	frequencies
(Hz)

Updated	frequencies	(Hz)
First
iteration

Second
iteration

Fifth
iteration

Tested
exactb

MAC
value

1.4096 1.4062 1.4074 1.4074 1.4074 1.0000
4.7367 4.7958 4.8031 4.8024 4.8024 0.9990
7.2662 7.2607 7.2709 7.2706 7.2706 0.9992
9.0017 9.0515 9.0605 9.0599 9.0599 0.9975
16.5695 16.6250 16.6849 16.6851 16.6852 0.9485
19.0584 19.0589 19.1079 19.1003 19.1003 0.9475
23.7686 24.2738 24.3031 24.2984 24.2985 0.9917
24.8744 24.0807 24.1633 24.1620 24.1619 0.9775
31.1452 31.0702 31.0542 31.0471 30.9663 0.9904
32.5375 32.7893 32.8204 32.8064 32.8360 0.9878
50.9666 51.3042 51.3628 51.3394 51.2520 0.9843
61.3211 60.6836 60.8501 60.8391 61.0721 0.9666
64.4138 65.0944 65.0988 65.0533 64.8405 0.9498
74.7171 72.7126 72.9228 72.9089 72.6380 0.9483
84.5668 85.1241 85.2344 85.1871 85.3921 0.9063
Dαβa 1.23E + 0 2.50E − 01 1.79E − 03 / /
a	Absolute	error	for	updating	parameters
b	Italic	values	of	tested	exact	frequencies	are	used	for	model	updating

Table	6.4	shows	the	updated	natural	frequencies	obtained	from	incomplete	modal	data	using
the	dynamic	perturbation	method.	Three	incomplete	‘measured’	modes	(modes	1,	2	and	3)	with
DOF	readings	measured	at	the	hypothetical	set	of	sensors	are	used	for	the	model	updating.	The
iterative	solution	procedure	converges	very	quickly,	achieving	the	converged	results	after	only
five	iterations.	From	the	results,	the	updated	natural	frequencies	are	very	accurate	when
compared	with	the	exact	solution.	The	firstorder	approximation	method,	giving	the	results
under	the	heading	of	first	iteration,	may	not	be	sufficiently	appropriate	for	model	updating	in



this	case.

Table	6.4	Updated	natural	frequencies	at	different	iteration	numbers	for	model	updating	using
three	‘tested’	incomplete	modes.

Original	frequencies
(Hz)

Updated	frequencies	(Hz)
First
iteration

Second
iteration

Fifth
iteration

Tested
exactb

MAC
value

1.4096 1.4055 1.4071 1.4074 1.4074 1.0000
4.7367 4.7737 4.8020 4.8024 4.8024 0.9990
7.2662 7.2409 7.2724 7.2706 7.2706 0.9992
9.0017 9.0142 9.0647 9.0599 9.0599 0.9975
16.5695 16.5499 16.7183 16.6852 16.6852 0.9485
19.0584 18.9513 19.1244 19.1004 19.1003 0.9475
23.7686 24.2469 24.3260 24.2986 24.2985 0.9917
24.8744 23.9801 24.2612 24.1617 24.1619 0.9775
31.1452 30.7421 31.0416 30.9663 30.9663 0.9904
32.5375 32.6977 32.8205 32.8359 32.8360 0.9878
50.9666 50.9483 51.3226 51.2521 51.2520 0.9843
61.3211 60.7231 61.3023 61.0724 61.0721 0.9666
64.4138 64.3805 64.8695 64.8402 64.8405 0.9498
74.7171 71.6284 72.9868 72.6377 72.6380 0.9483
84.5668 84.7122 85.4616 85.3914 85.3921 0.9063
Dαβa 1.65E + 00 8.08E − 01 4.40E − 03 / /
a	Absolute	error	for	updating	parameters;
b	Incomplete	modes	with	italic	values	are	used	for	model	updating.

Furthermore,	both	stiffness	and	mass	can	be	adjusted	at	the	same	time,	using	the	dynamic
perturbation	method,	as	summarised	in	Table	6.5.	It	is	assumed	that	the	original	stiffness	and
mass	for	each	element	have	factors	of	unity,	respectively.	Both	stiffness	and	mass	values	at
elements	3,	5,	8,	9,	11	and	16	are	modified	for	the	‘tested’	structure	by	factors	of	+30%,	−10%,
+10%,	−10%,	−20%	and	+10%,	respectively.	A	total	number	of	four	and	six	‘tested’
incomplete	modes	with	DOF	readings	measured	at	the	assumed	sensor	set	are	employed	to
update	the	modified	model,	respectively.	From	the	results,	both	stiffness	and	mass	are	adjusted
correctly	by	using	information	about	only	six	‘tested’	incomplete	modes.



Table	6.5	Both	stiffness	and	mass	factors	adjusted	simultaneously	using	different	number	of
‘tested’	incomplete	modes.

Adjusted	structural	parameters
‘Tested’ Four	modes Six	modes Exact

Element Stiffness Mass Stiffness Mass Stiffness Mass Stiffness Mass
1 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00
2 1.00 1.00 0.97 0.92 0.99 0.99 1.00 1.00
3 1.30 1.30 1.01 1.06 0.99 0.99 1.00 1.00
4 1.00 1.00 1.00 0.96 0.99 0.99 1.00 1.00
5 0.90 0.90 0.99 0.88 0.99 0.99 1.00 1.00
6 1.00 1.00 0.98 1.02 0.99 0.99 1.00 1.00
7 1.00 1.00 1.00 1.03 0.99 0.99 1.00 1.00
8 1.10 1.10 0.99 0.94 0.99 0.99 1.00 1.00
9 0.90 0.90 0.99 0.93 0.99 0.99 1.00 1.00
10 1.00 1.00 1.00 1.03 0.99 0.99 1.00 1.00
11 0.80 0.80 0.99 0.98 0.99 0.99 1.00 1.00
12 1.00 1.00 1.00 1.01 0.99 0.99 1.00 1.00
13 1.00 1.00 1.00 1.03 0.99 0.99 1.00 1.00
14 1.00 1.00 1.01 0.98 0.99 0.99 1.00 1.00
15 1.00 1.00 0.99 1.01 0.99 0.99 1.00 1.00
16 1.10 1.10 1.00 0.99 0.99 0.99 1.00 1.00
17 1.00 1.00 1.01 1.00 0.99 0.99 1.00 1.00
18 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00

6.6.4	Example	for	Model	Updating	–	a	Steel	Space	Frame	(II)
The	laboratory	tested	space	steel	frame	structure,	as	discussed	in	Section	5.3.3	and	shown	in
Figure	5.2,	is	now	used	for	structural	model	updating.	The	FE	model	to	be	updated	is
constructed	by	modelling	the	experimental	frame	structure	with	the	geometric	dimensions	and
the	node	and	element	numbering,	as	shown	in	Figure	6.3.	The	FE	model	has	20	nodes	and	40
elements	with	a	total	number	of	96	DOFs.	The	column	and	beam	elements	have	the	same
rectangular	crosssection	with	dimensions	of	 20 mm × 10 mm.	The	brace	elements	have	an
identical	circular	crosssection	with	diameter	of	6 mm.	The	material	properties	of	Young’s
modulus	E = 2.0 × 1011 N/m2	and	density	ρ = 7850 kg/m3	are	adopted	in	calculations	for	all
beam,	column	and	brace	elements.	Details	of	the	modal	testing	of	the	space	steel	frame
structure	are	discussed	in	Section	5.3.3.



Figure	6.3	Finite	element	model	of	the	laboratory	tested	space	steel	frame	structure.



In	the	FE	model,	the	diagonal	brace	members	are	assumed	to	be	pinjointed	at	both	ends	due
to	limited	flexural	stiffness	at	the	joints,	and	therefore	primarily	subjected	to	axial	force.	The
connections	of	the	beams	and	columns	at	the	associated	joints	are	modelled	as	rigid	joints	to
sustain	bending	moments.	In	order	to	update	the	physical	properties	at	specific	locations	in
individual	structural	components,	structural	updating	parameters	associated	with	bending
stiffness	(e.g.	EI)	are	chosen	to	characterise	the	physical	properties	at	critical	point	level	for
beams	and	columns,	i.e.	at	both	ends	and	in	the	middle,	and	at	element	level	for	braces.	A	total
number	of	104	stiffness	updating	parameters	are	introduced	for	updating	the	initial	FE	model,
i.e.	48	for	columns,	48	for	beams	and	8	for	braces.	The	updating	of	mass	is	not	considered	here
due	to	its	relatively	higher	accuracy.

In	the	numerical	simulation	investigations,	the	stiffness	changes	to	be	updated	are	simulated	at
different	structural	elements	with	various	updating	levels,	i.e.	−50%	change	at	both	ends	of
column	elements	2,	3,	18	and	19,	−10%	change	at	both	ends	of	beam	elements	6	and	22	and
−30%	change	in	brace	elements	34	and	38.	Here,	the	‘measured’	exact	modal	data,	i.e.	natural
frequencies	and	the	corresponding	incomplete	mode	shapes,	are	obtained	from	FE	dynamic
analysis	for	the	simulated	‘tested’	structure,	namely	by	solving	the	characteristic	equations	for
the	‘tested’	structure	with	assumed	stiffness	changes.	The	first	eight	natural	frequencies	for	the
initial	FE	model	and	the	simulated	‘tested’	structure	are	listed	in	Table	6.6,	with	an	average
frequency	absolute	error	of	6.569%.	The	‘measured’	incomplete	mode	shapes	are	constructed
by	the	DOF	translational	modal	readings	in	only	X	and	Y	directions	at	six	nodes,	i.e.	nodes	5,
10,	12,	15,	18	and	20,	with	a	total	number	of	12	measurements	for	each	individual	mode,	as
shown	in	Figure	6.3.

Table	6.6	Updated	natural	frequencies	of	the	FE	model	using	eight	simulated	incomplete
modes	without	noise	and	with	7%	noise	level.

Noisefree 7%	noise	level
Mode FE

(Hz)
Exact
(Hz)

Error
(%)

Updated	(Hz) Error
(%)

Updated	(Hz) Error
(%)

1 10.3552 9.4554 9.517 9.4553 −0.001 9.4378 −0.186
2 25.9380 25.1115 3.291 25.1116 0.001 25.1028 −0.035
3 31.7608 28.0390 13.273 28.0410 0.007 28.1050 0.235
4 45.2475 42.4984 6.469 42.4973 −0.003 42.4491 −0.116
5 51.8179 50.4929 2.624 50.4915 −0.003 50.5029 0.020
6 65.5716 63.5167 3.235 63.5168 0.000 63.4860 −0.048
7 70.6418 65.0895 8.530 65.0884 −0.002 65.3023 0.327
8 72.1780 68.3407 5.615 68.3569 0.024 68.4744 0.196
Average	error	Eω	(%) 6.569 0.005 0.150

The	initial	FE	model	is	adjusted	through	the	dynamic	perturbation	method	by	using	the



simulated	‘measured’	incomplete	modal	data,	as	given	in	Table	6.6.	Information	about	eight
incomplete	modes	without	noise	and	with	7%	noise	level,	respectively,	is	utilised	for
evaluating	the	total	number	of	104	chosen	stiffness	updating	parameters	from	the	corresponding
total	number	of	96	equations	available.	The	updated	frequencies	are	in	excellent	agreement
with	the	simulated	exact	values,	with	average	absolute	errors	of	only	0.005%	for	the	case
without	noise	and	of	0.150%	for	the	case	with	7%	noise	level,	respectively.

In	order	to	investigate	the	accuracy	of	the	updated	structural	parameters,	results	for	updated
stiffness	parameters	are	then	compared	with	the	simulated	exact	values,	as	shown	in	Figure
6.4.	Information	about	different	numbers	of	noisefree	incomplete	modes	is	employed	in	the
model	updating	predictions,	using	six	modes,	eight	modes	and	ten	modes,	respectively.	From
the	results,	the	adjusted	stiffness	factors	are	in	good	agreement	with	the	simulated	exact	values
at	the	critical	points	of	beams	and	columns	(2,	3,	6,	18,	19,	22)	and	in	braces	(34,	38).	The
results	show	that	information	about	six	incomplete	modes	is	sufficient	to	provide	correct
predictions	of	structural	model	updating	by	using	the	dynamic	perturbation	method.

Figure	6.4	Comparison	of	updated	stiffness	parameters	of	the	FE	model	and	simulated	exact
stiffness	parameters	at	integration	point	level	for	beams	and	columns	and	at	element	level	for
braces,	information	on	different	number	of	noisefree	incomplete	modes	used.

Now,	the	real	modal	data	measurements	from	the	laboratory	vibration	testing,	as	discussed	in
Section	5.3.3,	are	used	for	updating	the	initial	FE	model	shown	in	Figure	6.3.	Table	6.7	shows
the	updated	natural	frequencies	from	six	experimental	incomplete	modes	by	using	different
model	updating	methods,	i.e.	the	sensitivity	based	method,	the	simplified	direct	dynamic
perturbation	method	and	the	iterative	dynamic	perturbation	method.	For	the	sensitivity	based
method,	the	average	frequency	absolute	error	is	reduced	from	an	initial	value	of	1.178%	to	a
value	of	0.339%	after	updating.	The	simplified	direct	method	and	the	iterative	method	give
very	close	results	with	updated	average	frequency	absolute	errors	of	0.109%	and	0.072%,



respectively,	which	are	better	than	those	obtained	by	the	sensitivity	based	method.

Table	6.7	Comparison	of	updated	natural	frequencies	of	the	FE	model	using	six	real
experimental	incomplete	modes	by	different	model	updating	methods.

Sensitivity Direct Iterative
Mode FE

(Hz)
Measured
(Hz)

Error
(%)

Updated
(Hz)

Error
(%)

Updated
(Hz)

Error
(%)

Updated
(Hz)

Error
(%)

1 10.3552 10.569 −2.022 10.495 −0.697 10.544 −0.240 10.551 −0.173
2 25.9380 26.386 −1.698 26.189 −0.746 26.386 0.000 26.389 0.010
3 31.7608 32.258 −1.541 32.416 0.490 32.203 −0.173 32.225 −0.101
4 45.2475 46.018 −1.674 45.993 −0.054 45.948 −0.153 45.972 −0.099
5 51.8179 51.847 −0.056 51.836 −0.022 51.821 −0.051 51.834 −0.026
6 65.5716 65.522 0.076 65.506 −0.024 65.550 0.043 65.535 0.020
Average	absolute	error
(%)

1.178 0.339 0.109 0.072

6.7	Case	Study
The	constructed	supertall	structure	Canton	Tower,	as	described	in	the	case	study	in	 Section
5.7,	is	adopted	again	for	structural	model	updating	using	measured	modal	data.	Since	the	full
scale	3D	FE	model	shown	in	Figure	5.14(a)	has	a	large	number	of	elements	and	DOFs,	an
equivalent	reducedorder	FE	model	shown	in	 Figure	5.14(c)	is	used	for	FE	model	updating
and	structural	health	monitoring	(Ni	et	al.	2012).	In	the	reduced	FE	model,	the	tower	is
modelled	as	a	cantilever	beam	with	37	beam	elements	and	38	nodes:	27	elements	for	the	main
tower	and	10	elements	for	the	upper	mast	(Chen	and	Huang	2012,	Chen	and	Tee	2014).	The
vertical	displacement	of	the	structure	is	ignored	in	the	reduced	FE	model,	giving	a	total	number
of	five	DOFs	for	each	node,	i.e.	two	horizontal	translational	DOFs	and	three	rational	DOFs.
Therefore,	each	beam	element	has	10	DOFs	and	the	reduced	FE	model	has	a	total	of	185	DOFs
with	a	fixed	end	at	the	base.

A	finite	element	analysis	is	performed	to	calculate	the	natural	frequencies	and	mode	shapes	for
the	reducedorder	FE	model.	The	operational	modal	data	identified	from	the	ambient
vibration	measurements	by	the	SSI	technique,	given	in	Table	5.3,	is	adopted	for	model
updating.	Table	6.8	shows	that	the	difference	between	the	frequencies	identified	from	the
ambient	vibration	measurements	and	those	from	FE	model	is	relatively	large,	with	the	largest
relative	error	in	the	fundamental	natural	frequency.	The	modal	assurance	criterion	(MAC)
diagonal	values,	determined	from	the	measured	incomplete	mode	shapes	and	the	FE	calculated
eigenvectors	restricting	to	the	same	DOFs,	indicate	good	correlations	between	the	measured
and	calculated	modes,	except	two	torsion	modes:	6th	and	12th	modes.



Table	6.8	Updated	modal	properties	of	the	reduced	FE	model	using	10	measured	frequencies
excluding	two	torsion	modes.

Before	updating After	updating
Mode Tested

frequency
(Hz)

FE
frequency
(Hz)

Difference
(%)

MAC
value

FE
frequency
(Hz)

Difference
(%)

MAC
with
tested

MAC
with
FE

1 0.090 0.111 23.81 0.904 0.093 3.76% 0.773 0.937
2 0.131 0.159 21.19 0.938 0.142 8.14% 0.824 0.936
3 0.366 0.347 −5.17 0.888 0.367 0.19% 0.881 0.996
4 0.422 0.369 −12.50 0.888 0.402 −4.71% 0.917 0.998
5 0.474 0.400 −15.59 0.869 0.428 −9.66% 0.844 0.998
6 0.504 0.462 — — — — — —
7 0.520 0.487 −6.31 0.783 0.506 −2.69% 0.892 0.995
8 0.796 0.738 −7.21 0.797 0.781 −1.80% 0.832 0.997
9 0.966 0.904 −6.44 0.771 0.940 −2.65% 0.832 0.996
10 1.151 0.997 −13.34 0.701 1.004 −12.72% 0.683 0.999
11 1.191 1.037 −12.86 0.753 1.055 −11.42% 0.810 0.998
12 1.251 1.121 — — — — — —

Average 12.44%* 0.829# 5.77%* 0.829# 0.985#

*	Average	of	the	absolute	values	of	deference	in	frequencies.

#	Average	of	MAC	values	excluding	two	torsion	modes.

The	significant	difference	between	the	measured	and	FE	calculated	frequencies	indicates	that
there	are	modelling	errors	in	the	reduced	FE	model	and	measurement	uncertainty	from	the
recorded	vibration	data.	This	significant	difference	requires	an	updating	of	the	finite	element
model.	Here,	a	total	number	of	37	structural	stiffness	parameters	are	adopted	for	updating	the
reduced	FE	model	for	the	Canton	Tower.	A	total	number	of	20	DOF	readings	are	available	for
each	measured	mode	shape.	The	updating	of	mass	is	not	considered	due	to	its	relatively	higher
accuracy.

Table	6.8	summarises	the	results	for	the	updated	modal	properties	of	the	reduced	FE	model	by
using	the	dynamic	perturbation	method.	A	total	number	of	10	measured	frequencies	are	used	for
model	updating.	The	average	of	the	absolute	values	of	the	difference	in	frequencies	reduces
from	12.44%	before	updating	to	5.77%	after	updating.	The	obtained	high	MAC	diagonal
values	indicate	that	the	updated	mode	shapes	match	well	the	original	FE	calculated
eigenvectors	and	experimental	mode	shapes	as	well.

Table	6.9	lists	the	updated	modal	properties	of	the	reduced	FE	model	by	using	nine	measured
incomplete	modes.	The	results	show	that	the	updated	frequencies	are	much	closer	to	the



frequencies	identified	from	vibration	measurements,	reducing	the	average	frequency	absolute
error	from	11.83%	initially	to	4.29%	after	updating.	The	obtained	MAC	diagonal	values
indicate	that	the	updated	mode	shapes	correlate	well	with	the	initial	modes	of	the	FE	model
and	also	have	good	correlation	with	the	modes	identified	from	field	measurements.

Table	6.9	Updated	modal	properties	of	the	reduced	FE	model	using	nine	measured	incomplete
modes.

Before	updating After	updating
Mode Tested

frequency
(Hz)

FE
frequency
(Hz)

Difference
(%)

MAC
value

FE
frequency
(Hz)

Difference
(%)

MAC
with
tested

MAC
with
FE

1 0.090 0.111 23.81 0.904 0.085 −5.56% 0.712 0.973
2 0.131 0.159 21.19 0.938 0.136 3.82% 0.595 0.945
3 0.366 0.347 −5.17 0.888 0.368 0.55% 0.986 0.837
4 0.422 0.369 −12.50 0.888 0.402 −4.74% 0.996 0.958
5 0.474 0.400 −15.59 0.869 0.428 −9.70% 0.997 0.851
6 0.504 0.462 −8.33 — 0.461 −8.53% 0.718 —
7 0.520 0.487 −6.31 0.783 0.512 −1.54% 0.962 0.874
8 0.796 0.738 −7.21 0.797 0.783 −1.63% 0.971 0.818
9 0.966 0.904 −6.44 0.771 0.941 −2.59% 0.959 0.857

Average 11.83%* 0.829# 4.29%* 0.877# 0.889#

*	Average	of	the	absolute	values	of	deference	in	frequencies.
#	Average	of	MAC	values.

Figure	6.5	indicates	the	results	for	the	updated	stiffness	parameters	of	the	reduced	FE	model
using	nine	measured	incomplete	modes.	The	values	of	stiffness	updating	parameters	are
relatively	small,	ranging	from	−8.93%	to	13.24%	with	an	average	of	the	absolute	values	of
3.80%.	These	results	appear	reasonable	in	practice,	since	only	relatively	small	stiffness
modifications	in	the	wellconstructed	initial	FE	model	are	required	to	minimise	significant
differences	between	the	FE	calculated	and	the	identified	modal	data.



Figure	6.5	Updated	stiffness	parameters	of	the	reduced	FE	model	using	nine	measured
incomplete	modes.

6.8	Concluding	Remarks
Model	updating	methods	aim	to	improve	the	correlation	between	the	measured	data	and	the
results	predicted	by	the	finite	element	model.	A	model	updating	procedure	can	adjust	certain
errors	in	finite	element	modelling,	such	as	material	properties,	crosssectional	properties	and
plate	thickness.	The	parameters	for	model	updating	may	be	chosen	at	local	level	by	using	non
dimensional	scalar	multipliers.	Owing	to	inevitable	noise	in	output	measurements	and	errors	in
finite	element	modelling,	a	regularisation	method,	such	as	the	Tikhonov	regularisation
algorithm	incorporating	the	Lcurve	criterion,	is	often	required	to	give	reliable	estimates	for
the	updating	parameters.

Sensitivity	based	methods	are	the	most	commonly	used	method	in	practice.	In	these	methods,
the	measured	outputs,	such	as	frequencies	and	mode	shapes,	are	adopted	for	updating	the	initial
finite	element	model.	The	sensitivity	based	methods	allow	a	wide	choice	of	the	parameters	for
model	updating	and	the	measured	outputs	to	be	weighted.	Calculating	the	sensitivity	of
measurements	with	respect	to	parameters	is	computationally	intensive,	and	only	the
approximations	of	the	sensitivity	may	be	obtained.	Since	the	sensitivity	is	generally	non
linear	functions	of	the	parameters,	an	iterative	procedure	is	necessary	with	possible	associated
convergence	problems	to	solve	for	the	selected	parameters.

The	dynamic	perturbation	method	overcomes	some	limitations	in	the	sensitivity	based	methods.
This	method	is	based	on	the	exact	relationship	between	the	perturbation	of	structural
parameters	and	the	modal	properties	of	the	actual	tested	structure.	The	dynamic	perturbation
method	directly	adopts	the	measured	incomplete	modal	data,	and	does	not	require	mode	shape
expansion	or	model	reduction	in	the	model	updating	processes.	Thus,	this	method	needs	much
less	computational	effort	to	estimate	the	updating	parameters.	The	method	provides	optimised



solutions	for	model	updating	in	the	least	squares	sense	without	requiring	optimisation
techniques.	Also,	the	method	offers	reliable	estimates	of	structural	updating	parameters,	even
in	the	cases	where	relatively	large	modifications	in	structural	parameters	and/or	in	modal
properties	exist	between	the	finite	element	model	and	the	tested	structure.

Recently,	various	techniques	have	been	developed	for	updating	finite	element	models.	The	full
field	measurements	of	vibration	mode	shapes,	obtained	from	scanning	laser	velocimetry
(Stanbridge	et	al.	2004)	and	digital	image	processing	(Wang,	et	al.	2009),	have	been	used	for
model	updating.	A	Bayesian	probabilistic	framework	for	robust	finite	element	model	updating
has	been	proposed,	which	is	capable	of	identifying	multiple	nonunique	solutions	(Beck	and
Katafygiotis	1998,	Simoen	et	al.	2013).	Furthermore,	timedomain	data	and	nonlinear
frequency	response	function	measurements	have	been	utilised	for	nonlinear	model	updating,
such	as	updating	the	linear	and	nonlinear	parameters	of	a	beam	with	a	cubic	stiffness	at	one
end	(Meyer	and	Link	2003).	These	new	methods	improve	the	algorithms	and	procedures	for
updating	finite	element	models.	After	the	finite	element	model	is	updated	and	validated	using
real	measurements,	this	model	can	then	be	used	as	the	baseline	model	of	the	intact	structure	for
damage	identification.
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7
VibrationBased	Damage	Identification	Methods

7.1	Introduction
Structural	damage	identification	is	important	for	assessing	the	condition	of	civil	engineering
structures	in	service	and	for	determining	effective	maintenance	plans	of	the	structures.	Among
the	existing	damage	identification	methods,	the	most	commonly	used	for	identifying	damage	in
engineering	structures	is	the	vibrationbased	method.	Vibrationbased	damage	identification
methods	were	initially	investigated	in	mechanical,	aerospace	and	offshore	engineering.	These
methods	have	received	increasing	interest	in	civil	engineering	over	the	past	two	decades.	The
underlying	principle	behind	these	methods	is	that	the	vibration	signature	–	e.g.	modal
parameters	or	frequency	response	functions	–	is	a	sensitive	indicator	of	structural	physical
integrity.	When	damage	occurs	in	a	structure,	structural	parameters,	such	as	stiffness,	flexibility
and	strain	energy,	will	be	changed,	and	consequently	modal	parameters,	such	as	natural
frequency,	mode	shape	and	damping,	will	also	be	changed	(Chen	1998,	Chen	and	Maung
2014a,	Doebling	et	al.	1996,	Yan	et	al.	2007).	As	a	result,	both	change	in	structural	parameters
and	change	in	modal	parameters	can	be	used	as	damage	indicators	for	identifying	damage	in	a
structure.

Modal	parameters	can	be	obtained	from	vibration	measurements	of	the	structure	concerned
through	modal	testing	and	analysis.	The	obtained	modal	parameters	are	associated	with	change
in	structural	parameters,	such	as	reduction	of	stiffness,	due	to	damage	in	a	structure.	It	is
therefore	natural	to	use	the	measured	change	in	dynamic	behaviour	for	the	identification	of
structural	damage.	By	use	of	the	vibrationbased	methods,	damage	can	be	identified	in	a
global	sense,	even	when	the	location	of	damage	is	inaccessible.	The	damage	identification
methods	using	measured	natural	frequencies	are	attractive,	since	frequencies	can	be	easily
measured	at	a	single	point	on	the	structure	and	are	independent	of	the	position	selected
(Bicanic	and	Chen	1997).	Frequencies	are	less	contaminated	with	measurement	errors	and
easier	to	extract.	However,	use	of	change	in	frequencies	alone	may	not	be	sufficient	for
accurate	structural	damage	identification.	Information	on	other	measured	vibration	data,	such
as	mode	shapes,	frequency	response	functions	and	modal	strains,	is	often	further	needed	for	the
identification	of	damage	location.	In	general,	the	measured	frequencies	are	usually	more
accurate	than	the	mode	shapes,	but	the	mode	shapes	are	more	sensitive	to	local	damage.

Damage	identification	methods	using	change	of	structural	parameters	are	based	on	the
philosophy	that	damage	in	a	structure	causes	decrease	in	structural	stiffness	or	increase	in
structural	flexibility.	On	the	basis	of	the	relationship	between	the	structural	parameters	and	the
modal	parameters,	the	damage	in	the	structure	can	be	identified	using	the	measured	vibration
modal	data.	In	addition,	the	strain	energy	of	a	structure	such	as	a	beam	will	change	when
damage	occurs	in	the	structure.	The	change	of	strain	energy	can	therefore	be	adopted	for



damage	identification	using	the	vibration	modal	data	or	strain	measurements.

The	applications	of	neural	networks	have	attracted	increasing	attention	due	to	their	capabilities
such	as	pattern	recognition,	classification	and	function	approximation.	Statistical	pattern
recognition	deals	with	the	discovery	of	regularities	in	the	measured	data	and	subsequent
actions	such	as	classification	(Staszewski	and	Worden	2009).	A	robust	damage	detection
method	must	be	capable	of	recognising	patterns	in	the	observed	response	or	modal	parameters
of	the	structure	with	local	damage.	This	capability	is	generally	within	the	scope	of	the	pattern
matching	capabilities	of	neural	networks.	Therefore,	neural	networks	show	promise	for
structural	damage	detection.	Typical	methods	for	detecting	damage	in	civil	engineering
structures	include	novelty	detection,	backpropagation	neural	network,	and	probabilistic
neural	networks.

This	chapter	offers	a	comprehensive	and	updated	review	on	various	methods	for	detecting	and
localising	damage	in	a	structure	using	measured	vibration	modal	data.	First,	proper	structural
modelling	is	discussed	for	damage	identification	to	accurately	represent	the	behaviour	of	a
structure	and	to	characterise	damage	in	the	structure.	Depending	on	the	selected	damage
indicators,	two	commonly	used	types	of	damage	identification	methods	are	discussed.	One	type
uses	the	change	of	modal	parameters	and	their	derivatives,	such	as	natural	frequencies,	mode
shapes	and	their	curvatures,	frequency	response	functions	and	modal	strain	energy.	Another
type	of	method	uses	the	change	of	structural	parameters,	such	as	flexibility	matrix,	strain	energy
and	modal	strain.	Finally,	advanced	computational	methods	such	as	pattern	recognition	and
neural	networks	are	introduced	for	damage	identification	in	civil	structures.

7.2	Structural	Modelling	for	Damage	Identification
The	damage	model	for	structural	damage	identification	may	be	simple	or	complex,	depending
on	the	type	of	structure	(Lam	et	al.	1998,	Worden	and	Friswell	2009).	For	example,	a	cracked
beam	may	be	modelled	as	a	reduction	in	stiffness	in	a	large	finite	element	model.	Alternatively,
a	very	detailed	model	may	be	used	for	modelling	the	cracked	beam	from	fracture	mechanics.
Constructing	a	damage	model	often	depends	on	the	requirements	of	the	damage	identification
procedure	and	the	quality	of	the	measured	data.	Only	a	coarse	model	of	the	damage	may	be
identified	when	vibration	modal	measurements	of	the	lower	frequency	modes	are	adopted.	For
complex	civil	engineering	structures,	the	equivalent	continuum	technique	(Stubbs	et	al.	1990)
and	the	substructuring	technique	(Hajela	and	Soeiro	1990)	may	be	used	for	modelling	a
structure	with	damage.	The	equivalent	continuum	technique	may	generate	large	modelling
errors	and	mask	the	individual	member	with	damage.	The	traditional	substructuring	technique
is	a	feasible	approach	to	decrease	the	model	dimension	and	to	reduce	the	system	parameters.
The	substructure	where	damage	occurs	needs	to	be	small	enough	to	obtain	accurate	damage
location.	For	civil	infrastructure,	possible	global	structural	damage	indices	can	be	adopted	for
structural	health	monitoring	(Catbas	and	Aktan	2002),	as	shown	in	Figure	7.1.



Figure	7.1	Possible	global	structural	damage	indices	for	civil	engineering	structures	(after
Catbas	and	Aktan	2002).

For	large	civil	infrastructure	such	as	cablesupported	bridges,	global	modal	parameters	may
be	insensitive	to	damage	that	has	occurred	in	some	local	structural	members.	As	a	result,
problems	can	arise	in	identifying	the	damage	in	these	structural	members	using	modal
parameters.	For	heavily	redundant	structures,	a	priori	classification	of	structural	members	in
terms	of	their	sensitivity	degrees	to	damage	can	exclude	the	redundant	physical	parameters
from	the	system	variables.	Meanwhile,	a	priori	evaluation	of	the	sensitivities	of	different
modes	to	damage	is	helpful	for	selecting	appropriate	modes	for	damage	identification.	Such
information	can	be	obtained	through	modal	sensitivity	analysis	of	the	structural	model.	It
requires	the	model	to	be	accurate	enough,	so	that	the	modal	sensitivity	with	respect	to	any
individual	structural	member	can	be	directly	calculated.	Therefore,	the	structural	model	needs
to	be	validated	through	a	model	updating	procedure	before	damage	detection	(Chen	and	Huang
2012,	Chen	and	Maung	2014b,	Friswell	and	Mottershead	1995).

For	large	civil	engineering	structures,	finite	element	(FE)	modelling	based	on	direct	assembly
of	all	critical	structural	components	will	involve	a	huge	number	of	degrees	of	freedom	(DOFs)
and	thus	become	computationally	demanding.	This	also	results	in	a	critical	problem	that	the
number	of	the	finite	element	model	DOFs	is	much	greater	than	the	number	of	DOFs	measured
in	modal	testing.	To	proceed	with	incomplete	modal	data,	a	model	reduction	or	mode	shape
expansion	technique	is	often	required	(Chen	2010,	Chen	et	al.	2012).	When	the	measured
DOFs	are	far	less	than	the	finite	element	model	DOFs,	both	techniques	will	seriously	degrade
the	damage	detection	capability.	Also,	a	structural	model	with	excessive	DOFs	results	in	an



inverse	problem	for	damage	identification	with	timeconsuming	and	illconditioning	issues.

To	obtain	accurate	structural	damage	identification	results,	structural	modelling	should	satisfy
the	following	requirements:	(a)	the	computed	modal	parameters	predicted	by	the	structural
model	are	well	correlated	with	the	measured	data	from	the	intact	structure,	(b)	modal
parameter	uncertainty	due	to	modelling	errors	is	less	than	modal	parameter	changes	caused	by
actual	damage,	(c)	the	size	of	the	finite	element	model	is	appropriate	so	that	the	number	of	the
model	DOFs	is	not	significantly	larger	than	that	of	measured	DOFs	in	the	modal	testing,	(d)	the
structural	model	is	accurate	enough	not	to	mask	the	damage	location	in	the	modelling	process.

A	simple	example	of	a	cantilever	beam,	as	shown	in	Figure	7.2,	is	employed	to	compare
various	structural	modelling	approaches.	The	beam	has	dimensions	of	5.0 m	in	length,	0.5 m	in
width	and	height.	It	has	material	properties	of	elastic	modulus	E = 3.2   1010 N/m2,	Poisson’s
ratio	υ = 0.15	and	density	ρ = 2400 kg/m3.	The	structure	can	be	modelled	with	different
approaches,	e.g.	onedimensional	conventional	or	Timoshenko	beam	problem,	two
dimensional	plate	stress	or	plate	bending	problem	and	threedimensional	solid	problem.

Figure	7.2	A	cantilever	beam	used	for	different	modelling	problems.

Structural	dynamic	analysis	and	damage	identification	for	these	model	problems	can	be
performed	using	the	corresponding	types	of	elements.	For	the	onedimensional	beam	model
problem,	the	used	finite	elements	include	conventional	beam	elements	with	explicit	or
numerically	integrated	stiffness	or	Timoshenko	beam	elements.	Meanwhile,	plane	stress
elements	or	plate	bending	elements	are	used	for	the	twodimensional	continuum	model
problem.	Solid	brick	elements	are	used	for	the	threedimensional	model	problem.	A	finite
element	analysis	was	performed	to	calculate	modal	parameters	for	the	cantilever	beam
problem.	The	first	five	natural	frequencies	of	the	structure	for	different	model	problems	are
listed	in	Table	7.1.	From	the	results,	there	are	some	differences	in	the	calculated	natural
frequencies	between	the	various	structural	modelling	approaches.	These	systematictype
errors	in	structural	modelling	should	be	minimised	in	damage	identification.	This	can	be
achieved	by	selecting	an	appropriate	structural	model	for	damage	detection,	and	a	model
updating	procedure	should	be	used	to	validate	the	structural	model.
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Table	7.1	First	five	frequencies	(Hz)	of	the	cantilever	beam	for	different	model	problems.

Problem	idealisation Element	type Original	mode
1 2 3 4 5

Explicit 11.7968 73.9319 207.0575 406.0334 672.2537
1D	Beam Integrated 11.7968 73.9319 207.0578 406.0374 672.2820

Timoshenko 11.7139 70.5350 186.7041 341.3871 524.4700
2D Plane	stress 11.7401 71.0200 182.6583 189.1143 348.1219
Continuum Plate	bending 11.7263 70.5867 114.8138 186.7733 341.3830
3D	Solid Solid	brick 11.7565 71.1085 120.3859 182.7632 189.3234

7.3	Methods	Using	Change	of	Modal	Parameters
Modal	parameters,	such	as	natural	frequencies	and	mode	shapes,	are	global	properties	of	a
structural	dynamic	system.	The	change	in	modal	parameters	can	indicate	the	presence	of
structural	damage	associated	with	structural	parameters,	such	as	stiffness	and	mass.	The
damage	identification	methods	based	on	change	of	modal	parameters	do	not	require	the
measurements	at	or	near	the	damage	location.	Such	methods	assume	that	structural	damage	can
be	identified	by	comparing	the	current	modal	measurements	with	those	for	the	undamaged	state
(DCSE	1998a).	Any	measured	change	in	modal	parameters	is	assumed	to	be	caused	by	damage
in	the	structure	only,	by	ignoring	the	effects	of	other	factors	such	as	change	in	environmental
conditions.

7.3.1	Natural	Frequencies
In	modal	testing,	natural	frequencies	are	easy	to	measure	and	are	independent	of	the
measurement	location.	Since	change	in	stiffness	due	to	damage	in	a	structure,	whether	local	or
distributed,	causes	change	in	natural	frequencies	of	the	structure,	the	presence	of	structural
damage	can	then	be	detected	simply	by	using	change	in	natural	frequencies.	The	sensitivity	of
natural	frequencies	(Δωi2)	to	change	in	stiffness	matrix	(ΔK)	is	expressed	in	(Cawley	and
Adams	1979)	by

where	 	and	ωi	are	the	ith	natural	frequency	of	the	damaged	and	undamaged	structure,
respectively,	φi	is	the	ith	mode	shape	of	the	undamaged	structure	and	M	is	the	global	mass
matrix.	It	is	assumed	that	the	structural	damage	causes	a	negligible	changes	in	the	mass	and	in
the	mode	shapes.	When	damage	occurs	at	a	single	location,	e.g.	at	the	eth	element,	from
Equation	(6.9a),	the	change	in	stiffness	matrix	ΔK	is	rewritten	as
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where	αe	is	a	nondimensional	coefficient	for	the	 eth	element	stiffness	matrix,	and	Ke	is	the
eth	element	stiffness	matrix	of	the	undamaged	structure	expanded	in	full	DOFs.	From	Equation
(7.2),	the	sensitivity	equation	Equation	(7.1)	is	rewritten	as

This	equation	indicates	the	relationship	between	the	shift	in	natural	frequency	and	the	structural
damage	at	the	eth	element,	on	the	basis	of	the	modal	information	of	the	undamaged	structure.
Assuming	that	the	mode	shapes	of	the	undamaged	structure	are	mass	normalised,	leads	to	the
following	sensitivity	equation

This	method	is	only	applicable	to	singledamage	cases	due	to	its	assumptions.	For	symmetric
structures,	the	identification	by	this	method	in	the	case	of	single	damage	may	result	in	two	or
more	possible	damage	locations.	In	such	situations,	several	pairs	of	modes	must	be	used	in
order	to	define	the	damage	position	uniquely	or	to	reduce	the	number	of	possible	locations	to
the	minimum	dictated	by	symmetry.	When	some	insensitive	modes	are	included	in	the	mode
pairs,	the	identification	for	the	damage	location	may	result	in	erroneous	results.	The
improvement	can	be	achieved	only	after	eliminating	these	unfavourable	modes	from	the
analysis.

Structural	damage	at	single	location	can	also	be	detected	by	the	damage	location	assurance
criterion	(DLAC)	using	the	frequency	changes	in	a	number	of	modes	(Williams	et	al.	1997).
The	DLAC	for	location	j	is	defined,	using	a	correlation	criterion	similar	to	the	modal
assurance	criterion,	as

where	 	is	the	vector	of	measured	natural	frequency	changes	and	δωj	is	the	analytical
frequency	change	vector	with	the	assumed	damage	at	location	j.	Given	an	analytical	or	finite
element	model,	δωj	and	then	DLAC(j)	can	be	computed	for	all	possible	damage	locations.
DLAC	values	range	from	0	to	1,	with	0	indicating	no	correlation	and	1	indicating	an	exact
match	between	the	patterns	of	frequency	change.	The	location	j	giving	the	highest	DLAC	value
indicates	the	predicted	damage	location.

7.3.2	Direct	Mode	Shape	Comparison



(7.6)

(7.7)

Measurements	of	the	mode	shape	of	a	civil	engineering	structure	require	sufficient	spatial
sensor	resolution.	Mode	shape	changes	are	found	to	be	rather	sensitive	to	damage	in	a
structure,	in	particular,	when	higherorder	modes	are	adopted.	Mode	shape	changes	have	the
capability	of	directly	providing	damage	location	information	(Carden	and	Fanning	2004).	The
commonly	used	methods	to	compare	two	sets	of	mode	shapes	include	the	modal	assurance
criterion	(MAC)	and	the	coordinate	modal	assurance	criterion	(COMAC).

The	MAC	can	be	used	to	detect	the	existence	and	the	location	of	structural	faults	(Wolff	and
Richardson	1989),	defined	here	as

in	which	 	is	the	ith	mode	shape	of	the	structure	before	damage,	and	 	is	the	jth	mode	shape
of	the	structure	after	damage.	The	superscripts	u	and	d	denote	the	undamaged	and	damaged
states,	respectively.

The	MAC	is	a	scale	quantity	ranging	from	0	to	1,	representing	the	degree	of	correlation
between	two	sets	of	mode	shapes:	1	for	perfectly	correlated	and	0	for	completely	uncorrelated.
Low	MAC	values	close	to	zero	indicate	possible	damage.	This	approach	is	simple	and
straightforward,	but	is	based	on	the	intuitive	assumption	that	change	in	mode	shapes	at	the
DOFs	near	a	damaged	location	are	relatively	larger	than	others	far	away	from	the	damaged
location.	This	assumption,	however,	is	not	necessarily	true.	Sufficient	sensors	must	be	used	to
ensure	that	the	MAC	value	is	a	meaningful	indicator	of	the	mode	shape	correlation.

The	COMAC	is	a	pointwise	measure	of	the	difference	between	two	sets	of	mode	shapes	with	a
value	ranging	from	0	to	1.	The	COMAC	spatially	correlates	two	sets	of	mode	shapes	and
identifies	the	DOFs	with	maximum	disagreement	between	the	mode	pair	(Lieven	and	Ewins
1988).	When	applied	to	damage	localisation,	the	COMAC	can	be	defined	as

where	 	and	 	are	the	ith	mode	shape	of	the	undamaged	and	damaged	structure	at
location	j,	respectively,	and	Nm	is	the	number	of	selected	modes.	The	DOF	with	low	value	of
the	COMAC	indicates	a	possible	damage	location.

The	enhanced	coordinate	modal	assurance	criterion	(ECOMAC)	is	another	index	used	to	check
the	spatial	correlation	between	two	sets	of	mode	shapes	(Hunt	1992).	The	ECOMAC	is
defined	as
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A	high	value	of	the	ECOMAC	indicates	very	little	correlation	between	the	mode	pair.	A	low
value	of	ECOMAC	indicates	very	high	correlation.	Therefore,	the	degree	of	freedom	with	a
high	ECOMAC	value	indicates	the	possible	damage	location,	when	the	ECOMAC	is	applied
to	two	sets	of	mode	shapes	in	the	undamaged	and	damaged	states.

