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Preface

In modern engineering, as a basis of construction, arches have a diverse range of
applications. Today the theory of arches has reached a level that is suitable for most
engineering applications. Many methods pertaining to arch analysis can be found in
scientific literature. However, most of this material is published in highly
specialized journals, obscure manuals, and inaccessible books. This is not
surprising, as the intensive development of arch theory, particularly stability and
vibration have mostly occurred in the 1940s to the 1960s. Therefore, most engineers
lack the opportunity to utilize these developments in their practice.

The author has committed to the goal of presenting a book which encompasses
essential and tested methods on fundamental methods of arch analysis and equally
important problems.

The objective of the Book is to provide to readers with detailed procedures for analysis of
the strength, stability, and vibration of various types of arched structures, using exact
analytical methods of classical Structural Analysis.

In 2004, professor L.A. Godoy published the article “Arches: A Neglected Topic
in Structural Analysis Courses.” This in-depth investigation highlights a deep rift
between the modern level of development of arch theory and the level of presenta-
tion of this theory in existing material on structural analysis.

In 2009, the author of this book, with co-author O. Lebed published the textbook
“Advanced Methods of Structural Analysis” (Springer), in which arch theory is
presented in a much greater depth and volume than in existing textbooks. However,
the issue of producing a single book which covers both general and specialized
problems of arches remained unsolved. The book presented here sheds light on
issues of strength, stability, and vibrations, as well as special problems of arches
and arched structures.

In this book special attention is directed toward the discussion of fundamental
properties of structures. An engineer who is armed with fundamental knowledge
and means of computation is essentially set to succeed in modern day engineering.
Solutions of problems of strength, stability, and vibrations of arches in most cases
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are broken down to basic formulas which can be easily applied to engineering
practice.

This book is based on the author’s experience as a teacher and consultant in
structural mechanics. It is intended for senior undergraduate students in structural
engineering and for postgraduate students who are concerned with different pro-
blems of arches structures. The book will be a useful reference for engineers in the
structural industry.

Vancouver, Canada Igor A. Karnovsky



Distribution of Material in the Book

This book contains an introduction, four parts (nine chapters), and an appendix.

The first part “Strength” contains three chapters. Chapter 1 is devoted to
fundamental methods of determining displacement of elastic structures in general
accompanied by examples specifically for arches.

Chapter 2 covers the analysis of three-hinged arches, while analysis of redundant
arches is considered in Chap. 3; in these chapters a special attention is dedicated to
the analysis of arched structures using influence lines.

Second part “Stability” contains two chapters. Chapter 4 provides analytical
methods of the stability of arches. These methods are based on the integration of
differential equations.

Chapter 5 presents Smirnov’s matrix method and approximate method. Approx-
imate method is based on the approximation of the arch by straight members with
subsequent application of the precise displacement method in canonical form.

The third part, “Vibration” contains two chapters. Chapter 6 deals with compu-
tation of eigenvalues and eigenfunctions for arches. For analysis of the circular
uniform arch, Lamb’s differential equation is used; for analysis of parabolic
uniform arch the Rabinovich’s model is applied. The frequency of vibration for
arches with different ratio “rise/span” of an arch are presented on the basis of this
model.

Chapter 7 presents forced vibrations of arches.

The fourth part of the book, “Special Topics” holds the goal of presenting
introductory information regarding problems which until now have only been
discussed in specialized literature. Chapter 8 contains the static nonlinear problems.
They are plastic analysis of the arches and arched structures with one-sided con-
straints. Chapter 9 is devoted to dynamical stability of arches, and dynamics of
arched structures subjected to moving inertial load.

Finally, the appendix contains the fundamental tabulated data essential for
engineering practice involving arches.

Sections 2.1, 2.2, 2.4, and 2.6 were written by Olga Lebed.

ix






Acknowledgments

First of all I must thank professor L.A. Godoy (University of Puerto Rico at
Mayaguez) and Steven Elliot (Senior Editor, Springer) who stimulated the creation
of this book.

I wish to express deep gratitude to Olga Lebed (Condor Rebar Consultants,
Vancouver, Canada) for the very constructive discussions of the book, organiza-
tional assistance, and writing four sections of the book.

A number of friends and colleagues have helped me directly or indirectly;
my sincere gratitude to professors Valeriy A. Baranenko (Chemical Technology
University, Ukraine), Jurij G. Kreimer (Civil Engineering University, Ukraine),
Vladimir M. Ovsjanko (Polytechnical University, Belorussia), P. Eng Tat’jana
Volina (Ukraine), as well as to members of the Russian National Library (Moscow)
for helping with the pursuit of difficult-to-access literature and documents.

I wish to express deep gratitude to Evgeniy Lebed (University of British
Columbia, Canada) for productive discussions and helpful criticism as well as
assisting with many numerical calculations and validation of results.

Many thanks to Tamara Moldon (Vancouver, Canada) for editing assistance.

I would like to thank all the staff of Springer who contributed to this project.

Finally, I would like to thank my relatives, many friends, and colleagues, who
have supported me through all stages of research and development of this book.

The author appreciates comments and suggestions to improve the current edi-
tion. All constructive criticism will be accepted with gratitude.

xi






Contents

Preface. .. ..o vii

INtroduction . ... .. ..ot Xix

Part I Strength Analysis

1 Deflections of Elastic Structures........................................ 3
L1 General ....oouuiii e 3
1.2 Initial Parameters Method ..., 5
1.3 Maxwell-Mohr Integral..............ooooiiiiiiiiii 10

1.3.1 Deflection Due to External Loads .......................... 10
1.3.2 Deflections Due to Change of Temperature................ 15
1.4 Graph Multiplication Method....................coooiii 18
1.4.1 VereshchaginRule...................oo.. 19
1.4.2 Trapezoid and Simpson Rules ...................cooooil.. 20
1.43 SignsRule.......oiiiiiiiiiii i 21
1.5 Maxwell-Mohr Formula for Curvilinear Rods..................... 24
1.6 Elastic Loads Method..............ccocoiiiiiiiiiiiiiiiiii 26
1.6.1 Computation of Elastic Load .....................cooiiit 26
1.6.2 Expanded Form for Elastic Loads .......................... 30
1.7 Differential Relationships for Curvilinear Rods.................... 36
1.7.1 Relationships Between Internal Forces..................... 36
1.7.2  Relationships Between Displacements and Strains......... 39
1.7.3 Lamb’s Equation...........coooiiiiiiiiiiiiiniiiiin e 41
1.8 Reciprocal Theorems ............ooouuiiiiiiiiiiiiiiiiin e, 42
1.8.1 Theorem of Reciprocal Works (Betti Theorem) ........... 42
1.8.2 Theorem of Reciprocal Displacements
(Maxwell Theorem)........ccooviiiiiiiiiiiiienenennnn. 43
1.8.3 Theorem of Reciprocal Reactions
(Rayleigh First Theorem) ..........ccoviiiiiiiiiiinaaea... 44

Xiii



Xiv

Contents
1.8.4  Theorem of Reciprocal Displacements
and Reactions (Rayleigh Second Theorem).............. 45
1.8.5  Transfer MatriX ........oviveeeiiiiiiiiineeeeiiaannnn. 46
1.9 Boussinesq’s Equation.............ccooiiiiiiiiiiiiiiiiiiiiin. 46
1.9.1 Two Forms of Boussinesq’s Equation.................... 46
1.9.2  Displacements of a Circular Rod......................... 48
Three-Hinged Arches ...ttt 55
2.1 General. ... 55
2.2 Reactions of Supports and Internal Forces........................ 57
2.3 Rational Shape of the Arch.............cooiiiiiiiiiiiiin i, 63
2.3.1  Vertical Load Does Not Depend on the Shape
ofthe Arch.......... i 63
2.3.2  Vertical Load Depends on Arch Shape .................. 65
233 Radial Load.........cooouuiiiiiiiiiiiiiiii i, 68
2.4  Influence Lines for Reactions and Internal Forces................ 68
2.4.1  Analytical Approach.............ccooiiiiiiiiiiiiiii . 69
2.4.2  Nil Points Method ... 75
2.4.3  Fictitious Beam Method ... 78
244  Application of Influence Lines ........................... 81
2.5  Core Moments and Normal Stresses ..................ooviinnnnn. 86
2.5.1  Normal StresseS....ceeuuuuuuineeeeteeiiiiiiaaeeeeeeennnnn. 86
2.5.2 Influence Lines for Core Moments....................... 87
2.6 Special Types of Three-Hinged Arches........................... &9
2.6.1  Arch with Elevated Simple Tie........................... 89
2.6.2  Arch with Complex Tie ..........cccooiiiiiiiiiiinnnn. 94
263  Askew Arch.........coooiiiiiiiiiii i 98
2.6.4 Latticed Askew Arch...........ccoooiiiiiiiiiii, 101
2.7  Complex Arched Structures ............cooeveiiiiiiiiinnneeeenn 103
2.77.1  Multispan Three-Hinged Arched Structure ............. 103
2.7.2  Arched Combined Structures.................c.cccevvunn.. 105
2.8  Deflection of Three-Hinged Arches Due to External Loads..... 112
2.8.1  Uniform Circular Arch: Exact Solution................. 113
2.8.2  Nonuniform Arch of Arbitrary Shape:
Approximate Solution ...........oeeeiiiiiiiiiiiiiin... 114
2.9 Displacement Due to Settlement of Supports
and Errors of Fabrication..................ooooooi 117
2.9.1  Settlements of SUPPOItS ......covvivinviiiiieeiinnennnn. 118
2.9.2  Errors of Fabrication..............ccooooiiiiiiiinn., 120
2.10 Matrix Form Analysis of Arches Subjected to Fixed
and Moving Load........ ..o 121
Redundant Arches................o i 125
3.1  Types, Forms, and Peculiarities of Redundant Arches........... 125
3.1.1  Two-Hinged Arch ..., 126

3.1.2  Hingeless Arch..........coooiiiiiiiiiiiiiiiii 127



Contents XV
32 Force Method ........oouuuuiiiiiiiiiiiiiii i 128
3.2.1  Primary System and Primary Unknowns................ 128
3.2.2  Canonical Equations of the Force Method .............. 128
3.2.3  Unit and Loading Displacements........................ 131
3.24  Procedure for Analysis ..........ccooiiiiiiiiiiiiin., 132
3.3  Arches Subjected to Fixed Loads ..............coovvviiniiann., 133
3.3.1 Parabolic Two-Hinged Uniform Arch................... 133
3.3.2  Some Comments About Rational Axis.................. 139
3.4  Symmetrical Arches ...........oooiiiiiiiiii i 140
3.4.1  Properties of Symmetrical Structures ................... 140
342 Elastic Center.......couuuuiiieeeiiiiiiiiinneeeeeenennnnn. 141
3.4.3  Parabolic Hingeless Nonuniform Arch.................. 145
3.4.4  Circular Hingeless Uniform Arch....................... 148
3.5  Settlements of SUPPOTILS .....c.uiiiiiiniiiii i, 150
35.1 Two-Hinged Arch ..., 150
3.5.2 Hingeless Arch........c.oiiiiiiiiiiiiiiiii i, 151
3.6 Arches with Elastic Supports...........oooviviiiiiiiiiinneennn.. 153
3.7  Arches with Elastic Tie............ccoiiiiiiiiiiiiii i, 156
3.7.1  Semicircular Uniform Arch ............................. 157
3.7.2  Nonuniform Arch of Arbitrary Shape................... 159
3.8 Special Effects.......oouuuiiiiiiii 162
3.8.1 Change of Temperature.............coovvuieeennneennn.. 162
3.8.2  Shrinkage of Concrete..........ooovvvviiiiiniiinnnnnnn.. 166
39 Influence Lines...........ooiiiiiiiiiiiiiii i 166
39.1 Two-Hinged Parabolic Nonuniform Arch............... 167
3.9.2  Two-Hinged Circular Uniform
Arch with Elastic Tie..........ccoooiiiiiiiiiiiiinn., 170
3.9.3 Hingeless Nonuniform Parabolic Arch.................. 172
3.9.4  Application of Influence Lines .......................... 179
3.10 Arch Subjected to Radial Pressure ..................coooiiieaa. 181
3.10.1 Internal Forces Taking into Account
and Neglecting Shrinkage .................cooinnn, 182
3.10.2 Complex Loading of Circular Arch..................... 184
3.11 Deflections of the Arches...........ccoovviiiiiiiiiiiiiinn .. 187
3.11.1 Deflections at the Discrete Points
of Redundant Arches ..., 188
3.11.2 Effect of Axial Forces ............coooiiiiiiiiiiiiinn, 189
3.12 Arch Loaded Orthogonally to the Plane of Curvature ........... 192
Part II Stability Analysis
4 Elastic Stability of Arches ................ 197
4.1 General.....oooiiii e 197
4.1.1  Fundamental Concepts..........c.ovveiiuneeennnneennnn.. 198

4.1.2  Forms of the Loss of Stability of the Arches............ 198



XVi

Contents
4.1.3 Differential Equations of Stability
of Curvilinear Rod ..., 200
4.1.4 Methods of Analysis ..........cooeiiiiiiiiiiiiiiniann... 201
4.2 Circular Arches Subjected to Radial Load ........................ 201
4.2.1 Solution Based on the Boussinesq’s Equation............. 202
4.2.2 Solution Based on the Lamb’s Equation .................. 207
4.2.3  Arch with Specific Boundary Conditions.................. 211
4.3 Circular Arches with Elastic Supports..............coovivieinn... 212
4.3.1 General Solution and Special Cases....................... 212
4.3.2 Complex Arched Structure............oovvieiiiiiiinnnnn... 217
4.4 Gentle Circular Arch Subjected to Radial Load................... 218
4.4.1 Mathematical Model and Bubnov—Galerkin
Procedure.......... ..o 219
442 Two-Hinged Arch.........cooiiiiiiiiiiiii i 220
4.4.3 Graphical Interpretation of Results........................ 221
4.4.4 Hingeless Arch.........oooiiiiiiiiiiiiii i 223
4.5 Parabolic Arch ... ...t 223
4.5.1 Dinnik’s Equation.............cccooiiiiiiiiiiiiiiiiii 223
4.5.2 Nonuniform Arches ...........ccoooiiiiiiiiiiiiiiiiiinn... 225
4.5.3 Partial Loading...........oooiiiiiiiiiiii i 226
4.6 Parabolic Arch with Tie ..o, 227
4.7 Out-of-Plane Loss of Stability of a Single Arch .................. 229
4.7.1 Circular Arch Subjected to Couples
onthe Ends...........oooiiiiiiii 229
4.7.2 Circular Arch Subjected to Uniform Radial Load......... 230
4.7.3 Parabolic Arch Subjected to Uniform Vertical Load...... 231
Matrix and Displacement Methods ..............................ool 233
5.1 General ... e 233
5.2 Smirnov Matrix Method ............ccoo i 234
5.2.1 Matrix Form for Elastic Loads............................. 234
5.2.2 Moment Influence Matrix...........coovviiiiiiiiniinn... 237
5.2.3 Stability Equation in Matrix Form......................... 238
5.3 Two-Hinged Symmetrical Arches ...............c..cooiiiiaa. 239
5.3.1 Circular Uniform Arch..............ooooiiiiiiiiiiiii.. .. 239
5.3.2  Circular Nonuniform Arch..................oooiii. .. 240
5.3.3 Parabolic Uniform Arch ..., 242
5.4 Hingeless Symmetrical Arches ................ooiiiiiiiini .. 246
5.4.1 Duality of Bending Moment Diagram
and Influence Line ............coooiiiiiiiiiii i, 246
5.4.2 Parabolic Uniform Arch ..., 249
5.5 Arch with Complex Tie.........cooiiiiiiiiiiiiiiiiiiiiiiia e 251
5.6 Displacement Method...........covviiiiiiiiiini i, 255
5.6.1 General........cooiiiiiiiiiii 255
5.6.2 Two-Hinged Arch.........cooiiiiiiiiiiiii i, 259
5.7 Comparison of the Smirnov’s and Displacement Methods ....... 265



Contents Xvil
Part III Vibration Analysis
6 Free Vibration of Arches ..................... 269
6.1  Fundamental Concepts. ........cvvviiiiiiiiiiiiiiiiiininnnnnnnnnn. 269
6.1.1  General.........oooiiiiiiiiii 269
6.1.2  Discrete Models of the Arches .......................... 272
6.2  Eigenvalues and Eigenfunctions of Arches
with Finite Number Degrees of Freedom ........................ 275
6.2.1  Differential Equations of Vibration ..................... 275
6.2.2  Frequency Equation ..............coooiiiiiiiiiiiinn, 276
6.2.3  Mode Shape of Vibration..............c.covvviieeenn.. 277
6.3 EXAMPIES. .ottt 278
6.4  Vibration of Circular Uniform Arches ........................... 286
6.4.1 Lamb’s Differential Equation of In-Plane
Bending Vibration .............coiiiiiiiniiiiiniiiiin. 286
6.4.2  Frequency Equation of Bending Vibration.
Demidovich’s Solution ..., 287
6.4.3  Variational Approach.................cooiiiiiiiiil, 290
6.4.4  Radial Vibration ...........c.ooooiiiii i, 292
6.5 Rabinovich’s Method for Parabolic Arch........................ 293
6.5.1  Geometry of Parabolic Polygon........................ 294
6.5.2  Kinematics of Parabolic Polygon....................... 295
6.5.3 Inertial Forces...........coooiiiiiiiiiiiiiiii i, 299
6.6  Symmetrical Vibrations of Three-Hinged Parabolic Arch....... 301
6.6.1  Equivalent Design Diagram. Displacements............. 302
6.6.2  Frequencies and Mode Shape of Vibrations ............ 306
6.6.3  Internal Forces for First and Second
Modes of Vibration..........ccoooviiiiiiiiiiiiiiinn.. .. 310
6.7  Antisymmetrical Vibration of Three-Hinged
Parabolic Arch..... ... 312
6.7.1  Equivalent Design Diagram. Displacements............ 312
6.7.2  Frequencies and Mode Shape of Vibrations ............ 316
6.8  Parabolic Two-Hinged Uniform Arch............................ 318
6.8.1  Symmetrical Vibration ................c..coiiiiaa. 319
6.8.2  Advantages and Disadvantage
of the Rabinovich’ Method.......................oooe 322
6.9  Parabolic Nonuniform Hingeless Arch........................... 323
6.10 Rayleigh-Ritz Method.............cooiviiiiiiiiiiii i, 325
6.10.1 Circular Uniform Arch.................ooooiiiiat.. 325
6.10.2 Circular Arch with Piecewise Constant Rigidity........ 326
6.11  CONCIUSION ...ttt ettt e e e 329



XViii Contents
7 Forced Vibrations of Arches......................... 331
Tl General ... e 331
7.1.1 Types of Disturbing Loads..................ccooiiiiiin.... 331
7.1.2  Classification of Forced Vibration......................... 332
7.2 Structures with One Degree of Freedom .......................... 332
7.2.1 Dugamel Integral............cooviiiiiiiiiiiiiiiiiiian. 333
7.2.2 Application of the Duhamel Integral
for a Bar Structure ..ot 333
7.2.3 Special Types of Disturbance Forces...................... 334
7.3 The Steady-State Vibrations of the Structure
with a Finite Number of Degrees of Freedom..................... 342
7.3.1 Application of the Force Method .......................... 343
7.3.2 The Steady-State Vibrations of the Arch.................. 344
7.4 Transient Vibration of the Arch ..., 347
7.4.1 Procedure of Analysis..........ccoovuuiiiiiiiiiiiiiin... 347
7.4.2 Impulsive Load..........oooiiiiiiiiiiiii i 348
Part IV Special Arch Problems
8 Special Statics Topics ..........ccoooviiiiiiii 353
8.1 Plastic Analysis of the Arches.............ooviviiiiiiiiiinna... 353
8.1.1 Idealized Stress—Strain Diagrams.......................... 354
8.1.2 Direct Method of Plastic Analysis.............ccooeveennn. 357
8.1.3 Mechanisms of Failure in Arches.......................... 361
8.1.4 Limiting Plastic Analysis of Parabolic Arches............ 361
8.2 Arched Structures with One-Sided Constraints ................... 365
8.2.1 General Properties of Structures
with One-Sided Constraints.................cccoevvvnnnnn... 365
8.2.2 Criteria of the Working System .....................oo.. 366
8.2.3 Analysis of Structures with One-Sided Constraints....... 366
9 Special Stability and Dynamic Topics .......................oooool 371
9.1 Dynamical Stability of Arches............ccoovviiiiiiiiiinn .. 371
9.1.1 Dynamical Stability of a Simply Supported Column ..... 372
9.1.2 Ince-Strutt Diagram..................oooiiiiiiiiii. .. 373
9.1.3 Dynamical Stability of Circular Arch ..................... 374
9.2 Arched Structure Subjected to Moving Loads .................... 377
9.2.1 Beam with a Traveling Load ................c.ooveein.t 377
9.2.2  Arch Subjected to Inertial Traveling Load:
Morgaevsky Solution ............cooviiiiiiiiiiiiii e 380
10 Conclusion ... 385
APPENIX ... e 387
Bibliography ........ ... 417
Index. ... oo 425



Introduction

Arches and arched structures have a wide range of uses in bridges, arched dams and
in industrial, commercial, and recreational buildings. They represent the primary
structural components of important and expensive structures, many of which are
unique. Current trends in architecture heavily rely on arched building components
due to their strengths and architectural appeal.

Complex structural analysis of arches is related to the analysis of the arches
strength, stability, and vibration. This type of multidimensional analysis aims at
ensuring the proper functionality of an arch as one of the fundamental structural
elements.

Terminology

We start our consideration from terminology for a bridge arch (Fig. 1a). The arch
is supported by abutments. The heels and crown are the lowest and highest points
of the arch, respectively; supports may be rolled, pinned, or fixed. Horizontal
distance between two heels is span /, a vertical distance between heels line and
crown is rise f. Extrados is the top outer surface of the arch. Intrados is the lower
inner surface of the arch. A body of the arch itself may be solid or with webbed
members.

As a bridge trusses, the bridge arches are connected using arch bracing.
All structural members over the arch are called overarched construction. Deck
and arch are connected by vertical members called posts. If the roadway is located
below an arch, then vertical members are called hangers. If movement of vehicles is
at the intermediate level, then a loaded deck is partially connected with arch by
poles and partially by hangers. The posts are compressed, while the hangers are
extended.

For structural analysis, a real structure has to be presented in the idealized and
simplified form using the axial line of the structural components. For this, a so-
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Fig. 1 (a, b) Components of an arch bridge and design diagrams for a deck-arch bridge

called design diagram of the real structure is used. Design diagram is a critically
important concept of structural analysis. Design diagram of a real structure reflects
the most important and primary features of the structure such as types of members,
types of supports, types of joints, while some features of secondary importance
(shapes of cross-sections of members, existence of local reinforcements or holes,
size of supports and joints, etc.) are ignored.

Few general rules of representing a real structure by its design diagram are:

e A structure is presented as a set of simple structural members

¢ Real supports are replaced by their idealized supports

¢ Any connection between members of a structure are replaced by idealized joints

¢ Cross-section of any member is characterized by its area or/and moment of
inertia

It is obvious that a real structure may be represented using different design
diagrams.

An arch with overarched members and its design diagram is shown in Fig. 1b.
Design diagram also contains information about the shape of the neutral line of the
arch. Usually this shape is given by the expression y = f(x).

Note that posts or hangers are connected to the arch itself by means of hinges.

In bridge construction the arches are subdivided into deck-bridge arch (Fig. 1),
through-bridge arch, and arch with deck at some intermediate level (Fig. 2).
Also, double-deck bridges exist with the lower deck designed for a railway, and
the upper deck is utilized for a roadway.
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Fig. 2 Design diagrams of the through-bridge arch and arch with deck at intermediate level

N
TN

Fig. 3 Design diagrams of arches: (a) hingeless arch; (b) two-hinged arch; (c) one-hinged arch;
(d) three-hinged arch

tie

Fig. 4 Arches with tie

Based on their design, arches are divided into hingeless (arch with fixed
ends), one-hinged, two-hinged, and three-hinged ones (Fig. 3a—d). All arches
presented in Fig. 3, except for the three-hinged arch (d), are statically indeterminate
(redundant) ones.

A tie is an additional member which allows us to reinforce an arch. A single tie
may be installed on the level of the supports (Fig. 4a), or elevated (b). The tie may
also be complex (c). Prestressed tie allows us to control the internal forces in the
arch itself.

The aches may be constructed with supports at different elevations. In this case
they are called askew arches.

Peculiarities of Arch Behavior

Since posts have hinges at the ends (Fig. 2), then only axial force arises in them.
If the posts with fixed ends are thin elements with small flexural stiffness, then they
cannot perceive and transmit the bending moments. In both cases, the loads from
deck are transferred through posts (hangers) on the arch as concentrated forces.
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Fig. 5 Reactions of the arch

The fundamental feature of an arched structure is that horizontal reactions
appear even if the structure is subjected to vertical load only. These horizontal
reactions Hy = Hg = H are called a thrust (Fig. 5). If structure has a curvilinear
axis but thrust does not exist then this structure cannot be treated as an arch. The
presence of thrust leads to a fundamental difference in behavior between arches and
beam — the bending moments in arches are smaller than in beams of the same span and
loads. Advantages of arches over beams increase as the length of a span increases.

Presence of thrust demands reinforcement of the part of a structure which is
subjected to horizontal force.

However, the thrust may be absorbed by a tie; with this, supports of the arch are
only subjected to vertical forces.

In addition to the bending moments and shear forces that arise in beams, axial
compressive forces are also present in arches. These forces may cause a loss of
stability of the arch.

There are advantages and disadvantages of each type of arches. Different design
diagrams of the arches may be compared, taking into account different criteria.
These include differences in their deformability, internal forces, critical loads,
frequencies of vibration, sensitivity of arches to settling of supports, temperature
changes, fabrication errors, etc.

Three-hinged arches have less rigidity than two-hinged and hingeless arches.
Breaks in elastic curve over a hinge leads to additional forces in the cases where a
moving load is present. In the cases when a structure is built on weak soil, three-
hinged arches are preferred over hingeless arches since additional stresses caused
by the settling of supports do not arise in these structures [Bro99], [Sch80].

Figure 6 shows characteristic distribution of the maximum bending moments in
different arches in the presence of a moving load; each arch (diagrams a—d) has a
unique bending moment (diagram e) [Kis60]. It is evident that a one-hinged arch
(curve c) is the least efficient in regards to bending moment at its supports. In
hingeless arches (curve d), the distribution of bending moment is most favorable
because of its smoothness.

In the three-hinged arch (a), internal forces arise as a result of external load only.
The rest of the arches (b—d) are sensitive to the displacements of supports, changes in
temperature, and errors of fabrication. For masonry or concrete arches, material
shrinkage should be taken into account, since this property of material leads to
additional stresses.
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Fig. 6 (a—d) Types of arches; (e) approximate distribution of maximum bending moments across
the span of different types of arches. In Fig. 6e design diagram as two-hinged arch is shown
arbitrary

Initial Data for Structural Analysis

A comprehensive structural analysis includes the strength, stability, and vibration
analysis. Strength analysis (static analysis) deals with the determination of internal
forces and deflections of the arch due to action of static loads only. Stability
analysis deals with the determination of loads which leads new forms of equilibri-
um (the loss of stability) of the arch. Vibration analysis considers determination of
frequencies of free vibration of arch, as well as determination of internal forces and
displacements of the arch subjected to specific external disturbing loads.

For analysis of arches, the following data have to be clearly outlined and
specified: type of arch (hingeless, two-hinged, etc.); its shape (circle, parabolic,
etc.); its dimensions (span and rise); location of supports (same or different
elevation); presence of the tie, its type (single or complex), and its location. In
the case of an arched bridge, it is necessary to show location of a loaded deck
(Figs. 1-2), location of the hangers (or/and posts), and ways of theirs connections
with arch itself and with loaded deck.

Computation of internal forces for two-hinged and hingeless arches requires
knowing the law of change of cross-sectional area A(x) and corresponding moment
of inertia /(x), along the axis of the arch. For a tie it is necessary to present the ratio
El,/EAie. For computation of deflections for all types of arches it is necessary to
know A(x) and EI(x).
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Assumptions

Some of the common assumptions made in this book include the following:

1. Material of the arch obeys Hooke’s law (physically linear statement)

2. Deflections of the arches are small compared with the span of the arch (geomet-
rically linear statement). The cases of nonlinear statement are specifically
mentioned.

3. All constraints, which are introduced into the arched structure are two-sided, i.e.,
each constraint prevents displacements in two directions. The case of one-sided
constraints is specifically mentioned.

4. In the case of elastic supports the relationship between deflection of constraint
and corresponding reaction is linear.

5. The load is applied in the longitudinal plane of symmetry of the arch. The case of
out-of-plane loading is specifically mentioned.

Besides the above assumptions, supplementary assumptions are introduced in
corresponding parts of the book.
Some remarks related to structural analysis of the arches:

1. Since arches are represented by curvilinear rods, then their analysis, strictly
speaking, should be performed using the theory of the curvilinear rods.
However, curvature of the arches used in the construction is small (R/A>10),
therefore, the curvature of the arch may be neglected and deflections of the arch
are assumed to be calculated as for straight rods [Kis60].

2. The superposition principle is valid under assumptions 1-4. In the case of one-
sided constraints the superposition principle requires special treatment.

Shape of the Arches

As it is shown below, distribution of internal forces in arches depends on the shape
of the central line of an arch. According to their shapes, arches are divided into the
circular arch, parabolic arch, etc. Equation of the central line and some necessary
formulae for circular and parabolic arches are presented below. For both cases,
origin of coordinate axis is located at point A as shown in Fig. 7.

Circular arch. Ordinate y of any point of the central line of the circular arch is
calculated by the formula

2 2
y= Rz—(é—x> —R+f; R:§+é7, (1)

where x is the abscissa of the same point of the central line of the arch; R is the
radius of curvature of the arch; f and / are the rise and span of the arch.



Introduction XXV

Fig. 7 Design diagram of two-hinged arch

The angle ¢ between the tangent to the center line of the arch at point (x, y) and
horizontal axis is determined as follows:

. 1 1
s1ng0:(l—2x)ﬁ; coscp:(y—i—R—f)E. ()

Parabolic arch. Ordinate y of any point of the central line of the parabolic arch is

1
y =4l =) . G)

Trigonometric functions of the angle between the tangent to the center line of the
arch at point (x, y) and a horizontal axis are as follows:

t &4y 1
an p =-—=—(1—2x); coS p=———;
1+ tan? @

dx P2
sin ¢ = cos @ X tan . (3a)

For the left half-arch the functions sin ¢ > 0, cos ¢ > 0 and for the right half-
arch the functions sin ¢ < 0 and cos ¢ > 0.

Length S of half-axis of symmetrical arch and length of the axis of the arch
Sk from the origin (point A) to an arbitrary point k£ with coordinates x; = &/,

Y& = n;l are

[ 1
S= y) {sec Yo + o In(4m + sec (po)] ,
[ [t 1 i
=8 (B, LTSy )
16m \cos ¢, Cos @y

where ¢, is a slope at the support A; parameter m = f /1.
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Fig. 8 Pressure of the wind on the surface of the arch

Catenary arch. Ordinate y of any point of the central line of the catenary arch
as a function of load may be calculated by the formula which is presented in
Sect. 2.3.2.

More expressions y(x) for different arch shapes are presented in Tables A.1-A.5
[KarO1].

Strictly speaking, the concept of arch shape includes not only equation of central
line as shown above, but also the law of flexural rigidity along the axis of the arch
[Kis60]. The flexural rigidity EI(x) may be constant or variable along the axis of the
arch depending on expected distribution of internal forces, requirements of a
constructive nature and asthetic considerations. Usually the variable rigidity of
the arch El(x) expresses in terms of rigidity of the arch at crown, Elc, where E is
a modulus of elasticity, /- is a moment of inertia of a cross section at the crown C of
an arch. This will be considered in more details in Sect. 3.1.

Loads

Arches, as main structural components, are subject to a variety of loads depending
on the purpose of the arch and conditions of its operation.

For arches in public and industrial buildings the main loads are deadweight, live-
load, and snow. These loads act in the longitudinal plane of symmetry of the arch
and lead to in-plane bending. A significant load for arched structures is a wind
pressure. The wind leads to the positive and negative loads onto the arch.
A simplified scheme of the wind pressure is shown in Fig. 8.

In the case of a tall arch, the in-plane wind loads leads to significant internal
forces in the arch. If a tall arch has a small own weight, then the formation of the
negative reactions is possible; this dangerous phenomenon leads to the separation
of the arch from abutment.

Pressure of the wind, which is directed perpendicular to the plane of the arch,
leads to out-of-plane bending of the arch. These loads are absorbed by bracing
between arches.

A dangerous phenomenon is observed in the case of an arched cover with open
sides. Wind pressure, which is parallel to an open aperture, flows around them and
creates a vacuum inside. As a result, the positive pressure onto the arch increases
and suction decreases.
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For arched bridges the main loads, which lead to the in-plane bending of the
arch, are the following: deadweight, vertical loads from vehicles, and horizontal
load caused by their longitudinal deceleration. Also, in the case of a bridge with
curvature in the horizontal plane, one should take into account horizontal loads,
which are caused by moving vehicles in a curvilinear trajectory.

The settlement of supports may induce in-plane and out-of-plane bending. Out-
of-plane bending also arises by horizontal out-of-plane wind pressure, and seismic
loads. Asymmetric location of the load with respect to the longitudinal plane of
symmetry also leads to out-of-plane bending of the arch.

Some types of loads have a distinctly dynamic nature. Among them are seismic
loads, wind gusts, moving inertial loads and their deceleration, impacts of wheels
on the joints of rails on railway bridges. In the case of road bridges one should take
into account the roughness of their surface.

If the shell is reinforced with ribs and is immersed into a liquid, then the pressure
on the shell is transmitted on ribs and each rib can be considered as an arch due to a
uniformly distributed radial load.

Determination of loads on the arch and the consideration of all possible
combinations of loads is an important part of engineering analysis
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Chapter 1
Deflections of Elastic Structures

This chapter describes some effective methods for computing different types of
deflections of deformable structures. The structure may be subjected to different
actions, such as variety of external loads, change of temperature, settlements of
supports, and errors of fabrication. Advantages and disadvantages of each method
and field of their effective application are discussed. Much attention is given to a
graph multiplication method which is a most effective method for bending
structures. Fundamental properties of deformable structures are described by recip-
rocal theorems.

1.1 General

Any load which acts on the structure leads to its deformation. It means that a
structure changes its shape, the points of the structure displace, and relative position
of separate points of a structure changes. There are other reasons of the deformation
of structures. Among them is a settlement of supports, change of temperature,
etc. Large displacements could lead to disruption of a structure functioning
properly and even its collapse. Therefore, an existing Building Codes establish
limit deflections for different engineering structures. Ability to compute deflections
is necessary for the estimation of rigidity of a structure, for comparison of theoreti-
cal and actual deflections of a structure, as well as theoretical and allowable
deflections. Besides that, computation of deflections is an important part of analysis
of any statically indeterminate structure. Computation of deflections is also an
integral part of a dynamical analysis of the structures. Thus, the computation of
deflections of deformable structures caused by different reasons is a very important
problem of structural analysis.

Outstanding scientists devoted their investigations to the problem of calculation
of displacements [Tim53]. Among them are Bernoulli, Euler, Clapeyron,
Castigliano, Maxwell, Mohr, and others. They proposed a number of in-depth and
ingenious ideas for the solution of this problem. At present, methods for

L.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration, 3
DOI 10.1007/978-1-4614-0469-9_1, © Springer Science+Business Media, LLC 2012
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Fig. 1.1 (a—d) Deflected shapes of some structures. (e-h) Deflected shapes of beams and arches
caused by the settlement of support B

computation of the displacements are developed with sufficient completeness and
commonness for engineering purposes and are brought to elegant simplicity and
perfection.

The deformed shape of a bend structure is defined by transversal displacements
y(x) of every points of a structural member. The slope of the deflection curve is
given by 0(x) = dy/dx = y'(x). Deflected shapes of some structures are presented
in Fig. 1.1. In all cases, elastic curves (EC) reflect the deformable shape of the
neutral line of a member; the EC are shown by dotted lines in exaggerated scale.

A cantilever beam with load P at the free end is presented in Fig. 1.1a. All points
of the neutral line have some vertical displacements y(x). Equation y = y(x) is the
EC equation of a beam. Each section of a beam has not only a transversal
displacement, but also an angular displacement 0(x) as well. Maximum vertical
displacement Ay occurs at B; maximum slope 6 also happens at the same point.
At the fixed support A, both linear and angular displacements A4 and 6, are zero.

The simply supported beam with overhang is subjected to vertical load P as
shown in Fig. 1.1b. The vertical displacements at supports A and B are zero. The
angles of rotation 04 and 0 are maximum, but have different directions. Since
overhang BC does not have external loads, the elastic curve along the overhang
presents the straight line, i.e., the slope of the elastic curve 0 within this portion is
constant. The angles of rotation of sections, which are located infinitely close to the
left and right of support B are equal.

Figure 1.1c shows the frame due to action of horizontal force P. At fixed support
A the linear and angular displacements are zero, while at pinned support B the angle
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of rotation 6z # 0. The joints C and D have the horizontal displacements Ac and
Ap; under special assumptions these displacements are equal. Joints C and D have
angular displacements 0 and 0, (they are not labeled on the sketch). The linear and
angular displacements of joints C and D lead to deformation of the vertical
members as shown on the sketch. Since support A is fixed, then the left member
AC has an inflection point.

Figure 1.1d shows the frame with hinged ends of the cross-bar CD; the frame is
subjected to horizontal force P. In this case, the cross-bar and column BD has a
displacement but does not have deflection and members move as absolutely rigid
one — the motion of the member CD is a translation, while the member BD rotates
around point B. Thus, it is a possible displacement of the member without the
relative displacements of its separate points. So a displacement is not always
accompanied by deflections, however, deflections are impossible without displace-
ment of its points.

Figure 1.1e, f shows the shapes of the beams caused by settlement of support.
A new form of statically determinate beam (Fig. 1.1e) is characterized by displace-
ment of portion H-B as absolutely rigid body, i.e., without deflection of the beam.
In case 1.1f, a new form of the beam occurs with the deflection of the beam.

Figure 1.1g, h shows the deflected shapes of the arches caused by settlement of
support. Elastic curve in the case of the hingeless arch is a monotonic function,
while in case of a one-hinged arch (Fig. 1.1h) this property of elastic curve of
deformable axis of the arch is disrupted at hinge C.

There are two principle analytical approaches to computation of displacements.
The first of them is based on the integration of the differential equation
EI(d*y/dx?) = —M(x) of the elastic curve of a beam. Modification of this method
leads to the initial parameters method. The second approach is based on the
fundamental energetic principles. The following precise analytical methods repre-
sent the second group: Castigliano theorem, dummy load method (Maxwell-Mohr
integral), Graph multiplication method (Vereshchagin rule), and elastic load
method.

All methods from both groups are exact and based on the following assumptions:

1. Structures are physically linear (material of a structures obey Hook’s law).
2. Structures are geometrically linear (displacements of a structures are much less
than their overall dimensions).

1.2 Initial Parameters Method

Initial parameters method presents a modification of double integration method in
case when a beam has several portions and as a result, expressions for bending
moments are different for each portion. Initial parameter method allows us to obtain
an equation of the elastic curve of a beam with any type of supports (rigid or elastic)
and, most important, for any number of portions of a beam.
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Fig. 1.2 [Initial parameters method notation

Fundamental difference between the initial parameter and the double integration
method, as it is shown below, lies in the following facts:

1. Initial parameters method does not require setting up the expressions for bending
moments for different portions of a beam, formulating corresponding differential
equations and their integration. Instead, the method uses a once-derived expres-
sion for displacement. This expression allows us to calculate slope, bending
moments, and shear along the beam and is called the universal equation of elastic
curve of a beam.

2. Universal equation of the elastic curve of a beam contains only two unknown
parameters for any number of portions.

A general case of a beam under different types of loads and the corresponding
notational convention is presented in Fig. 1.2a. The origin is placed at the extreme
left end point of a beam, the x-axis is directed along the beam, and y-axis is directed
downward. Support A is shown as fixed, however, it can be any type of support or
even free end. Load ¢ is distributed along the portion DE. Coordinates of points
of application of concentrated force P, couple M, and initial point of distributed
load q are denoted as a with corresponding subscript P, M, and g. This beam has five
portions (AB, BC, CD, DE, and EL), which leads to the ten constants of integrating
using the double integration method.

The initial parameter method requires the following rules to be entertained:

1. Abscises x for all portions should be reckoned from the origin; in this case, the
bending moment expression for each next portion contains all components
related to the previous portion.

2. Uniformly distributed load may start from any point but it must continue to the
very right point of the beam. If a distributed load ¢ is interrupted (point E,
Fig. 1.2a), then this load should be continued till the very right point and action
of the added load must be compensated by the same, but oppositely directed
load. The same rule remains for load which is distributed by triangle law. If load
is located within the portion S-T (Fig. 1.2b), it should be continued till the very
right point L of the beam and action of the added load must be compensated by
the same but oppositely directed loads (uniformly distributed load with intensity
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Table 1.1 Bending moments in unified form for different type of loading

M P k=tanf
Ve q
3 y RER B
<—\>IaM ap ! ay
X X X X
M(x) +M(x — )0 4+ P(x — )1 i‘](x*aq)z k()ffak)3
b an (e —ar = 753
’ P(x—ap)’ q(xfaq)3 k(x — ag)*
Jieoae e T2 T N 253 x4
M(x —an)’ P(x - ap)’ a(x—a,)* k(x — ap)®
C +— L A 4\t %)
o] Mt 2 2x3 X 3x4 2x3x4x%5

ko and load distributed by triangle law with maximum intensity k—k at point L).
Both of these compensated loads start at point 7" and do not interrupt until the
extremely right point L.

3. All components of a bending moment within each portion should be presented in
unified form using the factor (x—a) in specified power, as shown in Table 1.1. For
example, the bending moment for the second and third portions (Fig. 1.2a)
caused by the active loads only are

M(Xz) = —P(X2 — Clp),

M(x3) = —P(x3 — ap) — M(x3 — ay)".

4. Integration of differential equation should be performed without opening the
parenthesis.

All of these conditions are called Cauchy—Clebsch conditions [Tim53].
Initial parameters method is based on the equation EIy” = —M (x). Integrating it
twice leads to the following expressions for slope and linear displacement

EIO:—/M(x)dx+C1,
EIy:—/dx/M(x)dx+C1x—|—D1. (1.1)

The transversal displacement and slope at x =0 are y = yg, 0 = 0y . These
displacements are called the initial parameters. Equations (1.1) allow getting the
constants in terms of initial parameters

D1 = EIyO and Cl = E[@o
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Table 1.2 Initial parameters

Type of load F n
method. Parameter n for the
specific loads Couple M 2
Concentrated force P 3
Uniformly distributed load q 4
The load distributed by triangle law k 5
Finally (1.1) may be rewritten as
EIO = EIO) — /M(x)dx
EIy:EIyo+E190x—/dx/M(x)dx. (1.2)

These equations are called the initial parameter equations for uniform beam.
For practical purposes, the integrals from (1.2) should be calculated for special
types of loads using the above rules 1-4. These integrals are presented in Table 1.1.

Combining (1.2) and data in Table 1.1 allows us to write the general expressions
for the linear displacements y(x) and slope 6(x) for a uniform beam:

F _ n
Ely(x) = Elyo + Elox — ﬁ:%, (1.3)
x — (lF =l
EI0(x) = EI0y — 3+~ oD (1.4)

where EI is a flexural rigidity of the beam; F is any load (concentrated, couple, or a
distributed one); yo and 6 are transversal displacement and slope at x = 0; ar is the
distance from the origin of the beam to the point of application of a concentrated
force, couple, or to the starting point of the distributed load and » is the parameter,
which depends on the type of the load. Types of load F' and corresponding
parameter n are presented in Table 1.2.

Equation (1.3) is called the universal equation of elastic curve of a beam. This
equation gives an easiest way of deriving the equation of elastic curve of uniform
beam and calculating displacement at any specified point. This method is applicable
for a beam with arbitrary boundary conditions, subjected to any types of loads.

Notes

1. The negative sign before the symbol X corresponds to the y-axis directed
downward.
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2. Summation is related only to loads, which are located to the left of the section x.
It means that we have to take into account only those terms, for which the
difference (x — a) is positive.

3. Reactions of supports and moment of a clamped support must be taken into
account as well, like any active load.

4. Consideration of all loads including reactions must start at the very left end and
move to the right.

5. Sign of the load factor 4 F(x — ar)"/n! coincides with the sign of bending
moment due to the load, which is located at the left side of the section x.

6. Initial parameters yy and 6y may be given or be unknown, depending on
boundary conditions.

7. Unknown parameters (displacements or forces) are to be determined from the
boundary conditions and conditions at specified points, such as the intermediate
support and/or intermediate hinge.

For positive bending moments at x due to couple M, force P, and uniformly
distributed load ¢, the expanded equations for displacement and slope are

M(x—ay)® P(x—ap)’ q(x—aq)4
20 34

Ely(x) = Elyo + EI0ox — (1.5)

2 - 3
EIB(x):EIGO—M(x—aM)—P(x_ZaP) S 6“") : (1.6)

Expressions for bending moment and shear force may be obtained by formula

M(x) = —EIy"(x), Q(x) = —EIy" (x). (1.7)

Advantages of the Initial Parameters Method

1. Initial parameters method allows to obtain the expression for elastic curve of the
beam. The method is very effective in case of large number of portions of a beam.

2. Initial parameters method do not require to form the expressions for bending
moment at different portions of a beam and integration of differential equation of
elastic curve of a beam; a procedure of integration was once used for deriving the
universal equation of a beam and then only simple algebraic procedures are
applied according to (1.3).

3. The number of unknown initial parameters is always equals two and does not
depend on the number of portions of a beam.

4. Initial parameters method may be effectively applied for beams with elastic
supports and beams subjected to displacement of supports. Also, this method
may be applied for statically indeterminate beams. Detailed examples of appli-
cation of initial parameters method are considered in [Kar10].
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1.3 Maxwell-Mohr Integral

The Maxwell-Mohr procedure presents a universal method for computation of
displacement at any point of any deformable structure. Also, the Maxwell-Mohr
procedure allows calculating mutual linear and angular displacements. Different
sources, which may cause displacements of a structure, are considered. They are
different types of loads, and change of temperature.

1.3.1 Deflection Due to External Loads

A general expression for displacements of any deformable structure may be written as

‘MM, N
M=) [ —Eds Y ON “ds +Z/ Qle”ds (1.8)

0

Summation is related to all elements of a structure. Fundamental expression (1.8)
is known as Maxwell-Mohr integral. The following notations are used: Ay, is dis-
placement of a structure in the kth direction in P condition, i.e., displacement in
direction of unit load (first index k) due to the given load (second index p); M,,, N,,, and
O, are the internal forces (bending moment, axial and shear force, respectlvely) in P
condition; and M, Ny, Q, are the internal forces due to the unit load, which acts in
the kth direction and corresponds to the required displacement. A and / are the area and
moment inertia of a cross-section; £ and G are Young’s and shear modulus of
elasticity; 7 is nondimensional parameter depends on the shape of the cross section.
For rectangular cross section 77 = 1.2, for circular cross section 77 = 10/9. The unit
load (force, couple, etc.) also termed the dummy load.

Proof. For bending systems, the Castigliano’s theorem for computation of linear
and angular displacements at point k£ may be presented as follows [Cra00]:

= M(x) 8M(x)dx, 0 = M(x) 8M(x)dx7
EI 0P, EI OM;

where M(x) is bending moment at section x; P and M|, are force and couple at section k.
Both formulas may be simplified. For this purpose, let us consider the simply
supported beam subjected to force P and couple M (Fig. 1.3).

A P
Y M -
A A4 X
S B 37
A X
R4 a TRB
[ |
|

Fig. 1.3 Simply supported beam loaded by P and M
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Reaction Ry = P(/ — a/l) + M(1/I) and the bending moment for the left and
right portions of the beam are

.
%x—&—M;, (x<a)

M(x) = Rax — P(x — ) :P‘Y’(z_x)+M%‘, (x> a).

M(x) =Rax=P

Both expressions present the /inear functions of the loads P and M. In general
case, suppose a structure is subjected to the set of concentrated loads Py, P,,.. .,
couples My, M,,. .., and distributed loads ¢, ¢,.... This condition of structure
is called as P condition (also known as the actual or loaded condition). In case of
P condition, a bending moment at any section x is a linear function of these loads

M(x) = a\Py +ayPy+ - +biMy +byMy + - -+ c1g1 + 22 + - -

where coefficients a;, b;, and ¢; depend on geometrical parameters of the structure,
position of loads, and location of the section x.

If it is required to find displacement at the point of application of P, then, as an
intermediate step of Castigliano’s theorem we need to calculate the partial deriva-
tive of bending moment M(x) with respect to force P;. This derivative is
OM(x)/OP; = a;. According to expression for M(x), this parameter a; may be
considered as the bending moment at section x caused by unit dimensionless
force (P; = 1). State of the structure due to action of unit dimensionless load
(unit force or unit couple) is called unit state. Thus, calculation of partial derivative
in Castigliano’s formula may be changed by calculation of a bending moment
caused by unit dimensionless load

_[M(x) OM(x) [ M(x)M;
=) E de_/de’

where M, is bending moment in the unit state. Keep in mind that M; is always
a linear function and represents the bending moment due to a unit load, which
corresponds to the required displacement.

In a similar way, terms, which take into account the influence of normal and
shear forces, may be transformed. Thus, displacements caused by any combination
of loads may be expressed in terms of internal stresses developed by given loads
and unit load, which corresponds to required displacement. That is the reason why
this approach is termed the dummy load method.

For different types of structures, relative contribution of first, second, and third
terms of (1.8) in the total displacement Ay, is different. For practical calculation,
depending on type and shape of a structure, the following terms from (1.8) should
be taken into account:

(a) For trusses — only second term.
(b) For beams, arches and frames with ratio of height of cross section to span 0.2
or less — only first term.
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(c) For beams with ratio of height of cross section to span more than 0.2 — the first
and third terms.

(d) For gently sloping arches — the first and second terms.

(e) For arches with ratio of radius of curvature to height of cross section 5 or more —
all terms.

In case of trusses, the displacement should be calculated by formula

-
N,N,
Ap = /O gAkds‘ (1.82)

Since all elements are straight ones, and axial stiffness are constant along all
length of each elements, then this formula may be presented as

N,N;
Ap =" gA‘l. (1.8b)

Strictly speaking, integral equation (1.8) is applicable only for structure which
contains the straight members. Effect of curvature will be discussed further. O

Procedure for Computation of Deflections Using
Maxwell-Mohr Integral

1. Express internal forces in P condition for an arbitrary cross section in terms of its
position x.

2. Construct the unit condition. For this we should apply unit load (dummy load),
which corresponds to the required displacement:

(a) For linear displacement, a corresponding dummy load represents the unit
force, which is applied at the point where displacement is to be determined
and acts in the same direction.

(b) For angular displacement, a corresponding dummy load is the unit couple,
which is applied at the point where angle of rotation is to be determined.

(c) For mutual linear displacement of two sections, a corresponding dummy
load represents two unit forces, which are applied at the points where
displacement is to be determined and act in the opposite directions.

(d) For mutual angular displacement of two sections, a corresponding dummy
load represents two unit couples, which are applied at given sections and act
in the opposite directions.

3. Express the internal forces in unit condition for an arbitrary cross section in
terms of its position x.
4. Calculate Maxwell-Mohr integral.
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Fig. 1.4 Design diagram of the curvilinear bar, unit state and free-body diagram

Table 1.3 Internal forces of the circular bar for actual and unit state

State Bending moment Axial force Shear force
Actual M, = —Py N, =—Psin ¢ 0, =—P cos ¢
Unit M=—-1xy N=—1xsin¢p 0= —1xcos @

Positive sign of displacement means that the real displacement coincides with the
direction of the unit load, or work performed by unit load along the actual direction
is positive.

Now we demonstrate the application of general formula (1.8) for calculation
of displacement of curvilinear bar.

Example 1.1. A circular uniform bar with central angle 180° is clamped at point
B and carrying horizontal force P at point A as shown in Fig. 1.4a. Calculate the
horizontal displacement A4 of point A.

Solution. For the given problem, the unit state labeled by index & presents the force
P =1 applied at point A in the same direction as force P for the actual state
(Fig. 1.4b). Free-body diagram is presented in Fig. 1.4c.

For computation of bending moment M at point C, it is convenient to use the x
and y axis with origin at A, while for computation of shear Q and axial force N at
same point C it is convenient to use the X—C-Y axis (Fig. 1.4c). Equilibrium
conditions > Mc =0, > X=0, > Y =0 Ilead to the following expressions
of internal forces for actual and unit states (Table 1.3).

This data lead to the following expression for required displacement:

R R TR

1 1
Mg Pyids + o 0 Psinchds—kGLA 0 Pcos’pds.  (a)
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Now let us represent y and ds in terms of polar coordinates as follows: ds =
R dp,y = R sin ¢ (Fig. 1.4a). Changing limits of integration (1R — ), becomes

s

PR3 i
cos” pd. (a)

PR [™ UPR
22 : 2
=— n“dp +— n“dp +——
e Y EA/0 .

A

4 GA J,

Since [y sin® pdy = [ cos? pdyp = m/2, then the final result for required
displacement is

(b)

PR®n PRm uPRm PRn I 1 pEl1
Ay = 14-—= .
AR?

T El 2 EA2 GA2 E 2 GA R?

All terms in the parenthesis take into account the bending moment, axial forces,
and shear, respectively.

Discussion

Let us compare the displacements due to bending moments, axial forces, and
shearing forces. For this purpose, let us replace A, I, and p by their values, which
correspond to the rectangular cross section of the bar as follows: A = bh,
I = (bh*/12). Shear modulus of elasticity is G = E/2(1 +v). If h = 2b, the
Poisson’s coefficient v = 0.25 and coefficient u = 1.2, then

A _PR'm 1yl h2+1h2
) 12R2 "4R2)

Even if the ratio (2/R) = 0.1, then

PR? 1
Ay =——(1 . .0025).
A Vo 2( +0.000833 + 0.0025)

Therefore, in our case, the displacements due to axial and shearing forces
constitute about 0.08 and 0.25% of the displacement due to bending moment.

Let us assume that shear and axial forces for the bar in Fig. 1.4a are neglected;
it is easy to show that in this case the vertical and angular displacements for point A
are as follows:

2PR? 2PR? .
i (1), 04= £ (clockwise).

vert __
AY" =
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Fig. 1.5 Distribution of temperature and displacements within the height of cross section

1.3.2 Deflections Due to Change of Temperature

It is very often in engineering practice that the members of a structure undergo the
thermal effects. In case of statically determinate structures, the change of tempera-
ture leads to displacements of points of a structure without an appearance of
temperature internal forces, while in case of statically indeterminate structures
the change of temperature causes an appearance of temperature internal forces.
Often these internal forces may approach significant values. Analysis of any
statically indeterminate structure subjected to change of temperature is based on
the calculation of displacement of statically determinate structure. So, calculation
of displacements due to change of temperature is a very important problem for
analysis of both statically determinate and indeterminate structures.

The first two terms of Maxwell-Mohr’s integral equation (1.8) may be rewritten
as follows:

/ !
Ap =% /0 MiAgy+ S /0 Ny, (19)

where Ag, = M, dx/EI is the mutual angular displacement of both sections faced
apart at distance dx due to the given load and A, = N, dx/EA is the mutual axial
displacement of both sections faced apart at a distance dx due to the given load.

These terms may be easily computed for the case of temperature change. Let us
consider elementary part of a structure with length dx. The height of the cross
section of the member is hy. The upper and bottom fibers of the member are
subjected to temperature increase #; and t,, respectively, above some reference
temperature. Corresponding distribution of temperature (temperature profile) is
presented in Fig. 1.5. If the change of temperature for bottom and uppers fibers
are equal (#; = 1), then this case presents the uniform change of temperature; if
t; # t, then this case is referred as nonuniform change of temperature [Rab60].
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The expansion of the upper and bottom fibers equals to A, = oaf; dx and
Ap = at, dx, respectively; these expressions contain coefficient of thermal expan-
sion o of member material. In the case of symmetrical cross section, the expansion
of the fiber at the mid-height equals to

Hh+n

Axt = 2

dx. (1.9a)

The mutual angle of rotation of two plane sections, which are located apart from
each other on distance dx

1 —t
Ag = Aol (1.9b)
ho

Now we can substitute (1.9a) and (1.9b) into (1.9). Finally, the displacement in
kth direction due to change of temperature may be presented in the following form:

Ak,_Z/ “+2Nd+2/ In=nlg 4. (1.10)

where M,N are bending moment and axial force due to the unit generalized
force in kth direction; this force should be corresponding to required temperature
displacements.

A difference t; — t, is a temperature gradient; a half-sum (f; +1,)/2 is a
temperature at the centroid of the symmetric cross section (the axis of symmetry
coincides with neutral axis). If the cross section is nonsymmetrical about its neutral
axis, then the term (#; + #,)/2 must be replaced by #, + [(#; — 72)/2]y, where y is
the distance of the lower fiber to the neutral axis.

The term (#; + #,)/2 means that a bar is subjected to uniform thermal effect;
in this case, all fibers are expanded by the same values. The term |t; — 2]/ho
means that a bar is subjected to nonuniform thermal effect; in this case a bar
is subjected to bending in such way that the fibers on the neutral line have no
thermal elongation. So, the first and second terms in (1.10) present displacements
in kth direction due to uniform and nonuniform change of temperature, respec-
tively. Integrals [M;ds and [Nyds present the areas of bending moment
and axial force diagram in unit condition, which corresponds to required
displacement.

The presentation of Maxwell-Mohr integral in form (1.10) allows us to calculate
any displacement (linear, angular, mutual linear, mutual angular) caused by
uniform or nonuniform change of temperature. This formula does not take into
account the influence of shear. The procedure of summation in formula (1.10) must
be carried over all members of the system. The signs at all terms in this formula will
be obtained as follows: if the displacements of the element induced by both the
change of temperature and by the unit load occur at the same direction, then the
corresponding term of the equation will be positive.




1.3 Maxwell-Mohr Integral 17

C b C
hy y ds
do
R +1;\ +1 R +1\ +h
y Ap=
B /AB 4 0 B B

— < —
Hy X=1 —g—

E&

R R

Fig. 1.6 Curvilinear bar. Design diagram and unit state

4.

5.

Procedure for analysis is as follows:

. Construct the unit state. For this, we should apply unit generalized force X,

which corresponds to the required displacement.

. Construct the bending moment and axial force diagrams in the unit state.
. For each member of a structure to compute the term f Ny dx, which is the area of

axial force diagram in the unit state.

For each member of a structure to compute the term f M, dx, which is the area of
bending moment diagram in the unit state.

Apply formula (1.10).

Example 1.2. Determine the horizontal displacement of point B of the uniform
semicircular bar in Fig. 1.6a, if the indoor and outdoor temperature rises by #,°C and
1,°C, respectively. The height of cross-section bar is /.

Solution. A temperature effect related to curvilinear bar, therefore the general
expression for temperature displacement, should be presented in the form (1.10),
i.e., in terms of curvilinear coordinate s instead of x as for straight member.
Unit load X = 1 (Fig. 1.6b) corresponds to required horizontal displacement
at B. In the unit state reaction H, = 1 and internal forces due to unit load X are
as follows:

Ny=—1xsinp; M;=—1xy=—1xR sin ¢.
Thus (1.10) for displacement at B becomes

Hh+ntb
a—

TR |l] _ [2| nR
Ap = / (—sin p)ds + « / (=R sin ¢)ds.
2 Jo ho  Jo

Integration is performed along a curvilinear road of length nR. In the polar

coordinates dp = ds/R, sin ¢ = y/R the limits of integration become 0 — 7

th+t [T t—t i
Ag =0 144 / (—sin <p)Rdgo+oc| Bl / (—R sin )R de.
2 0 hO 0
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Thus, for required displacement we get the following expression

t t Hh—t Hh—t
2R Copy 4 Jn=el (—2R?) = —oR(t) + 1) — 2ap2 =0l

Ap = ho ho

(a)

Negative sign in (a) means that unit force X produces negative work on the real
displacement, i.e., the displacement of the point B due to temperature changes is
directed from left to right.

For uniform change of temperature (i.e., when gradients for indoor and outdoor
temperatures are the same), i.e., t; = t,, a difference t; — #, = 0 and only first term
of (1.10) or (b) should be taken into account. In this case, the horizontal displace-
ment equals to Ag = —2a Rt.

Summary

1. Maxwell-Mohr integral presents the fundamental and power method for the
calculation of arbitrary displacements of any elastic structure. Displacements
may be the result of any types of loads and change of temperature.

2. In order to calculate any displacement, it is necessary to consider two states
of a structure, i.e., the given and unit states. Unit state presents the same
structure, but loaded by unit generalized force corresponding to the required
displacement.

3. The terms of (1.8), which should be taken into account depend on the type of
structure (discussed in Sect. 1.3.1).

4. For both states, given and unit, it is necessary to set up expressions for
corresponding internal forces and calculate the required displacement by the
Maxwell-Mohr integral.

1.4 Graph Multiplication Method

Graph multiplication method presents most effective way for computation of any
displacement (linear, angular, mutual, etc.) of bending structures, particularly
for framed structures. The advantage of this method is that the integration proce-
dure according to Maxwell-Mohr integral is replaced by elementary algebraic
procedure on two bending moment diagrams in the actual and unit states. This
procedure was developed by Vereshchagin (1925) and is often referred as the
Vereshchagin rule [Rab60].
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dQ= M (x)dx Centroid of M, graph
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Fig. 1.7 Graph multiplication method. Bending moment diagrams M, and M in actual and
unit states

1.4.1 Vereshchagin Rule

Let us consider some portion AB which is a part of a bending structure; the flexural
stiffness, EI, within of this portion is constant. The bending moment diagrams
for this portion in actual and unit state are Mp and M. Both diagrams for portion
AB are presented in Fig. 1.7. In general case, a bending moment diagram M,, in
the actual state is bounded by curve, but for special cases may be bounded by
straight line (if a structure is subjected to concentrated forces and/or couples).
However, it is obvious that in the unit state the bending moment diagram M is
always bounded by the straight line. Just this property of unit bending moment
diagram allows us to present the Maxwell-Mohr integral for bending systems in
the simple form.

