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Preface

This book is dedicated to students who need to assimilate extensive knowledge
in a short period of time. The international scientific production has increased at
a breakneck pace, demanding more dynamic approaches and synergies between
different areas of knowledge. Mastering X-ray scattering and diffraction methods
means to be competent to work in an infinity of areas, studying the various systems
where the organizational understanding of matter at the atomic scale is necessary.
Since the discovery of X-radiation, its use as an investigative tool has always been in
wide expansion provided by advances in instrumental and computational resource.
The current development in the fields of medicine and technology has as one of
its supporting pillars the structural analysis offered by X radiation. One of the
greatest difficulties faced by beginners in the effective use of this fantastic tool is
in analyzing the experimental results. Few are the situations where it is possible
to extract structural information directly from the experiments. In most situations,
computer programs are necessary for simulating the interaction of radiation with
matter. The advent of intense radiation sources and the rapid development of
nanotechnology constantly create challenges for solutions beyond those offered by
the already settled techniques. Preparing new researchers for this scenario of rapid
and drastic changes requires more than teaching physical phenomena theories, it
also calls for teaching how to implement them in a simple and efficient way. In
this book, the fundamental concepts needed to analyze a wide range of materials
(macromolecules, liquids, nanoparticles, polymers, amorphous, polycrystals, small-
molecule crystals, and protein crystals) using scattering and diffraction techniques
are demonstrated through computer simulation tools. The chapters follow an
ascending order going from disordered to ordered matter, covering various types
of samples and targeting a unification of theoretical approaches. There are exercises
that go with each topic presented, which are proposed and solved. There are more
than 80 routines in MatLab developed for solving the exercises. Therefore, besides
X-ray physics, this book also offers a practical programming course in modern,
high-level language with an infinity of graphic and mathematical resources.

São Paulo, SP, Brazil Sérgio L. MorelhQao
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Chapter 1
Fundamentals of X-Ray Physics

1.1 Radiation–Electron (Free Electron) Elementary
Interaction

In the classical description of electromagnetic radiation, X-rays are waves similar to
radio, TV, and light waves, but with a much smaller wavelength, � of the order of 1 Å
(10�10 m). The wave nature of X-rays give rises to the phenomena of interference
at an atomic scale, which provide the various scattering and diffraction techniques
that will be covered in this book. Moreover, there is also a quantum description of
the electromagnetic fields based on the particle nature of electromagnetic radiation,
which means that it behaves as a beam of photons created and annihilated by
interacting with matter. Absorption and detection of X-ray photons are intrinsically
quantum phenomena explored in techniques for analyzing materials by absorption
spectroscopy and X-ray fluorescence. The radiation–electron interaction that gives
rise to an absorption process occurs mainly with atomic electrons, i.e., with bound
electrons in general. In this section we address the elementary interaction of X-rays
with free electrons.

There are only two relevant elementary interactions of X-rays with free electrons:
elastic scattering and inelastic scattering, which are also often called Thomson
scattering and Compton scattering, respectively. The conservation laws of linear
momentum and energy prevent a free electron from annihilating (absorbing) a
photon, converting all the energy of the photon,

E ŒeV� D 2�„c

�
D 12398:5

�ŒÅ�
; (1.1)

into its own kinetic energy. In the Compton effect, only part of the photon energy
is converted into the electron’s kinetic energy. The scattered photon has slightly
lower energy (larger �), which consists of an inelastic scattering. Because it is

© Springer International Publishing Switzerland 2016
S.L. Morelhão, Computer Simulation Tools for X-ray Analysis,
Graduate Texts in Physics, DOI 10.1007/978-3-319-19554-4_1
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2 1 Fundamentals of X-Ray Physics

a manifestation of the particle nature (quantum) of the electromagnetic field, the
scattering by the Compton effect destroys any phase correlation with the incident
wave and hence there is no interference effects related to this inelastic scattering
process. Although the intensity of the Compton scattering is present as a background
intensity without a correlation with the atomic structure of the materials, it is often
neglected or subtracted from the experimental data of the coherent scattering of
X-rays.

In addition to the scattering processes, there is also the absorption by the vacuum
in a process where the X-ray photons are annihilated in the creation of electron-
positron pairs. The probability of a photon to be annihilated and give origin to an
electron-positron pair is very small and, in general, is not taken into account by
analytical techniques of materials. Therefore, the elementary interaction of X-rays
with free electrons is essentially an elastic scattering process treatable by classical
electromagnetic theory, as done by J.J. Thomson in the late nineteenth century
where the incident radiation of angular frequency ! is described as a function of
the position vector r, and of the time t, by a plane wave such as

E.r; t/ D E0 e˙i.!t�k�r/ : (1.2)

The incidence direction is given by wavevector k D kOs, of modulus k D 2�=� D
!=c. Although the electromagnetic wave has both electric, E, and magnetic, B,
fields where k � E D k � B D E � B D 0, it is common to represent the X-ray
electric field only, as in (1.2).

1.1.1 Polarization Effects

In the presence of the electric field of an incident X-ray beam, a free electron is
forced to vibrate and begins to radiate in a similar way to electrons in a dipole
antenna. There is no emission of radiation in the direction along the length of the
antenna. It is a characteristic of the electric dipole radiation and can be understood
as a consequence of the Biot–Savart law. Thus, if the X-ray wave is linearly
polarized, that is E0 D E0 O", the radiation from the electron is null in the direction
of the versor O". On the other hand, the radiation is maximum in the electron’s plane
perpendicular to versor O", as depicted in Fig. 1.1a.

In X-ray physics, the observation direction Os0, of the scattered radiation is in
general given by the angle 2� measured from the incidence direction Os, Fig. 1.1b.
Both directions, incidence and observation, define a virtual plane named “incidence
plane.” A complete description of the scattering requires E0 to be specified with
respect to the incidence plane, which is done through versors

O� D Os � Os0= sin 2� and O� D O� � Os ; (1.3)
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Fig. 1.1 Electron in forced vibration. (a) The scattered intensity is maximum, I D Imax, on the
plane containing the electron and perpendicular to the vibration direction, and is null, I D 0,
along this direction. (b) Electric field vector E0 of the incident radiation described with respect to
O� D Os � Os0

= sin 2� and O� D O� � Os directions. Incidence direction: Os. Observation position of the
scattered intensity: R D R Os0. Incidence plane: the plane that contains both Os and Os0 directions

perpendicular and parallel to the incidence plane, respectively, Fig. 1.1b. In the case
of linearly polarized radiation such as synchrotron radiation, we have

O" D cos.�/ O� C sin.�/ O� : (1.4)

For 2� D 0, the amplitude of scattering is maximum and independent of the
polarization angle �. But, for 2� D 90ı the amplitude is null if � D 0, Fig. 1.1a.

The vectorial polarization factor (Appendix A),

P.Os0/ D Os0 � . O" � Os0/ ; (1.5)

summarizes the polarization effects in the scattered electric field, ER.R; t/ D
P.Os0/ER.R; t/ , observed at point R D ROs0, Fig. 1.1b. The measurable intensity I is
proportional to the field square modulus, i.e., I / jER.R; t/j2 D jP.Os0/j2 jER.R; t/j2.

Note 1.1: The classical intensity of an electromagnetic field is defined as energy
per unit of time per unit of area, that is Joules (J)/s/m2. In X-ray physics, intensity
means the number of photons detected in a given interval of time. Comparing with
the classical definition of intensity,

I D classic intensity
�

J
s m2

� � detection area .m2/

photon energy; E .J/ :



4 1 Fundamentals of X-Ray Physics

To exemplify the use of polarization factors, let us choose Os D Œ0; 0; 1�, O� D
Œ1; 0; 0�, O� D Œ0; 1; 0�, O" D Œcos�; sin�; 0� and Os0 D Œsin 2�; 0; cos 2��,
which provides by (1.5) the general expression

P D Œcos� cos2 2�; sin�; � cos� cos 2� sin 2�� (1.6)

as a function of �. Hence, for � and � polarizations, we have:

P D
(

O� ; jPj2 D 1 if O" D O� .� D 90ı; � polarization/

cos 2� Œcos 2�; 0; � sin 2��; jPj2 D cos2 2� if O" D O� .� D 0; � polarization/

In the case of unpolarized X-rays generated by compact sources—sealed tubes and
rotating anodes without beam conditioning devices such as monochromators and/or
focusing optics—the scattered intensity is the intensity average over all possible
values of �, i.e., I / hjPj2i jER.R; t/j2 where

hjPj2i D hsin2 �i C hcos2 �i cos2 2� D 1

2
.1C cos2 2�/ (1.7)

is the scalar polarization factor.

� � �

Exercise 1.1. It is known that crystals are used to filter (making monochromatic)
and direct X-ray beams. (a) An unpolarized X-ray beam is reflected by a crystal at
an angle of 2� D 90ı. What is the reflected beam’s polarization? (b) In experiments
where angular and spectral high resolutions are required, a typical monochromator
is the 4-reflection monochromator. What is the polarization of the monochromatized
beam when 2� D 45:3ı in each reflection?
Answer (a): The resulting polarization is linear: P D Œ0; sin�; 0� for each
component � of the unpolarized beam, Fig. 1.1b. As � ranges from 0 a 2� , the
polarization factor is

hjPj2i D hsin2 �i D 1=2 :

Answer (b): By taking Os D Œ0; 0; 1� as the direction of the incident beam and
according to the scheme in Fig. 1.2, the reflected beam directions Os 0

n (n D 1; : : : ; 4),
are

Os 0
1 D Œsin 2�; 0; cos 2��; Os 0

2 D Œ0; 0; 1�; Os 0
3 D Œ� sin 2�; 0; cos 2�� and Os 0

4 D Œ0; 0; 1� :

Since P0 D O" D Œcos�; sin�; 0� stands for a given component of polarization of
the incident beam,

Pn D Os 0
n � .Pn�1 � Os 0

n/
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Fig. 1.2 The four-reflection monochromator

is the polarization after n reflections. As P4 D Œcos4 2�; 0; 0� for � D 0 and P4 D
Œ0; 1; 0� for � D 90ı, we have P4.�/ D Œcos4 2� cos�; sin�; 0�, and hence,

hjP4j2i D 1

2
.1C cos8 2�/ D 0:53 (nearly linear polarization) :

� � �

1.1.2 Radiation Field

We already know how to take into account polarization effects in the scattered
radiation by a free electron, but we still have to calculate the amplitude of
scattering ER.R; t/. Since the polarization is considered through vector P , ER.R; t/
is simply the radiation field in the electron’s plane perpendicular to the acceleration
(vibration) direction.

The radiated field by an accelerated charge is derived directly from Maxwell’s
equations as demonstrated in many textbooks of classical electromagnetism.1 In the
International System of units, this derivation results in

ER.R; t/ D e

4��0c2R
Rz.t0/ (1.8)

where Rz.t0/ is the electron acceleration perpendicular to the observation plane,
Fig. 1.1a, at a time instant t0 D t � R=c, generating the field at a distance R and time
instant t. The electron is accelerated in response to the incident electric field, (1.2),
that is

1Classical Electrodynamics, J.D. Jackson; Foundations of Electromagnetic Theory, J.R. Reitz and
F.J. Milford; : : :etc. See also Appendix A.
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Rz.t0/ D �e

m
E.r D 0; t0/ D �e

m
E0 e˙i!t0 D �e

m
E0 e˙i.!t�kR/ (1.9)

where e and m are the electron charge (in modulus) and mass, respectively. By
replacing in (1.8) we have

ER.R; t/

E0
D �

�
e2

4��0mc2

�
e˙i.!t�kR/

R
D �re

e˙i.!t�kR/

R
: (1.10)

re D 2:818�10�5 Å is called classical electron radius or Thomson scattering length.
Note that the amplitude of scattering is proportional to 1=R. This ensures that the
total radiated power is constant over any spherical surface of radius R around the
electron. Also note the negative sign in (1.10), indicating that the scattered field has
a 180ı phase lag with respect to the incident X-ray wave. Taking the polarization
effect into account, the full expression of the field scattered by the electron at the
origin, r D 0, and observed at position R, is

ER.R; t/ D P ER.R; t/ D �re P E0
e˙i.!t�k0�R/

R
(1.11)

where k0 is the wavevector of the scattered radiation. Since it is an elastic scattering,
jk0j D k D 2�=� (same � of the incident wave).

Although the essential points of the scattering theory are synthesized in the above
equations, there still lacks of establishing a practical bridge between theory and
experiment. To this end, we assume an incident X-ray beam with a photon flux ˆ
per square meter per second, which in terms of incident amplitude E0, is given by

ˆ D classical intensity

E D
1
2
�cjE0j2
E : (1.12)

c is the speed of light, and � is the dielectric permittivity. In a detector placed at
position R, covering a solid angle d	, the intensity of scattered radiation according
to (1.11) is

ITh D

scattered photons/m2=s
‚ …„ ƒ 
1
2
�chjPj2ijERj2

E

! m2

‚…„ƒ
R2d	 D ˆ

� hjPj2ijERj2
jE0j2

�
R2d	 D ˆ hjPj2i r2e d	

(1.13)

where hjPj2i r2e is the differential cross-section
�

d�
d	

�
Th

, of the Thomson scattering;
a quantity independent of the photon energy.
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Considering all directions in space, the total intensity scattered by one electron
is obtained by integration of (1.13):

Itot D ˆ r2e

Z
hjPj2i d	 D ˆ�Th : (1.14)

�Th D 8�r2e=3 D 6:6525 � 10�29 m2 D 0:66525 barn is the total cross-section of
the Thomson scattering.

� � �

Exercise 1.2. (a) What is the fluxˆ to provide 1 photon/s inside a cubic volume V ,
of edge L D 0:1mm? (b) What is the classical intensity, or beam power P per unit
of area (W/cm2), for photons of wavelength � D 1:23985Å?
Answer (a): If I is the incident intensity perpendicular to a face of the cube, the flux
will be ˆ D I=L2. Since L=c is the time for a photon to cross the volume, we will
have 1 photon/s inside the cube when I D c=L, which leads to ˆ D c=L3 D c=V D
3 � 1020 photons/m2/s.
Answer (b): P D ˆ E D .3 � 1020/.10�4/.104/.1:6 � 10�19/ D 48W/cm2.

Exercise 1.3. Determine the total intensity Itot, scattered by a small cube-shaped
GaAs (gallium arsenide2) sample of 0.1 mm edge, fully placed in an X-ray beam
with cross section S0 D 0:5�0:5mm2 and intensity I0 D 106 cps (cps D counts per
second), Fig. 1.3a. Neglect interference and diffraction phenomena, absorption, and
re-scattering.

Fig. 1.3 Samples (a) smaller and (b) larger than the cross section S0, of the incident beam of
intensity I0 D ˆ S0

2GaAs: cubic unit cell with 4 Ga (Z D 31), 4 As (Z D 33), and edge of 5.6534 Å
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Answer:

Itot D ˆ
 V �Th D 106

.5 � 10�4/2
256

.5:6534 � 10�10/3 .10
�4/3 6:6525 � 10�29 D 377 cps:

ˆ: photon flux per second (D I0=S0); 
: volumetric density of electrons (e�=m3);
V: sample volume.

Exercise 1.4. A plate-shaped GaAs sample with thickness T D 0:1mm and area
larger than the cross section S0 of the X-ray beam of intensity I0 D 106 cps is placed
perpendicular to the incidence direction. (a) What is the value of Itot? (b) A detector
of circular window with angular acceptance of � D 20ı is positioned at 2� D 90ı,
Fig. 1.3b. What are the detector readings, I� and I� , in the � and � polarizations?
Answer (a):

Itot D I0
S0

 S0T �Th D 106

256

.5:6534 � 10�10/3
.10�4/ 6:6525 � 10�29 D 9425 cps:

S0T: sample volume illuminated by the X-ray beam.
Answer (b): In � polarization, hjPj2i ' 1 within the detector window so that

Z
hjPj2i d	 '

Z
d	 D

Z 2�

0

Z �=2

0
sin � d� d' D 2�Œ1 � cos.�=2/� ' �

4
�2 and

I� D I0 
 T r2e

Z
hjPj2id	 ' I0 
 T

�
3 �Th

8�

�
�

4
�2 D 9425

3

32

�
20

�

180

�2 D 108 cps :

In � polarization, the variation of hjPj2i within the detector window must be taken
into account, otherwise the calculated intensity will be null. Hence,

Z
hjPj2i d	 D

circular symmetry around O"
‚ …„ ƒ
Z 2�

0

Z �=2

0
cos2.�=2� �/
„ ƒ‚ …

hjPj
2
i

sin.�/d�d' D �

6
Œ8Ccos.3�=2/�9 cos.�=2/� ' 3�

8
�4

and I� D I0 
 T

�
3 �Th

8�

�
3�

8
�4 D 9425

9

64

�
20

�

180

�4 D 20 cps :

� � �

1.1.3 Coherence Lengths

Whenever we represent the X-ray beam by a plane wave, e.g. (1.2), it is important
to have in mind that this representation is valid within a limited region of the space
of relative distances, whose dimensions are given in terms of coherence lengths.
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Interference and diffraction phenomena occur within this region of coherence. That
is the importance in knowing the coherence properties of a given X-ray beam.

The longitudinal coherence length CL tells us how far along the beam propagation
direction two electrons can be so that it is still possible to obtain information on their
relative position from the interference of the scattered fields. The loss of longitudinal
coherence comes exclusively from the fact that there is no X-ray source with null
spectral width. Thus, to deduce the value of CL let’s take �1 and �2 as the minimum
and maximum wavelengths defining the spectral width �� D �2 � �1 around � Dp
�1 �2 (geometric mean value). Starting from (1.2) of a plane wave frozen in time,

t D 0, we want to calculate the distance �x so that

E0 eik1�x D E0 eik2�x

where k1;2 D 2�=�1;2. This leads to k2�x D k1�x � 2� and therefore to �x D
2�=.k1�k2/. The longitudinal coherence length is defined as half the value of�x, or

CL Ddef 1

2
�x D 1

2

�
1

�1
� 1

�2

��1
D 1

2

�1 �2

�2 � �1 D 1

2

�2

��
: (1.15)

The transverse coherence length CT tells us how far in a perpendicular direction
to the beam propagation direction, two electrons can be so that it is still possible to
obtain information of their relative position from the interference of the scattered
fields. The loss of transverse coherence comes exclusively from the fact that there
is no X-ray beam with null angular divergence. Thus, to deduce the value of CT we
will take �k ' kıOy where Oy is perpendicular to the central ray direction and ı is
the angular divergence so that the beam spreads between k and k C�k. From (1.2)
of a plane wave, we want to calculate the distance �y so that

E0 e˙i.!t�k�Oy�y/ D E0 e˙iŒ!t�.kC�k/�Oy�y� :

This leads to �k � Oy�y D kı�y D 2� and therefore to �y D �=ı. The transverse
coherence length is defined as half the value of �y, or

CT Ddef 1

2
�y D �

2ı
: (1.16)

In Fig. 1.4, by using geometric construction of wave fronts we can see the formation
of a region of coherence with coherence lengths CL and CT .

� � �
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Fig. 1.4 Region of coherence formed by plane waves with spectral width ��=� D 0:02 and
angular divergence ı D 3ı (� 52:4mrad), implying in CL D 25 � and CT D 9:5 �. Vector
scheme used for calculating CT , (1.16), is shown at the upper right corner

Exercise 1.5. A sealed tube with Cu target of effective size3 of 1:0 � 1:0mm2 is
the X-ray source. (a) What are the longitudinal and transverse coherence lengths
of the K˛ radiation when it hits a sample at 50 cm from the target? Note: ignore the
intensity difference between lines K˛1 and K˛2. (b) A monochromator crystal allows
angular decomposition of the tube spectrum. By taking 0.10 mrad as the monochro-
mator angular acceptance and 2.0 eV as the spectral width of the characteristic main
line, K˛1, estimate how much more coherent is the monochromatic radiation.
Answer (a): The K˛ radiation is composed by two characteristic lines K˛1 and K˛2,
with wavelengths �1 D 1:540562Å and �2 D 1:54439Å, respectively. Therefore,

��

�
D �2 � �1p

�1�2
D 0:00383

1:54247
D 2:48 � 10�3 ;

implying in a longitudinal coherence length

CL D 1

2

�2

��
D 1:54247

2 � 2:48 � 10�3 D 3:11 � 102 Å .0:031
m/:

The angular divergence is basically determined by effective target size and
sample position, which leads to ı D 1:0=500 D 2:0mrad, and a transverse
coherence length

CT D �

2ı
D 1:54247

2 � 0:0020 D 3:9 � 102 Å .0:039
m/:

3Target size from the point of view of the sample.
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Answer (b): For line K˛1 with �E D 2:0 eV, it follows from (1.1) that

��

�
D �E

E D 2:0

8048
D 2:5 � 10�4 ;

increasing the longitudinal coherence length by a factor of 10, i.e.,

CL D �

2

�
�E
E
��1

D 1:540562

2 � 2:5 � 10�4 D 3:1 � 103 Å .0:31
m/;

and the transverse coherence length,

CT D 1:540562

2 � 0:00010 D 7:7 � 103 Å .0:77
m/;

by a factor of 20 due to the reduction in the angular divergence of the monochro-
matic beam.

� � �

Section Summary
— X-ray incident wave:

E.r; t/ D E0 O" e˙i.!t�k�r/

— Photon energy:

E ŒeV� D „ jkj c D 2� „ c
�

D 12398:5

�ŒÅ�

— Vectorial polarization factor (scattered wavevector k0 D 2�
�

Os0):

P.Os0/ D Os0 � . O" � Os0/

— Scalar polarization factor:

hjPj2i D

8
ˆ̂<

ˆ̂:

1 � � polarization

cos2 2� � � polarization
1
2
.1C cos2 2�/ unpolarized radiation
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— Classical electron radius:

re D
�

e2

4��0mc2

�
D 2:818 � 10�5Å

— Scattered wave (electron at origin, observer at R):

ER.R; t/ D �re P E0
e˙i.!t�k0

�R/

R

— Scattered intensity by an electron:

ITh.Os0/ D ˆ hjP.Os0/j2i r2e d	

— Differential cross-section (Thomson scattering):

�
d�
d	

�
Th

D hjPj2ir2e

— Total cross-section (Thomson scattering):

�Th D 8�
3

r2e D 6:6525 � 10�29 m2 D 0:66525 barn

— Coherence lengths:

CL D �2

2��
D �

2
E
�E .longitudinal/ and CT D �

2ı
.transverse/

1.2 Scattering of X-Rays by Distributions of Free Electrons

Coherent scattering of X-rays by a distribution of electrons generates the
phenomenon of interference between scattered waves by each electron of the
distribution. This physical phenomenon is the fundamental principle of many X-ray
scattering and diffraction techniques. We will first discuss the simple interference
process where the X-ray photons interact only once with the distribution, which
means that effects of radiation re-scattering by the distribution itself are despising
in this first approach. In general, this approach applies to dispersed distributions
such as liquids and gases, solids with low structural order at atomic scales, or highly
ordered solids (crystals) with submicron dimensions.

A distribution of electrons in equilibrium have as an implicit fact the existence
of attractive electromagnetic forces (positive charges), maintaining the stability
of the distribution and giving origin to electrons in bound states. In most cases,
we are going to deal with atomic electrons where the electronic distributions are
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Fig. 1.5 Thomson scattering by a volumetric distribution of free electrons described with respect
to an arbitrary origin

different arrangements of atoms that characterize the materials. The conservation
laws of momentum and energy allow a bound electron to fully annihilate (absorb)
an X-ray photon, so that the scattering and interference processes presented herein
will be subsequently corrected to take into account radiation absorption and atomic
resonance effects.

Such distributions can be described by volumetric electron density functions,

.r/. The Thomson scattering of each element of volume dV , containing 
.r/ dV
electrons is analogous to that calculated in (1.11), but with the difference that
scattering electrons no longer have positions coincident with the origin, i.e., with
r D 0. Before we deduct the total scattering by a volumetric distribution of
electrons, we will rewrite (1.8) for the case of an electron placed at a position r
with respect to an arbitrary origin, as shown in Fig. 1.5, which provides

ER.jR � rj; t/ D e

4��0c2 jR � rj Rz.r; t0/ : (1.17)

jR � rj is the distance between the electron and the observation point of the radiated
field—equivalent to the distance R in (1.8). The acceleration equation, (1.9), also
changes because the electron is no longer at r D 0, so

Rz.r; t0/ D �e

m
E.r; t0/ D �e

m
E0 e˙i.!t0�k�r/ (1.18)

where t0 D t � jR � rj=c. With this, it is relatively simple to see that for an arbitrary
origin the general form of (1.11) is

ER.R; t/ D �re P E0
e˙i.!t�kjR�rj�k�r/

jR � rj : (1.19)
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Note that R is still the observation position, Fig. 1.5, but the direction of the scattered
radiation is now given by

Os0 D R � r
jR � rj ; (1.20)

so that kjR � rj D k0 � .R � r/ in (1.19), which is identical to (1.11) when r D 0.
The field scattered by the electron distribution,

Ed.R; t/ D
Z

.r/ER.R; t/ dV D �re P E0 e˙i!t

Z

.r/

e˙iŒ.k0�k/�r�k0�R�

jR � rj dV ;

(1.21)

corresponds to the integration of (1.19) multiplied by the number of electrons
in each element of volume. The interference phenomenon is fully governed by
the phase factor e˙i.k0�k/�r in the above integral, which extends throughout the
distribution volume illuminated by the incident beam with phase coherence. We
will analyze cases in which the distributions have very small dimensions, e.g.
atomic dimensions. For extensive distributions, the integration volume is limited
by the coherence lengths of the X-ray beam, typically of the order of a few microns
(10�6 m), see Exercise 1.5. Since the observation distance R is in scale of meters, we
have that inside the integration volume the value of jR� rj is practically constant, as
well as the wavevector k0 D kOs0, scattered in the observation direction. These facts
allow a major simplification in (1.21), originating the far field expression

Ed.R; t/ Š �re P E0
e˙i.!t�k0�R/

R

Z

.r/e˙iQ�r dV D ŒER.R; t/�rD0 F.Q/ (1.22)

where the origin is taken as any point within the integration volume, for instance,
the distribution’s center of gravity. The reciprocal vector

Q D k0 � k D 2�

�
.Os0 � Os/ ; (1.23)

is also constant in the integration volume, and

F.Q/ D
Z

.r/e˙iQ�r dV : (1.24)

The far field scattered by a distribution of free electrons is the field scattered by
a single electron multiplied by the form factor F.Q/, which depends on both the
form of the distribution and the observation direction Os0 (implicit in the reciprocal
vector Q). As a result, the scattering intensity is

I.Q/ D ITh jF.Q/j2 (1.25)

where ITh is the Thomson scattering intensity by an electron, (1.13).
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1.2.1 Mathematical Tools: Fourier Transform

Although (1.25) is relatively simple and compact, understanding all the physics
implicit in it is not a trivial matter. Before showing the importance of F.Q/ in the
study of the atomic structure of materials, we need to recall some mathematical tools
such as Dirac delta function, Fourier transform, and convolution of functions.

The Dirac delta function in one-dimension ı.x/ satisfies the following relation-
ships:

ı.x/ D
(

1 if x D 0

0 if x ¤ 0
;

Z C1

�1
ı.x/ dx D 1 ; and

Z C1

�1
f .x/ ı.x � x0/ dx D f .x0/

(1.26)

for any continuous function f .x/. From the various mathematical expressions of a
delta function, one that will be useful is

ı.x/ D lim
h!1

Z Ch

�h
e˙2� iqxdq D lim

h!1
sin.2�hx/

�x
(1.27a)

or

ı.q/ D lim
a!1

Z Ca

�a
e˙2� iqxdx D lim

a!1
sin.2�aq/

�q
(1.27b)

where the qx product is dimensionless, i.e. Œqx� D 1. If x has dimension of length,
Œı.x/� D m�1 and Œı.q/� D m.

The Fourier transform (FT) of function f .x/ is defined by

F.q/ D FTff .x/g D
Z C1

�1
f .x/eC2� iqxdx ; (1.28)

using the signal “+” in the phase factor according to the International Tables
for Crystallography (Coppens 2010). Therefore, the inverse FT for recovering the
original function f .x/ is

FT�1fF.q/g D
Z C1

�1
F.q/ e�2� ixq dq D

Z C1

�1

 Z C1

�1
f .x0/ eC2� iqx0

dx0
!

e�2� ixq dq D

D
Z C1

�1
f .x0/

 Z C1

�1
eC2� iq.x0�x/ dq

!

dx0 D
Z C1

�1
f .x0/ ı.x0 � x/ dx0 D f .x/ :

(1.29)
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The convolution of two functions, for instance f .x/ and g.x/, is represented by “ � ”
as in

c.u/ D f .x/ � g.x/ D
Z C1

�1
f .x/ g.u � x/ dx : (1.30)

Regarding convolution of functions, there are two very useful math operations:

1. The FT of a convolution is equal to the product of FTs,

FTff .x/ � g.x/g D
Z

c.u/ e2� iqu du D
Z �Z

f .x/ g.u � x/ dx

�
e2� iqu du D

D
Z

f .x/ e2� iqx
�Z

g.u � x/ e2� i.u�x/q du

�
dx D

Z
f .x/ e2� iqx dx

Z
g.x0/ e2� iqx0

dx0 D

D F.q/G.q/ D FTff .x/g FTfg.x/g : (1.31)

2. The FT of a product is equal to the convolution of FTs,

FTff .x/ g.x/g D
Z

f .x/ g.x/ e2� iqxdx D
Z

f .x/
Z

g.x0/ ı.x � x0/ e2� iqx0

dx0dx D

D
Z

f .x/
Z

g.x0/
�Z

e2� i.x�x0/q0

dq0
�

e2� iqx0

dx0dx D

D
Z �Z

f .x/ e2� ixq0

dx

��Z
g.x0/ e2� i.q�q0/x0

dx0
�

dq0 D

D
Z

F.q0/G.q � q0/dq0 D F.q0/ � G.q0/ D FTff .x/g � FTfg.x/g : (1.32)

From the definition of the Fourier transform (FT), (1.28), it can be seen that the
form factor F.Q/ is the three-dimensional FT of the electronic density. Since the
FT was defined with the phase signal “+”, the same signal has to be chosen for
the form factor phase in (1.24). Henceforth, the incident X-ray wave will have also
to be represented with the phase signal “+” in (1.2), that is, only

E.r; t/ D E0 eCi.!t�k�r/ (1.33)

is a representation consistent with the FT definition. This means that4

4If you have difficulty comparing (1.34) and (1.35) with (1.28) and (1.29) due to the absence of the
number 2� in the phase factor, you can reset the reciprocal vector to make this number explicit,
such that Q D 2�q where q D .Os0 � Os/=�. dVQ D dQxdQydQz D .2�/3dqxdqydqz D .2�/3dVq.
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F.Q/ D
Z

.r/ eCiQ�r dV D FTf
.r/g and (1.34)


.r/ D FT�1fF.Q/g D 1

.2�/3

Z
F.Q/ e�iQ�r dVQ : (1.35)

� � �

Exercise 1.6. (a) Calculate the general form factor expression for electron densities
with radial symmetry. (b) In the case of a spherical and uniform electron distribution
with radius a, obtain the scattered intensity curve, I.Q/, and determine the angular
spreading of the scattering as a function of the distribution’s radius.
Answer (a): Due to radial symmetry

F.Q/ D F.Q/ D FTf
.r/g D
Z

.r/ e iQ�rdV ;

implying that the solution is independent of the direction of vector Q. Defining
Oz D Œ0; 0; 1� as the reciprocal vector direction,

Q D QOz D Œ0; 0; Q�; r D r Œsin � cos'; sin � sin'; cos ��;

Q � r D Q r cos �; and dV D r2 sin � dr d� d' :

) F.Q/ D
Z 2�

0

Z �

0

Z 1

0

.r/ r2 Œcos.Qr cos �/C i

D 0 .odd function/
‚ …„ ƒ
sin.Qr cos �/ � sin � dr d� d' D

D 2�

Z 1

0

.r/ r dr

Z �

0
r sin � cos.Qr cos �/ d� D 2�

Q

Z 1

0

.r/ r dr

Z CQr

�Qr
cos w dw

„ ƒ‚ …
where wDQr cos �

D

D
Z 1

0

.r/ 4�r2

�
sin.Qr/

Qr

	
dr ; (1.36)

whose numerical or analytical solution depends on the explicit form of the
function 
.r/.
Answer (b): By replacing 
.r/ D 
 s.r/ where s.r/ D 1 if r � a and s.r/ D 0 if
r > a in (1.36), we have

F.Q/ D 4�


Q3

Z Qa

0

v sin v dv
„ ƒ‚ …

vDQr

D 4�


Q3
Œsin v � v cos v�Qa

0 D

D 3

�
sin.Qa/ � .Qa/ cos.Qa/

.Qa/3

	

V D ‚.Qa/
V : (1.37)



18 1 Fundamentals of X-Ray Physics

Fig. 1.6 Relative intensity I.Qa/=I.0/ (blue line), scattered by a uniform spherical electron
density. Exponential decay expŒ�˛ .Qa/2� (red line), with ˛ D 0:21 is shown for the sake
of comparison. Inset: relative intensity on a logarithmic scale. The first minimum occurs at
Qa D 4:4934. [exsphere.m]

V D 4�a3=3 is the volume occupied by the 
V electrons of the distribution. The
scattered intensity

I.Q/ D ITh jF.Q/j2 D ITh 

2 V2 Œ‚.Qa/�2 D

D ITh 

2 V2 9

�
sin.Qa/ � .Qa/ cos.Qa/

.Qa/3

	2
; (1.38)

has a maximum value, at Q D 0, proportional to the square of the number of
electrons, i.e. I.0/ D ITh 


2 V2. The I.Qa/=I.0/ curve shown in Fig. 1.6 was
calculated by using the exsphere.m routine (MatLab).5 It allows us to estimate
the angular spreading by half height of the maximum intensity where I.Qa D
1:815/=I.0/ D 1=2. [Note: to find the Qa D 1:815 value, numerically calculate
the root of the function y.x/ D 2 I.x/=I.0/ � 1.] Since

Q D jQj D 2�

�
jOs 0 � Osj D 4�

�
sin � ; (1.39)

the half maximum condition implies a scattering angle 2� that satisfies sin.2�=2/ D
1:815 �=4�a, and hence

2�1=2 D 2 sin�1
�
0:1444

�

a

�
' 0:3

�

a
.for � < a/ : (1.40)

� � �

5Routines in MatLab (extension �.m) or CCC (�.c) are available in Appendix B.
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1.2.2 Distributions of One Electron and the Compton
Scattering

Any electron exists only as a probability distribution. In the Thomson treatment of
scattered radiation, the electron’s position was given as fully localized in r. However,
since the electron is a very light particle (low mass), the wave characteristics of the
electron have to be considered. The probability density function j .r/j2, so thatR j .r/j2dV D 1, is what really characterizes the coherent scattering produced by
a single electron. This implies that the scattering of one electron already shows
interference effects, which are considered when calculating the form factor

fe.Q/ D
Z

j .r/j2eCiQ�r dV D FTfj .r/j2g ; (1.41)

of the probability density. Thus, the intensity of the scattered radiation with phase
coherence by one electron is given by

Icohe.Q/ D IThjfe.Q/j2 : (1.42)

Except for the condition where Q D 0, the coherent intensity is always less
than the intensity ITh scattered by a single electron (1.13). At first sight, the ITh

calculation seems wrong because it was obtained from an ideal classical hypothesis
(electron with defined position), or it may seem that it is only valid for very localized
probability distributions described by delta functions, i.e., j .r/j2 D ı.r�r0/where
r0 is the electron’s position, and substituting this in (1.41) and (1.42) we will have

fe.Q/ D FTfı.r � r0/g D e iQ�r0 and Icohe.Q/ D ITh 8 Q :

But, the value of ITh is correct and it actually represents the intensity scattered by
one electron.6 It just lacks reassessing the process of photon–electron interaction
from the perspective of quantum electrodynamics (QED), which means taking into
account the wave-particle duality of both the electromagnetic radiation and the
electron. The wave aspect generates the coherent scattering part, Icohe, and the
particle aspect generates an incoherent part, IComp, which is the Compton scattering.
The self-interference produced by the electron probability density itself is what
determines if the radiation behaves like a wave or like a particle.

For free-electrons, the result of the photon–electron interaction is restricted to
two possibilities represented by the diagrams in Fig. 1.7. The diagrams are identical
before the interaction: a photon with wavelength � intercepting an electron e�.
However, the result of the interaction depends on the value of jfe.Q/j2. If for a given

6Within the non-relativistic approximation, which is reasonable for X-rays up to a few tens of
keV. The exact value of ITh comes from the Klein–Nishina formula, see, for example, Lovesey and
Collins (1996, p. 250, eq. 7.8).
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Fig. 1.7 Photon–electron interaction and manifestation of the electromagnetic radiation wave-
particle duality. (a) Corpuscular aspect: incoherent scattering, � 0 > �, Compton effect. (b) Wave
aspect: coherent scattering, � 0 D �, interference phenomena. The relative fraction between
coherent and incoherent scattering depends on the self-interference produced by the spatial
probability density function of the electron (1.41)

Q the self-interference is totally destructive, i.e. jfe.Q/j2 D 0, Compton scattering is
the result, Fig. 1.7a. On the other hand, if the self-interference is totally constructive,
jfe.Q/j2 D 1, coherent scattering is the result, Fig. 1.7b. In an intermediate condition
where jfe.Q/j2 < 1, from a total of N interaction, N jfe.Q/j2 interactions will
result in coherent scattering and N .1� jfe.Q/j2/ interactions will result in Compton
scattering. Therefore, the Compton scattering intensity is simply given by

IComp.Q/ D ITh.1 � jfe.Q/j2/ : (1.43)

Intuitively one would expect that the corpuscular aspect of the radiation is more
evident when the electron is localized. But what happens is exactly the opposite.
The more localized the electron, the lower the probability of Compton scattering,
e.g., Fig. 1.8.

To correct the experimental intensity Iexp, scattered by a distribution of electrons
from the background (incoherent) intensity generated by the Compton effect, it is
necessary to sum over the individual contributions of all electrons. Therefore, the
coherent intensity scattered by the distribution will be

I.Q/ D Iexp � ITh

X

j

.1� jfe.Q/j2/j D Iexp � ITh

X

j

.1� jFTfj j.r/j2gj2/ (1.44)

where j runs over all electrons of the distribution, whose wave functions are the
 j.r/.7 Understand well the meaning of this expression: the background intensity
due to Compton effect depends only on the self-interference of each electron.
The interference of the fields scattered by electrons does not affect the Compton

7Situation valid when the binding energies of all electrons can be neglected. The case of bound
electron is discussed in Sect. 1.3.3.
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Fig. 1.8 Coherent and incoherent (Compton) intensities scattered by one electron with different
probability density functions j .r/j2 (inset). I: Icohe (blue line) and IComp (blue dashed line). II:
Icohe (red line) and IComp (red dashed line). In both cases, Icohe C IComp D ITh (black dashed line)
and � D 1:54. [excompton.m]

effect, but greatly increases the contribution of the coherent scattering. This makes
the correction by (1.44) very small compared to the total intensity of the coherent
scattering, and then, I.Q/ ' Iexp in most analytical techniques of materials by
X-rays.

� � �

Exercise 1.7. Compare the coherent and incoherent scattered intensities using
the following probability density functions for one electron: j I.r/j2 D 3=4�a3

uniform within a sphere of radius a D 0:5Å (null outside the sphere); and
j II.r/j2 D e �2.r=a/=�a3. [Note: consider non-polarized radiation and neglect any
electron binding energy.]
Answer: The coherent and incoherent intensities are given, respectively, by

Icohe.Q/ D ITh jfe.Q/j2 D ˆhjPj2i r2e jfe.Q/j2 d	 and

IComp.Q/ D ITh .1 � jfe.Q/j2/ D ˆhjPj2i r2e .1 � jfe.Q/j2/ d	 :

For the uniform radial distribution, from (1.37), fe.Q/ D FTfj I.r/j2g D ‚.Qa/,
and for the distribution type orbital 1s of hydrogen, it comes from (1.36) that
(Pirenne 1946)
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fe.Q/ D FTfj II.r/j2g D 4

a3

Z 1

0

r2 e �2.r=a/

�
sin.Qr/

Qr

	
dr D 1

Œ1C .Qa=2/2�2
:

Taking also into account the polarization coefficient, hjPj2i D Œ1 C cos2.2�/�=2,
the intensities scattered by this two distributions are compared in Fig. 1.8.

� � �

Section Summary
— Scattered wave by one electron at r (observer at R):

ER.R; t/ D �re P E0
e iŒ!t�k0

�RC.k0
�k/�r�

jR�rj

— Scattered wave by an electronic density 
.r/, far field approximation:

Ed.R; t/ ' ER.R; t/rD0
R

.r/e i.k0�k/�r dV

— Reciprocal vector (k0 † k D 2�):

Q D k0 � k and Q D jQj D 4�
�

sin �

— Form factor F.Q/, and Fourier transform (FT):

F.Q/ D FTf
.r/g D R

.r/ e iQ�r dV

— Inverse FT:


.r/ D FT�1fF.Q/g D 1
.2�/3

R
F.Q/ e �iQ�r dVQ

— Form factor for spherosymmetric electron density [(1.36)]

F.Q/ D R1
0

.r/ 4�r2

h
sin.Qr/

Qr

i
dr

— Form factor for uniform sphere of radius a and volume V [(1.37)]

F.Q/ D ‚.Qa/V D 3
h

sin.Qa/�.Qa/ cos.Qa/
.Qa/3

i
V



1.3 Atoms and Molecules 23

— Form factor for one electron with wave function  .r/:

fe.Q/ D FTfj .r/j2g

— Coherent scattering by one electron:

Icohe.Q/ D IThjfe.Q/j2 D ˆ r2e hjPj2i jfe.Q/j2 d	

— Incoherent (Compton) scattering by one electron:

IComp.Q/ D ITh.1 � jfe.Q/j2/ D ˆ r2e hjPj2i .1 � jfe.Q/j2/ d	

1.3 Atoms and Molecules

The coherent scattering of an atom is characterized exclusively by the electronic
cloud. The high frequency of the X-rays, of the order of 1018 Hz, and the nucleus
inertia (mass) make the coherent scattering by nuclear charge practically null. The
nuclear charge affects only electronic properties, differentiating one atom from
another by the number of electrons (atomic number Z) and by the energies of
electron shells and atomic orbitals (electron bound states). The orbital energies are
relevant to the X-ray absorption and atomic resonance effects, as we shall see in the
next chapter. For now, a neutral or ionized atom will be treated only as a distribution
of free electrons, described by the electron density


a.r/ D
ZX

jD1
j j.r/j2 ; (1.45)

where j j.r/j2 is the probability density of an occupied orbital, so thatR

a.r/ dV D Z.

1.3.1 Spherosymmetrical Atoms

The amplitude of the coherent scattering produced by an atom is proportional to the
atomic form factor

f .Q/ D FTf
a.r/g D
ZX

jD1
FTfj j.r/j2g ; (1.46)
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(1.34) with f instead of F, also called atomic scattering factor. The values of f .Q/
for all atoms and ions are calculated by using wave functions of atoms with many
electrons,8 or experimentally measured, when feasible, from monatomic gases. Due
to accuracy and availability of theoretical values over a wide range in Q, these are
the values actually used in the simulation of X-ray scattering experiments. They
are tabulated values, not directly as a function of Q, but as a function of

sin �=� D Q=4� (1.47)

where � is half the scattering angle, which is conventionally called 2� , Fig. 1.1b. The
dependence only with the module Q of the reciprocal vector is a consequence of the
atom’s spherical symmetry (or revolution symmetry) assumed in the calculations.
That’s not exactly right for atoms with incomplete shells, or atoms in chemical
bounding with distorted electronic clouds. However, the greatest contribution to the
coherent scattering comes from the inner shells, so that there are few situations
where these facts are relevant, and only in these particular situations they are taken
into account.9

Due to the frequent need of using atomic scattering data in simulation routines,
i.e. of interpolating tabulated values, the following parametric equation has been
employed:

f .Q/ D
4X

nD1
an e�bn. Q

4� /
2

C c : (1.48)

an, bn, and c are adjustable parameters that allow us to reproduce the theoretical
values of f .Q/.10 Thus, for each atom or ion there is a set of nine values, commonly
called Cromer–Mann coefficients, some of which are shown in Table 1.1.

Note 1.2: Knowledge of atomic scattering factors is extremely important in X-
ray physics. Thus, for a better use of this book, the reader should have on hand a
routine that provides f .Q/, e.g. routine asfQ.m (Appendix B).

� � �

Exercise 1.8. Choose one atom and an ion of this atom, for example Ga and Ga3C.
(a) Plot f .Q/ for at least two photon energies E . What changes in f .Q/ with the

8The wave functions of atoms with many electrons are obtained through multiple methods
depending on the atomic number and ionization state. For detailed references see, for example,
Prince (2006, pp. 554 and 565).
9Giacovazzo (2002, p. 160). See also Prince (2006, § 6.1.1.4).
10In the Q range between 25 and 75 Å�1, f .Q/ values are obtained through other parametric
equation, e.g. Prince (2006, p. 565).
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Fig. 1.9 Atomic scattering factors for Ga (Z D 31) and Ga3C (Z D 28) as a function of Q for
X-ray energies E D 8 and 20 keV. [exasf.m]

energy? (b) In a polar graphic where x D f .Q/ cos 2� and y D f .Q/ sin 2� , show
the dependence of the atomic scattering factor with the scattering angle and the
energy of the photons. What changes in f .2�/ with the energy? (c) How does the
atom ionization affect the scattering amplitude?
Answer (a): As can be seen in Fig. 1.9, f .Q/ does not depend on the energy. Only
the accessible Q range is limited by energy since the maximum value of Q is

Qmax D 4�

�

D 1
‚…„ƒ
sin � D 4�

hc
E D 1:0135 ŒÅ

�1
=keV� E : (1.49)

For example, for photons of 8 and 20 keV, f .Q/ goes up to Q D Qmax � 8 and

20Å
�1

, respectively, when the scattering angle is the largest possible, i.e. 2� D
180ı. For other scattering angles, Q D Qmax sin � .
Answer (b): Polar graphics of f .Q/ as a function of 2� D 2 sin�1.Q=Qmax/ are
shown in Fig. 1.10. As the photon energy increases, the coherent scattering becomes
more restricted to the direct beam direction.
Answer (c): In the direction of the direct beam, Q D 0, ionization changes the
amplitude of the scattering according to the ion charge value in number of electrons.
As Q increases, the ionization ceases to affect the scattering amplitude, decreasing
the difference in f .Q/ values between ion and neutral atom.

� � �
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Fig. 1.10 Atomic scattering factors for Ga and Ga3C as a function of the scattering angle 2� for
X-rays of 8 and 20 keV. Coordinates x D f .Q/ cos 2� and y D f .Q/ sin 2� . [exasf.m]

1.3.1.1 Coherent Scattering Cross-Section for Isolated Atoms

When an atom is isolated to the point in which there is no interference effects with
fields scattered by other atoms, the integrated value of the coherent intensity with
respect to all directions of the space is equal to ˆ�R. The coherent scattering cross-
section

�R.E ;Z/ D r2e

Z
hjPj2i jf .Q/j2 d	 D exp

(
3X

nD0
cn Œln.E/�n

)

(1.50)

is characteristic of each element and may be obtained in three ways: numerical
integration of jf .Q/j2; interpolation of tabulated values (Hubbell et al. 1975); or
through the parametric equation (or analytic function) given above with the cn

coefficients (McMaster et al. 1969), sgrayleigh.m routine. A comparison between
the numerical integration and the analytical solution is shown in Fig. 1.11. The
significance of the value of �R is related to the linear attenuation effect of the
incident beam, as discussed in Sect. 1.4.1.
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Fig. 1.11 Coherent scattering cross-section for oxygen. Comparison of analytical and numerical
solutions. 1 barn D 10�28 m2 [exsgr.m]

1.3.2 Scattering by Single Molecules and the “Phase Problem”

For any atom or ion f .0/ D Z, Fig. 1.9, indicating that the interference of scattered
waves by electrons in the electronic cloud around the atom is fully constructive
in the incident beam direction, regardless of the used energy. In any other fixed
direction, 2� ¤ 0, the amplitude of the atom’s coherent scattering decreases with the
increase of energy, Fig. 1.10, fact that is clearly seen by the reduction in the cross-
section �R, Fig. 1.11. The total constructive interference at Q D 0 is a physical fact,
described through the FT of the electronic density, (1.34), and it is independent of
the distribution nature, whether the distribution consists of one electron probability
density or of many atoms.

In determining the various atomic structures, whether molecules dispersed in gas,
in solution, or in crystalline or amorphous solids, it is important to analyze what
happens outside the Q D 0 condition. The X-ray crystallography largely consists of
methods for measuring coherent intensities I.Q/, covering Q values in the range of

10�3 to 102 Å
�1

, as well as of methods for suitably treating the intensities measured
from each type of sample or material under investigation. It is difficult to determine
the atomic structure from the intensity measures since the phase information of
the form factors are lost in the measurements. For example, consider the electronic
density


.r/ D
X

a


a.r � ra/ D
X

a

Z

a.r 0/ ı.r � ra � r 0/ dV 0 D

X

a


a.r/ � ı.r � ra/

(1.51)
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of a discrete arrangement of atoms, such as in single molecules, where the index a
runs over all atoms whose positions are given by ra . Using the property that the FT
of a convolution is equal to the product of the FTs, (1.31), the form factor of the
arrangement will be

F.Q/DFTf
.r/gD
X

a

FTf
a.r/g FTfı.r � ra/gD
X

a

fa.Q/ e iQ�ra D jF.Q/je i�.Q/ :

(1.52)

Since the atomic scattering factors fa.Q/ are known, e.g. (1.48), the scattered inten-
sity can be easily calculated for any given set of atomic positions through (1.25),
I.Q/ D ITh jF.Q/j2. The difficulty is in determining the positions from intensity
measurements. I.Q/ ) jF.Q/j, but this is not enough to obtain


.r/ D FT�1 ˚jF.Q/je i�.Q/
 (1.53)

because the phase values �.Q/ are unknown. This problem is fundamental in
crystallography, and it is commonly called the “phase problem.” For each type of
sample there is a procedure to be adopted for structural analysis, and that’s why
X-ray crystallography is a very extensive area. A widely used resource is structure
modeling and simulation of scattered intensities. Skills in computer and curve fitting
methods are crucial in applied X-ray physics. Practice in data analysis leads to the
development of a good intuition about the correlations between reciprocal space,
accessible through I.Q/, and real space, i.e. the aspect of 
.r/. In Chap. 2, we will
begin the analysis of the scattering by atomic arrangements that represent typical
systems often studied in the laboratory. If you want, you can skip to Chap. 2, which
is perfectly understandable without taking into account the Compton scattering and
radiation absorption effects (Sect. 1.4).

� � �

Exercise 1.9. In order to record the scattered intensity by a single molecule,
an X-ray film or a phosphor-base photostimulated plate, known as image plate,
is mounted in the shape of a cylinder around the position where the radiation
strikes the molecule, as diagrammed in Fig. 1.12. The radiation is linearly polarized
along the cylinder axis. (a) Define a coordinate system for locating each film pixel
from the center of the molecule. What are the versors Os and O", the pixel position
vector R, and the versor Os0 in this coordinate system? (b) What is the solid angle d	,
corresponding to each pixel? (c) Write down a routine for calculating the molecule
form factor as a function of its orientation, assuming that the molecule is an
aromatic ring where the C–C bond length is d D 140 pm. (d) Calculate the intensity
distributed over the film for a given molecule orientation. What is the scattered
intensity (without considering the incident-transmitted beam) in the central pixel,
coordinates (0, 0)?
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Fig. 1.12 Radiation detector (X-ray film or image plate) positioned in a cylindrical shape around
a singe molecule. X-ray beam linearly polarized along the detector (cylinder) axis

Answer (a): Os D Œ1; 0; 0� (incident beam direction), O" D Œ0; 0; 1� (polarization
along the cylinder axis), R D ŒD cos�; D sin�; z� (position of each pixel) where D
is the cylinder (film) radius, and

Os0.z; �/ D R
jRj D ŒD cos�; D sin�; z�p

D2 C z2

is the beam direction scattered in the pixel of coordinates .z; �/.
Answer (b): � being the polar angle between Os 0 and the cylinder axis, the effective
area of each pixel viewed from the center of the molecule, Fig. 1.12, is

�Aeff D sin �

pixel area
‚ …„ ƒ
D d� dz D D

R
D d� dz D D2d� dzp

D2 C z2

) d	.z/ D �Aeff

R2
D D2d� dz

.D2 C z2/3=2
:

Answer (c): The aromatic ring is initially on the yz plane perpendicular to the
incident beam and the n-th atom is at position

r .0/n D d Œ0; cos.n�=3/; sin.n�=3/� :

Around the x axis the molecule has a six-fold symmetry (positions repeat every
360ı/6), so that the rotation matrix

RX.�x/ D Œ1; 0; 0I 0; cos �x; � sin �xI 0; sin �x; cos �x�
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only makes a difference to �x in the range from 0 to �=3. [Note: “ ; ” is used to end
a line in the matrix.] For a general orientation of the molecule, rotation matrices
around the axes y and z are also required:

RY.�y/ D Œcos �y; 0; � sin �yI 0; 1; 0I sin �y; 0; cos �y� and

RZ.�z/ D Œcos �z; sin �z; 0I � sin �z; cos �z; 0I 0; 0; 1� :

The total molecule spin is then given by the sequence of rotations:

R.�x; �y; �z/ D RX.�x/RY.�y/RZ.�z/ ;

and the final atomic positions are

rn D r .0/n R.�x; �y; �z/ :

[Note: position vectors represented by 1 � 3 line matrices, rn � Œrn�1�3. For column
matrix representation, the rotation matrices are transposed, Œrn�3�1 D Œrn�

t
1�3 D

R t.�x; �y; �z/ Œr
.0/
n � t

1�3 D RZ.��z/RY.��y/RX.��x/ Œr
.0/
n �3�1 .] Given a molecule

orientation .�x; �y; �z/ ! rn, the molecule form factor

FM.Q/ D fC.Q/
6X

nD1
e i Q�rn

is calculated for each pixel specified by the versor Os 0.z; �/, so that Q.z; �/ D
.2�=�/ ŒOs 0.z; �/ � Os� and FM.Q/ ! FM.z; �/.
Answer (d): To calculate the intensity I.Q/ on the film, let us take D D 50mm
(cylinder radius) and L D 200mm where 2L is the total cylinder length so that z 2
Œ�L; L�. Since the molecule has few atoms, the intensity distribution is relatively
smooth and there is no need for high resolution films with very small pixels. For
2 mm pixel of area D d� dz D 4mm2 where dz D 2mm and d� D 1=25 rad, there
will be a total of 31,400 pixels in the film.

The intensity expression is given by

I.z; �/ D ˆ r2e hjPj2i d	.z/ jFM.z; �/j2 D ˆ r2e M.z; �/

where hjPj2i D jP.Os 0/j2 ! jP.z; �/j2 D jOs 0.z; �/ � Œ O" � Os 0.z; �/�j2 , (1.5). An
example is shown in Fig. 1.13 for which the scattered intensity in the central pixel is

I.0; 0/ D ˆ r2e„ƒ‚…
D 1 cps

jP.0; 0/j2
„ ƒ‚ …

D 1

�
D d� dz

D2

�
Œ6 fC.0/�

2 D 4

502
362 ' 2 cps :
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Fig. 1.13 Intensity pattern for a benzene molecule oriented in the xz plane (Fig. 1.12), orientation
matrix R.30ı; 0; 90ı/. X-rays of 20 keV, and flux so that ˆ r2e D 1 cps [benzeneonpsp.m]

Exercise 1.10. (a) Using a photon distribution routine in which the probability of
detecting a photon is proportional to the intensity on the film pixels, estimate the
minimum number of photons required to visualize the intensity pattern in Fig. 1.13.
(b) For a flux ˆ D 1=r2e D 1:26 � 1025 cps/cm2, what is the exposure time to make
the experiment feasible?
Answer (a): With 104 photons, it is already possible to identify details of the
molecule interference pattern, see image with 105 photons in Fig. 1.14.
Answer (b): The total intensity distributed on the film, Iimage D ˆ r2e

P
j Mj ,

corresponds to the sum of pixel intensities, specified herein by the subscript j.
The number of photons collected in a time interval �t will be N D Iimage�t :
In the case of the intensity pattern in Fig. 1.13, already calculated for ˆ r2e D 1 cps,
M D P31400

jD1 Mj D 82:1, and thus

�t D N
ˆ r2e M

D 104

82:1
D 121:8 s:

To make the experiment feasible, the total flux required is at least ˆ�t D
121:8=r2e D 1:5 � 1027 photons/cm2, but for a sufficiently short exposure time to
ensure detection of the diffraction pattern prior to any movement of the molecule.
Ultra short X-ray pulses, with duration in the order of femtoseconds, are produced
by free electron laser (FEL). With the current technology, a 70 fs pulse may have a
power of up to 1016 W/cm2 for 1.8 keV photons (Chapman et al. 2011), implying
a total flux of 2:4 � 1018 photons/cm2. Although for the detection of a single
molecule diffraction pattern these values of photon flux and energy are much lower
than necessary, new advances in the X-ray production technologies can make such
experiments conceivable within a few years, as what happened in the 90s when
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Fig. 1.14 X-ray scattering by a single benzene molecule. Data acquisition simulated with a
statistic of 105 counts from the intensity pattern in Fig. 1.13 [photonsonpsp.m]

the third generation of synchrotron sources dramatically changed the experimental
paradigms of X-ray physics (Als-Nielsen and McMorrow 2001).

� � �

1.3.3 Compton Scattering by Atoms

In a first approximation, the incoherent scattering (Compton) produced by an atom
of atomic number Z would be calculated in a manner that is similar to that indicated
in (1.44),

IComp.Q/ ' ITh

ZX

jD1
.1 � jFTfj j.r/j2gj2/ D ITh S.Q;Z/ ; (1.54)

with the wave functions  j.r/ of many electron atoms, the same that are used for
calculating the atomic scattering factors f .Q/, (1.46). However, the Compton effect
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for an atomic electron occurs only when the transfer energy11 is higher than the
electron binding energy in the atom. Consequently, (1.54) only provides a good
estimate for all elements of the periodic table in the range of � -rays or hard X-rays
with energies above 100 keV. In the range of a few tens of keV, in which most X-ray
sources operate, not all electrons represented by the wave functions  j.r/ contribute
to the incoherent scattering generated by the atom in a given angle 2� . The value of
IComp for an atom is predominantly determined by the outermost electrons, while
the electrons that do not contribute are accounted as those related by the Pauli
exclusion principle, so that FTf j.r/  �

k .r/g ¤ 0. This fact allows the correction
of the incoherent scattering function12

S.Q;Z/ D
X

j

.1 � jFTfj j.r/j2gj2/ �
X

j

X

k¤j

jFTf j.r/  �
k .r/gj2 ; (1.55)

only by adding an extra term (double summation), whose value is calculated using
the wave functions  j.r/ of the atom ground-state.

Note 1.3: A full table of S.x;Z/ values where x D sin �=� D Q=4� can be
obtained in the article by Hubbell et al. (1975), which is partially reproduced in
the International Tables for Crystallography (Prince 2006, p. 658). There still does
not exist an equation in the case of incoherent scattering function for interpolating
the tabulated values. Therefore, for each intermediate value of x D Q=4� between
those available in the tables an interpolation routine is needed, e.g. routine csfQ.m
in Appendix B. But there is a parametric equation (McMaster et al. 1969) for the
incoherent scattering cross-section,

�C.E ;Z/ D r2e

Z
hjPj2iS.Q;Z/ d	 D exp

(
3X

nD0
cn Œln.E/�n

)

(1.56)

where the cn coefficients are tabulated for Z from 1 to 92, see routine sgcomp-
ton.m. The integration of the incoherent intensity in all space directions eliminates
the dependence with the reciprocal vector, making the Compton cross-section of
each element a function only of energy. The tabulated �C.E ;Z/ values are also
available in Hubbell et al. (1975). Figure 1.15 shows a comparison between the
numerical solution of the above integral, using linear interpolation of the tabulated
S.Q;Z/ values, and the analytical solution in (1.56).

11Energy transferred to the electron, equal to the difference E � E 0, between the incident and
scattered photon energies. For an electron with initial moment zero, the transfer energy is
determined by the well-known Compton effect formula: E 0 D E=Œ1 C � .1 � cos 2�/� where
� D E=mc2 (Lovesey and Collins 1996).
12Prince (2006, p. 659, 7.4.3.5). See also Cattani (2011).
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Fig. 1.15 Incoherent (Compton) scattering cross-section for Ca. Comparison of analytical and
numerical solutions. The latter obtained by linear interpolation of S.Q;Z/ [exsgc.m]

Over the past century, the Compton effect had fundamental importance in the
development of quantum physics, as well as in other chapters of the history of
high energy and solid state physics. Nowadays, the Compton scattering helps
investigating the electron linear momentum in a ground state atom and in the study
of magnetic materials (Lovesey and Collins 1996). Understanding the relationship
between the Compton scattering and the electron momentum is relatively simple,
you just have to redo the scattering kinematics calculations assigning an initial
nonzero momentum to the electron. The energy difference E � E 0 between the
incident and scattered photons no longer has a single value at a defined scattering
angle, and now presents a distribution of values directly proportional to the
moment distribution of the atomic electrons. In the study of magnetic materials,
the interaction of the incident magnetic wavefield with the electron spin, which is
very small compared to the charge scattering at low energies, becomes dominant in
the region of hard X-rays, above 60 keV, a fact that provides information about the
spin density in an atom. However, this book is focused on applications of coherent
scattering for structural analysis of materials. Nevertheless, it is necessary to be
aware of the presence of the Compton scattering and, when appropriate, know how
to remove the contributions of incoherent scattering from the experimental data.

� � �

Exercise 1.11. Using the tabulated values of function S.Q;Z/, compare the coher-
ent and incoherent scattered intensities by an atom as a function of scattering angle,
energy, and polarization.



36 1 Fundamentals of X-Ray Physics

Fig. 1.16 Coherent and incoherent (Compton) intensities scattered by the carbon atom. X-rays of
8 and 20 keV. Coordinates: x D I.Q/ cos.2�/ and y D I.Q/ sin.2�/ where I.Q/ D ITh jf .Q/j2
(coherent) and I.Q/ D ITh S.Q;Z/ (incoherent). Flux so that ITh D ˆ r2e hjPj2i d	 D 1 cps (�
polarization) [excsf.m]

Answer: For an atom of atomic number Z, the coherent and incoherent intensities
are given by Icohe.Q/ D IThjf .Q/j2 and IComp.Q/ D IThS.Q;Z/, respectively. In
Fig. 1.16, the functions jf .Q/j2 and S.Q;Z/ of the carbon atom (Z D 6) are
compared as a function of the scattering angle 2� . At 2� D 180ı, S.Qmax;Z/ < Z
but approaches to Z as Qmax ! 1, reflecting the fact that with increasing radiation
energy all the binding energies of the Z electrons become smaller than the transfer
energy. On the other hand, jf .0/j2 D Z2 for any radiation energy. Both contributions,
coherent and incoherent, are equally affected by the polarization coefficient hjPj2i,
which is equal to 1 only in the � polarization. For instance, in the � polarization
both intensities are multiplied by the cos2.2�/ factor, so that they are canceled at
90ı from the incident beam direction.

� � �

Suggestion: With routine excsf.m, check the influence of X-ray polarization in the
coherent and incoherent intensities scattered by an atom.

Section Summary
— Electron density of atoms:


a.r/ D P
j j j.r/j2
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— Atomic scattering factor:

f .Q/ D FTf
a.r/g

— Parametric formula (Cromer–Mann coefficients: an, bn, and c):

f .Q/ D P4
nD1 an e�bn.Q=4�/2 C c

— Coherent intensity scattered by an isolated atom:

I.Q/ D ITh jf .Q/j2

— Parametric formula of the coherent scattering cross-section (McMaster et al.
1969):

�R.E ;Z/ D exp
nP3

nD0 cn Œln.E/�n
o

' r2e
R hjPj2i jf .Q/j2 d	

— Electron density of a discrete arrangement of atoms, e.g. molecule:


.r/ D P
a 
a.r/ � ı.r � ra/

— Form factor of a discrete arrangement of atoms:

F.Q/ D FTf
.r/g D P
a FTf
a.r/g FTfı.r � ra/g D P

a fa.Q/ e iQ�ra

— Coherent intensity scattered by the arrangement of atoms:

I.Q/ D ITh jF.Q/j2

— Incoherent (Compton) intensity scattered by an atom:

IComp.Q/ D ITh S.Q;Z/
S.Q; Z/: incoherent scattering function (Hubbell et al. 1975; Prince 2006)

— Parametric formula of the Compton scattering cross-section (McMaster et al.
1969):

�C.E ;Z/ D exp
nP3

nD0 cn Œln.E/�n
o

' r2e
R hjPj2iS.Q;Z/ d	

� � �
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1.4 X-Ray Absorption

The optical properties of a material medium are described in general by macroscopic
parameters such as magnetic permeability, dielectric permittivity, polarizability,
conductivity, etc. By definition, these parameters are the average values of the
response of the medium to an external electromagnetic field. This approach is
completely justified in the case of electromagnetic waves with wavelengths much
larger than the interatomic distances; visible light has a � of hundreds of nanometers
(400–700 nm), while the distances between neighboring atoms in a solid are
typically around tenths of nanometers (0.2–0.5 nm). Also within this approach,
the mobility of the electrons is a key parameter for the attenuation of the wave
amplitude as it propagates in the medium. Resistance to the microscopic electric
currents induced by the electric field is responsible for absorbing the wave energy
by Joule effect,13 causing the medium to heat up.

In the case of X-rays, since the wavelengths are of the order of atomic diameters,
the concepts of mean macroscopic values of the medium are not sufficient in
themselves to describe the wave fields established in the medium when it is excited
by the incident radiation. For example, the very high frequency of X radiation, of
the order of 3 � 1018 Hz ( D c=�), produces zero displacements of the electrons in
the material compared to atomic dimensions. This means that there is no radiation
absorption by the resistivity of the material, as is the case of visible and infrared
light. The amplitude of vibration of electrons in response to the electric field is
very small for there to be dissipation of the wave energy by Joule heating effect.
Therefore, the average properties of the medium in molecular scales have very
little influence on absorbing the radiation in the X-ray range. In other words, X-ray
photons do not excite vibrational states of molecules.

At a level of first principles, the X radiation absorption process is far from the
classical approach, which means that X-ray absorption is a purely quantum process
at an atomic scale without any analogy with classical systems. The annihilation of
photons occurs by electronic transitions from quantum core-levels (K or L shell) to
discrete or continuous states available around the atom, resulting in both electrical
currents in the sample (photocurrents) and free electrons with a certain kinetic
energy (photoelectron). After each transition come processes of filling the hole
giving rise to fluorescence emissions and Auger electrons.14 The photons emitted
by fluorescence, besides having less energy than the primary photon, they do not
preserve any phase coherence with the incident X-ray wave. They are scattered in all
directions without any correlation with the sample’s atomic structure and so without
showing any interference effects. However, the fluorescent X-rays are characteristic

13Any resistance to the movement of electrons that increases the vibrations of the molecules in the
material.
14Electrons ejected by absorption of fluorescence photons within a simplified description of this
process considering that the Auger electrons satisfy the energy balance for the photoelectric effect
with fluorescence photons. For more details, search for Auger spectroscopy.
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Fig. 1.17 Attenuation dI of the intensity I by N atoms with an absorption cross-section of �a,
submitted to a flux ˆ of photons per second

of each element, just like fingerprints, denouncing the presence of the elements that
make up the sample, even in minute quantities in the order of parts per million
(ppm).

1.4.1 Linear Attenuation Coefficient

From the experimental point of view, the description of the absorption process for a
given element is summarized in cross-section �a. It tells us that by putting N atoms
in a fluxˆ of photon per area unit per second, we will have Nˆ�a photons absorbed
per second, Fig. 1.17. The cross-section leads to the linear attenuation coefficient �,
which is responsible for the attenuation of the X-rays when they travel through a
material medium.

To simplify the deduction of the attenuation coefficient, we initially assume a
material composed of a single chemical element containing � atoms per volume
unit. The attenuation of a beam’s intensity when crossing a layer of thickness dx in
the material will be

dI D I.x C dx/ � I.x/ D � N„ƒ‚…
� S dx

ˆ�a D � I.x/
„ƒ‚…

Sˆ

�
„ƒ‚…
� �a

dx

) I.x/ D I0 e �� x : (1.57)

[Note: S is the cross section of the incident beam of intensity I0 and propagation
direction Ox.] In the case of a material made of different chemical elements

� D
X

n

.� �a/n D
X

n

�
NA�a

M

�

n


n D
X

n

�
�




�

n


n : (1.58)
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NA is the Avogadro’s number, M is the molar mass, and 
n is the mass density of the
element n in the material.

According to (1.58), the attenuation coefficient is independent from the relative
arrangement of atoms, depending only on their concentration in a given volume
of material. Although this is the dominant fact for the attenuation process of
X-rays, it is entirely true only when the absorption cross-section of every atom is
independent of the local environment in which the atom is inserted. It turns out that
the quantum states available around an atom suffer disturbances from the presence
of neighboring atoms, changing the values of �a in relation to the values expected for
isolated atoms. Attenuation coefficient measurements as a function of the energy, i.e.
measurements of �.E/, are the basis of X-ray absorption spectroscopy techniques,
providing information of the chemical bonds and the atomic arrangement in the
vicinity of a particular atom of the material. Before the end of this section we will
discuss in more detail the influence of the environment on the absorption cross-
section, Sect. 1.4.5.

1.4.1.1 Scattering Cross-Section and the Linear Attenuation

It is important to notice that the linear attenuation is affected by any process that
reduces the intensity of the incident X-ray beam as it penetrates in a given material.
So, besides the photoelectric absorption, which in fact annihilates X-ray photons,
the coherent and incoherent scattering processes, when they remove photons from
the direct beam, also contribute to the total cross-section

� D �a C �C C �R ; (1.59)

responsible for the beam’s effective linear attenuation. �R and �C are the cross-
sections of the coherent and incoherent scattering, (1.50) and (1.56), respectively.

In the energy range of X-rays between 1 and 100 keV, the scattering processes
contribute with less than 10 % in the value � ' �a, so that the linear attenuation,
as a general rule, is predominantly a photoelectric absorption effect. The exception
to this rule is due to the interference phenomena of coherent scattering since the
tabulated values of �R are valid for isolated atoms. In materials with a certain order at
the atomic level, the occurrence of constructive interference away from the direction
of the direct beam can significantly change the cross-section �R and, consequently,
the linear attenuation. For example, in an ideal gas where interference effects
between atoms hardly occur, �R corresponds to the table. In an amorphous material,
however, there is a predominance of destructive interference in any direction away
from the direct beam, and thus �R � 0. In a crystal undergoing diffraction—strong
diffracted beams—�R rises above the tabulated values.15 But as the orientation

15In perfect crystals of a certain thickness, the condition of diffraction gives rise to the formation of
standing waves that do not coincide with the atomic positions, causing a sharp drop in photoelectric



1.4 X-Ray Absorption 41

is changed, the crystal leaves the condition of diffraction, and the constructive
interference outside the direct beam is extinguished and �R ! 0. The cross-section
of the Compton effect, �C, is the only contribution to the linear attenuation of the
beam that does not change due to correlations of atomic positions in the materials.

In the past, it was common to use tables of mass attenuation coefficient
.�=
/, (1.58), as a function of characteristic energies of the main materials used
as target in X-ray tubes such as Cu, Ag, Mo, etc., cf. Prince (2006, p. 230).
The great facility that we have today to conduct experiments with synchrotron
sources where the energy can be continuously adjusted over a wide range of values
has diminished the practicality of the .�=
/ tables. Today, the values .�=
/ are
calculated depending on the energy from the scattering cross-sections, �R and �C,
and mainly from the photoelectric absorption cross-section �a (McMaster et al.
1969; Prince 2006). We will demonstrate later on how �a depends on the energy
after the introduction of atomic resonance phenomenon, Sect. 1.4.2. However, when
exact values of .�=
/ are required, special attention needs to be taken with the
use of �R. In gases and liquid, �R should be considered, while in amorphous
materials or single crystals outside the condition of diffraction, �R can be discarded.
In polycrystalline materials there are always diffracted beams regardless of the
radiation incidence angle in the sample, and therefore �R tends to always be higher
than the tabulated values. Due to the interference phenomenon, the uncertainty
in .�=
/, or in the total cross-section � , is difficult to account precisely since it
depends on the particularities of each sample (Prince 2006).

� � �

Exercise 1.12. In the case of the K˛ characteristic radiation of Cu [� D .2�˛1 C
�˛2/=3 D 1:54184Å], the total cross-sections of the atoms C, N, O, and Ar are
worth �.C/ D 89:9 barn, �.N/ D 173 barn, �.O/ D 304 barn and �.Ar/ D 7:72 �
103 barn, respectively.16 (a) In which of these values is the joint contribution of
the scattering cross-sections relatively higher? (b) What are the mass attenuation
coefficients .�=
/ in cm2/g of these atoms? (c) Given: 23.2 % (O2), 75.47 % (N2),
1.28 % (Ar) and 0.046 % (CO2) as the relative fractions of mass, wn, of the main
gases that make up dry air. What is the attenuation of an X-ray beam, Cu K˛ , per
linear meter of dry air at normal temperature and pressure (NTP) conditions? [Note:
dry air density at 20 ıC and 1 atm is 
air D 1:204 kg/m3.]
Answer (a): It is larger in �.C/, carbon, where

�R D 4:51 barn; �C D 2:56 barn; and
�R C �C

�.C/
D 0:079; or 7:9%:

absorption. This phenomenon is known as anomalous transmission or Borrmann effect (Batterman
and Cole 1964, p. 681).
16Prince (2006, pp. 220–229).
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The lower relative contribution of �R C �C occurs for Ar, only 0.9 %. Routines
sgrayleigh.m and sgcompton.m.
Answer (b): .�=
/ D NA �=M, and hence it follows that .�=
/C D 4:51 cm2/g,
.�=
/N D 7:44 cm2/g, .�=
/O D 11:5 cm2/g, and .�=
/Ar D 116 cm2/g.
Answer (c): With every meter of dry air the beam is attenuated by 69.2 % since
I=I0 D e�1:177 D 0:308.

�air D 
air

X

n

.�=
/nwn D .1:204/ Œ.0:451/ 0:00013„ ƒ‚ …
wC

C

C.0:744/ 0:7547„ƒ‚…
wN

C.1:15/ .0:2320C 0:00033/
„ ƒ‚ …

wO

C.11:6/ 0:0128„ƒ‚…
wAr

� D 1:177m�1 :

� � �

1.4.2 Atomic Resonance

The atomic resonance phenomenon is intrinsically related to the absorption and
fluorescence processes. The mere existence of a quantum state available around the
atom creates the probability of a core electron to interact with a photon and jump to
the available state, whether to a discrete state of bound electron or to a continuous
state of free electron (photoelectron). However, instead of the electron remaining at
this level, which characterizes the absorption and fluorescence processes, Fig. 1.18a,
the electron is stimulated by the field of the incident wave to return to its initial
level, re-emitting the photon with a phase lag of �=2 in relation to the incident
X-ray wave, Fig. 1.18b. Because of this phase correlation with the primary wave,
the amplitude of resonant scattering has an imaginary term, which means that the
atomic scattering factor f .Q/ ceases to be a purely real number since e i�=2 D i.
Furthermore, it also becomes a function of the energy due to the dependence of
resonance with the energy. In practical terms, we can say that the resonance implies
in f .Q/ ! f .Q; E/ and Imff .Q; E/g ¤ 0.

Since the electronic transition responsible for the absorption is also the primary
transition at resonance, Fig. 1.18, it is expected that the higher the absorption
rate, meaning the cross-section �a, the greater also will be the contribution of
the imaginary component of f .Q; E/. If the probability for the atom to remain
in the excited state were zero, the amplitude of resonance would be a purely
real number. To explicitly demonstrate the relationship between absorption and
imaginary component, we will make a simple introduction to the phenomenon
of resonance using the classical approach of forced oscillator. The approach by
quantum mechanics based on the perturbation theories of the first and second order
provides a more accurate idea of the absorption and resonance processes at the
level of first principles, which are in terms of annihilation and creation of photons.
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Fig. 1.18 (a) Absorption and
fluorescence: X-ray photons
eject electrons from
core-levels (K or L shell) to
empty quantum levels around
the atom. The hole left by the
ejected electron is filled by an
electron from another atomic
level, closing up the
absorption process and
generating fluorescence
photons with less energy than
the primary photons. (b)
Atomic resonance: the
primary wave field stimulates
the electrons ejected to return
to their initial state,
re-emitting photons of the
same energy but with a phase
lag of �=2

In condensed matter physics, the quantum approach has been fundamental in the
rapid development of modern techniques of material analysis using synchrotron X-
ray sources and in the exploration of various phenomena related to the density of
quantum states around the atoms (Lovesey and Collins 1996). In X-ray physics, as
for the proper use of the concepts of absorption and resonance, it is important to
keep in mind the following facts:

1. The total effect of the resonance in the atomic scattering factor is given by

f .Q; E/ D f0.Q/C f 0.E/C if 00.E/ (1.60)

where f0.Q/ comes to represent the atomic scattering factor defined in (1.46).
2. The imaginary component is proportional to the absorption cross-section accord-

ing to the relationship

f 00.E/ D E �a.E/=4�re„c D �a.E/=2 re � : (1.61)

3. There are mathematical relationships between f 0 and f 00 called Kramers–Kronig
relations for determining f 0 from f 00 and vice versa. Therefore, attenuation
coefficient measurements lead to the experimental values of the correction terms
of the atomic scattering factor:

Experiment ! �.E/ ! �a.E/ ! f 00.E/— Kramers–Kronig ! f 0.E/ :
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The resonance amplitude f 0 C if 00, often called dispersion correction terms
or anomalous scattering factors, are available on the International Tables for
Crystallography (Prince 2006) and also at some addresses on the world wide web.
The tabulated values generally come from theoretical models for isolated atoms
and are quite accurate away from the transition energies or absorption edges of
the atoms in the sample. Contrary to what happens with the theoretical values of
f0.Q/ for isolated atoms, which, in addition to accurate are little affected by the
presence of neighboring atoms, the experimental values of f 0 and f 00 are more
reliable in some situations since the theoretical models do not take into account the
presence of neighboring atoms, whose effects can be quite significant in the vicinity
of absorption edges.

Note 1.4: The theoretical values of the dispersion correction terms are essential in
calculating the absorption cross-sections �a, through which the linear attenuation
coefficients of the materials are estimated. In addition, several X-ray diffraction
experiments explore the phenomenon of atomic resonance, for example, as a
strategy for overcoming the phase problem in determining crystal structures.17

In this book we will do some exercises using the theoretical values of f 0 and f 00.
Readers should have available a routine that allows them to quickly obtain these
values. We have used the routine fpfpp.m.