7.3.3	Mode	Shape	Curvature
The	use	of	mode	shape	curvatures	in	damage	detection	is	based	on	the	assumption	that	the
changes	in	the	curvatures	of	mode	shapes	are	highly	localised	in	the	damaged	region.	This
mode	shape	curvature	is	often	calculated	from	the	displacement	mode	shapes	using	a	central
difference	approximation.	The	change	in	mode	shape	curvature	then	can	be	used	to	detect	and
locate	damage	in	a	structure	(Pandey	et	al.	1991).	For	the	ith	mode,	the	mode	shape	curvatures
of	the	undamaged	and	damaged	structure	at	location	j	are	defined,	respectively,	as

(7.9a)

(7.9b)

where	 ,φi(j)	and	 	are	the	mode	shape	values	of	the	ith	mode	at	the	(j − 1)th,
jth	and	(j + 1)th	nodes,	respectively,	and	Δl	is	the	distance	between	two	nodes.

The	modal	curvature	change	rate	index	for	the	ith	mode	is	now	defined	as

When	a	total	number	of	Nm	modes	are	used	for	damage	detection,	the	mode	shape	curvature
(MSC)	damage	index	is	defined	as	the	average	of	the	mode	curvature	change	rates	for	the	total
Nm	modes:

The	changes	in	the	curvature	of	mode	shapes	are	localised	near	the	damaged	zone.	Such
changes	are	much	smaller	outside	the	damaged	region,	whereas	the	changes	in	the
displacements	of	mode	shapes	are	not	localised	to	the	damaged	zone.	This	characteristic	of	the
curvature	of	mode	shapes	is	useful	in	locating	the	region	of	damage.	The	change	in	the	mode
shape	curvature	increases	with	increasing	size	of	the	damage.	Mode	shapes	and	their
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derivatives	have	been	widely	used	for	structural	damage	identification	with	many	successful
applications.	The	methods	based	on	mode	shapes	and	their	derivatives	are	more	sensitive	to
damage	than	those	based	on	change	in	natural	frequencies.	However,	the	problem	of	measuring
mode	shapes	for	damage	detection	is	the	requirement	of	a	complicated	test	procedure	for
sufficient	spatial	measurement	resolution.	The	required	measurement	resolution	could	be
achieved	by	the	use	of	a	scanning	laser	Doppler	vibrometer.	This	equipment	allows	for	a	dense
grid	of	measurements.

7.3.4	Damping
The	introduction	of	damage	in	a	structure	will	usually	cause	changes	in	the	damping	capacity	of
the	structure.	From	the	experiments	of	a	beam	by	Rytter	(1993),	the	modal	damping	ratios	of
the	cantilevers	are	extremely	sensitive	to	even	small	cracks.	However,	the	changes	in	damping
are	highly	dependent	on	several	additional	factors,	such	as	temperature,	load	history	and
treatment	during	manufacturing.	Such	factors	make	damping	an	impracticable	candidate	to	be
used	to	detect	damage	in	a	structure.	In	addition,	the	possibility	of	using	modal	damping	ratios
for	damage	detection	in	connection	with	the	performance	of	vibration	monitoring	on	bridges
was	studied	by	Alampalli	et	al.	(1992).	Repetitive	tests	performed	on	a	model	of	a	composite
bridge	deck	show	that	the	modal	damping	ratios	are	very	sensitive	to	environmental
conditions,	such	as	temperature.	This	clearly	makes	it	difficult	to	use	modal	damping	ratios	for
damage	detection.

7.3.5	Frequency	Response	Function	Curvature
The	change	of	a	frequency	response	function	(FRF)	caused	by	structural	damage	can	be	used
for	damage	detection.	Significant	slope	and	curvature	differences	are	found	whenever	a	crack
is	introduced,	especially	near	the	natural	frequency	range.	The	FRF	based	damage
identification	methods	include	FRF	based	mode	shape,	FRF	based	mode	shape	curvature	and
FRF	based	damage	index	(Montalvão	et	al.	2006).	These	methods	are	equivalent	to	the	mode
shape	detection	methods,	but	using	FRFs	instead	of	mode	shapes.

The	FRF	curvature	method	is	based	only	on	the	measured	data,	without	requiring	any	modal
extraction.	This	method	includes	all	frequencies	in	the	measurement	range	and	not	just	the
modal	frequencies.	The	method	uses	FRF	data	at	different	locations	along	the	structure	(Maia
et	al.	2003).	For	the	chosen	frequency	range	ω,	the	absolute	difference	in	the	FRF	curvatures	

	between	the	damaged	and	undamaged	structure	is	defined	as

where	 	and	 	are	the	FRFs	at	location	i	for	an	applied	force	at	place	j	of	the	damaged	and
undamaged	structure,	respectively.	This	method	generally	performs	well,	although	false
damage	indications	remain	a	problem.	Improvements	could	be	made	in	various	ways,	such	as
in	the	interpolation	process,	in	the	method	of	calculating	the	maximum	occurrences,	and	in
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applying	statistics	to	the	results.

From	the	studies	on	the	FRF	curvature	method,	some	useful	conclusions	are	made	by	Sampaio
et	al.	(1999)	and	summarised	by	Montalvão	et	al.	(2006).	This	method	works	well	for	a	range
before	the	first	antiresonance	or	resonance	frequency.	This	is	because	the	difference	between
the	curvatures	of	the	damaged	and	undamaged	structure	becomes	less	significant	for	wider
frequency	ranges.	This	is	the	case	when	the	curvature	difference	is	compared	with	the
amplitude	difference	arising	from	the	resonances’	frequency	shift	caused	by	the	loss	of
stiffness.	The	method	is	not	very	sensitive	to	noise,	and	the	position	of	the	exciting	force	may
not	have	a	significant	influence.	When	compared	with	the	mode	shape	curvature	method,	the
FRF	curvature	method	has	better	overall	performance,	although	the	mode	shape	curvature
method	produces	better	results	for	higherorder	modes.

Antiresonance	frequencies	can	also	be	used	for	damage	detection	and	localisation.	When	the
resonance	peaks	are	defined	by	the	system	poles,	the	antiresonances	are	different	from	each
individual	FRF.	The	sensitivities	of	the	antiresonances	can	be	expressed	by	the	sensitivities
of	natural	frequencies	and	mode	shapes	(Mottershead	1998).	These	sensitivities	are
significantly	influenced	by	the	modes	with	frequencies	closest	to	zero.	The	results	from	a
cantilever	model	show	that	as	the	point	of	measurement	gets	closer	to	the	location	of	the	defect,
fewer	and	fewer	antiresonances	are	shifted	from	their	original	values	until	one	gets	to	the
location	of	the	defect	(Afolabi,	1987).	At	this	location,	all	the	antiresonances	are	exactly	as
they	were	in	the	undamaged	state.

7.3.6	Modal	Strain	Energy
When	a	particular	dynamic	mode	keeps	a	significant	amount	of	strain	energy	in	a	particular
structural	load	path,	the	modal	data	of	the	mode	will	be	much	more	sensitive	to	changes	in	the
load	path.	Changes	in	modal	strain	energy	can	therefore	be	utilised	as	a	useful	indicator	for	the
damage	identification.	The	modal	strain	energy	distribution	in	the	structural	elements	can	be
calculated	using	the	measured	mode	shapes	(Carrasco	et	al.	1997).	The	modal	strain	energy	of
the	jth	element	with	element	stiffness	matrix	Kj	in	the	ith	mode	φi	is	computed	from

The	weighted	difference	in	energy	distribution	between	the	undamaged	and	damaged	structure
is	given	by

Implementation	of	the	weighted	modal	strain	energy	has	a	potential	to	blur	noise	effects	by
assigning	large	weights	to	the	sensitive	elements	and	small	weights	to	the	insensitive	elements.
The	weighted	modal	strain	energy	differences	are	then	lumped	into	the	connecting	nodes	of	the
elements	to	provide	indications	of	the	damage	location.	The	identification	results	of	the	tested
space	truss	structure	show	that	this	technique	is	able	to	locate	the	damage	with	significant
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amount,	but	may	be	unable	to	detect	the	small	damage.

The	extent	of	damage	in	structural	elements	can	be	estimated	by	an	element	damage	factor,
defined	as

where	αij	is	a	damage	factor	that	estimates	the	damage	for	the	jth	element	using	the	ith	mode.
This	factor	may	take	values	ranging	from	−1	to	infinity,	where	negative	values	indicate
potential	damage.	The	formulation	gives	a	meaningful	indication,	only	when	the	elements	have
some	strain	energy	content	in	the	undamaged	and	damaged	states.

In	addition	to	the	measured	mode	shapes,	timedomain	responses	can	be	adopted	directly	for
identifying	the	location	of	damage	in	a	structure.	When	timedomain	responses	are	obtained	in
a	set	of	measurement	points,	the	mean	strain	energy	for	a	specified	time	interval	is	calculated
for	each	individual	structural	element	(Choi	and	Stubbs	2004).	The	obtained	mean	strain
energy	is	then	used	to	construct	a	damage	index	representing	the	ratio	of	the	stiffness
parameters	of	the	undamaged	and	damaged	structure:

in	which	βj	is	the	damage	index	for	the	jth	element,	Nt	is	the	total	number	of	sampling	points,	

	and	 	are	the	displacement	configuration	vectors	at	time	ti	for	the	undamaged	and
damaged	states,	respectively,	and	Cj	is	the	geometric	portion	of	the	contribution	of	the	jth
element	to	the	global	stiffness	matrix	K.	The	defined	damage	index	can	identify	the	locations	of
damage	in	a	structure	by	using	a	classification	algorithm.	The	classification	algorithm	is	based
on	the	assumption	that	the	normalised	damage	index	is	a	random	variable	with	a	normal
distribution.	After	the	possible	locations	of	damage	are	identified,	the	associated	damage
extent	can	be	estimated.	The	quality	of	this	damage	identification	method	depends	on	the
balance	between	lowering	the	significance	level	for	damage	localisation	and	increasing	the
number	of	false	positives.

7.3.7	Example	for	Damage	Localisation	–	a	Suspension	Bridge	(II)
The	Tsing	Ma	Bridge	is	a	doubledeck	suspension	bridge	in	Hong	Kong.	A	structural	health
monitoring	system	has	been	installed	on	the	bridge,	as	described	in	Section	2.3.5.	The	bridge
carries	two	threelane	carriageways	on	the	upper	deck	and	twin	railway	tracks	and	two	single
emergency	road	lanes	on	the	lower	deck	(Ni	et	al.	2000).	Structurally,	it	consists	of	about



20,000	components,	as	illustrated	in	Figure	7.3,	including	the	longitudinal	trusses,	Vierendeel
cross	frames,	deck	plates,	plan	bracings,	rail	waybeams,	tower	beams	and	columns,	main
cables,	hangers,	piers,	saddles,	anchorages	and	supporting	bearings	(Wang	et	al.	2000).	A
precise	threedimensional	finite	element	model	of	the	Tsing	Ma	Bridge	was	developed	for
accurate	damage	simulation	studies.	In	this	finite	element	model,	the	spatial	configuration	of
the	original	structure	completely	remains	and	the	stiffness	contribution	of	all	individual
structural	components	is	independently	described.	Therefore,	damage	occurring	in	any
structural	component	at	the	element	level	can	be	accurately	simulated	in	the	model.

Figure	7.3	Elevation	of	Tsing	Ma	Bridge.

The	finite	element	model	is	validated	by	using	the	measured	modal	data	obtained	from	the	on
line	monitoring	system.	Table	7.2	gives	a	comparison	between	the	measured	and	computed
natural	frequencies	for	the	first	four	lateral,	vertical	and	torsional	modes,	where	the
measurement	data	was	monitored	after	the	bridge	was	open	for	operation	(Lau	et	al.	1999).
The	vibration	modes	of	the	bridge	include	global	and	local	modes.	Most	global	modes	are
threedimensional	and	have	coupled	components	in	three	directions,	especially	the	lateral
bending	and	torsional	modes.



Table	7.2	Comparison	of	measured	and	computed	natural	frequencies	(Hz)	of	Tsing	Ma
Bridge.

Mode	type Mode
order

Measured
(Hz)

Computed
(Hz)

Difference	(%)

Predominantly	lateral	mode 1st 0.070 0.0686 −2.00
2nd 0.170 0.1611 −5.24
3rd 0.254 0.2546 0.24
4th 0.301 0.2820 −6.34

Predominantly	vertical	mode 1st 0.114 0.1154 1.23
2nd 0.133 0.1420 6.75
3rd 0.187 0.1836 −1.82
4th 0.249 0.2350 −5.62

Predominantly	torsional
mode

1st 0.270 0.2584 −4.30
2nd 0.324 0.3014 −6.97
3rd 0.486 0.4942 1.69
4th 0.587 0.5660 −3.58

Three	damage	scenarios	with	a	total	of	six	cases	are	simulated,	as	listed	in	Table	7.3,	where	x
and	z	represent	the	longitudinal	and	lateral	coordinates,	respectively,	with	the	origin	in	the
middle	of	the	main	span.	Scenario	1	simulates	the	damage	of	bearings	between	the	Ma	Wan
tower	and	deck.	Scenario	2	simulates	the	damage	of	deck	members	near	the	Ma	Wan	tower.
Scenario	3	simulates	the	damage	of	hangers	in	the	middle	of	the	main	span.	Damage	to
structural	elements	is	modelled	by	assuming	a	98%	reduction	in	member	stiffness,	but	no
change	in	mass.	The	‘measured’	modal	data	for	the	damaged	structure	is	then	obtained	from
finite	element	dynamic	analysis.

Table	7.3	Simulated	damage	cases	of	Tsing	Ma	Bridge.

Case	No. Damaged	member(s) Location
Case	1.1 one	vertical	bearing x = –688.5 m,	z = –13.0 m
Case	1.2 one	side	bearing x = –688.5 m,	z = –15.35 m
Case	2.1 one	top	chord x = –643.5 ~ –639.0 m,	z = –13.0 m
Case	2.2 one	diagonal	chord x = –643.5 ~ –639.0 m,	z = –13.0 m
Case	2.3 one	bottom	chord x = –643.5 ~ –639.0 m,	z = –13.0 m
Case	3 two	hangers x = ±9.0 m,	z = –18.0 m

The	main	span	deck	of	the	bridge	is	divided	into	76	segments.	It	is	assumed	that	there	is	only
one	measurement	point	in	a	segment,	thus	a	total	of	76	DOF	coordinate	measurements	are
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available	for	the	damage	identification.	In	order	to	evaluate	the	influence	of	the	number	of
measured	modes	on	the	damage	identification	performance,	the	modal	parameters	of	the	first
three	modes,	first	five	modes	and	first	eight	modes	are	used	for	the	damage	identification
simulation	studies,	respectively.	To	investigate	the	sensitivity	of	natural	frequencies	to	the
simulated	damage	scenarios,	the	percentage	difference	of	natural	frequencies	(PDNF)	between
the	intact	and	damaged	structure	for	the	ith	mode	is	defined	as

where	 	and	 	are	the	natural	frequencies	of	the	ith	mode	of	the	undamaged	and	damaged
structure,	respectively.

The	values	of	the	percentage	difference	of	natural	frequencies	for	damage	Cases	1.1	and	1.2
are	calculated	and	shown	in	Figure	7.4	(Wang	et	al.	2000).	From	the	results,	the	frequency
change	patterns	for	Cases	1.1	and	1.2	are	completely	different,	although	the	damage	locations
of	these	two	cases	are	the	same.	Therefore,	frequency	change	patterns	depend	on	damage	types
in	the	structure,	and	can	be	used	for	the	damage	classification.

Figure	7.4	Percentage	difference	of	natural	frequencies	(PDNF)	for	simulated	damage	Cases
1.1	and	1.2.

The	coordinate	modal	assurance	criterion	(COMAC)	method	is	adopted	for	detecting	and
localising	the	assumed	damage	scenarios.	The	COMAC	spatially	correlates	two	sets	of
simulated	damaged	mode	shapes,	and	identifies	the	degree(s)	of	freedom	with	maximum
disagreement	between	the	mode	pair.	The	damage	location	identification	results	from	the



COMAC	method	are	given	in	Table	7.4	(Wang	et	al.	2001).	From	the	results,	damage	Cases
2.1,	2.2	and	2.3	can	be	identified,	where	one	chord	is	assumed	to	be	damaged,	when	three,	five
or	eight	simulated	damaged	modes	are	used	in	the	calculations.	Damage	Cases	1.1,	1.2	and	3,
where	bearing	or	hangers	are	assumed	to	be	damaged,	cannot	be	detected	from	the	COMAC
method.

Table	7.4	Results	of	damage	location	identification	using	the	COMAC	method.

Case	No. True	damagedsegment(s) Identified	damage	segment(s)
3	modes 5	modes 8	modes

Case	1.1 1 0 0 0
Case	1.2 1 0 0 0
Case	2.1 between	2	&	3 2 2 2
Case	2.2 between	2	&	3 3 3 3
Case	2.3 between	2	&	3 3 3 3
Case	3 38,	39 0 0 0

Note:	‘0’	denotes	no	damage	identified.

The	enhanced	coordinate	modal	assurance	criteria	(ECOMAC)	method	is	an	alternative	index
used	to	check	the	spatial	correlation	between	two	sets	of	simulated	damaged	mode	shapes.
When	the	ECOMAC	is	applied	to	two	sets	of	mode	shapes	obtained	in	undamaged	and
damaged	states,	respectively,	the	degree	of	freedom	with	a	high	ECOMAC	value	indicates	the
damage	location.	Table	7.5	shows	the	damage	location	identification	results	from	the
ECOMAC	method.	Similarly,	damage	Cases	2.1,	2.2	and	2.3	can	be	identified	from	the
ECOMAC	method,	while	damage	Cases	1.1,	1.2	and	3	cannot	be	detected.

Table	7.5	Results	of	damage	location	identification	using	the	ECOMAC	method.

Case	No. True	damagedsegment(s) Identified	damage	segment(s)
3	modes 5	modes 8	modes

Case	1.1 1 0 0 0
Case	1.2 1 0 0 0
Case	2.1 between	2	&	3 3 3 3
Case	2.2 between	2	&	3 3 3 3
Case	2.3 between	2	&	3 3 3 3
Case	3 38,	39 0 0 0

Note:	‘0’	denotes	no	damage	identified.

The	change	in	mode	shape	curvature	(MSC)	is	now	used	to	locate	the	assumed	damage
scenarios	in	the	structure.	Table	7.6	lists	the	damage	location	identification	results	from	the
MSC	method.	It	is	found	that	the	MSC	damage	index	performs	better	than	the	COMAC	and



ECOMAC	indices.	All	the	damage	cases	are	detected.	The	damage	locations	are	correctly
identified	or	identified	with	false	positives.	Figure	7.5	shows	the	diagram	of	the	MSC	value
versus	segment	number	for	damage	Case	2.1	by	use	of	the	first	three	simulated	damaged	modes
(Wang	et	al.	2001).	It	is	obvious	that	a	significant	MSC	value	exists	at	segment	3,	indicating
correctly	the	damage	location	for	the	assumed	damage	Case	2.1.

Table	7.6	Results	of	damage	location	identification	using	the	mode	shape	curvature	(MSC)
method.

Case	No. True	damagedsegment(s) Identified	damage	segment(s)
3	modes 5	modes 8	modes

Case	1.1 1 1 1 1
Case	1.2 1 1 1 1
Case	2.1 between	2	&	3 3 3 3
Case	2.2 between	2	&	3 2,	3 2,	3 2,	3
Case	2.3 between	2	&	3 3 3 3
Case	3 38,	39 37,	38,	39,	40 37,	38,	39,	40 37,	38,	39,	40

Note:	‘0’	denotes	no	damage	identified.

Figure	7.5	Mode	shape	curvature	(MSC)	values	for	damage	Case	2.1	using	3	damaged	modes.

7.4	Methods	Using	Change	of	Structural	Parameters
Damage	identification	methods	using	vibration	measurements	are	based	on	the	fact	that	damage
in	a	structure	causes	a	reduction	in	stiffness	or	an	increase	in	flexibility,	leading	to	change	in
modal	parameters	of	the	damaged	structure.	Structural	parameters	such	as	stiffness,	flexibility
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and	strain	energy	can	be	estimated	by	using	modal	measurements	such	as	natural	frequencies,
mode	shapes	and	modal	strain	(DCSE	1998a).	From	this	relationship,	structural	damage	can	be
identified	from	the	change	of	structural	parameters.

7.4.1	Flexibility	Matrix
Compared	with	estimating	the	change	in	stiffness	matrix,	it	may	be	more	straightforward	to
estimate	the	change	in	flexibility	matrix.	The	method	based	on	the	flexibility	matrix	does	not
require	the	development	of	an	analytical	model	of	the	structure	under	investigation.	The
identification	of	damage	in	a	structure	is	performed	directly	using	the	experimental	modal	data
(Pandey	and	Biswas	1994).	From	the	modal	data,	the	flexibility	matrix	F	is	defined	as

where	Φ	is	the	mass	normalised	mode	shape	matrix	containing	φi	and	Λ	is	the	eigenvalue

diagonal	matrix	containing	frequencies	 .	The	modal	contribution	to	the	stiffness	matrix
increases	as	the	frequency	increases.	To	obtain	an	accurate	estimate	of	the	stiffness
experimentally,	the	high	frequency	modes	have	to	be	measured.	By	contrast,	the	modal
contribution	to	the	flexibility	matrix	decreases	as	the	frequency	increases,	that	is,	the	flexibility
matrix	converges	rapidly	with	increasing	values	of	frequency.	From	j	a	few	of	the	lower
frequency	modes,	a	good	estimate	of	the	flexibility	matrix	can	be	made.

Damage	in	a	structure	reduces	the	stiffness	of	the	structure.	Since	flexibility	is	the	inverse	of
stiffness,	reduction	of	the	stiffness	should	increase	the	flexibility	of	the	structure.	If	the	modal
parameters	of	the	structure	are	measured	at	both	intact	and	damaged	states,	the	flexibility
matrix	F	for	the	two	states	can	be	obtained.	Each	column	of	the	flexibility	matrix	F	represents	a
set	of	nodal	displacements	due	to	a	unit	force	at	one	of	the	DOFs.	Change	in	the	flexibility
matrix	ΔF	can	be	obtained	from

where	Fu	and	Fd	are	the	flexibility	matrices	for	the	undamaged	and	damaged	states,
respectively.	If	only	the	first	Nm	modes	are	measured,	the	undamaged	and	damaged	flexibility
matrices	can	be	estimated,	respectively,	from

For	each	DOF	j,	let	 	be	the	maximum	absolute	value	of	the	elements	in	the	jth	column	of
ΔF	with	entries	δfij:
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To	detect	and	locate	damage	in	a	structure,	the	quantity	 	is	used	as	a	measure	of	the	change
of	flexibility	for	each	measurement	location.	Similar	to	the	mode	shape	curvature	method,	the
flexibility	matrix	method	does	not	require	an	analytical	model	in	the	damage	identification
process.	However,	the	measured	mode	shapes	used	in	calculations	of	flexibility	matrix	must	be
mass	normalised,	which	means	that	the	mass	matrix	must	be	known.	Furthermore,	when	the
mode	shapes	are	incomplete	with	limited	readings	at	DOFs,	the	mass	needs	to	be	lumped	only
along	the	measured	DOFs,	or	the	mass	matrix	must	be	reduced	to	a	size	same	as	the	number	of
the	measured	DOFs.	Model	reduction	methods	such	as	the	Guyan	static	method,	as	discussed	in
Section	5.6.1,	may	be	used	for	the	model	reduction.

Experimental	verification	of	the	flexibility	matrix	method	for	detecting	and	locating	damage
was	carried	out	by	Pandey	and	Biswas	(1995).	Three	wideflange	steel	beams	were	tested	in
the	laboratory.	Damage	was	created	by	cutting	through	the	beam	using	a	saw.	Modal	tests	were
undertaken	to	obtain	the	natural	frequencies	and	mode	shapes	for	both	the	intact	and	damaged
beam.	The	measured	natural	frequencies	and	mode	shapes	of	the	lowest	three	modes	were	used
in	evaluating	the	flexibility	matrix	change.	Different	damage	cases	were	examined.	To	locate
damage	limited	to	the	flange	of	the	beam,	it	was	found	that	measurements	taken	in	the
transverse	direction	are	more	sensitive	than	those	taken	in	the	vertical	direction.	From	the
numerical	studies	for	a	bridge	girder	(Humar	et	al.	2006),	the	flexibility	matrix	method	is	not
always	successful,	although	the	method	can	identify	the	location	of	damage	in	some	cases,
particularly	when	damage	is	located	at	one	site.

On	the	basis	of	the	change	of	flexibility	matrix,	an	approach	using	the	damage	locating	vector
(DLV)	is	proposed	by	Bernal	(2002).	The	DLV	approach	is	a	technique	for	mapping	changes	in
flexibility	to	the	spatial	distribution	of	damage.	Its	principle	is	based	on	the	fact	that	the	null
space	of	the	change	in	flexibility	provides	vectors	leading	to	stress	fields	with	zero	over	the
damaged	site,	when	treated	as	loads	on	the	structure.	The	main	idea	is	to	calculate	a	set	of	load
vectors	L,	and	the	vectors	have	properties	of	inducing	stress	fields	whose	magnitude	is
identically	zero	over	the	damaged	elements.	The	null	space	of	the	change	in	flexibility	contains
vectors	that	lead	to	identical	displacements	at	the	measured	coordinates	in	the	undamaged	and
damaged	states.	By	using	the	flexibility	matrices	in	the	undamaged	and	damaged	states,	the
identical	displacement	condition	is	expressed	as

This	formulation	indicates	that	the	load	vector	L	generates	identical	displacements,	when
applied	to	the	undamaged	and	damaged	structure:

Although	differences	exist	at	local	elements	in	the	undamaged	and	damaged	states	due	to
damage,	identical	displacements	for	the	two	states	can	be	obtained	by	choosing	a	specific	load
vector.	The	DLV	localisation	is	performed	by	calculating	the	null	space	of	ΔF,	treating	the
obtained	vectors	as	static	loads	on	the	structure,	and	then	identifying	the	damage	as	the
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intersection	of	the	regions	of	zero	stress.	In	practice,	the	null	space	and	the	zero	stress	region
should	be	defined	using	a	small	value	in	the	presence	of	approximations	and	truncations.	When
Fu	and	Fd	are	rank	deficient	and	their	null	space	have	a	nonzero	intersection,	the	load	vectors
L	are	not	damage	locating	vectors	and	then	damage	cannot	be	identified	(Bernal	2002).	A
sufficient	condition	for	rank	deficiency	is	that	the	number	of	identified	modes	is	smaller	than
the	number	of	sensors	adopted	for	the	test.

7.4.2	Strain	Energy	Based	Damage	Index
For	beam	type	structures,	a	damage	index	is	proposed	in	the	studies	by	Stubbs	et	al.	(1995)	and
Cornwell	et	al.	(1999),	on	the	basis	of	the	comparison	of	modal	strain	energy	before	and	after
damage.	Consider	a	linear	elastic	beam	with	NE	elements.	Damage	in	the	beam	causes
reduction	of	the	flexural	rigidity	at	the	damage	site.	Information	about	the	lowest	Nm	modes	is
available	for	both	the	undamaged	and	damaged	structure.	To	determine	mode	shape	amplitudes
at	locations	between	sensors,	the	modes	shapes	can	be	interpolated	with	a	cubic	polynomial.
Modal	curvatures	can	then	be	calculated	by	the	measured	displacement	mode	shapes,	as
discussed	in	Section	7.3.3.	The	modal	strain	energy	of	a	conventional	beam	associated	with	the
ith	mode	shape	is	defined	as

where	EI	is	the	flexural	rigidity,	l	is	the	length	of	the	beam,	and	 	represents	modal
curvature	of	the	ith	mode.	The	contribution	of	the	jth	element	with	length	of	δl	to	the	modal
strain	energy	is	calculated	by

The	fraction	of	modal	strain	energy	contributed	by	the	jth	element	is

Assuming	that	the	elements	are	small	enough,	and	flexural	rigidity	is	constant	on	the	elements
of	the	beam,	gives
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where	coefficient	fij	is	related	to	the	mode	shape	curvature.	This	formulation	is	then	applied	to
both	the	undamaged	and	damaged	structure.	Assume	that	only	the	jth	element	is	damaged,	the
flexural	rigidity	over	the	beam	is	constant	and	remains	unchanged	after	damage.	Thus,	the
fractions	of	modal	strain	energy	are	very	close	to	each	other	before	and	after	damage,	i.e.	

,	leading	to

The	quantity	βij	is	the	strain	energy	based	damage	index	associated	with	the	jth	element	in	the
ith	mode.	The	damage	index	increases	as	the	flexural	rigidity	decreases	due	to	damage.	To
avoid	potential	problems	due	to	very	small	values	of	the	denominator,	the	definition	of	the
strain	energy	based	damage	indicator	is	revised	as

In	the	case	with	a	total	of	Nm	modes	available,	the	definition	of	the	strain	energy	based	damage
index	for	the	jth	element	becomes

Statistical	methods	are	then	used	to	examine	changes	in	this	index	and	to	associate	these
changes	with	possible	damage	locations.	A	normal	distribution	is	fitted	to	the	damage	indices,
and	values	falling	two	or	more	standard	deviations	from	the	mean	are	assumed	to	be	the	most
likely	location	of	damage	(Worden	and	Friswell	2009).	If	the	statistics	are	estimated	from	the
values	of	the	damage	index	on	the	damaged	structure,	the	threshold	is	equivalent	to	using	an
inclusive	discordancy	measure	to	detect	outliers	of	the	index.

The	strain	energy	based	damage	index	method	discussed	above	for	a	beam	can	be	extended	to
general	structure	types.	The	total	strain	energy	of	a	structure	in	the	ith	mode,	by	using	Equation
(6.1),	is	calculated	from
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where	Kj	is	the	element	stiffness	matrix	of	the	jth	element.	Similarly,	the	strain	energy	of	the	jth
element	in	the	ith	mode	is	obtained	from

Thus,	the	fraction	of	modal	strain	energy	contributed	by	the	jth	element	is	written	as

The	jth	element	stiffness	matrix	for	the	undamaged	and	damaged	structure	can	be	expressed,
respectively,	as

where	the	scalars	 	and	 	are	parameters	representing	the	material	stiffness	properties	of
the	jth	undamaged	and	damaged	element	of	the	structure,	and	the	matrix	Kj0	involves	only
geometric	quantities.	Again,	by	assuming	that	the	fraction	of	modal	strain	energy	before

damage	is	very	close	to	that	after	damage,	i.e.	 ,	the	strain	energy	based	damage	index
is	now	defined	as

in	which	coefficients	fiju	and	fijd	are	defined,	respectively,	as

The	strain	energy	based	damage	index	for	a	general	structure	type	is	then	very	similar	to	the
damage	index	for	a	beam	type	structure,	given	in	Equation	(7.28).

7.4.3	Modal	StrainBased	Damage	Index
Strain	measurements	can	be	directly	adopted	for	damage	localisation,	as	discussed	by	Serna
and	Stubbs	(1996).	With	the	development	of	fibre	optics,	it	will	be	economically	feasible	to
instrument	structures	with	fibre	optical	strain	gauges	to	collect	modal	strain	measurements.
Considering	a	linear,	undamaged,	skeletal	structure	with	total	NE	elements,	the	modal	strain
energy	of	the	jth	element	in	the	ith	mode	is	defined	as
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where	Ej	and	Vj	are	elastic	modulus	and	volume	of	the	jth	element,	respectively,	and	εij	is	the
modal	strain	of	the	jth	element	in	the	ith	mode.	The	total	strain	energy	for	total	NE	elements	in
the	ith	mode	is	given	by

The	fraction	of	strain	energy	contributed	by	the	jth	element	in	the	ith	mode	is	defined	as

From	this	formulation,	the	fractions	of	strain	energy	for	the	undamaged	and	damaged	structure
are	then	calculated	by	using	the	undamaged	and	damaged	modal	strain	measurements,
respectively.	The	undamaged	and	damaged	fractions	of	strain	energy,	Fiju	and	Fijd,	have	the
relationship

where	dFij	is	associated	with	the	change	in	the	fraction	of	strain	energy	of	the	jth	member	in	the
ith	mode.	Assuming	that	the	structure	is	damaged	at	a	single	location	j	and	the	resulting	change
in	Fij	is	only	a	function	of	Ej,	a	firstorder	approximation	of	 dFij	can	be	obtained	from

By	using	Equations	(7.39)	and	(7.41)	and	from	Equation	(7.40),	the	modal	strainbased
damage	indicator	βij	at	the	jth	element	in	the	ith	mode	is	defined	as

Here	again,	to	avoid	possible	problems	due	to	nearzero	values	of	the	denominator,	the
definition	of	the	modal	strainbased	damage	indicator	is	redefined	as
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This	formulation	represents	the	change	in	stiffness	property	at	a	specific	location	in	terms	of
measurable	undamaged	and	damage	modal	strains.	When	several	strain	modes	are	available,
the	damage	indicator	βij	is	normalised	for	each	mode	by

where	 	and	 	are	the	mean	and	standard	deviation	of	the	sample	values	of	the	damage
indicator.	Damage	location	is	then	identified	by	looking	at	the	magnitude	of	the	normalised
damage	indicators	for	all	elements.	The	effectiveness	of	this	formulation	is	demonstrated	on	a
numerical	example	of	a	twodimensional	truss	(Serna	and	Stubbs	1996).

7.4.4	Example	for	Damage	Localisation	–	a	Suspension	Bridge	(III)
The	Tsing	Ma	Bridge	discussed	in	Section	7.3.7	is	used	again	here	to	check	the	effectiveness
of	the	damage	identification	methods	based	on	change	of	structural	parameters.	Here,	the
flexibility	matrix	method	and	the	strain	energy	based	damage	index	method	are	utilised	for	the
location	identification	of	the	simulated	damage	scenarios	in	the	bridge,	as	summarised	in	Table
7.3.

The	flexibility	matrices	of	the	undamaged	and	damaged	structure	can	be	estimated	by	using
only	the	natural	frequencies	and	massnormalised	mode	shapes	of	a	few	loworder	modes.
Table	7.7	shows	the	damage	location	identification	results	from	the	flexibility	matrix	method.	It
is	found	that	the	damage	Cases	2.1,	2.2	and	2.3	can	be	identified,	even	when	three	simulated
damaged	modes	are	used.	However,	damage	Cases	1.1,	1.2	Case	3	are	difficult	to	detect
except	for	Cases	1.1	and	1.2	using	eight	simulated	damaged	modes.

Table	7.7	Results	of	damage	location	identification	using	the	flexibility	matrix	method.

Case	No. True	damagedsegment(s) Identified	damage	segment(s)
3	modes 5	modes 8	modes

Case	1.1 1 0 0 1
Case	1.2 1 0 0 1
Case	2.1 between	2	&	3 2 2 2
Case	2.2 between	2	&	3 3 3 3
Case	2.3 between	2	&	3 3 3 3
Case	3 38,	39 0 0 0

Note:	‘0’	denotes	no	damage	identified.

The	results	of	flexibility	matrix	index	values	for	damage	Case	1.2	are	plotted	in	Figure	7.6
using	the	first	eight	simulated	damaged	global	mode	shape	measurements	of	the	left	frame
(Wang	et	al.	2001).	The	true	damage	of	Case	1.2	is	at	the	left	side	of	the	deck.	The	flexibility
matrix	index	values	evaluated	on	the	left	frame	correctly	indicate	the	damage	location,	for



example	at	segment	1.

Figure	7.6	Flexibility	coefficient	index	values	at	nodes	on	deck	for	damage	Case	1.2.

Finally,	the	strain	energy	based	damage	index	method	is	used	for	identifying	the	location	of	the
assumed	damage	cases.	Table	7.8	summarises	the	damage	location	identification	results	from
the	strain	energy	based	damage	index.	It	is	observed	that	this	damage	index	method	performs
well	for	the	damage	identification	of	the	all	six	assumed	damage	scenarios.	All	the	damage
locations	are	correctly	identified	or	identified	near	the	actual	position(s).	Figure	7.7	shows	the
diagram	of	the	strain	energy	based	damage	index	value	versus	segment	number	for	damage
Case	2.1	by	use	of	the	first	three	simulated	damaged	modes.	The	results	correctly	indicate	the
damage	location	at	the	second	segment.

Table	7.8	Results	of	damage	location	identification	using	the	strain	energy	based	damage	index
method.

Case	No. True	damagedsegment(s) Identified	damage	segment(s)
3	modes 5	modes 8	modes

Case	1.1 1 1 1 1
Case	1.2 1 1 1 1
Case	2.1 between	2	&	3 2 2 2
Case	2.2 between	2	&	3 2 2 2
Case	2.3 between	2	&	3 2 2 2
Case	3 38,	39 36,	37,	38,	39 36,	37,	38,	39 36,	37,	38,	39

Note:	‘0’	denotes	no	damage	identified.



Figure	7.7	Values	of	the	strain	energy	based	damage	index	βj	for	damage	Case	2.1.

In	order	to	evaluate	various	damage	location	identification	methods,	Table	7.9	summarises
their	identification	performance	in	application	to	the	Tsing	Ma	Bridge.	First	three	simulated
damaged	modes	are	used	in	calculations	for	damage	location	identification.	From	the	results,
the	COMAC	and	ECOMAC	methods	are	not	suitable	for	damage	localisation	of	this	bridge.
The	mode	shape	curvature,	flexibility	matrix	and	strain	energy	based	damage	index	methods
are	appropriate	for	the	identification	of	damage	on	deck	members.	The	mode	shape	curvature
and	strain	energy	based	damage	index	methods	are	better	at	identifying	the	damage	on	bearings
and	hangers.	The	simulation	studies	also	show	that	the	mode	shape	curvature,	flexibility	matrix
and	strain	energy	based	damage	index	methods	perform	well,	even	if	only	relatively	sparse
modal	measurements	are	available.

Table	7.9	Comparison	of	different	damage	identification	methods	applied	to	Tsing	Ma	Bridge.

Method Case	1.1 Case	1.2 Case	2.1 Case	2.2 Case	2.3 Case	3
COMAC
ECOMAC
Mode	shape	curvature
Flexibility	matrix
Strain	energy	based	damage	index

	Damage	located;		Damage	located	with	false	positives;		Damage	not	located.

7.5	Pattern	Recognition	Methods



The	vibrationbased	damage	detection	problem	could	be	fundamentally	one	of	pattern
recognitions	(Sohn	et	al.	2001,	2004).	The	pattern	recognition	methods	are	nonmodelbased
damage	detection	methods	and	do	not	require	the	physical	model	of	the	structure	concerned.
Patterns	are	usually	obtained	through	features	from	signal	processing,	and	they	are	assumed	to
represent	different	damage	conditions	in	damage	detection.	Many	pattern	recognition	methods
have	been	developed	for	indicating	whether	a	structure	is	undamaged	or	damaged.	Among
these	methods,	the	novelty	detection	algorithm	is	often	used	for	detecting	the	occurrence	of
damage	in	a	structure.

7.5.1	Stochastic	Pattern	Recognition
Statistical	pattern	recognition	assigns	the	features	obtained	from	signal	processing	to	different
classes	using	statistical	density	functions	(Staszewski	and	Worden	2009).	In	general,	the
features	extracted	from	measurements	for	damage	detection	are	also	random	variables.
Therefore,	classifier	design	should	be	carried	out	within	a	statistical	framework,	such	as
statistical	pattern	recognition,	which	can	consider	situations	that	classes	will	sometimes
overlap,	that	is,	a	given	set	of	features	may	or	may	not	detect	damage.	Statistical	pattern
recognition	can	provide	critical	information	for	decision	making,	that	is,	it	can	give	a
probability	for	damage	diagnosis.

On	the	basis	of	the	extracted	features,	the	statistical	modelling	can	be	undertaken	by	either
parametric	estimation	or	nonparametric	estimation.	In	parametric	estimation,	the	statistical
distribution	of	the	features	is	assumed	in	advance,	and	the	associated	parameters	of	the
assumed	distribution	are	estimated	from	the	given	features.	On	the	other	hand,	nonparametric
estimation	techniques	do	not	apply	unnecessary	constraints	to	the	data	and	leave	the	data	to
define	its	own	distribution.	The	nonparametric	estimation	approach	is	more	useful	when	a
large	amount	of	training	data	is	available.	The	nonparametric	approach	may	fail	to	estimate
correctly	the	distribution	of	data	when	only	a	limited	amount	of	data	is	available.

Statistical	pattern	recognition	forms	a	part	of	machine	learning.	Machine	learning	theory	deals
with	three	main	problems:	classification,	regression	and	density	estimation.	Machine	learning
algorithms	can	be	classified	as	two	major	groups:	unsupervised	learning	and	supervised
learning.	Unsupervised	learning	involves	characterising	a	set	on	the	basis	of	measurements,
while	supervised	learning	requires	examples	of	input	and	output	data	for	an	assumed
relationship,	so	that	associations	might	be	learned,	and	errors	might	be	corrected.	These
machine	learning	algorithms	are	useful	tools	for	damage	detection,	since	it	is	often	impossible
to	acquire	sufficient	data	covering	the	various	possible	damage	states.	In	general,	novelty
detection	can	be	undertaken	in	an	unsupervised	context.

Novelty	detection	involves	the	identification	of	any	deviations	in	measured	data,	by	comparing
with	data	measured	under	normal	operating	conditions.	In	general,	features	derived	from
measurements	on	a	structure	in	its	undamaged	state	have	a	distribution	with	an	associated	mean
and	variance.	If	damage	occurs	in	the	structure,	then	there	may	be	a	change	in	the	mean,	the
variance	or	both.	Statistical	process	control	provides	a	framework	for	monitoring	the
distribution	of	the	features	and	for	detecting	new	data	that	is	inconsistent	with	the	past,	that	is,
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outlier	analysis.	If	all	other	variables	can	be	eliminated,	then	a	change	in	the	statistical
distribution	characteristics	of	the	features	will	indicate	damage	in	the	structure	(Carden	and
Fanning	2004).	Statistical	pattern	recognition	techniques	do	not	require	the	construction	of	a
correlated	analytical	model,	which	can	be	a	timeconsuming	and	difficult	task.	These
techniques	are	suitable	for	data	sets	obtained	from	ambient	excitations,	for	example,	traffic	or
wind	loading	on	a	bridge	structure.	However,	statistical	pattern	recognition	has	a	major
disadvantage,	probably	limited	to	detection	of	damage,	rather	than	location	and	quantification.

7.5.2	Novelty	Detection
The	object	of	novelty	detection	is	to	establish	whether	a	new	pattern	differs	from	previously
obtained	patterns	in	some	significant	respect.	This	can	be	realised	by	using	an	auto
associative	memory	neural	network.	An	autoassociative	network	can	be	a	multilayer
feedforward	perceptron	with	‘bottleneck’	hidden	layer(s).	This	network	is	trained	to
reproduce	at	the	output	layer,	while	the	patterns	are	presented	at	the	input	layer.	Thus,	the
output	layer	must	have	the	same	number	of	the	input	nodes.	However,	the	input	values	will	not
be	perfectly	reconstructed	in	the	output.	Since	the	patterns	are	passed	through	hidden	layers
that	have	fewer	nodes	than	the	input	layer,	the	network	is	forced	to	learn	just	the	significant
prevailing	features	of	the	patterns.	The	central	hidden	layer,	acting	as	a	bottleneck,	generates
an	internal	representation	that	compresses	redundancies	in	the	input	pattern,	while	retaining
important	information	to	the	output.

When	the	autoassociative	network	is	used	for	anomaly	detection	or	damage	alarming,	a
series	of	measurement	data	of	the	healthy	structure	under	normal	conditions	is	required	to	train
the	network	(DCSE	1998b).	No	information	on	the	structural	model	is	needed.	After	the
network	is	trained,	the	input	data	presented	on	training	is	passed	again	into	the	trained	network
to	yield	an	output	data	set.	The	difference	between	the	input	and	output	vectors	is	then
measured	using	a	form	of	distance	function,	called	a	novelty	index.	In	the	testing	phase,	a	new
series	of	measurement	data	obtained	later	from	the	same	structure	(damaged	or	undamaged)	is
passed	into	the	above	network	to	form	a	novelty	index	sequence.	If	this	sequence	deviates	from
the	novelty	index	sequence	of	the	training	phase,	the	occurrence	of	damage	is	detected.