Ordinate of the bending moment in actual state at section x is M ,(x). Elementary
area of a bending moment diagram in actual state is dQ = M(x) dx. Since
M = x tan «, then integral in Maxwell-Mohr formula may be presented as (coeffi-
cient 1/EI by convention is omitted)

/M,,de:/Mp(x tan o)dx = tan oc/de.

Integral [ xdQ represents the static moment of the area of the bending moment
diagram in actual state with respect to axis Oy. It is well known that a static moment
may be expressed in terms of total area Q and coordinate of its centroid x.
by formula f xdQ = Q,x.. It is obvious that x. tan o = y.. Therefore, the
Maxwell-Mohr integral may be presented as follows:

1 — Q,y.
— | M,Mdx = =25, 1.11
EI/ P EI (11D
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Fig. 1.8 Multiplication of two bending moment diagrams

The procedure of integration | M,M dx = Q,y, is called the “multiplication” of
two graphs.

The result of multiplication of two graphs, at least one of which is bounded by a straight line

(bending moment diagram in unit state), equals to area Q of the bending moment diagram

M,, in actual state multiplied by the ordinate yc from the unit bending moment diagram M,
which is located under the centroid of the M,, diagram.

It should be remembered, that the ordinate y- must be taken from the diagram
bounded by a straight line. The graph multiplication procedure (1.11) may be
presented by conventional symbol (x) as

EIA, = /M,,Mkdx =M, x M. (1.12)

It is obvious that the same procedure may be applicable to calculation of
similar integrals, which appear in Maxwell-Mohr integral, ie., [ N,N dx and

[0,0dx.

1.4.2 Trapezoid and Simpson Rules

If the structure in the actual state is subjected to concentrated forces and/or couples,
then both the bending moment diagrams in actual and unit states are bounded by
the straight lines (Fig. 1.8a). In this case, the multiplication procedure of two
diagrams is commutative. It means that the area Q could be calculated on any of
the two diagrams and corresponding ordinate y- will be measured from the second
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one, i.e., Q;y; = Qyy,. This expression may be rewritten in terms of specific
ordinates, as presented in Fig. 1.8b.

In this case, the displacement as a result of the multiplication of two graphs may
be calculated using the two following rules:

1. Trapezoid rule allows calculating the required displacement in terms of extreme
ordinates

/

A:@(Zab+2cd+ad+bc), (1.13)
where the crosswise end ordinates has unity coefficients. This formula is precise.

2. Simpson’s rule allows calculating the required displacement in terms of extreme
and middle ordinates

l .

Equation (1.14) may also be used for the calculation of displacements, if
the bending moment diagram in the actual condition is bounded by a curve line.
If the bending moment diagram M, is bounded by quadratic parabola (Fig. 1.8c),
then the result of multiplication of two bending moment diagrams by formula (1.14)
is exact; this case occurs if a structure is carrying uniformly distributed load. If the
bending moment diagram M,, is bounded by cubic parabola, then the procedure
(1.14) leads to the approximate result.

If a graph M, is bounded by a broken line, then both graphs have to be divided by
several portions as shown in Fig. 1.8d. In this case, the result of multiplication of
both graphs is

/M,,de = Qy; + Q5.

Sometimes it is convenient to subdivide the curved bending moment diagram by
a number of “good” shapes, for example, in Fig. 1.8e. In this case

/M,,A—/Idx = Qiy; + Qyys + Qays.

1.4.3 Signs Rule

According to (1.12) the displacement will be positive, when the area of the diagram
M, and the ordinate yc of the diagram M have the same sign. If ordinates in (1.13)
or (1.14) of bending moment diagram for actual and unit states are placed on
the different sides of the basic line, then result of their multiplication is negative.
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The positive result indicates that displacement occurs in the direction of applied
unit load.

Procedure for computation of deflections by graph multiplication method is as
follows:

1. Draw the bending moment diagram M, for the actual state of the structure.

2. Create a unit state of a structure. For this apply a unit load at the point where the
deflection is to be evaluated. For computation of linear displacement we need to
apply unit force P = 1, for angular displacement to apply unit couple M = 1, etc.

3. Draw the bending moment diagram M for the unit state of the structure. Since the
unit load (force, couple) is dimensionless, then the ordinates of unit bending
moment diagram M in case of force F = 1 and couple M = 1 are units of length
(m) and dimensionless, respectively.

4. Apply the graph multiplication procedure using the most appropriate form:
Vereshchagin rule (1.11), trapezoid rule (1.13), or Simpson’s formula (1.14).

Useful tables for multiplication of two bending moment diagrams are presented
in [Kar10].

Example 1.3. A cantilever beam AB, length /, carrying a uniformly distributed load
q (Fig. 1.9). Flexural rigidity EI is constant. Compute (a) the angle of rotation 04;
(b) the vertical displacement A, at the free end.

Solution. Analysis of the structure starts from construction of bending moment
diagram M,, due to given external load. This diagram is bounded by quadratic
parabola and maximum ordinate equals g/* /2.

(a) Angle of rotation at point A. The unit state presents the same beam subjected to
unit couple M = 1 at the point where it is required to find angular displacement;
direction of this couple is arbitrary (Fig. 1.9a). It is convenient that both unit and
actual state and their bending moment diagrams locate one under another.

The next step is “multiplication” of two bending moment diagrams. The area
of square parabola is Q = (1/3) x (g/?/2) x I. Centroid of this diagram is
located on the distance /4 from fixed support. Corresponding ordinate y.- from
diagram M of unit state is 1. Multiplication procedure is presented in Table 1.4.

This table also contains computation of required displacement using the
Simpson rule. Ordinates a and b are taken from the bending moment diagrams
for actual and unit states, respectively, at the left end of a beam (point A);
ordinates e and f are taken at the middle of the beam AB, and ordinates ¢ and d at
the right end (point B).

(b) Vertical displacement at point A. The bending moment diagram M,, for actual
state is shown in Fig. 1.9b; this diagram for problems (a) and (b) is same. The
unit state presents the same structure with concentrated force P = 1, which acts
at point A; direction of the unit force is chosen in arbitrary way. The unit state
with corresponding bending moment diagram M is presented in Fig. 1.9b.

Computation of displacements using Vereshchagin rule in general form and by
Simpson rule are presented in Table 1.5.
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Fig. 1.9 (a) Actual state, unit state for 6,4 and corresponding bending moment diagrams. (b) Actual
state, unit state for A, and corresponding bending moment diagrams

Table 1.4 Graph multiplication procedures

General formula (1.11) Simpson rule (1.14)
1 /
Displacement A= EQyC A= El (ab + def + cd)
Angular
MpxM 1 1qP ql® [ ql? ql? qP
04 = Op=—x=-"—Ix 1 == Oh=—|0x14+4—x14+—x1| ="+
~— N~

EI El 32 B 6EI 6EI ~ 8 2 6EI

Q 4ef cd
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Table 1.5 Graph multiplication procedures

General formula (1.11) Simpson rule (1.14)
1 /
i A=—=—Q A= b+ 4 d
Displacement g 6] (ab +4ef + cd)
Linear
_ MpxM 1 1qP 3 gt ql [ g gt
Ay = Il Ay = EX§71XZ lxlfﬁ AA_6EI 0><0+48 ><1><2+2><1><1 =3E
Y —— a \_:,f_/ _\;_/
Yo € C

1.5 Maxwell-Mohr Formula for Curvilinear Rods

Strictly speaking, the three-term Maxwell-Mohr formula is only valid for straight
rods. The formula reduces to only an approximation for curvilinear rods. We show a
modification of this formula that can be applied to curvilinear rods.

Consider an infinitely small element of a curvilinear rod with curvature p and
length ds. The corresponding central angle is denoted by dy. The cross-sectional
area of the element is A. A force N is applied at the ends of the element, as shown in
Fig. 1.10.

The total shrinkage (elongation) of this element is equal to N ds/EA. The axial
strain is equal to N/EA. If we neglect the change in radius of curvature, then we can
assume that the angle of rotation of the two ends of the elements will be
(N/EA)dp = (N/EA)(ds/p). When N = 1 the angle of rotation of ends sections
becomes ds/EAp (unit displacement). By the law of reciprocal unit displacements
(for more details see Sect. 1.8, and [Dar89], [Kar10]) it follows that if two unit
couples M = 1 act on the cross-sectional faces of the element ds, then the same
deformation occurs in the axial direction of the element, i.e., d;; = Jy;. In the case of
an arbitrary couple M, the axial deformation becomes M ds/EAp. This elongation
(shrinkage) is due to the fact that the sections rotate about a neutral axis, which does
not pass through their center of gravity. Therefore, bending moments induce axial
deformations, while axial forces cause bending in curvilinear rods. So, bending
moments lead to additional work being done by axial forces, while axial forces lead
to additional work which is performed by bending moments. Therefore, the refined
formula for displacements takes the form [Rab54a]

A,-,:Z/M(% )dHZ/ (EA EAp)d
+Z/ Qde (1.15)

Here, as before, the horizontal bar indicates that the corresponding force is
related to a unit state.
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Fig. 1.11 (a) Design diagram of the curvilinear bar, (b) unit state

Example 1.4. A horizontal force P is applied to a semicircular uniform rod of R
(Fig. 1.11a). Determine the horizontal displacement of the point at which the force
is applied.

Solution. We limit ourselves to only the first term of the general formula (1.15).
The actual and unit states are shown in Fig. 1.11. Corresponding internal forces are

M, = —Py, N,=—-Psinp, M;=—1xy.

The first term in the general formula is broken up into two integrals:

e M % P p
A,,,—/M,( ) /M ds+/MEARds (a)

In polar coordinates ds = R dy, y = R sin ¢ so the formula takes the form

/M Rdgo—&-/ MEARRd<p

:/0 (—1y)( E}; )Rd<p+/n(—1y)%1?dw-
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Substitute y = R sin ¢ and evaluate the integrals. As a result we get

3 2
PR zlixﬁ(1+r)’ (b)

PR3 T
_ il L
EA 2 EI 2 R?

. XTC+
YR T2

where r = (\ /1 /A) is the radius of inertia of the cross-section of the curvilinear
rod. For given ratio’r /A we can evaluate effect of second term in the parenthesis and
compare with result in Example 1.1.

1.6 Elastic Loads Method

Elastic load method allows simultaneous computation of displacements for a set of
points of a structure. This method is based on conjugate beam method. This method
allows us to consider beams of variable cross sections. For trusses this method leads
to precise results. For arches this method is approximate, however, very effective.

1.6.1 Computation of Elastic Load

Let us consider a part of any actual structure; the vertical displacements y for
specified points, labeledasn — 2,n — 1,n,n + 1,n + 2, etc., are to be determined.
Corresponding displacement diagram is presented in Fig. 1.12a.

Now let us consider a fictitious structure subjected to any loads W applied at
point where we are required to find displacements (Fig. 1.12b); these fictitious loads
of the fictitious structure are not yet known. Displacement of a real structure and
moment of fictitious structure are related as y = My /EI. Therefore, the problem is
to find such loads W so that the bending moment diagram of fictitious structure
would be proportional to the vertical displacement diagram of the actual structure.
Loads W are called elastic loads, i.e., they are such fictitious loads so that bending
moment diagram of fictitious structure coincides (with accuracy to constant multi-
plier 1/EI) with displacements diagram of the real structure [Kar10].

Corresponding fictitious bending moment diagram of a structure is shown in
Fig. 1.12b; index “f — fictitious” for bending moments M and shear Q is omitted.
Shear forces within the portions 4, and 4,,,; are

_ Mn 7M,1,1 . Mn+l - Mn

Qn /In ) Qn+] =

Ant1

Equilibrium equation for a free-body diagram of an infinitesimal element of a
structure in vicinity of a point n (Fig. 1.12c) leads to the following expression for
applied load W,:

W, = Qn - Qn+1~
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In terms of bending moments, this expression may be rewritten as follows:

_Mn _Mnfl Mn+1 _Mn

Wn -
T Do
1 1 1 1
=My —+ M, —+— | =M, —. 1.16
! /1n + </1n * /1n+l) ! )Ln+1 ( )

This formula allows us to calculate fictitious load W, at point n if bending
moments at points n — 1, n, and n + 1 are known. If this formula is used for
calculating all forces W; and after which the resulting forces will be used for
construction of bending moment diagram, then this diagram will be same as the
diagram in Fig.1.12b.

Thus, the elastic load at point n becomes

1 1

1 1
W - , ) e —— 1.17
g y1 I;Ln y1 <in /Ln+1> y1+l in,l ( )

Our fundamental goal is calculating the displacement using elastic loads; on the
other hand, for calculation of the elastic loads according to (1.17), it is necessary to
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Fig. 1.13 Unit state

know displacements. In order to get away from this “closed circle” we need to
modify formula (1.17).

For this purpose, we need to understand the physical meaning of this expression.
Let us calculate the mutual angle of two portions at the point n. The unit state of the
given structure contains two unit couples M = 1 with opposite directions as shown
in Fig. 1.13. The couple M = 1, which acts at the left portion, may be replaced by
two forces of same magnitude 1/4,, but having opposite signs; similarly, the right
couple M = 1 may be replaced by two forces 1/4,,,;.

Now we can see that the right-hand side of (1.17) represents the work done by
forces within the real displacements. Indeed, the first term (—y,—;(1/4,))
represents the work performed by force 1/, of the unit state on the real displace-
ment y,_; negative sign means that this force and real displacement have the
opposite directions. The second term of (1.17) represents the work, which is
produced by two forces 1/, and 1/2,.; of the unit state on the real displacement
V- Similarly, the last term (1.17) represents the work done by force 1/4,1 of the
unit state within the real displacement y,;.

Since forces 1/4, and 1/4,., are the result of two unit couples M = 1, then
expression (1.17) may be considered as a work done by these unit couples on the
mutual angle of both portions at point n. On the other hand, the work done by unit
couples M = 1 on the mutual angle may be expressed in terms of internal forces
using the Maxwell-Mohr integral:

1 n 1 " 1 1
— Yn— l} Yn in ;anrl Yn+1 }n+1

ol [ [ o]

where expression in the parenthesis in right-hand side represents the mutual angle.
Since M = 1, then finally the right-hand side of (1.17) may be rewritten as
follows:

1

1 1
— Yn— l)L +yn<j-n+in+l) yn+l Z
_Qpdx
+Z”/O 27Ga

NP
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Fig. 1.14 Unit state for calculation of elastic load at joint n

As a result, the general formula for elastic loads in terms of internal forces is

1 1 1
B _ Mpdx _ Npdx _Qpdx
WWZ/OMEI +Z/ONEA +Zn/OQGA. (1.18)

This formula resembles the Maxwell-Mohr integral. The fundamental difference
comes from the fact that the unit state is constructed differently. In other words, the
right-hand side of (1.18) is similar to that of (1.8), while the left-hand side of (1.18)
represents an elastic load and the left-hand side of (1.8) is a displacement.

For beams, only the first term of (1.18) should be taken into account; the
accuracy of elastic curve depends on the number of points (number of elastic
loads). For arches it is necessary to take into account the first and third terms of
(1.18). The elastic curve will be approximate. Construction of displacement of joint
points of a truss requires only the second term of (1.18). In this case, expression for
elastic loads becomes

N, Npl
W, Z ”. (1.19)

Application of elastic loads method is the most interesting and effective to a truss.
The procedure for computing displacements is outlined below.

—_—

. Calculate the axial forces Np in all elements of the truss caused by given loads.
2. Calculate the elastic load at a joint n. For this

(a) Show a fictitious truss. If a real truss is simply supported then the fictitious
truss is also simply supported.

(b) Apply two unit couples M = 1 to members, which are adjacent to the joint 7.
Present each couple using forces F,,_y = (1/d,—) for spand,_; and F,,_ =
(1/d,) for span d,, as shown in Fig. 1.14.

(c) Calculate the axial forces N, in all elements of the truss caused by forces in
Fig. 1.14.

(d) Calculate the elastic load W, at the joint n by (1.19).
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Fig. 1.15 Deriving of the expanded formula for elastic load

3. Calculate the elastic loads W for remaining joints of the truss chord, as explained
in procedure 2.

4. Show the fictitious beam subjected to all elastic loads W. If the elastic load is
positive, then it should be directed downward, i.e., in the same direction as the
adjacent forces of neighboring couples.

5. Construct the bending moment diagram for fictitious beam on the tensile fibers.
This diagram presents displacements of all joints of the entire real truss.

Detailed examples and advantages of this method are discussed in [Kar10].

1.6.2 Expanded Form for Elastic Loads

Finally, we present the important expanded expression of elastic loads for beams
and rigid frames. This expression will take into account not only bending moments,
but also axial forces. We consider a case when inclined members with length
of s, and s, are subjected to bending moments and axial forces (Fig. 1.15). We
assume that the axial forces N,, and N, within portions # and n + 1 are constant.
Axial forces in the unit state are N, = —sin f8,/4, and N1 = sin B, /A1 for
the left and right portions, respectively. Calculation of these forces is shown in
Fig. 1.15, joints A and B.
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Within the limits of the left portion n, the calculation of the first term of (1.18)
may be performed using multiplication of two bending moment diagrams (trape-
zoid rule 1.13) in actual and unit states. For left portion we have

> IMM”dx (2M, 1 X 0 +2M, x 1 +M,_; x 1 +M, x 0)
o EA 6E1,1 nl nl

Sn
= (M,_ +2M,).

6E1n( -1+ 2Ms)

The second term of (1.18) may be presented as

_dix:_ 1 sm [ann 5, = 1 ><sin ﬁ"N,, A
EA,, n EA, An cos f,
Ny
= TEA x tan f3,.

Within the limits of the right portion n + 1, the calculation of the first and
second terms of (1.18) may be performed by similar manner.
Finally, the elastic loads should be calculated by the following expanded formula:

Sn Sn+1 Nﬂ
W, = " (M,_, +2M, M, + Myir) — - tan B,
61, Mn1 +2My) + 6ElL: (M + Mys1) = - tan f
Ny
+EA/1+1 tan 5, ;. (1.20)

We can see that during the calculation of elastic load W,,, the sum of the integrals
is affecting only two adjacent elements at a node n [Sni66]. This formula is known
as the expanded formula for elastic loads and may be effectively applied for the
calculation of displacements of arches. Thus, for the calculation of elastic load at
point n we need to know the bending moments in actual state, at three consecutive
points (n — 1, n, n + 1) and axial forces within the adjacent portions.

Example 1.5. Design diagram of a cantilever beam is presented in Fig. 1.16a.
Compute the deflections of the beam at the points 0, 1, 2.

Solution. Subdivide the beam into two equal parts (0—1 and 1-2). The bending
moment diagram for actual beam is shown in Fig. 1.16b. Fictitious beam and elastic
loads W, and W, are shown in Fig. 1.16c¢. For calculation of W, we need to know
bending moments at three consecutive points; dotted line shows additional portion
of the beam with ends points —1 and O; the length and stiffness of this portion are
Ao and Ely = oo, respectively. The elastic loads are

M_y +2M, L 2My+M
0= 6E10( 1+ 2Mo) + 6E11( 0+ M)
Jo ! PI\  5PP
=22 +2Mm 2PI =
oo M1 +2M0) + 357 < + 2) 24EI'
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Fig. 1.16 (a) Design P
diagram; (b) bending moment l
diagram of the real beam; i _E£ 0" ET
(c) fictitious beam, bending 1 0 '1 2
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Now these elastic loads should be applied to the fictitious beam. Since the
bending moment diagram is traced on the tensile fibers and ordinates of M diagram
are located above the axis, the elastic loads should be directed upward.
Corresponding bending moment diagram of fictitious beam is presented in
Fig. 1.16c. At the same time, this diagram presents the elastic displacements of
the real beam. Displacements at the points 0, 1, and 2 are exact. This result may
be obtained using graph multiplication method; in this case two unit states should
be constructed.

Example 1.6. Design diagram of a nonuniform beam is presented in Fig. 1.17a.
Determine the displacements at the free end point and at the point where force P is
applied.

Solution. Subdivide the beam into three parts length A;, 45, and 43. The points with
required displacements are labeled as 0, 1 and 2. The bending moment diagram M,
for actual beam is shown in Fig. 1.17b. Fictitious (conjugate) beam with elastic
loads W, and W, are shown in Fig. 1.17c. Load W, at free end of the entire beam is
not shown.
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Fig. 1.17 Computation of displacement by elastic loads method

Elastic loads according to (1.20) are

Ja
Mo +2M oM, + M
Wy = 6E11( o+ 1)+6E12( 1+ M)
l Pl PP
0+2x0)+ 2x0+—) =
6E11( T2x0)+ 2><6E12( 4) 48EL,’
PR
W, = (M] + 2M2) (2M2 +M3)

6EL,
I PI I Pl PP

= (or2x") 4+ (2«

2><6E12(0+ X4)+2><6E12( 4+0> 12E1,

The fictitious structure is a Gerber—Semikolenov beam [Karl0]; corresponding
interaction scheme is shown in Fig. 1.17d. Bending moments of the fictitious beam are

6EI 2

sl =Wl _ PF 1 PP
2774 T12EL 4 48ElL,’

W, PPa
M =_—(w - _ ,
0 ( 13 >“ 16EL,

Vertical displacements of the initial beam are

PP
48EL,

f Plza

:M—— . :Mf:O Mf
Yo 0 —16E12’ J1 1 ;o Y2 =
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Fig. 1.18 Curvilinear simply supported bar. (a) Design diagram; (b) vertical displacements;
(¢) fictitious beam and corresponding bending moment diagram

Example 1.7. Curvilinear simply supported uniform circular rod AB is subjected to
loads P; (Fig. 1.18a). Determine the vertical displacements at points 1, 2, 3.

Solution. Required displacements are shown in Fig. 1.18b. Let us replace the
curvilinear bar by a set of straight members of the same flexural rigidity; they are
shown by dotted line in Fig. 1.18a. For curvilinear rod with parameters / = 32m
and f = 8 m, according to (1) the coordinates for point 1 are x = 8 m, y = 6.33 m;
the lengths of straight elements are s4; =102m and s, = 8.33m;
tan 5, = 0.7912, tan f, = 0.2087.

Bending moments in loaded state are M; = 160kNm, M, = 240kNm,
M5 =M,.

Fictitious beam is shown in Fig. 1.18c. According to (1.20), elastic loads consist
of two parts

W, =W,(M) + W,(N),
where

S
Wn(M) = 6T}(Mnfl + 2Mn) +

Snt1
6E1n+1

(2Mn + Mn+1)

N, N,
W,(N) = _EAn tan f3, +E/;'++11 tan f3, ;.
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It is easy to check that the axial forces for entire structure are Ny = —32.267 kN
and N1,2 = —49.07kN.
The components of a first elastic load are

S
Wi (M) = 2 (M + 2M1) + 222 oM + M)
10.2 8.1724 1,307 kN m?
0-+2 x 160 2 x 160 +240) = 2~
=om 0F ) g (2> 160 +240) = ———
N 32 267 49.07
Wi(N) = — 2= lta np +—2tanp, = — 07912 — —~0.2087
B 35.77kN
N EA

The first elastic load becomes

1,307 35.77 1,307 1
W, =- — = 1-0.0274—).
EIl EA EIl A

Similarly, for second elastic load we get

N
Wa(M) = 61E12 (M +2Ms) +° @ > (2M, + M3)
6.33 8.1724 1,547
160 + 2 - 240) + ———(2 x 240 + 160 :
6EI( * )+ 6L (2 x +160) = El ~
Ni_ Nyp_ 49.07 20.48
WZ(N)Z—ﬁtanﬁz—ﬁtanﬁ3=——02087 22_?’
1,547 I
-2 1 -0.0132> ).
W, 7l ( 0.013 A)

It is clear that W3 = W,. If axial forces are neglected, then the second terms in
the formulas for elastic loads should be omitted.

Reactions of fictitious beam, corresponding bending moments and required
displacements are

W,

Ry =Rl =W + >

M| =R, x8, M,=R|x16-W, xS8,

i :M{, 2 =M§7 y3 =Y.
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1.7 Differential Relationships for Curvilinear Rods

This section contains two groups of differential relations for curvilinear rods. The
first group establishes relationships between internal forces while the second group
establishes the relation between displacements and strains.

1.7.1 Relationships Between Internal Forces

The following internal forces arise in planar arches: bending moment M, shear force
0, and axial force N. We establish a relationship among them. An infinitely small
element i—j, with length ds, central angle dy, and radius of curvature p is shown in
Fig. 1.19. This element is subjected to normal, tangential and moment loads
distributed among the entire length ds. We denote their intensities by ¢, p, and m,
respectively. The following internal forces act on the ends of the element: M, O, and
N at section i, and the same forces with their elementary gain dM, dQ, and dN at
section j. Positive directions of internal forces are shown in Fig. 1.19. The x and y
axis are directed along the tangent and normal to the element at section i. The point
O denotes the intersection point of two tangents from sections i and j. The angle
between these two tangents is equal to the central angle dp. We construct the
equilibrium equations for this element [Rzh82].

1. Projection of all forces onto the x axis is
ZX:N— (N +dN)cos dp + (Q +dQ) sin dp — pds = 0.

Since sin dp = dp and cos dp = 1, we get (dN/ds) = Q(dp/ds) — p. And
since (dp/ds) = (1/p), then

dN
——g-i-p:O. (1.21)
ds p

Derivative of the axial force along the axis is directly proportional to the shear
force. The coefficient of proportionality is the curvature of the rod.

M+dM
¥
\ o N+dN
M\i
)< o

Fig. 1.19 Free-body diagram
of the curvilinear member i—j V N
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Fig. 1.20 Design diagram of circular rod

2. Projection of all forces onto the y axis is

d
ZY:Q—(Q—i—dQ)cos dy — (N +dN)sin ng—quXCOS%OZO.

Neglecting the infinitely small second order term we get

o N
. N o (1.22)
ds p

3. The sum of moments about point O is
ds ds
> My =M+ (M+dM) ~05 —(Q+dQ)~ — qds x &+ mds =0.

Here, ¢ is the distance from the resultant load ¢ on the element ds to the point O.
It is clear that this is also an infinitely small quantity. After simplification we get

& —Q+m=0. (1.23)

Integrate (1.21)—(1.23) and limit ourselves to a circular bar with only a uniform
radial load go. We also assume that loads N, Q, and M act on the ends of the bar, as
shown in Fig. 1.20.

In polar coordinates, with the chosen direction of initial forces (1.21)—(1.23) take
the form

;ﬂ -0, (121a)
@
i—Q — _N — R, (1.22a)
@
M _ or. (1.23a)
dy

Equations (1.21a)—(1.23a) are known as Kirchhoff’s equations [Kir76], [Lov20].
Differentiate (1.22a) by ¢ and take into account (1.21a). The equation becomes
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“¥.ip=0. (1.23b)

Boundary conditions:

1. When ¢ = 0, shear Q = Q.
2. When ¢ =0, (dQ/dp) = —No — qoR.

Integrating (1.23b) leads to an expression for the shear force expressed in terms
of the initial parameters Ny and Q.

Q = Qo cos ¢ — (No + qoR) sin ¢. (1.24)

Substitute this expression into (1.21a) and (1.23a). After integrating we get
N = Ny cos ¢ + Qp sin ¢ — qoR(1 — cos ¢), (1.25)
M =My + QoR sin ¢ — (NoR + qoR?)(1 — cos ¢). (1.26)

Equations (1.24)—(1.26) allow us to determine the distribution of internal loads
in a circular rod of radius R subjected to a uniform hydrostatic radial load g, in
terms of the initial parameters Ny, Qp, and M.

Another way of calculating the internal forces consists of bringing (1.21)—(1.23)
to one resolving equation for a curvilinear rod. From (1.22) we express N as N =
—p(dQ/ds) — pq and substitute this expression into (1.21)

d [/ do\ d 0.
_ds<pds>_ds(pq)_p+p_0'

Substitute the expression for Q from (1.23) into the above equation. As a result
we get

d / &M\ 1dM d(pg) d [ dm\ m
— | p— -——— —(p— ) ——=0. 1.27
ds(pds2>+p & P e e\l P (127
In the case of a rod with a circular shape (p = R = const), (1.27) takes the form

&M 1 am d d?

R il °"
R ds ds ds? R

Noticing that ds = Rdy, (1.28) can be written in terms of polar coordinates

&M dM dg d*m
——+—=R*p-——")+R(m——). 1.29
dg’ " dp (p dw) - (m ds02> (129
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Table 1.6 Differential
relationships for

Internal forces

curvilinear bar Displacement N Y M Loads
u d/ds —1/p 0 )4
v 1/p d/ds 0 q
v 0 -1 d/ds m
Strain e y 1

Integrating this equation allows us to find an expression for the bending moment
as a function of the angle. Following this, we can find an expression for the shear
force using (1.23) and then find the axial force using (1.21).

Later we use (1.29) for static analysis of symmetric circular two-hinged arches
with constant cross section and modified equation (1.27) for stability analysis of
redundant arches.

1.7.2 Relationships Between Displacements and Strains

Equations (1.21)—(1.23) may be presented in tabulated form (Table 1.6) using the
differential operators.

The top row contains forces N, Q, and M. The last column contains loads p, ¢,
and m, in accordance to Fig. 1.19. Three subsequent rows represent the three
differential equations (1.21)—(1.23). For example, the first row may be rewritten
in the form (dN/ds) — (Q/p) + 0 x M + p = 0, which corresponds to the differ-
ential equation (1.21).

The left most column contains the displacements which correspond to the type of
load. Tangential displacement # corresponds to longitudinal force p, normal dis-
placement v corresponds to transversal load ¢, and the angle of rotation ¥
corresponds to the moment load m.

The bottom row contains the strains of member. Longitudinal strain ¢
corresponds to the longitudinal force N, shear strain y corresponds to shear force
0, and additional warp of the axis of the rod y to its initial curvature corresponds to
the bending moment M.

Through this table we can easily understand the relationships between
displacements and strains [Rzh82]. To achieve this, we apply a matrix transpose
and obtain

d

~ 2 0x P te=0,
ds p
u do

————— 1 x y=0
> d y+7=0,

d
0xu+0xv— 4, o
ds
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From these expressions we get the relations

S_du v
ds p’
u do
Y ==+ "+, (1.30)
p ds
-
L= s

Special Cases

1. Shear strain 7y is neglected. In this case (1.30) become

8:du v; u du; X_dtﬁ d (u _@. (131)
ds p p ds ds ds

2. Shear strain y and axial strain ¢ are neglected. Equations (1.31) lead to

du u d du dys d (u d? du
—p = S8, 2 () (%) (32
TS 4 p ds <pds>’ L= s ds (p> ds? (pds> (1.32)

3. For a straight rod (p = oo, s = x). Equations (1.30) become

du dv dy
=0 V—a'ﬂﬁ, 1=
This leads to
du dv dy dy d%
&= w—v—a, = T 442 (1.33)

4. For a straight elastic rod (p =00, s=x; y=M/El; y=mn(Q/GA)) the
second and third equations of (1.33) lead to

M _dy_d/  dv\_ pdo dh
TR T ax dx\/ -

or



1.7 Differential Relationships for Curvilinear Rods 41

5. For a circular bar (p = R = const, ds = Rdyp) (1.30)—(1.32) lead to the fol-
lowing results:

(A N
1 /du 1 dv dy 1 (du d*

(e N vy, v L fde dv 131

’ R(dsﬁ U>’ v R<u+d¢>’ =4 R2<dw+d<p2>’ (131

1 (du u 1 d*v
— ) = [ —— | =—— — ). (132
T TR <d90+d<ﬂ3> R? <U+d¢2> (1.32)

dv 1 dy
— ; =—— 1.30.
<u+d¢)+lﬂ7 =Ry (1.302)

x| -

1.7.3 Lamb’s Equation

Let us consider a circular rod of a constant cross-section, subjected to uniform
radial load ¢; in axial direction the rod is nondeformable. In this case, the equilib-
rium equations can be combined into one sixths order ordinary differential
equations with constant coefficients, relative to tangential displacements u

du du  d*u gR® (d*u  d’u 0

dyS + dpt + dy? T E (d(p“ + dap2> -
where angle ¢ determines the position of the point on the nondeformable axis of the
rod. This equation is known as Lamb’s equation [Lam1888], [Rek73], [Rzh55].

Let the central angle be 2. If the angle ¢ is measured from vertical line, then
—a < ¢ < a. The positive displacement u is directed along the tangent of the
circle in the direction in which ¢ increases.

Boundary conditions: For the fixed end, the tangential and radial displacements,
and slope are u =0, Ou/dp =0, 8*u/0p* =0, respectively. For hinged end
u=0, 0Ou/dp=0, u/dp’= (R*/EI)M. The last condition takes into
account external moment M, at the support.

Lamb’s equation will be used for static and dynamic stability analysis of a
circular uniform arches.

Another form of the solution is possible; one can integrate equations
((1.21)—(1.23)) and take the constant of integration to represent the initial
parameters [Bir68]. It is clear that the corresponding solution will represent a
generalization of the initial parameter method (Sect. 1.2) for circular uniform rod.
The books [Bir68, vol. 1], [Uma72-73], [Roa75] contain numerous tabulated data
for computation of internal forces and displacements of circular uniform arches for
cases of in-plane and out-of-plane loading.
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Note the equation of plane curvilinear rod in a general case (nonuniform cross
section, variable radius of curvature) may be found in [Rzh55]. This differential
equation of the sixth order with respect to tangential displacement u takes into
account the tangential and radial distributed loads.

1.8 Reciprocal Theorems

Reciprocal theorems reflect fundamental properties of any linear statistical deter-
minate or indeterminate elastic systems. These theorems find extensive application
in the analysis of redundant structures [KarlO]. Primary investigations were
performed by Betti (1872), Maxwell (1864), Lord Rayleigh (1873-1875),
Castigliano (1872), and Helmholtz (1886) [Tim53], [Tod60].

1.8.1 Theorem of Reciprocal Works (Betti Theorem)

Let us consider elastic structure subjected to loads P and P, separately; let us call it
as first and second states (Fig. 1.21). Set of displacements A,,,, for each state are
shown below. The first index m indicates the direction of the displacement and the
second index n denotes the load, which causes this displacement.

Thus, Ay, and A;, are displacements in the direction of load P; due to load P,
and P,, respectively, A, and A,, are displacements in the direction of load P, due
to load P, and P,, respectively.

Let us calculate the strain energy of the system by considering consequent
applications of loads P, and P,, i.e., state 1 is additionally subjected to load P,.
Total work done by both of these loads consists of three parts:

1. Work done by the force P, on the displacement A;;. Since load P, is applied
statically (from zero to Py according to triangle law), then W; = P A /2.

2. Work done by the force P, on the displacement A,,. Since load P, is applied
statically, then W, = PyA» /2.

3. Work done by the force P, on the displacement A,; this displacement is caused
by load P,. The load P, approached its maximum value P, before application of
P,. Corresponding P1—A; diagram is shown in Fig. 1.21, so W3 = P1Ajs.

Since potential energy U equals to the total work, then
1 1
U:§P1A11 +§P2A22 + PiAp,. (1.34)

On the other hand, considering of application of load P, first and then Py, i.e., if
state 2 is additionally subjected to load P, then potential energy U equals
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Fig. 1.21 Two state of the elastic structure. Computation of work done by the load P, and
additional load P,

1 1
U= §P2A22 —|—§P1A11 + PyAy;. (1.35)

Since strain energy does not depend on the order of loading, then the following
fundamental relationship is obtained

PiAiy = PyAy or Wi = Woy, (1.36)

The theorem of reciprocal works (1.36) said that in any elastic system the work
performed by load of state 1 along displacement caused by load of state 2 equals to
work performed by load of state 2 along displacement caused by load of state 1.

1.8.2 Theorem of Reciprocal Displacements (Maxwell Theorem)

Let us consider two states of elastic structure subjected to unit loads P, = 1 and
P, = 1. Displacements caused by unit loads is called the unit displacements and
denoted by letter J,,,. The first index m indicates the direction of the displacement
and the second index n denotes the unit load, which causes this displacement.

Thus, ;; and J;, are displacements in the direction of load P; due to load
Py = 1 and P, = 1, respectively; d,; and d,, are displacements in the direction of
load P, due to load P; = 1 and P, = 1, respectively.

In case of unit loads, the theorem of reciprocal works P,A;; = P1Aj; leads to the
following fundamental relationship 6;, = ;. In general,

5nm = 5Wm~ (1.37)

This equation shows that in any elastic system, displacement along nth load
caused by unit mth load equals to displacement along mth load caused by unit nth
load. The term “displacement” refers to linear or angular displacements, and the
term “load” means force or moment.
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Fig. 1.23 Theorem of reciprocal unit reactions: (a) clamped—clamped beam; (b) clamped—pinned
beam

This theorem is demonstrated by the following example. Fixed-free circular
bar is subjected to unit radial load X, in the first state and unit axia/ load X,
in the second state (Fig. 1.22). According to Table A.7, we get 6 = 9y =
(R3/2EI)(1 — cos 7). This table contains expressions for other unit displacements.

Theorem of reciprocal displacements will be widely used for analysis of redun-
dant arches by the Force method.

1.8.3 Theorem of Reciprocal Reactions (Rayleigh First Theorem)

Let us consider two states of elastic structure subjected to unit displacements of
supports. They are Z; = 1 and Z, = 1 (Fig. 1.23a). Reactions caused by unit
displacements are called the unit reactions and denoted by r,,,. The first index m
indicates constrain where unit reaction arises and the second index n denotes
constrain, which is subjected to unit displacement.

Thus ry; and 7y, are reactions in the constrain 1 due to displacement Z; = land
Z, = 1, respectively; r,; and r,, are reactions in the constrain 2 due to displacement
Z; = 1 and Z, = 1, respectively.

The theorem of reciprocal works 11 X 0 411 X 1 =rp X 1 + 1y x 0 leads to
the following relationships 2, = 2. In general

Tnm = T'mn- (138)
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B4

Fig. 1.24 Theorem of reciprocal of unit displacements and reactions

The theorem of reciprocal reactions said that in any elastic system reaction
Fams Which arises in nth constrain due to unit displacement of constrain mth,
equals reaction r,,, which arises in mth constrain due to unit displacement of
constrain nth.

This is demonstrated by the following example (Fig. 1.23b). Unit displacements
of the clamped—pinned beam are as follows: Z; = 1 is a unit angle of rotation of the
clamped support and Z, = 1 is a vertical linear displacement of the pinned support.
Unit reactions are as follows: 7, is a vertical reaction in constrain 2 caused by unit
angular displacement of support 1 and r;, is a moment in constrain 1 caused by
unit vertical linear displacement of support 2. It is known [Kar10] that unit reactions
are rp; = rypp = 3E]/12

1.8.4 Theorem of Reciprocal Displacements and Reactions
(Rayleigh Second Theorem)

Let us consider two states of elastic structure subjected to unit displacement Z; = 1
and unit load P, = 1 (Fig. 1.24a). Displacement &, occurs in direction of load P,
due to unit displacement Z,. Reaction r, arises in constrain 1 due to unit load P,.

The theorem of reciprocal work in extended form should be presented as
follows:

—rmx1=1xd,
so we get that — rjp = 5’21. In general,
Tjk = _5;Cj' (139)

The theorem of reciprocal unit displacements and reactions said that reaction in
Jjth constrain due to unit load of kth direction and displacement in kth direction due
to unit displacement of jth constrain are equal in magnitude but opposite in sign.

This theorem is illustrated in Fig. 1.24b. In order to find a vertical displace-
ment at the point A due to unit rotation of the support B, apply unit force F = 1
along required displacement. Moment at fixed support due to force F =1 is
rga = —F (a + b). Since F =1, therefore the vertical displacement is
dp=a+b.



46 1 Deflections of Elastic Structures

Fig. 1.25 Design diagram of
the fixed-free circular rod

14

1.8.5 Transfer Matrix

Let us consider fixed-free circular rod of radius R loaded by a radial distributed load
within the portion CB (Fig. 1.25). The radial, tangential, and angular displacements
Acy &, Yo of the section C are known. The problem is to determine the
displacements of the free end A, assuming that portion AC displaces as absolutely

rigid body.
Apply the unit force P = 1 in direction of 14. Reaction R4, which corresponds
to displacement A¢ is Rcy = —P cos 7. The negative sign shows that direction of

Rcy4 is opposite to the displacement Ac. According to theorem of reciprocal
displacements and reactions, we get 14 = A¢ cos y. Similarly, the vector displace-
ment at the section A in terms of transfer matrix and displacement vector of the
section C may be represented as follows [Uma72]:

A cosy —siny R sin y A
&l =|siny cosy R(l—cosy)|-|E&| . (1.40)
2 0 0 1 v

1.9 Boussinesq’s Equation

Boussinesq’s differential equation (1883) describes the behavior of a circular rod
with constant cross-sectional dimensions.

1.9.1 Two Forms of Boussinesq’s Equation

Let us consider a circular rod of radius R. For deriving of differential equation we
consider two cases.

Case 1. Axial force is neglected. Bending moment M = yFEI; taking into account
equation (1.32a) we get the differential equation with respect to radial displacement

d*v MR?



1.9 Boussinesq’s Equation 47

Let the clamped-free rod is subjected to uniform radial load ¢ (Fig. 1.20).
Expression (1.26) for bending moment M = My + QoR sin ¢ — (NoR + qoR?) x
(1 —cos ) is substituted into (1.41) and integrated with respect to . We get
expression for radial displacement in terms of initial parameters

v =1 cos ¢ + HyR sin ¢ — ug sin ¢ — Moc(1 — cos ) — QocR

sin ¢ —  cos
% p—p Y

5 (qoR — No)cRp, (1.42)

R? i
¢=gr ﬁzl—cosgo—SDSlzn@.

We can apply this expression for hingeless arch subjected to uniformly
distributed radial load ¢o. Since the initial parameters are vy = 0y = up = 0 and
My =Q00=0, Nyop= —qoR, then for radial displacement we get

R4
v = —(qgoR — No)cRf = —261055'

If a central angle is 180° then for o = 90° (crown) parameter § = 0.2146 and
v = 0.4292(qoR*/EI).

Case 2. Axial force is taken into account. According to (1.31a), the curvature y of
the rod, in addition to the initial curvature is

dy 1 (du d*
X = ———= - — J— + -
ds RZ\dp dp?

so the expression for bending moment becomes

M= gy~ _EL(du d*v @
TR dp  de?)’
The axial deformation is ¢ = (1/R)((du/dp) — v), so

EA (du
=—e¢FA=—1(——1v].
N=c¢ ( d u> (b)

From (a) and (b), we extract the du/dp term and equate the right-hand sides.
As a result we arrive at the Boussinesq equation [Sni66]

d*v MR?> NR
R 1.43
v El EA (1.43)
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Fig. 1.26 Design diagram of uniform circular rod

Table 1.7 Parameter f in terms of A and «

o

A /6 /4 /3 /2
0.001 0.9984 0.9995 0.9994 1.0
0.005 0.9997 0.9975 0.9969 1.0
0.01 0.9968 0.9950 0.9938 1.0
0.05 0.9834 0.9742 0.9680 1.0
Fig. 1.27 Design diagram a b P
of a circular uniform rod v
MOCA A
R R
¢ ¢
' B B

If we substitute the expressions for bending moment (1.26) and axial force
(1.25) into (1.42) and integrate, we obtain an expression for radial displacement
v. Using relationship v = du/dp, we can find the tangential displacement u and
then we can find the angle of rotation ¥ and additional warp of the axis of the rod
¥ to its initial curvature. For this we use the second and third equation of (1.32a).
We employ an important result for design diagrams in Fig. 1.26. Assume the central
angle is 2o and the cross-sectional area is A.

The axial force works out to be Ng = —goRf, where f = (n — A(a+1))/(n — 1)
and 1= (r?/R?), r?=1/A, n=(ax—1)tano.— 1+ (¢ +2tana)cota. Table 1.7
presents the parameter f in terms of 4 and o.

In a large range of values of / and «, the parameter f'is very close to unity, so we
can take Boussinesq’s equation to be in the form of (1.41), with a high degree of
precision.

1.9.2 Displacements of a Circular Rod

We use Boussinesq’s equation to determine radial displacements of a uniform
circular rod with a central angle of 90° (Fig. 1.27a, b).
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Loading in Fig. 1.27a

Bending moment M = —M, and Bousssinesq equation (1.41) takes the form
d’v MoR?
— = . 1.44
a2 VT T (1.44)

This equation has the solution v = v; 4+ v*. Since the right-hand side of the
equation in constant, we look for a particular solution in the form v* = &, where k is
a some unknown constant. To determine the unknown constant, substitute this expres-
sion back into the differential equation. As a result we getk = (MoR?)/EI, and the full
solution is v = A cos ¢ + B sin ¢ + k, where A and B are constants of integration.

Boundary conditions:

1. When ¢ = 7/2 the radial displacement is v =0. This condition leads to
B = —k = —(MR?)/EI.

2. When ¢ =mn/2 (fixed support) we have dv/dp =0, so — A sin p+
B cos ¢ = 0. This condition leads to A = 0.

The final expression for the radial displacement is

MoR?
v= 131 (1 —sin ¢).
. . . MoR?
On the free end the vertical displacement is Ayeyy = - (1).

Loading in Fig. 1.27b
In this case, the bending moment M = —PR sin ¢ and Boussinesq’ equation (1.41) is

d*v M,R*> PR® .

d—gaz—H)Z_ 21 :ﬁsm ©. (1.45)

Its solution has the form v = v; + v*. Note that the coefficient of ¢ in the right-
hand side and the second term in the left-hand side are both equal to unity (1 x v
and sin(1 x ¢)). So we look for a particular solution in the form of v* = k¢ cos .
Substitute this expression into the differential equation to determine the unknown
coefficient. As a result we obtain k = —(PR?/2EI), and the full solution is
v =A cos ¢ + B sin ¢ — (PR*/2EI)¢ cos .

Boundary conditions:

1. When ¢ = 7/2 the radial displacement is v = 0. This condition leads to B = 0.
2. When ¢ = 1/2

— =—Asinp—kcos p+kpsinp=0



50 1 Deflections of Elastic Structures

Fig. 1.28 Uniform circular rod carrying the radial force P

and this leads to A = PnR*® /4EI. The final expression of the radial displacement is
given by

PrR3

Y

(1 — 28) cos .
T

PnR?

e Y
Now let us consider a more general case. A radial load P is applied to the free

end of the uniform clamped-free rod of radius R and central angle y (Fig. 1.28).

On the free end the vertical displacement is Aye; =

Bending moment is M = —PR sin . Boussinesq’ equation (1.41) becomes
d*v N M,R* PR .
—+v=— = ——sin
dg? El B CTY

Its solution gain has the form v = v; 4 v*. As before, we look for a particular
solution in the form v* = k¢ cos ¢. To determine the unknown constant we plug
this expression back into the differential equation. As a result we get
k = —(PR3/2EI), and the full solution becomes

R3

v=Acos ¢ +B sin@fﬁ

( cos . (a)

Boundary conditions:

1. When ¢ = y, the radial displacement of support B is v = 0, so

3

R
2EI y cos y = 0. (b)

v=Acosy+Bsiny—

2. When ¢ = y the slope dv/dp = 0. The slope at any point is

dv A sin o+ B PR3 ( in )
— = —A SIn COS — ——(COS — Sin
dy @ Y © = sin p),
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d PR?
é‘wzyz—A siny—&—Bcosy—E(cosy—ysiny):O. ©

Solution of (b) and (c) are

B PrR3
~ 2FEI
PR3

A:fﬁ(cosy sin y — p).

cos?y,

Radial displacement becomes

PR’

=35 [(y — cos 7 sin y) cos ¢ + cos® y sin ¢ — @ cos <p]. (d)

v(e)

Special Cases

1. For free end of the bar ¢ = 0. In this case formula (d) becomes

2 4

PR3 . PR3 [y  sin 2y
v(O)zﬁ(y—cosysmy):ﬁ .

2. Let the central angle be y = 7/2. In this case for any ¢ we get

PnR3 ")
_ 1- 2_) .
v(e) =35 ( 7)) ¥

3. Lety = n/2 and ¢ = 0. In this case Aye = (PR3 J4EI)(]).

We can derive expressions for displacement in a similar manner when we are
dealing with different types of loads. The most important types of loads and the
corresponding results are presented in Tables A.6 and A.7.

Discussion

It is evident that the differential relations allow us to find the displacement equation
for an arbitrary section, while the Mohr integral allows us to determine displace-
ment at a fixed section.

Detailed analysis of uniform two-hinged circular arch subjected to a single force
is presented in [Tim72]. Numerous reference data, related to circular and elliptical
rings, subjected to different loads is presented in [Roa75], [You89], [Bir68, vol. 1].



52 1 Deflections of Elastic Structures

Fig. 1.29 Design diagram of circular bar and its equivalent presentation

Example 1.8. The circular rod AB of radius R = 24 m and central angle y = 75°
together with cantilever CD of length 6 m is loaded as shown in Fig. 1.29a. The
structure is subjected to a concentrated force F = 10 kN and radial uniformly
distributed load ¢ = 2 kN/m. (a) Determine the reactions of support B; (b) deter-
mine the displacements at point C and at the free end A.

Solution. We first perform some preliminary operations. Transfer the force F'to the
point C; additional clockwise couple is M = F x CD = 60 kN m. Resolve a force F
at point C into the radial and axial components Fr,q = F sin(15 + /) = SkN and
F, = —F cos(15 + ) = —8.66 kN. The negative sign corresponds to the data in
Table A.6. Figure 1.29b presents the initial design diagram in the equivalent form:
the load ¢ acts within the entire rod AB, and load (—¢) within the portion BC; also,
the axial force F., radial force F,4, and couple M act at point C.

Reactions at the support B. According to the principle of superposition and data in
Tables A.6 and A.7 we get (A.6, 1-1 means Appendix Table A.6, column 1, row 1)

O = 0(q) + Q(—q) + Q(Fraa) + Q(F:) + Q(M)
= gR sin 75° — gR sin 15° + F,q cos 15° +F; sin 15°+ 0 = 36.53kN,
—_ —]/ (Y Y ~~
A6,1—1 A6,1-1 A7,1-1 A72-1 A73-1

N =N(q) +N(=q) + N(Fraa) +N(F:) + N(M)
= —qR(1 — cos 75°) +gR(1 — cos 15°) — Fypq sin 15° +F; cos 15°+ 0

A.6,1-2 A6,1-2 A7,2-2 A7,3-2 A73-3
— _43.6kN,
Mg =qR*(1—c0s75°) —qR*(1—c0s 15°) +FaqR sin 15° + F.R(1 —cos 15°) + M
A6,1-3 A6,1-3 A71-3 AT23 AT3-3

=898.5kNm.

Displacements at point C. Displacement components of the point C caused by loads
which act on the portion BC (F d, Fo M, —q) are presented in Table 1.8; for
computation of displacements we use the principle of superposition and data in
Tables A.6 and A.7.
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Displacements at the free end. (y,g = 75° = 51/12; 7,0 = 60° = 7/3).
For calculation of displacements at the free end we use the transfer matrix (1.40)

a = Ac €08 Ypc — Ec Sin Ype + YR sin pac + Fi(q)
a = Ac sin pac + & €08 Yac + Y eR(1 = cos 4¢) + Fa(q)
Ya=Yc+Fi(q).

Functions F;(g) take into account load ¢ within all length AB. In our case

1130.7 94.63 377.8
== cos 60° — sin 60° + TR sin 60°
N qR3§ (1—cos 75°)* _ 190,597 kNm?
EI 2 EI
A6, 1—4
1130.7 4.63 377.8
éa == sin 60°+9EI cos 60°+?R(1 — cos 60°)
R (3 5= sin 150° 109, 504 kNm?
3 [ e . o — 9
+ gR E[(ZXIZ 2 sin 75° + 1 ) Foni
A6,1-5

377.8 R (5m 9,863 kNm?
= — R2 —— T~ i ° = ’ .
Va=Tgr TR g (12 sin 75 ) EI

A.6,1-6

These values will be used for analysis of symmetrical circular uniform arch in
Sect. 3.10.2.



Chapter 2
Three-Hinged Arches

This chapter is devoted to the analysis of statically determinate three-hinged arches,
subjected to fixed and moving loads. Analysis of an arch in the case of fixed loads
implies determination of reactions of supports and construction of internal force
diagrams. Analysis of an arch in the case of moving load implies construction of
influence lines for reactions, thrust, and internal forces.

Some important concepts are discussed. Among them are a reference beam,
thrust, nil points of influence lines, etc. Analytical formulas for computation
of internal forces as well as for construction of influence lines for reactions
and internal forces are developed. Special types of arches are considered; among
them are arches with simple and complex ties, arches with support points on
different levels. Analysis of the multispan arched structure and truss enforced by
arched chain are discussed.

Fundamental investigation in the area of static analysis of arches is attributed to
Bresse [Bre59], Kirchhoff [Kir76], and Winkler [Tim53] to name a few.

2.1 General

Idealized design diagram of the arch without overarched members is shown in
Fig. 2.1a. This diagram contains two curvilinear members which are hinged
together at the crown; connections of curvilinear members with abutment are also
hinged. These three hinges are distinguishing features of the three-hinged arch.
Design diagram also contains information about the shape of the neutral line of the
arch. Usually, this shape is given by an expression of the form y = f(x).
Expressions for some characteristic shapes are presented in Tables A.1 and A.2.

Degrees of freedom of the arch in Fig. 2.1a, according to Chebushev formula
[Kar10], are determined by the formula

W=3D—-2Hy—Sy=3x2-2x1-4=0, (2.1)

L.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration, 55
DOI 10.1007/978-1-4614-0469-9_2, © Springer Science+Business Media, LLC 2012
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Fig. 2.1 (a, b) Design diagram of three-hinged arch without tie and with elevated tie

where D, H,, and S, are the number of rigid discs, the number of simple hinges, and
the number of constraints of support, respectively. Since W = 0, this structure does
not have redundant constraints, while all existing constraints constitute the geo-
metrically unchangeability. Indeed, two rigid discs AC and BC are connected with
the ground by two hinges A and B and line AB does not pass through the inter-
mediate hinge C.

This structure has four unknown reactions, i.e., two vertical reactions R4, Rg
and two horizontal reactions H,, Hp. For their determination, three equilibrium
equations can be formulated considering the structure in whole. Since bending
moment at the hinge C is zero, this provides additional equilibrium equation.
It means that the sum of the moments of all external forces, which are located on
the right (or on the left) part of the structure with respect to hinge C is zero

Mc =0 or Mc =0 2.2)
) )

left right

These four equations of equilibrium determine all four reactions at the supports.
Therefore, three-hinged arch is a geometrically unchangeable and statically deter-
minate structure.

The fundamental feature of arched structure is that horizontal reactions appear
even if the structure is subjected to vertical load only. These horizontal reactions
Hj = Hp = H called as a thrust; such types of structures are often called as thrusted
structures.

It will be shown later that at any cross section of the arch, the bending moments,
shear, and axial forces arise. However, the bending moments and shear forces are
considerably smaller than corresponding internal forces in a simply supported beam
covering the same span and subjected to the same load. This is the fundamental
property of the arch thanks to thrust. Thrusts in both supports are oriented toward
each other and reduce the bending moments that would arise in beams of the same
span and load. Therefore, the height of the cross section of the arch can be much less
then the height of a beam to resist the same loading. So the three-hinged arch is
more economical than simply supported beam, especially for large-span structures.

Introducing a tie into the system increases the number of constraints by one and
therefore, in order for the arch with a tie to remain statically determinate, one of the



2.2 Reactions of Supports and Internal Forces 57

P

RAT TRB

Fig. 2.2 Simply supported thrustless curvilinear member

pinned support must be replaced by a rolled support. A tie changes the distribution
of internal forces in arch. The tie may be located at the level of the supports or
above them. Arch with an elevated tie is shown in Fig. 2.1b. If tie is connected with
arch by means of hinges, then the tie is subjected only to a tensile internal force.

In the case of vertical loads, which act on the arch with a tie, the horizontal
reactions of supports equals zero while an extended force (thrust) arises in a tie.

Let us have a quick look at the structure shown in Fig. 2.2. Is this an arch? The
arch is characterized by two fundamental markers such as a curvilinear axis and
appearance of the thrust. Therefore, the structure in Fig. 2.2 presents the curvilinear
trustless simply supported element, i.e., this is just a member with a curvilinear axis,
but not an arch.

It is obvious that, unlike the beam, in this structure the axial compressed forces
arise; however, the distribution of bending moments for this structure and for a
beam of the same span and load will not differ, while the shear forces are less in this
structure than that in beam. Thus, the fundamental feature of the arch (decreasing
of the bending moments due to appearance of the thrust) for structure in Fig. 2.2
is not observed.

2.2 Reactions of Supports and Internal Forces

Let us consider a three-hinged symmetrical arch with intermediate hinge C at the
highest point of the arch and with supports A and B at one elevation. Design
diagram of the corresponding three-hinged arch is presented in Fig. 2.3; the span
and rise of the arch are labeled as / and f, respectively. Equation of central line of
the arch is y = y(x).

Reactions of Supports

The stress analysis, and especially, construction of influence lines for internal
forces of the three-hinged arch may be easily and elegantly performed if the
conception of the “reference (or substitute) beam” is introduced. The reference
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Tangent
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P}’l
¢

1
Reference beam _8_

Fig. 2.3 Three-hinged arch. Design diagram and reference beam

beam is a simply supported beam of the same span as the given arch and subjected
to the same loads, which act on the arch (Fig. 2.3).

The following reactions arise in arch: R4, Rp, Hy, Hp. The vertical reactions of
three-hinged arches carrying the vertical loads have same values as the reactions of
the reference beam

Ry=RY; Rpz=R). (2.3)

The horizontal reactions (thrust) at both supports of three-hinged arches
subjected to the vertical loads are equal in magnitude and opposite in direction

Hy=Hz=H. 2.4)

Bending moment at the hinge C of the arch is zero. Therefore, by definition of
the bending moment

[ [ [
Mr=R;——P;|-— — Py =— —H, =0.
c=Ra3 1(2 X1> 2<2 Xz) AXf=0

0
M.,

Underlined set of terms is the bending moment acting over section C of the
reference beam (this section is located under the hinge of the arch). Therefore, last
equation may be rewritten in the form

MY —Hy xf=0,
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Tangent

Fig. 2.4 Positive internal forces at any section k

which immediately allows us to calculate the thrust
M
f

Thus, the thrust of the arch equals to bending moment at section C of the
reference beam divided by the rise of the arch.

H (2.5)

Internal Forces

In any section k of the arch, the following internal forces arise: the bending moment
M, shear Q,, and axial force N;. The positive directions of internal forces are
shown in Fig. 2.4.

Internal forces acting over a cross section £ may be obtained considering the
equilibrium of free body diagram of the left or right part of the arch. It is convenient
to use the left part of the arch. By definition

My = Raxi — Y Pi(xi — x;) — Hyy,

left

Or= | Ra —ZP cos ¢, — H siny,

left

Ny=—(Ra — ZP siny, — H cos ¢y,
left

where P; are forces which are located at the left side of section k; x; are
corresponding abscises of the points of application; x; and y, are coordinates
of point k; and ¢ is the angle between the tangent to the center line of the arch at
point £ and a horizontal.
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These equations may be represented in the following convenient form

My = M} — Hyy,
Qi = Q) cos g — H singy,
Ny = —Qg sin ¢, — H cos ¢, (2.6)

where expressions

M) = Ryx— " Pilx— ), and 0f = Ry — " P,
left left

represent the bending moment and shear force at section & for the reference beam
(beam’s bending moment and beam’s shear).
Analysis of (2.5) and (2.6)

1. Thrust of the arch is inversely proportional to the rise of the arch.

2. In order to calculate the bending moment in any cross section of the three-hinged
arch, the bending moment at the same section of the reference beam should be
decreased by the value Hy,. Therefore, the bending moment in the arch less
than that of in the reference beam. This is the reason why the three-hinged arch
is more economical than simply supported beam, especially for large-span
structures.

In order to calculate shear force in any cross section of the three-hinged arch,
the shear force at the same section of the reference beam should be multiplied
by cos ¢, and this value should be decreased by H sin .

3. Unlike beams loaded by vertical loads only, there are axial forces, which arise
in arches loaded by vertical loads only. These axial forces are always
compressed.

Example 2.1. Design diagram of the three-hinged circular arch subjected to fixed
loads is presented in Fig. 2.5a. The forces P; = 10 kN, P, = 8§ kN, ¢ = 2 kN/m.
It is necessary to construct the internal force diagrams M, Q, N.

Solution. Reference beam. The reactions are determined from the equilibrium

equations of all the external forces:

D> Mp=0— —R} x32+P; x24+gx8x12+P; x4=0— R} =145kN,

> My =0—Ryx32-P; x8—qx8x20—P;x28=0—Rj=19.5kN.
The bending moment M° and shear Q° diagrams for reference beam are pre-

sented in Fig. 2.5b. At point C (x = 16 m), the bending moment is M2 = 152 kN m.

Three-hinged arch. The vertical reactions and thrust of the arch are

MY 152
Ry =R =145kN,  Rp =R} =19.5kN, H:TC:T:wkN.
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Fig. 2.5 (a) Design diagram of three-hinged circular arch and (b) reference beam and
corresponding internal forces diagrams

For construction of internal forces diagrams of the arch, a set of sections has to be
considered and for each section internal forces should be calculated. All computa-
tions concerning geometrical parameters and internal forces of the arch are presented
in Table 2.1. The column 0 contains the numbers of sections. For specified sections A,
1-7, and B, the abscissa x and corresponding ordinate y (in meters) are presented in
columns 1 and 2, respectively. Radius of curvature of the arch is

f 2 8 322
R=L4+ 242" _som
2T T atgxs M

Coordinates y are calculated using the following expression

y(x) = (/R — (é—x)z—R—i—f: 1/400 — (16 — x)* — 12 (m).
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Columns 3 and 4 contain values of sin ¢ and cos ¢, which are calculated by the
formula

1—2x 32—2x y+R—f y+12
= s COS = - .
2R 40 R 20

sinp =

Values of bending moment and shear for reference beam, which are presented
in columns 5 and 7, are taken directly from the corresponding diagrams in Fig. 2.5b.
Values for Hy are contained in column 5'. Columns containing separate terms
forQ%cosp, QYsingy, Hcosy, H sinp are not presented. Values of bending
moment, shear, and normal forces for three-hinged arch are tabulated in columns 6,
8, and 9. They have been computed using (2.6). For example, for section A we have

Q4 = 0% cosp, —H sing, = 14.5 x 0.6 — 19 x 0.8 = —6.5kN,
Ny = -0 sing, —H cosp, = —14.5 x 0.8 — 19 x 0.6 = —23kN.