� � �

Exercise 1.13. Choose an element with an absorption edge of around 10 keV. What
is the effect of the atomic resonance in the coherent scattering cross-section �R.E/?
Answer:

�R.E/ D r2e

Z
hjPj2i jf .Q; E/j2 d	 :

d	 D sin �d�d', so that hjPj2i D .1Ccos2 �/=2 and Q D 4� sin.�=2/=� depend
on the scattering angle � D 2� . For Se, the values of �R.E/ with and without
resonance are compared in Fig. 1.19. The real term of the resonance amplitude,
f 0.E/, reduces �R below and above the absorption edge at 12.6 keV, while the
imaginary term, f 00.E/, contributes toward increasing the cross-section above the
edge.

� � �

17There is extensive literature on phasing methods by anomalous dispersion. See, for instance,
Giacovazzo (2002) and Als-Nielsen and McMorrow (2001).
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Fig. 1.19 Coherent scattering cross-section �R.E/ for Se. With (black line) atomic resonance
correction: f .Q; E/ D f0.Q/ C f 0.E/ C if 00.E/, (1.60). Without (black dashed line) correction:
f .Q; E/ D f0.Q/, (1.48). Inset: theoretical values of the atomic resonance amplitude, relativistic
quantum model (Prince 2006) [exfpfpp.m]

1.4.3 Semi-classical Approach of Atomic Resonance: Electron
Elastically Bound

The simplest way to demonstrate the resonance amplitude is by making an analogy
with the field radiated by an elastically bound electron.18 There is a great similarity,
within certain limitations, between the results obtained with the classical and
quantum treatment. Reproduce this treatment here, which can be found in many
textbooks, has the following objectives: (a) demonstrate that it is consistent with
the convention adopted for the phase signal of the incident wave and Fourier
transform, (1.33) and (1.34); and (b) deduce the mathematical relationships between
resonance amplitude and absorption cross-section, Eq. (4.5), as well as between the
real and imaginary components of the resonance amplitude.

A classic electron trapped by a restoring force with a resonance frequency of !n,
and subject to a dissipative force proportional to the speed through the constant m� ,
has as its equation of movement Rz C � Pz C !2n z D �.e=m/E0 e i!t when subjected to
the electric field of the X-ray wave of frequency !. The solution to this equation
leads to the acceleration

18The original demonstration of the resonance amplitudes by elastically bound charges was made
by Lord Rayleigh in the late eighteenth century. The coherent scattering by an atom, taking into
account resonance effects or not, is often called Rayleigh scattering.
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Rz.r; t0/ D �e

m

�
!2

!2 � !2n � i!�

�
E0 e i.!t0�k�r/ (1.62)

of the electron at the time instant t0 and position r regarding an arbitrary origin. Note
that this equation is reduced to (1.18) if we turn off the restoring and dissipative
forces (!n ! 0 and � ! 0). By manipulating the frequency dependent term to
obtain

�
!2

!2 � !2n � i!�

�
D 1C f 0

n .!/C if 00
n .!/ ; (1.63)

and replacing the acceleration in the expression of the dipole radiation field, (1.17),
we will have the amplitude of scattering of the resonant electron

ER.R; t/ D �re P Œ1C f 0
n .!/C if 00

n .!/�E0
e i.!t�k0�R/

jR � rj e iQ�r ; (1.64)

written to make explicit the terms f 0
n .!/ and f 00

n .!/ showing how the amplitude of
scattering of an electron changes due to the effect of resonance.

The imaginary term in (1.63),

f 00
n .!/ D !3�

.!2 � !2n/2 C !2�2
; (1.65)

implies in an amplitude of lagged scattering of 90ı in relation to the incident wave
and it is directly related to the dissipation of energy and, therefore, to the system’s
absorption cross-section, �n.!/. To demonstrate this fact, let us calculate the average
power dissipated in the forced damped oscillator, which is given by

P.!/ D �
�

d

dt
.K C U/

�
D �

�
d

dt

�
1

2
m Pz2 C 1

2
m!2n z2

��
D �mhPz.Rz C !2n z/i :

K: kinetic energy, U: potential energy, and from the equation of movement in the
absence of external force Rz C!2n z D �� Pz. The speed Pz can be obtained from (1.62),
and thus

P.!/ D m� hPz2i D 1

2
m� jPz.!/j2 D e2jE0j2

2m„ ƒ‚ …
4�recEˆ

!2�

.!2 � !2n /2 C !2�2
D 4�rec

f 00.!/
!

E ˆ

(1.66)

where classic intensity of the incident wave is written depending on the flux and
energy of the photons, i.e., 1

2
�0cjE0j2 D ˆE . According to the absorption cross-

section definition, the number of photons absorbed per second isˆ�n.!/, implying
in the absorbed power P.!/ D E ˆ�n.!/. Compared to the (1.66), we arrive at the
relation
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!�n.!/ D 4�recf 00
n .!/ : (1.67)

If now we include the resonant electron in an atom and recalculate the field scattered
by the electron density 
a.r/, (1.45), we will have19

Eatom.R; t/ D �re P E0
e i.!t�k 0�R/

R
ŒFTf
a.r/g„ ƒ‚ …

f0.Q/

Cf 0
n .!/C if 00

n .!/� : (1.68)

Since the photon energy is given by E D „!, this classic demonstration of
resonance, (1.68), serves perfectly to illustrate both the origin of the dependence of
the atomic scattering factor with the energy, as well as that the imaginary component
is directly related to the resonance and absorption phenomena. However, up until
now we have only considered an oscillator with a frequency of !n. Compared to
the quantum treatment, this amounts to considering only the transition between two
quantum levels whose energy difference is En D „!n. As there are a number of
states available, ranging from discrete states to the continuum of states for free
electrons (photoelectrons), the total effect of resonance in the semi-classical model
(James 1948) is given by the linear overlapping of resonance amplitudes, i.e.,

f 0.!/C if 00.!/ D
X

n

gn Œf
0

n .!/C if 00
n .!/� (1.69)

where gn is the relative weight for all the possible electronic transitions of an atom,
many times called oscillator strength. The values of gn are essentially empirical in
the classical treatment, but they also appear in the quantum treatment related to the
probabilities of transitions, a fact that has partly justified20 the classical model. The
overlap in (1.69) also applies to the absorption cross-section of the atom

�a.!/ D
X

n

gn �n.!/ D 4�recf 00.!/=! D 2re�f 00.!/ ; (1.70)

thus demonstrating (1.61).

� � �

Exercise 1.14. It is known that the absorption cross-section, (1.70), has a behavior
of the type �a.E/ D A En where n is a number close to �3. (a) Choose an atom and
on a log-log graph analyze by linear interpolation the behavior of the absorption

19Consider 
 0

a.r/ ' 
a.r/C Œf 0

n .!/C if 00

n .!/�ı.r/ as being the electronic density of the atom with
one resonant electron, such that FTf
 0

a.r/g D FTf
a.r/g C f 0

n .!/ C if 00

n .!/. This is justified by
the fact that there is no experimental evidence of the dependency of f 0

n and f 00

n with the scattering
vector Q, cf. Prince (2006, p. 253).
20See Cohen-Tannoudji et al. (1978), complement AXIII.
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Fig. 1.20 Absorption cross-section for Kr near the K-edge. Theoretical values (circles), (1.70),
and linear interpolations with function log.�a/ D log.A/ C n log.E/ below and above the edge
[exabscs.m]

cross-section below and above an absorption edge. (b) Why do the interpolation
lines in the log-log scale have different inclinations on each side of the edge?
Answer (a): The theoretical curve of �a.E/ is obtained from the tabulated values of
f 00.E/. In the case of Kr shown in Fig. 1.20, the cross-section falls with E elevated
to the power of n D �2:74 and �3:07 below and above the K-edge at 14.3 keV,
respectively.
Answer (b): The more accentuated slope of �a.E/ above the edge is due to the
increase in the positive ionic charge of the atom after issuing the photoelectron.

� � �

1.4.4 Kramers–Kronig Relations

The mathematical relationship between the amplitudes f 0.!/ and f 00.!/ is deduced
from general relations for complex functions. In the case of F.z/ being an analytic
function in the complex plane of z D x C iy, satisfying two conditions: (1)
singularities (poles) outside the real axis in a same sense along the imaginary axis;
and (2) lim

jzj!1
ŒF.z/=.z � !/� D 0: Then,

P
Z C1

�1
F.x/

x � ! dx D lim
�!0

 Z !��

�1
F.x/

x � ! dx C
Z C1

!C�
F.x/

x � ! dx

!

D �i�F.!/ :

(1.71)
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Fig. 1.21 Closed path � divided into semicircle C, straight intervals [�R; !��] and [!C�; CR],
and smaller semicircle C! . The integral of F.z/=.z �!/ on the path is calculated for R ! 1. The
poles ˙ N!n C i�=2 of F.z/ D f 0

n .z/C if 00

n .z/, (1.63), are outside the real axis in the positive sense
of the imaginary axis. N!2n D !2n � �2=4

The principal value integral, indicated by the letter P, follows directly from Cauchy’s
integral theorem (Arfken 1985): by choosing a closed path in the complex plane,
passing through the real axis, but that does not contain singularities inside the
contour as path � in Fig. 1.21, it follows that

I

�

F.z/

z � ! dz D P
Z C1

�1
F.x/

x � ! dx C
Z

C

F.z/

z � ! dz
„ ƒ‚ …

D 0 when jzj!1

C
Z

C!

F.z/

z � ! dz

„ ƒ‚ …
D i�F.!/

D 0:

Path � was chosen assuming poles of function F.z/ with positive imaginary com-
ponents, such as Ci�=2 in Fig. 1.21. Otherwise, in the case of negative imaginary
components, the principal value would be positive, i.e. P

R C1
�1

F.x/
x�! dx D Ci�F.!/

in (1.71).
Since F.z/ is a general function, we can replace it with f 0.z/ C if 00.z/ as long

as it meets the conditions (1) and (2) mentioned above and has poles with positive
imaginary components. This is the case of the amplitudes f 0

n .z/ C if 00
n .z/ in (1.63)

and, therefore, of any linear combination of these amplitudes, e.g. (1.69). From this
you can easily see the Kramers–Kronig relations as being

f 0.!/ D � 1
�

P
Z C1

�1
f 00.x/
x � ! dx and f 00.!/ D 1

�
P
Z C1

�1
f 0.x/
x � ! dx : (1.72)
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The dispersion terms are defined by positive values of frequency or of energy and
because of this it is common to find these relations written as follows:

f 0.!/ D � 2
�

P
Z C1

0

x f 00.x/
x2 � !2 dx and f 00.!/ D 2!

�
P
Z C1

0

f 0.x/
x2 � !2 dx ;

(1.73)

which are valid provided that f 0.x/ and f 00.x/ are, respectively, even and odd
functions with respect to x D 0. To calculate them, multiply the numerator and
denominator of the integrands in (1.72) by x C !. To write them in terms of energy
E D „!, replace ! for E and take x as a variable of integration on energy values.

1.4.5 Absorption Modulation by Rescattering of Photoelectrons

The cross-section �a of the photoelectric absorption by an atom is determined by
the probability of transition between a quantum state of core electron with wave
function  j.r/, to free electron states with wave function  free.r/. The simple fact
that the core levels have very localized wave functions, to the point that  j.r/ �
ı.r/, the probability of transition depends on the value of free.r/ only in the position
r D 0 of the “zero” atom from where the photoelectron is ejected. This fact results
that �a / j free.0/j2. For an isolated atom, the values of �a have been calculated
and are known, see Note 1.4. But the presence of other atoms in the vicinity of the
zero atom disturbs the free electron states, whose wave functions become  0

free.r/ D
 free.r/C� .r/. Since

j 0
free.0/j2 ' j free.0/j2

�
1C � .0/ �

free.0/C� �.0/ free.0/

j free.0/j2
	

D

D j free.0/j2Œ1C �.E/� ; (1.74)

the cross-section

� 0
a .E/ D �a.E/ Œ1C �.E/� (1.75)

of the atom inserted in a material also begins to have an extra dependence on energy
through the function �.E/. This extra dependence, implicit in the relation of� .0/
with the energy of the incident photon, is known as X-ray Absorption Fine Structure
(XAFS) (Stöhr 1992; Newville 2004).

When the incident X-ray photon has energy E , just above a given absorption edge
with energy Eb, the photoelectron is ejected from the atom to a free electron state
with kinetic energy
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K D E � Eb D „2k2e
2m

where ke D
p
2mK

„ D 0:512315
p

KŒeV� Å
�1

(1.76)

is the module of the wavevector dictating the spatial evolution of the wave function,
which propagates in all directions as a spherical wave21

 free.r/ D  free.0/
a

r
e iker :

Parameter a is related to the radius of the region around the atom zero where the
 free.r/ is evaluated in the calculation of the cross-section, i.e. j free.r � a/j D
j free.0/j.

As the photoelectron propagates in the medium, it can be rescattered by the
repulsive potential of the electron clouds from the neighboring atoms, producing
a series of secondary waves � n.r/, which makes up the perturbative wave

� .r/ D
X

n

� n.r/ D
X

n

An
kean

kejr � rnj ie ikejr�rnj :

The imaginary number “ i ” stands for a phase shift of �=2 that appears in the exact
solution of the secondary waves, cf. Appendix A in Stöhr (1992). The parameters
an are introduced to limit the maximum amplitudes of the secondary waves in the
regions jr � rnj � an where j� n.r/j D jAnj, so that each amplitude An represents
the reflected fraction of the primary wave as it approaches the atom centered in the
position rn, i.e.

An /  free.0/
a

rn
e i.kernCın/:

The phase shifts ın of the secondary waves as well as the exact values of the ampli-
tudes depend on the kinetic energy and atomic species of the neighboring elements.
In a 1st-order approximation where further rescatterings (multiple scattering) of the
secondary waves are neglected, the general form of the perturbative wave ends up
being

� .r/ D  free.0/
X

n

Rn.ke/ e iŒkernCın.ke/�

rnkejr � rnj ie ikejr�rnj :

21(a) The solution to the Schrödinger equation for uniform potential in spherical coordinates
.r; �; �/: r2 .r/ D �k2e .r/ ) @2Œr .r/�=@r2 D �k2e Œr .r/� ) r .r/ D A e ˙iker . (b) The
influences of the polarization of radiation and of the orbital angular momentum in the photoelectron
emission direction are discarded in the approach of a spherosymmetric wave function, otherwise
 free.0/ !  free.0; �; �/.



52 1 Fundamentals of X-Ray Physics

Fig. 1.22 Modulation in the probability density of the photoelectrons due to the presence of four
neighboring atoms. P D j 0

free.r/= free.0/j2. Photoelectrons with kinetic energy K D 200 eV,
ejected from the atomic site (0,0) [exexafsmap.m]

Besides the dependence with the neighboring element, Rn.ke/ takes into account
other factors that affect the amplitude of the reflected wave such as thermal
vibrations, statistical distributions (disorder) of the distances rn in the material, and
the photoelectron’s mean free path (Stöhr 1992). Figure 1.22 shows an illustrative
example of how the waves rescattered in four neighboring coplanar atoms disturb
the probability density j 0

free.r/j2, creating regions of higher and lower probability
of finding the photoelectron. But only the modulation in the position r D 0 actually
affects the photoelectric absorption, and therefore we have to be concerned only
with the value of

� .0/ D  free.0/
X

n

Rn.ke/

ker2n
ie iŒ2kernCın.ke/� ;

whose contribution in (1.74) defines the function

�.ke/ D � .0/ �
free.0/C� �.0/ free.0/

j free.0/j2 D
X

n

Rn.ke/

ker2n
sinŒ2kern C ın.ke/� :

(1.77)

In the case of the example given in Fig. 1.22 where r1;3 D 3:54Å and r2;4 D
2:12Å, the modulation provided by (1.77) on the cross-section �a of the atom zero
due to the presence of the neighbors is shown in Fig. 1.23. Mn is taken as the
atom zero for illustrative purposes only, as well as the functions ın.ke/ and Rn.ke/,
given in Fig. 1.24, which are used for the four neighboring atoms considered in
the model. Compared to a real situation, the only effect not describable by (1.77)
has to do with the phenomenon of multiple scattering of the photoelectrons. The
phenomenon is dominant in the region of low kinetic energy, K . 20 keV, and
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Fig. 1.23 Modulation in the absorption cross-section of Mn due to rescattering of photoelectrons.
Demonstration considering four neighboring atoms arranged as shown in Fig. 1.22 [exexafs.m]

Fig. 1.24 Scattering properties of photoelectrons by the neighboring atoms considered in the
simulated modulation of absorption cross-section in Fig. 1.23. (a) Variation in phase and (b)
relative magnitude of the scattered wave function [exexafs.m]

is responsible for significant changes in the absorption cross-section very near the
absorption edge. The detailed study of the Near-Edge X-ray Absorption Spectrum
(NEXAFS) or also X-ray Absorption Near-Edge Spectroscopy (XANES) provides
valuable information on the chemical bonds surrounding the atom zero and consists
of an important method of structural investigation (Stöhr 1992).

Experimentally, function �.ke/ is accessible by measuring either the linear
attenuation coefficient or the fluorescence signal, depending mostly on how the
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Fig. 1.25 Curve k3e�.ke/ refers to the modulation of �a shown in Fig. 1.23 [exexafs.m]

sample can be conditioned. In the case of conductive samples, it is also possible
to monitor the photocurrent as a resource to access �.ke/. Although concep-
tually simple, these experiments have a high degree of complexity due to the
many factors that compromise the accuracy of the �.ke/ measurements, and are
only carried out in synchrotron facilities [Brazilian Synchrotron Light Labora-
tory (http://lnls.cnpem.br/), National Synchrotron Light Source-II (http://www.
bnl.gov/ps/), Cornell High Energy Synchrotron Source (http://www.chess.cornell.
edu/), Diamond Light Source (http://www.diamond.ac.uk/), European Synchrotron
Radiation Facility (http://www.esrf.eu/), SPring-8 (http://www.spring8.or.jp/en/),
Advanced Photon Source (https://www1.aps.anl.gov/), and many others] where it
is possible to continuously vary the energy of the X-ray beam.

With the experimental �.ke/ curve in hands, the general analysis is done with
km

e �.ke/ where m D 1, 2, or 3, e.g. Fig. 1.25. One of the reasons for this procedure
of multiplying by km

e is to minimize the contribution from the region of small ke,
strongly affected by multiple scattering of the photoelectrons, and at the same time
magnify the modulations in an extended region above the absorption edge. Hence
the technical name EXAFS (Extended XAFS), which uses indeed the (1.77) in
materials analysis.

Among the technical subtleties are the functions ın.ke/ that need to be known for
different neighbors. When ın.ke/ has a relatively small variation, such as the one in
Fig. 1.24a, it is possible to use the Fourier analysis directly (Prince 2006)

F.u/ D
ˇ̌
ˇ
ˇ

Z
km

e �.ke/ e2ikeu dke

ˇ̌
ˇ
ˇ

2

; (1.78)

to estimate interatomic distances between the atom zero and the nearby neighbors
contributing to the EXAFS signal. The Fourier analysis of the signal in Fig. 1.25

http://lnls.cnpem.br/
http://www.bnl.gov/ps/
http://www.bnl.gov/ps/
http://www.chess.cornell.edu/
http://www.chess.cornell.edu/
http://www.diamond.ac.uk/
http://www.esrf.eu/
http://www.spring8.or.jp/en/
https://www1.aps.anl.gov/
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Fig. 1.26 Fourier analysis F.u/, (1.78), of the EXAFS signal in Fig. 1.25 (black line). Magnifying
the phase variation of ın by a factor of 10 (blue dashed line), the displacements of the peaks of F.u/
regarding the expected values of rn (marked with red lines) become more evident [exexafs.m]

results in two well-defined peaks centered at positions close to the values expected
from rn, as shown in Fig. 1.26. However in most situations, the analysis procedure is
the simulation of the EXAFS signal using predetermined functions ın.ke/ whether
by using standard samples or by theoretical calculations. The same applies to the
reflection amplitudes for each kind of neighbor atom, which need to be known
a priori to do the deconvolution of the information about atomic disorder and
coordination number—number of neighboring atoms at a same distance rn—
contained in the EXAFS spectrum.22

� � �

Exercise 1.15. From the XAFS signal, calculate f 0.E/ and f 00.E/ around the
absorption edge of the atom zero.
Answer: Since f 00.E/ / E�a.E/, the XAFS signal disturbs f 00 as it disturbs �a,
which means f 00.E/ ! f 00.E/Œ1C �.E/�. To obtain f 0.E/ it is necessary to use one
of the Kramers–Kronig relations in (1.73),

f 0.E/ D � 2

�
P
Z C1

0

x f 00.x/
x2 � E2 dx ) f 0.E/ ! f 0.E/ � 2

�
P
Z C1

0

x f 00.x/�.x/
x2 � E2 dx :

22For details on instrumentation, data collection methodology, and analysis of the EXAFS signal,
read specialized literature such as Prince (2006), Als-Nielsen and McMorrow (2001), and Newville
(2004).
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Fig. 1.27 Modulation of resonance amplitude of the Fe in presence of neighboring atoms. Model
of four neighbors, Fig. 1.22 [exkk.m]

The values of f 00.E/ are defined within the finite energy interval ŒEmin; Emax�. In
the above integral, when E < Emin or E > Emax becomes f 00.E/ D f 00.Emin/ or
f 00.E/ D f 00.Emax/, respectively. Figure 1.27 shows the resonance amplitudes for Fe
as the atom zero.

� � �

Section Summary
— Atomic scattering factor with dispersion correction:

f .Q; E/ D f0.Q/C f 0.E/C if 00.E/

— Absorption cross-section:

�a.E/ D 2re�f 00.E/

— Linear attenuation of intensity:

I.E ; x/ D I0 e��.E/ x

— Linear attenuation coefficient:

�.E/ D P
n

�
NA 


M

�

n
�n.E/ D P

n

�
�




�

n

n
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— Total cross-section for the linear attenuation:

�.E/ D �a.E/C �C.E/C �R.E/

— Modulation of the photoelectric absorption (XAFS):

� 0
a .E/ D �a.E/ Œ1C �.E/�

— Term of modulation in the EXAFS approach:

�.ke/ D P
n

Rn.ke/

ker2n
sinŒ2kern C ın.ke/�

— Photoelectron wavevector with kinetic energy K:

ke D
p
2mK

„ D 0:512315
p

KŒeV� Å
�1



Chapter 2
Low Correlated Systems: Gases and Dilute
Solutions

The Kinematic Theory covers any description of the X-ray scattering process by a
distribution of electrons where rescattering (with phase coherence) of the already
scattered waves by the distribution has negligible effects. In other words, the
scattered radiation is composed by photons that interacted once with the sample.
Under these conditions, the scattered intensity, often called the kinematic intensity,
is proportional to the form factor square module, (1.25). Material samples in a
gaseous, liquid, or solid state are nothing more than atom systems with different
degrees of correlation between the atomic positions, ranging from disperse systems,
such as a gas, until strongly correlated systems as in a crystals. The Kinematic
Theory describes very accurately the X-ray scattering by any of these systems,
except only by highly perfect crystals with dimensions larger than a few microns. In
this chapter we will begin in fact to discuss analysis methods of atomic systems by
kinematic scattering of X-rays starting with the disperse system of lowest possible
degree of correlation.

2.1 Monatomic Gas

By considering a discrete distribution of N atoms, as in (1.51), we come to the
general expression of kinematic intensity

I.Q/ D ITh

ˇ̌
ˇ̌
ˇ

NX

aD1
fa.Q/ e iQ�ra

ˇ̌
ˇ̌
ˇ

2

D ITh

NX

aD1

NX

bD1
fa.Q/f

�
b .Q/ e iQ�.ra�rb/ D

D ITh

NX

aD1
jfa.Q/j2 C ITh

NX

aD1

NX

b¤a

fa.Q/f
�
b .Q/ e iQ�rab (2.1)
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where rab D ra�rb and f �
b .Q/ ¤ fb.Q/when the resonance amplitudes are taken into

account, (1.60). At first this expression of intensity is valid for any type of sample
scattering within the kinematic regime being especially useful in cases where it is
feasible to discretize the electronic density atom-by-atom.

In the case of monatomic gas, fa.Q/ D fb.Q/ D f .Q/ and the rab separations
between pairs of atoms vary continuously over time so that

I.Q/ D
2

4N C
NX

aD1

NX

b¤a

cos.Q � rab/

3

5 ITh jf .Q/j2 (2.2)

corresponds to the instantaneous intensity scattered by the system. The coherent
scattering cross-section of an atom, e.g. Fig. 1.11, has very small values, reaching at
most a few thousand barns, 	 10�25 m2. The scattered intensities are so weak that
the intensity measures are in most cases done in relatively long times compared to
the average time that the atoms in the gas take to move through the dimensions of the
illuminated volume by the X-ray beam. A measure of I.Q/ therefore contains the
temporal average value h� � � it of the double summation in (2.2). Since each atom
has independent movements—a characteristic of disperse systems1—the cosine
temporal average is zero, i.e. hcos.Q � rab/it D 0 for any pair of atoms, as long
as Q ¤ 0, making the term in brackets, Œ� � � �, contribute only with one factor of N.
However, when Q D 0, the double summation is equal to N.N � 1/ and the term in
brackets contributes with a factor N2. Note that in a random distribution of many
atoms, the instantaneous intensity also obeys the relations I.Q ¤ 0/ / N and
I.Q D 0/ / N2, but in this case it is because of the statistical average null value
of the cosine in the distribution. How different from zero should the Q vector be
for the average (temporal or statistical) of the cosine be null? Or, in other words,
what is the function I.Q/ in the region where the multiplicative factor (term in
brackets) changes from N to N2? This function depends on shape and size of the
gas volume illuminated by radiation or, more specifically, on the volume dimension
perpendicular to the beam on the incidence plane. Quantitatively, the volume Fourier
transform determines how far from Q D 0 we must look at the scattered radiation
for the average of the cosines to be null. For a qualitative description, we can make
a simple estimation of the scattering angle 2� where the average is no longer null.
From the definitions of versor O� and reciprocal vector Q, (1.3) and (1.23), it is easy
to verify that

lim
2�!0

Q D Q O� :

If D is the volume dimension in direction O�, the vectorial product maximum value
will be Q � rab D QD. For the average cosines to be null we need QD 
 2� , and
thus

1Ideal gases under normal temperature and pressure conditions stand for ideally disperse systems
(Guinier and Fournet 1955).
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Fig. 2.1 Ultra-small angle region, 2� < �=D, where all the gas atoms scatter in phase, I / N2. In
real situations, D and L generally correspond to the transverse and longitudinal coherence lengths
of the X-ray beam, as in Fig. 1.4

I.Q/ D
(

N ITh jf .Q/j2 se Q 
 2�=D .2� 
 �=D/

N2 ITh jf .0/j2 se Q < 2�=D .2� < �=D/
(2.3)

as illustrated in Fig. 2.1.
Generally, D is the smallest value among sample size, beam transverse section,

or beam transverse coherence length, (1.16). In practice, the value of D is large
enough for the high intensity region—proportional to N2—to be indistinguishable
from the direct beam. Away from the direct beam, the intensity is proportional to
the number N of atoms and varies with Q according to the atomic scattering factor
of the element in question, showing that experiments to directly measure f .Q/ are
possible, in principle, in monatomic gases.

� � �

Exercise 2.1. Given a pictorial expression of coherent intensity

I.Q/ D N ITh jf .Q/j2 Œ1C .N � 1/G.Q/�

where N is the number of atoms within the coherence volume V � D2L. G.Q/ D
exp.�Q2=2�2Q/, with �Q D �=D, is an empirical function used here to describe the
intensity variation around the direct beam, (2.3). (a) Estimate the relative percentage
R of photons scattered outside the direct beam in relation to the total number of
photons scattered by the N atoms. Note: write the result as a function of volumetric
density % of atoms in the sample. (b) Using D D 0:04
m and L D 0:03
m as
the coherence lengths for Cu radiation, Exercise 1.5, what is the value of R for gas
argon (Ar) at standard conditions of temperature and pressure (STP)? (c) If in the
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liquefied argon the smaller interatomic distances were in the order of 3.6 Å, what is
the value of R? (d) Interpret the results.
Answer (a): The scattered intensity outside the direct beam is I1 D Nˆ�R, (1.50).
In the ultra-small angle region,2 the intensity is I2 D 0:5 � N.N � 1/ˆ r2e jfAr.0/j2
.�=D/2. Since N � 1 ' %V ,

R D 100
I1

I1 C I2
D

D 100
�R

�R C 0:5� r2e jfAr.0/j2 .N � 1/.�=D/2
R ' 100

�R

�R C 0:5� r2e jfAr.0/j2 L�2 %
:

Answer (b): For 8 keV photons, �R.Ar/ D 63:9 barn and � D 1:54Å. fAr.0/ D 18

and r2e D 0:0794 barn. At STP the molar volume of an ideal gas is 24.467 L/Mol,
% D 2:46 � 107 atoms/
m3 and N D 1:2 � 103. Then,

R ' 100
63:9

63:9C 0:71
D 98:9% :

Answer (c): In a liquid, assuming that each atom occupies an average free volume
of 46.7 Å3, we have % D 2:14� 1010 atoms/
m3 and N D 1:0� 106, which leads to

R ' 100
63:9

63:9C 615:7
D 9:4% :

Answer (d): The results in (b) and (c) show that measurable coherent intensity from
disperse systems only occurs because the X-ray beam is not a perfect plane wave
(infinity coherence lengths). Otherwise, the coherence volume would be as extensive
as the macroscopic dimensions of the total illuminated volume by the X-ray beam,
of the order of 1 mm3, containing about 1016 atoms (Ar gas) and resulting in
R D 0, which means a completely destructive interference outside the direct beam.
On the other hand, even with beams of finite coherence, liquid or solid samples
where the atom density varies between 1010 and 1011 atoms/
m3 have values of R
practically null in the absence of constructive interferences (diffraction) produced
by correlation of atomic positions in the sample. The use of X-ray equipment with
focusing optics, providing high flux and low coherence, is therefore ideal for the
study of low correlated systems.

� � �

2With Q D .4�=�/ sin.�=2/,
R

G.Q/ d	 D 2�
R

expf�˛ sin2.�=2/g sin � d� ' 4�=˛ D
0:5 � .�=D/2.
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2.2 Dispersed Molecules: Random Orientations

Similar to the case of monatomic gas, the scattering by a gas of identical molecules
is independent of the mutual interference between molecules,3 containing only
internal structure information of the molecule. Other disperse molecular systems,
such as low concentration solutions, may also exhibit scatterings free from mutual
interference. Unlike atoms, molecules are 3-D structures that, in general, do not
have spherical symmetry. Intensity measurements in such systems thus correspond
to the sum of the scattered intensities by molecules in all possible orientations.

The molecule form factor FM , (1.52), is calculated by adding up the contributions
of all Nat molecule atoms, whose relative positions do not change (rigid molecules)
and the redistributions of electrons in chemical bonds are neglected. The intensity
scattered by a single molecule is then given by

IM.Q/ D ITh jFM.Q/j2 D ITh

NatX

aD1

NatX

bD1
fa.Q/f

�
b .Q/ e iQ�rab : (2.4)

In a disperse system of N molecules, the scattered intensity outside the direct beam
would be N IM.Q/ if all molecules had the same spatial orientation. By the very fact
that the system is sufficiently dispersed so that the molecules do not influence each
other, the molecules have random orientations and all orientations with the same
probability. The measurable intensity thus represents the average value of IM ,

I.Q/ D N hIM.Q/i D N ITh

NatX

aD1

NatX

bD1
fa.Q/f

�
b .Q/ he iQ�rabi (2.5)

is the coherent intensity scattered by the disperse system of N molecules randomly
oriented. The interatomic distances rab inside the molecules are fixed for each pair
of atoms, and the average is calculated over all orientations of these interatomic
distances with respect to the reciprocal vector. The averaging is similar to the
angular part solution of the integral in Exercise 1.6(a), i.e.,

Q D QOz D Œ0; 0; Q�; rab D rab Œsin � cos'; sin � sin'; cos ��;

Q � rab D Q rab cos �; and

he iQ�rabi D 1

4�

Z 2�

0

Z �

0

Œcos.Qrab cos �/C i sin.Qrab cos �/� sin � d� d' D

D 1

2Qrab

Z CQrab

�Qrab

.cos w C i sin w/ dw

„ ƒ‚ …
where wDQrab cos �

D sin.Qrab/

Qrab
:

3Assuming X-ray beams with finite coherence lengths.
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Thus,

I.Q/ D N hIM.Q/i D N ITh

NatX

aD1

NatX

bD1
fa.Q/f

�
b .Q/

sin.Qrab/

Qrab
D N ITh P.Q/ : (2.6)

For the sake of calculation efficiency, since rab D rba, the molecule’s scattering
power is rewritten as follows:

P.Q/ D
NatX

aD1
jfa.Q/j2 C 2

Nat�1X

aD1

NatX

b>a

Reffa.Q/f
�
b .Q/g

sin.Qrab/

Qrab
; (2.7)

so as to avoid double computing of the contribution of each atom pair. The
sine function in the second term of P.Q/ appears solely due to the interference
phenomenon between the molecule atoms, implying in a modulation of the scattered
intensity as a function of Q.

The existence of an interference pattern in the scattering curve is more evident
when evaluating the scattering curve normalized by N ITh

P
a jfa.Q/j2, the intensity

that would be scattered by the system in case of total absence of interference
owing to the atomic structure of each molecule. The interference pattern is thus
characterized by the structural function

S.Q/ D I.Q/

N ITh
P

a jfa.Q/j2 D P.Q/
P

a jfa.Q/j2 D

D 1C 2
P

a jfa.Q/j2
X

a

X

b>a

Reffa.Q/f
�
b .Q/g

sin.Qrab/

Qrab
; (2.8)

which has a maximum value equal to or slightly smaller than Nat at Q D 0, i.e.
S.Q D 0/ . Nat, and oscillates around the unit for Q ! 1.

� � �

Exercise 2.2. Consider a gas composed only of N benzene molecules, C6H6. (a)
Neglecting the hydrogens, what is the structural function for this molecule? (b)
Compare the intensity pattern of the gas with the one scattered by a single molecule
in Fig. 1.13. (c) Decompose the interference pattern in the individual contributions
of the molecule’s characteristic interatomic distances. Which distance has greater
weight? (d) How significant is the Compton scattering?
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Answer (a): For a continuous distribution of orientations,

I.Q/ D N ITh 6jfC.Q/j2

S.Q/
‚ …„ ƒ"

1C 2
sin.Qd/

Qd
C 2

sin.Qd
p
3/

Qd
p
3

C sin.2Qd/

2Qd

#

D

D Nˆ r2e hjP.Os0/j2i d	6jfC.Q/j2 S.Q/

is the intensity scattered by N molecules and S.Q/ is the structural function.
Answer (b): By using the same cylindrical detector geometry shown in Fig. 1.12,

Q.z; �/ D 2�
p
2

�

�
1 � D cos�p

D2 C z2

�1=2
:

hjP.Os0/j2i and d	 are those used in Exercise 1.9. Figure 2.2a shows the intensity
pattern for the gas. It is highly concentrated around the direct beam and has
much less details than the pattern for a single molecule in Fig. 1.14. However, the
movement of the molecules does not affect the measureable intensities, allowing
long exposures and improving statistical resolution of the scattering curve outside
the direct beam. In practice the resolution is limited by background radiation
(Compton) and by the dynamic range4 of the radiation detector.
Answer (c): In the benzene molecule, the interference pattern given by the structural
function S.Q/ is defined by the superposition of three functions of the type
sin.Qd/=Qd, concerning to the distances d D 140, 243, and 280 pm, as shown in
Fig. 2.2b. The weights are 2, 2, and 1, respectively.
Answer (d): To include the Compton scattering in Fig. 2.2a:

I.Q/ D N ITh 6

jfC.Q/j2 S.Q/C S.Z;Q/�

where the function S.Z;Q/ is given by (1.56), with Z D 6 in the case of carbon. For
20 keV photons, Compton becomes more significant than the coherent scattering,

i.e. S.Z;Q/ > jfC.Q/j2S.Q/, when Q > 3:5Å
�1

(2� > 20ı).

� � �

4Useful range of a radiation detector in intensity scales or dose per pixel.
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Fig. 2.2 (Top) Intensity scattered by N benzene molecules with random orientations. The
background intensity from Compton scattering is considered only for carbon atoms and negative
values of 2� . X-rays of 20 keV, sample-film distance D D 50mm, � polarization, and flux
so that Nˆ r2e D 1 cps. (Bottom) Function S.Q/ (black line) for the benzene molecule,
S.0/ D 6. The individual contributions (dashed curves) of the three characteristic interatomic
distances in the molecule are displaced in the ordinate axis for better viewing [benzenesaxs1.m,
benzenesaxs2.m]
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2.3 Small Angle Scattering

The analysis of S.Q/ in the large Q region would provide, in principle, information
on minor values of rab. However, there are several experimental difficulties to access
such information, one of them imposed by the maximum value of Q that is limited
by the radiation energy, usually in the order of a few tens of keV, (1.49). This
implies that, when studying disperse systems by X-ray scattering, the information
on the smaller interatomic distances, in scale of angstrom, are only accessible at
high angles, just where the atomic scattering factors are very reduced in comparison
with the values at small angles and the Compton scattering is more intense, as can
be seen in Fig. 1.16. Since low density of molecules and absence of long-range
order are inherent properties of disperse systems, measurements with satisfactory
statistical resolution of the coherent scattered intensity at high angles are most times
impracticable in these systems.

On the other hand, measures of scattered intensity in the small Q region
provide information about the largest interatomic distances of the order of physical
dimensions of the molecules. To demonstrate this property of the small angle
scattering, we take the limit of (2.6) when Qrab ! 0 so that

I.Q/ � N ITh

NatX

aD1

NatX

bD1
fa.Q/f

�
b .Q/

�
1 � 1

6
.Qrab/

2

	

� N ITh f 2m .0/
NatX

aD1

NatX

bD1

�
1 � 1

6
.Qrab/

2

	
D N ITh f 2m .0/N2

at

�
1 � 1

3
Q2hr2i

�
:

To get to the equation above, use

lim
x!0

sin x

x
' x � x3=6

x
D 1 � 1

6
x2

and replace fa.Q/f �
b .Q/ with f 2m .0/ since N2

at f 2m .0/ is the value of the summation

when Q D 0, or for a more general definition: f 2m.Q/ D N�2
at

ˇ̌P
a fa.Q/

ˇ̌2
. Recalling

that e �x ' 1 � x for x � 1, we obtain the intensity expression in the limit as Q
approaches zero,

lim
Q!0

I.Q/ D N ITh f 2m .0/N2
at e� 1

3Q2hr2i : (2.9)

hr2i D
 
1

2

NatX

aD1

NatX

bD1
r2ab

!

=N2
at D

 
Nat�1X

aD1

NatX

b>a

r2ab

!

=N2
at (2.10)

is the molecule mean square radius, thus demonstrating that the scattered intensity
at small Q region is determined by the size of the molecules. The root-mean-square
radius Rg D phr2i is commonly called radius of gyration of the molecule.
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2.3.1 Macromolecules

The atom-by-atom description is not restricted to cases of simple molecules. Thanks
to the current computational facilities, exact calculations of both the radius of
gyration and intensity are feasible even for giant molecular complexes containing
tens of thousands of atoms. The protein database is one of the largest sources
available on discrete structures (atom-by-atom). When a protein has its structure
determined, in general by X-ray diffraction in the crystallized protein, it is available
at the Protein Data Bank (http://www.pdb.org/). Among other format options, there
are text files (�.pdb) in standard pdb format where the atomic coordinates are given
in the lines starting with “ATOM” or “HETATM,” such as

--------------------------------------------------------------------------------

ATOM 84 N LYS A 12 55.325 15.647 18.827 1.00 19.22 N

ATOM 85 CA LYS A 12 55.370 17.014 18.328 1.00 22.23 C

. . .

HETATM 4716 C14 MYR A1006 29.904 5.219 -4.802 1.00 48.47 C

HETATM 4717 FE HEM A 605 32.347 8.521 32.831 1.00 25.18 FE

--------------------------------------------------------------------------------

column: 12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8

where the atom with sequential number 85 is a carbon of the amino acid lysine
(LYS) with coordinates X D 55:370Å (columns 31–38), Y D 17:014Å (columns
39 to 46), and Z D 18:328Å (columns 47–54). The symbol of the chemical element
is given in columns 77 and 78. For more details about the pdb standard, see the file-
format documentation also available at the pdb website.

In the Appendix B, the saxs.c routine written in CCC reads files in pdb format
and returns P.Q/, S.Q/, and Rg calculated according to (2.7), (2.8), and (2.10),
respectively. Although the calculation of P.Q/ through (2.7) is exact for any Q,
it is a method of small computational efficiency. Later we will take a look at
some approaches that make the calculation much more efficient and executable in
MatLabTM in the experimentally accessible region of Q (small angle), but it will be
interesting to have the exact calculation for the sake of comparison.

� � �

Exercise 2.3. With the known structure of a protein (file �.pdp), calculate its
scattering power, P.Q/, and radius of gyration. (a) What is the mean number
of electrons per atom effectively scattering X-rays? Relate this number with the
expected value of P.0/. Note: despise hydrogens and chemical bonds, use fa.Q/ for
neutral atoms. (b) Which region of the P.Q/ curve has exponential decay with Q2?

Answer (a): From (2.6) follows P.0/ D
ˇ
ˇ̌PNat

a fa.0/
ˇ
ˇ̌2. Since at Q D 0 all the

electrons scatter in phase, the mean effective number of electrons per atom is
fm.0/ D N�1

at

p
P.0/ . In the case of the protein shown in Fig. 2.3, there are 4635

atoms (“ATOM” records in the 1N5U.pdb file): 784 N, 2926 C, 884 O, and 41 S.
P.0/ D j784 fN.0/C 2926 fC.0/C 884 fO.0/C 41 fS.0/j2 ' 9:469 � 108 if atomic

http://www.pdb.org/
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Fig. 2.3 Amino acid chains of human albumin, protein 1N5U in the Protein Data Bank (http://
www.pdb.org/)

resonances are neglected, otherwise P.0/ D 9:547�108 for X-ray photons of 8 keV.
So there are fm.0/ D 6:6665 effective electrons per atom.
Answer (b): In Fig. 2.4, P.Q/ D P.0/ exp.� 1

3
R2gQ2/ from Q D 0 to approximately

Q D 0:08Å
�1

(Q2 D 0:0064Å
�2

) where the value of Rg D 27:9Å was obtained
by (2.10).

2.3.2 Particles of Uniform Density

Scattering properties in the region of small Q can be obtained in an equivalent
manner to that shown for discrete molecules, starting from the assumption of
particles of uniform density. When we look at the radiation scattered in a small
enough angle so that the interatomic distances do not affect the scattering of X-rays,
the electron density is rewritten as


.r/ D FM.0/

vp
s.r/ ' Nat fm.0/

vp
s.r/ D N
 s.r/ : (2.11)

http://www.pdb.org/
http://www.pdb.org/
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Fig. 2.4 Log.P/ curve versus Q2 in the region Q < 0:2Å
�1

for human albumin (PDB ID: 1N5U).
Inset: scattering power in an extended region of Q [saxs.c, ex1N5U.m]

s.r/ is the shape function: s D 1 (or 0) for r inside (or outside) of the particle
outline. FM.0/ D PNat

a fa.0/ ' Nat fm.0/ D jPNat
a fa.0/j is the effective number

of electrons in the particle of volume vp, so that N
 D Nat fm.0/=vp is the average
density of electrons in the particle effectively scattering radiation. Thus, the new
particle form factor for small angles, including cases of particles dispersed in a
homogeneous medium with electron density 
0, is

F 0
M.Q/ D . N
 � 
0/FTfs.r/g : (2.12)

Since the measureable intensity is the average h� � � i on all possible particle
orientations, we have

I.Q/ ' N ITh hjF 0
M.Q/j2i D N ITh . N
 � 
0/2 hjFTfs.r/gj2i D N ITh P.Q/ (2.13)

where the scattering power P.Q/ depends only on the particle shape and its density
contrast with the medium.

The technique known as small angle X-ray scattering (SAXS) is widely used in
the study of low correlated systems, particularly those systems where the particles
have sizes in the range of 1–50 nm. Typically, 0:1ı < 2� < 10ı corresponds
to the angular range analyzed by SAXS, depending on the particularities of each
instrumental setup (Craievich 2002).
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2.3.3 Morphology of Particles

The approach of uniform density is valid within a restricted range of reciprocal space
ranging from Q D 0 to a certain value of Q, from which the scattering curve starts to
be affected by the density fluctuations inside the particle. Around the direct beam, in
the so-called Guinier region, this approach is very good. The intensity curve always
shows the exponential decay with Q2, as given by (2.9), which in terms of average
density is

lim
Q!0

I.Q/ D N ITh . N
 � 
0/2 lim
Q!0

hjFTfs.r/gj2i D N ITh . N
 � 
0/2 v2p e � 1
3Q2hr2i

(2.14)

where

hr2i D 1

vp

Z

vp

r2dV (2.15)

is the mean square radius,5 equivalent to that obtained by the discrete summation
in (2.10), but with the advantage of being calculated from the particle shape without
the need for prior knowledge of the interatomic distances. For example, for a
spherical particle of radius a,

R2g D hr2i D 3a2=5 and I.Q/=I.0/ D e �0:2 .Qa/2 :

Note that this is almost the same result of the exponential decay e �0:21 .Qa/2

used to adjust the initial part of the scattered intensity curve by a spherical and
uniform electron density in Exercise 1.6(b); the slight difference arises from the
fact that in the Exercise the scattering at half maximum was used as reference,
I.QaD1:815/=I.0/ D 1=2, rather than the limit for Q ! 0.

The intensity curve range that can be reproduced by an exponential decay with
Q2 varies with the particle morphology. In most cases, it goes from Q D 0 to a value
not far beyond Q D 1=Rg. This value serves as an estimate of the extent of Guinier
region in the intensity curve, from which only information on particle size (radius
of gyration) can be extracted.

After the Guinier region, the exponential decay with Q2 is replaced by a behavior
strongly influenced by the particle shape. The extent at Q of this region with
particle’s morphological information, which is often called Porod region (Guinier
1994), depends on how much larger are the dimensions of the particle in relation
to the scale length of the internal density fluctuations. Due to the wide variety of

5It is an optional task to demonstrate that lim
Q!0

hjFTfs.r/gj2i D v2p e �
1
3 Q2hr2i : Such demonstration

can be found in several books on SAXS, e.g. Giacovazzo (2002), Glatter and Kratky (1982), and
Guinier (1994).
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systems it is difficult to establish a general rule for the occurrence or not of the
Porod region. However, as a rule, it is expected that the morphological analysis is
feasible when the particle is dozens of times larger than the size of the molecules
composing it.

In the case of particles of uniform density, abrupt interfaces and regular
surfaces, (2.13) foresees intensity curves with asymptotic fall of the type 1=Qn

where n is an integer6 related to the dimensionality of the particle. Analytical
solutions for the term hjFTfs.r/gj2i are possible for specific types of particles, while
numerical solutions are necessary in most cases, see, for example, Lindner and
Zemb (2002). Here we will make a simple, but quite versatile, numerical approach
to demonstrate the main features of the asymptotic behavior in the intensity curves.
This demonstration is based on the fact that (2.6) and (2.13) provide nearly the same
results in the Q range comprising both Guinier and Porod regions, i.e.

I.Q/=I.0/ D 1

V2
hjFTfs.r/gj2i ' 2

N.N � 1/
N�1X

a

NX

b>a

sin.Qrab/

Qrab
(2.16)

as long as the position vectors r are uniformly distributed within the particle shape
(outline) and in sufficient quantity so that the rab values of adjacent positions are
much smaller than the dimensions of the particle.

Through (2.16), using random distributions of position vectors within the chosen
particle shape, the following asymptotic behaviors can be verified. Particles with
dimension 3 where the ratio between dimensions in three orthogonal directions
tends to 1 W 1 W 1, such as spheres and cubes, the intensity of the interference fringes
falls with 1=Q4, n D 4, Fig. 2.5. In the case of spherical particles, the fall with 1=Q4

can be verified analytically from the FT of a sphere, as calculated in Exercise 1.6(b).
Sharp reduction in one or two dimensions of the particle eliminates the interference
fringes in the Porod’s region and changes the value of n. Particles with dimension
2 are those with a planar aspect for which n D 2, 1=Q2 asymptote. Those with
elongated aspects, rod-type, have dimension 1 for which n D 1, 1=Q asymptote.
Figure 2.5 also shows the theoretical scattering curves of particles with ratios 1:1:w
(dimension 2) and w:w:1 (dimension 1) in the limit w ! 0. Curves with asymptotes
1=Qn for larger Q values occur when the particle dimensional aspect (3, 2 or 1) is
well defined, i.e. at the w D 0 and w D 1 limits (solid line curves in Fig. 2.5). In
intermediate cases, the range where the 1=Qn behavior occurs is less and less the
more the particle proportions deviate from the limiting cases (dashed line curves in
Fig. 2.5).

� � �

6Non-integer values occur in particles without defined interfaces, such as macromolecules and
materials with fractal properties (Teixeira 1988).
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Fig. 2.5 Asymptotic behavior of the intensity scattered by particles with different dimensional-
ities: 1:1:1 (dimension 3), 1:1:w (dimension 2), and w:w:1 (dimension 1) where w D 1=100

(straight line), 2=100 (dashed line), and 5=100 (dashed with dotted line). Curves calculated
numerically by using (2.16) with N D 2000 [assintotic.m]

Exercise 2.4. Particles of uniform density and spheroidal shapes. (a) How does the
radius of gyration Rg depend on oblate and prolate shapes? (b) When does Rg cease
to depend on the ratio w between the smallest and largest dimensions of the particle?
Answer (a): By writing (2.15) in cylindrical coordinates .
; �; z/,

hr2i D 2�

vp

Z c

�c

Z 
.z/

0

.
 0 2 C z2/ 
 0 d
 0 dz :
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Fig. 2.6 Radius of gyration Rg as a function of ratio w between the smallest and the largest
dimension (2L). Particles of uniform density and spheroidal shapes, w D 1 implies sphere of
radius L [exellipsoid.m]

From the equation of an ellipsoid of revolution, .x=a/2 C .y=a/2 C .z=c/2 D 1, we
have 
 2.z/ D a2Œ1 � .z=c/2� and vp D 4� a2c=3. The analytical solution of the
integral leads to hr2i D .2a2 C c2/=5. Oblate shapes: a D L, c D wL where w < 1,
and R2g D .2C w2/L2=5. Prolate shape: c D L, a D wL, and R2g D .2w2 C 1/L2=5.
Answer (b): From the Rg � w graph, Fig. 2.6, it can be seen that for w < 0:1, Rg is
already close to the limit values:

p
2=5 L (oblates) and

p
1=5 L (prolates).

� � �

Suggestion: Calculate the scattering curve by using (2.16) in the Guinier region
and numerically obtain the radius of gyration for particles with different dimension-
alities.

� � �

2.3.4 Polydisperse Systems and Dispersion of Size

The kinematic intensity in polydisperse systems, i.e. composed by different particles
without interacting with each other, can be treated as the sum of the intensities
of monodisperse systems, (2.6) or (2.13). So, I.Q/ D ITh

P
j Nj Pj.Q/ where the

index j specifies each of the independent systems that comprise the total system
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(polydisperse). Within the approaching of particles of uniform density in a solvent
of electronic density 
0, Pj.Q/ D . N
j � 
0/2 hjFTfsj.r/gj2i and weight

Cj.0/ D NjPj.0/ D Nj. N
j � 
0/2v2p;j
of the contribution of each system j in the scattered intensity is determined by the
number Nj of particles j, and their scattering power in relation to the media. The
intensity in polydisperse systems in the limit Q ! 0 remains

I.Q/ D I.0/ e � 1
3 Q2R2g ;

but the radius of gyration is given by

R2g D
P

j Cj.0/ hr2ij
P

j Cj.0/
(2.17)

where hr2ij is the mean square radius of the j particles, and I.0/ D ITh
P

j Cj.0/.
A very common type of polydisperse system found in many real situations is the

one formed by particles with the same electronic density N
, but presenting variations
in shape and size. This allows rewriting the expression of intensity as

I.Q/ D ITh . N
 � 
0/2
X

j

NjhjFTfsj.r/gj2i : (2.18)

In the most general cases of particles having different morphologies, the analysis
of scattering curves is often infeasible. On the other hand, when the particles have
the same shape, e.g. spherical particles embedded in a homogeneous liquid or
solid matrix, the dispersion of size softens the interference fringes that normally
occur in the intensity curve, making it easier to analyze the asymptotic behavior in
the Porod region. Determining the size distribution (point of interest in research
involving many nanoparticle synthesis) is possible under certain circumstances.
When the shape function depends only on the dimensional variable L of the particle,
sj.r/ ! s.L; r/ and Nj ! Np.L/ dL where N is the total number of particles in
the system and p.L/ is the size distribution function so that

R1
0

p.L/ dL D 1. The
intensity in (2.18) is thus given by the integral

I.Q/ D N ITh . N
 � 
0/2
Z 1

0

p.L/ hjFTfs.L; r/gj2i dL ; (2.19)

and the radius of gyration in (2.17) becomes

R2g D
R1
0

p.L/ v2p.L/R2g.L/ dL
R1
0

p.L/ v2p.L/ dL
: (2.20)
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Rg.L/ is the radius of gyration of the particles whose value of dimensional variable
is between L and L C dL.

Intensity curves with asymptotes 1=Q4 are associated with regular particles
without surface fractality and without sharply planar or linear character—ratio
between smallest and largest size a lot greater than 1/10. In such cases, it is possible
to show that the integral in (2.19) is

N
Z 1

0

p.L/ hjFTfs.L; r/gj2i dL ' 2�

Q4
N
Z 1

0

p.L/As.L/ dL D 2�
NhAsi

Q4
D 2�

A

Q4

(2.21)

in the region where the interference fringes are softened by the size distribution
p.L/. As.L/ is the surface area of the particles with size L, and A D NhAsi is the
total surface area of the N particles, corresponding to the total area of the interface
between particles and solvent, that is, between materials with densities N
 and 
0.

I.Q/ D 2� ITh . N
 � 
0/2 A

Q4
(2.22)

is known as the Porod’s law and can be observed in several systems consisting of
materials with two different electron densities (Craievich 2002).

� � �

Exercise 2.5. Spherical particles, besides being analytically tractable, quite often
occur in the synthesis of nanoparticles. Considering a disperse system of spherical
particles with continuously distributed radius around a most likely value a0. (a)
Make the theoretical demonstration7 of Porod’s law in (2.22). (b) What is the
relationship between visibility of the fringes and dispersion of size (radius)?
Answer (a): When s.L; r/ is the shape function of a spherical particle of radius a, it
follows from (1.38) that

hjFTfs.L; r/gj2i D v2p.a/‚
2.Qa/ D .4�a3/2

�
sin.Qa/ � .Qa/ cos.Qa/

.Qa/3

	2
D

' 8�2
�

a2

Q4
C 1

Q6
C
�

a2

Q4
� 1

Q6

�
cos.2Qa/ � 2a

Q5
sin.2Qa/

	
:

Discarding terms with Q�5 and Q�6, and substituting this expression in (2.19) with
the radius a in the place of the dimensional variable L,

7See Guinier (1994, p. 336).
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I.Q/ ' ITh . N
 � 
0/2 2�N

Q4

Z
p.a/4�a2Œ1C cos.2Qa/� da ' 2� ITh . N
 � 
0/2 A

Q4
:

The higher the dispersion of size distribution and the Q values, the more the cosine
contributions tend to cancel each other so that

R
p.a/4�a2 cos.2Qa/ da ' 0, thus

leading to the Porod’s formula (or law) as we wanted to demonstrate.
Answer (b): Fringes are no longer visible when cos.2Qa/ ranges from �1 to C1
within a small range of the a values, i.e. when Q > �=�a where �a represents the
dispersion of values such as the full width at half maximum of the distribution p.a/.

Exercise 2.6. Consider a non-Gaussian distribution of spherical particles. (a) Sim-
ulate the scattering curve. From what value of Q does the curve become smooth
(without fringes)? (b) Compare values of gyration radius Rg and average surface area
hAsi with those obtained by Gaussian distributions capable of generating similar
scattering curves. In what circumstances is it possible to clearly distinguish between
Gaussian and non-Gaussian size distributions?
Answer (a): One of the most common non-Gaussian distribution is the log-normal
distribution

p.a/ D 1

a �n

p
2�

e �.ln a�ln b/2=2�2n ;

whose variable b D a0 e�
2
n depends on the value of a0 (most probable radius) and

of the standard deviation in logarithmic scale, �n. As expected, Exercise 2.5(b), the
fringes disappear for Q > �=�a where �a is the full width at half maximum of
p.a/. As for example, the two distributions shown in Fig. 2.7 (inset), �a D 23:5Å

and 36.3 Å, which implies that the regions without fringes have Q > 0:13Å
�1

and

Q > 0:08Å
�1

, respectively.

Answer (b): Let p.a/ D 1

�
p
2�

e �.a�a0/2=2�2 be the Gaussian distribution used

for the sake of comparison.8 In Table 2.1, the parameters of the two distributions
resulting in similar curves are compared. The values are no longer compatible when
the log-normal distribution is very asymmetric. However, in these cases � & a0=3,
implying in a significant fraction of particles with null radius (a D 0), a fact that
can be used as a feasibility criterion of the Gaussian model for describing the size
distribution.

� � �

8For large values of � , such as � > a0=3, the normalization constant is reset so thatR
1

0 p.a/ da D 1.
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Fig. 2.7 Normalized intensity curves of X-ray scattering by disperse systems of spheres with
uniform density and different size distributions (inset). Reference curve of the scattering by spheres
of radius a0 (most probable radius of the distributions) is also shown [exlognormal.m]

Table 2.1 Parameters of the log-normal and Gaussian size distri-
butions producing similar scattering curves

Log-normal Gaussian
a0 (Å) �n Rg (Å) hAsi (Å2) � (Å) Rg (Å) hAsi (Å2)

50 0.1 42.0 3.3�104 5.9 42.0 3.2�104
50 0.2 53.2 3.7�104 13.7 53.0 3.4�104
100 0.3 153.5 1.8�105 49 145.1 1.6�105
100 0.7 1095 8.8�105 397 850 24.1�105

Rg and hAsi calculated from (2.20) and (2.21), respectively. For
comparison details see routine exlognormal.m

Summary
— Scattering power of discrete particles:

P.Q/ D P
a

P
b fa.Q/ f �

b .Q/
sin.Qrab/

Qrab

— Scattering power of uniform particles in solution:

P.Q/ D . N
 � 
0/2 hjFTfs.r/gj2i

— Low angle approach, limit Q ! 0, Guinier region:
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P.Q/ D P.0/ exp
�� 1

3
Q2R2g

�

— Particle’s gyration radius, Rg:

R2g D �
1
2

P
a

P
b r2ab

�
=N2

at (discrete) or R2g D 1
vp

R
vp

r2dV (uniform)

— Asymptotic behavior, regular uniform particles, Porod region:

P.Q/ D 2� . N
 � 
0/2 A=Q4

— Total surface area of particles with p.L/ size distribution:

A D N hAsi D N
R1
0

p.L/As.L/ dL

— Average gyration radius:

R2g D
R1
0

p.L/ v2p.L/R2g.L/ dL
R1
0

p.L/ v2p.L/ dL

— Size distributions:

p.L/ D e�.L�L0/2=2�2

�
p
2�

(Gaussian) and p.L/ D e�.ln L�ln b/2=2�2n

L �n

p
2�

(log-normal)

b D L0 exp.�2n /



Chapter 3
Complex Systems

Disperse systems represent extreme situations of total absence of correlation
between the scattering units. There are internal correlations only.1 At the other
extreme are the crystalline systems where the correlations between the scattering
units are constant, resulting in understanding the long-range order in macroscopic
scales. Between these two extreme situations are the systems with arbitrary
correlations, which are complex systems where there are correlations between the
scattering units, but these correlations may vary along the physical length of the
systems.

The mathematical description of complex systems requires a formalism that
is flexible enough to describe both internal correlations in scattering units with
nontrivial structures and possible correlations between the scattering units. In
the previous chapter we studied two relatively simple models of scattering units:
particles with discrete internal structure and particles of uniform density. However,
these models do not cover all the possibilities. There are cases where an atom-by-
atom description is unviable, but the internal density fluctuations must be taken into
account.

Samples denser than gas and dilute solutions often exhibit diffraction patterns
more rich in details than that provided by the simple analysis of the internal structure
of the scattering units. For example, in the case of liquids, a discrete electronic
density, such as the one in (1.51), allows to describe only the individual scat-
tering of molecules because the internal correlations—intramolecular interatomic
distances—are well defined. But a more elaborate formulation is lacking to take
into account the mutual interference between molecules in positions with some
correlation. The mutual interference is determined by the intermolecular interaction

1In a gas, the scattering units are molecules and the internal correlations producing interference
effects are the interatomic distances rab, e.g. (2.7). In the case of monatomic gas, the atoms are
the scattering units and the internal correlations are the atomic orbitals contributing to the atomic
scattering factor, (1.46).

© Springer International Publishing Switzerland 2016
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82 3 Complex Systems

potential, which in case of short-range interactions, the correlations are often purely
statistical.

The formulation required to describe the kinematic scattering by any type of
sample is obtained by taking as a starting point an arbitrary electron density 
.r/,
whose intensity

I.Q/ D ITh jFTf
.r/gj2 D ITh FTf
.r/g FTf
.r/g� D ITh FTf
.r/ � 
.�r/g

D ITh FTfC.u/g ; (3.1)

is written in the most general way possible, making it clear that the intensity in the
reciprocal space is the FT of the correlation function

C.u/ D 
.r/ � 
.�r/ D
Z

.r/
.r C u/ dV : (3.2)

Any correlation between the positions r of the electronic charges is expressed
in the correlation function. The vector u represents the relative positions between
the charges. The higher the value of C.u/, the greater the number of times that the
separation u between charges occurs in the sample, which means the greater the
number of charges separated by u. In most cases, charges are atomic electrons and
u is the vector separation between pairs of atoms or atom groups such as molecules
and particles.

Note 3.1: Patterson Function
The deduction of the correlation function in (3.2), also called Patterson function,
uses the equality g.u/ D f .x/ � f �.�x/ D R

f �.x/f .x C u/ dx. Here we will make
a general deduction of this equality whether f .x/ is a real or complex function.
Given that

FTff .x/g� D
Z

f �.x/e�iQ xdx D
Z

f �.�x/eiQ xdx D FTff �.�x/g ;

and recalling that the product of the FTs is equal to the FT of the convolu-
tion, (1.32), it is easy to see that

jFTff .x/gj2 D FTff .x/gFTff .x/g� D

FTff .x/gFTff �.�x/g D FTff .x/ � f �.�x/g D FTfg.u/g :
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On the other hand, it is also true that

FTff .x/gFTff .x/g� D
Z

f .x0/eiQ x0

dx0
Z

f �.x/e�iQ xdx D
“

f �.x/f .x0/eiQ .x0�x/dx0dx :

Replacing x0 with u C x and dx0 with du, we reach

FTff .x/gFTff .x/g� D
Z �Z

f �.x/f .x C u/dx

	
eiQ udu D FTfg.u/g ;

thus demonstrating that

g.u/ D f .x/ � f �.�x/ D
Z

f �.x/f .x C u/dx D
Z

f �.x � u/f .x/dx ;

and that g.u/ is a symmetric (even) function in the case of f .x/ being a real
function.

The description by means of the correlation function of the numerous forms of
matter to be organized, from an atomic scale all the way to a microscopic one, is
what matters from the cinematic intensity point of view. The correlation function
is independent of phase factors, namely the determination of 
.r/ depends on the
phase of scattered X-ray waves as summarized in (1.53), but C.u/ depends only on
the intensity, which is a real value with a null phase. Consequently, the correlation
function represents the set of all the structural information directly accessible via
diffraction (kinematic) experiments of X-rays that can be, in principle, determined
by inverse FT of the intensity, Sect. 1.2.1, i.e.

C.u/ D FT�1fI.Q/=IThg D 1

.2�/3

Z
ŒI.Q/=ITh� e

�iQ�u dVQ : (3.3)

There is, however, an experimental difficulty in measuring I.Q/ across the
reciprocal space as required by the integral above. One of the reasons is that the
maximum value of Q is limited by energy, as already discussed, (1.49). Even using
high energy X-rays to make it possible to measure intensity with large reciprocal
vectors (3.3) is a vector integral of volume and, if the sample is not isotropic, it
will be necessary to measure the scattered intensity as a function of module Q
of the reciprocal vector on different incidence planes, implying in very elaborate
experimental procedures. Therefore, besides the type of sample to be analyzed:
liquids, colloids, glassy or amorphous materials, polycrystals, crystals, etc., one
must keep in mind what information is accessible within the experimental conditions
available. The sections and chapters that follow are intended to demonstrate how the
correlation function and the intensity behave in various types of samples arranged
in an ascending order of the degree of correlation between the scattering units.
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3.1 Internal Correlations in Particles

In systems where the scattering units are randomly oriented—absence of preferred
orientations—the scattering power P.Q/ of each unit corresponds to the average
over all orientations and depends only on the module of the vector Q, such as seen
in Chap. 2 for disperse systems of simple particles. This makes it possible to assume
that there is an abstract mathematical function equivalent to a spherosymmetric
electron density 
s.r/, such that

P.Q/ D jFTf
s.r/gj 2 D
ˇ̌
ˇ̌4�

Z

s.r/

sin Qr

Qr
r2dr

ˇ̌
ˇ̌
2

(3.4)

follows from (1.36). In systems where the particles are in solution, 
s has values
related to the electron density 
0 of the medium, so there is no need to explicitly
write the difference 
s � 
0 in the equations below.

Even in the cases of particles with a spherical symmetry where 
s.r/ corresponds
to the particle’s actual electron density, there is not an unambiguous choice for
the density function since P.Q/ involves a quadrature operation, precluding any
mathematical recourse from reaching the expression of 
s.r/ with 100 % reliability.
The unambiguous information available on the electron density is an internal
correlation function of the particle

c.u/ D 
s.r/ � 
s.�r/ D
Z

s.r/ 
s.r C u/ dV : (3.5)

Since 
s.r/ is a spherosymmetrical function, c.u/ is independent of the direction of
the vector u considered in the integration of 
s.r C u/, implying in a simplification
in the expression of the particle’s scattering power, which is given by

P.Q/ D FTfc.u/g D 4�

Z
c.u/ u2
„ƒ‚…

p.u/

sin Qu

Qu
du D 4�

Z
p.u/

sin Qu

Qu
du : (3.6)

However, instead of describing the internal correlations of the particle by the
function c.u/, which always has a maximum value in u D 0, Fig. 3.1a, it is more
convenient, for purposes of interpretation of the particle’s structure, to express the
correlations by the distribution of distances between electronic charges,

p.u/ D c.u/ u2 D FT�1fP.Q/g u2 D 1

2�2

Z Qf

0

P.Q/Qu sin.Qu/dQ ; (3.7)

Figure 3.1b, usually called Par Distance Distribution Function (PDDF) (Lindner and
Zemb 2002).

From the experimental point of view, the determination of p.u/ has a limited
resolution by the final scattering angle 2�f, available in a given instrumental
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Fig. 3.1 (a) Internal correlation function, c.u/ D 
s.r/�
�

s .�r/, and (b) par distance distribution
function (PDDF), p.u/ D c.u/ u2, for an uniform sphere of radius a

arrangement or considered in the calculation of P.Q/, where Qf D Qmax sin �f.
Alternatively, curve fitting methods are also used in determining p.u/. In cases
where prior information about the particle’s structure is available, it is possible to
write the PDDF in terms of a few adjustable parameters. The particle’s scattering
power, (3.6), is then calculated as a function of these parameters, which are adjusted
in order to reproduce the experimental intensity curve I.Q/ D N ITh P.Q/ from a
sample containing N dispersed particles.

� � �

Exercise 3.1. General case of spherical particles with radial electron density. (a)
Numerically solve the particle’s internal correlation function c.u/ as given by (3.5).
(b) By choosing a thick shell sphere as example, calculate P.Q/ from the (3.6),
determine p.u/ by the inverse FT of P.Q/ and compare with the expected PDDF.
What is the minimum value of Qf for the PDDF to be close to the expected one?
(c) Generate random positions within the particle’s volume and build a histogram of
the distances duly weighed with the relative values of the electron density of each
position. What is the similarity between histogram and PPDF?
Answer (a): The internal correlation function is an integral of volume that is inde-
pendent of the direction of the vector u. Taking r D rŒsin � cos'; sin � sin'; cos ��
and u D uŒ0; 0; 1�,

c.u/ D
Z

s.r/
s.jr C uj/ dV D 2�

Z
1

0

Z �

0


s.r/ 
s.
p

r2 C u2 C 2ru cos � / r sin � d� rdr :

When changing by variable z D r2 C u2 C 2ru cos � , the function

p.u/ D u2c.u/ D � u
Z 1

0


s.r/

"Z .rCu/2

.r�u/2

s.

p
z/ dz

#

rdr ; (3.8)
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Fig. 3.2 PDDF calculated by different methods: numeric (num. vl.), (3.8); inverse FT of P.Q/ (inv.

FT), (3.7) with Qf D 0:04Å
�1

; and histogram with Nr D 4000 random positions (hist.), (3.9).
Inset: spherical particle with relative densities 
a D 2 and 
b D �1, and radii a D 50:0 nm and
b D 37:5 nm [exshell.m]

can be calculated numerically whatever the mathematical expression of 
s.r/.
Answer (b): In the case of the particle example illustrated in Fig. 3.2, p.u/ D
u2FT�1fP.Q/g is very close to the numerical values Qf & 20=a where a is the
particle’s outer radius.
Answer (c): As shown in Fig. 3.2, the histogram

n.u/ D 2

NrX

iD1

NrX

j>i


s.ri/ 
s.rj/

Z uC�u

u
ı.u 0 � rij/ du 0 ; (3.9)

tends to be proportional to p.u/ the greater the number Nr of random positions ri.
The integral

R uC�u
u ı.u 0 � rij/ du 0 calculates the number distances rij D jri � rjj with

values between u and u C�u where �u is the bin width of the histogram.

� � �

3.1.1 Molecules, Proteins, and Discrete Particles in General

Upon comparing the expressions of scattering power in (2.6) and (3.6),

P.Q/ D 4�

Z
p.u/

sin Qu

Qu
du D

X

a; b

fa.Q/f
�
b .Q/

sin Qrab

Qrab
;

it is easy to see that
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4�p.u/ D
X

a; b

fa.Q/f
�
b .Q/ ı.u � rab/ (3.10)

provides the exact solution for P.Q/. Although it does not correspond to the actual
PDDF nor to the one that is experimentally accessible via inverse FT, (3.7), which
has no dependence on Q, this expression of p.u/ is very useful to simulate scattering
curves, as we shall demonstrate in the next topics.

3.1.1.1 Limit of Small Angle

In the limit of small angle, Q ! 0, when the atomic scattering factors are
interchangeable with an average value fm.0/,

4�p.u/ D f 2m.0/
X

a; b

ı.u � rab/ (3.11)

is proportional to the histogram of the particle’s internal interatomic distances, a
fact that makes the calculation of P.Q/ more efficient in computational terms, as
mentioned in Note 3.1. The root mean square radius, or gyration radius, (2.10), can
also be obtained from the function p.u/ whereas

R
p.u/ u2 du

2
R

p.u/ du
D
 
1

2

X

a; b

r2ab

!

=N2
at D R2g : (3.12)

Note 3.2: The calculation of P.Q/ in proteins and macromolecules with thousands
of atoms is done much more efficiently when taking into account the limit of small
angle. By replacing (3.11) in (3.6), we have

P.Q/ D f 2m.0/
Z

N.u/
sin Qu

Qu
du (3.13)

where N.u/ du is the number of times that the interatomic distances rab with values
between u and u C du occur in the particle. The saxs.m routine reads pdb files
(see Sect. 2.3.1) and executes this numerical integral with resolution du D 0:01Å
so as to provide P.Q/ and the histogram N.u/du.

� � �

Exercise 3.2. Lysozyme was the second protein structure, the first of the category
of enzymes, to be determined by X-ray methods. Understanding the correlations
between the physical structure and the biochemical activity of the enzymes was
started with lysozyme (Vocadlo et al. 2001). (a) Given the structure of the lysozyme,
as in file 2LYZ.pdb (Protein Data Bank: http://www.pdb.org/), calculate the curve

http://www.pdb.org/
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Fig. 3.3 Histogram of interatomic distances in lysozyme. Resolution du D 0:01Å. Inset: amino
acid chains of lysozyme (PDB ID: 2LYZ; Protein Data Bank: http://www.pdb.org/). The function
p.u/ (dashed white line) obtained by (3.7), with Qf D 0:75Å�1, is compared to the histogram
[exlysozyme.m]

Fig. 3.4 Lysozyme’s scattering power calculated by: (1) small angle approach, (3.13); (2) with
f 2m.Q/ in the place of f 2m.0/ in the (3.13); and (3) exact solution, (2.6) [exlysozyme.m]

P.Q/ from the histogram N.u/du of the interatomic distances, e.g. Fig. 3.3. Up to
which value of Q is the small angle approach satisfactory within an accuracy of
10 %? (b) Compare the PDDF determined from the small angle scattering curve
with the histogram of the interatomic distances.
Answer (a): In lysozyme, whose gyration radius is Rg D 14:0Å, the small angle
approach, where 4�p.u/ ' f 2m.0/N.u/, differs from the exact solution gradually
with the increase of Q, the relative difference being above 10 % when Q > 0:75Å�1.
This value is of the order of ten times larger than the Guinier region, Fig. 3.4.
The origin of the systematic increase of the relative difference lies in the fact of
the atomic scattering factors decrease as Q increases, which can be remedied by

http://www.pdb.org/
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exchanging fm.0/ for fm.Q/. However, in the case of lysozyme and of any other
particle formed by different atoms, the solution with 4�p.u/ ' f 2m.Q/N.u/ also
fails to coincide with the exact solution out of the small angle interval.
Answer (b): The distances between nearest neighbors are only resolved when Qf !
1, so that p.u/ D u2FT�1fP.Q/g in the small angle region corresponds to a low
resolution histogram, Fig. 3.3.

� � �

3.1.1.2 General Wide Angle Solution

Outside the limit of small angle, in the event of disperse systems where there are
measurable intensities at relatively wide angles, it is convenient to rewrite (3.10) as

4�p.u/ D
X

a

jfa.Q/j2 ı.u/C
X

a; b¤a

fa.Q/f
�
b .Q/ ı.u � rab/ D

X

a

jfa.Q/j2 Œı.u/C Np.u/� ;

from where the following equalities are reached2

FT

�
c.u/

P
a jfa.Q/j2

�
D FT

�
ı.u/

4�u2

�

„ ƒ‚ …
D 1

CFT

� Np.u/
4�u2

�
D P.Q/

Natf 2m.Q/
D S.Q/ :

(3.14)
Since S.Q/ D 1C FTfNp.u/=4�u2g, the normalized PDDF

Np.u/ D 1

Natf 2m.Q/

X

a; b¤a

fa.Q/ f �
b .Q/ ı.u � rab/ ; (3.15)

is experimentally accessible through the relation

Np.u/ D 4�u2 FT�1fS.Q/ � 1g D 2

�

Z Qf

0

ŒS.Q/ � 1�Qu sin.Qu/ dQ ; (3.16)

whose resolution depends on both Qf and the statistic of photon counting above the
background intensity due to, for instance, Compton scattering. But what actually is
obtained from the inverse FT operation is something close to

Np.u/ D 1

Nath�2i
X

a; b¤a

�a �
�
b ı.u � rab/ (3.17)

where �a D Q�1
f

R Qf
0

fa.Q/ dQ and Nat h�2i D PNat
aD1 j�aj 2. In particles composed

of different chemical elements, the weights �a of the contributions of each element

2Recalling that p.u/ D u2c.u/ and
P

a jfa.Q/j2 D Nathf 2.Q/i D Natf 2m.Q/.
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are only necessary for a detailed comparison of experimental and theoretical Np.u/
curves obtained from (3.16) and (3.17), respectively. The relative frequencies with
which the separations rab occur in the particle structure can be extracted directly
from the experimental curve when the elements have equal or near atomic numbers
such that �a �

�
b =h�2i ' 1. Alternatively, a common approach is to take �a �

�
b =h�2i

by fa.0/ f �
b .0/=f 2m.0/ since it produces no significant variation in (3.17).

Note 3.3: Considering that Np.u/ is obtained via (3.16). The upper limit of
integration, Qf, introduces oscillations of period 2�=Qf in the solution. A resource
to minimize these unwanted oscillations is to convolute the solution with a
rectangular function of unit area and width equal to the period of the oscillations
as shown in Fig. 3.5. The use of this resource is, however, limited to situations
where the interatomic distance values have differences greater than the period of
the oscillations.

Typical disperse systems where there are measurable intensities at high angles
are aggregates in solid or in powder form whose constituent particles do not present
preferred orientations. Despite the high concentration of particles, the classification
of disperse systems is appropriate because the scattered intensities are characteristic
of the internal structure of the particles and the effects of correlations between
particles are negligible at wide angles. The most common among these systems
are the polycrystalline samples where the particles are crystals of submicroscopic
dimensions. Particles with dimensions in submicron scales have high densities of
interatomic distances above a few nanometers, making it difficult to accurately
identify all distances and limiting the resolution of the structure. Consequently, the

Fig. 3.5 Example of normalized PDDF, (3.16) with Qf D 40Å�1, before (before conv.) and after
(after conv.) of convolving with a rectangular function (red line) of unit area and width 2�=Qf.
Hypothetical structure: gold (Au) nanocrystals with 1 nm in diameter [exgoldnano0.m]
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Fig. 3.6 Simulated X-ray scattering by Au nanoparticles with diameters of 1, 2, and 4 nm.
Disorder in the atomic positions: 5 % (solid lines) and 1 % (dashed line) of the minimum
interatomic distance (2.88 Å). Inset: Au nanoparticle with a diameter of 1 nm [exgoldnano1.m]

structural analysis through Np.u/, (3.15), or equivalently by the so-called atomic pair
density function (PDF),

h.u/ D Np.u/
4� u2

D 1

4�u2Natf 2m.Q/

X

a; b¤a

fa.Q/ f �
b .Q/ ı.u � rab/ ; (3.18)

is appropriate for studies of local order of the systems, which means determining the
correlations between nearest neighbors (Egami and Billinge 2003). The complete
determination of the non-local average structure of polycrystalline samples uses
another formalism as we will discuss later.