In	the	training	phase,	a	series	of	measured	modal	data	of	the	healthy	(intact)	structure,	z = {z1
z2		 zM}T,	is	used	as	input	to	the	network.	The	output	y = {y1y2		 yM}T	of	the	network	is
set	as

where	κ	is	a	positive	constant	and	mi	is	the	mean	of	the	ith	element	zi	of	the	input	vector	z	over
the	training	data.	It	is	worth	noting	that	training	the	network	needs	only	the	measurement	data	of
the	healthy	structure.	After	performing	the	training,	the	input	pattern	z	presented	on	training	is
fed	again	into	the	trained	network	to	yield	output	pattern	ŷ,	and	the	novelty	index	sequence	for
the	training	phase	β(y)	is	obtained	in	terms	of	the	Euclidean	norm	as
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In	the	testing	phase,	a	new	series	of	modal	data,	zt = {z1t	z2t		 zMt}T,	is	measured	from	the
same	structure	(damaged	or	undamaged),	and	is	then	passed	into	the	above	trained	network	to
yield	output	ŷt.	The	corresponding	novelty	index	for	the	testing	set	is	then	obtained	by

where	 	is	the	vector	with	its	ith	element

If	the	testing	novelty	index	sequence	deviates	from	the	training	novelty	index	sequence,	the
occurrence	of	damage	is	flagged.	If	the	two	sequences	are	indistinguishable,	no	damage	is
signalled.	In	order	to	quantitatively	determine	whether	damage	occurs,	a	threshold	δβ	is
introduced.	It	is	estimated	from	the	training	data	and	is	defined	as

where	μβ	and	σβ	are	the	mean	and	standard	deviation	of	the	testing	novelty	index	sequence	over
the	training	data,	respectively.

7.5.3	Example	for	Damage	Detection	–	a	Suspension	Bridge	(IV)
The	Tsing	Ma	Bridge,	as	described	in	Section	2.3.5	and	Section	7.3.7,	is	used	again	for	a	case
study	on	damage	detection	using	the	pattern	recognition	method.	Here,	the	novelty	detection
algorithm	is	adopted	for	the	numerical	simulations	of	detecting	the	damage	occurrence	in	the
bridge	(DCSE	1999).	The	neural	network	based	novelty	filtering	technique	is	applied	for	the
anomaly	(cable	tension	reduction)	detection	of	the	Tsing	Yi	side	span	free	cables.	It	is	assumed
that	the	true	horizontal	tension	forces	of	the	cables	without	tension	reduction	are	405.838 × 106 
N.	The	natural	frequencies	of	the	cables	corresponding	to	the	true	tension	forces	are	computed
from	an	accurate	finite	element	method,	by	taking	into	account	the	cable	bending	stiffness	and
the	sagextensibility.	These	computed	frequencies	can	be	considered	as	the	deterministic
measured	modal	data	of	the	intact	cables.

Due	to	the	measurement	noise	and	the	structural	uncertainty	under	ambient	fluctuation	(e.g.
travelling	of	train	and	vehicle,	wind	attack	and	temperature	influence),	the	measured	modal
data	of	a	healthy	structure	under	normal	operating	conditions	varies	from	time	to	time	within	a
certain	threshold.	The	variation	in	measured	natural	frequencies	usually	follows	a	normal
random	distribution	(Sohn	and	Law	1997).	The	measurement	data	with	random	disturbances	is
generated	by	adding	to	the	true	cable	tension	forces	with	a	normally	distributed	random
sequence	with	zero	mean	and	0.05	variance.	Figure	7.8	shows	the	corresponding	‘normal’
fluctuation	of	the	tension	force	of	the	cable	after	corrupted	with	the	random	noise.	The	added
noise	corresponds	to	about	±15%	maximum	error.	The	natural	frequencies	of	the	first	three	in



plane	and	outofplane	modes	of	the	cables	corresponding	to	the	tension	force	sequences
with	‘normal’	fluctuation	are	then	computed.	These	sequences	are	considered	as	noise
corrupted	measurement	data	of	the	healthy	cables	to	train	an	autoassociative	network	for
anomaly	detection.

Figure	7.8	Simulated	‘normal’	fluctuation	of	tension	force	of	the	cable.

A	fourlayer	feedforward	perceptron	network	with	‘bottleneck’	internal	layers	is	designed
as	a	novelty	filter.	This	neural	network	has	a	node	structure	128812.	The	activation
functions	are	taken	as	the	tangentsigmoid	function	between	the	second	layer	and	the	third
layer.	The	linear	transfer	function	is	adopted	for	the	activation	functions	between	the	input
layer	and	the	second	layer	as	well	as	between	the	third	layer	and	the	output	layer.	The	network
is	trained	using	the	backpropagation	algorithm.

The	novelty	index,	similar	to	the	definition	in	Worden	(1997),	is	adopted	for	damage	detection
in	the	cable.	The	novelty	index	sequence	in	the	training	phase	is	plotted	in	Figure	7.9,
corresponding	to	the	former	500	data	(DCSE	1999).	The	fluctuation	in	the	novelty	index
sequence	for	the	training	set	reflects	the	measurement	noise	and	uncertainty	of	ambient
environments	under	normal	conditions	of	the	healthy	cables.	In	order	to	test	the	ability	of	the
trained	network	for	anomaly	detection,	the	cable	tension	is	reduced	by	5%	to	simulate	an
abnormal	condition	of	the	cable.	By	adding	to	the	reduced	tension	force	with	a	normally
distributed	random	sequence	with	the	same	variance	of	0.05,	the	noisecorrupted	‘measured’
natural	frequency	data	of	the	cable	corresponding	to	the	abnormal	condition	is	generated.	The
natural	frequencies	of	the	cable	are	obtained	and	each	data	sequence	is	taken	with	300	items	of



data.

Figure	7.9	Novelty	index	evaluated	on	training	and	testing	data	with	5%	reduction	in	cable
tension.

The	novelty	index	sequence	in	the	testing	phase	associated	with	the	abnormal	state	is	also
shown	in	Figure	7.9,	corresponding	to	the	latter	300	data	items.	The	dashed	line	represents	the

threshold	 .	From	the	results,	the	novelty	index	values	are	greater	than	the
predefined	threshold.	The	novelty	index	sequence	in	the	testing	phase	deviates	significantly
from	the	sequence	in	the	training	phase,	clearly	signalling	the	anomaly.	Therefore,	the	novelty
index	is	able	to	detect	the	anomaly	caused	by	only	5%	reduction	in	the	cable	tension,	while	the
measured	natural	frequencies	are	corrupted	with	random	noise	of	0.05	variance.

7.6	Neural	Network	Techniques
Artificial	neural	networks	(ANNs)	were	originally	developed	to	simulate	the	function	of	the
human	brain	or	neural	system.	Subsequently,	they	have	been	widely	applied	to	various	fields
ranging	from	biology	to	many	areas	of	engineering.	Although	the	neural	network	technique	is
not	specifically	designed	for	damage	detection,	its	pattern	matching	capability	makes	it
suitable	to	be	used	as	a	tool	for	damage	detection.	A	neural	network	is	an	assembly	of	a	large
number	of	highly	interconnected	simple	processing	units,	called	neurons.	The	connections
between	the	neurons	have	numerical	values	that	represent	the	strength	of	these	connections
called	weights.	Knowledge	is	stored	in	the	form	of	a	collection	of	connection	strengths.	Neural
networks	are	capable	of	selforganisation	and	knowledge	acquisition	(learning).	This	usually
involves	modifying	connection	weights	via	a	learning	rule.	Many	types	of	neural	networks
have	been	proposed	by	changing	the	network	topology,	node	characteristics	and	the	learning



procedures	(Cherkassky	and	Mulier	2007,	Hagan	et	al.	1996,	Specht	1996).	In	general,	neural
networks	are	particularly	applicable	to	complex	problems	where	a	significant	database	of
information	is	available,	but	where	it	is	difficult	to	specify	an	explicit	algorithm.

7.6.1	BackPropagation	Neural	Network
The	artificial	neural	network	with	backpropagation	(BP)	learning	algorithm	is	frequently
used	in	pattern	identifications	(Rumelhart	and	McClelland	1986).	The	nodes	in	back
propagation	neural	networks	are	arranged	in	layers.	Each	neural	network	has	an	input	layer,	an
output	layer	and	a	number	of	hidden	layers.	Figure	7.10	shows	a	typical	backpropagation
network	with	three	layers	(one	hidden	layer),	where	LA	is	the	input	layer	with	Ni	nodes,	LB	is
the	hidden	layer	with	Nh	nodes	and	LC	is	the	output	layer	with	No	nodes	(DCSE	1998b).	The
presence	of	hidden	nodes	allows	these	networks	to	represent	and	compute	more	complicated
associations	between	patterns.	Propagation	takes	place	in	a	feedforward	manner,	from	input
layer	to	output	layer.	No	communication	is	permitted	between	the	nodes	within	a	layer,	but	the
nodes	in	each	layer	may	send	their	output	to	nodes	in	the	next	layer.	Associated	with	each
connection	is	a	numerical	value	that	is	the	weight	of	the	connection.

Figure	7.10	Backpropagation	(BP)	neural	network	with	three	layers	and	nodes.

Assume	that	ai	is	an	input	of	the	input	nodes,	br	is	the	output	of	a	hidden	node,	cj	is	an	output	of
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the	output	nodes,	wir	is	a	connection	weight	from	input	node	i	to	hidden	node	r,	vrj	is	a
connection	weight	from	hidden	node	r	to	output	node	j	and	tr,	θj	are	thresholds	of	hidden	node
r	and	output	node	j,	respectively.	The	output	functions	of	hidden	node	and	output	node	are
given,	respectively,	by

where	i	ranges	from	1	to	Ni,	r	ranges	from	1	to	Nh,	j	ranges	from	1	to	No	and	f( )	is	the
sigmoidal	function	f(x) = (1 + e−x)−1.

The	connection	weights	are	developed	during	training	of	the	neural	network.	At	the	beginning
of	a	training	process,	the	connection	weights	are	assigned	to	initial	guesses	that	are	generally
random	values.	As	samples	are	presented	during	the	training,	the	connection	weights	are
modified	according	to	the	learning	algorithm.	At	the	successful	completion	of	training	when	the
iterative	process	has	converged,	the	collection	of	connection	weights	captures	and	stores	the
knowledge	and	the	information	present	in	the	samples	used	in	the	training.	Such	a	trained
neural	network	is	then	ready	to	be	used.	When	an	input	pattern	is	provided,	a	feedforward
computation	results	in	an	output	pattern.	This	is	the	result	of	the	generalisation	and	synthesis	of
what	the	network	has	learned	and	stored	in	its	connection	weights.

The	training	(i.e.	supervised	learning)	of	a	multilayer	backpropagation	neural	network	is
an	iterative	process.	Each	step	involves	the	determination	of	an	error	associated	with	each
node	and	then	the	modification	of	weights	on	the	connections	coming	into	that	node.	Each
presentation	of	one	training	case	and	subsequent	modification	of	connection	weights	is	called	a
cycle.	Each	cycle	includes	three	substeps:	(a)	forward	computation,	for	the	training	case	to	be
learned,	the	network	is	presented	with	the	input	pattern	and	then	propagates	the	activation
through	processing	nodes,	(b)	computation	of	errors	between	output	and	expectation	and	(c)
backpropagation	of	errors.	The	weights	of	connections	are	modified	through	the	gradient
descent	on	the	total	error	in	a	given	training	case.	A	set	of	cycles,	consisting	of	one	cycle	for
each	training	case,	is	called	an	epoch.	The	training	process	for	networks	may	require	several
hundreds	or	thousands	of	epochs	for	all	of	the	training	cases	to	be	learned	within	a	specified
error	tolerance.

7.6.2	Input	Parameters	and	PreProcessing
The	backpropagation	neural	network	has	an	input	layer,	several	hidden	layers	and	an	output
layer	(DCSE	1998b).	The	training	of	the	backpropagation	neural	network	requires	an
iterative	process,	and	an	improved	backpropagation	learning	algorithm	can	be	adopted
(Hagan	et	al.	1996).	In	the	applications	of	neural	networks	to	damage	identification,	the	input
vector	to	the	neural	network	consists	of	a	set	of	modal	parameter	measurements,	and	the	output
layer	is	composed	of	the	nodes	indicating	the	damaged	location	and	potential	damage
quantification.

The	neural	networks	are	typically	designed	with	their	input	vectors	in	terms	of	the	three	types
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of	data:	natural	frequencies,	mode	shapes	and	transfer	functions.	Also,	the	combined	modal
parameters	can	be	adopted	as	input	vector	to	the	backpropagation	neural	network	for
identifying	damage	in	a	structure.	Use	of	the	combined	modal	parameters	has	the	following
advantages:	(a)	they	can	be	derived	using	only	natural	frequencies	and	a	few	modal
components,	(b)	they	are	higher	tolerant	of	modelling	error	and	less	sensitive	to	measurement
noise	than	natural	frequencies	and	mode	shapes,	(c)	they	can	be	designed	as	being	dependent
on	only	damage	location	or	on	both	damage	location	and	damage	quantification.

The	input	vector	to	the	backpropagation	neural	network	for	damage	identification	can	be
expressed	as

where	NFCRi	is	the	normalised	natural	frequency	change	rate	of	the	ith	selected	mode,	defined
as

in	which	Nf	is	the	total	number	of	selected	natural	frequencies	and	FFCi	is	the	percentage
frequency	change	of	the	ith	mode	between	the	undamaged	and	damaged	structure,	defined	as

in	which	 	and	 	are	the	natural	frequencies	of	the	ith	mode	in	undamaged	and	damaged
states,	respectively.	The	normalised	damage	signature	index	NDSIi	is	defined	as

where	the	damage	signature	index	DSIi	is	calculated	from

in	which	 	and	 	are	the	mode	shapes	of	the	ith	mode	in	undamaged	and	damaged	states,
respectively,	and	they	may	be	incomplete.

The	output	vector	of	the	neural	network	has	the	form



(7.56)

where	Nd	is	the	number	of	possible	damaged	members	concerned	and	di	(i = 1,	2,	 ,	Nd)
represents	the	percentage	damage	extent	occurring	at	the	ith	member.

7.6.3	Probabilistic	Neural	Network
The	probabilistic	neural	network	(PNN)	performs	the	Bayesian	decision	analysis	with	the
Parzen	windows	estimator	cast	into	an	artificial	neural	network	framework	(Specht	1996).
When	applied	to	damage	identification,	the	probabilistic	neural	network	uses	data	from	the
undamaged	and	damaged	system	to	determine	whether	a	new	measurement	of	unknown	source
comes	from	the	undamaged	class	or	the	damaged	class.	Since	the	probabilistic	neural	network
directly	casts	the	probability	density	functions	(PDFs)	of	training	samples	in	the	network,	the
network	configuration	is	convenient	for	dealing	with	the	noisy	measurement	data	for	damage
identification.	A	main	feature	of	the	probabilistic	neural	network	is	that	it	can	explicitly
accommodate	the	noise	characteristic	as	neuroweights	in	the	trained	network.

Figure	7.11	shows	a	threelayer	probabilistic	neural	network	to	be	used	for	damage	location
identification	(Ni	2014).	The	network	consists	of	input	(distribution)	layer,	pattern	layer	and
summation	layer.	An	input	vector	a = {a1a2	 	ai	 	aNM}T	to	be	classified	is	applied	to	the
neurons	of	the	distribution	layer,	where	the	neurons	just	supply	the	same	input	values	to	all	the
pattern	units.	The	input	vector	consists	of	NM	modal	parameters	(natural	frequencies,	mode
shapes	or	their	combination).	For	the	purpose	of	damage	localisation,	the	combined	modal
parameters	discussed	in	Section	7.6.2	are	adopted	for	the	input	parameters.	In	the	pattern	layer,
there	are	a	total	number	of	Np	pattern	classes,	each	representing	a	possible	damage	location.
The	number	of	pattern	classes	depends	on	a	specific	structure.
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Figure	7.11	Architecture	of	a	threelayer	probabilistic	neural	network	(PNN)	for	damage
identification.

Each	neuron	in	the	pattern	layer	forms	a	dot	product	of	the	input	vector	a	with	a	weight	vector
wj	of	a	given	class,	bj = a wj.	The	neuron	then	performs	a	nonlinear	operation	on	 bj	before
the	output	to	the	summation	layer.	The	activation	function	used	here	is	g(bj) = exp[(bj − 1)/σ2],
where	σ	is	a	smoothing	parameter.	In	the	summation	layer,	each	neuron	receives	all	pattern
layer	outputs	associated	with	a	given	class.	For	instance,	the	output	of	the	summation	layer
neuron	corresponding	to	the	class	k	is	expressed	as

From	this	formulation,	the	kernel	density	estimators	for	probability	density	functions	have	been
cast	into	the	probabilistic	neural	network	by	setting	the	network	weight	vectors	as	the
corresponding	training	vectors.	The	configured	probabilistic	neural	network	provides	the
outputs	in	the	summation	layer,	that	is,	estimates	for	each	pattern	class	at	the	test	vector	point.
The	pattern	class	with	the	largest	probability	density	function	implies	the	class	of	the	current
test	vector,	and	thereby	indicates	the	damage	location	with	maximum	likelihood.

7.6.4	Example	for	Damage	Localisation	–	a	Suspension	Bridge	(V)
The	Tsing	Ma	Bridge	described	in	Section	2.3.5	and	Section	7.3.7	is	used	here	to	identify



structural	damage	using	neural	networks.	Figure	7.12	illustrates	the	numbering	of	members	in
the	left	longitudinal	frame	of	deck	segment	No.3	and	the	selected	mode	shape	components
(DCSE	1999).	In	the	network	training,	the	damage	is	simulated	by	removing	each	member	in
turn.	Four	damage	cases	with	the	damage	locations	at	the	members	5,	11,	12	and	16,
respectively,	and	two	damage	extents	for	each	case,	i.e.	50%	reduction	and	80%	reduction	of
Young’s	modulus	value,	are	considered	in	the	damage	identification	simulations.

Figure	7.12	Longitudinal	frame	member	numbering	in	deck	segment	No.3	and	the	selected
mode	shape	components	marked	with	arrows.

The	artificial	neural	network	with	backpropagation	learning	algorithm	is	adopted	to	identify
the	damaged	members	in	the	deck	segment.	The	combined	parameters	are	taken	as	input	vector
to	the	artificial	neural	network.	The	natural	frequencies	of	the	first	15	global	modes	and	the
selected	six	mode	shape	components	of	the	second	mode	are	used	to	construct	the	input	vector
of	the	network.	Therefore,	there	are	a	total	of	21	input	nodes	in	this	network.	The	network	is
configured	with	17	output	nodes	and	one	hidden	layer	consisting	of	30	nodes.	The	network	has
the	output	vector	consisting	of	17	elements,	indicating	the	damage	information	of	the	17
structural	members	shown	in	Figure	7.12.

After	completing	the	training	of	the	network,	the	testing	samples	of	the	four	damage	cases	with
two	different	damage	sizes	are	fed	into	the	network.	The	outputs	of	the	network	are	listed	in
Table	7.10	(DCSE	1999).	From	the	results,	the	damage	of	members	11,	12	and	16	with	the
extent	of	80%	is	correctly	identified,	while	damage	of	member	5	is	identified	as	the	damage	of
both	members	5	and	7.	For	the	damage	with	the	extent	of	50%,	only	the	damage	of	members	12
and	16	is	correctly	identified.	The	damage	of	members	5	and	11	is	identified	as	damage	at	both
members	5	and	7	and	as	damage	at	both	members	11	and	15,	respectively.	From	the	results,	the
backpropagation	neural	networks	require	only	limited	modal	data	measured	at	the	damage
region,	and	can	identify	specific	damaged	member	and	estimate	the	damage	extent	if	the
damage	degree	is	sufficiently	severe.	When	a	structural	member	is	damaged	to	an	insufficient
extent,	the	damage	may	not	be	detected	using	the	neural	networks.



Table	7.10	Results	of	simulated	damaged	member	identification	in	deck	segment	No.3	using
artificial	neural	network	(ANN)	with	backpropagation	(BP).

Frame
member

Damaged	member	(Damage	extent)
11
(80%)

12
(80%)

5
(80%)

16
(80%)

11
(50%)

12
(50%)

5
(50%)

16
(50%)

1 0.000 0.000 0.000 0.001 0.000 0.005 0.001 0.041
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.380 0.000 0.000 0.000 0.739 0.000
6 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.999 0.000 0.000 0.000 1.000 0.000
8 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
11 0.999 0.000 0.000 0.000 0.288 0.000 0.000 0.000
12 0.000 1.000 0.000 0.001 0.000 1.000 0.000 0.163
13 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
15 0.000 0.000 0.002 0.000 0.966 0.000 0.002 0.000
16 0.000 0.000 0.000 0.998 0.000 0.000 0.000 0.976
17 0.000 0.003 0.000 0.000 0.000 0.030 0.000 0.000

Now,	the	probabilistic	neural	network	is	used	for	the	simulated	damage	location	identification
for	the	Tsing	Ma	Bridge	deck.	The	bridge	main	span	comprises	a	total	of	76	deck	units,	as
shown	in	Figure	7.3.	For	damage	localisation,	the	main	span	deck	is	divided	into	16	segments,
each	including	four	or	five	deck	units,	as	shown	in	Table	7.11	(DCSE	1999).	The	damage	in
the	deck	members	within	the	same	segment	is	classified	as	one	pattern	class.	As	a	result,	there
are	a	total	number	of	16	pattern	classes.	The	modal	parameters	are	then	taken	to	construct	the
input	vector,	that	is,	the	natural	frequency	change	ratios	of	the	first	four	modes,	and	the	three
translational	components	of	the	first	mode	shape	at	the	16	nodes	of	specific	deck	units	(units	2,
7,	12,	17,	22,	27,	32,	36,	41,	45,	50,	55,	60,	65,	70	and	75),	namely	one	node	for	each	selected
unit.



Table	7.11	Damage	location	identification	results	for	probabilistic	neural	network	(PNN).

Pattern
class	No.

Deck	units
involved

Training	samples Testing	samples Number	of	correct
localisation

Location Data
length

Location Data
length

ε = 
0.10%

ε = 
0.06%

ε = 
0.02%

1 1–4 2,4 50 × 2 3 500 302 483 478
2 5–9 7,8 50 × 2 6 500 168 339 470
3 10–14 10,12 50 × 2 11 500 366 489 500
4 15–19 15,17 50 × 2 16 500 246 467 500
5 20–24 20,22 50 × 2 21 500 485 464 500
6 25–29 25,27 50 × 2 26 500 354 486 500
7 30–34 30,32 50 × 2 31 500 480 498 500
8 35–38 36,38 50 × 2 37 500 405 472 500
9 39–42 39,41 50 × 2 40 500 323 350 485
10 43–47 43,45 50 × 2 44 500 364 432 500
11 48–52 48,50 50 × 2 49 500 415 477 500
12 53–57 53,55 50 × 2 54 500 436 491 500
13 58–62 58,60 50 × 2 59 500 349 463 500
14 63–67 63,65 50 × 2 64 500 251 395 498
15 68–72 68,70 50 × 2 69 500 463 442 500
16 73–76 73,75 50 × 2 74 500 493 479 500

Overall	identification	accuracy	ratio 73.75% 90.34% 99.14%

In	order	to	obtain	the	training	vectors,	for	each	pattern	class	two	damage	scenarios,	with	the
damage	within	the	same	segment	but	different	units,	are	introduced	in	the	finite	element	model
of	the	bridge.	The	corresponding	modal	parameters	are	then	calculated.	Each	set	of	the
computed	modal	parameters	is	added	with	a	random	sequence	to	form	the	training	vectors.	A
total	50	sets	of	modal	parameters	are	randomly	generated	for	each	damage	scenario.	The
noisepolluted	training	vectors	of	all	pattern	classes	are	entered	as	weights	between	the
distribution	(input)	and	pattern	layers.	The	probabilistic	neural	network	for	damage
localisation	is	then	configured	(trained).	A	new	input	vector	(test	vector),	consisting	of
measured	modal	data	of	unknown	source,	is	presented.	In	the	summation	layer,	the	configured
probabilistic	neural	network	outputs	the	probability	density	function	estimates	for	each	pattern
class	at	the	test	vector	point.	Finally,	the	damaged	deck	segment	is	identified	by	the	pattern
class	with	the	largest	value	of	the	probability	density	functions.

The	test	vectors	are	produced	in	a	similar	way	to	obtaining	the	training	samples.	A	total	of	16
damage	scenarios,	with	one	for	each	deck	segment	(pattern	class),	are	examined	in	the	testing



phase.	The	testing	damage	scenario	for	each	pattern	class	is	incurred	at	a	deck	unit	different
from	the	training	damage	scenarios.	The	modal	parameters,	when	incurring	damage	at	each
deck	segment	in	turn,	are	calculated	and	then	polluted	with	various	random	noise	to	obtain	the
‘measured’	test	vectors.	The	noise	levels	are	simulated	at	ε = 0.10%,	0.06%	and	0.02%.	For
each	testing	damage	scenario,	a	total	500	sets	of	noisecorrupted	test	vectors	are	generated.
Table	7.11	summarises	the	damage	location	identification	results	under	different	noise	levels.
The	integral	numbers	under	various	noise	levels	of	the	table	show	the	number	(times)	of
correct	identification,	out	of	500	tests	for	each	damage	scenario.	The	identification	accuracy	is
defined	as	the	ratio	of	the	total	number	of	correct	identifications	to	the	total	test	number.	The
overall	identification	accuracy	value	is	73.75%	when	the	noise	level	ε = 0.10%,	90.34%	when
ε = 0.06%	and	99.14%	when	ε = 0.02%,	respectively.
As	expected,	the	identification	accuracy	decreases	with	the	increase	of	the	noise	level
corrupted	in	the	training	and	test	samples.	Only	when	the	noise	level	is	low	(e.g.	ε < 0.05%),
can	the	deck	damage	be	localised	with	a	high	confidence	(i.e.	the	probability	of	identifiability
greater	than	95%).	This	is	mainly	due	to	the	low	modal	sensitivity	of	the	bridge	to	the	deck
member	damage.

7.7	Concluding	Remarks
Many	of	the	methods	proposed	for	structural	damage	identification	are	often	examined	using
simulated	data,	and	they	are	able	to	cope	very	well	with	assumed	random	noise.	Although	such
numerical	simulations	are	important	for	assessing	the	overall	performance	of	damage	detection
techniques,	just	using	simulations	is	not	sufficient	for	practical	applications.	Thus,	it	is
necessary	to	fully	test	the	techniques	on	actual	engineering	structures	using	real	measured	data.
Before	using	a	damage	identification	procedure,	an	accurate	structural	model,	validated	by	real
measurements,	is	usually	required	for	modelbased	damage	identification	using	vibration
modal	measurements.	This	is	a	key	aspect	for	quality	of	structural	damage	identification
results.

Structural	damage	identification	methods	that	use	changes	of	modal	parameters	are	attractive.
Only	limited	information	on	measured	modal	data,	such	as	natural	frequencies	and	incomplete
mode	shapes,	is	required	to	identify	damage	in	a	structure.	Change	in	natural	frequencies	alone
may	not	provide	enough	information	for	the	identification	of	damage	in	complex	engineering
structures.	For	example,	in	the	case	of	symmetric	structures,	the	change	in	natural	frequencies
due	to	damage	at	two	symmetric	locations	is	exactly	the	same.	The	measured	mode	shape	(or
frequency	response	function,	modal	strain	energy,	etc.)	information	is	then	further	required	for
accurate	damage	detection	and	localisation.	However,	in	modal	testing,	the	errors	in	the
measured	mode	shapes	are	typically	greater	than	the	errors	in	the	measured	natural
frequencies.	Since	the	measured	mode	shapes	are	often	incomplete,	it	is	difficult	to	directly
adopt	the	incomplete	modal	data	in	many	damage	identification	methods.

Damage	identification	methods	using	change	of	structural	parameters	can	provide	useful
information	on	the	location	identification	of	damage	in	a	structure.	The	flexibility	matrix



method	takes	advantage	of	the	fact	that	the	flexibility	matrix	can	be	estimated	with	higher
accuracy,	by	using	only	a	few	lower	frequency	modes	extracted	from	vibration	measurements.
However,	damage	localisation	from	the	observed	change	in	flexibility	matrix	is	not	direct	or
straightforward.	By	contrast,	the	methods	using	strain	modal	properties	utilise	the	fact	that
structural	damage	is	followed	by	stress	and	strain	redistributions.	Studies	show	that	the	strain
energy	based	damage	index	method	is	a	powerful	tool	for	damage	localisation	identification.
However,	the	measurements	of	full	strain	modes	may	be	impractical	and	not	feasible	for	large
civil	engineering	structures.	Recent	developments	in	the	field	of	fibre	optics	suggest	that	it	may
be	economically	feasible	to	instrument	complex	structures	with	fibre	optic	strain	gauges.

Pattern	recognition	methods	identify	structural	damage	by	matching	the	measured	and
numerically	predicted	damage	characteristics.	The	database	of	patterns	is	often	generated	by
analysing	large	amounts	of	data	and	various	damage	scenarios,	which	is	timeconsuming.
With	the	help	of	the	advances	in	neural	networks,	it	is	becoming	feasible	to	tackle	the	problems
of	damage	identification.	Instead	of	identifying	the	damage	information	through	a	reconstruction
of	the	system	on	the	basis	of	the	dynamic	characteristics,	the	neural	networks	map	the	dynamic
characteristics	to	the	damage	information	directly.	A	technique	combining	pattern	recognition
and	neural	networks	tends	to	be	promising	for	damage	identification	of	largescale	civil
engineering	structures.

The	damage	identification	methods	discussed	in	this	chapter	can	provide	information	on	the
detection	and	possible	location	estimation	of	damage	in	a	structure,	but	it	may	be	difficult	to
accurately	quantify	the	extent	of	the	damage	in	the	structure.	Although	some	successful
applications	have	been	reported,	structural	damage	assessment,	in	terms	of	location	and	extent
identification	of	large	civil	engineering	structures	such	as	bridges	and	buildings,	remains	a
challenging	task	for	civil	engineers.	Therefore,	effective	methods	for	identifying	both	the
location	and	extent	of	damage	in	a	large	civil	structure	are	needed	for	accurate	damage
assessment	and	reliable	damage	prognosis.
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8
ModelBased	Damage	Assessment	Methods

8.1	Introduction
Structural	damage	assessment	methods	based	on	vibration	measurements	show	great	promise,
because	such	methods	allow	for	quick	and	global	damage	identification	at	a	relatively	low	cost
after	a	severe	loading	event	such	as	an	earthquake	or	a	hurricane.	These	methods	rely	on	the
fact	that	any	change	in	stiffness	caused	by	damage	in	a	structure	leads	to	change	in	modal
parameters	of	the	structure,	such	as	natural	frequencies	and	mode	shapes	(Chen	1998,	Doebling
et	al.	1996,	Sohn	et	al.	2004).	For	accurate	assessment	of	damage	in	a	structure,	the	location
and	extent	of	damage	in	the	structure	need	to	be	identified.	Thus,	modelbased	methods	are
usually	required	for	assessing	structural	damage,	on	the	basis	of	the	associated	model	(e.g.
baseline)	for	the	undamaged	structure.	Before	a	damage	assessment	procedure,	the	structural
parameters	(e.g.	stiffness	and	mass)	of	the	initial	baseline	model	have	to	be	updated	and
validated	by	the	correlation	study	between	the	analytical	model	(or	finite	element	numerical
model)	and	tested	results	through	a	model	updating	procedure	(Friswell	and	Mottershead
1995).

Characterisation	of	local	damage	in	a	structure	is	a	critical	issue	for	successful	assessment	of
damage	in	a	structure.	Damage	indicators	should	be	properly	chosen	to	characterise	local
damage	in	a	framed	or	continuum	structure,	and	they	should	be	capable	of	reflecting	both	the
location	and	severity	of	the	damage	in	individual	structural	components	or	in	specific	locations
(Chen	2008).	Very	often,	Young’s	modulus	is	chosen	as	a	damage	indicator,	which	works	well
for	truss	elements	and	continuums.	However,	for	a	beam	or	column	element,	it	may	be
inappropriate	to	choose	Young’s	modulus	as	a	damage	indicator.	For	example,	in	the	cases
where	the	connection	at	a	beam–column	joint	is	loosened,	the	axial	stiffness	remain	keep
unchanged	along	the	element	while	the	bending	stiffness	is	lost	at	the	joint.	Thus,	appropriate
damage	indicators	should	be	adopted	to	characterise	the	changes	of	axial	stiffness	and	bending
stiffness	at	detailed	level,	respectively.

The	matrix	update	methods	rely	on	the	principle	that	the	change	of	stiffness	due	to	damage	in	a
structure	can	be	estimated	from	the	measured	modal	parameters	of	the	damaged	structure.
Typical	matrix	updating	methods	include	the	residual	force	vector	method	(Ricles	and
Kosmatka	1992),	the	minimum	rank	update	method	(Zimmerman	and	Kaouk	1994)	and	the
optimal	matrix	updating	method	(Ewins	2000).	These	methods	can	directly	use	the	measured
modal	parameters	of	the	damaged	structure,	such	as	natural	frequencies	and	complete	mode
shapes,	and	they	can	provide	simple	algorithms	for	information	on	the	damage	location	and
quantification,	with	less	computational	effort.

In	sensitivity	based	methods,	change	of	modal	parameters	caused	by	damage	in	a	structure	is
approximated	by	the	firstorder	Taylor	series	expansion	with	respect	to	physical	parameters



(Mottershead	et	al.	2011,	Zhao	and	DeWolf	1999).	Modal	parameters	measured	on	the
damaged	structure	are	adopted	in	the	approximated	sensitivity	equations	for	assessing	the
location	and	extent	of	damage	in	the	structure.	The	sensitivity	based	methods	are	most
commonly	used	in	vibrationbased	damage	identification,	and	they	are	able	to	offer	correct
results	for	damage	assessment	when	damage	is	relatively	small.	The	sensitivity	based	methods
may	not	perform	well,	in	the	cases	where	the	change	of	structural	stiffness	due	to	damage
and/or	the	change	of	modal	parameters	before	and	after	damage	is	large	due	to	their	being	a
firstorder	approximation.

Problems	often	arise	in	practical	applications	of	many	vibrationbased	damage	assessment
methods	to	large	civil	engineering	structures.	In	modal	testing	of	civil	structures,	only	limited
information	on	measured	modal	data	is	usually	extracted,	due	to	the	limitation	of	accessibility,
cost	and	techniques	available.	Also,	errors	in	vibration	measurements	are	inevitable	in	reality.
Thus,	practical	methods	for	damage	assessment	have	to	accurately	identify	the	location	and
extent	of	damage	in	an	engineering	structure	using	limited	modal	measurements	with
uncertainty.	The	dynamic	perturbation	method	provides	the	exact	relationship	between	the
change	in	stiffness	due	to	damage	and	the	vibration	modal	data	of	the	damaged	structure	(Chen
2005,	Chen	and	Bicanic	2006).	Thus,	the	approximations	in	sensitivity	analysis	caused	by
utilising	the	firstorder	Taylor	series	expansion	are	avoided.	The	dynamic	perturbation
method	can	directly	adopt	the	incomplete	mode	shape	measurements,	without	requiring	a	mode
shape	expansion	or	model	reduction	process.	From	numerical	examples,	the	dynamic
perturbation	method	is	able	to	provide	a	reliable	estimate	of	the	location	and	extent	of	damage
in	both	framed	and	continuum	structures,	requiring	only	limited	noisy	modal	data.

This	chapter	presents	advanced	methods	for	inversely	localising	and	quantifying	damage	in	a
structure	using	measured	vibration	modal	data.	Appropriate	characterisation	of	damage	in	a
structure	at	local	level	is	introduced	to	reflect	both	the	location	and	extent	of	damage	in	the
structure.	Matrix	update	methods	based	on	directly	updating	structural	stiffness	are	reviewed.
Sensitivity	based	methods	using	the	sensitivity	of	modal	parameters	to	damage	in	a	structure
are	discussed.	The	dynamic	perturbation	method	is	further	explored	for	assessing	the	location
and	extent	of	damage	in	large	engineering	structures.	This	method	is	then	examined	by
numerical	examples	on	identifying	the	location	and	extent	of	damage	in	a	framed	building
structure	and	a	continuum	structure.	Finally,	potential	problems	in	vibrationbased	damage
identification	methods	are	discussed.

8.2	Characterisation	of	Damage	in	Structures
Characterisation	of	damage	in	a	structure	is	one	of	the	key	aspects	of	a	modelbased	damage
assessment	method.	The	success	of	damage	assessment	largely	relies	on	the	quality	of	the
damage	model	used,	since	inverse	methods	for	damage	identification	are	based	on	the	selected
damage	model.	The	selection	of	damage	model	depends	on	the	type	of	structure	and	the	damage
mechanism,	which	is	often	represented	by	a	reduction	of	stiffness	at	the	damage	site.	For
vibrationbased	structural	damage	assessment,	damage	indicators	need	to	be	chosen	to
properly	characterise	the	change	in	stiffness	due	to	damage.	These	damage	indicators	have	to
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be	capable	of	not	only	identifying	the	specific	location	of	damage	in	the	structure	but	also
predicting	the	severity	of	the	damage.	For	accurate	damage	assessment,	different	types	of
damage	indicators	are	required	for	different	types	of	structures,	such	as	for	framed	structures
and	continuum	structures.

8.2.1	Damage	in	Framed	Structures
Structural	damage	that	causes	change	in	stiffness	of	framed	structures	can	be	characterised	at
element	level	or	at	critical	point	level.

8.2.1.1	Damage	Characterisation	at	Element	Level
Framed	structures	typically	comprise	various	types	of	structural	components,	such	as	truss,
brace,	beam	and	column	members.	Thus,	the	change	in	element	stiffness	matrix	ΔKe	for	a
structural	member	can	be	expressed	by

where	Ke	and	 	are	the	eth	element	stiffness	matrices	for	the	original	(undamaged)	and
damaged	structure,	respectively,	and	de	is	a	damage	indicator	characterised	at	element	level.	A
negative	value	of	de,	ranging	from	0%	to	–100%,	indicates	the	reduction	of	the	element
stiffness	caused	by	structural	damage.	When	 ,	the	eth	element	is	undamaged.	When	

,	the	stiffness	of	the	eth	element	is	completely	lost.

In	finite	element	modelling	of	framed	structures,	different	finite	element	types	can	be	used	for
modelling	the	structural	members.	For	a	truss	or	brace	member,	a	bar	(truss)	element	can	be
adopted	and	its	damage	indicator	is	defined	as

where	EA	and	(EA)d	represent	the	axial	stiffness	for	the	original	and	damaged	element,
respectively,	the	superscript	d	denoting	the	quantity	associated	with	the	damaged	structure.	The
defined	damage	indicator	can	also	be	used	for	damage	in	a	beam	or	column	associated	with
reduction	of	axial	stiffness.

For	a	beam	or	column	member,	a	conventional	beam	element	is	employed,	and	the	damage
indicator	associated	with	reduction	of	bending	stiffness	is	defined	as

where	EI	and	(EI)d	are	the	bending	stiffness	for	the	original	and	damaged	element,
respectively.
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8.2.1.2	Damage	Characterisation	at	Critical	Point	Level
For	a	beam	or	column	element,	structural	damage	often	occurs	at	critical	locations,	such	as	a
loosened	connection	developed	at	a	joint	or	hinge	formed	near	the	middle	of	the	element.	In
order	to	consider	the	bending	stiffness	contributions	from	critical	locations,	and	to	characterise
local	damage	at	these	critical	locations,	the	element	stiffness	matrix	for	a	beam	or	column
member	is	now	calculated	from	an	integral	form	(Chen	2008,	Chen	and	Bicanic	2010).	The
threepoint	Newton–Cotes	integration	rule	(Stoer	and	Bulirsch	1980)	is	adopted	for	the
numerical	integration	at	these	critical	points.	For	a	conventional	beam	element	with	bending
stiffness	EI	and	element	length	l,	the	element	stiffness	matrix	associated	with	bending	stiffness
can	be	expressed	as

where	 ,	 	and	 	represent	the	contributions	of	critical	points	(an	end	g,	the	middle	o
and	another	end	h)	to	the	element	stiffness	matrix,	respectively,	defined	as

in	which	weight	coefficients	are	 ,	 	and	 ,	and	(EI)g,	(EI)o	and

(EI)h	are	bending	stiffness	at	critical	points	g,	o	and	h,	respectively,	and	 ,	 	and	
are	geometrical	matrices	only	related	to	element	length	l	at	integration	points	g,	o	and	h,

respectively	(Chen	2008).	The	damage	indicators,	 ,	 	and	 ,	characterising	at	critical
points	g,	o	and	h	for	a	beam	element	are	defined	in	a	general	form

where	r	represents	critical	points	g,	o	and	h,	respectively.	Consequently,	the	change	of	the
element	stiffness	matrix	for	a	beam	element	is	expressed	as

In	the	cases	where	a	hinge	exists	at	a	critical	location,	such	as	a	hinge	at	an	end	or	in	the
middle	of	the	element,	the	damage	indicators	can	be	evaluated	by	comparing	the	element
stiffness	matrix	for	the	structural	member	having	a	hinge	with	that	for	the	intact	member,	as
summarised	in	Table	8.1.	When	all	damage	indicators	for	a	beam	element	are	identical,	i.e.	

,	Equation	(8.7)	becomes	the	special	case	when	damage	is
characterised	at	element	level	given	in	Equation	(8.3).



(8.8)

Table	8.1	Values	of	damage	indicators	for	cases	with	loss	of	bending	stiffness	capacity	at
critical	locations.

Damage	indicator,	

Undamaged 0% 0% 0%
Hinge	at	end	g −150% 0% 0%
Hinge	at	middle	o 0% −150% 0%
Hinge	at	end	h 0% 0% −150%

The	change	of	global	stiffness	matrix,	after	considering	Equations	(8.1)	and	(8.7),	is	computed
from	the	sum	of	all	changes	of	element	stiffness	matrices	over	all	structural	members	of	the
frame	structure,	including	truss,	brace,	beam	and	column	members,	that	is

where	Kj	and	dj	represent	the	original	element	stiffness	matrix	of	a	structural	element	and	its
corresponding	damage	indicator,	or	the	original	stiffness	contribution	of	a	critical	point	and	its
corresponding	damage	indicator,	and	NF	(= Nt + Np)	represents	the	total	number	of	damage
indicators,	depending	on	the	total	numbers	of	stiffness	contributions	at	element	level	Nt	and	at
critical	point	level	Np.

8.2.2	Damage	in	Continuum	Structures
Damage	in	continuum	structures	can	also	be	characterised	at	element	level	or	at	integration
point	level	for	structural	damage	assessment.

8.2.2.1	Damage	Characterisation	at	Element	Level
Occurrence	of	damage	in	continuum	structures	causes	a	local	change	in	stiffness.	The	change	of
element	stiffness	matrix	ΔKe	due	to	damage	in	a	continuum	structure	can	be	expressed	in
Equation	(8.1).	Here,	Ke	is	the	eth	element	stiffness	matrix	for	the	original	continuum	structure
defined	in	Equation	(6.2)	and	de	is	a	damage	indicator	of	the	continuum	structure	characterised
at	element	level.

8.2.2.2	Damage	Characterisation	at	Integration	Point	Level
The	element	stiffness	matrix	of	a	continuum	structure	defined	in	Equation	(6.2)	is	usually
computed	from	numerical	integration
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where	Ng	denotes	the	total	number	of	integration	points	(Gauss	points)	in	a	structural	element

and	 	is	the	contribution	of	the	Gauss	integration	point	j	to	the	element	stiffness	matrix.

In	general,	the	effects	of	damage	on	structural	stiffness	can	be	represented	by	locally	reducing
the	Young’s	modulus.	Without	a	loss	of	generality,	a	scalar	damage	model	is	assumed	(Chen
and	Bicanic	2000).	Thus,	the	change	of	stiffness	matrix	of	the	continuum	structure	due	to
damage	is	expressed	in	a	simple	form

where	NG	is	the	total	number	of	Gauss	integration	points	within	the	whole	continuum	structure
and	dj	is	the	damage	indicator	of	the	continuum	structure	for	the	jth	integration	point	and	ranges
from	0	to	−1.