The final internal force diagrams for the arch are presented in Fig. 2.6. Bending
moment diagram is shown on the side of the extended fibers, thus the signs of
bending moments are omitted. As for beam, the bending moment and shear
diagrams satisfy to Schwedler’s differential relationships. In particularly, if at any
point a shear changes its sign, then a slope of the bending moment diagram equals
zero, i.e., at this point the bending moment has local extreme (e.g., points 2, 7, etc.).
It can be seen that the bending moments which arise in cross sections of the arch are
much less than that of in a reference beam.

It is obvious that for supports RZ + H?> = Q3 + N2 and R% + H*> = Q% + N3.

2.3 Rational Shape of the Arch

The shape of the arch, which is subjected to a given fixed load, is called rational if
the bending moments in the cross section of the arch equal to zero. An example of a
rational arch could be in the form of a circular arch which is loaded by uniform
radial (hydrostatic) load [Rzh82].

2.3.1 Vertical Load Does Not Depend on the Shape of the Arch

In this case, the reactions of the arch and bending moments for reference beam
do not depend on the shape of the arch. Thus, for a rational arch, we have the
condition

My, = M} — Hy, =0, (2.7)
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Fig. 2.6 Design diagram of three-hinged circular arch. Internal forces diagrams

where M is a bending moment in the reference simply supported beam; H is a
thrust of the arch; y; is a vertical coordinate of the point on the axis of the arch.
Therefore, the shape of the rational arch is determined by its y coordinate

My
Vo= (2.8)

It is easy to prove the following statement: if a three-hinged arch is subjected to
a vertical load and the vertical ordinates y of the arch, measured from the support
line AB, are proportional to corresponding ordinates of the bending moment
diagram of the reference beam, then the bending moments at all sections of the
arch are equal to zero. This statement is true for any position of the intermediate
hinge C [Rab60].
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Indeed, let for any section k of the arch, the y-ordinate of the axis and bending
moment of the reference beam be related by the formula y;, = nMY, where n is an
arbitrary number. Bending moment at section £ is

My = MY — Hy, = MY — HnM?) = M{(1 — nH).

For crown hinge C, the bending moment Mc = M%(1 —nH) = 0. Since
M2 # 0, then (1 — nH) = 0.
Thus, the bending moment at any section equals to zero.

Example 2.2. Three-hinged symmetric arch of span / and rise f is loaded by a
uniformly distributed load ¢ within the entire span. Origin is placed on the left
support and the axis x is directed to right. Expression for bending moment of the
reference beam is M? = gx(I — x)/2.

The thrust of the arch is H = M /f = qI? /(8f). Therefore, the required equation
of the axis of the arch becomes

MY 4
y(x) = ﬁ = l—{x(l —X).

Thus, if a uniformly distributed vertical load acts within the entire span of the
three-hinged parabolic arch, then the bending moments do not arise in the arch.

Note, if a given load is governed by the law g(x) = go + kx, then the bending
moment diagram and the rational axis of the arch are characterized by third-order
polynomials [Kis60].

2.3.2 Vertical Load Depends on Arch Shape

Let us consider a three-hinged arch load as shown in Fig. 2.7. We can see that a
shape of the arch determine the value of load. According to the definition, in the
case of a rational arch, only axial forces arise in the cross sections.

Free body diagram for infinitesimal element i—j is shown in Fig. 2.7; horizontal
projection of this element is dx. Equilibrium equation

ZX =N cosp — (N +dN)cos(p + dp) =0,
leads to d(N cos ) = 0. It means that
N cosp = const = H, 2.9)

where H is the thrust of the arch.
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Fig. 2.7 Three-hinged arch subjected to load which depends on the shape of the arch

Equilibrium equation

Z Y =N sinp + g(x)dx — (N + dN) sin(p + dg) = 0 leads to %(N sin ) = ¢g(x).
(2.9a)

Since N = H/cos ¢, (2.9a) can be rewritten as follows

d _ d /ody\ &
a(Htamp) = q(x) or a(Ha> —H@—q(x),

Thus, the equation of the rational axis of the arch in the case of a load, which
depends on the shape of the arch obeys the differential equation [Kis60]

&y _q()
— =" 2.10
w2 (2.10)
For each specified load, the problem of determining the rational shape of the arch
comes down to integration of (2.10).

Example 2.3. Symmetrical three-hinged arch of span / and rise f is subjected to
vertical load g(x), which consists of two parts. One part of load, g, is uniformly
distributed within the entire span of the arch. The second part of load depends on the
shape of the arch. Assume that this part of the load is proportional to coordinate y.
Thus, the total load becomes g(x) = go + y X y. Design diagram of right-hand part
of the arch and location of the x and y axis are shown in Fig. 2.8.

Differential equation (2.10) becomes

&Py qo+yxy & 5 q, 5 7
Y _BHrVxy Y g, B 2T
a2 H Tae T H

Its solution and first derivative are

d
y = A sinh kx + B coshkx—@;d—i:Ak cosh kx + Bk sinh kx.
y
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Fig. 2.8 Load change according to the shape of the arch, g(x) = go + 7y

Constants of integration are found from the boundary conditions for symmetrical
arch:

1. At x = 0 (indeterminate hinge C), dy/dx = 0. This condition leads to A = 0.
2. Atx =0y =0,s0B = qp/y.

Equation of the axis of the rational shape of the arch becomes

y(x) = o (coshkx —1).
Y
This curve is called a catenary [Kis80]. Some data for catenary arch with the
given span / and rise f and parameter of the load § = gmax/qo are presented below.
Equation of the shape of the arch is

f

y=5T (coshkx — 1),

where relationship between parameters £ and 0 is

0 = cosh %, ) k:%arc cosh d.

The slope of the axis of the arch is
tanp = (5f71k sinh kx.

The thrust H of the arch, axial force N in any cross section of the arch, and
maximum axial force N, are:

20(6— 1) 511
H:Tv N =H\/1+tan’p, Ny =H 1+k2f25j~

Vertical component of the reaction of support is

B f .kl
V—H(S_lksmh 5
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Fig. 2.9 Infinitesimal element subjected to radial load and axial force
2.3.3 Radial Load

Let us consider an arch with arbitrary equation for the central axis. The arch is
loaded by a radial load. It means that the load is directed along the radius of
curvature at each infinitesimal element of the arch. Design diagram of such element
of length ds, central angle 2du, and radius of curvature p is shown in Fig. 2.9. The
load ¢ is directed to the center of curvature; the load ¢ should be treated as
uniformly distributed within the portion ds. Since the arch is rational, then bending
moments are absent.
From the equilibrium equations

> Mo =Np—(N+dN)p =0,

we get N = 0. It means that in the case of a radial load, the axial force in arch is
constant.

Since sindo = do and ds = p X 2da, then the equilibrium equation in projec-
tion of all forces onto the normal axis

> n=N sinda + (N + dN) sinda — gds = 0,

leads to the following expression for the radius of curvature p = N/g. Curvature
of the axis of the rational arch is proportional to the intensity ¢ of the external load.
In the case of a uniformly distributed radial load (¢ = const), the axis of the rational
arch presents a circle [Kis60].

The simplest problems of optimal three-hinged and redundant uniform arches
are presented in [Gol80]: in these problems, it is necessary to find the shape of the
arch which minimize its volume. Different types of loading are considered. Among
them are fixed, moving, and wind loads.

2.4 Influence Lines for Reactions and Internal Forces

This section is devoted to construction of influence line for reactions, thrust, and
internal forces. Three precise approaches are considered. They are the analytical
approach, the nil points of influence lines, and fictitious beam methods. Influence
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lines method for structural analysis was developed by Winkler (1835-1888) and
independently by Mohr (1835-1918) in 1868.

2.4.1 Analytical Approach

Equations (2.3), (2.5), and (2.6) can be used for deriving the equations for influence
lines. The equations for influence lines for vertical reactions of the arch are derived
from (2.3). Therefore, the equations for influence lines become

IL(Ry) =IL(RY);  IL(R) =IL(RY). (2.11)

The equation of influence lines for thrust is derived from (2.5). Since for a given
arch, a rise fis a fixed number, then the equations for influence lines becomes

IL(H) = }f x IL(M?). (2.12)

Thus, influence line for trust H may be obtained from the influence line for
bending moment at section C of the reference beam, if all ordinates of the latter will
be divided by parameter f.

The equations for influence lines for internal forces at any section k may be
derived from (2.6). Since for a given section k, the parameters yy, sin ¢y, and cos
are fixed numbers, then the equations for influence lines become

IL(M) = IL(MY) — y x IL(H),
IL(Qk) = cos ¢ x IL(QY) — sin¢p, x IL(H),
IL(Ny) = —sing, x IL(QY) — cos ¢, x IL(H). (2.13)

In order to construct the influence line for bending moment at section £, it is
necessary to sum two graphs: one of them is influence line for bending moment at
section k for reference beam and second is influence line for thrust H with all
ordinates of which have been multiplied by a constant factor (—yy).

Equation of influence lines for shear also has two terms. The first term presents
influence line for shear at section k in the reference beam, all the ordinates of which
have been multiplied by a constant factor cos ¢,. The second term presents the
influence line of the thrust of the arch, all the ordinates of which have been
multiplied by a constant factor (— sin ;). Summation of these two graphs leads
to the required influence line for shear force at section k. Similar procedure should
be applied for the construction of influence line for axial force. Note that both terms
for axial force are negative.
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Fig.2.10 Three-hinged arch. (a) Design diagram; (b) influence lines for reactions of the arch; and
(¢) influence lines for internal forces at section k for reference beam

Figure 2.10a presents the arched structure consists of the arch itself and
overarched construction, which includes the set of simply supported beams and
vertical posts with hinged ends. Unit load, which moves along the horizontal
beams, is transmitted over the posts on the arch at discrete points. Thus, this design
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diagram corresponds to indirect load application. Parameters of the arch are same as
in Fig. 2.5a.

It is required to construct the influence lines for vertical reactions, thrust and for
bending moment M, shear Q,, and normal force N, for section k.

Influence Lines for Reactions

According to (2.11), influence lines for vertical reactions R, and Ry of the arch do
not differ from influence lines for reaction of supports of a simply supported beam.
Influence line for thrust may be constructed according to (2.12); the maximum
ordinate of influence line for bending moment at section C of the reference beam
equals to a.b./l = 8 m. Therefore, the maximum ordinate of influence line for
thrust H of the arch becomes (1/f) x (acb./l) = 1/4f = 32/4 x 8 = 1. Influence
lines for reactions of supports of the arch and internal forces for reference beam are
shown in Fig. 2.10b, c. Indirect load application is taken into account [Kar10].

Influence Lines for Internal Forces at Section &

Section £ is characterized by the following parameters: @, = 10m, by = 22 m, y;, =
7.0788 m, sin ¢ = 0.30, cos ¢ = 0.9539 (Table 2.1). Algorithms for the construc-
tion of influence lines of internal forces for arch are described in Sect. 2.4.1.

Bending moment. Influence line for M at section k£ may be constructed according to
(2.13).

IL(M;) = IL(MY)) — y; x IL(H). (2.13a)

Step 1. Influence line for bending moment at section k of reference beam Mg
presents the triangle with maximum ordinate a;b;/l = 10 x 22/32 = 6.875m at
sections k and 5.0 m at section C (Figs. 2.10 and 2.11).

Step 2. Influence line for thrust H presents triangle with maximum ordinate
1/(4f) = 1 at section C. Term y; x IL(H) presents the similar graph; the maximum
ordinate is y; X 1 = 7.0788 m. So the specified ordinates of graph y; x IL(H) at
section k and C are 4.42425 and 7.0788 m, respectively (Fig. 2.11).

Step 3. Procedure (2.13a) is presented in Fig. 2.11, construction of influence line
M. Since both terms in (2.13a) has different signs, then both graphs, IL (M?) and
yi x IL(H) should be plotted on the one side on the basic line. The ordinates of
required IL(M;) will be located between these both graphs. Specified ordinates of
final influence line (2.13a) at section k and C are

6.875 —4.42425 = 2.45075m and 5.0 — 7.0788 = —2.0788 m.
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Fig. 2.11 Three-hinged arch. Design diagram and construction of influence line for bending
moment at section k of the arch

Step 4. Influence line between joins 2 and 3 presents a straight line because of
indirect load application [Kar10]; this connected line is shown by solid line. Final
influence line IL(M;) is shown in Fig. 2.11.

Shear force. This influence line may be constructed according to equation

IL(Qk) = cos ¢ x IL(QY) — sin ¢, x IL(H). (2.13b)

Step 1. Influence line for shear at section k for the reference beam is shown in
Fig. 2.10c; the specified ordinates at supports A and B equal to 1.0. The first term
cos ¢, x IL(QF) of (2.13b) presents a similar graph with specified ordinates
cos ¢, = 0.954 at supports A and B, so ordinates at the left and right of section k
are — 0.298 and 0.656, while at crown C is 0.477.

Step 2. Influence line for thrust is shown in Fig. 2.10b; the specified ordinates at
crown C equals to 1.0. The second term sin¢, x IL(H) of (2.13b) presents a
similar graph with specified ordinates 0.3 x 1.0 = 0.3 at crown C. Specified ordi-
nate at section k is 0.1875.
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Fig. 2.12 Three-hinged arch. Design diagram and construction of influence line for shear at
section k of the arch

Step 3. Procedure (2.13b) is presented in Fig. 2.12. As in case for bending moment,
both terms in (2.13b) has different signs, therefore both graphs cos ¢, x IL (Qg)
and sin ¢, x IL(H) should be plotted on the one side on the basic line. Ordinates
between both graphs present the required ordinates for influence line for shear.
Specified ordinates of final influence line (2.13b) at left and right of section k are

0.298 + 0.1875 = 0.4855 and 0.656 — 0.1875 = 0.4685.

At crown C, ordinate of influence line Q, is 0.477 — 0.3 = 0.177.

Step 4. Influence line between joins 2 and 3 presents a straight line; this connected
line is shown by a solid line. Final influence line IL(Qy) is shown in Fig. 2.12.

Axial force. This influence line may be constructed according to the following
equation

IL(Ny) = —sing; x IL(QY) — cos ¢, x IL(H). (2.13¢)
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Fig. 2.13 Three-hinged arch. Design diagram and construction of influence lines for axial force at
section k of the arch

Step 1. Influence line for shear at section k for the reference beam is shown in
Fig. 2.10c. The first term sin ¢, X IL(QQ) of (2.13c) presents a similar graph with
specified ordinates sin ¢, = 0.30 at supports A and B, so at the left and right of
section k ordinates are 0.09375 and — 0.20625, while at crown C is — 0.15.

Step 2. Influence line for thrust is shown in Fig. 2.10b; the specified ordinates
at crown C equals to 1.0. The second term cos ¢, x IL(H) of (2.13¢) presents a
similar graph with specified ordinates 0.9539 x 1.0 = 0.9539 at crown C. Specified
ordinate at section k is 0.59618.

Step 3. Procedure (2.13c) is presented in Fig. 2.13. Both terms in (2.13c) has same
signs; therefore, both graphs, sing; x IL(Qf) and cos; x IL(H), should be
plotted on the different sides on the basic line. Ordinates for required IL(N)
are located between these both graphs. Specified ordinates of final influence
line (2.13c) at left and right of section k are — (0.59618 —0.09375) =
—0.50243 and — (0.59618 + 0.20625) = —0.80843.

At crown C, ordinate of influence line Ny is — (0.9539 + 0.15) = —1.1039.

Step 4. Influence line between joins 2 and 3 presents a straight line; this connected
line is shown by a solid line. Final influence line IL(N;) is shown in Fig. 2.13.

Properties of the Influence Lines for Internal Forces

1. Influence line for bending moment has significantly less ordinates than for
reference beam. This influence line contains the positive and negative ordinates.
It means that at section k, extended fibers can be located below or above the
neutral line depending on where the load is placed.
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Inf. line M)

Fig. 2.14 Construction of influence line M using the nil point method

2. Influence line for shear, as in the case of reference beam, has two portions with
positive and negative ordinates; all ordinates are significantly less than that of in
the reference beam.

3. Influence line for axial force has only negative ordinates. So in case of arbitrary
load, the axial forces in arch are always compressed.

2.4.2 Nil Points Method

Each influence lines shown in Figs. 2.11-2.13 has the specified point labeled as (*).
These points are called as nil (or neutral) point of corresponding influence line.
Such points of influence lines indicate a position of the concentrated load on the
arch, so internal forces M, Q, and N in the given section k would be zero. Nil points
may be used as simple procedure for the construction of influence lines for internal
forces and checking the influence lines which were constructed by the analytical
approach. This procedure for three-hinged arch of span / is discussed below.

Bending Moment

Step 1. Find nil point (NP) of influence line M,. If load P is located on the left half of
the arch, then reaction of the support B pass through crown C. Bending moment at
section k equals zero, if reaction of support A pass through point k. Therefore, NP
(M}) is the point of intersection of line BC and Ak (theorem about three concurrent
forces). The nil point (*) is always located between the crown C and section k
(Fig. 2.14).
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Fig. 2.15 Symmetrical three-hinged arch. Construction of influence line Q; using the nil point
method. The case of fictitious nil point

Step 2. Lay off along the vertical passing through the support A, the abscissa of
section k, i.e., xx.

Step 3. Connect this ordinate with nil point and continue this line till a vertical
passing through crown C and then connect this point with support B.

Step 4. Take into account indirect load application; connecting line between joints 2
and 3 is not shown.

Location of NP(M,) may be computed by the formula

lka

= (2.14)
il + xif

Uy

Shear Force

Step 1. Find nil point (NP) of influence line Q;. If load P is located on the left half of
the arch, then reaction of the support B pass through crown C. Shear force at section
k equals zero, if reaction of support A will be parallel to tangent at point k.
Therefore, NP(Q,) is point of intersection of line BC and line which is parallel to
tangent at point k. For a given design diagram and specified section k, the nil point
(*) is fictitious one (Fig. 2.15).

Step 2. Lay off along the vertical passing through the support A, the value cos ;.

Step 3. Connect this ordinate with nil point. A working zone of influence line is
portion between section k and vertical passing through crown C — right-hand portion
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Fig 2.16 Nonsymmetrical three-hinged arch. Construction of influence line Q, using the nil point
method. The case of real nil point

1 (RHP-1). Then connect the point under crown C with support B — right-hand portion
2 (RHP-2).

Step 4. Left-hand portion (LHP) is parallel to right-hand portion 1 and connects two
points: zero ordinate at support A and point under section k.

Figure 2.16 presents a nonsymmetrical three-hinged arch with real nil point for
influence line Q; this point is located within the span of the arch. Therefore, we
have one portion with positive shear and two portions with negative shear.

Location of NP(Q,) for cases in Figs. 2.15 and 2.16 may be computed by the
formula

[ tan 8

= 2.15
tan 8 + tan ¢, @.15)

g

Axial Force

The nil point of influence line N, is point of intersection of line BC and line passing
through support A perpendicular to tangent at section k.

Step 1. Find nil point (NP) of influence line N,. If load P is located on the left half of
the arch, then reaction of the support B pass through crown C. Axial force at section
k equals zero, if reaction of support A will be perpendicular to tangent at point k.
The nil point (*) is located beyond the arch span (Fig. 2.17).

Step 2. Lay off along the vertical passing through the support A, the value sin ;.
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Fig. 2.17 Construction of influence line N, using the nil point method

Step 3. Connect this ordinate with nil point and continue this line till vertical passes
through crown C. A working zone is portion between section k and vertical passing
through crown C (first right-hand portion RHP-1). Then connect the point under
crown C with support B (second right-hand portion — RHP-2).

Step 4. LHP is parallel to RHP-1 and connects two points: zero ordinate at support A
and point under section k.

Location of NP(V,) may be computed by the formula

[ tan 8

= 2.16
tan § — cot 2.16)

uy

2.4.3 Fictitious Beam Method

Influence lines for internal forces of the three-hinged arch may be constructed as the
bending moment diagram for the fictitious beam subjected to the special type of
loads [Uma72-73].

Influence Line for M,

Fictitious beam is loaded by two forces P,’: =1 at section k and Vg =y /f at

section C (Fig. 2.18). For arch in Fig. 2.5a and Table 2.1, we get Vg =yw/f =
7.0788/8 = 0.88485.
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@=10m | i /2=16m

=B Bending moment
_8_ diagram for fictitious

T 2.4507 TVCf _— l . beam (Inf. line M,)
RB

Fig. 2.18 Three-hinged arch. Fictitious beam for M, is loaded by two forces P,{ =1 at section k
and Vé = yi/f; the bending moment diagram presents the influence line for M, for the entire arch

Reactions of fictitious beam are

1 x22—0.88485 x 16
32

Rl = = 0.245075 (1), R} =0.129925(]).

All forces and reactions are dimensionless. Bending moment diagram is shown
on the extended fibers (positive ordinates are placed below the neutral line).
Bending moments at specified points of the fictitious beam are

M[ = R} x a; = 0.245075 x 10 = 2.4507 m,
-
Mé = —R-g X 7= —0.129925 x 16 = —2.0788 m.
These ordinates of influence line for M, have been obtained earlier and presented

in Fig. 2.11.

Influence Line for O,

Fictitious beam is loaded by the couple M,{ = cos ¢; = 0.9539 (clockwise) at

section k and force V'Cf = sin g, /f(1/m) (upwards) at section C (Fig. 2.19). For
arch in Fig. 2.5a and Table 2.1, we get Vé =sinp,/f =0.3/8 =0.0375 (1/m).
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diagram for fictitious
beam (Inf. line Q)

R /{l ’ Fictitious beam T Ré

Fig. 2.19 Fictitious beam for Q. Bending moment diagram for fictitious beam presents the
influence line Q, for the entire arch

S g
M = sing Vé: cosg/f
T Fictitious beam

4 B Bending moment
diagram for fictitious
‘ l 0.50243 l “beam (Inf. line )
R/f1 0.80243 11039 Ré

Fig. 2.20 Fictitious beam for N,. Bending moment diagram for the fictitious beam presents the
influence line N, for the entire arch

Reactions of fictitious beam are
R} = 0.048559 (1/m)(]) and R} = 0.011059 (1/m)(1).
Bending moments at specified points of the fictitious beam are
M = RS x @y = —0.048559 x 10 = —0.4855,

MTE — R < @i +0.9539 = —0.048559 x 10 + 0.9539 = 0.4684,
: I
ML =R} x 5 = 0.011059 x 16 = 0.177.

Fictitious bending moments are dimensionless. These ordinates of influence line
for O, have been obtained earlier and presented in Fig. 2.12.

Influence Line for N

Fictitious beam is loaded by the couple M',f = sin ¢, = 0.30(counterclockwise)
at section k and force Vg = cos ¢, /f =0.9539/8 = 0.11924 (1/m) (upwards) at
section C (Fig. 2.20).
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‘ ‘ ! Inf. line for Z

w, ~J o

)

bg

Y2

Fig. 2.21 Application of influence line for fixed loads
Reactions of fictitious beam are

R/ =0.05024 (1/m)(|) and R} = 0.06899 (1/m)(]).

Bending moments at specified points of the fictitious beam are
Mkt . _pf _ _
= —Ry x ap =—0.050243 x 10 = —0.50243,

M = _R) x ay — sing, = —0.50243 — 0.30 = —0.80243,
f Fo !
M{ = Ry, x 5 = —0.06899 x 16 = —1.1039.

Fictitious bending moments are dimensionless. These ordinates of influence line
for N, have been obtained earlier and presented in Fig. 2.13.

2.4.4 Application of Influence Lines

Influence lines, which describe the variation of any function Z (reaction, bending
moment, shear, etc.) in the fixed section due to moving concentrated unit load
P = 1 may be effectively used for calculation of this function Z due to arbitrary
fixed and moving loads [Dar89], [Kar10].

Fixed load. Three types of fixed loads will be considered: concentrated loads P;,
uniformly distributed loads ¢;, and couples M, (Fig. 2.21).

Any function Z as a result of application of these loads may be calculated by the
formula

Z=4 ZP,y,- + quwj + ZMk tan oy, (2.17)

where y is the ordinates of influence line for function Z at the point where force P is
applied; w is the area of influence line graph for function Z within the portion where
load ¢q is applied; «, is the angle between the x-axis and the portion of influence line
for function Z within which M is applied.
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The sign of Z due by load P depends on the sign of ordinate y of influence line.
The sign of the area w coincides with sign of ordinates of influence line; if the
influence line within the load limits has different signs, then the areas must be taken
with appropriate signs. If couple tends to rotate influence line toward base line
through an angle less than 90°, then the sign is positive.

Formula (2.17) reflects the superposition principle and may be applied for any
type of statically determinate and redundant structures.

Example 2.4. Assume that arch is subjected to fixed loads as shown in Fig. 2.5a.
Calculate the reactions and internal forces of the arch at section k using influence lines.

Solution. Reactions of supports. Ordinates of influence line for R, at the points
of application the loads P; and P, are 0.75 and 0.125, respectively (Fig. 2.10b).
The area of the influence line under the uniformly distributed load is

0.540.25
w=—"X

5 8 = 3.0 (m).

Therefore, the reaction Ry = P; X 0.75 4+ ¢ x 3 + P, x 0.125 = 14.5kN.
The thrust H of the arch, using influence line (Fig. 2.10b) equals

H=P x05+¢q

1405
+2 X 84 Py x 0.25 = 19kN.

Internal forces in section k. The internal forces can be found in a similar way, using
the relevant influence lines (Figs. 2.11-2.13). They are following:

2.0788 4 1.0394
M, =P x1.96 — q+ X 8 — Py x 0.5194 = —9.500kN m

0.177 + 0.0885
+ % 8+ Py x 0.04425 = —1.405KkN,

1.1039 + 0.5519
Ny = —P; x 040194 — q+ X 8 — Py x 0.2759 = —19.473 kN.

Or = —P; x 0.3883 +q

The magnitudes of just found internal forces My, O, and N, coincide with those
computed in Example 2.1 and presented in Table 2.1.
These values of reactions coincide with those computed previously (Example 2.1).

Moving loads. Influence line for any function Z allows us to calculate Z for any
position of a moving load, and that is very important, the most unfavorable position
of the moving loads and corresponding value of the relevant function. Unfavorable
(or dangerous) position of a moving load is such position, which leads to the
maximum (positive or negative) value of the function Z. The following types of
moving loads will be considered: one concentrated load, a set of loads, and a
distributed load.

The set of connected moving loads may be considered as a model of moving
truck. Specifications for truck loading may be found in various references, for
example, in the American Association of State and Highway Transportation
Officials (AASHTO). This code presents the size of the standard truck and the
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Fig. 2.22 Graphical definition of the unfavorable position of load for triangular influence line. (a)
Set of concentrated load and (b) uniformly distributed load of fixed length /

distribution of its weight on each axle. The moving distributed load may be
considered as a model of a set of containers which may be placed along the loading
counter of the arch at arbitrary position.

Note that the term “moving load” with respect to influence line concept implies
only that position of the load is arbitrary, i.e. this is a static load, which may have
different positions along the beam. The time, velocity of the moving load, and any
dynamic effects are not taken into account. Thus, for convenience, in this section
we will use notion of “moving” or “traveling” load for static load, which may have
different position along the structure.

The most unfavorable position of a single concentrated load is its position at a
section with maximum ordinate of influence line. If influence line has positive and
negative signs, then it is necessary to calculate corresponding maximum of the
function Z using the largest positive and negative ordinates of influence line.

In case of set of concentrated moving loads, we assume that some of loads may
be connected. This case may be applicable for moving cars, bridge cranes, etc. We
will consider different forms of influence line.

Influence Line Forms a Triangle

A dangerous position occurs when one of the loads is located over the vertex of an
influence line; this load is called a critical load. (The term “critical load” for
problems of elastic stability, Chaps. 4 and 5, has a different meaning.) The problem
is to determine which load among the group of moving loads is critical. After a
critical load is known, all other loads are located according to the given distances
between them.

The critical load may be easily defined by a graphical approach. Let the moving
load be a model of two cars, with loads P; on the each axle (Fig. 2.22). All distance
between forces are given.

Step 1. Trace the influence line for function Z. Plot all forces P, P, P3, P4 in order
using arbitrary scale from the left-most point A of influence line; the last point
is denoted as C.
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Step 2. Connect the right most point B with point C.

Step 3. On the base line show point D, which corresponds to the vertex of influence
line and from this point draw a line, which is parallel to the line CB until it intersect
with the vertical line AC.

Step 4. The intersected force (in our case P,) presents a critical load; unfavorable
location of moving cars presented in Fig. 2.22a.

Step 5. Maximum (or minimum) value of relative function is Z = > P; X y;.

Influence Line Forms a Polygon

A dangerous position of the set of moving concentrated loads occurs when one or
more loads stand over vertex of the influence line. Both the load and the apex of the
influence line over which this load must stand to induce a maximum (or minimum)
of the function under consideration are called critical. The critical apex of the
influence line must be convex.

In case of uniformly distributed moving load, the maximum value of the function
Z corresponds to the location of a distributed load ¢, which covers maximum one-
sign area of influence line. The negative and positive portions of influence line must
be considered in order to obtain minimum and maximum of function Z.

The special case of uniformly distributed moving load happens, if load is
distributed within the fixed length I. In case of triangular influence line, the most
unfavorable location of such load occurs when the portion ab = / and base AB will
be parallel (Fig. 2.22b).

Example 2.5. Simply supported beam with two overhangs is presented in Fig. 2.23.
Determine the most unfavorable position of load, which leads to maximum (posi-
tive and negative) values of the bending moment and shear at section k. Calculate
corresponding values of these functions. Consider the following loads: uniformly
distributed load g and two connected loads P and P, (a twin-axle cart with different
wheel loads).

Solution. Influence lines for required functions Z are presented in Fig. 2.23.

Action of a uniformly distributed load q = 1.6 kNm. Distributed load leads to
maximum value of the function if the area of influence lines within the distributed
load is maximum. For example, the positive shear at section k is peaked if load ¢
covers all portions of influence line with positive ordinates; for minimum shear in
the same section the load ¢ must be applied within portion with negative ordinates.

1
Otmax ) = 1.6 X 5(0.3 x 3+ 04 x 4) = 2kN;
1
Okmax ) = —1.6 X 5(0.6 x 6 +0.3 x 3) = —3.6kN;
1
Mimax ) = 1.6 % 510 x 2.4 = 19.2KNm;

1
Mimax ) = —1.6 5 (1.2 3+ 1.8 x 3) = ~7.2kNm.
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P, p,

Inf. line O

Inf. line M, (m)

1.8

Fig. 2.23 Design diagram of the beam, influence lines, and most unfavorable positions of two
connected loads

Positive value of M ., means that if load is located between AB, the tensile
fibers of the beam at section k are located below longitudinal axis of the beam.
If load is located within the overhangs, then bending moment at section k is
negative, i.e., the tensile fibers at section k are located above the longitudinal axis
of the beam.

Action of the set of loads Py = 5 kN and P, = 8 kN. Unfavorable locations of two
connected loads are shown in Fig. 2.23. Critical load for bending moment at section
k (triangular influence line) is defined by the graphical method; the load P, is a
critical one and it should be placed over the vertex of influence line.

Ok(max 1) = 5 X 0.4+ 8 x 0.2 = 3.6kN,

Ok(max—) = —(5x04+8x0.6) =—6.8kN,
Mymax)+ =5 X 1.6 4+ 8 x 2.4 = 27.2kNm,
Mi(max—) = —(5 % 0.6 + 8 x 1.8) = —17.4kNm.

If a set of loads P, and P, modeling a crane bridge, then the order of loads is
fixed and cannot be changed. If a set of loads P, and P, is a model of a moving car,
then we need to consider the case when a car moves in opposite direction. In this
case, the order of forces from left to right becomes P, and P;.
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2.5 Core Moments and Normal Stresses

This paragraph is devoted to simplifying the procedure to calculate the normal
stresses caused by the simultaneous action of M and N. The concept of the “core
moments” is introduced and their influence lines are constructed. We discuss the
most unfavorable loading of the influence line.

2.5.1 Normal Stresses

Let us consider an arbitrary section nm of the arch. Assume that the load acts in
the one of the main planes of the cross section. The point of application of the
resultant R is shifted from the axial line of the arch by a length e; magnitude of this
force, its direction, and point of application may be determined using a concept
“curve of pressure” as explained in Appendix “Pressure curve”. This force is
resolved into the normal N and shear force Q (Fig. 2.24a).

In the case of an eccentrically loaded bar, the maximum normal stresses, caused
by the bending moment M and compressed force N, arises at the extreme fibers of
the cross section

N M
+

4= 2.1
AW (2.18)

g =

where N is the normal component of a force R and the bending moment M = Ne; A,
W, I, are the area, elastic section modulus, and moment of inertia of the cross
section of the arch, respectively. In the case of a nonsymmetrical section, the elastic
section moduli are W,, = I./a; and W,, = I,/a,, where a; and a, are the distances
from the neutral line to an extreme fibers.

For determining the maximum normal stresses due to moving load, it is neces-
sary to load the influence lines for M and N. These influence lines have different
shapes and the influence lines for M can alternate in sign. Therefore, this procedure
becomes cumbersome. However, the two-termed formula (2.18) may be simplified.

a X b n
n '
a
K, _X.- axial line
a
- - ;
N m
| \m

Fig. 2.24 (a) Internal forces at section n—m and (b) core of the cross section
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Figure 2.24b presents the core (kern) for rectangular cross section; determination of
its shapes and dimensions for arbitrary cross section may be found in the strength of
materials textbooks. The concept of the core of the cross section was introduced by
Bresse [Bre54], [Tim53], [Tod60]. The top and bottom points of the core are
denoted by K,,, and K.

If a force is applied at the bottom point K,, of the core, then M = N X k,, and
normal stresses at the top fibers n equals zero

N M N Nk,
oy = A+Wn_ A+W,l =0. (2.18a)
This equation leads to the formula k, = W, /A. Similarly, if a force is applied at
the top point K,, of the core, then normal stresses at the bottom fibers m equals to
zero and we get k,, = W,, /A.
If the compressed force N is applied as shown in Fig. 2.24a, then the normal
stress at the bottom point m is

N M N Ne N (W, N
= e :*W—(kmﬁ’e).

m
The core moment presents the moment of the force N about the top core point K,
M = N(e + kn). (2.19)

This moment differs from the usual bending moment by a term Nk,,. Finally,
for normal stress in the bottom fibers of the cross section, we get the formula

core
M

W (2.20)

[

This formula shows that the maximal normal stresses caused by the moment M
and force N equal to the normal stress caused by the core moment only. Similarly,
the normal stress at the upper fibers n may be calculated by the formula ¢, =
Mf(")l“’ /W,, where core moment

M = N(e — k),

presents the moment of the force N about the bottom core point K,,.

2.5.2 Influence Lines for Core Moments

For construction of the influence line for core moments at section k, we will use the
nil point method. This procedure will be the same as for construction of influence
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e
b & : \I?\'\'“‘ﬂj\l. W ; Inf. line M, (n)
i /BN NI :
5 P ;
c " : !Inf. line for moment at core point K, (m)
& \:,‘ : ;
o
N

Inf. line for moment at cq:re point K, (m)

Fig. 2.25 Three-hinged arch. (a) Design diagram; (b) influence lines for bending moment M;; and
(¢) influence lines for core moments at section k

line for bending moment at section k (Figs. 2.14 and 2.25a, b); indirect load
application is not taken into account.

We show the top and bottom fiber points n and m at section k and denote the
top and bottom core points by K,, and K,, (Fig. 2.25). These core points have
coordinates x,, and x,. Influence lines for core moments contain additional areas
which are placed between two vertical lines; one of these lines passes through
point £ laying on the axis of the arch, and other vertical line passes over the core
point (Fig. 2.25¢). Additional areas of influence lines arise because in this section
of the arch the influence line of axial force has a jump. Ordinates of this additional
area of influence line are small and they may be neglected [Dar89]. However, it is
important that the location of the nil points for core moments do not coincides with
nil point for bending moment.

Influence lines for core moments allow us to answer the following question:
which part of influence lines should be loaded by a uniformly distributed load
(or any live load) in order for the tensile normal stresses at extrados (top) fibers of
section k to be maximum.
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The stresses at the top fibers n will be fensile if a resultant of all external
left-hand (or right-hand) forces will passes below the bottom core point K,,.
Given this, the moment about the core point K,, will be negative. Therefore, the
load should be placed over the negative ordinates of the influence line for bending
moment at core point K,,. If load will be placed over the positive ordinates of
the same influence line, then a compressed stresses at extrados fibers 7 of section k
will arise.

2.6 Special Types of Three-Hinged Arches

This paragraph contains analysis of the special types of three-hinged arch subjected
to fixed and moving loads. Among them are the circular arch with elevated simple
tie, parabolic arch with complex tie, and askew arch.

2.6.1 Arch with Elevated Simple Tie

Three-hinged arch with tie may be obtained from an ordinary three-hinged arch
without a tie, if the horizontal constraint at support B (or A), which prevents
horizontal displacement of the abutment hinge, is replaced by a tie. The tie
may be located on the level of the supported points (Fig. 2.26a) or above them
(elevated tie) (Fig. 2.26b). Application of complex tie is also possible. One type of
an arch with a complex tie is shown in Fig. 2.26c. Three-hinged arches with ties
represent geometrically unchangeable statically determinate structures and have
certain peculiarities of their analysis, which are presented below.

a

Fig. 2.26 Design diagrams of three-hinged arches with tie. (a) Simple tie on support level;
(b) arch with elevated simple tie; and (c) arch with complex tie
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In case (2.26a), the tensile force in the tie (thrust) is H = MY /f, where M2
represent the bending moment at section C for the reference beam. Two forces H act
at points A and B, as for an ordinary three-hinged arch without tie. Therefore,
internal forces in cross sections of the given arch will be exactly the same as for
arch without tie and may be calculated using (2.6). However, support B of the arch
with tie has a horizontal displacement due to the elastic properties of the tie, while a
three-hinged arch without tie has no a horizontal displacement.

In case (2.26b), the thrust in the tie is

0
n=2c
f=fo
Two forces H act above points A and B. Internal forces in cross sections of the

arch are obtained from modified (2.6); they depend on location of the section on the
arch (below or above the tie). If sections are located below the tie level then

2.21)

M, =M, Q,=Q%o0sp, N,=-0%sing. (2.22)
If sections are located above the tie level, then

Mx = Mf() _H(y _f0)7
0. = QS cos p — H sing,
N, = —Q"sinp — H cos ¢, (2.23)

where M?, QY are bending moment and shear force at section x for the reference
beam.

In the case of a complex tie, it is necessary to determine a thrust in the tie, then
internal forces in all the members of the tie and finally, internal forces in the arch
itself. The complex tie of the arch allows us not only to increase the strength of the
arch structure but also to distribute internal forces in the arch as required.

Example 2.6. Design diagram of three-hinged circular arch with elevated tie is
presented in Fig. 2.27. Geometrical parameters of the arch and loads are the same as
for a three-hinged arch without tie (Fig. 2.5a). We need to compute the internal
forces in the arch and compare results obtained for the same arch without tie.

Solution. The vertical reactions of supports, as in Example 2.1, are Ry = R} =
145kN, Rp=RY =19.5kN.

Horizontal reaction H, at the support A may be calculated from the equation
> X=0—H,=0.

The force H in the tie may be determined using equilibrium condition for left
(or right) part of the arch (section 1-1)
My 152

- =——=12533kN.
f-f 8-2

H—Y ME"=0—Ryx16—Py x8—H(f—fo) =0— H =

Computations of the geometrical parameters and internal forces of the arch are
presented in Table 2.2.
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Xy =1.7172m
Yy=2m

A/
H, ‘

Ry

P Py
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beam (&)_ P
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IR

14.

11.7
i 13165
; T v
11.60 i 15.60
1035 2901 25.33 2716 31.65
2808 2501 3196 13.92

Fig. 2.27 Three-hinged arch with simple elevated tie. Design diagram, reference beam, and
internal force diagrams
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Radius of the circle, according to (1) is R = (f/2) + ?/8f = (8/2) + [32%/
(8 x 8)] =20m. Columns 1 and 2 contain ordinate x and corresponding ordinate y
(in meters) for specified sections. Ordinate y(x) is

y=1/R?— <éx>2R+f\/m12(m)-

Columns 3 and 4 contain values of sing = (I — 2x)/2R = (32 — 2x)/40 and
cosp = (y+R —f)/R = (y + 12)/20.

Values of bending moment and shear for reference beam are tabulated in
columns 5 and 7 and taken directly from corresponding diagrams, which are pre-
sented in Fig. 2.27. Values of H(y — f,) are given in column 5'. Sections A and B
have no entries for column 5’, which means that force in the tie does not effect on
the bending moment at corresponding section of the arch. Values of bending
moment, shear, and normal forces for three-hinged arch are tabulated in columns
6, 8, and 9. They have been computed using (2.22) for sections which are located
below the tie. For example, for section A, we get

04 = QY cosp, =14.5x 0.6 = 8.7kN
Ny = —0Qsing, = —14.5 x 0.8 = —11.6kN.

For sections above the tie, we need to use (2.23). For example, for section 3,
we get

M, =M — H(y —fy) = 134 — 25.33 x (7.596 — 2) = —7.7467 kNm,
0, = 0" cosp — H sing = 4.5 x 0.9798 — 25.33 x 0.2 = —0.6569 kN,
N, = -0 sing — H cosp = —4.5 x 0.2 — 25.33 x 0.9798 = —25.718kN.

Corresponding diagrams are presented in Fig. 2.27. Bending moment diagrams
for beam and arch are shown on the extended fibers; therefore, the signs of bending
moments are omitted. For convenience, different scales have been adopted for
different diagrams.

Verification. The vertical concentrated force P leads to value of discontinuity
P cosp and P sin¢ for diagram Q and N, respectively; the horizontal force H
leads to value of discontinuity H sin ¢ and H cos ¢ for same diagrams Q and N.

Values of discontinuity on shear and normal force diagrams due to concentrated
forces H and P; are:

Shear force diagram  point at M: 10.15 — (—7.938) = 18.088 = H sin ¢,
Point 2: 3.1572 — (—6.0) = 9.1572 = P, cos .

Normal force diagram point at M: —10.35 — (—28.08) = 17.73 = H cos ¢,
Point 2: —25.01 — (—29.01) = 4.0 = P, sin ¢.
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Fig. 2.28 Design diagram of the arch with complex tie

Values of discontinuity on shear and normal force diagrams for points 7 and K
are verified in a similar manner.

Now we will compare the internal force diagrams for the arch without tie
(Fig. 2.6) and the arch with the elevated tie (Fig. 2.27). Unlike the arch without
tie, two horizontal forces H act at points M and K. Therefore, the shear and axial
force diagrams at points M and K have abrupt changes H sin ¢ for the Q diagram
and H cosy for the N diagram. The axial force N for both arches remains
compressed.

The fundamental change occurs in the distribution of bending moments. For
example, for all sections of the left part of the arch without tie, the extended fibers
are located above the neutral line (Fig. 2.6), while for arch with the tie, the extended
fibers are located below the neutral line (Fig. 2.27) (portion A-2 and slightly
further). For the right part of the arch without tie, the bending moment diagram
changes the sign three times: in the neighborhood of point # and 7, the extended
fibers are located above and below the neutral line, respectively, while for arch with
tie, the entire right part of the arch has extended fibers below the neutral line.

2.6.2 Arch with Complex Tie

Analysis of such structure subjected to fixed and moving load has some features.
Design diagram of the symmetrical parabolic arch with complex tie is presented
in Fig. 2.28. The arch is loaded by vertical uniformly distributed load ¢ = 2 kN/m.
We need to determine the reactions of the supports, thrust, and internal forces at
section k (a; = 18 m, y, = 11.25 m, tan ¢, = 0.25, cos ¢, = 0.970, sin ¢,
= 0.2425) as well as to construct the influence line for above-mentioned factors.

Reactions and Internal Forces at Section &

The vertical reactions are determined from the equilibrium equations of all the
external forces acting on the arch
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Ry—Y Mp=0: —Ryx48+qx12x6=0—Ry=3kN,

Rp— Y My=0: Rpx48—gx12x42=0— Rg=21kN.

Horizontal reaction at support A is Hy = 0.
The thrust H in the tie (section 1-1) is determined from the following equation

l
H—> Mg"=0: —Ras+H(f —fo) =0—H = M2/(f —fo) = 7.2kN.
(2.24a)
Equilibrium equations of joint F lead to the axial forces at the members of AF

and EF of the tie.
Internal forces at section k for a reference simply supported beam are as follows:

M{ = R4 x x = 3 x 18 = 54kNm,
0% = R4 = 3kN.

Internal forces at point k for three-hinged arch are determined as follows

My =M? —H(y; —fy) =54 — 7.2 x (11.25 — 2) = —12.6kNm,

O = 0F cos ¢, — H sing, =3 x 0.970 — 7.2 x 0.2425 = 1.164 kN,

Ny = — (0 sinp, + H cos ;) = —(3 x 0.2425 + 7.2 x 0.970) = —7.711 kN.
(2.24b)

Note, that the discontinuity of the shear and normal forces at section E left and
right of the vertical member EF is Ngr X cos ¢ and Ngr X sin ¢, respectively.

Influence Lines for Thrust and Internal Forces (M, Q, N) at Section k

Influence lines for vertical reactions R4 and Rp for arch and for reference simply
supported beam coincide, i.e.,

IL(R4) =IL(RY),  IL(Rp) =IL(RY).

According to (2.24a), the equation of influence line for thrust becomes

IL(H)

1
= x IL(MY.).
f _ fO ( C )
The maximum ordinate of influence line for H at crown C is 1/(f —fy)x

(1/4) = 48/[4 x (12 — 2)] = 1.2. Influence line for thrust H may be considered
as a key influence line (Fig. 2.29).
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Fig. 2.29 Three-hinged arch with complex tie. Design diagram and influence lines
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Bending Moment

According to (2.24b) for bending moment at any section, the equation of influence
line for bending moment at section £ is

IL(M) =IL(MY) — (ye —fo) X IL(H) = IL(M}) —9.25 x IL(H). ~ (2.24c)

Influence line MY presents a triangle with maximum ordinate ayby/l =
18 x 30/48 = 11.25m at section &, so the ordinate at crown C equals to 9 m.
Influence line for thrust H presents the triangle with maximum ordinate 1.2 at crown C.
Ordinate of the graph (y; — fo) x IL(H) at crown C equals (11.25—-2) x 1.2 =
11.1m, so ordinate at section k equals 8.325 m. Detailed construction of influence
line M, is shown in Fig. 2.29. Since both terms in (2.24c) has different signs, they
should be plotted on the one side on the basic line and the final ordinates of
influence line are located between two graphs IL (M,?) and 9.25 x IL(H).

Shear Force

According to (2.24b) for shear at any section, the equation of influence line for
shear at section k is
IL(Qx) = cos; x IL(QY) — sinp, x IL(H)
=0.970 x IL(Q}) — 0.2425 x IL(H). (2.24d)
Ordinates of the graph 0.970 x IL(Q}) are 0.36375 and 0.60625 to the left and
to the right at section k, so ordinate at crown C is 0.485. Maximum ordinate of the
graph 0.2425 x IL(H) = 0.2425 x 1.2 = 0.291 is located at crown C, so ordinate
at section k is 0.21825.

Ordinate of influence line for shear at crown C equals 0.485-0.291 = 0.194; the
left and the right of section k ordinates of influence line become

—(0.36375 4+ 0.21825) = —0.582 and 0.60625 — 0.21825 = 0.388.

Detailed construction of influence line Q. is shown in Fig. 2.29.

Normal Force

According to (2.24b) for normal force at any section, the equation of influence line
for normal force at section £ is

IL(Ny) = —sing; x IL(QY) — cos ¢, x IL(H)

= —[0.2425 x IL(QY) + 0.970 x IL(H)] (2.24e)
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Fig. 2.30 Three-hinged askew arch. Design diagram and influence lines

Inf. line M, (m)

Maximum ordinate of the graph 0.970 x IL(H) is 0.970 x 1.2 = 1.164; this
ordinate is located at crown C. Specific ordinates of the graph 0.2425 x IL(Q,°) are
0.09094 and 0.1516 and located to the left and to the right of section «.

Detailed construction of influence line N, is shown in Fig. 2.29. This figure also
represents the construction of influence lines using nil point method; note that
construction of the nil points must be done on the basis of conventional supports
A’ and B'.

2.6.3 Askew Arch

The arch with support points located on the different levels is called askew
(or rising) arch. Three-hinged askew arch is geometrically unchangeable and
statically determinate structure. Analysis of askew arch subjected to fixed and
moving loads has some features.

Design diagram of three-hinged askew arch is presented in Fig. 2.30. Let the
shape of the arch is parabola, span of the arch / = 42 m and support Bis A =3.5m
higher than support A. The total height of the arch at hinge C is 8 m. The arch is
loaded by force P = 10 kN. It is necessary to calculate the reactions and bending
moment at section k, construct the influence lines for thrust and bending moment
M, and apply influence lines for calculation of bending moment and reactions due
to fixed load.
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Equation of the axis of parabolic arch is
X
y=4(f+/fo) x (L—x) X3

where span for arch A—~C—B’ with support points on the same level is L = 48 m.
For x = 42 m (support B), ordinate y = 3.5 m, so

3.5
tano = —

] = ol = 0.0833 — coso = 0.9965 — sino = 0.08304.

Other geometrical parameters are
fo=24tanae =20m —-f=8—-2=6m — h=f cosa =6 x 0.9965 = 5.979m.

For x = 6 m (section k), the ordinate y, = 3.5 m.

Reactions and Bending Moment at Section k

It is convenient to resolve total reaction at point A into two components. One of
them, Rg, has vertical direction and other, Z,, is directed along the line AB.
Similarly resolve the reaction at support B. These components are Ry and Zp. The
vertical forces R, and Ry represent a part of the total vertical reactions. These
vertical forces may be computed as for the reference beam

HWHE:MB:O: —R 4y x42+Px12=0— R, =2.857kN,
Fpa§:MA:O: R'p x42—P x30=0— Rz =7.143kN.

Since a bending moment at crown C is zero then

MY 2.857 x 24

left _ . 0 __ _
Zy— > Mg =0: Zaxh=Mg=0— 7y ==€=="c0s

= 11.468 kN,
Zy =25 =2,

where M. is a bending moment at section C for the reference beam.

Thrust H represents the horizontal component of the Z, ie., H =Z coso =
11.468 x 0.9965 = 11.428 kN.

The total vertical reactions may be defined as follows

Ry =R'4 +Z sina = 2.857 + 11.468 x 0.08304 = 3.809 kN,
Rp =R'p —Z sina = 7.143 — 11.468 x 0.08304 = 6.191 kN.
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Bending moment at section k:

M, = M,? —Hy =3.809 x 6 —11.428 x 3.5 = —17.144kN.

Influence Lines for Thrust and Bending Moment M,

Thrust. Since H = Zcoso = (M2/h) cosa, then equation of influence line for
thrust becomes

Cos «

IL(H) x IL(M).

The maximum ordinate of influence line occurs at crown C and equals

cosa _acbc  0.9965 24 x 18

I X ; —5.979>< ) = 1.71428.

Bending moment M. Since My = MY — Hyy, then equation of influence line for
bending moment at section k becomes

IL(M;) = IL(MY) — y; x IL(H).

Influence line may be easily constructed using the nil point method. Equation of
the line Ak is

3.5
y =—x = 0.5833x.
6
Equation of the line BC is

4.5
y=—yc=mx—xc) >y—8= —E(x—24) —y =14 —0.25x,
where m is a slope of the line BC.

The nil point NP(M,) of influence line for M, is the point of intersection of lines
Ak and BC. Solving these equations leads to xo = 16.8 m. Influence lines for H and
M, are presented in Fig. 2.30. Maximum positive and negative bending moment at
section k occurs if load P is located at section k and hinge C, respectively. If load P
is located within portion x, then extended fibers at section k are located below the
neutral line of the arch.

The thrust and bending moment at section £ may be calculated using the relevant
influence lines

H=Py=10x1.1428 = 11.428kN
M; =Py =10 x (—1.7143) = —17.143 kNm.

These values coincide exactly with those calculated previously.
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Fig. 2.31 Modified askew arched structure

As before, the influence line for thrust constructed once may be used for its
computation for different cases of arbitrary loads. Then, knowing the vertical
reactions and thrust, the internal forces at any point of the arch may be calculated
by definition without using influence line for that particular internal force.

2.6.4 Latticed Askew Arch

Design diagram of the modified askew arched structure with over-arch construction
is presented in Fig. 2.31a. Pinned supports A and B are located at different
elevations. Each half-arch itself (A-1-3 and B-2—4) represents the structure with
webbed members. Panel block 1-2-3—4 has no diagonal member, thus both half-
arches are connected by means of two parallel rods 1-2 and 3—4. Therefore, the
vertical relative displacement of two half-arches is possible (Fig. 2.31b), while in
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the classic three-hinged arch only angular relative displacement of two half-arches
is possible. The vertical posts are used only to transmit loads directly to the upper
chord of the structure.

Degree of freedom equals

W=2]-8-8S0=2x27T-47-7=0,

where J, S, and S, are the number of hinged joints, members of structure and
constraints of supports, respectively [Kar10]. Though the both part of arch represent
the simplest truss (or rigid disc), they are connected in a specific way, mainly by
members 1-2 and 3—4 as well as an imagine member AB (ground). These members
are not parallel. The structure is statically determinate and geometrically
unchangeable.

For analysis of this structure, we will apply the following procedure:

1. Replace the constraint of the support B, which prevents horizontal displacement,
by a diagonal member 2—3 (dotted line in Fig. 2.31a) and apply external force Hp
at point B (Fig. 2.31a, c). Such a substitution does not change the number of
degree of freedom.

2. Consider two positions x; and x; of a moving load P and determine thrust H4 =
Hp = H in terms of x, [, and &, when the internal force in the substitute member
2-3 is zero.

Force P = 1 is located at the left part of the structure. Thrust H — > M, = 0:

RBI+Hh—PX:0—>RB:

] —

(Px — Hh).
Internal force in substitute member D3 section 1-1 is determined as follows
D oyt —0:  Rp—Dycosp =0,

Taking into account the previous result for reaction R, internal force in diagonal
member becomes

(Px — Hh) — D33 cos p = 0.

] —

However, diagonal member is absent, therefore D3 = 0 and the expression for
thrust is

P
H:%, so IL(H) :%.
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Force P = 1 is located at the right part of the structure. Thrust H — > M, = 0:

P(l—x)—Hh
Ryl + Hh— P(I—x) =0 — Ry =(+

Internal force in the substitute member Doy — > Y =0: Ry — Dy;
xcosp —P=0.

Taking into account the previous result for reaction Rpg, equation for internal
force in diagonal member becomes

Px Hh
—D23cosap—Tx—T:0.

However, D,3 = 0 so the expression for thrust becomes

P
H= —%, so IL(H) :—%.

Influence line for H represents two parallel lines with ordinates 1/4 at the support
points and connecting line within the panels 1-2. The sign of thrust H depends on
location of the moving load (unlike previously considered arched structures).

Influence line H is a fundamental characteristic of the system. Knowing the
influence line H allows us to calculate this reaction for any type of loadings.
Calculation of all other reactions and internal forces in any members presents no
difficulties.

Note if supports A and B will be located at the same level, then the system
becomes instantaneously changeable. Indeed, in this case, two rigid discs (the left
and right parts of the structure) are connected by three parallel members, mainly
1-2, 3—4 and AB [Karl10].

2.7 Complex Arched Structures

This paragraph contains analysis of the complex arched structures subjected
to fixed and moving load. Among them are the multispan three-hinged arched
structure and trusses with arched hinged chain.

2.7.1 Multispan Three-Hinged Arched Structure

Multispan three-hinged arched structure is a geometrically unchangeable structure,
which consists of three-hinged arches connected together by means of hinges.
Figure 2.32a presents the multispan arched structure which contains three-hinged
arch ACB with overhang BG, arch DIF with overhang HD, and central three-hinged
arch GEH, which is connected with left and right arches by means of hinges G and H.
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Design diagram

! Inf. line M, (m)

Inf. line M, (m)

Inf. line Q,

NPY(©Qy)
Fig. 2.32 Multispan arched structure. (a) Design diagram, (b) interaction scheme, and
(¢) influence lines for internal forces at sections k and n

Inf. line N,

It is necessary to construct the influence lines for bending moment, shear, and
normal forces at sections k and n, using the nil point method. Indirect application of
the load on the arch system should not be taken into account.

Kinematical Analysis

Degrees of freedom of this arch structure, according to Chebushev formula, are
determined as W = 3D —2Hy — So =3 x 6 —2 x 5 — 8 = 0, where D, Hy, and S
are number of rigid discs, number of simple hinges, and number of constraints of
support, respectively [Kar10].

The whole structure may be presented as two main arched structures ACBG and
HDIF and a suspended arch GEH; corresponding interaction diagram is shown in
Fig. 2.32b. Each arched structures ACBG and HDIF present two rigid discs,
connected with the ground. Two curvilinear members GE and EH are connected
by hinge E and supported by two unmovable rigid discs, which can be considered
as ground. Thus, the entire structure is statically determinate and geometrically
unchangeable.

Influence line for bending moment M. There exist two nil points of influence line
for M|, as the points of intersection of two lines:

1. Lines AC and Bk: their intersection point is NP(M,,).
2. Lines BG and HE: their intersection point is NPg.

The nil point NP possesses interesting properties. If moving load is traveling
along the horizontal portion GE, then reaction at H is passing through hinge £ and
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reaction at G might have various directions in accordance to the theorem about
three concurrent forces Ry, P = 1, and Rg. The last reaction R is transformed as
active force on the arch ACBG, in which reactions R4 and Rp arise. Reaction R is
an active force for arch ACBG, passing through support B. This force is perceived
by support B and reaction R, is zero. Therefore, at all sections of the arch ACB, all
internal forces are zero. Thus, if load P is located at NPp, then all internal forces of
the arch ACB are zero.

Since arch GEH is suspended, the bending moment M, does not arise if load P is
traveling along the portion HF.

Influence line for M,. There exist two nil points of IL(M,) as the points of
intersection of two lines:

1. Lines FI and Dn: their intersection point is NP(M,,).
2. Lines DH and GE: their intersection point is NPp,.

It is evident that point NP, possesses the same properties for arch DIF as point
NPpg for arch ACB: if moving load is located on the vertical passing through
point NPp, then at all sections of the arch DIF all internal forces are zero.

Influence line for shear force Q,. There exist two nil points of influence line for Q,,.
They are the point of intersection of line FI and the line which is parallel to tangent
at section n and point NPp,.

Influence line for axial force N,. There exist two nil points of influence line for N,,.
They are the point of intersection of line F7 and line which is perpendicular to tangent
at section n and point NPp,. Specific ordinates and positions of the nil points allow us
to easily construct the influence lines. Some of them are presented in Fig. 2.32c.

Note that the nil points NP{(Q,) and NP{(N,,) are not real; they only facilitate the
construction of influence lines Q,, and N, respectively.

It is left to reader to construct influence lines of shear and normal force in section
k; construction of influence lines for internal forces for any section of central arch
GEH should present no challenge.

2.7.2 Arched Combined Structures

Some examples of arches combined structures are presented in Fig. 2.33. In all
cases, these systems consist of two trusses, AC and CB, connected by hinge C and
stiffened by additional structures called a hinged (or arched) chain. The hinged
chain may be located above or below the trusses. Vertical members connect the
hinged chain with the trusses. The connections between the members of the arched
chain and the hangers or posts are hinged. In case (c), all the hinges of the hinged
chain are located on one line. In cases (a) and (b), a load is applied to the truss
directly, while in case (c), the load is applied to the joint of the hinged chain and
then transmitted to the truss.
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Fig. 2.33 Trusses with hinged chain
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Fig. 2.34 Truss with over-truss arched chain. Design diagram and influence lines

Truss with Over-Truss Arched Chain

The typical truss with a hinged chain located above the truss is shown in Fig. 2.34.
Assume that the parameters of the structure are as follows: d =3 m, h = 2 m,
f="7m,L = 24 m. We need to construct the influence lines for the reactions and
the internal forces in hanger, V,,_;.

As usual we start with the kinematical analysis of the structure. Since the
structure consist only members with hinges at the ends, then degrees of freedom
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of this complex arched structure is determined as W =2/ —-S§— Sy =
2 x 24 — 45 — 3 = 0, so the structure is geometrically unchangeable and statically
determinate.

Reaction of Supports and Internal Forces

Reactions R4 and Rp for any load can be calculated using following equilibrium
conditions:

RAHZMB:O: RBHZMA:O.

For calculation of the internal forces that arise in the members of the hinged
chain, we need to show the free body diagram for any joint n (Fig. 2.34). The
equilibrium condition X = 0 leads to relationship

S,cosa=S,_1cosy=H. (2.25)

Thus, for any vertical load acting on the given structure, the horizontal com-
ponent of the forces, which arise in all the members of the hinged chain, is equal.
The horizontal component of the forces S,,, S,,_; is called a thrust.

Now we will provide an analysis for the case of a moving load. The influence
lines for reactions R4 and Rp are the same as for a simply supported beam.
However, the construction of an influence line for thrust H has some special
features. Let us consider them.

Thrust H (section 1-1, the sectioned panel of the load contour — SPLC — is panel
7-C; Ritter’s point is C). Internal force S, which arises in the element m—k of the
hinged chain, is denoted as S,.4 and S, The meaning of the subscript notation is
clear from Fig. 2.34.

If load P = 1 is located to the left of joint 7, then thrust H can be calculated by
considering the right part of the structure. The active forces are reaction Rp and
internal forces S7.¢, Ss.c, and S,;45,,. The last force S,;,, can be resolved into two
components: a horizontal component, which is the required thrust H, and a vertical
component, which acts along the vertical line C—k. Now we form the sum of the
moment of all forces acting on the right part of the structure around point C, i.e.,

H—> Mggh[ = 0. In this case, the vertical component of force S,;4,, produces no
moment, while the thrust produces moment Hf.