� � �

Exercise 3.3. Gold nanoparticles have unique optical and electronic properties, as
well as molecular affinities. These are a few reasons that make them the subject
of intense research with a wide range of applications in many areas. Assuming
spherical nanoparticles with an ordered crystalline structure, simulate the X-ray
scattering curve. Note: neglect Compton scattering. (a) What happens in the wide
angle region when increasing the diameter of the particles? (b) What is the effect of
a small random disorder in the atomic positions? (c) What is the minimum X-ray
energy to identify the atomic distances between the nearest neighbors up to 10 Å?
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Answer (a): Generating atomic positions3

ra D a0 Œm; n; p�C a0 fŒ0; 0; 0�; Œ1=2; 1=2; 0�; Œ1=2; 0; 1=2�; Œ0; 1=2; 1=2�gm; n; p

within a sphere with the desired diameter of the nanoparticle, where a0 D 4:0782

Å and m,n,p 2 Z, calculate the histogram N.u/du of interatomic distances and then

P.Q/ D jfAu.Q/j2
Z

N.u/
sin Qu

Qu
du :

The increase in diameter gives rise to increasingly more defined diffraction
peaks, Fig. 3.6. The widths of the peaks are proportional to the inverse of the
diameter. For example, the isolated peak at Q D 4:36Å�1 has a full width at half
maximum of �Q ' 7:26/diameter, in the same way that the peak around Q D 0, as
seen in Exercise 1.6, indicating that the widths of the diffraction peaks are related
to FT of the particle shape (a nanocrystal in this case).
Answer (b): By adding small random displacements dr D Œdr1; dr2; dr3�, to
the positions ra of the crystalline lattice, it is possible to simulate the effect
of disorder in the scattering of X-rays. Figure 3.6 shows scattering curves with
jdrij < 0:05 a0=

p
2, corresponding to 5 % of the smallest interatomic distance.

P.Q/ ! P
a jfa.Q/j2 and S.Q/ ! 1 the greater the disorder and the value of Q.

Quantitatively, the effect is treatable within the Debye–Waller approach (Note 3.4),4

leading to

S.Q/ D 1C ŒS0.Q/ � 1� e�Q2hdr2i (3.19)

where S0.Q/ represents the situation without disorder and hdr2i is the mean square
deviation5 around the positions ra. For disorder of 5 %, hdr2i D 7 � 10�3 Å2.
Answer (c): The scattering curve needs to go beyond Qf D 10Å�1 to identify all
distances up to 10 Å, as in the case of Qf D 20Å�1, Fig. 3.7. For example, in an
experimental setup where the maximum angle of intensity measurement is 2�f D
60ı, it would require photons of 60 keV to reach Qf ' 20Å�1.

� � �

3The crystalline structure of Au is face-centered cubic (fcc).
4See also Egami and Billinge (2003, p. 31), or Als-Nielsen and McMorrow (2001, p. 140).
5Mean square deviation: hdx2i D PN

iD1.xi � Nx/2=.N � 1/.
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Fig. 3.7 PDDFs extracted from simulated scattering curves in Au nanoparticles and compared
to the histogram (hist.) of interatomic distances (inset). Scattering curves with Q ranging from
0 to 10 Å�1 and from 0 to 20 Å�1 require X-rays with minimum energies of 10 keV and 20 keV,
respectively. Inset: interatomic distances in a particle with diameter of 4 nm and disorder of 5 %
(Fig. 3.6) [exgoldnano2.m]

Note 3.4: Approximation of Debye–Waller generalized for disordered and static
distributions. In the case of the correlation function, c.u/, of a discrete distribution
of atoms is such that

4�u2c.u/ D
X

a

jfa.Q/j2 ı.u/C
X

a; b¤a

fa.Q/f
�
b .Q/G.u � rab/ ;

a procedure analogous to that used in (3.14) leads to

S.Q/ D 1C 1
P

a jfa.Q/j2
X

a; b¤a

fa.Q/f
�
b .Q/FT

�
G.u � rab/

4�u2

�
: (3.20)

The distances rab represent the ideal configuration of the structure without disorder
so that Np.u/ as given in (3.15) is a series of delta functions responsible for
the function S0.Q/ of the ideal structure. Disorders of a random nature without
preference of direction or atomic site cause uncertainties in the values of rab,
transforming the delta function into Gaussian G.u/ of unit area and standard
deviation � D p

2hdr2i where hdr2i is the mean square deviation of the atomic
positions in relation to the ideal positions. In other words,

ı.u � rab/ ! G.u/ � ı.u � rab/ D G.u � rab/

since they all have the same Gaussian standard deviation, for instance, as seen in
the histogram in Fig. 3.7. The FT above has an approximate solution,
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Note 3.4: (continued)

FT

�
G.u � rab/

4�u2

�
D 1

�
p
2�

Z
exp

�
� .u � rab/

2

2�2

	
sin Qu

Qu
du ' sin Qrab

Qrab
e� 1

2Q2�2 :

(3.21)

The minimum values of rab in solids are of the order of 2 Å, implying that
this approximate solution is very good even for � values as large as 0.2 Å;
it can be verified numerically, cf. routine debye.m. By replacing the integral
solution, (3.21), in (3.20), (3.19) is demonstrated, as well as the validity of the
approximation of Debye–Waller in a situation where the disorder is independent
of thermal vibrations, Sect. 4.3.1.

3.1.2 Particles of Random Conformation

Up until now we have dealt with systems formed by one (monodisperse) or more
(polydisperse) types of particles with deterministic structures: a single electron
density function describing all particles of a given type. There are systems, however,
whose particles are distinct from each other, without having two identical particles
in the entire system. Long chains of monomers, which are known as polymers, are
typical examples of systems where the only information available are the average
values of the chain conformations in solution.

Mathematical models of the possible conformations are essential for quantitative
analysis of the experimental data of radiation scattering by these systems. In the
most simple models of random conformations, the positions

rj D ` Oej C rj�1

of identical monomers along the chain have separation vectors of constant module,
`, but with directions Oej varying within certain limits imposed by the physical
feasibility of the models, Fig. 3.8. In the model commonly called random walk
(RW), all values of the scalar products Oej � Oej�1 2 Œ�1; 1� have equal probabilities,
e.g. Fig. 3.9.

The scattering power of X-rays by a single chain with Nm monomers has the
exact solution

P.Q/ D
NmX

jD1

NmX

kD1
Fj.Q/F�

k .Q/ eiQ�rjk ;

in analogy to (2.4). Fj.Q/ is the monomer’s form factor, as in (1.52), and in the
particular orientation of the j-th position in the chain. In disperse systems containing



3.1 Internal Correlations in Particles 95

Fig. 3.8 System of relative coordinates O� j, O'j, and Oej to describe the junction between monomers
of a polymer

Fig. 3.9 Monomers chains (polymers) generated according to the RW model. (a) Chain of 1000
and (b) 10;000 monomers. For improved view of the polymer’s spatial conformation, the color
varies from blue to red along the chains. Monomer length ` D 0:154 nm [polymerchain.m]

N chains of Nm monomers each, the form factors are replaced by the monomer’s
scattering power,

Fj.Q/F�
k .Q/ ! hjF.Q/j2i D Pm.Q/ D

NatX

a;b

fa.Q/f
�
b .Q/

sin Qrab

Qrab
;

and the kinematic intensity I.Q/ D N ITh P.Q/ scattered by the system depends on
the average chain conformation, which means
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P.Q/ D hP.Q/i D Pm.Q/
X

j; k

heiQ�rjk i D Pm.Q/
X

j; k

hcos.Q � rjk/i (3.22)

where rjk D rk � rj D ` .OejC1 C OejC2 C � � � C Oek/ D `
Pk

˛DjC1 Oe˛ .
Since there is no long-range order, it is necessary to concern only with the small

angle solution that is obtained by the expansion in Taylor series,

hcos.Q � rjk/i ' 1 � 1

2
h.Q � rjk/

2i D 1 � 1

2
Q2hr2jk cos2 �jki :

In the absence of preferential directions for the vectors rjk, hr2jk cos2 �jki D
hr2jkihcos2 �jki and

hcos2 �jki D 1

4�

Z 2�

0

Z C1

�1
cos2 �jk d.cos �jk/ d'jk D 1

3
:

Substituting in (3.22),

lim
Q!0

P.Q/ D Pm.Q/
X

j; k

�
1 � 1

6
Q2hr2jki

�
D Pm.Q/N

2
m e� 1

3Q2 NR2g ; (3.23)

thus demonstrating that in the small angle limit, the experimental scattering curve is
determined by the mean square gyration radius of the chains NR2g D hR2gi. Pm.Q/ '
Pm.0/ in the small angle region since NRg >> `.

In a single chain,

r2jk D `2
kX

˛DjC1

kX

ˇDjC1
Oe˛ � Oeˇ D `2.k � j/C `2

kX

˛; ˇ¤˛
Oe˛ � Oeˇ :

But in the specific case of the RW model where the versors Oe˛ are totally
independent, the second term of this equation vanishes when calculating the average
value of the chains, resulting in hr2jki D `2.k � j/ and

hR2gi D
*
1

2N2
m

NmX

j; k

r2jk

+

D `2

N2
m

NmX

j; k>j

.k � j/ D `2

2N2
m

NmX

jD1
j.j � 1/ ' 1

6
Nm`

2 : (3.24)

If the length and molecular weight of the monomer is known, the number Nm of
monomers in each chain is easily calculated based on the polymer’s molecular
weight. The compatibility between experimental values of the mean square gyration
radius and the values given in (3.24) make it possible to check the validity of the
hypothesis of free-junction model (RW model) for a given polymer in solution
(Lindner and Zemb 2002).
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3.1.2.1 Asymptotic Behavior

Another important characteristic of scattering by particles of random conformations
is the asymptotic behavior of S.Q/ D P.Q/=N2

mPm.Q/ when Q ! 1. The
analysis of this behavior requires solving (3.22) beyond the Guinier region where
the intensity curve has exponential decay with Q2. In any system where the vectors
rjk have random orientations,

hcos.Q � rjk/i D sin Qr

Qr
� G.r � rjk/ :

If the values of the modules rjk were well defined, the weight function G.r � rjk/

would be a delta function and hcos.Q � rjk/i D sin Qrjk=Qrjk as calculated
in the deduction of (2.6) or by the approximation of Debye–Waller for small
deviations, (3.21). On the other hand, if there is large dispersion in the values of
rjk, it follows that6

hcos.Q � rjk/i � e� 1
6 Q2hr2jki : (3.25)

With hr2jki D `2jk � jj and hR2gi D Nm`
2=6, (3.25) when substituted in (3.22)

provides7

S.Q/ D 2 .e�x � 1C x/=x2 where x D Q2hR2gi : (3.26)

(3.26) implies in asymptotic fall 1=Q2, as seen in the Kratky graphs (Glatter and
Kratky 1982) in Fig. 3.10. This asymptotic behavior is often observed in polymers
and denatured (unfolded) proteins in solution (Barbosa 2008; Lindner and Zemb
2002).

� � �

Exercise 3.4. Common plastic bags are generally made of polyethylene (PE),
chemically speaking it is the most simple polymer with a molecular weight ranging
from 100,000 to 200,000 g/mol. The chain (CH2–CH2–)n is comprised of monomers
with a molecular weight of 14 g/mol and a length of ` D 0:154 nm (bonding
length C–C). Through computer simulation, check the validity of the Debye formula
in (3.26).
Answer: The chain formation rule is given by the recursive relation

6The validity of this approximation for different weight functions can be checked by a numerical
comparison similar to that performed for verifying (3.21).
7Results obtained by the expansion in Taylor series of exp.�Q2hr2jki=6/ and using that
PNm

jD1; k>j.k � j/ n ' NnC2
m =Œ.n C 2/.n C 1/� for Nm ! 1. See also Lindner and Zemb (2002,

p. 268).
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Fig. 3.10 Simulated scattering curves across 500 chains of Nm monomers each, (3.22). Polymer
PE, free-junction model, e.g. Fig. 3.9. Theoretical curves (dashed line), (3.26), adjusted with
NR2g D 7:7, 22.0, and 37.3 nm2 [polymerkratky.m]

0

@
O� j

O'j

Oej

1

A D
0

@
cos �j cos'j cos �j sin'j � sin �j

� sin'j cos'j 0

sin �j cos'j sin �j sin'j cos �j

1

A

0

@
O� j�1
O'j�1
Oej�1

1

A (3.27)

where the versors O� j, O'j, and Oej are defined in Fig. 3.8. In the RW model there are no
restrictions in the junction angles, i.e. �j and 'j take on any values in the intervals
Œ0; �� and Œ0; 2��, respectively. Examples of chains generated by the RW model are
shown in Fig. 3.9.

Simulations of the average scattering generated by hundreds of chains are
compared to (3.26) in Fig. 3.10. Despite the limited statistical resolution, the
simulated curves follow the behavior foreseen in the theoretical curve for both
the chains of low (28,000 g/mol) and high (140,000 g/mol) molecular weight. The
values of hR2gi D 7:7, 22.0, and 37.3 nm2 used to adjust the theoretical curves are
very close to the 7.9, 23.7, and 39.5 nm2 provided by (3.24).

Although deduced from the RW model, the Debye formula can also describe
the scattering curve for other models, such as the model with limitation in the
junction angles where �j D 71˙ 2ı and 'j takes on only three values: 0 or ˙120ı.
The scattering curves have an asymptotic behavior 1=Q2 and the gyration radius
determined by the adjustment of the theoretical curves correspond to mean square
values, hR2gi, computed on ensembles containing thousands of virtual chains, as
shown in Fig. 3.11.
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Fig. 3.11 Statistical distributions of the values of R2g in virtual chains generated according to either
the free-junction model or limited-junction model (�j D 71˙ 2ı and 'j 2 Œ�120ı; 0; C120ı�).
Polymer PE with a molecular weight of 140,000 g/mol. Inset: comparative table between hR2gi from
the distributions and those obtained by adjusting the scattering curves (values in parentheses), as
in Fig. 3.10 [polymerRg.m]

� � �

Section Summary
— Kinematic intensity

I.Q/ D ITh FTfC.u/g

— General correlation function (Patterson function)

C.u/ D 
.r/ � 
.�r/ D R

.r/
.r C u/ dV

— Internal correlation function in systems of dispersed particles

c.u/ D 
s.r/ � 
s.�r/ D R

s.r/ 
s.r C u/ dV

— Particle scattering power

P.Q/ D FTfc.u/g D 4�
R

c.u/ u2 sin Qu
Qu du D 4�

R
p.u/ sin Qu

Qu du
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— Par Distance Distribution Function (PDDF)

p.u/ D c.u/ u2 D FT�1fP.Q/g u2 D 1
2�2

R Qf
0

P.Q/Qu sin.Qu/dQ

— Numerical solution for PDDF of spherosymmetric electron densities

p.u/ D c.u/ u2 D � u
R1
0

s.r/

hR .rCu/2

.r�u/2 
s.
p

r 0/ dr 0
i

rdr

— PDDF for discrete particles (general solution)

p.u/ D 1
4�

P
a; b fa.Q/f �

b .Q/ ı.u � rab/

— Atomic Pair Density Function (PDF)

h.u/ D p.u/

u2Natf 2m.Q/
D 1

4�u2Natf 2m.Q/

P
a; b¤a fa.Q/ f �

b .Q/ ı.u � rab/

3.2 Arbitrary Correlations Between Particles

Arbitrary correlations other than internal ones in particles arise in systems where
the potential of interaction affects the way the particles are distributed within the
sample’s volume. In the simplest situations, the interactions have enough strength
to establish some statistical order at short range, but leaving a few degrees of
freedom for the relative orientation between non-spherical particles, as in Fig. 3.12.
Strong interactions capable of imposing exact orientations are, in most cases, also
responsible for the long-range order in systems where the scattered intensities have
become intrinsically dependent on the reciprocal vector Q, and not only on its
module, Q. Apart from crystal systems that will be covered in the next chapter,
the X-ray scattering by any system of identical particles having effects of mutual
interference will be described from the electron density


.r/ D 
s.r/ � q.r/ : (3.28)

With the exception that the function 
s.r/ is not in principle spherosymmetric, (3.28)
can be treated in the same manner as used to describe a discrete distribution of
atoms, (1.51), where

q.r/ D
NX

nD1
ı.r � rn/ (3.29)
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Fig. 3.12 System of non-spherical particles with short range order. rnm is the most probable
separation between adjacent particles. A spherosymmetric electron density 
s.r/ accounts for the
scattering of each particle in a random distribution of orientations

provides the instantaneous positions of the N particles within the sample’s volume
V and

R
V q.r/dV D N.

The abstract function 
s.r/ accounts for both the relative density to the medium
and the distribution of orientations such that

P.Q/ D FTf
s.r/ � 
s.�r/g D hFTfc.u/gi (3.30)

where c.u/ is the internal correlation function of a particle in a given orientation
whose average contribution is calculated on the distribution of orientations in the
sample. In either the cases of particles with spherical symmetry or as in those
where all orientations are equally probable, P.Q/ D P.Q/. Otherwise, the scattering
will no longer have an azimuthal symmetry around the incident beam direction,
reflecting the existence of preferred orientations in the sample.
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3.2.1 Mutual Interference

Regardless of the nature of the orientations, whether random, preferential, or highly
ordered, the scattering properties of the particles are accounted for in P.Q/, while
the instantaneous intensity I.Q/ scattered by the system will also depend on the
correlation function

Cq.u/ D q.r/ � q.�r/ D
NX

nD1

NX

mD1
ı.u � rnm/ D N ı.u/C

X

n;m¤n

ı.u � rnm/ D

D NŒı.u/C h.u/� (3.31)

between the relative positions of the particles rnm D rm � rn. When substituting in
the expression of intensity, we have

I.Q/ D ITh P.Q/FTfCq.u/g D N ITh P.Q/ Œ1C FTfh.u/g� : (3.32)

The spatial arrangement of particles is essentially characterized by the reduced
correlation function

h.u/ D 1

N

X

n;m¤n

ı.u � rnm/ ; (3.33)

which has a physical meaning similar to the PDF of a particle composed of identical
atoms in (3.18), but with two key differences: it depends on the vector u in cases
of non-isotropic systems, and it contains information on the sample volume, which
are irrelevant to the study of the particles’ interaction properties. In other words,
although the expression of h.u/ in (3.33) is accurate and contains all the information
about the distribution of the particles in the sample, not all the information is of
practical interest. The distances between the neighboring particles, which are the
smallest rnm values, is the information that is in fact of interest as it characterizes
the particle interaction properties. The larger separations reflect only repetitions of
these properties, going to the limits imposed by the contour of the sample volume.

3.2.2 Volume Effects

In the absence of correlations, the contribution of the sample volume is restricted
to ultra-small angle region around the direct beam as seen in the case of low
correlated systems. But with the increase in the degree of correlation between
the particles, constructive interferences occur outside the direct beam, generating
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Fig. 3.13 (a) Fourier transform of the function h.u/, (3.33), for a system with different degrees of
correlation along the directions (b) Oy and (c) Ox, both perpendicular to the incident beam (direction
Oz). nx;y D .a=2�/Qx;y. Volume of the ensemble (sample): cylindrical with a diameter 16a (plane
xy) and length 6a. Correlation rule between adjacent particles:�a=a D 1C˛ w with ˛ D 0:2 and
0:02 along the directions Ox and Oy, respectively, and w takes random values in the interval [�1, C1]
[fthofuplotmap.m, fthofuR.m]

diffracted beams with profiles strongly influenced by the sample volume,8 or more
specifically, by the size of the volume illuminated with coherent radiation. This fact
is clearly illustrated in Fig. 3.13. Along the direction y, the positions of the particles
are enough correlated to generate a few diffraction peaks at .nx; ny/ D .0; ˙1/
and .0; ˙2/. The circular ripples around each peak are caused by the volume (size

8This phenomenon is analogous to that observed in particles with a crystalline structure, e.g.
Exercise 3.3. The larger the particle, the more definite are the diffraction peaks.
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and shape) of the ensemble of particles. On the other hand, along the direction x
where the correlations do not go beyond the first neighbors, FTfh.u/g produces
only mild modulations in the scattered intensity in nx D ˙1 and ˙2, but without
showing effects caused by the volume of the ensemble. This example illustrates a
very common feature in the study of systems with weakly correlated particles where
the profiles of the scattered intensities are not affected by the shape of the sample.

Proper treatment of systems with correlated particles is based on the fact that the
function h.u/ can be written as the product of two functions, i.e.

h.u/ D 	.u/ % g.u/ D 	.u/ f% Œg.u/ � 1�C %g ; (3.34)

as demonstrated in detail in Note 3.1. The first function, 	.u/, carries the depen-
dence with the sample’s volume and, because of this, only varies significantly for
large values of u, generally of the order of hundreds of microns or even up to a
few millimeters. The second function, g.u/, varies on a scale of a few angstroms
and contains the desired information of the correlations between the particles.
Quantitatively, g.u/ is also a correlation function, but instead of providing absolute
values, it provides the relative frequency with which the vector separation u occurs
in the system in relation to the frequency expected in the case of a disperse system
with a density % D N=V of particles. That is to say that by taking any particle as
a reference, the probability of finding another particle in the position u within a
volume V=N is equal to g.u/. An example of function g.u/ is shown in Fig. 3.14.

Fig. 3.14 Function g.u/ for unidirectional correlation�a=a D 1C˛ w between adjacent particles,
˛ D 0:2 in this example. w represents random values in the interval between �1 and C1, which
are different for each pair of adjacent particles [exgofu1.m]
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Note 3.1: Deduction of Functions g.u/ and 	.u/. When the properties of
interaction of the particles in a sample (gas, liquid, or solid) are independent of
the sample volume, the particle density can always be written as q.r/ D q0.r/ s.r/
where q0.r/ is the characteristic density of the material and s.r/ is the shape
function that is 1 or 0 for r inside or outside of the sample’s volume, respectively.
The correlation function

Cq.u/Dq.r/�q.�r/D
Z

q0.r/q0.rCu/s.r/s.rCu/ dV D
Z

V	.u/
q0.r/q0.rCu/ dV

only exists within the domain

V	.u/ D s.r/ � s.�r/ D
Z

s.r/s.r C u/ dV

defined by the volume V of the sample. The function 	.u/ varies monotonically
from 1 to 0 with u ranging from zero to the size of the sample, which means that
	.0/ D 1 since

R
s.r/s.r/ dV D R

V dV D V , and	.u/ D 0 if u is greater than the
sample’s dimension. On a macroscopic scale of variation of the function 	.u/,
the characteristic density is an average density %. However, on a scale of a few
angstroms, there are fluctuations f.r/ of the average density such that q0.r/ D
% f.r/, making it possible to write as

Cq.u/D
Z

V	.u/
%2f.r/f.rCu/dV ' V	.u/ %2

1

v

Z

v

f.r/f.rCu/dVDV	.u/ %2 g.u/ :

The volume v is as extensive as necessary so that g.u/ does not depend on v and
thus contains only the characteristic correlations of the material. In a statistically
homogeneous sample, f.r/ D 1 and therefore g.u/ D 1 for any volume v.
Comparing the expression Cq.u/ above to (3.31),

%V
„ƒ‚…

D N

	.u/ % g.u/ D NŒı.u/C h.u/�

where for u ¤ 0,

h.u/ D 	.u/ % g.u/ ;

as used in (3.34).
A few properties of function 	.u/.

FTfV	.u/g D FTfs.r/�s.�r/g D FTfs.r/g FTfs.r/g� D jFTfs.r/gj2 D jW.Q/j2 :
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Note 3.1: (continued)
The FT of the sample’s shape function

W.Q/ D FTfs.r/g D
Z

s.r/ eiQ�r dV D
Z

V
eiQ�r dV

is equal to V when Q D 0, i.e. W.0/ D V . Therefore, jW.0/j2 D V2,

FTf	.u/gQD0 D V ; and

Z
FTf	.u/g dVq D

Z
	.u/

�Z
eiQ�u dVq

�

„ ƒ‚ …
D ı.u/

dVu D 	.0/ D 1 :

Because we are dealing with a macroscopic volume (V ! 1), these last two
properties are similar to a delta function, which is

FTf	.u/g ' ı.q/ :

Note: Q D 2�q and dVq D .2�/�3dVQ, see Sect. 1.2.1.

In the expression of the scattered intensity, both volume and correlation effects
come from the FT of (3.34),

FTfh.u/g D FTf% Œg.u/ � 1�g � FTf	.u/g C %FTf	.u/g : (3.35)

The second term, %FTf	.u/g, is proportional to the FT’s square module of the
shape function s.r/, see Note 3.1, and is responsible for the scattered intensity
profile around the direct beam. In Fig. 3.13, this term produces the circular ripples
seen in .nx; ny/ D .0; 0/ since the volume considered there has a circular shape
on the beam’s perpendicular plane. In real situations of samples with macroscopic
volumes, the contribution of this second term can be discarded because FTf	.u/g D
0 for Q ¤ 0.

The information of the correlations are contained in the convolution term of the
two FTs,

FTf% Œg.u/ � 1�g � FTf	.u/g :

In the absence of correlations (disperse systems) where all the separations are
equally probable, i.e. g.u/ D 1 for any u, the convolution term is null, leaving
only the scattering around Q D 0 given by FTfh.u/g D %FTf	.u/g. In a system
with long-range order, such as a crystal, FTf% Œg.u/�1�g produces diffraction peaks
that can be more defined than FTf	.u/g in the vector space Q. As a consequence of
this convolution operation, the effects of the diffracting volume will appear in all the
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diffraction peaks, as seen in Fig. 3.13a at .nx; ny/ D .0; ˙1/ and .0; ˙2/. We will
return to discuss this situation when dealing with diffraction of X-rays in crystals.

In systems with arbitrary correlations, which in general are correlations between
nearest neighbors only, FTf% Œg.u/ � 1�g is a much larger function than FTf	.u/g,
which can be compared to a delta function (Note 3.1). Thus,9

FTfh.u/g D FTf% Œg.u/ � 1�g � FTf	.u/g
„ ƒ‚ …

D ı.q/

C% FTf	.u/g
„ ƒ‚ …
D 0 for Q¤0

' FTf% Œg.u/ � 1�g ;

(3.36)

justifying the absence of volume effects in the intensities scattered by systems of
weakly correlated particles, as seen in the intensities at nx D ˙1 and ˙2 in Fig. 3.13.

The scattered intensity by systems presenting correlations on length scale of a
few neighboring particles is therefore given by

I.Q/ D N ITh P.Q/ Œ1C %FTfg.u/ � 1g� : (3.37)

Although in many systems the particles are in motion, such as in a liquid, the large
number of particles ensures instant arrangements statistically equivalent among
themselves. Thus, provided that the system is in thermal equilibrium, the dynamics
of the particles will not affect the scattered intensity. This means that the intensity
curves collected over long periods of time have line profiles that can be simulated
based on instantaneous arrangements.

In cases where the scattering power of the particles is known, intensity measure-
ments allow accessing the interference function,10

S.Q/ D I.Q/
N ITh P.Q/

D 1C %FTfg.u/ � 1g ; (3.38)

thus leading to experimental methods of determining the correlation function g.u/.

� � �

Exercise 3.1. Show analytically that
P

n;m¤n exp.iQ � rnm/ / jFTfs.r/gj2 or a
system of N noninteracting particles in a volume V , whose contour is defined by
the shape function s.r/.
Answer: Comparing the FTs of (3.33) and (3.34), and recalling that in the absence
of correlations g.u/ D 1, it follows from Note 3.1 that

9The convolution of two FTs is done in a variable q, (1.32), and when one of them is a delta
function, the other FT remains unchanged.
10In disperse systems, the structural function S.Q/ is associated with the internal structure of the
particles, such as in (2.8). In literature, it is common to represent the interference function arising
from the mutual interference between particles also with S.Q/, which is the same symbol, a similar
meaning, but in slightly different context.
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1

N

X

n;m¤n

eiQ�rnm D %FTf	.u/g D %

V
jFTfs.r/gj2 : Q:E:D:

Exercise 3.2. Calculate the interference function S.Q/ corresponding to the func-
tion g.u/ given in Fig. 3.14. Is the result compatible to that seen in Fig. 3.13?
Answer: Assuming that there are correlations along the direction Ox only, so that
g.u/ D g.ux/. With Os D Oz as the incident beam direction, and Os 0 D Œsin �; 0; cos ��
the direction of scattered radiation with � being the scattering angle 2� ,

Q D 2�

�
.Os 0 � Os/ D 2�

�
Œsin �; 0; cos � � 1� D ŒQx; 0; Qz� :

Limiting the scattering angle such that Qz � 0, and recalling that g.ux/ is an even
function, (3.38) leads to

S.Qx/ ' 1C 2%L

Z
Œg.ux/ � 1� cos.Qx ux/ dux (3.39)

where 
L stands for a linear density of particles along the direction Ox. The amplitude
of the interference signal observed along Qx in Fig. 3.13 is well reproduced for %L '
0:85=a, as shown in Fig. 3.15.

� � �

Fig. 3.15 Interference signal as a function of nx D .a=2�/Qx, Fig. 3.13 (simulation), compared
to (3.39) (num. solution) [exgofu2.m]
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3.2.3 Liquids and Colloidal Suspensions

Systems where the expression of the intensity given in (3.37) is valid are mostly
isotropic systems where g.u/ D g.u/. The little correlation between the particles—
a condition implied in the deduction of (3.37)—comes from weak interaction
potentials, unable to induce preferred orientations in the systems. Consequently,
the scattered intensity I.Q/ D N ITh P.Q/ S.Q/ depends only on the module Q of
the reciprocal vector, just as in

S.Q/ D 1C %FTfg.u/ � 1g D 1C 4�%

Z 1

0

Œg.u/ � 1� u2 sin.Qu/

Qu
du : (3.40)

The correlation length scale of the system, uL, from which g.u > uL/ D 1 is the
parameter that actually defines the extension, or upper limit, of the integral above.

In situations where S.Q/ is experimentally accessible, the function g.u/ is
obtained by the inverse FT operation, i.e. % Œg.u/ � 1� D FT�1fS.Q/ � 1g, whose
solution of the angular part ends up as

4�% uŒg.u/ � 1� D 2

�

Z Qf

0

ŒS.Q/ � 1�Q sin.Qu/ dQ : (3.41)

The integral is truncated in Qf because of the particular conditions of each
instrumental apparatus.

Different names can be found in the literature for function g.u/ depending
on area of study or sample type. In the study of liquids and colloidal suspen-
sions, g.u/ is commonly called radial distribution function (RDF), or also pair
correlation function, which can be calculated by the theory of liquids, statistical
mechanic methods, and computer simulation (Guinier and Fournet 1955; Hansen
and McDonald 1990; Lindner and Zemb 2002). In liquids, when formed by simple
molecules where it is possible to estimate P.Q/ a priori, experimental intensity
data lead to S.Q/. That is not the case, for instance, of biological molecules in
solution that may present significant morphological changes in relation to the known
crystalline structure (Protein Data Bank: http://www.pdb.org/). One of the objectives
in modeling conformation processes, or unfolding, of proteins in a solution is to
estimate P.Q/ so as to then arrive at the interference function S.Q/ and hence the
interaction potential (Barbosa 2008).

� � �

Exercise 3.3. The peculiar physical properties of water, such as high boiling point,
are due to the hydrogen bonds that exist between the molecules. Each molecule
is bound to the other three, and the bond equilibrium distance is around 2:8Å in
liquid water. From an RDF for water at normal temperature and pressure conditions

http://www.pdb.org/
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Fig. 3.16 Interference function S.Q/ (blue line) for liquid water according to a given RDF shown
in the inset. P.Q/ D jf .Q/j2 where f .Q/ is the atomic scattering factor of the ion O2� for which
jf .0/j2 ' 100. % D 3:346� 10�2 molecules/Å3 [exwaterSofQ.m]

(NTP) find: (a) the interference function S.Q/; and (b) the scattered intensity over a
flat area detector.
Answer (a): With the function g.u/ in hands,11 the interference function in Fig. 3.16
is obtained from (3.40) with % D .NA � 18/=cm3 D 3:346 � 10�2 molecules/Å3.
Answer (b): In the H2O molecule the hydrogen electrons complete the 2p orbital
of oxygen so that an approximate calculation of the scattering intensity consists
in taking into account the atomic scattering factor of ion O2�, routine asfQ.m
in Appendix B. The ionic charge produces a significant difference in the interval
Q < 4Å�1 since jfO.0/j2 ' 64 while jfO2�.0/j2 ' 100. Figure 3.17 shows
simulated intensity according to I.Q/ D N ITh P.Q/ S.Q/, given in number of
photons scattered over the detector area.

� � �

3.2.4 Radial Distribution Function

Given a static distribution of N particles, such as those generated by computer
simulation, the corresponding RDF is obtained by comparing (3.33) and (3.34),

11Although the general aspects of the RDF of liquid water were taken from Hura et al. (2003), the
interference function S.Q/, especially in the interval Q < 2Å�1, is very sensitive to the accuracy
of function g.u/. Therefore, the scattering simulated in this exercise should not be considered an
exact reproduction of the water’s experimental scattering at NTP.
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Fig. 3.17 X-ray scattering in liquid water (NTP). Area detector positioned at 37.2 cm from the
sample. Image simulation for a statistic of 5 � 106 counts. Photons of 12 keV, pixel of 5 mm
[exwaterccd.m]

h.u/ D 	.u/ % g.u/ D 1

N

X

n;m¤n

ı.u � rnm/ :

As the volume function is close to unit, 	.u/ ' 1, on the variation scale of the
function g.u/, there is a subset of N0 particles whose frequency with which the
separations rnm occur are not affected by the sample’s finite volume. Within this
subset, isotropic systems12 have the RDF estimated as

g.u/ D 1

4�u2%N0
N0X

nD1

NX

m¤n

ı.u � rnm/ : (3.42)

In practice, the numerical calculation of RDF is done with the following recipe. First
you calculate the number of separations with values between u and u C�u through
the histogram

12In isotropic systems, g.u/ dVu ! 4�u2g.u/ du.
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Hn.u/ D
NX

m¤n

Z uC�u

u
ı.u 0 � rmn/ du 0

using as a reference the particle at the center of distribution with a vector position
rn where rmn D jrm � rnj. Choosing another N0 � 1 different particles, also around
the center of the distribution, we arrive at the average histogram

H.u/ D 1

N0
N0X

nD1
Hn.u/ :

The higher the N0, the better the statistic with which H.u/ is determined. But if N0
is very large, close to the total number of particles, then the fact of the distribution
being finite will be present in H.u/ even for values of u as small as the distances
between the nearest neighbors.

In a system without correlations, the number of separations between u and
u C �u, using any particle as a reference, is given by H0.u/ D % 4�u2�u. Then,
according to the definition of function g.u/, Note 3.1,

g.u/ D H.u/

H0.u/
D 1

4�u2%N0�u

N0X

nD1
Hn.u/ : (3.43)

It is important to keep in mind that the RDF to be used in (3.40), which is the one
responsible for the scattering of X-rays, has to do with very large systems without
statistical fluctuations. The statistical fluctuations appear in the sampling process
when trying to get to the RDF from small finite set of particles. A strategy to improve
the resolution of the RDF is to take the average of several finite distributions frozen
in time and statistically equivalent.

� � �

Exercise 3.4. Generate random positions rn within a volume V and exclude one of
every two whose separation rmn D jrm � rnj is less than a certain value d. (a) What
is the maximum density of positions that can be obtained with such a criterion of
exclusion? (b) How does the finiteness of the distributions affect the RDF calculated
by (3.43)?
Answer (a): Generating Ni initial random positions within a volume V and then
eliminating one position from every two with a separation less than d, there will be
Nf final positions left in the volume where rmn 
 d. With Ni ! 1, Nf tends toward
a limit value in accordance with the expression

Nf D Nmax.1 � e�˛Ni/ : (3.44)
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Fig. 3.18 Final number Nf of positions with separations rmn � d, obtained from the initial
distribution of Ni random positions within a spherical volume with a radius of 100 Å. Curves
adjusted by (3.44) with ˛ D 0:7�10�5 (d D 2Å) and ˛ D 2:1�10�5 (d D 3Å) [exrdffitting.m]

When ˛Ni � 1, Nf ! Ni so that Nmax D ˛�1. Figure 3.18 shows the analyses for
two values of d, implying in a maximum density of the order of % D 1:3=vd where
vd D 4�d3=3 is the volume of exclusion around each position.
Answer (b): The region u & d, Fig. 3.19, is very affected by statistical fluctuations,
which are minimized by calculating the average histogram H.u/, (3.43), on a large
number of positions. On the other hand, the more positions are used in relation to the
total number in the distribution, the reduction of g.u/ due to the finite volume (inset
of Fig. 3.19) occurs for continually smaller values of u. In quantitative terms, if the
distribution occupies a spherical volume of radius R and the positions considered in
H.u/ are contained in a sub-volume of radius R0, the decrease of g.u/ starts around
u ' R � R0.

Exercise 3.5. Particles in solution may exhibit different behaviors depending on
the solvent. (a) Derive the interference function S.Q/ between monomers (particles)
in a solution of low concentration where the only interaction between them is the
limitation imposed by the impenetrability of a monomer in another or, in general, by
the existence of Colombian repulsion according to the hard sphere model.13 What is
the most obvious effect of this limitation/repulsion? (b) If the monomers aggregate
forming dimers, what happens to the scattered intensity?

13Hard sphere model: interaction potential is zero for u � d and infinite for u < d (Hansen and
McDonald 1990).
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Fig. 3.19 RDFs for finite distributions of positions with separations rmn � d, within a spherical
volume of radius 100 Å containing around 43:4 � 103 (d D 2Å) and 31:1 � 103 (d D 3Å)
positions. Inset: RDFs on an extended scale showing effects of finite volume for large values of u;
the average histogram in the (3.43) was calculated using the positions rn around the center of the
distributions in such a way that rn < 70Å (blue line) and rn < 50Å (blue dashed line). Each RDF
corresponds to the average over ten different distributions statistically equivalent [exrdfplot.m]

Answer (a): The system in question is very similar to systems without correlations
(disperse systems) where g.u/ D 1, except that separations with values u < d do not
occur in the system and, therefore, g.u < d/ D 0 where d is the smallest center-to-
center distance possible between two monomers, Fig. 3.20a. It follows from (3.40)
that

S.Q/ D 1 � 4�%
Z d

0

u2
sin.Qu/

Qu
du D 1 � 8% v ‚.Qd/ ; (3.45)

‚.Qd/ D 3Œsin.Qd/ � Qd cos.Qd/�=.Qd/3 corresponds to the FT of a sphere with
a radius d as shown in Exercise 1.6(b), and v D �d3=6 is the effective volume of a
monomer, which is 1/8 of the exclusion volume vd defined in Exercise 3.4(a).

The greatest repulsion effect between the monomers occurs in the small Q region
where ‚.Qd/ ! 1 and S.Q/ ! S.0/ D 1 � 8% v, causing a negative deflection
in the intensity’s profile as can be seen in Fig. 3.21. The magnitude of the deflection
depends on the packing factor %v, which increases with the concentration. See
Note 3.2 about the validity of (3.45).
Answer (b): If Im.Q/ D N ITh P.Q/ is the intensity scattered by a disperse system of
monomers where %v << 1, the system’s dimerization implies in:

N P.Q/ ! N

2
Pd.Q/ � N P.Q/Œ1C sin Qd

Qd
�
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Fig. 3.20 Collision of (a) monomers and (b) dimers with distances of maximum approximation
equal to d and 2d, respectively

Fig. 3.21 Scattering curves in monomers and dimers. High concentration, %v D 0:08, of
monomers cause deflection in the scattering curve of around Q D 0, while the dimer formation
tends to increase the scattering in this region. Inset: dimer of the enzyme H166G (PDB ID: 1GUP)
taken as an example, gyration radius Rg D 24:8Å[ex1GUP.m]
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Fig. 3.22 Interference functions for hard spheres with a packing factor %v D 0:1. Approximate
solution (Debye) where g.u � d/ D 1, (3.45), compared to a solution by statistical mechanics
(Percus–Yevick) whose RDF is shown in the inset [exhardsphere.m]

provided that d becomes the center-to-center distance of monomers in the dimers
and that this distance is much greater than the length scale of variation in the
monomer’s internal structure when forming a dimer, as depicted in Fig. 3.20b.

The constructive interference of the electric fields scattered by the monomers
that form a dimer increases the scattering power Pd.Q/ of the dimer by a factor
of 4 around Q D 0, resulting in a factor of 2 in the increase of intensity due to
the number of dimers being half the number of monomers. This effect is general
and independent of the validity of the above approach where Pd.Q/ � 2P.Q/Œ1C
sin.Qd/=Qd�. See, for example, Fig. 3.21 where the scattering by monomers and
dimers are compared.

� � �

Note 3.2: Packing Factor Without Ordering. Known as the Debye solution
(Giacovazzo 2002; Guinier and Fournet 1955), (3.45) is satisfactory in the region
Qd > 2 only for low concentrations with a packing factor of hard spheres
%v < 0:1, cf. Fig. 3.22. The approach g.u 
 d/ D 1 used in the deduction of (3.45)
corresponds to a limit situation %v ! 0. As %v increases, the value of the RDF
just above u D d also increases, as seen in the RDFs in Fig. 3.19. The density limit
% D 1:3=vd D 0:16=v, found in Exercise 3.4(a), indicates that packing factors
%v < 0:16 are possible without there being a structural ordering—the maximum
value is 0.74 (close-packing of spheres, crystal systems). Theoretical RDFs for the
hard sphere model are obtained through classical statistical mechanics, Percus–
Yevick solution (Lindner and Zemb 2002).
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3.2.5 Amorphous

Solid materials without atomic ordering are commonly referred to as amorphous.
The absence of order does not imply in the absence of short-range correlations,
which are responsible for the few relatively well-defined contributions present in
the RDF of an amorphous. These correlations are characteristics of more stable
chemical bonds in the molecules of the material. Most of the amorphous contain
various atomic species, which give rise to various RDFs from and among the various
chemical elements present in them. But, in terms of structural analysis by X-rays,
what is the relative contribution of each RDF in the radiation scattering and what
is the RDF obtained by the Fourier analysis (inverse FT) of the experimental data?
These are the questions that we will address in this section.

The RDFs of systems with multiple chemical species follow directly from (3.42)
as being

g˛ˇ.u/ D 1

4�u2%ˇN 0̨

N0

X̨

a 2 f˛g

NˇX

b 2 fˇg
ı.u � rab/ : (3.46)

N 0̨ is the subset of atoms of the element ˛ around the center of the sample that
makes it possible to calculate the RDF without effects of volume, while %ˇ is the
mean number density of the atoms of the element ˇ, and Nˇ the number of atoms
of this element considered in the calculation of RDF. According to this definition of
RDF, the coordination number, which is the number of atoms ˇ in a spherical shell
with a radius ranging from u1 to u2 around an atom ˛ is given by

Nˇ.˛/ D %ˇ

Z u2

u1

4�u2g˛ˇ.u/ du : (3.47)

To properly consider the contribution of each RDF, it is necessary to use as a
starting point the general correlation function in (3.2), which is C.u/ D 
.r/�
.�r/,
where the electron density


.r/ D s.r/
X

˛


˛.r/ � q0˛.r/ ; (3.48)

contains the explicit representation of the different chemical species present in the
sample by the density 
˛.r/ of electrons in the electron cloud of the element ˛.
FTf
˛.r/g D f˛.Q/ is therefore the atomic scattering factor of this element. In a
medium of infinite extension, q0˛.r/ D %˛ f˛.r/ describes the spatial configuration
of the atoms ˛ in terms of the fluctuation f˛.r/ of the mean number density of
these atoms, %˛ . The finite extension of volume V scattering radiation with phase
coherence is imposed by the shape function s.r/. Thus, in a procedure analogous to
that used in Note 3.1, for u ¤ 0, we reach
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C.u/ D V 	.u/
X

˛; ˇ

f˛.Q/ f �̌.Q/ %˛ %ˇ
1

v

Z

v

f˛.r/fˇ.r C u/ dV D

D V 	.u/
X

˛; ˇ

f˛.Q/ f �̌.Q/ %˛ %ˇ g˛ˇ.u/ D V 	.u/w2 g.u/ : (3.49)

The intensity scattered by the sample is given by I.Q/ D ITh FTfC.u/g, and
due to this 
˛.r/ already appear substituted by f˛.Q/ in (3.49) whereas the FT
of a convolution results in a product of FTs such as FTf
˛.r/ � 
ˇ.�r/g D
f˛.Q/f �̌.Q/, (1.31).

As every amorphous medium is supposedly isotropic, g˛ˇ.u/ D g˛ˇ.u/ are
the RDFs defined in the (3.46). Furthermore, since in the case of a homogeneous
medium where all the interatomic distances are equally probable, g˛ˇ.u/ D 1 as
well as the total RDF of the system

g.u/ D 1

w2
X

˛; ˇ

f˛.Q/f
�̌.Q/ %˛%ˇ g˛ˇ.u/ ; (3.50)

a condition that is satisfied as long as

w2 D
X

˛; ˇ

f˛.Q/ f �̌.Q/ %˛ %ˇ : (3.51)

The non-zero term of the correlation function for u D 0 describes the scattering
in the case of a system without correlations so that the full expression of the
correlation function is

C.u/ D %Vf 2m.Q/ ı.u/C V 	.u/w2 g.u/

where %V D Nat is the total number of atoms in the volume V and % D P
˛ %˛ . So,

I.Q/ D ITh %Vf 2m.Q/ S.Q/C ITh %V hS.Q;Z/i (3.52)

is the intensity scattered by the amorphous where

S.Q/ D 1C w2

%f 2m.Q/
ŒFTfg.u/ � 1g � FTf	.u/g C FTf	.u/g� (3.53)

and hS.Q;Z/i D P
˛ %˛S.Q;Z˛/=% is the average Compton scattering per atom in

the cases when it is necessary to account for the background noise due to incoherent
scattering.

In a sample with macroscopic dimensions, the exact shape of the sample ceases
to be important since FTf	.u/g ' ı.q/, Note 3.1, for any direction of the scattering
vector. The structural signal away from the direct beam becomes dependent only
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on the Q module of the reciprocal vector, reflecting the isotropy of the amorphous
medium, i.e.

S.Q/ D 1C w2

% f 2m.Q/
FTfg.u/� 1g D 1C 4�

w2

% f 2m.Q/

Z 1

0

Œg.u/� 1� u2 sin.Qu/

Qu
du :

(3.54)

In the case of amorphous made up by a single element, w2 D %2jf .Q/j2, f 2m.Q/ D
jf .Q/j2, and w=fm D %. When there are several elements, it is also possible to use
w=fm ' % (a fact that is verified numerically), allowing in general to approximate
the expression S.Q/ to the one in (3.40).

Inverse FT operation of the experimental curve S.Q/,

4�% uŒg.u/ � 1� ' 2

�

Z Qf

0

ŒS.Q/ � 1�Q sin.Qu/ dQ ; (3.55)

leads to the experimental function g.u/. The expression of g.u/ in (3.50) is suitable
for the calculation of S.Q/ since atomic electron densities already appear as atomic
scattering factors. But the actual RDF of the system has very little difference with
the g.u/ calculated for Q D 0, which is to say that experimental g.u/ is equivalent
to the theoretical one calculated with fa.0/, or with fa.0/ C f 0

a .E/ C if 00
a .E/ when

atomic resonance effects are relevant. Anyway, it is worth emphasizing that g.u/ is
not exactly an RDF of atomic positions, but a weighted sum of the various RDFs
that exist in a multi-element amorphous, or a RDF of the fluctuation in the average
electron density of the material.

3.2.5.1 Crystallization of Amorphous Solids

In order to strengthen the concepts implicit in the equations presented above, (3.46)–
(3.55), it would be very useful if we could generate amorphous through computer
simulation. But this is a task that requires molecular dynamics calculation where
the potentials of the interatomic interactions are taken into account. Still, there
is a limitation of the number of atoms that the current computers can deal with
these programs. To overcome these difficulties, we have a relatively simple routine,
Note 3.4, that generates atomic structures with varying degrees of disorder from a
known crystal structure. Here we use as an example of the structure of ˛–quartz
(SiO2), Fig. 3.23.

Generating disordered structures is one way to obtain RDFs with aspects
that are similar to those of an amorphous where only the distances between
nearest neighbors are clearly resolved, e.g. Fig. 3.24. However, since each structure
represents one of many statistically equivalent regions that make up the macroscopic
medium (sample), the absence of preferred orientations of the regions ensures the
system’s isotropy independently of the degree of ordering. This makes it possible to
experience a procedure analogous to the crystallization of the amorphous solids with
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Fig. 3.23 Atomic structure
of ˛-quartz (SiO2): (a)
ordered periodic and (b)
disordered. Inset: unit of
repetition of the periodic
structure [quartzR.m]

the gradual appearance of diffraction peaks, which show constructive interference
conditions occurring at wide angles due to the phenomenon of periodic ordering of
the structure. When the regions are large enough, the intensity profiles are obtained
from (3.52) and (3.54), as observed in Figs. 3.25 and 3.26 (inset) without effects
from the finite sizes of the diffracting regions.
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Fig. 3.24 RDFs of the atomic structure of ˛-quartz with a disorder of 8 %. Insertion: oxygen
tetrahedra with silicon in the center and the distances between nearest neighbors [quartzrdfplot.m]

Note 3.4: Disordering Periodic Structures. If a, b, and c stand for the edges of
the repeating element, also known as unit cell, of a periodic ordered structure and
ra D xaa C yab C zac are the position vectors of the atoms inside the repeating
element, then .xa; ya; za/ are the fractional coordinates along the edges. The
convolution of the repeating element with a three-dimensional lattice of points
Rm;n;p D ma C nb C pc, with m; n; p 2 Z, generates a periodic atomic structure
of a crystal, as shown in Chap. 4. The disordered structure is obtained from a
lattice of points Rm;n;p where adjacent points satisfy the relation

.Rm0;n0;p0 � Rm;n;p/ � x
jxj2 D 1C ˛w :

The routine quartzR.m implements this method of generating disordered struc-
tures for the ˛–quartz whose repeating element, Fig. 3.23 (inset), contains three
atoms of silicon and six of oxygen, a D a Œcos.�=3/; sin.�=3/; 0�, b D
a Œcos.�=3/; � sin.�=3/; 0�, and c D c Œ0; 0; 1� where a D 4:9134Å and
c D 5:4052Å. The volume of the repeating element is .a � b/ � c D 113Å3.
Note: The structures generated by the method are only resources for the practice
of introducing X-ray scattering through non-crystalline solids and should not be
taken as physically feasible structures.
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Fig. 3.25 Simulations of the intensities scattered by ˛-quartz with disorders of 8 % (black line)
and 20 % (red line), (3.52) and (3.54). X-rays of 8 keV and flux such that IThV% D 1 cps. Inset:
g.u/ calculated with Q D 0 in (3.50) [quartzIofQ.m]

Fig. 3.26 RDF obtained by inverse FT (black line) of S.Q/, (3.55), compared to the one calculated
(red line with circles) for ˛-quartz with disorder of 2 %. 30 keV X-rays. Inset: simulation of the
intensity scattered with IThV% D 1 cps [quartzgofu.m]

The resolution of the structure from the scattering curve is affected by the
experimental Qf value, (3.55). Figure 3.26 demonstrates that in samples with
reasonable levels of crystallization, 2 % of disorder in this example, even with
experiments with a large Qf, of the order of 30 Å�1, present differences between the
experimental g.u/ and the theoretical one calculated by (3.50) in the small u region.
Through the routine quartzgofu.m that generated Fig. 3.26, other resolution tests
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can be done on the basis of both the structure’s disorder as well as the Qf value.
The use of convolution function discussed in Note 3.3 minimizes oscillations with
period 2�=Qf, but tends to decrease the resolution of the sharpest contribution in
g.u/, which can also be checked with the above-mentioned routine.

Structural analysis via RDF, (3.55), is suitable for low order systems like
non-crystalline solids where the diffraction peaks show no effects due to finite
sample volume. With increasing order, the peaks become sharper and the approach
FTfg.u/� 1g � FTf	.u/g ' FTfg.u/� 1g taken to reach (3.54) may not be enough
to describe the scattered intensity by the system. The RDFs estimated from finite
clusters and used to simulate the intensities patterns shown in Figs. 3.25 and 3.26
(inset) give rise to infeasible details such as negative intensities for the clusters
with more order. These details should disappear when carrying out the convolution
operation above mentioned or, alternatively, by simulating the intensity patterns via
PDF, (3.18), with sums over all the atoms of the clusters to account for the effect of
finite volume.

In practice, only samples with highly crystalline submicron regions, commonly
called crystallites, configure situations where the effects of volume from the
diffracting regions are noticeable. But in general there is no reason to study highly
crystalline structures through RDF and PDF, which are only useful in the study
of local order in systems with some kind of disorder (Egami and Billinge 2003).
Local order in crystalline structures are well determined within the formalism of
periodic lattices, as will be detailed in the next chapter. Furthermore, this formalism
also enables direct association between diffraction peaks and element of periodicity
giving rise to each peak. This situation is very different from the analysis by RDF
or PDF. For example, in Fig. 3.25, try to find a physical explanation for both the
position and the relative intensity of the diffraction peaks observed in 2� D 21:0ı
and 26:8ı. Notice how difficult it is to do this only from the RDF without any
previous notion that you may have about periodic lattices.

� � �

Exercise 3.6. The only structural information accessible via X-ray scattering is the
total RDF, g.u/. Determine from the g.u/ of SiO2 (˛ phase) the coordination number
of the first layer of oxygen around the silicon.
Answer: From (3.47),

NO.Si/ D %O

Z u2

u1

4�u2gSiO.u/ du :

In samples with good crystallization (disorder < 8 %, Fig. 3.24), the Si–O bond
generates an isolated contribution in the interval u < 2:2Å. Thus, the coordination
number of the first layer is obtained in the interval u1 D 0 and u2 D 2:2Å where
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g.u/ ' 1

w2
fSifO%Si%O ŒgSiO.u/C gOSi.u/�„ ƒ‚ …

D 2gSiO.u/

so that

NO.Si/ D w2

2fSifO%Si

Z 2:2Å

0

4�u2g.u/ du :

With Vc D 113Å3 being the volume of the repeating element containing 3Si and
6O. Note 3.4, %Si D 3=Vc and %O D 6=Vc. If fSi D 14 and fO D 8, then we arrive at

w2 D fSif
�
Si%

2
Si C fOf �

O%
2
O C .fSif

�
O C f �

SifO/%Si%O D 0:6344Å
�6
:

For any g.u/ with little disorder, the numerical integral is worth 37.6 Å3 and
therefore

NO.Si/ D 0:6344

2.14/.8/.3=113/
37:6 D 4:0 ;

which means that, in a radius of up to 2.2 Å around each silicon atom there are four
oxygens, as seen in Fig. 3.24 (inset).14

� � �

Section Summary
— Intensity scattered by a system of identical particles with effects of mutual
interference

I.Q/ D N ITh P.Q/ Œ1C FTfh.u/g�

— Reduced correlation function of the system

h.u/ D 1
N

P
n;m¤n ı.u � rnm/ D 	.u/ % g.u/

— Scattered intensity without effects of volume from the sample

I.Q/ D N ITh P.Q/ Œ1C %FTfg.u/ � 1g� D N ITh P.Q/ S.Q/

— Interference function, or structural signal, of isotropic systems

14For more complex systems there are other methods for extracting the RDFs g˛ˇ.u/ from the
experimental data. See, for example, Egami and Billinge (2003, Ch. 3, p. 64).
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S.Q/ D 1C %FTfg.u/ � 1g D 1C 4�%
R1
0
Œg.u/ � 1� u2 sin.Qu/

Qu
du

— Experimental RDF

g.u/ D 1C %�1 FT�1fS.Q/ � 1g D 1C 1
2�2u%

R Qf
0
ŒS.Q/ � 1�Q sin.Qu/ dQ

— Calculation of RDF for static distributions of identical particles

g.u/ D 1

4�u2%N0
PN0

nD1
PN

m¤n ı.u � rnm/ D 1

4�u2%N0�u

PN0

nD1 Hn.u/

— RDFs of samples with different chemical species (distinct elements)

g˛ˇ.u/ D 1

4�u2%ˇN 0̨
PN0

˛

a 2 f˛g
PNˇ

b 2 fˇg ı.u � rab/

— Total RDF of samples with many elements

g.u/ D 1
P

˛; ˇ f˛.Q/ f �̌.Q/ %˛ %ˇ
P

˛; ˇ f˛.Q/f �̌.Q/ %˛%ˇ g˛ˇ.u/



Chapter 4
Crystals

The highly ordered matter at a molecular atomic level gives origin to crystals.
In the history of modern science, the proof of the crystalline (ordered) form of
matter occurred simultaneously with the demonstration that X-radiation was an
electromagnetic radiation. One of the most important areas of applied physics, X-ray
crystallography, was started by the diffraction of X-rays in a NaCl crystal (Bragg
and Bragg 1913; Max von Laue 1913). To it we owe our current knowledge on the
atomic structure of materials and proteins, including the structure of the double helix
of deoxyribonucleic acid (DNA) (Franklin and Gosling 1953; Watson and Crick
1953; Wilkins et al. 1953).

In the study of non-crystalline materials by X-ray scattering (previous chapters
of this book) where the atoms occupy positions not very correlated, structural
modeling is difficult, significantly limiting the resolution of the structures ana-
lyzed. In crystals, this difficulty does not exist because the atoms are at specific
sites, correlated by translation operations on macroscopic scales. The easy spatial
description of the crystalline structures led to developing a unique mathematical
treatment with specific terminologies for the analysis of crystalline materials. The
periodicities present in a given structure, which is the numerous times that the same
interatomic distance is repeated along the physical dimension of a crystal, generates
intense diffracted beams at high angles, enabling the structural analysis of high
resolution with low-flux compact radiation sources. This fact made it possible to
accumulate knowledge of the crystalline structures at a time when there were no
intense sources of radiation such as the synchrotron sources. These, in turn, have led
to the determination with high spatial resolution (of the order of 1–3 Å) of complex
structures such as most biological macromolecules known (Protein Data Bank:
http://www.pdb.org/).

Although the mathematical description of crystals is relatively simple and
precise, there are extremely difficult details to be treated theoretically. In the systems
discussed previously—low correlated and complex systems—the absence of intense
beams scattered at high angles made theoretical treatments possible without the
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need to take into account the rescattering of radiation through the systems. In
the case of crystals, this approach would only be, strictly speaking, acceptable
in very small crystals with submicron dimensions. From a broader perspective,
there are a number of factors that corroborate so that the kinematic approach of
X-ray diffraction is satisfactory or not. Among the main factors are the size and
perfection of the crystal, the coherence length of the radiation, and the photoelectric
absorption. Perfect crystals with macroscopic dimensions represent a medium with
periodic electron density. The exact description of the X-ray wave propagation
in perfect crystals is made from solving Maxwell’s Equations in a medium with
periodic dielectric susceptibility. This description is given the name of Dynamical
Theory of X-ray diffraction in crystals (Authier 2004). Dynamical because it takes
into account the coupling of the incident and diffracted waves along the physical
dimension of the samples, namely the successive rescattering of the X-ray waves
as they propagate in the medium. Imperfections of the crystalline lattice minimize
the rescattering of waves with phase coherence, but they do not eliminate possible
rescattering of the diffracted intensities. In this chapter we will be seeing the
Kinematic Theory, which is valid for small crystals similar to many of the samples
used in structural determination. The amplitude of the incident wave is the same for
the entire diffracting volume. The X-ray photons interact once with the atoms of the
structure and the effects of rescattering and attenuation of the diffracted beams are
negligible.

4.1 Elements of X-Ray Crystallography

4.1.1 Unit Cell and Crystalline Lattice

The remarkable feature in the description of the electron density of a crystal is the
fact that the physical space is filled by an identical unit of repetition, which receives
the name of unit cell, Fig. 4.1. When we take the unit cells and put one next to the
other, we have the crystal. Mathematically this is done by the convolution of the
electron density of the unit cell


cel.r/ D
NatX

a


a.r � ra/ ; (4.1)

with a discrete lattice of virtual points,

Rmnp D ma C nb C pc where n;m; p 2 Z ; (4.2)
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called crystalline lattice. a, b, and c are the edge vectors of the unit cell whose
volume is

Vcel D a � .b � c/ D b � .c � a/ D c � .a � b/ ; (4.3)

and the positions ra D xaa C yab C zac of the Nat atoms inside the unit cell given
in terms of fractional coordinates xa, ya, and za.

In the expression of crystal’s electron density


cryst.r/ D s.r/
X

m;n;p


cel.r/ � ı.r � Rmnp/ ; (4.4)

Fig. 4.1 Periodic lattice of points Rmnp and unit cell of edges a, b, and c, showing a tetrahedral
group centered on the atomic fractional coordinates .x; y; z/ D .1=2; 1=2; 1=2/ and with the other
atoms at .x�0:15; y�0:15; z�0:15/, .xC0:15; yC0:15; z�0:15/, .xC0:15; y�0:15; zC0:15/,
and .x � 0:15; y C 0:15; z C 0:15/
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the physical dimensions of the diffracting volume1 are specified by the shape
function s.r/ [s.r/ D 1 or 0 for r inside or outside the considered volume,
respectively], so that the sums of the integers m, n, and p extend from �1 to C1.
Alternatively, finite sums can be considered, but this creates an extra difficulty in
describing samples of different shapes from those defined by the edges of the unit
cell.

The crystal’s form factor,

Fcryst.Q/ D FTf
cryst.r/g D FTf
cel.r/g„ ƒ‚ …
F.Q/

X

m;n;p

FTfı.r � Rmnp/g � FTfs.r/g
„ ƒ‚ …

W.Q/

; (4.5)

brings together three different pieces of information to be analyzed separately. The
FTs of the unit cell, F.Q/, and of the crystal’s volume, W.Q/, will be discussed
later. Here we analyze the FT of the crystalline lattice,

X

m;n;p

FTfı.r � Rmnp/g D
C1X

m;n;pD�1
e iQ�Rmnp D

(
0 if Q � Rmnp … 2� Z

1 if Q � Rmnp 2 2� Z :

The reciprocal vectors that satisfy the condition Q � Rmnp 2 2� Z form a set of
vectors Qhkl called vectors of the crystal’s reciprocal lattice, Note 4.1. As for this set
of vectors, the sums above behave like delta functions considering that

ı.Q � Qhkl/ D
(
0 if Q ¤ Qhkl

1 if Q D Qhkl :

However, every delta function is normalized, i.e.
R
ı.Q � Qhkl/ dVQ D 1. The

normalization of the sums, Note 4.1, allows the substitution

X

m;n;p

e iQ�Rmnp ! .2�/3

Vcel

X

h;k;l

ı.Q � Qhkl/ (4.6)

where the new sums, now in h, k, and l, account for all possible vectors of the
reciprocal lattice.2

1The smallest of the crystal volume and the volume defined by radiation coherence lengths. For
the sake of textual simplification, we will refer to diffracting volume only as crystal volume.
2Please, do not confuse this k index with the module k of the wavevector, which are distinguished
by the used font and by the context in which they appear in the text.
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Note 4.1: Reciprocal Lattice. The coherent intensity scattered by a crystal, which
is called diffracted intensity, has only sharp maximums for the set {Qhkl} of
reciprocal vectors that are the reciprocal lattice vectors. So,

Q � Rmnp D m Q � a C n Q � b C p Q � c 2 2� Z

is only possible for any Q 2 fQhklg and any integer values of m, n, and p, if

Q � a D 2�h; Q � b D 2�k; and Q � c D 2� l where h; k; l 2 Z :

The reciprocal lattice of a crystal as defined by the vectors Qhkl D ha �Ckb �Clc �,
corresponds to a lattice of discrete points with indices hkl and base vectors a �, b �,
and c �, which satisfy the relationships: a � �Œa; b; c � D Œ2�; 0; 0�, b � �Œa; b; c � D
Œ0; 2�; 0�, and c � � Œa; b; c � D Œ0; 0; 2��. These relations have as their solution

a � D 2�
b � c

a � .b � c/
; b � D 2�

c � a
b � .c � a/

; and c � D 2�
a � b

c � .a � b/
;

(4.7)

which are vectors that are perpendicular to the faces bc, ac, and ab of the unit
cell, and define a reciprocal unit cell with a volume of V �

cel D a � � .b � � c �/ D
.2�/3=Vcel.
— The demonstration of (4.6) requires integration of the triple sum in m, n,
and p inside a small volume around a single hkl reciprocal lattice point. Writing
Q D u a � C v b � C w c � such that

dVQ D Œdu a � � .dv b � � dw c �/� D V �
cel du dv dw ;

and with u 2 Œh � �; h C ��, v 2 Œk � �; k C ��, and w 2 Œl � �; l C �� where
0 < � � 1, we reach

Z  
X

m;n;p

e iQ�Rmnp

!

dVQ D V �

cel

Z  
X

m;n;p

e 2� i.muCnvCpw/

!

du dv dw D

D V �

cel

Z hC�

h��

 
C1X

mD�1

e 2� imu

!

du

Z kC�

k��

 
C1X

nD�1

e 2� inv

!

dv

Z lC�

l��

 
C1X

pD�1

e 2� ipw

!

dw D

D V �

cel

Z hC�

h��

ı.u � h/ du

Z kC�

k��

ı.v � k/ dv

Z lC�

l��
ı.w � l/ dw D V �

cel :

� � �
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Fig. 4.2 Coherent scattering by atomic planes where Qhkl � rab D 2� n, with n 2 Z and Qhkl D
2�=dhkl

Exercise 4.1. Bragg’s law is the most famous equation in X-ray crystallography. (a)
Show that each reciprocal lattice point (RLP) of indices hkl stands for set of atomic
planes perpendicular to the reciprocal vector Qhkl and that the distance between
adjacent planes is worth

dhkl D 2�

Qhkl
: (4.8)

(b) What is the scattering angle associated with each RLP given in terms of the
interplanar distance dhkl?
Answer (a): If Qhkl is the vector of active diffraction, the phase difference between
the fields scattered by any two atoms with vector separation rab will be �� D
Qhkl � rab, as shown in (2.1). Therefore, all atoms contained in the same plane
perpendicular to the vector Qhkl scatter in phase since �� D 0, as well as those
contained in parallel planes separated by nd with n 2 Z, such that �� D Qhkl nd D
2� n, Fig. 4.2. This requires however that d D dhkl in (4.8).
Answer (b): According to (1.39), Qhkl D k 0 � k, Qhkl D .4�=�/ sin �hkl D 2�=dhkl,
and

2 dhkl sin �hkl D � ; (4.9)

which is the Bragg’s law3 for the hkl reflection with scattering angle of 2�hkl,
Fig. 4.2.

3The Bragg’s law is many times written as 2d sin � D n� where d is the interplanar distance, �
the incidence angle with the planes, and n D 1; 2; 3; : : :etc. Note that different values of n are
equivalent to consider different RLPs along the plane’s normal direction.
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Exercise 4.2. Given the crystal lattice parameters, i.e. the edge lengths a, b, and c
and the angle values ˛, ˇ, and � , Fig. 4.1, write a MatLab routine to calculate dhkl

and use it to identify the interplanar distances responsible for the main peaks seen
of the intensity pattern of ˛-quartz in Fig. 3.25.
Answer: The angles between the edges are set so that a � b D ab cos � , a � c D
ac cosˇ, and b � c D bc cos˛. Using any system of coordinates for describing the
edge vectors, for example (the most common choice)

a D a Œsinˇ; 0; cosˇ�; b D b Œsin˛ cos'; sin˛ sin'; cos˛�; and c D c Œ0; 0; 1�

where cos' D .cos � � cosˇ cos˛/= sin˛ sinˇ, the reciprocal lattice vectors a �,
b �, and c � are then obtained from (4.7), which leads to

dhkl D 2�

jha � C kb � C lc �j : (4.10)

This is implemented in routine bragg.m (Appendix B). In the case of ˛–quartz, for
100 and 011 type of reflections, the routine provides

>> bragg(8000,[4.9134 4.9134 5.4052 90 90 120],[1 0 0; 0 1 1]);
Energy = 8000.00eV (1.549813 A)
d(1,0,0) = 4.25513 A, thB = 10.4927 deg, 2thB = 20.9855 deg
d(0,1,1) = 3.34342 A, thB = 13.4013 deg, 2thB = 26.8026 deg

Exercise 4.3. The measurements of interplanar distances by X-ray diffraction are
compromised by angular �� and spectral ��=� resolutions. For a cubic crystal
[a D b D c, ˛ D ˇ D � D 90ı], how does the resolution �a=a of the lattice
parameter depend on both the angular and spectral resolutions?
Answer: The simple application of the theory of errors (Vuolo 1996) to Bragg’s
law, (4.9), results in

�
�d

d

�2
D
�
��

�

�2
C .cot � ��/2 : (4.11)

In a cubic crystal, dhkl D a=
p

h2 C k2 C l2 and therefore �a=a D �d=d. For
photons of energy E D 10200 ˙ 1 eV where the scattering angle of reflection 400
was measured at 2� D 50:938˙ 0:008ı,

�d

d
D
"

1

102002
C cot2

�
50:938

2

� �
0:008

2

�

180

�2#1=2
D 1:8 � 10�4 ;

implying in a D 5:653˙ 0:001Å.

� � �
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4.1.2 Structure Factors and Diffracted Intensities

The complete determination of the crystal structure of a substance involves two
distinct steps: (a) characterize the crystalline lattice, which means to measure
the lattice parameters; and (b) assign values to the fractional coordinates of the
atoms inside the unit cell. Measurements of the directions of the diffracted beams
provide the lattice parameters, while the beam intensity values are essential to
obtain the fractional coordinates. The relationship between intensities and fractional
coordinates is established by the form factor of the unit cell F.Q/, (4.5), which is
the amplitude in electron units of the field scattered by the unit cell.

The form factor is given by (1.52) for any Q vector. But in the reciprocal space
of a crystal, the diffracted intensities are highly localized around the hkl nodes of
the reciprocal lattice.4 Thus structure factors of a crystal are the values of the form
factor calculated only for the reciprocal lattice vectors, which is

F.Q/ ! F.Qhkl/ D Fhkl D
NatX

a

fa e i Qhkl�ra D
NatX

a

fa e 2� i .hxaCkyaClza/ (4.12)

where h, k, and l are integers and fa D .f0 C f 0 C if 00/a such as defined in Sect. 1.4.
Note that by allowing non-integer numbers in (4.12) we obtain the form factor of
any point in the reciprocal space described in the base a �, b �, and c �.

How localized the diffracted intensities are around the nodes of the reciprocal
lattice depends on the crystal volume. Since in (4.5) the FT of the crystal shape,
W.Q/ D FTfs.r/g, appears convolving the other terms, all of the nodes of the
reciprocal lattice gain volume, which increases inversely proportional to the crystal’s
actual volume. By substituting (4.6) and (4.12) in (4.5), we then arrive at the
crystal’s form factor5

Fcryst.Q/ D .2�/3

Vcel

X

h;k;l

F.Qhkl/ ı.Q � Qhkl/� W.Q/ D 1

Vcel

X

h;k;l

Fhkl W.Q � Qhkl/ ;

(4.13)

whose square module provides the diffracted intensities.
In most practical situations of applying the Kinematic Theory it is valid to deal

with the diffracted intensities as being independent of each other—the situations
where this treatment is not valid will be discussed at a later point. This means that
the rescattering effects are neglected as well as any other effects arising from the

4RLPs are also called nodes in order to emphatically differentiate them from any other point of the
reciprocal space to which indices hkl are not integer numbers.
5The number .2�/3 disappears from (4.13) because the convolution operation, “ * ”, stands
for an integration in dVq, see (1.32), but becomes one in dVQ D .2�/3dVq, which means,
.2�/3

R
ı.2�q 0 �Qhkl/W.2�q�2�q 0/ dVq0 D R

ı.Q 0 �Qhkl/W.Q�Q 0/ dVQ0 D W.Q�Qhkl/.
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simultaneous excitation of more than one node of the reciprocal lattice. The intensity
distribution in the reciprocal space of a crystal is thus given by

I.Q/ D ITh

ˇ
ˇFcryst.Q/

ˇ
ˇ2 '

X

h;k;l

Ihkl.Q/ (4.14)

where

Ihkl.Q/ D ITh
1

V2
cel

jFhklj2 jW.Q � Qhkl/j2 : (4.15)

The structure factor amplitudes (or modules), jFhklj, are values experimentally
accessible through the kinematic diffraction of X-rays. The number of values
required to solve a structure, i.e. estimate the fractional coordinates, depends on
the structure’s complexity. In relatively simple structures—generally with unit cells
of a volume under 1000 Å3 containing no more than a few hundred atoms, it is
feasible to adjust the atomic positions until the relative intensities of the model
structure are consistent with the experimental intensities. Certainly this procedure
is not feasible when one wishes to determine the crystalline structure of a protein
containing thousands of atoms. Specific methods used in protein crystallography are
adequately described in the appropriate literature.6 But beyond collecting thousands
of intensity values, measurements on samples with resonant or heavy atoms are
often necessary.

� � �

Exercise 4.4. The development of the micro and optoelectronic industry was due
to the electronic properties of the semiconductor crystals such as Si and GaAs,
which can be synthesized with high degree of crystalline perfection. Compare
amplitude and phase of the structure factors of the 002, 004, 111, and N1N1N1 reflections
of these materials. Interpret the origin of the most important differences. Note:
NhNkNl ) �h; �k; and � l.
Answer: Positioning the origin of the crystalline lattice of one of the atoms of
the unit cell as illustrated in Fig. 4.3a, the fractional coordinates of both A and B
elements are7

A W .0; 0; 0/; .1=2; 1=2; 0/; .1=2; 0; 1=2/; .0; 1=2; 1=2/; and

B W .1=4; 1=4; 1=4/; .3=4; 3=4; 1=4/; .3=4; 1=4; 3=4/; .1=4; 3=4; 3=4/ :

6See, for example, Giacovazzo (2002, Ch. 9).
7Several semiconductors have cubic unit cell with zinc blend or diamond structures, such as GaAs
and Si, space groups FN43m and FdN3m, respectively. See Hahn (2006, Ch. 7.1, pp. 112–717).
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Fig. 4.3 Zinc blend type of cubic structure, space group FN43m (Hahn 2006). (a) Unit cell.
(b, c) Perspectives of the structure along the directions (b) [001] and (c) [111]. The Qhkl and
QNhNkNl D �Qhkl diffraction vectors see differently the arrangement of the atomic planes along the
[111] direction, BA–BA–BA and AB–AB–AB, respectively. In the case of direction [001] the
arrangement is always A–B–A–B–A

Substituting in (4.12),

Fhkl D jFhklj ei�hkl D

8
ˆ̂<

ˆ̂:

4.fA C fB/ if h C k C l D 4n

4.fA � fB/ if h C k C l D 2.2n C 1/

4.fA ˙ ifB/ if h C k C l D 2n C 1

(4.16)

where n 2 Z. The structure factors for the mentioned reflections are compared in
Table 4.1.

The 004 and 111 reflections are more intense in GaAs, Figs. 4.3b and 4.3c, than
in Si due to the higher average atomic number of GaAs, i.e. fGa C fAs > 2fSi. In Si,
as fA � fB D 0, reflection 002 has zero intensity. In non-centrosymmetric crystals,
a few pairs of hkl and NhNkNl reflections8 have different perspectives of the structure,

8See Friedel and Bijvoet pairs, e.g. Giacovazzo (2002, pp. 170 and 475).
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Table 4.1 Structure factors
(amplitude and phase) of a
few reflections in gallium
arsenide and silicon
crystals, (4.16)

GaAs GaAs� Si
hkl jFhklj �hkl .

ı/ jFhklj �hkl .
ı/ jFhklj �hkl .

ı/

002 24:4 148:0 24:4 �32:0 0:0 —

004 135:2 7:6 135:2 7:6 61:6 1:5

111 125:2 �46:0 146:1 �34:1 60:7 �43:9
N1N1N1 146:1 55:9 125:2 44:0 60:7 46:1

GaAs: A D Ga, B D As. GaAs�: A D As;B D Ga. Si: A D
B D Si. Values for X-rays of 10,400 eV, approximately 33 eV
above the absorption K-edge of Ga [sfactor.m]

such as in the case of reflections 111 and N1N1N1 in GaAs, Fig. 4.3c. The imaginary
part of the atomic scattering factor has a greater amplitude under resonance, which
is a fact that accentuates the differences in intensities of the pairs of reflections
susceptible to the absence of a symmetry center. Note that if f 00 D 0 for all atoms
of the structure, FNhNkNl D F�

hkl and therefore jFNhNkNlj2 D jFhklj2 for any NhNkNl=hkl pair of
reflections regardless of the structure having or not a symmetry center.

Exercise 4.5. In a polar crystal, besides f 00 ¤ 0, what other mathematical property
of the structure factors is also necessary for having Friedel pairs with different
intensities?
Answer: The structure factor of any reflection can always be written in two parts:
one with the real terms of the atomic scattering factors; and the other with the
imaginary terms. This leads to

F D X

a

.f Cf 0/a ei�a Ci
X

a

.f 00/a ei�a D F0CiF00 D jF0jei�0 CijF00jei�00 D ei�0

ŒjF0jCijF00jei.�00
��0/�

where �a D 2�.hxa C kya C lza/, see (4.12). The intensities in the Friedel pair
are proportional to jFj2 D jF0j2 C jF00j2 � 2jF0jjF00j sin .�00 � �0/ and to j NFj2 D
jF0j2CjF00j2C2jF0jjF00j sin .�00 ��0/, the latter obtained by swapping �a with ��a.
So for jFj2 to be different from j NFj2, it is also necessary to have sin .�00 � �0/ ¤ 0,
a fact that only occurs for a few reflections in non-centrosymmetric crystals such as
reflections with odd indices in III–V semiconductors.

Exercise 4.6. Methods that explore mathematical relationships between the phases
of the structure factors, called “direct methods,” contributed to overcoming the phase
problem in X-ray crystallography and received the Nobel Prize in Chemistry in 1985
(Hauptman and Karle 1953). Given any three reciprocal lattice vectors, for instance
A, B, and C that belong to the set fQhklg, what is the mathematical relationship
between these vectors so that the triplet of structure factors F.B/F.C/=F.A/ has an
invariant phase with respect to the choice of origin for atomic fractional coordinates
in the unit cell?
Answer: If ra stands for atomic positions in the unit cell regarding a certain choice
of origin with structure factors F.Q/, then
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F�.Q/ D
X

a

faeiQ�.raC�r/ D eiQ��r F.Q/

are the structure factors with the origin shifted by�r in relation to the previous one.
The triplet

F�.B/F�.C/
F�.A/

D jF.B/jjF.C/j
jF.Aj/ eiŒ‰T C.BCC�A/��r�

will have phase ‰T D �B C �C � �A invariant under translation of the origin when
A D B C C. For example, for GaAs crystal with X-rays of 10,400 eV, Table 4.1, the
invariant phases of the triplets F111FN1N11=F002 and F1N11FN111=F002 are ‰T D 120:0ı
and ‰T D �36:2ı, respectively.9

� � �

4.2 Truncation of the Crystal Lattice

Another important aspect of the kinematic intensity, (4.15), is the dependence on
the shape of the crystal. In the crystal structure analysis, the sample size (diffracting
volume) varies in a length scale of micrometer. Although small, this scale of size is
sufficient for the term jW.Q � Qhkl/j2 to not broaden the diffraction conditions to
the point of compromising the resolution of the structure. The effects of shape are
accentuated with the decrease of scale, making it possible to estimate the dimension
of very small crystallites by enlarging the diffraction peaks above the instrumental
width, which is a procedure analogous to that of estimating particle sizes in solution
by small angle scattering, Sect. 2.3.