In	summary,	for	both	framed	and	continuum	structures,	the	change	of	stiffness	matrix	ΔK	caused
by	structural	damage,	given	in	Equations	(8.8)	and	(8.10),	can	be	written	in	a	general	form	for
damage	assessment	as

where	Kj	is	the	contribution	of	the	jth	element	or	integration	point	to	the	global	stiffness	matrix;
the	relevant	damage	indicator	dj	characterises	either	at	element	or	integration	point	level	and
ND	is	the	total	number	of	the	selected	damage	indicators.	The	damage	indicator	dj	is	sufficient
to	provide	information	about	not	only	the	location	of	damage,	but	also	the	extent	of	damage	in	a
structure.	For	example,	in	the	context	of	damage	identification,	structural	damage	is	present	for
any	nonzero	damage	indicator	 dj.	In	terms	of	the	damage	location,	the	jth	element	or
integration	point	is	considered	as	damaged	if	the	damage	indicator	dj	is	not	equal	to	zero.	For
the	damage	quantification,	the	extent	of	structural	damage	at	the	jth	element	or	integration	point
is	determined	by	the	magnitude	of	the	damage	indicator	dj.	Consequently,	damage	in	a	structure
can	be	detected,	located	and	quantified	when	the	damage	indicator	dj	is	determined.

For	structural	damage	identification,	it	may	be	assumed	that	the	global	mass	matrix	keeps
unchanged	before	and	after	damage,	that	is	 ,	because	the	change	of	mass	caused	by
structural	damage	can	usually	be	ignored	in	real	engineering	applications.

8.3	Matrix	Update	Methods
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Matrix	update	methods	provide	the	updated	stiffness	of	a	structure	using	the	vibration	modal
measurements	on	the	damaged	structure.	The	updated	stiffness	can	give	information	about	the
location	and	extent	of	the	damage	in	the	structure.

8.3.1	Residual	Force	Vector	Method
It	is	assumed	that	an	initial	baseline	model	is	available	for	the	undamaged	structure	through	a
model	updating	process.	The	validated	model	of	the	undamaged	structure	has	structural
parameters:	stiffness	K,	damping	C	and	mass	M,	as	well	as	modal	parameters:	the	ith

eigenvalue	 	and	the	corresponding	mode	shape	φi.	The	eigenvalue	equation	for	the
undamaged	structure	without	considering	damping	is	expressed	as

A	postdamage	experimental	modal	testing	is	performed	on	the	structure	to	measure	the	 ith

eigenvalue	 	and	mode	shapes	 	of	the	damaged	structure.	Similarly,	for	the	damaged
structure	the	eigenvalue	equation	is	written	as

where	 	and	 	are	the	stiffness	and	mass	matrices	associated	with	the	damaged	structure.	As
a	result	of	the	damage,	the	changes	of	stiffness	and	mass	matrices	ΔK	and	ΔM	are	expressed,
respectively,	as

Substituting	Equation	(8.14)	into	Equation	(8.13)	and	rearranging,	leads	to	the	definition	of	the
residual	force	vector	for	the	ith	mode	(Ricles	and	Kosmatka	1992)	as

The	righthand	side	of	the	above	equation	is	known,	when	the	natural	frequencies	and	mode
shapes	of	the	damaged	structure	are	measured.	The	residual	force	vector	ri	can	be	tested	to
check	whether	its	values	are	different	from	zero,	and	the	damage	location	can	be	identified
from	the	position	of	nonzero	entries	in	the	vector.	The	residual	force	vector	should	be
calculated	for	different	measured	modes.

After	the	damaged	elements	are	identified,	it	is	possible	to	express	the	change	in	stiffness	ΔK
as	the	weighted	sum	of	the	stiffness	matrices	of	the	damaged	elements	by	using	the	change	of
stiffness	matrix	expressed	in	a	general	form	in	Equation	(8.11).	Assuming	no	change	in	the
mass,	i.e. ,	Equation	(8.15)	is	rewritten	as
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When	more	than	one	mode	is	utilised	for	structural	damage	identification,	the	columns	of
known	coefficient	matrix	Si	associated	with	the	additional	modes	may	be	added	below	those
corresponding	to	the	previous	modes.	The	known	vector	ri	may	be	expanded	in	a	similar
manner.	Equation	(8.16)	or	its	expanded	form	can	be	solved	for	damage	indicators	dj	by	using
the	regularised	solution	procedure	for	inverse	problems	discussed	in	Section	6.5.2.

The	residual	force	vector	method	may	not	be	able	to	provide	good	estimates	in	the	damage
location	and	quantification	identification,	when	noise	exists	in	the	measured	modal	data.	This
problem	arises	due	to	the	fact	that	the	update	with	the	noisy	mode	shapes	has	smeared	the
stiffness	change	over	the	whole	stiffness	matrix.	One	possible	solution	to	this	problem	can	be
provided	by	the	minimum	rank	update	method.

8.3.2	Minimum	Rank	Update	Method
The	residual	force	vector	method	may	give	poor	results	since	the	effect	of	the	damage	is
smeared	across	the	residuals	due	to	measurement	uncertainty.	To	tackle	the	problem,
Zimmerman	and	Kaouk	(1994)	proposed	a	minimum	rank	update	method	to	enforce	locality
within	the	perturbation	matrix.	This	method	is	based	on	a	generalised	minimum	rank
perturbation	theory.	By	ignoring	the	change	in	mass	due	to	structural	damage,	the	residuals	R
are	expressed	in	a	matrix	form

where	 	is	a	diagonal	matrix	of	the	measured	eigenvalues	and	 	is	the	measured	mode	shape
matrix.	When	R	is	of	full	column	rank,	the	perturbation	to	the	original	stiffness	matrix	due	to
damage	is	given	by

It	has	been	proven	that	the	matrix	ΔK	is	symmetric,	if	the	measured	eigenvectors	are	mass
orthogonal.	In	addition,	when	the	matrix	R	is	not	of	full	rank,	the	corresponding	submatrices	of
R	and	 ,	which	have	the	same	rank	as	R,	can	be	used	in	calculating	the	change	in	stiffness	ΔK.
The	matrix	ΔK	is	independent	of	the	submatrices	used	if	the	eigenvectors	are	mass	orthogonal.
With	the	knowledge	of	the	location	of	damage,	the	rank	of	the	true	perturbation	matrix	ΔK	can
be	found	by	adding	the	rank	of	the	element	stiffness	matrix	of	the	damaged	members.	Finally,
the	extent	of	damage	at	the	damaged	elements	can	be	derived	from	the	significant	nonzero
elements	of	the	perturbation	matrix	ΔK.

To	improve	the	damage	location	and	extent	estimate,	many	practical	techniques	have	been
proposed	(Zimmerman	et	al.	1995).	These	techniques	allow	engineering	insight	and	judgement
to	be	incorporated	into	the	minimum	rank	perturbation	algorithm.	These	damage	assessment
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techniques	include:	(a)	use	of	angle	damage	vectors,	(b)	mode	number	selection,	(c)	damage
vector	and	eigenvector	filtering	techniques	to	minimise	the	effect	of	measurement	noise,	(d)
rank	estimation	algorithms	and	(e)	filtering	of	dynamic	residual	decomposition	among	various
structural	matrices	(mass	and/or	stiffness)	when	multiple	structural	matrices	are	being	updated.
The	minimum	rank	update	method	in	conjunction	with	engineering	insight	and	judgement
improves	the	procedure	to	the	point	where	it	is	a	practical	tool	for	realworld	problems.

8.3.3	Optimal	Matrix	Updating	Method
The	change	of	stiffness	matrix	can	provide	the	indication	of	damage	in	a	structure,	since
structural	damage	causes	the	reduction	of	stiffness	matrix.	The	change	in	stiffness	matrix	ΔK
due	to	damage	can	be	directly	estimated	(Ewins	2000)	from

where	Kred	represents	the	condensed	stiffness	matrix,	reduced	from	the	undamaged	analytical
stiffness	matrix	K	to	the	measured	degrees	of	freedom	(DOFs)	using	mode	reduction	methods
such	as	the	Guyan	static	method,	as	described	in	Section	5.6.1.	The	flexibility	matrices	F	and	
are	calculated	using	the	measured	incomplete	modes	for	the	undamaged	and	damaged	structure
by	using	Equation	(7.18).

To	compare	the	undamaged	analytical	model	and	damaged	test	structure	for	damage
identification,	they	must	have	the	same	number	of	DOFs.	Due	to	limited	instrumentation,
typically	the	number	of	measured	DOFs	is	significantly	less	than	the	number	of	DOFs	adopted
in	the	analytical	model.	The	model	reduction	or	mode	shape	expansion	technique	is	usually
used	for	this	purpose.	While	expansion	of	the	measured	mode	shapes	to	the	order	of	the
analytical	model	would	provide	a	clearer	location	of	structural	damage,	the	resulting	size	of
the	optimisation	problem	may	lead	to	numerically	computational	difficulties.	In	consideration
of	this,	a	hybrid	reduction	or	expansion	approach	was	developed	by	selecting	an	intermediate
DOFs	set.	This	DOF	set	is	small	enough	for	computational	efficiency	but	large	enough	to
describe	the	physical	model	with	sufficient	detail	to	identify	the	damage.	Through	this
approach	the	undamaged	analytical	model	is	reduced	and	the	measured	mode	shapes	are
expanded	to	have	the	same	order.

The	optimal	matrix	updating	method	is	then	implemented	to	adjust	the	undamaged	analytical
stiffness	matrix	using	the	measured	modal	parameters.	This	method	aims	to	match	the	test
frequencies	and	mode	shapes	by	solving	a	constrained	optimisation	problem	under	necessary
constraints.	The	change	of	stiffness	matrix	ΔK	can	then	be	expressed	(Kim	and	Bartkowicz
1993)	as

This	change	of	stiffness	matrix	is	unique,	and	is	the	only	minimum	solution	of	the	optimisation
problem.	By	checking	the	entries	in	the	change	of	stiffness	matrix	ΔK,	the	location	and	extent	of
structural	damage	can	be	identified.	Since	the	change	of	stiffness	matrix	often	loses	sparsity,



structural	connectivity	and	load	paths	may	be	changed	in	an	unrealistic	manner.	Some
improved	updating	approaches	that	preserve	the	structural	connectivity	have	also	been
proposed.	However,	such	approaches	require	considerable	computational	effort	and	are
sensitive	to	the	selection	of	the	rank	in	the	solution	process.

8.3.4	Example	for	Damage	Assessment	–	a	Plane	Truss
Figure	8.1	illustrates	a	statically	indeterminate	plane	truss	with	18	nodes,	33	DOFs	and	41
structural	members.	All	members	have	an	identical	Young’s	modulus	E = 2.1 × 1011 N/m2,
density	ρ = 7860 kg/m3,	and	crosssectional	area	 A = 0.006 m2.	The	geometry	of	the	structure
and	the	element	numbering	are	also	shown	in	Figure	8.1.	A	hypothetical	damage	scenario	in	the
structure	is	induced	in	several	elements	by	reducing	the	Young’s	modulus:	−30%	at	elements	7,
9,	11	and	−10%	at	elements	31,	34,	35.	A	finite	element	analysis	is	performed	for	both	the
undamaged	and	the	damaged	states.	Natural	frequencies	and	the	corresponding	mode	shapes
are	calculated	for	both	states.	The	computed	noisefree	damaged	modes	are	then	used	in	place
of	the	measured	modal	parameters	of	the	damaged	structure,	which	would	normally	be
obtained	from	experiments.

Figure	8.1	Statically	indeterminate	plane	truss	structure	for	damage	assessment.

The	residual	force	vector	method	is	used	to	reconstruct	the	damage	indicators	for	the	given
hypothetical	damage	scenario.	The	results	of	damage	assessment	are	plotted	in	Figure	8.2	by
using	different	damaged	modal	data.	From	the	results,	the	residual	force	vector	method	is
capable	of	predicting	both	the	location	and	extent	of	structural	damage.	In	the	case	where	only
damaged	mode	2	is	used,	the	location	of	damage	in	element	31	cannot	be	identified,	as	shown
in	Figure	8.2(a).	However,	the	location	and	the	extent	of	the	hypothetical	damage	can	be
predicted	exactly,	as	shown	in	Figure	8.2(b),	when	both	damaged	modes	2	and	3	are	used.



Figure	8.2	Inverse	predictions	for	the	hypothetical	damage	scenario	of	the	plane	truss	using	the
residual	force	vector	method.

8.4	Sensitivity	Based	Methods
Sensitivity	based	methods	rely	on	the	fact	that	the	change	of	modal	parameters	–	such	as	natural
frequencies,	mode	shapes	and	frequency	response	functions	–	due	to	damage	in	a	structure	can
be	approximately	expressed	by	a	truncated	Taylor	series	in	terms	of	physical	parameters	(e.g.
damage	indicators).	If	there	are	sufficient	measurements,	and	a	set	of	damage	indicators	is
properly	selected,	then	the	location	and	quantification	of	the	damage	can	be	identified.
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8.4.1	EigenParameter	Sensitivity	Method
The	eigenparameter	sensitivities,	such	as	sensitivities	of	eigenvalues	and	eigenvectors,	are
given	in	Fox	and	Kapoor	(1968)	and	discussed	in	Section	6.4.1.	The	eigenvalue	sensitivity	is

calculated	from	the	derivative	of	the	ith	eigenvalue	 	with	respect	to	the	jth	physical
parameter,	as	given	in	Equation	(6.12).	The	eigenvector	sensitivity	is	expressed	as	a	linear
combination	of	the	eigenvectors	of	the	structural	system,	as	expressed	in	Equation	(6.13).
Equations	(6.12)	and	(6.13)	describe	the	relationships	between	the	derivatives	of	eigen
parameters	(e.g.	natural	frequencies	and	mode	shapes)	and	the	derivatives	of	the	stiffness	and
mass	of	the	structure	due	to	change	of	physical	parameters	(Zhao	and	DeWolf	1999).	Thus,	the
change	of	the	ith	eigenvalue	and	eigenvector	due	to	structural	damage	can	be	approximated	by
the	firstorder	Taylor	series	expansion

where	Δdj	represents	the	change	in	damage	indicators,	equivalent	to	damage	indicators	

	if	the	original	structure	is	not	damaged.	The	sensitivity	equations	for	Nm	modes	and	a
set	of	ND	damage	indicators	are	written	in	a	matrix	form	as

where	sensitivity	matrices	and	the	change	of	eigenparameter	vectors	are	defined	as

The	derivatives	of	the	stiffness	and	mass	matrices	of	the	structure	due	to	structural	damage,	

	and	 ,	can	be	determined	from	the	characterisation	of	structural	damage,	as	discussed
in	Section	8.2.	The	changes	of	the	ith	natural	frequency	and	mode	shape	are	expressed	as	

	and	 ,	respectively.
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Finally,	the	damage	indictors	 	can	be	evaluated	from	the	sensitivity
equations	in	Equation	(8.22).	The	eigenparameters	of	the	damaged	and	undamaged	structure
must	be	paired	by	using	the	modal	assurance	criterion	(MAC)	defined	in	Equation	(5.20).	In
modal	testing	of	civil	engineering	structures,	natural	frequencies	can	be	measured	more
accurately	than	mode	shapes,	and	they	are	often	preferably	used	for	damage	identification.	To
reduce	the	influence	of	noise	in	measurements,	a	regularised	solution	procedure,	as	described
in	Section	6.5.2,	should	be	adopted	for	finding	reliable	solution	of	damage	indicators.

8.4.2	FRF	Sensitivity	Method
There	are	some	major	advantages	of	using	the	frequency	response	functions	(FRFs)	data,
compared	with	modal	data,	such	as	natural	frequencies	and	mode	shapes	(Carden	and	Fanning
2004).	Modal	data	can	be	contaminated	by	modal	extraction	errors	in	addition	to	measurement
noise,	since	they	are	derived	data	sets.	A	modal	data	set	is	typically	incomplete	and	extracted
from	a	very	limited	range	near	resonance.	On	the	other	hand,	the	FRF	can	provide	much	more
information	on	structural	damage	in	a	desired	frequency	range.	As	discussed	in	Section	5.2.2,
the	change	of	the	FRF	matrix	can	be	given	by	using	a	linear	Taylor	series	expansion	with
respect	to	damage	indicator	dj:

where	Ĥ(ω)	and	H(ω)	are	FRF	matrices	of	the	damaged	and	undamaged	structure,
respectively.	From	the	relation	in	Equation	(5.16),	i.e.	 ,	and	applying	the
differentiation	to	the	relation,	gives

where	the	derivative	of	dynamic	stiffness	matrix	with	respect	to	damage	indicator	is	given	as

From	Equation	(8.25),	the	sensitivity	equation	for	FRFs	in	Equation	(8.24)	is	rewritten	as

where	damage	indicators	 	by	assuming	no	damage	in	the	original	structure,	and	the
sensitivity	matrix	is	defined	as
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The	above	firstorder	approximation	is	based	on	the	assumption	that	small	change	in	the
damage	indicators	cause	small	change	in	the	FRFs.	The	firstorder	approximation	becomes
critical	when	the	FRF	values	are	close	to	resonance.	In	the	special	cases	of	slightly	damped
systems,	the	shift	of	the	frequencies	may	lead	to	significant	deviation	of	the	FRFs,	since	the
peaks	of	the	FRFs	reach	very	large	values	(Balageas	et	al.	2006).	To	tackle	this	problem,	the
sensitivity	matrix	in	Equation	(8.28)	can	be	revised	as

where	Ĥ(ω)	is	used	to	replace	the	H(ω)	on	the	right	side	of	Equation	(8.28).

On	the	basis	of	the	sensitivity	equation	(8.27),	structural	damage	can	be	identified	by	using	a
leastsquares	method	or	a	regularised	solution	procedure,	as	discussed	in	 Section	6.5.2.	In	the
FRF	sensitivity	method,	the	measured	data	at	all	DOFs	is	assumed	to	be	available	under	the
excitation,	which	is	not	feasible	in	practice.	Therefore,	the	unknown	DOFs	of	the	damaged
structure	should	be	determined	by	an	expansion	of	the	measured	DOFs,	such	as	static	or
dynamic	expansions,	as	discussed	in	Section	5.6.	The	best	identification	results	are	obtained	at
lower	frequency	ranges.	In	the	case	of	small	damages,	the	errors	are	the	main	influence	in	the
damage	identification	quality,	whereas	for	large	damages	the	incompleteness	of	measurements
becomes	the	most	important	factor.	Damage	identification	directly	using	FRFs	may	not	be	able
to	offer	significant	advantages	over	those	using	the	extracted	modal	data,	since	the	direct	use	of
FRFs	in	damage	identification	causes	the	error	to	be	spread	throughout	the	stiffness	matrix.
However,	when	modes	are	closely	spaced,	the	direct	use	of	FRF	data	could	offer	an	advantage
over	modal	data.

8.4.3	Example	for	Damage	Assessment	–	a	Grid	Structure
A	simple	grid	structure	illustrated	in	Figure	8.3	is	employed	for	inverse	structural	damage
identification	by	the	sensitivity	based	method	using	damaged	natural	frequencies.	The	structure,
which	is	simply	supported	at	each	of	the	outer	corner	points,	has	five	structural	members,	four
nodes	and	nine	DOFs.	All	structural	members	have	the	same	material	properties	with	Young’s
modulus	E = 2.1 × 1011 N/m2,	Poisson’s	ratio	υ = 0.3	and	density	ρ = 7800 kg/m3.	They	have	the
same	crosssection	area	 A = 0.0045 m2,	second	moment	of	area	I = 4.25 × 10−6 m4	and
torsional	constant	J = 8.50 × 10−6 m4.	The	geometry	of	the	structure	with	outer	dimensions	of	3 
m,	4 m	and	5 m,	and	the	element	numbering	is	shown	in	Figure	8.3.



Figure	8.3	Simply	supported	grid	structure	(plane	view).

A	hypothetical	damage	scenario	is	induced	by	reducing	the	Young’s	modulus	in	different
elements	with	different	magnitudes,	i.e.	0%	at	element	1,	−5%	at	element	2,	−10%	at	element
3,	−15%	at	element	4,	and	−20%	at	element	5.	A	finite	element	analysis	is	performed	for	both
the	original	and	the	damaged	states	to	calculate	natural	frequencies.	The	first	five	natural
frequencies	for	the	original	and	damaged	structure	are	listed	in	Table	8.2.

Table	8.2	First	five	natural	frequencies	(Hz)	for	original	and	damaged	structure.

Mode 1 2 3 4 5
Original 5.7189 14.0371 21.6589 28.3530 46.5395
Damaged 5.3127 13.4261 20.9949 26.3554 44.0490

The	sensitivity	method	is	utilised	to	inversely	identify	the	location	and	extent	of	the
hypothetical	damage.	The	first	five	damaged	natural	frequencies	are	used	for	the	damage
identification.	From	the	results	shown	in	Figure	8.4,	the	sensitivity	based	method	can	provide	a
reasonable	estimate	of	the	location	and	extent	of	the	hypothetical	damage	for	the	grid	structure.
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Figure	8.4	Inverse	damage	identification	from	the	sensitivity	based	method	using	natural
frequencies.

8.5	Damage	Assessment	Using	Dynamic	Perturbation
Method
For	large	civil	engineering	structures,	the	sensitivity	methods	based	on	the	firstorder	Taylor
series	expansion	may	not	be	able	to	provide	accurate	identification	of	damage	location	and
quantification.	To	tackle	this	problem,	the	dynamic	perturbation	method	(Chen	2005),	as
discussed	in	Section	6.5,	is	then	adopted	for	structural	damage	assessment,	since	this	method
gives	an	exact	relationship	between	the	perturbation	of	structural	parameters	caused	by	damage
and	the	perturbation	of	the	associated	modal	parameters.

8.5.1	Use	of	Frequencies	Only
Consider	the	cases	where	only	a	total	number	of	Nm	measured	natural	frequencies	of	the
damaged	structure	are	available.	By	using	the	change	in	eigenvalue	 	and
ignoring	change	in	mass	due	to	damage	 ,	the	governing	equation	(6.28a)	is	rewritten	as

From	Equation	(6.30),	the	change	of	the	ith	eigenvector	is	rewritten	as
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When	k	is	large	enough,	the	terms	with	subscripts	greater	than	k	can	be	neglected.	Therefore,	N
can	be	suitably	replaced	by	NC,	denoting	the	number	of	the	original	eigenvectors	available
(Bicanic	and	Chen	1997).	The	mode	participation	factors	Cik	are	obtained	from	Equation
(6.31),	rewritten	as

Considering	the	change	in	stiffness	caused	by	damage	in	a	structure	given	in	Equation	(8.11),
the	set	of	nonlinear	 Equation	(8.30)	and	Equation	(8.32)	can	be	expressed	as

where	aiji,	aijl,	akji	and	akjl	are	the	eigenmodestiffness	sensitivity	coefficients,	defined	in	a
general	form	as

An	iterative	computational	procedure	is	required	to	solve	for	the	structural	damage	indicators
dj	and	the	mode	participation	factors	Cik	using	the	above	formulations.	First,	the	initial	mode
participation	factors	Cik	are	assumed	to	be	zero.	A	first	approximation	for	the	damage
indicators	dj	is	then	obtained	from	Equation	(8.33).	Depending	on	the	total	number	of	damaged
frequencies	available	Nm	(number	of	equations)	and	the	total	number	of	damage	indicators
present	ND	(number	of	unknowns),	the	sensitivity	coefficient	matrix	in	Equation	(8.33)	may	not
be	square.	In	order	to	find	a	solution	for	what	is,	in	general,	an	illconditioned	system,	the
regularised	solution	procedure	discussed	in	Section	6.5.2	is	employed	to	estimate	the	damage
indicators	dj.	After	the	initial	damage	indicators	dj	are	obtained,	the	next	approximation	for	the
mode	participation	factors	Cik	can	be	calculated	from	Equation	(8.34).	Consequently,
Equations	(8.33)	and	(8.34)	are	used	recursively	to	compute	further	approximations	for	dj	as
well	as	Cik.	The	above	recursive	process	is	repeated	until	the	convergence	for	damage
indicators	dj	is	achieved.

8.5.2	Use	of	Incomplete	Modes
In	modal	testing	for	a	civil	engineering	structure,	only	a	limited	number	of	lowerorder
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natural	frequencies	can	typically	be	identified	from	recorded	vibration	measurements.	The
limited	information	on	the	frequencies	of	the	damaged	structure	may	not	be	sufficient	to
correctly	assess	damage	in	the	structure.	Thus,	to	accurately	identify	the	location	and	evaluate
the	severity	of	damage,	it	is	important	to	directly	utilise	the	measured	incomplete	mode	shape
readings	of	the	damaged	structure,	in	the	process	of	damage	location	and	quantification
identification.

Consider	that	the	information	about	a	total	of	Ns	(<N)	DOF	readings	of	the	ith	mode	shape	for
the	damaged	structure	 	is	available.	The	measured	incomplete	mode	shapes	 	must	be
paired	to	the	mode	shapes	of	the	original	structure	restrained	to	measured	DOFs,	i.e.	φia,	by
using	the	modal	assurance	criterion	defined	in	Equation	(5.20).	The	measured	DOF	readings	
	have	to	be	scaled	by	the	modal	scale	factor	(MSFi)	defined	in	Equation	(5.26),	giving	the

scaled	modal	measurement	vector	 .	The	mode	scale	factor	MSFi	has	to	be

updated	for	each	iteration	(if	an	iterative	procedure	is	required),	since	 	must	be	scaled	in
such	a	way	as	to	be	close	to	the	corresponding	remaining	unknown	components.	Consequently,
the	ith	complete	eigenvector	for	the	damaged	structure	 	is	obtained	from	the	known	vector	

	and	the	change	of	unknown	components	 ,	expressed	in	Equation	(6.49)	and
rewritten	as

By	combining	the	dynamic	perturbation	governing	equations	in	Equation	(6.32)	and	Equation
(6.28a),	and	ignoring	change	in	mass	due	to	damage	 ,	the	exact	relationship	between
the	change	in	stiffness	caused	by	damage	and	the	measured	mode	shape	readings	of	the
damaged	structure	is	expressed	as

From	the	constructed	complete	eigenvector	of	the	damaged	structure	in	Equation	(8.36),
Equation	(8.37)	is	now	restricted	to	the	dimension	for	the	measured	components	and	becomes

When	a	total	number	of	Nm	modes	with	Ns	DOF	readings	each	are	measured	on	the	damaged
structure,	the	proceeding	formulation	comprises	a	total	of	NM	(= Nm × Ns)	equations.	This
formulation	is	also	suitable	for	special	cases	that	all	DOF	readings	for	the	damaged	structure
are	available	(Ns = N),	that	is,	the	damaged	mode	shapes	are	complete.



(8.39)

(8.40)

By	using	the	change	in	stiffness	caused	by	structural	damage	given	in	Equation	(8.11),	the
governing	equation	Equation	(8.38)	is	rewritten	as

where	the	eigenmodestiffness	sensitivity	vectors	 	and	 	are	defined	in	Equation
(6.54a).	The	recursive	relation	for	computing	the	mode	participation	factor	Cik,	defined	in
Equation	(6.31),	is	expressed	as

where	 	and	 	are	the	eigenmodestiffness	sensitivity	coefficients,	defined	in	 Equation
(6.56a).

The	set	of	nonlinear	governing	equations	–	i.e.	 Equation	(8.39)	and	Equation	(8.40)	–	forms
a	basis	for	an	iterative	solution	procedure	to	solve	for	damage	indicators	dj.	Similarly,	the
initial	mode	participation	factors	Cik	are	assumed	to	be	equal	to	zero.	A	first	estimate	for	the
damage	indicators	dj	is	then	obtained	from	Equation	(8.39).	Here	again,	the	regularised
solution	procedure	discussed	in	Section	6.5.2	is	employed	to	estimate	the	damage	indicators.
The	next	estimate	for	the	mode	participation	factors	Cik	is	obtained	from	Equation	(8.40).
Therefore,	Equations	(8.39)	and	(8.40)	are	utilised	recursively	to	compute	further	estimate	for
dj	as	well	as	Cik,	until	the	condition	of	convergence	for	dj	is	satisfied.

8.5.3	Examples	for	Damage	Assessment	–	Simple	Framed	Structures
The	dynamic	perturbation	method	is	now	used	to	inversely	assess	the	assumed	damage	in	two
simple	framed	structures,	i.e.	a	grid	structure	and	a	plane	truss.

8.5.3.1	Damage	Assessment	of	a	Grid	Structure	Using	Frequencies	Only
The	simple	grid	structure,	as	discussed	in	Section	8.4.3	and	illustrated	in	Figure	8.3,	is	used
for	the	inverse	damage	identification	by	the	dynamic	perturbation	method	using	frequencies
only.	A	damage	scenario	is	assumed	by	reducing	the	Young’s	modulus:	no	damage	in	element	1,
−5%	in	element	2,	−10%	in	element	3,	−15%	in	element	4	and	−20%	in	element	5.	The	natural
frequencies	for	the	original	and	damaged	structure,	calculated	by	the	finite	element	analysis,
are	listed	in	Table	8.2.

The	information	about	five	damaged	frequencies	is	now	used	to	determine	inversely	the
location	and	amount	of	the	assumed	damage	by	the	dynamic	perturbation	method.	The
convergence	performance	of	structural	damage	parameters	for	the	iterative	procedure	is	shown
in	Figure	8.5.	The	iterative	solution	procedure	achieves	convergence	after	only	a	few



iterations.	Both	the	location	and	extent	of	the	assumed	damage	are	exactly	identified	using	five
damaged	natural	frequencies,	since	the	number	of	damaged	natural	frequencies	used	in	damage
identification	equals	the	number	of	structural	damage	parameters.

Figure	8.5	Inverse	damage	identification	using	the	dynamic	perturbation	method	from	5
damaged	frequencies.

8.5.3.2	Damage	Assessment	of	a	Plane	Truss	Using	Incomplete	Modes
A	onebay	sixbar	truss	shown	in	 Figure	8.6	is	adopted	for	the	inverse	damage	location	and
quantification	identification	from	incomplete	modes	using	the	dynamic	perturbation	method.
The	truss	has	six	structural	members,	four	nodes	and	five	DOFs.	All	structural	members	have
the	identical	properties	with	Young’s	modulus	E = 2.1 × 1011 N/m2,	density	ρ = 7800 kg/m3	and
crosssectional	area	 A = 0.0004 m2.	The	geometry	of	the	truss	model	and	the	element
numbering	are	also	shown	in	Figure	8.6.



Figure	8.6	Onebay	sixbar	plane	truss	structure.

A	hypothetical	damage	scenario	is	simulated	with	the	reduced	Young’s	modulus	in	three	truss
elements:	−10%	in	element	2,	−20%	in	element	3,	and	−30%	in	element	5.	A	finite	element
analysis	was	performed	for	both	the	original	and	the	damaged	states	to	calculate	natural
frequencies	and	the	corresponding	mode	shapes.	The	first	four	natural	frequencies	for	the
original	and	damaged	structure,	together	with	the	corresponding	mode	shapes	for	the	original
structure,	are	given	in	Table	8.3.	In	addition,	a	set	of	selected	sensor	positions	is	assumed,	i.e.
at	nodes	2	and	3,	and	the	set	of	incomplete	damaged	mode	shapes	is	composed	of	DOF
readings	for	each	individual	mode,	as	summarised	in	Table	8.3.



Table	8.3	First	four	natural	frequencies	(Hz)	and	original	mode	shapes.

Mode 1 2 3 4
Original	frequency 214.47 509.73 570.35 719.64
Damaged	frequency 205.94 491.00 557.52 680.18
Measured	DOF 2 − y,	3 − x — 2 − y 2 − y,	3 − x,y

Original
mode	shape

The	information	about	the	set	of	incomplete	damaged	modal	data	is	used	to	inversely	identify
the	location	and	amount	of	the	hypothetical	structural	damage.	The	convergence	performance	of
structural	damage	indicators	for	the	iterative	solution	procedure	is	shown	in	Figure	8.7.	The
dynamic	perturbation	method	using	incomplete	modes	is	able	to	accurately	identify	the	location
and	extent	of	the	damage	using	limited	incomplete	mode	shape	readings,	and	achieves
convergence	after	only	a	few	iterations.

Figure	8.7	Inverse	damage	identification	using	the	dynamic	perturbation	method	from
incomplete	modes.

8.6	Numerical	Examples
Two	numerical	examples	–	a	framed	building	structure	and	a	gravity	dam	structure,	–	are	used
for	the	location	and	quantification	identification	of	damage	in	the	structures	using	the	dynamic
perturbation	method.



8.6.1	Framed	Building	Structure
The	framed	building	model,	as	described	in	the	study	by	Johnson	et	al.	2004,	is	adopted	for	the
inverse	damage	location	and	quantification	identification	using	the	dynamic	perturbation
method.	The	structure	concerned	is	a	fourstorey,	twobay	by	twobay	laboratory	scale
model	structure,	comprising	beam	and	column	elements	with	diagonal	bracing	elements	on
each	storey.	The	structure	has	a	2.5 m × 2.5 m	plan	and	is	3.6 m	tall.	A	diagram	of	the	finite
element	model	of	the	structure	with	node	and	element	numbering	is	shown	in	Figure	8.8.	The
lengths	and	sectional	and	material	properties	of	structural	members	adopted	in	calculations	are
listed	in	Table	8.4.	In	addition	to	the	selfweight	of	the	structural	members,	there	are	floor
slab	masses	on	each	floor,	i.e.	3200 kg	slabs	on	the	first	floor,	2400 kg	slabs	on	each	of	the
second	and	third	floors	and	1750 kg	slabs	on	the	top	floor.



Figure	8.8	Finite	element	model	of	the	framed	building	structure	with	element	numbering	and
sensor	locations	(marked	with	 ).



Table	8.4	Geometric	and	material	properties	of	the	structural	members	of	the	framed	building
structure.

Property Columns Floor	beams Braces
Length	L	(m) 0.90 1.25 1.54
Crosssectional	area	 A	(m2) 1.133 × 10−3 1.430 × 10−3 0.141 × 10−3

Moment	of	inertia	I
–	strong	direction	(m4)

1.970 × 10−6 1.220 × 10−6 —

–	weak	direction	(m4) 0.664 × 10−6 0.249 × 10−6 —
Torsion	constant	J	(m4) 8.01 × 10−9 38.2 × 10−9 —
Young’s	modulus	E	(Pa) 2.0 × 1011 2.0 × 1011 2.0 × 1011

Shear	modulus	G	(Pa) E/2.6 E/2.6 E/2.6
Density	ρ	(kg/m3) 7800 7800 7800

A	finite	element	model	with	120	DOFs	shown	in	Figure	8.8	is	utilised	to	avoid	the	difficulty	in
assessing	structural	damage	at	local	level	arising	from	the	reduced	shear	building	model.	The
finite	element	model	is	developed	by	allowing	outofplane	motion	and	rotations,	but	the
floor	nodes	are	restrained	to	have	the	same	inplane	motion	and	 rotation.	In	order	to	identify
the	specific	location	of	damage	in	individual	structural	elements,	the	damage	indicators	are
chosen	to	characterise	structural	damage	at	element	level	for	braces	and	at	critical	point	level
for	beams	and	columns,	respectively.	A	total	of	284	damage	indicators	are	employed	for
damage	assessment:	32	for	braces,	144	for	beams	and	108	for	columns.	The	finite	element
model	adopted	for	damage	identification	is	assumed	to	be	validated	before	damage,	and	then
considered	as	the	baseline	for	damage	identification.	Two	simulated	damage	scenarios	are
defined	in	the	inverse	damage	identification	problem	by	reducing	the	stiffness	of	braces	at
various	locations,	as	summarised	in	Table	8.5.

Table	8.5	Simulated	damage	scenarios	for	the	framed	building	structure.

Damage
scenario

Damage	description Element
No.

Damage
amount

Scenario	I No	stiffness	in	one	brace	on	the	west	side	in	the
first	storey

24 −100%

Scenario	II No	stiffness	in	the	braces	of	the	first	storey 22–29 −100%

The	first	12	noise	free	natural	frequencies	of	the	original	and	damaged	structure	are	obtained
from	the	finite	element	analysis,	as	summarised	in	Table	8.6.	A	total	of	16	sensors	at	the	sides
on	each	floor	measuring	only	at	translational	DOF	readings	are	considered,	as	shown	in	Figure
8.8.	The	dynamic	modal	data	measurements	with	errors	of	the	damaged	structure	are	assumed
to	have	been	obtained	by	corrupting	the	ideal	finite	element	modal	data	of	the	damaged
structure	with	a	certain	level	of	errors.



Table	8.6	Correlated	noise	free	frequencies	(Hz)	of	the	original	and	damaged	structure.

Dominant	motion	direction Undamaged Damage	scenario	I Damage	scenario	II
North	y 8.0943 7.6072 4.9393
East	x 8.4076 8.4075 6.5679
Torsion	θ 13.9100 13.5651 8.9281
North	y 22.3162 21.3250 18.2046
East	x 23.9701 23.9700 20.8446
North	y 35.3625 34.8551 33.7878
Torsion	θ 38.9607 38.3516 32.5279
East	x 39.6233 39.5665 37.8477
North	y 46.2751 46.1910 45.9293
East	x 55.3773 55.3766 54.8760
Torsion	θ 61.1045 60.7193 58.4037
Torsion	θ 80.8070 80.7021 80.1132

In	the	inverse	predictions	of	structural	damage	using	the	dynamic	perturbation	method,	the
system	of	governing	equations	(8.39)	is	typically	illconditioned.	Thus,	a	regularised	solution
procedure,	as	described	in	Section	6.5.2,	is	required.	Figure	8.9indicates	the	singular	values	of
the	sensitivity	coefficient	matrix,	ordinary	solution	coefficients	and	regularised	solution
coefficients	for	the	inverse	predictions	of	damage	scenario	I	for	the	framed	building	structure.
The	singular	values	range	from	2.61	to	1.38 × 10−7,	and	the	ratio	between	the	largest	and	the
smallest	singular	values	is	extremely	large.	The	ordinary	solution	coefficients	increase
significantly	as	the	singular	values	decrease,	which	makes	the	solutions	for	the	damage
indicators	unstable.	However,	the	Tikhonov	regularised	solution	coefficients	(Tikhonov	and
Arsenin	1977)	gradually	damp	out	with	decrease	in	the	singular	values,	giving	stable	solutions
for	the	unknowns.



Figure	8.9	Singular	values,	ordinary	solution	coefficients	and	regularised	solution	coefficients
for	inverse	damage	predictions.

Figure	8.10	shows	the	Lcurves	associated	with	the	Tikhonov	regularisation	discussed	in
Section	6.5.2	to	evaluate	regularisation	parameters	(Hansen	and	O’Leary	1993).	The	levels	of
noise	in	frequencies	of	0.3%	and	in	mode	shapes	of	1–5%	are	considered	in	calculations.	The
values	of	regularisation	parameter	increase	as	the	level	of	noise	in	the	measured	DOF	readings
increases.	This	indicates	that	more	regularisation	is	imposed	on	the	solution,	and	information
on	the	measured	data	is	gradually	lost	with	the	increase	of	noise	level.	The	flat	parts	for
various	noise	levels	appear	very	close	to	each	other,	where	the	regularisation	parameters	are
relatively	large.



Figure	8.10	Lcurves	for	Tikhonov	regularisation	with	noise	levels	ranging	from	1%	to	5%	in
measured	DOF	readings.

In	the	inverse	identification	of	the	assumed	damage	scenarios	I	and	II,	the	simulated
measurement	errors	are	normally	distributed	with	standard	deviations	(noise	levels)	of	0.3%
for	natural	frequencies	(maximum	error	about	±0.9%)	and	3%	for	DOF	readings	of	mode
shapes	(maximum	error	about	±9%).	In	damage	scenario	I,	stiffness	in	a	single	brace	in	the
first	storey	is	completely	lost.	This	damage	corresponds	to	a	value	of	−100%	for	the	selected
damage	indicator	of	the	damaged	brace	in	the	first	storey.	Information	on	a	total	number	of	10
incomplete	noisy	damaged	modes	is	employed	for	the	inverse	damage	location	and
quantification	identification.	The	results	given	in	Figure	8.11	show	that	the	actually	damaged
brace,	together	with	another	brace	on	the	same	side	(west	side)	in	the	first	storey,	is	identified.
The	actual	amount	of	damage	is	spread	closely	in	these	two	braces	on	the	same	side	in	the	first
storey	due	to	the	symmetry	of	the	framed	building	structure.



Figure	8.11	Identification	of	damage	scenario	I	(no	stiffness	in	one	brace	in	first	storey,	i.e.
element	no.	24),	10	incomplete	noisy	damaged	modes	used.

The	assessment	of	damage	scenario	II	involves	the	complete	loss	of	stiffness	in	the	braces	in
the	first	storey.	Information	on	seven	incomplete	noisy	modes	of	the	damaged	structure	is
employed	to	inversely	identify	the	assumed	damage.	The	results	in	Figure	8.12	indicate	that	the
actual	location	of	the	damage	is	correctly	identified	and	the	extent	of	the	damage	is	slightly
lower	than,	but	very	close	to,	the	actual	stiffness	loss.	Note	that	structural	damage	in	this
damage	scenario	is	extremely	severe	in	real	situations,	and	causes	large	reduction	in	stiffness
in	the	first	storey	and	consequently	significant	reduction	in	natural	frequencies,	as	shown	in
Table	8.6.	Again,	the	dynamic	perturbation	method	is	capable	of	providing	reliable	predictions
of	the	severe	damage	using	limited	modal	data	measurements	with	realistic	errors.



Figure	8.12	Identification	of	damage	scenario	II	(no	stiffness	in	braces	in	first	storey,	i.e.
element	nos.	22–29),	7	incomplete	noisy	damaged	modes	used.

8.6.2	Gravity	Dam	Structure
A	gravity	dam	structure	shown	in	Figure	8.13	is	used	for	the	inverse	damage	location	and
quantification	identification	for	the	continuum	structure	by	the	dynamic	perturbation	method.	A
finite	element	mesh	with	248node	isoparametric	plane	strain	elements	is	generated,	giving
a	total	of	186	DOFs.	Four	Gauss	integration	points	are	considered	for	each	element	in
calculations	of	the	element	stiffness.	A	total	of	96	damage	indicators	characterising	damage	at
all	the	Gauss	integration	points	is	employed	for	the	inverse	damage	identification.	All	Gauss
points	have	the	same	material	properties	with	elastic	modulus	E = 2.8 × 1010 N/m2,	Poisson’s
ratio	υ = 0.15	and	density	ρ = 2400 kg/m3.



Figure	8.13	Gravity	dam	structure	with	measured	nodes	marked	with	both	▪	and	●.

A	hypothetical	damage	scenario	for	the	gravity	dam	structure	is	introduced	in	Table	8.7,	where
damage	occurs	at	a	total	number	of	10	Gauss	points	within	seven	elements	with	different
damage	magnitudes.	The	geometry	of	the	structure,	element	and	Gauss	point	numbering,
hypothetical	damage	areas,	as	well	as	measured	locations	are	shown	in	Figure	8.13.	The
modal	data	with	free	noise	calculated	from	the	finite	element	analysis	for	the	undamaged
structure	and	the	simulated	damaged	structure	is	then	used	for	inverse	damage	assessment.

Table	8.7	Simulated	damage	scenarios	for	the	gravity	dam	structure.

Element	No 4 8 13 14 17 18 21
Gauss	point	No 13,	15 30,	32 51 53 68 70 81,	83
Damage	amount −10% −10% −20% −20% −20% −20% −30%

The	results	shown	in	Figures	8.14(a)	and	(b)	are	inverse	damage	predictions	using	information
about	two	different	incomplete	damaged	mode	shapes	with	DOF	readings	measured	at	the
various	locations.	The	assumed	structural	damage	is	determined	correctly	by	using	a
combination	of	two	incomplete	damaged	modes.	The	predictions	of	structural	damage	become
excellent	using	the	dynamic	perturbation	method,	when	information	about	incomplete	damaged
modes	2	and	4	is	used.



Figure	8.14	Inverse	damage	predictions	using	the	dynamic	perturbation	method	for	the	gravity
dam	structure.