If load P =1 is located right at joint C, then thrust H can be calculated by
considering the /eft part of the structure. The active forces are reaction R, and
internal forces S7_¢, Ss.c, and S;5. The force S5, which is applied at joint m, can be
resolved into a horizontal component H and a vertical component. The latter
component acts along vertical line 7m—7. Now we find the sum of the moment of
all the forces, which act on the left part of the truss, around point C. In this case, the
vertical component of force S,;4,, produce the nonzero moment around joint C and
thrust H has a new arm (m—7) around the center of moments C. In order to avoid
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these difficulties, we translate the force S, along the line of its action from joint m
into joint k. After that we resolve this force into its vertical and horizontal com-
ponents. This procedure allows us to eliminate the moment due to the vertical
component of S, while the moment due to the horizontal component of S is easily
calculated as Hf.

Construction of the influence line for H is presented in the table below.

P =1 left at SPLC P = 1right at SPLC
H— Y ME" =0: Rgdd+Hf =0 H—Y Mg =0: Rydd+Hf =0
4d 4d 4d 4d

The left portion of the influence line for H (portion A-7) presents the influence
line for Rz multiplied by coefficient — 4d/f and the right-hand portion (portion
C-B) presents the influence line for R, multiplied by the same coefficient. The
connecting line is between points 7 and C (Fig. 2.34). The negative sign for thrust
indicates that all members of the arched chain are in compression.

Force V,. Equilibrium condition for joint » leads to the following result:
ZY =0: —-V,+S,sina—S8,_1siny=0—V, =H(tano — tany).
Therefore,
IL(V,) = (tano — tany) x IL(H).

Since o < y and H is negative, then all hangers are in tension. The corresponding
influence line is shown in Fig. 2.34.

The influence line for thrust H can be considered as the key influence line, since
thrust H always appears in any cut-section for the entire structure. This influence
line allows us to calculate thrust for an arbitrary load. After that, the internal force in
any member can be calculated simply by considering all the external loads, the
reactions, and the thrust as an additional external force.

Discussion

For any location of a load, the hangers are in tension and all members of the chain
are compressed. The maximum internal force at any hanger occurs if load P is
placed at joint C.

To calculate the internal forces in different members caused by an arbitrary fixed
load, the following procedure is recommended:

1. Construct the influence line for the thrust.

2. Calculate the thrust caused by a fixed load.

3. Calculate the required internal force considering thrust as an additional external
force.

This algorithm combines both approaches: the methods of fixed and of moving
loads and so provides a very powerful tool for the analysis of complex structures.
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Example 2.7. The structure in Fig. 2.34 is subjected to a uniformly distributed load ¢
within the entire span L. Calculate the internal forces 7 and D in the indicated elements.

Solution. The thrust of the arch chain equals H = gy = —q(1/2)L(2d/f) =
—(qLd/f), where wy is area of the influence line for H under the load g. After
that, the required force T according to (a) is

H qLd

cos o) feosay

We can see that in order to decrease the force 7, we must increase the height f
and/or decrease the angle o;.

To calculate force D, we can use section 2-2 and consider the equilibrium of the
right part of the structure:

D—>ZY:0: Dsinff+Rp+ T sinay =0 —

1 L Ld
D= —_—(q——q—tanal).

Thus, this problem is solved using the fixed and moving load approaches:
thrust H is determined using corresponding influence lines, while internal forces
D and T are computed using H and the classical method of through sections.

Arched Chain with Over-Arch Trussed Structure

The typical arched chain with a truss located above the arched chain is shown in
Fig. 2.35. Assume that the parameters of the structure are as follows: d = 2 m,
h=2m,f=8m,] = 12d = 24 m, ax = 6 m. We need to construct the influence
lines for the reactions, thrust, and the internal forces in indicated members U4 and D,4.

Kinematical analysis shows that degree of freedom is W =2/ —S§ — Sy =
2 x 34 — 61 —7 =0, so the structure is statically determinate and geometrically
unchangeable. The structure has the four support points: Ay, A,, By, and B, and the
following reactions: R4y, Ra2,Rp1, Rpr, Ha, Hp.

Reactions of Support and Internal Forces

Total vertical reactions of a structure as a whole are Rjp = Ra1 + Rao,
RB = R31 +R32, where

Ri—> Mz=0: —RAI+P(l—x):0—>RA:P(ll_x) -

P
RBHZMA:(): RBlfo:OHRB:Tx_)IL(RB):%C_
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: IL(R ) | Construction
: . Inf. line R 4
i Inf. line R 4,
3dxIL(R,)  9dxIL(Ry) p
45 i y§=5.0625 (
. - Y IL(H)
3d=6 G mjjj><ﬂ:m1 . .
5312 3.0 OHS.U'U.CUOI’I
Inf. line Uy
' - Inf. line U,
ey L
1 —__
sinx
T Inf. line D,

= NP (Dy)

Fig. 2.35 Arched chain with over-arch trussed structure. Design diagram and influence lines

Influence lines for total vertical reactions of support are the same as for a simply
supported beam.

Thrust. For the entire structure, the equilibrium condition » X =0 leads to
relationship Hy = Hp = H. Section 1-1 passes through joints S and C.
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P =1 left at joint C’ P = 1 right at joint C’
righ ) [
H— Y ME =0: —Hf +Rg5=0 H—Y M =0: Hf —Ry5=0
l / / l
H=—R IL(H) = = x IL(R H=_—R IL(H) = = < IL(R
e (H) o7 (Rs) e = (H) e (Ra)

The maximum ordinate under the joint C is equal to //4f.

Vertical components of reactions. Equilibrium conditions for joint A, are

ZX:O: S1pcosp+H=0—8_,=—H/cosp,
ZYZO: Si—asinp+Rp =0 — Ryp = —S1-2 singp.

So the vertical component of reaction at point A, becomes Rqy = H tan ¢;
corresponding influence line is

IL(RA2) = tanp x IL(H).

Similarly, IL(Rp;) = tan ¢ x IL(H).

Influence lines for R4, and Rg, may be obtained by multiplying all ordinates of
influence line for A by a constant factor tan ¢. The maximum ordinate under joint C
is equal to (I/4f) tan p.

Reaction at point A,. Since total reaction R4 = R4; + Ry, then
Ria1 = RA — Rypp — IL(RAl) = IL(RA) — IL(RAQ) = IL(RA) —tanp X IL(H)

Construction and final influence line for vertical component R,; is presented
in Fig. 2.35. The nil point of influence line for R4; is point of intersection of lines
B>—S and 1-2. The location of this nil point is defined by the formula xy =
(1/2) x [(Itan ¢ — 2f)/(Itan ¢ + 2f)]. For the entire structure, we get tanp =
(3/2) and xp = 4.6154 m.

Ordinate of influence line R4; at point C equals to (I/4f) tanp — (1/2) =
[24/(4 x 8)] x (3/2) — (1/2) = 0.625.

Note that reaction R,; may be directed upward and downward as well.

Force Uy. Section 2-2 passes across the fourth panel of the truss and arch member
2-3 just under joint K; the vertical line passing through joint K intersects the
member 2-3 at yg = 6.75 m. The internal force F,_5 in the arch chain is resolved
into vertical F**"* and horizontal H components. Obviously, the horizontal compo-
nent equals to thrust H.

P = 1left at SPLC P = 1 right at SPLC
Us— > ME" =0 Us— > Mg"=0
— Ush+Rp9d —H(f + ¢+ h) + H(cy +c+h) =0  Ush—Ra3d +H(f +c+h) —H(c; + ¢ +h) =0
— Ush+Rg9d — H x yg =0 Ush —Ra3d + H x yx =0
1
U4=—(R39d—H><yK)—> U4: (RA3d7H><yK)—>

1
h h
IL(U,) = % [9d x IL(Rg) — yx x IL(H)] IL(Us) = % [3d x IL(R,) — yx x IL(H)]




112 2 Three-Hinged Arches

The term H(cy + ¢ + h) presents the moment with respect to point K due to
thrust, which arise in member 2—-3; the moment with respect to the same point K due
to F*“" (vertical component of force F,_3) is zero.

The nil point of influence line for U, is the point of intersection of lines B,—S and
the line which originates from joint 1 and passes through member 2-3 under
point K. This point is real.

Ordinate of influence line U, at point C equals to 1/4 (5.0625 — 3.0) = 1.031.

Force D4 (section 1-1). Assume that internal force S,_3 is tensile.

P =1left at SPLC P = lright at SPLC
Dy — Z Yrighl =0 Dy — Z Yrighl =0
. . H . . H
Dy sinot+ Rg — S>3 sing; = 0,83 = — Ry —Dysino+ Sy_3singp; = 0,53 = —
cos ¢, cos ¢,
Dy sina+Rp +H tanp, =0 R4y —Dysina —Htangp, =0
1 1
Dy=———(Rp+H xtanp,) — Dy=—(Ry— H X tanyp,) —
sin o sin o
1
IL(D4) = — [IL(Rg) + tan ¢, x IL(H)] IL(Dyg) = ——[IL(R4) — tan ¢ x IL(H)]

sin o sin o

Construction and final influence line for D, is presented in Fig. 2.35. The nil
point of influence line for D, is point of intersection of lines B,—S and the line which
originates from joint 1 and passes parallel to the member 2—3. This point for given
(py is fictitious.

Influence line for thrust H of the structure is very useful for the calculation of
internal force in any member of the truss. Let the structure be subjected to
uniformly distributed load g along the entire span / of the truss. In this case, the
thrust of the arch chain equals to H = gy = q(1/2)I(1/4f) = (qI*/8f), where wy
is the area of influence line for H under the load ¢. Positive sign indicates that
shown direction for the thrust at points A, and B, coincides with actual direction of
thrust. Knowing the thrust allows us to perform an analysis of the structure. For
example, the force S; = —(H/cosyp) = —(ql?/8f cosy). Negative sign
indicates that the member 1-2 is compressed.

In the case of a fixed concentrated force P at joint C’ and uniformly distributed
load g within C'-M, we get:

1
Us = —1031P — 2 x 1.031 x 64 x g = ~1.031P — 6.186¢ (kN).

2.8 Deflection of Three-Hinged Arches Due to External Loads

This section presents computation of displacement of three-hinged arch. Different
approaches are applied: Maxwell-Mohr integral and graph multiplication method
using Simpson—Kornouhkov rule.
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Actual state q Unit state P=1
VIV VIV IV VIV VIV T
ds ¥ C
R
B s <
H & S H o H=054% &> H=05

X
X X
-l g R T H’ T,
Ry ‘ | Rg R,=05 Ry=0.5

Fig. 2.36 Design diagram of the arch and unit state

2.8.1 Uniform Circular Arch: Exact Solution

Three-hinged semicircular uniform arch of radius R carrying uniformly distributed
load ¢ is shown in Fig. 2.36. The flexural stiffness is EI. For calculating the vertical
displacement of the hinge C, we assume that influence of axial and shear forces on
displacement is negligible. The expression for displacement for this problem takes
into account only the bending moments

N MPM

Ac= | T4
C 0 El S,

where Mp denotes the bending moment due to actual load. Now we will consider
two states, the actual and unit ones, and form the expressions for bending moments
for both of them.

Actual State

The vertical reactions of supports and thrust are:

! MY q(2R)*  gR

where [ = 2R is the span of the arch; MY is the bending moment at point C for
reference beam; f is the rise of the arch, f = R. The magnitude of the bending
moment induced at any section by the given load ¢ is

x> Ry x*
Mp:RAx—Hy—qT:q(Rx—Ty—E)
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Unit State

This state presents the same arch subjected to unit vertical force P at hinge C. The
vertical reactions of supports and thrust are:

0
Ri=Rp=—: H=—C—=—"""__,
AT BT f 4R 2

The magnitude of the bending moment induced at any section by the unit load P is

o _ 1 1
M:RAx—Hyzix—Ey.

Now, the vertical displacement at point C may be presented as:

T[R/ZMPM 2q TLR/2 Ry x2 X y
Aczz/o i =5 <Rx————>><(———)ds (2.262)

Let us change to polar coordinates: ds = Rdyp,y = R sin p,x = R — R cos ¢ =
R(1 — cos ¢). The upper limit s = 7R /2 should be changed to ¢ = ©/2. In this
case, (2.26a) becomes

n/2 R2 R2
AC:%/O [R2(1cos¢)?sin¢7(lcos¢)2]
X[R(1—cosp) —R sinp|Rdy
_ak?

n/2 1 1
), {1 —cosgp—isincp—i(l —cosgp)z] X (1 —cosp—sinp)dep.

Integrating procedure is cumbersome, but elementary. On rearrangement, the
final result for vertical displacement at C can be written as

_ gk

=05 (=) (2.26b)

Ac

In case of concentrated force P at point C, the vertical displacement at C is
Ac = (PR?/2EI)(n — 3).

2.8.2 Nonuniform Arch of Arbitrary Shape: Approximate
Solution

In general case of the nonuniform arch and arbitrary shape, the general idea for
computation of displacement remains the same — it is necessary to “multiply” the
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Xm M

Fig. 2.37 Notation of ordinates of the bending moment diagrams within the one straight segment;
Mp and M are bending moment diagrams in the actual and unit states

bending moments diagrams in the entire and the unit states. However, the
Vereshchagin rule becomes none applicable, since the basic line of both diagrams
is curvilinear. Therefore, it is only possible to determine the displacement in the
general case of the arch numerically. For this, a curvilinear axis of the arch should
be presented as a set of straight elements (usually 8-10), followed by a multiplica-
tion procedure of two bending moment diagrams. As before, the normal and shear
forces will be neglected.

Let us subdivide the arch into segments with equal horizontal projections.
The length of the ith chord between two nodal points equals As=

\/ (%, — x1)2 + (yr — y1)2. Ordinates of the left and right ends of the portion, x;, y;

and x,, y,, should be calculated according to the equation y = f(x) of the axis of the
arch. Now Mohr integral may be presented in approximate form

M,‘Mp

A- =
iP El

| I
ds = — S MMp x 2 As, 227
s EIOZH: PXTAS (2.27)

where Mp and M, are bending moment diagrams in the entire and unit states,
respectively; n is the total number of segments, Iy and /,, are the moment of inertia
of the cross section at the crown C and at the middle of the segment As. The
moment of inertia /,, should be calculated according to the law I = I(x), or as half-
sum of the moments of inertia at the ends of a segment. Simpson’s formula [Dar89]

As' , Iy
EloA;p = Z - (ab + 4ef + cd),As' = As> (2.28)

n m

is applied to each straight segment and is subsequently summed over all the
segments. Ordinates a, e, and ¢ of the bending moment diagram Mp in the loading
state relate to the left end, the middle point, and the right end of the ith segment
(Fig. 2.37a); ordinates b, f, d of the bending moment diagram M in the unit state
relate to the same points (Fig. 2.37b).

Figure 2.38 presents a nonuniform parabolic arch and its approximate model.
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P
C
I=1,cosg

| /[=24m | Approximation of entire arch

Fig. 2.38 Parabolic arch. Design diagram and approximation of entire arch

Table 2.3 Geometrical parameters of parabolic arch

Coordinates (m)

Points X y tan ¢ cos ¢
0 0 0.0 1.00 0.7070
1 3 2.625 0.75 0.800
2 6 4.500 0.50 0.8944
3 9 5.625 0.25 0.9701
4 12 6.000 0.0 1.0

5 15 5.625 —-0.25 0.9701
6 18 4.500 -0.5 0.8944
7 21 2.625 —0.75 0.800
8 24 0.0 —1.00 0.7070

Table 2.4 The chord lengths of each straight segment
Portion 0-1 1-2 2-3 34 4-5 5-6 6-7 7-8
Length (m) 3.9863 3.5377 3.2040 3.0233 3.0233 32040 3.5377 3.9863

Table 2.5 Geometrical parameters at specified sections of nonuniform arch (I = I cos )

Geometrical parameters (m)

Portion x;  x, x| Vm V, As I, (factor Ic) As' = As}f
0-1 0 15 310 1.4062 2.625 | 3.9863 0.7535 5.2904
1-2 3 45 6 | 2.625 3.6562 4.500 | 3.5377 0.8475 4.1743
2-3 6 75 9 | 4500 5.1562 5.625 | 3.2040 0.9323 3.4366
34 9 105 12 | 5.625 59062 6.000 | 3.0233 0.9850 3.0693

Specified Points of the Arch

The span of the arch is divided into eight equal parts; the specified points are
labeled 0-8. Parameters of the arch for these sections are presented in Table 2.3;
the following formulas for calculation of trigonometric functions of the angle ¢
between the tangent to the arch and x-axis have been used: tangp =
y = [4f (1 —2x)]/?, cosp = 1/4/1+ tan2p.

The lengths of each straight segment are presented in Table 2.4. Table 2.5
presents the geometrical parameters at specified sections of the arch, and computa-
tion of the conventional length As’ for each segment.
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Table 2.6 Bending moments at specified sections and computation of deflection
Mp, factor (—P) M factor (—1) As'
Portion  As’ a e ¢ b f d 6 (ab+ def +cd)
0-1 52904 0.0 0.65625 1.125 0.0 0.65625 1.125 2.6348P
1-2 41743  1.125 140625 150  1.125 1.40625 1.50  7.9491P
2-3 34366 1.50  1.40625 1.125 1.50 140625 1.125 6.5443P
34 3.0693 1.125 0.65625 0.0 1.125 0.65625 0.0 1.5286P

The moment of inertia I,, = 0.5(f; + I,,). For example, for segment 0—1 we get
Io—1 = 0.5(0.707 + 0.800) I = 0.7535I.

Table 2.6 contains the bending moments at specified sections for loaded and unit
states. These moments are calculated by the formula M, :Mg — Hyy, where
H=M/f =Pl/4f =1 x P. For each segment, the section at the left end has
ordinates a and b, at the middle section the ordinates are e and f and at the right
end ordinates are ¢ and d.

For example, in P-condition R4 = P/2 and H = P, so for points 1 and 2 -
(portion 1-2) we get

P P
My=75x3-Px2625=—1125P, My=5x6~Px45=—15P.

Data for the right half-arch is not presented due to the symmetry of structure.
Required displacement of point C is equals to twice the sum of the members of
the last column. In our case,

P

P
Aip = 2(2.6348 + 7.9491 + 6.5443 + 1.5286) — = 373136 —.  (2.26¢)
El Elc

C

The above-discussed procedure is very effective for computation of displace-
ment of any nonsymmetrical three-hinged arches. If it is necessary to take into
account the shear and axial forces, the corresponding terms of Maxwell-Mohr
integral (1.8) should be included and Table 2.6 to be expanded [Rab54a].

2.9 Displacement Due to Settlement of Supports
and Errors of Fabrication

Settlement of supports and errors of fabrication often occur in engineering practice.
If this happens in a statically determinate structure, the internal stresses in the
members of the structures are not induced. So computation of displacement of any
point of statically determinate structures reflects the kinematical nature of a
problem.
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Fig. 2.39 (a) Settlement of supports A and B; (b) unit state for calculation of A-; and (¢) unit state
for calculation of A}é

2.9.1 Settlements of Supports

Let us consider a three-hinged arch of span / and rise f; supports A and B settles in
vertical and horizontal directions as shown in Fig. 2.39a. The new position of the
arch, in an exaggeration scale, is shown by a dotted line. It is necessary to calculate
the vertical Al and horizontal Al displacements of the hinge C. Unit state presents
the same structure subjected to unit force X, which corresponds to the required
displacement.

An effective method for solution of this type of problem is the principle of
virtual displacements

Z W = 0. (2.29)

According to this principle, the elementary work done by all active forces on any
virtual displacements, which are compatible with constraints, is zero.

Procedure for Computation of Displacement Caused
by the Settlement of Support

1. At point K where displacement should be determined, we need to apply a unit
generalized force X = 1, corresponding to the required displacement.

2. Show reactions R at the settled support, caused by unit generalized force X = 1,
and compute these reactions.
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3. Calculate the total work (2.29) done by unit force and all reactions on the
displacements of the supports.
4. Solve this equation with respect to required displacement.

Vertical displacement of the hinge C. Let us apply X; = 1 in vertical direction; this
force corresponds to the required vertical displacement A/.. Reactions at the
supports A and B are shown in Fig. 2.39b. These reactive forces should be
considered as active, and (2.29) becomes

Xy x AL — Ry x A}y —Rg x Ay — H x A\ + H x A}y = 0.
Since X = 1, then
A"C:—ZRXA:RAXA;’,+RB><A§;+H><A2—H><A'§. (2.29a)

Formula (2.29a) may be generalized for the case of displacements caused by
settlements of several supports

A = — ZRA, (2.30)

where Ay, is the displacement in kth direction due to settlement of supports, A is the
given settlement of support; R are the reactions in the support which is settled; this
reaction caused by unit load which corresponds to the required displacement.
Summation covers all supports.

Horizontal displacement of the hinge C. Horizontal force X, = 1 corresponds to the
required horizontal displacement Alé. Reactions at the supports A and B are shown
in Fig. 2.39b. Equation (2.30) leads to the following result:

A== RxA=R)x Ay —Rpx Ay +Hj x Al + Hy x Ay,

Discussion

1. Equation (2.30) reflects a kinematical nature of problem; it means that
displacements of any point of a statically determinate structure are determined
by the geometrical parameters of a structure without taking into account the
deformations of its elements. Any settlement of support of such structure does
not depend on the stiffness of the structure, and therefore leads to displacement
of its separate parts as rigid discs.

2. The positive results for required A; means that unit load X on the displacement A;
performs positive work.

3. Assume that AZ = 0, while all other displacements are zero. Thus, in case of
vertical displacement of only one of the support, the crown hinge C has the
vertical and horizontal displacements.
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Actual state c Unit state Cl X=1

Fig. 2.40 Design diagram of the arch (error fabrication) and unit state

2.9.2 Errors of Fabrication

Deflections of the structural members may occur as a result of the geometric misfit.
This topic is sometimes referred to as geometric incompatibility.
The following procedure may be applied for this type of problems:

1. At point K, where displacement should be determined, we need to apply a unit
generalized force X = 1 corresponding to the required displacement.

2. Compute all reactions caused by the unit generalized force X = 1.

3. Calculate the work done by these reactions on the displacements.

Example 2.8. The tie AB of the arch ACB in Fig. 2.40 is A = 0.02 m longer then
required length 1. Find the vertical displacement at point C, if / = 48 m, f = 6 m.

Solution. The actual position of the tie is AB’ instead of required AB position. For
computation of the vertical displacement A we have to apply a unit vertical force at C.
Reactions of the three-hinged arch and thrust in tie caused by the force P = 1 equal

Ry =Rp=05H=M2/f =1/(4f) = 2.

Application of principle of virtual displacements leads to the following
expression

XxAc—HxA=0.
Since X = 1, then the required displacement becomes
Ac = +H x A = +0.04 m (downward)

It is obvious that the effect of geometric incompatibility may be useful for the
regulation of stresses in the structure. Let us consider a three-hinged arch which is
loaded by any fixed load. The bending moments are M(x) = M° — Hy, where M°
is the bending moment in the reference beam. If a tie is fabricated longer than is
required, then the thrust becomes H = H; + H, where H| and H, are thrust due to
fixed load and errors of fabrication, respectively.
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Fig. 2.41 Design diagram of
three-hinged parabolic arch

Discussion

For computation of displacement due to the settlement of supports and errors of
fabrication, we use the principle of virtual work. This principle and the
Maxwell-Mohr integral method have the general concept of generalized coordinate
and corresponding generalized unit force in common.

2.10 Matrix Form Analysis of Arches Subjected
to Fixed and Moving Load

This paragraph presents the matrix analysis of three-hinged arch subjected to fixed
and moving load.

Design diagram of three-hinged parabolic arch subjected to fixed load is shown
in Fig. 2.41. The span of the arch is divided into n equal portions, so d = 1/n; in the
case of Fig. 2.41,n = 8.

Let the span and rise of the arch be / = 16 m and f = 4 m, respectively.

If the equation of the arch obeys formula (3), then

yi=y;=175m, y,=y6=3.0m, y3=ys=375m, ys=f=40m.
Vector of bending moments at the nodal points 1-7 is

— —

M=L;L,P, (2.31)

where the influence matrix of bending moments is

100 m 000
010 m 000
001 m 000

L;=[0 00 0 00 0
000 m 100
000 m 010
00 0 m3 00 1]
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Fig. 2.42 Bending moment
diagram due to self-balanced
load 1/d-2/d-1/d

To find the entries m; we need to construct a bending moment diagram for
three-hinged arch subjected to self-balanced load, which acts as shown in Fig. 2.42.
The trust is H = 1/f, so the bending moments at the nodal points are

Y1 1.75 V2 3

m=m=—-——=-—-" m*:m*szsz’

: ! Y4 4 ' 2 6 Y4 4
’ : Y4 4

Therefore, matrix L;, becomes

1 0 0 —04375 0 0 0]
010 —075 000
00 1 —09375 0 0 0
L,=|0 00 0 000
00 0 —09375 1 0 0
000 —075 010
0 0 0 —04375 0 0 1]

Influence matrix of bending moments for the arch coincides with influence
matrix for bending moments for simply supported beam of the same span

d
L, = Zl(nfl)a

where 1;,_) is a matrix of order n — 1 and has the following special form

n—1 n—-2 n-—-3 .. 1

n—2 2
2 4 6 . n—2
1 2 3 . o n—1
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If n = 8 then L,,, becomes

7 6 5 4 3 2 1
6 12 10 8 6 4 2

S5 10005 12 9 6 3
L,=%l4 8 12 16 12 8 4
8136 9 12 15 10 5

2 4 6 8 10 12 6

1 2 3 4 5 6 17

This matrix is symmetric with respect to both diagonals. The entries of the last
row and last column, as well as the entries of the first column (from bottom to top)
and first row (from right to left) present the natural numbers 1,2,..., (n—1). Any
entry my;, which is located on the main diagonal or above, is determined as a
product of the k-th entry of the very first row and the number i of the row .

Vector of bending moments is the result of multiplication of the following matrices

M, 1 0 0 04375 0 0 O
M, 010 =075 00O
M3 0 01 —-09375 0 0 O

=l
I

My |=1(0 0 O 0 0 0 0
M;s 0 0 0 —09375 1 0 O

Mg 0 00 =075 0 1 0

| M;] [0 0 0 —04375 0 0 1|
7 6 5 4 3 2 17 [P]
6 12 10 8 6 4 2 P,
510 15 12 9 6 3 Ps
x% 4 8 12 16 12 8 4| x |P,
36 9 12 15 10 5 Ps
2 4 6 8 10 12 6 Ps
1 2 3 4 5 6 7] |P;

If we assume that the vector of external loads is P = |1420025 OJT
[K1e80], then the vector of bending moments at the nodal points 1-7 becomes

g T
M:L2.75 6 375 0 —125 0 —1.25J.
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This matrix approach may be effectively used for the construction of influence
lines for bending moments. If force P = 1 is placed only at joint 1, then the vector
of external load becomes

P=[100000 0

and procedure (2.31) gives us the bending moments at the nodal points 1-7.

In order to calculate all 0rdinat_e>s of influence lines for bending moments at
sections 1-7, the vector of loads P should be replaced by an identity matrix P;
if n = &, then this matrix is of order 7.

The final result of multiplication of the three squared matrices is

[ 1.3125 0.6250 —0.0625 —0.7500 —0.5625 —0.3750 —0.1875]
0.7500 1.5000  0.2500 —1.0000 —0.7500 —0.5000 —0.2500
0.3125 0.6250 09375 —-0.7500 -0.5625 —0.3750 —0.1875
= 0 0 0 0 0 0 0
—1.1875 —-0.3750 —-0.5625 —-0.7500 0.9375  0.6250  0.3125
—0.2500 —0.5000 —-0.7500 —1.0000 0.2500 1.5000  0.7500

| —1.1875 —-0.3750 -0.5625 —0.7500 —0.0625 0.6250 1.3125 |

The ith row of this matrix represents the influence line of bending moment at the
ith nodal point.

It is easy to verify that each influence line for bending moment consist of the
strength portions; this means that the structure under consideration is indeed
statically determined.



Chapter 3
Redundant Arches

This chapter is devoted to the analysis of statically indeterminate arches. Numerous
examples of application of this method for the analysis of different arches are
presented. Among them are uniform and nonuniform arches with and without ties,
arches with elastic supports, etc., subjected to external fixed and moving loads,
temperature changes, concrete shrinkage, settlements of supports, and errors of
fabrication.

3.1 Types, Forms, and Peculiarities of Redundant Arches

Typical statically indeterminate arches are shown in Fig. 3a—c. A two-hinged arch
(Fig. 3b) has one redundant constraint. A hingeless arch (arch with fixed ends)
(Fig. 3a) has three redundant constraints. One-hinged arch (Fig. 3c) has two
redundant constraints. All of these arches may be symmetrical or nonsymmetrical.

In the general case, the following internal forces arise in an arch: bending
moments M, shear O, and axial force N. In the statically indeterminate arches,
internal forces are the result of the action of external loads, as well as settlements of
supports, change of temperature, errors of fabrication, and shrinkage. Since a two-
hinged arch is more flexible than a hingeless arch, the internal forces are smaller in
a two-hinged arch when compared to the hingeless counterpart. Distribution of
internal forces and displacements in an arch depends on the shape of the arch. The
shape of the arch is described by the equation y = f(x) of the axis of the arch, as
well as the law of change of moment of inertia of the cross section of the arch along
its axis.

The choice of the arch shape is determined by the engineer on the basis of a
number of requirements. The first important requirement is that the distribution of
material along the axis of the arch must corresponds to distribution of internal
forces. For example, in the pinned support, the bending moment equals to zero;
therefore, the moment of inertia of the cross-section should be minimal.

L.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration, 125
DOI 10.1007/978-1-4614-0469-9_3, © Springer Science+Business Media, LLC 2012
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Fig. 3.1 Two-hinged nonuniform arch

The second requirement concerns the ability to obtain accurate solutions, which
will in turn allow the engineer to perform an analytical analysis of results. Several
laws of the change of moment of inertia of the cross section for symmetrical arches
are presented below.

3.1.1 Two-Hinged Arch

In the case of an arch of variable cross-section, the following law for moment of
inertia /, of cross-section may be assumed /,, = I, cos ¢,, where I is the moment of
inertia at the crown, ¢, is the angle between tangent to the axis of the arch and the
horizontal line [Kl1e80], [Dar89]. This expression describes a decrease in flexural
stiffness of the arch from crown to supports (Fig. 3.1a) and corresponds to insignif-
icant bending moments in the vicinity of the supports of the arch subjected to a
uniformly distributed load. This law also satisfies the esthetic requirements.

It is possible to assume that A, = Ag cos ¢,, where Ay is the area of the cross-
section at the crown [Dar89].

For two-hinged symmetrical arches, the following relationships are also possible
(origin is placed at the left support) (Fig. 3.1b) [Kis60]:

I 1 I 1
=" x _ 1= x -, 3.1
cosp 1+ (n—1)F cos 1+(”_1)(1£)
1

[Tt
S

where [, is a half-span of the arch; n = Iy/(I cos ¢ ), subscript refers to the
cross-section at the support of the arch.

If n = 1, then I, cos ¢, = Iy; this case leads to the change of moment of inertia
by the law I = I/ cos  [Sni66], [Dar89]. According to this formula, the flexural
stiffness decreases from support to the crown. In the case of a parabolic arch, this

relationship allows us to perform the integration procedure in a close form.
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Fig. 3.2 Hingeless nonuniform arch

3.1.2 Hingeless Arch

For such arches, the maximum bending moments arise at supports (for typical
loads, such as a uniformly distributed load along half-span, or nonuniformly
distributed loads, etc.). For these cases, the following law for moment of inertia
of cross-section may be assumed: /, cos ¢, = Ic. This expression corresponds to an
increase of flexural stiffness of the arch from crown to supports (Fig. 3.2a).

For hingeless symmetrical arches, it is also possible to assume the following
relationships (origin is placed at the highest point of the arch (Fig. 3.2b) [Kis60],
[Sni66])

Iy 1 Iy 1
1= X , I = X , 3.2
cosp 1—(l-n)f cosp  1—(1—n); (3-2)

where n = 1Iy/(I;cos ), Iy and I; are moment of inertia at the crown and at
support; [, f are half of the span and rise of the arch, respectively.

If n = 1, then I, cos ¢, = I. This case leads to the change of moment of inertia
by the law I = I/ cos ¢ (Fig. 3.2a).

Thus, it can be observed that the shape in Fig. 3.2a is not wise to use for pinned
supports, while the shape in Fig. 3.1a is dangerous to use in case of clamped
supports. It is obvious that the laws for moment of inertia of cross-section in real
structures are not limited to the cases considered above. There are other laws of
variation of moments of inertia listed in the books [Mor35], [Mel31], [Str27],
and [Ric99].

If an axial force should be taken into account, then we need to know how to
change the area A, of the cross section of the arch along the axis of the arch. For
rectangular cross section of the arch with width » = constant and variable thickness
h(x), the moment of inertia at any section and crown are I, = bh> /12, Iy = bh} /12,
respectively. Since A, = bh,, Ao =bhy then in case of n=1 we get
Ar = Ao / y/cos@,. This formula may be replaced by the simpler approximate
form A~ Ag/cos @,. This formula leads to an accurate approximation of the thrust
and bending moments [Dar89].



128 3 Redundant Arches

In the case of flat arches (f<//8), we can assume cosy, ~ 1, the length of
the elementary segment ds and its horizontal projection dx are equals, and A, =
Ao = const for all cross sections of the arch.

3.2 Force Method

The Force method presents a powerful method for analyzing linear elastic statically
indeterminate structures; this method also has a wide application in problems of
stability and dynamics of structures. The method is very attractive because it has
clear physical meaning, which is based on a convenient and well-ordered procedure
of calculation of displacements of deformable structures, and presently, this method
has been brought to elegant simplicity and perfection.

3.2.1 Primary System and Primary Unknowns

Degree of redundancy, or statical indeterminacy, equals to the number of redundant
constraints whose elimination leads to the new geometrically unchangeable and
statically determinate structure. Thus, degree of statical redundancy is the differ-
ence between the number of constraints and the number of independent equilibrium
equations that can be written for a given structure.

Primary unknowns represent reactions (forces and/or moments), which arise in
redundant constraints. Unknown internal forces also may be treated as primary
unknowns. Primary system is such structure, which is obtained from the given one
by eliminating redundant constraints and replacing them by primary unknowns
[Kar10].

3.2.2 Canonical Equations of the Force Method

A two-hinged arch (Fig. 3.3a) presents a structure with one redundant constraint.
Let the primary unknown X; be the horizontal reaction of the right support. The
primary system is shown in Fig. 3.3b; this structure is subjected to given loads as
well as the force X;.

The canonical equation of the Force method and primary unknown is given as
follows:

ouX1 +Ap =0, X =-——. (3.3)
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Fig. 3.3 Design diagram and primary systems of two-hinged arch

Coefficient 011 of canonical equation represents the displacement of the primary
structure along the direction of unknown X; due to unit primary unknowns
(Fig. 3.3c), and therefore this coefficient is called unit displacement. Unit displace-
ment is always strictly positive, d;;>0. The term X, represents the displacement
along the direction of unknown X; due to the action of real unknown X;. Free term
Aqp represents displacement in the primary system along the direction of unknown
X due to the action of actual load. Displacement caused by applied loads Ajp is
called load term (Fig. 3.3d).

Left part of (3.3), 01;X; + Ayp, represents the total displacement along the
direction of unknown X; due to its action and a given load. Total displacement,
which occurs in the primary structure in the direction of eliminated restriction
caused by primary unknown and applied load, equals to zero. In this case, the
difference between the given and primary structures vanishes.

The form of presentation of the canonical equation 6,1 X; + Ajp = 0 is always
the same for a two-hinged arch; it does not depend on its peculiarities (uniform/
nonuniform arch, symmetrical/nonsymmetrical arch), and type of external actions
(forces, support settlements, temperature change, fabrication error).

It is possible to adopt the primary system as a three-hinged arch (Fig. 3.3e). In
this case, the primary unknown will be the moment at a crown. Coefficient d;; is a
mutual angle of rotation at the crown caused by unit moment X; = 1, and A;p is the
mutual angle of rotation of two sections — left and right at the crown — caused by a
given load. In this case, the canonical equation means that a mutual angle of
rotation at the crown caused by primary unknown X, and given load equals to zero.

A two-hinged arch with tie presents a structure with one redundant constraint.
Internal force in a tie may be treated as the primary unknown X;. In this case, the
primary system represents a simply supported curvilinear rod. Coefficient d;; is
mutual linear displacement due to the unit force X; = 1, and A1p is mutual linear
displacement in the tie due to the given load. The canonical equation means that
mutual linear displacement of any two sections, which belongs to the tie, caused by
primary unknown X; and given load equals to zero.
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Fig. 3.4 Primary systems for hingeless arch

Hingeless arch present a structure with three redundant constraints. The different
primary systems are shown in Fig. 3.4.

Nonsymmetrical primary system is shown in Fig. 3.4a. The redundant
constraints are all constraints of one of the support. Primary unknowns are three
reactions of the eliminated constraints.

Primary system as a three-hinged symmetric arch is shown in Fig. 3.4b. Primary
unknowns are pair wise moments at the crown and moments at supports.

Primary system may be chosen as two symmetric curvilinear fixed-free bars
(Fig. 3.4c). Primary unknowns are internal forces which arise at the axis of
symmetry; they are pair wise axial forces X, moments X,, and shear force Xs.
It is obvious that other versions of the primary systems are possible.

For any primary system in Fig. 3.4, the canonical equation of Force method is
written as follows

011X1 + 012X + 013X3 + Aip =0,
021X1 + 022X5 + 023X3 + Agp =0, (3.4)
031X1 + 932X5 + 033X3 + Azp = 0.

The form of presentation of the canonical equation (3.4) is always the same for
hingeless arches; it does not depend on the peculiarities of the arch, and type of
external exposures (forces, support settlements, temperature change, fabrication,
error). Canonical equations for an n-times redundant structure may be written in a
similar form.

All coefficients d; of canonical equations represent a displacement of the
primary structure due to unit primary unknowns; these coefficients are called unit
displacements.

Coefficient J; is the displacement along the direction of unknown X; due to
action of unit unknown X;; term ;X presents displacement along the direction of
unknown X; due to action of real unknown X;. Coefficients d;,, which are located on
the principal diagonal (i = k), are called principal (main) displacements. All other
displacements 0 (i # k) are called the secondary unit displacements.

Free term A;p presents displacement along the direction of unknown X; due to the
action of actual load on primary system. Displacements A;p caused by applied loads
are called the loaded terms or free terms. Loaded displacements A;p may be
positive, negative, or equals zero.
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Physical meaning of the canonical equations: The left part of the ith equation
presents the total displacement along the direction of unknown X; due to action of
all real unknowns X, as well as applied load. Total displacement of the primary
structure in directions of eliminated constraints caused by primary unknowns and
applied load equals zero. In this case, the difference between the given and primary
structures is vanished.

3.2.3 Unit and Loading Displacements

Computation of coefficients and free terms of canonical equations presents signifi-
cant and very important part of analysis of any statically indeterminate structure.
For their calculation, any methods can be applied. The graph multiplication method
is the best suited for arched structures. For this, it is necessary in primary system to
construct bending moment diagrams M, M», ..., M,, due to unit primary unknowns
X;, i = 1,...,n and diagram Mg due to given load. Unit displacements and loaded
terms are calculated by Maxwell-Mohr formulas. If the shear and axial forces are
neglected, then

M,' XMk M,’ XMO
ik = —d Ap = ——_Pds. .
W=D [ = ds Ap=) 0 [ = Fds (3.5)

Computation of these displacements may be performed using the graph multi-
plication method. Book [Kar10] presents different types of verifications for unit and
loaded displacements.

Properties of unit coefficients are as follows:

1. Main displacements are strictly positive (6;>0).
2. Secondary displacements d;, i # k may be positive, negative, or zero.
3. Secondary displacements satisfy the reciprocal displacement theorem

Oik = Oji- (3.6)

It means that unit displacements symmetrically placed with respect to the
principal diagonal of canonical equations are equal.

The unit of displacements J; presents the ratio of unit for displacement
according to index i and units for force according to index k. For example, for
primary system in Fig. 3.4a, we get

O11(rad/(kNm)), dy2(rad/kN), dy;(m/(kNm) = 1/kN), 02 (m/kN).
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3.2.4 Procedure for Analysis

Solution of canonical equation for structure with n redundant constraints is the
primary unknowns X;, i = 1,...,n. After that the primary system may be loaded by
primary unknowns and given load, internal forces may be computed as for usual
statically determinate structure. However, the following way allows once again an
effective use of the bending moment diagrams in primary system. The final bending
moment diagram Mp may be constructed by the formula given below

Mp =M X, + My X + -+ M, X, + M. (3.7

Thus, in order to compute the ordinates of the resulting bending moment
diagram, it is necessary to multiply each unit bending moment diagrams M by
the corresponding primary unknown X; and summing up with bending moment
diagram due to applied load in the primary system M$. This formula expresses the
superposition principle. Advantage of (3.6) is that it may be effectively presented in
tabulated form.

Shear and axial forces may be calculated by formulas

QP:Q_IXI +Q_2Xv24”"4“Q_11Xvn‘i’Q(1g;

Np =N X; +NaXy+--- + N, X, + NS, (3.72)

where Qn and N; are shear and axial force diagram due to unit ith primary unknown
X, =1.

Note, for framed structure, shear forces may be easily calculated on the basis of
bending moment diagram using Schwedler theorem and axial forces may be
calculated on the basis of shear force diagram by considering equilibrium of joints
of the structure [Kar10]. Finally, having internal force diagrams, all reactions are
easy to determine.

Procedure for the analysis of statically indeterminate arches is as follows:

[

. Choose the primary system of the Force method.

2. Accept the simplified model of the arch, i.e., the arch is divided into several
portions and each curvilinear portion is changed by straight member. Calculate
the geometrical parameters of the arch at specified points.

. Calculate the unit and loaded displacements; (3.5) may be applied.

. Find the primary unknown using canonical equation of the Force method.

. Construct the internal force diagrams; (3.7)—(3.7a) may be applied.

. Calculate the reactions of supports and provide their verifications.

AN B~ W
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Fig. 3.5 Parabolic arch. Design diagram and primary system
3.3 Arches Subjected to Fixed Loads

This section contains analysis of parabolic two-hinged uniform arch, subjected to
uniformly distributed load ¢ within all span. It is shown that this arch is rational.

3.3.1 Parabolic Two-Hinged Uniform Arch

Design diagram of two-hinged uniform arch subjected to uniformly distributed load
g within all span is shown in Fig. 3.5a. The flexural stiffness of the cross section of
the arch is EI. The equation of the neutral line of the arch is y = 4fx(l — x) / P 1tis
necessary to find the distribution of internal forces.

The arch under investigation is statically indeterminate of the first degree. The
primary system is shown in Fig. 3.5b; the primary unknown X, is the horizontal
reaction of the right support. Canonical equation of the Force method is
011X1 + Aip = 0.The primary unknown X; = —Ap/dy;.

Specified Points of the Arch

The span of the arch is divided into eight equal parts; the specified points are
labeled 0-8. Parameters of the arch for these sections are presented in Table 3.1; the
following formulas for the calculation of trigonometric functions of the angle
between the tangent to the arch and x-axis have been used:

4f (1 — 2x)

tanp =y = 2 , Cosp = , sinp = cos @ tan .

1
v/ 1+ tan?p

The length of the chord between points n and n — 1 equals

ln,n—l = \/(xn - xn—l)z + (yn - yn—l)z-

The chord lengths of each portion of the arch are presented in Table 3.2.
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Table 3.1 Geometrical parameters of parabolic arch

3 Redundant Arches

Coordinates (m)

Points X y tan ¢ cos ¢ sin ¢

0 0 0.0 1.00 0.7070 0.7070
1 3 2.625 0.75 0.800 0.6000
2 6 4.500 0.50 0.8944 0.4472
3 9 5.625 0.25 0.9701 0.2425
4 12 6.000 0.0 1.0 0.0

5 15 5.625 —0.25 0.9701 —0.2425
6 18 4.500 -0.5 0.8944 —0.4472
7 21 2.625 -0.75 0.800 —0.6000
8 24 0.0 —1.00 0.7070 —0.7070

Table 3.2 Chord length for portions of the arch

Portion

Chord length (m)

0-1
1-2
2-3
34
4-5
5-6
6-7
7-8

3.9863
3.5377
3.2040
3.0233
3.0233
3.2040
3.5377
3.9863

Fig. 3.6 Positive directions of internal forces

Internal Forces in the Unit State

The arch is subjected to unit primary unknown X; = 1 (Fig. 3.5b). Horizontal
reaction H = 1 and the positive directions of internal forces are shown in Fig. 3.6.

M,

0, =

Ny

—1xy,
—1 x sin,

—1 X cos .

(3.8a)
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Table 3.3 Internal forces of the arch in the unit state

Points M, 61 N,

0 0.0 —0.7070 —0.7070
1 —2.625 —0.6000 —0.8000
2 —4.50 —0.4472 —0.8944
3 —5.625 —0.2425 —0.9701
4 —6.00 0.0 —1.0000
5 —5.625 0.2425 —0.9701
6 —4.50 0.4472 —0.8944
7 —2.625 0.6000 —0.8000
8 0.0 0.7070 —0.7070

Internal forces at specified points in the unit state according to (3.8a) are
presented in Table 3.3.
The unit displacement caused by primary unknown X = 1 equals

My xM
Sy = / PG (3.8b)
o  EI

Thus, the only column M_l (Table 3.3) will be used for the calculation of unit
displacement; the columns Q, and N, will be used for computation of final shear
and axial forces as indicated in step 5 of the procedure.

Internal Forces in the Loaded State

Displacement in the primary system caused by the applied load is given as
follows

M, x MY
Ap = / Y X g, (3.8¢)
« FH

where Mg is bending moments in the arch in the primary system due to the given
load g. Thus, as in the case of unit displacement, for the computation of loaded
displacement, we will take into account only bending moment.

The reactions of supports of the primary system in the loaded state are
RS = R = 24 kN; this state is not shown. Expressions for internal forces are
follows (0 < x < 24)

2
M) :RgquE: 24x — X2,

09 = (R — gx) cos ¢ = (24 — 2x) cos ¢,
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Table 3.4 Internal forces of the arch in the loaded state

Points MY o N)

0 0.0 16.968 —16.968
1 63 14.400 —10.800
2 108 10.7328 —5.178
3 135 5.8206 —1.455
4 144 0.0 0.0

5 135 —5.8206 —1.455
6 108 —10.7328 —5.178
7 63 —14.400 —10.800
8 0.0 —16.968 —16.968

Np = — (R} — qx) sinp = —(24 — 2x) sin¢p.

Internal forces at specified points in the loaded state of the primary system are
presented in Table 3.4.

Computation of Unit and Loaded Displacements

For the calculation of displacement, the Simpson formula is applied. Unit and
loaded displacements are

M, xM N
=T =S (@ 4k 4 1)),
1

My x MY
AIP — . rF_ Z6EI (aldp + 4C1CP + ble)7

where /; is the length of the ith straight portion of the arch (Table 3.2); n is the
number of straight portions of the arch (in our case, n = 8); ay, ap are the ordinates
of the bending moment diagrams M, and M3 at the extreme left end of the portion;
by, bp are the ordinates of the same bending moment diagrams at the extreme right
end of the portion; ¢y, cp are the ordinates of the same bending moment diagrams at
the middle point of the portion.

Calculation of the unit and loaded displacements is presented in Table 3.5. In
columns ay, ¢y, and b; of columnhead “Unit state” contain data from column M, of
Table 3.3. In columns ap, cp, and bp of columnhead “Loaded state” contain data
from column Mg of Table 3.4. As an example for portion 1-2, the entries of
columns 6 and 10 are obtained by the following way
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Table 3.5 Calculation of coefficient and free term of canonical equation

i Unit state M, x M, Loaded state M x M)
Portion E a; i b EI ap  Cp bp El
1 2 3 4 5 6 7 8 9 10
0-1 0.6644 0.0 —1.3125 —-2.625 9.1563 0.0 315 63 —219.75

1-2 0.5896 —2.625 —3.5625 —4.500  45.9335 63 855 108 —1102.40
2-3 0.5340 —4.500 —5.0625 —5.625 82.4529 108 1205 135 —1978.87
34 0.5039 —-5.625 —5.8125 —6.000 102.1815 135 139.5 144 245235
4-5 0.5039 —6.000 —5.8125 —5.625 102.1815 144 139.5 135 —2452.35
5-6 0.5340 —5.625 —5.0625 —4.500 82.4529 135 121.5 108 —1978.87
6-7 0.5896 —4.500 —-3.5625 —2.625 459335 108 855 63 —1102.40
7-8 0.6644 —2.625 —1.3125 0.0 9.1563 63 315 0.0 219.40

—3'65237 X [(—2.625) x (—2.625) +4(—3.5625) x (—3.5625) + (—4.50) x (—4.50)]

~ 45.9335
~ EI

3.5377 1,102.40
o % [(-2.625) x 63+ 4(~3.5625) x 85.5+(~4.50) x 108] = ———="—.

Sum of the columns 6 and 10 are:

479.4484
arch __
oy = B (m/kN),
11,506.74
Alp = — T (m)

Canonical equation and primary unknown (thrust) become

4794484 11,506.74
El ! El

=0 — X; =24.00 kN.
Construction of Internal Force Diagrams
Internal forces, which arise in the entire structure, may be calculated by the
formulas given below
M = M\X, + Mp,

Q = lel + Qg7
N =N X; + NJ.
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Table 3.6 Calculation of internal forces at specified points of the arch

Points M X, 0,X; N X, MY 0 N) M Q N

0 0.0 —16968 —16.968 0.0 16.968 —16968 0.0 0.0 —33.936
1 —63 —14.400 —19.2 63 14400 —10.80 0.0 0.0 —30.0

2 —108 —10.733 —21.466 108 10733 —5.178 0.0 0.0 —26.644
3 —135  —5820 —23.282 135 5.820 —1.455 00 00 —24.737
4 —144 0.0 —24.00 144 0.0 0.0 0.0 00 =240

5 —135 5.820 —23.282 135 —5.820 —1455 0.0 00 —24.737
6 —108 10.733  —21.466 108 -10.733  —5.178 0.0 0.0 —26.674
7 —63 1440  —19.20 63 —1440 —10800 0.0 0.0 —30.0

8 0.0 16.968 —16.968 0.0 -16968 —16.968 0.0 0.0 —33.936

Fig. 3.7 Two-hinged q=2kN/m
parabolic arch. Axial force VIV VIV VIV VIV VYV VvV
diagram and reaction of

supports

[=24m
Ny R, | Rg Ng
N O o N O o o0 o o
A S o &~ S NS
on o O < < < \O S on
NN (] (o] (o] (o] (o] N o

Calculation of internal forces in the arch due to the given fixed load is presented
in Table 3.6; internal forces M, Q,, and N; due to unit primary unknown X; = 1
are presented earlier in Table 3.3.

Corresponding axial force diagram N is presented in Fig. 3.7.

Knowing the internal forces at points O and 8, we can calculate the reactions at
supports A and B. Axial force Ny = 33.936 kN is shown at support A (Fig. 3.7).
Reactions of this support are

Ry = Nosinp, = 33.936 x 0.707 = 24 kN, H = Ny cos @, = 24 kN.

For primary unknown X, we have obtained previously the same result.

Discussion

1. If two-hinged uniform parabolic arch is subjected to uniformly distributed load
within all span, then this arch is rational since the bending moments and shear
forces equal to zero in all sections of the arch. In this case, only axial compressed
forces arise in all section of the arch. Such a conclusion can be made if the effect
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Fig. 3.8 Design diagram a b
of hingeless arch and unit
state for calculation of
horizontal displacement of
the left support

of axial and shear forces on the unit and loaded displacements are not taken into
account.

If the axial forces are taken into account, then the change of the primary
unknown is insignificant. However, the condition of the arch has changed
fundamentally since the arch has ceased to be rational. Detailed analysis is
presented in Sect. 3.11.2.

2. Procedure for the analysis of nonuniform arch remains the same. However, in this
case, Table 3.1 must contain an additional column with parameter EI for each
point 0-8, Table 3.2 must contain the parameter EI, for the middle point of each
portion, and column 2 of the Table 3.5 should be replaced by the column /;/6EI,.

3.3.2 Some Comments About Rational Axis

In the previous section, we showed that uniform parabolic two-hinged arch, subjected
to uniform vertical load, is a rational arch. Taking into account the axial forces which
arise in the arch, this wonderful feature of the arch immediately disappears. It is
possible to show that if a hingeless arch is shaped according to pressure polygon of
three-hinged arch (Appendix, Pressure Polygon), then inevitably bending moments
arise in the arch if the axial forces are taken into account.

Let us show that it is essentially impossible to construct a rational hingeless arch
(i.e., an arch wherein all the sections of which the bending moments are zero).

Assume that it is possible to construct a rational hingeless arch. For this arch,
Mp = Qp = 0 and the axial force in the arch is Np = H/cos . Let us determine the
horizontal displacement of the left support (Fig. 3.8a). Unit state presents any
statically determinate system subjected to unit load, which corresponds to required
displacement [Kar10].

One version of primary system and corresponding unit state is shown in
Fig. 3.8b.

In this state, internal forces M; # 0,Q; # 0, and N; = cos . Therefore, required
displacements becomes

N;Np H 1 dx
At — / L ds = / X — % :
hor . EA s ; oS PX Cos o EA cosyp
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It is obvious that this result does not equal to zero, so the initial assumption about
zero bending moments is false. Thus, any change in the axis of the arch cannot lead
to the zero bending moments [Kis60]. Strictly speaking, even for rational axis of the
three-hinged arch, deflection of the arch caused by axial forces leads to the change
of the curvature of the arch, and as a result leads to appearance of bending moments.

Note that it is possible to achieve a zero bending moment by controlling the
stresses in the arch. This problem is considered in ref. [Kis60].

3.4 Symmetrical Arches

This section describes properties of symmetrical structures, introduces the concept
of elastic center, and contains analysis of parabolic nonuniform arch and semicir-
cular uniform arch.

3.4.1 Properties of Symmetrical Structures

Symmetrical structures mean their geometrical symmetry, symmetry of supports,
and symmetry for stiffness of the members. Symmetrical arch subjected to vertical
load P is shown in Fig. 3.9a. This load may be presented as a sum of symmetrical
and antisymmetrical components (Fig. 3.9b, c). In general, any load may be
presented as the sum of symmetrical and antisymmetrical components.

a b c
Symmetrical Antisymmetrical
load load
P/Zl lP/Z P/Zl P2

S
AS' AS’

Axis of / N _
symmetry N

Fig. 3.9 Presentation of the load P as a sum of the symmetrical and antisymmetrical components

At any section of a member, the following internal forces arise: symmetrical
unknowns, such as bending moment M and axial force N and antisymmetrical
unknown shear force Q (Fig. 3.10).

At the point of the axis of symmetry, the following displacements arise: the
vertical A,, horizontal Ay, and angular . In the case of symmetrical load, the
horizontal and angular displacements at the point C are zero, while the vertical
displacement occurs. In the case of antisymmetrical load, the horizontal and angular
displacements at the point A exist, while a vertical displacement is zero.
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Fig. 3.10 Symmetrical and antisymmetrical internal forces

Fig. 3.11 Primary system using the concept of elastic center

Fundamental properties of internal force diagrams for symmetrical structures:

1. In the case of symmetrical loading, the internal force diagrams for symmetrical
unknowns (M, N) are symmetrical and the diagram for antisymmetrical
unknown (Q) is antisymmetrical.

2. In the case of antisymmetrical loading, the internal force diagrams for symmet-
rical unknowns (M, N) are antisymmetrical and the diagram for antisymmetrical
unknown (Q) is symmetrical.

More detail of the properties for the symmetrical structures is presented in ref.
[Kar10].

3.4.2 Elastic Center

Let us consider a hingeless arch subjected to arbitrary load (Fig. 3.11a). For such
arch, the system of three canonical equations is written in the form of (3.4). Elastic
center is a special point, where primary unknowns should be placed so that a system
of coupled canonical equations of the Force method would be presented as three
independent equations [Dar89], [Bro06].

Let us consider symmetric arch and find location of the elastic center. Let the
primary unknowns be the axial force X;, shear X5, and bending moment X3; they act
at the crown C of the arch. Since the bending moments diagrams M; and M; are
symmetrical while M, is antisymmetrical, then
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MM MM
! 2d,SZO and 523 :532 = 273
El El

ds = 0.

O1p = o1 =

In this case, the dependent equations (3.4) are reduced to the system of two
coupled equations with respect to symmetrical unknowns X; and X3

011X1 + 013X3 + App =0,
031X1 + 033X3 4+ Asp = 0, 3.9

and one independent equation with respect to antisymmetrical unknown X,.
020X> + Aypp = 0. (3.92)

Note, that in case of one-hinged symmetrical arch, the bending moment X35 at the
crown equals zero.

Now the secondary unit displacements of the system (3.9) may be reduced to
zero. For this, we introduce two absolutely rigid cantilevers CD of length c, and the
primary unknowns are located at point D (Fig. 3.11b). The origin of coordinates
coincides with the crown C and axis y is directed downward. If three unknowns are
placed at the point D, then the bending moments due to unit primary unknowns are
M; = —1xy,M, = —1 x x and M3 = 1, where y, is ordinate of the axis of the
arch with respect to line of the unknown X;. Let us find the length ¢ so that unit
displacement be zero: d;3 = 0. In this case, two coupled equations break down into
two independent equations. It happens if

MM ¢ 1 Cyd
513 = 1773 g = — Mds: N« _
El T E | El

Thus, initial system of (3.4) is transformed into three independent equations:

onXi +Ap =0,
033X3 + Asp = 0,
020X> + Ayp = 0.

The ith canonical equation means that a mutual displacement of two sections at
point D caused by primary unknown X; and external load is zero. Unit displacement
0;; presents a mutual displacements of two sections at point D due to primary
unknown X; = 1, while Ap is a mutual displacement of two sections at same
point D due to the given load.

The primary unknowns are X; = —A;p/0;. The point D is called the elastic
center (Fig. 3.11b).

The coordinate of elastic center is

S 2 g 12 gs
— — —_. = —. 3.10
¢ , S /0 yEI’ $2 /o El ( )
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Indeed, an integral fAC y1ds/EI = 0 may be presented as

/C<c—y>ds:6/“ds_ s,
'« EI . EI ), EI 7

and this expression immediately leads to (3.10). Positions of elastic center for
different shapes of arches are presented below.

3.4.2.1 Hingeless Symmetrical Parabolic Nonuniform Arch

Assume that y = 4f /I?(Ix — x*) and I, = I¢/ cos .
: 2 12 2
Since ds = dx/ cos o, thends/EIl = dx/Elc,s0 S| = 4f /(PElc) [,/ ~ (Ix — x°)dx,

S, = (i/ : dx/Elc and for coordinate of elastic center we get yo = 2f/3,¢ = f/3.

3.4.2.2 Hingeless Symmetrical Cubic Nonuniform Arch

Let equation of the axis and the moment of the cross section be [Sni66].

2

X2 X
y=@7+0—m—
1

lz] f (origin is placed at the crown)
1

I, = fo X !
Y cosp 14 Bx/L)’

where 2/; is a span of the arch, u and f are any parameters, 0 < pu<1.4, and
— 1< <0. In this case,

15+ 50+ B(12 + 3p)
3012 + f)

c=f

3.4.2.3 Hingeless Symmetrical Circular Uniform Arch [Kle80]

In this case, the elastic center coincides with a center of gravity of the thin
semicircular line, i.e., yo = 2R /7.
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Table 3.7 General form for calculation of unit and loaded displacements
Portion As I As x y YAy xXPAs MY yMOAS  xMOAS MOAS
1

34.24 Any Symmetrical Hingeless Nonuniform Arch [Bro06]

In case of symmetrical arch of arbitrary shape and with any law of the moment of
inertia [ of the cross section, the coordinate of elastic center may be determined by
numerical method with the following steps.

1. The span of the arch is divided into 8—12 equal portions and each curvilinear
segment of the arch is replaced by a straight member of length As.

2. For each nodal point of the arch, calculate the moment of inertia; for middle
point of the straight member, the moment of inertia may be calculated by the
formulal = 0.5(1; + 1), where I; and I, are the moments of inertia at the left and
right end points of the straight member.

3. Determine conventional length of each member: As’ = (Ic/I)As (Ic is a moment
of inertia at the crown).

4. Determine coordinates x and y for middle point of each straight member.

5. For middle point of each straight member, determine the bending moment Mg in
the primary system caused by the given load.

For calculation of unit and loaded displacements, we obtain the following
formulas

c c
Elcdy = /M?ds’ = ZyzAs’; ElcAp = /MlMgds’ = ZyMgAs’,
) 2

C C
Elcdy = / Myds' = 3" xAs'; Elchyp = / MoMYds' = — Y xM3AS,
A A

C C
Elcdss = / Myds' = 3" AY;  Elchsp = / MsMyds' = > MOAS'.
A A
(3.11)

All calculations are presented in the tabulated form (Table 3.7).

If it is necessary, the normal and shear forces may be easily taken into account
[Rab54a].

The primary unknowns are X; = —Ap/d;, i=1,2,3. The reactions of
supports may be calculated considering equilibrium of the left and right half-arch
subjected to given loads and primary unknowns.

In case of any nonsymmetrical hingeless arch, for full separation of the coupled
equations we need to determine two coordinates (xo, yo) and angle of rotation (o) of
the axis (Fig. 3.12) [Rab54], [Bro06]. These axis are called the principal axes.
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Fig. 3.13 (a, b) Design diagram and primary system for hingeless arch

Position of elastic center and direction of principal axis may be calculated by the
formulas presented in ref. [Bro06]. However, the numerical procedure to calculate the
position of the elastic center turns out to be very cumbersome, and thus the advantage
of using the elastic center in all further calculations becomes questionable.

The physical meaning of the concept “elastic center”: in the middle point of each
straight segment apply a load ds/I, which is called the elementary fictitious elastic
load. The center of gravity of these loads represents the elastic center [Dar89].

3.4.3 Parabolic Hingeless Nonuniform Arch

Symmetrical parabolic nonuniform arch is subjected to uniformly distributed load ¢
(Fig. 3.13a). Equation of the central line of the arch is given by y = 4fx( — x) / 2.
The moment of inertia of the cross section of the arch changes according to the law
I = I¢/cos ¢. The primary system is shown in Fig. 3.13b.