In studies of nanostructured materials and surfaces, the truncation of the crys-
talline lattice, namely, the fact that the crystals have finite dimensions, produces
remarkable effects when analyzing the distribution of intensity in the reciprocal
space with intense beams. In nanotechnology, many devices contain crystalline
materials of nanometer dimensions. The high resolution mapping of the intensity
distribution around one node of the reciprocal lattice, i.e. mapping the function
jW.�Q/j2, is an important tool for analysis of nanostructured devices (Pietsch et al.
2004). In crystals with surfaces defined at an atomic scale, jW.�Q/j2 distributes the
intensity along the normal direction to the surface, allowing diffraction experiments
at a grazing incidence with the diffraction vector contained in the surface’s plane
(Malachias et al. 2011). The approximation in (4.14), of considering the diffracted
intensities by different hkl reflections as independent of each other, needs to be

9There are experimental methods based on a dynamical theory of X-ray diffraction, which are
susceptible to the value of ‰T , e.g. Morelhão et al. (2011).
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reassessed when W.�Q/ is very broad and the fields scattered by adjacent nodes
show interference effects, see Exercise 4.8.

� � �

Exercise 4.7. The smaller the dimensions of a crystal, the larger is the volume of
the reciprocal lattice nodes. (a) What is the aspect of the nodes in crystals with
thickness of t D 100 nm? Consider both crystal shapes: rectangular area and circular
area. (b) What mathematical function describes the asymptotic drop in intensity
along the surface normal direction?
Answer (a): The volume of the nodes is determined by the function jW.�Q/j2 where
�Q D Q � Qhkl. In a crystal with rectangular shape, dimensions L � L � t,

W.�Q/ D FTfs.r/g D
Z L=2

�L=2
ei�Qx x dx

Z L=2

�L=2
ei�Qy y dy

Z t=2

�t=2
ei�Qz z dz D

D tL2
sin.�QxL=2/

�QxL=2

sin.�QyL=2/

�QyL=2

sin.�Qzt=2/

�Qzt=2
:

The aspect of node in a 3D visualization is shown in Fig. 4.4a.
In the case of a crystal in the shape of a disc, diameter L and thickness t,

W.�Q/ D
Z 2�

0

Z L=2

0

ei�Qxy r cos' r dr d'
Z t=2

�t=22
ei�Qz z dz D

D t Wr.�Qxy/
sin.�Qzt=2/

�Qzt=2

Fig. 4.4 Nodes of the reciprocal lattice in crystals with a thickness t D 100 nm and (a) rectangular
and (b) disc shape, L D 2t. 3D aspect illustrated by isosurfaces of the function jW.�Q/j, (4.13)
[exrlp3Dview.m]
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Fig. 4.5 Comparison of Lorentzian function y.x/ D 1=Œ1 C x2� (black line) with the function
y.x/ D j sin.x/=xj2 (blue line). x D �Qzt=2, �Qz D 2��l=a, and t D Na [sincfunction.m]

produces the visualization shown in Fig. 4.4b. �Q2
xy D �Q2

x C�Q2
y , r2 D x2 C y2

and the integral in the azimuthal angle ' resolved numerically.
Answer (b): The maximums of the sinc function, sin.x/=x, for x ¤ 0 fall with 1=x,
while for x D 0 the function is 1. The fall in intensity in the longitudinal direction to
the thickness t is given by the square module of the sinc function with x D �Qzt=2,
item (a), whose maximums are described by a Lorentzian function such as

ˇ̌
ˇ̌ sin.�Qzt=2/

�Qzt=2

ˇ̌
ˇ̌
2

maximums

D 1

1C .�Qzt=2/2
: (4.17)

See comparisons in Fig. 4.5. The period of the maximums, or thickness fringes, is
�Qz D 2�=t.

Exercise 4.8. The alignment of adjacent nodes of the reciprocal lattice with the
normal direction to the crystal surface favors interference effects between the fields
diffracted by adjacent nodes. How does the thickness of the crystal affect the validity
of the approach implicit in (4.14) for treating separately the diffracted intensities?
Answer: The approach will always be valid independently of the values of Fhkl,
provided that

ˇ̌
ˇ̌
ˇ

X

h;k;l

W.Q � Qhkl/

ˇ̌
ˇ̌
ˇ

2

�
X

h;k;l

jW.Q � Qhkl/j2 D 0 :
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Fig. 4.6 Discrepancies between the functions A.�l/ and B.�l/, as defined in the text, with crystal
thickness t. The envelope curves are obtained by replacing sin.xj/=xj for 1=.1 C ixj/ in (4.18)
[sincinterference.m]

If the nodes with indexes l and l ˙ 1 are aligned to the normal direction, the above
equation would be reduced to

ˇ̌
ˇ̌
ˇ̌
X

jD0;˙1

sin.xj/

xj

ˇ̌
ˇ̌
ˇ̌

2

„ ƒ‚ …
A.�l/

�
X

jD0;˙1

ˇ̌
ˇ
ˇ
sin.xj/

xj

ˇ̌
ˇ
ˇ

2

„ ƒ‚ …
B.�l/

D 0 (4.18)

where xj D �Qz;jt=2 D �N.�l � j/ and N D t=a is the number of unit cells with a
lattice parameter c D a, in the direction of the crystal’s thickness t. In Fig. 4.6, the
discrepancies between the terms A and B are compared as a function of thickness.
The increase in thickness does not affect the limits of the discrepancies intervals
(j�lj > 1=5), but requires a signal to noise ratio continually greater in order to
measure diffracted intensities in these intervals.

Exercise 4.9. Assuming valid the kinematic approach for crystals with micrometer
dimensions, rewrite Ihkl.Q/, (4.15), in terms of delta functions. What is the value of
Ihkl.0/?
Answer: From the relationships described in Note 3.1 for the volume function	.u/,

jW.�Q/j2 D V FTf	.u/g ' Vıq.�q/ D .2�/3VıQ.�Q/
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where jW.0/j2 D V2 and ıq.0/ D .2�/3ıQ.0/ D V . Recalling that if N D V=Vcel is
the number of unit cells in the crystal with a volume V and V�

cel D .2�/3=Vcel is the
reciprocal volume of the unit cell, the intensity distribution around a node hkl can
be rewritten as

Ihkl.Q/ ' ITh jFhklj2 N V�
cel ıQ.Q � Qhkl/ (4.19)

where Ihkl.0/ D ITh jFhklj2 N2.

� � �

4.3 Atomic Disordering in Crystalline Structures

The mathematical description by the unit cell and periodic lattice convolution, (4.4),
generates structures with perfect periodicity since all the unit cells along the crystal
are identical. Such perfection accentuates the maximums and minimums of the
interference patterns: maximums (constructive interferences) on the nodes of the
reciprocal lattice and minimums (destructive interferences) throughout the rest of
the reciprocal space. However, if there is a minimum of disorder in the atomic
positions, there is a softening of both the constructive and destructive interferences.
The intensities of the diffraction peaks decrease while the values of the scattered
intensities in the regions outside of the diffraction peaks tend to increase. This is
an analogous situation to those demonstrated in Fig. 3.6, Exercise 3.3 (b), and in
Fig. 3.25.

4.3.1 Thermal Vibrations

Even at absolute zero temperature, atoms in a solid vibrate according to the
fundamental frequencies of the quantum states inherent to the chemical bonds.
The higher the temperature, the higher the frequencies and amplitudes of vibration.
However, compared to the frequency of the X-rays, of the order of 1018 Hz, thermal
vibrations are slow movements. Within the temporal coherence of an X-ray beam,
something around a few femtoseconds,10 the atoms of the structure are frozen
at slightly different positions than the average positions described by the perfect
structure, characterizing instant disorders similar to those addressed in Note 3.4.
The main difference is in the fact that the vibrations are not necessarily isotropic
(equal in all directions), and neither are the amplitudes equal for all atoms of the

10Temporal coherence: longitudinal coherence CL, (1.15), divided by the speed of light, e.g.
��=� D 10�4 and � D 1:54Å ) CL=c D 2:6 fs of temporal coherence.
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structure. If they were, i.e. isotropic vibrations of the same amplitude, the solution
obtained in Note 3.4 and summarized in (3.19) would be sufficient to account for
the effects of thermal vibrations in the temporal average of the intensity scattered
throughout the structure.

In order to differentiate parameters of disorder by atomic site,11 the starting point
becomes the general correlation function of the perfect (average) structure

C.u/ D
X

a;b

faf �
b ı.u � rab/ D

X

a

jfaj2ı.u/C
X

a;b¤a

faf �
b ı.u � rab/ ; (4.20)

written directly in terms of the atomic scattering factors so as to provide the
kinematic intensity I.Q/ D ITh FTfC.u/g. The indexes a and b run along all the
structure’s atoms. Slight disorders in the atomic positions turn the delta functions
into Gaussians functions G.u � rab/, whose standard deviations �ab, depend on
the mean square deviations �2a and �2b of the atomic positions responsible for the
separation rab, which is �2ab D �2a C �2b. The FTs of the Gaussians12

FTfG.u � rab/g D eiQ�rab e� 1
2Q2.�2aC�2b/ ; (4.21)

are susceptible only to the mean square deviations in the direction of the diffraction
vector Q D Q OQ, which requires special attention in the systems with anisotropic
disorders where �a ! �a. OQ/.

(4.21) can be used to reach the following expression of kinematic intensity

I.Q/ D ITh FTfC.u/g D ITh

X

a

jfaj2 FTfı.u/g C ITh

X

a;b¤a

fa f �
b FTfG.u � rab/g D

D ITh

X

a

jfaj2 C ITh

X

a;b¤a

fa e� 1
2Q2�2a f �

b e� 1
2Q2�2b eiQ�rab ; (4.22)

which explicitly shows that the disorder in the atomic structure of a solid in relation
to the average structure can be treated as an exponential attenuation of the atomic
scattering factors present in the term of interference (double sum). In a hypothetical
situation of total disorder, �a;b ! 1, there would still be the sum (simple sum)
of the individual intensities scattered by the atoms, such as in a disperse system,
Chap. 2. In systems with a high degree of disorder, e.g. Fig. 3.25, the contribution
of these individual intensities increases the background noise as Q increases, but is
limited by the reduction of the atomic scattering factors.

11Further details about atomic disorder parameters are available in Authier (2006, pp. 228–242).
12Although (4.21) has an analytical solution, the routine debye.m allows numerical verification in
one dimension.
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In the case of crystalline structures where the amplitudes of the vibrations
are very small in relation to the size of the unit cells, the dominant effect is
the attenuation of the diffracted intensities; the increase in background noise is
negligible. Formally this is demonstrated by rearranging the sums in (4.22) in terms
of the N unit cells of the crystal and of the Nat atoms present in each unit cell„

I.Q/ D ITh

N�NatX

aD1
jfaj2.1 � e� 1

2Q2�2a/C ITh

ˇ̌
ˇ̌
ˇ

N�NatX

aD1
fa e� 1

2Q2�2a eiQ�ra

ˇ̌
ˇ̌
ˇ

2

D

D ITh N
NatX

aD1
jfaj2.1 � e� 1

2Q2�2a/C ITh

ˇ̌
Fcryst.Q/

ˇ̌2 ' ITh

ˇ̌
Fcryst.Q/

ˇ̌2
: (4.23)

Fcryst.Q/ is the form factor of the crystal defined in (4.13), but accounting for the
effect of the thermal vibrations in the structure factors

Fhkl D
X

a

fa e�Ma e 2� i .hxaCkyaClza/ (4.24)

through the exponential attenuation with factor

Ma D 1

2
Q2�2a D 8�2�2a

�
sin �

�

�2
; (4.25)

commonly called the temperature factor or Debye–Waller factor (Authier 2006).
The root mean square deviation associated with the a-th atom of the unit cell is in
general terms given by �2a D hj.ra � hrai/ � OQj2i. The h� � � i represent spatiotemporal
averages, which are both the temporal average in a single unit cell and an average
of all the unit cells of the structure at a given instant of time. The latter case allows
you to include disorders of non-thermal origin, such as those induced by defects
randomly distributed in the structure.

In a crystalline lattice there are also collective vibrations known as phonons. The
collective movement induces correlations between atomic positions that alter the
Bragg’s law locally, generating very weak diffuse intensities outside the diffractions
of the average crystalline lattice. The scattering of X-rays by thermally excited
phonons, called Thermal Diffuse Scattering (TDS), has been observed with intense
X-ray sources and has given rise to studies of the lattice dynamic in solids (Holt et al.
1999). However, the treatment of thermal vibrations without correlations, i.e., the
atoms vibrating independently one from the other, makes it possible to adequately
describe the effects of the thermal vibrations in the techniques commonly employed
in the study and characterization of crystal structures.

� � �
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Fig. 4.7 Atomic structure of crystals. (a) Potassium dihydrogen phosphate (KDP), unit cell with
4 KH2PO4 molecules. (b) Silver orthophosphate, unit cell with 2 Ag3PO4 molecules. View from
the crystallographic axis [001]. H and Ag atoms have occupancy factors of 1/2

Exercise 4.10. The potassium dihydrogen phosphate (KDP), Fig. 4.7a, is a soluble
salt with numerous applications ranging from the food industry—sports drinks
for example—to laser technology. The latter application in the form of single
crystals grown by the slow evaporation process from aqueous solution. (a) Build
a histogram of the KDP’s structure factors (square modules) plotted as a function
of the diffraction vector module Q. What is the attenuation imposed by the thermal
vibrations in the histogram’s main contribution? (b) Metal ions present as impurities
in the crystal structure tend to occupy interstitial sites surrounded by oxygens.
Would it be possible, in principle, to show an increase in disorder of the oxygens
only?
Answer (a): The function

F.Q/ D
X

hkl

jFhklj2ı.Q � Qhkl/ (4.26)

represents the histogram of the squared modules of the structure factors shown
in Fig. 4.8 where Qhkl D 2�=dhkl. In the case of thermal vibrations of the same
magnitude for all atoms of the structure, the factor e�Q2�2 is common for all
reflections. The higher is the value of Q, the higher is the attenuation of intensity.
For the main contribution that occurs at Q D 3:218Å�1 due to 16 reflections from
family 132, see Note 4.2, the attenuation will be around 10 %, 21 %, and 34 % when
� D 0:1Å, 0:15Å, and 0:2Å, respectively.
Answer (b): When increasing the disorder of O atoms, the relative variation in the
structure factors becomes no longer systematic as in the case of a uniform increase
of disorder to all atoms, Fig. 4.9. Therefore, in principle, it would be feasible to
show experimentally that O atoms have higher disorder.
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Note 4.2: We have used routine diffraction.m to calculate, index, and sort the
structure factors of a crystal in a given energy. Below is part of the file generated
by this routine, taking as an example the structure of the KDP:

X-ray photon energy = 10000.0eV (wavelength = 1.239850A)

|-------------|---------|---------------------------------------|--------------------------|

| h k l | Ihkl(%) | Re{Fhkl} Im{Fhkl} |Fhkl| fase | th tth dhkl |

|-------------|---------|---------------------------------------|--------------------------|

| 2 0 0 | 100.0 | 127.384 4.055i 127.449 1.8 | 9.5772 19.1543 3.7260 |

| -2 0 0 | 100.0 | 127.384 4.055i 127.449 1.8 | 9.5772 19.1543 3.7260 |

| 0 2 0 | 100.0 | 127.384 4.055i 127.449 1.8 | 9.5772 19.1543 3.7260 |

| 0 -2 0 | 100.0 | 127.384 4.055i 127.449 1.8 | 9.5772 19.1543 3.7260 |

| 1 1 -2 | 80.8 | 104.005 47.981i 114.539 24.8 | 12.3089 24.6179 2.9080 |

| 1 -1 2 | 80.8 | 104.005 47.981i 114.539 24.8 | 12.3089 24.6179 2.9080 |

| -1 -1 -2 | 80.8 | 104.005 47.981i 114.539 24.8 | 12.3089 24.6179 2.9080 |

| -1 1 2 | 80.8 | 104.005 47.981i 114.539 24.8 | 12.3089 24.6179 2.9080 |

| -1 -1 2 | 76.8 | 104.265 -39.946i 111.655 -21.0 | 12.3089 24.6179 2.9080 |

| 1 -1 -2 | 76.8 | 104.265 -39.946i 111.655 -21.0 | 12.3089 24.6179 2.9080 |

| 1 1 2 | 76.8 | 104.265 -39.946i 111.655 -21.0 | 12.3089 24.6179 2.9080 |

| -1 1 -2 | 76.8 | 104.265 -39.946i 111.655 -21.0 | 12.3089 24.6179 2.9080 |

| -4 0 -4 | 64.1 | 101.980 4.234i 102.067 2.4 | 29.1423 58.2845 1.2730 |

| 4 0 4 | 64.1 | 101.980 4.234i 102.067 2.4 | 29.1423 58.2845 1.2730 |

| -4 0 4 | 64.1 | 101.980 4.234i 102.067 2.4 | 29.1423 58.2845 1.2730 |

| 4 0 -4 | 64.1 | 101.980 4.234i 102.067 2.4 | 29.1423 58.2845 1.2730 |

| 0 -4 4 | 64.1 | 101.980 4.234i 102.067 2.4 | 29.1423 58.2845 1.2730 |

| 0 4 -4 | 64.1 | 101.980 4.234i 102.067 2.4 | 29.1423 58.2845 1.2730 |

| 0 4 4 | 64.1 | 101.980 4.234i 102.067 2.4 | 29.1423 58.2845 1.2730 |

| 0 -4 -4 | 64.1 | 101.980 4.234i 102.067 2.4 | 29.1423 58.2845 1.2730 |

| . . . | . . . | . . . | . . . |

| -6 -8 -2 | 0.0 | 0.077 0.367i 0.375 78.2 | 58.2840 116.5680 0.7288 |

|-------------|---------|---------------------------------------|--------------------------|

F000 = 298.747 + 4.345i

Fig. 4.8 Histograms of the KDP’s structure factors without (� D 0) and with (� D 0:10, 0.15,
and 0.20 Å) root-mean-square displacement of the atomic positions. Curves e�Q2�2 (dashed lines)
are shown [kdphistogram.m]
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Fig. 4.9 Relative variation of jFhklj2 with increasing of atomic disorder in KDP. Reference
structure with �P D �K D �O D 0:10Å[kdphistcomp.m]

� � �

4.3.2 Occupancy Factor

Beyond factors of disorder, the unit cells of a crystal can be different from each
other when there are atoms with occupancy factors lower than 1. One of the causes
is a greater number of energetically equivalent atomic sites compared with a smaller
number of atoms to occupy them. A typical example is silver orthophosphate, a
semiconductor with interesting photo oxidative properties (Yi et al. 2010) and whose
structure is shown in Fig. 4.7b. Two Ag3PO4 molecules provide 6 Ag atoms per unit
cell. The symmetry operations of the space group PN43n (Hahn 2006) generate 12
sites that are equivalent to site (x, 0, 1/2), grouped into six pairs of sites nearby, such
as the pair (x, 0, 1/2) and (1/2�x, 0, 1/2). Thus, if the position of equilibrium would
be at x D 0:25 the occupancy factor of Ag atoms would be 1, but in the actual
structure x D 0:231 so that the occupancy factor is worth 1/2. This means that in a
snapshot of the structure, Ag atoms with coordinates (0.231, 0, 1/2) occur in 50 %
of the unit cells present in the material and with coordinates (0.269, 0, 1/2) in the
remaining unit cells. The same happens for the other five pairs of nearby sites so
that all the Ag atoms have occupancy factors equal to 1/2.

Another cause of occupancy factors lower than 1 is due to stoichiometry of
the elements used for preparing a material. If A and B are chemically equivalent
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elements in the structure, the compound with a formula AxB1�x[radical] has a
fraction x of unit cells containing the element A in a particular site, while this same
atomic site will be occupied by the element B in the other unit cells.

In the mathematical expression of the structural factor, such as in (4.24), it is
common to omit the occupancy factors, which are implicit in the concept of average
unit cell. The full expression of the structure factors, explaining the occupancy
factors and the resonance amplitudes, is given by

Fhkl D
X

a

.f0 C f 0 C if 00/a Ca e�Ma e 2� i .hxaCkyaClza/ (4.27)

where Ca is the occupancy factor of a-th atom in the structure’s average unit cell.

Summary
— Unit cell

edge vectors: a, b, and c
lattice constants and angles: a � b D ab cos � , a � c D ac cosˇ, and b � c D bc cos˛
volume: Vcel D a � .b � c/ D b � .c � a/ D c � .a � b/
position of the a-th atom: ra D xaa C yab C zac

— Reciprocal lattice vectors (h; k; l 2 Z)

Qhkl D h a � C k b � C l c � D 2�h
b � c
Vcel

C 2�k
c � a
Vcel

C 2� l
a � b
Vcel

— Interplanar distances and Bragg’s law

dhkl D 2�

jQhklj D Vcel

jh.b � c/C k.c � a/C l.a � b/j D �

2 sin �hkl

— Kinematic intensity of the reflection hkl

Ihkl.Q/ D ITh
1

V2
cel

jFhklj2 jW.Q � Qhkl/j2

— Structure factors

Fhkl D P
a.f0 C f 0 C if 00/a Ca e�Ma e 2� i .hxaCkyaClza/
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— Temperature or disorder factor (Debye–Waller)

Ma D 1

2
Q2�2a D 8�2�2a

�
sin �

�

�2

— Root mean square deviation of the a-th atom in the direction OQ do the diffraction
vector

�2a D hj.ra � hrai/ � OQj2i



Chapter 5
Applications of Kinematic Diffraction

X-ray diffraction is an essential tool for chemical and structural analysis in materials
science, geosciences, chemistry, biology, and also in micro- and nanotechnology.
The validity of the Kinematic Theory in crystals, as summarized by (4.14), makes
the practical applications of this tool a lot easier. Applications of kinematic
diffraction are divided into three major types of experimental methods. The
first, and probably the most widely used worldwide, is the X-ray diffraction in
polycrystals, the popular powder method. Unless of geometric factors, polarization,
and instrumental effects,1 the method is basically the experimental measurement of
the histogram of the squared modules of structure factors, such as those in Fig. 4.8.

Not less important, although used to a lesser extent, are the diffractometry
methods in single crystals. The breaking of the azimuthal symmetry of scattering
(around the incident beam) requires appropriated instrumentation for dealing with
the inherent 3D geometry of the X-ray diffraction phenomenon in crystals. This has
the advantage of the larger number of reflections monitored individually with no
contributions from other reflections, but as a disadvantage it has an occasional loss
of resolution when working with macroscopic crystals diffracting beyond the limit
treatable purely by the kinematic approach.

Finally, the third group of methods also requires knowledge of 3D diffraction
geometry, but differing from single crystal diffractometry by the fact that the main
object of investigation is the spatial intensity distribution in specific areas of the
reciprocal space rather than the directions and relative values of the diffracted
intensities. The reciprocal space mapping methods imply in high spatial resolution
detection systems that are able to discriminate small changes, in the order of a few
seconds of arc, in the directions of the diffracted beams. Important applications of
such methods have the purpose of characterizing nanostructured devices. However,
to address them directly requires detailed incursion into the universe of these

1Instrumental effects include several factors that affect the line profile of the diffracted intensities,
including angular and spectral resolution, linear absorption by the sample, and crystallite size.

© Springer International Publishing Switzerland 2016
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devices (Pietsch et al. 2004), which is outside the scope of this book. The overview
of scattering geometry in reciprocal space given below greatly facilitates the
understanding of the mapping methods.

5.1 Working in the Reciprocal Space

In scattering techniques at angles greater than a few degrees from the direct beam
require minimum notions of 3D geometry involved in the diffraction process. A very
efficient way of dealing with this geometry is to work in the reciprocal space where
the incident radiation is represented by scattering spheres,2 Fig. 5.1. The diffraction
phenomenon is associated with the coherent (or elastic) radiation scattering in such
a way that the scattered wavevector k0 D Q C k has the same module of the
incident wavevector, i.e. jk0j D jkj, a fact that defines the surface of a sphere as
the angular dispersion locus of all the physically possible scattered wavevectors k0.
Thus, photons with a wavevector k will be diffracted by the reciprocal vector Q
when this is secant to the scattering sphere of radius jkj D 2�=�.

A polychromatic beam is equivalent to scan a region of reciprocal space with a
set of non-concentric spheres with radii continuously varying, Fig. 5.1a; the greater
the energy, the lesser the � and the greater the sphere radius. All diffraction vectors
included within the scanning region will diffract, although at different wavelengths

Fig. 5.1 Scattering spheres in: (a) energy scanning with fixed incidence angle; and (b) angle
scanning with fixed energy (monochromatic beam). Arrows connecting points 1 and 2 demarcate
the trajectories of the spheres center with radius 2�=� during the scannings. The letters RE
symbolize regions of non-null values of the function I.Q/ in reciprocal space, (4.14), and the
highlighted areas symbolize the excited regions in each scanning. Different excitation conditions
for the same point in reciprocal space, indicated by the vector Q, are illustrated

2In crystallography, diffraction geometries in reciprocal space and scattering spheres are, respec-
tively, called Ewald’s constructions and reflection spheres, or also Ewald’s spheres (Ewald 1969).
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depending on which satisfies the diffraction condition: vector Q secant to the
scattering sphere of radius 2�=�. In the case of a monochromatic beam with
negligible angular divergence, to scan a reciprocal space region it is necessary to
vary the beam incidence angle as in the pictorial situation in Fig. 5.1b.

� � �

Exercise 5.1. In an experiment with polychromatic radiation, Oz D Œ0; 0; 1� is the
direction of incidence and Q D Q Œsin˛ cos'; sin˛ sin'; cos˛� is any diffraction
vector. Using only vector relations in reciprocal space, find the coordinates of the
scattering sphere center exciting vector Q, the direction of the diffracted beam, and
the correlation between ˛ and the scattering angle 2� .
Answer: From the elastic scattering condition jk0j2 D jk C Qj2 D k2, we have that
every vector Q secant to the sphere of radius k will be in a diffraction condition,
satisfying the relation

k � Q D �Q2=2 : (5.1)

Since k D kOz, the condition of diffraction is summarized as k cos˛ D �Q=2, which
allows us to determine the radius k D 2�=� of the scattering sphere exciting the
vector Q. For example, if ˛ D 120ı the diffraction condition occurs for k D Q, or
� D dhkl in the case of Q being a vector of the reciprocal lattice of module 2�=dhkl.
The center of the scattering sphere is appointed by the vector antiparallel to the
vector of the incident wave, i.e. by �k, which in this case points to the coordinates
.0; 0; �k/. The direction of the diffracted beam is given by

k0 D Q C k D ŒQ sin˛ cos'; Q sin˛ sin'; Q cos˛ C k� ;

and since ˛ > 90ı, k � k0 D k2 cos 2� D k � .Q C k/ D k2 � Q2=2 D k2.1� 2 cos2 ˛/

) 2� D 2˛ � 180ı :

� � �

Note 5.1: Vectorial Bragg’s Law. When the diffraction vectors correspond to the
exact reciprocal lattice vectors, Q D 2�=dhkl and (5.1) reduces to

2k � Q D �Q2 ) 2
2�

�
cos.90ı C �/ D � 2�

dhkl
) 2dhkl sin � D � :

� � �



154 5 Applications of Kinematic Diffraction

Fig. 5.2 Excitation geometry of a reciprocal lattice node hkl. The diffracted intensity comes from
the intersection area between the scattering (Ewald) sphere surface and the reciprocal node volume
function jW.�Q/j2, represented here by an isosurface

Exercise 5.2. By varying the angle of incidence of a collimated monochromatic
X-ray beam in a small crystal, hkl nodes of the reciprocal lattice touch the scattering
sphere generating diffracted beams. (a) What is the scattered intensity during the
trajectory of a single node through the surface of the scattering sphere? (b) What is
the area under the scattered intensity curve?
Answer (a): Although the intensity distribution in reciprocal space of a crystal is
described point-to-point by function I.Q/, (4.14), the measurable intensity comes
from the sphere surface intersection area with function jW.�Q/j2 responsible for
the volume of the nodes, as depicted in Fig. 5.2.

By defining a xyz coordinate system so that the plane of incidence is the plane xz
and Qhkl D Qhkl Œ0; 0; 1� the reciprocal lattice vector of a given node, then

k D kŒcos �; 0; � sin �� and k0 D kOs0 D kŒcos � 0; sin � 0 sin'0; sin � 0 cos'0� ;

are the possible incident and scattered wavevectors, respectively. At a given angle
of incidence � , the set of reciprocal vectors

Q D k0 � k D kŒcos � 0 � cos �; sin � 0 sin'0; sin � 0 cos'0 C sin �� ; (5.2)

end on the scattering sphere surface, thus satisfying the condition of elastic
scattering. The scattered intensity corresponds to the integral of Ihkl.Q/, (4.15), on
the scattering sphere,

I.�/ D
Z

Ihkl.Q/ d	0 D ITh
1

V2
cel

jFhklj2
Z 2�

0

Z �

0

jW.Q � Qhkl/j2 sin � 0 d� 0 d'0 :

(5.3)
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In general, jW.�Q/j2 is a well-localized function. The maximum occurs when � and
� 0 are equal to Bragg’s angle and '0 D 0. Integration intervals in � 0 and '0 are thus
limited to a small solid angle near the point where Qhkl touches the scattering sphere
during the � scanning. The diffracting crystalline lattice dimensions determine how
limited the integration intervals are, the smaller the size of the lattice, the larger
the intervals to be considered. In a detector system with open window where all
diffracted radiation by a node is accounted, ITh ! Ie D ˆ r2e hjP.Os0/j2i and (5.3)
allows accurate numerical solutions within the kinematic approach whatever is the
shape of the crystal. Examples of � scans generating intensity curves with different
profiles and same area are shown in Fig. 5.3.
Answer (b): When crossing the sphere surface, all the volume of a reciprocal node
will be diffracted so that the area

Ahkl D �t
Z

I.�/ d� D �t Ie
1

V2
cel

jFhklj2
•

jW.Q � Qhkl/j2 sin � 0 d� 0 d'0 d� ;

(5.4)

under the diffraction curve will be proportional to the radiation count time �t
in each position � , as well as the volume integral of the function jW.�Q/j2.

Fig. 5.3 Simulated rocking curves, � -scans, of the 224 reflection in a GaSb (001) crystal at
grazing incidence geometry (circles) and grazing output (up triangles), see Note 5.2. Differences in
profiles come from the relative orientation between reciprocal node and scattering sphere (insets).
Simulation parameters: crystal with a thickness of 0:5
m and area of 4
m2, � D 1:540562Å
and statistics of 5� 105 counts per curve [rockingcurve.m]
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Knowing that,3

Z
jW.�Q/j2 dVQ D .2�/3V ; (5.5)

now we only have to find the volume element dVQ in terms of the variables � 0, '0,
and � .

Following the same procedure used to find volume elements in non-cartesian
coordinates—as in the case of cylindrical and spherical coordinates4, it gives that

dVQ D
ˇ̌
ˇ
ˇ
@Q
@�

�
�
@Q
@'0

� @Q
@� 0

�ˇ̌
ˇ
ˇ d� 0 d'0 d� D k3 Œcos � 0 sin � C cos � sin � 0 cos'0� sin � 0 d� 0 d'0 d� :

The partial derivatives follow directly from (5.2): @Q=@� 0 D kŒ� sin � 0; cos � 0 sin'0;
cos � 0 cos'0�, @Q=@'0 D k sin � 0 Œ0; cos'0; � sin'0� , and @Q=@� D kŒsin �; 0;
cos ��. As the angular intervals are located around � 0 ' � and '0 ' 0,

sin � 0 d� 0 d'0 d� D dVQ

k3 sin 2�
:

Substituting this result together with (5.5) in (5.4), we have

Ahkl D Ie jFhklj2 N�3

sin 2�hkl Vcel
�t : (5.6)

� � �

The integrated intensity of the scanning curve, (5.6), is an experimentally
measurable quantity. In crystals with N unit cells, the value of the integrated
intensity from one reflection to another changes only with the structure factor and
scattering angle.5 Therefore, regardless of the crystal shape, as long as the entire
volume of the reciprocal node crosses the scattering sphere during the scanning
curve, the integrated intensity allows us to assign relative values to the jFhklj2 of the
various reflections of a crystal. This fact originates structural analysis methods such
as diffractometry of single crystals with monochromatic beam and diffractometry of
polycrystals, both capable of solving fractional coordinates, Sect. 4.1.2.

3See Exercise 4.9 or properties of function 	.u/, Note 3.1.
4See Jacobian matrix, e.g. Arfken (1985), or Zachariasen (1945, p. 107).
5Angle 2�hkl in the polarization factor, implicit in the term Ie, and in the geometric factor
1= sin 2�hkl, also called the Lorentz factor (Als-Nielsen and McMorrow 2001; Giacovazzo 2002).
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Note 5.2: Rocking Curves. In thin crystals with rectangular shape, dimensions
L � L � T where L 
 T ,

jW.�Q/j2 ' V2 1

1C .�Q0
xL=2/2

1

1C .�QyL=2/2
sin2.�Q0

zT=2/

.�Q0
zT=2/

2
;

see Exercise 4.7. When the normal direction of the largest face of the crystal is
contained in the incidence plane xz, making an angle of �n with the diffraction
vector Qhkl parallel to the z-axis,

�
�Q0

x

�Q0
z

�
D
�

cos �n � sin �n

sin �n cos �n

��
�Qx

�Qz

�
:

From (5.2), �Qx D k.cos � 0 � cos �/, �Qy D k '0 sin � 0, and �Qz D k.sin � 0 C
sin �/ � Qhkl. By the fact that the dimension L of the crystal along y-axis is large,
the angle '0 is too small so that sin'0 ! '0 and cos'0 ! 1. Thus the integral in
'0 in (5.3) is L�= sin � 0, and

I.�/ D Ie N2 jFhklj2 �
L

Z �C�

���
1

1C .�Q0
xL=2/2

sin2.�Q0
zT=2/

.�Q0
zT=2/

2
d� 0 ;

is obtained by numerical solution of the integral in � 0 on an interval of width 2�
around the angle � . The curves in Fig. 5.3 were obtained for �n D ˙32:26ı and
� D 80�=T cos � .

5.2 Powder Diffractometry

The easy identification of chemicals substances present in a solid sample consist-
ing of microscopic crystalline grains (crystallites) is one of the most important
applications of the diffractometry of polycrystals. When an X-ray beam hits a
polycrystalline sample, the diffraction will occur in the crystallites with suitable
spatial orientations to satisfy Bragg’s law. As the beam is collimated and monochro-
matic, i.e. low angular divergence and small spectral width, the record of scattering
angles 2� of the diffracted intensities allows determining the interplanar distances
d D �=2 sin � , (4.9), of the substances present in the sample. As each chemical
substance has a characteristic set of interplanar distances, identifying substances
which are present there is possible, except for when there are many different
substances in the same sample.

Digital catalogs of substances and their interplanar distances are commercially
available, both in separate acquisitions and in computer software packages that
come with many existing diffractometers in the market. Academic laboratories
working with X-ray diffraction, such as the Crystallography Laboratory of the
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Physics Institute of the University of São Paulo, in general have these catalogs
available that can be used, in principle, by any interested person. Alternatively,
a crystallographic information file (CIF) for each of the cataloged substance is
available online (Crystallography Open Database: http://www.crystallography.net/).
Although values of interplanar distances and structure factors are not listed in the
CIFs, they can be calculated from the crystallographic information, as implemented
in the routines bragg.m, sfactor.m, and diffraction.m.

5.2.1 Relative Intensities in Polycrystalline Samples

Other applications of diffractometry of polycrystals are in refining crystallographic
information of new materials and studying substances under structural changes
in adverse conditions, e.g. temperature and pressure. In many cases you need to
register, in addition to the angles 2� , the relative values of the diffracted intensities,
which, ultimately, will determine the fractional coordinates of the atoms in the
unit cell. However, accuracy in resolving the structure implies in establishing
correlations, free of instrumental effects, among intensity measures and structural
factors.

Samples where the crystallites have perfectly random orientation distributions
greatly facilitate the solution of structures with high resolution. The preparation of
samples requires some care to avoid texturing, which is the induction of preferred
orientations. Collecting intensity data in a rotating sample is a common procedure
for minimizing texture effects. A second requirement is the constancy of the
crystallites number within the diffracting volume. Depending on the particular
diffraction geometry used and the shape of the sample, the effective number of
crystallites may vary with the instrumental angles, causing correctable systematic
variation of the diffracted intensities.6 In the simplest situation, samples without
textures where the number Nc of crystallites is the same for all the reflections,
the relative values of the structure factors, or rather, the histogram of jFhklj2,
e.g. Fig. 4.8, can be inferred from the experimental data of diffracted intensities
according to the treatment described below.

5.2.1.1 Geometric Factors

Given Q as any reciprocal lattice vector of a crystal whose structure is to be
analyzed. In a polycrystalline sample of this material, consisting of thousands
of randomly oriented crystallites, the set of vectors Q from all crystallites
are evenly distributed over the surface of a sphere of radius Q. Therefore,

6For details on diffraction geometry and instrumental effects on the diffracted intensities for
polycrystalline sample, see Prince (2006, Ch. 2.3, pp. 42–79).

http://www.crystallography.net/
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Fig. 5.4 Reciprocal space of
the X-ray diffraction in
polycrystalline samples. Each
reciprocal lattice vector Q is
represented by a sphere of
radius Q, whose intersection
with the scattering sphere
defines a ring of radius
k sin 2� and lateral area
dS D 2�Q2 sin˛ d˛ as the
locus of all reciprocal vectors
of module Q in condition to
diffract the incident beam of
wavevector k. The axial
acceptance �' of the detector
restricts the intensity
measures to the diffracted
beams with k0 within the
fraction �'=2� sin 2� of the
ring

dNc=Nc D .4�/�1d	Q corresponds to the fraction of crystallites with vector
Q oriented within the differential solid angle d	Q D sin˛ d˛ d'. When a
monochromatic X-ray beam of low divergence hits the sample, the scattering
sphere intercepts the sphere of radius Q centered at the reciprocal space origin,
defining a ring of lateral area dS D 2�Q2 sin˛ d˛ and radius k sin 2� where
Q D 2k sin � , as illustrated in Fig. 5.4. The fraction of crystallites in diffraction
condition is thus given by the area ratio of the ring and the sphere of radius Q, i.e.
dNc=Nc D dS=4�Q2 D 1

2
cos � d� where � D ˛ � 90ı (Cullity and Stock 2001).

The width d� is related to the angular divergence and spectral width of the incident
beam.

Intensity measurements are usually limited by the axial acceptance—
perpendicular to the instrumental incidence plane—of the detection system. Only
the part of the intersection ring scattering inside the detector axial acceptance �'
contributes to the intensity measures, Fig. 5.4. The value �' is the same for all
reflections, but as the ring radius changes, the relative reduction �'=2� sin 2� in
the diffracting fraction of crystallites must also be taken into account.

dNc

Nc
D cos � d� �'

4� sin 2�
D d� �'

8� sin �
(5.7)

is the effective fraction of crystallites responsible for the measured values of the
diffracted intensities.7

7See also Als-Nielsen and McMorrow (2001, p. 157).
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5.2.1.2 Area and Line Profile of the Diffraction Peaks

The radiation scattered at a given angle 2� aggregates contributions from several
slightly disoriented crystallites, which is equivalent to scanning a single crystallite
through the scattering sphere, as in Fig. 5.3. The integration of the scattered intensity
as a function of 2� corresponds to an intensity measurement with the detector
opened, implying that the diffraction peaks of polycrystalline samples have areas
that are proportional to the areas of rocking curves of a crystallite, (5.6). Thus,
multiplying (5.6) by the effective fraction of crystallites contributing in each
reflection, (5.7), we have

Ahkl D Ie

 
X

n

jFhklj2n
!

Nc hNi�3
8� sin � sin 2� Vcel

d� �' �t (5.8)

as the integrated intensity expression of the reflections in polycrystals. The index
n of the sum runs through all reflections with same interatomic distance dhkl,
diffracting at 2� D 2 sin�1.0:5 �=dhkl/. Note that in some crystals the structure
factors in the sum may have slightly different values from each other due to atomic
resonance as seen, for instance, in the jFhklj table in Note 4.2 for d D 2:908Å.

Having variations of sizes between the Nc crystallites in the sample, the relative
values of the structure factor amplitudes are still accessible as long as the average
number hNi of unit cells per crystallite is constant during the data collection. Within
the kinematic limit, the size and shape of the crystallites have little importance to the
solution of the structure, except when they are very small or of low crystallinity to
the point of affecting the resolution of the diffraction peaks. Accurate measurement
of position and area of the peaks are obtained by curve fitting methods. The used line
profile functions—Gaussian, Lorentzian, pseudo-Voigt, etc.—are those that best fit
the profile of experimental peaks. Moreover, estimating crystallite size is of interest
in several studies.

The intrinsic width of the diffraction peaks is related to the mean volume of the
reciprocal nodes, hjW.�Q/j2i, calculated over the size and orientation distributions.
As W.�Q/ is nothing but the FT of a crystallite shape function, the result is
analogous to that obtained by small angle scattering in disperse system with
size distribution, Sect. 2.3.4. Although the intensities at wide angles are orders of
magnitude smaller than at the small angle region, the width of the diffraction peaks
is also set within a range around the maximum where the Guinier approximation is
satisfactory. In the case of crystallites with shapes not correlated to crystallographic
directions, it allows deriving a relationship between the peak width and mean
crystallite size from the line profile function

L.�Q/ ' V�2 lim
�Q!0

hjW.�Q/j2i D e� 1
3 .�Q/2 R2g ; (5.9)

normalized by height. �Q D jQ � Qhklj and Rg is the weighted gyration radius of
the crystallites as defined in (2.17) for a system of uniform density particles with
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distribution of sizes. From the condition L.�Q1=2/ D 1=2, we obtain the FWHM
(full width at half maximum) in reciprocal space,

ˇQ D 2�Q1=2 D 2R�1
g

p
3 ln.2/ D 2:884=Rg : (5.10)

In real space, which is intensity measured as a function of the scattering angle 2� ,
the angular FWHM

ˇ2� D ˇQ

.2�=�/ cos �
D 0:46�

cos � Rg
(5.11)

follows from the relationship Q D .4�=�/ sin � .
In a situation where the value of Rg remains constant for any reflection, all

diffraction peaks have the same width ˇQ in the reciprocal space. But, in real space,
the peaks become wider as the scattering angle increases, reflecting the dependence
of the angular FWHM with the term 1= cos � . In the case of cubic crystallites with
edge L, gyration radius Rg D L=2, (5.11) provides ˇ2� D 0:92�=L cos � , basically
the same result as the popular Scherrer equation used to estimate the crystallite size
in powder diffraction (Warren 1990; Zachariasen 1945).

� � �

Exercise 5.3. Standard samples of polycrystalline silicon are used in calibration
of the instrumental widths of many diffractometers. (a) Simulate the silicon
diffractogram from the pair distance distribution function (PDDF), (3.10), for a
crystallite with dimensions above 10 nm. Are the integrated intensities compatible
with the values expected according to (5.8)? (b) By using a pseudo-Voigt function,
compare the line profiles of spherical and cubic crystallites of same volume. Are
the gyration radii obtained by curve fitting in accordance with the values predicted
by (5.10)?
Answer (a): After calculating the PDDF

4�p.u/ D
X

a;b

faf �
b ı.u � rab/ D jfSi.Q/j2

X

a;b

ı.u � rab/

that is the histogram of interatomic distances rab, routine siliconnano.m, the
intensity IPDDF.Q/ D ITh Nc P.Q/ is obtained as a function of the crystallite

scattering power P.Q/ D 4�
R

p.u/
sin Qu

Qu
du, routine siliconPofQ.m. The intensity

pattern recorded on an X-ray film using the Debye–Scherrer camera geometry is
shown in Fig. 5.5.

From the structure factors, the intensity pattern, or diffractogram, is calculated by

IXRD.Q/ D KA.Q/ � L.Q/
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Fig. 5.5 Diffraction pattern of polycrystalline silicon on X-ray film using the Debye–Scherrer
camera geometry. IPDDF.Q/ for spherical crystallites of diameter 200 Åand disorder of 2 %. Image
simulated with statistic of 5 � 106 counts, 12.4 keV X-rays, and �-polarization. Film radius D D
100mm and pixel size of 1 mm2 [siliconDScamera.m]

where K contains all the constant terms in a given experiment and

A.Q/ D
X

hkl

jFhklj2
sin 2�hkl

Q�1
hkl ı.Q � Qhkl/

takes into account the relative variations of the integrated intensities for the case of �
polarization in which Ie is independent of the scattering angle 2� . It stands for (5.8)
with �=4� sin � substituted by Q�1

hkl. The hkl sum runs through all reciprocal lattice
nodes with negative and positive indexes. When the FWHM ˇQ is independent of
Q, as assumed in (5.10), the same line profile function of unit area can be used for
all peaks, such as the function

L.Q/ D x
1

�
p
2�

e�Q2=2�2 C .1 � x/
2

�

w

4Q2 C w2
: (5.12)

Both parts, Gaussian (x D 1) and Lorentzian (x D 0), have width ˇQ when � D
ˇQ=2

p
2 ln 2 and w D ˇQ, respectively. As seen in Fig. 5.6, the IXRD.Q/ intensity

pattern calculated with 8�2�2a D 0:35Å2 in the Debye–Waller factor, (4.25),
reproduces very well the IPDDF.Q/ pattern calculated for a disorder of 2 %, differing
only at the end close to 2� D 180ı.
Answer (b): Spherical crystallites with diameter D and cubic ones with edge L will
have the same volume when L D D 3

p
�=6 ' 0:8D. Diffraction peak profiles from

PDDFs of crystallites with D D 200Å (Rg D 77:5Å) and L D 160Å (Rg D
80:0Å) are shown in Fig. 5.7. Peak fitting with function L.Q/, (5.12), provides Rg D
82Å and Rg D 88Å for spherical and cubic crystallites, respectively.
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Fig. 5.6 Diffractogram of polycrystalline silicon simulated from distinct approaches: PDDF of
spherical crystallites, IPDDF.Q/ (circles); and integrated intensities, IXRD.Q/ (solid line). Crystallite
diameter of 200 Å. Wavelength � D 1Å. Inset: histogram of the structure factors, F.Q/ DP

hkl jFhklj2ı.Q � Qhkl/ [siliconxrdpattern.m]

Fig. 5.7 Diffraction peak at Q D 3:2724Å�1 from PDDFs (circles) and best fittings (solid lines)
by (5.12): (a) spherical crystallite with diameter of 200 Å and fitting parameters Rg D 82Å and
x D 0:8; (b) cubic crystallite with edge of 160 Å and fitting parameters Rg D 88Å and x D 0:55.
The least square values, �2, are shown next to each curve [siliconpeakfit.m]
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Exercise 5.4. Reflected beam geometry, also known as Bragg–Brentano geometry,
is widely used in the diffractometry of polycrystals. The powder samples are
packaged in disc like containers with thickness T and extensive surface area, which
are much larger than the cross section S0 of the incident beam. The incidence
and scattering directions make an angle � with the sample’s surface. (a) What
is the combined effect of the linear attenuation and variation of illuminated area
on the relative intensities? (b) In a polycrystalline silicon sample prepared with
60 % compaction, estimate the minimum thickness so that this combined effect is
independent of the angle � .
Answer (a): An X-ray photon hitting the sample at an angle � is diffracted by a
crystallite at the penetration depth z. The linear path taken from the surface to the
crystallite is z= sin � , and it is equal to the photon path back to the surface. If �
is the linear attenuation coefficient of the sample, then e�2�z= sin � is the photon’s
probability of leaving the sample. The decrease in intensity considering all depths
within the sample corresponds to the sum of the probabilities, implying in an
average thickness

T 0.�/ D
Z T

0

e�2�z= sin � dz D sin �

2�
Œ1 � e�2�T= sin � � :

Since S0= sin � is the area illuminated by the X-ray beam on the sample’s surface,

V 0.�/ D S0
sin �

T 0.�/ D S0
2�
Œ1 � e�2�T= sin � � (5.13)

is the effective diffracting volume. The variation of the effective volume with
the angle � means that the number of crystallites contributing in the diffracted
intensities at different angles varies, but this variation can be discarded in thick
samples where e�2�T � 1.
Answer (b): In powder samples, the linear attenuation coefficient � D c�crystal

depends on the compaction factor c, equal to the mass density ratio between the
sample and the material in crystal form (Cullity and Stock 2001). In a silicon
crystal, there are 8 atoms per cubic unit cell of edge a D 5:4309Å, and thus,
�Si D 8�.E/=a3 where the total cross-section �.E/ is a function of the X-ray
energy, (1.59).8 Considering that the corrections in the relative intensities are
negligible when less than 1 %, (5.13) requires 2�T > ln.100/ D 4:6. For
characteristic copper radiation K˛1, E D 8048 eV, �Si D 14:5mm�1, and � D
0:6�Si D 8:72mm�1, which leads to T > 0:26mm. When the radiation energy
increases, the minimum thickness also increases. For example, E D 12398:5 eV
would require T > 0:935mm.

� � �

8Routines fpfpp.m, sgrayleigh.m, and sgcompton.m.



5.3 Single Crystal Diffractometry 165

5.3 Single Crystal Diffractometry

Measuring a large number of individual reflections is the main advantage of the
single crystal diffractometry, something infeasible in polycrystalline samples. By
means of the kinematic diffraction in single crystals, it is possible to assign values
related to the structure factor amplitudes individually without overlapping values
of those reflections that have interplanar distances that are equal or very close to
each other, that is, you have jFhklj2 from each hkl reflection instead of their sum
as in (5.8). The appropriate experimental conditions for the diffraction of single
crystals are those that allow recording diffracted intensities by ideally small crystals
where the kinematic approach is valid for all reflections and the linear attenuation
effects negligible. The feasibility to meet such conditions depends mainly on the
radiation source.

5.3.1 With Monochromatic Radiation

The characteristic radiation—spectral lines of metallic targets employed in X-ray
generation by compact sources such as tubes, rotating anodes, and microfocus—
has been responsible for the development of single crystal diffractometry with
monochromatic radiation. At the cost of a few hundred thousand dollars, research
groups may have at their disposal an equipment capable of determining the structure
of single crystals. These equipments have goniometric system of good accuracy and
mechanical stability to orient spatially the three-dimensional lattice of a crystal in
order to automatically measure a large number of reflections.

Although there are variations, the goniometer with a fixed incidence plane is
one of the most common. Efficient for crystals of low structural complexity, it
consists of three axes for rotating the sample and an axis for positioning the photon
counter (one-dimensional detector). From the manual identification of few non-
collinear reflections, the sample orientation matrix is established and any reflection,
within the mechanical limits of each equipment, can then be measured. After a
hkl reflection is chosen, the systematic procedure is to place the diffraction vector
on the incidence plane and turn it in this plane until the diffraction condition is
satisfied, e.g. Fig. 5.8. With the detector positioned at the scattering angle 2�hkl,
the diffracted intensity is collected during a narrow rocking curve around the exact
Bragg diffraction condition. This measure corresponds to the integrated intensity
defined in (5.6). Normalized by the radiation counting time, the measure provides
the reflection power

Phkl D Ie jFhklj2 N�3

sin 2�hkl Vcel
; (5.14)

sometimes also called integrated intensity for historical reasons.
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Fig. 5.8 Goniometry of
single crystals illustrating
basic rotations to observe a
chosen hkl reflection whose
reciprocal node is initially in
an arbitrary position in the
three-dimensional space
(position 1): (1) rotation of �z

around the z-axis, parallel to
the incident wavevector k,
places the node in the
incidence plane xz (position
2); (2) �y rotation around the
y-axis places the node in the
diffraction condition (position
3); (3) detector positioned to
monitor the diffracted
intensity with wavevector
k0 D Qhkl C k

In the case of crystals with higher structural complexity such as protein crystals,
the goniometry with unidimensional photon counter is less efficient due to the
large number of reflections to be measured. The rotating crystal method collects
the diffracted intensities on film, or area detector type CCD (Charge Coupled
Device), during crystal rotation around a single axis, e.g. Fig. 5.12. Besides the
higher efficiency in the collection of integrated intensities, the method differs from
the previous one by the fact that most reflections occur on an inclined incidence
plane with respect to the rotation axis, and therefore the reflection power expression

Phkl D Ie jFhklj2 N�3

cos! cos!0 j sin.�0 � �/j Vcel
; (5.15)

see the deduction in Note 5.3, is different from that in (5.14). The angles in
this expression are defined in relation to the rotation axis, as in Fig. 5.9. In the
particular situation where the incidence plane is perpendicular to the rotation axis,
! D !0 D 0 and �0 � � D 2�hkl, which results in (5.14). The many intensity
values collected automatically either with unidimensional detector or area detector
consist in the set of experimental data available for unraveling the atom fractional
coordinates in the unit cell. Structural modeling, feasible for simple structures,
and electron density maps are the methods used to solve the structure of a crystal
(Giacovazzo 2002).
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Fig. 5.9 Wavevectors k and k0 in spherical coordinates, !, �, !0, and �0, defined in relation to the
axis Oe3 of crystal rotation � and an arbitrary reference direction, Oe1

Note 5.3: Integrated Intensity, Rotating Crystal Method (Zachariasen 1945).
Given

k D kŒcos! cos�; cos! sin�; sin!� and k0 D kŒcos!0 cos�0; cos!0 sin�0; sin!0�

as the incident and diffracted wavevectors, respectively, described in spherical
coordinates in relation to the rotation axis �, Fig. 5.9. Following a procedure that
is similar to that used in Exercise 5.2(b), the area under the intensity curve as a
function of the rotation angle is

Ahkl D �t
Z

I.�/ d� D �t Ie
1

V2
cel

jFhklj2
•

jW.Q�Qhkl/j2 cos!0 d!0 d�0 d� ;

whose volume element is calculated by the Jacobian of the transformation: Q D
k0 � k and

dVQ D
ˇ̌
ˇ
ˇ
@Q
@�

�
�
@Q
@�0

� @Q
@!0

�ˇ̌
ˇ
ˇ d!0 d�0 d� D k3 cos! cos!0 j sin.�0 ��/j cos!0 d!0 d�0 d� ;

that is, cos!0 d!0 d�0 d� D dVQ=k3 cos! cos!0 j sin.�0 � �/j, resulting in

Ahkl D Ie jFhklj2 N�3

cos! cos!0 j sin.�0 � �/j Vcel
�t :

� � �
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Exercise 5.5. Single crystal goniometers spatially orient the sample’s diffraction
vectors starting from the orientation matrix. (a) With two crystallographic directions
identified beforehand A D ŒA1 A2 A3� and B D ŒB1 B2 B3�,9 find the orientation
matrix and the crystalline lattice base vectors, i.e. edge vectors a, b, and c, in an xyz
coordinate system where the direction A coincides with the z-axis and direction B is
within the xz-plane. (b) In a monoclinic lattice, ˛ D � D 90ı and ˇ ¤ 90ı, what
is the orientation matrix for directions A D Œ100� and B D Œ010�? (c) With k D kOz
being the incident wavevector, which are the rotations necessary for reflection 002
to diffract on the xz incidence plane?
Answer (a): Directions A and B correspond to vectors A D A1a C A2b C A3c and
B D B1aCB2bCB3c. Edge vectors, in matrix notation a D Œa1; a2; a3� D Œai�, b D
Œbi�, and c D Œci�, are defined arbitrarily since the unit cell geometry is maintained
(see Exercise 4.2). From the directions A and B, an orthonormal basis is created

Oe1 D Oe2 � Oe3 ; Oe2 D A � B=jA � Bj ; and Oe3 D A=jAj : (5.16)

The orientation matrix M D Œeij� formed by coefficients of the versors Oei D
Œei1; ei2; ei3�, projects the edge vectors on the orthonormal basis, a D eijaj Oei,
b D eijbj Oei , and c D eijcj Oei.10 In the absence of rotations, Oei D Œıij� where
ıij D 1 .or 0/ if i D j .or i ¤ j/ and the edge vector components, in row
matrix notation, are represented by a D Œe1jaj; e2jaj; e3jaj� D Œeijaj�, b D Œeijbj�

e c D Œeijcj�.
Answer (b): Starting from the arbitrary base a D aŒsinˇ; 0; cosˇ�, b D bŒ0; 1; 0�,
and c D cŒ0; 0; 1� (Exercise 4.2). A D a and B D b imply that

M D
0

@
0 1 0

� cosˇ 0 sinˇ
sinˇ 0 cosˇ

1

A ;

resulting in the new base a D aŒ0; 0; 1�, b D bŒ1; 0; 0�, and c D cŒ0; sinˇ; cosˇ�
where a .direction A/ k Oz and b .direction B/ 2 xz, Fig. 5.10a.
Answer (c): Given RX.�x/, RY.�y/, and RZ.�z/ as the sample rotation operations
whose senses follow the “right hand” rule. Redirecting the orthonormal basis
according to matrix R D ŒRij�, Oei D ŒRij� and replacing in the result of item (a),
we have a D ŒeijajRik�, b D ŒeijbjRik�, and c D ŒeijcjRik�. With null rotations,
Q002 D 2c � D . 4�

c sinˇ /Œ0; 1; 0� are the initial diffraction vector coordinates. Putting
it in the xz-plane requires a rotation of �90ı around the z-axis, followed by a
rotation of �002 around the y-axis to get the exact diffraction condition. So, Q002 D
. 4�

c sinˇ /Œcos �002; 0; � sin �002�, generating the diffracted beam k0 D Q002 C k D k

9Equal sign used only to associate letter/label to a crystallographic direction whose indexes are
given in brackets.
10Einstein sum convention, for example, a D eijajOei D P3

i;jD1 eijajOei D .e11a1 C e12a2 C
e13a3/Oe1C.e21a1Ce22a2Ce23a3/Oe2C.e31a1Ce32a2Ce33a3/Oe3 D .a� Oe1/Oe1C.a� Oe2/Oe2C.a� Oe3/Oe3.
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Fig. 5.10 Monoclinic unit cell oriented in the laboratory’s xyz coordinate system. (a) Null
rotations, orientation matrix defined with the direction A D Œ100� parallel to the incident X-ray
beam and the direction B D Œ010� contained in the xz-incidence plane. (b, c) Reciprocal vector
Q002 in diffraction condition, rotations (b) RY .�002/RZ.�90ı/ and (c) RY .90

ı C �002/RX.90
ı/.

Lattice parameters: a D 9:462Å, b D 8:392Å, c D 5:221Å, ˛ D � D 90ı e ˇ D 110:18ı.
� D 1:540562Å e �002 D 18:3227ı. Vectors A, B, and Q indicated by arrows with arbitrary
lengths [orientcryst.m]

Œsin 2�002; 0; cos 2�002� on the xz-plane. The rotations matrix is

R D RY.�002/RZ.�90ı/ D
0

@
0 cos �002 sin �002

�1 0 0

0 � sin �002 cos �002

1

A ;

Figure 5.10b. Alternatively, rotations RY.90
ı C �002/RX.90

ı/ also put the vector
Q002 in the diffraction condition, Fig. 5.10c.

Exercise 5.6. In a rotating crystal experiment, calculate the spherical coordinates
of the wavevectors in Fig. 5.9 for a given reflection hkl and preselected rotation axis.
Answer: Rotating axis and reference direction specified by the crystallographic
directions A and B, respectively. In the orthonormal basis Oei, (5.16), k D
kŒcos! cos�; cos! sin�; sin!� and k0 D kŒcos!0 cos�0; cos!0 sin�0; sin!0�.
The angle ! is fixed and determined by the experimental setup: rotating axis at
90ı � ! from the incident wavevector direction. The angle � depends on the
diffraction vector Q of the reflection in question. Projecting the vector on the
orthonormal base, Qe D ŒQ � Oei� D QŒsin˛Q cos�Q; sin˛Q sin�Q; cos˛Q�,
the angle � is obtained from (5.1),

k � Qe D �kQ sin � ) cos.� � �Q/ D cos.��/ D � sin � C sin! cos˛Q

cos! sin˛Q
:
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Table 5.1 Spherical coordinates of the wavevectors k and k0, Fig. 5.9

hkl ˛Q �Q ! � !0 �0 j sin.�0 � �/j
204 53.432 �90.000 �18.894 174.045 0.000 199.778 0.434

5.955 340.222 0.434

137 50.613 �18.435 �18.894 232.318 14.056 274.521 0.672

90.812 48.609 0.672

222 75.304 �45.000 �18.894 209.993 �9.318 247.170 0.604

60.007 22.830 0.604

226 51.804 �45.000 �18.894 209.993 9.318 247.170 0.604

60.007 22.830 0.604

040 90.000 0.000 0.000 244.117 0.000 295.883 0.786

115.883 64.117 0.786

Rotating axis Œ001�, reference direction Œ010�, � D 1:480506Å, tetragonal
lattice, a D b D 6:783Å and c D 18:288Å[rotatcryst.m]

Note that in a complete 360ı rotation the reciprocal node of a reflection crosses
the scattering sphere twice, corresponding to the positions � D �Q ˙ ��. In each
position, k0 D Œk0

i� D Qe C k. So, sin!0 D k0
3=k and tan�0 D k0

2=k0
1. See examples

in Table 5.1.

� � �

The X-ray flux obtained from compact sources imposes a limit on the minimum
size of the crystals to be studied. Even using optimized focal optics for flux gain,
the crystals must have dimensions greater than several tens of microns so that it is
possible to collect intensities from a significant number of reflections. However, in
crystals larger than a few microns, the relative experimental intensity values may
differ from the predicted values by the Kinematics Theory. Corrections for linear
attenuation are feasible, but correcting the data for dynamical diffraction effects is,
in practice, impossible. There are several aspects that make complex the dynamical
calculation, but the main difficulty is the lack of an exact approach for crystals that
are neither perfect nor ideally imperfect (Warren 1990; Zachariasen 1945), that is,
for real crystals. Thus, because of lack of alternatives, data are analyzed within the
kinematic approach, (5.14) or (5.15), being aware that dynamical diffraction effects
are one more factor in addition to the intrinsic difficulties stemming from the lack of
information on the structure factor phases compromising the structural resolution.

5.3.2 With Polychromatic Radiation

The high gain of flux provided by synchrotron sources certainly allows data
collection in very small crystals. However, in addition to the high flux, these
sources also provide an intense continuous spectrum, which greatly favors the
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diffractometric of single crystals with polychromatic radiation where the reflections
occur simultaneously and the integrated intensities are obtained without the need to
rotate the sample. This combination of facilities enables experiments with temporal
resolution, which are available in some synchrotron laboratories. On the other
hand, the insignificant continuous spectrum of compact sources, commonly called
Bremsstrahlung, restricts the use of the method—which is internationally known as
the Laue method (Max von Laue 1913)—to simple applications such as checking of
crystalline state in natural and synthetic crystals, identification of crystallographic
axes symmetry, and experiments for teaching purposes.

� � �

Exercise 5.7. What is the diffracted power by a hkl node when diffraction experi-
ments in single crystals are made with polychromatic radiation and fixed direction
of incidence?
Answer: Similar calculation to the integrated intensity with monochromatic radia-
tion, Exercise 5.2(b). The difference is the fact that the reciprocal node volume is
scanned by endless scattering spheres associated with continuous wavelengths of
the incident radiation. Given k D kŒ1; 0; 0� as the incident wavevector and

Q D k0 � k D kŒcos � 0 � 1; sin � 0 sin'0; sin � 0 cos'0� (5.17)

as the set of all reciprocal vectors ending on the surface of the scattering sphere
with radius k D 2�=� when passing by the center of the hkl node. � 0 D 2� is the
scattering angle. To represent the wavelength variation, we create a dimensionless
variable �, so that k ! .1C �/k. Then,

I.�/ D
Z

Ihkl.Q/ d	0 D ITh
1

V2
cel

jFhklj2
Z 2�

0

Z �

0

jW.Q � Qhkl/j2 sin � 0 d� 0 d'0

is the scattered intensity at the wavelength �=.1 C �/, and the total diffracted
intensity (with open detector)

Ahkl D �t
Z

I.�/ d� D �t Ie
1

V2
cel

jFhklj2
•

jW.Q � Qhkl/j2 sin � 0 d� 0 d'0 d�;

(5.18)

is analogous to the area under the intensity curve which, in this case, is a function
of the dimensionless variable. Using the Jacobian of the transformation of variables,
the volume element in the reciprocal space

dVQ D
ˇ̌
ˇ̌@Q
@�

�
�
@Q
@'0 � @Q

@� 0

�ˇ̌
ˇ̌ d� 0 d'0 d� D 2k3 sin2 � sin � 0 d� 0 d'0 d� ;
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is written in terms of the variables � 0, '0, and �. Only the partial derivative @Q=@� D
Q is different from those used in the deduction of (5.6). Substituting in (5.18)

sin � 0 d� 0 d'0 d� D dVQ

2k3 sin2 �

and recalling that
R jW.�Q/j2 dVQ D .2�/3V , (5.5), we obtain the diffracted power

Phkl.�/ D Ahkl

�t
D Ie jFhklj2 N�3

2 sin2 �hkl Vcel
D Ie N jFhklj2

�
2� d2hkl

Vcel

�
: (5.19)

The value of �, satisfying the condition of diffraction for a given hkl node, depends
on the angle between the diffraction vector and the direction of incidence, e.g.
Exercise 5.1. Furthermore, there is the variation of flux with the wavelength,
ˆ.�/ D w.�/ˆmax, whose weight function w.�/, is defined by the particularities
of each radiation source. In most cases, this variation implies only in Ie ! w.�/ Ie

in (5.19), where Ie D hjP.Os0/j2i r2e ˆmax.

Exercise 5.8. The lithium metal (Li) has a unique role in automotive batteries
and mobile phone technologies in addition to the use in medicine. The most
important natural source of Li is spodumene mineral, LiAl(SiO3)2, often found
in crystalline form, monoclinic system.11 Simulate the polychromatic diffraction
pattern of spodumene on an X-ray film. Note: neglect linear attenuation, Compton
scattering, and rescattering effects (dynamical diffraction).
Answer: In a given crystal orientation, the reciprocal lattice vectors Qhkl in the
laboratory reference system xyz are obtained from the base a D ŒeijajRik�, b D
ŒeijbjRik�, and c D ŒeijcjRik�, see Exercise 5.5(c). With k D kOs as the incident
wavevector,

Qhkl � Os < 0 and � D �4� Qhkl � Os=Q2
hkl 2 Œ�min; �max�

are the diffraction conditions of the reflection hkl. The diffracted beam will have
orientation Os0 D .�=2�/Qhkl C Os and relative power given by (5.19), which is

Phkl / w.�/ hjP.Os0/j2i � jFhklj2
Q2

hkl

:

In the case of a cylindrical film with radius D, with axis along the y-direction,
and incident beam parallel to the direction z (Os D Œ0; 0; 1�), Fig. 5.11 (inset), the
diffracted intensities at coordinates .Xf;Yf/ on the film are given by

Xf D D arctan.�s0
1=s0

3/ and Yf D D tanŒarcsen.s0
2/�:

Figure 5.11 shows the diffraction pattern with the reciprocal vectors Q00l at 10ı from
the incidence direction (170ı from Os). In this example, �max D 2�min D 2Å, and the

11COD ID: 2003129 (Crystallography Open Database: http://www.crystallography.net/).

http://www.crystallography.net/
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Fig. 5.11 Polychromatic diffraction pattern, spodumene crystal. Orientation: A D Œ100�, B D
Œ001�, and R D RX.10

ı/RY .90
ı/. All 00l reflections, with l > 0, contribute at the point 1

indicated [lauemethod.m]

spectrum has constant weight in the interval given, i.e. w.�/ D 1 if �min � � �
�max or otherwise w.�/ D 0. Below there are a few indexes of the reflections seen
in Fig. 5.11, routine lauemethod.m:

spodumen.in, A = [ 1 0 0], B = [ 0 0 1], TH = [10.000 90.000 0.000]
|-------------|-----------------|----------|--------------------------------|
| h k l | |Fhkl|^2 | wl(A) | Phkl X(mm) Y(mm) |
|-------------|-----------------|----------|--------------------------------|
| -2 -2 1 | 15679.2(100.0%) | 1.414618 | 163960.8 -140.745 19.482 |
| 0 2 0 | 5467.6( 34.9%) | 1.457256 | 123872.3 -157.080 -18.199 |
| 3 -1 0 | 9752.6( 62.2%) | 1.466306 | 106920.3 132.351 10.299 |
| 5 3 1 | 13401.2( 85.5%) | 1.606282 | 30197.4 93.953 -25.506 |
| -3 1 1 | 1784.0( 11.4%) | 1.746826 | 24652.4 -127.186 -9.068 |
| -2 4 1 | 8237.9( 52.5%) | 1.439858 | 24103.1 -136.616 -42.121 |
| 1 -1 0 | 480.9( 3.1%) | 1.306717 | 22767.4 150.059 8.217 |
| 5 -3 1 | 13136.7( 83.8%) | 1.167313 | 20555.7 117.719 28.233 |
| -3 -1 1 | 1758.9( 11.2%) | 1.070540 | 15076.0 -139.580 7.168 |
| -3 3 1 | 3389.4( 21.6%) | 1.256694 | 14815.1 -134.311 -23.363 |
| -6 0 4 | 5751.4( 36.7%) | 1.547614 | 11698.1 -84.180 7.934 |
| 4 0 0 | 1518.6( 9.7%) | 1.508597 | 11274.8 122.467 2.037 |
| 0 0 6 | 2040.1( 13.0%) | 1.608684 | 1933.2 0.000 18.199 |
| 0 0 8 | 327.5( 2.1%) | 1.206513 | 130.9 0.000 18.199 |
|-------------|-----------------|----------|--------------------------------|

� � �
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5.4 Protein Crystals

Large unit cells, with dimensions of tens of angstroms, have reciprocal spaces
with high density of reciprocal lattice nodes, approximately 1000 times the density
observed in inorganic crystals. Figure 5.12 shows a situation where about 3000
reflections diffract in the small solid angle comprehended by the flat area detector
with a diameter of 10 and 60 cm distant from the sample. The low crystallographic
symmetry of the rotating axis allows each reflection to contribute separately in the
simulated image with angular resolution of 0.2 mrad.

When working with protein crystals it is common to save the structural infor-
mation in Cartesian coordinates, atomic positions .Xa; Ya; Za/ instead of fractional
coordinates .xa; ya; za/. The conversion matrix S, between Cartesian and fractional
coordinates is set from the position vector

ra D xaa C yab C zac D Xa Ox C Ya Oy C ZaOz

of any atom in the crystal unit cell, written in both coordinate systems, so that

Fig. 5.12 Rotating crystal method. Simulated diffraction pattern of crystallized insulin (PDB ID:
1TRZ) with characteristic CuK˛1 radiation (� D 1:540562Å). Rotating axis A D Œ5 1 0�, in the
orientation �y D 60ı and �z D 30ı. Flat area detector distant 60 cm from the sample in the azimuth
�d D �30ı and null elevation �d D 0, pixel size 125
m. Note 5.4 [rotcrystmethod.m]
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0

@
xa

ya

za

1

A D S

0

@
Xa

Ya

Za

1

A where S
�1 D

0

@
a � Ox b � Ox c � Ox
a � Oy b � Oy c � Oy
a � Oz b � Oz c � Oz

1

A (5.20)

is determined by the unit cell edge vectors.

Note 5.4: Simulation of the Rotating Crystal Method
The diffracted wavevectors are easily described in the orthonormal basis Oei

linked to the rotary axis A, (5.16) and Exercise 5.6. However, the method
simulation requires the directions of diffracted beams in the laboratory’s coor-
dinate system xyz. Given k D kŒ0; 0; 1� as the incident wavevector, Osd D
Œ sin �d; � cos �d sin�d; cos �d cos�d� as the versor pointing towards the detec-
tor’s flat area center, and R.�z; �y/ D RZ.�z/RY.�y/ the rotation matrix orienting
the rotating axis in the laboratory system, Fig. 5.12 (inset). Once calculated the
azimuth � in which each reflection diffracts, e.g. Table 5.1, the components of
vector k0 D kOs0 D Œk0

i� in the laboratory system will be

Œk0
i� D R.�z; �y/RZ.180

ı � �/ Œk0
j�

t
e :

The diffracted beam will hit the detector when arccos.Os0 � Osd/ is less than
the detector acceptance angle. The relative powers of diffracted beams follow
from (5.15),

Phkl / hjP.Os0/j2i jFhklj2
cos! cos!0 j sin.�0 � �/j :

In the case of unpolarized radiation, hjP.Os0/j2i D .1 C cos2 2�/=2 where
cos.2�/ D k0

3=k. The procedures described herein are implemented in the
rotcrystmethod.m routine used to generate the diffraction pattern in Fig. 5.12
and the list of reflections partially reproduced below.

Crystal: 1TRZ.in
Energy = 8048.04 eV (1.540562 A)
Rotating axis A = [ 5 1 0], orientation thy = 60.000 and thz = 30.000
Detector area radius, Rd = 50.0 mm
Sample-detector distance, D = 600.0 mm
Detector elevation and azimuth, thd = 0.000 and phid = -30.000
|----------------|----------------------|---------------------------------------|
| h, k, l | |Fhkl|^2 | Phkl X(mm) Y(mm) |
|----------------|----------------------|---------------------------------------|
| 12,-23, -1 | 919422.70(100.0%) | 2667065.73 -47.515 13.476 | 1
| 3, 19, -1 | 694493.92( 75.5%) | 1876024.97 -37.151 0.957 | 2
| 10,-21, 7 | 770889.27( 83.8%) | 1839258.43 -16.195 -19.746 | 3
| 13,-24, -2 | 643284.58( 70.0%) | 1794722.38 -32.784 23.814 | 4
| 11,-23, 1 | 618235.38( 67.2%) | 1724044.52 -47.218 -3.445 | 5
| 11,-23, -2 | 621384.64( 67.6%) | 1705207.66 -43.754 -4.239 | 6
| 2, 19, 1 | 592249.67( 64.4%) | 1603440.13 -45.486 -13.758 | 7
| 0, 22, 2 | 689227.01( 75.0%) | 1590654.36 -18.511 -41.785 | 8
| 3, 17, 4 | 548023.93( 59.6%) | 1520421.00 -46.116 -3.699 | 9
| 11,-19, 6 | 522253.31( 56.8%) | 1513256.49 -48.902 10.404 | 10
| . . . | . . . | . . . . . . . . . |
| 5, 1, 12 | 0.00( 0.0%) | 0.01 -9.564 -30.612 | 2959
|----------------|----------------------|---------------------------------------|
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In the crystallization process, the unit cells may contain a few biological
functional units, which are molecular complexes responsible for the active form
of the protein in organisms. The functional units are grouped forming asymmetric
units, and these form the unit cells. Crystallographic symmetry operations (Hahn
2006) describe the spatial distribution of the asymmetric units in the unit cell.
Therefore, the essential information about protein crystals are: (1) the conversion
matrix S containing the lattice parameters information; (2) Cartesian coordinates
of the atoms in the asymmetric unit, e.g. “ATOM” and “HETATM” records in
*.pdb files, Sect. 2.3.1; and (3) the symmetry operations that, when applied to the
fractional coordinates of the asymmetric unit, provide the fractional coordinates of
all other atoms in the unit cell. With this information in hand, the X-ray diffraction
in the crystal can be calculated and compared with experimental results.

� � �

Exercise 5.9. Insulin is found in the human body either as monomers or hexamers,
being the former the active form. The structure of insulin crystals varies depending
on the crystallization process. In general, the asymmetrical units are dimers of the
functional unit (monomer), and the hexagonal unit cell is formed by three hexamers
(groups of three dimers). Given the lattice parameters of an insulin crystal, a D
b D 80:638Å, c D 37:782Å, ˛ D ˇ D 90ı, and � D 120ı, find the conversion
matrix S. (b) In the asymmetric unit, an atom has Cartesian coordinates ŒX; Y; Z� D
Œ8:209; 20:582; 3:556�Å. What are the fractional coordinates Œx; y; z� of the nine
equivalent atoms. Note: use symmetry operations of group 146 for hexagonal axis
(Hahn 2006).
Answer (a): In an arbitrary orthogonal basis, a D aŒ1; 0; 0�, b D bŒcos �; sin �; 0�,
and c D cŒ0; 0; 1�, Exercise 4.2. The conversion matrix is obtained by substituting
these vectors in (5.20) and calculating the inverse matrix, i.e.,

S
�1 D

0

@
a b cos � 0
0 b sin � 0
0 0 c

1

A ) S D
0

@
0:012401 0:007160 0:000000

0:000000 0:014320 0:000000

0:000000 0:000000 0:026468

1

A :

Answer (b): Since the Cartesian coordinates are given in the same arbitrary basis
used for the edge vectors, the fractional coordinates of the chosen atom in the
asymmetric unit are Œx; y; z� D ŒX; Y; Z�St D Œ0:24916; 0:29472; 0:09412�.
The symmetry operations without translation form the hexamer 1, whereas the
translations Œ2=3; 1=3; 1=3� and Œ1=3; 2=3; 2=3� form hexamers 2 and 3. Thus,

hexamer 1 hexamer 2 hexamer 3
x; y; z x C 2=3; y C 1=3; z C 1=3 x C 1=3; y C 2=3; z C 2=3

�y; x � y; z �y C 2=3; x � y C 1=3; z C 1=3 �y C 1=3; x � y C 2=3; z C 2=3

�x C y; �x; z �x C y C 2=3; �x C 1=3; z C 1=3 �x C y C 1=3; �x C 2=3; z C 2=3

are the atom equivalent positions in each hexamer of the unit cell.
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Note 5.5: Reading PDB Files. The routine pdbcoordfrac.m reads *.pdb files
and lists the atom fractional coordinates in the unit cell, including occupancy and
temperature factors.

� � �

Summary
— Scattering sphere and Bragg cone

jQ C kj2 D k2 or k � Q D �Q2=2

— Diffraction power (integrated intensity) of hkl reflection in crystallites, rotation
axis ? to the incidence plane

Phkl D Ie K
jFhklj2

sin 2�hkl
; K D N�3V�1

cel

— Diffraction power of polycrystalline (powder) samples

P.Q/ D Ie K
P

hkl

jFhklj2
sin 2�hkl

Q�1
hkl ı.Q � Qhkl/ ; K D 1

2
Nc hNi�2 d� �' V�1

cel

— Diffraction power of hkl reflection, rotating crystal method (monochromatic
radiation)

Phkl D Ie K
jFhklj2

cos! cos!0 j sin.�0 � �/j ; K D N�3V�1
cel

— Diffraction power of hkl reflection, Laue method (polychromatic radiation)

Phkl.�/ D Ie K w.�/
�jFhklj2

Q2
hkl

; K D 8�NV�1
cel



Chapter 6
Dynamical Diffraction

What is the validity of the kinematic approach?: : : How do the dynamical diffrac-
tion effects affect the relative intensities of a crystal?: : : How narrow are the
diffraction curves in perfect single crystals?: : : Here are some frequently asked
questions on X-ray crystallography. In this chapter, the simplest approach of
dynamical diffraction, known as Darwin–Prins dynamical theory (Als-Nielsen and
McMorrow 2001; Warren 1990), will be revisited. Although restricted to symmetric
reflection geometry, it allows us to understand basic principles of the phenomenon,
contributing to the development of easy to implement calculation routines without
long incursions through the complex approach of the dynamical diffraction general
theory (Authier 2004; Batterman and Cole 1964; Ewald 1969; Weckert and Hümmer
1997).