8.7	Potential	Problems	in	VibrationBased	Damage
Identification
Extensive	research	on	structural	damage	identification	methods	has	been	undertaken	in	the	past
a	couple	of	decades.	Most	widely	studied	damage	identification	methods	are	vibrationbased,
and	these	methods	use	the	measured	changes	in	dynamic	features	(mainly	modal	parameters)	to
evaluate	changes	in	structural	parameters	that	may	indicate	structural	damage	or	degradation.
Although	successful	applications	have	been	developed	during	recent	years,	damage	assessment
of	large	civil	engineering	structures,	such	as	buildings	and	bridges,	remains	a	challenging	task
for	civil	engineers.	The	primary	sources	of	difficulty	include	measurement	noise,	modelling
errors,	uncertainty	of	ambient	conditions,	insensitivity	of	modal	properties	to	local	damage,
incompleteness	of	measured	data	and	lack	of	practical	identification	methodologies.	These
problems	are	discussed	in	detail	in	Worden	and	Friswell	(2009)	and	are	outlined	and	further
extended	as	follows.

8.7.1	Finite	Element	Model	and	Experimental	Data
Most	damage	identification	methods	such	as	modelbased	methods	require	a	validated	finite



element	model	as	the	baseline	of	the	structure	before	damage.	For	large	civil	engineering
structures	like	cablesupported	bridges,	it	is	extremely	difficult	to	construct	a	damage
detectionoriented	structural	model.	The	structural	model	should	meet	following	points:	(a)
the	calculated	modal	parameters	predicted	by	the	model	are	well	correlated	with	the	measured
data	from	the	structure	before	damage,	(b)	modal	uncertainty	due	to	modelling	error	is	less	than
modal	parameter	change	caused	by	actual	damage,	(c)	the	size	of	the	finite	element	model	is
adequate	so	that	the	number	of	the	model	DOFs	is	not	extremely	larger	than	that	of	measured
DOFs	in	modal	testing,	(d)	the	model	is	accurate	enough	not	to	blur	the	damage	location	in	the
modelling	process.

For	large	civil	engineering	structures,	the	number	of	DOFs	measured	is	typically	much	smaller
than	the	number	of	the	finite	element	model	DOFs	due	to	instrumentation	limitations,	resulting
in	incomplete	set	of	modal	data.	To	obtain	a	onetoone	correspondence	between	the
measured	and	finite	element	DOFs,	a	model	reduction	or	modal	expansion	technique	must	be
used.	Both	the	techniques	are	used	at	the	expense	of	losing	accuracy.	The	damage	identification
capability	of	many	methods	will	be	degraded	when	using	expanded	mode	shapes	or	a	reduced
model.	While	expansion	of	measured	mode	shapes	to	the	order	of	finite	element	model	would
provide	a	clearer	location	of	structural	damage,	the	errors	induced	by	the	expansion	process
may	overshadow	damage	information	contained	in	the	measurements.	On	the	other	hand,
reduction	of	the	finite	element	model	to	the	size	of	the	measured	DOFs	results	in	the	reduced
model,	which	may	no	longer	adequately	describe	the	physical	model	in	sufficient	detail	to
locate	the	damage.	A	smearing	effect	on	modelling	errors	is	introduced	by	the	model	reduction.
Model	reduction	techniques	can	also	destroy	the	connectivity	information	that	is	important	for
damage	detection.	Recently,	a	perturbed	force	approach	was	developed	for	reliable	mode
shape	expansion.	More	advanced	techniques	of	matching	between	the	finite	element	and
experimental	modal	orders	are	required.

8.7.2	Effect	of	Modelling	and	Measurement	Errors
There	are	always	errors	in	the	measured	data	and	in	the	finite	element	model.	These	errors
unavoidably	affect	all	of	the	algorithms	for	structural	damage	identification.	If	the	real
measurements	on	the	damaged	structure	are	adopted	for	damage	identification,	the	damage
identification	methods	will	have	great	difficulty	in	distinguishing	between	the	actual	damage
sites	and	the	location	of	errors	in	the	original	finite	element	model.	If	parameters	such	as
damage	indicators	are	not	properly	selected	to	consider	the	undamaged	finite	element	model
errors,	then	this	will	cause	a	systematic	error	between	the	finite	element	model	and	the
measured	data.	Damage	identification	methods	generally	have	considerable	difficulty	with
systematic	errors.

Two	approaches	can	be	used	to	tackle	this	problem	(Worden	and	Friswell	2009).	The	first	is
to	update	the	finite	element	model	of	the	undamaged	structure	to	produce	a	reliable	finite
element	model.	The	quality	of	the	damage	identification	critically	relies	on	the	correctness	of
updated	finite	element	model.	In	general,	the	updated	model	is	validated	using	a	control	set	of
data	not	used	for	the	model	updating.	The	second	utilises	differences	between	the	damaged	and
undamaged	response	data	in	damage	identification	methods.	This	will	remove	some	error	in



the	undamaged	model	of	the	structure	that	also	exists	in	the	damaged	structure.	This	approach
assumes	the	structure	remaining	unchanged	between	the	two	sets	of	measurements,	except	for
the	damage.

Many	of	the	methods	proposed	for	damage	identification	are	tested	on	numerical	simulations.
For	successful	practical	applications,	these	methods	need	to	be	tested	on	both	simulated	and
real	data.	The	numerical	simulations	are	able	to	fully	examine	the	damage	identification
methods,	since	the	effect	of	errors	can	be	fully	investigated	and	the	results	are	predictable.
Simply	adding	random	noise	to	the	finite	element	model	and	then	using	the	same	model	to
identify	the	simulated	damage	may	not	be	enough.	It	is	critical	that	systematic	type	errors	are
considered	in	the	numerical	simulations.	Typical	approaches	for	this	include	the	consideration
of	finite	element	discretisation	errors,	different	damage	mechanisms	for	generating
measurements	and	for	damage	identification	and	change	of	boundary	conditions.	Also,	a
probabilistic	framework	can	be	used	to	deal	with	modelling	errors	and	measurement	noise.	On
the	basis	of	the	uncertainty	in	numerical	modelling	and	measured	data,	the	uncertainty	of	the
identified	damage	location	and	extent	could	be	estimated.

8.7.3	Effect	of	Environmental	Factors
Civil	engineering	structures	are	usually	subjected	to	varying	environmental	conditions	such	as
temperature,	humidity	and	wind.	These	environmental	factors	have	an	effect	on	operational
modal	parameters	of	the	structures,	and	thus	cause	problems	on	vibrationbased	damage
identification.	Typical	environmental	effects	are	demonstrated	by	highway	bridges,	especially
those	constructed	using	concrete.	For	example,	temperature	changes	can	cause	a	significant
change	in	the	stiffness	properties	of	a	concrete	bridge,	and	it	is	difficult	to	predict	the	effects	of
temperature	from	measured	data.	Also,	highway	bridges	are	highly	damped	with	low	natural
frequencies	and	are	difficult	to	excite.	The	frequency	resolution	in	the	experimental	data	is
often	quite	low,	leading	to	considerable	difficulties	in	detecting	small	frequency	changes	due	to
damage	in	the	structure.	Therefore,	damage	identification	has	considerable	problems	with
modal	parameter	changes	due	to	environmental	factors.

Problems	also	arise	in	vibrationbased	damage	identification	when	operational	mode
parameters	influenced	by	environmental	factors	are	used.	For	practical	implementation	and
reliable	performance	of	the	damage	identification	algorithms,	it	is	important	to	characterise
normal	variability	of	modal	parameters	due	to	environmental	conditions	and	to	distinguish	such
normal	variability	from	abnormal	changes	in	modal	parameters	caused	by	structural	damage.
When	the	effects	of	normal	environmental	changes	are	well	understood	or	quantified,	it	is
possible	to	achieve	reliable	and	accurate	damage	identification	through	incorporating	the
environmental	effect	models	into	the	damage	detection	algorithms	in	either	a	statistical	or
deterministic	way.

8.7.4	Frequency	Range	and	Damage	Detectability
The	range	of	frequencies	used	in	damage	identification	has	a	great	influence	on	the	resolution
of	the	results	(Worden	and	Friswell	2009).	The	advantage	in	using	low	frequency	vibration



data	is	that	the	low	frequency	modes	are	generally	global,	requiring	fewer	sensors	in	testing.
The	problem	with	low	frequency	modes	is	that	the	spatial	wavelengths	of	the	modes	are	often
large,	much	larger	than	the	damage	size.	This	makes	it	very	difficult	to	identify	small	but
critical	damage	in	a	large	civil	engineering	structure.	High	frequency	excitation	generates	very
local	modes,	which	are	able	to	accurately	locate	damage,	but	only	very	close	to	the	sensor	and
actuator	locations.	Also,	it	is	very	difficult	to	estimate	accurate	modes	at	these	high	frequency
ranges,	and	changes	in	the	dynamic	response	are	often	utilised	for	damage	identification.	Many
advanced	signal	processing	algorithms	were	proposed	to	interpret	experimental	data	and
detect	structural	damage	(Duan	et	al.	2007,	Sohn	et	al.	2004).
For	large	civil	engineering	structures	such	as	bridges,	they	typically	comprise	various
structural	components	of	different	materials.	As	a	result,	damage	in	some	structural
components	mainly	affects	the	modal	parameters	of	higherorder	modes,	leaving	the	damage
undetected,	if	only	the	lower	order	modes	are	monitored.	However,	higherorder	mode
information	is	difficult	to	acquire	accurately	due	to	measurement	noise,	limited	bandwidth	of
the	excitation	and	digitisation	capacity.	Since	the	mode	shape	of	a	higher	frequency	mode
typically	becomes	more	localised	to	a	particular	region	of	the	structure,	the	frequency	response
functions	will	reflect	the	local	modal	characteristics,	if	both	the	excitation	and	response	points
locate	in	the	region.	Thus,	a	combination	of	global	modal	data	and	local	frequency	response
functions	could	enable	the	identification	of	damage	in	individual	structural	components.

In	general,	some	modes	are	more	damage	sensitive	than	others.	Also,	the	measurement	error
existing	in	certain	observed	mode	may	be	larger	than	the	error	in	other	modes.	Using	modes
that	are	not	highly	affected	by	damage	will	only	introduce	their	associated	measurement	noise
in	the	damage	identification	process.	It	is	possible	that	there	are	some	observed	modes	that	are
not	sensitive	to	damage	and	contaminated	with	relatively	high	measurement	error.	When	these
modes	are	included	in	damage	identification,	the	identification	results	may	become	unreliable.
It	is	desirable	to	develop	theoretical	or	empirical	procedures	that	can	exclude	the	damage
insensitive	modes	from	the	observed	modal	parameters	before	the	damage	identification
process.	A	technique	based	on	the	modal	sensitivity	analysis	and	modal	assurance	criterion
check	seems	to	be	suitable	for	this	purpose.

8.7.5	Damage	Diagnosis	and	Prognosis
The	ultimate	goal	of	an	SHM	strategy	is	to	assess	the	current	state	and	to	predict	future
performance	of	engineering	structures	concerned.	The	philosophy	of	damage	identification
using	measured	vibration	data	is	based	on	the	assumption	that	the	damage	in	a	structure	will
change	the	stiffness	of	the	structure.	In	some	cases,	there	is	a	significant	difference	between
strength	and	stiffness.	It	is	very	difficult	to	evaluate	structural	reliability	and	the	remaining
useful	life	by	using	the	results	from	vibrationbased	damage	identification	(Worden	and
Friswell	2009).	Take	prestressed	concrete	highway	bridges	as	an	example.	Loss	of	pre
stressing	in	the	reinforcement	may	have	no	significant	effect	in	the	stiffness	of	the	concrete
structure,	but	it	could	cause	the	structure	failure	due	to	loss	of	compressive	stress	in	the
concrete.	The	dynamic	properties	depend	on	structural	parameters	such	as	stiffness,	thus	the
modal	measurements	of	the	concrete	bridge	change	very	little	until	it	collapses.	In	general,	the



prediction	of	future	performance	of	a	civil	engineering	structure	requires	an	identification	of
the	damage	present,	an	assessment	of	the	probable	future	loads,	an	accurate	deterioration
model	and	the	associated	structure	failure	modes.	Although	this	process	is	very	difficult,	the
use	of	inverse	damage	identification	methods,	such	as	the	dynamic	perturbation	method,	to
generate	a	physically	meaningful	model	evolution	offers	a	route	to	damage	prognosis.

The	development	of	SHM	methods	for	the	identification	of	damage	occurrence,	location	and
severity	has	now	achieved	some	degree	of	maturity.	However,	the	application	of	this
monitoring	data	for	determining	the	inspection,	maintenance	and	management	of	existing	civil
engineering	structures	is	still	in	its	infancy.	Currently,	there	is	a	gap	between	SHM	technology
and	asset	inspection,	maintenance	and	management	exercises.	This	impedes	asset	managers
from	benefiting	from	the	SHM	system.	In	practice,	asset	managers	want	to	get	answers	to	the
serviceability	and	reliability	issues	from	the	monitoring	data.	For	example,	has	the	load
capacity	or	resistance	of	the	structure	changed?	What	is	the	probability	of	failure	of	the
structural	members	and	the	whole	structure?	Indicators	of	these	performance	issues	are	needed
to	enable	the	asset	managers	to	optimally	allocate	resources	towards	inspection,	maintenance
and	rehabilitation	of	the	structures.

8.8	Concluding	Remarks
Many	methods	are	discussed	for	the	identification	of	both	the	location	and	severity	of	structural
damage	at	local	level	in	large	civil	engineering	structures.	Appropriate	damage	indicators	are
chosen	to	be	sensitive	to	changes	in	stiffness	due	to	local	damage	in	a	framed	structure	or
continuum	structure.	The	selected	damage	indicators	can	be	characterised	at	element	level	for
trusses	and	braces,	at	critical	point	level	for	beams	and	columns	of	framed	structures,	and	at
Gauss	integration	point	level	for	continuum	structures.

Matrix	update	methods,	such	as	residual	force	vector	method,	minimum	rank	update	method
and	optimal	matrix	updating	method,	are	able	to	identify	both	the	location	and	extent	of	damage
in	a	structure.	The	residual	force	vector	method	is	a	workable	method	for	identifying	damage,
but	it	requires	a	complete	set	of	mode	shapes,	which	may	not	be	possible	for	large	structures.
The	minimum	rank	update	method	gives	damage	information	from	the	significant	nonzero
elements	of	the	stiffness	matrix	perturbation.	Some	engineering	judgement	may	be	incorporated
into	the	method	to	improve	the	damage	location	and	extent	estimate.	The	optimal	matrix
updating	method	minimises	a	given	cost	function	subject	to	certain	constraints,	directly	giving
the	change	in	stiffness	matrix	caused	by	damage.	However,	incomplete	measured	modal	data
causes	difficulties	for	the	matrix	update	methods	during	the	damage	identification	process,	thus
a	model	reduction	or	modal	expansion	technique	must	be	employed.

In	the	sensitivity	based	methods	for	damage	assessment,	the	derivatives	of	modal	parameters
with	respect	to	structural	parameters	are	analysed	to	form	a	sensitivity	matrix.	This	provides
the	firstorder	relationship	between	the	changes	in	structural	parameters	and	the	changes	in
modal	parameters.	As	a	result,	the	changes	in	the	structural	parameters	due	to	the	damage	can
be	determined	using	the	residual	of	the	modal	data	between	the	undamaged	and	damaged



structure.	However,	the	firstorder	approximation	of	the	eigenparameter	sensitivity
equations	may	not	perform	well,	when	damage	in	a	structure	is	relatively	large.	Also,	the
computations	of	the	sensitivity	coefficients	are	timeconsuming	in	the	cases	with	a	large
number	of	damage	indicators	present.

The	damage	identification	methods	directly	using	measured	frequency	response	functions
(FRFs)	are	particularly	suitable	for	structures	with	closely	spaced	modes.	As	modal
parameters	are	indirectly	measured	test	data,	they	could	be	contaminated	by	measurement
errors	as	well	as	modal	extraction	errors	and	provide	less	information	than	FRF	data.	The
damage	identification	method	using	FRFs	can	avoid	the	disadvantage	of	most	modal	parameter
based	methods	that	require	completeness	of	measured	mode	shapes.	However,	the	FRF	based
method	requires	measurements	of	both	response	and	excitation	signals.	In	addition,	the
accuracy	of	damage	identification	results	produced	by	the	FRF	based	damage	identification
method	depends	heavily	on	the	selected	frequency	range.	If	improper	frequency	points	are
adopted,	the	measurement	errors	may	seriously	affect	the	damage	identification	results.

The	dynamic	perturbation	method	is	based	on	the	exact	relationship	between	the	change	in
stiffness	due	to	damage	in	a	structure	and	the	vibration	modal	data	of	the	damaged	structure.
This	method	can	directly	adopt	the	incomplete	modal	measurements	for	damage	identification,
without	requiring	model	reduction	or	mode	shape	expansion	techniques.	Only	a	limited	number
of	vibration	modal	data	measurements	with	uncertainty	are	sufficient	to	identify	correctly
structural	damage	in	numerical	simulations,	which	is	potentially	useful	for	assessing	damage	in
large	civil	engineering	structures.	A	regularisation	algorithm,	such	as	the	Tikhonov
regularisation	method	incorporating	the	Lcurve	criterion,	can	be	implemented	in	the	method
to	provide	stable	solutions	for	the	damage	indicators.	The	dynamic	perturbation	method	is
capable	of	identifying	the	location	of	local	damage	as	well	as	estimating	its	magnitude,
including	small	damage,	multiple	damage	and	weakened	beam–column	joints	of	framed
structures.	This	method	needs	to	be	examined,	using	real	monitored	data	for	reliable	damage
assessment	of	existing	large	civil	engineering	structures.
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9
Monitoring	Based	Reliability	Analysis	and	Damage
Prognosis

9.1	Introduction
Recently,	civil	infrastructure	management	philosophy	has	changed	considerably,	thanks	to	the
development	and	applications	of	structural	health	monitoring	(SHM)	technology.	This
technology	has	the	potential	to	improve	the	management	of	existing	civil	engineering	structures
in	many	ways:	(a)	the	accuracy	of	structural	performance	assessment	can	be	improved	by
analysing	the	monitored	structural	response	data	and	environmental	conditions,	(b)	inspections
can	be	scheduled	effectively	on	the	basis	of	structurespecific	monitoring	data,	(c)
deterioration	of	structural	performance	over	time	can	be	modelled	and	calibrated	using
monitoring	data	to	reduce	uncertainties,	(d)	timevariant	reliability	can	be	assessed,	using
monitored	load	conditions	and	predictive	deterioration	models,	(e)	as	a	result	of	timevariant
reliability	analysis,	the	risk	and	a	costbalanced	maintenance	strategy	can	be	determined	using
advanced	optimisation	techniques.

For	civil	engineering	structures,	two	types	of	failure	are	often	identified:	structural	failure	and
condition	failure.	Structural	failure	can	be	the	collapse	of	a	structure	due	to	insufficient
resistance,	whereas	condition	failure	represents	that	a	certain	predetermined	failure	level	has
been	exceeded	due	to	deterioration.	Condition	failure	is	defined	as	the	event	at	which	a
structure	fails	to	meet	its	main	functional	requirements.	Structures	usually	do	not	fail	due	to
physical	failure,	but	due	to	condition	failure.	Thus,	inspections	and	monitoring	must	be
undertaken	to	ensure	that	condition	failure	will	be	detected	at	an	early	stage,	and	proper
maintenance	actions	may	be	necessary	to	be	taken	to	prevent	failure	of	the	structure.

Although	condition	assessment	based	on	SHM	data	is	a	critical	step	in	the	management	of	civil
engineering	structures,	predicting	future	performance	provides	an	essential	basis	for	the	cost
effective	scheduling	of	inspections,	maintenance,	repairs	and	replacements.	In	general,	the
resistance	of	a	structure	decreases	over	time	as	the	structure	deteriorates	and	the	load	demand
may	increase.	This	will	lead	to	a	decrease	in	structural	reliability	and	an	increase	in	the
probability	of	failure	of	the	structure	over	time.	A	timely	repair	will	then	be	necessary	to
reduce	the	risk	of	structural	failure,	whereas	the	resources	for	the	repair	should	be	minimised.
In	performance	assessment	and	management	of	existing	civil	structures,	the	SHM	strategy
offers	useful	data	for	model	validation,	reliability	analysis	and	informed	decision	making
(Catbas	et	al.	2008),	as	shown	in	Figure	9.1.



Figure	9.1	Framework	for	reliability	analysis	using	an	SHM	strategy	(after	Catbas	et	al.
2008).

Civil	engineering	structures	deteriorate	over	time,	and	the	deterioration	needs	to	be	properly
modelled	using	probabilistic	approaches	with	consideration	of	uncertainties.	Due	to	the
uncertainties	in	material	and	geometrical	properties,	in	the	physical	models	of	the	deterioration
process,	a	probabilistic	measure	of	the	timevariant	structural	performance	is	necessary	for
realistic	results.	Also,	the	evolution	over	time	of	the	aleatoric	and	epistemic	uncertainty	effects
has	to	be	properly	considered.	Although	aleatoric	uncertainty	cannot	be	reduced,	epistemic
uncertainty	related	to	incomplete	information	could	be	effectively	minimised	by	improving
accuracy	of	predictive	models	using	inspection	and	monitored	data.	Lifetime	distributions	take
into	account	the	combined	effect	of	all	the	uncertainties	on	a	structure	by	using	explicit	lifetime
models,	such	as	the	failure	rate	function,	Markov	process,	gamma	process	and	Weibull	model.
As	a	result,	the	condition	of	a	structure	can	be	evaluated	from	the	lifetime	distribution,
accounting	for	time	to	failure	of	the	structure	as	a	random	variable.

Structural	reliability	analysis	based	on	limit	states	associated	with	failure	modes	of	a	civil
structure	has	to	take	into	account	the	effects	of	deterioration	processes,	timevariant	loadings
and	maintenance	and	repair	interventions	over	the	entire	lifecycle.	The	probability	of	failure	of
a	civil	structure	during	its	service	life	largely	relies	on	the	load	and	resistance	effects,	as	well
as	their	changes	with	time.	Numerical	methods	are	often	required	to	estimate	the	probability	of
failure	of	the	structure	over	time	and	the	calculated	probability	of	failure	may	convert	into	the
corresponding	reliability	index	for	practical	purposes.	From	the	results	of	timevariant
reliability	analysis,	the	remaining	useful	life	of	the	structure	can	be	estimated.	Furthermore,	the
timevariant	reliability	assessment	integrated	with	lifecycle	cost	analysis	supports	decision
making	processes	for	optimal	planning	of	the	maintenance	and	repair	of	the	existing	civil
structure.	To	ensure	a	reliable	operation	and	to	schedule	maintenance	and	repair	actions	in	a
costeffective	manner,	it	is	important	and	necessary	to	continuously	monitor	and	assess	the
performance	of	the	structure	during	its	service	life.



This	chapter	explores	advances	in	the	fields	of	usage	monitoring,	probabilistic	deterioration
modelling,	reliability	assessment	and	optimal	maintenance	strategy	of	existing	civil
engineering	structures.	First,	usage	monitoring	such	as	load	and	environmental	condition
monitoring	of	a	civil	structure	in	service	is	discussed.	From	the	monitored	data,	several
probabilistic	approaches	are	presented	for	stochastic	deterioration	modelling	with	uncertainty.
Lifetime	distributions	representing	probability	of	condition	failure	are	obtained	from	various
stochastic	processes	or	predictive	models,	such	as	the	Markov	process,	gamma	process	and
Weibull	model.	Timevariant	reliability	associated	with	limit	states	of	the	structure	is
assessed	by	various	methods	with	consideration	of	changes	in	loads	and	resistances	over	time.
Several	techniques	are	offered	for	determining	an	optimal	maintenance	strategy	through	time
variant	reliability	analysis	and	lifecycle	cost	analysis.	Finally,	a	case	study	on	usage
monitoring	and	fatigue	reliability	assessment	of	a	suspension	bridge	is	discussed.

9.2	Usage	Monitoring
Usage	monitoring	is	the	process	of	acquiring	operational	loading	data	from	a	civil	engineering
structure	in	service.	The	usage	monitoring	includes	measures	of	loads	(e.g.	traffic	loads	on
bridges)	and	environmental	conditions	(e.g.	temperature	and	moisture).	Loads	due	to	the
intended	use	as	well	as	environmental	actions	(e.g.	wind,	waves	and	earthquakes)	are	usually
sitespecific,	and	may	not	agree	with	the	design	values	used.	With	data	from	monitoring	site
specific	loads,	models	can	be	developed	and	utilised	for	performance	assessment	of	the
structure.	Load	effects	to	the	structure	due	to	extreme	load	events,	such	as	special	traffic,
extreme	wind	and	earthquakes,	can	be	recorded	and	evaluated.	Moreover,	environmental
factors	often	cause	the	deterioration	of	structural	capacity	over	time	(Rücker	et	al.	2006a).	On
the	basis	of	monitoring	of	loads	and	environmental	conditions,	physical	properties	of	the
structure	are	updated	over	time,	and	then	future	deterioration	of	the	structural	capacity	can	be
predicted.

9.2.1	Lifecycle	Monitoring
Civil	engineering	structures	such	as	bridges	should	be	monitored	over	the	whole	life	span
during	various	phases,	such	as	construction	and	service	stages	and	maintenance	periods.
Construction	is	a	very	delicate	phase	in	the	lifetime	of	a	civil	structure.	For	prefabricated
structures,	a	monitoring	system	is	useful	for	deformation	control,	stress	control	at	critical
locations,	stability	control	and	optimisation	between	two	successive	segments.	For	concrete
structures,	since	material	properties	such	as	strength	change	through	aging	at	the	early	stage,
thermal	and	deformation	monitoring	systems	are	needed.	It	is	important	to	know	whether	or	not
the	required	values	have	been	achieved	and	maintained	during	construction.	Defects	(e.g.
premature	cracking)	arising	during	construction	may	have	serious	consequences	on	structural
performance	during	the	service	life.	The	monitoring	data	provides	useful	information	for
further	understanding	of	the	structure’s	real	behaviour.	This	leads	to	better	estimates	of	real
structural	performance	and	more	appropriate	remedial	actions.	Important	information	obtained
through	monitoring	during	construction	includes



estimation	of	hardening	time	of	concrete,	to	estimate	the	time	when	shrinkage	stresses	are
initially	generated

deformation	measurements	during	the	early	age	of	concrete	to	estimate	selfstressing	and
the	risk	of	premature	cracking

deformation	monitoring	of	cables	in	prestressed	structures	to	adjust	prestressing	forces
of	the	cables

monitoring	of	foundation	settlement	to	understand	the	origins	of	builtin	stresses

damage	caused	by	unusual	loads	such	as	floods,	hurricanes	or	earthquakes	during
construction,	affecting	the	ultimate	performance	of	structures

optimal	adjustment	of	structural	position	during	erection

knowledge	improvement	and	recalibration	of	design	methods.

The	monitoring	system	installed	on	a	civil	structure	during	the	construction	phase	can	be
further	used	for	monitoring	the	structure	during	the	whole	service	life.	Since	civil	structures
are	usually	inspected	many	times	during	their	service,	it	is	costeffective	to	install	the
monitoring	system	for	continuous	measurements	from	the	beginning	(Miyamoto	2009).	The
monitoring	system	is	also	useful	for	quality	control	of	structural	strengthening	during	the	repair
periods	and	for	calibration	of	finite	element	models	during	field	tests.

The	service	phase	is	the	most	important	period	in	the	life	of	civil	engineering	structures.
Monitoring	during	the	service	phase	is	necessary,	in	particular	for	large	civil	structures	in
seismic	areas.	During	the	service	phase,	the	construction	materials	are	subjected	to
degradation	over	time.	The	degradation	of	materials	is	generally	caused	by	mechanical	factors,
such	as	fatigue	loading	and	unexpected	loads	(e.g.	earthquakes)	and	physicochemical	factors,
such	as	steel	corrosion	and	concrete	carbonation.	As	a	result	of	material	degradation,	the
capacity	and	durability	of	the	structure	decrease.	Monitoring	during	service	offers	information
on	structural	behaviour	under	expected	loads,	and	also	records	the	effects	of	unexpected
overloading.	Data	collected	by	monitoring	can	be	used	for	damage	identification,	evaluation	of
safety	and	determination	of	the	remaining	useful	life	of	the	structure.	Early	damage
identification	is	particularly	important	for	appropriate	and	timely	repairs.	Late	detection	of
damage	causes	either	an	increase	in	repair	costs	or	closedown	or	even	collapse	of	the	structure
(Miyamoto	2009).	The	continuously	measured	data	from	the	monitoring	system	can	be	utilised
for	assessing	current	state	and	forecasting	future	performance	of	the	structure.	Perhaps	the	best
use	of	structural	monitoring	in	the	assessment	of	civil	engineering	structures	is	the	study	of
longterm	data	trends.

9.2.2	Load	Monitoring	and	Evaluation
Loads	can	be	classified	into	two	types	according	to	their	effects:	static	and	dynamic	loads.	For
a	civil	engineering	structure,	static	loads	include	selfweight	of	the	structure	and	its
components,	prestress,	construction	loads,	traffic	and	transportation	loads,	etc.	The	effects	of
the	static	loads	can	be	measured	by	deformations	of	the	structure	(e.g.	strains	and



displacements).	Dynamic	loads	can	be	such	as	human	excited	loads,	traffic	loads,	wind	loads,
earthquake	loads,	collision	loads	or	explosion	loads.	The	effects	of	these	dynamic	loads
correspond	in	magnitudes	and	dynamic	properties	with	the	loads	as	well	as	with	the	structure.
Measurements	of	dynamic	response	include	vibration	velocities	and	accelerations.

Loads	should	be	determined	from	monitoring	according	to	their	magnitude,	frequency,
character	and	temporal	and	spatial	distributions.	Extensive	information	on	loads	can	be
collected	with	a	continuous	monitoring.	When	only	load	exceedance	is	recorded,	inactive
monitoring	can	be	activated	with	trigger	signals	based	on	the	predefined	threshold	values.	For
monitoring	slowly	variable	quantities	like	static	loads,	a	brief	monitoring	in	regular	intervals
is	often	sufficient.	Also,	an	eventdependent	monitoring	is	applicable	where	the	inactive
monitoring	is	controlled	by	load	independent	values.	The	measurements	of	loads	from	long
term	monitoring	provide	many	useful	applications	(Rücker	et	al.	2006b),	including

measurement	based	permanent	observation	of	traffic	loads	(e.g.	traffic	intensity	density	and
vehicle	weight)

statistics	about	the	long	term	trend	of	increase	and	decrease	of	traffic	loads

determination	of	load	collectives	and	dynamic	factors	by	recording	of	acting	loads,
depending	on	type,	location,	amplitude,	duration	and	frequency

improvement	of	load	models	and	estimates	of	the	extreme	value	with	a	fixed	probability.

Traffic	loads	on	a	civil	structure	possess	static	and	dynamic	components.	Traffic	loads	have
local	and	global	effects	on	the	strain	of	structural	components.	They	cannot	be	measured
directly,	but	can	be	determined	computationally	with	validated	load	models.	In	addition,
information	on	the	traffic	flow,	such	as	driving	speed	and	distance	of	vehicles,	is	important.
The	effects	of	traffic	flow	are	studied	in	a	statistical	sense,	thus	it	provides	data	for	the
validation	of	realistic	load	models	or	for	the	determination	of	extreme	loads.

Traffic	loads	acting	on	bridges	can	be	computed	from	measured	strains.	The	computational
procedure	requires	calibration	functions	representing	the	structural	performance	(e.g.	influence
line).	In	general,	the	influence	line	can	be	determined	with	proof	loading	or	in	numerical	ways.
The	determined	global	load	values	are	classified	on	the	basis	of	the	weight	of	the	passing
vehicles	on	each	lane.	The	frequency	is	calculated	for	each	loading	class	afterwards.

Axle	loads	and	axle	configurations	of	moving	vehicles	can	be	investigated	with	weighin
motion	systems.	By	use	of	weighinmotion	systems,	the	axle	load	measurement	results	of
actual	traffic	are	overlaid	with	dynamic	components	due	to	the	vibrations	of	the	vehicles.
These	results	can	lead	to	misrepresentation	of	statistics	of	traffic	loads.	Load	measurements
with	weighinmotion	systems	are	more	accurate	for	dense	slowmoving	traffic.

In	case	of	collisions,	an	exchange	of	kinetic	energy	to	deformation	energy	occurs,	and	the	load
effect	is	often	dynamic	and	nonlinear.	Thus,	the	load	generally	cannot	be	separated	from	the
structural	response,	and	requires	suitable	models	for	determination	(Rücker	et	al.	2006b).	A
starting	point	is	the	use	of	the	models	of	elastic	and	plastic	action	effects	with	measured
dynamic	values.



9.2.3	Monitoring	of	Environmental	Factors
Environmental	factors	such	as	temperature	and	wind	may	have	significant	effects	on	a	civil
engineering	structure,	thus	it	is	important	to	monitor	these	factors	during	construction	and
service	phases.	Thermal	effects	due	to	change	in	temperature	may	cause	much	higher	strains	in
comparison	to	traffic	loads.	Thermal	effects	also	cause	constraint	forces	and	residual	stresses
if	not	linearly	distributed.	They	generate	deformation	and	can	lead	to	irreversible	damage	(e.g.
cracks	in	concrete	due	to	tensile	stress).	In	general,	strains	caused	by	thermal	effects	can	be
estimated	by	numerical	studies,	only	if	temperature	distribution	is	available.	Therefore,
measurements	of	temperature	from	the	installed	sensors	are	necessary	for	determining
temperature	distribution	and	variation	over	time	on	the	structure	(Rücker	et	al.	2006b).
Through	the	crosssectional	temperature	distributions	and	the	associated	models,	load	effects
can	be	obtained.

Wind	as	a	natural	factor	can	excite	civil	engineering	structures,	in	particular	highrise
buildings	and	longspan	bridges.	The	measurements	of	dynamic	response	(e.g.	accelerations)
through	monitoring	systems	provide	critical	data	for	operational	modal	analysis	to	extract
modal	parameters.	The	quality	of	the	extracted	modal	parameters	may	depend	on	the	wind
speed	to	excite	the	structure,	and	stronger	wind	conditions	generally	offer	better	quality	of
modal	parameters.	Thus,	the	characteristics	of	wind,	including	speed	and	direction,	have	to	be
recorded	through	monitoring	systems.	Furthermore,	the	recorded	wind	data	can	be	used	to
develop	wind	load	models	for	the	specific	structure.	By	analysing	long	term	measurements,
wind	load	models	can	be	calibrated	for	particular	locations.	These	models	can	then	be	used	as
a	basis	for	a	refined	estimation	of	the	expected	wind	loading.	The	simultaneous	monitoring	of
the	weather	conditions	is	necessary.	Typical	wind	monitoring	results,	such	as	wind	velocities,
directions	and	occurrence	(Wong	and	Ni	2009),	are	illustrated	in	Figure	9.2.



Figure	9.2	Monitoring	of	wind	velocities,	directions	and	occurrence	at	towertop	of	Tsing
Ma	Bridge.

Besides	the	mechanical	quantities	described	above,	a	variety	of	other	physical	and	chemical
processes	exist	in	a	civil	structure	during	its	service	life.	For	example,	corrosion	of	steel	rebar
leads	to	an	early	deterioration	of	reinforced	concrete	structures	and	reduces	the	safe	service
life.	Reinforcement	corrosion	consumes	the	original	steel	rebar,	accumulates	rust	products	and
creates	an	expansive	layer	at	the	bond	interface.	As	corrosion	progresses,	the	expansive
displacement	at	the	interface	causes	tensile	stress	in	the	hoop	direction	over	the	surrounding
concrete	cover,	leading	to	radial	splitting	cracks	in	the	concrete.	As	a	result,	the	bond	strength
of	corroding	rebar	starts	decreasing,	and	the	performance	of	the	concrete	structure	deteriorates
gradually	to	an	unacceptable	level	for	the	serviceability	and	safety	of	the	structure	(Chen	and
Alani	2013,	Chen	and	Nepal	2016).	The	main	reasons	of	reinforcement	corrosion	in	concrete
structures	are	chloride	contamination	and	concrete	carbonation.	The	corrosion	penetration	rate
within	concrete	structures	depends	substantially	on	the	environmental	factors,	such	as	humidity,
electric	conductivity,	temperature	and	carbon	dioxide	concentration.	Therefore,	sensors	need
to	be	applied	to	concrete	structures	for	measuring	these	environmental	quantities.

9.2.4	Example	for	Usage	Monitoring	–	a	Suspension	Bridge	(VI)
The	longspan	suspension	Tsing	Ma	Bridge,	as	described	in	 Section	2.3.5	and	Section	7.3.7,
is	used	here	again	to	study	the	highway	traffic	loading	from	oneyear	monitoring	data.	The
knowledge	of	traffic	monitoring	is	beneficial	to	the	bridge	managers	for	assessing	the	bridge
safety	and	scheduling	proper	inspection	and	maintenance	activities.	As	a	part	of	the	longterm
SHM	system,	the	monitored	data	was	acquired	by	a	weighinmotion	(WIM)	system,	as



shown	in	Figure	2.6.	Seven	dynamic	weighinmotion	stations	were	installed	in	the	seven
lanes	of	the	carriageways	to	monitor	road	traffic	condition	and	highway	loading	on	the	bridge.
There	are	three	weighinmotion	stations	in	the	airportbound	direction	and	four	weigh
inmotion	stations	in	the	Kowloonbound	direction.	Each	weighinmotion	station	consists
of	two	parts:	two	bending	path	pads	located	on	the	left	and	right	sides	of	the	lane	for	vehicle
weight	detection	and	two	magnetic	loop	detectors	placed	in	the	front	and	rear	of	the	road	for
determining	vehicle	characteristics.	For	every	passing	vehicle,	weighinmotion	stations
generate	a	line	of	raw	data	accordingly.	Thus,	the	weighinmotion	system	generates	various
measurements,	including	vehicle	class,	number	of	axles	and	axle	weight.
The	parameter	of	axle	load	is	very	important	for	both	the	bridge	structure	and	the	pavement.
According	to	the	vehicle	classification	system,	the	percentage	of	axle	load	in	various	loading
ranges	at	one	ton	intervals	can	be	determined	(Ni	et	al.	2015).	On	the	basis	of	the	data
acquired	from	the	weighinmotion	stations	in	year	2007,	the	distributions	of	axle	load	are
obtained,	as	shown	in	Figure	9.3(a)	for	different	vehicle	categories.	From	the	results,	the	axle
number	decreases	with	increase	in	axle	load.	Over	half	vehicle	axles	have	an	axle	load	lower
than	1	ton,	and	only	around	10%	of	the	total	vehicle	axles	have	an	axle	load	higher	than	5	tons.
With	the	obtained	diagrams	of	axle	loads	and	the	categories	of	vehicle	classification,	the
number	of	axles	falling	into	individual	load	ranges	can	be	determined	in	ascending	series	to
give	an	axle	load	spectrum.	Here,	two	reference	axle	load	spectra	are	considered	for
comparison:	the	load	spectrum	stipulated	in	BS	5400	Part	10	(BSI	1980)	and	the	design	load
spectrum	for	the	bridge.	The	axle	load	spectrum	from	the	weighinmotion	data	on	the	slow
lane	(for	the	airportbound	direction)	is	presented	in	 Figure	9.3(b),	together	with	the	two
reference	load	spectra.	According	to	the	road	traffic	regulation	set	by	the	government,	the
maximum	allowable	axle	load	is	10	tons,	thus	the	percentage	of	overloaded	axles	is	1.27%	in
the	airportbound	direction.	The	spectrum	of	axle	loads	on	the	slow	lanes	of	the	bridge	is
quite	in	agreement	with	that	provided	in	BS	5400	Part	10.	The	spectrum	from	real
measurements	is	safer	than	that	given	by	BS	5400	Part	10.	Both	of	them	are	on	the	safe	side	as
compared	with	the	design	spectrum.



Figure	9.3	Axle	load	distribution	and	spectrum	from	the	weighinmotion	data.

The	parameter	of	gross	vehicle	weight	(GVW)	is	also	important.	The	percentage	of	vehicles	in
gross	vehicle	weight	is	calculated	at	the	4	tons	interval	according	to	the	vehicle	classification
system.	With	the	recorded	weighinmotion	data,	the	distributions	of	gross	vehicle	weight
are	shown	in	Figure	9.4(a)	in	terms	of	vehicle	category.	From	the	results,	the	vehicle	number	is
inversely	proportional	to	the	gross	vehicle	weight.	More	than	three	quarters	of	the	total
vehicles	have	a	gross	vehicle	weight	lower	than	4	tons,	and	only	4.8%	of	the	total	vehicles



have	a	gross	vehicle	weight	over	16	tons.	The	gross	vehicle	weight	spectrum	can	be	developed
in	a	similar	way	on	the	basis	of	the	recorded	gross	vehicle	weight	data,	as	shown	in	Figure
9.4(b).	The	gross	vehicle	weight	spectrum	given	by	BS	5400	is	also	plotted	in	the	figure	for
comparison.	The	parameter	of	the	lower	bound	threshold	of	gross	vehicle	weight	is	set	as	4
tons,	and	the	allowable	maximum	gross	vehicle	weight	is	44	tons,	according	to	government
regulations.	Results	show	that	the	measured	spectrum	is	on	the	safe	side,	compared	with	the
reference	spectrum	specified	in	BS	5400.	There	is	a	small	proportion	(0.015%)	of	overloaded
vehicles	on	the	airportbound	slow	lane.



(9.1)

Figure	9.4	Gross	vehicle	weight	distribution	and	spectrum	from	the	weighinmotion	data.

9.3	Probabilistic	Deterioration	Modelling
As	civil	engineering	structures	are	aging	due	to	various	causes,	it	is	essential	to	understand	the
realistic	state	of	health	and	the	rate	of	deterioration	at	an	early	stage.	The	current	and	future
states	of	a	civil	structure,	however,	are	associated	with	various	degrees	of	uncertainty.	Thus,	a
probabilistic	approach	is	necessary	for	deterioration	modelling	with	uncertainty.	Typical
probabilistic	approaches	for	deterioration	modelling	of	civil	infrastructure	include	failure	rate
function,	Markov	process	and	gamma	process.

9.3.1	Sources	of	Deterioration
Sources	of	deterioration	vary,	depending	on	the	operational	and	environmental	conditions	of
the	existing	civil	structures.	These	sources	can	be	broadly	categorised	into	two	groups:	natural
sources	and	manmade	sources.	Natural	sources	include	short	term	and	 long	term	effects.	The
short	term	effects	are	such	as	earthquake,	wind	or	flood.	The	long	term	effects	include
corrosion,	fatigue,	thermal	effects,	freezethaw,	chemical	process	(e.g.	carbonation),	creep,
shrinkage	and	settlement	of	foundations	or	supports.	Also,	manmade	sources	can	include
sudden	effects,	such	as	overload,	fire	and	vehicle	collision,	as	well	as	long	term	effects,	such
as	inadequate	design	and	construction	defects	(e.g.	improper	assembly	or	misfits).	Effects	of
these	sources	are	cumulative,	and	quantitative	evaluation	of	these	effects	is	difficult.	Models
are	often	used	to	describe	the	resulting	deterioration	over	time.	However,	there	are	always
uncertainties	in	these	deterioration	models,	since	it	is	almost	impossible	to	use	a	mathematical
description	for	the	deterioration	process	in	practice.

The	evolution	over	time	of	the	deterioration	process	of	civil	infrastructure	can	be	simply
described	by	deterministic	models	of	timevariant	deterioration	rate	(Biondini	and	Frangopol
2016).	Empirical	deterministic	models	can	be	adopted	in	some	cases	to	estimate	the
deterioration	over	time	d(t),	initiated	at	time	ti:

where	a	and	b	are	parameters	to	be	determined	from	regression	of	available	data.	In	the	cases
where	data	is	available	over	time,	these	parameters	could	be	also	considered	as	timevariant,
and	estimated	by	timevariant	regression	procedures.



The	above	deterministic	deterioration	model	has	many	limitations	due	to	uncertainties	in	the
deterioration	process	of	civil	structures.	Therefore,	a	probabilistic	approach	is	necessary	to
account	for	the	relevant	uncertainties	associated	with	natural	randomness,	errors	in	modelling
and	prediction	of	reality.