Position of the elastic center D is ¢ = f /3. In this case, the primary unknowns are
X; = —Ap/dis, i=1,2,3. If the axial and shear forces are neglected, then
expressions for unit and loaded displacements become

M ds M; MpdS

0ii = de Ap = M;Mpdx.
XEIC/ b I, Elc/ ?
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1.2 M X,=1

l ql/ZM

Fig. 3.14 Bending moment diagrams in the primary system caused by unit primary unknowns and
external load

Bending moment diagrams in a primary system caused by unit primary
unknowns and given load are shown in Fig 3.14.

Construct expressions for bending moments in the primary system caused by
unit primary unknowns X; = 1 and external load ¢q. Let the origin be placed at
support A for left half-arch and at support B for right-half arch; the positive
direction of the axis x for right-half arch is directed from right to left.

— - 2
Mlleft _ Mrllght _ gf —y,

—left ) —right |
M2 :_§+X, M2 :E—X,
M;efl _ —glght _ 1’

gl gl X e
Mifﬂzzx—?—qxi; Mpgt:O.

For unit displacements, we get
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Fig. 3.15 Reactions of hingeless parabolic arch; I = I¢/cos . Location of expanded fibers in the
vicinity of supports are shown by dotted lines

The loaded displacements become

MMpds 1 [1% /2 gl gl x
Ap = = — —f — —X - — — — |dx
P El,  Elc /0 R AR

1 [P12 . 4 NV x qf?
= — - ——<IX—X) —X——— —gX—- = —
Elc ), |30 & 278 2 180EI
MyMpds 1 [ [ 1 gl qP x qgl*
Ao — - _L Tr-T ol )dv=—T
2» El.  Elc J, AR AL 2 % 6AEIC’
M;Mpds 1 12 gl  qP? X ql?
A = = — 1 - —_—— - dx = - .
3® El.  Elc ), \2¥ g 3 48l
Primary unknowns are
A P A 3 A 12
X1:_£:L7 X, =% =_"ql X3:_ﬁ:q__
Su 16f 52 32 5y 48

Now we can calculate the reaction of supports (Fig. 3.15): thrust and vertical
reactions are
13 3

Hex =9 R =~ B o), Ry =X = 2l
= 1_16f’ 4=5 2—32q ) B = 2—32(1 :

Bending moment at the crown and at the supports are

q? q® f
Me=X;—Xje=L 4" T _y
S TR TR
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Fig. 3.16 Design diagram of the arch and primary system

- I g | qP 2, 3
Ma=Xio =X v Xs = X =g 3 TR T T8 T e

(extrados fibers are extended).

Mg = X1y + Xo -+ X —q—ﬂng—izx—+———
BEANOT R T T 6r 73 T3 0T 48 T e

(intrados fibers are extended).

These results are presented in Table A.31, line 3 for case v =0,k = 1.

Now we can calculate the reactions of supports in the case of a uniform loading
of parabolic arch within the entire span; they are Ry = Rg = ¢ql / 2,H = ql?/8f,
My = Mp = 0. Bending moment at crown M¢ = 0.

3.4.4 Circular Hingeless Uniform Arch

Semicircular uniform arch is subjected to a uniformly distributed load ¢ (Fig. 3.16).
The primary system contains the absolutely rigid cantilevers of length c. Primary
unknowns X; are placed in the elastic center D at the axis of symmetry of the arch,
Yo = 2R /m. The origin coincides with center D.

Since loading of the arch is symmetrical, the antisymmetrical unknown X5 = 0.
Canonical equations become

onXi +Ap=0,
00X +Ap =0

and the primary unknowns are X; = —Ap/d11, X» = —Asp/d2. For calculation
of unit and loaded displacements, the shear and axial forces are ignored.
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Coordinates of arbitrary section K of the arch are

x = Rcos p,
. . 2R
y=Rsinp —yy=Rsinp — —.
v
Bending moment at section K caused by unit primary unknowns X; = 1, X, =1
and external load are

— 2R — 2 R?
My =—-1xy=—-Rsinp+—; M, =—1; Mng%:f%coszgo.
T

During the calculation of unit and loaded displacements, integration along the
length of the arch, ds, is replaced by integration of its polar counterpart dey,
ds = Rd¢.

Unit displacements are

/2 . 2R 2 T 4 3
Elé; =2 —Rsing+— | Rdp= (= —— |R?,
0 T 2 7n

/2
E]522 :2/ RngZHR
0

Displacements along X; and X, due the external load are

/2 R2 2R R4
EIAp = 2/ <—q—cosz<p> (—R sin g + —>Rd¢ - _q_’
0 2 T 6

/2 R2 R3
ElAp = 2/ (—%coszgo) (=1)Rdyp = mi .
0

Primary unknowns are

Ap qR Asp gR?
Xi=——=———7——=05602¢R, X)=——=——-.
YT TS0 6(nj2—4/x) A 4
Bending moments at supports and at the crown are
qR? qR 2R qR*> 4R® )
My=Mg=X\yo—Xo——=——"——""—X—+-———=0.108¢R
a=Ms == == a2 VT2 n

gR 2R\ gR? 5
Mec=-X(R - -X=—————"—"—|R—— —— = 0.046¢R".
c 1(R = y0) — X> 6(n/2—4/7r)( n>+ ) q
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Fig. 3.17 Bending moment q
. p)
diagram; factor gR CITTTTTIT I ITTITTTITTTd

0.108

Bending moment at any section of the arch is

2 2 2 2
gx gR : 2R\ gR* gR*cos*p
MX:—X - X —-——=— (R N - T 7.
e T 6@U24ﬁo( Sy n)+_4 2

Corresponding bending moment diagram is shown in Fig. 3.17.

We find a section of the arch where the maximal bending moment arises.
Condition dM/dp =0 leads to sing, =0.562, cosp, =0.827, and
o = 34°10'. The maximal negative moment (extrados fibers are extended)
becomes M.x = —0.05qR2.

3.5 Settlements of Supports

If there is a relative displacements of supports of the redundant arches, then internal
forces arises in the arch. This section is devoted to the analysis of two-hinged and
hingeless arches subjected to the settlements of supports. Settlements of rigid
supports occur regardless of a presence of external load.

3.5.1 Two-Hinged Arch

Different settlements of support of two-hinged arch are shown in Fig. 3.18. Hori-
zontal reaction (thrust) will constitute the primary unknown X;. Canonical equation
is 011X + Aja = 0, where the free term A1, is displacement in the primary system
along the primary unknown caused by the given displacement of support. This term
is determined by the formula

A = —RiA, (3.12)

where R, is a component of reaction (due to X; = 1) which coincides with the
direction of displacement A [Karl10]. Let us consider two cases.
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Lo

| l |

Fig. 3.18 Different settlements of support of two-hinged arches

1. Vertical displacement of support (Fig. 3.18a). Assume that displacement a is
small. Reaction R (caused by X; = 1) along displacement (i.e., the vertical
reaction ) is zero and therefore Ajp = —0 x a = 0. Thus, in the case of a small
vertical displacement, the thrust of the arch is equal to zero.

If a vertical displacement a of support A is large, then this support also has a
horizontal displacement A (Fig. 3.18b). Approximate expression for this dis-
placement is given by

Azl(l—cosﬁ)%l(l— 1—7—;).

Along the displacement A, the reaction is Ry = —1. The negative sign means
that this reaction and primary unknown X; = 1 have opposite directions. Free
term of canonical equation becomes

_ a2
Ais = —RiA=—(-)xA=1[1-/1-%F).

2. Horizontal displacement of support (Fig. 3.18c). Assume that displacement b
occurs inside of the arch. Along the displacement b, the reaction is R} = —1.
According to (3.12), we get

Aip=—-RA=—(=1)xb=h.
The thrust H = X; = —Ap/d11. In both cases, unit displacement 61 is calcu-

lated as usual. Computation of internal forces does not pose a problem when
thrust is known.

3.5.2 Hingeless Arch

Symmetrical hingeless arch and settlements of its right support is shown in
Fig. 3.19a.
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2| 12

Fig. 3.19 (a, b) Hingeless arch. Settlement of support and primary system

If the primary unknowns are placed in the elastic center (Fig. 3.19b), then (3.4)
will be separated

8iX1 + Aia = 0. (3.13)

Primary unknowns are X; = —Aja/d;, i=1,2,3.

Unit displacements are 6;; = [ Mizds/E[X; all of them may be presented in the
form 0; = K;/Ely, where K; are some strictly positive numbers, and Elj is a
flexural rigidity of a certain section of the arch. It means that the primary unknowns
in case of the settlements of supports are proportional to the flexural rigidity of the
arch. Increasing the flexural rigidity leads to increasing of primary unknowns
[Kis60].

Free terms Ajz(i = 1, 2, 3) of the system (3.13) represent displacements of the
primary system in the direction of primary unknowns X; due to displacements of
supports; subscript A refers to displacements caused by settlements of supports. For
calculation of these terms, we need to use the theorem of reciprocal unit
displacements and reactions (1.39).

It is easy to show [Kis60], [Kar10] that the formula for calculation of the free
terms of (3.13) is

A,‘ = —ZE,‘/< X d,‘. (314)

In this formula, the subscript A —settlements” — at A;4 is omitted; R is reaction of
the constraint in the direction of a given displacement d; due to unit primary
unknown X;, = 1. In other words, R;; and R, are found as reactions in the primary
system due to primary unknowns X; = 1 and X, = 1, respectively; these reactions
must be determined in the supports, which are subjected to settlement.

Each primary unknown leads to appearance of the unit reactions in the displaced
support; these reactions in direction of the settlement of support are shown in
Fig. 3.20.
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‘%Rl—l X,=1 3M7 3

R 7 BN
M,=1:(f~0)

/J} ,\5 - Rz_l

Fig. 3.20 Reactions along the settlements of support due to unit primary unknowns X;

Formula (3.14) leads to the following results

AIA— ZR],d]Z R]a—f—M]H) [—1><a—1><(f—c)0]=a+(f—c)9,
Mo = — 3 Ruds = — (Rab + W1:0) =—{+1 xb—1 xé@] — b0
A3A = —Zﬁj;idz = —(M30) = —(—1 X 9) =0.

After calculation of the primary unknowns X;, construction of internal forces is
performed as usual.

3.6 Arches with Elastic Supports

If the arch is supported by the elastic-yielding structure or insufficiently robust
foundation, then the elastic properties of supports should be taken into account. In
this paragraph, we are dealing with the deformation of supports caused by external
loads unlike settlements of supports without action of any loads as it is discussed in
Sect. 3.5. Taking into account the compliance of support enables us to find a more
accurate distribution of internal forces in the arch.

Let us consider a hingeless arch with elastic supports. Figure 3.21 presents the
support A subjected to the unit forces X, X;,, and a moment X.. New position of
flexible support is A’. The stiffness of a support is characterized by three principal
positive displacements 04y, Opp, 0. The first subscript represents direction and
second represents cause. The second displacements .5, O4c, dp. may also be
negative.

Primary unknowns (shear force X, normal force X,, and moment X3) are applied
at the elastic center D (Fig. 3.22).

Now we will consider action of each primary unknown separately (Fig. 3.23).

Primary unknown X; = 1 leads to the following pressure on the support A:
the vertical force X, = 1 and a clockwise moment 1 x //2. Therefore, each
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Fig. 3.21 Notation of displacements due to action of each unit load at support A

Fig. 3.22 Primary system and primary unknowns (supports A and B are elastic)

Fig. 3.23 Computation of displacements at flexible support A due to action of unit primary
unknowns
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displacement consists of two terms. The first term (044, dpa, dcq) corresponds to
unit force X, =1, while the second terms ((//2)d4c, (1/2)0pc, (1/2)0cc)
corresponds to the moment 1 x //2 as shown in Fig. 3.21.

Similarly unit displacements may be calculated in case of X, = 1. If the primary
system is loaded by X3 = 1, then a unit displacement contains only one term since
the action on the support A is a unit moment, which coincides with loading X. = 1
as shown in Fig. 3.21.

Since point D is the elastic center, we get three uncoupled equation. Note that the
position of the elastic center in case of elastic supports does not coincide with the
elastic center for arch with absolutely rigid supports. Position of the elastic center
may be calculated by the formula [Rab60]

K + Eldp, S/ o
a= K EIO K:/ yolds =3 o L As, (3.15)
fA 2ds + Elod.. A 1 A 1

where I, is a moment of inertia of the cross section of the arch in crown;
displacements d,. and J.. according to Fig. 3.21 are elastic characteristics of the
abutment.

Procedure for Analysis

Curvilinear axis line of the arch is presented as a set of straight members of length
As. For the middle point of each member, calculate coordinate yy (Fig 3.22) and a
moment of inertia / of a cross section of the arch. Then find position of the elastic
center by (3.15). Primary unknowns are X; = —App/d;, i=1,2,3.

Unit displacements which depend on deflections of arch itself are denoted by
5?1, 5(2)2, 5(3)3. Taking into account elastic properties of supports, the unit
displacements become

12
Elydy, = ElydY, + 2El, (&m + 10qc + Z(Su.),

Elody = Elo8%, + 2EIo (3 — 2adpe + a*dec),
Elyd33 = Elg8%, 4 2EIod,.. (3.16)

Analysis of properties of these expressions is presented in ref. [Rab60].

The external load in the primary system leads to the pressure and moments
which act on the supports A and B; they are denoted by F left - pright 44 Mﬁ , Mg ,
respectively. The forces are positive, if they are directed downwards. The moments
are positive if intrados fibers are extended.
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Table 3.8

3 Redundant Arches

Problem 1

Problem 2

Redundant arch with rigid
supports (hinged of fixed)

Redundant arch with
elastic supports

Settlements of supports

Unit displacement of
canonical equations

Loaded terms

Elastic center

Does not depend on the
external load

Depend on the elastic
properties of the arch
itself and do not depend
on the settlements of
supports

Depend only the settlements
of supports

Depend on the elastic
properties of the arch
itself and do not depend
on the settlements of
supports

Depend on the external loads

Depend on the elastic
properties of the arch and
elastic supports

Depend on the elastic
properties of the arch and
elastic supports

Depend on the elastic
properties of the arch and
elastic supports

Loaded displacements which depend on deflections of arch itself are denoted by

A(I)P, Agp, Ag. Taking into account elastic properties of supports, the loaded
displacements become [Rab60]

. . l l
ElgAp = ElgAp + Elo (F*" — Frieht) (&w + 5%) +Ely (M, — M%) (5(,(. + 55(.() ,

ElgAsp = EIoAYp + Elo (F*" + FT€") (8}, — adca) — Elo (Ml + M%) (8pc — adee),
ElgAsp = ElgAYp + EIo (F*" + F") 5, — EIo (Ml + M%) S .

(3.17)

In case of an absolutely rigid abutment, all displacements in Fig. 3.21 are zero;

therefore all unit and loaded terms depend only on the deflections of the arch itself.
Knowing the primary unknowns, computation of internal forces should be carried
out as usual.

Difference between analysis of the redundant arch in case of the settlements of
supports (Problem 1, Sect. 3.5), and analysis of the redundant arch in case of the
elastic supports (Problem 2) is presented in Table 3.8.

3.7 Arches with Elastic Tie

This section presents an exact solution for circular uniform arch with elastic tie and
approximate solution for nonuniform arch of arbitrary shape with elastic tie.
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Fig. 3.24 Two-hinged arch with tie

3.7.1 Semicircular Uniform Arch

Design diagram of the circular arch with tie is shown in Fig. 3.24a. The flexural
stiffness of the arch EI = const. The stiffness of the tie is EA,.

The structure has one unknown of the Force method. Canonical equation is
011X1 + Ap = 0. Let the primary unknown X be the force which arises in the tie
(Fig. 3.24b). Canonical equation means that a mutual displacement of two sections
of the tie caused by primary unknown X, and external load is zero. Unit displace-
ment 01, represents the mutual displacements of two sections of a tie due to the
primary unknown X; = 1, while Ap is the mutual displacement of two sections of a
tie due to a given load.

In the polar coordinates, we get x = R(1 — cos); y =Rsiny; ds = Rdey.

The bending moments in primary system due to P and X; = 1 are

__Px _ PR(1 —cosp)
P = 2 - ) )
M, = —1xy=—Rsingp.

<

In calculating the unit displacement d;;, we take into account the bending of the
arch itself and extension of the tie

R A7 FVi I N7 N
My xM Ny xN
5= [ MixMy o [N XNy
0 EI A%
™ R%sin%¢p FR1 %1 mR®> 2R
- Rd dy = —— . 3.18
/0 et /0 EA, 26 T EA, (3.18)

In calculating the loaded displacement Ap, we take into account the bending of
the arch itself
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factor PR

\ 0
30° AEI=nRE AT

Ry

Fig. 3.25 Bending moment diagrams for the arch; 4EI/EA, = nR>

R g 0 /2
M; x M 2 PR
Ap = i %ds:—ﬁ \ 7(1—0054,0)Rsingp><Rd<p
PR’
=——_. 3.19
2FEI ( )

The force in the tie (thrust) becomes

A PR? 4E1
XI:H:—iz—, where F = nR?> + ——.
ElAl

It can be seen that increasing the stiffness of the tie leads an increase of internal
force in the tie.
Knowing the thrust, the internal forces may be calculated by the formulas

My = M} — Hyy,
Ok = Qko cos ¢, — Hsingy,
Ny = —(0f sinp + Hcos p;),

where M,? and Q,? related to the simple supported reference beam.

The bending moment in arch depends on the stiffness of the tie. As in the case of
three-hinged arch, the presence of a tie leads to a decrease of the bending moments
in comparison with reference beam. Increasing the stiffness of the tie leads to a
decrease of the positive moments in the arch.

Let 4EI /E,A, = nR?. In this case, the thrust is H = P/2n. Bending moments at
specific sections are

P P
M(x=0.134R, = 30°) = ZR(I — cos 30°) — _Rsin30° = ~0.0126PR,
Y[
M(x=05R, ¢ =60°) =0.1121PR, M(x =R, ¢ = 90°) = 0.3407PR.

Final bending moment diagram is shown in Fig. 3.25.
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Fig. 3.26 Two-hinged arches with tie

If EiA; = oo, then thrust becomes H = P/n. Bending moments at specific
sections are

P P

M(x=0.134R,  =30°) = ZR(1 — cos 30°) — —Rsin30° = ~0.092PR,
T

M(x =0.5R, ¢ = 60°) = 0.02565PR, M(x =R, ¢ =90°) = 0.1817PR.

If a tie presents an absolutely rigid member, then thrust in the tie is more than the
thrust which arises in a two-hinged arch without a tie. This result may be explained
by taking into account the expression for X and d1.

3.7.2 Nonuniform Arch of Arbitrary Shape

Design diagrams of two-hinged arches with ties are shown in Fig. 3.26. Among
them are arches with ties on elevated supports (a, b), arches with elevated ties (c, d),
and an arch with a complex tie (e).

Let us provide the structural analysis of the nonuniform arch of arbitrary shape
with tie at the level of supports (Fig. 3.26a). Assume that the flexural stiffness of the
arch EI along its axis is variable. The axis of the arch is described by an arbitrary
equation y = f{x). The tie has a constant cross section along its length; the modulus
of elasticity and area of the cross section of the tie are E, and A,, respectively. Let us
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Fig. 3.27 Design diagram and primary system

find expression for thrust, taking into account all components of the Mohr integral
and the stiffness of the tie.

Canonical equation of the Force method is d1;X; + A;p = 0. Primary unknown
is the force X, in a tie (thrust H). Primary system is shown in Fig. 3.27.

For computation of displacements d;; and Ap, we will take into account not
only the bending moments but also the axial and shear forces.

The unit primary unknown X; = 1 and external forces lead to the following
internal forces

M,=—-1xy, Ny=—cosp, Q,=—singp,
Mp =My, Np=—Qosing, QOp=Qgcosep,

where M, and Qy are bending moment and shear of the reference beam; the positive
signs of internal forces are shown in Fig. 3.27c.

Let I be the moment of inertia of the cross section of the arch at the specified
section, for example, at the crown. Then, Maxwell-Mohr integral for unit and
loaded displacements becomes

I It El I EI
Elyd)) = /y270ds+/cos2<p£ds+/sinzgo%dﬁ/o 12EX ds, (3.20)
4t

I I El
ElyAp = —/yMQTOds—&—/QO sinapcosgozods—/Qosinapcosap%ds.

(3.21)

With the exception of last term for d;;, integration of all the terms should be
performed along the axis of the arch. The last term in (3.20) evaluates to
(Ely/E\A)l. The precise integrating may be done only in the specified cases. In
the general case, numerical integration must be used: the axis of the arch should be
divided into separate straight portions of equal length As, for middle point of the
portion the quantities y, Iy/I, sinp, cosp, etc., are computed. For the given
equation of the axis line of the arch, y = f(x), trigonometric functions of the
angle ¢ are
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Table 3.9 General form for calculation of unit displacement; As" = (I/I)As

s 2 LEI
Member 'y A I sin cosp Ay YAS  cos*(e ) s (90 G71§>

1 2 3 4 5 6 7 8 9 10
1

Zl 22 23

Table 3.10 General form for calculation of the loaded displacement Ap; As’ = (Ip/I)As

0022 sin2e 0o MEL0 Gino
— SI S1
Member y A I sing cosp AS My Qo yMoAs <024 °"7¥ R0oG SM¥
1 23 45 6 7 8 9 10 1 12
1

24 25 26

1

V1 +tan2<p;

For the right-hand half-arch, the functions sin (<0 and cos >0. Calculation of
unit 0, and loaded Ap displacements is shown in Tables 3.9 and 3.10, respectively.
Expression for unit displacement becomes

d
tanwzay, cosp ==+ sin ¢ = tan @ cos .

El
Elyy = 21 + (S + Z3)As + —

it

I. (3.22)

The term X takes into account the bending moments in the arch, while terms X,As
and X3;As take into account the axial and shear forces in the arch; the last term in
(3.22) takes into account the axial force in the tie.

Similarly, expression for loaded displacement (3.21) may be presented as
follows

EI()Alp = —24 + (25 - Zﬁ)AS. (323)

Computations of 24, s, and Z¢ are presented in Table 3.10. Note that the tie is not
subjected to any external forces in the primary system.
Primary unknown is

Ap ElyAp

X=H=-"2—_ .
511 21 +(22+23)AS+%1

(3.24)

This is the precise expression for thrust which arises in the tie. Ignoring the axial
force (terms X, and Zs) or/and shear force (terms X3 and X¢) leads to the approxi-
mate expression for thrust. Influence of the axial forces is significant for shallow
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(gently) arches. The greater the parameter //I(h is a height of the cross section of
the arch), the greater is the influence of the shear forces. As shown in Table 3.10
(columns 10-12), the relative influence of different terms depends not only on the
shape of the arch and dimensions of the cross sections, but also on the external load
[Rab54a].

If E.A; = 0, then the force in the tie is zero, and arch reduces into a simply
supported curvilinear beam. In the case of absolutely rigid (nondeformable) tie, the
thrust H becomes

ElyAp
T+ (224 Z3)As

Hijim =

In this case, the elongation of tie is zero; this leads to the usual two-hinged arch
without tie.

All internal forces in the arch may be calculated by (2.6) if the force in the tie is
known.

Note that a rational axis of the two-hinged arch with tie may be obtained if and
only if the tie is nondeformable and influence of the shear and axial forces on the
deflection of the arch is ignored [Rab54a].

3.8 Special Effects

This section is devoted to analysis of redundant arches in case of change of
temperature and shrinkage of concrete. Two types of arches are considered. They
are two-hinged arch with tie and a hingeless nonuniform arch.

3.8.1 Change of Temperature

If statically indeterminate arch is subjected to a change of temperature, then internal
forces arise in the arch. Corresponding structural analysis of the arches may be
effectively carried out by the Force method. Free terms of canonical equations
present the temperature displacement in primary system. For their computation,
(1.10) should be applied. This formula takes into account the uniform and nonuni-
form thermal effect.

3.8.1.1 Two-Hinged Arch with Tie
Let us consider the uniform arch with tie; the span of the arch is / and height of the

cross section is /. The temperature of extrados and intrados fibers of the arch has
been increased by ¢, and 7, degrees, respectively. Coefficients of thermal expansion
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of the material of the arch and tie are o and o;. Let the primary unknown be the force
H in tie. Canonical equation and primary unknown are

A
d1Xi + Ay =0, X:H:—a—“. (3.25)
11

The unit displacement d,; should be calculated as usual. Free term of canonical
equation may be presented as

B Vot
Ay = / N ards+ / ;l“’ ds, (3.26)
0

where t = (t; + 1,)/2 and At = ¢ = t; — t, are average temperature and tempera-
ture gradient; forces caused by unit primary unknown X; =1 are
Ny =—cosp, M;=—yforarchand N, =1, M, =0 for tie.

Assume that temperature along the arch and tie is constant. In this case,

Ay = —oct/ cos ods — af’ / hlds + ol (3.27a)
K s 1o

The first term in (3.27a) corresponds to the heating of the arch itself. The
negative sign means that heating of the arch leads to an increase of the distance
between two points of the tie, while the positive unknown X, leads to a decrease of
the distance. Since cos ¢ds = dx, then

— acz‘/ cos ¢pds = —oct/ dx = —atl.
s i

The second term in (3.27a) corresponds to the nonuniform heating of the arch.
The temperature gradient is positive if it leads to the convexity of the arch being in
same direction as a positive unknown X1, i.e., upward. The third term corresponds
to a uniform heating of the tie. In the case of an arch without a tie, we let o; = 0.

In case of uniform heating, the gradient ¢ = t; — t, = 0 and the free term for
arch with tie becomes

Ay = —otl + oyt = (o — o). (3.27b)

The primary unknown is

Ay (w =il
o1 T

H:

In the case of an arch without tie, the free term of (3.25) is A, = —outl.
Internal forces in the arch itself are

M = —Hy; N=—Hcosy; Q= —Hsinp. (3.27¢)



164 3 Redundant Arches
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Fig. 3.28 Hingeless arch subjected to thermal effect

If ¢+ > 0, then in an arch without a tie, the thrust is directed into the span. In an
arch with a tie, the direction of the H depends on the relationship between « and o.
If o > o, then tie is extended. If « = oy, then H = 0. If compressed temperature
force in a tie (o < o) is more than extended force caused by external load, then a
loss of stability of the tie may happen [Rab54a].

3.8.1.2 Symmetrical Hingeless Arch

Let us consider an arch with an arbitrary shape of the axis line; the flexural stiffness
EI, of the cross section of the arch varies by an arbitrary law. The temperature of
extrados and intrados fibers of the arch has been increased by #; and #, degrees,
respectively. Coefficient of thermal expansion of the arch’s material is «. As before,
the gradient and average temperature are denoted as At = t; — ry and t = (1) + 1) /2.

The primary unknowns are placed in the elastic center (Fig 3.28). Canonical
equations become

onX1+A1 =0, 00Xo+Ax=0, 0353X3+ A3 =0.

Since the deformation of the arch is symmetrical, the antisymmetrical unknown
is X, = 0. Unit displacements are

d d
11 :/(y—c)zETer/cosz(pxﬁ,
N X S X (3‘28)

In expression for d;1, the second term takes into account the axial forces.
Free terms of canonical equations are

—d t+t — d
Alt:oc(tlftz)/Mlzs+rx 1—; 2/Nlds:focAt/(yfc)zsffxt/cosgaxds,

— ds ds
A3t:OC(l‘1 —lz)/M37:—OCAl/Z,
s

N

(3.29)
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where / is a height of the cross section of the arch.

Primary unknowns are X; = —(Ay;/d11), X3 = —(As/d33). The bending
moment at the support of the arch due to the change of temperature is
Myp =X3+X(f — ¢).

Symmetrical Parabolic Arch

If the origin is placed in the crown C, then equation of the axis of the arch is y =
4fx? / I? The moment of inertia of cross section and the height of the cross section at
the crown C are denoted by /¢ and /Ac. Let the moment of inertia of the cross section
varies by the law I, = I¢/cos .. If a cross section is a rectangle, then the height of
the cross section becomes /i, = hc / \/cos ¢,. However, for shallow arches with a
sufficient degree of accuracy, we can assume /4, = hic/cos ¢,. These assumptions
lead to the following expressions for primary unknowns

_ 450tEl ¢
A+
. O(AIE]C

3 e

Parameter which takes the axial force into account is

J d d

The expression for X, reflects the following fact: the thrust due to a change in
temperature increases together with the rigidity of the arch and with reduction of its
rise [Dar89].

Knowing the primary unknowns, the internal forces in the arch may be calcu-
lated by formulas

Mx = _le +X3a
N, = —Xjcosp.

Special Cases
1. If axial force is neglected, then parameter it = 0.

2. In case of uniform change of temperature, the temperature gradient Ar = 0 and
primary unknown X3 = 0.
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3. If conditions 1 and 2 hold simultaneously, then bending moment at the crown
and supports are

15azE1
Mc =Xc = S (extrados fibers extended),
150¢El
My=Mp=X,(f —c) = o;f < (intrados fibers extended).

3.8.2 Shrinkage of Concrete

Shrinkage of concrete effect of the arch may be equivalent presented as a change of
temperature. Indeed, if the coefficient of thermal expansion of the concrete is o,
then o is the elongation of the unit length of the concrete member, if a temperature
is changed by #°. During shrinkage of concrete, the linear dimensions of the member
decrease by 0.025%. If we assume o = 0.00001 for concrete, then shrinkage of
concrete is equivalent to a decrease in temperature by 25°C. For practical purposes
this value is taken to be between 10 and 15°C. Thus, analysis of the arch in the case
of shrinkage of concrete boils down to analysis of the arch subjected to a uniform
decrease of temperature by 10-15°C. Therefore, the bending moment diagram
caused by the shrinkage of concrete will be the same as in the case of a uniform
change of temperature [Kis60]. Note that the effect of shrinkage of concrete may be
particularly suppressed by controlling internal forces using the tie [Dar89], [Kis60].

3.9 Influence Lines

This section is devoted to analytical construction of influence lines for redundant
arches. The Force method is applied. The following arches are considered: two-
hinged parabolic nonuniform arch, two-hinged circular uniform arch with tie, and
hingeless parabolic nonuniform arch.

Construction of influence lines for internal forces in redundant arches starts from
construction of influence lines for primary unknowns. The following procedure is
recommended.

1. Adopt the primary unknowns and show the corresponding primary system. Write
the canonical equations of the Force method.

2. Compute the coefficients of canonical equations. These unit displacements
depend on the primary system, distribution of stiffnesses, and therefore present
some values.
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Fig. 3.29 Two-hinged arch subjected to moving load P = 1

3. Compute the free terms of canonical equations. These displacements depend on
the location of the unit load and therefore present some functions.

4. Solve the canonical equations; since the free terms are functions, then the
primary unknowns will also present functions of location of unit load.

5. Construct the influence lines for reactions and internal forces at the specified
section of the arch.

3.9.1 Two-Hinged Parabolic Nonuniform Arch

Design diagram of symmetrical parabolic arch of span / and rise f is shown in
Fig. 3.29a. Equation of the axial line is y = 4f x(I — x) /I*. The moment of inertia of
the cross section of the arch varies by the law I = Iy/cos ¢, where I is a moment of
inertia of the cross section of the arch at the crown, ¢ is the angle between tangent at
the given section of the arch and a horizontal line.

Canonical equation of the Force method is d;1X; + Ajp = 0. The primary
system is shown in Fig. 3.29b. The primary unknown is X; = —Ap/d1;. In this
formula, the unit displacement d1; is a number, while the loaded displacement A;p
presents a function of the location of the force P = 1. Therefore, the equation for
the required thrust should be rewritten as follows

IL(X;) = IL(H) = 7IL53?11P) : (3.30)

In the Mohr—Maxwell integral, we will only take bending moments into account.
Bending moment in the primary system caused by unit primary unknown X; = 11is

Mlz—lxy.
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Bending moments in the primary system caused by unit single force P are M{ =
ROx = (Pb/1)x for left portion of the arch (0 <x<a), MY = R%x; = (Pa/l)x; for
right portion of the arch (0 <x; <b).

Taking into account the expressions for moment of inertia, the unit displacement
becomes

M, x M, ™M, xM, Iy2 16f2 /’ ) ,dx 82
5 = 4(15': ————dx= —dx=—— X Z—X —_— = .
N R , El o Ely * (1=%) Ely 15EI,
(3.31)

The loaded displacement, taking into account two portions of the arch, is

M, x M @ Pbx dx b Pax; dx
Alpf/ ‘X f/ al @ ¢ (3.32)
0

P
ds = il
T EL ), Y1 EL

Substitution of the given equation y = f{x) into (3.32) leads to the following
expression

“af Pbx dx b ar Pax; dx;
Ap=— | Z2x(l—x)— — — =1
P A == oy =)= g
_4pr ¢ 2 2
=~ LI, {b/o (I — x)x“dx a/o (1 x)xldxl]. (3.33a)

After integration, we get

4Pf
12PEI,

Ap = — [ba® (41 — 3a) + ab* (41 — 3b)].

Assume P = 1, dimensionless parameter u = a/I, then for loaded displacement,
we get

rf 2
Alp——ﬁu(l_”)(l"‘”_”)’ (3.33b)

Thus, the equation of the influence line for thrust becomes

IL(H) :%]éu(l —u)(1+u—u?). (3.34)

It can be seen that this curve is fourth order. Influence line for thrust is shown in
Fig. 3.30a.

Now we can construct the influence lines for internal forces in the arch. As for a
three-hinged arch, we have
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Fig. 3.30 Influence lines for g
thrust H and internal forces at
section k

L Inf Line H
o0 v el v
S 2% 5 d actor >
2 24 7 A ]’actorg—
o O:O o O

%@\ 5 IL(M,)

e |

S

IL(M;) = IL(MY) — yIL(H),

L2

IL(VY)

IL(Qx) = cos g, IL(QY) — sin , IL(H),
IL(Ny) = —sing,IL(QY) — cos ¢, IL(H).

Here IL (M,?) and IL (QkO) are influence lines for bending moment and shear at
the section k of the simply supported beam; y; and ¢, are ordinate of point k£ and
angle between the tangent at the same point and horizontal line, respectively.
Corresponding influence lines are shown in Fig. 3.30b.

Influence lines for shear and axial force at section k has discontinuity cosy; and
singy, respectively. Two tangents at the left and right portions at section k of these
influence lines are parallel; these tangents are shown by dotted lines.
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Fig. 3.31 Circular uniform arch with elastic tie subjected to moving load P = 1

3.9.2 Two-Hinged Circular Uniform Arch with Elastic Tie

The uniform semicircular two-hinged arch with elastic tie is shown in Fig. 3.31.
Flexural stiffness of the arch is EI, axial stiffness of the tie is EA;. Let the primary
unknown be the internal force in the tie.

Canonical equation of the Force method is d1;X; + Ajp = 0. Primary unknown
is Xl = _AIP/éll-

Assumption

We will take into account deflection of the arch due to bending of the arch itself and
deflection of the tie due to tension.
Unit displacement is

nRM]XM] 1N1XN1

on= [ T2 Tgey [ LM 3.35)
S A El o EA (

where M, N are bending moment in the arch and normal force in the tie due to the
primary known X; = 1.

Coordinates of the arbitrary point n are x = R(1 — cos ), y = Rsinp. Since
ds=Rdp, N=1and M, = —1 xy= —Rsing, then

™ R%sin¢p FR1 % nR® 2R
51y = d dr = 25 . 3.35
L /O i /0 EA, 26 T EA (3.352)

Free term of canonical equation is

R g1 0
M, x M
Ap= [ XMy (3.36)
. El
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where M} is the bending moment in the primary system due to the given load
P=1.
Location of the moving load P is defined by central angle ¢p, and therefore

ul =R(1 —cospp) »u==(1—cospp) > v=1—u==(1+cospp).

N =
N =

The vertical reaction and bending moment in the primary system are

1
Ry =1x 0:5(1 + cos pp),
MY = Rx =~ (1 4+ cospp)R(1 — cos ), x<ul,

| =

1
MY = R%x — P(x — ul) = 5(1 + cos pp)R(1 —cos ) — [R(1 — cos @)

—R(1 — cos p)], x> ul.

Free term of canonical equation becomes

1 L2 |
Ap :_/ ~(1+cospp)R(1 —cosp) x (—Rsinp) Rdyp
M, ds

0
MP

1
+/ [—(1 + cospp)R(1 — cosp) — R(cos pp — cosw)] X (—Rsinp) Rdp .
©p 2 ——

M, ds

0
My

After integration, this formula may be presented as follows

3

R
Ap=—

3 1
Ef(‘PP)a flwp) = 2<4 - COSZSOP + 1 €os ZSDP)- (3.36a)

The primary unknown caused by arbitrary load P becomes

Aip PR?

X = ———
! 511 TCRZ‘FH

Ordinates of influence line for thrust H, according to (3.37), are presented in
Table 3.11.
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Table 3.11 Influence line for thrust H, factor R? /(nR?> + k), k = 4EI/EA,

@p (degrees) 0.0 15 20 30 45 60 70 75 90
f(op) 0.0 0.0670 0.116980 0.25 0.5 0.75 0.883 0.993 1.0
a b
XX
P=1 x

- ds g ¢ X

f dy

—> X dx X3

X p | dx=ds cosp Primary system

Fig. 3.32 Parabolic arch with clamped ends. (a) Design diagram; (b) primary system

Verification
If load P is located at the highest point of the arch, then axial load in the tie equals

v g 10X PR?
TR
Parameter 1.0 is taken from Table 3.11 for the given position of a load P. This
result has been obtained in Sect. 3.7.1.

Special Cases

1. Let E:A; = oo. In this case, X; = H = (P/n)f(¢p); this case corresponds to a
two-hinged arch without tie.

2. If 4EI/EA, = nR?, then X; = H = (P/27)f (p).

3. Let EA; = 0. In this case, X; = 0; this case corresponds to a simply supported
curvilinear rod.

3.9.3 Hingeless Nonuniform Parabolic Arch

Design diagram of a symmetrical parabolic arch with clamped ends is shown
in Fig. 3.32a. The equation of the neutral line is y = 4f x(/ —x)/lz. The cross-
sectional moments of inertia varies by law I, = Ic/cos ¢,, where I¢ corresponds to
the highest point C of the arch; this law corresponds to increasing the moment of
inertia from crown to supports. It is necessary to construct the influence lines for
reactions of the support A and bending moment at the crown C.
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Table 3.12 Bending moments due to unit primary unknowns and given unit load
M, M, M, Mp_,
Bending moment expression 1 Ix(f—y) —1x (f—x) MY =—1x(a—x)

This arch is statically indeterminate to the third degree. Let us accept the primary
system presented in Fig. 3.32b, so the primary unknowns are the bending moment
X1, the normal force X», and shear X3 at the crown C of the arch.

Canonical equations of the Force method are written in the form of (3.4).

The unit coefficients are d; = fo M x My /EI)ds. Since X, and X, are sym-
metrical unknowns, the unit bending moment diagrams M, and M, are symmetri-
cal, while M; diagram is antisymmetrical. It is obvious that all displacements
computed by multiplying symmetrical diagram by antisymmetrical ones equal to
zero. Therefore, 613 = 031 =0, 023 = 03, =0, and the canonical equations fall
into two independent systems

011X1 +01Xo +Ap=0
1X1 12X2 1P and 633Xs + Asp — 0.
021X1 + 022X5 + App = 0,

Note, we do not use the concept of the elastic center.

Coefficients and free terms of canonical equations will be calculated taking into
account only bending moments, which arise in the arch. The expression for bending
moments in the left part of the primary system for unit and loaded states (the force
P =1 is located within the left part of the arch) are presented in Table 3.12.

Unit Coefficients

™, x M, Mx1xcosp, — dx I dx l
o1 = ——ds = X — — =
0 b 0 EIC COS . 0 EIC EIC
INVi AT ! !
M1 XM2 / dx |: 4f ] dx ﬂ
Sp= | o205 = [ Ix(f—y)— = S TN i S L
. /0 El, 0 V=) Ic 0 / [2( %) Elc 3Elc

MzXMz dx ! 4f de_le
522_/ A _/ U E_ /0 {f_l_Z(l_x)x] Elc ~ SEIC

123y x M 2 7 2 dx P
533:2/ 3 X SdSZZ/ (__x>_: .
o El , \2 Elc ~ 12El¢
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Free Terms

Since P = 1, then the free terms are denoted through J,p

aM1><M0 a dx Clz
) :/—PdSZ—/lx a—X)—=——,
Yy EL @Y 5=

aMzXMO “ dx
o= | 2o TPds=— [ Ix(f—y)x1x(a—x)—
o /0 B /0 Umala O

__ [ 4f v _df (1. 2 1,
_—/0 1x [f—l—2(l—x)x}(a—x)m—ETc(—5-1-314_514)7

“ T x MY a/ & B /1 u
Sp = | B3XMp g S T Al A
3® /0 e, /0 (2 x) (@ =) g = " <4 6)

Canonical equations become

f a?
X, +Lx, =%
1+32 7
fl 1, (1 2 1, P a1 u
X 2% = —f? [~ =+ 0 — = d—xs+P2(--") =o.
3 5/ = A —5hgu—gut and X5+ Pur{ 7 -6

The solution of these equations leads to the following expressions for the
primary unknowns in terms of dimensionless parameter u = a/I, which defines
the location of the unit force P:

3 5 5
X] = M2<Z+§I/lzl/l2>l,

_ B et
—4u(1 u) 7 (3.38)

1 u
X; = 126 ——+—=).
=3+ )

These formulae should be applied for 0 <u <0.5. Since X; and X, are symmet-
rical unknowns, the expressions for these unknowns for the right part of the arch
(0.5<u<1) may be obtained from (3.38) by substitution u — 1 — u. Since X; is
antisymmetrical unknown, the sign for X3 should be changed and parameter u
should be substituted by 1 — u. Influence lines for the primary unknowns X, X»,
and X3 may be constructed easily.

After computation of the primary unknowns, we can calculate the reaction and
internal forces at any section of the arch.

X
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Fig. 3.33 Parabolic nonuniform arch. Design diagram and influence lines

Reactions of Support A

The following reactions should be calculated: thrust, vertical reaction, and moment.

Thrust: H = X, = (15/4)u(1 — u)*(1/f) for 0<u<1.0
This formula presents the thrust of the arch as the function of the dimensionless
parameter u, i.e., this expression is the influence line for H (Fig. 3.33a).
Maximum thrust is Hp,x = 0.2344P1/f and it occurs when the force P is located
at the crown C. This formula shows that decreasing of the rise f leads to increasing
of the thrust H.

Vertical reaction: Ry = X3 + 1 = 12u*(=1/4 + u/6) + 1 for 0<u <0.5
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Since X3 is antisymmetrical unknown, for the right part of the arch it is necessary
to change sign on the opposite and make the change u — 1 — u. Therefore, if unit
load P is located on the right part of the arch, then reaction R is

1 1-
Ry=X;=—12(1 —u)2<—Z+T”> for 0.5<u<1.0.

Corresponding influence line is presented in Fig. 3.33b.

Moment at Support A

l 9 5
My=—1xul+X +X> xf—X; xizu(—l+§u—6u2+§u3>l

for 0<u<0.5,
[ 2 (5 5
MA:XI—&—Xzf—XgE:(l—u) FU —u [ for 0.5<u<1.0.

Corresponding influence line is presented in Fig. 3.33c.

Bending Moment at Crown C

3 5 5
MC:X1:u2<—Z+§u—Zu2>I for 0<u<0.5.

Since X, is symmetrical unknown, for the right part of the arch, it is necessary to

make the change u — 1 — u. Therefore, if unit load P is located on the right part of
the arch, then bending moment at crown is

3.5 5
Mc=X, = (1—u)2<—1—|—§(1 —u)—Z(l —u)2>l for 0.5<u<1.0.

Corresponding influence line is presented in Fig. 3.33d.

Conclusions

If load P is placed in the portion of 0.132/ in both sides from crown C, then the
extended fibers at C are located below the neutral line of the arch. The direction of
the support moment M, depends on the location of the load: if load P is placed
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within 0.4/ from the left support, then extended fibers in vicinity of the A are
extrados fibers.

Discussion

1. For the given parabolic nonuniform arch, we obtained the precise results. It
happens because the area moment of inertia of a cross section of the arch varies
according to formula I, = Ic/cos ¢,. Since dx = ds cos ¢,, ds/El, = dx/Elc
and all integrals are presented in exact form.

For numerical construction of influence lines, the elastic loads method may be
recommended [Dar89].

2. In arch with clamped supports subjected to distributed load along half-span, the
maximum bending moments arise at supports. For this case, the law for moment
of inertia of cross-section I, cos ¢, = Ic corresponds to increasing of flexural
rigidity of the arch from crown to supports.

3. In arch with pinned supports, the zeros bending moments arise at supports. For
these cases, the following law for moment of inertia of cross-section may be
taken as: Ic cos ¢, = I,. This expression corresponds to decreasing of flexural
rigidity of the arch from crown to supports.

Thus, it can be observed that it is not wise to use shape /, cos ¢, = I for arches
with pinned supports; and it is dangerous to use the shape /¢ cos ¢, = I, in case of
clamped supports [Kar10]. It is obvious that the laws for moment of inertia of cross-
section in real structures are not limited to two considered cases above [Kis60].
Note that influence lines for the primary unknowns of a nonuniform catenary arch
are presented in ref. [Kis60].

Influence Lines for Internal Forces at Arbitrary Section

Expressions (3.38) for primary unknowns are used for construction of influence
lines for internal forces at arbitrary section. The specified section & of the arch has
the following parameters xi, yx, siny, cos ¢y (Fig. 3.34a). First of all, we need to
construct the expressions for internal forces at section k and after that transform
these expressions into an equation of the corresponding influence lines.

For calculation of internal forces at section k, we will consider the left part of the
arch (part AC, Fig. 3.34b) and take into account the forces which are located right
hand at section £, i.e., on the portion k — C.

Bending moment at section £ is

/

Mk :Xl —|—X2(f—yk) —X3(§—Xk) —P(ul—xk).
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a b
X X
P=1x
2 C X,
A X;
Me / | Primary system

{ Inf. line M,
Inf. line O

N ! Inf. line N

Fig. 3.34 Parabolic arch with clamped supports. (a) Design diagram; (b) primary system;
(c) shape of influence lines

Underlined terms should be taken into account only if load P is located within
the portion k — C (ul — x; > 0)
Now equation of influence line for bending moment at section k£ becomes

IL(Mk) = IL(X1) + (f - yk)IL(Xz) — (é — xk> IL(X3) —1x (l/tl —Xk). (3393)

Similarly, shear force at section k and corresponding influence line are

Or = — X sin gy, + X3 cos ¢, + P cos ¢y,
IL(Qy) = — sin g IL(X,) + cos ¢ IL(X3) + 1 X cos ;. (3.39b)

For axial force at section £ and its influence line, we get

Ny = —(Xzco8 ¢, + X3 sinp,) — Psingy,

(3.39¢)
IL(N;) = —cos g IL(X7) — sin o, IL(X3) — 1 X sin ¢y,

General shape of influence lines are shown in Fig. 3.34c. Maximum positive
bending moment at section k arises if load P is placed at this section; position
of force P, which leads to the extended intrados fibers at section k, is shown by a
dotted line.
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3.9.4 Application of Influence Lines

Let us show the application of the obtained influence lines for computation of
reactions for support A and internal forces (shear and bending moment) at the crown
C. Design diagram of symmetric parabolic nonuniform arch with clamped ends is
presented in Fig. 3.35. The cross-sectional moment of inertia varies by law I, =
Ic/cos ¢, as considered above. The arch is subjected to concentrated load P = 30
kN and uniformly distributed load ¢ = 2 kN/m.

Influence lines for reactions and bending moment at the crown C are presented in
Figs. 3.33 and 3.35.

Internal forces may be defined using the corresponding influence lines by
formula § = Py + ¢Q, where y is the ordinate of influence line under concentrated
force, Q is the area of influence line within acting distributed load. The area of
curvilinear influence line may be calculated approximately by replacing curvilinear
segments between two neighboring ordinates by straight lines (Fig. 3.36).

If a horizontal distance h, which separates these ordinates, remains constant,
then the area bounded by two ordinates y, and y,, will be given by the formula

Q:Ln :h(%‘f'}’nﬂ +yn+2+"'+ym71 +)%) (340)

Ordinates of influence lines in Fig. 3.35 are presented over 0.05/ = 1.2 m. Now
we can calculate reactions of support A due to fixed force P and q.

Thrust:

0.2344 0.2160
-+ 0.2295 +

H:;[P><0.1320+q< )1.2} = 20.20 kN.

Vertical reaction:

0.5 0.352
Ry = {P x 0.844 + q(T +0.425 + T) 1.2] = 27.36 kN.

Moment at support:

.0312 .04
0.03 +0.0418+¥>1.2} = —33.32 kNm.

My = z[—P x 0.0528 +q(

Obtained values of reactions at support A (as well as the influence lines for primary
unknowns X;) allow us to calculate all internal forces at any section of the arch. For
this, it is necessary to eliminate all constraints at the left end of the arch and replace
them by the reactive forces just found, i.e., to consider the given arch as a statically
determinate structure clamped at B only and subjected to given load and reactions at
support A. For example, bending moment at crown C, by definition, equals
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Fig. 3.35 Parabolic nonuniform arch. Design diagram and influence lines
Fig. 3.36 Approximation for calculation of area of curvilinear influence line
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/ [
=27.36 x 12 —20.20 x 6 — 33.32 — 30(12 — 6) = —6.2 kNm.

Thus, we use the fixed and moving load approaches in parallel [Kar10].
The bending moment at crown C using the influence line is

0.0468 0.008
+ 0.0246 + 2> 1.2} = —6.15 kNm.

Mc=1{—-P x 0.0127+q(

Relative error is (6.2 —6.15/6.175)100% = 0.8%. This error is due to the
approximate calculation of the area of influence lines.

Shear force at crown C is obtained by projecting all forces, located to the left of
this section, onto the vertical: Qc = R4 — P = 27.36 — 30 = —2.64 kN.

We can see that influence lines for primary unknowns have a fundamental
meaning — they allow us to easily calculate reactions of a statically indeterminate
arch subjected to any fixed load. After that, calculating of internal forces at any
section of the arch may be performed as for a statically determinate structure.

3.10 Arch Subjected to Radial Pressure

This section presents the internal forces for circular arch subjected to in-plane
uniform radial load. Two approaches are considered. They are analysis of the
arch on the basis of integration of differential equations and by the Force method.

Behavior of a curvilinear rod of arbitrary radius of curvature p is described by
the differential equations (1.21-1.23)

dN d N dmM
ds p ds p ds

Here p, ¢, and m present the intensity of the tangential, normal, and moment
loads distributed along the rod (Fig. 1.19). Let us apply these formulas for the
analysis of a circular arch of radius R with central angle 2. The arch is subjected to
radial uniform pressure gy = q, = ¢g. In this case, the system of equations
(1.21-1.23) is simplified. In polar coordinates ds = Rd¢, the system becomes

3—N =0, (3.41a)
@
o_ _y- qR, (3.41b)

de
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Fig. 3.37 Free-body diagram
of circular rod subjected to
uniform radial load

ar_ OR. (3.41c)
dep

Assume that the forces and moment act on the ends of the arch, as shown in
Fig. 3.37. Here subscript O is related to initial section of the arch (¢ = 0) and
subscript 1 is related to the final section of the arch (¢ = 2a).

3.10.1 Internal Forces Taking into Account
and Neglecting Shrinkage

Expressions (3.41a)—(3.41c) do not take into account shrinkage of material of the
arch. On the basis of these equations, we can easily derive expressions for internal
forces in arbitrary section, which is characterized by the angle .

Differentiate (3.41b) with respect to ¢ and take into account (3.41a). We obtain
the following differential equation sz/dap2 = —Q. Solution of this equation is
Q = C; cos ¢ + Cy sin . Constant of integration is determined from the boundary
conditions:

1. At ¢ = 0, the shear Q = Q. This condition leads to C; = Q.

2. Since dQ/dp = —C;sinp + Cpcosp, then according to (1.22), we get
dQy/dp =04 =—No—qoR. At ¢ =0, —Ny—qoR=—-C x0+C, x 1.
This condition leads to C» = —Ny — ¢goR. Thus, for shear in any section, we get

0 = Qocosp — (Nog + goR) sin . (3.42)

Equation (3.41a) becomes dN/dp = Qpcos¢ — (Ny + goR) sin . Solution of
this equation is

N = Qpsinp + Nycos o + (cosp — 1) goR. (3.43)

According to (3.41¢c), dM/dp = OR = QoR cos ¢ — (Np + goR)R sin . Solu-
tion of this equation is

M = My + QoR sinp — (NoR + qoR?) (1 — cos ). (3.44)
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Expressions (3.42)—(3.44) give a complete picture of the distribution of internal
forces in the circular rod subjected to uniform distributed radial load.

Apply derived formulas for the analysis of uniform hingeless arch with central
angle 2o. Equations (3.42)—(3.44) contain unknown initial parameters Q, Ny, and
M. Since the structure is symmetrical, then antisymmetrical unknown on the axis
of symmetry (¢ = o) is Qc = 0, thus

Qpcosa — (Ng + goR) sina = 0.
On the right end of the arch (¢ = 2a), we have Q1 = Qo, thus
Qo cos 20 — (Ng + goR) sin 200 = Q.

Solving the last two equations, we get the axial and shear forces, which arise in
the initial section

NO = *(]R, QO =0.

Since dM/dy = QR = 0, then M = M), i.e., the bending moments along the arch
are constant. It is known that in the case of a closed uniform ring, subjected to the in-
plane uniform radial pressure, bending stresses do not arises [Bir68, vol. 1]. Thus, in
such condition, there is a hingeless and two-hinged uniform circular arches with
arbitrary central angle. Therefore, My = M(p) = 0. The tabulated data for arches
with nonsymmetrical boundary conditions may be found in ref. [Roa75], [You89].

Now let us determine the internal forces taking into account the shrinkage of
material of an arch. For hingeless uniform circular arch with arbitrary central angle
subjected to action of radial uniform load, the final results are presented below.
These results are obtained on the basis of the Bussinesk’s equation (1.43) [Sni66].

The shear force and bending moment at the left end are

Qo = —(qoR + Np) tan o,
(qoR + No)

Mo = — 2= R(tan o — ). (3.45)

The axial force on the left end is No = —¢qoR f (¢, 4), where function f (, A) takes
into account shrinkage of the material:

o n—Aa+1)
fed == 5

n=(a—1)tanoe — 1 + (o + 2tan o) cot a.

)

where /. = 12 /R?, while r = /I /A is the radius of gyration of the cross section of
the arch. The function f(«, 1), in terms of half-central angle o and dimensionless
parameter /, is presented in Table 3.13

It can be seen that shrinkage of the material leads to a slight decrease in axial
force Ny due to the factor f (o, 1).
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Table 3.13 Function f(o, 4)

A o = 7/6 /4 /3 /2
0.001 0.9997 0.9995 0.9994 1.0
0.005 0.9984 0.9975 0.9969 1.0
0.01 0.9968 0.9950 0.9938 1.0
0.05 0.9834 0.9742 0.9680 1.0

1 Axis of
| symmetry

Fig. 3.38 Design diagram of hingeless arch and primary system

3.10.2 Complex Loading of Circular Arch

First of all let us consider the solution of the classic problem. A hingeless semicir-
cular uniform arch is subjected to a uniform radial load within the total arc. For
analysis of this problem, we use the Force method together with the tabulated data.
Design diagram of the arch and primary system are shown in Fig. 3.38.

Primary unknowns are axial force X, and bending moment X3 at crown A.
Numeration of unknowns is adopted according to Table A.7. Since the loading is
symmetrical, the antisymmetrical unknown shear force X; = 0. Canonical
equations of the Force method are

522(900))(2 + 023 (900)X3 + Ayp =0,
032(90°)X2 + 033(90°)X3 + Asp = 0.

Free terms of canonical equations, i.e., the axial displacement and slope at point
A, caused by given the load ¢, according to Table A.6 are

3 in21\  gR* /3 in 180°
A2P:§A:qR3ay<7y—25iny+sm )—q—(—z—Zsin9O°+sm4 )

4 T EI\22
R* (3
_ _”_2’
ElI \ 4

. gR® /m . o gR® /m
Asp =y, = quay(y —siny) = 573 (E —sin90 ) =27 (5— 1).
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Unit displacements at the free end of the half-arch, according to Table A.7, are

3 in2 R?
02(90°) =1 x Rzay (EV + SH; y_ ZSiny) =— (

R3 (3n
=——-2
E1<4 )
2

. R*mm . N Rm
023(90°) = 03,(90°) = 1 x Ray(y — siny) = Z (5 —sin90 ) =5 (5 — 1),

n . sin 180°
2 4

— 2sin 90°)

o R =
533(90):1><ayy:E§.

Canonical equations become

3 3
R (Tﬂ - 2>X2 +R? (g - 1)){3 — —gR* <Tﬂ - 2),

Rz(g - 1))(2 +R§X3 — _gR® (g - 1).

Solutions of these equations are X, = —gR, X3 =0.
Reactions at the clamped support are

N2 = Np(q) + Np(Xa) + Np(X3) = —gR(1 — c0s90°) + (—gR) cos 90° = —¢R,
Mg =Mg(q) +Mp(Xy) +Mp(X3) = gR*(1 — c0s90°) + (—gR)R(1 — c0s90°) = 0.

Thus, in the case of a uniform circular hingeless arch subjected to uniform
distributed radial load ¢, the axial force at any section of arch is —gR, while the
bending moment is zero.

Now let us consider a complex loading of the symmetrical arched structure,
partially subjected to a radial load with two concentrated forces as shown in
Fig. 3.39a. Uniform hingeless circular arch of radius R = 24 m has a central
angle y = 150°. Two cantilevered rods CD and C'D’ of length 6 m have rigid
connections with the arch at points C and C'. Forces F = 10 kN act at the end point
of the cantilevers. The portion of the arch C-A-C’ is subjected to uniform
distributed radial load ¢ = 2 kN/m.

For analysis of this structure, let us modify the left part, BA, of a structure so we
can use data that has already been tabulated, and is given in Tables A.6 and A.7.
Transfer the force F into the rigid joint C on the arch and in doing so, add a couple
M = 60 kN/m. Resolve the force F into the radial and axial components

Frag = Fsin(15+ ) =5kN, F; = —Fcos(15+ ) = —8.66 kN.

Load the total portion AB by a uniformly distributed radial load ¢, and in doing
so add a compensating load g of opposite direction within the portion BC. The same
procedure should be done over the right part AB’ of the structure. Thus, the initial
design diagram of the arched structure is presented in the equivalent form: hingeless
arch BAB’ subjected to radial load ¢ across the entire arch, uniform load —g within
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Fig. 3.39 (a) Design diagram of arch structure; (b) modified design diagram; (c¢) primary system

the portions BC and B'C’, as well as the axial force F, radial force F,, and couple M
at the points C and C’ (Fig. 3.39b).

Primary unknowns are the axial force X, and bending moment X3 at crown A
(Fig. 3.39¢).

Antisymmetrical unknown (shear force), according to the properties of symmet-
rical structures is X; = 0.

Canonical equations of the Force method are

s o o 109, 504

00 (75X, + 023(75°)X3 = —App = —&4 = .
o ° 9,863

532(75 )X2 —|— 633 (75 )X3 = _ASP = —[pA = — E[ .

Free terms of canonical equations £, and y/, had been calculated in Chap. 1,
Sect. 1.9, Example 1.8.
Displacements of the free end of the half-arch, according to Tables A.6 and A.7 are

5 3 sin2y _ 24% /3 57 sin150° o
0n(75°) =1 ><R2ay<2y+ 7 —251ny> =7 (212+4—251n75 >
2,165.5
- El
. , 24% (5n . _ . 197.6
023(75°) =1 X Ray(y —siny) = i (E— sin 75 ) =~
197.6
032(75°) =1 X Ray(y —siny) = 57
R 5t 314

O:l ) = — _——,
0:(75%) = 1xay = x5 =
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Canonical equations become

2,165.5X, + 197.6X5 = —109, 504,
197.6X5 + 31.4X3 = —9,863.

The primary unknowns are
X, = —50.81 kN,
X3 =5.68 kN m.
Reactions at Support
Now these primary unknowns should be considered as initial parameters and for
computation of reactions at support, we can use the modified expressions (1.25) and
(1.26). For this, it is necessary to add corresponding terms due to all loads (¢ along
arc AB, —q along arc BC, couple M and forces F.,q and F ., at section C). These
terms are denoted as [N(y)] and [M(y)]; they should be calculated according to
Tables A.6 and A.7
N = Ny cos ¢ + Qosing + [N(y)],
M = My + QoR sinp — NoR(1 — cos @) + [M(7)]. (3.46)

For the structure in Fig 3.39a, we have

No =X, Mo=X3, Qo=0.

N(y) = —gR(1 — cos75) + gR(1 — cos 15) — Frygsin 15 — F,cos 15+ 0

q along AB —q along BC Fragat C Frat C MatC

The expression for M(y) may be constructed in a similar manner.

3.11 Deflections of the Arches

This section is devoted to computation of displacements of redundant arches. Two
approaches are considered. They are displacement of the specified points along the
given direction (linear, angular, mutual) and displacements of the arches in contin-
uous form. The first approach is based on the Maxwell-Mohr integral and multipli-
cation of two bending moment diagrams, while the second approach is based on the
integration of Boussinesq’s equation of the arch (this approach is considered in
Sect. 1.9).



188 3 Redundant Arches
3.11.1 Deflections at the Discrete Points of Redundant Arches

As in the case of a statically determinate arch, computation of displacement of some
special section of two-hinged and hingedless arches may be performed using the
Mohr integral. For this, we need to construct bending moment diagram M in the
entire state, form a unit state, construct bending moment diagram M in the unit
state, and multiply both diagrams. In the general case, the flexural stiffness EI of the
arch is not constant and basis line is curvilinear. Therefore, the arch should be
substituted by a set of chords, followed by the application of Vereshchagin rule (or
Simpson or trapezoid rule) within each straight portion.

The construction of bending moment diagram Mp in the entire state is discussed
above using the Force method. Now the following principal question arises: how fo
construct the unit state? It is obvious that unit load must correspond to the required
deflection. But which structure must carry this unit load? It is obvious that unit load
may be applied to the given statically indeterminate structure; for construction of
bending moment diagram M and for statically indeterminate structure, the addi-
tional analysis is required. Therefore, computation of deflections for redundant
structure becomes cumbersome. However, solution of this problem can be signifi-
cantly simplified, taking into account a following fundamental concept.