Within the vast universe of X-radiation modern applications, the dynamical
diffraction has well-defined niches where the knowledge of general approaches is
essential. More specific literature is indicated for those who need to work in these
niches. (1) In the diffraction imaging techniques, the contrast observed in the images
originates from the differences between the kinematic and dynamical intensities, e.g.
Fig. 6.1. The perfect crystalline lattice undergoes dynamical diffraction, whereas
small deformed regions, diffracting in kinematic regime, produce more intense
contributions (Authier 2004; Bowen and Tanner 1998). (2) In X-ray optics, single
crystals are often used in intense beam conditioning. After interacting with a perfect
single crystal, the exact beam properties, such as energy passband and polarization,
are described within the dynamical theory (Als-Nielsen and McMorrow 2001;
Authier 2004). (3) In nanostructured devices such as those used in optoelectronic,
active regions of low dimensionality are often deposited/grown on single crystal
substrates. The high resolution structural characterization of the active region can be
completed within the kinematic approach. But, in general, the dynamical diffraction
occurring on the substrate also needs to be taken into account (Bowen and Tanner
1998; Pietsch et al. 2004). (4) Standing waves methods. In the dynamical diffraction
scheme, a pattern of standing waves is formed within the crystal. It is possible

© Springer International Publishing Switzerland 2016
S.L. Morelhão, Computer Simulation Tools for X-ray Analysis,
Graduate Texts in Physics, DOI 10.1007/978-3-319-19554-4_6
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Fig. 6.1 (a) X-ray topography in silicon slab with face (111) and thickness of 100
m. The
contrast comes from the difference in intensity between kinematic (dark lines) and dynamical
(lighter areas) diffraction. In the extended area, the zig-zag lines indicate reactions between defects
in the crystalline lattice (Morelhão et al. 2000). (b) Transmission geometry of the Laue topographic
camera used in the experiment: film records diffracted-transmitted beam during sample translation.
Courtesy from S. L. Morelhão and S. Mahajan in a study conducted at Carnegie Mellon University,
Pittsburgh (1995)

to estimate the resonant atoms in the structure by varying the position of this
pattern using the incidence angle (Authier 2004). (5) The only method able to
experimentally measure invariant triplet phases, see Exercise 4.6, is based on
interference of multiple waves diffracted within the crystal, an inherently dynamical
effect (Chang 1984; Morelhão et al. 2015; Weckert and Hümmer 1997).

6.1 Recursive Equations

The watershed event between the dynamical and kinematic theories is whether
to consider or not the changes that the X-ray waves undergo when they travel
in the crystalline medium. Let R1 and T1 be the electric field reflection and



6.1 Recursive Equations 181

Fig. 6.2 Reflection and transmission coefficients for X-ray wave by (a) one and (b) two
crystallographic planes

transmission coefficients for a single crystalline lattice plane of thickness d. As each
crystallographic plane of a reflection hkl may comprise several atomic layers, e.g.
Fig. 4.3, these coefficients depend on which side the plane is illuminated. Thus, NR1
and NT1 will be the coefficients when the plane is illuminated by the opposite side,
Fig. 6.2a. Within the plane wave approximation, with an illuminated area much
larger than thickness d, the reflection is specular, which means that incident and
reflected waves make the same angle � with the crystalline plane.

From a theoretical point of view, there are several differences between dynamical
and kinematic diffraction, even in the case of diffraction by crystals as thin as
the thickness of only two planes, i.e. crystals of thickness 2d. Considering the
confined field by multiple reflections between planes, Fig. 6.2b, the reflection and
transmission coefficients become

R2 D R1 C T1R1 NT1
1X

nD0
. NR1R1/n D R1

�
1C T1 NT1

1 � NR1R1

�
and

T2 D T1T1

1X

nD0
. NR1R1/n D T1T1

1 � NR1R1
: (6.1)

From the Darwin–Prins’ theory,1 we have the coefficients

R1 D �ig.Q/ ei�; NR1 D �ig.�Q/ ei� and T1 D NT1 D Œ1C ig.0/� ei� (6.2)

1The reflected and transmitted fields by planes of atoms with thickness comparable to the
wavelength are deducted in many textbooks, see, for example, James (1948), Warren (1990), and
Als-Nielsen and McMorrow (2001).
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given as a function of

g.Q/ D re� d

sin � Vcel
C F.Q/ D � C F.Q/ (6.3)

and of the phase � D �kd sin � . F.Q/ is the structure factor for the diffraction vector
Q, whose direction is normal to the planes, and having module Q D 2k sin � where
k D 2�=�. The polarization factor C D hjP. O"; 2�/j2i1=2 is 1 in the polarization �
and in transmission coefficients, in the polarization � it is j cos.2�/j, see Sect. 1.1.1.

In the kinematic approach, the multiple reflections are neglected,P
nD0. NR1R1/n ! 1, and the transmitted fields are unchanged; only the wave phase

evolution is taken into account as it crosses each plane, so that T1 D NT1 D ei� .
This results in R2 D R1 C T1R1 NT1 D R1.1 C e2i�/ and T2 D e2i� . The total
constructive interference between the reflected fields occurs when � D m� , which
is an equivalent condition to Bragg’s law, 2d sin � D m�.

The dynamical treatment, in addition to considering the rescattering by planes,
which are irrelevant in very thin crystals, the transmitted fields are corrected by the
term ig.0/, which adds two important effects: photoelectric absorption and a tiny
displacement of the Bragg angle. More precisely,

1C ig.0/ D 1 � �
X

a

f 00
a C i�

X

a

Œfa.0/C f 0
a� '

 

1 � �
X

a

f 00
a

!

ei� (6.4)

once � � 10�5 � 10�7. The negative real term is responsible for reducing the
transmitted wave amplitude, while the imaginary term causes a small increment �
in the phase, and therefore in the constructive interference condition, which becomes
� C� D m� , or

2d sin � D �.m C�=�/ : (6.5)

Both effects are accentuated in thick crystals, where the diffraction curve width is
of the order of Bragg’s angle displacement and the curve profile is susceptible to
absorption.

Having in hand the reflection and transmission coefficients by a set of N=2
planes, (6.1) can be recursively used to obtain the coefficients of N planes, that is,

RN D RN=2.1CTN/; NRN D NRN=2.1CTN/; and TN D T 2
N=2

1 � NRN=2RN=2
: (6.6)

Examples of reflectivity curves are shown in Fig. 6.3, jRN.�/j2 calculated through
these recursive equations for crystals with different numbers of planes. In the limit
case when N ! 1,

R.�/ D lim
N!1 RN.�/ ; (6.7)
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Fig. 6.3 Reflectivity curves in crystals with N planes, (6.6). Symmetrical reflection 220 Ge,
d220 D 2:000Å, 10 keV X-rays and polarization � . �� D � � �220 [rcdarwinprinsplot.m]

the curve converges to a profile with peculiar characteristics: asymmetric profile
with maximum reflectivity less than or equal to 1 occurring at the left of the
peak width, whose center is displaced from the exact Bragg’s angle by �� '
��=2�d cos � , as obtained from (6.5).

The reflectivity curve asymmetry in thick crystals has its origin in the photoelec-
tric absorption. In the hypothetical situation of total absence of absorption, the curve
would be symmetrical with total reflection (maximum equals 1) taking place within
an angular range of the order of the FWHM itself,2 whose value is estimated by the
expression

Wdyn ' 2

3

q
jR1 NR1j tan � D 2

3
� C

q
jFhklFNhNkNlj tan � : (6.8)

The fact that Wdyn is a function of jFhklFNhNkNlj implies that the reflections hkl and NhNkNl
have the same FWHM, irrespective of atomic resonances and absence of symmetry
center in the crystal. (6.8) is empirical and valid in the limit N ! 1, which can be
checked with the recursive formula in (6.6).

� � �

2The FWHM of the diffraction curve in the dynamical regime, thick crystals, is slightly different
from the intrinsic width or Darwin’s width, e.g. Als-Nielsen and McMorrow (2001, p. 184).
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Fig. 6.4 Reflectivity curves in single crystals after 1, 2, and 3-bounces (reflections)
[rcdarwinprins.m]

Exercise 6.1. Monocrystalline blocks with channel cut are often employed in X-ray
optics. Investigate the angular acceptance of the diffraction condition as a function
of the number n of bounces that the X-ray beam performs within the channel cut.
Answer: Assuming a perfect parallelism between the crystallographic planes at each
side wall of the channel, the reflectivity after n bounces will be jR.�/j2n, (6.7). As
the reflectivity is close to 100 % within the width Wdyn, the central region of the
curve is barely affected by the number of bounces, but the intensities at the curve
shoulders are strongly reduced. For example, if in a given �� the reflectivity is 1 %
in a simple reflection (n D 1/, it will be 0.01 % and 0.0001 % in channel cuts of two
and three bounces, respectively, Fig. 6.4.

Exercise 6.2. Under kinematic diffraction, the intensities are proportional to the
structure factors square modules, Ihkl / jFhklj2, so that the difference in the structure
factors of a Friedel’s pair generates the anomalous signal

ƒ D Ihkl � INhNkNl
Ihkl C INhNkNl

D jFhklj2 � jFNhNkNlj2
jFhklj2 C jFNhNkNlj2

:

Non-null signs (ƒ ¤ 0) indicate absence of symmetry center in the crystal structure,
see Exercises 4.4 and 4.5. By comparing reflectivity curves of a Friedel’s pair, figure
out if ƒ can be determined via dynamical diffraction in perfect single crystals?
Answer: Taking as an example the 117=N1N1N7 pair in GaAs, below and above the
absorption edge of Ga at 10,367 eV. Under kinematic diffraction, the intensity
profile is determined by crystal thickness, 324 nm in the case shown in Fig. 6.5a.
Only curve intensity changes, one increasing and the other decreasing, as the energy
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Fig. 6.5 Reflectivity curves of the 117 and N1N1N7 reflections in GaAs crystals with faces (117)
and thicknesses (a) 324 nm (N D 212 planes) and (b) 1 cm (N D 227 planes). Polarization � ,
X-ray energies indicated next to the curves, which are displaced in �� axis for better viewing.
Simulations using recursive formula in (6.6) [exanomalousignal.m]

goes above the edge, reflecting the fact that the kinematic intensity is proportional
to the structure factor square module.

Under dynamical diffraction, Fig. 6.5b, both reflectivity curves below the edge
(10,300 eV) already have maximums close to 1. Consequently, at the energy above
the edge (10,400 eV), the intensity of one of the curves is practically unchanged,
whereas the intensity of the other curve decreases. There are also changes in the
line profiles below and above the edge. But, despite the change in line profile and the
fact that the curves are no longer directly proportional to the structure factor square
modules, the ratio between the curves follows the ratio jF117j2=jFN1N1N7j2 D 2:383.
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Therefore, the anomalous signal ƒ, which in this case is 41 %, is a measurable
value regardless of kinematic or dynamical diffraction.

6.1.1 Standing Waves

In thick crystals, the reflection coefficients have amplitude and phase as in

R.�/ D jR.�/j eiŒ	.�/C'hkl� : (6.9)

The phase contains two terms: the phase 'hkl of the structure factor Fhkl D
jFhklj exp.i'hkl/; and the dynamic phase 	.�/ that varies from 180ı to 0 as
the incidence angle � increases through the reflectivity curve, Fig. 6.6. Since the
reflectivity is close to 1, the interference between the incident and reflected waves
gives rise to a standing wave pattern within the crystal. When 	 D 180ı, the phase
'hkl set the maximums of the standing waves pattern at the lower electron density
layer of the plane .hkl/. On the other hand, with the dynamic phase varying to
	 D 0, the pattern maximums move to the layer of higher electron density, thus
increasing the photoelectric absorption.3

Fig. 6.6 Dynamic phase 	.�/ as a function of the reflectivity curve (right scale). Silicon 111,
8 keV X-rays [dynamicphase.m]

3See Authier (2004, Ch. 16) for detailed discussion on the standing waves phenomenon.
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The displacement of the standing wave pattern is responsible for the asymmetry
of the dynamical reflectivity curves. In general, the higher the density gradient
through the thickness of the crystallographic plane, the greater the asymmetry of the
reflectivity curve. For example, in crystals with diamond-like structure, e.g. Si and
Ge, or zinc blend type, e.g. GaAs and InAs, the electron density of planes (220) is
concentrated in a single layer of atoms. That’s the reason why the reflectivity curve
in Fig. 6.3 has an enhanced maximum on the left side of the curve. The same is not
true for planes (111), which are formed by two atom layers slightly displaced from
each other, e.g. Fig. 4.3b, making the density gradient less sharp and smoothing the
asymmetry of the reflectivity curve as seen in Fig. 6.6.

In protein crystals, the large number of atoms per unit cell tends to smooth
the electron density gradient through the thickness of the crystallographic plane.
Consequently, the reflectivity curves have rounded maximums even in cases of
strong reflections, e.g. inset in Fig. 6.7a, losing the typical asymmetry observed
in crystals with small unit cells. However, measuring intrinsic profiles in perfect
protein crystals, with lowermost FWHMs (Wdyn < 1�rad) due to the enormous
volume of the unit cells, is a considerable instrumental challenge.

6.2 Kinematic Limit

According to the Kinematic Theory, Chap. 5, the reflection power is always
proportional to the number of unit cells in the crystal, (5.14), (5.15), and (5.19). This
means that in reflection geometry the area of the reflectivity curve, or just integrated
reflectivity,

PN D
Z

jRN.�/j2 d� ; (6.10)

increases linearly with the number of crystallographic planes within the validity
limit of the kinematic approach. In other words, PN ' .PjC1 � Pj/.N � j/ C Pj

when both N and j are small numbers. Deviation from this linear behavior is, at first,
a separator criterion between the kinematic and dynamical diffraction, indicating
that absorption and/or rescattering effects start to set in. Computer simulation of
the reflectivity curve via recursive formula provides the simplest way to graph the
integrated reflectivity PN , as a function of the number N of diffracting planes or
crystal thickness Nd. For instance, Fig. 6.7 illustrates the behavior of PN in the cases
of strong and weak reflections. See Note 6.1 to convert the geometric progression of
thickness, (6.6), to the arithmetic progression necessary for analyzing the integrated
reflectivity behavior.
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Fig. 6.7 Integrated reflectivity, (6.10), as a function of crystal thickness. Lysozyme crystal (PDB
ID: 2LYZ), reflections (a) 6 12 4 and (b) 3 9 7. X-rays of 12 keV and �-polarization. Vertical dashed
lines indicate 10 % deviation from linear behavior (kinematic limit). Inset: reflectivity curves under
dynamical diffraction, (6.7) [kinematiclimit.m]
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Note 6.1: Reflection and Transmission Coefficients for Crystals of Any
Thickness. Consider a scheme similar to that shown in Fig. 6.2b where the planes
represent systems containing different numbers of identical crystallographic
planes: System A, upper plane, with coefficients RA, NRA, and TA; and system B,
lower plane, with coefficients RB, NRB, and TB. Taking into account the multiple
reflections at the interface between the systems, the AB system coefficients will be

RAB D RA C RB
T2A

1 � NRARB
; NRAB D NRB C NRA

T2B
1 � NRARB

and TAB D TATB

1 � NRARB
:

(6.11)

The reflectivity of N planes, when log2.N/ 62 N
�, is obtained by writing the

number N in binary basis, calculating the coefficients for the thicknesses that
corresponds to the digits 1 through (6.6), and getting the final coefficients by
applying (6.11) to the coefficients from the different thicknesses. For instance,
N D 100 equals to 1100100 in binary base, then the coefficients for 26, 25, and 22

planes come from (6.6), while for 96 and 100 planes the coefficients are obtained
from (6.11). This procedure is implemented in routine rcdarwinprins.m.

� � �

Exercise 6.3. Investigate the kinematic limit as a function of unit cell size,
energy, photoelectric absorption, and reflection power. What are the most favorable
conditions for a satisfactory kinematic analysis of the diffracted intensities?
Answer: By taking as a reference for the kinematic limit the 10 % deviation of
integrated reflectivity PN from the linear behavior, the various factors affecting
the kinematic approach validity are analyzed in Table 6.1. Crystals with a large
unit cells, such as protein crystals, have extended kinematic limits, in general two
orders of magnitude larger than inorganic crystals. The increase in the energy of
X-rays tends to extend the kinematic limit, except when it excites an absorption
edge as in GaAs. In most cases, strong reflections have a kinematic limit lower
than weak reflections. Therefore, in general, the kinematic treatment should provide
satisfactory results when, for a given energy, the larger crystal dimension is smaller
than the kinematic limit of the most intense reflection measured.

� � �

6.3 Refraction Index for X-Rays

Of tremendous importance in X-ray optics, studies of surfaces, and phase imaging
techniques is the refraction index for X-rays. When the incident wave crosses an
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Table 6.1 Validity threshold
of kinematic approach for
many crystals, strong (�) and
weak (�) reflections

Nd .
m/
Crystal h k l 8 keV 12 keV

Lysozyme � 6 12 4 17:1 25:4

Lysozyme � 3 9 7 24:6 59:4

GaAs � 4 0 0 0:64 0:38

GaAs � 2 0 0 0:88 0:32

Insulin � 3 17 4 24:1 40:3

Insulin � 6 8 13 34:7 69:4

LaMnO3
� 0 0 4 0:25 0:32

LaMnO3
� 2 1 0 0:28 0:44

Criterion: thickness Nd in which the integrated
reflectivity deviates 10 % from linear behavior,
e.g. Fig. 6.7 [kinematiclimit.m]

Fig. 6.8 X-ray wavefronts when crossing an atomic plane

atomic plane, the phase increment � in (6.4) shifts forward the wavefronts by
�=k, as illustrated in Fig. 6.8. Inside the plane thickness, the wavevector kn shows
slightly different module and direction regarding the wavevector k in vacuum. This
can be described in terms of a refraction index, which is deduced here from the
transmission coefficient T1 under normal incidence condition when

T1 D Œ1C ig.0/�ei� D eiŒg.0/C�� D e�inkd :

The minus signal is due to the choice of phase signal made in (1.33) for the incident
X-ray wave. From (6.3) with sin � D 1, the above equality becomes
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re� d

Vcel
F.0/ � kd D �nkd

that provides the refraction index

n D 1 � re�
2

2�Vcel

X

a

Œfa.0/C f 0
a� � i

re�
2

2�Vcel

X

a

f 00
a D 1 � � � iˇ : (6.12)

In non-crystalline materials, the unit cell volume Vcel is replaced by a generic
volume V with the sum running over all atoms inside this volume.

Real and imaginary parts of the refraction index have distinct physical meanings.
The imaginary part accounts for photoelectric absorption so that je�i.1���iˇ/kxj2 D
e��x where

� D 2ˇk D 2re�

V

X

a

f 00
a D 1

V

X

a

�a (6.13)

is the linear attenuation coefficient according to the definition of the atomic
absorption cross-section in (1.70). The real part accounts for refraction itself. Under
oblique incidence at an angle � with the interface between vacuum and material
medium, the wavevectors components parallel to the interface are equal (Snell’s
law): k cos � D kn cos �n. With kn D .1 � �/k, the propagation direction inside the
medium is cos �n D cos �=.1 � �/. It implies in total reflection with critical angle
�c for which cos �c D 1 � 1

2
�2c D 1 � � , and therefore

�c D p
2� : (6.14)

Total external reflection for X-ray has very important practical consequences.
One is that it makes possible to focus X-ray beams impinging on a surface at small
glancing angles, giving rise to optical devices (X-ray mirrors) extensively employed
in synchrotron facilities and commercial diffractometers. Studies of surfaces by
means of grazing incidence techniques are other applications of the phenomenon
(Als-Nielsen and McMorrow 2001; Malachias et al. 2011; Pietsch et al. 2004). For
instance, just above the critical angle, the specular reflected intensity is still enough
to probe the electron density profile in depth a few hundred nanometers below the
surface. Since it is independent of the crystalline state of the sample, X-ray specular
reflectometry is also useful for studying nanostructured thin films of amorphous
materials (Morelhão et al. 2002). On the other hand, X-ray imaging of soft tissues
exploit either the tiny deflection or phase shift of the X-ray wave when crossing the
interface of two medium with difference in electron density. In quantitative values,
this deflection is about 1
rad for X-rays of 20 keV and density variations of 10 %
with respect to the water density (Antunes et al. 2006).

� � �
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Exercise 6.4. To improve performance of X-ray mirrors, metallic coated glass
surfaces are often used. Compare the critical angles of glass surfaces with and
without a thin layer of gold. Assume a glass of amorphous ˛-quartz.
Answer: In any case, the critical angle comes from (6.14) and (6.12). For glass,

� D re�
2

2�

2.Z C f 0/Si C 3.Z C f 0/O
Vcell D 113Å

3
D re�

2

2�

52C 2f 0
Si C 3f 0

O

113Å
3

;

and for gold,

� D re�
2

2�

4.Z C f 0/Au

Vcell D 4:07823 Å
3

D re�
2

2�

316C 4f 0
Au

67:8Å
3

:

Critical angles for glass and gold surfaces are compared in Fig. 6.9.
In general, atomic resonance rule a small contribution to �c, as seen in Fig. 6.9,

so that f 0 is neglectable when calculating � . Since Z=Vcell is equivalent to 
NA=M
as in (1.58), the real part of the refraction index can be calculated as

Realfng D 1 � re�
2NA

2�M

 : (6.15)

Just to recall, NA is the Avogadro’s number, M is the molar mass, and 
 is the mass
density of the material.

� � �

Fig. 6.9 Critical angle for total external X-ray reflection in glass and gold coated surfaces. Effect
of neglecting the atomic resonance correction term f 0 is also shown [excritangle.m]
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Summary

— Reflection and transmission coefficients for a lattice plane of thickness d

R1 D �i�CF.Q/ ei� and T1 D Œ1C i�CF.0/� ei�

� D �kd sin �

— Recursive equations, coefficients for crystals of thickness Nd

RN D RN=2.1C TN/; NRN D NRN=2.1C TN/; and TN D T 2
N=2

1 � NRN=2RN=2

— Integrated reflectivity

PN D R jRN.�/j2d�

— Dynamical reflectivity curve jR.�/j2 and phase shift 	.�/

lim
N!1 RN.�/ D R.�/ D jR.�/j exp fiŒ	.�/C 'hkl�g

— Kinematic limit

PN

.PjC1 � Pj/.N � j/C Pj
< 0:9

for j < 1000

— Refraction index for X-rays

n D 1 � re�
2

2�V

P
aŒfa.0/C f 0

a� � i
re�

2

2�V

P
a f 00

a D 1 � � � iˇ

— Critical angle for total external reflection

�c D p
2� D

�
re�

2

�V

P
aŒfa.0/C f 0

a�

�1=2
'
�

re�
2NA

�M



�1=2



Chapter 7
Worked Examples

Even after reading all previous chapters of this book, someone can still be insecure
on how to carry out X-ray data analysis for the first time. For this reason, we have
prepared this chapter with a few simple examples to show in detail all the steps
that are necessary for analyzing intensity data. After downloading the original data
files from http://xraybook.if.usp.br/ and saving them in the same directory of your
computer together with some of the MatLab routines given in Appendix B, you
will be able to reproduce exactly the analysis described herein. In the following
sections, Matlab codes and the figures that they generate are interleaved for a better
understanding of each topic.

7.1 PDDF Analysis of Lysozyme

In a disperse system of large molecules where measurable intensities are within the
small angle region only, the analysis can be carried out by inverse Fourier Transform
of the scattering curve, which provides the PDDF of the molecules as in (3.7). To
facilitate this first Fourier analysis, the intensity data is already given as a function
of the reciprocal vector module Q with nearly constant increment dQ that simplifies
the integration in the interval of Q from 0 to Qf. This analysis is divided into three
major parts as detailed below.

7.1.1 Contents

• Loading intensity data
• Inverse Fourier Transform (FT)
• Gyration radius

© Springer International Publishing Switzerland 2016
S.L. Morelhão, Computer Simulation Tools for X-ray Analysis,
Graduate Texts in Physics, DOI 10.1007/978-3-319-19554-4_7
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7.1.2 Loading Intensity Data

S=load(’lysozymeIofQ.dat’); % <-- from http://xraybook.
if.usp.br/

Q=S(:,1)’; I=S(:,2)’;
semilogy(Q,I,’LineWidth’,1.5)
xlabel([’Q (’ char(197) ’^{-1})’])
ylabel(’intensity (cps)’)
title(’Scattering curve’)

7.1.3 Inverse Fourier Transform

U = 0:0.01:50;
Nu = size(U,2);
Nq = size(Q,2);
dQ = Q(3)-Q(2);
A = (dQ/(2*pi*pi))*I.*Q;
p = size(1,Nu);
for n=1:Nu

u = U(n);
p(n) = sum(u*A.*sin(u*Q)); % <-- inverse FT integral

end;
S = 0.01*sum(p);
plot(U,p/S,’r’,’LineWidth’,2)
xlabel([’u (’ char(197) ’)’])
ylabel(’PDDF (%)’)
title(’Low resolution histogram of interatomic distances’)



7.2 PDF Analysis of Gold Nanoparticles 197

7.1.4 Gyration Radius

Rg2 = 0.5*sum(p.*U.*U)/sum(p);
Rg = sqrt(Rg2);
X = Q(Q<.2); X2 = X.*X;
Y = I(1)*exp((-Rg2/3)*X2);
semilogy(X2,I(Q<.2),’-ko’,X2,Y,’r’,’MarkerSize’,6,

’MarkerFaceColor’,’y’,’LineWidth’,2)
xlabel([’Q^2 (’ char(197) ’^{-2})’])
ylabel(’intensity (cps)’)
legend(’ data’,’ exp(-Q^2 R_g^2 / 3)’)
title([’Lysozyme, R_g = ’ num2str(0.1*round(10*Rg)) ’ ’ char

(197)])

7.2 PDF Analysis of Gold Nanoparticles

Although similar, the Fourier analysis of intensity data collected at high angles is a
little different from the previous one. The particles must have some internal order
to provide measurable intensities at high angles, then the focus of analysis is the
structural function S.Q/ that leads to the normalized PDDF as defined in (3.16) or
to the pair density function (PDF) in (3.18).

The content of the analysis below applies to intensity data collected with uniform
increments in the scattering angle 2� . By using the relation Q D .4�=�/ sin � , the
intensity curve I.Q/ as a function of Q is obtained. The raw structural function is
estimated as S.Q/ D I.Q/=f 2m.Q/ where f 2m.Q/ is the mean square atomic scattering
factor of the particle. Background intensity not related to the internal structure of the
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particles should be subtracted and the curve S.Q/ normalized so that the background
intensity of statistical noise fluctuates around 1. The Fourier analysis is then carried
out by integrating S.Q/�1 in the available Q interval, but with dQ varying from one
data point to the other. When the intensity data at the small angle region is missing,
the normalized PDDF shows positive and negative values, as seen in this example.
Otherwise it will show positive values only that are proportional to the occurrence
frequency of interatomic distances, e.g. inset of Fig. 3.7. The PDF signal at end
of the Fourier analysis displays relative values related to the coordination number
(Exercise 3.2), which is the number of neighbors within a spherical shell of radius u
and thickness du.

7.2.1 Contents

• Loading intensity data
• Structural function S(Q)
• Background correction
• Normalizing S(Q)
• Fourier analysis

7.2.2 Loading Intensity Data

S=load(’goldnano80r5.dat’); % <-- from http://xraybook.if.usp.br/
tth=S(:,1)’; I=S(:,2)’;
plot(tth,I)



7.2 PDF Analysis of Gold Nanoparticles 199

xlabel(’2\theta (deg)’)
ylabel(’intensity (cps)’)
title(’Diffraction pattern at 20 keV’)

7.2.3 Structural Function S(Q)

Q = (4*pi/0.62)*sind(0.5*tth); % <-- wavelength 0.62A (20keV X-rays)
f=asfQ(’Au’,(0.25/pi)*Q); % <-- scattering factor of Au atom
S = I./(f.*f);
plot(Q,S)
xlabel([’Q (’ char(197) ’^{-1})’])
ylabel(’S(Q)’)
title(’Structural function before background correction’)

7.2.4 Background Correction

a= (0.03-0.0016)/14; % <-- manual correction with a straight line
bckg = [(0.03-0.0016)-a*(Q(Q<=16)-2) zeros(size(Q(Q>16)))];
S = S + bckg; % alternatively, routine backadj.m can
plot(Q,S) % be used as in the next example
xlabel([’Q (’ char(197) ’^{-1})’])
ylabel(’S(Q)’)
title(’Structural function after background correction’)
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7.2.5 Normalizing S(Q)

S_1 = 33.3333*S-1; % <-- so that S(Q) has statistical noise around 1
plot(Q,S_1) % and then S(Q)-1 has it around 0
grid
xlabel([’Q (’ char(197) ’^{-1})’])
ylabel(’S(Q)-1’)
title(’Normalized structural function’)
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7.2.6 Fourier Analysis

U = 0:0.01:80;
Nu = size(U,2);
Nq = size(Q,2);
dQ = [Q(2)-Q(1) Q(2:Nq)-Q(1:Nq-1)];
A = (2/pi)*S_1.*Q.*dQ;
p = zeros(1,Nu);
for n=1:Nu

u = U(n);
p(n) = sum(u*A.*sin(u*Q));

end;
subplot(2,1,1)
plot(U,p*(1/max(p)),’r’,’LineWidth’,2)
grid
xlabel([’u (’ char(197) ’)’])
ylabel(’normalized PDDF’)
title(’Inverse FT signal’)
subplot(2,1,2)
N = U>2 & U<20.01;
pdf = p(N)./(4*pi*U(N).*U(N));
pdf = pdf-min(pdf);
plot(U(N),pdf,’r’,’LineWidth’,2)
xlabel([’u (’ char(197) ’)’])
ylabel(’PDF signal’)

7.3 XRD Analysis of Alumina

Very often we face the problem of identifying compounds present in a polycrys-
talline (powder) sample. This example teaches how to proceed for comparing
an experimental XRD pattern with the simulated one for a compound that is
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expected to be present in the sample. From a Crystallographic Information File
(CIF) available on the internet for the expected compound, the input crystal data
file *.in for routine sfactor.m is created. The procedure is analogous to that
used in routine kdpcoordfrac.m, the major difference is due to the operations of
symmetry specified in each CIF. In the case of alumina, CIF with COD ID 2300448
(Crystallography Open Database: http://www.crystallography.net/), the input file
Al2O3.in should look like this

4.7582 4.7582 12.9897 90.0000 90.0000 120.0000
Al3+ 0.0000 0.0000 0.3523 1.00 0.263
Al3+ 0.0000 0.0000 0.1477 1.00 0.263
Al3+ 0.0000 0.0000 0.6477 1.00 0.263
Al3+ 0.0000 0.0000 0.8523 1.00 0.263
Al3+ 0.6667 0.3333 0.6856 1.00 0.263
Al3+ 0.6667 0.3333 0.4810 1.00 0.263
Al3+ 0.6667 0.3333 0.9810 1.00 0.263
Al3+ 0.6667 0.3333 0.1856 1.00 0.263
Al3+ 0.3333 0.6667 0.0190 1.00 0.263
Al3+ 0.3333 0.6667 0.8144 1.00 0.263
Al3+ 0.3333 0.6667 0.3144 1.00 0.263
Al3+ 0.3333 0.6667 0.5190 1.00 0.263
O2-. 0.3062 0.0000 0.2500 1.00 0.168
O2-. 0.0000 0.3062 0.2500 1.00 0.168
O2-. 0.6938 0.6938 0.2500 1.00 0.168
O2-. 0.6938 0.0000 0.7500 1.00 0.168
O2-. 0.0000 0.6938 0.7500 1.00 0.168
O2-. 0.3062 0.3062 0.7500 1.00 0.168
O2-. 0.9729 0.3333 0.5833 1.00 0.168
O2-. 0.6667 0.6395 0.5833 1.00 0.168
O2-. 0.3605 0.0271 0.5833 1.00 0.168
O2-. 0.3605 0.3333 0.0833 1.00 0.168
O2-. 0.6667 0.0271 0.0833 1.00 0.168
O2-. 0.9729 0.6395 0.0833 1.00 0.168
O2-. 0.6395 0.6667 0.9167 1.00 0.168
O2-. 0.3333 0.9729 0.9167 1.00 0.168
O2-. 0.0271 0.3605 0.9167 1.00 0.168
O2-. 0.0271 0.6667 0.4167 1.00 0.168
O2-. 0.3333 0.3605 0.4167 1.00 0.168

http://www.crystallography.net/
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O2-. 0.6395 0.9729 0.4167 1.00 0.168

Note: the used symbols for atoms and ions are those defined in routine asfQ.m.
In the analysis below, the background intensity is flattened with the help of

routine backadj.m, and the XRD pattern simulated by routine diffractogram.m
that uses the list of structure factors saved in file Al2O3E8048.sft by routine
diffraction.m. Although the experimental pattern has contributions of CuK˛1 and
CuK˛2 radiations, the same list of structure factors is used for both wavelengths.

7.3.1 Contents

• Loading intensity data
• Adjusting the background intensity
• XRD pattern simulation from a CIF
• Comparison of experimental and simulated patterns

7.3.2 Loading Intensity Data

S=load(’xrdalumina.dat’); % <-- from http://xraybook.if.usp.br/
tth=S(:,1)’; I=S(:,2)’;
semilogy(tth,I,’-b.’,’LineWidth’,1)
xlabel(’2\theta (deg)’)
ylabel(’intensity (cps)’)
title(’XRD pattern (raw data)’)
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7.3.3 Adjusting the Background Intensity

% B = backadj(tth,ginput); % <-- uncomment to select a few
% save(’alumina\_backadj.dat’,’B’,’-ascii’); % background data points and
B = load(’alumina_backadj.dat’); % to save alumina_backadj.dat
Bmin = min(B);
Ib = I-B + Bmin;
Bmin = Bmin/max(Ib);
Ib = Ib*(1/max(Ib));
plot(tth,sqrt(Ib),’-b.’,’LineWidth’,1)
xlabel(’2\theta (deg)’)
ylabel(’(I/I_0)^{1/2}’)
title(’Normalized XRD pattern with flat background’)

7.3.4 XRD Pattern Simulation from a CIF

wl1 = 1.540462; % <-- wavelength of CuK_alpha1 (Angstrom)
wl2 = 1.54439; % <-- wavelength of CuK_alpha2 (Angstrom)
yscale = 1.0; % <-- manual adjustment of intensity
xshift = -0.01; % <-- manual adjustment of position
% diffraction(1.540562,’Al2O3.in’,0); % <-- to save file Al2O3E8048.sft
P = diffractogram(’Al2O3E8048.sft’,500,.4,0);
N = P(:,2) > min(tth) & P(:,2) < max(tth);
X = P(N,2);
Y = P(N,4).*(0.5*(1+cosd(X).^2)); % <-- polarization correction
Y = (1/max(Y))*Y;
Y = yscale*(1-Bmin)*Y;
Y2 = 0.5*Y + Bmin; % <-- intensity of Kalpha2 lines
Y = Y + Bmin;
X2 = 2*asind((wl2/wl1)*sind(0.5*X));
plot(tth,sqrt(Ib),’-b.’,X2+xshift,sqrt(Y2),’g’,...

X+xshift,sqrt(Y),’r’,’LineWidth’,1)
xlabel(’2\theta (deg)’)
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ylabel(’(I/I_0)^{1/2}’)
title(’Identifying the K\alpha lines from alumina’)

7.3.5 Comparison of Experimental and Simulated Patterns

Q1 = (4*pi/wl1)*sind(.5*tth);
Q2 = (4*pi/wl2)*sind(.5*tth);
Q = P(:,1); Iq = P(:,3);
Ntth = size(tth,2);
Is = zeros(1,Ntth);
for n = 1:Ntth

V = find(Q>Q1(n));
x = getI(Q1(n),Q(V(1)-1),Q(V(1)),Iq(V(1)-1),Iq(V(1)));
V = find(Q>Q2(n));
Is(n) = x + 0.5*getI(Q2(n),Q(V(1)-1),Q(V(1)),Iq(V(1)-1),Iq(V(1)));

end;
Is = Is.*(0.5*(1+cosd(tth).^2)); % <-- polarization correction
Is = yscale*((1-Bmin)/max(Is))*Is + Bmin;
semilogy(tth,Ib,’-b.’,tth+xshift,Is,’m’,’LineWidth’,1)
xlabel(’2\theta (deg)’)
ylabel(’I/I_0’)
title(’Comparison with experimental data’)

function Y=getI(x,xa,xb,ya,yb)
Y = (yb-ya)*(x-xa)/(xb-xa) + ya;
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� � �

Suggestion: Evaluate the agreement between experimental and simulated patterns
when varying the Debye–Waller factor and lattice parameters. These changes are
made in the file Al2O3.in. Changes in the line profile of the peaks are made in the
call of routine diffractogram.m.

� � �

7.4 Measurement of Absorption Edge

Emission spectra of X-ray generators can be measured by Bragg diffraction in
crystals with a known structure. The spectral resolution depends on the experimental
setup, but it is possible even with low power generators used in equipment
for teaching purposes. Due to the continuous spectrum of sealed X-rays tubes,
absorption edges of metal foils are easily observed. On the other hand, metal
sheets with specific absorption edges are used as filters for removing unwanted
spectral lines from the metal target of a given tube. For instance, a molybdenum
tube produces K˛ (17.44 keV) and Kˇ (19.65 keV) lines when the high voltage
applied in the tube is a little above 20 kV (Mo K-edge). A slightly lighter element,
Zr in this case, has the K edge precisely between the target element K lines. In
this experiment carried out on the Leybold X-ray apparatus, the Mo tube emission
spectra at 30 kV is recorded after diffracting in a NaCl (100) crystal, reflection 200
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for which 2d200 D 5:6402Å. By inserting metal foils of known thicknesses in the
beam path, the foils absorption spectra are also recorded. The equation for linear
attenuation coefficient � D .NA 
=A/ � , is applied to measure the total attenuation
cross-section � D �a C �R C �C as defined in (1.59). NA is the Avogadro’s number,

 is the mass density of the metal foil, and A the atomic weight. The experimental
values of � are then compared to theoretical values for the photoelectric absorption
cross-section, �a, provided by routine fpfpp.m.

7.4.1 Contents

• Experimental data
• Transmission coefficients
• Photoelectric absorption cross-section

7.4.2 Experimental Data

M = load(’zirconium_kedge.dat’); % <-- from http://xraybook.if.usp.br/
X = M(:,1)’; I0 = M(:,2)’; Iz = M(:,3)’; Ic = M(:,4)’;
E = 12.3985./(5.6402*sind(X)); % <-- converting diffraction angle in energy

% with 2*d_hkl = 5.6402 Angstrom
plot(E,0.001*I0,’-ko’,E,0.001*Ic,’-bv’,E,0.001*Iz,’-r^’,...

’MarkerFaceColor’,’w’,’LineWidth’ ,2)
xlabel(’energy (keV)’)
ylabel(’intensity (10^3 cps)’)
title(’Emission spectrum of Mo target at 30 kV’)
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7.4.3 Transmission Coefficients

Tc = Ic./I0; Tz = Iz./I0;
plot(E,100*Tc,’-bv’,E,100*Tz,’-r^’,’MarkerFaceColor’,’w’,’LineWidth’,2)
xlabel(’energy (keV)’)
ylabel(’transmittance (%)’)
title(’X-ray transmission in Zr and Cu foils’)

7.4.4 Photoelectric Absorption Cross-Section

xc = 0.0067; % <-- Cu filter parameters: foils thickness (cm),
Ac = 63.55; rhoc = 8.92; % atomic weight (g/mol), and density (g/cm3)
xz = 0.0048; % <-- Zn filter parameters: foils thickness (cm),
Az = 91.22; rhoz = 6.49; % atomic weight (g/mol), and density (g/cm3)
NA = 6.022e+23; % <-- Avogadro’s number
f = fpfpp(’Cu’,E);
sga_Cu = 0.001*f(:,4)’; % <-- Cu photoelectric absorption cross-section
f = fpfpp(’Zr’,E);
sga_Zr = 0.001*f(:,4)’; % <-- Zn photoelectric absorption cross-section
sg_Cu = (-Ac*1e+21/(xc*NA*rhoc))*log(Tc);
sg_Zr = (-Az*1e+21/(xz*NA*rhoz))*log(Tz);
subplot(1,2,1)
loglog(E,sg_Zr,’r^’,E,sga_Zr,’r’,’MarkerFaceColor’,’w’,’LineWidth’,2)
xlabel(’energy (keV)’)
ylabel(’\sigma (10^3 barn)’)
title(’Zr’)
subplot(1,2,2)
loglog(E,sg_Cu,’bv’,E,sga_Cu,’b’,’MarkerFaceColor’,’w’,’LineWidth’,2)
xlabel(’energy (keV)’)
ylabel(’\sigma (10^3 barn)’)
title(’Cu’)
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� � �

Suggestion: Evaluate the contribution of X-ray scattering to the linear attenuation
coefficients. Coherent and incoherent (Compton) scattering cross-sections, �R and
�C, can be obtained from routines sgrayleigh.m and sgcompton.m, respectively.

� � �



Appendix A
Electric Dipole Radiation by a Free Electron

From the Maxwell’s equations, the electric and magnetic fields,

E D cB � Or and B D r � A ; (A.1)

of the radiation generated by any current density J are described from the potential
vector

A.r; t/ D 1

4�� c2

Z
J.r 0; t 0/
jr � r 0j dV 0 ' 1

4�� c2 r

Z
J.r 0; t 0/dV 0 : (A.2)

The simplification jr�r 0j ' r is valid for point sources, or very far away, in relation
to the radiation observation point r D rOr at the time instant t D t 0 C r=c. In the case
of a single electron oscillating with speed v at the origin, the above integral reduces
to

Z
J.r 0; t 0/dV 0 D �ev.t 0/ : (A.3)

When Oz is set as the electron oscillation direction, i.e. v D vOz,

Ax.r; t/ D 0; Ay.r; t/ D 0; Az.r; t/ D �ev.t 0/
4�� c2 r

and

B D r � A D Ox@Az

@y
� Oy@Az

@x
: (A.4)

The partial derivatives are obtained as follows:
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Therefore,
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where the derivative in y is obtained by similar deduction. Replacing (A.7) in (A.1),
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Representing the electron oscillation direction by O" and the radiation observation
direction by Os 0, we come to the general expression

E.r; t/ D Os 0 � O" � Os 0 e Pv.t 0/
4�� r c2

D P.Os0/
e Pv.t 0/
4�� r c2

(A.10)

where P.Os0/ D Os 0 � O" � Os 0 is the vector polarization factor introduced in Sect. 1.1.1,
(1.5). The other term of (A.10) is the amplitude of scattering given in (1.8), with R
and Rz in place of r and Pv, respectively.



Appendix B
MatLab Routines

MatLab R�—The Language of Technical Computing, is the high-level language and
interactive environment used for developing most routines of this book. Simple
and compact, the language made it possible for more than 80 routines to be attached
here. Other MatLab advantages are easy manipulation of matrixes and graphical
interfaces, and the possibility of calling programs written in other languages such
as C, CCC, Java, and Fortran. An example of program in CCC is the routine
saxs.c that is available in the supporting information at the book’s website. For
more information on MatLab, go to http://www.mathworks.com/products/matlab/ .

Supporting Information for routines and worked exercises can be
found at the book’s webpage http://xraybook.if.usp.br/ .

1. asfQ.m
function f=asfQ(atom,x)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate atomic scattering factors, f0 %
% Input: %
% atom = element symbol, e.g. ’Ga’ %
% x = sen(th)/lambda = 0.25*Q/pi (m-by-n array) (1/Angstrom) %
% Output: %
% f0(x) = c + sum_i ai * exp(-bi*x^2) i=1,2,3,4 %
% in a m-by-n matrix format. %
% Coefficients a1, a2, a3, a4, b1, b2, b3, b4, and c %
% from file f0_CromerMann.dat available at http://xraybook.if.usp.br/ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x = x.*x;
sizeA = size(atom,2);
mmax = cromermann(0);
m = 1; CM=zeros(1,9); ctr = 1;

while ((ctr == 1) && (m < mmax + 1))
line = cromermann(m);
aux = find(line(1:8)==’ ’);
n = aux(1);
if (n==sizeA+1)
X = line(1:n-1);
if (X==atom)
CM = sscanf(line(9:size(line,2)),’%f’)’;
ctr = 0;
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end;
end;
m = m + 1;

end;
if (ctr==1) disp([’ Element ’ atom ’ not found!!!’]); return; end;
f = CM(1)*exp(-CM(5)*x) + CM(2)*exp(-CM(6)*x) + CM(3)*exp(-CM(7)*x) + CM(4)*exp(-CM(8)*x) + CM(9);

function line=cromermann(nn)
M = [
’C 2.310000 1.020000 1.588600 0.865000 20.843900 10.207500 0.568700 51.651200 0.215600’;
’Ga 15.235400 6.700600 4.359100 2.962300 3.066900 0.241200 10.780500 61.413500 1.718900’;
’Ga3+ 12.692000 6.698830 6.066920 1.006600 2.812620 0.227890 6.364410 14.412200 1.535450’;
’As 16.672300 6.070100 3.431300 4.277900 2.634500 0.264700 12.947900 47.797200 2.531000’];
% Complete matrix of coefficients is available on the book’s webpage
if (nn==0), line = size(M,1);
else line = M(nn,:);
end;

2. assintotic.m
function M=assintotic(a,b,c,Qi,Qf,N,Na)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Small-angle scattering of particles with rectangular dimensions %
% Input: %
% a,b,c = particles dimensions (Angstrom) %
% Qi,Qf = Q-range, initial and final values (1/Angstrom) %
% N = number of points in the scattering curve %
% Na = number of random positions within particle’s volume a x b x c %
% Ouptup M = [Q; I]’; N-by-2 array with the curve intensity x Q %
% Usage: Z=assintotic(10,10,100,0.008,2.0,200,1000); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N = fix(N);
if (N>1), dQ = (Qf-Qi)/N; else disp(’ >>> Insufficient number of points!!!’); end;
Q = Qi:dQ:Qf;
Nq = size(Q,2);
R = [a*rand(Na,1) b*rand(Na,1) c*rand(Na,1)];

I = zeros(1,Nq);
for n=1:Na

for m = n+1:Na
Rnm = R(m,:)-R(n,:);
QR = sqrt(Rnm*Rnm’)*Q;
I = I + sin(QR)./QR;

end;
end;
M = [Q; I]’;

3. backadj.m
function B=backadj(X,M)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% To adjust background noise of XRD pattern %
% Input: %
% X = x-axis (2theta or Q) values of the raw data %
% M = ginput <-- MatLab command to get (x,y) coordinates by clicking %
% on the figure window %
% Output B = background noise in the raw data, estimated by linear %
% interpolating the points obtained from the ginput command %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N=size(M,1);
xa = M(1,1); ya = M(1,2);
B=zeros(size(X));
for n=2:N
xb = M(n,1); yb = M(n,2);
Nx = X>xa & X<=xb;
B(Nx) = (X(Nx)-xa)*((yb-ya)/(xb-xa)) + ya;

xa = xb; ya = yb;
end;

4. benzeneonpsp.m
function I=benzeneonpsp(thx,thy,thz,D,L,pixel,wl,prn)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Intensity pattern of a molecule on cylindrical film (X-ray detector) %
% Molecule: aromatic ring with 6 carbon atoms %
% Input: %
% thx, thy, and thz molecule rotation angles (deg) %
% film radius D and length 2L, and size of pixel (mm) %
% wl = wavelength (Angstrom) ou energy (eV) %
% prn = 0 to suppress image preview %
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% Output: I = intensity on the pixel array %
% Secondary routines required: asfQ.m %
% Usage: %
% >> I=benzeneonpsp(30,0,90,50,200,2,20000,1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rad = pi / 180;
deg = 1/rad;
if (wl < 1000) E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
aux = 2 * pi / wl;
s = [1 0 0];
e = [0 0 1];
dz = pixel;
n = floor(2*L/dz);
LimZ = 0.5*n*dz;

Z = -LimZ:dz:LimZ;
Nz = size(Z,2);
dphi = pixel / D;
n = floor(pi/dphi);
LimPhi = 0.5*(2*n-1)*dphi;
phi = -LimPhi:dphi:LimPhi;
Nphi = size(phi,2);
D2 = D*D;

aux1 = D2*dz*dphi;
Rn = i*benzene([thx thy thz]*rad);
for nz = 1:Nz
z = Z(nz);
invr = 1/sqrt(z*z+D2);
DOmega = aux1*invr*invr*invr;
X(1:Nphi,nz)=z;

for np = 1:Nphi
y = phi(np);
cphi = cos(y);
sphi = sin(y);
sprime = invr*[D*cphi D*sphi z];
p = cross(sprime,cross(e,sprime));
p = p * p’;
Q = aux * (sprime - s);
modQ(np,nz) = norm(Q);
F = sum(exp(Q*Rn));
Ic(np,nz)= p*F*conj(F)*DOmega;
Y(np,nz)= y*deg;

end;
end;
f = asfQ(’C’,(.25/pi)*modQ);
I = real(f.*f.*Ic);
if (prn~=0)

hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
surf(X,Y,log10(I))
axis image
shading interp
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
set(gca,’YTick’,[-180 -120 -60 0 60 120 180],’ZTick’,[],’DataAspectRatio’,[1 1 0.3])
colormap(jet)
colorbar(’XColor’,’k’,’FontSize’,14,’Location’,’East’,’LineWidth’,1)
xlabel(’film axis, z (mm)’,’FontSize’,18,’Rotation’,21)
ylabel(’2\theta ({\circ})’,’FontSize’,18)

text(-1160,-2020,400,’Log(I)’,’FontSize’,14)
end;

function Rn=benzene(Or)
thx = Or(1); thy = Or(2); thz = Or(3);
ra=1.4;
th = [0 60 120 180 240 300] * (pi/180) + thx;
r = ra*[zeros(1,6); cos(th); sin(th)];
cthz = cos(thz);
sthz = sin(thz);
cthy = cos(thy);
sthy = sin(thy);

Ry = [cthy 0 -sthy; 0 1 0; sthy 0 cthy];
Rz = [cthz -sthz 0; sthz cthz 0; 0 0 1];
Rn = Rz*Ry*r;

5. benzenesaxs1.m
function M=benzenesaxs1(D,L,pixel,wl)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Small angle X-ray scattering by %
% a disperse system of benzene molecules %
% Input: %
% radius D (mm) and width 2L (mm) of the film (cylindric geometry) %
% pixel = pixel size (mm) %
% wl = wavelength (Angstrom) or energy (eV) %
% Output M = [tth Ir Ic] %
% | | | %
% | | incoherent (Compton) intensity %
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% | coherent intensity %
% angle of scattering (deg) %
% Secondary routines required: asfQ.m and csfQ.m %
% Usage: %
% >> benzenesaxs1(50,50,2,20000) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (wl < 1000) E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
d = 1.4; % C-C bond length (Angstrom)
s = [1 0 0]; % incedent beam direction
e = [0 0 1]; % polarization (electric wavefield direction)
dz = pixel;
n = floor(2*L/dz);
LimZ = 0.5*n*dz;
Z = -LimZ:dz:LimZ;
Nz = size(Z,2);
dphi = pixel / D;
n = floor(pi/dphi);
LimPhi = 0.5*(2*n-1)*dphi;
phi = -LimPhi:dphi:LimPhi;
Nphi = size(phi,2);

D2 = D*D;
aux1 = D2*dz*dphi;
for nz = 1:Nz
z = Z(nz);
invr = 1/sqrt(z*z+D2);
DOmega = aux1*invr*invr*invr;
X(1:Nphi,nz)=z;

for np = 1:Nphi
y = phi(np);
Y(np,nz)= D*y;
cphi = cos(y);
sphi = sin(y);
sprime = invr*[D*cphi D*sphi z];
p = cross(sprime,cross(e,sprime));
P2(np,nz) = (p * p’)*DOmega;
Q(np,nz) = norm(sprime - s); % |s’-s|

end;
end;
Q(Q==0)=1e-8;
f=asfQ(’C’,(0.5/wl)*Q); % (1/4pi)*(2pi/wl)*|s’-s|
f = 6*(f.*f);
S=csfQ(’C’,(0.5/wl)*Q);
nphalf = round(0.5*Nphi);
for nz = 1:Nz

for np = 1:nphalf
m = (nz-1)*Nphi + np;
f2(np,nz)=f(m);
fc(np,nz)=6*S(m,2);

end;
for np=nphalf+1:Nphi
m = (nz-1)*Nphi + np;
f2(np,nz)=f(m);
fc(np,nz)=0;

end;
end;
Qd = (2*pi*d/wl)*Q;
SdeQ = sin(Qd)./Qd;
Qd = (2*pi*d*sqrt(3)/wl)*Q;
SdeQ = SdeQ + sin(Qd)./Qd;
Qd = (4*pi*d/wl)*Q;
SdeQ = 1+ 2*SdeQ + sin(Qd)./Qd;
A = f2.*SdeQ;
I = P2.*(A + fc);
nz0 = round(0.5*Nz);

IzS = (1/6)*A(1:nphalf,nz0);
IzC = (1/6)*fc(1:nphalf,nz0);
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
surf(X,Y,log10(I))
axis image
shading interp
view(90,90)
set(gca,’Position’,[0.165 0.5 0.775 0.45],’FontSize’,14,’LineWidth’,1)
set(gca,’YTick’,[-150 -120 -90 -60 -30 0 30 60 90 120 150],’ZTick’,[],’DataAspectRatio’,[1 1 0.3])
box on
colormap(hot)
colorbar(’XColor’,’k’,’FontSize’,14,’Location’,’NorthOutside’,’LineWidth’,1,’Position’,
[0.54 0.405 0.38 0.05])

xlabel(’film width (mm)’,’FontSize’,18)
ylabel(’2\theta ({\circ})’,’FontSize’,18)
text(0,0,500,’Log(I)’,’FontSize’,14)
hf2=figure(2);
clf
set(hf2,’InvertHardcopy’, ’off’,’Color’,’w’)
semilogy(-Y(1:nphalf,nz0),IzS,’k’,-Y(1:nphalf,nz0),IzC,’--r’,’LineWidth’,2)
set(gca,’FontSize’,14,’Color’,[1 0.95 0.87],’LineWidth’,1)
xlabel(’2\theta ({\circ})’,’FontSize’,18)
ylabel(’|f_C(Q)|^2S(Q)’,’FontSize’,18)
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text(90,8,’Compton \downarrow’,’Color’,’r’,’FontSize’,18)
axis tight
grid
M = [-Y(1:nphalf,nz0) IzS IzC];

6. benzenesaxs2.m
function M=benzenesaxs2(wl)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SAXS, structural function of the benzene molecule %
% Input: %
% wl = wavelength (Angstrom) or energy (eV) %
% Output M = [Q; SofQ; SofQ1; SofQ2; SofQ3]’; %
% | | | | | %
% | | interference pattern of each atomic pair %
% | structural function %
% reciprocal vector module (1/Angstrom) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (wl < 1000) E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
d = 1.4; % C-C bond length (Angstrom)
Qmax = (4*pi/wl);
dQ = Qmax/1000;
Q = 0:dQ:Qmax;
Q(1) = 1e-8;
Qd1 = d*Q;
Qd2 = (d*sqrt(3))*Q;
Qd3 = (2*d)*Q;
SofQ1 = sin(Qd1)./Qd1;

SofQ2 = sin(Qd2)./Qd2;
SofQ3 = sin(Qd3)./Qd3;
SofQ = 1+2*(SofQ1+SofQ2)+SofQ3;
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
semilogy(Q,2+SofQ1,’--m’,Q,1.5+SofQ2,’--r’,Q,1+SofQ3,’--b’,’LineWidth’,1)
legend(’ 140pm’,’ 243pm’,’ 280pm’)
hold on
semilogy(Q,SofQ,’k’,’LineWidth’,1.5);
hold off
set(gca,’FontSize’,14,’Color’,[1 0.95 0.87],’LineWidth’,1,’YTick’,[0.7 0.8 0.9 1 1.5 2 2.5 3])
xlabel(’Q (A^{-1})’,’FontSize’,18)
ylabel(’S(Q)’,’FontSize’,18)

axis([0 Qmax 0.98*min(SofQ) 3.2])
grid
M = [Q; SofQ; SofQ1; SofQ2; SofQ3]’;

7. bragg.m
function M=bragg(wl,A,H)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Input: %
% wl = wavelength (Angstrom) or energy (eV) %
% A = [a b c alpha beta gamma], lattice parameters (Angstrom and deg) %
% H = [h1 k1 l1; h2 k2 l2; ...], reflection indexes %
% Output M = [ E wl 0 0; %
% d thB 2thB Vc] %
% | | | | %
% | | | unit cell volume (Angstrom^3) %
% | | 2theta Bragg (deg) %
% | theta Bragg (deg) %
% interplane distance (Angstrom) %
% Usage: %
% >> bragg(1.54,[],[]); %
% >> bragg(8000,[4.9134 4.9134 5.4052 90 90 120],[1 0 0; 0 1 1]); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rad = pi / 180;
deg = 1/rad;
if (wl < 1000) E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
fprintf(’ Energy = %6.2feV (%8.6f A)\n’,E,wl);

if isempty(A) M = [E wl]; return; else M(1,:) = [E wl 0 0]; end;
nm = size(A);
if (nm(1)*nm(2)==1)
A(1:3) = A(1)*ones(1,3);
A(4:6) = [90 90 90];

elseif (nm(1)*nm(2)==2)
A(1:3) = [A(1) A(1) A(2)];
A(4:6) = [90 90 90];

end;
A(4:6) = A(4:6)*rad;
cosphi = cos(A(6)) - cos(A(5))*cos(A(4));
cosphi = cosphi / (sin(A(5))*sin(A(4)));
sinphi = sqrt(1-cosphi*cosphi);
a1 = A(1) * [sin(A(5)) 0 cos(A(5))];
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a2 = A(2) * [sin(A(4))*cosphi sin(A(4))*sinphi cos(A(4))];
a3 = A(3) * [0 0 1];
a1r = cross(a2,a3);
Vc = a1r*a1’;
a1r = a1r/Vc;
a2r = cross(a3,a1)/Vc;

a3r = cross(a1,a2)/Vc;
Nr = size(H,1);
for n=1:Nr
q = H(n,1)*a1r + H(n,2)*a2r + H(n,3)*a3r;
d = 1/sqrt(q*q’);
sinth = 0.5*wl/d;

if (sinth > 1)
fprintf(’ d(%d,%d,%d) = %7.5f A (reflection not allowed for this energy!!!)\n’,H(n,1),H(n,2),H(n,3),d);
M(n+1,:) = [d 0 0 Vc];

else
th = asin(sinth)*deg;
tth = 2*th;
fprintf(’ d(%d,%d,%d) = %7.5f A, thB = %6.4f deg, 2thB = %6.4f deg\n’,H(n,1),H(n,2),H(n,3),d,th,tth);
M(n+1,:) = [d th tth Vc];

end;
end;

8. csfQ.m
function S=csfQ(atom,X)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Linear interpolation of tabulated values of the %
% incoherent (Compton) scattering function, S(x,Z) %
% Input: %
% atom = element symbol from ’H’ to ’Cs’ (Z from 1 to 55) %
% X = sin(th)/lambda = 0.25*Q/pi (1/Angstrom), e.g. X=0:0.05:2; %
% Output S = [x f] %
% | | %
% | interpolated values of S(x,Z) %
% sen(th)/lambda (1/Angstrom) %
% %
% Tabulated values S(x,Z) from file IncohScattFunction.txt available at %
% http://xraybook.if.usp.br/ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
X(X<0)=0; X((X>2))=2;
s=size(X); NofX=s(1)*s(2);
sizeA = size(atom,2);
W(1,:) = [.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.5 2.0];
mmax = hubbell(0);
m = 1; W(2,:)=zeros(1,12); ctr = 1;
while ((ctr == 1) && (m < mmax+1))
line = hubbell(m);
aux = find(line(1:8)==’ ’);
n = aux(1);
if (n==sizeA+1)
A = line(1:n-1);
if (A==atom)
W(2,:) = sscanf(line(9:size(line,2)),’%f’)’;
ctr = 0;

end;
end;
m = m + 1;

end;
if (ctr==1)

disp([’ Element ’ atom ’ not found!!! Using Cs instead...’]);
W(2,:) = sscanf(line(9:size(line,2)),’%f’)’;

end;
NofW = 12;
for nx = 1:NofX
x = X(nx);
x2 = 0; f = 0;
nw = 1;
while (nw <= NofW)
x1 = x2; y = f;
x2 = W(1,nw); f = W(2,nw);
if (x2 > x)
f = (f - y) * (x - x1) / (x2 - x1) + y;
nw = NofW;

end;
nw = nw + 1;

end;
S(nx,:) = [x f];

end;

function line=hubbell(m)
M = [
’C 1.039 2.604 3.643 4.184 4.478 4.690 4.878 5.051 5.208 5.348 5.781 5.930’;
’N 1.080 2.858 4.097 4.792 5.182 5.437 5.635 5.809 5.968 6.113 6.630 6.860’;
’O 0.977 2.799 4.293 5.257 5.828 6.175 6.411 6.596 6.755 6.901 7.462 7.764’;
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’Ca 3.105 5.690 7.981 9.790 11.157 12.163 12.953 13.635 14.256 14.830 16.921 17.970’];
% Complete table of theoretical values is available on the book’s webpage
if (m==0), line = size(M,1);
else line = M(m,:);
end;

9. debye.m
function debye(ct,Qf,rab,sg)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Comparison of numerical solutions of F = FT{G(u-rab)} %
% with usual approximations %
% Input: %
% ct = 1 for F = G(u-rab).sin(Qu)/Qu, 2 for F = G(u-rab).sin(Qu), and %
% 3 for F = G(u-rab).cos(Qu) %
% Qf = upper limit of Q-range (1/Angstrom) %
% rab = a value of interatomic distance (Angstrom) %
% sg = Gaussian standard deviation (Angstroms), %
% G(u-rab) = exp[-(u-rab)^2/2sg^2] %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (sg < 0.005)
disp(’ >>>> Standard deviation too small, use sg > 0.005 A!!!’)
return;

end;
if (rab >= 50)

disp(’ >>>> Interatomic distance too large, use rab < 50 A!!!’)
return;

end;
Nu = 10000;
Umax = 200;
du = Umax/Nu;
U = 0:du:Umax;
U(1) = 1e-8;
Nq = 500;
dq = Qf/Nq;
Q = 0:dq:Qf;
Q(1)=1e-8;

Nq = size(Q,2);
G = (du/(sg*sqrt(2*pi)))*exp((-0.5/sg^2)*(U-rab).^2);
Y = zeros(1,Nq);
if (ct==1)

for n = 1:Nq
Qu = Q(n)*U;
Y(n) = sum(G.*sin(Qu)./Qu);

end;
Qrab = rab*Q;
dqm = sg/sqrt(2);
Y2 = exp(-(dqm^2*(Q.*Q))).*(sin(Qrab)./Qrab);

ytext = ’FT\{G(u-rab)/4\piu^2\}’;
elseif (ct==2)

for n = 1:Nq
Qu = Q(n)*U;
Y(n) = sum(G.*sin(Qu));

end;
Qrab = rab*Q;
dqm = sg/sqrt(2);
Y2 = exp(-(dqm^2*(Q.*Q))).*sin(Qrab);

ytext = ’imag[FT\{G(u-rab)\}]’;
else

for n = 1:Nq
Qu = Q(n)*U;
Y(n) = sum(G.*cos(Qu));

end;
Qrab = rab*Q;
dqm = sg/sqrt(2);
Y2 = exp(-(dqm^2*(Q.*Q))).*cos(Qrab);

ytext = ’real[FT\{G(u-rab)\}]’;
end;
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’);
plot(Q,Y,’r’,Q,Y2,’-.b’,’LineWidth’,2)
axis tight
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)

xlabel(’Q (A^{-1})’,’FontSize’,18)
ylabel(ytext,’FontSize’,18)
legend(’ numerical solution’,’ DW approximation’)
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10. diffraction.m
function M=diffraction(wl,fname,prn)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% List of structure factors Fhkl %
% Input %
% wl = wavelength (Angstrom) or energy (eV) %
% fname = crystal data file (*.in) or structure factor list (*.sft) %
% prn = 1 open figure window for |Fhkl|^2 x Q %
% Output M = [Q; tth; p]’; n-by-3 array histogram x Q or x 2theta %
% save file list (*.sft) when fname has extension *.in %
% Secondary routines required: sfactor.m %
% Usage: M=diffraction(10000,’KDP0.in’,1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (wl < 1000), E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
rad = pi / 180;
M = [0 0];
n = regexp(fname,’.in’, ’once’);
if isempty(n)
if isempty(regexp(fname,’.sft’, ’once’)),

disp(’ >>>> File type unkown!!!’)
return;

else
fidin = fopen(fname,’r’);
if (fidin==-1)
disp([’ >>>> File ’ fname ’ not found!!!’])
return;

end;
for n=1:6, line = fgets(fidin); end;
n = 0;
while (line(2)==’ ’)
n = n + 1;
F2(n,1) = sscanf(line(47:57),’%f’)^2;
Dhkl(n,1) = sscanf(line(84:91),’%f’);
line = fgets(fidin);

end;
fclose(fidin);

end;
else
fout = [fname(1:n-1) ’E’ num2str(round(E)) ’.sft’];
fidin = fopen(fname,’r’);
if (fidin==-1)

disp([’ >>>> File ’ fname ’ not found!!!’])
return;
end;

line = fgets(fidin);
P = sscanf(line,’%f’)’;
if (size(P,2)~=6)

disp(’ >>>> Line 1: a b c alpha beta gamma’);
fclose(fidin);
return;

end;
fclose(fidin);
P(4:6) = P(4:6)*rad;
cosphi = cos(P(6)) - cos(P(5))*cos(P(4));
cosphi = cosphi / (sin(P(5))*sin(P(4)));
sinphi = sqrt(1-cosphi*cosphi);
a1 = P(1) * [sin(P(5)) 0 cos(P(5))];
a2 = P(2) * [sin(P(4))*cosphi sin(P(4))*sinphi cos(P(4))];
a3 = P(3) * [0 0 1];
a1r = cross(a2,a3);
Vc = a1r*a1’;
a1r = a1r/Vc;
a2r = cross(a3,a1)/Vc;
a3r = cross(a1,a2)/Vc;
hmax = floor(2.0 / (wl * sqrt(a1r*a1r’)));
kmax = floor(2.0 / (wl * sqrt(a2r*a2r’)));
lmax = floor(2.0 / (wl * sqrt(a3r*a3r’)));
H = [-hmax:-1 1:hmax];
K = [-kmax:-1 1:kmax 0];
L = [-lmax:-1 1:lmax 0];

m = 0; two_wl = 2/wl;
Nmax = (2*hmax+1)*(2*kmax+1)*(2*lmax+1);

HKL= zeros(Nmax,3); thBragg = zeros(Nmax,1); Dhkl = zeros(Nmax,1);
for nh = 1:2*hmax

for nk = 1:2*kmax+1
for nl = 1:2*lmax+1
h = H(nh); k = K(nk); l = L(nl);
q = h*a1r + k*a2r + l*a3r;
modq = sqrt(q*q’);
if (modq<two_wl)
m = m + 1;
HKL(m,:) = [h k l];
thBragg(m,1) = asin(0.5*modq*wl)/rad;
Dhkl(m,1) = 1.0 / modq;

end;
end;

end;
end;
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h=0;
for nk = 1:2*kmax

for nl = 1:2*lmax+1
k = K(nk); l = L(nl);
q = k*a2r + l*a3r;
modq = sqrt(q*q’);
if (modq<two_wl)
m = m + 1;
HKL(m,:) = [h k l];
thBragg(m,1) = asin(0.5*modq*wl)/rad;
Dhkl(m,1) = 1.0 / modq;

end;
end;

end;
k = 0;
for nl = 1:2*lmax

l = L(nl);
q = l*a3r;
modq = sqrt(q*q’);
if (modq<two_wl)
m = m + 1;
HKL(m,:) = [h k l];
thBragg(m,1) = asin(0.5*modq*wl)/rad;
Dhkl(m,1) = 1.0 / modq;

end;
end;
Nr = m;
F = sfactor(wl,fname,[HKL; 0 0 0]);
F0 = F(Nr+1);
F = F(1:Nr);
F2 = real(F.*conj(F));
NF = F2>0.1;
F2 = F2(NF); F = F(NF); HKL = HKL(NF,:); thBragg = thBragg(NF); Dhkl = Dhkl(NF);
Nr = size(F2,1);
clear NF;
invF2max = 100/max(F2);
X = F2;
Nmax = [];
for m=1:Nr
Nmax = [Nmax; find(X==max(X))];
X(Nmax)=0;

end;
Nmax=Nmax(1:Nr);
HKL = HKL(Nmax,:);
Dhkl = Dhkl(Nmax);
F = F(Nmax);
F2 = F2(Nmax);

thBragg = thBragg(Nmax);
clear Nmax X;
fidout = fopen(fout,’w’);
fprintf(fidout,’\n X-ray photon energy = %6.1feV (wavelength = %8.6fA) Ihkl = |Fhkl|^2\n’,E,wl);
fprintf(fidout,’|-------------|---------|---------------------------------------|------------------------|\n’);
fprintf(fidout,’| h k l | Ihkl(%%) | FH |FH| phase | th tth dhkl |\n’);
fprintf(fidout,’|-------------|---------|---------------------------------------|------------------------|\n’);
for m=1:Nr
x = real(F(m,1));
y = imag(F(m,1));
ph = atan2(y,x)/rad;
th = thBragg(m);

fprintf(fidout,’| %3d %3d %3d | %5.1f | %9.3f %9.3fi %9.3f %6.1f | %7.4f %8.4f %7.4f |\n’,...
HKL(m,1),HKL(m,2),HKL(m,3),invF2max*F2(m),x,y,sqrt(F2(m)),ph(1),th,2*th,Dhkl(m,1));

end;
fprintf(fidout,’|-------------|---------|---------------------------------------|------------------------|\n’);
fprintf(fidout,’F000 = %5.3f %5.3fi\n’,real(F0),imag(F0));
fclose(fidout);
end;
Nr = size(Dhkl,1);
Umax = 1.5*max(Dhkl);
du = 0.0002;
U = 0:du:Umax;
p = zeros(size(U));
for n=1:Nr, k = floor(Dhkl(n)/du)+1; p(k) = p(k) + F2(n); end;
dmin = 0.5*wl;
Nth = find(U>dmin);
Q = (2*pi)./U(Nth);
p = p(Nth);
Qmax = 4*pi/wl;

tth = (2/rad)*asin(Q/Qmax);
M = [Q; tth; p]’;
if (prn==1)
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(Q,p/max(p),’b’,’LineWidth’,3)
axis([0.98*min(Q) 1.02*max(Q) -0.02 1.02])
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’FontName’,’Arial’,’LineWidth’,1)
xlabel(’Q (A^{-1})’,’FontSize’,18)

ylabel(’\Sigma|F_{hkl}|^2 (relative values)’,’FontSize’,18)
end;



222 B MatLab Routines

11. diffractogram.m
function M=diffractogram(fname,Rg,xpv,prn)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% X-ray powder diffraction pattern %
% Input: %
% fname = *.sft, list of structure factors from routine diffraction.m %
% Rg = crystallite gyration radius (Angstrom) %
% xpv = pseudo-Voigt line profile function %
% 1 for Gaussian and 0 for Lorentzian %
% prn = 1 for figure window %
% Output M = [Q; tth; I; p; pF]’, n-by-4 array with I(Q) and I(tth) %
% intensity curves, and histograms of Ahkl and |Fhkl|^2 %
% Usage: M=diffractogram(’SiE12399.sft’,85,0.4,1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M = [0 0];
if isempty(regexp(fname,’.sft’, ’once’)), disp(’ >>>> Unknown file type!!!’); return; end;
fid = fopen(fname,’r’);
if (fid==-1), disp([’ >>>> File ’ fname ’ not found!!!’]); return; end;
line = fgets(fid);
line = fgets(fid);
N1=find(line==’=’);
N2=find(line==’.’);
wl = sscanf(line(N1(2)+1:N2(2)+6),’%f’);
for n=1:4, line = fgets(fid); end;

n=0;
while (line(2)==’ ’)

n = n + 1;
F2(n,1) = sscanf(line(47:57),’%f’)^2;
d(n,1) = sscanf(line(84:91),’%f’);
tth(n,1) = sscanf(line(74:83),’%f’);
line = fgets(fid);

end;
fclose(fid);
Nr = n;
A = d.*F2./sind(tth);
Qhkl = (2*pi)./d;
Qmax = (4*pi/wl);
dQ = Qmax/50000;
Q = 0:dQ:Qmax;
p = zeros(size(Q)); pF = p;

for n=1:Nr
k = floor(Qhkl(n)/dQ)+1;
p(k) = p(k) + A(n);
pF(k) = pF(k) + F2(n);

end;
Qmin = 0.5*min(Qhkl);
N = Q>0;
Q = Q(N);
p = p(N);
pF = pF(N) * (1/max(pF));
Nq = size(Q,2);

sg = sqrt(1.5)/Rg;
bq = sqrt(12*log(2))/Rg;
if (bq<2*dQ), I = p;
else
m = floor(50*bq/dQ);
X = (-m:m)*dQ;
X2 = X.*X;
PV = (xpv/(sg*sqrt(2*pi)))*exp((-1/(2*sg*sg))*X2);
PV = PV + (2*(1-xpv)*bq/pi)./(4*X2+bq*bq);

pt = [p(1)*ones(1,m) p p(Nq)*ones(1,m)];
I = zeros(1,Nq);

for n=1:Nq
I(n) = sum(PV.*pt(n:2*m+n));

end;
end;
clear pt;
I = I*(1/max(I));
tth = 2*asind(Q*(1/Qmax));
M = [Q; tth; I; p; pF]’;
if (prn==1)
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(Q,I,’k’,’LineWidth’,2)
axis([Qmin Qmax -0.02 1.02])
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
xlabel(’Q (A^{-1})’,’FontSize’,18)
ylabel(’normalized intensity’,’FontSize’,18)

grid
end;
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12. dynamicphase.m
function dynamicphase(wl,fname,H)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Dynamic phase across the reflectivity curve %
% Input: %
% wl = wavelength (Angstrom) or energy (eV) %
% fname = crystal data information, file ’*.in’ %
% H = [h k l] reflection indexes %
% Secondary routines required: sfactor.m and rcdarwinprins.m %
% Usage: dynamicphase(8000,’Si.in’,[1 1 1]) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (wl < 1000), E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
F = sfactor(E,fname,H(1,:));
if (F*conj(F)<1), disp(’ >>>> Forbidden or very weak reflection!!!’); return; end;
S=rcdarwinprins(E,fname,H,2^30,0).’;
X=S(1,:);
Y = S(2,:).*conj(S(2,:));
xc = sum(X.*Y)/sum(Y);
range = sum(abs(X-xc).*Y)/sum(Y);

Xmin = xc-3*range;
Xmax = xc+3*range;
Yr = real(S(2,:));
Yi = imag(S(2,:));
W = atan2(Yi,Yr)*(180/pi);
Fr = real(F);
Fi = imag(F);
phi = atan2(Fi,Fr)*(180/pi);
if (W(1)<0), N = find(W<0); W(N) = W(N) + 360; end;
W = W-phi;

N = find(W<-90); W(N) = W(N) + 360;
Wmin = min(W);
if (Wmin>0), Wmin = 0; end;
Wmax = max(W);
Ymax = max(Y);
if (Ymax>0.5), Ymax = 1; else Ymax = 1.02*Ymax; end;
if (Wmax<180), Wmax = 180; end;
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(X,Y*(Wmax/Ymax),’--k’,X,W,’-r’,’LineWidth’,2)
axis([Xmin Xmax Wmin Wmax])
set(gca,’YTick’,[0 60 120 180],’FontSize’,14,’Color’,[.7 .78 1],’LineWidth’,1)

xlabel(’\Delta\theta (arcsec)’,’FontSize’,18)
ylabel(’\Omega(\theta) (deg)’,’FontSize’,18)
legend(’ reflectivity’,’ dynamic phase’)

13. ex1GUP.m
function ex1GUP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plots scattering curves of monomers and dimers of %
% mutant enzyme H166G (PDB ID: 1GUP) %
% Required files: 1GUPmono.pdb and 1GUPdime.pdb %
% 1GUPmono.pdb = records "ATOM" from 1 to 2784 of file 1GUP.pdb %
% 1GUPdime.pdb = records "ATOM" from 1 to 5551 of file 1GUP.pdb %
% Both files are available at http://xraybook.if.usp.br/ %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
d = 54; % exclusion distance (Angstrom)
rhov = 0.08; % packing factor
S=saxs(’1GUPmono.ndu’,2,1000,0)’; % use ’1GUPmono.pdb’ in the 1st run
Qm = S(1,:);
Pm = S(2,:);
invPmax = 1/max(Pm);
Pm = Pm * invPmax;
PmS = Pm.*(1-(8*rhov)*tfsphere(d*Qm));

S=saxs(’1GUPdime.ndu’,2,1000,0)’; % use ’1GUPdime.pdb’ in the 1st run
Qd = S(1,:);

Pd = (0.5*invPmax)*S(2,:);
N=1:4:size(Qd,2);
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
semilogy(Qd(N),Pd(N),’-ro’,Qm,Pm,’k’,Qm,PmS,’-.k’,’LineWidth’,2,’MarkerSize’,7,’MarkerFaceColor’,’w’);
axis tight
set(gca,’FontSize’,14,’Color’,[0.890196 0.941176 0.901961],’Box’,’on’,’LineWidth’,1)
xlabel(’Q (A^{-1})’,’FontSize’,18)

ylabel(’I(Q)/I(0)’,’FontSize’,18)
legend(’ dimers’,’ monomers’,’ high conc.’)
axis([-0.01 .52 8e-4 2.4])

function Z=tfsphere(u)
u(u<=0)=1e-8;
u3 = u.*u.*u;
Z = 3*((sin(u)-u.*cos(u))./u3);
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14. ex1N5U.m
function ex1N5U
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot SAXS curve generated by routine saxs.c for humam albumin (1N5U.pdb)%
% and saved in file ’saxs1N5U_0to30E8keV.dat’ available at %
% http://xraybook.if.usp.br/ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M = load(’saxs1N5U_0to30E8keV.dat’);
Q = M(:,1)’;
P = M(:,2)’;
S = M(:,3)’;
Rg = 27.8916;
alpha = -Rg^2/3;
N=find(Q<=0.2);
jmax = size(N,2);
m = 5;

Q2 = Q(N(1:m:jmax)).*Q(N(1:m:jmax));
Ps = log10(P(N(1:m:jmax)));
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(Q2,Ps,’-bo’,’MarkerFaceColor’,’w’,’MarkerSize’,6,’LineWidth’,1.5)
hold on
plot([0 0.02],log10(P(1)*[1 exp(alpha*0.02)]),’r--’,’LineWidth’,1.5)
hold off
axis([0 .04 6.9 9.1]); grid
legend(’P(Q)’,’P(0)exp(-R_g^2Q^2/3)’,’Location’,’SouthWest’)
set(gca,’FontSize’,14,’Color’,[0.855 0.702 1],’LineWidth’,1)
set(gca,’YTick’,[7 7.5 8 8.5 9])
xlabel(’Q^2 (A^{-2})’,’FontSize’,14);

ylabel(’log(P)’,’FontSize’,14);
text(0.017,log10(1.3e+7),’R_g = 27.9 A’,’FontSize’,16,’Color’,’r’)
ha2=axes(’Position’,[.41 .496 .48 .40]);
semilogy(Q,P,’b’,’LineWidth’,2)
hold on
semilogy([.2 .2],[1e+5 1.2e+9],’--k’,’LineWidth’,1)
hold off
set(ha2,’FontSize’,14,’Color’,[0.973 0.973 0.973],’LineWidth’,1)
set(ha2,’YTick’,[1e+5 1e+6 1e+7 1e+8 1e+9])
xlabel(’Q (A^{-1})’,’FontSize’,18)

ylabel(’P(Q)’,’FontSize’,18)
axis tight
text(.5,1e+8,’1N5U’,’FontSize’,36,’Color’,[0.7 0.7 0.7],’FontWeight’,’bold’)