9.3.2	Modelling	and	Parameter	Uncertainty
In	assessing	the	performance	of	existing	civil	engineering	structures,	two	types	of	uncertainties
have	to	be	considered:	aleatoric	and	epistemic	(Frangopol	and	Messervey	2009).	Aleatoric
uncertainty	describes	the	inherent	randomness	of	phenomena	being	observed	and	cannot	be
reduced,	for	example,	natural	variations	in	temperature.	Epistemic	uncertainty	describes	the
error	associated	with	imperfect	models	of	reality	due	to	insufficient	or	inaccurate	knowledge,
for	example,	errors	in	stresses	predicted	by	an	analytical	model	as	material	properties,
geometry	and	loads	are	never	deterministic.	Both	types	of	uncertainty	are	critical	in	the
monitoring	and	modelling	of	civil	structures.	Model	updating,	that	is,	adjusting	structural
parameters	through	experimental	data,	can	reduce	epistemic	uncertainty	by	improving	the
accuracy	of	model	parameters.	In	general,	the	consideration	of	aleatoric	uncertainty
significantly	improves	the	assessment	and	prediction	of	structural	performance.	For	example,
temperature	effects	need	to	be	considered	in	a	physical	model,	as	temperature	greatly
contributes	to	variations	in	strain	or	modal	parameters.

Modelling	uncertainty	can	be	introduced	during	the	physical	modelling	process	(Farrar	et	al.
2003).	Many	uncertainties	in	physical	modelling	can	be	classified	as	epistemic	uncertainty.
Modelling	uncertainty	can	arise	from	approximations	or	errors	in	the	form	of	the	model
equations,	the	applied	loads	and	the	boundary	and	initial	conditions.	Uncertainties	in	modelling
are	inevitable,	since	it	is	difficult	to	model	large	and	complex	civil	engineering	structures	in
reality.	The	fidelity	of	the	models	is	often	limited	and	is	usually	application	dependent	in
predicting	the	outcome	of	real	world	situations.	There	are	few	methods	available	for	the
systematic	treatment	of	uncertainty	in	physical	modelling.	When	the	uncertainty	is	caused	by	the
known	but	not	modelled	physics,	either	the	model	can	be	adjusted	to	include	the	physics	or	an
attempt	can	be	made	to	characterise	the	uncertainty	induced	by	its	exclusion.	However,	when
the	excluded	physics	is	not	known,	little	can	be	done	to	characterise	the	associated	uncertainty.

Parametric	uncertainty	exists	in	the	input	parameters	of	a	model.	In	physical	models,	these
parameters	may	be	geometric	or	material	properties,	or	they	may	be	selected	to	characterise
the	applied	loads,	or	boundary	or	initial	conditions.	When	test	data	is	available	on	a	real
structure,	the	uncertainty	can	be	reduced	by	improving	the	accuracy	of	model	parameters
through	a	model	updating	procedure,	as	described	in	Chapter	6.	In	addition,	there	are	many
other	methods	available	to	deal	with	this	type	of	uncertainty,	such	as	stochastic	approaches,
probabilistic	methods	and	reliability	based	methods.	Among	these	methods,	the	probabilistic
methods	are	powerful	and	commonly	used	tools	for	treating	parametric	uncertainty.

9.3.3	Probabilistic	Deterioration	Models
For	proper	maintenance	of	a	civil	structure,	it	is	necessary	to	estimate	the	future	state	of	the
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structure.	A	deterioration	model	is	then	used	to	approximate	and	predict	the	actual	process
over	time.	To	consider	uncertainties	in	the	deterioration	model,	probabilistic	approaches	can
be	used	for	deterioration	modelling,	such	as	failure	rate	function,	Markov	process	and	gamma
process.

9.3.3.1	Failure	Rate	Function
A	lifetime	distribution	represents	the	uncertainty	in	the	time	to	failure	of	a	structural	system	or
its	components.	Assuming	the	lifetime	distribution	has	a	cumulative	probability	distribution
F(t)	with	probability	density	function	f(t),	the	failure	rate	(or	hazard	rate)	function	r(t)	over
time	t	is	defined	(van	Noortwijk	2009)	as

A	probabilistic	interpretation	of	the	failure	rate	function	is	that	r(t)dt	indicates	the	probability
that	a	component	of	age	t	will	fail	in	the	time	interval	[t,	t + dt].	For	a	deteriorating	structural
system	or	its	components,	the	failure	rate	increases	over	time.	Lifetime	distributions	and
failure	rate	functions	are	especially	useful	in	mechanical	and	electrical	engineering.	The
equipment	can	be	assumed	either	at	the	functioning	state	or	at	the	failed	state.	However,	a
structure	or	component	can	be	in	a	range	of	states	depending	on	its	degrading	condition.

Failure	rates	have	a	major	disadvantage	that	they	cannot	be	observed	or	measured	for	a
particular	component.	Due	to	lack	of	failure	data	generally,	a	reliability	approach	solely	based
on	lifetime	distributions	and	their	unobservable	failure	rates	is	unsatisfactory.	Therefore,	it	is
more	useful	to	model	deterioration	in	terms	of	a	timevariant	stochastic	process	such	as	a
Markov	process	or	gamma	process.

9.3.3.2	Markov	Process
A	Markov	process	is	a	stochastic	timevariant	process	to	estimate	the	future	event	as	a
random	outcome.	The	Markov	process	is	governed	by	three	features:	(a)	the	process	is	discrete
in	time,	(b)	the	process	has	a	countable	and	finite	statespace,	(c)	the	future	state	of	the
process	depends	on	its	present	state,	but	not	on	its	past	state	(van	Noortwijk	and	Frangopol
2004).	The	Markov	process	is	a	suitable	model	for	a	state	based	approach	and	has	been
extensively	applied	for	predicting	the	future	conditions	of	civil	infrastructure	such	as	flood
defences	(Nepal	et	al.	2015).	Mathematically,	a	Markov	process	is	considered	as	a	series	of
transitions	between	certain	condition	states.	Generating	an	accurate	and	reliable	transition
probability	matrix	is	a	critical	step	in	the	process.	When	the	Markov	process	is	used	to	model
deterioration	of	a	system	in	state	i,	a	fixed	probability	pij	exists	when	a	system	changes	from
state	i	to	state	j	during	a	certain	period.	The	general	form	of	transition	probability	matrix	P
with	condition	states	{i, j = 1, 2, …, m}	is	expressed	as
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The	transition	probability	has	the	property	 	for	i = 1, 2, …, m.	The	probability	that
a	process	in	state	i	will	be	in	state	j	after	n	transitions	is	defined	as	nstep	transition
probability.	To	satisfy	the	homogeneity	assumption	of	a	Markov	process,	a	zoning	concept	is
applied.	A	zone	is	a	certain	period	of	time	assumed	to	produce	constant	transition
probabilities.	The	period	for	a	zone	is	based	on	engineering	judgement	or	inspection	intervals.
The	transition	probability	matrix	P	for	n	transitions	can	be	obtained	by	minimising	the
difference	between	the	observed	and	the	predicted	condition	states	of	the	structure.

The	Markov	process	is	popular	approach	for	stochastic	modelling	of	deteriorating	civil
engineering	structures.	This	process	is	relatively	simple	and	has	been	applied	in	practice	with
many	successful	applications.	However,	the	Markov	process	has	several	disadvantages:	(a)	the
constant	transition	probability	matrix	is	not	realistic,	(b)	the	condition	state	is	not	continuous,
but	discrete	and	finite,	(c)	the	Markovian	assumption	of	no	memory	and	independent	of	past
history	is	not	accurate	in	some	cases,	(d)	the	potential	interaction	of	deterioration	between	two
components	is	not	considered.	The	Markov	process	model	is	purely	a	condition	model,	and	the
model	is	very	well	suited	to	incorporate	information	from	visual	inspections,	but	it	cannot	be
used	to	assess	the	reliability	of	a	structure	in	terms	of	strengths	and	stresses.

9.3.3.3	Gamma	Process
The	gamma	process	has	been	increasingly	utilised	for	modelling	a	stochastic	deterioration
process	to	evaluate	the	deterioration	of	aging	civil	engineering	structures	(Chen	and	Alani
2012).	A	comprehensive	review	on	the	application	of	gamma	process	in	the	maintenance	and
management	of	deteriorating	civil	infrastructure	is	provided	in	van	Noortwijk	(2009).	In

mathematical	terms,	the	gamma	process	with	a	random	quantity	 	is	a	continuous
stochastic	process	with	independent	nonnegative	increments	of	a	gamma	distribution.	The
gamma	process	has	the	following	properties:	(a)	Y(t)	has	a	probability	value	of	one	at	initial
time	 ,	(b)	Y(t)	has	independent	increments,	(c)	the	increment	at	a	time	interval	follows	a
gamma	distribution.	Thus,	the	gamma	process	can	be	an	appropriate	model	for	the	gradual
monotonically	accumulated	damage	in	a	structure	occurring	random	in	time	by	continuous	use,
for	example	wear,	fatigue,	corrosion,	crack	growth,	erosion,	creep	or	a	degrading	health	index.
In	the	gamma	process,	the	deterioration	process	is	assumed	to	be	independent	and	considered
as	the	sequences	of	the	deterioration	increments.

From	the	definition	of	the	gamma	process,	the	probability	density	function	of	the	deterioration
increments	Δy	occurring	at	time	t	( )	can	be	described	as

where	 	for	 	is	the	gamma	function.	The	scale	parameter	λ
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with	 	and	the	shape	function	η(t)	can	be	estimated	from	the	maximum	likelihood	method
by	using	in	situ	measurements	about	the	deterioration	processes,	expressed	as

in	which	μ	and	σ	are	the	mean	value	and	standard	deviation	for	the	average	deterioration	rate,
respectively.	Empirical	studies	show	that	the	expected	deterioration	at	time	t	is	often
proportional	to	a	power	law	(van	Noortwijk	2009):

where	 	and	 	are	physical	constants.	There	is	often	engineering	knowledge	available
about	the	shape	of	the	expected	deterioration	in	terms	of	the	parameter	b	in	the	equation.

As	the	gamma	process	is	well	suited	for	modelling	the	temporal	variability	of	deterioration,	it
can	be	adopted	for	reliability	analysis	and	maintenance	decision	making	problems.	The	gamma
process	is	often	used	together	with	statistical	estimation	techniques,	such	as	maximum
likelihood,	method	of	moments,	Bayesian	updating	and	expert	judgement.	As	a	result,	the
gamma	process	is	satisfactorily	fitted	to	reallife	data	on	many	civil	engineering	problems,
including	creep	of	concrete,	fatigue	crack	growth,	corrosion	of	steel	or	reinforcement,
corrosioninduced	thinning	and	chloride	ingress	into	concrete	(Chen	and	Alani	2013,	van
Noortwijk,	2009).	So	far,	the	gamma	process	has	mainly	been	applied	to	deterioration
modelling	for	individual	components	rather	than	for	a	system.	There	are	many	less	developed
aspects	in	gamma	process	deterioration	modelling,	such	as	spatial	variability	and	dependence,
as	well	as	multicomponent	and	multifailuremode	models	including	their	statistical
dependencies.

9.3.4	Example	for	Fatigue	Cracking	Modelling	–	a	Steel	Bridge	(I)
Fatigue	in	members	of	a	steel	bridge	is	the	process	of	initiation	and	growth	of	cracks	under	the
action	of	repeated	traffic	loading.	Fatigue	crack	propagation	in	a	steel	structural	component
can	be	modelled	by	the	popular	Paris–Erdogan	law.	In	order	to	account	for	uncertainty	in
fatigue	crack	growth,	the	stochastic	gamma	process	is	used	for	modelling	the	fatigue	crack
evolution	of	the	steel	bridge	members	under	cyclic	loading	(Huang	et	al.	2016).

Assume	that	the	necessary	physical	parameters	are	available	for	the	numerical	study:	annual
cycles	of	106	times	per	year,	initial	fatigue	crack	length	of	0.5 mm	and	material	parameters	in
the	Paris–Erdogan	law	C = 3.54 × 10−12,	m = 2.54	and	Y(a) = 1.	Figure	9.5	shows	the	results
for	the	simulated	fatigue	crack	growth	curve	using	the	gamma	process	model,	together	with	the
deterministic	curve	predicted	by	the	Paris–Erdogan	law.	From	the	results,	the	simulated	fatigue
crack	growth	generally	matches	the	prediction	by	the	Paris–Erdogan	law,	although	the
simulated	curve	does	not	appear	smooth	due	to	uncertainties	in	the	parameters.	From	the
results,	when	the	service	life	is	less	than	20	years,	the	fatigue	crack	growth	is	slow.	The
growth	rate	increases	sharply	after	the	service	life	of	over	20	years.
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Figure	9.5	Fatigue	crack	growth	curves	simulated	by	the	gamma	process	model	and	predicted
by	the	Paris–Erdogan	law.

9.4	Lifetime	Distribution	Analysis
Lifetime	distributions	are	representation	of	the	time	of	failure	of	a	system	by	using	a	continuous
and	nondecreasing	probability	distribution	of	lifetime	with	consideration	of	time	to	failure	of
the	system	as	a	random	variable.	Lifetime	distributions	consider	the	combined	effect	of	all
uncertainties	on	the	system	by	using	an	explicit	life	model,	such	as	the	gamma	process	model
and	the	Weibull	model.	The	lifetime	distributions	can	be	updated	by	Bayesian	updating	after
inspection	and	repair.

9.4.1	Stochastic	Gamma	Process
For	a	civil	engineering	structure,	its	component	is	said	to	fail	when	the	chosen	quantity	Y(t)
(e.g.	crack	width)	exceeds	a	certain	allowable	value	YL	(e.g.	allowable	crack	width)	for	a
limit	state	problem	at	time	TL.	From	the	gamma	distributed	deterioration	in	Equation	(9.4),	the
lifetime	distribution	of	time	to	failure	is	given	by

where	 	for	 	and	 	is	the	incomplete	gamma	function.	This



formulation	provides	a	useful	relationship	between	probability	of	time	to	failure	and	lifetime,
thus	making	the	gamma	process	model	suitable	for	lifetime	distribution	analysis.

The	results	for	the	simulated	fatigue	crack	growth,	as	shown	in	Figure	9.5,	are	now	used	for
lifetime	distribution	analysis	using	the	stochastic	gamma	process	model	(Huang	et	al.	2016).
Figure	9.6	provides	the	results	for	the	probability	of	time	to	failure	for	different	values	of
critical	crack	length:	acr = 5 mm,	10 mm	and	15 mm.	At	the	beginning	of	service,	since	the
fatigue	crack	length	grows	slowly,	the	probability	of	time	to	failure	is	very	small	and	close	to
zero.	As	the	service	time	increases,	fatigue	crack	length	increases	gradually,	until	it	reaches	the
critical	threshold.	After	the	service	time	nears	the	time	corresponding	to	the	critical	fatigue
crack	threshold,	the	probability	of	time	to	failure	increases	significantly	and	quickly
approaches	unity.	From	the	results,	in	the	case	with	larger	threshold	of	fatigue	crack,	the
probability	of	time	to	failure	experiences	faster	growth	before	failure.	As	a	result,	proper
inspection	and	maintenance	should	be	carried	out	before	the	fatigue	crack	length	reaches	the
predefined	critical	value	in	order	to	keep	the	structure	safe.

Figure	9.6	Probability	distribution	of	time	to	failure	using	the	gamma	process	model	under
different	critical	thresholds	of	fatigue	crack	length	(acr).

9.4.2	Weibull	Life	Distribution	Model
For	civil	infrastructure,	measurable	quantities,	such	as	cracking,	fatigue,	erosion	and	structural
capacity	deterioration,	can	be	chosen	as	random	variables	(symptoms)	for	lifetime	distribution
analysis.	When	a	symptom	exceeds	a	given	limit	value,	the	system	fails	to	meet	the	designed
requirements.	Thus,	the	symptom	reliability	(survival	function)	can	be	assumed	to	be
dependent	on	the	symptom	and	the	associated	failure	rate	function	for	deterioration.	It	is	well
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known	that	the	Weibull	model	is	a	very	flexible	life	distribution	model	and	widely	used	for
undertaking	symptom	reliability	analysis	(Chen	and	Xiao	2015,	Cempel	et	al.	2000).	Thus,	the
Weibull	life	distribution	model	is	adopted	for	the	evolution	of	the	symptom	Y	(e.g.	concrete
crack	width)	caused	by	the	damage	parameter	x	(e.g.	corrosion	penetration)	and	the	probability
density	function	(PDF)	is	expressed	by

where	 	and	υ	is	the	scale	factor	to	be	determined	by	design	requirements	with	respect
to	allowable	limit	YL,	and	β > 0	is	the	shape	parameter	to	be	determined	by	fitting	the	predicted
results	to	the	Weibull	model,	estimated	from

in	which	xb	is	the	damage	parameter	corresponding	to	Yb.	Then	the	probability	distribution	of
time	to	failure	(i.e.	cumulative	distribution	function,	CDF)	as	a	function	of	the	damage
parameter	x(t)	over	time	t	is	obtained	from

From	the	calculated	probability	of	failure,	the	symptom	reliability	(survival	function)	for	the
symptom	Y	as	a	function	of	damage	parameter	x(t)	is	given	as

The	expected	remaining	life	Trul,	associated	with	the	symptom	of	the	system	that	is	still
surviving	at	service	age	of	Tm,	is	estimated	from

The	expected	remaining	life	Trul	depends	on	the	predefined	allowable	limit	YL	for	the



(9.13)

(9.14)

(9.15)

symptom.

9.4.3	Data	Informed	Updating
Monitoring	and	inspection	data	can	be	used	to	update	the	condition	assessment	of	the	structures
concerned.	In	general,	there	exists	some	prior	belief	about	the	reliability	or	random	variables
from	expert	experience,	numerical	simulations	or	experimental	tests.	New	information	from
these	investigations	then	needs	to	be	combined	with	existing	information	in	a	reasonable
manner.	Two	different	approaches	are	often	used:	direct	updating	of	the	probability	of	failure
and	updating	of	the	probability	distribution	of	the	basic	variables.	For	direct	updating,	the
probability	of	failure	can	be	directly	updated	using	Bayesian	theorem	from	the	following
conditional	probability

where	F	represents	local	or	global	structural	failure,	and	I	represents	the	information	obtained
from	investigation.

Alternatively,	the	probability	distribution	of	the	basic	variables	can	be	updated	using	new
information	available.	Assume	that	f′(θ)	is	an	existing	(prior)	belief	of	a	random	variable.	The
use	of	monitoring	provides	sample	data	that	defines	the	same	random	variable	with	a	different
distribution	f(x).	The	combined	(posterior)	distribution	f″(θ)	is	expressed	(Frangopol	and
Messervey	2009)	as

where	the	likelihood	g(θ)	represents	the	conditional	probability	of	observing	f(x)	given	f′(θ),
expressed	as	 ,	and	λ	is	a	normalised	factor	to	ensure	that	the	area	under	the

probability	density	function	(PDF)	is	unity,	defined	as	 .

In	the	special	case	where	the	Weibull	life	distribution	model	is	used	for	analysing	probability
distribution	of	time	to	failure,	as	discussed	in	Section	9.4.2,	the	PDF	in	Equation	(9.8)	can	be
updated	using	the	new	data	available.	When	condition	assessment	is	undertaken	at	symptom	

,	a	likelihood	function	g(Y, Y a)	is	introduced	for	the	Bayesian	updating	of	the
probability	density	function,	defined	as

where	υ′	is	the	updated	scale	factor.	The	PDF	after	Bayesian	updating	needs	to	be	multiplied
by	lifetime	reliability	at	 ,	that	is,	R(Ya),	to	keep	the	updated	cumulative	distribution
function	(CDF)	not	exceeding	unity	(Orcesi	and	Frangopol	2011).	Consequently,	the	updated
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PDF	after	the	assessment	at	 	is	given	as

The	survival	function	(symptom	reliability)	after	assessment	is	calculated	from	Equation
(9.11),	in	which	the	updated	PDF	in	Equation	(9.16)	has	to	be	used.	In	general,	structural
maintenances	are	necessary	to	keep	structures	safe	and	reliable	during	their	service	life.	The
symptom	reliability	profiles	of	the	structure	will	be	changed	after	the	structural	repair	and
essential	maintenance	(Okasha	and	Frangopol	2009).	The	PDF	given	in	Equation	(9.8)	after
repair	at	symptom	 	is	written	as

where	R(Yr)	is	the	symptom	reliability	associated	with	the	repair	at	symptom	 .	The
symptom	reliability	by	Bayesian	updating	and	the	associated	probability	distribution	of	time	to
failure	can	then	be	used	for	optimising	the	maintenance	strategy.

9.4.4	Example	for	Lifetime	Distribution	Analysis	–	a	Concrete	Bridge
A	reinforced	concrete	Tgirder	bridge	exposed	to	aggressive	environments	is	utilised	for
lifetime	distribution	analysis	using	the	Weibull	model.	The	bridge	is	designed	for	a	service	life
of	60	years,	operating	in	aggressive	environments	with	mean	annual	corrosion	current	per	unit

length	 .	The	detailed	description	of	the	problem	as	well	as	the	data	for	the
calculations	are	given	in	Chen	(2017).	The	lifetime	evolution	of	corrosioninduced	concrete
cracking	(the	symptom)	is	modelled	by	the	Weibull	life	distribution.	The	allowable	crack
width	is	assumed	to	be	 	for	the	failure	in	spalling	of	concrete	cover.	The	scale
parameter	υ = 1.1	and	shape	parameter	β = 3.3	is	estimated	by	fitting	the	analytical	predictions
and/or	experimental	data	to	the	Weibull	model.	Figure	9.7	shows	the	results	for	the	probability
distribution	of	time	to	failure	of	the	reinforced	concrete	Tgirder	as	a	function	of	equivalent
concrete	crack	width.	The	probability	of	time	to	failure	increases	as	concrete	crack	width
increases.



Figure	9.7	Lifetime	distribution	(CDF)	as	a	function	of	concrete	crack	width.

Figure	9.8	shows	the	results	for	the	effect	of	inspection	and	repair	on	the	symptom	reliability
by	Bayesian	updating.	Assume	that	an	inspection	and	a	repair	are	undertaken	at	concrete	crack
widths	Ya = 0.8 mm	and	at	Yr = 1.2 mm,	respectively.	The	symptom	reliability	increases
immediately	after	inspection	at	Ya = 0.8 mm,	comparing	with	the	corresponding	prior	symptom
reliability.	The	risk	of	condition	failure	is	then	reduced	after	the	inspection.	Also,	the	symptom
reliability	is	significantly	affected	by	the	structural	repair	at	Yr = 1.2 mm.	The	symptom
reliability	increases	from	the	corresponding	prior	symptom	reliability,	after	the	structural
repair	has	taken	place	during	the	service	life	of	the	reinforced	concrete	Tgirder.



Figure	9.8	Symptom	reliability	(survival	function)	by	Bayesian	updating	due	to	inspection	and
repair.

9.5	Structural	Reliability	Analysis
The	advantage	of	lifetime	distribution	analysis	using	a	stochastic	process	or	a	life	distribution
model	is	simple	and	straightforward,	which	is	appropriate	for	assessing	the	condition	of	a
structure.	However,	lifetime	distribution	analysis	cannot	include	the	specific	resistance	and
load	effects	as	well	as	their	changes	with	time.	On	the	other	hand,	structural	reliability	analysis
is	based	on	the	limit	state	equations	associated	with	failure	modes	of	a	structure,	by
considering	both	resistance	and	load	effects.	For	civil	engineering	structures,	the	loading
condition	and	structural	capacity	often	change	with	time.	Timevariant	reliability	analysis	is
therefore	necessary	for	assessing	the	safety	and	estimating	the	remaining	useful	life	of	the
deteriorating	civil	structure	and	its	components.

9.5.1	Limit	States	and	Reliability	Analysis
In	structural	reliability	analysis,	the	probability	of	failure	or	the	equivalent	reliability	index	of
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a	structure	or	a	structural	member	needs	to	be	calculated.	The	probability	of	failure	for	a
defined	limit	state	largely	depends	on	the	uncertainties	in	the	load	and	resistance	parameters.
Very	often,	the	uncertainties	are	modelled	using	appropriate	probability	distribution	functions
for	each	basic	variable	in	the	defined	limit	state.	Typical	uncertainties	in	structural	reliability
analysis	include	inherent	random	variability	or	uncertainty,	uncertainty	due	to	inadequate
knowledge	and	statistical	uncertainty.	From	the	probability	distribution	functions	for	basic
variables,	the	probability	of	failure	associated	with	the	failure	modes	of	a	civil	structure	is
calculated.	The	calculated	probability	of	failure	is	then	used	for	comparison	with	acceptance
criteria	to	assess	safety	and	serviceability	of	the	structure	or	structural	member.

The	critical	failure	modes	of	the	structure	or	structural	member	need	be	determined	in	the
reliability	analysis	process.	For	each	identified	failure	mode,	the	associated	limit	state
equation	can	be	expressed	as	 ,	where	R	and	S	are	the	resistance	and	load	effects,
respectively.	In	general,	the	probability	of	failure	pf	is	defined	by	the	limit	state	 :

where	fR(r)	and	fS(s)	are	the	probability	density	functions	(PDFs)	of	resistance	effect	R	and
load	effect	S,	as	indicated	in	Figure	9.9,	and	fR,S(r, s)	is	their	joint	PDF.	For	civil	engineering
structures,	the	resistance	R	and	load	S	are	usually	functions	of	many	random	variables.	Thus,
the	limit	state	equation	is	rewritten	as	 	where	x	is	the	vector	of	basic
variables.

Figure	9.9	Probability	density	functions	(PDFs)	of	resistance	effect	R	and	load	effect	S.

All	basic	variables	related	to	load	and	resistance	should	be	modelled	as	stochastic	variables
on	the	basis	of	knowledge	available.	Information	on	the	identified	location	and	extent	of
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structural	damage	or	deterioration	should	be	considered	in	the	resistance	modelling.	Since	the
limit	state	equation	defines	the	boundary	between	safe	domain	 	and	failure	domain	

,	the	probability	of	failure	is	now	calculated	from

which	is	the	volume	integral	of	fx(x),	that	is,	PDF	of	x,	over	the	failure	domain	 .

Several	methods	have	been	developed	to	compute	the	probability	of	failure	Pf,	including	exact
analytical	methods,	approximate	analytical	methods,	numerical	integration	methods	and
simulation	methods	(e.g.	Monte	Carlo	simulation,	importance	sampling).	The	calculations	of
probability	of	failure	often	require	tremendous	computational	efforts	for	civil	engineering
structures.	The	approximate	methods	such	as	the	firstorder	reliability	method	(FORM)	and
the	secondorder	reliability	method	(SORM)	may	be	adopted	in	the	calculations.	Details	of
these	methods	can	be	found	in	the	book	by	Melchers	(1999).

For	a	civil	engineering	structure,	the	probability	of	failure	often	has	a	very	small	value	and	is
usually	reported	in	terms	of	reliability	index	β.	When	the	resistance	R	and	load	S	are
independent	and	normally	distributed,	the	relationship	between	the	reliability	index	and	the
probability	of	failure	can	be	expressed	as

where	Φ(•)	is	standard	normal	cumulative	probability	function,	μR	and	μS	are	the	mean	values
of	the	resistance	and	load	effects,	respectively,	and	σR	and	σS	are	their	standard	deviations.
Finally,	the	calculated	structural	reliability	is	compared	to	the	safety	requirements	for	the
reliability	index.

9.5.2	TimeVariant	Reliability
For	existing	civil	engineering	structures,	the	resistance	and	load	will	change	with	time	due	to
operational	and	environmental	effects,	as	shown	in	Figure	9.10.	In	the	cases	with	no	structural
maintenance	actions	taken,	structural	resistance	usually	deteriorates	over	time	due	to	various
factors	(e.g.	corrosion,	fatigue,	cracking),	while	loads	on	the	structure	often	increase,	leading
to	an	increase	in	probability	of	failure	of	the	structure.	Thus,	structural	reliability	analysis	has
to	consider	time	variance	in	basic	variables	related	to	load	and/or	resistance	effects.	The	limit
state	function	for	an	identified	potential	failure	mode	is	expressed	in	relation	to	time	t	as	

	for	t	within	time	reference	period	[0, T].	The	probability	of
failure	over	time	is	then	calculated	from
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Figure	9.10	Schematic	representation	of	load	processes	and	resistance	deterioration	(after
Melchers	1999).

The	above	formulation	represents	the	probability	that	the	limit	state	is	crossed	for	the	first	time
during	the	reference	period,	that	is,	first	passage	probability.	Several	methods	are	available	for
estimating	the	probability	of	failure	at	specific	points	in	time,	with	consideration	of	the	time
dependence	of	load	effect	and/or	resistance	effect.	Typical	methods	include	the	time
integrated	approach	for	the	whole	lifetime	and	the	discrete	approach	for	shorter	periods	(e.g.
earthquakes,	storms).

Timevariant	reliability	analysis	is	discussed	in	Melchers	(1999).	When	a	load	process	is
replaced	by	a	random	variable	with	a	mean	value	equal	to	its	expected	maximum	value	over	a
chosen	reference	period,	the	timevariant	problems	can	be	transformed	into	timeinvariant
problems.	This	approach	can	be	used	for	solving	the	problems	such	as	overload	failures	and
cumulative	failures	(e.g.	fatigue,	corrosion).	In	special	cases	where	the	resistance	in	the	limit
state	equation	is	deterministic	and	the	loading	is	a	Gaussian	process,	the	probability	of	failure
of	the	structure	can	be	estimated	from	the	integral	of	mean	timevariant	outcrossing	rate	over
the	reference	period.

9.5.3	Remaining	Useful	Life
Timevariant	structural	reliability	analysis	can	be	further	used	for	estimating	the	lifetime	 T	of
a	civil	engineering	structure	(Biondini	and	Frangopol	2016),	when	load	effect	S	exceeds
resistance	effect	R,	namely
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where	t0	is	time	instant	at	the	end	of	the	construction	phase.	For	a	given	allowable	value	of

reliability	index	β*	or	probability	of	failure	 ,	as	shown	in	Figure	9.11,	the	corresponding
threshold	T *	of	the	random	variable	T	can	be	directly	estimated	from

Similarly,	the	remaining	useful	life	Trul	associated	with	a	target	reliability	index	or	probability
of	failure	after	service	time	ts	can	be	evaluated	from

Figure	9.11	Structural	lifetime	T*	associated	with	a	target	probability	of	failure	 .

Proper	management	of	existing	structures	under	timevariant	performance	deterioration
requires	frequent	inspections	and	maintenance	actions.	The	application	of	timevariant
reliability	analysis	and	lifecycle	cost	analysis	can	play	a	significant	role	in	optimising
maintenance	strategy	for	existing	civil	infrastructure	to	balance	risk	of	structural	failure	and
costs	for	maintenance.

9.5.4	Example	for	Fatigue	Reliability	Analysis	–	a	Suspension
Bridge	(VII)
The	Tsing	Ma	Bridge,	as	described	in	Section	2.3.5	and	Section	7.3.7,	is	used	here	to
investigate	the	fatigue	reliability	of	its	structural	components	(Ye	et	al.	2012).	As	part	of	the



structural	monitoring	system,	110	weldable	foiltype	strain	gauges	were	installed	to	measure
dynamic	strains	at	critical	positions	of	deck	crosssections	and	bearings.	One	year’s
monitoring	data	(the	year	of	1999)	was	acquired	from	the	strain	gauges	for	strainbased
fatigue	and	condition	assessment.	Here,	the	monitoring	data	from	the	strain	gauge	SPTLS16
located	at	the	deck	crosssection	CH24662.5,	as	Detail	H	in	 Figure	9.12,	is	used	for	fatigue
reliability	assessment.

Figure	9.12	Deck	crosssection	CH24662.5	and	strain	gauge	SPTLS16	at	Detail	H	of	Tsing
Ma	Bridge.

From	monitoring	data	of	the	strain	gauge	SPTLS16,	the	daily	stress	spectra	are	similar	for
different	days	under	normal	traffic	and	monsoon	conditions.	It	is	therefore	reasonable	to
average	a	number	of	daily	stress	spectra	resulting	from	different	days	to	obtain	a	‘standard
daily	stress	spectrum’.	Data	acquired	from	20	days	including	one	day	under	typhoon	condition
is	chosen	to	construct	a	representative	data	sample.	Figure	9.13(a)	illustrates	the	obtained
standard	daily	stress	spectrum	using	the	20day	daily	stress	spectra	in	consideration	of
highway	traffic,	railway	traffic	and	typhoon	effects.	The	rainflowcounted	stress	that	ranges
from	2	to	30 MPa	is	extracted	for	modelling	the	probability	density	function	(PDF)	of	the	stress
range	measured	by	the	strain	gauge	SPTLS16.	The	total	observation	number	of	the	20day
stress	range	data	is	30,986,	and	the	number	of	classes	is	obtained	as	16	according	to	the
Sturges	classification	rule.



Figure	9.13	Monitoring	data	of	dynamic	stresses	collected	from	strain	gauge	SPTLS16.

Figure	9.13(b)	shows	the	finite	mixed	PDFs	of	the	20day	stress	range	data,	where	normal,
lognormal	and	Weibull	distributions	are	used,	respectively.	From	the	results,	the	scatter	of	the
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stress	ranges	is	well	modelled	by	the	finite	mixture	distributions	and	easily	extrapolated	to	the
region	beyond	the	measured	stress	ranges.	Also,	the	predicted	stress	range	distribution	is	a
twomodel	PDF	separated	at	6 MPa.	The	stress	ranges	less	than	6 MPa	are	caused	by
highway	traffic,	and	the	stress	ranges	larger	than	6 MPa	are	mainly	attributed	to	train	traffic.
From	comparison	of	the	results,	the	Weibull	distribution	is	taken	as	the	component	distribution
for	modelling	the	measured	stress	ranges.

To	analyse	the	fatigue	reliability,	the	limit	state	function	for	fatigue	damage	g(σ, τ),	in	terms	of
nominal	stress	range	(σ)	and	stress	concentration	factor	(τ),	can	be	expressed	as

where	Df	is	the	fatigue	damage	at	failure,	Ntot	is	total	number	of	stress	cycles,	Nf	is	the	stress
cycles	at	failure	and	f(σ)	and	f(τ)	are	the	PDFs	of	nominal	stress	range	and	stress	concentration
factor,	respectively.	From	the	limit	state	function,	the	probability	of	failure	as	well	as	the
corresponding	reliability	index	can	be	calculated.

Figure	9.14	shows	the	results	for	the	probability	of	failure	and	reliability	index	versus	fatigue
life,	where	the	range	of	the	counted	stress	is	between	2	and	30 MPa	and	the	coverage	of	stress
concentration	factor	is	from	1	to	2.	The	reliability	index	in	the	range	between	2	and	4	is	used	to
establish	code	safety	margins.	Fatigue	life	is	then	determined	for	a	given	target	reliability
index	or	probability	of	failure.	From	the	results,	the	predicted	fatigue	life	is	796	years	if	the
value	of	target	reliability	index	is	taken	as	3.	The	results	also	indicate	that	the	service	fatigue
life	directly	affects	the	probability	of	failure	or	reliability	index	of	the	structural	component.
When	the	requirement	for	service	life	increases,	the	corresponding	probability	of	fatigue
failure	increases,	and	reliability	index	decreases	sharply.
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Figure	9.14	Probability	of	failure	and	reliability	index	as	a	function	of	fatigue	life.

9.6	Optimum	Maintenance	Strategy
The	results	of	lifetime	deterioration	modelling	and	timevariant	reliability	analysis	can	be
used	to	determine	an	optimal	maintenance	strategy.	The	advances	in	lifetime	reliability
assessment	and	lifecycle	cost	analysis	provide	critical	information	to	establish	guiding
policies	and	support	decision	making	processes	for	rational	management	of	existing	civil
structures.

9.6.1	Lifetime	Costs
Optimum	planning	of	inspection,	monitoring,	maintenance	and	repairs	of	existing	civil
structures	in	a	costeffective	manner	relies	on	lifecycle	cost	analysis.	This	optimisation
problem	consists	of	minimising	total	expected	lifecycle	cost,	including	costs	for	inspection,
maintenance	and	repair	(Orcesi	and	Frangopol	2011).	For	an	existing	civil	structure,	the
expected	total	cost	over	the	remaining	life	span	Ctotal	can	be	expressed	as

The	total	expected	cost	of	performing	inspections	Cinsp	for	a	total	of	Ni	structural	inspections
over	the	remaining	service	life	span	T	is	calculated	from

where	Cinsp,i	is	reference	cost	for	the	ith	structural	inspection	at	time	ti	and	dr	is	annual
discount	rate.

The	total	expected	cost	of	maintenance	Cmain	includes	costs	for	preventive	or	routine
maintenance	over	the	remaining	service	life	span	T,	depending	on	specific	scheduling.	The
total	expected	cost	of	repair	Crep	for	a	total	of	Nj	structural	repairs	over	the	remaining	service
life	span	T	is

where	Crep,j	is	the	reference	cost	for	the	jth	structural	repair	at	time	tj.

The	maintenance	strategy	including	structural	inspection	and	repair	will	change	the	profiles	of
the	probability	of	failure.	The	expected	cost	of	structural	failure	Cfail	over	the	remaining
service	life	span	T	is	calculated	from
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where	Cf	is	the	cost	of	structural	failure	at	the	present	time	and	pf(0)	and	pf(t)	are	the
probability	of	failure	at	the	present	time	and	at	year	t,	respectively.

In	the	cases	where	a	monitoring	system	has	been	installed	on	the	structure,	the	expected	cost	of
monitoring	Cmon	should	be	included	in	the	expected	total	cost.	The	cost	of	monitoring	depends
on	monitoring	times	and	durations.	The	monitoring	cost	is	composed	of	fixed	cost	due	to	the
preparation	and	analysis	of	monitoring	(e.g.	installation,	wiring	of	sensors	and	data	acquisition
system)	and	variable	cost	that	depends	on	the	duration	of	monitoring	(Orcesi	and	Frangopol
2011).	The	expected	cost	of	monitoring	Cmon	over	the	remaining	service	life	span	T	is
estimated	from

where	 	is	reference	cost	of	monitoring	component	j	during	d0	days,	dk	is	length	of

monitoring	(in	days),	 	is	fixed	cost	of	monitoring	component	j,	Mm	is	number	of
components	that	are	monitored,	Njt	is	the	number	of	monitoring	times	for	the	component	j	until
t	and	tk	is	time	of	the	kth	monitoring	of	component	j.

9.6.2	Decision	Based	on	Lifetime	Deterioration
Structural	performance	deterioration	over	time	can	be	modelled	using	various	stochastic
process	models,	such	as	failure	rate	function,	Markov	process,	gamma	process	and	Weibull
model,	as	discussed	in	Sections	9.3	and	9.4.	On	the	basis	of	these	stochastic	deterioration
models,	an	optimal	maintenance	policy	with	or	without	performance	constraints	can	be
determined.

9.6.2.1	Failure	Rate	Function	Model
In	the	cases	where	a	failure	rate	function	is	used	for	lifetime	deterioration	modelling,	an
optimal	maintenance	policy	can	then	be	determined	using	the	age	replacement	model	and	the
block	replacement	model.	The	age	replacement	model	provides	an	optimal	maintenance	policy
for	replacement	upon	failure	(corrective	replacement)	or	upon	reaching	a	predetermined	age	k
(preventive	replacement),	whichever	occurs	first.	The	block	replacement	model	gives	an
optimal	policy	for	replacement	upon	failure	and	periodically	at	the	times	(e.g.	k,	2 k,	3 k	…).
The	age	replacement	model	is	one	of	the	most	frequently	used	maintenance	optimisation
models	in	practice.	Details	of	these	replacement	methods	are	discussed	in	Barlow	and
Proschan	(1965).
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9.6.2.2	Markov	Process	Model
To	determine	an	optimal	policy	for	maintenance	actions,	a	finite	set	of	actions	A	and	costs
C(i,a)	are	introduced	(Frangopol	et	al.	2004).	When	the	process	is	currently	in	state	i	and	an
action	a	is	taken,	the	process	moves	into	state	j	with	probability	

.	This	transition	probability	does	not	depend	on	the	state
history.	If	a	stationary	policy	is	selected,	then	this	process	is	called	a	Markov	decision
process.	The	state	of	the	structure	over	time	with	or	without	performing	maintenance	actions
can	be	modelled.	Thus,	an	optimised	decision	on	inspection	and/or	maintenance	policies	can
be	determined.

When	the	structure	is	in	state	i,	the	expected	discounted	costs	over	an	unbounded	horizon	are
expressed	as	the	recurrent	relation

where	 	is	annual	discount	factor,	Cα	is	the	discounted	value	function.	Starting
from	state	i,	Cα(i)	represents	the	cost	of	performing	an	action	a	given	by	C(i, a)	plus	the
expected	discounted	costs	of	moving	into	another	state	with	probability	pij(a).	The	discounted
costs	over	an	unbounded	horizon	associated	with	a	start	in	state	j	are	given	by	Cα(j).
Therefore,	Equation	(9.31)	is	a	recursive	equation.	The	choice	for	the	action	a	is	determined
by	the	maintenance	policy	and	also	includes	no	repair.

A	costoptimal	decision	can	be	found	by	minimising	 Equation	(9.31)	with	respect	to	the
action	a.	Many	approaches	are	available	to	find	this	optimal	solution.	A	typical	policy
improvement	algorithm	can	be	used	to	calculate	the	expected	discounted	costs	for	increasingly
better	policies	until	no	more	improvement	can	be	made	(Frangopol	et	al.	2004).	Some	issues
arise	in	the	use	of	Markov	decision	processes	for	maintenance	optimisation.	For	example,	this
method	works	well	for	visual	inspections,	but	it	is	not	suitable	for	continuous	monitoring.	The
reason	for	that	is	the	condition	state	is	not	continuous,	but	discrete	and	finite.	The	Markovian
assumption	of	no	memory	may	not	be	true	in	some	practical	cases.	Also,	the	transition
probabilities	are	often	estimated	from	the	use	of	expert	judgement,	thus	they	are	difficult	to
assess	and	are	quite	subjective.

9.6.2.3	Gamma	Process	Model
The	gamma	deterioration	process	was	successfully	applied	to	model	time	based	or	condition
based	preventive	maintenance	(van	Noortwijk	2009,	Frangopol	et	al.	2004).	Time	based
preventive	maintenance	is	undertaken	at	regular	intervals	of	time.	By	contrast,	condition	based
maintenance	is	undertaken	at	times	based	on	inspecting	or	monitoring	condition	of	a	structure.
In	general,	cost	based	criteria,	such	as	the	expected	discounted	cost	over	an	unbounded
horizon,	are	used	for	optimising	maintenance	policy	in	terms	of	repair	time.	These	cost	based
criteria	are	computed	on	the	basis	of	renewal	theory,	assuming	that	renewals	bring	a
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component	or	structure	back	to	its	original	condition.	From	renewal	theory	with	discounting,
the	expected	discounted	cost	over	an	unbounded	horizon	is	expressed	as

where	E(K(t, α))	represents	the	expected	discounted	cost	in	the	bounded	time	interval	(0,t)
with	annual	discount	factor	α,	c(t)	is	the	cost	associated	with	a	renewal	at	time	t	and	F(t)	is	the
cumulative	probability	distribution	of	the	time	of	renewal.

For	civil	structures,	maintenance	can	often	be	modelled	as	a	discretetime	renewal	process,
since	the	planned	lifetime	of	most	structures	is	very	long	compared	with	the	possible	renewal
cycle	length.	Two	typical	types	of	maintenance	are	often	used	in	practice:	preventive
maintenance	before	failure	and	corrective	maintenance	after	failure.	A	preventive	replacement
involves	a	cost	cP,	whereas	for	a	corrective	replacement	the	cost	is	cF,	where	 .	By
using	discretetime	renewal	theory,	the	expected	discounted	cost	of	age	replacement	over	an
unbounded	horizon	is

where	k = 1, 2, 3…	represents	the	number	of	time	intervals	to	be	determined	and	pfi	represents
the	failure	probability	of	a	renewal	in	unit	time	i.	The	optimal	maintenance	time	interval	k*	is
then	obtained	by	minimising	the	expected	discounted	cost	over	lifetime.