Bending moment diagram Mp of any statically indeterminate structure can be
considered as a result of application of two types of loads to a statically determinate
structure. They are the given external loads and primary unknowns. It means that a
given statically indeterminate structure may be replaced by any statically determi-
nate structure subjected to a given load and primary unknowns, which are treated
now as external forces. It does not matter which primary system has been used for
final construction of bending moment diagram, since on the basis of any primary
system the final bending moment diagram will be the same. Therefore, the unit load
(force, moment, etc.), which corresponds to required displacement (linear, angular,
etc.) should be applied in any statically determinate (!) structure, obtained from a
given structure by the elimination of any redundant constraints.

Application of this fundamental concept for an arbitrary redundant structure is
presented in [Kar10]. For example, for the calculation of vertical displacement Ac
of the crown C for a two-hinged arch, the unit state may be adopted according to
any version shown in Fig. 3.40. In the schemes (a) and (b), the primary unknown is
horizontal reaction of one of the supports, therefore the primary system presents a
simply supported curvilinear rod. In the version (c), the primary unknown is the
bending moment at an arbitrary section k. Therefore, the primary system presents a
three-hinged nonsymmetrical arch.

Thus, the following procedure may be applied:

1. Construct the bending moment diagram for the entire redundant structure Mp.

2. Show any statically determinate structure, apply unit load which corresponds to
the required displacement and construct bending moment diagram M.

3. Apply the procedure discussed in Sect. 2.8.2.

This procedure is very effective for the computation of displacement of non-
symmetrical arches.



3.11 Deflections of the Arches 189

P 1

N C:? [\_

c d
Pl Pl

{\m

Fig. 3.40 Design diagram of two-hinged arch and versions of unit states for calculation of
displacement A,

3.11.2 Effect of Axial Forces

Let us evaluate the influence of the axial forces in the arch on the unit and loaded
displacements of canonical equations. These displacements should be determined
by the formulas

=2 =2

M N M N
Sy = ol 4 5\ _/@E—Ildﬁ/()&;ds (3.47)
M0 N N
Ap =AW 1AW = My x My / X g, (3.48)
)

Here, M|, N, are the bending moment and axial force, respectively, in the primary
system caused by the primary unknown (e.g., thrust) X = 1; M3, N3 are, respectively,
the bending moment and axial force in the primary system caused by the external
load; I and A are moment of inertia and area of a cross section of the arch.

If a cross section of the arch is constant, then (3.47)—(3.48) may be rewritten as
follows [Rzh82]

1 —2 1 —2 1 —2 =2
Siy :—/ Mlder—/ Nlds:—/ (1 + N7 ) ds, (3.47a)
El J, EA J, El ),
- _
Aw = [ (M x M} + r*Ny x Np)ds, (3.48a)
0

where 72 = I /A is a radius of gyration of the cross section of the arch.
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Table 3.14 Computation of additional terms 557) and AY;)
I Unit state N, Loaded state N3

Portion 6 a ) by N a e by NiNgl;

0-1 0.6644 —0.7070 —0.7535 —0.8000 2.2661 —16.968 —13.884 —10.800 41.5123

1-2 0.5896 —0.8000 —0.8472 —0.8944 2.5418 —10.800 —7.9890 —5.1780 23.7874

2-3 0.5340 —0.8944 —0.9322 —0.9701 2.7861 —5.1780 —3.3160 —1.4550 9.8309

34 0.5039 —0.9701 —0.9850 —1.000 2.9338 —1.4550 —0.7275 0.00 2.1556
10.5278 77.2862

Returning to the example in Sect. 3.3.1, the two-hinged uniform arch of span
24 M and rise 6 M is loaded by uniformly distributed load ¢ = 2 kN/m. Analysis of
the arch with such parameters, neglecting axial forces leads to terms of displace-
ment (3.47) and (3.48), which according to Table 3.5 are

ar)  479.4484 o 11,506.74
oy =——FF— Ap' =——F7—.
El El

For calculation of additional terms, we will use modified design diagram
(parameters of this diagram are presented in Tables 3.1 and 3.2) and multiplication
the normal forces diagram in the form of the Simpson rule. All computations are
presented in Table 3.14.

Because symmetrical structure obtained values must be doubled, we obtain

v 21.0555

5 n) 15457
1 EA

AN = Tt

Note the precise value of the second term in (3.47) is [Rzh82]

. 12 NP dx 12
5?}1) / N?ds = / —— cos ¢ dx
(s) —1/2CO08 Y —1/2

1/2 dx
= ——0.8814 x 24.0 = 21.1536.
/1/2 V1 +4x2 /1

The unit displacement and loaded term of the canonical equation becomes

1 I
— — (479.4484 + 21.0555 -
S EI( 79.4484 + 0555A),

1 I
App =— [ —11,506.74 + 154.57— ).
1P E[< ,506.74 + 15 57A)

Assuming a height of the rectangular cross section of the arch is 1.2m, then
I/A = 0.12 and the primary unknown becomes X; = —A;p/d1; = 23.83 kN. If the



3.11 Deflections of the Arches 191

Table 3.15 Computation of the bending moments

Points M, M X, M) M(kNm)
0 0.0 0.0 0.0 0.0

1 —2.625 —62.685 63 0.315

2 —4.500 —107.46 108 0.55

3 —5.625 —134.32 135 0.675

4 —6.000 —143.28 144 0.72

axial compressed forces are neglected, then the thrust H = 24 kN. The change of
thrust becomes nonsignificant. Computation of the bending moments is performed
by the formula M = M X; + M} and presented in Table 3.15.

It is evident that the axial compressed forces lead to insignificant change of the
thrust and the occurrence of minor bending moments. However, the uniqueness of
this example lies in the following. If axial forces are taken into account, then the
behavior of arch change qualitatively; in addition to axial forces which arise in the
arch, bending moments are present as well. Neglecting the bending moments may
leads to the collapse of the arch.

For two-hinged arch with rise/span ratio of f < //3 and thickness/span ratio of
h < /10, the shear may be neglected for the calculation of d;;, and shear and axial
forces may be neglected for the calculation of Ajp [Kle80].

Let us present the results of analysis of a two-hinged parabolic symmetrical
uniform arch subjected to single force P at the crown. If axial forces are neglected,
then thrust X = 0.785P. If the axial compressed forces are taking into account, and
dimensionless parameter A = (I/i) =20, i=/I/A, then for thrust we get
X = 0.725P[Rzh82].

A significantly greater effect causes horizontal compliance of the arch. Assume
the two-hinged arch has a thin tie on the elevation of support. With this, a loaded
term A;p remains unchanged, while the unit displacement should be calculated by
the formula

=2

N, 12 x1

~1q
WEAY TEA

=2
| M

on =0\ + ol + ol = [ Tlds+
) ET

where / is a span of the arch. Therefore, the thrust of the arch (force in a tie)
becomes

7A1P o Ap

I
on on + 4

X =

where 6, is determined by (3.47).

Numerous reference data for hingeless nonuniform parabolic arches under
different types of loads (reactions and bending moments taking into account axial
forces) is presented in Table A.31.
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3.12 Arch Loaded Orthogonally to the Plane of Curvature

This paragraph contains some information about the analysis of hingeless arch
subjected to a load which acts perpendicular to the plane of the arch.

Let us assume the following coordinate system: the arch lies in the plane x—z, the
y-axis is perpendicular to the plane of the arch, x-axis coincides with tangential
direction, the z-axis is directed to the principal normal of the axis of the arch. Let the
y- and z-axis be the principal axis of the cross section of the arch. In the cross-
section of a structure, in the general case of loading, the following internal forces
arise: axial force N,, shear forces Q., Q., bending moments M,, M., as well as
torque or twisting moment 7.

The bending moment M, acts in the plane x—z, bending moment M, acts in the
plane x—y, twisting moment 7 acts in the plane y—z; the vector of moments are
shown by double-arrow lines (Fig. 3.41a).

We define a planar system to be a system that satisfies the following conditions:

1. Longitudinal axis of all the rods and one of the principal axis of all the cross-
sections lie in the same plane P.

2. The supports are positioned in such a way that a load acting in the plane P leads
to all the deformations and forces arise in a plane that is parallel to P.

For this structure, according to mutual displacement and reaction theorem
(rjk = —5/@‘), one can show that if a load acts orthogonally to plane P, then axial
and shear forces, as well as the bending moment in plane P are all equal to zero.
Thus, if a load F' is perpendicular to plane P (Fig. 3.41a, b), then N, = 0, O, = 0,
and M, = 0.

Let us consider a uniform circular arch of radius R and central angle 2¢q
[Rab54a]. The arch is subjected to uniformly distributed load ¢ which acts perpen-
dicular to the plane of the arch (into the page) (Fig. 3.42a).

Fig. 3.41 (a) General notation, (b) planar system, load F acts normally to plane P



3.12  Arch Loaded Orthogonally to the Plane of Curvature 193

Fig. 3.42 (a) Design diagram of the arch, (b) coordinates of the any point D

Fig. 3.43 Primary system.
Internal forces at the arbitrary
section K are T and Mz.
Vector X at the crown C is
resolved into two
components, parallel to
vectors T and Mz

The feature of this design diagram is that thrust of the arch for the given loading
does not arise. It means that the arch behaves as a clamped—clamped curvilinear
beam. The second feature of this loading is the appearance of torque.

Due to symmetry, the structure has one unknown of the Force method. The
primary unknown X is the bending moment M., at the middle section C of the span,
X1 = M,. The primary system is shown in Fig. 3.43.

The bending moment and torque at any section caused by unit primary unknown are

M.,=1xcosp, T=—1xsingp.

Canonical equation of the Force method is 6;;X; + Ajp = 0. The unit displace-
ment J;; is a mutual angular displacement in the plane x—y of two sections at
point C.

Figure 3.42b presents coordinates x and y of an arbitrary point D with respect to
tangent and radial axis with an origin at the point K

x=R[l —cos(p —a)], y=Rsin(p —a).
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Moments of external load g with respect to K are
@ @
MP = fR/ qydo = qu2/ sin(p — a)do = —gR*(1 — cos ),
0 0
@ ¢
" = R/ gxdo = gR* / [1 — cos(¢ — a)]do =gR* (¢ — sin ).
0 0

The unit displacement is

% (cos’p  sin’p
Sy =M 47 :2R/ de.
1= 01+ oy . ' o )Y

After integration, we get

R EI EI
Eloy == 2| =—+1 — [ =——=1]sin2¢p,|.
! 2[ <G1T+ )% (GIT )sm %]

The combined quantity GI7 is referred to as the torsional rigidity. For a square
cross-section T = 0.14264%>, for a rectangular cross-section, a > b,
Ir = (b*/3)(a — 0.63b). For steel structures E/G =2.57, for concrete
E/G = 2.33.

The free term of canonical equation is

Yo Y . EI
EIAp=EI(Al,+Alp) =2R / MPM.dp+2R / T”TG—]Td@,
0 0

qR3[ [ EI

) EI EI .
=" [(G—IT—i— 1) (4sinpy —2¢p,) —4G—IT<pocos<p0+ (G—IT_ 1) sz‘ﬂo} .

Primary unknown is X; = —(Ap/011).
The bending moment and torque, in terms of the angle ¢, become

M. () = M + M X, = —qR*(1 — cos ) + X cos i,
T(p) =TF +TX, = qR*(p — sinp) — X| sin .

For circular arch subjected to out-of-plane load, the following relationship holds:
Numerous formulas for arches loaded orthogonally to the plane of curvature are
presented in refs. [Bir68], [Roa75], and [You89].
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Stability Analysis



Chapter 4
Elastic Stability of Arches

Theory of structural stability is a special branch of structural analysis. This theory
explores very important phenomenon that is observed in the behavior of the
structures subjected to compressed loads. This phenomenon lies in the abrupt
change of initial form of equilibrium. Such phenomenon is called a loss of stability.
As arule, the loss of stability of a structure leads to it collapse. Engineering practice
knows a lot of examples when ignoring this feature of a structure led to its failure.
This chapter is devoted to stability analysis of arches and arched structures
subjected to compressed loads. Different types of arches and their loadings
are considered. Analytical methods of determining the critical loads on arches are
considered on the basis of integration of differential equations of the arch.

4.1 General

The mathematical basis of stability theory of arches was first implemented
by Kirchhoff (1824-1887) [Kir76]. The first systematic analysis of equilibrium
stability was performed by Bryan [Bry88]. Southwell [Soul3] continued further
studies of the general stability theory of equilibrium of elastic bodies. Fundamental
research on the stability of rings and circular arches was investigated by Nikolaii
[Nik18]. Significant contributions solving the problem of stability of arches added
by Timoshenko [Tim61], [Tim72], Federhofer [Fed34], Lokshin [Lok34],
Shtaerman [Sht35], Morgaevsky [Mor39], [Mor40], [Mor61], Dinnik [Din46],
Pfliger [Pf150], Chudnovsky [Chu52]. Numerical methods of stability analysis of
arches are largely the works of Smirnov [Smi84], [Pi02]. Experimental work on the
subject was contributed by Gaber [Gab34], Dinnik and Morgaevsky [Din46],
Pavlenko [Pav66].

L.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration, 197
DOI 10.1007/978-1-4614-0469-9_4, © Springer Science+Business Media, LLC 2012
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4.1.1 Fundamental Concepts

Stable equilibrium state means that if the structure, under compressed load is
disturbed from an initial equilibrium state and after all disturbing factors are removed,
then the structure returns to the initial equilibrium state. This is concerning to the
elastic structures. If a structure consists of plastic or elasto-plastic elements, then a
complete returning to the initial state is impossible. However, equilibrium state is
assumed to be stable, if a structure even tends to return to the initial equilibrium state.

In case of absolutely rigid bodies, we are talking about stable position of a
structure, while in case of deformable elements we are talking about stable equilib-
rium form of a deformable state. In all these cases, we assume that the acting
compressed load is less than the critical one.

The critical force Pcr is the maximum force at which the structure holds its initial
equilibrium form (the structure is still stable), or minimum force, at which the structure
no longer returns to the initial state (the structure is already unstable) if all disturbing
factors are removed.

Unstable equilibrium state means that if a structure under compressed load is
disturbed from an initial equilibrium state and after all disturbing factors are
removed, then the structure does not return to the initial equilibrium state. In this
case, we say that the acting compressed load is larger than the critical one.

Change of configuration of a structure under the action of compressed load is called
a loss of stability of the initial form of equilibrium or a buckling. If the compressed
load is a static one, then this case is referred as the static loss of stability. In this
chapter, we consider elastic arches subjected to static loads only. If a structure swit-
ches to other state (as a result of loss of stability) and remains in this state in
equilibrium, then this new equilibrium state is called the adjacent form of equilibrium.

The main types of loads for in-plane stability analysis of the arch, as follows:

(a) Tracking load. For this load, an angle 6 between the load and deformable axis of
an arch remains constant (Fig. 4.1a); (b) hydrostatic load, which is directed
perpendicular to the deformable axis of an arch. This load is a special case of the
tracking load at 6 = n/2 (Fig. 4.1b); (c) polar (radial for circular arch) load
directed to a fixed center (Fig. 4.1c); (d) gravity load. Direction of this load does
not depend on the deflections of the arch (Fig. 4.1d).

The state of a structure that corresponds to a critical load is called the critical
state. The switching of a structure into a new state occurs suddenly and as a rule
leads to the collapse of a structure. The theory of static stability of structures is
devoted to methods of calculation of critical loads.

4.1.2 Forms of the Loss of Stability of the Arches

The loss of stability can manifest itself in several ways. Note the most important
of them: (1) the emergence of qualitatively new adjacent forms of equilibrium; (2) the
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- Tracking load

.

Polar load Gravity load

Fig. 4.1 Types of loads on the arches

a Arch with pinned ends b Arch with fixed ends
C

Fig. 4.2 Arches with different boundary conditions. Symmetrical and antisymmetrical forms of
stability loss

emergence of nonadjacent forms of equilibrium; (3) complete disappearance of any
forms of equilibrium.

Arches with pinned and fixed supports are shown in Fig. 4.2a, b. If an arch
is subjected to symmetric loading, then the loss of stability may occur in two
simplest forms. They are symmetrical form (a), when elastic curve is symmetrical
with respect to vertical axis of symmetry and, otherwise, is antisymmetrical (b).
Qualitatively new adjacent forms of equilibrium correspond to the loss of stability,
in the Euler sense [Din46]. The buckling of arches in the Eulerian sense are
considered in this chapter.

In the case of a very shallow arch, its compression should be taken into account.
Due to this, the loss of stability of two-hinged and hingeless arches occurs differ-
ently, as shown in Fig. 4.2. Specifically, the lowest critical load corresponds to the
symmetric form of the loss of stability along one sinusoidal half-wave (Fig. 4.3).

With this two cases are possible. (1) The sign of the curvature remains the same
(line 1); (2) sign of the curvature changes (line 2). Structures that abruptly transform
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Fig. 4.3 Shallow arch. The
forms of loss of stability

to state 2 (or 3) are called structures with a jump. Note that antisymmetrical form
for loss of stability with one nodal point at the middle span (3) is possible.

Note that the general sensitivity theory in problems of stability of elastic
structures is considered in detail in [God00].

4.1.3 Differential Equations of Stability of Curvilinear Rod

Let us present a set of differential equations of stability for planar curvilinear rod
for some special cases. Assume that distributed radial load ¢ is tracking.

The stability equation of a uniform rod (EI = const) of a variable radius of
curvature p may be presented as follows (derivative, with respect to the curvilinear
coordinate s, is denoted by the prime symbol):

oflom T o) <t 4o} o ) -

This differential equation of sixth order, with respect to tangential displace-
ment u, takes into account the radial distributed load ¢ [Rzh55].

In case of circular rod of radius p = R = const and variable flexural stiffness
El we get

" "

RYEI™" + R*(EIY" + R*(EId"Y + (EIu') + R (qu") + R*(qu')' = 0.
For circular uniform rod (p = R = const, EI = const) subjected to uniform
distributed radial load ¢ = const we have

R3
ROV 4 2R Y + R2 +qE—1(R4uW +R2u”) —0

In the polar coordinate ¢ = s/R the last equation may be rewritten as Lamb’s
equation [Lam1888] (see Sect. 1.7.3)

Fud Bu R (P
de®  Tde*  dp?  EI \dy*  de?)

Note that the stability equation of a planar curvilinear rod in the general case
(nonuniform cross-section EI, variable radius of curvature (p) may be found in
[Mor39], [Rzh55]. This book also contains a set of equations for case of non-
tracking load.
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4.1.4 Methods of Analysis

The problem of determining critical load on the arches may be obtained in the
precise analytical form only in simplest cases. Such cases include uniform circular
arches, which are subjected to uniform pressure normal to the axis of the arch.

Analytical solution to the issue of stability of arches of various shapes is based
on the integration of differential equations of the arch and generally leads to a
transcendental equation of stability. The roots of these equations are the para-
meters of the critical loads. Each parameter of a critical load corresponds to the
specific form of loss of stability. For practical purposes, only the first form of loss of
stability and the corresponding smallest critical load is of interest.

Approximate method of solving stability problems for arches consists of
approximating the arch by a framed structure, and proceeding with analysis
by the three-moment equations [Sni66] and the displacement method [Karl0].
In general cases of arbitrary equations of the axial line of the arch, Smirnoff’s
matrix method [Smi84] is most effective. Peculiarities and limitations of this
method are considered in Chap. 5.

In the case of a nonuniform arch of arbitrary shape, strictly speaking, it is
possible to derive the corresponding differential equation, however, its order may
be high. In the case of nonuniform arch, the coefficients are variable; it becomes
impossible to present the solution in analytical form. Therefore, in most cases the
solution may be obtained using only approximate methods, in particular, variational
ones [Vol67]. Many important solutions related to stability of arches have been
obtained by Dinnik [Din46]. In case of shallow arches, the solution of differential
equation of stability may be obtained in closed form. However, the solution
becomes very cumbersome. For the analysis of very shallow arches, it is preferable
to utilize the Bubnov—Galerkin method [Rzh55].

Unless stated otherwise, we consider stability of arches under the following
assumptions:

1. The arch material is linearly elastic (Hooke’s law applies).
2. The center line of an arch is incompressible.
3. Loads on arches are conservative.

4.2 Circular Arches Subjected to Radial Load

This section is devoted to analysis of stability of the uniform circular arch with
different boundary conditions. In all cases, arches are subjected to uniform
distributed radial load. Analysis of stability is based on the Boussinesq’s and
Lamb’s equations. Analytical solutions for critical load are presented.
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Fig. 4.4 Design diagram of two-hinged arch and the forms of the lost of stability

4.2.1 Solution Based on the Boussinesq’s Equation

Behavior of the uniform circular arch of radius R and flexural rigidity EI is
described by differential equation of the second order with respect to radial
displacement v of any point on the axis of the arch

d?v MR?
d<p2+u_ T 4.1
where v is a displacement point of the arch in radial direction, and M is bending
moment which is produced in the cross sections of the arch when it loss a stability
[Pro48], [Boul883].
This equation allows us to determine in the close form a critical load on the arch
with different boundary conditions. The following procedure may be proposed:

1. Find analytical expression for bending moment M

2. Integrate the differential equation (4.1)

3. Use the boundary conditions to compute the constants of integration
4. Nontrivial solution presents the stability equation

4.2.1.1 Two-Hinged Arch

Circular two-hinged arch of radius R and constant cross-section is subjected to
uniform radial pressure g. The central angle of the arch is 2o and flexural rigidity is
EIl. Antisymmetric and symmetric forms of the loss of stability of the arch are
shown in Fig. 4.4 by dotted lines.

Antisymmetric buckling mode gives smaller values of critical load than sym-
metrical form. Therefore, we limit ourselves to the antisymmetric form.

In case of uniform radial load at any section of the arch only axial force
N = gR arises. Bending moment at any section is M = Nv = gRv. Boussinesq’s
equation (4.1) becomes

d d?
—t = —— or—U+nl)=0, (42)
'
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where

R3
=1+ %. 4.3)

A homogeneous second-order linear differential equation (4.3) has the following
general solution:

v = A cos ny + B sin np,

where A and B are constants of integration. These constants should be evaluated
using boundary conditions.

1. When ¢ = 0 (left support) the radial displacement v = 0. This condition leads
toA =0.

2. At p = (section at the axis of symmetry) v = 0. This condition leads to
equation B sin no = 0. Solution B = 0 is trivial and should be rejected. Thus,
the stability equation becomes sin noa = 0. The roots of this equation are
nou =m,2m, ..., km.

The minimum critical parameter n = n/a corresponds to smallest critical load.
According to (4.3)

. EI n? EI
gt = (n*—1)— = (—— 1)13. 4.4)
Axial critical force for two-hinged uniform arch becomes [Kis80], [Rzh55]

2
‘ ‘ El
N — gming — <% - 1) —.

Special Cases

1. In case of semicircular arch the expression (4.4) leads to Levy’ formula [Lev84]
for critical load

min | SEI
o =

Problems of this nature arise during analysis of a cylindrical shells enforced by
circular ribs. Central angle 200 = 7 corresponds to an arc located between two
points of inflection of elastic curve of the ring. Circular arches (ribs) function as
receivers of radial forces from the connected cylindrical shell.
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Fig. 4.5 Design diagram of hingedless arch, form of the stability lost, and bending moment
diagram

2. For shallow arches with f/ < 0.2-0.3 the angle o < 7, therefore 72 /o > 1
and the unity can be neglected, then N™" = n2E[/S2 where Sy = Ro. Thus,
the critical axial force for the gentle arch is approximately equal to that of the
force found by Euler’s formula for column which has a buckling length of half
the length of the axis of the arch.

Note, that stability analysis of a two hinged uniform arch may be effectively
performed using (1.27). In case of a uniformly distributed radial load, the two last
terms of (1.27) should be omitted [Rzh82].

4.2.1.2 Hingeless Arch

As in case of two-hinged arch the most probable loss of stability realization will
occur in an antisymmetric form (Fig. 4.5a) [Kis80].

In contrast to the two-hinged arch, the bending moments M|, arise at the support
sections. They lead to the appearance of inflection points. These points are specified
by sign * (Fig. 4.5b). Bending moment diagram caused by support moments M,
is shown in Fig. 4.5c. Additional bending moment at the arbitrary section is
My (sin ¢/ sin o), where the angle ¢ is measured from the axis of symmetry.

The total bending moment at any section, which is characterized by displace-
ment v, 18

M = qRv — My 2%

sin o
Boussinesq’s equation becomes
v, M,R? M,R?

—+nv=———sinp=Csinyp, C=

—_—. 4.5
dp? EI sin o EI sin o (.5)
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where 7 is still calculated by (4.3). Pay attention that C is unknown, since moment
M, is unknown.

Solution of nonhomogeneous differential equation (4.5) is v = v; 4+ v2. The
partial solution v, should be presented in the form of the right part of (4.5), mainly
vy = k sin . Substituting this expression into (4.5) leads to formula

1 MoR? C

k = X = .
n2—1 Elsino n?-1

Thus the total solution of (4.5) becomes

A + B si LI MyR?
v =A cos sin —
ne e n2—1  EI sin a

n .

Boundary condition:

1. For point of the arch on the axis of symmetry (¢ = 0) the radial displacement
v = 0 (because the antisymmetric form of the loss of stability). This condition
leads to A = 0.

Given this, equations for radial displacement and slope are

v=Bsin np + — sin ¢,
ns —1
d C
& Bn cos ne +— cos (. (4.6)
de n—1

Two unknowns B and C may be obtained from the following boundary
conditions:

2. At ¢ = o (support point) the radial displacement v = 0.

3. Atp =oadv/dp =0.

Taking into account these conditions, the system of equations (4.6) becomes

B sin no +

sina =0
n?—1 ’

Bn cos no +

cos oo = 0.
n?—1

Since these equations are algebraic and homogeneous, then nontrivial solution
are possible if determinant of the matrix consisting of coefficients of the unknowns
is equal to zero. After simplification we get the equation of critical loads

sin no

n2

n cos no

n2
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Table 4.1 Minimum root n of transcendental equation (4.7)
o (%) 30 45 60 90
n 8.621 5.782 4.375 3.000

Fig. 4.6 Design diagram of three-hinged arch and the loss of stability forms

This equation may be presented in different forms, in particular

o no

tan o tan no ( )

Transcendental equation (4.7) allows us to calculate parameter # of critical load;
they are for different angles «, which are presented in Table 4.1.
According to (4.3) the critical load is

El
g = (1* = 1) ik (4.8)

Corresponding compressed axial force is Ny = ge:R = (EI/R*)(n* — 1).

Special Case

If « = 7/2 (semicircular arch) then (4.7) can be presented in form cot(nn/2) = 0,
so (nm/2) = (n/2),(3%/2),.... Solution n = 1 is trivial because this solution,
accordingly (4.3), corresponds to ¢ = 0. Thus, smallest root is n = 3. Thus,
for semicircular arch with clamped supports the radial critical load equals
Germin = S(EI/R?) [Rzh55].

Three-Hinged Arch

If loss of stability occurs by antisymmetric form (Fig. 4.6a) then a critical load
will be same as for two-hinged arch. This happens because in case of two-hinged
arch by antisymmetric loss of stability form (Fig. 4.4a) in the crown C the bending
moment equals to zero. So this point may be treated as the hinge of three-hinged
arch [Kis80].
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Table 4.2 Circular three-hinged arch. Critical parameter 7 for symmetrical form of the loss of
stability

o (%) 30 45 60 90

n 1.3872 1.4172 1.4584 n/2 = 1.5708

Table 4.3 Parameter K for critical radial load of circular uniform arches with different boundary
conditions [Din46], [Kle72], [Sni66]

Types of arch o= 15° 30° 45° 60° 75° 90°
Hingeless First form 294 73.3 324 18.1 11.6 8
Second form 484 120 532 29.7 18.8 12.9
Two-hinged First form 143 35 15 8 4.76 3
Second form 320 79.2 347 19.1 11.9 8.0
Three-hinged (symmetrical form) 108 27.6 12 6.75 4.32 3
One-hinged arch 162 40.2 17.4 10.2 - 4.61

Symmetric loss of stability is shown in Fig. 4.6b. In this case, the hinge at the
crown has a vertical displacement. Calculations and experiments showed that a
smallest critical load corresponds to symmetrical loss of stability [Pav66], [Mor40].
Critical load is determined by the formula

2\ | El
ger = [(?) - l] Fa (49)

where a critical parameter 7 is a root of transcendental equation [Din46], [Kis80]

4(tan ¢ — o)  tanm—7n
o3 g
The roots of this equation for different angle o are presented in Table 4.2.
Expression for radial critical loads (4.4), (4.8), and (4.9) for different types of
arches may be combined using general formula ¢, = K(EI/R?). Coefficients K are
presented in Table 4.3.
Axial compressed force in all cases equals

EI
Ne = gk = Kﬁ
The critical stress is 6. = N¢;/A where A is area of the cross section of the arch.
All calculations above are legitimate if the critical stresses are less than the yield
stress [Kle72].

4.2.2 Solution Based on the Lamb’s Equation

This equation allows us to find the critical radial load for circular arches with
different boundary conditions.
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Behavior of the arch of radius R, with central angle 2o and a constant cross
section subjected to uniform radial load ¢ is described by Lamb’s equation with
respect to tangential displacement u [Lam1888]

dé d*u & R3 (d*u d?
“ LA <” —”)zo. (4.10)

B, Rt
d® + dp*  de*  EI
where EI is a flexural rigidity of the arch.
Two approaches of finding the critical load are presented below.
Exact Solution

Characteristic equation and corresponding roots are

6 L a4, 2 4, 92 qR’
R+ + P+ k(3 +27) =0, k:ﬁ,

/ll.Z =0, )~3,4 = =i, /15,6 = ilﬁ, ﬁ =V1i+k
General solution is

u=Cy+ Crp+ Cssin p+ Cy cos ¢ + Cs sin o + Cg cos fo.

Since the axis of the arch is incompressible, then ¢ = (du/R dyp) — (v/R) = 0,
therefore

d
v:£:C2+C3 cos ¢ — Cy sin ¢ + Cspf cos i — Cef sin fe.
4.2.2.1 Two-Hinged Arch

In this case, the boundary conditions at ¢ = *o are

The last condition means that bending moment M = 0. Now we consider two
forms of the loss of stability separately.

Symmetric Form of the Loss of Stability

In this case, the radial displacement v is even function, so the tangential displace-
ment u should be presented in terms of odd functions

u = Crp+ C5 sin ¢ + Cs sin fo.



4.2  Circular Arches Subjected to Radial Load 209

We subject this solution to the boundary conditions. This yields the set of
homogeneous algebraic equations

Cr0+ C5 sin o 4 Cs sin fo = 0,
Cy + C3 cos o+ Csf cos fo =0,
—C5 cos o — Csfp* cos fo = 0.

Equation for critical load becomes

o sino sin flo
1 cosa p cos fo. | =0.
0 —cosa —p° cos fu

In expanded form we get

a(f— ) + B tan o= tan Pa.

Antisymmetric Form of the Loss of Stability

In this case, tangential displacement u should be presented in terms of even
functions

u=Cy+ Cyq cos p+ Cg cos fo.
According to boundary conditions

Cy + Cy4 cos o+ Cg cos fo =0,
—Cy sin o — Cgf8 sin fo = 0,
C4 sin o + Cgfp sin fo = 0.

Equation for critical load becomes

1 cosa cos fio
0 —sino —fsin foa|=0.
0 sina f sin fu

In expanded form we get (f — ) sin o sin for = 0.
Two cases are possible.

1. Assume sin o = 0. In this case « = nn. Since o cannot be more than 7 then only
n = 1 may be considered. However, in this case we get a closed ring with one
hinged support, i.e., a geometrically changeable system.
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2. Let sin o =0. In this case fo=mn, B> =m’n>/o?, critical parameter
k= [32 — 1, so critical load

m2m? EI
ta=\"7z "1
o R

For semicircular arch (24 = 1) we get ger min = 3(EI/R?).

4.2.2.2 Hingeless Arch
In this case, the boundary conditions at ¢ = +o are

u=0, u=v=0, u"=0.

Antisymmetric Form of the Loss of Stability
In this case
u=Cy+ Cy4 cos ¢+ Cgq cos fp.

Proceeding as before, we subject this expression to the boundary conditions.
Equation for critical parameter § becomes ff tan oo = tan fo. Critical load is g =
(B> — 1)(EI/R?). In case o = 7/2 stability equation can be presented in the form
cot(fn/2) =0,s0 fn =m, 3m,....Solution f = 1 is trivial because this solu-
tion corresponds to ¢ = 0. Thus, the minimum root is § = 3, so for a semicircular
arch with clamped supports the critical load equals ge; min = 8(EI/R?).

Variational Approach

Let us consider two-hinged arch. Limiting ourselves to the approximate solution, set
o Y
u(p) =—f—1+cos —)
() === :

This expression satisfies all the boundary conditions. Namely, the tangential and
radial displacements and bending moment at the supports are equal to zero.
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Fig. 4.7 Circular arch with
hinged ends support rods

Bubnov—Galerkin procedure [Vol67]

/"‘ d®u +2d4u n d’u +qR3 d*u n
_y |dep® dp*  de?  EI \dyp*

As a result, we get the following relationships

6 4 2 ‘IR3 4 2 _ T
-t )+ (@ -8), =1

From here we immediately obtain expression for smallest critical load

(&-9°

EI
“R ST Ee

crmin R’ C=

@.11)

For semicircular arch (2o = 1) we get ger min = 3EI/R?, which coincides with
the exact solution.
If a central angle of the arch is 2o = 7/3, then C = 35.

4.2.3 Arch with Specific Boundary Conditions

Circular uniform arch of radius R and central angle 2« is subjected to uniform radial
load g. Support constraints are straight rods AB and BD with hinges at the ends.
The reaction which arises at the constraint may be resolved into the vertical and
horizontal (thrust) components at the points A and B. Thus, this structure in fact
represents a specific two-hinged arch. Indeed, inclination of the support constraint
defines the direction of the resultant of the vertical reaction and the thrust for any
type of load. Assume these rods are directed along the tangent to the arch at the
support points (Fig. 4.7).

Therefore, before the loss of stability of the arch, reactions at the points A and B
coincide with this tangent. At the instant the loss of stability occurs, the axial
compressed force N = gR, at the points A and B will be directed at any angle 6 to
the deformable axis of the arch.
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Table 4.4 Critical parameter § in terms of half of central angle «
o (rad) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 /2
p 1.58 1.61 1.66 1.73 1.81 1.90 2.01 2.11

Exact solution of the stability problem is obtained on the basis of (4.10). In the
case of symmetrical loss of stability at ¢ = o, the boundary conditions (tangential
displacement u, bending moment and shear) are u=0; M =0; Q = ¢R0.
These conditions, in terms of displacement # may be presented as follows:

_0 n ' 0. v " qR3 " _
u=70; u' +u =0 u' +u +E( +u) = 0.

If we denote (¢R®/EI) = B? — 1, then for stability equation and corresponding
critical load we get [Rzh55]

tan fo 5
ﬁ(x _1_ﬁ7

EI

Gor = (B = 1) 5

Critical parameter f3, in terms of half of central angle is presented in Table 4.4.
For arch with these specific supports a smallest critical load corresponds
to symmetrical form of loss of stability. In case of antisymmetrical form of
buckling the critical load coincides with critical load for two-hinged arch, i.e.,

ger = ((nz/‘xz) - 1>(EI/R3)'

4.3 Circular Arches with Elastic Supports

This section is devoted to stability analysis of circular arches with elastic supports.
The case of uniform radial load is considered. Stability equation is derived and
classical boundary conditions are considered.

Stability analysis of a complex arched structure (supports of the arch are
deformable frames) is presented.

4.3.1 General Solution and Special Cases

Assume that symmetrical circular uniform arch of radius R has the elastic-fixed
supports; their rotational stiffness coefficient is £ [kKN m/rad]. The central angle of
the arch is 2u; the flexural rigidity is E/, and the intensity of the radial uniformly
distributed load is ¢ (Fig. 4.8a).
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a b d

m= =
sinoe” 0

Fig. 4.8 (a) Design diagram of the circular arch with elastic supports; (b) reactions and
antisymmetrical buckling form; (c) distribution of bending moments caused by two reactive
moments M; (d) free-body diagram for portion of the arch (load ¢ is not shown)

In case of arch with elastic supports, symmetrical and antisymmetrical forms
mean that both supports rotate in the opposite directions or in the same directions,
respectively. As it is shown by analytical analysis and experiments, the smallest
critical load for hingeless and two-hinged arch corresponds to antisymmetrical form
of the loss of stability.

For stability of the arch with elastic supports, we use the Boussinesq’s equation

D= (4.12)

where v is a displacement point of the arch in radial direction (Fig. 4.8b).

It is easy to show that the horizontal and vertical components of reaction N
are H = gR cos o and V = ¢R sin «, so the axial compressive force of the arch
caused by uniformly distributed hydrostatic load ¢ is N = ¢R [Kar10]. The slope ¢
at the elastic support and corresponding reactive moment M, are related as
M, = k. Distribution of bending moments caused by two antisymmetrical angular
displacements ¢ of elastic supports (or reactive moments My) is presented in
Fig. 4.8c. Bending moment at section with central angle 0 caused by only reactive
moments M, equals m. The total bending moment at any section, which is
characterized by displacement v free-body diagram is shown in Fig. 4.8d, equals

The second term takes into account additional moment due to elastic supports.
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Thus, differential equation (4.12) becomes

d?v qR? ko R?
— 1+—|v=— in 0. 4.13
d92+( +EI)D Elsina " (+-13)
Denote
3
2 gR
=14+— 4.13
n + £l ( a)
ko R?
S (4.13b)
EI sin o

Pay attention that C is unknown, since the angles of rotation  of the supports are
unknown. Differential equation (4.13) may be rewritten as follows:

d2
d—gi + %0 =C sin 0. (4.14)

Solution of this equation is
v = A cos nf + B sin nf + v*. (4.15)
The partial solution v* should be presented in the form of the right part of (4.14),
mainly v* = Cy sin 0, where Cy is a new unknown coefficient. Substituting of this
expression into (4.14) leads to equation

— Cy sin 0 + n*Cy sin = C sin 6,

s0 Co = C/(n*> — 1). Thus the solution of (4.14) becomes

v = A cos n0 + B sin nf +

nZC; 1 sin 0. (4.16)

Unknown coefficients A, B, and C may be obtained from the following boundary
conditions:

1. For point of the arch on the axis of symmetry (6 = 0), the radial displacement
v = 0 (because the antisymmetrical form of the loss of stability); this condition
leads to A = 0.

2. For point of the arch at the support (0 = «), the radial displacement is v = 0, so

B sin no + ¢ 1 sin oo = 0. “4.17)

n? —
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Table 4.5 Critical parameter » for circular arch with elastic clamped supports, 200 = 60°

ko 0.0 1.0 10 100 1,000 10°
n 6.0000 6.2955 7.5294 8.4628 8.6051 8.621

3. Using (4.17), the slope is

d C 0
cTZ — Bn cos nfl + n;(:s - (4.18)
The slope at the support is dv/ds = —, the negative sign means the reactive

moment M, and angle ¢ have the opposite directions. On the other hand
dv/ds = dv/R d0, so dv/d0 = —Rep. According to (4.13b) we get

EI sin o do El sin o
SO — = —
kR? do kR

p=C

If 6 = « then the expression (4.18) becomes

(4.19)

cos o EI sin o
B C =0
n cos no + <n2—1+ R >

Equations (4.17) and (4.19) are homogeneous linear algebraic equations with
respect to unknown parameters B and C. The trivial solution B =C =0
corresponds to state of the arch before the loss of stability. Nontrivial solution
occurs if the following determinant is zero:

. sin o
sin no 1
D= Cos o n El sin o | — 0. (4.20)
ncos no; ———
o2 -1 kR

This stability equation may be presented as follows [Kle72]:

I’lko kR
tan no = , ko=—.
ko cot oo+ (n> — 1) EI

4.21)

Solution of this transcendental equation for given o and dimensionless parameter
ko is the critical parameter n. According to (4.13a) the critical load

If the central angle 2o = 60°, then the roots of (4.21) for different k, are
presented in Table 4.5.
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Parameter ko = 103 in fact corresponds to the fixed support.

For an arch with elastic supports, parameter & satisfy to condition k; < k < &,
where k; =0 and k; = oo related for two-hinged and hingeless arches,
respectively.

Limiting Cases

1. Two-hinged arch. In this case, the stiffness of support k = 0 and stability
equation (4.21) is tan noa = 0. The minimum roots of this equation is no = ,
so n = 7/o and corresponding critical load equals

_ n? El
dcrmin = ﬁ_l ﬁ

This formula coincides with (4.4). Critical load for o = 7/2 (semicircular arch)
equals ger min = 3EI/R.

2. Arch with fixed supports. In this case, the stiffness k = oo and stability equation
(4.21) becomes

tan noo = n tan o

This equation coincides with (4.7). The minimum roots in terms of a are
presented in Table 4.1.

Two Cases of the Ring with Braces (Circular Tunnel Lining)

1. The ring of radius R with one brace in the diameter is subjected to uniform radial
load ¢. Each half of the ring may be considered as semicircular arch with elastic
fixed ends. If flexural rigidity of the arch and the cross-bar are [, and I,
respectively, then the stability equation becomes

nn 2(n*—1) Ip gR3
t—=— — =4/l +—=—
€0 2 3n ]1 ’ " + E]()

If I; = 41y, then ger = 66(E1()/R3) [Pro48].

2. The ring of radius R with two braces in the diameters is subjected to the same
loading. Braces are perpendicular to each other and connected in the center of
the ring by a fixed joint or by a multiple hinge. We assume that /; = 2/,. In both
cases the stability equation is

nw n2+2 El
COtZ =3, and ¢ = 20'9F'
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Fig. 4.9 (a) Design diagram of the structure. (b—e) Calculation of the stiffness k of the elastic
supports of the arch

4.3.2 Complex Arched Structure

In practical engineering, the stiffness coefficient k of the elastic supports is not
given as a clear value. However, in special cases, it can be determined from an
analysis of adjacent parts of the arch [Kle72].

Let us calculate the critical load for a structure shown in Fig. 4.9a. The central
part of the structure presents the circular arch; supports of the arch are rigid joints A
and B of the frames. The arch is subjected to uniformly distributed radial load g¢.
Assume that R = 20 m and the central angle 20 = 60°. The stiffness of all
members of the structure is El.

Since the left and right frames are deformable structures, then the each joint A
and B has some angle of rotation, so the arch AB should be considered as arch with
elastic supports with rotational stiffness k. For this case of circular arch with given
type of load, the stability equation according to (4.21) becomes:

n
tan no = (n2 — 1)E[' 4.23)

kR

cot o +

Rotational stiffness coefficient & is a couple M, which arises at elastic support of
the arch if this support rotates through the angle ¢ = 1. Since the joints A and B are
rigid, so the angle of rotation for frame and arch are same. Therefore, for calculation
of the stiffness k we have to calculate the couple M, which should be applied at the
rigid joint A of the frame in order to rotate this joint by angle ¢ = 1.



218 4 Elastic Stability of Arches

The frame subjected to unknown moment M = k is shown in Fig. 4.9b.
For solving of this problem we can use the displacement method [Kar10].

The primary system of the displacement method is obtained by introducing
additional constraint 1 (Fig. 4.9c). The primary unknown Z, is angular displace-
ment of introduced constraint. Canonical equation is

1‘1121 +R1p =0.

Displacement Z; = 1 and corresponding bending moment diagram is shown in
Fig. 4.8d. The unit reaction

ri1 = 3i; + 4i, = 0.5EI + 0.5EI = 1EI.

The primary system subjected to external unknown couple M is presented
in Fig. 4.9¢, so R;p = —M. The canonical equation becomes 1EIl x Z; — M = 0.
If the angle of rotation Z; = 1, then M = k = 1EI. For given parameters R and «,
the stability equation (4.23) of the structure becomes

T n 20n

t - tan(0.5236n) = ————.

= ey O (05236 =
cot—+

6 20

The root of this equation n = 7.955. The critical load is

EI EI
2
gor = (7.955% — 1)1? = 622845

According to Table 4.3, the critical load for arch with fixed supports and for
two-hinged arch (the central angle in both cases is 2« = 60°) are g, = 73.3(EI/R?)
and ¢ = 35(EI/R?), respectively. Above calculated critical load is located
between two limiting cases.

4.4 Gentle Circular Arch Subjected to Radial Load

Earlier we considered arches with an incompressible axis. As a result, in case of
two-hinged and hingeless arches the antisymmetrical form was the most unstable.
In a gently circular arch (f/I < 0.3), we must consider the change in length of the
arch’s axis due to compression. This leads to a characteristically new form for loss
of stability. In Fig. 4.10, the dotted line 1 corresponds to the loss of stability by
symmetric form with one half-wave. Given this, the curvatures in the deformable
and initial states have the same sign. Dotted line 2 also corresponds to the symmet-
ric buckling with one half-wave. However, the curvatures in the deformable and
initial states have the different signs. Antisymmetrical form of the loss of stability
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loss of stability forms

Fig. 4.10 Gentle arch and ¥ T

£1<0.3

(3) with two half-waves is also possible. Structures that abruptly transform to state 2
(or 3) are called structures with a jump; this phenomenon is called snap
transformation.

4.4.1 Mathematical Model and Bubnov-Galerkin Procedure

Let us consider a shallow circular uniform arch of the span / and radius R. Arch is
subjected to radial uniformly distributed load ¢. Differential equation of stability
is [Rzh55]

d* d?
Bl pCl— g

o 02 (4.24)

P
R
Here P is compressed load which arise in the cross-sections of the arch. A rigorous
solution of this equation can be found in [Rzh55], however, such solution is very
cumbersome. It is easier to solve this problem by Bubnov—Galerkin’s method
[Vol67].

The procedure for solving the problem is as follows:

1. Assume the radial displacement of the arch is v(x) = vof(x) which satisfies the
boundary conditions. The assumed functions v(x) for different boundary
conditions are covered adequately in the book [Kar01].

2. According to Bubnov—Galerkin procedure,

! d*v dv P
A <E1@+P@+I—e—q>f(x)dX—O.

This procedure leads to the relationships which includes the unknown critical
load g, radial displacement at the crown vy, and axial compressive load P.
3. The expression for difference in distances between the support points of the arch

1 ! A Pl
Al=—= [ vdx+= Ny 4+ —
R/OD +2A(D) T EA

where A is the cross-sectional area of the arch.
4. Condition of intractability of supports A/ = 0 yields to additional relationships
between P and vy.
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5. Eliminating P we obtain a relationships between ¢ and vyg.

6. The critical load ¢ is found through the condition dg/dvy = 0.
We show applications of this procedure for stability analysis of the different
types of arches.

4.4.2 Two-Hinged Arch

Assume that the symmetrical form of the loss of stability may be described
by formula v(x) = vg sin(nx/l) [Rzh55]. This expression satisfies to boundary
conditions v =0 and v” =0 atx =0and x = L

Bubnov—Galerkin’s procedure

i 4 2
d*v dv P . X

leads to relationships

00 , » P
q:4—l4(7rEI—Pl)+E. (4.26)

This equation includes unknowns critical load ¢, radial displacement at the

crown vy, and axial compressive load P.
The difference in distances between the support points of the arch is

A[:_U_Og_i'_ﬁ P_l
R n 41  EA

Equation of intractability of supports A/ = 0 yields

23y 2ugy EA
p=-—% =—.
a TR 7T

We notice that the relationships between the displacement vy and compressive
force P in arch are nonlinear.
Substituting expression for P into (4.26) leads to

i 7'531)0
1= 4p

4.27)

<n2EI N oyl 2007»13) gy | 2Mvgy

4 7R 4IR nR?

This expression relates the required critical load ¢ and parameter vy of deform-
able arch. The critical ¢ is found from the condition dg/dvy = 0. From this
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Fig. 4.11 Curves of q*
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condition we get v* =1 & /(1 — 0)/3. Substituting of this expression into (4.27)
leads to the final expression for the critical load

APEA |,

QCr:WQa
1—5\? mi2R2 76 IR?
f=sd2(—2) ;o s= =1
1 ( 3 ) ’ 4F T 4 AR

The dimensionless parameter ¢ in terms of central angle 2o and slenderness
ratio of the arch A =1/i (i = \/I/A is the radius of gyration of the cross section
of the arch) becomes & = 240.4/(20)% /2.

4.4.3 Graphical Interpretation of Results

For two-hinged arch, the relationship between load ¢* = q(n*R? /4I?EA) and radial
displacement v* = vy(n’R/4/*) for special parameters J is shown in Fig. 4.11.
All parameters ¢*, v*, ¢ are dimensionless.

All curves characterize the state of equilibrium. Curve 6 = 1 divides the state
diagram into two regions. In the upper region 6>1.0 arch does not lose stability,
but deforms smoothly when acted upon by a load. In the bottom region d<1.0 loss
of stability is possible. In this region state curve has two extreme points. The upper
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extreme point B corresponds to the critical state of the arch under a monotonal
increase in the load. For this point in the expression for ¢* we assign a positive sign.

After moving past this critical state the deformation of the arch increases by a
jump under constant load. With this, the sign of initial curvature of the arch
changes.

This state is shown by dotted arrow BD. The lower critical point C corresponds
to the critical conditions which are achieved with a monotonal decrease of the load.
Reaching the load which corresponds to point C a jump in the system occurs in the
opposite direction. The dotted arrow CA corresponds to this jump. With this,
the line BC corresponds to unstable equilibrium. This form of equilibrium may be
realized only with additional constraints.

For 6 =1 both critical loads are coincides. The inflection point (*) has
coordinates v* = 1.0, ¢* = 1.0.

Thus at 6> 1 for two-hinged arch the jump does not occur, and the arch smoothly
deforms under the load [Rzh55].

Notes

1. Since arch is gentle, then its shape and type of load (tracking or fixed direction)
does not significantly influence the value of critical load [Uma72-73].

2. In case of very shallow arch, we should take into account the change in length of
the arch caused by the compressive forces. Two-hinged sinusoidal arch y = f X
(sin(mx)/I) have been considered by Timoshenko [Kle72], and Dinnik [Din46]
under the above assumptions. Parameter u of critical load, under which the

jump occurs is u = 14 1/4(1 —m)®/27Tm?, where m = 4I/Af><1, A-area of

cross-section of an arch. In case of vertical uniformly distributed load g within
all span [ parameter u = (5¢I*/384EI) x (1/f). In case of vertical force P at the
crown we have u = (PP /48EI) x (1/f). If m > 1, then exists only unity stable
form of equilibrium.

A jump of shallow two-hinged arch of the arbitrary shape by antisymmetric
form of the loss of stability with nodal point in the mid-span [Uma72-73] is
possible. In this case, the critical load is g, = 327(f/I)(EI/I®). Detailed analy-
sis of very gentle parabolic two-hinged arch is presented in [Din46].

3. The jump phenomena characterizes the shallow arch as nonlinear structure
[Kaz09]. This nonlinearities turn out to be static type [KarOl1].

4. In case of the arch of the variable cross-section instead of (4.24) should be
considered equation

d (4 +szu_ P
w\"a) e TR

Stability analysis of the such arch of any shape and arbitrary boundary
conditions can be carried out by numerical methods.
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4.4.4 Hingeless Arch

An approximation of the radial displacement of the arch has the form [Rzh55]

Vo | 2mx
v=—|1—-cos— ).
2 l

This expression satisfies the boundary conditions at v =0 and v’ =0 at x =0
and x = /. Bubnov—Galerkin procedure

/l EId4U+Pd2U+1D 1 coszm dx=0
y ad T e TR ;)T

Next we apply the above-described algorithm, the result of which gives us the
critical load [Rzh55]

 PEA
T e

19 0, 20, — 38 64n*°R? 64 IR?
=35 — 30+ 4/ N5 = - :
i ! 3 3 0% [ Al

In terms of the central angle 2a and the slenderness of the arch 4 = [/i, the
dimensionless parameter d; becomes &, = 6,234/ (20)*A%. At §,>19 for hingeless
arch the jump does not occur, and the arch smoothly deforms under the load [Rzh55].

The cases of shallow two-hinged and hingeless arches with elastic supports are
considered in [Rzh55].

qer

4.5 Parabolic Arch

This section is devoted to analysis of stability of the uniform parabolic arches with
different boundary conditions. In all cases arches are subjected to vertical loads
only. Analysis of stability for uniformly distributed load is based on the Dinnik’s
equation. Some important results of numerical solutions of critical load for typical
arches are presented.

4.5.1 Dinnik’s Equation

The parabolic uniform symmetrical arch of span / and rise f is subjected to vertical
uniform distributed load ¢ within span of an arch. Let the radius of curvature at the
crown be Ry and arbitrary section of the arch is defined by angle 6 which is
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measured from the vertical. The radius for some section of the arch according to
(A.2) is p = Rp/cos® 0. Assume that during loading the load is tracking. Under
these assumptions the stability of such arch with in-plane bending describes by
Dinnik’s equation [Din46]

2
<% + 1> <cos3 6%) + qd% (M sec* 0) = 0. (4.28)

This is a homogeneous differential equation of third order with variable
coefficients with respect to bending moment M which arises in the arch when the
loss of stability occurs. Parameter of critical load ¢ = gR} /EI. Dinnik’s equation may
be derived by two different ways: the first way is based on the Kirchhoff equations
[Kir76], [Din46]. The second way is based on Lokshin’s equation [Lok34], [Kle72],
which is the general equation of the stability for plane curvilinear rod.

Analytical solutions of stability equation for parabolic arch are generally more
complicated then the corresponding equation for circular arches. Stability problem
of parabolic arches under the given assumptions reduces to the determining the
lowest parameter g, for which a nonzero solution of (4.28) for bending moment M
may exist and satisfy the boundary conditions for M. Numerical procedure is
described in [Din46]. For two-hinged arch the bending moment at support
M(x) = 0; we need to find the parameter gR3/EI, under which the moment at the
axis of symmetry is M(0) = 0. For hingeless arch we have the same condition with
additional boundary conditions, which means that the angle of rotations of terminal
cross-sections is zero.

Let us show some numerical results. Just as with radial load, for two-hinges and
hingeless arch a smallest critical load corresponds antisymmetric form the loss of
stability. Critical load may be calculated by formula

EIl
Ger = Kl_3' (4.29)

Parameter K for parabolic uniform different types of arches is presented in
Table 4.6. In case of three-hinged arch the coefficient K are presented for symmet-
ric and antisymmetric form of the loss of stability.

Coefficient K for conservative load is shown in parenthesis [Uma72-73]. Dashes
represent unavailable data.

For two-hinged and three-hinged arches at antisymmetric forms of the loss of
stability coefficients K coincides. This fact was discussed earlier. Note that the
coefficients K for the cases of nonuniform arches (I(p) = Ic/cos® ¢ and I(p) =
Ic/ cos @) subjected to tracking load, as well as for uniform arches subjected to
gravity load are presented in [Mor73].

For three-hinged arch relationships stability coefficient K for symmetrical (1)
and antisymmetrical (2) form of the loss of stability vs. dimensionless parameter f /I
is presented in Fig. 4.12.

For very gentle arches (f//<0.3) the symmetrical form of the loss of stability
is realized.
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Table 4.6 Parameter K for parabolic uniform arch [Kle72], [Mor73], [Sni66]

Hingeless arch Two-hinged arch Three-hinged arch

f antisymmetric ~ antisymmetric One-hinged Symmetric
l form form arch Antisymmetric form form
0.1 60.7 28.5 (28.8) 33.8 See two-hinged arch 22.5(22.7)
(antisymmetric form)
02 101.0 45.4 (46.1) 59.0 39.6 (40.2)
0.3 115.0 46.5 (48.4) 84.0 47.3 (49.8)
04 111.0 43.9 (45.0) 96.0 49.2 (54.5)
0.5 97.4 384 (—) 87.0 43 (-)
0.6 83.8 30.5 31.7) 80.0 38.0 (—)
0.8 59.1 20.0 (—) 63.0 28.8 (—)
1.0 43.7 14.7 (15.4) 48.0 22.1(—)
Fig. 4.12 Coefficient of K
stability K for three-hinged 50
h vs. ter f /1 S |
arch vs. parameter f/ Rt ]
4
40
27
A
30
20
7l
0.1 0.2 0.3 0.4 4

4.5.2 Nonuniform Arches

Let us consider arches with variable cross-section loaded by uniformly distributed
load within the entire span. Assume A = A/ cos , where Ay is area of the cross
section of the arch at the crown. Two cases are considered:

1. Rectangular cross-section of the arch has constant width. In this case h(p) =
ho/cosOand I = I/ cos> O where hp and I, are height and inertia moment of the
cross section at the crown. Critical load may be calculated by formula g, =
K (Ely/P) where coefficient K| is presented in Table 4.7.

2. Rectangular cross section of the arch has constant height. In this case b(p) =
bo/ cos Oand I = Iy/ cos 0, where by is a width of the cross section at the crown.
Critical load may be calculated by formula g, = K»(Elo/I?) where coefficient
K> is presented in Table 4.8.

The book [Din46] has a list of differential equations for in-plane and out-
of-plane stability problems for different shapes of the arches with variable cross
section, different loading and corresponding critical loads.
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Table 4.7 Coefficient K

4 Elastic Stability of Arches

. f Type of the arch

(I = Iy/cos® 0) [Din46], - - - - -
[Kis80] / Hingeless  One-hinged  Two-hinged  Three-hinged

0.1 65.5 36.5 30.7 24

02 134 75.8 59.8 51.2

03 204 - 81.1 81.1

04 277 187 101 118

0.6 444 332 142 -

0.8 587 497 170 -

1.0 700 697 193 -
Table 4.8 Coefﬁcient K>; f Type of the arch
I =1Iy/ cos 0 [Din46], '7 - - - -
[Kis80] / Hingeless  One-hinged  Two-hinged  Three-hinged

0.1 623 343 29.5 232

02 112 70 49 43.6

03 - 94 - 59

04 154 115 57 68

06 152 139 52 70

0.8 133 140 44 -

1.0 118 133 37 -

4.5.3 Partial Loading

We present approximate formulas for critical loads for parabolic uniform arch
loaded by partial uniformly distributed load and concentrated force at the crown.
To derive these formulas, the elastic loads method was applied [Pro48].

1. Two-hinged arch of span / and rise f is subjected to simple load P at the crown

(Fig. 4.13a). For such loading we have symmetrical bending but antisymmetrical
form of the loss of stability. Let m = f /I < 0.2. In this case the critical load [Pro48]

p, —108mw EL - My o5 gl
(14 6m2u)S P H,

where S is a length of an axial line of a half-arch; H; and H; are trust of the
three-hinged and two-hinged arches for given loading.

. Partial loading of the arch by uniform distributed load ¢ within portion 2z
(Fig. 4.13b). Let m = f/1 < 0.2

Critical thrust is

Hoo 19200 b i e
2=+ 12m2)S P 4
192(2n — 1) EI l

o = 20—+ 6m) S 7 if Z>Z

Here u = H3/H, for given loading.



4.6 Parabolic Arch with Tie 227

Fig. 4.13 Special loading of two-hinged arch
Limiting Cases

1. If we set n = 0, then the formula for critical thrust for arch subjected to single
force at the crown becomes

Pl 192 EI

cr(P) :4f_‘u_ (1 +6m2,u)§ [

2. If we set n =1, then the formula for critical thrust for arch subjected to
uniformly distributed load within all span of the arch. In this case u = H3/H, = 1
(Tables A.10, A.16) and for critical thrust we get

gl 192  EI

Hoy =L == =
T8 T 1+ 6m2)S P

4.6 Parabolic Arch with Tie

Let us consider uniform two-hinged symmetric parabolic uniform arch with tie
at the level of supports. The arch is loaded by the vertical uniformly distributed
load ¢ within all span / (Fig. 4.14). A feature of this problem is that even before loss
of stability the arch is compressed-bent [Kle72], [Smi84]. The tie may be connected
with arch itself by hinges at the ends (flexible tie) or by rigid ends (rigid tie).

Differential equation of the bending for parabolic arch with tie at the level
of supports is described by Shtaerman’s equation [Sht35], [Kle72]:

d2 2 dM1 _ 2 2 dMl
(W—Fl) (cos 9W> +q(n—1+sec 0) sec 6W+

c}(n — 1+ 4sec? 6) sec?0 x tan O x M; =0 (4.30)

where ¢ = (qR3/EI); 1 = (Hye/H), Ry is a radius of curvature of the arch at the
crown, H and Hye are the thrust of two-hinged parabolic arch without tie and the
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LITTITTITTITTITTITTITq

N

Fig. 4.14 Design diagram of two-hinged arch with flexible and rigid tie

Table 4.9 Ciritical parameter Hie 1.0 0.9 0.8
K for two-hinged arch with tie =g

454 505 57

such arch with tie, respectively, M, is additional bending moment which arises at
the buckling.

This is a differential equation of third order with variable coefficients. Integration
of this equation with respect to M; may done by numerical methods. Shtaerman’s
equation allows us to consider the flexible or rigid tie as shown above.

Antisymmetric form of the loss of stability is characterized by two half-waves.
In case of flexible tie the boundary conditions are M(0) =0; M”(0) = 0. Thus,
the boundary conditions at the crown and at the support are

e

M, (x) = 0, respectively.

Numerical integration of (4.30) leads to the following result for critical load of
the arch with flexible tie g, = K(EI/I®), where coefficient K for arch with ratio
f/1 = 0.2 are presented in Table 4.9 [Kle72].

One should pay attention to the unusual fact; decreasing of the stiffness FA of the
tie at the fixed stiffness of the arch EI leads to decreasing of the axial force which
arise in a tie. It means that the ratio n = (Hye/H) is also decreasing. However, from
Table 4.9 it is evident that coefficient K is increasing. This can be explained by the
fact that decreasing the axial load in a tie leads to decreasing axial compressed force
in the arch [Kle72], [Pav51].

In case of rigid tie we need to take into account an additional boundary condition

* 11
/ tan @ sec’ oM dp = — — = tan o M(x),
0

60 Itie

where 24 is a central angle, M(«) is a moment at the rigid joint. This condition
expresses continuity of the angular deflection of the arch and tie [Kle72]. Critical
load is
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Table 4.10 Critical parameter K for different ratio Iyech /e [Kle72]
Type of arches

Lar
Arch with tie, parameter — ch
tie
Two hinged (Table 4.6) Hingeless (Table 4.6) 0.28 1.6 4.45
K 454 101 82 61.5 53

EI
CICr:Kl?~

Some results for arch with parameter f/l =02 and n=H,./H =1 are
presented in Table 4.10.