15. exabscs.m
function exabscs(atom,Emin,Emax)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Absorption edge in log-log graphic %
% Input: %
% atom = element symbol, e.g. ’Ag’ %
% Emin,Emax = energy range (keV) %
% Secondary routines required: fpfpp.m %
% Usage: exabscs(’Kr’,7,30) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Emin = abs(Emin); Emax = abs(Emax);
if (Emin>500), Emin = 0.001*Emin; Emax = 0.001*Emax; end;
if (Emin>Emax), x=Emax; Emax = Emin + 0.01; Emin = x; end;
if (Emin<1), Emin = 1; end;
if (Emax>70), Emax = 70; end;
E = Emin:0.01:Emax;
NE = size(E,2);
M = fpfpp(atom,1000*E);
Y = M(:,4)’;
Np = 1:40:NE;

X = E(Np);
X0 = E;
n=find(M(:,2)==min(M(:,2)),1);
dE = E(3)-E(2);
Eedge = E(n);
if (Eedge-E(1) > 5), n1 = find(abs(E-Eedge+5)<dE,1);

else n1 = 1;
end;
if (E(NE)-Eedge > 5), n2 = find(abs(E-Eedge-5)<dE,1);

else n2 = NE;
end;

if (n-n1 < 12) disp(’ Emin too close of the edge!!!’); return; end;
if (n2-n < 12) disp(’ Emax too close of the edge!!!’); return; end;
Xb = log(X0(1:n-10)); Xa = log(X0(n+10:NE));
Yb = log(Y(1:n-10)); Ya = log(Y(n+10:NE));
Ybi = interp1(Xb,Yb,Xb);
Ab = (Ybi(2)-Ybi(1))/(Xb(2)-Xb(1));
labelAb = [’ \leftarrow {\it n} = ’ num2str(0.01*round(100*Ab))];
Yai = interp1(Xa,Ya,Xa);

Aa = (Yai(2)-Yai(1))/(Xa(2)-Xa(1));
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labelAa = [’ \leftarrow {\it n} = ’ num2str(0.01*round(100*Aa))];
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
loglog(exp(Xb),exp(Ybi),’b’,exp(Xa),exp(Yai),’r’,’LineWidth’,2)
hold on
loglog(exp([max(Xb) min(Xa)]),exp([min(Ybi) max(Yai)]),’k’,’LineWidth’,2)
loglog(X,Y(Np),’ko’,’MarkerFaceColor’,’w’,’MarkerSize’,6,’LineWidth’,1)
hold off
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)

ylabel(’\sigma_a (barn)’,’FontSize’,18)
xlabel(’Energy (keV)’,’FontSize’,18)
axis tight; grid
nb = round(0.2*(1+n-10));
na = round(0.3*(n+10+NE));
text(X0(nb),Y(nb),labelAb,’FontSize’,18,’Color’,’b’)
text(X0(na),Y(na),labelAa,’FontSize’,18,’Color’,’r’)
fprintf(’\n Edge = %0.3f keV\n’,Eedge)
Bbi = Y(n-10)/X0(n-10)^(Ab);

fprintf(’ below edge: %0.5gE^{%0.5f}\n’,Bbi,Ab);
Bai = Y(n+10)/X0(n+10)^(Aa);
fprintf(’ above edge: %0.5gE^{%0.5f}\n\n’,Bai,Aa);

16. exanomalousignal.m
function exanomalousignal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Reflectivity curves below and above the Ga K-edge (@ 10360eV) %
% Secondary routines required: rcdarwinsprins.m %
% Required files: GaAs.in %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
S=rcdarwinprins(10300,’GaAs.in’,[1 1 7],4096,0).’;
X1=S(1,:);
N = find(X1>-180 & X1<180);
X1=X1(N);
Y1=S(2,N).*conj(S(2,N));
Y1b=S(3,N).*conj(S(3,N));
S=rcdarwinprins(10400,’GaAs.in’,[1 1 7],4096,0).’;
X2=S(1,:);

N = find(X2>-180 & X2<180);
X2=X2(N);
Y2=S(2,N).*conj(S(2,N));
Y2b=S(3,N).*conj(S(3,N));
c1 = [.87 .92 .98]; c2 = [.86 .86 .86]; c3 = [.85 .16 0];
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
area(X1-180,Y1,’EdgeColor’,’k’,’FaceColor’,’w’,’LineWidth’,2)
hold on
area(X1-180,Y1b,’EdgeColor’,c3,’FaceColor’,c2,’LineWidth’,2)
area(X2+180,Y2,’EdgeColor’,’k’,’FaceColor’,’w’,’LineWidth’,2)
area(X2+180,Y2b,’EdgeColor’,c3,’FaceColor’,c2,’LineWidth’,2)
hold off
axis([-360 400 0 3e-3])
set(gca,’FontName’,’Arial’,’FontSize’,14,’Color’,c1,’LineWidth’,1)
xlabel(’\Delta\theta’,’FontSize’,18)

ylabel(’reflectivity, |R_N(\theta)|^2’,’FontSize’,18)
legend(’ ( 1, 1, 7)’,’ (-1,-1,-7)’)
S=rcdarwinprins(10300,’GaAs.in’,[1 1 7],2^30,0)’;
X1=S(1,:);
N = find(X1>-1 & X1<8);
X1=X1(N);
Y1=S(2,N).*conj(S(2,N));
Y1b=S(3,N).*conj(S(3,N));
S=rcdarwinprins(10400,’GaAs.in’,[1 1 7],2^30,0)’;
X2=S(1,:);

N = find(X2>-1 & X2<8);
X2=X2(N);
Y2=S(2,N).*conj(S(2,N));
Y2b=S(3,N).*conj(S(3,N));
hf2=figure(2); clf; set(hf2,’InvertHardcopy’, ’off’,’Color’,’w’)
area(X1-3,Y1,’EdgeColor’,’k’,’FaceColor’,’w’,’LineWidth’,2)
hold on
area(X1-3,Y1b,’EdgeColor’,c3,’FaceColor’,c2,’LineWidth’,2)
area(X2+3,Y2,’EdgeColor’,’k’,’FaceColor’,’w’,’LineWidth’,2)
area(X2+3,Y2b,’EdgeColor’,c3,’FaceColor’,c2,’LineWidth’,2)
hold off
axis([-4 11 0 1])
set(gca,’FontName’,’Arial’,’FontSize’,14,’Color’,c1,’LineWidth’,1)

xlabel(’\Delta\theta’,’FontSize’,18)
ylabel(’reflectivity, |R(\theta)|^2’,’FontSize’,18)
legend(’ ( 1, 1, 7)’,’ (-1,-1,-7)’)
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17. exasf.m
function exasf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Atomic scattering factors for atoms and ions %
% with X-rays of two different energies %
% %
% Secondary routines required: asfQ.m %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
S1=asftth(20000,’Ga’);
S2=asftth(20000,’Ga3+’);
S3=asftth(8000,’Ga’);
S4=asftth(8000,’Ga3+’);
n=size(S1,1);
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)

plot(S1(:,1),S1(:,2),’b’,’LineWidth’,1)
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
hold on
plot(S2(:,1),S2(:,2),’r’,’LineWidth’,1)
plot(S3(:,1),S3(:,2),’bo’,’MarkerFaceColor’,’w’,’MarkerSize’,4,’LineWidth’,1)
plot(S4(:,1),S4(:,2),’r^’,’MarkerFaceColor’,’w’,’MarkerSize’,4,’LineWidth’,1)
hold off
xlabel(’Q (A^{-1})’,’FontSize’,18)
ylabel(’atomic scattering factor, f(Q)’,’FontSize’,18)
axis([0 21 5 32])
legend(’Ga (20kev)’,’Ga^{3+} (20kev)’,’Ga (8kev)’,’Ga^{3+} (8kev)’)
hf1=figure(2);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)

plot(S2(:,3),S2(:,4),’--r’,S2(:,3),-S2(:,4),’--r’,’LineWidth’,2)
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
hold on
plot(S1(:,3),S1(:,4),’b’,S1(:,3),-S1(:,4),’b’,’LineWidth’,2)
plot(S4(:,3),S4(:,4),’--r’,S4(:,3),-S4(:,4),’--r’,’LineWidth’,2)
plot(S3(:,3),S3(:,4),’b’,S3(:,3),-S3(:,4),’b’,’LineWidth’,2)
plot([-1 1],[0 0],’k’,[0 0],[1 -1],’k’,’LineWidth’,1)
hold off
xlabel(’x’,’FontSize’,18)
ylabel(’y’,’FontSize’,18)
xmin=min([S1(n,3) S2(n,3) S3(n,3) S4(n,3)]);
xmax=max([S1(1,2) S2(1,2) S3(1,2) S4(1,2)]);
ymax=max(max([S1(:,4) S2(:,4) S3(:,4) S4(:,4)]));

ymin=-ymax;
axis(1.12*[xmin xmax ymin ymax])
text(-10,8,’ \leftarrow 8keV’,’FontSize’,18,’Color’,’k’)
text(-4.5,-3,’ \leftarrow 20keV’,’FontSize’,18,’Color’,’k’)
text(30.5,4,’\downarrow’,’FontSize’,18,’Color’,’b’)
text(30,7,’Ga’,’FontSize’,18,’Color’,’b’)
text(20,0.5,’ Ga^{3+} \rightarrow’,’FontSize’,18,’Color’,’r’)
grid

function S=asftth(wl,atom)
if (wl > 100) wl = 12398.5 / wl; end;
dx = 0.01;
x = [0:dx:1];
tth = 2*asin(x);
x = (1/wl)*x;
f = asfQ(atom,x);
S(:,1) = (4*pi)*x;

S(:,2) = f;
S(:,3) = f .* cos(tth);
S(:,4) = f.* sin(tth);

18. excompton.m
function M=excompton(wl)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Coherent and incoherent (Compton) intensities scattered by %
% one electron with different probability density functions: %
% I) |psi(r)|^2 constant within a sphere of radius a=0.5A %
% II) |psi(r)|^2 of the hydrogen 1s orbital %
% wl = wavelength (Angstrom) or energy (eV) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (wl < 100) E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
a = 0.53; % Bohr radius (Angstrom)
tth = (0:0.005:1)*pi;
tth(1)=1e-6;
x = cos(tth);
P2 = 0.5*(1+x.*x);

Qa = (4*pi*a/wl)*sin(0.5*tth);
tth = tth * (180/pi);
x2 = Qa.*Qa;
x = 3*(sin(Qa)-Qa.*cos(Qa))./(x2.*Qa);
fI2 = x.*x;
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Icoer1 = P2.*fI2;
Icomp1 = P2.*(1-fI2);
x = 1+0.25*x2;
x = 1./(x.*x);
fII2 = x.*x;

Icoer2 = P2.*fII2;
Icomp2 = P2.*(1-fII2);
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(tth,Icoer1,’b’,tth,Icoer2,’r’,’LineWidth’,2)
hold on
plot(tth,Icomp1,’b--’,tth,Icomp2,’r--’,tth,Icoer1+Icomp1,’k-.’,’LineWidth’,1.5)
hold off
set(gca,’FontSize’,14,’Color’,[0.854902 0.701961 1],’LineWidth’,1,’YTick’,[0 0.2 0.4 0.6 0.8 1.0])
ylabel(’I(Q) / \Phi r_e^2 d\Omega’,’FontSize’,18)
xlabel(’2\theta (\circ)’,’FontSize’,18)

axis tight
text(40,0.8,’ \leftarrow I_{Th}’,’FontSize’,18,’Color’,’k’)
M = [tth; Icoer1; Icomp1; Icoer2; Icomp2]’;
X=(0:0.01:4)*a;
XX = X.*X;
Y1 = (3/a^3)*XX(X<=a);

n = size(Y1,2)+1;
Y1(n) = 0;
Y2 = (4/a^3)*(XX.*exp(-(2/a)*X));
ha2=axes(’Position’,[.70 .25 .19 .37]);
plot(X(1:n),Y1,’b’,X,Y2,’r’,’LineWidth’,2)
set(ha2,’FontSize’,14,’Color’,[0.9 0.9 1])
ylabel(’4\pir^2|\psi(r)|^2 (A^{-1})’,’FontSize’,14)
xlabel(’r (A)’,’FontSize’,14)

axis tight
text(0.5,4,’ \leftarrow I’,’FontSize’,18,’Color’,’b’,’FontName’,’Times’)
text(0.8,1,’ \leftarrow II’,’FontSize’,18,’Color’,’r’,’FontName’,’Times’)

19. excritangle.m
function excritangle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Critical angle for total external reflection in %
% gold and glass (amorphous alpha-quartz) surfaces %
% Secondary routines required: fpfpp.m %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
E = 4:0.1:20; % energy range (keV)
deg = 180/pi;
wl = 12.3985./E;
rewl2_pi = (2.818e-5*wl.*wl/pi);
f = fpfpp(’Si’,E);
fpSi = f(:,2)’;
f = fpfpp(’O’,E);
fpO = f(:,2)’;
f = fpfpp(’Au’,E);
fpAu = f(:,2)’;
Yglass = (1/113)*rewl2_pi .* (52 + 2*fpSi + 3*fpO);
Yglass = sqrt(Yglass)*deg;
Yglass0 = (52/113)*rewl2_pi;
Yglass0 = sqrt(Yglass0)*deg;
Ygold = (1/67.8)*rewl2_pi .* (316 + 4*fpAu);
Ygold = sqrt(Ygold)*deg;
Ygold0 = (316/67.8)*rewl2_pi;
Ygold0 = sqrt(Ygold0)*deg;
hf = figure; clf; set(hf,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(E,Yglass,’b’,E,Yglass0,’--b’,E,Ygold,’r’,E,Ygold0,’--r’,’LineWidth’,2)
set(gca,’FontSize’,14,’LineWidth’,1);
axis tight;

xlabel(’Energy (keV)’,’FontSize’,18)
ylabel(’\theta_c (deg)’,’FontSize’,18)
legend(’ glass surface’,’ glass surf. no res.’,’ gold surface’,’ gold surf. no res.’)

20. excsf.m
function excsf(atom,E1,E2,p)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Coherent and incoherent scattering by an atom %
% comparison for two different energies %
% Input: %
% atom = element symbol, e.g. ’C’ %
% E1,E2 = two energy values (keV) %
% p = 0, 1, and 2 for sigma-, pi-, and non-polarized X-rays %
% Secondary routines required: asfQ.m and csfQ.m %
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% Usage: %
% >> excsf(’C’,8,20,0); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (E1>500) E1 = 0.001*abs(E1); end;
if (E2>500) E2 = 0.001*abs(E2); end;
labelE1 = [num2str(round(E1)) ’keV’];
labelE2 = [num2str(round(E2)) ’keV’];
tth = (0:1:360)*(pi/180);
if (p==1)
P2 = cos(tth)’;
P2 = P2.*P2;
labelP = ’\pi polarization’;

elseif (p==2)
P2 = cos(tth)’;
P2 = 0.5*(1+P2.*P2);
labelP = ’unpolarized’;

else
P2 = ones(size(tth,2),1);
labelP = ’\sigma polarization’;

end;
S1=asfxQ(E1,atom,tth,P2);
S2=csfxQ(E1,atom,tth,P2);

S3=asfxQ(E2,atom,tth,P2);
S4=csfxQ(E2,atom,tth,P2);
xmax = S1(1,2); xmin = min(S4(:,3)); ymax = max(S1(:,4)); ymin =-ymax;
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(S1(:,3),S1(:,4),’b’,’LineWidth’,2)
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1,’Position’,[0.13 0.02 0.775 0.9])
hold on
plot(S2(:,3),S2(:,4),’--b’,’LineWidth’,1)
plot(S3(:,3),S3(:,4),’r’,’LineWidth’,2)
plot(S4(:,3),S4(:,4),’--r’,’LineWidth’,1)
plot([-1 1],[0 0],’k’,[0 0],[1 -1],’k’,’LineWidth’,1)
hold off
xlabel(’x’,’FontSize’,18)
ylabel(’y’,’FontSize’,18)
axis image
axis([1.2*xmin 1.05*xmax 1.1*ymin 1.1*ymax])

text(0,0,atom,’FontSize’,36,’Color’,[0.855 0.702 1],’FontWeight’,’bold’)
grid
legend([’ coherent ’ labelE1],[’ compton ’ labelE1],[’ coherent ’ labelE2],[’ compton ’ labelE2])
title([atom ’, ’ labelP],’FontSize’,18)

function S=asfxQ(wl,atom,tth,P2)
wl = 12.3985 / wl;
x = sin(0.5*tth)/wl;
S(:,1) = (4*pi) * x;
F = asfQ(atom,x)’;
F2(:,1) = F.*F.*P2;

S(:,2) = F2;
S(:,3) = F2 .* cos(tth’);
S(:,4) = F2 .* sin(tth’);

function S=csfxQ(wl,atom,tth,P2)
wl = 12.3985 / wl;
x = sin(0.5*tth)/wl;
S(:,1) = (4*pi) * x;
Y = csfQ(atom,x);
F = Y(:,2).*P2;

S(:,2) = F;
S(:,3) = F .* cos(tth’);
S(:,4) = F .* sin(tth’);

21. exellipsoid.m
function exellipsoid
X=0:0.01:1;
Nx = size(X,1);
w2 = X.*X;
Rg2 = sqrt(0.2*(2*w2 + 1)); % oplate
Rg1 = sqrt(0.2*(2 + w2)); % prolate
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(X,Rg1,’b’,X,Rg2,’r’,’LineWidth’,2)
axis([0 1 0.4 0.8])
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
legend(’ oblate’,’ prolate’,4)

xlabel(’ratio of the dimensions, {\it w}’,’FontSize’,18);
ylabel(’R_g / L’,’FontSize’,18);
grid
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22. exexafs.m
function exexafs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% EXAFS with 4 neighbors %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M = fpfpp(’Mn’,6000:2:9000);
E = M(:,1)’;
NE = size(M,1);
Sga = 0.001*M(:,4)’;
nb = find(M(:,2)==min(M(:,2)));
Eb = M(nb,1);
K = E(nb:NE)-Eb; % kinetic energy of the photonelectron (eV)
co = 0.512315; % units [Angstrom^{-1}][eV^{-1/2}]

ke = co * sqrt(K);
ke(1) = 1e-6;
ke2 = ke.*ke;
ke3 = ke2.*ke;
Nk = size(ke,2);
kmax = 5;
aux = exp(2) / kmax^2;
Rke = (aux*ke2).*exp((-2/kmax)*ke);
Rke_ke = Rke./ke;
pke = 2*(exp((-0.05)*ke)-1.1);
R = 5;
xy = R*[0.5 0.5; -0.5 -0.5; 0.3 -0.3; -0.3 0.3]; % atomic coordinates in the xy plane (Angstrom)
Nat = size(xy,1);
for n = 1:Nat
rn = sqrt(xy(n,:)*xy(n,:)’);
chi(n,:) = Rke_ke.*sin((2*rn)*ke + pke)/(rn*rn);
chi10(n,:) = Rke_ke.*sin((2*rn)*ke + 10*pke)/(rn*rn);

Rn(n) = rn;
end;

Chi = sum(chi,1);
Chi10 = sum(chi10,1);
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(ke,Chi.*ke3,’r’,’LineWidth’,2)
set(gca,’FontSize’,14,’Color’,[1 0.95 0.87],’LineWidth’,1)
xlabel(’k_e (A^{-1})’,’FontSize’,18)
ylabel(’k_e^3 \chi(k_e)’,’FontSize’,18)

axis tight
Sgp = [Sga(1:nb-1) Sga(nb:NE).*(1+Chi)];
E=0.001*E;
hf2=figure(2);
clf
set(hf2,’InvertHardcopy’, ’off’,’Color’,’w’)
loglog(E,Sga,’-.k’,E(nb:NE),Sgp(nb:NE),’r’,’LineWidth’,2)
set(gca,’FontSize’,14,’Color’,[1 0.95 0.87],’LineWidth’,1)
set(gca,’XTick’,[6 7 8 9],’YTick’,[6 8 10 20 40])
xlabel(’Energy (keV)’,’FontSize’,18)
ylabel(’\sigma_a (10^3 barn)’,’FontSize’,18)
text(8.6,37.5,’Mn’,’FontSize’,36,’Color’,[0.871 0.49 0],’FontWeight’,’bold’)
axis tight
grid

ha1=gca;
navg = round((nb+NE)/3);
ha2=axes(’Position’,[.35 .18 .4 .4]);
loglog(E(nb-3:navg),Sga(nb-3:navg),’-.k’,E(nb:navg),Sgp(nb:navg),’r’,’LineWidth’,2)
set(ha2,’FontSize’,14,’Color’,[0.973 0.973 0.973])
axis tight
set(ha2,’XTick’,[],’YTick’,[])
xx = get(ha2,’XLim’)*[1 0 0 1 1; 0 1 1 0 0];
yy = get(ha2,’YLim’)*[1 1 0 0 1; 0 0 1 1 0];
axes(ha1);
hold on
plot(xx,yy,’k’,’LineWidth’,1)

hold off
axes(ha2)
dx = R/500;
X = 0:dx:R;
Nx = size(X,2);
twoiX = (2*i)*X;
dk = [ke(2:Nk)-ke(1:Nk-1) ke(Nk)-ke(Nk-1)];
chidk = ke3.*Chi.*dk;
chi10dk = ke3.*Chi10.*dk;

for nx = 1:Nx
Z = exp(twoiX(nx)*ke);
rho(nx) = sum(Z.*chidk);
rho10(nx) = sum(Z.*chi10dk);

end;
rho = sqrt(rho.*conj(rho));

irmax = 1/max(rho);
rho10 = sqrt(rho10.*conj(rho10));
hf3=figure(3);
clf
set(hf3,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(X,irmax*rho,’k’,X,irmax*rho10,’--b’,’LineWidth’,2)
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set(gca,’FontSize’,14,’Color’,[.961 .922 .922],’LineWidth’,1,’YTickLabel’,[])
xlabel(’interatomic distance, u (A)’,’FontSize’,18)
ylabel(’F(u) (arb. units.)’,’FontSize’,18)
axis tight
grid
legend(’ small variation, \delta_n ’,’ huge variation, 10\delta_n’)
hold on

for n=1:Nat
plot([Rn(n) Rn(n)],[0 1],’r’,’LineWidth’,1)

end;
hold off
hf4=figure(4);
clf
set(hf4,’InvertHardcopy’, ’off’,’Color’,’w’)
ha4a=axes(’Position’,[0.1 0.2 0.38 0.6]);
set(ha4a,’FontSize’,14,’Color’,[.961 .922 .922],’LineWidth’,1);
plot(ke,pke,’r’,’LineWidth’,2)

xlabel(’k_e (A^{-1})’,’FontSize’,18)
ylabel(’\delta_n (radians)’,’FontSize’,18)
axis tight; grid
ha4b=axes(’Position’,[0.6 0.2 0.38 0.6]);
set(ha4b,’FontSize’,14,’Color’,[.961 .922 .922],’LineWidth’,1);
plot(ke,Rke,’r’,’LineWidth’,2)
set(ha4b,’YTick’,[0 .2 .4 .6 .8])
xlabel(’k_e (A^{-1})’,’FontSize’,18)

ylabel(’R_n (A)’,’FontSize’,18)
axis tight
grid

23. exexafsmap.m
function exexafsmap
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% EXAFS with 4 neighbors %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
E = 200; % eV
R = 5; % Angstrom
rad = pi / 180;
k = 0.512315*sqrt(E);
dr = R / 100;
M = -R:dr:R;
Np = size(M,2);
xy = [0 0; 0.5 0.5; -0.5 -0.5; 0.3 -0.3; -0.3 0.3] * R;
for n = 1:5 modR(n) = sqrt(xy(n,:)*xy(n,:)’); end;
psh = k * modR;

an = 0.1; kan = k * an;
A = [1 i i i i]./[1 modR(2:5)];
for n = 1:Np
y = M(n);
for m = 1:Np

x = M(m);
for nn = 1:5
ra2 = [x y] - xy(nn,:);
ra = sqrt(ra2*ra2’);
if (ra<an) ra = an; end;
kr = k * ra;
arg = kr + psh(nn);
den = kan / kr;
psi(nn) = A(nn) * exp(i*arg) * den;

end;
z = sum(psi);
Z(n,m) = z*conj(z);
X(n,m) = x; Y(n,m) = y;

end;
end;
logZ = log10(Z);
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
surf(X,Y,logZ)
axis tight
shading interp
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
set(gca,’ZTick’,[],’DataAspectRatio’,[.15 .15 1])
colormap(jet)
view(150,30)
xlabel(’x (A)’,’FontSize’,18,’Rotation’,18)

ylabel(’y (A)’,’FontSize’,18,’Rotation’,-45 )
colorbar(’XColor’,’k’,’FontSize’,14,’Location’,’East’,’LineWidth’,1)
text(0,0,1,’log(P)’,’FontSize’,18,’Rotation’,90)
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24. exfpfpp.m
function Z=exfpfpp(atom,Emin,Emax)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Coherent scattering cross-section (Rayleigh) with atomic resonance %
% Input: %
% atom = element symbol, e.g. ’Se’ %
% Emin,Emax = energy range from Emin to Emax (keV) %
% Output Z = [E f’ f" sga sgR sgRr] %
% | | | | | | %
% | | | | | cross-section with resonance (barn) %
% | | | | cross-section without resonance (barn) %
% | | | absorption cross-section (barn) %
% | | imaginary term (in electron number) %
% | real term (in electron number) %
% energy (eV) %
% Secondary routines required: asfQ.m and fpfpp.m %
% Usage: %
% >> Z=exfpfpp(’Se’,3,23); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Emin = abs(Emin); Emax = abs(Emax);
if (Emax < Emin) E = Emax; Emax = Emin; Emin = E; end;
if (Emin>500) Emin = 0.001*Emin; Emax = 0.001*Emax; end;
if (Emin<1) Emin = 1; end;
if (Emax>70) Emax = 70; end;
if (Emax-Emin<0.020) E = [Emin Emin+0.01]; dE = 0.01;

else E = Emin:0.01:Emax; dE = E(3)-E(2);
end;

NE = size(E,2);
M = fpfpp(atom,1000*E);
rad = pi/180;
re = 2.818e-15; % (m)
hc = 12.3985; % (keV.A)
invWL = E/hc;
dtth = 0.2; % (deg)
TTH = 0:dtth:180; % (deg)
X = TTH * rad;
dx = dtth * rad;
aux1 = pi * re * re * dx * 1e+28;

SinG = sin(X);
PSinG = (2-SinG.*SinG).*SinG;
for nn = 1:NE
fres = M(nn,2:3);
f = asfQ(atom,invWL(nn)*sin(0.5*X));
fr = f + fres(1) +i*fres(2);
f = f.*f;
fr = fr.*conj(fr);
I(nn) = aux1*sum(PSinG.*f);

Ir(nn) = aux1*sum(PSinG.*fr);
end;
Z = M;
c = size(Z,2);
Z(:,c+1:c+2) = [I; Ir]’;
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(E,I,’k--’,E,Ir,’k’,’LineWidth’,2)
set(gca,’FontSize’,14,’Color’,[0.854902 0.701961 1],’LineWidth’,1)
ylabel(’\sigma_R (barn)’,’FontSize’,18)
xlabel(’Energy (keV)’,’FontSize’,18)
axis tight

legend(’ without res.’,’ with res.’,3)
n=find(M(:,2)==min(M(:,2)));
if isempty(n)
n1 = 1; n2 = NE; n = (n1+n2)/2;

else
Eedge = E(n);
if (Eedge-E(1) > 5)

n1 = find(abs(E-Eedge+5)<dE);
else n1 = 1;
end;
if (E(NE)-Eedge > 5)

n2 = find(abs(E-Eedge-5)<dE);
else n2 = NE;

end;
end
n1 = n1(1); n2 = n2(1);
ha2=axes(’Position’,[.48 .45 .4 .4]);
plot(E(n1:n2),M(n1:n2,2),’b’,E(n1:n2),M(n1:n2,3),’r’,’LineWidth’,2)
set(ha2,’FontSize’,14,’Color’,[0.93 0.93 0.93])
ylabel(’resonant amplitude’,’FontSize’,14)

xlabel(’Energy (keV)’,’FontSize’,14)
axis tight
legend(’f \prime’,’f \prime\prime’,4)
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25. exgofu1.m
function M=exgofu1(d,N)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function g(u) for one-dimensional correlation %
% Input: %
% d, degree of disorder along one direction, Da/a = 1 + d*(2*rand-1) %
% N, statistic of (2N-1)^2 counts per point %
% Output: M = [U; g]’; n-by-2 array %
% Usage: M = exgofu1(.2,200); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NN = 2*N + 1; % value of NN limited by available RAM memory
X = zeros(NN,NN,NN);
X(:,:,1) = d*(2*rand(NN)-1);
if (N>0)
X(:,:,2) = X(:,:,1) + 1 + d*(2*rand(NN)-1);
X(:,:,3) = X(:,:,1) - 1 + d*(2*rand(NN)-1);
if (N>1)
for n = 2:N
X(:,:,2*n) = X(:,:,2*(n-1)) + 1 + d*(2*rand(NN)-1);
X(:,:,2*n+1) = X(:,:,2*(n-1)+1) - 1 + d*(2*rand(NN)-1);

end;
end;

end;
V = (sum(sum(X(:,:,NN-1)))-sum(sum(X(:,:,NN))))/NN^2;
xmin=min(min(X(:,:,NN)));
xmax=max(max(X(:,:,NN-1)));

Umax = 1.02*(xmax-xmin)/2;
du = 0.01;
U = 0:du:Umax;
px = zeros(1,size(U,2));
for n=1:NN

for m=1:NN
r0 = X(n,m,1);
for l=1:NN
k = fix(abs(X(n,m,l)-r0)/du) + 1;
px(k) = px(k) + 1;

end;
end;

end;
g = (1/(2*du*px(1)))*px;
Nu = size(px,2);
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(U(2:Nu),g(2:Nu),’r’,’LineWidth’,2)
axis tight
grid
set(gca,’FontSize’,14,’Color’,[1 0.949 0.867],’LineWidth’,1)

xlabel(’u/a’,’FontSize’,18)
ylabel(’g(u)’,’FontSize’,18)
M=[10*U(2:Nu); g(2:Nu)]’;

26. exgofu2.m
function exgofu2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% To compare scattering data simulation from ensemble of particles with %
% the interference function obtained from g(u) %
% Required files: fthofu_N8d20sphere1to20.dat and exgofu.dat %
% Files generated by routines fthofu.m and exgofu1.m, and available at %
% http://xraybook.if.usp.br/ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
I = load(’fthofu_N8d20sphere1to20.dat’);
A = 150; pixel = 0.5; D = 600; wl = 1; % same values used in routine fthofu.m
Qx = (2*pi/wl)*sin(atan((-A:pixel:A)/D));
detc = 300;
Ix = sum(I(301-detc:301+detc,:))/(2*detc+1);

M = find(Qx>0);
Ix = Ix(M);
Qx = Qx(M);
M=find(Qx>.1);
Ixmin = min(Ix(M));
DIx = max(Ix(M))-Ixmin;
M=load(’exgofu.dat’)’;
U=M(1,:);

g=M(2,:);
Nu = size(U,2);
twopi = 2*pi;
dq = 0.005;
Q=0.1:dq:2;
Nq = size(Q,2);
du = U(3)-U(2);
G = g-1;
for nq = 1:Nq
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q = Q(nq);
S(nq) = sum(G.*cos(q*U));

end;
rho = 0.17;
S = 1 + (rho*du)*S;

aux=5/pi;
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
semilogy(aux*Qx,Ix,’-ko’,’MarkerFaceColor’,’w’,’MarkerSize’,3,’LineWidth’,1)
hold on
semilogy(aux*Q,S,’-r’,’LineWidth’,1.5)
hold off
axis([0.1 3.14 .1 6.4])
set(gca,’FontSize’,14,’Color’,[1 0.97 0.92],’LineWidth’,1)
xlabel(’n_x’,’FontSize’,18)
ylabel(’S(Q_x)’,’FontSize’,18)

grid
legend(’ simulation’,’ num. solution’)
text(.1,1.3,’ FT of volume’,’FontSize’,14)
text(.1,1,’ \downarrow’,’FontSize’,14)

27. exgoldnano0.m
function Z=exgoldnano0(Qf)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Resolution of PDDF by inverse FT in gold nanoparticles %
% Input: %
% Qf = upper limit of the inverse FT integral (1/Angstrom) %
% Output Z = [U; h; Pu]’; %
% | | | %
% | | PDDF after convolution with retangular function %
% | PDDF as obtained from inverse FT %
% interatomic distance (Angstrom) %
% Required files: ’goldnano10r05.pdu’ from http://xraybook.if.usp.br/ %
% File generated by routine goldnano.m %
% Usage: Z = exgoldnano0(40); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M=load(’goldnano10r05.pdu’)’;
U = M(1,:);
p = M(2,:);
if (U(1)==0), U(1) = 1e-8; end;
dQ = Qf/5000;
Q = 0:dQ:Qf;
Q(1) = 1e-8;
Nq = size(Q,2);
S = zeros(1,Nq);
for n=1:Nq
Qu = Q(n)*U;
S(n) = sum(p.*(sin(Qu)./Qu));

end;
S = (1/p(1))*S;
Nu = size(U,2);
F = (2*dQ/pi)*((S-1).*Q);

for n = 1:Nu
u = U(n);
h(n) = sum((u*F).*sin(u*Q));

end;
du = U(3)-U(2);
wl = 2*pi/Qf;
Nw = floor(0.5*wl/du);
for n=1:Nu

nmin = n-Nw;
nmax = n+Nw;
if (nmin<1) Pu(n) = sum(h(1:nmax))/nmax;
elseif (nmax>Nu) Pu(n) = sum(h(nmin:Nu))/(Nu-nmin+1);
else Pu(n) = sum(h(nmin:nmax))/(2*Nw+1);
end;

end;
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(U,h,’--k’,’LineWidth’,1)
hold on
plot(U,Pu,’Color’,[0 0 .5],’LineWidth’,1.5)
plot([2-wl 2 2 2-wl 2-wl],[0 0 1 1 0]*(10/wl),’r’,’LineWidth’,1)
hold off
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
set(gca,’YTick’,[])
xlabel(’u (A)’,’FontSize’,18)
ylabel(’p(u)’,’FontSize’,18)

legend(’ before conv.’,’ after conv.’,’ conv. function (x10)’)
axis([1.5 9.5 min(h) max(h)])
Z = [U; h; Pu]’;
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28. exgoldnano1.m
function exgoldnano1(Qf)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Scattering power, P(Q), of gold nanoparticles with different diameters %
% Input: %
% Qf = maximum reciprocal vector module (1/Angstrom) %
% Secondary routines required: asfQ.m %
% Required files: goldnano10r5.pdu, goldnano20r5.pdu, %
% goldnano40r5.pdu, and goldnano40r1.pdu %
% Files generated by routine goldnano.m, and %
% available at http://xraybook.if.usp.br/ %
% Usage: exgoldnano1(20) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M10=goldnanopdq(’goldnano10r5.pdu’,Qf);
M20=goldnanopdq(’goldnano20r5.pdu’,Qf);
M40=goldnanopdq(’goldnano40r5.pdu’,Qf);
M41=goldnanopdq(’goldnano40r1.pdu’,Qf);
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
semilogy(M10(:,1),M10(:,2),’k’,’LineWidth’,1.5)
hold on
semilogy(M20(:,1),M20(:,2),’b’,’LineWidth’,1.5)
semilogy(M41(:,1),M41(:,2),’--m’,’LineWidth’,1)
semilogy(M40(:,1),M40(:,2),’r’,’LineWidth’,1.5)
hold off
axis([-0.01*Qf Qf 0.9*min(M41(:,2)) 1.1])
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
set(gca,’YTick’,[1e-4 1e-2 1])

xlabel(’Q (A^{-1})’,’FontSize’,18)
ylabel(’P(Q) / P(0)’,’FontSize’,18)
legend(’ 1 nm’,’ 2 nm’,’ 4 nm’,’ 4 nm’)

function M=goldnanopdq(fname,Qf)
S=load(fname)’;
U = S(1,:);
p = S(2,:);
if (U(1)==0) U(1) = 1e-8; end;
dQ = Qf/5000;
Q = 0:dQ:Qf; Q(1) = 1e-8;
Nq = size(Q,2);
f = asfQ(’Au’,(0.25/pi)*Q);
f = f.*f;
for n=1:Nq
Qu = Q(n)*U;
Y(n) = f(n) * sum(p.*(sin(Qu)./Qu));

end;
Y = (1/max(Y))*Y;
Y(Y<1e-6) = 1e-6;
M = [Q; Y]’;

29. exgoldnano2.m
function exgoldnano2(E1,E2,Nph)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Comparison of PDDF extracted from P(Q) curves with different energies %
% Input: %
% E1,E2 = photon energies (keV) %
% Nph = number of counts in the P(Q) curve %
% Secondary routines required: asfQ.m and photonstatistic.m %
% Required files: goldnano40r5.pdu from http://xraybook.if.usp.br/ %
% Usage: exgoldnano2(10,20,1e+6) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fname = ’goldnano40r5.pdu’;
if (E1>500), E1 = 0.001*E1; end;
if (E2>500), E2 = 0.001*E2; end;
Qf1 = 1.0135*E1;
Qf2 = 1.0135*E2;
G=load(fname)’;
U = G(1,:);
p = G(2,:);
Nu=size(U,2);
M1 = goldnanopdu(fname,Qf1,Nph);
Pu1 = M1(:,2)’;

Pu1max = max(Pu1);
M2 = goldnanopdu(fname,Qf2,Nph);
Pu2 = M2(:,2)’;
Pu2max = max(Pu2);
if (Pu1max>Pu2max)

Pu2 = (Pu1max/Pu2max)*Pu2;
pmax = Pu1max/max(p(2:Nu));

else
Pu1 = (Pu2max/Pu1max)*Pu1;
pmax = Pu2max/max(p(2:Nu));

end;
N = find(U<10.2, 1, ’last’ );
Pu1max = max(Pu1(1:N));
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Pu2max = max(Pu2(1:N));
Pu1min = min(Pu1(1:N));
Pu2min = min(Pu2(1:N));
if (Pu1max>Pu2max) Ymax = Pu1max;

else Ymax = Pu2max;
end;
if (Pu1min<Pu2min) Ymin = Pu1min;

else Ymin = Pu2min;
end;
DY = Ymax-Ymin;

hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(U(1:N),Pu1(1:N)+0.5*DY,’b’,’LineWidth’,1.5)
hold on
plot(U(1:N),Pu2(1:N)+0.25*DY,’k’,’LineWidth’,1.5)
plot(U(2:N),pmax*p(2:N),’r’,’LineWidth’,1.0);
hold off
axis([1.5 U(N) [Ymin Ymax]+[-0.02 1.02]*DY])
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
set(gca,’YTick’,[])
xlabel(’u (A)’,’FontSize’,18)

ylabel(’normalized PDDF’,’FontSize’,18)
legend([’ ’ num2str(E1) ’ keV’],[’ ’ num2str(E2) ’ keV’],’ hist.’)
pmax = max(p);
ha1=axes(’Position’,[.2 .532 .38 .35]);
plot(U,p,’Color’,[.5 .5 .5],’LineWidth’,1);
set(ha1,’FontSize’,14,’Color’,[1 .8 0])
ylabel(’N(u)du (x1000)’,’FontSize’,14)
xlabel(’u (A)’,’FontSize’,14)
axis([1.2 max(U) -0.03*pmax 1.02*pmax])
hold on
plot(U(2:N),p(2:N),’r’,’LineWidth’,1);

plot([1.5 10.25 10.25 1.5 1.5],[-0.015 -0.015 0.85 0.85 -0.015]*pmax,’--r’,’LineWidth’,1)
hold off
text(0.8*max(U),0.8*pmax,’Au’,’FontSize’,36,’Color’,[1 1 0],’FontWeight’,’bold’)

function PdeU=goldnanopdu(fname,Qf,Nph)
M=load(fname)’;
U = M(1,:);
p = M(2,:);
if (U(1)==0) U(1) = 1e-8; end;
dQ = Qf/5000;
Q = 0:dQ:Qf;
Q(1) = 1e-8;
Nq = size(Q,2);

f = asfQ(’Au’,(0.25/pi)*Q);
f = f.*f;
for n=1:Nq
Qu = Q(n)*U;
P(n) = f(n)*sum(p.*(sin(Qu)./Qu));
end;
Ps=photonstatistic(P,Nph);
S = f(1)*(Ps./f);
Nu = size(U,2);
F = (2*dQ/pi)*((S-1).*Q);
for n = 1:Nu
u = U(n);
h(n) = sum((u*F).*sin(u*Q));

end;
du = U(3)-U(2);
wl = 2*pi/Qf;

Nw = floor(0.5*wl/du);
for n=1:Nu

nmin = n-Nw;
nmax = n+Nw;
if (nmin<1) Pu(n) = sum(h(1:nmax))/nmax;
elseif (nmax>Nu) Pu(n)= sum(h(nmin:Nu))/(Nu-nmin+1);
else Pu(n) = sum(h(nmin:nmax))/(2*Nw+1);
end;

end;
PdeU = [U; Pu]’;

30. exhardsphere.m
function exhardsphere(d,x)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Debye approach versus Percus-Yevick solution for %
% Ornstein-Zernick equation with hard sphere potential %
% Input: %
% d = the shortest distance between two particles %
% x = packing factor (from 0 to 0.4) %
% Usage: %
% >> exhardsphere(3,0.08) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
d = abs(d);
x = abs(x); if (x>0.4) x = 0.4; end;
vp = (pi/6)*d^3; % volume occupied by each particle (1/8 of the exclusion volume)
rho = x/vp; % density of partiles
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Umax = 5*d;
du = d/100;
U = 0:du:Umax;
U(1)=1e-8;

Ud = U/d;
Nu = size(U,2);
aux1 = (1-x)^4;
aux2 = -(1+0.5*x)^2 / aux1;
aux1 = (1+2*x)^2 / aux1;
C = (-0.5*x*aux1)*(Ud.*Ud.*Ud) - (6*x*aux2)*Ud - aux1;
C(U>d) = 0;
Qmax = 6 * (5*pi/2) / (2*d);

dq = Qmax/2000;
Q = 0:dq:Qmax;
Q(1) = 1e-8;
Nq = size(Q,2);
G = (4*pi*du)*C.*U;
TFC = zeros(1,Nq);
for n=1:Nq
q = Q(n);
TFC(n) = sum(G.*sin(q*U))/q;

end;
S = 1./(1-rho*TFC);

Y = rho*(TFC.*TFC).*S;
F = (dq/(2*pi*pi))*Y.*Q;
invFTY = zeros(1,Nu);
for n=1:Nu

u=U(n);
invFTY(n) = sum(F.*sin(u*Q))/u;

end;
g = invFTY + C + 1;
g(U<d)=0;
Qd = Q*d;
T = tfsphere(Qd);
Sp = 1-(8*rho*vp)*T;
Smin = min(Sp);
Smax = max(S);
dS = Smax-Smin;

Smin = Smin-0.05*dS;
Smax = Smax+0.05*dS;
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(Qd,Sp,’--k’,Qd,S,’r’,’LineWidth’,2)
set(gca,’FontSize’,14,’Color’,[0.89 0.94 0.9],’FontName’,’Arial’,’LineWidth’,1)
legend(’ Debye’,’ Percus-Yevick’,’Location’,’SouthWest’)

xlabel(’Qd’,’FontSize’,18);
ylabel(’S(Q)’,’FontSize’,18);
axis([0 max(Qd) Smin Smax])
ha2=axes(’Position’,[.533 .251 .338 .4]);
plot(Ud,g,’b’,’LineWidth’,2)
set(ha2,’FontSize’,14,’Color’,[0.729 0.831 0.957],’FontName’,’Arial’,’LineWidth’,1)
xlabel(’u/d’,’FontSize’,18)
ylabel(’g(u)’,’FontSize’,18)

gmax = max(g);
axis([0 max(Ud) 0 1.05*gmax])
grid

function Z=tfsphere(u)
u(u<=0)=1e-8;
u3 = u.*u.*u;
Z = 3*((sin(u)-u.*cos(u))./u3);

31. exkk.m
function exkk(atom)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Effects of exafs in the resonance amplitude: f’ +if’’ %
% (model of 4 neighbors) %
% Input: atom = element symbol, e.g. ’Fe’ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dE = 2; % eV
E=0:dE:70000; % eV
NE = size(E,2);
M = fpfpp(atom,E);
nb = find(M(:,2)==min(M(:,2)));
Eb = M(nb,1);
K = E(nb:NE)-Eb; % kinetic energy of the photonelectron (eV)
co = 0.512315; % units [Angstrom^{-1}][eV^{-1/2}]
ke = co * sqrt(K);

ke(1) = 1e-6;
Nk = size(ke,2);
kmax = 5;
aux = exp(2) / kmax^2;
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Rke_ke = aux*(ke.*exp((-2/kmax)*ke));
pke = 2*(exp((-0.05)*ke)-1.1);
xy = 5*[0.5 0.5; -0.5 -0.5; 0.3 -0.3; -0.3 0.3]; % atomic coordinates in the xy plane (Angstrom)
Nat = size(xy,1);
for n = 1:Nat
rn = sqrt(xy(n,:)*xy(n,:)’);
chi(n,:) = Rke_ke.*sin((2*rn)*ke + pke)/(rn*rn);

end;
Chi = sum(chi,1);
fpp0 = M(:,3)’;

fpp = [fpp0(1:nb-1) fpp0(nb:NE).*(1+Chi)];
Dfpp = fpp - fpp0;
W = E(1:NE-1) + 0.5*dE;
W2 = W.*W;
xDfppdx = (E.*Dfpp)*(-2*dE/pi);
E2 = E.*E;
for nw=1:NE-1;
X = E2-W2(nw);
Dfp(nw)=sum(xDfppdx./X);

end;
nearedge = find(abs(E-(Eb+250))<1000);
X = 0.001*E(nearedge);
Xw = 0.001*W(nearedge);
fp0 = M(nearedge,2)’;
fpp0 = fpp0(nearedge);

fpp1 = fpp(nearedge);
fp1 = 0.5*(fp0+M(nearedge+1,2)’) + Dfp(nearedge);
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(X,fp0,’-.w’,X,fpp0,’-.w’,Xw,fp1,’b’,X,fpp1,’r’,’LineWidth’,2)
set(gca,’FontSize’,14,’Color’,[0.854902 0.701961 1],’LineWidth’,1)
ylabel(’resonance amplitude’,’FontSize’,18)
xlabel(’Energy (keV)’,’FontSize’,18)

axis tight
legend(’ f\prime isolated atom’,’ f\prime\prime isolated atom’,...

’ f\prime \chi(E) \neq 0’,’ f\prime\prime \chi(E) \neq 0’,4)
text(0.001*Eb,0,atom,’FontSize’,36,’Color’,[0.93 0.93 0.93],’FontWeight’,’bold’)

32. exlognormal.m
function M=exlognormal(a0,sn,sg,Npt)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SAXS of spherical particles with size distribution %
% comparison of Gaussian and log-normal distributiions %
% Input: %
% a0 = most probable radius (Angstrom) %
% sn = standard deviation in log scale of the log-normal distribution %
% sg = standard deviation of Gaussian distribution (in Angstrom) %
% Npt = number of points in the scattering curve %
% Output M = [Q; I; Ig]’; %
% | | | %
% | | saxs curve for a Gaussian distribution %
% | saxs curve for a log-normal distribution %
% reciprocal vector module %
% Usage: %
% >> M=exlognormal(100,.15,10,500); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Nmin = 5; % number of visible minima
Wg = 2*sg*sqrt(2*log(2));
agmin = a0-2*Wg;
if (agmin<0) agmin = 1; end;
agmax = a0+2*Wg;
Wn = 2*sn*sqrt(2*log(2));
b = a0*exp(sn*sn);

logb = log(b);
amin = exp(logb-Wn);
amax = exp(logb+Wn);
Wn = exp(logb+0.5*Wn)-exp(logb-0.5*Wn);
if (agmin<amin) amin = agmin; end;
if (agmax>amax) amax = agmax; end;
Qmax = Nmin * (5*pi/2) / (2*a0);
dx = (amax-amin)/100;

aux = 0.8*pi/Qmax;
if (dx > aux) dx = aux; end;
a = amin:dx:amax;
X = a-a0;
logX = log(a/b);
logX2 = logX.*logX;
auxn1 = -1/(2*sn*sn);
auxn2 = dx/(sn*sqrt(2*pi));
L = auxn2*(exp(auxn1*logX2)./a);
Ng = size(L,2);
dQ = Qmax/Npt;
Q = 0:dQ:Qmax;
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Q(1) = 1e-8;
aux = 4*pi/3;
for n = 1:Ng
aj = a(n);
vj = aux * aj * aj * aj;
u = aj*Q;
x = vj*tfsphere(u);

Y(n,:) = x.*x;
end;
I = L*Y;
v0 = aux * a0 * a0 * a0;
u = a0 * Q;
x = v0 * tfsphere(u);
I0 = (x.*x);
aux = -1.0 / (2*sg*sg);
G = exp(aux *(X.*X));
sumG = sum(G);
G = (1/sumG)*G;
Ig = G*Y;
I = I*(1/max(I));

I0 = I0*(1/max(I0));
Ig = Ig*(1/max(Ig));
res = 100*abs(sum(abs(log(Ig)-log(I)))/sum(log(I)));
x = -3*log(I(3)/I(2))/(Q(3)*Q(3)-Q(2)*Q(2));
x = sqrt(x);
y = -3*log(Ig(3)/Ig(2))/(Q(3)*Q(3)-Q(2)*Q(2));
y = sqrt(y);
a2 = a.*a;
vp2 = (4*pi/3) * (a2.*a);
vp2 = vp2.*vp2;

RgL = 0.6*sum(L.*vp2.*a2)/sum(L.*vp2);
RgL = sqrt(RgL);
RgG = 0.6*sum(G.*vp2.*a2)/sum(G.*vp2);
RgG = sqrt(RgG);
AsL = (4*pi)*sum(L.*a2);
AsG = (4*pi)*sum(G.*a2);
fprintf(’ log-normal: Rg = %3.1f(%3.1f)A, As = %5.3eA^2,fwhm=%3.1fA\n’,RgL,x,AsL,Wn)
fprintf(’ Gaussian: Rg = %3.1f(%3.1f)A, As = %5.3eA^2,fwhm=%3.1fA\n’,RgG,y,AsG,Wg)

fprintf(’ residue = %5.3f\n’,res)
Npt5 = 1:5:Npt;
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
semilogy(Q,I0,’y--’,’LineWidth’,2)
hold on
semilogy(Q(Npt5),I(Npt5),’-ro’,’MarkerFaceColor’,’w’,’MarkerSize’,4,’LineWidth’,1)
semilogy(Q,Ig,’k’,’LineWidth’,1)
hold off
axis([0 max(Q) 0.8*min(min([I; Ig])) 1.1])
set(gca,’FontSize’,14,’Color’,[0.854902 0.701961 1])
ylabel(’I(Q)/I(0)’,’FontSize’,18)
xlabel(’Q (A^{-1})’,’FontSize’,18)

legend(’ sphere’,’ log-normal’,’ Gaussian’,4)
M = [Q; I; Ig]’;
ha1=axes(’Position’,[.48 .532 .38 .37]);
hb=bar(0.1*a,L,1);
hold on;
plot(0.1*a,G,’k’,’LineWidth’,1);
hold off;
colormap cool
set(ha1,’FontSize’,12,’Color’,[0.97 0.97 0.97])
ylabel(’{\it p(a)}’)

xlabel(’radius, a (nm)’)
axis tight
legend(’ log-n’,’ gaus’)

function Z=tfsphere(u)
u3 = u.*u.*u;
Z = 3*((sin(u)-u.*cos(u))./u3);

33. exlysozyme.m
function exlysozyme
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Comparison of exact and approximate solutions for the SAXS curve %
% Files required: %
% - saxs2LYZ_0to180E20keV.dat (generated by routine saxs.c) %
% - saxs2LYZ_0to40E8keV.dat (generated by routine saxs.c) %
% - 2LYZ.ndu (generated by routine histogram.m) %
% also available at http://xraybook.if.usp.br/ %
% Secondary routines required: saxs.m and invftpofq.m %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M=saxs(’2LYZ.ndu’,2,80,0);
M(:,2)=M(:,2)*(1/max(M(:,2)));
Qmax = max(M(:,1));
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Pmin = min(M(:,2));
S=load(’saxs2LYZ_0to180E20keV.dat’);
smax = max(S(:,2));
Ns=find(S(:,1)<=Qmax);
ymin = S(max(Ns),2)/smax;
if (Pmin<ymin) ymin=Pmin; end;
X=M(:,1)*(0.25/pi);

fmQ = 193*asfQ(’N’,X)+613*asfQ(’C’,X)+185*asfQ(’O’,X)+10*asfQ(’S’,X);
fmQ = fmQ.*fmQ;
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
semilogy(M(:,1),M(:,2),’-bo’,’MarkerFaceColor’,’w’,’MarkerSize’,6,’LineWidth’,1)
hold on
semilogy(M(:,1),(fmQ.*M(:,2))/fmQ(1),’--b’,’LineWidth’,1.5)
semilogy(S(:,1),S(:,2)/smax,’k’,’LineWidth’,1.5)
hold off
axis([0 Qmax 0.9*ymin 1.1])

set(gca,’FontSize’,18,’Color’,[0.93 0.93 0.93],’YTick’,[0.001 0.01 0.1 1],’LineWidth’,1)
xlabel(’Q (A^{-1})’,’FontSize’,18)
ylabel(’P(Q) / P(0)’,’FontSize’,18)
legend(’f_m^2(0), small angle’,’f_m^2(Q)’,’exact solution’,1)
text(0.45,0.5,’2LYZ’,’FontSize’,36,’Color’,[0.855 0.702 1.0],’FontWeight’,’bold’)
N=invftpofq(’saxs2LYZ_0to40E8keV.dat’,0.75,52,1000);
H=load(’2LYZ.ndu’);
n = size(H,1);

du = H(3,1)-H(2,1);
Hsum = sum(H(2:n,2))*du;
Hmax = max(H(2:n,2));
hf2=figure(2); clf; set(hf2,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(H(2:n,1),H(2:n,2),’b’,’LineWidth’,1)
hold on
plot(N(:,1),Hsum*N(:,2),’--k’,’LineWidth’,1.5)
hold off
axis([0 H(n,1) [-0.02 1.02]*Hmax])
set(gca,’FontSize’,18,’Color’,[0.93 0.93 0.93],’LineWidth’,1)

xlabel(’u (A)’,’FontSize’,18)
ylabel(’N(u)du’,’FontSize’,18)
text(8,250,’ \leftarrow p(u)’,’Color’,’k’,’FontSize’,18)

34. exrdf.m
function M=exrdf(R0,d,N)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RDF according to the hard sphere model %
% numerical simulation based on random distribution of positions %
% Input: %
% R0 = volume radius of the distribution (Angstrom) %
% d = minimum separation distance between positions (Angstrom) %
% 2N = approximated number of initial positions in the volume %
% Output M = [U; g]’, g(u) in a n-by-2 array %
% Usage: M=exrdf(100,2,4000); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
time=clock; fprintf(’ %1.0fh%1.0fm%1.0fs\n’,time(4:6))
NN=N;
d2 = d*d;
R02 = R0*R0;
R = R0*(2*rand(N,3)-1);
R2 = sum(R.*R,2);

R = R(R2<=R02,:);
N = size(R,1);
for n=1:N
rn = R(n,:);
for m=n+1:N
rmn = R(m,:) - rn;
rmn2 = rmn * rmn’;
if (rmn2<d2)
R(m,:) = R(m,:) + 4*R0;

end;
end;

end;
R2 = sum(R.*R,2);
R = R(R2<=R02,:);
N = size(R,1);
V = (4*pi/3)*R0^3;
rho = N / V;

Umax = 2*R0;
du = 0.1;
U = 0:du:Umax;
U(1) = 1e-8;
Nu = size(U,2);
p = zeros(1,Nu);
R2 = sum(R.*R,2);
Mj = find(R2<0.25*R02); % 0.25 => 50% of R0 or 0.49 => 70% of R0

Nj = size(Mj,1);
for nn=1:Nj

n = Mj(nn);
rn = R(n,:);
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for m=1:n-1
rmn = R(m,:) - rn;
k = fix(sqrt(rmn * rmn’)/du)+1;
p(k) = p(k) + 1;

end;
for m=n+1:N
rmn = R(m,:) - rn;
k = fix(sqrt(rmn * rmn’)/du)+1;
p(k) = p(k) + 1;

end;
end;
g = p./(4*pi*rho*Nj*du*(U.*U));
M = [U; g]’;
fprintf(’ N=%1.0f, n=%1.0f, Nj=%1.0f, rho=%10.8f\n’,NN,N,Nj,rho)
time=clock; fprintf(’ %1.0fh%1.0fm%1.0fs\n’,time(4:6))

35. exrdffitting.m
function exrdffitting(a,b)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Nf x Ni curve adjusted by Nf = Nmax*[1-exp(-alpha*Ni)] %
% Input: %
% a,b = alpha values for the two data sets given below %
% Usage: exrdffitting(0.7e-5,2.1e-5) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Data sets from routine exrdfd.m with d = 2 and 3, e.g. exrdf(100,d,N); %

N=[ 2 4 8 10 20 40 60 80 100 120 200]*1000;
n(1,:)=[1013 2047 4098 5171 10065 19451 27886 35914 43662 50446 74620]; % d = 2
n(2,:)=[1028 2019 3997 4864 9219 16403 22345 26913 31125 34530 44749]; % d = 3
%-------------------------------------------------------------------------%
R0 = 100;
V = (4*pi/3) * R0^3;
d = [2 3];
vp = (pi/6)*(d.*d.*d);
N = N * (pi/6);
X=0:1000:110000;
na = 1/a;
Ya = na*(1-exp(-a*X));
nb = 1/b;

Yb = nb*(1-exp(-b*X));
fprintf(’ rho(2)=%5.3f/v_p e rho(3)=%5.3f/v_p\n’,(na/V)*vp(1),(nb/V)*vp(2))

hf1 = figure(1);
clf
set(hf1,’InvertHardcopy’,’off’,’Color’,’w’)
plot(N,n(1,:),’bo’,N,n(2,:),’ks’,N,N,’--r’,’MarkerFaceColor’,’w’,’MarkerSize’,8,’LineWidth’,1.5)
legend(’ d = 2A’,’ d = 3A’,’ reference: N_f = N_i’,2)
hold on
plot(X,Ya,’b’,X,Yb,’k’,’LineWidth’,2)
hold off
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)

axis tight
xlabel(’N_i’,’FontSize’,18)
ylabel(’N_f’,’FontSize’,18)

36. exrdfplot.m
function exrdfplot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot RDFs generated by the hard sphere model %
% Required file: exrdfplot.dat %
% File generated by routine exrdf.m (see text for details), and %
% available at http://fap.if.usp.br/~morelhao/xrayphysicsbook.html %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
S = load(’exrdfplot.dat’)’;
U1 = S(1,:); g1 = S(2,:); % <-- exrdf(100,2,2e+5) with R’ = 50% of R0
U2 = S(3,:); g2 = S(4,:); % <-- exrdf(100,3,2e+5) with R’ = 50% of R0
U3 = S(5,:); g3 = S(6,:); % <-- exrdf(100,2,2e+5) with R’ = 70% of R0
hf1 = figure(1);
clf
set(hf1,’InvertHardcopy’,’off’,’Color’,’w’)
plot(U2,g2,’-ks’,’MarkerFaceColor’,’w’,’MarkerSize’,6,’LineWidth’,1.5)
hold on
plot(U1,g1,’-bo’,’MarkerFaceColor’,’w’,’MarkerSize’,6,’LineWidth’,1.5)
hold off
set(gca,’FontSize’,14,’Color’,[.87 .92 .98],’LineWidth’,1)
axis([0 10 0 1.39])
xlabel(’u (A)’,’FontSize’,18)

ylabel(’g(u)’,’FontSize’,18)
legend(’ d = 3A’,’ d = 2A’)
grid
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ha1=axes(’Position’,[.481 .24 .38 .38]);
plot(U2,g2,’k’,U1,g1,’b’,’LineWidth’,2);
hold on
plot(U3,g3,’--b’,’LineWidth’,1)
hold off
set(ha1,’FontSize’,16,’Color’,[.97 .97 .97])
ylabel(’g(u)’,’FontSize’,16)
xlabel(’u (A)’,’FontSize’,16)

axis([0 150 0 1.39])
text(50,1.1,’ \downarrow effect of finite ensemble’,’FontSize’,12)
grid

37. exrlp3Dview.m
function exrlp3Dview(L,T,vlevel,disc)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Generates 3D visualization of reciprocal lattice nodes in thin crystal %
% with rectangular or circular area %
% Input: %
% L = lateral dimension (nm) %
% T = thickness (nm) %
% vlevel = isosurface level value, between 0 and 1 %
% disc = 1 for crystals with circular area, otherwise rectangular area %
% Usage: exrlp3Dview(200,100,0.038,1) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Nc = 6;
dQ = 1 / 2^Nc;
QrangeXY = (-1:dQ:1)*(40/L);
QrangeZ = (-1:dQ:1)*(30/T);
[Qx,Qy,Qz]=meshgrid(QrangeXY, QrangeXY, QrangeZ);
Qx(Qx==0)=1e-8;

Qy(Qy==0)=1e-8;
Qz(Qz==0)=1e-8;
if (disc==1)
R=1i*L/2;
T=T/2;
Nq = size(Qx,1);
dphi = pi/500;
phi=0:dphi:2*pi-dphi;
cphi=cos(phi);
cphi(cphi==0)=1e-8;
Qxy = sqrt(Qx(:,:,1).*Qx(:,:,1)+Qy(:,:,1).*Qy(:,:,1));
Wxy = zeros(Nq);

for n=1:Nq
for m=1:Nq
a = Qxy(n,m)*cphi;
x = a*R;
x = exp(x).*(1-x)-1;
x = x ./ (a.*a);
Wxy(n,m) = sum(x)*dphi;

end;
end;
Wxy = (1/(pi*R*conj(R)))*Wxy;
W = cat(3,Wxy,Wxy);
for n=1:Nc, W = cat(3,W,W); end;
W = cat(3,W,Wxy);

W = W.*sin(T*Qz)./(T*Qz);
else
L=L/2;
T=T/2;
W = sin(L*Qx)./(L*Qx);
W = W.*sin(L*Qy)./(L*Qy);

W = W.*sin(T*Qz)./(T*Qz);
end;
W = sqrt(W.*conj(W));
hf1 = figure(1);
clf
set(hf1,’InvertHardcopy’,’off’,’Color’,’w’)
P = patch(isosurface(Qx,Qy,Qz,W,vlevel),’FaceColor’,’red’,’EdgeColor’,’none’);
isonormals(Qx,Qy,Qz,W,P)
view(3)

daspect([1 1 1])
axis tight
camlight
camlight(-80,-10)
lighting phong
set(gca,’FontSize’,14,’Color’,[0.97 0.97 0.97],’Box’,’on’,’LineWidth’,1,’FontName’,’Arial’)
grid
view(-30,25)

xlabel(’Q_X (nm^{-1})’,’FontSize’,18)
ylabel(’Q_Y (nm^{-1})’,’FontSize’,18)
zlabel(’Q_Z (nm^{-1})’,’FontSize’,18)
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38. exsgc.m
function M=exsgc(atom,Emin,Emax,Np)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Incoherent scattering cross-section (Compton), sg_C %
% comparison of analytical x numerical solutions %
% Input: %
% atom = element symbol, from ’H’ to ’Cs’ (Z from 1 to 55) %
% Emin,Emax = energy range from Emin to Emax (eV or keV) %
% Np = number of points in the sg_C x E curve %
% Output M = [E sg1 sg2] %
% | | | %
% | | cross-section (barn), analytical solution %
% | cross-section (barn), numerical solution %
% energy (keV) %
% Secondary routines required: csfQ.m and sgcompton.m %
% Usage: %
% >> M=exsgc(’Ca’,1,20,50); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Emin = abs(Emin); Emax = abs(Emax);
if (Emax < Emin), E = Emax; Emax = Emin; Emin = E; end;
if (Emin>500), Emin = 0.001*Emin; Emax = 0.001*Emax; end;
if (Emin<1), Emin = 1; end;
if (Emax>25), Emax = 25; end;
if (Np<2), Np=2; end;
dE = (Emax-Emin)/(Np-1);

E = Emin:dE:Emax;
NE = size(E,2);
rad = pi/180;
re = 2.817940285e-15; % (m)
hc = 12.3985; % (keV.A)
invWL = E/hc;
dtth = 0.2; % (deg)
TTH = 0:dtth:180; % (deg)
X = TTH * rad;
dx = dtth * rad;

aux1 = pi * re * re * dx * 1e+28;
SinG = sin(X);
PSinG = (2-SinG.*SinG).*SinG;
for nn = 1:NE

S = csfQ(atom,invWL(nn)*sin(0.5*X));
M(nn,1) = E(nn);
M(nn,2) = aux1*sum(PSinG.*(S(:,2)’));

end;
S = sgcompton(atom,E);
M(:,3) = S(:,2);
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(E,M(:,3),’k’,’LineWidth’,2)
hold on
plot(E,M(:,2),’bo’,’MarkerFaceColor’,’w’,’MarkerSize’,6,’LineWidth’,1.5)
hold off
set(gca,’FontSize’,14,’Color’,[0.854902 0.701961 1],’LineWidth’,1)
ylabel(’\sigma_C (barn)’,’FontSize’,18)
xlabel(’Energy (keV)’,’FontSize’,18)
axis tight; grid

legend(’ analytical’,’ numerical’,4)
n = round(0.5*NE);
text(E(n),M(n,3),atom,’FontSize’,36,’Color’,[0.98 0.98 0.98],’FontWeight’,’bold’)

39. exsgr.m
function M=exsgr(atom,Emin,Emax,Np)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Coherent scattering cross-section (Rayleigh), sg_R %
% comparison of analytical x numerical solutions %
% Input: %
% atom = element symbol, e.g. ’O’ %
% Emin,Emax = energy range from Emin to Emax (eV or keV) %
% Np = number of points in the sg_R x E curve %
% Output M = [E sg1 sg2] %
% | | | %
% | | cross-section (barn), analytical solution %
% | cross-section (barn), numerical solution %
% energy (keV) %
% Secondary routines required: asfQ.m and sgrayleigh.m %
% Usage: %
% >> M=exsgr(’O’,2,20,50); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Emin = abs(Emin); Emax = abs(Emax);
if (Emax < Emin) E = Emax; Emax = Emin; Emin = E; end;
if (Emin>500) Emin = 0.001*Emin; Emax = 0.001*Emax; end;
if (Emin<2) Emin = 2; end;
if (Emax>70) Emax = 70; end;
if (Np<2) Np=2; end;
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dE = (Emax-Emin)/(Np-1);
E = Emin:dE:Emax;
NE = size(E,2);
rad = pi/180;
re = 2.817940285e-15; % (m)
hc = 12.3985; % (keV.A)
invWL = E/hc;
dtth = 0.2; % (deg)
TTH = 0:dtth:180; % (deg)
X = TTH * rad;
dx = dtth * rad;
aux1 = pi * re * re * dx * 1e+28;

Ntth = size(X,2);
SinG = sin(X);
PSinG = (2-SinG.*SinG).*SinG;
for nn = 1:NE

f = asfQ(atom,invWL(nn)*sin(0.5*X));
f = f.*f;
M(nn,1) = E(nn);
M(nn,2) = aux1*sum(PSinG.*f);

end;
S = sgrayleigh(atom,E);
M(:,3) = S(:,2);
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(E,M(:,3),’k’,’LineWidth’,2)
hold on
plot(E,M(:,2),’bo’,’MarkerFaceColor’,’w’,’MarkerSize’,6,’LineWidth’,1.5)
hold off
set(gca,’FontSize’,14,’Color’,[0.854902 0.701961 1],’LineWidth’,1)
ylabel(’\sigma_R (barn)’,’FontSize’,18)
xlabel(’Energy (keV)’,’FontSize’,18)
axis tight; grid

legend(’ analytical’,’ numerical’,1)
n = round(0.5*NE);
text(E(n),M(n,3),atom,’FontSize’,36,’Color’,[0.98 0.98 0.98],’FontWeight’,’bold’)

40. exshell.m
function S=exshell(a,b,rhoa,rhob)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Pair distance distribution function (PDDF) in %
% particles like hollow sphere %
% Input: %
% a and b, external and internal radius (Angstrom) %
% rhoa: density for b < r < a %
% rhob: density for 0 < r < b %
% Output S = [U; pnu; p; ph]’; %
% | | | | %
% | | | PDDF via histogram %
% | | PDDF via inverse FT %
% | PDDF via numerical integral %
% internal distances (Angstrom) %
% Usage: %
% >> S = exshell(500,375,2,-1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (b==a) b = 0.5 * a; elseif (b>a) c = a; a = b; b = c; end;
M=PdeQ(a,b,rhoa,rhob,5);
Q = M(1,:);
P0 = M(2,:);
dQ = Q(3)-Q(2);
Umax = 2.4*a;
du = Umax/1000;
U = 0:du:Umax;
U(1) = 1e-6;
Nu = size(U,2);

A = (dQ/(2*pi*pi))*(P0.*Q);
for n=1:Nu

u = U(n);
p(n) = sum(A.*sin(Q*u))*u;

end;
pnu=pdeunum(U,a,b,rhoa,rhob);
Nat = 4000;
rand(’state’,sum(100*clock));
X = 2*rand(Nat,3)-1;
X2 = sum(X.*X,2);
N = find(X2<=1);
R = X(N,:);
r = sqrt(X2(N));
N = size(R,1);
R = a*R;
ps = rhoa*ones(1,N);

ps(r<=b/a)=rhob;
ph=zeros(1,Nu);
for n=1:N
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for m=n+1:N
D = R(m,:)-R(n,:);
d = sqrt(D*D’);
k = floor(d/du)+1;
ph(k) = ph(k)+ps(m)*ps(n);

end;
end;
ph = 2*ph;
Nmax = find(pnu==max(pnu));
pnumax = sum(pnu(Nmax-10:Nmax+10))/20;
pmax = sum(p(Nmax-10:Nmax+10))/20;
phmax = sum(ph(Nmax-10:Nmax+10))/20;
pnu = pnu/pnumax;
p = p/pmax;

ph = ph/phmax;
N = 1:7:Nu;
Nh = 1:5:Nu;
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
bar(U(Nh),ph(Nh),’FaceColor’,[.87 .49 0],’EdgeColor’,’w’)
hold on
plot(U(N),p(N),’-ro’,’MarkerFaceColor’,’w’,’MarkerSize’,4,’LineWidth’,1)
plot(U,pnu,’k’,’LineWidth’,1)
hold off
set(gca,’FontSize’,14,’Color’,[1 .97 .92])

axis tight
ylabel(’p(u)’,’FontSize’,18)
xlabel(’u (A)’,’FontSize’,18)
legend(’ hist.’,’ inv. FT’,’ num. vl.’)
ha1=axes(’Position’,[.14 .532 .3 .37]);
P0 = P0/max(P0);
semilogy(Q,P0,’r’,’LineWidth’,2)
set(ha1,’FontSize’,14,’Color’,[0.9 0.9 1])
ylabel(’P(Q)’,’FontSize’,14)

xlabel(’Q (A^{-1})’,’FontSize’,14)
axis([Q(1) max(Q) 0.9e-5 1.1])
S = [U; pnu; p; ph]’;

function M=PdeQ(a,b,rhoa,rhob,Nmin)
Qmax = Nmin * (5*pi/2) / (2*a);
dQ = Qmax/2000;
Q = 0:dQ:Qmax;
Q(1) = 1e-8;
Va = 4*pi*a*a*a/3;

Vb = 4*pi*b*b*b/3;
F = (Va*rhoa) * tfsphere(Q*a) - (Vb*(rhoa-rhob)) * tfsphere(Q*b);
P = F.*conj(F);
M = [Q; P];

function Z=tfsphere(u)
u3 = u.*u.*u;
Z = 3*((sin(u)-u.*cos(u))./u3);

function M=pdeunum(U,a,b,rhoa,rhob)
Rmax = 1.1*a;
dr = Rmax/1000;
R = 0:dr:Rmax;
Nr = size(R,2);
invw = 10 / dr;
Y = rhoef(R,a,b,rhoa,rhob,invw);
Nu = size(U,2);

rhoRdr = (pi*dr)*(R.*Y);
for n=1:Nu

u = U(n);
for m=1:Nr
r = R(m);
z1 = (r-u); z1 = z1*z1;
z2 = (r+u); z2 = z2*z2;
dz = (z2-z1) / 400;
Z = z1:dz:z2;
Yz = rhoef(sqrt(Z),a,b,rhoa,rhob,invw);
A(m) = dz * sum(Yz);

end;
C(n) = sum(rhoRdr.*A)/u;

end;
M = C.*U.*U;

function Y = rhoef(R,a,b,rhoa,rhob,invw)
Y = (1./(1 + exp(invw*(R - a)))).*((rhoa-rhob)./(1 + exp(invw*(b - R)))+rhob);
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41. exsphere.m
function M=exsphere
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Scattering by uniform sphere %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
uhalf = 1.8149;
alpha = log(2)/uhalf^2;
U = 0:0.01:20; U(1) = 1e-6;
Y = tfsphere(U);

Y = Y.*Y;
Z = exp(-alpha*(U.*U));
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(U,Z,’r--’,U,Y,’b’,[1.815],[0.5],’ko’,’LineWidth’,2,’MarkerFaceColor’,’w’,’MarkerSize’,9)
set(gca,’FontSize’,14,’Color’,[0.854902 0.701961 1],’LineWidth’,1)
xlabel(’Qa’,’FontSize’,18)

ylabel(’I(Qa) / I(0)’,’FontSize’,18)
text(0.35,0.505,’ Qa = 1.815 \rightarrow’,’FontSize’,18)
axis([0 5 0 1.01])
ha2=axes(’Position’,[.48 .48 .4 .4]);
plot(U,log10(Z),’r--’,U,log10(Y),’b’,’LineWidth’,1)
set(ha2,’FontSize’,14,’Color’,[0.9 0.9 1])

xlabel(’Qa’)
ylabel(’log(I)’)
axis([0 20 -5 0.02])
M = [U; Y; Z]’;

function Z=tfsphere(u);
u3 = u.*u.*u;
Z = 3*((sin(u)-u.*cos(u))./u3);

42. exwaterccd.m
function exwaterccd(E,Qf,N)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% X-ray diffraction of liquid water on a CCD area detector %
% Input: %
% E = X-ray energy (keV) %
% Qf = rec. vector module (1/Angstrom) limited by sample-ccd distance %
% N > 999, diffraction pattern with statistic of N counts %
% Secondary routines required: exwaterSofQ.m %
% Usage: %
% >> exwaterccd(12,4,5e+6) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A = 300; % square screen detector of lateral size 2A (mm)
pixel = 5; % pixel size (mm)
if (E>500) E = 0.001*E; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Qfmax = E*sin(0.5*atan(30/5)); %---> % to limit Qf so that the minimum %
if (Qf>Qfmax) Qf = Qfmax; end; % sample-ccd distance is D = 5 cm %
M = exwaterSofQ(Qf,0)’; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Q = M(1,:);
PS = M(2,:);
D = A / tan(2*asin(Qf/E));

X = 0:pixel:A;
Y = -A:pixel:0;
Nx = size(X,2);
twopi_wl = 2*pi*E/12.3985;
for n=1:Nx

for m=1:Nx
v = [X(n) Y(m) D];
v = v / sqrt(v*v’);
cg = v(3);
v = v - [0 0 1];
q = twopi_wl*sqrt(v*v’);

DQ = abs(Q-q);
nn=find(DQ==min(DQ));
I(m,n) = PS(nn(1))* cg*cg*cg; % to account for effective pixel size

end;
end;
beye=zeros(Nx);
for n=1:Nx
beye(n,Nx+1-n) = 1;

end;
I = [I*beye I];

I = [I; beye*I];
if (N>999) I = photonstatistic(I,N); end;
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
set(gca,’FontSize’,14,’Color’,’k’,’LineWidth’,1)
imagesc([-A A],[-A A],I)
blackbluemap = [zeros(1,64) 0:1/63:1; zeros(1,64) 0:1/63:1; 0:1/63:1 ones(1,64)]’;
colormap(blackbluemap)
axis image
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view(0,90)
colorbar(’YColor’,’k’,’FontSize’,14,’Location’,’East’,’LineWidth’,1)

xlabel(’X (mm)’,’FontSize’,18)
ylabel(’Y (mm)’,’FontSize’,18)
text(0,0,200,’photons per pixel’,’FontSize’,16,’Rotation’,90)

43. exwaterSofQ.m
function M=exwaterSofQ(Qf,prn)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Interference function S(Q) from published RDF of water %
% Input: %
% Qf = rec. vector module (1/Angstrom), upper limit of S(Q) integral %
% prn = 1 for graphic output (figure window) %
% Output M=[Q; I]’; %
% | | %
% | normalized intensity, I(Q)/NI_{TH} = P(Q)S(Q) %
% reciprocal vector module (1/Angstrom) %
% Secondary routines required: asfQ.m %
% Required files: gofuwater.dat %
% File available at http://xraybook.if.usp.br/ %
% Usage: %
% >> M=exwaterSofQ(20,1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
GofU=load(’gofuwater.dat’)’;
U = GofU(1,:);
g = GofU(2,:);
clear GofU;
g(g<0)=0;
U(1) = 1e-8;
du = U(3)-U(2);
dq = Qf/1000;
Q = 0:dq:Qf;
Q(1) = 1e-8;
Nq = size(Q,2);
alpha = max(U)^3 / (3*sum(g.*U.*U)*du);

rho = 1e-24 * 6.022e+23 / 18 / alpha;
Gudu = (4*pi*rho*du)*(g-1).*U;

for n=1:Nq
q = Q(n);
S(n) = 1 + sum(Gudu.*sin(q*U))/q;

end;
S(S<0)=0;

f = asfQ(’O2-.’,(0.25/pi)*Q);
f2 = f.*f;
if (prn==1)
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(Q,S,’b’,’LineWidth’,2)
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
hold on
plot(Q,f2/f2(1),’--k’,’LineWidth’,1)
hold off
xlabel(’Q (A^{-1})’,’FontSize’,18)
ylabel(’S(Q)’,’FontSize’,18)
text(2.5,.4,’ \leftarrow P(Q)/P(0)’,’FontSize’,14,’Color’,’k’)
axis([0 Qf 0 1.02*max(S)])

ha1=axes(’Position’,[.481 .282 .38 .38]);
plot(U,g,’y’,’LineWidth’,2);
set(ha1,’FontSize’,14,’Color’,[.85 .7 1])
set(ha1,’XTick’,[2 3 4 5 6 7 8 9])
ylabel(’g(u)’,’FontSize’,14)
xlabel(’u (A)’,’FontSize’,14)
axis([1.5 9.5 -.05 2.95])
text(5,2,’H_2O’,’FontSize’,36,’Color’,[.93 .93 .93],’FontWeight’,’bold’)

grid
end;
M=[Q; f2.*S]’;