9.6.2.4	Survival	Function
The	evolution	in	time	of	the	safety	of	an	existing	civil	engineering	structure	can	be	described
by	a	survival	function	such	as	the	Weibull	model	(Orcesi	and	Frangopol	2011).	The	survival
function	R(t)	represents	the	probability	that	the	structure	will	not	fail	before	time	t,	as
discussed	in	Section	9.4.2.	From	the	selected	survival	function,	an	optimal	maintenance	policy
of	the	structure	can	be	determined	by	minimising	the	total	cost	during	the	service	life	under
constraints	of	specific	safety	requirement.	Very	often,	the	main	objective	of	civil	infrastructure
management	is	to	spend	the	minimum	possible	amount	of	financial	resources,	while	keeping	the
structures	safe	and	serviceable.

When	no	monitoring	is	performed,	the	optimal	solution	is	found	by	minimising	both	cumulative
expected	cost	of	repair	Crep	at	the	end	of	service	life	Tf	in	Equation	(9.28)	and	the	expected
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cost	of	structural	failure	Cfail	at	the	end	of	service	life	Tf	in	Equation	(9.29).	The	minimisation
of	the	two	objective	functions	is	then

When	monitoring	is	performed,	monitored	data	can	update	reliability	knowledge	of	the
structure,	which	affects	the	maintenance	planning.	In	this	case,	the	cumulative	expected	cost	at
the	end	of	service	life	Tf	includes	the	monitoring	cost	Cmon	in	Equation	(9.30)	and	the	repair
cost	Crep	in	Equation	(9.28).	The	minimisation	of	the	two	objective	functions	in	Equation
(9.34)	is	then	rewritten	as

Multiobjective	optimisation	methods,	such	as	nondominated	sorting	genetic	algorithms
(Orcesi	and	Frangopol	2011),	can	be	used	to	find	the	optimal	solution	set	of	this	biobjective
optimisation	problem.

9.6.3	Decision	Based	on	Structural	Reliability
The	proper	maintenance	decision	under	safety	constraints	required	for	existing	civil	structures
should	be	made	based	on	both	cost	and	reliability.	In	order	to	minimise	the	lifecycle	cost
within	acceptable	risk	of	structural	failure,	optimal	reliability	based	maintenance	strategy
needs	to	be	used	in	the	process	of	infrastructure	management.	For	existing	civil	structures
without	monitoring	system	installed,	from	Equation	(9.26)	the	expected	total	cost	over	the
remaining	life	span	is	expressed	as

where	the	expected	total	cost	includes	costs	for	inspections	Cinsp,	preventive	maintenances
Cmain,	repairs	Crep	and	structural	failure	cost	Cfail	over	the	remaining	life	span.

The	optimisation	problem	for	existing	civil	structures	consists	of	minimising	expected	total
cost	in	Equation	(9.36)	under	reliability	constraints	(Onoufriou	and	Frangopol	2002),
expressed	as

where	βRL	and	 	are	the	structural	lifetime	reliability	index	and	target	reliability	index
associated	with	the	remaining	service	life	of	the	structure,	respectively.

The	optimisation	in	Equation	(9.37)	can	also	be	undertaken	under	constraints	of	probability	of
failure



(9.38)

where	pf	and	 	are	the	lifetime	probability	of	failure	and	target	probability	of	failure
associated	with	the	remaining	service	life,	respectively.	Many	methods	are	available	for
finding	an	optimal	solution	for	the	constrained	optimisation	problem	with	inequality	constraints
(Bazaraa	et	al.	2006).

9.6.4	Example	for	Optimal	Maintenance	–	a	Steel	Bridge	(II)
Fatigue	cracks	often	exist	and	develop	in	the	welded	Utype	stiffening	ribs	and/or	in	the	deck
plates	of	a	steel	bridge	under	the	action	of	cyclic	loads.	The	stochastic	gamma	process	can	be
used	for	the	fatigue	crack	evolution	modelling	of	the	structural	components	(Huang	et	al.	2016),
as	discussed	in	Section	9.3.4.	During	the	lifecycle	of	the	steel	bridge	affected	by	fatigue
cracking,	a	series	of	inspection	and	maintenance	actions	may	be	required.	In	order	to	minimise
lifecycle	cost,	the	inspection	and	maintenance	strategy	needs	to	be	optimised.	The	optimisation
problem	of	inspection	and	maintenance	actions	is	to	find	an	optimal	inspection	time	and	repair
planning	represented	by	a	repair	coefficient	that	indicates	the	reduction	of	fatigue	crack	length
after	repair.	The	multiple	objectives	of	the	optimisation	problem	are	to	maximise	the	service
life	after	inspections	and	repairs	and	to	minimise	the	total	cost	for	inspections	and	repairs.

Assume	the	critical	threshold	value	of	fatigue	crack	length	acr = 15 mm,	inspection	cost	Cinsp = 

20 k$,	maintenance	cost	Cmain = 100 k$,	and	initial	failure	risk	cost	  = 500 k$.	The
inspection	time	interval	is	assumed	at	least	one	year	and	the	repair	coefficient	is	assumed	to	be
between	0.1	and	0.9.	A	genetic	algorithm	(GA)	is	adopted	to	solve	the	multiobjective
optimisation	problem	for	maximising	the	service	life	and	minimising	the	maintenance	cost.

Figure	9.15	shows	the	results	for	the	optimal	inspection	and	repair	planning	for	the	fatigue
crack	in	the	stiffing	ribs	of	the	steel	bridge.	The	number	of	inspections	is	assumed	to	be	once	in
Figure	9.15(a)	and	twice	in	Figure	9.15(b),	respectively.	Every	point	in	the	results	shown	in
the	figures	represents	a	specific	inspection	and	repair	planning.	Both	the	service	life	after	the
intervention	and	the	total	cost	of	the	inspections	and	repairs	are	provided	in	the	results.	As
expected,	the	required	cost	for	the	inspections	and	repairs	increases,	as	the	expected	service
life	is	extended.





Figure	9.15	Pareto	optimum	solution	sets	with	single	and	double	interventions	for	inspection
and	maintenance.

9.7	Case	Study
A	bridge	health	monitoring	system	has	been	installed	and	operated	on	the	Tsing	Ma	Bridge	to
monitor	four	major	categories	of	parameters:	environments,	traffic	loads,	bridge	features	and
bridge	responses,	as	described	in	Wong	and	Ni	(2011)	and	discussed	in	Section	2.3.5.	The
sensory	systems	used	for	stress	and	traffic	loads	monitoring	include	dynamic	strain	gauges,
dynamic	weighinmotion	stations	and	servotype	accelerometers.	 Table	9.1	summarises
the	types	of	structural	components,	instrumented	structural	components	and	monitoring
parameters	required	for	the	monitoring	system	of	the	bridge.

Table	9.1	List	of	instrumented	structural	components	and	monitoring	parameters.

Group
name

Component	name Monitoring	parameters

Suspension
cables

Main	cables;	strand	shoes;	shoe	anchor	rods;	anchor
bolts;	cable	clamps	&	bands

Servotype
accelerometers	in
main	cables

Fourier	analysis	of
time	series
acceleration	data

Cable	force
estimation

Suspenders Hangers;	hanger	connections;	stiffeners;	hanger
connections;	bearing	plates

ServoType
accelerometers	in
hangers	and
following	the	same
method	and
procedure	as	above

Outer
longitudinal
trusses

Top	chord;	diagonal	chord;	vertical	post;	bottom	chord Dynamic	strain
gauges	–	single
gauges,	pair	gauges
and	rosette	gauges

Dynamic	weigh
inmotion	stations

Statistical
processing	of

Inner
longitudinal
trusses

Top	chord;	diagonal	chord;	vertical	post;	bottom	chord

Main	cross Top	web;	sloping	web;	bottom	web;	bottom	chord



frames strain/stress	history

Stress	influence
coefficients
derivation

Stress	demand	ratios
computation

Highway	traffic
loads	estimation

Railway	traffic
loads	estimation

Fatigue	life
estimation

Intermediate
cross
frames

Top	web;	Sloping	web;	Bottom	web;	Bottom	chord

Plan
bracings

Upper	deck	bracings;	lower	deck	bracings

Deck Deck	troughs;	deck	plates
Railway
waybeams

Tsections;	top	flanges;	connections

Bearings Rocker	(R.)	bearings	at	Ma	Wan	Tower;	PTFE	(P.)
bearings	at	Tsing	Yi	Tower;	P.	bearings	at	pier	T1;	P.
bearings	at	pier	T2;	P.	bearings	at	pier	T3;	P.	bearings
at	Tsing	Yi	anchorage;	R.	bearing	at	M2;	P.	bearings	at
M1;	Hinged	bearing	at	Ma	Wan	anchorage

Dynamic	strain
gauges	in	Ma	Wan
rocker	bearings	only
and	following	the
same	method	and
procedure	as	above.

Figure	9.16	shows	the	related	sensors	in	longitudinal	stiffening	truss	for	highway	traffic
monitoring	of	the	bridge.	In	this	stress	and	traffic	loads	monitoring,	the	three	categories	of
monitoring	parameters	are:	traffic	loads	monitoring,	cable	force	monitoring	and	stiffening	deck
system	stress	monitoring.	The	sensory	systems	for	stress	and	traffic	loads	monitoring	generate
three	types	of	timeseries	data	of	strain,	axleweight	and	 axlespeed	and	acceleration,
respectively.	This	data	is	then	processed	and	analysed	in	accordance	with	the	requirements	of
the	monitored	parameters.	The	monitored	parameters	and	related	components	in	each	category
are	discussed	as	follows.



Figure	9.16	Dynamic	strain	gauges	in	longitudinal	stiffening	truss	for	highway	traffic
monitoring.

9.7.1	Traffic	Loads	Monitoring
The	highway	traffic	data	obtained	from	the	dynamic	weighinmotion	stations	is	first
processed	in	accordance	with	the	vehicular	classification	required	by	the	Transport
Department.	The	details	of	vehicular	classification	are	then	simplified	in	accordance	with	BS
5400:Part	10:1980,	Clause	8.4.3	(BSI	1980).	The	data	from	dynamic	weighinmotion
stations	is	used	to	monitor	the	potential	rates	of	fatigue	damage,	due	to	highway	traffic	in
selected	parts	or	components	sensitive	to	passages	of	individual	commercial	vehicles.	The
theoretical	relationships	(influence	lines)	between	stress	range	and	typical	vehicular	loads	are
derived	by	finite	element	analysis,	and	the	potential	fatigue	damage	related	to	those	ranges	is
based	on	the	SN	curves	as	given	by	BS	5400:Part	10:1980.	By	repeating	this	process	for
each	typical	type	of	commercial	vehicle,	the	cumulative	fatigue	damage	rate	over	the
prescribed	periods	is	then	monitored	and	compared	to	that	obtained	from	the	design	rules	and
from	measurement	results.



The	railway	waybeam	on	Tsing	Ma	Bridge	is	composed	of	two	inverted	Tbeams	welded	to	a
top	flange	plate.	At	the	section	of	the	instrumented	waybeam,	50 mm	from	the	midway	between
the	cross	frames,	the	dynamic	strain	gauges	are	installed.	In	order	to	avoid	the	uncertainties	of
the	effective	width	of	the	top	flange	under	wheel	loads,	the	effective	section	properties	should
best	be	calibrated	under	the	passage	of	bogies	of	known	loads.	Figure	9.17	shows	the	results
for	the	bogie	loads	for	each	line	of	a	train,	computed	from	the	measured	strain	and	the	elastic
modulus	of	structural	steel.

Figure	9.17	Estimates	of	railway	loading	based	on	strain	results	in	waybeams.

9.7.2	Cable	Force	Monitoring
Cable	force	monitoring	on	the	Tsing	Ma	Bridge	is	composed	of	main	cable	monitoring	and
suspender	monitoring.	Servotype	accelerometers	are	installed	to	monitor	the	tension	forces
in	cables	and	suspenders,	based	on	the	cable	and	suspender	frequencies	extracted	from	the
stationary	and	ergodic	timeseries	acceleration	data.	For	main	cables,	the	timeseries	of
acceleration	data	on	the	Tsing	Yi	side	span	is	used,	because	the	influence	due	to	suspenders	is



minimum.	In	the	monitoring	of	tension	force	in	suspenders,	since	there	is	no	fixed	servotype
accelerometers	installed	in	the	95	groups	of	suspenders,	field	ambient	vibration	measurements
on	each	group	of	suspenders	are	required.	In	the	first	two	years	of	monitoring	system
operation,	the	field	ambient	vibration	measurements	on	all	the	95	groups	of	suspenders	were
completed.	Then,	around	10%	of	the	measurements	are	selected	each	year	for	calibration
and/or	updating.	Figure	9.18	shows	the	results	for	the	variation	of	the	tension	force	in	the	95
groups	of	suspenders.

Figure	9.18	Comparison	of	measured	and	designed	suspender	forces.

9.7.3	Stiffening	Deck	System	Stress	Monitoring
The	three	limit	states	that	dominate	the	design	process	of	steel	bridges	are	tensile	fracture,
compression	buckling	and	fatigue.	Traditionally	fatigue	has	always	come	last.	This	is	because,
in	practice,	the	governing	design	factor	in	the	majority	of	components	of	highway	bridges	has
always	been	fracture	or	buckling.	In	general,	there	are	comparatively	few	components	in	which
fatigue	requires	heavier	components	or	heavier	connections	than	demanded	by	static	limit
states.	Furthermore,	fatigue	risk	of	failure	by	definition	needs	time	to	reveal	itself.	Thus,	in
stiffening	deck	system	stress	monitoring,	priority	is	given	to	monitoring	the	current	and
historical	strain/stress	status	of	the	component	and	its	stress	demand	ratios,	and	then	the



estimation	of	stress	influence	coefficients	and	component/connection	fatigue	life.	Figure	9.19
shows	the	results	for	statistical	processing	of	strain/stress	history	in	the	top	chord	of	outer
longitudinal	truss	on	the	north	side.	When	sufficient	data	is	collected	and	processed,	the
strain/stress	variation	trend	of	the	component	in	the	future	can	be	predicted.

Figure	9.19	Stress	history	in	top	chord	of	outer	longitudinal	truss	(North).

Fatigue	life	estimation	from	dynamic	strain	results	of	the	truss	component/connection	of	Tsing
Ma	Bridge	is	carried	out	in	accordance	with	the	requirements,	as	stated	in	Clauses	11.1–11.5
and	Appendices	A	and	H	of	BS	5400:Part	10:1980.	Fatigue	life	estimations	of	the	connection
between	top	chord	and	vertical	strut	of	the	outer	longitudinal	truss,	as	shown	in	Figure	9.16,
are	then	undertaken.	From	the	monitored	data,	the	accumulated	damage	is	estimated	by	the
Palmgren–Miner	rule.	The	bridge	design	life	is	120	years.	The	fatigue	life	of	the	connection
between	the	top	chord	and	vertical	strut	is	then	estimated	from	dividing	the	bridge	design	life
by	the	predicted	accumulated	damage.	Figure	9.20	shows	the	results	for	rainflow	counting	and
fatigue	life	estimation,	with	an	estimated	fatigue	life	of	543	years.



Figure	9.20	Fatigue	life	estimation	for	top	chord	of	outer	longitudinal	truss	(North).

9.8	Concluding	Remarks
The	usage	monitoring,	including	operational	load	monitoring	and	environment	monitoring,	is	of
great	importance	for	assessing	structural	performance	deterioration,	to	analyse	structural
reliability	over	lifetime	and	to	determine	optimal	maintenance	strategy.	From	the	monitored
data	and	numerical	simulations,	deterioration	of	existing	civil	structures	can	be	modelled	with
uncertainties	using	probabilistic	approaches.	Deterioration	processes	may	involve	different
types	of	damage	mechanisms	with	different	consequences	on	the	structural	performance.	In	any
case,	the	parameters	adopted	in	modelling	of	deterioration	processes	are	always	affected	by
uncertainties.	Thus,	reliable	and	effective	modelling	of	structural	deterioration	mechanisms	is
essential	for	probabilistic	assessment	of	structural	performance	over	lifetime.

Typical	probabilistic	approaches	for	structural	deterioration	modelling	include	the	failure	rate
function,	Markov	process	and	gamma	process.	No	single	approach	has	yet	proven	to	be
generally	applicable,	and	each	model	has	its	advantages	and	disadvantages.	For	example,
deterioration	modelling	using	failure	rate	functions	may	be	unsatisfactory	due	to	the	usual	lack
of	failure	data	and	unobservable	failure	rates.	The	Markov	process	model	is	purely	a	condition
model	and	is	very	well	suited	to	incorporating	information	from	visual	inspections,	but	the



model	is	not	suitable	for	continuously	monitored	data.	The	stochastic	gamma	processes	are
well	suited	for	modelling	the	temporal	variability	of	deterioration.	Up	to	now,	the	gamma
processes	have	mainly	been	applied	to	deterioration	and	maintenance	decision	problems	for
individual	components	rather	than	for	systems.	The	gamma	processes	cannot	be	used	to	assess
the	reliability	of	a	structure	in	terms	of	strengths	and	stresses.

Lifetime	distributions	take	into	consideration	the	combined	effect	of	all	the	uncertainties	in	the
system	by	using	a	stochastic	process	or	an	explicit	life	distribution	model,	such	as	the	gamma
process	model	or	the	Weibull	model.	Lifetime	distributions	are	simple	and	efficient	methods	of
determining	probability	distribution	of	time	to	failure	by	considering	the	time	to	failure	of	the
system	and	its	components	as	a	random	variable.	However,	lifetime	distributions	are	generally
very	sensitive	to	change	of	the	input	random	variables.	It	is	often	very	difficult	to	calibrate	and
validate	the	lifetime	distributions	for	a	specific	structure	because	of	the	limited	availability	of
data.	Inspection	and	monitoring	activities	can	provide	a	powerful	aid	to	reduce	the	level	of
epistemic	uncertainty	and	to	improve	the	accuracy	of	predictive	probabilistic	models.

Structural	reliability	analysis	associated	with	the	limit	states	of	a	civil	engineering	structure	is
often	used	for	assessing	the	safety	of	the	structure	at	design	and	operation	stages.	The
probability	of	failure	of	a	structural	system	and	its	components	is	typically	calculated	from	the
limit	state	equations	associated	with	structural	failure	modes.	Both	changes	in	structural
resistance	and	loading	conditions	over	lifetime	can	be	implemented	into	timevariant
reliability	analysis	of	an	existing	civil	structure.	As	a	result,	the	remaining	useful	life	of	the
structure	can	be	estimated	from	the	timevariant	reliability	analysis.	However,	this	approach
has	a	major	disadvantage	of	computational	inefficiency,	and	it	often	gives	approximate
solutions.

Risk	and	cost	optimised	maintenance	strategy	of	existing	civil	structures	can	be	determined	on
the	basis	of	lifetime	reliability	analysis	and	lifecycle	cost	analysis.	These	reliability	based
approaches	can	be	extremely	useful	to	support	the	decision	making	process	involved	in	the
maintenance	and	repair	of	existing	civil	structures.	Among	these	methods,	reliability	based
multiobjective	optimisation	methods	are	particularly	 useful	for	evaluating	optimal
maintenance	strategy.	However,	their	computational	cost	is	generally	high	and	can	rapidly
become	prohibitive,	when	the	number	of	variables,	objective	functions	and	necessary
constraints	become	excessive.

For	more	costeffective	management	of	existing	civil	structures,	further	investigations	are
necessary	to	collect	relevant	data	from	the	monitoring	systems,	to	improve	the	modelling
capability	and	to	formulate	probabilistic	decision	problems	(Frangopol	et	al.	2004),	including

developing	a	generally	acceptable	and	consistent	methodology	for	probabilistic	modelling
of	deterioration	processes	of	structural	performance	in	terms	of	both	condition	and
reliability

improving	the	incorporation	of	measurement	data	from	SHM	systems	into	the	deterioration
models	and	lifetime	reliability	analysis

improving	the	understanding	of	the	influence	of	maintenance	actions	on	structural



performance,	extended	service	life	and	their	probabilistic	modelling

using	optimisation	for	finding	the	optimal	maintenance	strategy	with	multiple	objectives	by
balancing	the	risk	of	structural	failure	and	the	costs	for	maintenance.
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10
Applications	of	SHM	Strategies	to	Large	Civil
Structures

10.1	Introduction
The	principles	of	structural	health	monitoring	(SHM)	strategies	have	been	discussed	in
previous	chapters.	In	this	chapter,	these	principles	are	applied	to	real	civil	engineering
structures,	such	as	bridges,	buildings,	tunnels,	rails	and	water	mains.	In	order	to	achieve	the
aims	of	health	monitoring	of	a	civil	engineering	structure,	it	is	necessary	to	utilise	an
appropriate	SHM	strategy	on	the	structure.	A	good	monitoring	strategy	can	offer	useful	results
for	making	rational	decisions	with	a	relatively	limited	resource.	In	the	design	of	an	SHM
system	for	a	civil	structure,	the	selection	of	sensors	and	sensing	network	for	structural
monitoring	depends	on	many	factors,	including	type	of	structure,	operational	loads	and
environments,	possible	sources	of	damage	and	deterioration	mechanisms	expected	to	occur
during	lifetime	of	the	structure.

Monitoring	safe	and	reliable	existing	large	civil	engineering	structures	is	of	great	importance
owing	to	its	economic	and	social	effects.	Knowing	the	integrity	and	health	of	civil	structures
during	their	construction	and	operation	is	essential.	Civil	engineering	structures,	such	as	long
span	bridges,	highrise	buildings,	underground	tunnels	and	high	speed	rails,	are	often	large
and	are	subjected	to	complex	loads	and	harsh	environments.	Since	different	structures
experience	different	inconstruction	and	inservice	conditions,	a	universal	solution	that	will
be	suitable	for	all	possible	cases	does	not	exist.	Thus,	an	appropriate	SHM	strategy	needs	to
be	chosen	for	effective	assessment	of	a	specific	civil	structure.

This	chapter	provides	several	case	studies	on	applications	of	various	SHM	strategies	to	real
large	civil	engineering	structures.	These	case	studies	present	engineering	practice	of	structural
monitoring,	including	a	wind	and	SHM	system	for	a	cablestayed	bridge,	wireless	sensing
networks	for	inconstruction	monitoring	of	a	highrise	building,	fibre	optic	sensors	for
monitoring	tunnel	construction	and	water	pipelines	and	acoustic	emissions	for	safety
monitoring	of	rails.	The	applications	of	data	interpretation	algorithms,	operational	modal
analysis	techniques	and	damage	identification	methods	are	also	discussed	in	the	case	studies.

10.2	SHM	System	and	Damage	Identification	of	a
CableStayed	Bridge
The	Ting	Kau	Bridge	is	a	threetower	cablestayed	bridge	with	two	main	spans	of	448 m	and
475 m	respectively,	and	two	side	spans	of	127 m	each,	as	shown	in	Figure	10.1	and	pictured	in
Figure	5.8.	The	bridge	deck	is	divided	into	two	carriageways	with	a	width	of	18.8 m	each	and



a	gap	of	5.2 m,	linked	at	13.5 m	intervals	by	Ishape	main	cross	girders.	The	bridge	deck	is
supported	in	the	transverse	direction	at	the	three	towers,	on	the	northern	end	pier	and	on	the
southern	Tsing	Yi	abutment.	The	deck	is	supported	by	384	stay	cables	in	four	cable	planes.	A
unique	feature	of	the	bridge	is	its	arrangement	of	the	three	singleleg	towers	that	are
strengthened	by	longitudinal	and	transverse	stabilising	cables.	In	order	to	reduce	the	vibration
of	the	longitudinal	stabilising	cables,	damping	devices	are	installed	near	the	lower	anchorage
between	the	stabilising	cables	and	the	deck.

Figure	10.1	Threetower	cablestayed	Ting	Kau	Bridge.

10.2.1	Sensors	and	Sensing	Network
After	the	completion	of	the	bridge	construction,	a	sophisticated	longterm	monitoring	system,
called	wind	and	structural	health	monitoring	system	(WASHMS),	was	devised	to	monitor	the
structural	health	and	performance	of	the	bridge	under	inservice	condition.	The	monitoring
system	includes	six	modules:	sensory	system,	data	acquisition	and	transmission	system,	data
processing	and	control	system,	structural	health	evaluation	system,	portable	data	management
system	and	portable	inspection	and	maintenance	system	(Ni	et	al.	2011),	as	illustrated	in
Figure	10.2.



Figure	10.2	Modular	architecture	of	structural	monitoring	systems	for	Ting	Kau	Bridge.

The	monitoring	system	consists	of	a	total	number	of	232	sensors	permanently	installed	on	the
bridge	(Wong	2004,	Wong	et	al.	2000),	as	illustrated	in	Figure	10.3.	A	total	of	45
accelerometers	(24	uniaxial,	20	biaxial	and	one	triaxial)	accelerometers	were	installed
at	the	decks,	cables,	towers	and	central	tower	base	to	measure	the	dynamic	characteristics	of
the	bridge.	Seven	anemometers	(four	ultrasonic	type	and	three	propeller	type)	were	installed	at
the	deck	level	and	at	the	top	of	the	three	towers	to	measure	the	wind	velocity	and	direction.	A
total	of	83	temperature	sensors	were	installed	on	the	deck	and	on	the	central	tower	to	measure
the	temperature	at	various	locations.	Two	displacement	transducers	were	installed	at	the	road
expansion	joints	at	the	abutments	to	measure	the	deck	longitudinal	movement.	A	total	of	88
strain	gauges	(66	linear	and	22	rosette)	were	installed	on	the	deck	girders,	deck	plates	and
bearings	to	measure	the	stress	and	bearing	performance.	A	weighinmotion	sensing	system
(bending	plate	type	with	six	sensors)	was	installed	at	the	carriageways	to	measure	the	traffic
flow	and	traffic	loading.	In	addition,	a	global	positioning	system	(one	reference	station	and
seven	rover	stations)	was	installed	to	measure	bridge	deflection.



Figure	10.3	Sensory	system	of	SHM	strategy	for	Ting	Kau	Bridge.

10.2.2	Data	Management	System
An	indexing	system	for	historic	raw	data	management	and	a	database	system	for	current
monitoring	data	management	were	developed	for	managing	the	data	from	the	bridge	(Ko	et	al.
2009).	Both	the	indexing	system	and	the	database	system	adopt	a	relational	database	approach.
The	indexing	system	greatly	facilitates	the	data	probing	work	and	provides	a	useful	method	for
the	management	of	historic	data,	because	of	the	limited	storage	capacity	of	the	database	system
and	the	host	computer.	The	database	system	for	current	monitoring	data	management	is
developed	with	two	modules:	an	Oracledriven	database	system	for	nonspatial	data
management	and	a	geographic	information	system	(GIS)	software	system	for	spatial	data
management.	The	raw	data	is	then	preprocessed,	including	data	classification,	data	filtering
etc.,	before	being	reorganised	into	a	general	purpose	dynamic	database.	The	data	in	the
dynamic	database	can	be	either	automatically	updated	at	regular	intervals	or	manually	updated
by	users.

A	client/server	architecture	running	on	the	internet	is	adopted	for	communication	between	the
database	system	and	endusers.	The	system	can	provide	online	information	of	the	bridge
and	monitoring	data	to	authorised	endusers.	The	web	based	geographic	information	system
software	is	installed	on	the	server	of	the	database	system.	The	database	system	offers	functions
at	three	levels:	regional	level,	bridge	level	and	sensor	level.	A	preliminary	preprocessing	of
the	retrieved	data	is	made,	and	the	preliminary	analysis	results	can	be	displayed	and	exported



to	a	temporal	database	for	future	retrieval.	The	endusers	can	also	export	the	data	to	other
software	programs	for	advanced	analysis,	such	as	operational	modal	analysis.

10.2.3	Operational	Modal	Analysis	and	Mode	Identifiability
The	timedomain	operational	modal	analysis	method,	such	as	the	covariancedriven
stochastic	subspace	identification	(SSICOV)	technique	described	in	 Section	5.4.2,	is
adopted	to	identify	the	modal	parameters	from	ambient	acceleration	measurements	of	the	Ting
Kau	Bridge.	To	investigate	the	influence	of	wind	speed	conditions	on	the	mode	identifiability,
a	total	of	six	data	samples	of	acceleration	measurements	collected	from	these	24
accelerometers,	as	shown	in	Figure	5.8,	with	known	wind	conditions,	are	used,	as	listed	in
Table	10.1.	The	duration	of	these	acceleration	data	samples	is	one	hour,	and	this	data	was
recorded	in	1999.	These	data	samples	can	be	classified	into	three	groups:	weak	wind,	typhoon
and	critical	wind	speed	(around	7.5 m/s),	depending	on	the	mean	hourly	wind	speed	calculated
from	the	anemometers	installed	on	the	bridge	deck.

Table	10.1	Recorded	ambient	acceleration	data	samples	under	different	wind	conditions.

Wind	condition Sample Time	duration Mean	hourly	wind
speed	(m/s)

Note

Weak	wind S1 15:00–16:00,	28	Dec
1999

2.00

S2 15:00–16:00,	24	Jul
1999

6.17

Typhoon S3 02:00–03:00,	23	Aug
1999

15.62 Sam

S4 15:00–16:00,	16	Sep
1999

15.91 York2

Critical	(wind	speed	around
7.5 m/s)

S5 08:00–09:00,	07	Jun
1999

7.36

S6 22:00–23:00,	16	Sep
1999

7.77

Table	10.2	summarises	the	results	for	the	identified	frequencies	of	first	eight	modes	under
different	wind	speed	conditions	using	the	SSICOV	technique	(Huang	and	Chen	2016).	The
identified	frequencies	range	between	0.15 Hz	and	0.40 Hz.	In	the	typhoon	condition	(S3	and
S4),	all	the	first	eight	frequencies	are	clearly	identified	and	consistent.	However,	in	weak	wind
conditions	(S1	and	S2),	the	2nd	and	5th	frequencies	are	unable	to	be	identified.	When	the	wind
speed	is	critical	(S5	and	S6),	the	2nd	frequency	is	clearly	identified	in	both	data	samples.
However,	the	3rd	frequency	in	sample	S5	and	the	5th	frequency	in	sample	S6	are	unable	to	be
identified.	From	the	results,	the	identification	of	modal	parameters	can	be	affected	by	the
excitation	intensity	(e.g.	magnitude	of	wind	speed),	as	well	as	by	the	excitation	sources	(e.g.
wind	and	traffic)	and	the	excitation	direction	(e.g.	wind	direction).	The	mode	identifiability	is



not	only	related	to	the	ambient	excitation	intensity,	but	also	depends	on	their	modal
contributions	to	the	measured	vibration	data	(Huang	and	Chen	2017).

Table	10.2	Identified	frequencies	(Hz)	of	first	eight	modes	under	various	wind	speed
conditions.

Weak	wind Typhoon Critical	wind
Mode	No. S1 S2 S3 S4 S5 S6 Mode	description
1 0.162 0.164 0.164 0.166 0.168 0.165 Predominantly	vertical	mode
2 — — 0.227 0.226 0.228 0.229 Coupled	torsional	&	lateral	mode
3 0.255 0.253 0.264 0.260 — 0.264 Predominantly	lateral	mode
4 0.289 0.287 0.293 0.289 0.282 0.292 Predominantly	lateral	mode
5 — — 0.301 0.302 0.303 — Predominantly	vertical	mode
6 0.309 0.316 0.323 0.317 0.315 0.322 Coupled	torsional	&	lateral	mode
7 0.358 0.357 0.361 0.359 0.360 0.361 Predominantly	vertical	mode
8 0.373 0.371 0.372 0.373 0.374 0.379 Predominantly	vertical	mode

10.2.4	Finite	Element	Modelling
A	threedimensional	finite	element	model	was	developed	for	the	Ting	Kau	Bridge	by	use	of
the	commercial	software	package	ABAQUS	(Ko	et	al.	2009),	as	shown	in	Figure	10.4.	The
model	involves	2901	nodes	and	5581	elements.	The	bridge	deck	is	modelled	by
membrane/shell	elements	to	account	for	the	horizontal	thrust	ability,	and	its	bending	stiffness	is
represented	as	nominal	flanges	of	the	longitudinal	girders	and	cross	girders.	The	monoleg
towers	are	modelled	as	Timoshenko’s	beam	elements.	The	geometric	distances	between	cable
ends	and	the	crosssection	centroids	of	the	deck	and	towers	are	represented	by	rigid	bars.	For
the	456	cables,	the	longitudinal	stabilising	cables	are	modelled	by	a	multielement	system	and
the	other	cables	are	modelled	by	a	singleelement	system.

Figure	10.4	Threedimensional	finite	element	model	of	Ting	Kau	Bridge.

The	finite	element	model	was	validated	by	comparing	the	modal	properties	predicted	by	the
finite	element	numerical	model	and	those	identified	from	the	monitored	data.	A	framework	for



finite	element	model	updating	using	monitored	data	is	illustrated	in	Figure	10.5	(Wong	and	Ni
2009).	In	this	framework,	both	measurement	data	and	finite	element	analysis	data	in	the
structural	health	data	management	system	(SHDMS)	module	are	used	for	modal	analysis	and
model	updating	in	the	structural	health	evaluation	system	(SHES)	module.

Figure	10.5	Framework	for	finite	element	model	updating	by	measurement	data.

From	finite	element	modal	analysis,	more	than	200	modes,	either	global	modes	or	local	modes,
are	found	in	the	frequency	range	0–1.5 Hz.	The	global	modes	are	defined	as	those	with
participation	of	the	deck	and/or	towers,	whereas	the	local	modes	refer	to	those	where
vibration	occurs	only	in	the	cables.	The	difference	between	the	predicted	and	measured
frequencies	is	0.86%	for	the	first	mode	with	frequency	of	0.164 Hz,	and	the	maximum
difference	is	6.82%	for	the	first	12	global	modes.	This	shows	the	accuracy	of	the	finite	element
model	after	model	updating.

10.2.5	Damage	Localisation	Using	Mode	Shape	Curvature	Index
The	applicability	of	vibrationbased	damage	identification	methods,	such	as	the	mode	shape
curvature	index,	to	the	Ting	Kau	Bridge	is	investigated	here.	Five	damage	scenarios	with	a
total	of	11	damage	cases	are	assumed	in	the	simulation	studies	(Ko	et	al.	2009,	Ni	et	al.	2008),
as	listed	in	Table	10.3.	The	damage	occurs	at	various	locations	of	the	bridge,	including	the
longitudinal	stabilising	cables,	stay	cables,	bearings,	longitudinal	girders	and	cross	girders.



(10.1)

Table	10.3	Simulated	damage	cases	for	damage	detection	studies	of	Ting	Kau	Bridge.

Scenario
No.

Case
No.

Description

1 a Damage	of	longitudinal	stabilising	cable:	20%	tension	reduction	of	cable	no.
8414

b Damage	of	longitudinal	stabilising	cable:	20%	tension	reduction	of	cables
nos.	8414	&	8412

2 a Damage	of	main	stay	cable:	90%	tension	loss	of	cable	no.	1073
b Damage	of	main	stay	cable:	90%	tension	loss	of	cables	nos.	1073	&	4073
c Damage	of	main	stay	cable:	90%	tension	loss	of	cables	nos.	1070,	1071,

1072	&	1073
3 a Damage	of	bearing:	90%	stiffness	deterioration	of	a	longitudinal	bearing	at

central	tower
b Damage	of	bearing:	90%	stiffness	deterioration	of	an	anchorage	bearing	at

Tsing	Yi	abutment
4 a Damage	of	main	girder:	rotational	stiffness	of	element	no.	EL6372	on

longitudinal	girder	is	lost
b Damage	of	main	girder:	rotational	stiffness	of	all	elements	connecting	to	node

no.	6073	is	lost
5 a Damage	occurring	at	the	connecting	cross	girder	between	cable	nodes	nos.

1073	&	2073
b Damage	occurring	at	two	cross	girders	between	cable	nodes	nos.	1073	&

2073,	and	between	cable	nodes	nos.	1074	&	2074

The	mode	shape	curvature	method	is	adopted	for	detecting	the	assumed	damage	cases	using	the
mode	shapes	of	the	undamaged	structure	and	the	correlated	mode	shapes	of	the	damaged
structure,	as	discussed	in	detail	in	Section	7.3.3.	For	each	correlated	mode	pair,	the	modal
curvature	change	rate	index	is	a	function	of	location.	Because	the	modal	curvature	suffers	from
relatively	large	change	in	the	vicinity	of	damage	location,	it	is	expected	that	for	some	related
modes	the	modal	curvature	change	rate	index	will	have	the	highest	value	at	the	damage
location.	In	order	to	clearly	indicate	the	damage	location,	the	damage	index	for	the	ith	mode	at
the	jth	node	βi(j)	defined	in	Equation	(7.10)	is	normalised	to	get	its	Zvalue	for	the	ith	mode	as

where	μβ	and	σβ	are	the	mean	and	standard	deviation	of	the	index	sequence,	respectively.	The

Neyman—Pearson	criterion	is	adopted	to	evaluate	the	damage	state,	i.e.	if	  ≥ 3,	damage	is



identified	at	deck	section	j,	otherwise,	no	damage	is	detected	at	location	j.

The	Zvalue	defined	in	 Equation	(10.1)	is	adopted	in	damage	location	identification	for	the
Ting	Kau	Bridge.	Deck	section	j	is	represented	by	the	cable	nodes	from	5	to	101.	To	identify
the	damage	location,	a	total	of	11	global	modes	–	the	first	five	vertical	bending	modes,	the	first
four	lateral	bending	modes	and	the	first	two	torsional	modes	–	are	analysed.	The	Zvalues	of
these	11	modes	are	checked	with	respect	to	the	modal	vectors	in	the	y	and	z	directions,
respectively.	Table	10.4	summarises	the	identified	results	for	all	11	simulated	damage	cases.	It
is	found	that	the	Zvalues	from	some	modes	lead	to	false	identification.	In	addition,	some
clear	peaks	can	be	noted,	although	the	Zvalues	of	those	peaks	are	less	than	3.	Some	of	those
peaks	indicate	the	correct	damage	location	and	some	do	not.	Thus,	the	Ting	Kau	Bridge	has
some	regions	that	are	sensitive	to	modal	curvature	change,	for	example,	supports	at	abutments,
connecting	region	at	the	central	tower,	region	close	to	the	middle	of	the	Ting	Kau	main	span
(Nos.	26	and	27).	In	general,	the	modal	sensitivity	by	means	of	Zvalues	using	vertical
bending	modes	is	more	sensitive	than	that	using	lateral	or	torsional	modes.

Table	10.4	Damage	location	identification	using	mode	shape	curvature	index	Zvalues.

Identified	Location	from	damage	index
Damage
case

1st
mode

2nd
mode

23rd	mode 24th
mode

25th
mode

Damage	location	(deck
section)

1a 86 0 86,87 26,27 27 Between	86	&	87
1b 86 0 86,87 26,27 27 Between	86	&	87
2a 0 0 0 26,27 0 73
2b 73 0 0 27 27 73
2c 71,72,73 0 0 27 26,27 70,71,72,73

0* 0* 70,71,72,73* 72,73,74* 5*
3a 54,55 0 54,55 54,55 54,55 Between	50	&	54

0* 50,54* 0* 50,54* 50,54*
3b 100,101 0 100,101 100,101 0 Close	to	101
4a 73 0 73 73 73 73

0* 0* 5,72,74* 5* 5,73*
4b 72,73 73 73 73,74 72,74 73

0* 0* 73* 73* 73*
5a 0 0 73 73 73 73
5b 0 0 73,74 73,74 73,74 73,74
Note:	‘0’	denotes	no	available	identification;
*	denotes	the	identified	results	from	modal	vectors	in	z	direction.



10.2.6	Damage	Detection	Using	Neural	Network
A	neural	network	based	on	the	novelty	detection	technique	is	now	used	to	investigate	the
applicability	for	structural	damage	alarming	for	the	Ting	Kau	Bridge	(Ko	et	al.	2009).	The
novelty	detector	is	realised	by	using	an	autoassociative	neural	network,	as	discussed	in
detail	in	Section	7.5.2.	The	neural	network	is	a	multilayer	feedforward	perception	with	a
‘bottleneck’	configuration.	When	the	autoassociative	neural	network	is	adopted	for	anomaly
detection	or	damage	alarming,	a	series	of	measurement	data	from	the	healthy	structure	under
normal	conditions	is	used	as	both	input	and	output	to	train	the	network.	Five	assumed	damage
scenarios	with	a	total	of	11	damage	cases	are	used	here	again	for	damage	alarming,	as	listed	in
Table	10.3.

For	comparison,	two	sets	of	modal	parameters	–	natural	frequencies	and	modal	flexibility
vector	–	are	used	as	input	features	to	train	autoassociative	neural	networks	for	damage
alarming.	When	using	only	natural	frequencies,	the	noisy	‘measured’	natural	frequencies	for
both	the	intact	bridge	and	the	damaged	bridge	are	obtained	by	corrupting	the	computed	natural
frequencies	in	the	intact	and	damage	stages	with	Gaussian	random	noise	of	zero	mean	and
0.005	variance	(+1.5%	maximum	error).	Table	10.5	shows	the	damage	alarming	results	when
using	only	natural	frequencies	and	the	damagecaused	frequency	change	ratios	for	all	11
cases.	From	the	results,	when	only	natural	frequencies	are	used	and	random	noise	of	variance
0.005	(+1.5%	maximum	error)	is	introduced,	the	novelty	detector	can	unambiguously	give	an
alarming	indication	for	the	assumed	damage	states,	if	the	damagecaused	frequency	change
ratio	is	greater	than	1.0%.	When	the	frequency	change	ratio	ranges	from	0.4%	to	1.0%,	the
damage	is	just	detectable	with	a	weak	alarming	signature.	Damage	occurrence	cannot	be
detected	if	the	frequency	change	ratio	is	below	0.4%.

Table	10.5	Damagecaused	frequency	change	and	damage	detectability.

Damage	case	no. Frequency	change	ratio	(%) Detectability
1a 3.701 Unambiguously	detectable
1b 3.793 Unambiguously	detectable
2a 0.027 Undetectable
2b 0.054 Undetectable
2c 0.135 Undetectable
3a 6.452 Unambiguously	detectable
3b 2.953 Unambiguously	detectable
4a 0.397 Undetectable
4b 0.704 Just	detectable
5a 0.375 Undetectable
5b 0.957 Just	detectable

The	probabilistic	neural	network	(PNN)	is	a	powerful	tool	for	pattern	classification,	as



discussed	in	Section	7.6.3.	Because	the	probabilistic	neural	network	describes	measurement
data	in	a	Bayesian	probabilistic	approach,	it	shows	great	promise	for	structural	damage
detection	in	noisy	conditions.	In	this	study,	a	total	of	2000	training	vectors,	containing	the
frequency	change	ratios	for	simulated	damage	with	Gaussian	random	noise,	have	been
generated	(Ni	et	al.	2000).	After	the	noisepolluted	training	vectors	of	all	pattern	classes	are
entered	as	weights	between	the	input	and	pattern	layers,	the	probabilistic	neural	network	for
the	damage	localisation	is	then	configured.	By	entering	the	4000	sets	of	‘measured’	testing
vectors	into	the	configured	probabilistic	neural	network	in	turn,	the	damage	type	and	region
corresponding	to	each	set	of	the	testing	vectors	are	identified.
Table	10.6	summarises	the	damage	identification	results	under	11	different	noise	levels	from	ε 
= 0.01	to	ε = 1.00	(Ko	et	al.	2009).	Here,	the	identification	accuracy	is	defined	as	the	ratio	of
the	total	number	of	correct	identifications	for	all	testing	damage	scenarios	to	the	total	number
of	the	testing	samples	(4000).	As	expected,	the	identification	accuracy	decreases	with	increase
of	the	noise	level	corrupted	in	the	training	and	test	samples.	The	identification	accuracy
significantly	increases	when	more	natural	frequencies	are	used.	Therefore,	when	the	first	20
natural	frequencies	are	used	and	the	noise	level	ε	is	less	than	0.1,	the	damage	type	and	location
can	be	identified	with	a	high	confidence	(i.e.	the	probability	of	identifiability	greater	than
85%).

Table	10.6	Summary	of	correct	damage	identification	using	probabilistic	neural	network
(PNN)	technique.