4.7 Out-of-Plane Loss of Stability of a Single Arch

In the case of loaded and bent in-plane arches the height of the cross section usually
more than its width. If the moments of inertia of cross-sections significantly differ
from each other, then a gradual increase in load on the arch leads to the flat shape of
the bending of the arch to become unstable. The phenomenon of the loss of stability
is characterized by the fact that the arch starts to bend in other planes and a
new form of equilibrium becomes the spatial form [Mor39]. In Fig 4.15 a new
form of equilibrium is shown by dotted line.

The spatial stability of a single arch does not depend on the type of supports
in the plane of the arch, but on the type of out-of-plane supports of the arch)
[Uma72-73].

Below we consider a circular arch of radius R with central angle 2o and a
parabolic arch. Assume that load is applied in the plane of the arch, material of
the arch obeys to Hook’s law, the axis of the arch is uncompressed and out-of-plane
rotation of the support sections are not possible (fixed in out-of-plane directions).

4.7.1 Circular Arch Subjected to Couples on the Ends

Critical couple M is determined by formula [Smi84]

MC[’

2
El,+Gly | |(EL,~GI > ELGI
- Y+Gdi\/( »—Cl) | = ELGly 4.31)

2R 4R? + 402 R?

Here, EI, is a flexural rigidity of the arch in direction which is perpendicular to the
plane of the arch; Gly is a torsional rigidity of the arch. If for rectangle cross
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Fig. 4.15 Out-of-plane ¥
buckling of the single arch .

section & > b (Fig. 4.15), then I; may be calculated by Timoshenko’s formula
[Smi84]

hb? b
Iij=—(1-0.630-).

If support moment M decreases the curvature of the arch, as shown in Fig. 4.15,
then in (4.31) we must put a negative sign in front of the square root.

4.7.2 Circular Arch Subjected to Uniform Radial Load

If a load remains parallel to the initial plane of the arch then critical load is
determined by formula

EI

—-

qer :KR3

Coefficient K may be determined from transcendental equation [Mor73]
tan rio0 1-— r% 2
tan o0 \1—7r3) "’

K K\? El,
o=l d =t/ (142 K= — 4.32
) +2 \/( +2> + Gl, (4.32)

Table 4.11 gives the coefficient K in terms of the central angle 2o of the arch and
ratio El,/Gl4 between flexural and torsional rigidity.
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Table 4.11 Coefficient K in terms of o and parameter EI,/Gl4 [Mor73]
p . EI,
arameter ——
Gly
20 (°) 0.7 2.0 5.0 10 20 30
90° 13.8 13.3 12.1 10.86 9.25 7.9
120° 7.05 6.7 5.88 5.06 3.94 33
Table 4.12 Coefficient K in terms of /I and EI, /Gl4
El
Parameter —
f 1a
1 0.7 1.0 2.0
0.1 28.5 28.5 (31.7) 28.0
0.2 41.5 41.0 (65.0) 40.0
0.3 40.0 38.5 (137) 36.5

4.7.3 Parabolic Arch Subjected to Uniform Vertical Load

Let a load preserve its initial direction and be distributed within the entire span.
Then the critical load may be determined by formula g, = K (El,/I®), where
coefficient K| depending on parameter f /I and ratio EI,/GI4 between the flexural

and torsion rigidity (Table 4.12) [Mor73].

In the case of a tracking load, the coefficient K is shown in parenthesis [Mor73].



Chapter 5
Matrix and Displacement Methods

This chapter is devoted to numerical analysis of stability for different types of
arches. Among them are two approaches — Smirnov’s matrix method and classical
methods of structural analysis. A procedure for constructing the stability equation
for different approaches is discussed.

5.1 General

Determination of critical loads on the arches can be achieved by the precise or
approximate methods. By “precise methods” we will assume that this is done by
integration of differential equation of the arch, or by some other method under
which the initial design diagram of the arch does not have to be modified to
accommodate a numerical procedure. Precise methods for finding critical loads
have been discussed in Chap. 4.

The only way to determine critical loads of an arch with variable stiffness is by
approximate methods. The terms “Approximate methods” means replacing the arch
by set of the members, followed by precise methods of analyzing the modified
design diagram. Here the engineer is faced with two important issues. The first is
how to approximate the arch, and the second is which method of analysis to choose
for analysis of the modified design diagram. In the general case, one must choose
such an approximation of the design diagram, and such a method for analysis that
will simplify the numerical procedures without compromising the numerical accu-
racy. There exists a variety of approaches and their variations. Among them are
Smirnov’s matrix method, classical methods of structural analysis, and of course,
finite element method.

Smirnov’s matrix method [Smi47], [Smi84] considers the arch as a series of
curvilinear segments, each of which coincides with the corresponding portion of
the arch.

L.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration, 233
DOI 10.1007/978-1-4614-0469-9_5, © Springer Science+Business Media, LLC 2012
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No modification of the design diagram is performed under this method. Therefore,
this method should be treated as an exact method in matrix form. Smirnov’s method
is based on the classic concepts of the fictitious (conjugate) beam, elastic loads, and
utilizes the tools of the matrix algebra.

Classical methods of structural analysis (the Force method, Displacement
method and Mixed method in canonical form) [Kar10] are precise, but an approxi-
mate result is the consequence of a change in the design diagram of the arch by its
approximate (modified) diagram.

Finite element method is implemented in modern computer software and allows
the user to obtain the value of critical loads with a high accuracy. Nowadays this is
an effective method for stability analysis of arches with peculiarities (piecewise-
linear stiffness, nonlinearities, the need to account for secondary effects, etc.).

5.2 Smirnov Matrix Method

This method allows us to numerically determine the critical loads on the arches. The
shape of the arch and the law under which the moment of inertia of the cross section
of the arch changes along the axis line are unspecified. At the heart of the method lies
a discretization of the system in association with elastic load method (see Sect. 1.6).

In the case of a circular arch, we can use two fundamental differential equations.
The first equation is constructed with respect to radial displacements (Boussinesq’s
equation)

dzv+u_ M
ds>  R2 EI’

The second equation is constructed with respect to bending moments in the
curvilinear bar

&M M
W TR

These equations are similar, so computation of radial displacements v may be
replaced by the computation of fictitious bending moments caused by the load
q = M/EI this load is replaced by elastic loads W [Smi84].

5.2.1 Matrix Form for Elastic Loads

Ignoring the axial forces, elastic loads, according to (1.20), become

Sn
(Mnfl + 2Mn) + s (2Mn +Mn+1)7 (51)

w
! 6E[n+1

— Sn
~ 6EI,
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where s, is a length of an structural element between joints (n — 1) and n
(Fig. 1.15).

In the stability problems (as opposed to the strength problems), ordinates of the
bending moment diagram M and even the general profile of design diagram are not
known in advance. Therefore, in the stability problems the bending moment
diagram is approximated either by the straight line segments or a set of quadratic
polynomials each of which passes through the three neighboring points (Sect. 1.6,
Fig. 1.15, dotted line). Each of these approximations allows us to represent the
elastic load at joint 7 in the form [Smi47], [Smi84]

So

Wy =
6EI,

(ﬁn(nfl)Mnfl + ﬁnnMﬂ + ﬁn(rhtl)Mthl) . (52)

In the case of approximating the bending moment diagram by parabolas, the
coefficients § may be presented in terms of length and moment of inertia of each
element (s, I) as well as length and moment of inertia in terms of some basic
element (Sy, /o)

2

ﬁ S + 2Sﬂ+1 . St 1
n(n—1) — 2(S,, + Sn+1) Pn 2s, (Sn + Sn+1) Pn+1s
Sn Snt1
=(2 2+ ——
ﬁnn < + 2Sn+1)pn + ( + 2sn >pn+17
2
s, Sp1 + 25, sxlo
Bn(thI) = - 1 Pn+1r  Pn = . (5.3)

B 28p+1 (Sn + Sn+l) Pn 2(Sn + Sn+1) TS() .

The vector of elastic loads is expressed by a matrix of elastic loads By and the
vector of moments at the nodal points

N
W =——BwyM. (5.4)

Vector of bending moments of any broken rod during buckling is presented as

M=\M M, ... M,]|"

The matrix of elastic loads reduces to a Jakobi-like tri-diagonal matrix

ﬁll ﬁlz 0 0 0
Ba B By O ... 0
By = So 10 By By B oo e 0| (5.5)

6El

0 0 0 0 ... Buur)y B



236 5 Matrix and Displacement Methods

Special Case

Assume that the rod is divided into elements of same length
(4 = sn+1 = So = const). In this case, expressions for parameters f3, according to
formulas (5.3) may be simplified

3 1
ﬁn(nfl) - an - anJrl;
5
ﬁnn = 5 (pn + pn+1);
1 3
ﬁn(n+l) = _an +an+1' (5.6)

Let us make an additional assumption /,, = I,,+1 = Io. In this case p,, = 1 and for
parameters f§ we get

By =B =...=05,
5 5
ﬂu:E(PHFPz):S; 32225(92+P3):5,~-
ﬁlz = 523 = ... = 05, (57)
Matrix of elastic loads becomes
5 05 O o ... ... 0
05 5 05 O 0

By—=2 10 05 5 05 (5.8)

~ 6EI,

- O

0 0 0 0 ... 05 5
If curvilinear bending moment diagram Mp within portion s, and s,,; are
replaced by straight elements, then

:Bn(nfl) = Pns :Bnn = 2(pn + pn+l); ﬁn(nJrl) = Pn+t1- (5.9

In a special case, if the length of all the elements is s, = 5,41 = So = const and
I, = 1,4, =1 then we get following matrix of elastic loads:

4100 ... ... 0
G taro o0
By—==210 1 4 1 ... ... 0f, (5.92)
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Fig. 5.1 Equivalent half-arch of entire symmetric two-hinged circular arch, elastic loads at joints
1, ..., k and the angles notation

The matrix By is a square matrix of (n — 1)th order, where » is the number of
elements of the arch.

Matrices (5.8) and (5.9a) are as presented assuming that the moments at the ends
points are equal to zero [Smi47], [Smi84].

5.2.2 Moment Influence Matrix

Let us consider two-hinged circular symmetrical arch of radius R and central angle
20.. The arch is loaded by uniform radial load ¢. In case of antisymmetric form of
loss of stability the initial arch is replaced by its equivalent half-arch with rolled
support at the axis of symmetry (Fig. 5.1) [Kar10]. Moment influence matrix L is
constructed for a fictitious (conjugate) structure. For design diagram in Fig. 5.1
fictitious structure coincides with real structure. Divide the axis of the half-arch into
n equals segments and number of all nodal points from 0 to n. The central angle for
each segment is f3, therefore the length of each portion is Sy = Rf.

Each column of the moment influence matrix L contains the moments at the
nodal points 1, 2, ... caused by unit load which act at these arch points.

Let a unit radial force P = 1 be applied at arbitrary nodal point k; this point is
defined by the angle kf (Fig. 5.1). The vertical reaction Rc and radial reaction
R, are

Ry — sin kﬁ7 R — sm(:x—kﬁ)'

sin o sin o

Bending moments at points i, k, j are
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R sin if sin(o — kf3)

mjg = - (i<k)
sin o
i = R sin kf8 s.m(oc — kp)
sin o
kB sin(o — i
e — RS B s.1n(oc JP) (i), (5.10)
: sin o

If half-arch is divided into two equal parts, then k¥ = 1 and matrix L,,, according
to the second formula (5.10) becomes

[1]. (5.10a)

If half-arch is divided into three equal parts, then for matrix L,,, we get

[l ] ,sin®B[2cos B 1
L2m_|:121 lzz]_Rsinoc 1 2cos B |’ (5.10b)

If half-arch is divided into four equal parts, then for matrix Ls,, we get

sin® 4cos?’f—1 2cosfp 1
Lyn =R— 2cos f 4cos’f 2cos f . (5.10¢)
i B 2cos p 4cos’f—1

The matrix L,, is symmetric and square order (n — 1).

5.2.3 Stability Equation in Matrix Form
Bending moment at any section is M = gRv. Vector of elastic loads is
V = L,W = gRL,By V.
Thus, the stability equation becomes
det(C — JE) = 0,
where E is identity matrix, L,, is moment influence matrix,

C=L,Bw, 7=1/(qR).
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Matrix Procedures

In the case of a two-hinged circular arch subjected to uniform radial load ¢ the
following procedure may be applied [Smi47], [Smi84]:

1. Divide the arch into n equal curvilinear segments. Larger values of n ensure
greater numerical accuracy.

2. Construct the moment influence matrix L,, and matrix By of elastic loads
[Smi84].

3. Compute the matrix product C = L,,By and forms the stability equation
det(C — AE) = 0, where 1 = 1/(¢R) is eigenvalue of the stability problem.

4. Find the greatest eigenvalue A and calculate the smallest critical load
Gmin = 1/(/R).

Application of this procedure for stability analysis of symmetrical arches of two
different shapes is discussed in the following sections.

5.3 Two-Hinged Symmetrical Arches

Two types of two-hinged arches are considered. They are circular and parabolic
symmetrical arches. Circular uniform and nonuniform arches are loaded by uniform
radial load, while the parabolic arch is loaded by uniform vertical load and simple
force at crown. Assume the antisymmetrical form of the loss of stability occurs. In
this case, equivalent half-arch has a rolled support on the axis of symmetry and half-
arch itself is statically determinate structure.

5.3.1 Circular Uniform Arch

This arch is loaded by uniform radial load. A half-arch is divided into two equal
portions with one nodal point (1). In this case, the moment influence matrix
according to (5.10a) has a single entry [Smi84]

sin® 8

Ly, =R—
sin o

[1].

Elastic load is applied at point 1 and have radial direction. Matrix of elastic load
according to (5.8) is

_ss

Bw =
Y 6EI

[1].
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The matrix product

sin® 580

C=LnBw =R G 6EI

(1.

Stability equation is det(C — 2E) = 0.
We get the following expression for the required eigenvalue

_ 5S0R sin’ 8
" 6El sina’

(]

Since Sy = Rf3, then expression for 4 may be rewritten as

_ 5R?B sin’ B
" 6El sino

The critical load becomes

_ 112 H
T =R " 5ftan RO

Ifa=mn/2, f=mn/4,then

EI
ger = 3.055 ﬁ .

Exact result according to Levy’s formula is g = 3.0(EI/R?) (see Sect. 4.2.1).
Relative error is 1.83%.
If half-arch is divided into three equal parts the critical load becomes [Smi47]

122 cos f—1) EI
="gsnf R

If o =n/2, f=mn/6,then g, = 3.0504(EI/R?). Thus, approximating of the
uniform circular arch by only two segments leads to very good results.

5.3.2 Circular Nonuniform Arch

Design diagram of symmetrical two-hinged circular arch ACB is shown in Fig. 5.2a.
The radius of the arch is R and central angle 200 = 120°. The relative moments of
inertia for special portions are underlined, i.e., Ic—; = 1.0y, I;_» = 0.8,
I,_3 =0.6lyp, Is5_4 = 0.5]y. The arch is subjected to uniform radial load ¢; this
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2a=1207% o =607

Fig. 5.2 Design diagram of symmetrical two-hinged circular arch and its equivalent design
diagram for antisymmetrical buckling

load is not shown. In case of antisymmetrical form of buckling the equivalent
design diagram of the half-arch is shown in Fig. 5.2b [Smi47], [Smi84].

The half-arch is divided into four equal portions with central angle ff = o/4 =
7/12 for each portion. For given presentation of the arch we get

sin f = 0.2588, cos # = 0.9659,
sin® f = 0.0670, cos® f = 0.9330, sin’ §/sin o = 0.07737.

Matrix of moments according to (5.10c) becomes

2.732 19318 1.0
L, =0.07737R | 1.9318 3.732 1.9318
1.0 1.9318 2.732

0.2114 0.1495 0.07737
=R| 0.1495 0.2887 0.1495
0.07737 0.1495 0.2114

Since the arch is divided into equal segments, one must use (5.6) for construction
of the elastic loads matrix By. The entries by of matrix By, are as follows:

5 5 1 1
by —5(P1 +p2) —5(1 XT"'@) =5.625;

5 1 1 5 1 1
= — 1 —_— —_— = 2 1 N = — 1 -— - == 1 .
by 5 ( X 03 + 06) 7.2917; b33 3 ( X + . ) 9.1667
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For entries by ;) of matrix By, we get:

1 3 1 1 3 1
blz__Zpl—’_sz__ZXT—’_Z ﬁ_06875
1 1 3 1
b13—0, b23__1><ﬁ+1xﬁ_09375
The entries by, ) of matrix By, are
3 1 3 1 1 1
b21 —sz 1’03 Z ﬁ_z><ﬁ—05208,
3 1 1 1
b3]—0, b}z—z R-z)(ﬁ—o7500

Elastic loads matrix By becomes

o [56250 06875 0.0
BW:6T(; 0.5208 7.2917 0.9375
o1 0.0 0.7500 9.1667

For matrix C we get

RS 1.2669 1.2935 0.8494
C=L,By = 6E710 0.9913 2.3200 1.6418
910.5130 1.3018 2.0780

Maximum eigenvalue of the stability equation
det(L,,By — AE) =0

is A =4.2241(RSy/6EIl,). Corresponding eigenvector is [—0.4627 —0.7046
—0.5380]. The form of the loss of stability is shown in Fig. 5.2b by a dotted line.

Since 4 = (1/gR) = 4.2244(RS/6EIl,) and Sy = iR = (nR/12) then for radial
critical load we get g, = 5.4251EI/R3.

5.3.3 Parabolic Uniform Arch

This section is devoted to stability analysis of two-hinged parabolic arch subjected
to two types of loading: vertical uniformly distributed load along the span of the
arch and concentrated force applied at the crown of the arch. In both cases, arches
are symmetric. In case of antisymmetric form of the loss of stability the initial
two-hinged arch is replaced by its equivalent half-arch. This scheme contains rolled
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Fig. 5.3 Design diagram of symmetrical two-hinged parabolic arch and equivalent half-arch for
antisymmetrical form of the loss of stability and its equivalent design diagram for antisymmetrical
buckling

support at the axis of symmetry and half-arch itself presents a statically determinate
structure. Therefore, computation of elastic loads is easily evaluated using only the
equilibrium conditions.

5.3.3.1 Uniformly Distributed Load

The arch of span / and rise f'is loaded by a uniform vertical load distributed within
the entire span (Fig. 5.3a). The equivalent half-arch, assuming the antisymmetric
form of the loss of stability, is shown in Fig. 5.3b. The half-arch is a statically
determinate structure.

The axis of the arch is divided into equal curvilinear portions and the nodal
points are denoted as 1, 2, ...

The nodal point i has coordinates x; = &;/ and y; = n,/.

Geometrical Relationships

Equation of the axial line of the arch is y = 4fx(l — x)(1/1).
The general expressions for slope and slope at the support A are

tan ¢ = 4"—12 (I—2x), tanpy=4m, m= 7
Length of half-arch is determined as
S——l @ +—1 In(4m + ©o) (5.11)
=—[sec n(4m + sec . .
1 0T 0

The length S of axis of the arch from origin (point A) to arbitrary point X with
coordinates x; = &/, yr = n;l is
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[ [t 1 +si
Si=8— — (A0 g, LTSI A (5.12)
16m \cos ¢, COS

Stability equation is det(C — AE) = 0, where C = L,,ByG. The eigenvalue and
thrust are related by the formula 1 = 1/H.

For constructing the influence matrix L,, it is necessary to apply the unit force at
point k and to determine the bending moment at the neighboring points (Fig. 5.3b);
expressions for the entries of this matrix can be found in [Smi84]. The matrix Byy is
constructed in the same manner as for circular arch. The diagonal matrix G contains
the entries sec (.

Let us show this procedure and evaluate numerical results if the length of half-
arch is divided only into two equal portions; the nodal point 1 in Fig. 5.3 is not
shown. Assume m = f /I =0.5.

Geometrical Parameters

Slope at the support A is tan ¢, = 4m = 2.0 and sec ¢, = 2.2361.
The length of half-arch with adopted parameter m is

[ 1
=-—12.2361
S 4 36 +4 0.5

In(4-0.5 + 2.2361)} = 0.7401. (5.12a)

The length of each curvilinear segment is Sy = S/2 = 0.3701.
The length Sy of the segment A — 1 and slope at point 1 are related by

[ [t 1 +si
03701 = — (2P TSI (5.12b)
16m \cos ¢, coS ¢,

Solution of this equation determines the slope at the point 1
v, =50.7°, tan ¢, = 1.2217, sin ¢, = 0.7738, cos ¢, = 0.6334.

Coordinates of joint 1 Dimensionless coordinates of point 1 are
& =x1/l, n,=y/l For this point 1, we have tan ¢, =4m(1 —2¢;) or
1.2217 =4-0.5(1 — 2&;). Solution of this equation is ¢&; = 0.1945, so
x1 = 0.19451. For ordinate of point 1 we get y; = 0.31331.

Stability equation Since the arch is divided into two portions, then each matrix
from C = L,,ByG will be a scalar.

Entry of matrix L,, is
[Ln] = 1(&1 cos ¢ +ny sin @) x (1 —2¢;)
=1(0.1945 x 0.6334 + 0.3133 x 0.7738) x (1 — 2 x 0.1945) = 0.2234/[1].
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Table 5.1 Parameter K for critical load [Smi84], [Din46]

. Xy So

m :f7 (factor /) (factor /) K

0.1 0.24524 0.25652 28.2 (28.5)
0.2 0.23333 0.27456 44.5 (45.4)
0.3 0.21896 0.30109 47.6 (46.5)
0.4 0.20562 0.33343 43.3 (43.9)
0.5 0.19463 0.36974 36.8 (38.4%
0.6 0.18601 0.40882 30.6 (30.5)
0.7 0.17934 0.44992 25.3 (—)
0.8 0.17416 0.49251 21.1 (20)
0.9 0.17009 0.53623 17.7 (—)
1.0 0.16685 0.58085 15.0 (14.1)

4See comment in [Smi84, p. 333]

Entries of matrices By and G are

580 5-0.370! 0.3083/
] = 230 qy - 203700, 030831,

[G] = sec o,[1] = 1.5788]1].

For matrix C we get C = L,ByG = 0.2234] x (0.3083//EI) x 1.5783[1] =
(0.1087/2/EI).

Stability equation det(C — AE) =0 leads to the following eigenvalue
/.= 0.10871/EI.

Since 4 = 1/H, while thrust H = q/?>/(8f), then for critical load we get
ger = 36.8E1/P.

For different parameters m the critical load may be presented as gg = K(EI)/.
Parameter K is presented in Table 5.1; coefficients K, obtained by Dinnik [Din46]
are shown in parentheses. This table also contains the abscissa x; for point 1 and
length Sp.

Analysis of Results

With the half-arch divided only into two segments, Smirnov’s method leads to
acceptable results. Even for arches with parameters (m = 0.8—1.0) the relative error
is not more than 6%. If the axis of the arch is divided into arbitrary number of the
segments, the analytical expressions for entries of C can be found in [Smi84].

5.3.3.2 Concentrated Load

The arch AB of span / and rise fis loaded by the single force P at a crown C. The
form of the loss of stability is shown in Fig. 5.4 by dotted line.
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Fig. 5.4 Design diagram of
symmetrical two-hinged
parabolic arch subjected to
load P and form of the loss of
stability and its equivalent
design diagram for
antisymmetrical buckling

Table 5.2 Parameter Kp for critical load [Smi84]
m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Kp 15 23.8 25.9 24.3 21.4 18.4 15.6 13.3 11.4 9.8

If half-arch is divided into two segments, then Smirnov’s method leads to the
following critical load

KpEl
cr — 1—2

Parameter Kp in terms of m = f /I is presented in Table 5.2.

5.4 Hingeless Symmetrical Arches

In case of symmetrical hingeless arch we can replace it by equivalent half-arch.
However, in this case, in contrast to two-hinged arch, the half-arch now presents a
redundant structure. This fact adds additional features in Smirnov’s procedure: the
matrix C in the stability equation may be constructed after solution of corresponding
canonical equation [Smi47].

5.4.1 Duality of Bending Moment Diagram and Influence Line

For stability analysis of hingeless symmetrical arch we use the following theorem:

Bending moment diagram in the real structure caused by unit load (force or couple) which
acts at point k coincides with influence line of corresponding fictitious load factor at the
same point £ for fictitious (conjugate) structure [Smi47].

This correspondence for some structures is shown in Table 5.3
We explain the concept of “corresponding load.” In the fictitious structure, the
bending moment in the point £ due to the fictitious load is a linear displacement at
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Table 5.3 Correspondence of bending moment diagram for real structure and influence line for
fictitious structure

Bending moment diagram for Influence line of corresponding factor
real structure for fictitious structure
P=1 [

T

=l

M=1(i _é_ = 7, k}:ho—{ 1L 0,

= ( h@, g = 110, (k)

the same point of the real structure; this displacement and unit force P in the real
structure correspond to each other, so P = 1 corresponds to My, Similarly, M = 1
corresponds to fictitious shear force Q.

This theorem allows us to determine the displacements of the real structure by
applying elastic loads to the bending moment diagram and treating them as the
influence line [Smi47], [K1e80]. This theorem will also be used for stability analysis
of the hingeless arch.

Let us demonstrate the application of this theorem for computation of displace-
ment at the free end of the cantilever uniform beam of the span / (Fig. 5.5a).

Subdivide the beam into two equal parts (0—1 and 1-2). The specified points are
labeled as 0, 1, and 2. The bending moment diagram for actual beam is shown in
Fig. 5.5b. Fictitious beam and elastic loads W, and W, are shown in Fig. 5.5c.
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Fig. 5.5 (a) Design diagram a

of the beam; (b) bending P
moment dlagr.a.m of the real Ely=co £ l
beam; (¢) fictitious beam; d) |- ——— -
unit state and corresponding
bending moment diagram; (e) Ao =12 Ar=1/2

influence line for bending
Mp

moment at the clamped
support of the fictitious beam b

W Wy
c 0
A A A A
Fictitious
beam
P=1
d 1.1 0.51
\ &y
e ! 0.57
N —_— B et
| IL M,

For calculation of W, we need to know bending moments at three consecutive
points; dotted line shows additional portion of the beam with end points —1 and 0;
the length and stiffness of this portion are 1 and Ely = oo. The elastic loads are

Ao A
Wo = o (M_j + 2Mo) + ——— (2My + M)

6El, 6EI
2o ! PI\ 5PP
= oo M-+ 2M0) + o <2Pl * 2) T 24EI

W= (M+2M)+}
= 6EL Y 6EL

! Pl I (. Pl PP
P — (2% =
12E1( f+2 2)+1251( 2+O> 4EI

Now these elastic loads should be applied to fictitious beam. Since the bending
moment diagram is traced on the tensile fibers and ordinates of M diagram are
located above the axis, then the elastic loads should be directed upward. Unit state
which corresponds to the required displacement and corresponding bending
moment diagram is shown in Fig. 5.5d. Influence line for bending moment at the
clamped support of the fictitious beam is shown in Fig. 5.5e. To determine vertical

(2M, + M>)
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Fig. 5.6 Design diagram of symmetrical hingeless parabolic arch and equivalent half-arch for
antisymmetrical buckling and its equivalent design diagram for antisymmetrical buckling

displacement at point 2 of the real structure we need to load the influence line Mgc‘
by the elastic loads

5P P2 | PP
= 1 x1 05 = ——x[+— =
yo =Wy x1xI+W; x TAEl X [+ AE] X

2 3El

5.4.2 Parabolic Uniform Arch

Design diagram of hingeless parabolic uniform arch is shown in Fig. 5.6a. Let us
show the application of the theorem considered in the previous section for the
stability analysis by the Smirnov’s method. If the loss of stability occurs according
to the antisymmetrical form, then the equivalent half-arch is shown in Fig. 5.6b.

Stability equation, as before, is det(C — AE) = 0, where E is identity matrix,
eigenvalue A = 1/H, and thrust H = q/*>/(8f). However, since the half-arch is a
redundant structure, then matrix C should be determined by a different method
[Smi84]. The structure in Fig. 5.6b has one redundant constraint. Canonical equa-
tion of the Force method and primary unknown are

onuXi +Ap=0—-X, = —ﬂ.
o1
Let the primary unknown X, be the moment at the fixed support. The axis of the
arch is divided into n equal curvilinear parts. The nodal points are denoted by 1, 2,
.., n—1, the coordinates of which need to be calculated. After that we show the
bending moment diagram for unit state (Fig. 5.7a). The matrix moments in the unit
state and its transposed matrix are
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X=1
2

Fig. 5.7 Primary system, bending moment diagram due X; = 1 and influence line R4

M-y

where first subscript 1 represents the primary unknown X;, while the second
subscript represents the index of the nodal point.
It can be shown [Smi84] that the unit displacement is

1 _
0l = —— 3<p -2
N 28m2El (Sec 0 S)’
where
m= (g = arctan 4m S—S—l <p—|——1 In(4m + )
=L. = arctan =—=—|sec n sec ¢g) | -
I’ 0 ’ I 4 0T am 0

Free term A;p of canonical equation presents an angular displacement at support
A. This displacement may be presented in terms of shear at point A of a fictitious
structure. For given supports of the primary system (Fig. 5.7a) the fictitious
structure and real half-arch coincides. Fictitious shear at support A equals to the
reaction at A. Influence line of this reaction due to load P = 1, which is directed
normally to the axis of the arch, coincides with bending moment diagram M (see
Table 5.3).

The final results are as follows [Smi84]. Matrix C of stability equation is
determined by formula

1 —
C = L,By (E - 5M1M1TB§V>G. (5.13)
11
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Moment influence matrix L, will be the same as the one for a two-hinged
parabolic arch.
The matrices of elastic load for primary system and given structure are

2 1 0 . ]
1 4 1
.S
el o |
1 4 1
| 0 1 4]
0.5 0.1 0 . )
0.1 1.0 0.1
580
_ 220 5.14
W 6EI (5.14)
0.1 1.0 0.1
i 0 0.1 1.0

At point A only one portion (A — 1) exist. Therefore, the first entry of the
matrices By and By, are twice as small as the rest of the diagonal entries. Last
diagonal entry of these matrices remains unchanged since at the last point C the
bending moment is zero. Diagonal matrix

G = diag[sec ¢, sec ¢; ... sec p,_y)].

Detailed stability analysis of uniform parabolic arch with ratio f/I = 1/6 is
presented in [Smi84]. If half-arch is divided into four equal parts then the critical
load becomes

qer = (89.5EI)/P.

The critical uniformly distributed load may be determined by the formula (4.29)
ger = K(EI/P). Parameter K for different types of parabolic uniform arches in
terms of f/! is presented in Table 4.6 [Din46], [Mor73].

5.5 Arch with Complex Tie

A tie of the arch may be represented as the single member at the level of supports
(or the elevated tie), as well as a complex tie. One example of such complex tie is
shown in Fig. 5.8a. If a load is applied to the tie, then internal forces in the hangers
create the effect of elastic foundation for the arch. If load acts on the arch itself, then
with the aid of hangers the load is transferred onto the tie.
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Fig. 5.8 (a) Design diagram of two-hinged arch with complex tie; (b) half-arch and geometrical
notation

Table 5.4 Geometrical parameters of the parabolic arch [Smi84]

Point X =&l e =il tan sy sin ¢, COS ©y Sk
0 0.0 0.0 1.6 0.8480 0.5300 -
1 0.125 0.175 1.2 0.76822 0.64018 s; = 0.21506
2 0.250 0.300 0.8 0.62470 0.78087 s, = 0.17678
3 0.375 0.375 0.4 0.37138 0.92848 s3 = 0.14577
4 0.500 0.400 0.0 0.0 1.00 sy = 0.12748
Factor i i i

The stability problem for arch with complex tie may be effectively solved by
Smirnov’s matrix method as shown below.

Design diagram of the uniform symmetric parabolic arch of span / and rise f is
shown in Fig. 5.8. The complex tie includes a tie at the level of supports and vertical
hangers. Connections of the hangers with arch itself are realized by means of simple
hinges, while the connections with horizontal part of the complex tie are realized by
means of multiple hinges. The tie of the arch is subjected to uniformly distributed
load (this load is not shown). Distances d between all hangers are equal. The span of
the arch is divided into 2n equal portions, so the length s, of each curvilinear portion
of the arch are different; in our case n = 4.

Assume that parameter f// = 0.4; coordinates x and y for each joint (points
k=0, 1, 2, 3, 4), the trigonometric functions for these joints, and the length of
curvilinear portions of the arch are shown in Table 5.4.

As before, the stability equation is det(C — AE) = 0. However, matrix C is
calculated by taking into account the features of design diagram.

Numerical procedure is based on the following additional structural analysis
[Smi84]:

1. Calculation of the vertical displacements of joints of a tie at the moment loss of
stability occurs and corresponding change of internal force in each hanger.

2. Calculation of additional forces which prevent the loss of stability and
corresponding additional bending moments in the arch.
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This analysis can be presented in matrix form [Smi84]. For antisymmetrical loss
of stability the first stage of numerical procedure for given arched structure includes
the construction of the following matrices:

Initial Matrices

(The total number of panels for half-arch is n = 4)

1. Matrix of elastic loads according to (5.9) is

;| 201+ p2) ( P2 : 0 / oa)
Byy = — P2 2(py + p3 P3 =—{bi},
OF1 0 P3 2(p3 + p4) ok

where p, = s I /Il (k= 1,...,4), so the relative flexibility p, of a member k of
an arch equals to its relative length, ie.,
p; =81/l =0.21506, p, =0.17678,.... For entry b;; of matrix Byy we get

by =2(0.21506 + 0.17678) = 0.78368.
2. For primary system the matrix (3 by 3) of elastic loads

l
BU - b()
w 6EI ik

is determined according to (5.3). For entry b(l)1 of matrix BOW we get

S1 52
= (24— 24 =
1 ( +2S2>Pl+< +2S1)p2

B ( 0.21506 0.17678

2-0.21506

30176 0.17678>0'21506 + (2 +

>0. 17678 = 0.98715.

3. The moment influence matrix L,, is determined by radial forces

3r1 3ry—4cip 3r3 —4cr3
L, = 1 21 21, 2r3 —4dep | = Z{lik}a
r I r3

where segments, according to Fig. 5.8b, are
ry=d cos @, +mn, sin @, c1p =d cos p, + (1, —n;)sin @,,

ry = 2d cos py + 1, sin @, 13 = 2d cos @3 + (13 — 1;) sin @3,
r3 = 3d cos g5 + 15 sin @3, 3 =d cos @3 + (73 — 1) sin 5.
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For entry /1, = 3r, — 4c1, of matrix L,, we get

ry = 2d c0S @y + 1 $i 9y = 2 x 0.125 x 0.78087 + 0.300/ x 0.62470
= (0.38263/,
cip =d cos @, + (1, — my) sin p, = 0.125/ x 0.78087 + (0.30 — 0.175)!
x 0.62470 = 0.175701,
l1p = 3rp —4c;p =3 x 0.38263] — 4 x 0.17570] = 0.445091.

In our case we get [Smi84]
0.64338 0.44509 0.23675
L,=-10.42892 0.76526 0.39926
0.21446 0.38263 0.48745

4. The moment influence matrix L,y is determined by vertical forces for simply
supported beam of length /2.

I 3 21
Ly==—=12 4 2
3201 2 3
5. Diagonal matrices G and Gy are
sec ¢ 0 0
G = 0 sec ¢, 0 ,
0 0 Sec 3
Cos 0 0
Gy = 0 COS s, 0 , (5.15)
0 0 COSs (3

where ¢, is the angle between tangent at point k and horizontal line.

Matrix Procedures

1. Matrix Cj, relates to the two-hinged arch without tie Cy = LmB(V)VG.

2. Matrix C; takes into account effect of tie C; = L,,ByyL,vGy.

3. Stability equation of the arched structure is det(C — AE) = 0. Stability matrix
C= Co - C] = (12/24E1){ka}.
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4. Maximum stability parameter Ay,x should be calculated numerically. For given
arch  Amax = 0.895/%/24EI.  Corresponding  thrust is  Hpin = 1/Amax =
24E1/0.895% and smallest critical load is

8Hmi
Gdmin = ! nf = 85.81

EI
1_3.

According to the formula C = Cy — Cy, the critical load for arch with tie is more
than the critical load for arch without tie. For arch with tie in Fig. 5.8 the critical
load is almost twice as large as the critical load for the same arch without tie.
More stability problems of the arches (with elastic supports and with overarched
structure, out-of-plane stability, etc.) are presented in [Smi47], [Mor61], [Smi84].

5.6 Displacement Method

If an arch has certain features (e.g., nonsymmetrical or skew arch) then easiest
approach for stability analysis is based on substituting the arch by frame. The frame
is constructed from chords of the arch. Stability analysis of this substitute structure
may be performed by any classical method, in particular, by Displacement method
in canonical [Karl0], [Uma72-73] or expanded form [Sni66]. The Displacement
method is exact for stability analysis of frames. However, it leads to approximate
results when analyzing arches because the initial design diagram of arch is replaced
by its modified scheme. This method has also some disadvantages — the modified
design diagram contains the inclined members and diagram itself has sidesway.
Increasing the number of substitute straight members leads to an increase in the
overall computational complexity.

5.6.1 General

The distributed load which acts on the arch may be replaced by the set of
concentrated forces P. Position of the nodal points and their number depend on
the position of the flexural rigidity changes of the arch and required computational
numerical accuracy. Increasing the number of substitute straight members leads to a
increase in the numerical accuracy. Thus, this approximation may be performed by
several different ways.

Different variations of approximating the arch by straight members in the
vicinity of the crown C are shown in Fig. 5.9.

In all cases in Fig. 5.9 we obtained a framed structure and for its stability analysis
we can apply the Displacement method. In case of a symmetrical structure we can
replace the substitute frame by its equivalent half-frame.
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Fig. 5.9 Approximation of initial design diagram of the arch by substitute frame

Canonical equations of the Displacement method for structure with n unknowns
Zi(j=12,..., n)are

riZy +riply+ -+, =0

ronZy +ronZy+ -+ 1,2, =0
(5.16)

rmZy +rply + - Ty = 0.

Features of (5.16)

1. Since the forces P; are applied only at the joints, then the canonical equations are
homogeneous ones.

2. Bending moment diagrams, caused by unit displacements of introduced
constrains, within the compressed members are curvilinear. Reactions of
constraints depend on axial forces in the members of the frame, i.e., contain
parameter v of critical load. If a frame is subjected to different forces P;, then
critical parameters should be formulated for each compressed member
v? = P;I*/(EI); and after that all of these parameters should be expressed in
terms of parameter v for specified basic member. Thus, the unit reactions are
functions of parameter, i.e., ri(v).

The trivial solution (Z; = 0) of (5.16) corresponds to initial nondeformable design
diagram. Nontrivial solution (Z; # 0) corresponds to the new form of equilibrium.
This occurs if the determinant, which is consisting of coefficients of unknowns,
equals zero, i.e.,

rin(v) rip(®) - ()
det ’21:(0) rzzz(v) ’2n:(v) =0. (5.17)

rnl'(v) r,,zh(v) oo ()

Condition (5.17) is called the stability equation of a structure in a form of the
Displacement method. For practical engineering, it is necessary to calculate the
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Fig. 5.10 (a) Design diagram; (b) primary system of the Displacement method and unit bending
moment diagram

smallest root of the above equation. This root defines the smallest parameter v of
critical force, or smallest critical force. Canonical equation of the Displacement
method in the form (5.17) for stability analysis of the frames was developed by
Leites (1937) [Uma72-73, Chapters 17.1-17.10].

It is obvious that condition (5.17) leads to a transcendental equation with respect
to parameter v. The functions ¢(v) and n(v) are tabulated (Table A.33). Since the
determinant is very sensitive with respect to parameter v, it is recommended to
solve (5.17) using a computer. The functions ¢(v) and 7(v) may be presented in
approximate form [Bol64]; in this case (5.17) leads to an algebraic equation.

The only limitation for applying this method is that the flexural rigidity and axial
compressed force should be constant within the each member.

Let us derive the stability equation and determine the critical load for frame
shown in Fig. 5.10a. This frame has one unknown of the Displacement method. The
primary unknown is the angle of rotation of rigid joint. Figure 5.10b shows the
primary system, elastic curve, and bending moment diagram caused by unit rotation
of introduced constrain. The bending moment diagram for compressed vertical
member of the frame is curvilinear. The ordinate for this member is taken from
Table A.32, row 1.

The bending moment diagram yields r1; = 4i1¢,(v;) + 4i,, where i1 = EI, /I,
i» = EI, /I, and parameter of critical load v; = /1+/P/EI. Note that subscript 2 at
function ¢ is related to the clamped—clamped member subjected to angular dis-
placement of one support (Table A.32), while the subscript 1 at the parameter v is
related to the compressed-bent member 1. Canonical equation of the Displacement
method is 11 (v1)Z = 0.

Nontrivial solution of this equation leads to equation of stability r;; = 0 or in
expanded form

4EIL

4EI
=) + T =

—=0.
L
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Note, that Displacement method allows us to take into account some changes in
the design diagram; for example, if a fixed support A is replaces by a pinned
support, then stability equation becomes

ri = 3i1§01(01) +4lz =0.

Special Cases

1. Assume that /; — 0. In this case the second term (4El,/l;) — oo, rigid joint is
transformed to clamped support and the initial frame is transformed into the
vertical clamped—clamped column. Stability equation becomes ,(v;) = —oo.
The smallest root of this equation is v; = 27 and critical force becomes

_viEl _47’El  7’El

P (0.51,)*

where u = 0.5 is effective-length factor for clamped—clamped column.

2. Assume EI, — 0. In this case, the rigid joint is transformed to hinge and the
initial frame is transformed into the vertical clamped—pinned column. Stability
equation becomes ¢, (v;) = 0. The smallest root of this equation is v; = 4.488
and for critical force we get

V2EI  4.488°El  m2EIl
P,=-L"-= = , u=07.
T 2 (0.71;)? s

3. If y =1, El, = EI,, then stability equation becomes ¢, (v;) + 1 = 0.
The smallest root of this equation is v; = 5.3269 and critical load equals
P = (VEI/I) = (28.397EI/13).

Modified Approach of the Displacement Method

In general case, the Displacement method requires introducing constraints, which
prevent angular displacement of rigid joints and independent linear displacements
of joints. However, in stability problems of a frame with sidesway, it is possible for
some modification of the classical Displacement method. Using modified approach,
we can introduce a new type of constraint, mainly the constraint, which prevents
angular displacement, but simultaneously has a linear displacement (Table A.32,
row 3). Modified approach of the Displacement method is presented in [Kar10].
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Fig. 5.11 (a) Design diagram of symmetrical two-hinged uniform arch and its substituted frame;
(b) primary system of Displacement method and group unknowns

5.6.2 Two-Hinged Arch

Let us demonstrate application of the Displacement method in canonical form for
stability analysis of two-hinged uniform symmetric arch loaded by two forces P
(Fig. 5.11a). Simplest version of the substituted frame is shown by solid lines; it is
constructed in such way so that forces are applied at the rigid joints of the frame.
The unavoidable disadvantage of this system is that the substituted frame is with
sidesway.

To obtain the primary system of Displacement method we need to introduce two
rigid joints 1 and 2 and support 3 into the design diagram; they are shown in bold in
Fig. 5.11b. Constraints 1 and 2 prevent angular displacements of joint 1 and 2 and
constraint 3 prevent linear displacement of the cross bars 1-2.

For stability analysis of this symmetrical frame it is very effective to adopt the
group unknowns of the Displacement method as shown in Fig. 5.11b; Z; represents
the simultaneous angular displacement rotation of introduced constraints 1 and 2 in
one direction, while Z, represents the simultaneous angular displacement of same
introduced constraints in opposite directions (Bresse’s method, 1854) [Bre54, 59];
Z; represents a linear displacement of cross bars 1-2.

By using the group unknowns we can separate the full system of canonical
equations into two separate independent subsystems. First subsystem allows us to
determine the critical load for symmetrical form of loss of stability and second for
antisymmetrical form of loss of stability.

Stability analysis consists of the following steps:

1. Determine some parameters of the frame
lo-1 = 13.4164m, tan f=0.5, sin § =0.44721, cos ff = 0.89443.
2. For a given frame we find the thrust H by any analytical approach, for example,

by the Force method or using tabulated data. Axial loads in members 0—1 and
1-2 in terms of H are Ng_y = H/cosfi; N, = H.
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Fig. 5.12 Bending moment
diagram in the first unit state

3. For each member of length /; of the frame, calculate the parameter

¥; = I;n/N;/EI of critical force. For one specific member of the frame the
parameter of a critical load is adopted as the base parameter and all remaining
parameters are expressed in terms of the base parameter.
Parameter of critical loads for members 0—1 and 1-2 are

No_1 N2 H
Yoo1 = lo—14/——, V12 =lL2{/—==8y/—.
-1 =lo-1\| 7 Vi =l V&

Assume the parameter ¥;_, = 1 is a base parameter. Then for Jy_; we get

/ H |H
_1 =134164\/ ————= = 1. —=1. .
Jo—1 3.416 089443E] 7733 x 8 7l 77339

Figure 5.11b contains the length /, stiffness per unit length 7, axial forces N, and
critical parameter O for each member of the substituted frame.

4. Now we need to construct bending moment diagrams caused by unit primary
unknowns of Displacement method and calculated unit reactions.

First unit state (Z; = 1). Bending moment diagram caused by the unit rotation of
introduced constraints Z; = 1 (antisymmetrical unknown) is shown in Fig. 5.12.
This diagram is antisymmetrical. Elastic curve is shown by dotted line.

Mgljo = 3io—101(Yo-1)

1 1

Mé_)g = M§—>O

MY, = 40, 50,(9) + 21 205(9)
1 1

Mé_)l = M§—>2

Top subscript (1) at M denotes the first state. Subscript 1 at function ¢, relates to
pinned—fixed beam in case of angular displacement of fixed support while
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Fig. 5.13 Bending moment
diagram in the second unit
state

subscripts 2 and 3 relates to fixed—fixed beam (member 1-2) in case of angular
displacement of fixed support (Table A.32).
Unit reaction

i =2(M1 + M) = 20Bio 100 (0-1) + 4ir-202(9) + 201205 (9)].
After substituting the corresponding quantities we get

i1 = 2[0.2236¢, (1.773310) + 0.50,(9) + 0.25¢5(9)]EL

Secondary reactions will be calculated later.

Second unit state (Z, = 1). Bending moment diagram caused by the unit rotation of
introduced constraints Z, = 1 (symmetrical unknown) is shown in Fig. 5.13. This
diagram is symmetrical.

Msz—)o = 3io-11(Yo-1)
2 2
M§J3 = M§—>0
MY, = 4i 2 (1) — 201203 (V)

Unit reaction
= 2(M@o "‘M@z) = 2[3io-11p1 (Yo—1) + 4i1-2p5 () — 2i1-203(I)].
After substituting the corresponding quantities we get

rm = 2[0.2236¢, (1.77339) + 0.5¢,(9) — 0.25¢5(9)]EIL.

Since M, and M, diagrams are antisymmetrical and symmetrical, respectively,
then r; =ry;; =0. This is an important result due to application of group
unknowns. Other secondary reactions are discussed below.
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Fig. 5.14 Hinged scheme of
the frame and displacement of
the joints in the third unit state

Fig. 5.15 Bending moment
diagram in the third unit state

Third unit state (Z3 = 1). Hinged scheme of the frame and its position caused by
Z; = 1 is shown in Fig. 5.14. The displacement of point 1 is directed perpendicu-
larly to member 0-1 and its new position is denoted as 1’. Point 2 is moved
perpendicularly to member 2-3 and its new position is denoted as 2'.

Ag_1 = csc f,
Ay = cot 3,
Ay 3 =csc B,
Ay_1 =cot f5.

For member 1-2 relative vertical displacement of the ends is
A=A ,+A, 1 =2cotf.

Bending moment diagram in the third unit state is shown in Fig. 5.15.

Io—
MY, = 3%%4 x @1 (Jo-1)

3 3
My = M,

M@z = 62;2A x p4(V)

(3) _ a0
My~ =M=,
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33

Fig. 5.16 Calculation of r33

Design diagram for calculation of r33 is shown in Fig. 5.16. The section
passing through member O-1 is infinitely close to joint 1. Bending moment
M,_y is directed according to position of extended fibers, which are shown by
dotted line; the top subscript “3” is omitted. This moment is equilibrated by shear
force Q1-o = (3EI/I_,)1,(99-1)Ao-1. Then this force is transferred on the part
which is adjacent to joint 1. Also we need to show the axial force Ni_g

Similar procedure is applied to portions 1-2 and 2-3. Shear force for fixed—fixed
member 1-2 subjected to relative vertical displacement A of the ends equals
Q1.2 = Q21 = (EI/I_,)n,(9)A. Equilibrium equations > X =0and > Y =0
for joints 1 and 2 allow us to calculate the normal forces. Relationship Ny_» = N»_
can be used for verification of computed results. Moreover, Ng_; = —N;_3. There-
fore, equation Y X = 0 for cross bar in whole leads to the following result

3El 3El

33 = 2Q$3_>0 sin f =2 X 5 3 —Ao—1m,(Fo-1) sin f =2 x —mn;(Yo-1)-
0-1

Performing a similar procedure over the bending moment diagram M; we get

3El 12E1
2| () —
2| sin ﬂ%( 0-1) B, tan f8

@4(79) .

3 = —

This result may be obtained by considering equilibrium of joints 1 and 2 from
diagram M;. In this case, moment is

31 = *Mgi)o +M§3,)2 +M§3,)1 7M§3,)3 .

Joint 1 Joint 2
Substituting the numerical data, we get

i = 2[0.2236¢, (1.77339) + 0.5¢,(9) + 0.25¢, (9)]EI,
ray = 2[0.2236¢, (1.773309) + 0.5¢,(9) — 0.25¢, (9)]EI,
ry3 = 2 x 00012427, (1.77339)EI,

ri3 = ra1 = —2[0.037476¢,(1.77330) — 0.375p,(9)]EI
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Since the bending moment diagrams M, and M3 are antisymmetrical while M, is
symmetrical, then

'y =171y = 0 and I3y =13 = 0.

Now we can form the stability equation, calculate the critical parameter, and
determine the critical load.
In our case, the set of canonical equations of stability

rZy +riZy +ri3Z3 =0
112y + 1202y + 1323 =0
13121 + 1307y + 13323 = 0.

are separated into two independent systems

m2y +rizZ3 =0
Z, =0.
1‘3121 + r3323 =0 and oy 0

Stability equations become

' s

=0 and I = 0.
31 133

The first subsystem describes the antisymmetrical loss of stability, while second
equation describes symmetrical loss of stability. For solution of these equations we
need to take into account expressions for functions ;, 7 according to Table A.33.
For stability parameters we get

Uane = 2.0344  and  Jgy, = 2.6007.

Critical thrust becomes
EI EI
2 2
Haysym = 2.0344 ) yHym = 2.6007 TR

After that we can calculate the critical load P. Note, these results corresponds to
a crude model approximating entire arch.

Numerical results for three-hinged and two-hinged arches subjected to uni-
formly distributed vertical load within the whole span are presented in [Sni66]. If
entire arch is represented as five chords with equal horizontal projections then
relative error of the Displacement method is no greater than 2%.
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5.7 Comparison of the Smirnov’s and Displacement Methods

Advantages and Disadvantages of Smirnov’s Method

In Smirnov’ method the axis of the arch is replaced by a set of curvilinear segments
which coincides with arch itself. Therefore, errors of the method arise from
numerically inaccurate calculation of nodal point coordinates obtained from the
solution of transcendental equation. It means that the results which are obtained
from Smirnov’ method should be treated as ground truth.

According to Smirnov’s method, the arch should be presented as a set of
curvilinear segments of equal length and constant stiffness within each segment.
Meeting these requirements is not always possible in case of arches with variable
stiffness (of course, with a reasonable number of the finite portions). The other
disadvantage is related to the difficulties of analyzing nonsymmetric arches.

Any change in the design diagram of the arch (addition of the overarched
structure, combined tie, elevated tie, fixed supports, etc.) leads to a procedure that
is not easily generalizable. Even if the governing general stability equation
det(C — AE) = 0 holds true, the matrix C depends on the features of the arched
structure. These peculiarities limit the scope of the method.

We note that the span of a parabolic arch can be divided into a set of equal
lengths portions. In this case, we can use the concept of the parabolic chain
[Rab54b], [Rab58, Vol. II]. Its properties and important relationships are consid-
ered for free vibration analysis in Chap. 6.

Advantages and Disadvantages of the Classical Methods
in Canonical Form

Stability problems of the arches may be solved using the classical Force and
Displacement methods in canonical form. Approximate stability analysis by both of
these methods requires the construction of a substitute frame, and thus these methods
lead to the approximate results. A poor choice for the primary system of the Force
method can lead to significant difficulties of computational nature [Smi47]. Displace-
ment method does not have similar disadvantages, because the primary system is
constructed according to strong rules. These rules allow considering nonsymmetrical
arches, take into account the elastic supports as well as any type of loading. It is very
convenient that the Displacement method in canonical form is easily generalizable.
As in case of Smirnov’s method, computational procedure becomes more cumber-
some with increasing the number of elements which approximate an arch.

Displacement method, generally, allows constructing the stability equation for
the full spectra of critical forces. Given this, it is unnecessary to assume the initial
form of loss of stability. The group unknowns allow simplifying numerical proce-
dure and separate stability analysis for symmetrical and antisymmetrical forms of
the loss of stability.
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Chapter 6
Free Vibration of Arches

The theory of vibration is a special branch of structural analysis. This theory allows
us to evaluate internal forces and displacements in the structure caused by
dynamical loads of different nature. Often it is the case that these forces and
displacements are significantly greater than the forces and displacement for the
case of static loading. Engineering practice has seen a lot of cases when
underestimation of this feature of dynamical loads leads to the collapse of structure.

This chapter is devoted to free vibration analysis of arches. Different types of
arches are considered. Among them are circular and parabolic arches with different
boundary conditions. Analytical methods of analysis are demonstrated.

6.1 Fundamental Concepts

The mathematical basis for the theory vibration of the arches was laid by Kirhhoff
(1824-1887) [Kir76]. Fundamental investigation of vibration of deformable
structures was performed by Lord Rayleigh (1842-1912) [Ray77], Love
(1863-1940) [Lov20], Timoshenko (1878-1972) [Wea90]. Duhamel (1797-1872)
gave a general method for analyzing the forced vibration of elastic bodies [Duh43].
A significant contribution to the problem of vibration of arches was done by
Morgaevsky [Mor40], Demidovich [Dem49], Rabinovich [Rab51], [Rab58],
Chudnovsky [Chu52], Pratusevich [Pra52], Bolotin [Bol78], [Bol84]. Prokofiev
and Smirnov [Pro48], Laura [Lau87a,b], [Lau88a—c], to name a few, devoted a
significant amount of work to developing numerical methods of dynamical analysis
of arches.

6.1.1 General

We begin with considering some of the key concepts.

L.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration, 269
DOI 10.1007/978-1-4614-0469-9_6, © Springer Science+Business Media, LLC 2012
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Fig. 6.1 Types of oscillatory motions

Kinematics of Vibrating Processes
The simplest periodic motion can be written as
y(1) = Asin(wt + @),

where A is the amplitude of vibration; ¢, is the initial phase of vibration; ¢ is the
time. This case is presented in Fig. 6.1a. The initial displacement yo = A sin ¢, is
measured from the static equilibrium position. The number of cycles of oscillation
during 27 seconds is referred to as circular (angular or natural) frequency of
vibration @ = 27 /T(radians per second or s~!), T(sec) is the period of vibration.
Figure 6.1b, c presents the damped and increased vibration with constant period.

Vibration Forces

During vibration, a structure is subjected to different forces. These forces are
different in nature and exert a different influence on the vibrating process. All
forces may be divided into the following groups: disturbing forces, positional
(restoring) forces, resisting forces, and forces of the mixed character.

1. Disturbing forces are functions of time. These forces are usually subdivided into
the following types: immovable periodical loads, impact (impulsive) loads,
moving loads, seismic loads.

2. Restoring forces depend on the displacement of the structure, arise due to
deviation of system from a static equilibrium position and tend to return the
system to its initial position. Restoring properties of a system are described by its
elastic characteristic P = P(y), where P is a static force which is applied to the
structure. Characteristic P —y may be linear or nonlinear. Some types of
characteristics P — y are presented in Table 6.1; in all cases y is the displace-
ment at the point of P.

3. Resisting forces. The forces of inelastic resistance (friction or damping forces)
depends on the velocity v of motion, R = R(v), and always act in the opposite
direction of velocity. These forces are the result of internal friction in the
material of a structure and/or in the connections of a system.
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Table 6.1 Types of elastic members and their characteristics

Design diagram Characteristic P-y Design diagram Characteristic P-y
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Degrees of Freedom

Fundamental concept in the structural dynamics is the degrees of freedom of a
structure. They are independent geometrical parameters that describe positions of a
structure at any moment in time. The difficulties and features of dynamical analysis
of structures depends first of all on the number of degrees of freedom.

All structures may be divided into two principal classes according to their
number of degrees of freedom. They are structures with concentrated and
distributed parameters. Members with concentrated parameters assume that the
distributed mass of the member itself may be neglected in comparison with the
lumped mass, which is located on the member. The structure with distributed
parameters is characterized by uniform or nonuniform distribution of mass within
its parts. From a mathematical point of view, the difference between the two types
of systems is the following: systems of the first class are described by ordinary
differential equations, while systems of the second class are described by
partial differential equations.

The fundamental difference of the concept of “degrees of freedom” in static and
structural dynamics and computation of degrees of freedom for different deform-
able structures is discussed in [Kar10].

Free and Forced Vibrations

Different types of forces acting on a structure lead to different types of vibrations.
Among them are two general classes — free and forced vibration.

Vibrations of a system in which disturbing forces are absent are called free
vibrations. In the case of free vibrations, the system is subjected to forces inherent
to the system itself, i.e., the restoring and resisting forces. In order to impose free
vibrations, nonzero initial conditions should be created, which means that the
system is subjected to some initial displacement and/or initial velocity. Free
vibration may be linear or nonlinear depending on the characteristics of restoring
and resisting forces. Absence of resisting forces leads to the free undamped
vibrations; in this case, the system is subjected only to a restoring force.
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The free vibration occurs at a certain frequency inherent to the system itself.
Therefore, this frequency is called eigenfrequency or just frequency of free vibra-
tion. If a system has two or more degrees of freedom, and the system vibrates at a
single frequency, then the ratio of displacements of two arbitrary points of the
system remains constant. The shape of vibration is the profile of the system at the
specified frequency of the system and is therefore known as the eigenfunction or
just mode shapes of vibration. Due to the fact that dampening forces are always
present in any structure, free vibrations will always decrease in magnitude as a
function of time. However, knowing the frequencies and shapes of free vibrations is
necessary for further analysis of the system and determining these frequencies and
shapes is the primary problem of free vibration.

Vibration of a system caused by any disturbing forces is called a forced vibra-
tion. Neglecting the resisting forces in the system leads to forced undamped
vibration. Just as in the case of free vibrations, forced vibrations may be linear or
nonlinear. The ratio of any dynamical quantity (displacement, reaction, etc.) to a
static quantity due to the maximal disturbing force is called dynamic coefficient.

6.1.2 Discrete Models of the Arches

In the general case, transversal vibrations of the arch are described by a complicated
partial differential equation; special modification of the equation are discussed in
[Chu52], [Rek73]. Generally, it is extremely difficult to obtain analytical solutions
for vibration of an arch as a system with distributed parameters. For approximate
vibration analysis the arch will be presented in discrete form as a system with finite
number of degrees of freedom. Discretization of an arch may be performed by
several different ways. Perhaps the most common one is to replace the mass
distributed along the axis of an arch by a series of point masses. Is it possible to
approximate the arch by a set of absolutely rigid chords with elastic connections
between them [Ter54], [Kis80].

Vibration of arches has some features. In the arch, unlike beam, the different
masses are displaced in nonparallel directions [Rab58]. The second feature of
dynamical behavior of the arch is that during vibrations horizontal inertial forces
are of the same order as the vertical ones, and in the case of a tall arch the magnitude
of horizontal forces can exceed that of vertical forces.

Figure 6.2a presents an arch with distributed mass, which is replaced by three
point masses; the axis of the arch remains curvilinear. In this case, we have a system
with six degrees of freedom.

It is possible to replace the curvilinear axis of the arch by a set of straight
members; in fact, the arch is replaced by some frame. Different types of possible
approximating frames are shown in Fig. 6.2b—d.

In Fig. 6.2b, the arch is replaced by four straight rods and masses are
concentrated in the joint of the frame. This structure has two degrees of freedom.
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Fig. 6.2 Possible discretization of the arch and degrees of freedom

In Fig. 6.2c, the arch is replaced by six rods and as before by three lumped
masses, which are still located at the joints. This structure has four degrees of
freedom.

In Fig. 6.2d, the arch is replaced by five rods and as before by three lumped
masses, which differs from the one in Fig. 6.2b by the fact that the masses are
located at the center of straight member. This structure has six degrees of freedom.

We can see that the simplest scheme is the one under which the mass of each
straight member is replaced by two point masses, applied at the ends of this
member. It is evident that any type of shown discretization types may be applied
to arches with variable cross-section, arbitrary shape, and various boundary
conditions.

The difference in each arch-approximating scheme is that for each of scheme in
Fig. 6.2 the number of the frequencies, correspondingly, mode shape of vibrations,
is different. However, the lowest frequencies of vibration for various approximation
schemes of the arch are close. The increase in the number of elements that
approximate the frame leads to a rapid pursuit of the true frequency.

In determining the fundamental frequency of vibration, one should choose a
scheme of approximation which leads to a simple and obvious computational
procedure that yields accurate results. It must be remembered that the replacement
of the arch by a frame leads to a decrease in fundamental frequency in comparison
with the frequency for the arch [Pro48].

Approximate Solutions of Dynamic Analysis
of the Discrete Models of the Arches

If a frame with sidesway, which is an approximate model of an arch, has two or
more point masses then theirs displacements (and the number of degrees of freedom
and the choice of generalized coordinates) are not always obvious.
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Fig. 6.3 Discrete arch models and generalized coordinates

Figure 6.3a presents an arched structure after it has been replaced by a set of
straight members with point masses at the rigid joints. A structure contains four
point masses. In the case of antisymmetric vibration, the equivalent half-structure is
shown in Fig. 6.3b. It is evident that virtual displacement ¢; of mass m, is directed
perpendicular to rod AB. The support D does not prevent horizontal displacement.
Therefore, the displacement of the joint C is not obvious. Assume that this structure
has two degrees of freedom. For convenience, let us show ¢, perpendicular to the
rod BC. It is clear that if rod BC was an extension of the rod AB, then this
representation of g, would be exact. In our case, g, does not account for displace-
ment m, along the rod BC. Therefore, given such a choice of the generalized
coordinates, the corresponding analysis of structure with two degrees of freedom
is only approximate. Since the frame approximating the arch is piecewise-linear, it
is difficult to show the exact direction of ¢, [Pro48].