44. fpfpp.m
function M=fpfpp(A,EE)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Linear interpolation of tabuled values of %
% atomic resonance amplitude, f’ and f" %
% Input: %
% A = element symbol, e.g. ’Se’ %
% EE = energy values (m-by-n array) (eV) %
% Output M = [E f’ f" sga] %
% | | | | %
% | | | absorption cross-section (barn) %
% | | imaginary term (electron number) %
% | real term (electron number) %
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% energy (eV) %
% Routine available for download at http://xraybook.if.usp.br/ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
s=size(EE); NofE=s(1)*s(2);
if (EE(NofE)<500), EE = 1000*EE; end;
aux = 2000 * 2.818 * 12398.5;
W = dispersion(atomnm(A));
NofW = size(W,1);
if (NofW == 1)
disp([’ Element ’ A ’ unknown!!!’]);
M = [0 0 0];
return;

end;
EE(EE<=0) = 0.1;
M = zeros(NofE,4);
for ne = 1:NofE
E = EE(ne);
nw = 1; ctr = 0;
E2 = 0; fa1 = W(nw,2); fa2 = W(nw,3);
while (nw <= NofW)
E1 = E2; x = fa1; y = fa2;
E2 = W(nw,1); fa1 = W(nw,2); fa2 = W(nw,3);
if (E2 > E)
fa1 = (fa1 - x) * (E - E1) / (E2 - E1) + x;
fa2 = (fa2 - y) * (E - E1) / (E2 - E1) + y;
nw = NofW; ctr = 1;
end;
nw = nw + 1;

end;
if (ctr==0), fa1 = W(nw-1,2); fa2 = W(nw-1,3); end;

M(ne,:) = [E fa1 fa2 aux*fa2/E];
end;

function nm=atomnm(A)
% This function is available at the book’s webpage

function Z=dispersion(nm)
% This function is available at the book’s webpage

45. fthofu.m
function R=fthofu(N,d,cyl,fnum,prn)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Fourier Transform of function h(u) for a volumetric ensemble of %
% particles with anysotric correlations %
% Input: %
% N, the ensemble has nearly (2N+1)x(2N+1)x7 particles %
% d, degree of disorder along the X direction, Da/a = 1 + d*(2*rand-1) %
% cyl = 1 for cylindrical volume, otherwise rectangular volume %
% fnum = 1, 2,... (ID number of the output file), %
% 0 to suppress FT calculation and file saving %
% prn = 0 to suppress graphic output %
% Output R(n,:) = [X Y Z] 3D coordinates of the particles %
% file with n-by-n array of FT{Cq(u)} values on detector pixels %
% Usage: %
% >> R = fthofu(2,0.2,1,1,1,1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a0 = 10; % average particle-to-particle distance (Angstrom)
dy = 0.1*d;
N = round(abs(N));
NN = 2*N + 1;
X = zeros(NN,NN,NN);
Y = zeros(NN,NN,NN);
Z = zeros(NN,NN,NN);
X(:,:,1) = d*(2*rand(NN)-1);
Y(:,:,1) = dy*(2*rand(NN)-1);

Z(:,:,1) = zeros(NN);
h = 0;
if (N>0)
X(:,:,2) = X(:,:,1) + 1 + d*(2*rand(NN)-1);
X(:,:,3) = X(:,:,1) - 1 + d*(2*rand(NN)-1);
Y(:,:,2) = Y(:,:,1) + 1 + dy*(2*rand(NN)-1);
Y(:,:,3) = Y(:,:,1) - 1 + dy*(2*rand(NN)-1);
Z(:,:,2) = Z(:,:,1) + 1;
Z(:,:,3) = Z(:,:,1) - 1;

h = [0 1 -1];
if (N>1)

for n = 2:N
X(:,:,2*n) = X(:,:,2*(n-1)) + 1 + d*(2*rand(NN)-1);
X(:,:,2*n+1) = X(:,:,2*(n-1)+1) - 1 + d*(2*rand(NN)-1);
Y(:,:,2*n) = Y(:,:,2*(n-1)) + 1 + dy*(2*rand(NN)-1);
Y(:,:,2*n+1) = Y(:,:,2*(n-1)+1) - 1 + dy*(2*rand(NN)-1);
Z(:,:,2*n) = Z(:,:,2*(n-1)) + 1;
Z(:,:,2*n+1) = Z(:,:,2*(n-1)+1) - 1;
h(2*n:2*n+1) = [n -n];

end;
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end;
end;
N0 = N+1;
nn = 0;
for n=1:NN
for m=1:NN
for p=1:NN
nn = nn + 1;
R(nn,:) = [X(N0-h(p),N0+h(m),n) Y(N0-h(p),N0-h(n),m) Z(N0+h(n),N0+h(m),p)];

end;
end;

end;
clear X Y Z;
R = a0*R;
if (cyl == 1)
raio2 = max(max(R));
raio2 = raio2*raio2;

R = R(sum(R.*R,2)<raio2,:);
end;
R = R(R(:,3).*R(:,3)<1000,:);
if (fnum~=0)
Nr = size(R,1);
twopi_wl = 2*pi/1; % wavelength of 1 Angstrom (X-ray of 12.4 keV)
A = 150; % square screen detector of lateral size 2A (mm)
D = 600; % sample-detector distance (mm)
pixel = 0.5; % pixel size (mm)
X = -A:pixel:A;
Y = A:-pixel:-A;
Nx = size(X,2);

for n=1:Nx XX(n,:)=X; YY(:,n)=Y’; end;
for n=1:Nx
for m=1:Nx
S = [XX(1,n) YY(m,1) D];
S = S / sqrt(S*S’) - [0 0 1];
Q(m,n,:) = twopi_wl*S;

end;
end;

time=clock; fprintf(’ %2.0fh%2.0fm%2.0fs\n’,time(4:6))
C = zeros(size(Q,1),size(Q,2));
for n=1:Nr
for m=n+1:Nr
r = R(m,:)-R(n,:);
C = C + cos(Q(:,:,1)*r(1)+Q(:,:,2)*r(2)+Q(:,:,3)*r(3));

end;
end;

C = (2/Nr)*C+1;
time=clock; fprintf(’ %2.0fh%2.0fm%2.0fs\n’,time(4:6))
if (prn~=0)
surf(XX,YY,log(C))
shading interp
axis image
set(gcf,’InvertHardcopy’,’off’,’Color’,’w’)
set(gca,’ZTick’,[],’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
xlabel(’ X (mm)’,’FontSize’,18)
ylabel(’ Y (mm)’,’FontSize’,18)
zlabel(’log(I)’,’FontSize’,18)
view(-14,30)

end;
if (cyl == 1)

save([’fthofu_N’ num2str(N) ’d’ num2str(100*d) ’sphere’ num2str(fnum) ’.dat’],’C’,’-ascii’);
else

save([’fthofu_N’ num2str(N) ’d’ num2str(100*d) ’square’ num2str(fnum) ’.dat’],’C’,’-ascii’);
end;

end;

46. fthofuplotmap.m
function fthofuplotmap
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Surface map of TF{h(u)} as a function of Qx and Qy %
% Required file: fthofu_N8d20sphere1to20.dat %
% File generated by routine fthofu.m, %
% and available at http://xraybook.if.usp.br/ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
I = load(’fthofu_N8d20sphere1to20.dat’); I = I/max(max(I));
A = 150; pixel = 0.5; D=600; % same values used in routine fthofu.m
Q = 20*sin(0.5*atan((-A:pixel:A)/D)); % Qmax normalized by a0/(2*pi)
for n=1:size(Q,2)
Qx(n,:) = Q;
Qy(:,n) = -Q’;

end;
hf1 = figure(1);
clf
set(hf1,’InvertHardcopy’,’off’,’Color’,’w’)
surf(Qx,Qy,log10(I))
shading interp
axis image
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view(-14,30)
set(gca,’Position’,[0.05 0.07 0.85 0.9],’LineWidth’,1)
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93])
set(gca,’ZTick’,[],’DataAspectRatio’,[0.03 0.03 0.4],’YTick’,[-2 -1 0 1 2],’XTick’,[-2 -1 0 1 2])
colormap(jet)
colorbar(’XColor’,’k’,’FontSize’,14,’Location’,’East’,’LineWidth’,1)

xlabel(’n_x’,’FontSize’,18)
ylabel(’n_y’,’FontSize’,18)
text(2,0,0,’Log(FT\{h(u)\})’,’FontSize’,16,’Rotation’,90)

47. fthofuR.m
function fthofuR(N,d,cyl)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3D plot of the ensemble of particles generated by routine fthofu.m %
% Secondary routines required: fthofu.m %
% Input parameters N, d, and cyl defined in the required routine %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a0 = 10; % same value used in routine fthofu.m
R = (1/a0)*fthofu(N,d,cyl,0,0);
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
subplot(1,2,2)
plot3(R(:,1),R(:,2),R(:,3),’ro’,’MarkerFaceColor’,’y’,’MarkerSize’,3,’LineWidth’,.6)
axis image
axis([-9 9 -9 9 -7 7])
view(0,60)
set(gca,’FontSize’,14,’Color’,’w’,’LineWidth’,1)
set(gca,’ZTick’,[],’YTick’,[])
xlabel(’X/a’,’FontSize’,14)
hold on
plot3([-8 -6],[-8 -8],[-6 -6],’r’,’LineWidth’,2)
text(-6,-8,-6,’x’)
plot3([-8 -8],[-8 -6],[-6 -6],’b’,’LineWidth’,2)
text(-8,-6,-6,’y’)

plot3([-8 -8],[-8 -8],[-6 -4],’k’,’LineWidth’,2)
text(-8,-8,-4,’z’)
hold off
subplot(1,2,1)
plot3(R(:,1),R(:,2),R(:,3),’ro’,’MarkerFaceColor’,’y’,’MarkerSize’,3,’LineWidth’,.6)
axis image
axis([-9 9 -9 9 -7 7])
view(90,60)
set(gca,’FontSize’,14,’Color’,’w’,’LineWidth’,1)
set(gca,’XTick’,[],’ZTick’,[])
ylabel(’Y/a’,’FontSize’,14)
hold on
plot3([6 8],[-8 -8],[-6 -6],’r’,’LineWidth’,2)
text(8,-8,-6,’x’)
plot3([6 6],[-8 -6],[-6 -6],’b’,’LineWidth’,2)
text(6,-6,-6,’y’)

plot3([6 6],[-8 -8],[-6 -4],’k’,’LineWidth’,2)
text(6,-8,-4,’z’)
hold off

48. goldnano.m
function M=goldnano(D,desord)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Histogram of interatomic distances, or PDDF, in %
% gold nanoparticles with crystalline structure %
% Input: %
% D = particle diameter (Angstrom) %
% desord = atomic disorder in percentege (%) of the distance 2.88 A %
% Output M = [U; p]’; %
% | | %
% | histogram (number of occurrences between u and u+du) %
% interatomic distances (Angstrom) %
% Usage: M = goldnano(20,5); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (D>100), disp(’ Warning!!! Delay time can be very long for D > 100 Angstroms’); end;
a=4.0782; % lattice parameter (Angstrom) of gold fcc crystals
if (D<a), D = a; end;
N = fix(D/a)+1;
Nc = 0;
for m=0:N-1
for n=0:N-1
for p=0:N-1
Nc = Nc + 1;
R(Nc,:) = [m n p]; % lattice points

end;



250 B MatLab Routines

end;
end;
if (Nc==0), Nc = 1; R(1,:) = [0 0 0]; end;
R=a*R;
X = a*[0 0 0; .5 .5 0; .5 0 .5; 0 .5 .5]; % atomic coordinates regarding each lattice point

Nx = size(X,1);
for n=2:Nx

for m=1:Nc
R((n-1)*Nc+m,:) = R(m,:) + X(n,:);

end;
end;
Nat = size(R,1);
Cm = sum(R(:,1))/Nat;
X = R - Cm*ones(Nat,3);
X2 = sum(X.*X,2);
NN = X2<0.25*D*D;
R = X(NN,:);
Nat = size(R,1);
R = R + (0.01*desord*a/sqrt(2))*(1-2*rand(Nat,3));

c0 = fix(clock);
hora = [num2str(c0(4)) ’:’ num2str(c0(5)) ’:’ num2str(c0(6))];
disp([’ goldnano started at ’ hora])

Umax=1.02*D;
du = 0.01;
U = 0:du:Umax;
Nu = size(U,2);
p=zeros(1,Nu);
for n=1:Nat
for m=n+1:Nat
r = R(n,:)-R(m,:);
k=fix(sqrt(r*r’)/du)+1;
p(k) = p(k) + 1;

end;
end;

p = 2*p;
p(1) = Nat;
plot(U,p,’r’,’LineWidth’,2)
M = [U; p]’;
c1 = fix(clock);
hora = [num2str(c1(4)) ’:’ num2str(c1(5)) ’:’ num2str(c1(6))];
disp([’ goldnano ended at ’ hora])
Dc = c1-c0;
if (Dc(6)<0), Dc(6)=60+Dc(6); Dc(5)=Dc(5)-1; end;
if (Dc(5)<0), Dc(5)=60+Dc(5); Dc(4)=Dc(4)-1; end;

if (Dc(4)<0), Dc(4)=24+Dc(4); end;
hora = [num2str(Dc(4)) ’:’ num2str(Dc(5)) ’:’ num2str(Dc(6))];
disp([’ Time delay ’ hora ’ (h:m:s)’])

49. histogram.m
function M=histogram(fname,prn)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Histogram of interatomic distances, or PDDF, of %
% molecules catalogued in the Protein Data Bank %
% Input: %
% fname = pdb text file, *.pdb, or saved files *.ndu %
% if *.pdb, it calculates the histogram and generate file *.ndu %
% if *.ndu, it just plots the histogram %
% prn = 0 to suppress graphic window %
% Output M = [U; p]’; %
% | | %
% | histogram %
% interatomic distances (Angstrom) %
% Usage: M = histogrm(’2LYZ.pdb’,1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M = [0 0];
n1 = regexp(fname,’.pdb’); n2 = regexp(fname,’.ndu’);
if isempty([n1 n2]), disp(’ >>>> Unknown file type!!!’); return; end;
fidin = fopen(fname,’r’);
if (fidin==-1), disp([’ >>>> File ’ fname ’ not found!!!’]); return; end;
if isempty(n1)
M = load(fname);
U = M(:,1)’;
p = M(:,2)’;
Nu = size(U,2);
soma = sum(p);
N = round(sqrt(soma));
RgII = sqrt(0.5*sum(p.*U.*U)/soma);

RgI = 0;
fclose(fidin);

else
fout = [fname(1:n1-1) ’.ndu’];
fidin = fopen(fname,’r’);
line = fgets(fidin);
n = 0;
while (line~=-1)
switch line(1:5)
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case {’ATOM ’} % use "case {’ATOM ’,’HETAT’}" to read both "ATOM" and "HETATM" records
n = n + 1;
R(n,:) = sscanf(line(31:54),’%f’)’;
A(n,:) = line(77:78);

end;
line = fgets(fidin);

end;
fclose(fidin);

N = size(R,1); Nchem = 0; AA = zeros(N,1); NA = 1;
while ~isempty(NA)

n = NA(1);
Mn = A(n,1)==A(:,1) & A(n,2)==A(:,2);
Nchem = Nchem + 1;
AA(Mn) = Nchem;
Atom(Nchem,:) = A(n,:);
NA = find(AA==0);

end;
for n=1:Nchem, fprintf(’ %1.0f %s’,size(find(AA==n),1),Atom(n,:)); end;
fprintf(’\n’);
Umax = 0;
for n=1:N
for m=n+1:N
r = R(m,:)-R(n,:);
r2 = r*r’;
if (r2>Umax) Umax = r2; end;

end;
end;

Umax = 1.02*sqrt(Umax);
du = 0.01;
U = 0:du:Umax;
Nu = size(U,2);
p=zeros(1,Nu);
soma = 0;
for n=1:N
for m=n+1:N
r = R(m,:)-R(n,:);
r2 = r*r’;
soma = soma + r2;
k = floor(sqrt(r2)/du)+1;
p(k) = p(k)+1;

end;
end;
p = 2*p; p(1)=N;
RgI = sqrt(soma)/N;
RgII = sum(U.*U.*p)/sum(p);
RgII = sqrt(0.5*RgII);
M = [U; p]’;

save(fout,’M’,’-ascii’);
end;
if (prn~=0)
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(U(2:Nu),p(2:Nu),’b’,’LineWidth’,1)
axis([0 U(Nu) [-0.02 1.02]*max(p(2:Nu))])
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93])
xlabel(’u (A)’,’FontSize’,18)

ylabel(’N(u)’,’FontSize’,18)
end;
fprintf(’ Protein: %s\n’,fname(1:find(fname==’.’)-1))
if (RgI==0), fprintf(’ Nat = %1.0f, Rg = %3.1fA\n’,N,RgII);

else fprintf(’ Nat = %1.0f, Rg = %3.1f(%3.1f)A\n’,N,RgI,RgII);
end;

50. invftpofq.m
function M=invftpofq(fname,Qf,Umax,Nu)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Inverse Fourier Transform of the molecule’s scattering power, P(Q) %
% Input: %
% fname = file with Q and P in columns 1 and 2 (Q values in Angstrom) %
% Qf = upper limit to calculate the inverse FT %
% Umax = maximum interatomic distance (Angstrom) %
% Nu = number of ponts in the calculated PDDF %
% Output M = [U; p]’; %
% | | %
% | PDDF %
% interatomic distances (Angstrom) %
% Usage: N=invftpofq(’saxs2LYZ_0a40E8keV.dat’,0.75,52,1000); %
% File saxs2LYZ_0a40E8keV.dat from http://xraybook.if.usp.br/ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
S=load(fname)’;
Q = S(1,:);
P = S(2,:);
Nq = size(Q,2);
dQ = Q(3)-Q(2);
if (Qf < Q(Nq))
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n = find(abs(Q-Qf)<=0.5*dQ);
Q = S(1,1:n);
P = S(2,1:n);

end;
du = Umax/Nu;
U = 0:du:Umax;
Nu = size(U,2);
aux = dQ / (2*pi*pi);
for n = 1:Nu
u = U(n);
Qu = u*Q;
p(n) = aux*sum(P.*Qu.*sin(Qu));

end;
pint = sum(p)*du;
p = (1/pint)*p;
M=[U; p]’;

51. kdpcoordfrac.m
function kdpcoordfrac(etaP,etaK,etaO,fname,p)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% KDP crystal data file with root-mean-square displacements %
% Input: %
% etaP, etaK, etaO: rms(Angstrom) for P, K, and O atoms %
% p = 1 to save file fname.in %
% Usage: kdpcoordfrac(0.15,0.15,0.15,’KDP15’,1) %
% Source: http://www.crystallography.net/, cod ID: 9007582 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
etaP = etaP*etaP; etaK = etaK*etaK; etaO = etaO*etaO;
P = [7.4521 7.4521 6.974 90.0 90.0 90.0]; % lattice parameters
Rf(1:4,:) = [0 0 0; 1/2 0 3/4; 1/2 1/2 1/2; 0 1/2 1/4]; % P atoms
Rf(5:8,:) = [0 0 1/2; 1/2 0 1/4; 1/2 1/2 0; 0 1/2 3/4]; % K atoms
x = 0.1484; y = 0.0826; z = 0.1259;
Rf(9:16,:) = [x, y, z; -x, -y, z; y, -x, -z; -y, x, -z;... % O atoms

-x + 1/2, y, -z + 3/4; x + 1/2, -y, -z + 3/4;...
-y + 1/2, -x, z + 3/4; y + 1/2, x, z + 3/4];

Rf(17:24,:) = Rf(9:16,:)+0.5*ones(8,3);
Nat = size(Rf,1);
N = Rf>1;
Rf(N) = Rf(N) - 1;
N = Rf<0;
Rf(N) = Rf(N) + 1;
OcupFactor = ones(Nat,1);
Bfactor = (8*pi*pi)*[etaP*ones(4,1); etaK*ones(4,1); etaO*ones(16,1)];
Rf = [Rf OcupFactor Bfactor];
SYM = [’P ’; ’K ’; ’O2-.’];
A = [4 4 16];
nn = size(A,2);
L = A(1);
for n=2:size(A,2), L = [L sum(A(1:n))]; end;
nn=0;
for n=1:size(L,2)
LL(n,:) = [nn+1 L(n)];
nn = L(n);

end;
if (p == 1), fid = fopen([fname ’.in’], ’w’); else fid = 1; fprintf(’\n’); end;
fprintf(fid,’%6.4f %6.4f %6.4f %7.4f %7.4f %7.4f\n’,P(1),P(2),P(3),P(4),P(5),P(6));
for nn=1:size(A,2)
at = SYM(nn,:);
a = LL(nn,1); b = LL(nn,2);

for m=a:b
fprintf(fid,’%s %6.4f %6.4f %6.4f %4.2f %6.3f\n’,at,Rf(m,1),Rf(m,2),Rf(m,3),OcupFactor(m),Bfactor(m));

end;
end;
if (p == 1), fclose(fid); else fprintf(’\n’); end;

52. kdphistcomp.m
function kdphistcomp
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Variation in structure factor square modules with disorder %
% Required files: KDP10E10000.sft and KDP15OxE10000.sft %
% Files generated by routines diffraction.m and kdpcoordfrac.m, and %
% available at http://xraybook.if.usp.br/ %
% Secondary routines required: diffraction.m %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fname1 = ’KDP10E10000.sft’; %etaK=etaP=etaO=0.1 (reference)
fname2 = ’KDP15OxE10000.sft’; %etaK=etaP=0.1; etaO=0.15;
E = 10000; eta1 = 0.1; eta2 = 0.15;
I1 = diffraction(E,fname1,0);
I2 = diffraction(E,fname2,0);
N = I2(:,1)==I1(:,1);
Q12 = I2(N,1)’;
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p1 = I1(N,3)’;
p1 = p1/max(p1);
p2 = I2(N,3)’;
p2 = p2/max(p2);
Dp21 = zeros(size(Q12));
N = p1>0.02;
Dp21(N) = 100*(p1(N)-p2(N))./p1(N);
Q = Q12(p1==max(p1));

aux = -(eta2^2-eta1^2);
Y21 = 100*(1-exp(aux*(Q12.*Q12 - Q*Q)));

hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(Q12,Dp21,’r’,Q12,Y21,’--k’,’LineWidth’,2)
set(gca,’FontSize’,14,’Color’,[0.87 0.92 0.98],’Box’,’on’,’LineWidth’,1)
axis tight

xlabel(’Q (A^{-1})’,’FontSize’,18)
ylabel(’\Delta |F_{hkl}|^2 (%)’,’FontSize’,18)
legend(’ \eta_O = 0.15A, \eta_P = \eta_K = 0.10A’,’ \eta_O = \eta_P = \eta_K = 0.15A’)

53. kdphistogram.m
function kdphistogram
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Histograms of |Fhkl|^2 x Q for KDP with Debye-Waller factor %
% Required files: KDP0E10000.sft, KDP10E10000.sft, KDP15E10000.sft, and %
% KDP20E10000.sft %
% Files generated by routines diffraction.m and kdpcoordfrac.m, and %
% available at http://xraybook.if.usp.br/ %
% Secondary routines required: diffraction.m %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
E = 10000; % X-ray energy (eV) used to calculate files *.sft
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
I = diffraction(E,’KDP0E10000.sft’,0);
Q = I(:,1)’;
p = I(:,3)’;
pmax = max(p);
p = p/pmax;
plot(Q,p,’w’,’LineWidth’,3)
axis([0.98*min(Q) 1.02*max(Q) -0.02 1.02])
set(gca,’FontSize’,14,’Color’,[0.85 0.7 1.0],’LineWidth’,1)
xlabel(’Q (A^{-1})’,’FontSize’,18)

ylabel(’\Sigma|F_{hkl}|^2 (relative values)’,’FontSize’,18)
hold on
I = diffraction(E,’KDP10E10000.sft’,0);
Q = I(:,1)’;
p = I(:,3)’/pmax;
plot(Q,p,’r’,’LineWidth’,3)
I = diffraction(E,’KDP15E10000.sft’,0);
Q = I(:,1)’;
p = I(:,3)’/pmax;
plot(Q,p,’y’,’LineWidth’,3)
I = diffraction(E,’KDP20E10000.sft’,0);
Q = I(:,1)’;

p = I(:,3)’/pmax;
plot(Q,p,’b’,’LineWidth’,3)
legend(’ \eta = 0’,’ \eta = 0.10 A’,’ \eta = 0.15 A’,’ \eta = 0.20 A’)
plot(Q,ones(size(Q)),’--w’,’LineWidth’,1)
aux = -0.1*0.1;
plot(Q,exp(aux*Q.*Q),’--r’,’LineWidth’,1)
aux = -0.15*0.15;
plot(Q,exp(aux*Q.*Q),’--y’,’LineWidth’,1)
aux = -0.2*0.2;

plot(Q,exp(aux*Q.*Q),’--b’,’LineWidth’,1)
hold off
text(5.5,.85,’KDP’,’FontSize’,36,’Color’,[.93 .93 .93],’FontWeight’,’bold’)

54. kinematiclimit.m
function Z=kinematiclimit(E,fname,H)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Integrated reflectivity via recursive equations %
% Input: %
% E = energy (eV) or wavelength (Angstrom) %
% fname = file *.in with crystal data information %
% H = [h k l] reflection indexes %
% Secondary routines required: rcdarwinprins.m %
% Usage: Z=kinematiclimit(10000,’GaAs.in’,[1 1 1]); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M = rcdarwinprins(E,fname,H,0,0);
V = M(1);
d = M(2);
if (V>1000), N = [1 2]*2^8; else N = [1 2]*2^7; end;
S=rcdarwinprins(E,fname,H,N(1),0).’;
Idyn(1) = sum(S(2,:).*conj(S(2,:)))*(S(1,2)-S(1,1));
S=rcdarwinprins(E,fname,H,N(2),0).’;
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Idyn(2) = sum(S(2,:).*conj(S(2,:)))*(S(1,2)-S(1,1));
alpha = (Idyn(2)-Idyn(1))/(N(2)-N(1));
Sd=rcdarwinprins(E,fname,H,2^30,0).’;
maxIdyn = sum(Sd(2,:).*conj(Sd(2,:)))*(Sd(1,2)-Sd(1,1));
Nkin = maxIdyn/alpha;
dN = Nkin/12;
N = [N (1:1:48)*dN];
dN = Nkin/2;
N = [N N(size(N,2))+(1:1:12)*dN];
m = size(N,2);
Idyn = [Idyn zeros(1,m-2)];
for n=3:m
S=rcdarwinprins(E,fname,H,N(n),0).’;
Idyn(n) = sum(S(2,:).*conj(S(2,:)))*(S(1,2)-S(1,1));

end;
Idyn = Idyn*(100/maxIdyn);

X = N*(d/10000);
alpha = (Idyn(2)-Idyn(1))/(X(2)-X(1));
Ikin = alpha*X;
Nk = find(Ikin<120);
DI = 100*(Ikin-Idyn)./Idyn;
n = find(DI>10, 1 );
if (n>1)
Xc = ((X(n)-X(n-1))/(DI(n)-DI(n-1)))*(10-DI(n-1)) + X(n-1);

else Xc = d*Nkin/20000;
end;
Z = [X; Idyn]’;
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(X,Idyn,’-bo’,X(Nk),Ikin(Nk),’k’,[Xc Xc],[0 alpha*Xc],’--k’,’LineWidth’,2)
axis([0 max(X) 0 120])
set(gca,’FontSize’,14,’Color’,[.97 .97 .97],’LineWidth’,1)
xlabel(’thickness (\mum)’,’FontSize’,18)
ylabel(’P_N/P_{\infty} (%)’,’FontSize’,18)
legend(’ dynamical’,’ kinematic’)

fprintf(’ 10%% deviation at %6.3fum\n’, Xc)
text(Xc,10,[’ \leftarrow ’ num2str(round(Xc*10)/10) ’\mum’],’FontSize’,18)
ha2=axes(’Position’,[.47 .25 .4 .40]);
X=Sd(1,:);
Y = Sd(2,:).*conj(Sd(2,:));
xc = sum(X.*Y)/sum(Y);
range = sum(abs(X-xc).*Y)/sum(Y);
Xmin = xc-3*range;

Xmax = xc+3*range;
plot(X,Y,’-b’,’LineWidth’,2)
axis([Xmin Xmax 0 1.02*max(Y)])
set(ha2,’FontSize’,14,’Color’,[1 1 1],’FontName’,’Arial’,’LineWidth’,1)
xlabel(’\Delta\theta (arcsec)’,’FontSize’,16)
ylabel(’R(\theta)’,’FontSize’,16)
nlabel=fname(1:find(fname==’.’)-1);

rlabel=[’(’ num2str(H(1)) ’,’ num2str(H(2)) ’,’ num2str(H(3)) ’)’];
text(xc+0.7*range,0.75*max(Y),nlabel,’FontSize’,24,’Color’,[0.86 0.86 0.86],’FontWeight’,’bold’)
text(xc+0.6*range,0.55*max(Y),rlabel,’FontSize’,24,’Color’,[0.86 0.86 0.86],’FontWeight’,’bold’)

55. lauemethod.m
function lauemethod(fname,A,B,TH)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Laue method %
% Input: %
% fname: file *.in with crystal data information (see sfactor.m) %
% A = [A1,A2,A3] crystallographic direction aligned to the z axis %
% B = [B1,B2,B3] reference direction in the xz plane %
% TH = [thx,thy,thz] rotation matrix R=Rx(thx)Ry(thy)Rz(thz) %
% Output file *.laue with list of hkl reflection power and %
% spot coordinates on the X-ray film %
% Secondary routines required: asfQ.m and fpfpp.m %
% Usage: %
% lauemethod(’spodumen.in’,[1 0 0],[0 0 1],[10 90 0]) %
% lauemethod(’Si.in’,[1 1 1],[-1 -1 2],[0 0 0]) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
wlmin = 1; wlmax = 2; % continuous spectrum, constant intensity approach

% wavelength between wlmin and wlmax (Angstrom)
Lg = 75; % half film width (mm)
D = 50; % film radius (mm),
e = [0 1 0]; % polarization, electric field vibration direction
pix = .2; % film pixel (mm)
sg = 2*pix; % size of diffraction spots, half width at 61% of the maximum
rad = pi / 180;
twopii = 2*pi*i;
hc = 12398.5;
c0 = fix(clock);
code = [num2str(c0(1)) num2str(c0(2)) num2str(c0(3)) num2str(c0(4)) num2str(c0(5)) num2str(c0(6))];
n = regexp(fname,’.in’);
if isempty(n) disp(’ >>>> Unknown file type!!!’); return; end;
fidin = fopen(fname,’r’);
if (fidin==-1) disp([’ >>>> File ’ fname ’ not found!!!’]); return; end;
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fout = [fname(1:n-1) code ’.laue’];
line = fgets(fidin);
P = sscanf(line,’%f’)’;
if (size(P,2)~=6) disp(’ >>>> Linha 1: a b c alpha beta gamma’); return; end;

n = 0;
line = fgets(fidin);
while (line~=-1)
n = n + 1;
w = find(line==’ ’); w = w(1);
atm(n,:) = ’ ’;
atm(n,1:w-1) = line(1:w-1);
if isempty(regexp(’abcdefghijklmnopqrstuvwxyz’,atm(n,2)))
atomsym(n,:)=[1 w-1];

else atomsym(n,:)=[2 w-1]; end;
Rat(n,:) = sscanf(line(w+1:size(line,2)),’%f’)’;

line = fgets(fidin);
end;
fclose(fidin);
Nat = n; Nchem = 0; AA = zeros(Nat,1); NA = find(AA==0);
while ~isempty(NA)
n = NA(1);
M = find(atm(n,1)==atm(:,1) & atm(n,2)==atm(:,2) & atm(n,3)==atm(:,3) & atm(n,4)==atm(:,4));
Nchem = Nchem + 1;
AA(M) = Nchem;
NA = find(AA==0);
acod(Nchem,:) = atm(n,:);
asym(Nchem,:) = atomsym(n,:);

end;
clear atm atomsym;
P(4:6) = P(4:6)*rad;
cosphi = cos(P(6)) - cos(P(5))*cos(P(4));
cosphi = cosphi / (sin(P(5))*sin(P(4)));
sinphi = sqrt(1-cosphi*cosphi);
a1 = P(1) * [sin(P(5)) 0 cos(P(5))];
a2 = P(2) * [sin(P(4))*cosphi sin(P(4))*sinphi cos(P(4))];
a3 = P(3) * [0 0 1];
vecA = A(1)*a1 + A(2)*a2 + A(3)*a3;
vecB = B(1)*a1 + B(2)*a2 + B(3)*a3;
e3 = vecA/norm(vecA);
e2 = cross(vecA,vecB);

e2 = e2/norm(e2);
e1 = cross(e2,e3);
M = [e1; e2; e3]’;
thx = TH(1)*rad;
thy = TH(2)*rad;
thz = TH(3)*rad;
Rx = [1 0 0; 0 cos(thx) -sin(thx); 0 sin(thx) cos(thx)];
Ry = [ cos(thy) 0 sin(thy); 0 1 0; -sin(thy) 0 cos(thy)];

Rz = [cos(thz) -sin(thz) 0; sin(thz) cos(thz) 0; 0 0 1];
R = Rx*Ry*Rz;
MR = M*R’;
a = a1*MR;
b = a2*MR;
c = a3*MR;
a1r = cross(b,c);
Vc = a1r*a’;
a1r = a1r/Vc;
a2r = cross(c,a)/Vc;
a3r = cross(a,b)/Vc;
hmax = floor(2.0 / (wlmin * norm(a1r)));
kmax = floor(2.0 / (wlmin * norm(a2r)));
lmax = floor(2.0 / (wlmin * norm(a3r)));
H = [-hmax:hmax];
K = [-kmax:kmax];

L = [-lmax:lmax];
m = 0;
for nh = 1:2*hmax+1
for nk = 1:2*kmax+1

for nl = 1:2*lmax+1
h = H(nh); k = K(nk); l = L(nl);
q = h*a1r + k*a2r + l*a3r;
if (q(3)<0)
q2 = q*q’;
wl = -2*q(3)/q2;
if ((wl<wlmax) && (wl>wlmin))
sp = wl*q + [0 0 1];
z = D*tan(asin(sp(2)));
if (z*z<Lg*Lg)
m = m + 1;
HKL(m,:) = [h k l];
WL(m,1) = wl;
Yf(m,1) = z;
Xf(m,1) = D*atan2(sp(1),-sp(3));
Fhkl2(m,1) = sfactorQ(Nchem,acod,asym,hc/wl,sqrt(q2),AA,twopii,Rat,[h k l]);

p = cross(sp,cross(e,sp));
p = p * p’;
Ahkl(m,1) = p*wl*Fhkl2(m)/q2;

end;
end;
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end;
end;

end;
end;
Nrefl = m;
X = Ahkl;
Nmax = [];
while (sum(X)>0)
NN = find(X==max(X));
X(NN) = 0;
Nmax = [Nmax; NN];

end;
Nrefl = size(Nmax,1);
HKL = HKL(Nmax,:);
WL = WL(Nmax);
Yf = Yf(Nmax);
Xf = Xf(Nmax);
Fhkl2 = Fhkl2(Nmax);
Ahkl = Ahkl(Nmax);
clear Nmax X;

invF2max = 100/max(Fhkl2);
invAmax = 100/max(Ahkl);
fidout = fopen(fout,’w’);
fprintf(fidout,’\n %s, A = [%2d %2d %2d], B = [%2d %2d %2d], TH = [%5.3f %5.3f %5.3f]\n’,...

fname,A(1),A(2),A(3),B(1),B(2),B(3),TH(1),TH(2),TH(3));
fprintf(fidout,’|-------------|-----------------|----------|--------------------------------|\n’);
fprintf(fidout,’| h k l | |Fhkl|^2 | wl(A) | Phkl X(mm) Y(mm) |\n’);
fprintf(fidout,’|-------------|-----------------|----------|--------------------------------|\n’);
for m=1:Nrefl
fprintf(fidout,’| %3d %3d %3d | %7.1f(%5.1f%%) | %8.6f | %9.1f %9.3f %9.3f |\n’,HKL(m,1),HKL(m,2),

HKL(m,3),...
Fhkl2(m),invF2max*Fhkl2(m),WL(m),Ahkl(m),Xf(m),Yf(m));

end;
fprintf(fidout,’|-------------|-----------------|----------|--------------------------------|\n’);
fclose(fidout);

Nx = floor(pi*D/pix);
Ny = floor(Lg/pix);
perimeter = Nx*pix;
width = Ny*pix;
Z = zeros(2*Ny+1,2*Nx+1);
for m=1:Nrefl
nx = fix(Xf(m)/pix)+Nx+1;
ny = fix(Yf(m)/pix)+Ny+1;
Z(ny,nx) = Z(ny,nx) + Ahkl(m);

end;
Ng = floor(10*sg/pix);

Xg = (-Ng:Ng)*pix;
Xg = Xg.*Xg;
for nx=1:2*Ng+1
for ny=1:2*Ng+1

Xg2(ny,nx) = Xg(ny) + Xg(nx);
end;

end;
G = (1/(sg*sg*2*pi))*exp((-1/(2*sg*sg))*Xg2);
Zg = [zeros(2*Ny+1+2*Ng,Ng) [zeros(Ng,2*Nx+1); Z; zeros(Ng,2*Nx+1)] zeros(2*Ny+1+2*Ng,Ng)];
for nx=1:2*Nx+1
for ny=1:2*Ny+1

Z(ny,nx) = sum(sum(G.*Zg(ny:2*Ng+ny,nx:2*Ng+nx)));
end;

end;
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
imagesc(perimeter*[-1 1],width*[-1 1],log10(Z+1))
axis image
set(gca,’YDir’,’normal’,’FontName’,’Arial’,’FontSize’,14,’LineWidth’,1)
colormap jet;
colorbar(’FontSize’,14,’Location’,’EastOutside’,’LineWidth’,1)

ylabel(’film width (mm)’,’FontSize’,18)
xlabel(’film length (mm)’,’FontSize’,18)
text(1.274*perimeter,-width/3,5000,’Log(I) (arb. units)’,’FontSize’,14,’Rotation’,90)

function F2 = sfactorQ(Nchem,acod,asym,E,Q,AA,twopii,R,H)
for n=1:Nchem
aux = fpfpp(acod(n,1:asym(n,1)),E);
fres(n) = aux(2)+1i*aux(3);

end;
x = 0.5*Q;
x2 = x*x;
F = 0;
for n=1:Nchem
fn = asfQ(acod(n,1:asym(n,2)),x) + fres(n);
NA=find(AA==n)’;

F = F + fn*sum(exp(twopii*(R(NA,1:3)*H’)).*R(NA,4).*exp((-x2)*R(NA,5)));
end;
F2 = F*conj(F);
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56. orientcryst.m
function orientcryst(wl,P,A,B,TH,H)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Alignment of Single Crystals %
% Input: %
% wl = wavelength (Angstrom) or energy (eV) %
% P = [a b c alpha beta gamma] parameters of the unit cell (in Angstrom and degree) %
% A = [A1,A2,A3] crystallographic direction parallel to the z axis (incident beam) %
% B = [B1,B2,B3] reference direction in the xz plane %
% TH = [thx,thy,thz], orientation matrix R=Rx(thx)Ry(thy)Rz(thz) %
% H = [h k l] reflection indexes, use TH = [1] or [] to orient reflection hkl with %
% chi or phi alignment, respectively %
% Usage: %
% orientcryst(1.540562,[9.4620 8.3920 5.2210 90.00 110.180 90.00],[1 0 0],[0 1 0],[0 0 0],[0 0 2]) %
% orientcryst(1.540562,[9.4620 8.3920 5.2210 90.00 110.180 90.00],[1 0 0],[0 1 0],[],[0 0 2]) %
% orientcryst(1.540562,[9.4620 8.3920 5.2210 90.00 110.180 90.00],[1 0 0],[0 1 0],[1],[0 0 2]) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rad = pi / 180;
if (wl < 1000), E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
if isempty(P), return; end;
nm = size(P);
if (nm(1)*nm(2)==1)
P(1:3) = P(1)*ones(1,3);
P(4:6) = [90 90 90];

elseif (nm(1)*nm(2)==2)
P(1:3) = [P(1) P(1) P(2)];
P(4:6) = [90 90 90];

end;
P(4:6) = P(4:6)*rad;
cosphi = cos(P(6)) - cos(P(5))*cos(P(4));
cosphi = cosphi / (sin(P(5))*sin(P(4)));
sinphi = sqrt(1-cosphi*cosphi);
a1 = P(1) * [sin(P(5)) 0 cos(P(5))];
a2 = P(2) * [sin(P(4))*cosphi sin(P(4))*sinphi cos(P(4))];
a3 = P(3) * [0 0 1];
vecA = A(1)*a1 + A(2)*a2 + A(3)*a3;
vecB = B(1)*a1 + B(2)*a2 + B(3)*a3;
e3 = vecA/norm(vecA);
e2 = cross(vecA,vecB);
e2 = e2/norm(e2);

e1 = cross(e2,e3);
M = [e1; e2; e3]’;
a = a1*M;
b = a2*M;
c = a3*M;
a1r = cross(b,c);
Vc = a1r*a’;
a1r = a1r/Vc;
a2r = cross(c,a)/Vc;
a3r = cross(a,b)/Vc;

Q = H(1,1)*a1r + H(1,2)*a2r + H(1,3)*a3r;
modQ = norm(Q);
if (size(TH,2)==3)
thx = TH(1)*rad;
thy = TH(2)*rad;
thz = TH(3)*rad;
Rx = [1 0 0; 0 cos(thx) -sin(thx); 0 sin(thx) cos(thx)];
Ry = [ cos(thy) 0 sin(thy); 0 1 0; -sin(thy) 0 cos(thy)];
Rz = [cos(thz) -sin(thz) 0; sin(thz) cos(thz) 0; 0 0 1];

R = Rx*Ry*Rz;
else
thbragg = asin(0.5*wl*modQ);
if isempty(TH)

thy = pi/2-acos(Q(3)/modQ) + thbragg;
x = Q(1); y = Q(2);
thz = -atan2(y,x);
Rz = [cos(thz) -sin(thz) 0; sin(thz) cos(thz) 0; 0 0 1];
Ry = [ cos(thy) 0 sin(thy); 0 1 0; -sin(thy) 0 cos(thy)];
R = Ry*Rz;
fprintf(’ Chi alignment: R = RyRz, thz = %9.4f, thy = %9.4f,

thBragg = %9.4f\n’,thz/rad,thy/rad,thbragg/rad)
else

thy = acos(Q(1)/modQ) + thbragg;
x = Q(2); y = Q(3);
thx = 0.5*pi - atan2(y,x);
Rx = [1 0 0; 0 cos(thx) -sin(thx); 0 sin(thx) cos(thx)];
Ry = [ cos(thy) 0 sin(thy); 0 1 0; -sin(thy) 0 cos(thy)];
R = Ry*Rx;
fprintf(’ Phi alignment: R = RyRx, thx = %9.4f, thy = %9.4f,

thBragg = %9.4f\n’,thx/rad,thy/rad,thbragg/rad)
end;

end;
MR = M*R’;
a = a1*MR;
b = a2*MR;
c = a3*MR;
a1r = cross(b,c);
Vc = a1r*a’;
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a1r = a1r/Vc;
a2r = cross(c,a)/Vc;
a3r = cross(a,b)/Vc;

Q = H(1,1)*a1r + H(1,2)*a2r +H(1,3)*a3r;
O = [0 0 0];
d = a + b + c;
A = b + c;
B = a + c;
C = a + b;
D = 0.5*d;
modD = 1.5*norm(D);

vecA = modD*e3*MR;
vecB = modD*e1*MR;
Q = modD*(Q/norm(Q));
hf1 = figure(1); clf; set(hf1,’InvertHardcopy’,’off’,’Color’,’w’)
vector(O,a,-D,’b’,1,’ a’);
hold on
vector(O,b,-D,’b’,1,’ b’);
vector(O,c,-D,’b’,1,’ c’);

vector(O,[0 0 1.5*modD],[0 0 0],’r’,2,’\uparrow X-rays’);
vector(O,Q,[0 0 0],’m’,2,’ Q’);
vector(O,vecB,[0 0 0],’k’,2,’ B’);
vector(O,vecA,[0 0 0],’k’,2,’ A’);
vector(B,a,-D,’b’,1,[]);
vector(B,c,-D,’b’,1,[]);
vector(B,d,-D,’b’,1,[]);
vector(C,a,-D,’b’,1,[]);
vector(C,b,-D,’b’,1,[]);
vector(C,d,-D,’b’,1,[]);

vector(A,b,-D,’b’,1,[]);
vector(A,c,-D,’b’,1,[]);
vector(A,d,-D,’b’,1,[]);
plot3(modD*[1 -1 -1 -1 -1 1],modD*[-1 -1 1 1 -1 -1],modD*[1 1 1 -1 -1 -1],’k’,’LineWidth’,1 )
plot3(modD*[-1 -1],modD*[-1 -1],modD*[1 -1],’k’,’LineWidth’,1 )
plot3(-D(1),-D(2),-D(3),’b.’)
axis image
axis(modD*[-1 1 -1 1 -1 1])
hold off
text(0,0,0,’O’)
set(gca,’FontSize’,18,’Color’,[0.97 0.97 0.97],’LineWidth’,1)
grid
xlabel(’X (A)’,’FontSize’,18)

ylabel(’Y (A)’,’FontSize’,18)
zlabel(’Z (A)’,’FontSize’,18)
view(164,18)

function vector(A,B,T,cor,linha,nome)
V = [(A+T)’ (B+T)’];
plot3(V(1,:),V(2,:),V(3,:),cor,’LineWidth’,linha)
if ~isempty(nome)
text(V(1,2),V(2,2),V(3,2),nome,’Color’,cor,’FontSize’,18)

end;

57. pdbcoordfrac.m
function pdbcoordfrac(fname,OP)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% To generate crystal data information files (*.in) from %
% *.pdb file format (see http://www.wwpdb.org/) %
% Input: %
% fname = *.pdb file %
% OP = space group number %
% Output save file *.in as described in routine sfactor.m %
% Usage: %
% >> pdbcoordfrac(’1TRZ.pdb’,146) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n = regexp(fname,’.pdb’);
if isempty(n), disp(’ >>>> Unknown file type!!!’); return; end;
fout = [fname(1:n-1) ’.in’];
fidin = fopen(fname,’r’);
if (fidin==-1), disp([’ >>>> File ’ fname ’ not found!!!’]); return; end;
line = fgets(fidin); n=0; m=0;
while (line~=-1)
switch line(1:5)
case {’CRYST’}

P = sscanf(line(7:54),’%f’)’;
case {’SCALE’}

m = m + 1;
SC(m,:) = sscanf(line(11:40),’%f’)’;

case {’ATOM ’,’HETAT’}
n = n + 1;
Rf(n,:) = [(SC*sscanf(line(31:54),’%f’))’ sscanf(line(55:66),’%f’)’];
A(n,:) = line(77:78);

end;
line = fgets(fidin);

end;
fclose(fidin);
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N = size(Rf,1); Nchem = 0; Achem = zeros(N,1); NA = 1;
while ~isempty(NA)

n = NA(1);
Mn = find(A(n,1)==A(:,1) & A(n,2)==A(:,2));
Nchem = Nchem + 1;
OCF(Nchem) = sum(Rf(Mn,4));
Achem(Mn) = Nchem;
if (A(n,1)~=’ ’), Atom(Nchem,:) = [A(n,1) lower(A(n,2))];

else Atom(Nchem,:) = [A(n,2) ’ ’];
end;
NA = find(Achem==0);

end;
fprintf(’ Atoms in the asymmetric unit with occupation factor (...)\n’)
for n=1:Nchem
x = size(find(Achem==n),1);
fprintf(’ %1.0f(%4.2f)%s’,x,OCF(n)/x,Atom(n,:))

end;
fprintf(’\n’);
fid = fopen(fout,’w’);
fprintf(fid,’%6.4f %6.4f %6.4f %6.4f %6.4f %6.4f\n’,P(1),P(2),P(3),P(4),P(5),P(6));
for n=1:N
R = symop(OP,Rf(n,1:3));
for m=1:size(R,1)

fprintf(fid,’%s %8.4f %8.4f %8.4f %6.3f %6.2f\n’,Atom(Achem(n),:),R(m,1),R(m,2),R(m,3),Rf(n,4),Rf(n,5));
end;

end;
fclose(fid);

function R=symop(OP,Rf)
X=Rf(1); Y=Rf(2); Z=Rf(3);
switch OP

case {4}
R(1,:) = [X,Y,Z; -X,Y+1/2,-Z];

case {18}
R(1,:) = [X,Y,Z; -X,-Y,Z; -X+1/2,Y+1/2,-Z; X+1/2,-Y+1/2,-Z];

case {96}
R = [ X, Y, Z; -X, -Y, Z+1/2; -Y+1/2,X+1/2,Z+3/4; Y+1/2,-X+1/2, Z+1/4;

-X+1/2,Y+1/2,-Z+3/4; X+1/2,-Y+1/2,-Z+1/4; Y, X, -Z; -Y, -X,-Z+1/2];
case {146}
R = [ X, Y, Z; -Y, X-Y, Z; -X+Y, -X, Z;

X+2/3,Y+1/3,Z+1/3; -Y+2/3,X-Y+1/3,Z+1/3; -X+Y+2/3,-X+1/3,Z+1/3;
X+1/3,Y+2/3,Z+2/3; -Y+1/3,X-Y+2/3,Z+2/3; -X+Y+1/3,-X+2/3,Z+2/3];

case {169}
R = [ X, Y, Z; -Y, X-Y,Z+1/3; -X+Y,-X,Z+2/3;

-X,-Y,Z+1/2; Y,-X+Y,Z+5/6; X-Y, X,Z+1/6];
case {197}
R = [ X, Y,Z; -X,-Y, Z; -X,Y,-Z; X,-Y,-Z; Z, X, Y; Z,-X,-Y;

-Z,-X,Y; -Z, X,-Y; Y,Z, X; -Y, Z,-X; Y,-Z,-X; -Y,-Z, X];
R = [R; R+0.5*ones(12,3)];

% case {...} % include other "case" to add an operation symmetry
% from 230 space groups, see "International Tables for
% Crystallography (2006). Vol. A, ch. 7.1, pp. 112-717

otherwise, R = [X,Y,Z];
end;

58. photonsonpsp.m
function I=photonsonpsp(thx,thy,thz,D,L,pixel,wl,N)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Intensity pattern with statistic of N counts %
% Input: %
% thx, thy, thz, D, L, pixel, and wl defined in routine benzeneonpsp.m %
% N = number of photons (counts) scattered on the film %
% Output: I = counts on the pixel array %
% Secondary routines required: benzeneonpsp.m and photonstatistic.m %
% Usage: %
% >> I = photonsonpsp(30,0,90,50,200,2,20000,1e+4); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dz = pixel;
n = floor(2*L/dz);
LimZ = 0.5*n*dz;
Y=benzeneonpsp(thx,thy,thz,D,L,pixel,wl,0);
I=photonstatistic(Y,N)+1;
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
imagesc([-LimZ LimZ],[-1 1]*D*pi,log10(I))
axis image
set(gca,’FontSize’,14,’LineWidth’,1,’YTick’,[-150 -100 -50 0 50 100 150])
colormap(hot)
colorbar(’XColor’,’k’,’YColor’,’k’,’FontSize’,14,’Location’,’East’,’LineWidth’,1)

xlabel(’film width (mm)’,’FontSize’,18)
ylabel(’film length (mm)’,’FontSize’,18)
text(0,0,5000,’Log(número de fótons / pixel)’,’FontSize’,18,’Rotation’,90,’Color’,’k’)
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59. photonstatistic.m
function Z=photonstatistic(M,N)
soma = sum(sum(M));
M = M*(1/soma);
Z = zeros(size(M));
for np = 1:N
aux = 0; photon = rand; nn = 0;
while (aux<photon)
nn = nn + 1;
aux = aux + M(nn);

end;
Z(nn) = Z(nn) + 1;

end;

60. polymer.m
function M=polymer(Nm,jct,sofq)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Scattering curve S(Q) of a polymer or %
% its gyration radius Rg %
% Input: %
% Nm = number of monomers in the chain %
% jct = 1 for limited junction, otherwise free junction (RW model) %
% sofq = 0 for gyration radius %
% Output M = [Q; S]’, S(Q) curve if sofq ~= 0 %
% M = Rg2, mean square radius (Angstrom^2) if sofq = 0 %
% Secondary routines required: polymerchain.m %
% Usage: %
% >> M = polymer(2000,0,1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
L = 1.54; % monomer length (Angstrom)
R = 10*polymerchain(Nm,jct,0);
Rg2theo = Nm*L*L/6;
if (sofq~=0)
Qmax = 18/sqrt(Rg2theo);
dq = Qmax/100;
Q = 0:dq:Qmax;
Q(1) = 1e-8;
Nq = size(Q,2);
S = zeros(1,Nq);
for jj=1:Nm
rj = R(jj,1);
for kk = jj+1:Nm
rjk = R(kk,1)-rj;
S = S + cos(rjk*Q);

end;
end;
S = 2*S;

M = [Q; S]’;
else M = sum(sum(R.*R))/Nm;
end;

61. polymerchain.m
function R=polymerchain(Nm,jct,prn)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Virtual chain of monomers with free or limited junction %
% Input: %
% Nm = number of monomers in the chain %
% jct = 1 for limited junction, otherwise free junction (RW model) %
% prn = 0 to suppress graphic window %
% Output R, array of 3D coordinates of the monomers %
% Usage: %
% >> R = polymerchain(1000,0,1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
L = 0.154; % monomer length (nm)
if (jct==1)

phi = [-1 0 1]*(2*pi/3);
T = [(71+2*(2*rand(Nm,1)-1))*(pi/180) phi(fix(2.99999999999*rand(Nm,1))+1)’];

else
T = [pi*rand(Nm,1) (2*pi)*rand(Nm,1)];

end;
R(1,:) = [0 0 0];
M = eye(3);
for n=1:Nm
st = sin(T(n,1));
ct = cos(T(n,1));
sp = sin(T(n,2));
cp = cos(T(n,2));
M = [ct*cp ct*sp -st; -sp cp 0; st*cp st*sp ct]*M;

R(n+1,:) = R(n,:) + L*M(3,:);
end;
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Nm = Nm + 1;
rc = sum(R)/Nm;
R(:,1) = R(:,1)-rc(1);
R(:,2) = R(:,2)-rc(2);
R(:,3) = R(:,3)-rc(3);
if (prn~=0)
n=24;
Ncor = 0.02*(0:1:n)’;
n = n + 1;
C = [zeros(n,1) zeros(n,1) 1-Ncor;

Ncor zeros(n,1) 0.5*ones(n,1);
0.5*ones(n,1) zeros(n,1) 0.5-Ncor;

0.5+Ncor zeros(n,1) zeros(n,1)];
x = Nm/100;
hf1 = figure(1); clf; set(hf1,’InvertHardcopy’,’off’,’Color’,’w’)
plot3(R(1,1),R(1,2),R(1,3),’b.’)
hold on
for n=2:Nm
plot3(R(n-1:n,1),R(n-1:n,2),R(n-1:n,3),’Color’,C(fix((n-1)/x)+1,:),’LineWidth’,1.2)

end;
plot3(R(Nm,1),R(Nm,2),R(Nm,3),’r.’)
hold off
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’Box’,’on’,’LineWidth’,1)
axis image
axis tight; grid
xlabel(’X (nm)’,’FontSize’,18)
ylabel(’Y (nm)’,’FontSize’,18)

zlabel(’Z (nm)’,’FontSize’,18)
end;

62. polymerkratky.m
function polymerkratly
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Comparison of structural function S(Q) for systems of %
% polymers with different weight %
% Required files: ’polymer2k_1to500.dat’, ’polymer6k_1to500.dat’, and %
% ’polymer10k_1to500.dat’ %
% Files generated by routine polymersystem.m, and available at %
% http://xraybook.if.usp.br/ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fna = ’polymer2k_1to500.dat’; Nma = 2000;
fnb = ’polymer6k_1to500.dat’; Nmb = 6000;
fnc = ’polymer10k_1to500.dat’; Nmc = 10000;
M = load(fna)’;
Qa=M(1,:);
Sa=M(2,:);
M = load(fnb)’;
Qb=M(1,:);
Sb=M(2,:);

M = load(fnc)’;
Qc=M(1,:);
Sc=M(2,:);
L = 1.54; % monomer length (Angstrom)
Rg2a = 770;
Rg2b = 2200;
Rg2c = 3730;
Ua = Rg2a*(Qa.*Qa);

Ub = Rg2b*(Qb.*Qb);
Uc = Rg2c*(Qc.*Qc);
Ya = 2*(exp(-Ua)-1+Ua)./(Ua.*Ua);
Ya(1) = 1;
Ya = Ya*Sa(1);
Yb = 2*(exp(-Ub)-1+Ub)./(Ub.*Ub);
Yb(1) = 1;
Yb = Yb*Sb(1);

Yc = 2*(exp(-Uc)-1+Uc)./(Uc.*Uc);
Yc(1) = 1;
Yc = Yc*Sc(1);
hf1 = figure(1);
clf
set(hf1,’InvertHardcopy’,’off’,’Color’,’w’)
N=1:1:size(Qa,2);
Ur=sqrt(Ua(N));

Q2 = Qa(N).^2;
plot(Ur,Sa(N).*Q2,’-bo’,Ur,Ya(N).*Q2,’--k’,’MarkerFaceColor’,’w’,’MarkerSize’,6,’LineWidth’,1.5)
N=1:1:size(Qb,2);
Ur=sqrt(Ub(N));
Q2 = Qb(N).^2;
hold on
plot(Ur,Sb(N).*Q2,’-md’,Ur,Yb(N).*Q2,’--k’,’MarkerFaceColor’,’w’,’MarkerSize’,6,’LineWidth’,1.5)
N=1:1:size(Qc,2);
Ur=sqrt(Uc(N));
Q2 = Qc(N).^2;

plot(Ur,Sc(N).*Q2,’-rs’,Ur,Yc(N).*Q2,’--k’,’MarkerFaceColor’,’w’,’MarkerSize’,6,’LineWidth’,1.5)
hold off
set(gca,’FontSize’,14,’Color’,[0.894 0.941 0.902],’LineWidth’,1)
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xlabel(’QR_g’,’FontSize’,18)
ylabel(’N_m^2Q^2S(Q)’,’FontSize’,18)
text(13,47000,’N_m = 10000’,’FontSize’,18,’Color’,’r’)

text(13,26000,’N_m = 6000’,’FontSize’,18,’Color’,’m’)
text(13,5000,’N_m = 2000’,’FontSize’,18,’Color’,’b’)
axis([0 17.5 0 5.9e+4])

63. polymerRg.m
function polymerRg(N,Nm)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Statistical distribution of gyration radius for %
% free and limited junction models %
% Ensemble: N polymers with Nm monomers each %
% Secondary routines required: polymer.m %
% Usage: %
% >> polymerRg(1000,2000) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for n=1:N
Ra(n,1)=polymer(Nm,0,0);
Rb(n,1)=polymer(Nm,1,0);

end;
Ra = 0.01*Ra;
Rb = 0.01*Rb;
du = 20/8;
Umax = max(Ra);
Ua = 0:du:Umax;
p = zeros(size(Ua));
for n=1:N
k = fix(Ra(n)/du)+1;
p(k) = p(k) + 1;

end;
pa = (100/du) * p / sum(p);
Rg2a = sum(Ra)/N;
xa=find(abs(Ua-Rg2a)<du);
N = size(Rb,1);
Umax = max(Rb);
Ub = 0:du:Umax;
p = zeros(size(Ub));
for n=1:N
k = fix(Rb(n)/du)+1;
p(k) = p(k) + 1;

end;
pb = (100/du) * p / sum(p);
Rg2b = sum(Rb)/N;
xb=find(abs(Ub-Rg2b)<du);
hf1 = figure(1);
clf
set(hf1,’InvertHardcopy’,’off’,’Color’,’w’)
plot([Rg2a Rg2a],[0 pa(xa(1))],’--k’,Ua,pa,’-k.’,’LineWidth’,2)
hold on
plot([Rg2b Rg2b],[0 pb(xb(1))],’--b’,Ub,pb,’-b.’,’LineWidth’,2)
hold off
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
xlabel(’R_g^2 (nm^2)’,’FontSize’,18)
ylabel(’number of occurrences (%/nm^2)’,’FontSize’,18)

text(Rg2a,pa(xa(1)),’ \leftarrow free’,’FontSize’,18,’Color’,’k’)
text(Rg2b,pb(xb(1)),’ \leftarrow limited’,’FontSize’,18,’Color’,’b’)
axis tight

64. polymersystem.m
function polymersystem(fname,Nm,jct,N)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Scattering curve S(Q) by systems of polymers %
% Input %
% fname = output file name %
% Nm = number of monomers in each polymer %
% jct = 1 for limited junction, otherwise free junction (RW model) %
% N = number of polymers in the system %
% Output file fname with the S(Q) curve for the system of N polymers %
% Secondary routines required: polymer.m %
% Usage: %
% >> polymersystem(’polymer2k_1a500.dat’,2000,0,500) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for n=1:N
M=polymer(Nm,jct,1);
Y(:,n)=M(:,2);

end;
S = sum(Y,2)/N;
M = [M(:,1) S];
save(fname,’M’,’-ascii’)
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65. quartzgofu.m
function M=quartzgofu(E,tthmax,conv)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RDF obtained by inverse FT of the interference function S(Q) in %
% a cluster of disordered alpha-quartz %
% Input: %
% E, energy (keV) %
% tthmax, maximum scattering angle (from 10 to 180 deg) %
% conv = 1 to convolve g(u) with a rectangular function of unit area %
% and width 2*pi/Qf %
% Output M=[U; g]’; g(u) curve %
% Secondary routines required: quartzIofQ.m %
% Required files: clusterN12d2_1to10.dat and clusterN12d2gofu.dat %
% from http://xraybook.if.usp.br/ %
% Usage: M=quartzgofu(30,180,0); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (E>100), E = 0.001*E; end; wl = 12.3985/E;
Qmax = 4*pi/wl;
if (tthmax<10), disp(’Wide angle scattering, from 10 to 180 deg!!!’); return;
elseif (tthmax>180), tthmax = 180;
end;
Qf = Qmax*sind(0.5*tthmax);
S=quartzIofQ(wl,0,’clusterN12d2_1to10.dat’);
Nq = S(:,1)<=Qf;
Q = S(Nq,1)’;
I = S(Nq,2)’;
S = S(Nq,3)’;
GofU = load(’clusterN12d2gofu.dat’);
U = GofU(:,1)’;
g0 = GofU(:,2)’;
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(U,g0,’-ro’,’LineWidth’,1,’MarkerFaceColor’,’y’,’MarkerSize’,5)

set(gca,’FontSize’,14,’FontName’,’Arial’,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
xlabel(’u (A)’,’FontSize’,18)
ylabel(’g(u)’,’FontSize’,18)
U=U(U>0.1);
Nu = size(U,2);
Np = Q>0.7;
Q = Q(Np); S=S(Np);
rho = 9/113.01;
dQ = (Q(3)-Q(2))/(2*pi*pi*rho);

g = zeros(1,Nu);
for n=1:Nu

u=U(n);
g(n) = 1+(dQ/u)*sum((S-1).*Q.*sin(Q*u));

end;
if (conv==1)
du = U(3)-U(2);
wdt = 2*pi/Qf;
Nw = floor(0.5*wdt/du);

gexp = zeros(1,Nu);
for n=1:Nu
nmin = n-Nw;
nmax = n+Nw;
if (nmin<1), gexp(n) = sum(g(1:nmax))/nmax;
elseif (nmax>Nu), gexp(n) = sum(g(nmin:Nu))/(Nu-nmin+1);

else gexp(n) = sum(g(nmin:nmax))/(2*Nw+1);
end;

end;
g=gexp;

end;
hold on
plot(U,g,’k’,’LineWidth’,1.5)
hold off
gmax = max(g0);
aux = max(g);
if (aux>gmax), gmax=aux; end;
gmin = min(g);
if (gmin>0), gmin=0; end;
dg = 0.02*(gmax-gmin);
axis([0.1 13.1 gmin-dg gmax+dg])

TTh = 2*asind(Q/Qmax);
Imin = min(I);
Imax = max(I);
DI = 0.02*(Imax-Imin);
ha2=axes(’Position’,[.4 .45 .48 .43]);
plot(TTh,I,’k’,’LineWidth’,2)
set(ha2,’FontSize’,14,’FontName’,’Arial’,’Color’,[1 1 1],’LineWidth’,1)
grid
xlabel(’2\theta (deg)’);
ylabel(’intensity (cps)’);
axis([TTh(1) 0.2*max(TTh) Imin-DI Imax+DI])
N = Q>2.12;
alpha = 0.75*Imax/max(I(N));
hold on;
plot(TTh(N),alpha*I(N)+0.25*Imax,’b’,’LineWidth’,2)

hold off
text(0.15*max(TTh),0.5*Imax,[’ x’ num2str(0.1*round(10*alpha))],’FontSize’,18,’Color’,’b’)

M = [U; g]’;
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66. quartzIofQ.m
function M=quartzIofQ(wl,prn,fname)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculates S(Q) and I(Q) for clusters of disordered alpha-quartz %
% Input: %
% wl = wavelength (Angstrom) or energy (eV) %
% prn = 0 to suppress graphic window %
% fname = file of RDFs in a n-by-5 array format (see quartzrdf.m), e.g. %
% ’clusterN12dX_1to10.dat’ from http://xraybook.if.usp.br/ %
% Output M=[Q; I; S]’; n-by-3 arrary for I(Q) and S(Q) curves %
% Secondary routines required: asfQ.m, fpfpp.m, and csfQ.m %
% Usage: M=quartzIofQ(1.54,1,’clusterN12d20_1to10.dat’); %
% Note: resonant and Compton scatterings are included. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (wl < 100), E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
Qmax = 4*pi/wl;
S=load(fname);
U = S(:,1)’;
Uc = 21.07; y = exp(-5.2e-5*(U-Uc).^2.505); y(U<Uc)=1;
y = 1 - y; % <--| correction explained in routine quartzrdfplot.m
gsi = S(:,2)’+y; gox = S(:,3)’+y; gsiox = S(:,4)’+y; goxsi = S(:,5)’+y;
Vc = 113.01; % unit cell volume (Angstrom^3) containing 3Si and 6O
rhoSi = 3/Vc;

rhoOx = 6/Vc;
rho = rhoSi + rhoOx;
dQ = Qmax/5000;
Q = 0:dQ:Qmax;
Q(1) = 1e-8;
Nq = size(Q,2);

Z = fpfpp(’Si’,E);
fSi = asfQ(’Si’,(0.25/pi)*Q) + Z(1,2) + 1i*Z(1,3);
Z = fpfpp(’O’,E);
fOx = asfQ(’O’,(0.25/pi)*Q) + Z(1,2) + 1i*Z(1,3);
ASi = real(fSi.*conj(fSi));
AOx = real(fOx.*conj(fOx));
fm2 = (1/3)*ASi + (2/3)*AOx;
ASi = (rhoSi*rhoSi)*ASi(1);
AOx = (rhoOx*rhoOx)*AOx(1);
ASiOx = (rhoSi*rhoOx)*real(fSi(1).*conj(fOx(1)));
AOxSi = (rhoOx*rhoSi)*real(fOx(1).*conj(fSi(1)));

w2 = (ASi + AOx + ASiOx + AOxSi);
g = (ASi*gsi + AOx*gox + ASiOx*gsiox + AOxSi*goxsi)/w2;

du = U(3)-U(2);
% GofU = [U; g0]’; save(’clusterN12d2gofu.dat’,’GofU’,’-ascii’); % uncomment to save the total RDF
aux = 4*pi*du*rho;
S=zeros(1,Nq);
for n=1:Nq
q = Q(n);
S(n) = 1 + (aux/q)*sum((g - 1).*sin(q*U).*U);

end;
Np = Q>0.7;
Q = Q(Np); S=S(Np); fm2=fm2(Np);
TTh = 2*asind(Q/Qmax);
C = (1/3)*csfQ(’Si’,(0.25/pi)*Q)+(2/3)*csfQ(’C’,(0.25/pi)*Q);

I = fm2.*S + C(:,2)’;
M=[Q; I; S]’;
if (prn~=0)
Imin = min(I);
Imax = max(I);
DI = 0.02*(Imax-Imin);
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(TTh,I,’k’,’LineWidth’,2)
set(gca,’FontSize’,14,’FontName’,’Arial’,’Color’,[0.93 0.93 0.93],’LineWidth’,1)
xlabel(’2\theta (deg)’,’FontSize’,18);
ylabel(’intensity (cps)’,’FontSize’,18);

axis([TTh(1) 180 Imin-DI Imax+DI])
Nu = U>0.1;
ha2=axes(’Position’,[.45 .4 .43 .48]);
plot(U(Nu),g(Nu),’k’,’LineWidth’,2)
set(ha2,’FontSize’,14,’FontName’,’Arial’,’Color’,[0.85 0.7 1],’LineWidth’,1)
grid
xlabel(’u (A)’)
ylabel(’g(u)’)

axis([0.1 13.1 0 1.02*max(g(Nu))])
end;

67. quartzR.m
function XYZ=quartzR(N,d,prn)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Three-dimensional cluster of disordered alpha-quartz %
% Input: %
% N, cluster with 9*(2N+1)^3 atoms (1/3 of silicon and 2/3 of oxygen) %
% d = degree of disorder %
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% prn = 0 to suppress graphic window %
% Output XYZ, array of 3D atomic coordinates %
% Usage: %
% >> XYZ = quartzR(4,0.02,1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NN = 2*N + 1;
X = zeros(NN,NN,NN);
Y = zeros(NN,NN,NN);
Z = zeros(NN,NN,NN);
X(:,:,1) = d*(2*rand(NN)-1);
Y(:,:,1) = d*(2*rand(NN)-1);

Z(:,:,1) = d*(2*rand(NN)-1);
h = 0;
if (N>0)
X(:,:,2) = X(:,:,1) + 1 + d*(2*rand(NN)-1);
X(:,:,3) = X(:,:,1) - 1 + d*(2*rand(NN)-1);
Y(:,:,2) = Y(:,:,1) + 1 + d*(2*rand(NN)-1);
Y(:,:,3) = Y(:,:,1) - 1 + d*(2*rand(NN)-1);
Z(:,:,2) = Z(:,:,1) + 1 + d*(2*rand(NN)-1);
Z(:,:,3) = Z(:,:,1) - 1 + d*(2*rand(NN)-1);

h = [0 1 -1];
if (N>1)

for n = 2:N
X(:,:,2*n) = X(:,:,2*(n-1)) + 1 + d*(2*rand(NN)-1);
X(:,:,2*n+1) = X(:,:,2*(n-1)+1) - 1 + d*(2*rand(NN)-1);
Y(:,:,2*n) = Y(:,:,2*(n-1)) + 1 + d*(2*rand(NN)-1);
Y(:,:,2*n+1) = Y(:,:,2*(n-1)+1) - 1 + d*(2*rand(NN)-1);

Z(:,:,2*n) = Z(:,:,2*(n-1)) + 1 + d*(2*rand(NN)-1);
Z(:,:,2*n+1) = Z(:,:,2*(n-1)+1) - 1 + d*(2*rand(NN)-1);
h(2*n:2*n+1) = [n -n];

end;
end;

end;
N0 = N+1;
nn = 0;
R = zeros(NN*NN*NN,3);
for n=1:NN
for m=1:NN
for p=1:NN
nn = nn + 1;
R(nn,:) = [X(N0-h(p),N0+h(m),n) Y(N0-h(p),N0-h(n),m) Z(N0+h(n),N0+h(m),p)];

end;
end;

end;
clear X Y Z;
Nr = size(R,1);
a = 4.9134;
c = 5.4052;
G = [0.5*a -sqrt(3)*a/2 0; 0.5*a +sqrt(3)*a/2 0; 0 0 c];
R = R*G;

H = [2*N:-2:0 1:2:(2*N-1)];
n=0; NN2 = NN*NN;
S = zeros(1,NN2*NN);
for jz = 1:NN
for jx = 1:NN

for jy = 1:NN
n = n + 1;
S(n) = H(jz)+1 + H(jx)*NN2 + H(jy)*NN;

end;
end;

end;
Rfrac = [ 0.4699 0.0000 0.66666667; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

0.0000 0.4699 0.33333333; % fractional coordinates of %
1-0.4699 1-0.4699 0.00000000; % 3Si and 6O %
0.4141 0.2681 0.78540000; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1-0.2681 0.1460 0.45206667;
1-0.1460 1-0.4141 0.11873333;
0.2681 0.4141 1-0.78540000;

1-0.4141 1-0.1460 1-0.11873333;
0.1460 1-0.2681 1-0.45206667];

Nat = size(Rfrac,1);
mm = 0; ncell = 0; RR = zeros(Nr*Nat,3);
for jz = 1:NN-1

Az = NN2*(jz-1);
for jx = 1:NN-1
Ax = NN*(jx-1);
for jy = 1:NN-1;
n = Az+Ax+jy;
R0 = R(S(n),:);
M = [R(S(NN+n),:)-R0; R(S(n+1),:)-R0; R(S(NN2+n),:)-R0];
for nn = 1:Nat
mm = mm + 1;
RR(mm,:) = Rfrac(nn,:)*M + R0;

end;
ncell = ncell + 1;
atot = (ncell-1)*Nat;
aux = (ncell-1)*3;
Nsi(1+aux:3+aux) = (1:3) + atot;
Nox(1+2*aux:6+2*aux) = (4:9) + atot;
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end;
end;

end;
XYZ = [RR(Nsi,:); RR(Nox,:)];
if (prn~=0)
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
set(gca,’FontSize’,14,’FontName’,’Arial’,’LineWidth’,1)
plot3(RR(Nsi,1),RR(Nsi,2),RR(Nsi,3),’bo’,’MarkerFaceColor’,’c’,’MarkerSize’,5,’LineWidth’,.6)
hold on
plot3(RR(Nox,1),RR(Nox,2),RR(Nox,3),’ro’,’MarkerFaceColor’,’y’,’MarkerSize’,3,’LineWidth’,.6)
hold off

xlabel(’x (A)’,’FontSize’,18)
ylabel(’y (A)’,’FontSize’,18)
zlabel(’z (A)’,’FontSize’,18)
legend(’ Si’,’ O’)
grid
axis image
view(60,20)

set(gca,’Color’,[.97 .97 .97],’Box’,’on’)
end;

68. quartzrdf.m
function M=quartzrdf(N,d,prn)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RDFs in clusters of disordered alpha-quartz %
% Input: %
% N, cluster with 9*(2N+1)^3 atoms (1/3 of silicon and 2/3 of oxygen) %
% d = degree of disorder %
% prn = 0 to suppress graphic window %
% Output M = [U; gsi; gox; gsiox; goxsi]’; %
% | | | | | %
% | rdfs Si-Si, O-O, Si-O, and O_Si %
% interatomic distances (Angstrom) %
% Secondary routine required: quartzR.m %
% Usage: %
% >> M = quartzrdf(4,0.02,1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cc=clock; fprintf(’ %1.0fh%1.0fm%1.0fs\n’,cc(4:6))
RR = quartzR(N,d,0);
Nr = size(RR,1);
n = round(Nr/3);
Nsi = 1:n; Nox = n+1:Nr;
a = 4.9134; c = 5.4052; % lattice parameters (Angstrom)

Vc = c*a*a*sind(120); % unit cell volume (Angstrom)
rhoSi = 3/Vc;
rhoOx = 6/Vc;
Radius2 = 0.5*N*a;
Radius2 = Radius2*Radius2;
R2 = sum(RR(Nsi,:).*RR(Nsi,:),2);
Naux = R2<=Radius2;
RSi = RR(Nsi(Naux),:);
NSi_ref = size(RSi,1);
R2 = sum(RR(Nox,:).*RR(Nox,:),2);
Naux = R2<=Radius2;
ROx = RR(Nox(Naux),:);
NOx_ref = size(ROx,1);
NSi_tot = size(Nsi,2);
NOx_tot = size(Nox,2);
Umax = 2*(2*N+1)*c;
du = 0.005;

U = 0:du:Umax; U(1)=1e-8;
fourpiduU2 = 4*pi*du*(U.*U);

p = zeros(size(U));
for m = 1:NSi_ref

R = RSi(m,:);
for n = 1:NSi_tot
dR = RR(Nsi(n),:)-R;
k = fix(sqrt(dR*dR’)/du) + 1;
p(k) = p(k) + 1;

end;
end;
p(1)=0;
gsi = p./(rhoSi*NSi_ref*fourpiduU2);
p = zeros(size(U));
for m = 1:NOx_ref

R = ROx(m,:);
for n = 1:NOx_tot
dR = RR(Nox(n),:)-R;
k = fix(sqrt(dR*dR’)/du) + 1;
p(k) = p(k) + 1;

end;
end;
p(1)=0;
gox = p./(rhoOx*NOx_ref*fourpiduU2);
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p = zeros(size(U));
for m = 1:NSi_ref

R = RSi(m,:);
for n = 1:NOx_tot
dR = RR(Nox(n),:)-R;
k = fix(sqrt(dR*dR’)/du) + 1;
p(k) = p(k) + 1;

end;
end;
gsiox = p./(rhoOx*NSi_ref*fourpiduU2);
p = zeros(size(U));
for m = 1:NOx_ref

R = ROx(m,:);
for n = 1:NSi_tot
dR = RR(Nsi(n),:)-R;
k = fix(sqrt(dR*dR’)/du) + 1;
p(k) = p(k) + 1;

end;
end;
goxsi = p./(rhoSi*NOx_ref*fourpiduU2);
M = [U; gsi; gox; gsiox; goxsi]’;
fprintf(’ N=%1.0f, d=%4.2f, Nr=%1.0f, NSi_ref=%1.0f, NOx_ref=%1.0f\n’,N,d,Nr,NSi_ref,NOx_ref)
cc=clock; fprintf(’ %1.0fh%1.0fm%1.0fs\n’,cc(4:6))
if (prn~=0)
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
set(gca,’FontSize’,14,’FontName’,’Arial’,’LineWidth’,1)
plot(U,gsi,’b’,U,gox,’r’,U,gsiox,’--m’,U,goxsi,’--c’,’LineWidth’,1)
xlabel(’u (A)’,’FontSize’,18)
ylabel(’g_{\alpha\beta}(u)’,’FontSize’,18)
grid

legend(’ gsi’,’ gox’,’ gsiox’,’ goxsi’)
end;