Noise	level
(standard	deviation)

Identification	accuracy
Using	20	frequencies Using	10	frequencies Using	5	frequencies

ε = 1.00 46.23% 33.35% 27.90%
ε = 0.80 57.08% 45.25% 33.05%
ε = 0.60 62.55% 51.85% 43.40%
ε = 0.40 78.15% 62.90% 51.33%
ε = 0.20 84.33% 71.70% 58.75%
ε = 0.10 86.42% 73.53% 60.83%
ε = 0.08 87.63% 75.08% 63.15%
ε = 0.06 88.90% 76.85% 65.80%
ε = 0.04 89.32% 77.23% 67.58%
ε = 0.02 89.97% 77.35% 67.33%
ε = 0.01 90.00% 80.05% 67.70%

10.3	InConstruction	Monitoring	of	a	HighRise
Building



The	new	headquarters	of	the	Shenzhen	Stock	Exchange	is	a	highrise	building	with	a	height	of
228 m.	There	are	45	storeys	above	the	ground	and	three	basement	storeys,	as	shown	in	Figure
10.6(a).	The	main	tower	is	a	tubeintube	structure	consisting	of	an	 inner	reinforced	concrete
core	and	an	outer	shaped	steel	and	reinforced	concrete	composite	frame.	The	inner	structure
has	a	rectangular	crosssection	of	28 m × 32 m,	and	the	outer	structure	has	a	54 m × 54 m
square	crosssection.	A	distinct	feature	of	this	highrise	building	is	its	huge	floating	platform.
This	floating	platform	is	a	steel	truss	structure	with	an	overall	plan	dimension	of	98 m × 162 m
and	a	total	height	of	24 m,	as	shown	in	Figure	10.6(b).	The	platform	consists	of	14	steel	trusses
divided	into	six	types.	The	outrigger	truss	storeys	have	the	outrigger	component	of	22 m	in	the
south–north	direction	and	36 m	in	the	east–west	direction	at	a	height	of	36 m	above	the	ground
(Ni	et	al.	2013a).	This	makes	the	floating	platform	the	biggest	span	cantilever	civil	structure	in
the	world.





Figure	10.6	New	Headquarters	of	Shenzhen	Stock	Exchange,	a	highrise	building	with	a
floating	platform.

10.3.1	LongTerm	SHM	System
A	longterm	SHM	system	was	designed	and	implemented	to	monitor	the	cantilever	truss	of	the
highrise	building	in	both	construction	and	service	stages.	The	strain	and	deflection	of	the
cantilever	truss	are	of	the	utmost	concern	in	designing	the	SHM	system.	A	total	of	224
vibratingwire	strain	gauges	were	installed	permanently	to	measure	the	strains.	A	vision
based	displacement	tracking	system	was	also	employed	to	monitor	the	deflections	(Ni	et	al.
2013a).	The	SHM	system	for	the	building	consists	of	the	following	modules:

Module	1:	Sensory	system.	This	system	includes	strain	gauges,	temperature	sensors,
accelerometers	and	a	vision	based	displacement	tracking	system.

Module	2:	Data	acquisition	and	transmission	system.	This	system	is	composed	of	four
standalone	data	acquisition	units	(DAUs)	and	two	wireless	LAN	bridges	for	monitoring
of	strains.	The	four	DAUs	are	used	to	collect	the	signals	from	the	surrounding	strain
gauges,	digitise	the	analogue	signals	and	transmit	the	data	into	a	central	room.	The	signals
from	the	strain	gauges	are	first	transmitted	to	the	data	loggers	inside	the	structure	through
coaxial	wires,	and	then	sent	to	the	server	PC	at	a	site	office	in	a	wireless	way	through	a
pair	of	wireless	access	points	for	realtime	monitoring	in	construction	stage.

Module	3:	Data	processing	and	control	system.	This	system	comprises	highperformance
servers	and	dataprocessing	software.	The	system	is	used	for	routine	data	processing,
structural	and	system	status	monitoring	and	prewarning,	as	well	as	display	of	the	data.

Module	4:	Structural	health	evaluation	system.	This	system	is	composed	of	a	high
performance	server	and	structural	health	evaluation	software.	It	is	used	for	processing	and
analysing	the	monitoring	data,	evaluating	and	diagnosing	the	structural	condition	and
carrying	out	analysis.

Module	5:	Data	management	system.	This	system	consists	of	a	highperformance	server,
relational	database	system	and	data	management	software.

A	total	of	56	critical	crosssections	of	structural	members	were	selected	for	monitoring.	The
deployment	locations	of	strain	gauges	are	predetermined	through	finite	element	analysis.	Each
instrumented	crosssection	has	several	strain	gauges,	and	their	deployment	complies	with	the
following	criteria:	(a)	type	of	crosssection,	e.g.	rectangle	or	Isection,	(b)	properties	of
loadings,	e.g.	axial	force,	bending	or	bidirectional	bending,	etc.,	(c)	limitations	due	to
construction	and	inaccessibility.	The	sampling	rate	for	each	strain	gauge	was	set	as	one	reading
per	second	during	the	process	of	removing	the	temporary	shoring,	and	switched	to	one	reading
per	90	seconds	in	normal	service	circumstances.	The	sampling	rate	can	be	adjusted	as	required
for	different	purposes.

10.3.2	Monitoring	During	Shoring	Dismantlement



In	the	erection	of	the	floating	platform,	the	tower	cranes	were	used	to	hoist	the	steel
framework,	and	a	temporary	brace	frame	was	used	to	support	the	cantilever	truss.	To	keep	the
stability	of	the	supporting	shoring,	twotier	connecting	trusses	were	added	to	strengthen	it.
After	completing	the	erection	of	the	floating	platform,	the	supporting	shoring	was	dismantled.	It
was	a	difficult	job	to	create	a	rational	plan	for	the	unloading	process,	due	to	the	specific
features	of	this	project	and	the	massive	unloading	of	up	to	16,000	tons.	To	ensure	the	safety	of
the	floating	platform	and	the	main	tower	as	well	as	to	maintain	consistent	deformation,	it	was
necessary	to	make	all	the	control	points	subside	uniformly.	Thus,	the	procedure	for	unloading
the	braces	simultaneously	in	patches	and	stagebystage	was	adopted	to	effect	the	transition
of	structural	stress	and	configuration	in	a	steady	and	successive	way.	The	temporary	braces	are
divided	into	three	groups:	TJO,	TJM	and	TJI,	as	shown	in	Figure	10.7.	The	sequence	of
unloading	was	from	the	outer	positions	to	the	inner	positions,	and	each	step	was	executed
simultaneously	to	prevent	the	occurrence	of	uneven	settlement.

Figure	10.7	Layout	of	temporary	braces	of	the	highrise	building.

During	the	unloading	process,	the	SHM	system	is	highly	desirable	for	detecting	potential
anomalies	such	as	any	sudden	significant	increase	in	the	stress.	As	soon	as	such	an	anomaly
happens,	the	unloading	work	is	suspended.	Figure	10.8	presents	the	development	of	structural
stresses	in	the	process	of	dismantling	temporary	shoring,	which	was	displayed	in	real	time	at
the	site	office.	As	expected,	the	stresses	grew	stepbystep	synchronously	with	the	unloading
process.	Through	the	realtime	SHM	system,	the	duration	of	dismantling	temporary	shoring
was	shortened	to	less	than	six	hours	from	the	originally	scheduled	three	days.



Figure	10.8	Growth	of	stresses	measured	in	the	process	of	dismantling	temporary	supports.

For	prediction	and	comparison,	a	finite	element	model	was	established,	using	the	commercial
software	SAP2000,	to	simulate	the	alteration	of	structural	stresses	of	the	building	in	the
process	of	dismantling	the	supporting	shoring.	Figure	10.9	shows	a	comparison	of	stress
increments	during	the	unloading	process	obtained	from	field	monitoring	measurements	and
computed	by	finite	element	simulations.	It	is	found	that	the	structure	is	under	biaxial
symmetry	loading	which	is	in	agreement	with	reality.

Figure	10.9	Comparison	of	measured	and	computed	stress	increments	during	unloading
process.



10.3.3	Wireless	Sensing	Network	for	Vibration	Monitoring
In	addition,	accelerometers	and	a	wireless	sensing	network	were	implemented	to	realtime
monitor	the	ambient	vibration	responses	and	identify	the	modal	properties	of	the	highrise
building	(Ni	et	al.	2013a).	The	wireless	monitoring	prototype	system	assumes	a	single	data
server	working	with	multiple	wireless	sensors	in	a	startopology	network.	It	comprises
multiple	wireless	sensing	units	in	the	network	and	one	base	station	coordinating	the	activities
of	the	network.	In	the	prototype	implementation,	the	base	station	can	be	a	computer	connected
to	a	compatible	wireless	transceiver	through	RS232	serial	communication	or	USB
communication.	Through	the	associated	wireless	transceiver,	the	base	station	can	communicate
with	the	wireless	sensing	units	that	are	allocated	throughout	the	structure.	The	wireless	sensing
units	are	responsible	for	acquiring	sensor	output	signals,	analysing	data	and	transferring	data	to
the	base	station	for	storage	and	further	data	analysis.	A	wireless	sensor	unit	consists	of	three
functional	modules:	sensing	interface,	computational	core	and	wireless	communication
channel,	as	were	shown	in	Figure	2.12(b).	The	sensor	signal	digitisation	is	responsible	for
converting	analogue	sensor	signals	into	digital	data,	and	for	transferring	the	data	to	the
computational	core	through	a	high	speed	serial	peripheral	interface	(SPI)	port.	The	main	part
of	the	sensor	signal	digitisation	module	is	a	fourchannel	16bit	analoguetodigital	(A/D)
converter.	In	order	to	make	the	signal	ready	for	A/D	conversion,	a	special	low	noise	signal
conditioning	module	was	designed	to	amplify	and	filter	the	sensor	signal	prior	to	A/D
conversion,	as	shown	in	Figure	10.10(a).

Figure	10.10	Wireless	monitoring	system	for	the	highrise	building.

The	wireless	sensing	unit	is	designed	to	operate	with	two	different	wireless	transceivers:	900 
MHz	MaxStream	9XCite	and	2.4 GHz	MaxStream	24XStream.	Pintopin	compatibility
between	these	two	wireless	transceivers	makes	it	possible	for	the	two	modules	to	share	the
same	hardware	connections	in	the	wireless	unit.	The	24XStream	transceiver	was	employed	in



this	project.	The	24XStream	is	expected	to	have	a	communication	range	of	5 km	at	lineof
sight,	but	the	effective	communication	range	may	vary	depending	on	field	conditions.	The
XStreamPKG	2.4 GHz	RS232/485	shown	in	 Figure	10.10(b)	was	selected	as	the	modem	of
station.	The	wireless	transmit	module	embedded	in	the	modem	is	also	24XStream	(2.4 GHz).
In	the	whole	system,	the	modem	is	the	hub	of	the	system.	The	modem	has	two	tasks:	to
exchange	data	with	the	units	distributed	in	measured	points,	and	to	send	the	commands	to	the
wireless	sensing	units	and	transfer	the	data	from	units	to	computer.	The	accelerometers	used	in
this	project	are	KD1300C	with	a	frequency	range	of	0.2–1000 Hz,	a	measurement	range	of	300 
m/s2	and	a	sensitivity	of	250–300 pc/(m/s2).	This	type	of	accelerometer	performs	well	in
measuring	large	structures	especially	with	low	frequency	vibration.	To	make	the	signal
comfortable	for	A/D	conversion,	a	charge	amplifier	(KD5008)	was	used,	since	it	can	be	easily
adjusted	with	a	desired	amplification	factor.

10.3.4	Ambient	Vibration	Tests	and	Results
In	the	ambient	vibration	tests,	the	vertical	accelerations	of	the	floating	platform	along	the
longer	edge	were	measured	by	the	wireless	monitoring	system.	To	obtain	the	mode	shapes	with
good	resolution	along	the	length	of	the	longer	edge,	nine	acceleration	measurement	points	were
selected	along	the	longer	edge,	as	P1	to	P9	illustrated	in	Figure	10.11.	The	measurement	points
are	located	on	the	columns	in	order	to	facilitate	the	installation	of	accelerometers	using	a
magnetic	base.	After	the	signal	conditioning	by	the	charge	amplifier,	the	analogue	signal
(voltage)	was	acquired	and	digitised	by	the	A/D	module	of	the	wireless	sensing	unit.	In	the
tests,	the	data	was	sampled	at	a	frequency	of	100 Hz.	The	digitised	acceleration	data	was
wirelessly	sent	to	the	base	station,	a	laptop	computer	connected	with	a	24XStream	transceiver.
The	sequences	were	repeated	throughout	the	length	of	the	longer	edge	of	the	floating	platform.
Therefore,	modal	parameters,	including	the	natural	frequencies	and	mode	shapes	of	the	floating
platform,	were	obtained.



Figure	10.11	Distribution	of	accelerometers	on	the	floating	platform.

From	the	three	tests,	the	vertical	acceleration	responses	of	the	longer	edge	of	the	floating
platform	under	ambient	vibration	environment	were	obtained.	Each	test	lasted	for	about	80	to
100	minutes.	Figure	10.12(a)	shows	the	timehistory	of	the	vertical	acceleration	at	sensor
location	P9.	With	the	timehistory	data,	the	power	spectral	density	of	the	vertical	acceleration
responses	is	obtained,	as	illustrated	in	Figure	10.12(b).	From	the	results,	the	natural
frequencies	of	the	floating	platform	were	identified	by	the	peakpicking	method.





Figure	10.12	Vertical	dynamic	response	of	floating	platform	at	sensor	location	P9.

In	addition	to	the	identified	natural	frequencies	and	mode	shapes	by	the	wireless	monitoring
system,	the	modal	parameters	of	the	highrise	building	are	also	predicted	by	the	finite	element
dynamic	analysis.	Table	10.7	provides	a	comparison	between	the	identified	and	predicted
natural	frequencies.	The	largest	discrepancy	between	the	two	sets	of	the	results	is	5.18%	in
relative	error	for	the	third	mode.	From	the	field	tests,	the	wireless	system	is	able	to	perform
favourably	in	longterm	ambient	vibration	monitoring	for	the	huge	floating	platform.

Table	10.7	Comparison	between	identified	and	predicted	natural	frequencies	(Hz).

Mode	No. Mode	1 Mode	2 Mode	3 Mode	4
Identified	frequencies 2.112 2.368 2.583 2.730
Predicted	frequencies 2.075 2.390 2.724 2.879
Relative	error 1.78% 0.92% 5.18% 5.17%

10.4	Monitoring	of	Tunnel	Construction	Using	FBG
Sensors
Fibre	Bragg	grating	(FBG)	sensing	technology	is	used	for	safety	monitoring	of	railway	tunnels
during	construction	stage,	including	realtime	temperature	monitoring	of	the	frozen	soils
during	freezing	construction	and	automatic	subgrade	settlement	monitoring	of	a	high	speed	rail
line	segment	during	construction.

10.4.1	Temperature	Monitoring	of	Tunnel	Cross	Passage
Construction
Wuhan	Metro	Line	2	is	characterised	by	its	deeply	buried	doubleline	shield	tunnels	under	the
Yangtze	River,	as	shown	in	Figure	10.13(a).	The	length	of	the	metro	tunnel	beneath	the	Yangtze
River	is	about	1400 m.	A	total	of	five	cross	passages	are	distributed	along	the	metro	tunnel	to
meet	the	requirements	for	regional	disaster	prevention	and	drainage.	Cross	passage	3	beneath
the	river	is	selected	as	a	testbed	for	FBG	based	instrumentation	and	realtime	temperature
monitoring	during	the	freezing	construction	(Ye	et	al.	2013).	As	illustrated	in	Figure	10.13(b),
the	distance	between	the	central	lines	of	the	left	and	right	metro	tunnels	at	the	location	of	cross
passage	3	is	13 m.	The	tunnel	segments	of	cross	passage	3	are	steel	tube	slices	with	a	thickness
of	0.35 m.	The	inner	and	external	diameters	of	the	metro	tunnel	are	5.5 m	and	6.2 m,
respectively.	The	average	burial	depth	of	the	metro	tunnels	at	the	location	of	cross	passage	3	is
20.29 m.





Figure	10.13	Rivercrossing	metro	tunnel	during	freezing	construction.

Cross	passage	3	is	located	at	the	soil	layers	of	silty	fine	sand	and	mediumcoarse	sand	with
gravel.	The	deformation	resistant	capability	of	the	soils	is	unsatisfactory	under	the	action	of	the
external	loads.	In	addition,	the	pore	water	pressure	is	relatively	large	since	cross	passage	3	is
surrounded	by	a	waterbearing	layer	with	a	high	water	head.	Problems	can	arise	due	to	soil
layer	migration	and	waterbursting	in	sand	layers	during	shield	construction,	leading	to
instability	of	the	excavated	surfaces.	Thus,	an	artificial	ground	freezing	method	was	employed
to	consolidate	the	surrounding	soil	layers	around	the	metro	tunnels.	As	shown	in	Figure
10.13(b),	a	total	of	112	freezing	holes	were	drilled	in	the	soil	layers	to	strengthen	the	soils.
Then,	a	frozen	soil	wall	with	high	strength	and	good	tightness	was	formed	for	safety	excavation
of	the	cross	passage.

To	protect	the	instrumented	FBG	sensors	in	harsh	environments,	a	freezing	monitoring	device
was	adopted	by	integrating	the	FBG	sensor	with	the	freezing	steel	tube	(Ye	et	al.	2013),	as
illustrated	in	Figure	10.14.	The	fabrication	process	of	the	freezing	monitoring	tube	mainly
includes:	(a)	FBG	sensor	together	with	the	fixed	blocks,	inserted	into	the	freezing	steel	tube
and	screwed	at	a	designated	position,	(b)	optical	fibre	fixtures	mounted	inside	on	both	ends	of
the	freezing	steel	tube,	(c)	sealing	protective	measure	made	for	the	optical	fibre	connector	by
use	of	silicone	gel	and	tinfoil	papers.



Figure	10.14	Freezing	monitoring	tube	accommodating	a	FBG	sensor.

The	developed	freezing	monitoring	tubes	were	used	for	realtime	temperature	monitoring	of
the	frozen	soils	during	cross	passage	construction.	A	total	of	five	freezing	monitoring	tubes
with	seven	working	FBG	sensors	were	installed	into	the	soil	layers	around	the	right	metro
tunnel	at	the	location	of	cross	passage	3,	as	shown	in	Figure	10.15.	The	measurement	data	of
the	Bragg	wavelengths	was	obtained	from	all	the	workable	FBG	sensors	with	a	sampling
frequency	of	100 Hz.	The	temperature	at	the	sensor	deployment	locations	during	freezing
construction	can	then	be	estimated	from	the	relationship	between	the	temperature	variation	and
temperatureinduced	wavelength	variation.	Temperature	monitoring	data	during	the	65day
period	(from	18	January	2012	to	22	March	2012)	from	all	the	workable	FBG	sensors	has	been
acquired	during	freezing	construction	of	cross	passage	3.



Figure	10.15	Deployment	locations	of	FBG	sensors	in	the	frozen	soils.

Figure	10.16	provides	the	temperature	time	histories	obtained	from	FBG	sensors	S1	to	S7	after
eliminating	the	high	frequency	noise.	The	results	reveal	that	the	temperatures	of	the	frozen	soils
decrease	sharply	at	the	early	stage	of	freezing	construction	(aggressive	freezing	phase)	and
then	gradually	become	steady	(stable	freezing	phase).	With	such	a	continuous	temperature
evolution	profile	of	the	frozen	soils,	the	strength	of	the	frozen	curtain	can	be	estimated
accurately	in	real	time.	This	effectively	provides	useful	information	for	the	subsequent
excavation	construction	of	the	cross	passage	and	thus	reduces	the	risk	of	construction.

Figure	10.16	Measured	temperature	time	histories	during	freezing	construction.



10.4.2	Settlement	Monitoring	of	Undercrossing	Tunnel
Construction
Realtime	and	continuous	monitoring	of	the	postconstruction	settlement	of	high	speed	rail
subgrade	is	necessary	for	safety	surveillance	and	condition	assessment	of	the	high	speed	rail
superstructures	and	substructures.	The	Beijing–Shanghai	HighSpeed	Rail	is	the	world’s
longest	high	speed	rail,	and	started	its	official	operation	in	June	2011.	To	construct	an
undercrossing	road,	a	tunnel	excavation	was	carried	out	beneath	the	subgrade	of	a	segment	of
the	high	speed	rail.	In	order	to	accurately	assess	the	effect	of	the	tunnel	excavation	construction
on	the	subgrade	settlement	of	the	rail,	an	automatic	settlement	monitoring	system	on	the
subgrade	surface	was	deployed	(Ye	et	al.	2013),	as	shown	in	Figure	10.17.	A	total	of	12	FBG
based	liquidlevel	sensors	were	installed	along	the	rail	tracks	at	various	intervals.	Two
liquidlevel	sensors	were	used	for	the	reference	points	(Nos.	1	and	12)	where	the	settlements
can	be	ignored.



Figure	10.17	Deployment	of	FBG	based	liquidlevel	sensors	on	subgrade	surface	of	the
railway	line.

The	Bragg	wavelength	data	from	all	the	deployed	liquidlevel	sensors	was	acquired	at	a
sample	frequency	of	1 Hz	from	28	February	2011	to	31	August	2011.	This	data	covers	the
periods	of	tunnel	excavation	construction	as	well	as	trial	operation	and	two	months	of	official
operation	of	the	rail.	On	the	basis	of	a	calibrated	relationship	between	the	Bragg	wavelength
and	the	settlementinduced	liquid	level	variation,	the	subgrade	settlement	at	the	locations	of



deployed	liquidlevel	sensors	then	can	be	estimated	from	the	measured	Bragg	wavelength
data,	as	illustrated	in	Figure	10.18.

Figure	10.18	Measured	Bragg	wavelengths	by	liquidlevel	sensors	for	estimating	subgrade
settlement.

10.5	Safety	Monitoring	of	Rail	Using	Acoustic	Emission
Railway	turnouts	(railroad	switches	or	‘points’)	are	an	indispensable	part	of	a	railway	system.
They	are	the	weakest	components	of	the	track	structure.	The	operating	environment	at	turnouts
is	much	more	complex	and	harsher	than	at	other	parts	of	a	railway	line.	Due	to	the	particular
geometry	of	wheel–rail	contact	and	the	sudden	variation	of	track	flexibility,	severe	cyclic
impact	loads	act	on	the	turnout	during	train	passage.	This	can	cause	cracks	or	even	damage	to
the	switch	rail,	resulting	in	unexpected	structural	failure.	Without	suitable	detection,	the
damaged	railway	turnout	on	the	network	may	not	be	immediately	found	and	replaced,	leading
to	potential	safety	threat	to	railway	operation.	Thus,	it	is	of	huge	importance	to	continuously
monitor	the	health	condition	of	railway	turnouts	and	to	promptly	detect	damage	once	it	starts.



10.5.1	Rail	Track	Damage	Detection	System
Acoustic	emission	(AE)	occurs	as	a	result	of	transient	elastic	waves	generated	when	strain
energy	is	suddenly	released	within	or	on	the	surface	of	a	material.	This	is	due	to	microstructure
changes	such	as	crack	generation	and	propagation.	Such	changes	can	be	generated	internally	or
externally	and	cover	a	broad	frequency	range	between	20 kHz	and	1 MHz.	Thus,	acoustic
emission	is	widely	used	for	crack	detection	in	static	structures,	such	as	rail	track	defect
detection.	The	undamaged	rail	track	usually	generates	structural	vibration	under	50 Hz.	When
there	is	crack	damage	in	the	structure,	it	will	generate	high	frequency	AE	bursts.	This	can	be
reflected	on	the	AE	burst	chart	in	the	time	domain	with	the	presentation	of	increased	AE	bursts,
or	on	the	power	spectrum	density	(PSD)	chart	in	the	frequency	domain	with	the	presentation	of
highly	concentrated	energy.	The	existence	of	crack	damage	at	rail	turnouts	will	lead	to	an
energy	concentration	at	high	frequency	when	it	is	excited	by	a	passing	train.	Therefore,	by
analysing	the	corresponding	charts,	it	is	possible	to	assess	whether	there	is	any	crack	damage
around	the	railway	turnouts.

The	system	for	damage	detection	of	rail	track	uses	acoustic	emissions.	The	system	has	been
examined	and	calibrated	for	warning	triggers	in	laboratory	tests	(Ni	et	al.	2014a),	as	shown	in
Figure	10.19.	Both	methods	for	counting	AE	bursts	and	for	observing	power	spectrum	density
extents	were	evaluated	in	the	test.	By	using	damage	thresholds	based	on	both	methods,	the
system	gives	the	most	effective	warnings.	The	effective	sensing	distance	could	be	as	long	as
10 m.	Therefore,	the	system	is	designed	to	give	damage	warnings	for	rail	turnouts,	when	the
signal	surpasses	both	thresholds	of	AE	bursts	and	power	spectrum	density.

Figure	10.19	Piezoelectric	(PZT)	based	acoustic	emission	sensing	system	for	damage
detection	of	rail	turnouts.

Acoustic	emission	sensors	are	usually	made	of	sensitive	piezoelectric	(PZT)	materials.	They
can	sense	signals	from	the	low	kHz	up	to	1 MHz,	and	they	can	be	mounted	using	a	coupling	set
on	the	surface	of	the	structure	to	be	evaluated.	As	such,	the	PZT	based	sensor	for	damage
detection	is	made	of	a	PZT	disk	with	a	diameter	of	22 mm	and	thickness	of	0.8 mm,	as	shown
in	Figure	10.19(a).	The	sensor	is	suitable	for	both	signal	generating	and	receiving	and	works
stably	under	a	wide	temperature	range	(from	−40 °C	to	80 °C).	To	minimise	electronic	noise



from	the	railway	environment,	the	PZT	sensor	is	insulated	and	packaged	twice	during
manufacture.	The	procedure	shields	most	electricmagnetic	noise	and	improves	the	quality	of
signals	acquired	by	the	sensor.	The	data	acquisition	system	has	a	commercial	data	acquisition
card	NI9223	with	four	channels	and	sampling	rate	up	to	10 MHz.	The	system	uses	Labview
software	to	perform	data	collecting	and	analysis.	The	damage	detection	system	consists	of	PZT
based	transducers,	damage	trigger	components,	and	data	acquisition	system.	The	last	two	parts
are	integrated	into	a	package	box	shown	in	Figure	10.19(b).	The	system	uses	passage	trains	as
exciting	loads.	The	sensors	generate	signals	once	external	loads	are	applied.	If	damage	occurs
in	rail	turnout	parts,	warning	signals	will	be	generated,	and	the	data	will	be	collected	and
passed	through	cables	to	the	central	analysis	system	installed	in	the	nearby	control	room.

Four	PZT	transducers	are	arranged	symmetrically	on	two	sides	of	the	internal	rail,	at	4 m	and
3 m	away	from	the	rail	turnouts,	as	shown	in	Figure	10.20(a).	Each	transducer	is	secured	with
a	mechanical	clamp	on	the	base	of	the	rail,	as	shown	in	Figure	10.20(b),	with	an	initial
clamping	load	of	200 N.	Four	channels	were	used	to	collect	data,	with	channels	1	and	2	at	4 m
away	from	the	rail	turnouts	and	channels	3	and	4	at	3 m	away	from	the	turnouts,	respectively.
The	sampling	rates	used	are	600 kHz	to	1 MHz.

Figure	10.20	Undamaged	rail	turnouts	and	arrangement	of	PZT	transducers	on	railway	switch
area.

10.5.2	OnSite	Monitoring	Data
The	damage	detection	system	was	installed	at	the	rail	turnouts	in	February	2013.	The	baseline
signals	(e.g.	from	undamaged	rail	turnouts)	were	collected	in	both	time	domain	and	frequency
domain.	The	collected	baseline	signals	for	channel	1	are	plotted	in	Figures	10.21(a)	and	(b).
The	sampling	rate	used	was	1 MHz.	From	the	results	for	all	channels,	there	is	very	limited	AE
bursts	in	timedomain,	and	the	power	spectrum	density	(PSD)	curves	from	the	sensors	are
very	smooth.





Figure	10.21	Signals	collected	from	PZT	transducer	1	for	undamaged	rail	turnout.

In	June	2013,	the	damage	detection	system	was	triggered	by	the	warning	signals	and
successfully	recorded	the	data	associated	with	the	damaged	rail	turnouts,	as	shown	in	Figure
10.22.	In	the	damaged	rail	turnout,	part	of	the	turnout	is	lost.	The	damaged	rail	turnout	was	on
the	side	of	PZT	transducers	1	and	3.	The	recorded	timedomain	signals	and	their	power
spectrum	density	curves	for	transducer	1	are	shown	in	Figure	10.23.	Sampling	rate	used	was
600 kHz.	The	damaged	rail	part	was	replaced	immediately	to	avoid	any	potential	accidents.

Figure	10.22	Damaged	rail	turnout	and	passage	train.





Figure	10.23	Signals	collected	from	PZT	transducer	1	for	damaged	rail	turnout.

By	comparing	the	undamaged	charts	in	the	time	domain	in	Figure	10.21(a)	with	the
corresponding	damaged	charts	in	Figure	10.23(a),	more	AE	high	frequency	bursts	are	found	in
the	damaged	chart	of	PZT	transducer	1.	Similarly,	the	damaged	power	spectrum	density	curve
shows	higher	energy	than	the	undamaged	one,	as	shown	in	Figure	10.24(a).	Moreover,	there	is
an	obvious	energy	peak	(concentration)	within	the	100–300 kHz	frequency	range	for	the
damaged	power	spectrum	density	curve.	Figure	10.24(b)	gives	clearer	results	of	the	power
spectrum	density	charts	for	the	undamaged	and	damaged	rail	turnout	within	this	high	frequency
range	(Ni	et	al.	2014a).	This	confirms	the	concept	that	the	crack	damage	is	related	to	the	strain
energy	released	at	the	crack	opening	at	high	frequencies.	From	the	analysis	of	the	data	acquired
from	the	onsite	damage	detection	system,	both	AE	transient	bursts	and	PSD	spectrum	at	high
frequency	could	be	used	to	detect	the	crack	damage	of	railway	turnouts.





Figure	10.24	Comparisons	of	power	spectrum	density	(PSD)	from	PZT	transducer	1	for
undamaged	and	damaged	rail	turnout.

10.6	Structural	Integrity	Monitoring	of	Water	Mains
The	burst/leak	of	mains	water	can	cause	disruption	to	the	raw	water	supply	and	may	affect
neighbouring	areas.	The	structural	integrity	of	water	supply	pipelines	is	critical	due	to	its
significant	influence,	such	as	high	environmental	impact,	severe	interruptions	in	service,
substantial	time	consumption	and	considerable	financial	cost.	Since	water	supply	pipelines	are
often	buried	underground	and	the	diameter	of	the	pipes	is	very	large,	ordinary	sensors	can
hardly	survive	these	surrounding	environments.	A	pilot	study	on	the	use	of	fibre	Bragg	grating
(FBG)	sensors	for	monitoring	the	structural	integrity	of	the	glass	reinforced	plastic	(GRP)
pipes	of	the	Dongjiang	water	mains	in	Hong	Kong	has	been	carried	out.

10.6.1	FBG	Sensory	System
This	pilot	project	monitors	a	200	metre	long	segment	of	GRP	underground	pipe	of	the	water
mains	of	diameter	2.1 m	(Ni	et	al.	2013b).	The	FBG	sensory	system	consists	of	300	FBG	strain
sensors,	300	FBG	temperature	sensors,	six	FBG	water	pressure	sensors,	optical	cable	for
signal/data	transmission,	data	logger,	multiplexer,	computer	and	other	facilities,	as	shown	in
Figure	10.25.	As	the	integrity	monitoring	system	is	expected	to	work	continuously	for	several
years	at	a	maximum	flow	velocity	of	3 m/s,	all	the	sensors	are	specially	designed	to	be
waterproof,	anticorrosive	and	suitable	in	contact	with	potable	water.



Figure	10.25	Schematic	of	FBG	sensory	system	for	structural	integrity	monitoring	of	water
mains.

Various	types	of	sensors	are	used	in	the	monitoring	system.	The	fibre	reinforced	plastic
encapsulated	FBG	strain	sensors	with	temperature	compensation	sensors	are	adopted,	as
shown	in	Figure	10.26(a).	Two	FBG	sensors	with	different	wavelengths	–	the	strain	sensor	and
the	temperature	compensation	sensor	–	are	embedded	tightly	into	a	lamina	in	order	to	make	the
sensor	much	more	compact.	Food	grade	stainless	steel	packed	water	pressure	sensors	are	used
in	the	monitoring	system,	as	shown	in	Figure	10.26(b).	The	special	water	pressure	sensor	is
designed	for	easy	installation	on	the	pipe,	vertical	pressure	measurement	and	suitability	in
contact	with	potable	water.	Also,	a	fibre	glass	braid	sleeve	coated	optical	cable	is	selected	to
be	waterproof	and	suitable	for	contact	with	potable	water.

Figure	10.26	FBG	sensors	for	monitoring	water	mains.

The	200	metre	long	GRP	pipes	are	monitored	at	100	monitoring	sections.	The	spacing	of	the
sections	is	2 m.	The	distribution	diagram	of	the	monitoring	sections	is	shown	in	Figure
10.27(a).	The	installation	spacing	of	the	FBG	pressure	sensors	is	100 m	and	each	installation



section	has	three	sensors.	The	three	FBG	pressure	sensors	in	each	section	are	installed	at
points	A,	B	and	C	near	the	strain	and	temperature	sensors,	respectively,	as	shown	in	Figure
10.27(b).	A	total	of	three	FBG	strain	sensors	and	three	FBG	temperature	sensors	are	used	in
each	installation	section,	and	are	divided	into	three	groups.	Each	group	has	one	FBG	strain
sensor	and	one	FBG	temperature	sensor.	The	three	groups	of	sensors	are	installed	at	points	A,
B	and	C	in	the	monitoring	section,	as	shown	in	Figs.	10.27(b)	and	(c).

Figure	10.27	Distribution	of	strain,	temperature	and	pressure	sensors.

10.6.2	Implementation	of	Monitoring	System
The	monitored	underground	pipe	is	under	the	footpath	or	road.	There	are	extremely	complex
railway	traffic	conditions:	e.g.	about	1–2	pairs	of	east	line	trains	in	one	minute,	12	pairs	of
through	trains	running	daily	and	thousands	of	passengers	every	day.	The	system	topology	(Ni	et
al.	2013b)	is	shown	in	Figure	10.28.	The	deployment	of	the	sensory	system	mainly	consists	of
three	steps:

Connection	between	cables	on	ground	and	inner	pipes,	as	shown	in	Figure	10.28(c).	This
part	is	specially	designed	for	waterproof	and	pressuretight	under	water	pressure	of	12 
bar.

Cable	installation	inside	the	pipe.	There	are	two	kinds	of	materials	inside	the	underground
pipe:	steel	and	GRP.	A	small	diameter	galvanised	steel	tube	was	employed	to	protect	and
fix	the	signal	transmission	cables,	as	shown	in	Figure	10.28(d).	And	the	glass	fibre	mesh
preimpregnated	into	epoxy	resin	was	employed	to	protect	and	fix	the	signal	transmission
cable	to	the	surface	of	the	GRP	pipe,	as	shown	in	Figure	10.28(e).	Glass	fibre	mesh	and
epoxy	resin	were	used	to	repair	the	GRP	pipe	wall	of	the	water	mains.



Sensor	installation	on	the	surface	of	the	GRP	pipe.	The	300	strain	sensors	and	300
temperature	compensation	sensors	are	divided	into	30	arrays	and	interrogated	as	one
channel.	Each	array	consists	of	10	strain	sensors	and	10	temperature	compensation	sensors.
The	30	arrays	are	divided	into	three	groups,	installed	at	points	A,	B	and	C	in	each	section,
as	shown	in	Figs.	10.27(b)	and	(c).	Each	sensor	was	attached	to	the	surface	of	the	pipe
with	epoxy	resin	and	protected	by	a	stainless	steel	box	for	water	pressure	protection.
Finally,	all	the	sensors	and	cables	are	protected	and	fixed	by	the	glass	fibre	mesh,	pre
impregnated	into	epoxy	resin.

Figure	10.28	Topology	of	the	sensory	system	for	structural	monitoring	of	water	mains.

10.6.3	Measurements	Under	Different	Operational	Conditions
The	water	mains	were	monitored	under	different	operational	conditions:	with	water	flow	(17
April	2014)	and	with	water	cutoff	(2	December	2013).	Firstly,	correlations	between	the	first
crosssection	and	all	other	crosssections	are	analysed	under	different	 operational
conditions.	The	correlation	coefficients	of	strain	and	temperature	change	of	measurement	point
A	between	crosssection	#1	and	crosssections	#1	to	#100	are	plotted	in	 Figure	10.29	and
Figure	10.30	for	cases	with	water	flow	and	with	water	cutoff,	respectively	(Ni	et	al.	2014b).



Figure	10.29	Correlation	of	strain	and	temperature	variation	at	measurement	point	A	with
water	flow.



Figure	10.30	Correlation	of	strain	and	temperature	variation	at	measurement	point	A	with
water	cutoff.

Figure	10.29	shows	that,	in	the	case	with	water	flow,	section	#1	and	sections	#1–100	generally
indicate	high	correlation	(close	to	1),	and	the	correlation	coefficients	decrease	gradually	by	a
small	amount	with	the	increase	of	the	section	number.	The	lowest	correlation	coefficient	is
about	0.8.	The	point	associated	with	this	low	correlation	coefficient	is	AS92,	at	the	end	of	the
third	turn	of	the	GRP	pipeline.	Besides,	several	crosssections,	namely	sections	#06,	#12,
#21,	#35,	#41,	#45,	#62,	#68,	#81	and	#95,	display	a	high	correlation	with	the	first	cross



section,	which	implies	their	suitability	for	the	analysis	of	structural	integrity.

Figure	10.30	provides	results	for	the	case	with	water	cutoff,	section	#1	and	sections	#1–100
generally	indicate	slightly	lower	correlation	(but	still	close	to	1),	and	the	correlation
coefficients	of	temperature	and	strain	variations	experience	relatively	large	decrease.	Also,	the
points	with	the	lowest	coefficients	are	AS15	and	AS50.	Both	sections	are	located	near	or	at
the	turns	of	the	GRP	pipeline,	and	thus	easily	affected	by	the	change	of	water	flow	by	the
cutoff.	However,	several	crosssections,	namely	sections	#06,	#20,	#21,	#31,	#35,	#45,	#62,
#68,	#81,	and	#83,	still	display	a	high	correlation	with	the	first	crosssection	in	this	unsteady
situation.	This	indicates	their	suitability	for	the	analysis	of	structural	integrity.

Based	on	above	analyses	of	the	two	different	operational	conditions,	in	the	cases	with	water
flow,	nearly	all	correlation	coefficients	are	close	to	1,	the	highest	correlation.	This	indicates
that	the	GRP	pipeline	and	the	sensory	system	are	healthy.	In	the	case	with	water	cutoff,	the
correlation	coefficients	show	relatively	large	decrease,	particularly	those	of	strain	variation.
Almost	all	points	with	low	coefficients	are	associated	with	the	turns	in	the	GRP	pipeline.

Figure	10.31	shows	the	monitored	data	in	the	case	with	water	cutoff	for	strain	and	temperature
changes	at	the	points	A	and	C	of	crosssection	#35.	The	results	of	data	analyses	at	cross
section	#35	are	discussed,	since	this	crosssection	shows	very	high	correlations	with	the	first
crosssection	in	both	operational	cases.	Significant	variations	in	strain	and	temperature	were
recorded	due	to	the	water	cutoff.	In	response	to	this	temporary	disturbance,	the	water	pressures
indicate	significant	change	between	10 am	and	4 pm	during	the	water	cutoff,	as	shown	in	Figure
10.32.	The	recorded	water	pressures	at	point	B	are	very	similar	to	those	at	point	A.





Figure	10.31	Strain	and	temperature	changes	at	crosssection	#35	with	water	cutoff.



Figure	10.32	Water	pressures	at	the	middle	of	the	GRP	pipeline	with	water	cutoff.

The	crosscorrelation	between	each	pair	of	temperature	and	strain	sensors	is	now	examined.
The	crosscorrelation	between	the	temperature	variation	and	strain	variation	minus	their	mean
values	is	calculated	and	then	normalised	by	the	maximum	crosscorrelation	values.	The
normalised	correlation	between	each	pair	of	temperature	and	strain	sensors	at	crosssection
#35	is	plotted	in	Figure	10.33.	This	correlation	analysis	is	performed	for	two	cases,	steady
water	flow	and	water	cutoff.	From	the	results	in	Figure	10.33(a),	the	blue	solid	line	almost
coincides	with	the	green	dashed	line,	indicating	the	similarity	of	responses	at	points	A	and	B.
Moreover,	the	crosscorrelation	 curves	of	point	C	(red	dot	lines)	and	the	two	curves	of	points
A	and	B	are	approximately	symmetrical	with	respect	to	the	xaxis.	This	indicates	their
oscillations	are	characterised	by	the	reversedphase	relationship.	However,	when	the	GRP
pipeline	experienced	a	water	cutoff	lasting	for	several	hours,	this	symmetrical	relationship	is



destroyed	and	the	values	of	correlation	on	the	curves	are	decreased,	as	shown	in	Figure
10.33(b).

Figure	10.33	Normalised	crosscorrelation	between	each	pair	of	temperature	and	strain
sensors	at	crosssection	#35,	where	blue	(solid)	line	for	point	A;	green	(dashed)	line	for
point	B;	red	(dotted)	line	for	point	C.

10.7	Concluding	Remarks
The	use	of	advanced	SHM	systems	allows	continuous	monitoring	and	effective	management	of
large	civil	engineering	structures,	such	as	longspan	bridges,	highrise	buildings,
underground	tunnels,	high	speed	railway	lines	and	buried	water	mains.	The	structural	health
monitoring	strategies	increase	the	safety	of	these	existing	civil	structures,	and	allow	the
infrastructure	operators	to	make	informed	decisions	on	the	maintenance	and	management	of	the
structures.	Various	monitoring	systems	are	introduced	in	these	real	case	studies,	including	the
wind	and	SHM	system,	wireless	sensing	networks,	acoustic	emissions	and	fibre	optic	sensing
systems.

The	application	examples	of	these	monitoring	systems	in	the	case	studies	demonstrate	how	it	is
possible	to	obtain	different	types	of	information	on	the	states	and	conditions	of	various	civil
engineering	structures.	From	the	case	studies,	local	monitoring	techniques	are	much	more
likely	to	locate	structural	damage	in	local	regions.	Global	monitoring	methods	should	be
combined	with	the	use	of	local	monitoring	techniques	to	obtain	a	better	understanding	of
structural	damage.	When	longterm	monitoring	data	of	both	structural	responses	and
operational	factors	(e.g.	loads,	temperature,	wind,	etc.)	are	available,	it	is	possible	to
quantitatively	assess	the	current	condition	and	even	predict	the	future	performance	of	the
existing	civil	engineering	structures	using	the	continuous	measurements.

For	civil	engineering	structures,	continuous	structural	monitoring	requires	the	use	of	robust
sensors	that	can	withstand	the	damaging	effects	of	the	aggressive	environments.	These	sensors
are	expected	to	operate	for	the	service	life	of	the	structures	which	is	often	over	50	years.



Robust	sensors	are	expected	to	perform	reliably	during	the	lifecycle	of	the	structures.	Also,	the
number	of	sensors	on	a	civil	structure	should	be	sufficient	to	make	an	effective	global
monitoring	approach	on	a	large	scale.	When	structural	monitoring	is	implemented	on	large
civil	engineering	structures,	the	density	of	sensors	requires	a	wireless	sensing	network	(Chang
et	al.	2003).	The	structural	monitoring	systems	need	to	be	inexpensive	and	easy	to	deploy,	so
that	the	systems	can	be	attached	to	existing	civil	structures	with	little	effort.

Although	successful	applications	of	SHM	strategies	are	demonstrated	in	these	case	studies,
further	works	on	SHM	of	large	civil	engineering	structures	are	needed:	(a)	advanced	sensing
systems	with	improved	and	optimised	placement	of	networkable	sensors,	(b)	reliable	wireless
sensors	and	data	transmission	systems,	(c)	advanced	signal	processing	techniques	to	increase
signaltonoise	ratios,	(d)	software	and	hardware	integration,	(e)	effective	methods	for	data
interpretations	and	damage	feature	extractions,	(f)	predictive	damage	model	for	a	structure	and
its	components,	(g)	reliabilitybased	and	monitoringinformed	optimal	maintenance
strategies.
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