69. quartzrdfplot.m
function quartzrdfplot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Shows the RDFs from a cluster of disordered alpha-quartz %
% Required file: clusterN12d8_1to10.dat from http://xraybook.if.usp.br/ %
% File generated by routine quartzrdf.m %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
S=load(’clusterN12d8_1to10.dat’);
U = S(:,1)’; gsi = S(:,2)’; gox = S(:,3)’; gsiox = S(:,4)’; goxsi = S(:,5)’;
Uc = 21.07; y = exp(-5.2e-5*(U-Uc).^2.505); % empirical values
y(U<Uc)=1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
y = 1 - y; % <--- % For correcting the RDFs gab(u) due to finite %
hf1 = figure(1); % cluster size. Use y = 0 to see what happens. %
clf %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
set(hf1,’InvertHardcopy’,’off’,’Color’,’w’)
plot(U,gsi+y,’b’,U,gox+y,’r’,U,0.5*(gsiox+goxsi)+y,’k’,’LineWidth’,2)
legend(’ Si-Si’,’ O-O’,’ Si-O’)

set(gca,’FontSize’,14,’FontName’,’Arial’,’Color’,[.85 .7 1],’LineWidth’,1)
xlabel(’u (A)’,’FontSize’,18)
ylabel(’g_{\alpha\beta}(u)’,’FontSize’,18)

70. rcdarwinprins.m
function M=rcdarwinprins(wl,fname,H,N,prn)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Reflectivity curves of dynamical diffraction %
% Input: %
% wl = wavelength (Angstrom) or energy (eV) %
% fname: file *.in with crystal data information (see sfactor.m) %
% H = [h k l] reflection indexes %
% N = number of crystallographic planes (Bragg planes) %
% prn = 1 for figure window %
% Output M = [X; R; R_; T]’ for N>0, otherwise M = [ E wl 0 0; %
% | | | | d thB 2thB Vc] %
% | | | transmission coefficient %
% | | reflection coefficient, crystal face (-h,-k,-l) %
% | reflection coefficient, crystal face (h,k,l) %
% incidence angle (arcsec), relative to the Bragg angle %
% Secondary routines required: bragg.m and sfactor.m %
% exemplo: M=rcdarwinprins(10400,’GaAs.in’,[1 1 1],30,1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C = 1; % for sigma-polarization, C = abs(cos(2*thB)) for pi-polarization
rad = pi / 180;
re = 2.818e-5;
if (wl < 1000), E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
M=vcell(wl,fname,H);
V = M(2,4);
d = M(2,1);
if (N<=0), return; end;
sinthB = 0.5*wl/d;
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if (sinthB>1) disp(’ Inaccessible reflection!!!’); return; end;
thB = asin(sinthB);
Gamma = re*wl*d/(sinthB*V);
F = sfactor(wl,fname,[H; -H; 0 0 0]);
if (F(1)*conj(F(1))<1), disp(’ Forbidden or very weak reflection!!!’); return; end;
r = -1i*Gamma*C*F(1);
r_ = -1i*Gamma*C*F(2);
t = 1+1i*Gamma*F(3);
thC = asin(0.5*(1+angle(t)/pi)*wl/d);
Dth = thC-thB;
Nd = d*N; % crystal thickness
Dw = (2/3)*tan(thB)*sqrt(abs(r*r_)); % dynamical width

CurveWidth = wl / (2.0 * cos(thB) * Nd); % kinematic width
if (CurveWidth<Dw), CurveWidth = Dw; end;
Range = 20 * CurveWidth;
if (Range<Dth), Range = 2*abs(Dth); end;
dth = CurveWidth / 100;
TH = thC + (-Range:dth:Range);
TH=TH(TH>0 & TH<0.5*pi);
expPHI = exp((-2*pi*d*1i/wl)*sin(TH));
R1 = r*expPHI;
R1_ = r_*expPHI;
T1 = t*expPHI;
bin=dec2bin(N);
Nn = size(bin,2)-find(bin==’1’);
RT = coef(R1,R1_,T1,Nn(1));
R = RT(1,:);
R_ = RT(2,:);
T = RT(3,:);
for nn=2:size(Nn,2)
RT = coef(R1,R1_,T1,Nn(nn));
RB = RT(1,:);
RB_ = RT(2,:);
TB = RT(3,:);
Z = 1./(1 - R_ .* RB);
R = R + RB .* T .* T .* Z;
R_ = RB_ + R_ .* TB .* TB .*Z;
T = T .* TB .* Z;

end;
X = (TH-thB)*(3600/rad);
M = [X; R; R_; T].’;
if (prn==1)
Y = R.*conj(R);
Ymax = max(Y);
n2 = find(X==min(X(Y>0.5*Ymax))); n1 = n2-1;
if (n1>0), x1 = (X(n2)-X(n1))*(0.5*Ymax-Y(n1))/(Y(n2)-Y(n1))+X(n1);

else x1 = 0;
end;
n1 = find(X==max(X(Y>0.5*Ymax))); n2 = n1+1;
if (n2<size(X,2)+1), x2 = (X(n2)-X(n1))*(0.5*Ymax-Y(n1))/(Y(n2)-Y(n1))+X(n1);

else x2 = 0;
end;
Yb = R_.*conj(R_);
Ybmax = max(Yb);
ratio = max([Ymax Ybmax])/min([Ymax Ybmax]);
Ymax = max([Ymax Ybmax]);
Xmax = max(X);
Xmin = min(X);

hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(X,Y,’-k’,X,Yb,’--k’,’LineWidth’,2)
hold on
plot([0 0],[0 1.05*Ymax],’--k’,’LineWidth’,.5)
hold off
axis([Xmin Xmax 0 1.05*Ymax])
set(gca,’FontSize’,14,’Color’,[0.7 0.78 1],’LineWidth’,1)
xlabel(’\Delta\theta (arcsec)’,’FontSize’,18)
ylabel(’reflectivity, |R_N(\theta)|^2’,’FontSize’,18)
title([fname ’, E = ’ num2str(E) ’eV’],’FontSize’,18)
reflH = [’ (’ num2str(H(1)) ’,’ num2str(H(2)) ’,’ num2str(H(3)) ’)’];
reflHb = [’ (’ num2str(-H(1)) ’,’ num2str(-H(2)) ’,’ num2str(-H(3)) ’)’];
legend(reflH,reflHb);
fprintf(’ Crystal thickness (%d planes) = %4.2e um\n’,N,Nd/10000)
fprintf(’ Dynamical width = %5.3f", FWHM = %5.3f" (%4.2f urad)\n’,...
Dw*3600/rad,abs(x2-x1),abs(x2-x1)*(rad*1e+6/3600))
fprintf(’ Peak shift = %5.3f"\n’,Dth*3600/rad)
fprintf(’ Reflectivity ration = %8.6f\n’,ratio)

fprintf(’ Anomalous signal = %5.2f%%\n’,100*(ratio-1)/(ratio+1))
end;

function V=vcell(wl,fname,H)
n = regexp(fname,’.in’, ’once’);
if isempty(n), disp(’ >>>> Unknow file type!!!’), return; end;
fidin = fopen(fname,’r’);
if (fidin==-1), disp([’ >>>> File ’ fname ’ not found!!!’]); return; end;
line = fgets(fidin);
P = sscanf(line,’%f’)’;

if (size(P,2)~=6), disp(’ >>>> Line 1: a b c alpha beta gamma’); return; end;
fclose(fidin);
V = bragg(wl,P,H);
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function RT=coef(R,R_,T,m)
n=0;
while (n<m)

n = n + 1;
T = (T.*T)./(1 - R.*R_);
aux = 1 + T;
R = R.*aux;
R_ = R_.*aux;

end;
RT = [R; R_; T];

71. rcdarwinprinsplot.m
function rcdarwinprinsplot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Comparison of dynamical reflectivity curves from %
% crystals with different thicknesses %
% Secondary routine required: rcdarwinprins.m %
% Required files: Ge.in %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
E = 10000; % X-ray energy (eV)
fname = ’Ge.in’; % crystal data file as required by sfactor.m
H = [2 2 0]; % reflection indexes
Nn = [12 13 22]; % 2^Nn = number of crystallographic planes
M1=rcdarwinprins(E,fname,H,2^Nn(1),0);
M2=rcdarwinprins(E,fname,H,2^Nn(2),0);
M3=rcdarwinprins(E,fname,H,2^Nn(3),0);
Y1 = M1(:,2).*conj(M1(:,2));
Y2 = M2(:,2).*conj(M2(:,2));
Y3 = M3(:,2).*conj(M3(:,2));
nc = Y1==max(Y1);
Xmin = 0.2*min(M3(:,1));
Xmax = -Xmin + 2*M1(nc,1);
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(M1(:,1),Y1,’-r’,’LineWidth’,2)
hold on
plot(M2(:,1),Y2,’-b’,’LineWidth’,2)
plot(M3(:,1),Y3,’-k’,’LineWidth’,2)
hold off
axis([Xmin Xmax 0 1])
set(gca,’FontSize’,14,’Color’,[0.97 0.97 .97],’LineWidth’,1)
xlabel(’\Delta\theta (arcsec)’,’FontSize’,18)

ylabel(’reflectivity, |R_N(\theta)|^2’,’FontSize’,18)
title([fname ’, E = ’ num2str(E) ’eV, H = (’ num2str(H(1)) ’,’ num2str(H(2)) ’,’ num2str(H(3)) ’)’],

’FontSize’,18)
legend([’N = ’ num2str(2^Nn(1))],[’N = ’ num2str(2^Nn(2))],[’N = ’ num2str(2^Nn(3))])

72. rockingcurve.m
function S=rockingcurve(wl,a0,H,Nph)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Rocking curves of cubic (001) crystals in reflection geometry %
% Input: %
% wl = wavelength (Angstrom) or energy (eV) %
% a0 = lattice parameter of cubic crystals, e.g. GaSb (a0 = 6.0966A) %
% H = [h k l], reflection index %
% Nph > 1000 for statistic of Nph counts %
% Output S = [TH Y1 Y2], n-by-3 array where TH = bragg angle, and %
% Yn = rocking curve at low (n=1) and high (n=2) incidence angle %
% Secondary routines required: bragg.m and photonstatistic.m %
% Usage: S=rockingcurve(1.540562,6.0966,[2 2 4],1e+5); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rad = pi / 180;
thn = acos(H(3)/sqrt(H*H’)); % angle between diffraction vector and surface normal
M = bragg(wl,a0,H);
M(2,2) = M(2,2)*rad;
if (M(2,2)==0 || thn>M(2,2)), S=0; disp(’ >>> Not in reflection condition!!!’); return; end;
A0 = wl^3/sin(2*M(2,2));
R1=curve(M,thn,a0);

Z1=photonstatistic(R1(:,2),Nph);
aux1 = max(Z1)/max(R1(:,2));
if (thn<rad)
ctr=1;
S = R1;

else ctr=2;
R2=curve(M,-thn,a0);
Z2=photonstatistic(R2(:,2),Nph);
aux2 = max(Z2)/max(R2(:,2));

S = [R1 R2(:,2)];
end;
dth = R1(2,1)-R1(1,1);
A1=sum(R1(:,2))*dth;
R1(:,2) = R1(:,2) * aux1;
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if (ctr==1)
fprintf(’ curve_area/crystal_volume = %4.2f (A^3), wl^3/sen(2thB) = %4.2f (A^3)\n’,A1,A0);

else
A2=sum(R2(:,2))*dth;
R2(:,2) = R2(:,2) * aux2;
fprintf(’ curve_area/crystal_volume = %4.2f (A^3), wl^3/sen(2thB) = %4.2f (A^3)\n’,0.5*(A1+A2),A0);

end;
X = R1(:,1)*(1/rad);
hf1 = figure(1); clf; set(hf1,’InvertHardcopy’,’off’,’Color’,’w’)
if (ctr==1)
semilogy(X,R1(:,2),’-k’,X,Z1,’ko’,’LineWidth’,1);

else
semilogy(X,R1(:,2),’-k’,X,Z1,’ko’,X,R2(:,2),’-r’,X,Z2,’ro’,’LineWidth’,1);

end;
axis tight

set(gca,’FontSize’,14,’Color’,[0.97 0.97 0.97],’Box’,’on’,’LineWidth’,1,’FontName’,’Arial’)
xlabel(’\theta (deg)’,’FontSize’,18)
if (Nph>1000)
ylabel(’number of counts’,’FontSize’,18)

else
ylabel(’intensity (arb. units)’,’FontSize’,18)

end;

function R=curve(M,thn,a0)
wl = M(1,2);
d = M(2,1);
thB = M(2,2);
k = 2*pi/wl;
Qmax = 2*k;
Qmod = 2*pi/d;
cthn = cos(thn);
sthn = sin(thn);
L=20000; % crystal lateral dimension (Angstrom)
T=5000; % thickness (Angstrom)

if (L<10000), L = 10000; end;
if (T>5000), T = 5000; end;
Qrange = 100/T;
x = (Qmod-Qrange)/Qmax;
thmin = asin(x);
x = (Qmod+Qrange)/Qmax;
if (x<1)
thmax = asin(x);

else
thmax = 0.5*pi;

end;
dth = (thmax-thmin)/250;
TH = thmin:dth:thmax;
a = 0.05;

b = 10;
Dth = (thmin:a*dth:thmax)-thB;
Dth = b*Dth; dthp = (a*b)*dth;
Nth = size(TH,2);
ksth = k*sin(TH);
kcth = k*cos(TH);
T_2 = 0.5*T;
Lx_2 = 0.5*L;
Y = zeros(1,Nth);
for n=1:Nth
THp = TH(n) + Dth;
sTHp = sin(THp);
DQz = k*sTHp+ksth(n)-Qmod;
DQx = k*cos(THp)-kcth(n);
DQxc = Lx_2*(DQx*cthn - DQz*sthn);
DQzc = T_2*(DQx*sthn + DQz*cthn);

Z = sin(DQzc)./DQzc;
Z = (Z.*Z)./(1+(DQxc.*DQxc));
Y(n) = sum(Z);

end;
V = L*L*T;

N = V/a0^3;
Y = (N*N*wl*dthp/L)*Y;
R = [TH; Y]’;

73. rotatcryst.m
function L=rotatcryst(wl,P,A,B,iangle,H)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Polar coordinates of wavevectors k and k’ in azimuthal scanning %
% Input: %
% wl = wavelength (Angstrom) or energy (eV) %
% P = [a b c alpha beta gamma] lattice parameters (Angstrom and deg) %
% A,B = axis of rotation and reference direction %
% iangle = incidence angle (deg), angle between k and A is 90+iangle %
% H = [h1 k1 l1; h2 k2 l2; ...] reflection indexes %
% Ouput L = [ hkl alphaQ phiQ w phi w’ phi’] %
% | | | | | | | %
% | | | | | wavevector k’ polar coordinates (deg)%
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% | | | wavevector k polar coordinates (deg) %
% | Q vector polar coordinates (deg) %
% reflection indexes %
% Usage: %
% L=rotatcryst(8374.5,[6.7830 18.2880],[0 0 1],[0 1 0],-18.8941,[2 0 4]); %
% L=rotatcryst(8374.5,[6.7830 18.2880],[0 0 1],[0 1 0],0,[0 4 0]); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rad = pi / 180;
deg = 1/rad;
if (wl < 1000), E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
if isempty(P), L = [E wl]; return; end;
nm = size(P);
if (nm(1)*nm(2)==1)
P(1:3) = P(1)*ones(1,3);
P(4:6) = [90 90 90];

elseif (nm(1)*nm(2)==2)
P(1:3) = [P(1) P(1) P(2)];
P(4:6) = [90 90 90];

end;
P(4:6) = P(4:6)*rad;
cosphi = cos(P(6)) - cos(P(5))*cos(P(4));
cosphi = cosphi / (sin(P(5))*sin(P(4)));
sinphi = sqrt(1-cosphi*cosphi);
a1 = P(1) * [sin(P(5)) 0 cos(P(5))];
a2 = P(2) * [sin(P(4))*cosphi sin(P(4))*sinphi cos(P(4))];
a3 = P(3) * [0 0 1];
a1r = cross(a2,a3);
Vc = a1r*a1’;
a1r = a1r/Vc;
a2r = cross(a3,a1)/Vc;

a3r = cross(a1,a2)/Vc;
omega = -iangle;
Nr = size(H,1);
w0 = omega*rad;
vecA = A(1)*a1 + A(2)*a2 + A(3)*a3;
vecB = B(1)*a1 + B(2)*a2 + B(3)*a3;
e3 = vecA/norm(vecA);
e2 = cross(vecA,vecB);
e2 = e2/norm(e2);
e1 = cross(e2,e3);
M = [e1; e2; e3]’;
m = 0;

fprintf(’\n’ );
fprintf(’ ------hkl--------alphaQ------phiQ------omega-----phi-------omegat’----phit’--\n’);
for n=1:Nr
Q = H(n,1)*a1r + H(n,2)*a2r +H(n,3)*a3r;
modQ = norm(Q);
sinth = 0.5*wl*modQ;

if (sinth <= 1)
Qe = Q*M;
cosalphaQ = Qe(3)/modQ;
alphaQ = acos(cosalphaQ)*deg;
sinalphaQ = sqrt(1-cosalphaQ^2);
x = Qe(1); y = Qe(2);
phiQ = atan2(y,x);
cw = cos(w0);
sw = sin(w0);
x = sinth+sw*cosalphaQ;
x = -x/(cw*sinalphaQ);
if (abs(x)<=1)
x = acos(x);
phi = phiQ + [-x x];
phi = atan2(sin(phi),cos(phi));
cphi = cos(phi);
sphi = sin(phi);
if (phi(1)<0) phi(1) = 2*pi + phi(1); end;
if (phi(2)<0) phi(2) = 2*pi + phi(2); end;
k = (1/wl)*[cw*cphi’ cw*sphi’ sw*ones(2,1)];

kp = k(1,:) + Qe;
wp1 = asin(wl*kp(3));
x = kp(1); y = kp(2);
phip1 = atan2(y,x);
if (phip1<0), phip1 = 2*pi + phip1; end;
kp = k(2,:) + Qe;
wp2 = asin(wl*kp(3));
x = kp(1); y = kp(2);
phip2 = atan2(y,x);
if (phip2<0) phip2 = 2*pi + phip2; end;
m = m + 1;
L(m,:) = [H(n,:) alphaQ phiQ*deg omega phi(1)*deg wp1*deg phip1*deg];
m = m + 1;
L(m,:) = [H(n,:) alphaQ phiQ*deg omega phi(2)*deg wp2*deg phip2*deg];

end;
end;

end;
Nm = m; m = 0;
while (m<Nm-1)
m = m + 1;
fprintf(’ (%3.0f,%3.0f,%3.0f): %9.4f %9.4f %9.4f %9.4f %9.4f %9.4f\n’,...
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L(m,1),L(m,2),L(m,3),L(m,4),L(m,5),L(m,6),L(m,7),L(m,8),L(m,9));
m = m + 1;
fprintf(’ %9.4f %9.4f\n’,L(m,7),L(m,9));

fprintf(’ ---------------------------------------------------------------------------\n’);
end;

74. rotcrystmethod.m
function rotcrystmethod(wl,fname,A,TH,THd)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Rotating crystal method %
% Input: %
% wl = wavelenght (Angstrom) or energy (eV) %
% fname = file *.in with crystal data information, see sfactor.m or %
% pdfcoordfrac.m (protein crystals) %
% A = [A1,A2,A3] crystallographic direction of the rotating axis %
% TH = [thy,thz] rotation matrix R=Rz(thz)Ry(thy) to orient the %
% rotating axis direction A so that omega = 90-thy (deg) %
% THd = [th1,th2], angle of elevation of the detector area center %
% from yz plane and azimuth around the x axis (deg) %
% Output file *.rcm with list of hkl reflection power and %
% spot coordinates on the flat area detector %
% Secondary routines required: sfactor.m %
% Usage: rotcrystmethod(1.540562,’1TRZ.in’,[5 1 0],[60 30],[0 -30]) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
D = 600; % sample-detector distance (mm)
Rd = 100; % radius of the flat sensor area (mm)
pix = 0.1; % pixel (mm)
sg = 2*pix; % size of diffraction spots, half width at 61% of the maximum
osc = 180; % interval of angular precession is 2osc (deg)
rad = pi / 180; osc = osc * rad;
if (wl<1000) E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
invwl = 1/wl;
if (sum(abs(A))==0) disp(’ >>>> Invalid rotation axis!!!’); return;
else B=A; B(find(abs(B)==min(abs(B)),1))=50;
end;
cthD = cos(atan(Rd/D));
thD = THd(1)*rad;
phiD = THd(2)*rad;
sD = [sin(thD) -cos(thD)*sin(phiD) cos(thD)*cos(phiD)];

xD = D*[0 cos(phiD) sin(phiD)];
yD = D*[cos(thD) sin(thD)*sin(phiD) -sin(thD)*cos(phiD)];

c0 = fix(clock);
code = [num2str(c0(1)) num2str(c0(2)) num2str(c0(3)) num2str(c0(4)) num2str(c0(5)) num2str(c0(6))];
n = regexp(fname,’.in’);
if isempty(n) disp(’ >>>> Unknown file type !!!’); return; end;
fidin = fopen(fname,’r’);
if (fidin==-1) disp([’ >>>> File ’ fname ’ not found!!!’]); return; end;
fout = [fname(1:n-1) ’E’ num2str(round(E)) ’eV’ code ’.rcm’];
line = fgets(fidin);
P = sscanf(line,’%f’)’;
if (size(P,2)~=6) disp(’ >>>> Line 1: a b c alpha beta gamma’); return; end;

n = 0;
line = fgets(fidin);
while (line~=-1)
n = n + 1;
w = find(line==’ ’); w = w(1);
atm(n,:) = ’ ’;
atm(n,1:w-1) = line(1:w-1);
if isempty(regexp(’abcdefghijklmnopqrstuvwxyz’,atm(n,2)))
atomsym(n,:)=[1 w-1];

else atomsym(n,:)=[2 w-1]; end;
Rat(n,:) = sscanf(line(w+1:size(line,2)),’%f’)’;

line = fgets(fidin);
end;
fclose(fidin);
Nat = n; Nc = 0; Ac = zeros(Nat,1); NA = find(Ac==0);
while ~isempty(NA)
n = NA(1);
Mc = find(atm(n,1)==atm(:,1) & atm(n,2)==atm(:,2) & atm(n,3)==atm(:,3) & atm(n,4)==atm(:,4));
Nc = Nc + 1;
Ac(Mc) = Nc;
NA = find(Ac==0);
acod(Nc,:) = atm(n,:);
asym(Nc,:) = atomsym(n,:);

end;
clear atm atomsym;
P(4:6) = P(4:6)*rad;
cosphi = cos(P(6)) - cos(P(5))*cos(P(4));
cosphi = cosphi / (sin(P(5))*sin(P(4)));
sinphi = sqrt(1-cosphi*cosphi);
a1 = P(1) * [sin(P(5)) 0 cos(P(5))];
a2 = P(2) * [sin(P(4))*cosphi sin(P(4))*sinphi cos(P(4))];
a3 = P(3) * [0 0 1];
a1r = cross(a2,a3);
Vc = a1r*a1’;
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a1r = a1r/Vc;
a2r = cross(a3,a1)/Vc;
a3r = cross(a1,a2)/Vc;
vecA = A(1)*a1 + A(2)*a2 + A(3)*a3;
vecB = B(1)*a1 + B(2)*a2 + B(3)*a3;
e3 = vecA/norm(vecA);
e2 = cross(vecA,vecB);
e2 = e2/norm(e2);
e1 = cross(e2,e3);
M = [e1; e2; e3]’;
thy = TH(1)*rad;

thz = TH(2)*rad;
Ry = [ cos(thy) 0 sin(thy); 0 1 0; -sin(thy) 0 cos(thy)];
Rz = [cos(thz) -sin(thz) 0; sin(thz) cos(thz) 0; 0 0 1];
wlR = wl*(Rz*Ry);
Rzphi = eye(3);
w0 = 0.5*pi - thy;
hmax = floor(2.0 / (wl * norm(a1r)));
kmax = floor(2.0 / (wl * norm(a2r)));
lmax = floor(2.0 / (wl * norm(a3r)));
H = [-hmax:hmax];
K = [-kmax:kmax];
L = [-lmax:lmax];

Lt = zeros(1,6);
m = 0;
for nh = 1:2*hmax+1
for nk = 1:2*kmax+1

for nl = 1:2*lmax+1
h = H(nh); k = K(nk); l = L(nl);
Q = h*a1r + k*a2r + l*a3r;
modQ = norm(Q);
sinth = 0.5*wl*modQ;
if (sinth <= 1 && sinth > 0)
Qe = Q*M;
cosalphaQ = Qe(3)/modQ;
sinalphaQ = sqrt(1-cosalphaQ^2);
x = Qe(1); y = Qe(2);
phiQ = atan2(y,x);
cw = cos(w0);
sw = sin(w0);
x = sinth+sw*cosalphaQ;
y = cw*sinalphaQ;
if (abs(x)<=abs(y))

phi = phiQ + [-1 1]*acos(-x/y);
phi = atan2(sin(phi),cos(phi));
cphi = cos(phi);
sphi = sin(phi);
veck = invwl*[cw*cphi’ cw*sphi’ sw*ones(2,1)];
kp = veck(1,:) + Qe;
thz = pi - phi(1); cthz = cos(thz); sthz = sin(thz);
Rzphi(1:2,:) = [cthz -sthz 0; sthz cthz 0];
kpxy = kp*(wlR*Rzphi)’;
ckpsD = kpxy*sD’;
if (ckpsD>cthD & abs(phi)<osc)
m = m + 1;
x = wl*kp(3);
g = cw*sqrt(1-x*x);
x = kp(1); y = kp(2);
g = g*abs(sin(atan2(y,x)-phi(1)));
g = 0.5*(1+kpxy(3)*kpxy(3))/g;
Lt(m,:) = [h k l g (1/ckpsD)*[kpxy*xD’ kpxy*yD’]];

end;
kp = veck(2,:) + Qe;

thz = pi - phi(2); cthz = cos(thz); sthz = sin(thz);
Rzphi(1:2,:) = [cthz -sthz 0; sthz cthz 0];
kpxy = kp*(wlR*Rzphi)’;
ckpsD = kpxy*sD’;
if (ckpsD>cthD & abs(phi)<osc)
m = m + 1;
x = wl*kp(3);
g = cw*sqrt(1-x*x);
x = kp(1); y = kp(2);

g = g*abs(sin(atan2(y,x)-phi(2)));
g = 0.5*(1+kpxy(3)*kpxy(3))/g;
Lt(m,:) = [h k l g (1/ckpsD)*[kpxy*xD’ kpxy*yD’]];

end;
end;

end;
end;

end;
end;
if (m==0) disp(’ >>>> No available reflection!!!’); return; end;
Nrefl = m;
X = sfactor(wl,fname,Lt(:,1:3));
Fhkl2 = X.*conj(X);
Phkl = Fhkl2.*Lt(:,4);
clear X;
X = Phkl;
Nmax = [];



274 B MatLab Routines

while (sum(X)>0);
NN = find(X==max(X));
X(NN) = 0;
Nmax = [Nmax; NN];

end;
Nrefl = size(Nmax,1);
Lt = Lt(Nmax,:);
Fhkl2 = Fhkl2(Nmax);
Phkl = Phkl(Nmax);
clear Nmax X;
invF2max = max(Fhkl2);

if (invF2max>1e-8) invF2max = 100/invF2max; else disp(’ >>>> Forbidden reflections only!!!’); return; end;
c0=clock;
fidout = fopen(fout,’w’);
fprintf(fidout,’\nCrystal: %s\n’,fname);
fprintf(fidout,’Date and Time: %d/%d/%d - %d:%d:%4.2f\n’,c0(2),c0(3),c0(1),c0(4),c0(5),c0(6));
fprintf(fidout,’Energy = %6.2f eV (%8.6f A)\n’,E,wl);
fprintf(fidout,’Rotating axis A = [%5.3f %5.3f %5.3f], orientation thy = %5.3f and thz = %5.3f\n’,
A(1),A(2),A(3),TH(1),TH(2));

fprintf(fidout,’Detector area radius, Rd = %5.1f mm\n’,Rd);
fprintf(fidout,’Sample-detector distance, D = %5.1f mm\n’,D);
fprintf(fidout,’Detector elevation and azimuth, thd = %5.3f and phid = %5.3f\n’,thD/rad,phiD/rad);
fprintf(fidout,’|----------------|--------------------|-----------------------------------|\n’);
fprintf(fidout,’| h k l | |Fhkl|^2 | Phkl X(mm) Y(mm) |\n’);
fprintf(fidout,’|----------------|--------------------|-----------------------------------|\n’);
m = 1;
while (Phkl(m)>1 && m < Nrefl)

fprintf(fidout,’| %3.0f %3.0f %3.0f | %5.3e(%5.1f%%) | %5.3e %10.3f %10.3f | %d\n’,...
Lt(m,1),Lt(m,2),Lt(m,3),Fhkl2(m),invF2max*Fhkl2(m),Phkl(m),Lt(m,5),Lt(m,6),m);

m = m + 1;
end;
fprintf(fidout,’|----------------|--------------------|-----------------------------------|\n’);
fclose(fidout);
Xf = Lt(:,5); Yf = Lt(:,6);
Nx = floor(Rd/pix); Ny = Nx;
Ld = (2*Nx+1)*pix;
Z = zeros(2*Nx+1);
for m=1:Nrefl
nx = fix(Xf(m)/pix)+Nx+1;
ny = fix(Yf(m)/pix)+Ny+1;
Z(ny,nx) = Z(ny,nx) + Phkl(m);

end;
Ng = floor(10*sg/pix);

Xg = (-Ng:Ng)*pix;
Xg = Xg.*Xg;
for nx=1:2*Ng+1
for ny=1:2*Ng+1

Xg2(ny,nx) = Xg(ny) + Xg(nx);
end;

end;
G = (1/(sg*sg*2*pi))*exp((-1/(2*sg*sg))*Xg2);
Zg = [zeros(2*Ny+1+2*Ng,Ng) [zeros(Ng,2*Nx+1); Z; zeros(Ng,2*Nx+1)] zeros(2*Ny+1+2*Ng,Ng)];
for nx=1:2*Nx+1
for ny=1:2*Ny+1
Z(ny,nx) = sum(sum(G.*Zg(ny:2*Ng+ny,nx:2*Ng+nx)));

end;
end;

thc = (1:360)*rad;
Xc = Rd * cos(thc);
Yc = Rd * sin(thc);
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
imagesc(Ld*[-.5 .5],Ld*[-.5 .5],log10(Z+1))
hold on
plot(Xc,Yc,’k’,’LineWidth’,1)
plot([-5 5],[0 0],’r-’,[0 0],[-5 5],’r-’,’LineWidth’,2)
hold off
axis image
set(gca,’YDir’,’normal’,’FontName’,’Arial’,’FontSize’,18,’Box’,’on’,’LineWidth’,1)
Ni = 64; VFLIP = zeros(Ni,Ni);
for n = 1:Ni m = Ni - (n-1); VFLIP(n,m) = 1; end;
colormap(VFLIP*gray);
colorbar(’FontSize’,14,’Location’,’manual’,’Position’,[.84 .11 .05 .725],’LineWidth’,1)

ylabel(’Y (mm)’)
xlabel(’X (mm)’)
text(0,0,5000,’Log(I) (arb. units)’,’FontSize’,14,’Rotation’,90)

75. saxs.c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculates P(Q) by using all records "ATOM" and "HETATM" %
% from a pdb file (*.pdb) %
% Usage details of this C++ routine as well as the routine itself is %
% available at http://xraybook.if.usp.br/ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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76. saxs.m
function M=saxs(fname,Qf,Nq,prn)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Scattering power of molecules in the small angle limit (SAXS curve) %
% Input: %
% fname = pdb text file, *.pdb, or saved files *.ndu %
% Qf = maximum Q value, ranging from 0 to Qf (1/Angstrom) %
% Nq = number of points in the P(Q) curve %
% prn = 0 to suppress graphic window %
% Output M = [Q; P]’; %
% Secondary routines required: histogram.m %
% Usage: %
% >> M = saxs(’1N5U.pdb’,0.35,1000,1); %
% >> M = saxs(’2LYZ.ndu’,2,80,0); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
S=histogram(fname,0)’;
U = S(1,:);
p = S(2,:);
Nu = size(U,2);
du = (U(Nu)-U(1))/(Nu-1);
if (U(1)==0) U(1) = 1e-8; end;
dQ = Qf/Nq;
Q = 0:dQ:Qf; Q(1) = 1e-8;
Nq = size(Q,2);

aux = 4*pi*du;
for n=1:Nq

Qu = Q(n)*U;
P(n) = aux * sum(p.*(sin(Qu)./Qu));

end;
M = [Q; P]’;
if (prn~=0)
hf1=figure(1);
clf
set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
semilogy(Q,P,’k’,’LineWidth’,2);
axis tight
set(gca,’FontSize’,14,’Color’,[0.93 0.93 0.93])
xlabel(’Q (A^{-1})’,’FontSize’,18)

ylabel(’P(Q) / P(0)’,’FontSize’,18)
end;

77. sfactor.m
function Fhkl=sfactor(wl,fname,H)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Structure Factor of hkl reflections %
% Input: %
% wl = wavelength (Angstrom) or energy (eV) %
% fname = input crystal data, file *.in %
% H = [h1 k1 l1; h2 k2 l2;...], n-by-3 array of reflection indexes %
% Output Fhkl=[F1; F2;...], n-by-1 array of complex structure factors %
% Secondary routines requires: asfQ.m and fpfpp.m %
% Usage: %
% >> sfactor(10400,’AsGa.in’,[0 0 2; 0 0 4; 1 1 1; -1 -1 -1]) %
% Format of crystal input file (*.in) %
% 1st line: %
% a b c alpha beta gamma %
% 2nd line and onwards: %
% At xa ya za foc fdw %
% | | | | | | %
% | | | | | Debye-Waller factor, 8*pi^2*<u^2> %
% | | | | ocupation factor %
% | fractional coordinates %
% atom symbol, as written in routines asfQ.m and fpfpp.m %
% Example of *.in file: GaAs.in %
% 5.6534 5.6534 5.6534 90.0 90.0 90.0 %
% Ga 0.0 0.0 0.0 1.0 0.0 %
% Ga 0.5 0.5 0.0 1.0 0.0 %
% Ga 0.0 0.5 0.5 1.0 0.0 %
% Ga 0.5 0.0 0.5 1.0 0.0 %
% As 0.25 0.25 0.25 1.0 0.0 %
% As 0.75 0.75 0.25 1.0 0.0 %
% As 0.75 0.25 0.75 1.0 0.0 %
% As 0.25 0.75 0.75 1.0 0.0 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (wl < 1000) E = 12398.5 / wl; else E = wl; wl = 12398.5 / E; end;
n = regexp(fname,’.in’, ’once’);
if isempty(n)
disp(’ Unknow file type!!!’)
return;

end;
fidin = fopen(fname,’r’);
if (fidin==-1)

disp([’ >>>> File ’ fname ’ not found!!!’])
return;
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end;
line = fgets(fidin);
P = sscanf(line,’%f’)’;
if (size(P,2)~=6)
disp(’ >>>> Line 1: a b c alpha beta gamma’); return;

end;
n = 0;
line = fgets(fidin);
while (line~=-1)
n = n + 1;
w = find(line==’ ’); w = w(1);
atm(n,:) = ’ ’;
atm(n,1:w-1) = line(1:w-1);
if isempty(regexp(’abcdefghijklmnopqrstuvwxyz’,atm(n,2), ’once’))
atomsym(n,:)=[1 w-1];

else atomsym(n,:)=[2 w-1]; end;
R(n,:) = sscanf(line(w+1:size(line,2)),’%f’)’;

line = fgets(fidin);
end;
fclose(fidin);
Nat = n; Nchem = 0; A = zeros(Nat,1); NA = find(A==0);
while ~isempty(NA)

n = NA(1);
M = atm(n,1)==atm(:,1) & atm(n,2)==atm(:,2) & atm(n,3)==atm(:,3) & atm(n,4)==atm(:,4);
Nchem = Nchem + 1;
A(M) = Nchem;
NA = find(A==0);
acod(Nchem,:) = atm(n,:);
asym(Nchem,:) = atomsym(n,:);

end;
clear atm atomsym;
cosphi = cosd(P(6)) - cosd(P(5))*cosd(P(4));
cosphi = cosphi / (sind(P(5))*sind(P(4)));
sinphi = sqrt(1-cosphi*cosphi);
a1 = P(1) * [sind(P(5)) 0 cosd(P(5))];
a2 = P(2) * [sind(P(4))*cosphi sind(P(4))*sinphi cosd(P(4))];
a3 = P(3) * [0 0 1];
a1r = cross(a2,a3);
Vc = a1r*a1’;
a1r = a1r/Vc;
a2r = cross(a3,a1)/Vc;
a3r = cross(a1,a2)/Vc;
hmax = 2.0 / (wl * sqrt(a1r*a1r’));

kmax = 2.0 / (wl * sqrt(a2r*a2r’));
lmax = 2.0 / (wl * sqrt(a3r*a3r’));
fres = zeros(Nchem,1);
for n=1:Nchem
aux = fpfpp(acod(n,1:asym(n,1)),E);
fres(n) = aux(2)+1i*aux(3);

end;
if isempty(H)

F=0;
for n=1:Nchem
NA= A==n; m = sum(R(NA,4));
F = F + m * (asfQ(acod(n,1:asym(n,2)),0) + fres(n));

end;
Fhkl = F;

return;
end;
twopii = 2*pi*1i;
Nhkl = size(H,1);
Fhkl = zeros(Nhkl,1);
for m=1:Nhkl
h = H(m,1); k = H(m,2); l = H(m,3);
if (hmax>abs(h) && kmax>abs(k) && lmax>abs(l))
q = h*a1r + k*a2r + l*a3r;
x = 0.5*sqrt(q*q’);
x2 = x*x;
F = 0;
for n=1:Nchem
fn = asfQ(acod(n,1:asym(n,2)),x) + fres(n);
NA = A==n;
F = F + fn*sum(exp(R(NA,1:3)*(twopii*[h; k; l])).*R(NA,4).*exp((-x2)*R(NA,5)));

end;
else F=0;
end;

Fhkl(m,:) = F;
end;

78. sgcompton.m
function Z=sgcompton(A,E)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Incoherent (Compton) scattering cross-section %
% Input: %
% A = element symbol, e.g. ’Ca’ %
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% E = energy values (m-by-n array) (keV) %
% Output Z = [E sgc] %
% | | %
% | cross-section (barn) %
% energy (keV) %
% Analytical function: %
% sgr(E) = exp{ c0 + c1*[log(E)]^1 + c2*[log(E)]^2 + c3*[log(E)]^3} %
% %
% Coefficients c0, c1, c2, and c3 from file CrossSectionCompton.txt %
% available at http://xraybook.if.usp.br/ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (E(1)>500), E = 0.001*E; end;
sizeA = size(A,2);
mmax = mcmaster(0);
m = 1; C=zeros(1,4); ctr = 1;
while ((ctr == 1) && (m < mmax+1))
line = mcmaster(m);
aux = find(line(1:7)==’ ’);
n = aux(1);
if (n==sizeA+1)
X = line(1:n-1);
if (X==A)
C = sscanf(line(7:size(line,2)),’%f’)’;
ctr = 0;

end;
end;
m = m + 1;

end;
X = log(E);
X2 = X.*X;
X = C(1) + C(2)*X + C(3)*X2 + C(4)*(X2.*X);

X = exp(X);
nn = size(E);
Z = zeros(nn(1)*nn(2),2);
for n=1:nn(1)*nn(2), Z(n,:) = [E(n) X(n)]; end;

function line=mcmaster(nn)
M = [
’C -0.9828799960 1.4668999900 -0.2937400040 0.0155999996’;
’N -1.2368999700 1.7451000200 -0.3546600040 0.0198700000’;
’O -1.7367999600 2.1768999100 -0.4490500090 0.0264730007’;
’Si -0.4149700110 1.3487000500 -0.2223100070 0.0084196003’;
’Ar -0.6821100120 1.7428000000 -0.3176499900 0.0156469997’;
’Ca -0.0982419998 1.3283000000 -0.2137500050 0.0077306000’];
% Complete matrix of coefficients is available on the book’s webpage
if (nn==0), line = size(M,1);
else line = M(nn,:);
end;

79. sgrayleigh.m
function Z=sgrayleigh(A,E)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Coherent scattering cross-section (Rayleigh), sg_R %
% Input: %
% A = element symbol, e.g. ’Ca’ %
% E = energy values (m-by-n array) (keV) %
% Output: Z = [E sgr] %
% | | %
% | cross-section (barn) %
% energy (keV) %
% Analytical function: %
% sgr(E) = exp{ c0 + c1*[log(E)]^1 + c2*[log(E)]^2 + c3*[log(E)]^3} %
% %
% Coefficients c0, c1, c2, and c3 from file CrossSectionRayleigh.txt %
% available at http://xraybook.if.usp.br/ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (E(1)>500), E = 0.001*E; end;
sizeA = size(A,2);
mmax = mcmaster(0);
m = 1; C=zeros(1,4); ctr = 1;
while ((ctr == 1) && (m < mmax+1))
line = mcmaster(m);
aux = find(line(1:7)==’ ’);
n = aux(1);
if (n==sizeA+1)
X = line(1:n-1);
if (X==A)
C = sscanf(line(7:size(line,2)),’%f’)’;
ctr = 0;

end;
end;
m = m + 1;

end;
X = log(E);
X2 = X.*X;
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X = C(1) + C(2)*X + C(3)*X2 + C(4)*(X2.*X);
X = exp(X);
nn = size(E);
for n=1:nn(1)*nn(2) Z(n,:) = [E(n) X(n)]; end;

function line=mcmaster(nn)
M = [
’C 3.10859990 -0.26058000 -0.27197000 0.01351800’;
’N 3.47760010 -0.21575999 -0.28887001 0.01513100’;
’O 3.77239990 -0.14854001 -0.30712000 0.01673000’;
’Si 4.64680004 0.16278000 -0.35856000 0.01969300’;
’Ar 5.21080017 0.13562000 -0.34720999 0.01843300’];
% Complete matrix of coefficients is available on the book’s webpage
if (nn==0), line = size(M,1);
else line = M(nn,:);
end;

80. siliconDScamera.m
function siliconDScamera(D,L,pixel,wl,Nph)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% X-ray powder diffraction pattern of silicon %
% Debye-Scherrer camera %
% Input: %
% film radius D (mm), width L (mm), and size of pixel (mm) %
% wl = wavelength (Angstrom) or energy (eV) %
% Nph > 1000 for pattern with statistic of N counts %
% Secondary routines required: bragg.m, asfQ.m, fpfpp.m, %
% siliconPofQ.m, and photonstatistic.m %
% Required files: siliconnanoD200r2.pdu %
% File generated by routine siliconnano.m, see http://xraybook.if.usp.br/ %
% Usage: siliconDScamera(100,40,1,1,5e+6) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
E=bragg(wl,[],[]);
wl = E(2);
E = E(1);
s = [1 0 0]; % incidence direction
e = [0 1 0]; % polarization (electric field vibration direction)
dy = pixel;
n = floor(L/dy);
LimY = 0.5*n*dy;
Y = -LimY:dy:0;
Ny = size(Y,2);
dphi = pixel / D;
n = floor(pi/dphi);
LimPhi = 0.5*(2*n-1)*dphi;
phi = 0:dphi:LimPhi;
Nphi = size(phi,2);

D2 = D*D;
aux1 = D2*dy*dphi;
Q = zeros(Ny,Nphi); XX = Q; YY = Q; P2 = Q;
for ny = 1:Ny

y = Y(ny);
invr = 1/sqrt(y*y+D2);
DOmega = aux1*invr*invr*invr;
YY(ny,1:Nphi)=y;
for np = 1:Nphi
z = phi(np);
XX(ny,np)= D*z;
cphi = cos(z);
sphi = sin(z);
sprime = invr*[D*cphi y D*sphi];

p = cross(sprime,cross(e,sprime));
P2(ny,np) = (p * p’)*DOmega;
Q(ny,np) = norm(sprime - s); % |s’-s|

end;
end;
Q = (2*pi/wl)*Q;
M=siliconPofQ(’siliconnanoD200r2.pdu’,Q);
M(Q<.5)=0;
I = M.*P2;
beye=zeros(Ny-1);
for n=1:Ny-1, beye(n,Ny-n) = 1; end;
I = [I; beye*I(1:Ny-1,:)];
XX = [XX; beye*XX(1:Ny-1,:)];

YY = [YY; -beye*YY(1:Ny-1,:)];
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
if (Nph>1000)
I=photonstatistic(I,Nph);
I(I==0)=1;
imagesc([0 D*pi],[-LimY LimY],log10(I))
axis image

textlabel = ’Log(counts)’;
else
surf(XX,YY,log10(I+1))
axis image
shading interp
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view(0,90)
textlabel = ’Log(I) (arb. units)’;

end;
set(gca,’FontName’,’Arial’,’FontSize’,14,’LineWidth’,1)
colormap(hot)
colorbar(’XColor’,’k’,’FontSize’,14,’Location’,’NorthOutside’,’LineWidth’,1,’Position’,
[0.54 0.405 0.38 0.05])

ylabel(’film width (mm)’,’FontSize’,18)
xlabel(’film length (mm)’,’FontSize’,18)
text(0,0,5000,textlabel,’Color’,’w’,’FontSize’,18)

81. siliconnano.m
function M=siliconnano(D,amp,sph)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PDDF in nanocrystal of silicon %
% Input: %
% D = particle diameter (Angstrom) %
% amp = atomic displacement in percentege (%) of the distance 2.35 A %
% sph == 1 for spherical particle, othewise cubic with edge of 0.8D %
% Output M = [U; p]’, n-by-2 array %
% U = interatomic dist. (Angstrom) and p = PDDF %
% Usage: M = siliconnano(200,2,1); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (D>200), disp(’ Warning!!! Delay time can be very long for D > 200 Angstroms’); end;
if (sph~=1), D = 0.8*D; end;
a0=5.4309; % silicon lattice parameter (Angstrom)
if (D<a0), D = a0; end;

N = fix(D/a0)+1;
Nc = 0; R=zeros((N-1)^3,3);
for m=0:N-1
for n=0:N-1

for p=0:N-1
Nc = Nc + 1;
R(Nc,:) = [m n p]; % lattice position

end;
end;

end;
if (Nc==0), Nc = 1; R(1,:) = [0 0 0]; end;
R=a0*R;
X = a0*[ 0 0 0; .5 .5 0; .5 0 .5; 0 .5 .5;

.25 .25 .25; .75 .75 .25; .75 .25 .75; .25 .75 .75]; % fractional coordinates
Nx = size(X,1);

for n=2:Nx
for m=1:Nc
R((n-1)*Nc+m,:) = R(m,:) + X(n,:);

end;
end;
Nat = size(R,1);
Cm = sum(R(:,1))/Nat;
X = R - Cm*ones(Nat,3);
if (sph==1)

X2 = sum(X.*X,2);
NN = X2<0.25*D*D;
R = X(NN,:);
Nat = size(R,1);
Umax = 1.02*D;
fname = [’siliconnanoD’ num2str(round(D)) ’r’ num2str(round(amp)) ’.pdu’];

else
Umax = (1.732*1.05)*D;
fname = [’siliconnanoL’ num2str(round(D)) ’r’ num2str(round(amp)) ’.pdu’];

end;
R = R + (0.01*amp*a0*sqrt(3)/4)*(1-2*rand(Nat,3));
du = 0.001;
U = 0:du:Umax;
Nu = size(U,2);
p=zeros(1,Nu);
for n=1:Nat
for m=n+1:Nat
r = R(n,:)-R(m,:);
k=fix(sqrt(r*r’)/du)+1;
p(k) = p(k) + 1;

end;
end;
p = 2*p;

p(1) = Nat;
M = [U; p]’;
save(fname,’M’,’-ascii’);
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82. siliconpeakfit.m
function siliconpeakfit(q0,Rg1,xpv1,Rg2,xpv2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Peak fitting with pseudo-Voigh function %
% Input: %
% q0 = peak center (1/Angstrom) %
% Rg1, Rg2 = gyration radius (Angstrom) %
% xpv1, xpv2 = pseudo-Voigt for Gaussian(0)/Lorentzian(1) parameter %
% Secondary routines required: siliconPofQ.m %
% Required files: siliconnanoD200r2.pdu and siliconnanoL160r2.pdu %
% Files generated by routine siliconnano.m, see http://xraybook.if.usp.br %
% Usage: siliconpeakfit(3.2724,82,0.8,88,0.55) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Qmax = 2*sqrt(12*log(2))/min([Rg1 Rg2]); dq = 0.0025;
DQ = -Qmax:dq:Qmax;
Ia = siliconPofQ(’siliconnanoD200r2.pdu’,q0+DQ);
Ia = Ia / max(Ia);
Ya = pseudovoigt(DQ,Rg1,xpv1);
d = Ia-Ya;
gof1 = sum(d.*d);
gof1text = [’\chi^2 = ’ num2str(0.001*round(1000*gof1))];

Ib = siliconPofQ(’siliconnanoL160r2.pdu’,q0+DQ);
Ib = Ib / max(Ib);
Yb = pseudovoigt(DQ,Rg2,xpv2);
d = Ib-Yb;

gof2 = sum(d.*d);
gof2text = [’\chi^2 = ’ num2str(0.001*round(1000*gof2))];

hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
subplot(1,2,1)
set(gca,’Position’,[0.09 0.16 0.4 0.83])
plot(DQ,sqrt(Ia),’ro’,DQ,sqrt(Ya),’k’,’LineWidth’,1.5)
axis([min(DQ) max(DQ) 0.08 1])
set(gca,’FontSize’,14,’Color’,[0.97 0.97 0.97],’LineWidth’,1)

xlabel(’\DeltaQ (A^{-1})’,’FontSize’,18)
ylabel(’root(I/Imax)’,’FontSize’,18)
text(0.2*max(DQ),.9,gof1text,’FontSize’,16)
text(0.9*min(DQ),.95,’(a)’,’FontSize’,20)
grid
subplot(1,2,2)
set(gca,’Position’,[0.55 0.16 0.4 0.83])
plot(DQ,sqrt(Ib),’ro’,DQ,sqrt(Yb),’k’,’LineWidth’,1.5)
axis([min(DQ) max(DQ) 0.08 1])
set(gca,’YTickLabel’,[],’FontSize’,14,’Color’,[0.97 0.97 0.97],’LineWidth’,1)
xlabel(’\DeltaQ (A^{-1})’,’FontSize’,18)

text(0.2*max(DQ),.9,gof2text,’FontSize’,16)
text(0.9*min(DQ),.95,’(b)’,’FontSize’,20)
grid

function Y=pseudovoigt(DQ,Rg,xpv)
xpv = abs(xpv);
if (xpv>1), xpv = 1; end;
sg = sqrt(1.5)/Rg;
bq = sqrt(12*log(2))/Rg;
X2 = DQ.*DQ;

Y = (xpv/(sg*sqrt(2*pi)))*exp((-1/(2*sg*sg))*X2);
Y = Y + (2*(1-xpv)*bq/pi)./(4*X2+bq*bq);

Y = Y * (1/max(Y));

83. siliconPofQ.m
function P=siliconPofQ(fname,Q)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Scattering power P(Q) of silicon nanocrystals %
% Input: %
% Q = n-by-m array with reciprocal vector modules (1/Angstrom) %
% fname = file *.pdu, PDDF from routine siliconnano.m %
% Output P, n-by-m array with P(Q) values %
% Secondary routines required: asfQ.m and fpfpp.m %
% Usage: P=siliconPofQ(’siliconnanoD200r2.pdu’,[0:0.001:12.565]); %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n = regexp(fname,’.pdu’, ’once’);
if isempty(n), disp(’ >>>> Unknown file type!!!’); P=0; return; end;
S=load(fname)’;
U = S(1,:);
p = S(2,:);
U(U==0) = 1e-8;
Nn = size(Q);
P = zeros(Nn(1),Nn(2));
Nq = Nn(1)*Nn(2);
Qf = max(max(Q));
Q(Q==0)=1e-8;
fres = fpfpp(’Si’,Qf/1.0135e-3);

f = asfQ(’Si’,(0.25/pi)*Q) + fres(2) + 1i*fres(3);
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f2 = real(f.*conj(f));
for n=1:Nq
Qu = Q(n)*U;
P(n) = f2(n) * sum(p.*(sin(Qu)./Qu));

end;

84. siliconxrdpattern.m
function siliconxrdpattern
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Comparison between simulated XRD patterns from %
% PDDF and Fhkl values %
% Secondary routines required: siliconPofQ.m and diffractogram.m %
% Required files: siliconnanoD200r2.pdu and SiE12399.sft %
% File generated by routine siliconnano.m and diffraction.m, %
% see http://xraybook.if.usp.br/ %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Qf = 1.0135*12.3985; % for X-rays of 12.3985 keV
dQ = Qf/5000;
Q = (1:dQ:Qf)’;
Y = siliconPofQ(’siliconnanoD200r2.pdu’,Q); % load(’siliconpofqD200r2.dat’);
Y = (1/max(Y))*Y;
M = diffractogram(’SiE12399.sft’,85,.4,0);

hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
plot(Q,sqrt(Y),’-ko’,’MarkerSize’,6,’MarkerFaceColor’,’r’,’MarkerEdgeColor’,’auto’,’LineWidth’,1)
hold on; plot(M(:,1),sqrt(M(:,3)),’y’,’LineWidth’,1.5); hold off
axis([min(Q) max(Q) 0 1.0])
set(gca,’FontSize’,14,’Color’,[0.7 0.78 1],’LineWidth’,1)
xlabel([’Q (’ char(197) ’^{-1})’],’FontSize’,18)
ylabel(’(I/Imax)^{1/2}’,’FontSize’,18)
ha2=axes(’Position’,[.5 .55 .385 .36]);
plot(M(:,1),M(:,5),’r’,’LineWidth’,3)
set(ha2,’FontSize’,12,’Color’,[1 1 1],’FontName’,’Arial’,’LineWidth’,1)
grid

xlabel([’Q (’ char(197) ’^{-1})’])
ylabel(’\Sigma|F_{hkl}|^2 (rel. values)’)
axis tight

85. sincfunction.m
function sincfunction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Comparison of functions %
% squared sinc, y(x)=|sin(x)/x|^2, and Lorentzian, y(x)=1/(1+x^2) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a = 1; % lattice parameter
Nq = 1000; % number of points in each curve
dq = 1/Nq;
L = -1:dq:1; % reflection index (00L)
Qz = (2*pi/a)*L; % z component of diffraction vector
Nq = size(Qz,2);

Qz(Qz==0)=1e-8;
N=10; % number of unit cell along crystal thickness
t = N*a;
Qt = 0.5*t*Qz;
Z10 = 1./(1 + Qt.*Qt);
Y = sin(Qt)./Qt;
Y10 = Y.*Y;
N=500;
t = N*a;
Qt = 0.5*t*Qz;
Z500 = 1./(1 + Qt.*Qt);

Y = sin(Qt)./Qt;
Y500 = Y.*Y;
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
semilogy(L,Y10,’b’,L,Y500,’b’,’LineWidth’,1)
hold on
semilogy(L,Z10,’k’,L,Z500,’k’,’LineWidth’,1.5)
hold off
axis([L(1) L(Nq) 0.5*min(Z500) 1])
set(gca,’FontSize’,14,’Color’,[0.97 0.97 0.97],’FontName’,’Arial’,’Box’,’on’,’LineWidth’,1)
xlabel(’\Deltal’,’FontName’,’Times’,’FontSize’,20);

ylabel(’y(x)’,’FontSize’,18);
text(.4,0.01,’t = 10a’,’FontSize’,16);
text(.4,.6e-6,’t = 500a’,’FontSize’,16,’Color’,’w’);
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86. sincinterference.m
function sincinterference
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Interference of sinc functions in the range L-1 to L+1 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NL = 1000; % number of points in each curve
dl = 1/NL;
DL = -1:dl:1; % range of index L of reflection HKL
N=20; % number of unit cells along crystal thickness
Ya = curva(DL,N);
N=100;
Yb = curva(DL,N);

N=500;
Yc = curva(DL,N);
hf1=figure(1); clf; set(hf1,’InvertHardcopy’, ’off’,’Color’,’w’)
semilogy(DL,Ya(3,:),’m’,DL,Ya(1,:),’k’,’LineWidth’,1)
legend(’ B(\Deltal)’,’ A(\Deltal)’)
hold on
semilogy(DL,Ya(4,:),’m’,DL,Ya(2,:),’k’,’LineWidth’,1)
semilogy(DL,Yb(3,:),’m’,DL,Yb(4,:),’m’,DL,Yb(1,:),’k’,DL,Yb(2,:),’k’,’LineWidth’,1)
semilogy(DL,Yc(3,:),’m’,DL,Yc(4,:),’m’,DL,Yc(1,:),’k’,DL,Yc(2,:),’k’,’LineWidth’,1)
hold off
axis([DL(1) max(DL) .6e-6 1])
set(gca,’FontSize’,14,’Color’,[0.97 0.97 0.97],’FontName’,’Times’,’Box’,’on’,’LineWidth’,1)
xlabel(’\Deltal’,’FontSize’,20);
ylabel(’A,B’,’FontSize’,18);

text(.42,0.004,’t = 20a’,’FontSize’,16);
text(.42,5e-5,’t = 100a’,’FontSize’,16,’Color’,’w’);
text(.42,2e-6,’t = 500a’,’FontSize’,16,’Color’,’w’);

function Y=curva(DL,N)
N=2*floor(0.5*N); % sin(x)/x = 1/(1+ix) works for N even
aux = pi*N;
DQzt_2 = aux*(DL+1);
L = sncltz(DQzt_2);
DQzt_2 = aux*DL;
C = sncltz(DQzt_2);

DQzt_2 = aux*(DL-1);
R = sncltz(DQzt_2);
A = L(1,:)+C(1,:)+R(1,:);
Y(1,:) = A.*A;
A = L(2,:)+C(2,:)+R(2,:);
Y(2,:) = A.*conj(A);
Y(3,:) = L(1,:).*L(1,:) + C(1,:).*C(1,:) + R(1,:).*R(1,:);
Y(4,:) = L(2,:).*conj(L(2,:)) + C(2,:).*conj(C(2,:)) + R(2,:).*conj(R(2,:));

function M=sncltz(x)
x(x==0)=1e-8;
M(1,:) = sin(x)./x;
M(2,:) = 1./(1+1i*x);
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A
Absorption, X-ray, 1. See also Photoelectric

absorption
atomic resonance, 42–45

semi-classical approach of, 45–48
cross-section, 39–41, 43–47

for Kr, 48
modulation in, 53–54

Kramers–Kronig relations, 48–50
linear attenuation coefficient, 39–42

and scattering cross-section, 40–42
modulation by rescattering of

photoelectrons, 50–56
Absorption edge measurement, 206–209

experimental data, 207
photoelectric absorption cross-section,

208–209
transmission coefficients, 208

˛�quartz
atomic structure, 120–121

RDF of, 121
critical angle of, 192–193
disordering periodic structures, 121–123

Alumina, XRD analysis of. See X-ray
diffraction (XRD) analysis of
alumina

Amorphous solids, 116
coordination number, RDF, 117
correlation function, 118
crystallization (see Crystallization)
effect of interference in, 40
periodic structures, disordering, 121

Amplitude
resonance, 42, 44–47, 148

modulation, 56

scattering, 212
of atoms, 23, 26, 28
and polarization, 3
and radiation field, 5–6

structure factor, 135–137, 160, 165
Anomalous scattering factors. See Dispersion

correction terms
Arbitrary correlations

amorphous solid, 116
coordination number, RDF, 117
correlation function, 118
crystallization (see Crystallization)
periodic structures, disordering, 121

liquids and colloidal suspensions
RDF, 109
in water, 109–111

mutual interference, 102
non-spherical particles, 100–101
radial distribution function

intensity scattered, 116
N particles distribution, 111
numerical calculation, 112
packing factor, 116
random positions, generation, 112–113
repulsion effect, 113–115

volume effects
deduction, functions, 105–106
Fourier transform, 103
interference function calculation, 108
scattered intensity, 107
unidirectional correlation, function,

104
asfQ.m routine, 24, 110, 203, 213–214
assintotic.m routine, 214
Asymptotic behavior, 72, 73, 75, 97–99
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Atomic form factor. See Atomic scattering
factor

Atomic planes
coherent scattering by, 132
X-ray wavefronts crossing, 190

Atomic resonance, 42–45
absorption cross-section for Kr, 48
and refraction index, 192
semi-classical approach of, 45–48

Atomic scattering factor, 23–24, 26–27,
42

coherent scattering cross-section for
Se, 44–45

with dispersed correction, 43
for Ga, 26, 27

Atoms
Compton scattering by, 33–36
isolated, coherent scattering cross-section

for, 27–28
spherosymmetrical, 23–27

Attenuation coefficient. See Linear attenuation
coefficient

B
backadj.m routine, 203, 214
Benzene molecule, scattering by, 32–33
benzeneonpsp.m routine, 32, 214–215
benzenesaxs1.m routine, 215–217
benzenesaxs2.m routine, 217
Biot–Savart law, 2
Bragg–Brentano geometry, 164
bragg.m routine, 133, 158, 217–218
Bragg’s angle, 155, 182, 183
Bragg’s law, 132, 133, 144, 182
Bremsstrahlung. See Lae method

C
Calcium, Compton scattering cross-section

for, 35
Carbon, coherent/incoherent intensities

scattered by, 36
Cauchy’s integral theorem, 49
CIF. See Crystallographic information file

(CIF)
Classical electron radius, 6
Coherence lengths, 8–11
Coherent scattering, 2, 12

by atomic planes, 132
of atoms, 23–24
cross-section

effect of atomic resonance in, 44–45
for isolated atoms, 27–28

interference phenomena of, 40
of one electron, 19–21

Complex systems
arbitrary correlations (see Arbitrary

correlations)
internal correlations (see Internal

correlations)
mathematical description of, 81

Compton effect, 1–2, 20, 33–35, 41
Compton scattering, 1–2, 19–22, 64–66, 89,

119, 209
by atoms, 33–36
intensity, 20–21

Convolution of functions, 16
Correlation function, 82–83, 93, 102, 104–105,

107, 117–118, 143
internal, 84–85, 101
pair (see Radial distribution function

(RDF))
Critical angle for total external reflection, 191

in glass surfaces, 192
Cromer–Mann coefficients, 24–25
Cross-section

absorption, 39–41, 43–47
for Kr, 48
modulation in, 53–54

coherent scattering
effect of atomic resonance, 44–45
for isolated atoms, 27–28
monoatomic gas, 60, 61
parametric equation, 27
for Se, 45

Compton scattering, 35
parametric equation, 34

linear attenuation, 40–42
photoelectric absorption, 50–52

for absorption edge measurement,
208–209

Thomson scattering, 6–7
Crystalline lattice

atomic disordering in
occupancy factor, 147–148
thermal vibrations, 142–144

FT of, 130
phonons, 144
thermal diffuse scattering, 144
truncation of, 138–139

Crystallization, of amorphous solids, 119
˛�quartz, 120–122
inverse FT, 122
structural analysis, 123–124
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Crystallographic information file (CIF), 158
XRD pattern simulation from, 204–205

Crystallography. See X-ray crystallography
Crystals

atomic disordering
occupancy factor, 147–148
thermal vibrations, 142–144

coherent intensity, 131
crystalline lattice, 129
diffracted intensities, 131, 134–135
electron density, 129
form factor, 130, 134, 144
FT of crystalline lattice, 130
kinematic intensity, 138, 143
reciprocal lattice point, 131, 132, 134
reciprocal lattice vector, 131, 133, 134,

153, 154, 158, 159
reciprocal space of, 135
reflectivity curves in, 182–185
structure factors, 134

amplitude, 135, 137
phases (direct methods), 137

truncation of crystal lattice, 138–139
unit cell, 128
X-ray diffraction, difficulties, 127–128

csfQ.m routine, 34, 218–219

D
Darwin–Prins dynamical theory, 179, 181
Data analysis

absorption edge, measurement of, 206–209
PDDF analysis of lysozyme, 195–197
PDF analysis of gold particles, 197–201
XRD analysis of alumina, 201–206

debye.m routine, 94, 219
Debye–Waller factor, 93–94, 97, 144, 162, 206
Diffracted intensity, 131, 134
Diffraction imaging techniques, 179–180
diffraction.m routine, 146, 158, 203, 220–221
Diffraction pattern

crystallized insulin, 174
polychromatic, spodumene crystal, 173
of polycrystalline silicon, 162

Diffractogram, polycrystalline silicon, 161,
163

diffractogram.m routine, 203, 206, 222
Diffractometry. See Single crystal

diffractometry
Dirac delta function, 15
Dispersion correction terms, 44
Dynamical diffraction

kinematic limit, 187–190
recursive equations, 180–187

reflection/transmission coefficients by
crystallographic planes, 181–182

refraction index for X-rays, 190–193
dynamicphase.m routine, 186, 223

E
Elastically bound electron, 45–48
Elastic scattering. See Thomson scattering
Electric dipole radiation, 2

by free electron, 211–212
Electron density

of atoms, 23
crystals, 129
of molecules, 28–29
with radial symmetry, form factor for, 17
small angle scattering, 69–70
spherical particles, 85–86
uniform spherical, relative intensity

scattered by, 18
volumetric electron density function, 13

Ewald’s spheres. See Scattering spheres
ex1GUP.m routine, 115, 223
ex1N5U.m routine, 70, 224
exabscs.m routine, 224–225
EXAFS. See Extended XAFS (EXAFS)
exanomalousignal.m routine, 185, 225
exasf.m routine, 26–27, 226
excompton.m routine, 226–227
excritangle.m routine, 192, 227
excsf.m routine, 36, 227–228
exellipsoid.m routine, 228
exexafsmap.m routine, 230
exexafs.m routine, 53, 229–230
exfpfpp.m routine, 231
exgofu1.m routine, 104, 232
exgofu2.m routine, 108, 232–233
exgoldnano0.m routine, 90, 233
exgoldnano1.m routine, 92, 234
exgoldnano2.m routine, 93, 234–235
exhardsphere.m routine, 117, 235–236
exkk.m routine, 236–237
exlognormal.m routine, 78, 237–238
exlysozyme.m routine, 88, 238–239
exrdffitting.m routine, 113, 240
exrdf.m routine, 239–240
exrdfplot.m routine, 114, 240–241
exrlp3Dview.m routine, 241
exsgc.m routine, 242
exsgr.m routine, 242–243
exshell.m routine, 86, 243–244
exsphere.m routine, 18, 245
Extended XAFS (EXAFS), 54–55
exwaterccd.m routine, 111, 245–246
exwaterSofQ.m routine, 110, 246
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F
Fluorescence, 1, 38, 42–43, 53
Form factor, 14, 16–17, 29

atomic (see Atomic scattering factor)
crystals, 130, 134, 144
molecular, 31, 63
single electron scattering, 19
for spherosymmetric electron density, 17
for uniform sphere, 17

Fourier analysis, 54–55
in PDF analysis of gold particles, 201

Fourier transform (FT), 15–18
of convolution and product, 16
of crystalline lattice, 130
inverse, 15, 83, 85–87, 89, 109, 117, 119,

122, 196–197
Four-reflection monochromator, 4–5
fpfpp.m routine, 44, 164, 207, 246–247
Free electrons

electric dipole radiation by, 211–212
interaction, 1–11

coherence lengths, 8–11
polarization effects, 2–5
radiation field, 5–8

X-ray scattering by distribution of, 12–22
distributions of one electron and

Compton scattering, 19–22
Fourier transform, 15–18

Friedel’s pair, 184
FT. See Fourier transform (FT)
fthofu.m routine, 247–248
fthofuplotmap.m routine, 103, 248–249
fthofuR.m routine, 103, 249
Full width at half maximum (FWHM),

160–162

G
GaAs crystals, reflectivity curves for, 185
Gallium, atomic scattering factor for, 26, 27
Gases

ideal, effect of interference in, 40
monoatomic (see Monoatomic gas)

goldnano.m routine, 249–250
Gold nanoparticles

PDDFs, 93
wide angle, 91–92
X-ray scattering, 91–92

Gold particles, PDF analysis of. See Pair
density function (PDF)

Goniometer, 165–166, 168

Grazing incidence techniques, 138, 155, 191
Gyration radius, in PDDF analysis of

lysozyme, 197

H
histogram.m routine, 250–251

I
Ideal gas, effect of interference in, 40
Incident wave, X-ray, 2
Incoherent scattering. See Compton scattering
Inelastic scattering. See Compton scattering
Integrated intensity, 156, 160, 165, 167
Integrated reflectivity of crystals, 187–188
Intensity, scattering, 3–4, 6–7, 14. See also

Kinematic intensity
arbitrary correlations, 107, 116
coherent, 27, 28
Compton scattering, 2, 20–21
crystals

coherent intensity, 131
kinematic intensity, 138, 143

relative intensity scattered by uniform
spherical electron density, 18

single electron, 19
by single molecule, 29–32

Interference, 12
dispersed molecules, 64
mutual interference, 81–82
self-interference, 19–20

Internal correlations
molecules, proteins, and discrete particles,

86–87
limit of small angle, 87–89
wide angle solution, 89–94

PDDF, 84
random conformation particles

asymptotic behavior, 97–99
polymers (see Polymers)

scattering power, 84
spherical particles, radial electron density,

85–86
spherosymmetrical function, 84

Interplanar distances, 132, 133, 157–158, 165
Inverse Fourier transform, 15, 83, 85–87, 89,

109, 117, 119, 122, 196–197
invftpofq.m routine, 251–252
Ionization, effect on scattering amplitude, 26
Iron, modulation of resonance amplitude of, 56
Isotropic vibrations, 142–143



Index 291

J
Joule heating effect, 38

K
KDP. See Potassium dihydrogen phosphate

(KDP)
kdpcoordfrac.m routine, 202, 252
kdphistcomp.m routine, 252–253
kdphistogram.m routine, 253
Kinematic diffraction

vs. dynamical diffraction, 179–180
powder diffractometry

crystallographic information file,
158

polycrystalline samples, relative
intensities, 158–161

protein crystals, 174–176
reciprocal space

coherent radiation, 152
Ewald’s spheres (see Scattering spheres)
scattering spheres, 152

reflection/transmission coefficients,
182

single crystal diffractometry
monochromatic radiation, 165–167
polychromatic radiation, 170–171

validity, 189–190
Kinematic intensity, 59

dispersed molecules
coherent intensity scattered by N

molecules, 63
interference pattern, 64
molecule form factor, 63
scattered intensity by single molecule,

63
scattering power, 64
structural function, 64

general expression of, 59
monoatomic gas

beam transverse coherence length, 61
coherent scattering cross-section, 60,

61
Fourier transform, 60

small angle scattering
dispersion of size, 74–78
macromolecules, 68–69
morphology of particles, 71–74
particles of uniform density, 69–70
polydisperse systems, 74–78

Kinematic limit, 187–190
kinematiclimit.m routine, 188, 190, 253–254
Kramers–Kronig relations, 43, 48–50, 55
Krypton, absorption cross-section for, 48

L
Laue method, 171
lauemethod.m routine, 173, 254–256
Linear attenuation, and scattering cross-

section, 40–42
Linear attenuation coefficient, 39–42
Longitudinal coherence length, 9–11
Lorentz factor, 156
Lysozyme

integrated reflectivity in, 188
interatomic distances, 88
PDDF (see Pair distance distribution

function (PDDF), lysozyme
analysis)

scattering power, 88–89

M
Manganese, modulation in absorption

cross-section of, 53–54
Maxwell’s equations, 5, 211
Molecular form factor, 31
Molecules

dispersed
coherent intensity scattered by N

molecules, 63
form factor, 63
interference pattern, 64
scattered intensity by single molecule,

63
scattering power, 64
structural function, 64

scattering by, 28–33
Monoatomic gas

beam transverse coherence length, 61
coherent scattering cross-section, 60, 61
Fourier transform, 60
scattering angle, 60

Monochromatic radiation
charge coupled device, 166
goniometer, 165, 168
high structural complexity crystals, 166
integrated intensity, 165
low structural complexity crystals, 165
reflection power (see Integrated intensity)
rotating crystal method, 166, 167

Monocrystalline blocks with channel cut, 184
Mutual interference, 81–82

N
Near-edge X-ray absorption spectrum

(NEXAFS), 53
Nodes. See Reciprocal lattice points (RLPs)
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O
orientcryst.m routine, 257–258
Oxygen, coherent scattering cross-section for,

28

P
Pair correlation function. See Radial

distribution function (RDF)
Pair density function (PDF), analysis of gold

particles, 197–201
background correction, 199–200
Fourier analysis, 201
loading intensity data, 199
normalizing S(Q), 200–201
structural function S(Q), 199

Pair distance distribution function (PDDF), 84,
161–163

lysozyme analysis, 195–197
gyration radius, 197
inverse Fourier transform, 196–197
loading intensity data, 196

Parametric equation, 24
of coherent scattering cross-section, 27
of Compton scattering cross-section, 34

Patterson function, 82–83
pdbcoordfrac.m routine, 175, 177, 258–259
PDDF. See Pair distance distribution function

(PDDF)
PDF. See Pair density function (PDF)
Phase problem, 28–33
Phonons, 144
Photoelectric absorption, 40

and dynamical diffraction, 182, 183
modulation by rescattering of, 50–56

cross-section of Mn, 52–53
scattering properties by neighboring

atoms, 53
and refraction index, 191

Photoelectrons, 38, 40, 42, 47
wavevector with kinetic energy, 50–51

Photon–electron interaction, 19–20
Photon energy, 1
photonsonpsp.m routine, 259
photonstatistic.m routine, 260
Polarization coefficient, 22
Polarization effects, on free electron radiation,

2–4
electron in forced vibration, 3

Polychromatic radiation, 170–171
Polycrystals, relative intensities in, 158–164
polymerchain.m routine, 95, 260–261
polymerkratky.m routine, 98, 261–262
polymer.m routine, 260

polymerRg.m routine, 99, 262
Polymers

plastic bags, 97–98
RW model, 96
scattering power, 94–95

polymersystem.m routine, 262
Porod’s law, 76
Potassium dihydrogen phosphate (KDP),

145–147
Powder diffractometry of polycrystals

area profile of diffraction peaks, 160–161,
163

geometric factors, 158–159
line profile of diffraction peaks, 160–161,

163
Probability density function, 19–21

Q
Quantum electrodynamics (QED), 19
quartzgofu.m routine, 122, 263
quartzIofQ.m routine, 122, 264
quartzrdf.m routine, 266–267
quartzrdfplot.m routine, 121, 267
quartzR.m routine, 120, 121, 264–266

R
Radial distribution function (RDF), 109

atomic structure of ˛-quartz, 121
intensity scattered, 116
N particles distribution, 111
numerical calculation, 112
packing factor, 116
random positions, generation, 112–113
repulsion effect, 113–115

Radiation–electron elementary interaction. See
Free electron interaction

Radiation field, in free electron interaction,
5–8, 14

Radius of gyration, 67, 75
rcdarwinprins.m routine, 184, 189, 267–269
rcdarwinprinsplot.m routine, 183, 269
RDF. See Radial distribution function (RDF)
Reciprocal lattice, crystals, 130, 131
Reciprocal lattice points (RLPs), 131, 132,

134
Reciprocal node, 154–156, 166, 170, 171
Reciprocal space, 152–154, 159, 161, 171,

174
Recursive equations, 180–187

standing waves, 186–187
Reflected beam geometry. See Bragg–Brentano

geometry
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Reflection power. See Integrated intensity
Reflectivity curves, in crystals, 182–185

dynamic phase as function of, 186
Refraction index for X-rays, 190–193

critical angle for total external reflection in
glass surfaces, 192–193

wavefronts crossing atomic plane, 190
Relative intensities in polycrystals, 158–164
Resonance. See Atomic resonance
RLPs. See Reciprocal lattice points (RLPs)
rockingcurve.m routine, 269–270
Rocking curves, 155, 157, 160
Root mean square deviation, atomic positions,

144, 146
rotatcryst.m routine, 270–272
Rotating crystal method, 166, 167, 174, 175
rotcrystmethod.m routine, 175, 272–274

S
SAXS. See Small angle X-ray scattering

(SAXS)
saxs.c routine, 68, 70, 274
saxs.m routine, 87, 275
Scalar polarization factor, 4
Scattering spheres, 152, 153, 159, 160
Schrödinger equation, 51
Selenium, coherent scattering cross-section for,

44–45
Self-interference, 19–20
sfactor.m routine, 158, 202, 275–276
sgcompton.m routine, 34, 42, 164, 209,

276–277
sgrayleigh.m routine, 27, 42, 164, 209,

277–278
siliconDScamera.m routine, 278–279
siliconnano.m routine, 161, 279
siliconpeakfit.m routine, 280
siliconPofQ.m routine, 161, 280–281
siliconxrdpattern.m routine, 281
sincfunction.m routine, 281
sincinterference.m routine, 282
Single crystal diffractometry

monochromatic radiation
goniometer, 165
high structural complexity, 166
low structural complexity, 165
rotating crystal method, 166, 167

polychromatic radiation, 170–171
Single electron scattering, 19–22

form factor, 19
intensities, 19, 21

Small angle scattering
macromolecules

pdb format, 68
protein data bank, 68

morphology of particles
asymptotic behaviors, 72, 73
exponential decay, 71
Guinier region, 71, 72
Porod region, 71, 72
spherical particle, 71

particles of uniform density
electron density, 69–70
small angle X-ray scattering, 70

polydisperse systems
average gyration radius, 67, 75
dispersion of size, 75
intensity, 75
Porod’s law, 76

property of, 67
Small angle X-ray scattering (SAXS), 70
Snell’s law, 191
Solids. See Amorphous solids
Spherosymmetrical atoms, 23–27
Spherosymmetric electron density, form factor

for, 17
Standing waves methods, 179–180, 186–187
Synchrotron, 3, 33, 41, 43, 54, 170, 191

T
TDS. See Thermal diffuse scattering (TDS)
Temperature factor. See Debye–Waller factor
Thermal diffuse scattering (TDS), 144
Thickness of crystals

and integrated reflectivity, 187–188
and reflection and transmission coefficients,

189
Thomson scattering, 1–2, 6–7, 19

differential cross-section of, 6
total cross-section of, 7
by volumetric distribution of free

electrons, 13
Thomson scattering length. See Classical

electron radius
Transverse coherence length, 9–10

V
Vectorial Bragg’s law, 153
Vector polarization factor, 3, 212
Volumetric electron density function, 13

W
Wavevectors, 152, 154, 167, 169, 170, 175



294 Index

X
X-ray absorption fine structure (XAFS), 50
X-ray absorption near-edge spectroscopy

(XANES), 53
X-ray absorption spectroscopy, 40
X-ray crystallography, 28–29. See also Crystals

crystalline lattice, 129
crystal’s electron density, 129
crystal’s form factor, 130
diffracted intensities, 134–135
FT of crystalline lattice, 130

structure factors, 134–135
unit cell, 128

X-ray diffraction (XRD) analysis of alumina,
201–206

background intensity, adjusting, 204
comparison of experimental and simulated

patterns, 205–206
loading intensity data, 203
pattern simulation from CIF, 204–205

X-ray optics, 179, 184, 190
X-ray specular reflectometry, 191
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