More exact solution can be obtained by considering the structure as a system
with three degrees of freedom. For this, we must show a virtual displacement of
joint C, consisting of two components: one of them is ¢,, which is directed
perpendicular to the rod BC and other component, g3, is directed along the rod
BC (Fig. 6.3c). Both of schemes in Fig. 6.3b, c will be analyzed later.

Dynamic analysis of arch is approximate not only because we replace initial
design diagram of an arch by its discrete model, but also because different terms of
the Maxwell-Mohr integral may be taken into account while calculating unit and
load displacements. Neglecting of shear and/or axial forces also leads to approxi-
mate analysis of the arch.

Unless stated otherwise, we will consider vibration of arches under the following
assumptions:

1. The arch material is linearly elastic (Hooke’s law applies).

2. The center line of an arch is incompressible.

3. Resisting forces in the material of a structure and at connections are ignored.
4. Effects of shear and rotary inertia are neglected.
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6.2 Eigenvalues and Eigenfunctions of Arches with Finite
Number Degrees of Freedom

Behavior of structures with finite number degrees of freedom may be described by
two types of differential equations. They are equations in displacement (i.e., in the
form of the Force method) and equations in reactions (i.e., in the form of the
Displacement method). Below we consider only undamped vibration in form of
the Force method. Analysis of free vibration of the framed structures in form of the
Displacement method is presented in refs. [Kle72], [KarO1], [KarO4], and [Kar10].

6.2.1 Differential Equations of Vibration

Let us consider a structure with concentrated masses (Fig. 6.4). Express the forces
of inertia as function of unit displacements.

In case of free vibration, each mass is subjected to forces of inertia only.
Displacement of each mass may be presented as

yi = OuF! + SFy + -+ 81, F"

n’

y2 = 001 FM 4 SppF 4 - 4 5, F™,
Y = Ot FIM 4+ 8pFN - oo 4 8, F, 6.1)

where J; is displacement in ith direction caused by unit force acting in the kth
direction. Since the force of inertia of mass m; is Fj" = —m;y;, then the differential
equations become

511”11)71 + 512}712)'52 + ...+ 51nmnj5n +y1 = 0,

5nlmlj}.1 + 5}12’"2552 + ...+ 5nnmn_).;n + Yn = 0. (613)

Fig. 6.4 Design diagram and unit conditions
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In matrix form, this system may be presented as

FMY +Y =0, (6.1b)

where F is the flexibility matrix (or matrix of unit displacements), M is the diagonal
mass matrix, and Y represents the vector displacements

o1 012 - O m 0 .. 0 Y1
Fo |00 02 . Onm M= 0 m .. O vy |
O 02 oo O 0 0 .. m Y

The term J;m;y, represents the displacement in the ith direction caused by the
force of inertia — my;y;, which acts in the kth direction. Each equation in (6.1a)
presents the compatibility condition. The differential equations of motion are
coupled dynamically because the second derivative of all coordinates appears in
each equation.

6.2.2 Frequency Equation

Solution of system of differential equations (6.1) is
yi =Arsin(wt+ ¢y), y2=Axsin(wr+ py), y.=Apsin(wt+ ), (6.2)

where A; are the amplitudes of the corresponding masses m; and ¢, is the initial
phase of vibration. The second derivatives of these displacements over time are

Y1 = —A](u2 sin(wt + 800)» Y2 = —A2w2 sin(wt + ‘Po): T

Ju = —A,0” sin(ot + @). (6.2a)
By substituting (6.2) and (6.2a) into (6.1a) and reducing by w? sin(wt + ¢,), we get
(mén®* = 1Ay + mydpw®Ay + -+ + myd1,0°A, = 0,
m152|0)2A1 + (m25220)2 — I)Az + -4 m,,(32,,a)2An =0,
mlénlszl + I7125n2602A2 +---+ (’nnénn(y2 - I)An =0. (63)
Equations (6.3) are homogeneous algebraic equations with respect to unknown
amplitudes A. Trivial solution A; = 0 corresponds to the system at rest. Nontrivial

solution (nonzero amplitudes A;) is possible, if the determinant of the coefficients of
amplitude is zero
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m1511w2 —1 m2512w2 mnélnwz
2 2 2
my 1 mydpw-—1 .. My 02,
D 1021 2022 n92n — O (64)
m S, > My S > e MO @? — 1

This equation is called the frequency equation in terms of displacement. Solution
of this equation w, w;, ..., ®, presents the natural frequencies of a structure. The
number of the frequencies of free vibration equals to the number of degrees of
freedom.

6.2.3 Mode Shape of Vibration

The set of equations (6.3) are homogeneous algebraic equations with respect to
unknown amplitudes A;. This system does not allow us to find unknown amplitudes.
However, we can find ratios between different amplitudes. If a structure has two
degrees of freedom, then system (6.3) becomes

(m1511w2 — l)Al + m2512w2A2 =0,
m1521w2A1 + (m2522w2 — I)Az =0.

From these equations, we can find the following ratios

Al - }’}’I2512w2
A2 o m1511w2 —1
or
A dnw? — 1
a1 Mon® — 1 (6.5)
A2 m1521w2

If we substitute the first frequency of vibration w; into any of the two equations
(6.5), then we can find (A;/A3),, . Then we can assume that A, = 1 and calculate
the corresponding A; (or vice versa). The numbers A, = 1 and A; defines the
distribution of amplitudes at the first frequency of vibration w;; such distribution
is referred as the first mode shape of vibration. This distribution is presented in form
of vector-column ¢, whose elements are A, = 1 and the calculated A; this column
vector is called a first eigenvector ¢;. Thus, the set of equations (6.3) for w; define
the first eigenvector to within an arbitrary constant.

Second mode shape of vibration or second eigenvector, which corresponds to the
second frequency vibration w,, can be found in a similar manner. After that we can
construct a modal matrix ® = | ¢; ¢, |.
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Fig. 6.5 (a) Design diagram; (b) generalized coordinates; (c, d) unit states; (e, f) mode shapes
vibrations

If a structure has n degrees of freedom, then the modal matrix becomes [Tho81],
[Wea90], [Kar10].

D=1 @ . @]

6.3 Examples

Example 6.1. Circular clumped-free uniform rod of radius R and central angle
y = 90° has lumped mass M at the free end (Fig. 6.5a). Flexural rigidity of the
arch is EI, distributed mass of the arch itself is neglected. Calculate the frequencies
of the free vibrations.

Solution. The structure has two degrees of freedom. The first and second
generalized coordinates y; and y, are directed along the radial and tangential
lines (Fig. 6.5b), respectively; corresponding unit states and unit displacements
are shown in Fig. 6.5c, d.

According to Table A.7, the unit displacements are

si— R (2 sin 2y oo — S0t — R (l—cosy)2
11 = ay2 4 y 012 = 021 = XAy ) )

3y sin2y . R
522:R2ay(?+ 1 —251ny), ayzﬁ.

For given central angle y = 90° we get

0.7854R? 0.5R? R® (3n R’
Oy =———, Opp=207 = op=—|(——2)=03562—.
11 g on 21 B 2T (4 > il
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Since mass M moves in the directions y; and y,, then (6.3) become

(M511w2 — 1)A1 +M512(1)2A2 =0,
M52]CO A+ (M(Szz(u — 1) =0.

Let denote eigenvalue 4 = EI/MR3w?. The frequency equation becomes

07854—4 05 | _
05  03562—7|

Roots in descending order are 1; = 1.1150 and 4, = 0.02655. Frequencies of
free vibrations in increasing order are

, 1 EI

1 EI
] = 2

— = =0.8969—— (s> = — =37.665— (s2).
1 MR MR*( ) =R MR3( )

Mode shape vibration may be determined on the basis of (6.5). For the first mode
(41 = 1.1150), ratio of amplitudes is

RRYS El
A Mone? | g PR
Az (o M5110)2 -1 o MO 7854R 0. 8969 EI 1 ’
EI
or
Al _ Mone? -1 03562x0.8969 —1
Ao, Moya? |, 05x089%9

Assume that A, = 1, so the first eigenvector becomes ¢ = | ¢, ¥y JT =

115175 1.0]".
For the second mode (4, = 0.02655), ratio of amplitudes is

A Mb 0t 0.5 x 37.665
Ail _ _—122“ —_ X — —0.6589
Asl,, ~  Ménw?—1|, " 07854 x 37.665 — 1

or
A Mrpa? — 1 0.3562 x 37.665 — 1
Ail _ _Monw . —_ X — —0.6593.
Az wy M521(1) 0.5 x 37.665
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Fig. 6.6 (a) Approximate design diagram of half-arch; (b) unit states and corresponding bending
moment diagrams

The modal matrix is defined as

D — 1.5175 —0.6590
a 1.0 1.0

Corresponding mode shapes of vibration are shown in Fig. 6.5e, f.
Orthogonality condition: 1.5175 x (—0.6590)M + 1.0 x 1.0M = 0.0.

Example 6.2. Two-hinged symmetrical uniform arch with four lumped masses 1,
is shown by a dotted line in Fig. 6.6a. The flexural rigidity of arch is EI; the span and
rise of arch is / = 40 m, and f = 14 m, respectively. Compute the frequencies of
antisymmetrical vibration.

Solution. Approximate model of the half-arch is a frame with two lumped masses
mgp, as shown in Fig. 6.6a by solid lines. The rolled support D on the axis of
symmetry corresponds to the antisymmetrical vibration. Generalized coordinates
g1 and g, are directed perpendicular to elements AB and BC, respectively, while
coordinate ¢z is directed along the member BC. The unit states due to the
generalized forces and corresponding bending moment diagrams are shown in
Fig. 6.6b—d.
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The unit displacements are 6y = > [ (M;M/EI)ds. In our case, we get

1 2 10
EM“:EX10X7X§X7+Z(2X7X7+2X3X3+7X3+3X7)

1 2
+§><6><3><§><3:444.66(m3),

Eldy = 349.56; Eld33 =34.86; Elo1, =354.88; EId;3 = —124.50;
Eldy; = —99.37.

Now we will consider two cases. In the first case, we take into account only two
generalized coordinates ¢; and ¢, while in the second case all coordinates ¢, ¢,
and g3 are considered. Note that in both cases we are dealing with the same design
diagram.

1. Approximate design diagram of half-arch has two degrees of freedom. In this
case, the equation for frequency of vibration (6.4) becomes

EI

444.67 -0  354.88 ‘ =0, where 0=
m

354.88 349.56 — 0

(m?).

Roots of this equation are called eigenvalues and they are 0; = 755.206,
0, =39.114.
Frequency vibrations are

o L [EI =
Vo N mo ’
|EI [EI
w; = 0.0364,/—, w, =0.1604/—.
my my

2. The same design diagram of half-arch is treated as a structure with three degrees
of freedom. In this case, the equation for frequency of vibration (6.4) becomes

SO

444.67 -0 354.88 —124.51
354.88 349.56 — 0 -99.37 =0.
—124.51 —99.37 34.86 — 0

Roots of this equation are 0; = 788.56, 0, = 40.331, 03 = 0.

The last root 63 = 0 means that system in fact has two degrees of freedom.
Indeed, we can see that a ratio between elements of the first and third rows is
constant

444.67  354.88 12451

12451 —9937 3486 b
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i.e., displacements g; and g5 are dependent. This is expected, since diagrams M,
and Mj; are dependent (7.0/1.96 = 3.0/0.84 = 0.5/0.14 = 3.571).
Frequencies of vibrations are

El El
o = 0.0356,/—, @, =0.157/—.
mo mo

Presentation of ¢, as a perpendicular to BC is approximate; however, this leads
to simple calculations with a desired accuracy for the first and second frequencies.
Possible options for consideration of the forces of inertia of mass at joint C are
discussed in [Pro48].

Let us find the shape of vibration (eigenfunction) considering the structure with
two degrees of freedom (case 1).

For the first frequency of vibration @, = 0.0364/EI /my; according to (6.5) we
have

354.88 20 EI

0.036
Al mdpo® gy my a4
- 21 44466 EI T
Az mion* —1 mo 0.03642 == — 1
EI mo
or
Al mdpo? —1 _ 349.56 x 0.0364’ — 1 _ .

Ay midn@®  354.88 x 0.0364>

The relative error is 0.23%. Thus, if the displacement of joint B is equals to 1.0,
then the displacement of joint C is equal to 1.142. The positive sign means that
displacements occur in the same directions as the forces P; and P,, as shown in
Fig. 6.6b, ¢ (or in the opposite direction).

The second eigenfunction may be constructed similarly. Approximate presenta-
tion of ¢, as a perpendicular to BC leads to a larger error for shape A /A,, according
to the two expressions (6.5).

Example 6.3. Parabolic three-hinged symmetric arch with three equal lumped
masses is shown in Fig. 6.7a. Parameters of the archare / = 16 m, f = 0.25/ = 4m.
Lumped masses are m; = my = m3 = my [Pro48]. Flexural stiffness of the arch is
EI = const. Calculate the frequencies of the free vibrations.

Solution. Equation of the axis of the arch is y(x) = (4f/)x(I — x), therefore
y; = 3 m. Axis of the arch is replaced by straight members. All dimensions of
the arch and the straight segments (in meters) are shown in Fig. 6.7b.

This structure has two degrees of freedom; however, presentation of generalized
coordinates, as in the previous example, is not entirely clear. So the Bresse group
unknowns will be applied [Bre54c], [Ber57]. For symmetric vibration, we have
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A3

Symmetrical vibration Antisymmetric vibration

Fig. 6.7 (a) Design diagram of three-hinged arch with lumped masses; (b) modified design
diagram; (c) Unit states and corresponding bending moment diagrams; (d) Mode shape of

vibrations

group (or paired) unknowns X; and simple unknown X,. For antisymmetric vibra-

tion, we have group unknowns X3 and simple unknown X4. Unit states,

corresponding reactions, and bending moment diagrams are shown in Fig. 6.7c.
Unit displacements are

_ 1 2 1 2
Elo = M; x M, :2(§>< 5% 1.25 ><§>< 1.25+§>< 4.123 x 1.25 ><§ X 1.25)
=9.5 (m?),

Elé» =M> x My = 6.08, EId3; =38.01, Eldsu =1.52,
E[512 = E1521 = Ml X Mz = —7.67 E[534 = E[543 = 7.6,
013 =2031 =0, 614=041 =0, 0923=03 =0, 0y =204 =0.
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Equations (6.3) is separated into subsystems; since all masses are equal then

(m0511w2 — 1)A1 + m0512w2A2 =0, (m0533a)2 — 1>A3 + I’)10(3340)2A4 =0,
and
m0521w2A1 + (m0522w2 — I)Az =0, m0534w2A3 + (m0544w2 — 1)A4 =0.

Let us denote the eigenvalue by

EI
)\. = >
now

2 B
imo

(s7).

(m’) = o

Since we use the paired unknown, the frequency equations should be modified,
introducing coefficient 0.5 as shown below:

Symmetrical Vibration

The frequency equation becomes [Pro48]

1 9.5 7.60
5511—)» 012 O.SXE—/I ~

Dgym = 15 _ =0 or Dym= 05><7.60 @ , =0
272! 2 “7TElEI

Roots of  this equation are A1 =0, 4, =10.83, therefore
cofym = (1/10.83) x (EI/mgy) — wsym = 0.304+/EI /my.

Antisymmetrical Vibration

Similarly, the frequency equation should be presented in the form

1 )
5533 - O
Damisym = 1 =0 or
5543 Osg — A
38.01 7.60
0.5 x -2 —
Do — EI EI —0
antisym 7.60 1.52 1 '
0.5 x E S
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Roots of this equation are 1y =0, 1, = 20.526, therefore

w? ! ><E[ w —0221’/EI
. = — _— e = U. e
antisym 20 52 6 mo antisym mo

Verification

The sum of the eigenvalues is 10.83 + 20.526 = 31.356. On the other hand, the
sum of traces of two matrices is 9.5/2 + 6.08 + 38.01/2 + 1.52 = 31.355.

Mode Shape of Vibration

We can use expressions for mode shapes in terms of eigenvalues. For symmetrical
form, we get

Al 512 522 — 2

A, 055, —4 0.5y

For nonzero eigenvalue (/. = 10.83), we have

Al (~7.6) 6.08 - 1083 _

Ay 05x95-1083 05 x (—7.6)

For antisymmetrical form, we have

Aj 534 544 -2

As 05635 —/ 05043

For nonzero eigenvalue of antisymmetrical vibration (1 = 20.526), we have

A . 1.52 —20.52
3 7.6 5 0.5 6:5‘0.

A, 05x3801—-20526  05x76

Corresponding mode shapes of vibrations are shown in Fig. 6.7d.
Discussion
1. For symmetric and antisymmetric vibrations, we obtained two roots 4 = 0.

It means that two degrees of freedom (two zero roots) should be eliminated
from the total number of degrees of freedom (which was assumed to be four).
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Thus, in fact, the arch with three lumped masses shown in Fig. 6.7a, b has two
degrees of freedom.

2. The lowest frequency of free vibration corresponds to the antisymmetric form of
vibration.

6.4 Vibration of Circular Uniform Arches

This section is devoted to determination of frequencies of in-plane bending vibration
of circular arches based on the Lamb’s equation. Two approaches are considered. The
first approach presents exact solution of the Lamb’s differential equation, while the
second one is based on the application of the variational Bubnov—Galerkin method
[Vol67].

6.4.1 Lamb’s Differential Equation of In-Plane
Bending Vibration

Let us consider a symmetrical circular arch of constant cross-section with a central
angle 2o and radius of curvature R. The moment of inertia of cross-section is / and
mass of the arch per unit its length is m. We will consider two types of in-plane
vibration. They are the bending and radial vibrations. General assumptions in
Sect. 6.1.2 allow us to rewrite the equation of in-plane vibration of the arch in the
form of a partial differential equation [Lam1888], [Rek73], [Chu52], [Dem49].

u Hu  Pu  mR* 9? 0 u
Op ap*  Op El Or Op
where ¢ defines the position of the point on the nondeformable axial line of the arch
—a<p<a,u=u(yp,1) is tangential displacement of the circle in the direction in
which ¢ increases (Fig. 6.8).

The radial and tangential displacements are related by v = du/de.

Fig. 6.8 Circular arch and
notation of displacements
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6.4.2 Frequency Equation of Bending Vibration.
Demidovich’s Solution

Let the displacement be u = U(p) cos wt, then for U we have the Lamb’s ordinary
differential equation [Lam1888]

6 4 2 4.2 712
R
d°U sz AU m w(dU—U>:0. ©6.7)

A P R

Assume the expression for U has the form [Lov20]

2
U= (A;cosnip+ B;sinnip). (6.8)
i=0

1

where A; and B; are constant. Substitution of (6.8) into (6.7) leads to the equation

ma*R*
EI

(> = 1) = (4 1) (6.9)

It can be shown that if w? >0, (6.9) has at least one pair of the real roots +n
[Dem49]. This root is uniquely and will be referred to as the basic root. Equation
(6.9) may be rewritten as

2R4
m(nf— 1) = (nf+ 1) (6.10)

Hence, it follows that

mo’R* nd(nd — 1)2
El  (n3+1)

6.11)

So the circular frequency of vibration may be expressed in terms of the basic root

C |EI, no(n(z)—l)
0=—=1\/—("), C=——7F==. 6.12
RV m =) Vg + 1 €12

However, the basic root is still unknown. Substitution of (6.11) in (6.9) leads to
the governing equation

n%(n% — 1)2

G B ey

(" +1)=0. (6.13)
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Fig. 6.9 Absolute values of roots n; and n, in terms of base root n,

Detailed analysis of (6.13) [Dem49] shows that the other two pairs of roots of
(6.9) are purely imaginary, namely, £n,i and =£n,i, (i = \/—1). They may be
expressed in terms of basic root ng as follows

1 1 [nd =702 +8
nip = E(ngfz)iino ErEe (6.14)

Analysis of the roots of the characteristic equation was done by Waltking
[Wal34] and Demidovich [Dem49]. The roots are multiple only in the three special
cases:

1. }’l():l7 n1:0, nzzi,

I 1
2. ny= 5(7—\/17):1.199, m =y = Si\[ V17 =3 = 0.5299;,

1
3. ng=\/=z\7+V17)=2358, n =n =1\ Vv17+3=1334.
2

The graphs of |n;| and |n| as a function of the base root ng is shown in Fig. 6.9
[Dem49]

Solution (6.7) must be conformed to the boundary conditions. If both ends of the
arch are fixed then the tangential and radial displacements, as well the slopes at the
supports are zero, i.e., U = U = U" = 0.



6.4 Vibration of Circular Uniform Arches 289

If both ends of the arch are hinged then U = U’ = U"” = 0.
Since the roots of (6.9) are not multiple, general solution (6.7) should be adopted
in the modified form, which involves the hyperbolic functions

U = Apcosnpp + Aj coshnjp + Ay coshnpp
+ By sin ngp + By sinh ny + B; sinh nyp.

Let us consider the antisymmetrical and symmetrical vibration separately.

Antisymmetrical Vibration of Two-Hinged and Hingeless Arches
In this case, the function U should be assumed in the form

U = Apcosngp + Ay coshnyp + A, cosh ngp.

Hingeless Arch

Taking into account the boundary conditions, we get the following expressions (at
» = ta)

U = Apcosnyp + Aj coshnjp + Ay coshnyp =0,
U = —Agng sinngyp + Any sinhnyp + Axny sinhnpp = 0,
U" = —Aon(z) cos npyp + Aln% coshnp —|—A2n§ coshnyp = 0.

Nontrivial solution occurs if

cos npp coshnp coshny
—ngsinngy nysinhnyp  nysinhnpp =0. (6.15)

—ngcosnop njcoshnyp nycoshmp | .,

After rearrangements, the frequency equation (6.15) may be presented in the
form

tan noo. = K tanh nyo + K, tanh nyo,

where
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Two-Hinged Arch

In this case, the boundary conditions are U = U’ = U"” = 0. The frequency equa-
tion may be derived in a similar manner:

cotngoe = —F cothnyoo — F; cothmya,
where

no (n% + n%)
np (n% — n%) ’

no (n% + n%)
2—2)'

fr=- ny(n? —n

Fr, =

Symmetrical Vibration
In this case, the function U should be assumed in the form
U= B() sin noyp + Bl sinhn1<p + Bz sinh nye.

The final frequency equation for arches with specific boundary conditions is
shown below.

Hingeless arch: cotnyox = —Kj cothnjo — K, coth npo.
Two-hinged arch: tanngx = F tanh njo 4 F, tanh npo.

In these formulas, coefficients K, and F,, are assumed as in the case of
antisymmetric vibration.

According to (6.14), coefficients K,, K5, F;, and F, are functions of one
unknown basic root ny. The frequency equations are transcendental and theirs
solutions can be obtained by numerical methods. The first and second roots nq of
the frequency equation and the corresponding parameter C, according to (6.12), are
presented in Table 6.2.

Finally, the circular frequency of bending in-plane vibration of an arch is
determined by (6.12). The lowest frequency of the free vibration for circular arches,
as for parabolic ones, corresponds to antisymmetric mode of vibration [Dem49],
[Rab51], [Rab54b], [Rab58].

6.4.3 Variational Approach

The bending in-plane vibration of the arch is described by (6.6); as before, the
central angle of the arch is 2a. Angle ¢ is measured from a vertical axis of
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Table 6.2 Basic roots n and parameters Cy of circular frequency of vibrations
Antisymmetric vibration Symmetrical vibration
Two-hinged Arch with fixed ~ Two-hinged
Central angle Arch with fixed ends arch ends arch
20 no Cy no Cy no Cy ny Cy
/6 nop = 14.962 C, = 22236 11.959 141.52 20.114 403.07 17.526 305.63
nop = 26973 C, = 726.04 23980 573.54 32.488 1053.9  29.732 882.49
n/3 7.431 53.735 5925  34.033 10.047 9345 8750  75.07
13.448 179.35 11962 141.59 16.235 262.08 14.858 219.26
n/2 4.908 22.623 3900 13.764 6.689  43.262 5.820  32.397
8.929 78.238 7.947  61.668 10.813 11543  9.896  96.439
2n/3 3.645 11.848 2.886 6.925 5.008 23.614 4353 17492
6.665 42.941 5937 33772 8.100  64.123 7.413  53.468
5n/6 2.892 6.959 2.283 3.858  4.000 14.552 3472  10.623
5.306 26.683 4731 20920 6471 40394 5923  33.606
T 2.398 4.384 1.888 2.266 3.328 9.649 28857 6919
4.402 17.921 3.9237 13944 5384 27516 4.9279 2281

symmetry, so — o <@ <oa. For the first form of antisymmetric vibration of
two-hinged arch, we assume

u(t) = £(1)

Ty

COS—.
o

(6.16)

According to Bunnov—Galerkin procedure [Vol67], we take the derivatives

B ™2 o 8414_ ™4 T 8614_ m\®  Tmp
o= OG) o Gt 0) et a=T0) eosTs
Pu np  Otu o (T2  wp
g = 00”55 Saas=—T0(5) cos”

substitute them into (6.6), multiply by cos(ng/o), integrate and equate to zero

/a Pu  ,Ou Pu mREP S PuN] mp
05T “0 T a2 T EL o2 a2 PR

As a result, we get the following ordinary second-order differential equation

with respect to the unknown time-dependent function f(¢)

4
% E+ 1)) +E@E -1 =0, =2 or ft)+¥ft)=0,

o
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For the first frequency of antisymmetric vibration, we get

2 52(52 B 1)2 i 124

= I .1
211 Rm (6.16a)

1

Approximate formula for frequencies of free bending in-plane vibration of uniform
two-hinged and hingeless circular arches (g is a central angle) [Uma72-73] is

ko JET,

Coefficients k; for first and second symmetric and antisymmetric forms are
presented in Tables A.43 and A.44; these coefficients are presented in terms of a
central angle o.

In the case of two-hinged uniform circular arch with lumped mass M at the
crown, the lowest frequency of free antisymmetric vibration may be obtained by
Bolotin’s approximate formula [Bol64]:

n [(n? EI

=—|—=-1 6.16

? = R <oc2 ) 4M n n? 43 ' (6.16¢)
Ra T\ 2

where 2o is the central angle.

Comparison of the lowest frequencies of antisymmetric vibration of the circular
arch according to the different approaches is presented in Table 6.3.

Computation of frequencies of free vibration of circular arches taking into
account additional effects (damping, shear forces, etc,) is presented in refs.
[Hen81], [Tuf98].

6.4.4 Radial Vibration

Such vibrations occur due to the change in length of the axis of the arch. The
frequency of the radial vibration of the circular uniform arch of radius R, with
central angle o and distributed mass m is [Uma72-73]
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Table 6.3 Parameter K for circular frequency of vibration, w; = (K/R?)\/EI/m (s™')

Type of Central Exact result Galerkin Approximate Bolotin
circular arch angle  (Table 6.2) procedure (6.16a) approach (Table A.43) formula (6.16¢)
Hingeless /3 53.735 - 53.69 —

/2 22.623 - 22.62 -

n 4.384 - 4.38 -
Two-hinged n/3 34.033 34.52 33.61 33.62

/2 13.764 14.55 12.79 13.76

m 2.266 2.68 2.26 2.27

where A is an area of the cross-section of an arch, I is the moment of inertia of a
cross-section. Coefficients /; for the first and second frequencies of free vibrations
of two-hinged arch are 1 = 3.1416, 1, = 6.2832; for arch with fixed supports
A1 =4.7300, 7, =7.8532. It should be noted that the frequencies of radial
vibration are significantly higher than the frequencies of the bending vibration;
the frequencies of radial vibration would probably be difficult to excite [Lov20].

6.5 Rabinovich’s Method for Parabolic Arch

At the present moment in time, there are several approaches for approximate
vibration analysis of arches. The most natural approach consists of replacing the
curvilinear axis of the arch by a discrete set of straight elements while the
distributed mass is approximated by a set of lumped masses. Given these
approximations, the following different modifications are possible.

1. One can replace the arch by a frame with straight, absolutely rigid members and
lumped masses at the midpoints of these members. Given this, it is assumed that
the members are connected by means of the elastic constraints.

2. Terenin’s method [Ter54] takes into account the finite stiffness of the rods, their
rigid connections, and lumped masses at the rigid joints. The method is based on
the following assumptions: Curvilinear axis of the arch is replaced by six
straight members of equal length; the members are not compressed and
nonextended, but able to exert bending moments. The mixed method [Dar89]
was applied as a possible solution to this problem.

3. Rabinovich’ method [Rab51, 58] also takes into account the finite stiffness of the
rods, their rigid connections, and lumped masses at the rigid joints. Contrary to
Terenin’s method, Rabinovich’ method is based on the concept of a hinged
chain; this approach is more effective than Terenin’s method. Concept of
kinematical chain allows establishing the simple geometrical relationships
between displacements of the joints. Corresponding vibration model of the
parabolic arch is called Rabinovich’s model.
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Fig. 6.10 Geometry of parabolic polygon

6.5.1 Geometry of Parabolic Polygon

Equation of axis of a parabolic arch is given by y = (4f/?)x(I — x), where [ and f
are span and rise of the arch, respectively. The arch is replaced by an inscribed
polygon; the horizontal projections of all sides of polygon are equal to 1 = I/k,
where k is the number of sides of a polygon. Such polygon is called parabolic.
Numeration of the rods, joints (bold), theirs coordinates, and angles of inclination
from the x-axis are shown in Fig. 6.10a.

Parameters of parabolic polygon are

Xp =Nl yu = j—{xn(l —x,) = —>n(k—n). (6.17)

The length of the side n of a parabolic polygon is

A
Sn = 24/1 + tan?,. (6.17a)

~ cos b,

The slope of the side 7 is

tanﬁn:)%M:%[n(k—n)—(n—l)(k—n+1)].

Last equation may be presented in terms of A, or [ as follows

tanﬁn:%(k—znﬂ):%(k—znﬂ). (6.17b)

The angles of inclination of the parabolic polygon have the following properties:

1. The slopes form the arithmetic progression

8 8
tanf, —tanf, | = % = k_]; = const.
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Absolutely rigid disk

Three - element system
with one degree of freedom

Fig. 6.11 Kinematical analysis of parabolic polygon

2. If one connects the ends of the chain consisting of three consecutive members
n — 1,n,and n + 1, then this chord will be parallel to the element n, i.e., « = f,
(Fig. 6.10D).

3. Assume that number K is even. For the two last elements, which belong to the
left half-arch and are adjacent to the axis of the symmetry, the ratio
tan f§,_,/tan 8, = 3 (Fig. 6.10c). Indeed, the number of sides of polygon is
n = k/2. Two last members are denoted by n — 1 and n. According to (6.17b),
the following properties hold true

tan 8, = f(k 2n+1) = 4f(k 2k—|—1> 5l

kl kl 2 kl’
tanf5, | = g [k 2(6— 1) + 1} =3tanf,.

Such an approximation of a symmetrical parabolic arch is called Rabinovich’s
model [Rab56]. This model also includes some additional information. They are
supports of half-arch, lumped masses, kinematical properties of the kinematical
chain, etc. These will be considered later.

6.5.2 Kinematics of Parabolic Polygon

Figure 6.11a presents a frame (parabolic polygon), consisting of n rigid members.
The structure has three support constraints. This structure has n — 1 independent
joint displacements.

Indeed, if one were to construct a hinged scheme of the frame (Fig. 6.11b), then
introducing n — 1 arbitrary-oriented additional constraints (shown by double lines)
leads to an absolutely rigid structure (Fig. 6.11c). It is clear that if one were to
introduce only n — 2 additional constraints, then the structure would be divided
into two distinct parts. They are three-element system and absolutely
rigid disk (shown by a solid line) (Fig. 6.11d). Three-element system has only
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Fig. 6.12 Kinematics of the
hinged three-element chain

one degree of freedom. Thus, the displacement of the entire chain depends on the
sum of displacements of the simplest three-element systems. We now focus on
the analysis of the three-element system.

6.5.2.1 Kinematics of the Three-Element Chain

Three-element hinged chain is shown in Fig. 6.12. The support constraint at point D
prevents vertical displacements, so this scheme has two degrees of freedom. If one
were to introduce additional constraint at point D (shown by double line), then new
structure will have only one degree of freedom, as a bottom part in Fig. 6.11d. We
establish the relationships between displacements of the joints B and C.

The displacement of point B, dp, is directed perpendicular to AB. Displacement
of point C, dc, is perpendicular to CD. Projections of these displacements on the
vertical and horizontal axis are denoted by wp and up for point B, and w¢ and u for
point C. Let the generalized coordinate for three-member system be the vertical
displacement wp. It is clear that

up = wegtanf};. (6.18)

We express wc and u¢ in terms of independent variable wp. During displacements
of joint B, the member BC executes planar motion and therefore, from the theorem of
the projections of displacements oz and d¢ on the line BC, we get

0p c0s[90 — (B, — B,)] = 6¢c cos[90 — (B, — f3)].

This leads to the formula

¢ = g sin(B; — f,) W % sin(B; — f,)

sin(B, — f3) - cos By sin(By — Bs)
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Fig. 6.13 Kinematics of the two element chain

From displacement triangle at joint C, we have

Wp % sin(B; — )
cos By sin(f, — f3)

Wwe = ¢ cos fi3 =

x cos f3.

After some elementary simplifications, we get

tan §; — tan f3,

. 6.1
® tan f, — tan f5; (6.19)

We =W

Taking into account the first property of the parabolic polygon, we get
we = —wp. The negative sign is injected on the basis of the rule of signs
(Fig. 6.12). Projection o onto the horizontal axis give us the relationship

uc = we tan 3 = —wpg tan 5. (6.20)

6.5.2.2 Kinematics of a Two-Element Chain

In the case of symmetrical arch, it is worthwhile to investigate the symmetric and
antisymmetric vibration of the arch separately. For this, we must move to the
equivalent half-arch. In case of symmetric vibration of the three-hinged arch on
the axis of symmetry, it is necessary to introduce a constraint which prevents
horizontal displacements (Fig. 6.13a). In case of antisymmetrical vibration on the
axis of symmetry, one should also include a constraint which prevents vertical
displacements (Fig. 6.13b).

We proceed to construct a hinged chain and extract from it the three-element part
ABCD which is adjacent to the axis of symmetry. This part of structure has two
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degrees of freedom. If we introduce a constraint which prevents displacements of
the joint B, then we get a subsystem BCD with one degree of freedom (Fig. 6.13).
For such structures, we establish the relationships between the virtual
displacements of the joints C and D.

6.5.2.3 Symmetrical Vibration (Fig. 6.13a)

Virtual displacement J is directed perpendicularly to BC, and virtual displacement
dp is directed perpendicularly to support constraint DE. It is obvious that

we = 0¢ccos fi,;  uc =dcsinf, and wup =0. (6.21)
Projections of d¢ and dp on line CD are equal, so
dccos(90 — B, + B3) = dp cos(90 — B5).

If follows that

S5n =& sin(B3 — B,) _ we sin(B; — B,)
D% sinB;  cosB, sinfy

After some elementary simplifications, we get

5D = Wc (1 — tanﬁz) .

tan f3;

According to property 3 of parabolic polygon, tan 3,/ tan 3 = 3, and finally we get

5D = —ZWC. (622)

6.5.2.4 Antisymmetric Vibration (Fig. 6.13b)
Virtual displacement J is directed perpendicularly to BC, a virtual displacement

dp is directed perpendicularly to support constraint DF. It is clear that wp = 0.
Projections of d¢ and Jp onto the line CD are equal, thus

dc cos(90 — B, + B3) = dp cos fi;.
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Fig. 6.14 Parabolic polygon
for half-arch. Design diagram
is loaded by the inertial forces
Py — Ps

Thus,

Sp = ¢ sin(B, — B3) _ wc sin(B, — Bs) .

cosf  cosf,  cosfs

After some elementary simplifications, we get
Op = up = we(tan 3, — tan fi;). (6.23)

Kinematical relationships will be used later on.

6.5.3 Inertial Forces

The general method for determining the frequencies and mode shapes of vibration
of elastic structures with lumped masses is discussed in Sect. 6.2. In order to form
the approximate model of the free vibration of parabolic arch, we need to construct
parabolic polygon as shown in Sect. 6.4. For practical purposes for symmetrical and
antisymmetrical vibrations, it is sufficient to calculate two frequencies. For this
purpose, each half-arch should contain three straight members with lumped masses
at the ends (Fig. 6.14).

If vibrations of the structure occur with a frequency w, then each mass is
subjected to the following inertial forces

P, = wzmle; P, = a)zmluB;
P3 = (L)ZMQWC; P4 = (l)zmzuc;

P5 = 6021’)13WD; P(J = 6021’1’13140.
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Fig. 6.15 Rabinovich model
of symmetric parabolic arch
for the case k = 6

Rabinovich’s model of parabolic arch allows us to take into account arbitrary
distribution of mass along the axis of the arch, so computation of lumped mass does
not cause problems. It is then necessary to construct the bending moment diagrams
due to all inertial forces, to choose generalized coordinates, to create unit states,
which corresponds to the generalized coordinates and to calculate the unit
displacements. For the last stage, it is convenient to apply Mohr method in the
form of Vereshchagin or Simpson rule.

The concept of a kinematical chain allows us to significantly simplify the
numerical procedure: instead of computing six displacements we can consider
two partial systems, for each system with one degree of freedom calculate only
one displacement, and for computation of all other displacements apply the
kinematical relationships for the chain.

Additional Parameters for Parabolic Polygon (k = 6) for Different f/I

Rabinovich model for symmetrical parabolic arch of span / and rise f for k = 6 is
presented in Fig. 6.15; lumped masses at the joints are not shown. The arch may be
two-hinged, three-hinged, or hingeless.

Coordinates of the joint points are defined by (6.17), i.e.,

4
Vn :k—];n(kfn).
In our case,
4f 5 4f 8
4f

yD:§X3 X (6—3) :f
Slopes for each inclined member is defined by (6.17b), i.e.,

tanﬁn:%(k—%t—l—l).
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In our case,
4f 10f 4f !
==—(6-2x1+1)=—; ==—(6-—2x%x2+1)=2~;
tanﬁl 61(6 X + ) 3[7 tanﬁZ 61(6 X + ) la
A 2
tanﬁ3—a(6—2x3+1)—3l

The length of each member is defined by (6.17a), i.e.,

A [ l
=—+/1 +tan?f, = g\/l + tan?f3,,.

sil = =
cosf, k

If an arch has a constant cross-section and the mass per unit length is y, then the
lumped masses at the joints are

m sl,u m s+ 5 m sz+S3ﬂ 53
A= B = "~ C="h
27 2 ’ 2 ’

mp = 2 M.

Here myp is the lumped mass at joint D considering portion DC. The same mass
occurs at joint D considering portion DC’, thus the total mass at joint D is equal to
2mD.

For arches with different ratios of f/I and k=6, parameters
y/l, tanf, s/l, m/ul of the Rabinovich model are presented in Table A.36.

Application of Rabinovich’s method for symmetrical and antisymmetric
vibrations of parabolic arch is shown in Sects. 6.6-6.8.

6.6 Symmetrical Vibrations of Three-Hinged Parabolic Arch

This section shows vibration analysis of a parabolic arch by Rabinovich’s method,
which required the following steps:

e Construction of equivalent design diagram, taking into account the type of
vibration (symmetrical/antisymmetrical).

» Expressing nodal displacements in terms of generalized coordinates.

» Calculation of inertial forces based on expressions of nodal displacements.

« Finding displacements caused by inertial forces.

¢ Determining frequencies and shape modes of vibration from the frequency
equation.

* Showing bending moment diagrams for internal forces due to free vibration.

These steps are considered below.
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- -
a N . S¢c b wp = -2we
We= —wg

uc=-wp tanps

, Uc = wetan
WB  up=wgtanp, c= wetanf,

Second partial system

Fig. 6.17 Displacements in the partial systems, /C — introduced constraints

6.6.1 Egquivalent Design Diagram. Displacements

In the case of symmetrical vibration, the section on the axis of symmetry is displaced
vertically. Therefore, in the equivalent half-arch, it is necessary to introduce support
constraint which prevents horizontal displacement and allows vertical displacements.

Design diagram of the equivalent half-arch for k = 6 is shown in Fig. 6.16. The
mass m,4 and horizontal force of inertia which acts on the mass m are not shown.

This structure has two degrees of freedom. Displacement of the structure may be
considered as a sum of displacements which occur in two systems, each with one
degree of freedom. Such systems are called partial systems [KarO1]. Figure 6.17
demonstrates two partial systems. In Fig. 6.17a, an additional constraint is
introduced at joint D (presented by double line) and in Fig. 6.17b at joint B.

Let the generalized coordinate be the vertical displacements of joints B and C,
i.e., wg and w¢. Table 6.4 shows the kinematical relationships for joints B, C, and D.
For example, let us consider total horizontal displacement of joint C. For the first
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Table 6.4 Symmetrical vibrations: Total displacements of the joints B, C, and D in terms of
displacements of the partial systems [Rab58]

Total vertical Total horizontal
Joint displacement w' displacement i/’ Notes
B Wwp =wg U, = wgtan f§| Geometrical representation
of these formulas is shown
in Figs. 6.12 and 6.17a, b
C we = —wp + w¢ U = —wpgtan f; + wc tan 5,
D wh = —2w¢ up, =0

partial system SFig. 6.17a) u(C1 ) = —wg tan 3, while for the second partial system
(Fig. 6.17b) ul?) = +wc tan B,
According to Table 6.4, the inertial forces which act on the half-arch are

Py = w*mgwg; P, = w’mgwg tan Bi;

Py = o’mc(—wp +wc); Py = ’me(—wg tan B3 + we tan ,);
P5 = wsz(—2WC).
Table A.36 allows us to determine the values of the lumped masses in terms of

rise—span ratio. In particularly, for a uniform arch with parameter
f/1 = 0.5[Rab58], we get

mg = 0.280ul, mec =0.206ul, mp = 0.0880ul.
Corresponding forces of inertia in terms of generalized coordinates becomes

P = 0280w’ ulwg, P> =0.280-1.667wg x w’ul = 0.4667w*ulwg,

P3 = 0.2060°ul(—wp 4+ we), P4 = 0.2060°11(—0.3333wp + 1.00 X wc),

Ps = 0.0880w* 1 l(—2we) = —0.1760% 1 lwe.

Now let us determine the displacements in the direction of the generalized
coordinates wg and w¢. For this, we need to construct the bending moment diagram
caused by all inertial forces P;.

The vertical and horizontal reactions at A (Fig. 6.18) caused by the forces of
inertia are

V =Py + P53+ Ps = (0.074wp + 0.030wc) o’ ul,

H:%(VX3;L_P1 X21—P3 X),)—}C[sz (f—yB)—P4X (f—yc)}.

Since for points B and C, we have yg = 5f/9; yc = 8f/9 (Fig. 6.16), then for
horizontal reactions we get

H = (—0.2438wp — 0.062w¢)w’pul.
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Fig. 6.19 Unit states and corresponding bending moment diagrams

The bending moments at joints B and C are

Mg =V — Hyp = (0.4803wp + 0.1333w¢) 0? A ul,
M¢ =V2).— Hyc — P1/ — P2(yc — yB)
= (0.0514wp + 0.2253w¢) w* A ul. (6.24)

Bending moment diagram caused by all inertial forces is shown in Fig. 6.18.
Ordinates (6.24) of this diagram are functions of generalized coordinates wz and wc.

Unit states, which correspond to the generalized coordinates and the
corresponding bending moment diagrams, are shown in Fig. 6.19.

Reactions and bending moments for both conditions are

State 1.
A 5 4 2
Vi=1; Hi=2 Mp=Vii—H2f =~h="1
1 ; It BI 1 19f 9 b
M, *V217H§f*il
c1=Vi 1gf =540
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State 2.

27 1 1
L Mg =l M =1,

Vo=1;, Hy,=—
2 ’ 2 f’ 54 27

Now we can calculate the displacement in direction of each generalized coordi-
nate caused by all the forces of inertia. Vertical displacement of joint B is

MPMI
wp = Z I ds.

Multiplication of diagrams along s; and s is done by formula “triangle by
triangle” and along s, using the trapezoid formula, so

1
MBMBI +2 G 2 (2MMg, +2McMcy +MMcy +McMp:) 43 3 > McMe, i

/
Wp 3

If we take into account the expressions for bending moments Mg and M caused
by inertial forces (Fig. 6.18), then we get the following expression for total
displacement in terms of these moments

, 41 11 p
wp = 2731-5-65"2 Mp + 9S2+E53 Mc Tl

[(85‘1 + 9s)Mp + (652 + 2S3)MC] (6.25)

54EI°

Vertical displacement of joint C caused by all inertial forces is

MpM,
EI

W/C:(—WB —|—Wc) ZZ ds

MBMBZ +2 G 2 (2MMg, +2McMcy +MpMcs +McMp,) 432 2 McMe,

3 3 EI

Upon rearrangement, this result can be rewritten as

1 1 2 A
we = [ 27s1MB + (18S2 + = S3>MC:| i

A
[ 2si1Mp + (352 + 4S3)Mc] SAEL (6.26)

All other displacements may be calculated using kinematical relationships
shown in Table 6.4. Note that (6.25) and (6.26) are valid for symmetric arches
with any ratio f/I.
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6.6.2 Frequencies and Mode Shape of Vibrations

Expressions (6.24) for Mg and M, should be substituted into (6.25), take into
account the relationship wi = wg (Table 6.4) and the values for s; — s3 according
to Table A.36 for a given rise—span ratio. As a result, we obtain [Rab58]

wg = (0.0436ws + 0.019018w¢)

If we introduce the dimensionless frequency parameter

B _, El £l
PEVEC R f,u 11 \f12

then the previous equation may be rewritten as follows
(0.0436 — O)wp + 0.019018w¢ = 0. (6.27)
Similarly, if (6.24) for Mp and M are substituted into (6.26), then take into
account the relationship w. = —wg + wc (Table 6.4) and the values for s; — s3

according to Table A.36, we obtain

(—0.00442 + O)wp + (0.00429 — O)we = 0. (6.28)
Thus, for generalized coordinates wg and w¢, we have obtained two homoge-
neous linear algebraic equations (6.27) and (6.28) with respect to wg and we.

Nontrivial solution of these equations presents the frequency equation

det 0.0436 — 0 0.019018 | 0
—0.00442 4+ 0 0.00429 —0|

The roots of this equation in decreasing order are
0, = 0.06257, 0, = 0.004333.

The frequencies of free vibration of an arch in increasing order become

16 [mr El 2398 2]
Ve R\ \/00625 12

E 91 18 EI
Wy = \/_ 12

N
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1.994

Fig. 6.20 First form of symmetrical vibration: (a) vertical displacements; (b) horizontal
displacements

6.6.2.1 First Form of Symmetrical Vibrations
Equations (6.27) and (6.28) do not allow us to find wg and we. However, we can find

the ratios between generalized coordinates. Since the determinant is equal to zero,
(6.27) and (6.28) are dependent, and the ratio may be calculated from any equation.

Vertical Displacements

From (6.27) and (6.28), respectively, we get

we 0.0436 — 0, _ 0.0436 — 0.06257

we _ _ — =0.997
wg 0.019018 0.019018 97,

we  —0.00442+ 6, —0.00442 4 0.06257 0.997
wg  0.00429 — 0, ~  0.00429 — 0.06257

According to Table 6.4, the ratio of total vertical displacements of the joint
points are

We_TWstWe  y We_ 140,997 = —0.003,
Wwp Wp Wp
Wo _ —2we _

=—-2-0.997 = —1.9%4.

wg wp

The vertical displacements, which correspond to the first mode of symmetrical
vibration, are shown in Fig. 6.20a. If the mass B is displaced upward, then masses C
and D are displaced downward, and vice versa.
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Horizontal Displacements

Assume that wg = 1 and determine the total horizontal displacements of the joints.
According to Table 6.4, we have

u'p=wgtanf; = 1 x 1.667 = 1.667,
Wc=—wptan B3 +wetan f, = —1 x 0.333 +0.997 x 1.000 = 0.664,
u'p = 0.00.

Horizontal displacements, which correspond to the first form of symmetrical
vibrations, are shown in Fig. 6.20b. It can be seen that masses which belongs to the
left and right half-arches are displaced in the opposite direction, while masses
which belong to a particular half-arch are all displaced in one direction. For a
given ratio f/I = 0.5, even for symmetrical vibration, the horizontal and vertical
displacements of the joints are of the same order. In particular, for joint B we get
ul'g = 1.667WB.

6.6.2.2 Second Form of Symmetrical Vibrations

Vertical Displacements

From (6.27) and (6.28), respectively, we have

we 0.0436 — 0, ~0.0436 — 0.004333

We _ _ = = —2.065
Wg 0.019018 0.019018 ’
we  —0.00442+ 0, —0.00442 4 0.004333 _ Cpom
wg  0.00429 — 0,  0.00429 — 0.004333 T
The relative error is about 2.0%. Assume, that we/wp = —2.044.

According to Table 6.4, the ratio of total vertical displacements of the joint
points are

We _ZTWstwWe L WC_ 19044 — —3.044,
Wp Wp Wp
wp  —2we

—2.(—2.044) = 4.088.
Wp wpg

The second form of vertical displacement is shown in Fig. 6.21a.

If masses B and D are displaced upwards, then mass C is displaced downwards,
and vice versa.
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Fig. 6.21 Second form of symmetrical vibration: (a) vertical displacements; (b) horizontal

displacements

Table 6.5 Symmetrical vibrations: the total vertical and horizontal displacements of the joints B,

C, and D of the arch

Total vertical
displacement

Mode  of the joints W' Total horizontal displacement of the joints
First B wp=wp=1 up =wgtanff; =1 x 1.667 = 1.667
C we=—-wg+we ¢ = —wptan By + we tan 8,
=—1+0.997 = —-0.003 = —1x0.333 +0.997 x 1.000 = 0.664
D wp=—2wc=-1.9% up, = 0.00
Second B wp =wp=1 up =wgtanff; =1-1.667 = 1.667
C wWe=—-wg+we u'c = —wgtan 5 + wc tan 8,
=—-1-2.044 = -3.044 = —1x0.333 4 (—2.044) x 1.000 = —2.377
D wp = —2wc =4.088 uy, = 0.00

Horizontal Displacements

Assume that wg = 1 and determine the total horizontal displacements of the joints.
For this, we apply the formulas according to Table 6.4. The vertical and horizontal
displacements of the joint points are presented in Table 6.5.

Horizontal displacements which arise at the second mode of symmetrical vibra-

tion are shown in Fig. 6.21b.

Orthogonality condition of the form of vibration can be verified by the formula

E miw'lw’z—i—g m; u' iy = 0.
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Here the subscripts 1 and 2 represent the number of the mode of vibration;
summation is performed over the index i. In the expanded form, this expression
becomes

0.280 x 1 x 1 +0.280 x 1.667 x 1.667
+0.206 x (—0.003) x (—3.044) + 0.206 x 0.664 x (—2.377)
+0.088 x (—1.994) x 4.088 = 1.05997 — 1.0424.

The difference between positive and negative terms is 0.01757; the relative error
is approximately 1.6%.

6.6.3 Internal Forces for First and Second Modes of Vibration

Now we can determine the bending moments which arise at the first and second
mode of the free vibration. For this, we can use two approaches.

First Approach

Bending moments at joints B and C, caused by inertial forces, according to (6.24) are

Mg = (0.4803wg + 0.1333w¢) 0?4 ul,
Me = (0.0514wp + 0.2253w¢) 0?2l

First Form of Vibration

0; = 0.06257. Let wg = 1, then we = 0.997 and for bending moments we get

1 E
1 u

1 EI 6EI EIl
= (04 1. 1 . ———— — = 1598 —— = 58.80—
(0.4803 x 1.0+ 0 333X0997)0.06257 7 5.98 2 588012,
1 6EI El
Mc = (0.0514 x 1.0 + 0.2253 x 0.997) =26.47

0.06257 2 7
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Second form
6,=0.004333

First form
6,=0.06257

Fig. 6.22 Bending moment diagrams for the first and second forms of symmetrical vibration

Second Form of Vibration

0, = 0.004333. Similarly, let wg =1, then wc = —2.044 and for bending
moments, we get

1 EI
Mg = (0.4803wg + 0.1333w¢) — —— ul4,
B ( B C) 02 /112/12#
1 6E] EI
= (0.4 -1.0-0.1 -2.044) ———— —— =287.80—
(0.4803 - 1.0 — 0.1333 - 2.0 )0.004333 2 87.80 R
1 6EI EI
Mc = (0.0514-1.0 —0.2253-2.044) ———— —— = —566.50—.
c =(0.05 0—0.2253-2.0 )01004333 2 5665012

Corresponding bending moment diagrams are shown in Fig. 6.22; (factor of E/ / P).

Second Approach

Equations (6.25) and (6.26) may be solved with respect to the moments Mz and M

[(3s2 + 4s3)w'p — 2(352 + s3)W/¢]
ID ’

[251W/B + (8S1 + 982)ch]
1D, ’

Mg = 36EI

Mc = 36EI

Dy = 4S1(S2 + S3) + S2(3Sg + 4S3).

If the values s =0.324], s, =0.236/, s3 =0.176/ (Table A.36) are
substituted into expression for Mp, then we get

_ 36EI

Mg 1—2(1.628314/3 —2.0388w/¢).

According to Table 6.5, for the first form of vibration, we get wg = 1.0, W’C =
—0.003. Therefore, the bending moment at point B becomes M,(Bl) = 58.84EI / 2.
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For the second form of vibration, wy = 1.0, w;. = —3.037. Therefore, Méz) =
281.5E1 /2.

Similarly, we can calculate the bending moments at point C for each form of
vibration.

Bending moment diagrams M) and M® for first and second form of vibration
satisfy the orthogonality condition

DM@

Multiplication of both diagrams should be performed via the Vereshchagin and
Simpson formulas.

The frequencies, displacements, and bending moments for symmetric vibration
of parabolic three-hinged uniform arches with different ratios f /I are presented in
Tables A.37, A.38, A.39, and A.40 which serve for antisymmetrical vibrations.

6.7 Antisymmetrical Vibration of Three-Hinged
Parabolic Arch

As in the previous paragraph, we will consider equivalent design diagram, find
displacements caused by inertial forces, and determine frequencies and shape of
antisymmetrical vibrations for three-hinged parabolic arch.

6.7.1 Egquivalent Design Diagram. Displacements

In the case of antisymmetrical vibration, the section on the axis of symmetry is
displaced in the horizontal direction. Therefore, in the equivalent half-arch, it is
necessary to introduce a support constraint which prevents vertical displacement
and allows horizontal displacement. Rabinovich’s model for k£ = 6 is shown in
Fig. 6.23; the mass m, is not shown.

This structure has two degrees of freedom. As in the case of symmetrical
vibration, displacement of structure may be considered as a sum of displacements,
which occurs in two partial systems, each with one degree of freedom. Note that in
the case of antisymmetrical vibration of a two-hinged arch, Rabinovich’s model
does not differ from design diagram in Fig. 6.23.

Figure 6.24a presents partial system with additional constraint at the joint D and
the partial system in Fig. 6.24b contains additional constraint at joint B; all
introduced constraints are shown by doubled lines. It can be seen that the first
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Fig. 6.23 Design diagram of the half-arch for antisymmetric vibration

uc=we tanf,

Op=up=wc (tanf,-tanf;)

Second partial system

Fig. 6.24 Partial systems for the analysis of antisymmetrical vibration; /C — introduced constraints

partial system for symmetrical and antisymmetrical vibrations coincide with each
other (Figs. 6.17a and 6.24a).
Let the generalized coordinates be the vertical displacements of the joints B and C,
i.e., wp and wc. Table 6.6 presents the kinematical relationships for joints B, C, and D.
According to Table 6.6, the inertial forces which act on the half-arch are

P, = wszwB; P, = wzmng tan ﬁl;
P3 = ’mc(—wp +we); Py = &’me(—wg tan 3 + we tan B,);

Ps=0; Pg= wszwc(tan f, — tan fi3).

Inertial forces in terms of generalized coordinates (f = 0.5 /) become
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Table 6.6 Antisymmetric vibrations: total displacements of the joints B, C, and D in terms of
displacements of the partial systems

Total vertical Total horizontal

Joint displacement displacement Notes

B Wy = wg Uy = wgtan f§| See Fig. 6.12

Cc We = —wp + we Uy = —wgtan fi; + wc tan f5, Geometrical representation
is shown in Fig. 6.24a, b

D wp =0 up, = we(tan ff, — tan f33)

Fig. 6.25 Bending moment Py

diagram due to all inertial P, l p bs

forces

M,

otal

P = 0.280w’ulwg; P> =0.280 x 1.667w*ulwg = 0.4667w* 1 lwg,
P3 = 0.2060° 1 l(—wp 4+ we); Py = 0.2060° 11 1(—0.3333wp + 1.00 X we),
Ps=0; Pg=0.0880’ul(1—0.333)we = 0.05867w*pu lwc.

Now we can calculate the displacements caused by all inertial forces. The
reactions of support A and bending moments at joints B and C (Fig. 6.25) are

H = Py + P4 + P,

5 ¢ 8 f 1f

2 1
— PP 2tp, 2, p
Vv 1 +3Ps3 2757 ;P4 =37

3 3 27 )

5 sf
My =Vit+H2f = (ver2L)s
p=VatHof (+ 91)’

8 16 2
MC:VX2),+§](H—P1/1—P2J;: (2V—|—?J;H—P1 _TfP2>;L

If we take into account the expressions for inertial forces, then bending moments
at joints B and C may be presented in terms of generalized coordinates wg and wc,
as follows
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T2/3

Fig. 6.26 Unit states and corresponding bending moment diagrams

5
Mp = <V + H§§> A= (0.58293wp + 0.26801w() o ull,

16 2
Mc = <2V + ?];H — P - TfP2> A =(0.1538wg + 0.35956w() o’ i

Let us determine the displacements in direction of P; and Pg. Corresponding unit
states and bending moment diagrams are shown in Fig. 6.26.

The total vertical displacement w}, in direction P and horizontal displacement
uj, in direction Pg is

— A
Elwy = Z/MtolalMldS = ﬁ[(“'sl + 552)Mp + (452 + 2s3)Mc],

_ )
Eluj, = / MuoMeds = 5 [(251 + 352)Mp + (352 + 253)Mc].

These displacements are caused by all inertial forces. Substitution of s;, Mp, and
Mc into these formulas, allow us to present the displacements in terms of
generalized coordinates wg and w¢, as follows

W P2?

Elwg = (4 % 0.324 + 5 x 0.236) (0.58293wp + 0.26801wc)

+ (4 x 0.236 42 x 0.176) (0.1538wp + 0.35956w¢ )]
= 0*uP2%(0.091254wg + 0.06275wc ).

Joint B is characterized by only one of the generalized coordinate (see Fig. 6.24
and Table 6.6) so wi, = w, therefore, the prime superscript at the displacement in
the left part of equation above is omitted.

Since

M,D = Wc(tanﬁz - tanﬁ:i) = Wwc <§/l - 9f'/1> - %J;WC7
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then

4

Elv'p = E[3—J;WC
W uP)?

= ORI 10 % 0324 4 3 x 0.236) (0.58293w + 0.2680Twe)

+ (3 x 0.236 4 2 x 0.176) (0.1538wp + 0.35956w¢ )]
= 0?1 P2%(0.10594wp + 0.08273wc).

6.7.2 Frequencies and Mode Shape of Vibrations

If we denote 0 = EI /w*u?2*, and take into account 0(4/3)(f /l)we = 0(2/3)we,
then the two last equations may be rewritten as follows

(0.09125 — O)wg + 0.06275w¢ = 0,
2
0.10594wp + <0.08273 — 30) we = 0. (6.29)

Nontrivial solution of the set of homogeneous linear algebraic equations leads to
the frequency equation

0.09125 — 0 0.06275 ’
det =0.

0.10594  0.08273 — 20

The roots of this equation, in decreasing order are §; = 0.20887; 6, = 0.006475.
The frequencies of free vibration in increasing order are

o L s 1 e fm 3xs fm
VUV e Vo B\ e voaosst B\ T P W
b 16 1 756 [
v e\ E

Mode Shapes of Antisymmetrical Vibration

First mode. For the first eigenvalue 0, = 0.20887 from the first equation of (6.29),
we have
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Table 6.7 Antisymmetrical vibrations: total vertical and horizontal displacements of the joints B,
C, and D of the arch

Mode Joint Total vertical displacement w’ Total horizontal displacement 1’
First B wp =1 up = wgtan ff; = 1.667

c

we =wg (—1 + VE) e =wp (— tan 85 + "€ tan ﬁ2>
Wwp ]
=—-1+41.874 =0.874 =—0.3334+1.874 x 1.0 = 1.541
b wp =0 u'p ::%C(tanﬂz—tanﬂg
B

= 1.874 x (1.0 — 0.333) = 1.249

Second B wp =1 Uy = wgtan ff; = 1.667
¢ we=wp <71 + WC> e =wp (f tan f§; + "¢ tan ﬁ2>
Wp wp
=—1—-1.351 =-2.351 = —0.333 — 1.351 x 1.0 = —1.684
b wp =0 u'p :K(tanﬁz—tan[g)
wp

= —1.351- (1.0 — 0.333) = —0.901

we 0.09125 — 0 _0.09125 — 0.20887

wg  0.06275 0.06275

= 1.874.

Second mode. For the second eigenvalue 0, = 0.006475 from the first equation of
(6.29), we have

we  0.09125 -0 _ ~0.09125 — 0.006475 — 1351

wg  0.06275 0.06275

The same results may be obtained from the second equation of the system (6.29).

Computation of the total displacements of the joints is presented in Table 6.7.
We assume that wg = 1.

The total displacements for the first and second forms of antisymmetric vibration
are shown in Fig. 6.27.

Verification of orthogonality condition and computation of internal forces for
each mode of vibration should be performed as in the case of symmetrical vibration
(see Sects. 6.5.2-6.5.3).

The frequencies, eigenfunctions, and bending moments for antisymmetric vibra-
tion of parabolic three-hinged and two-hinged uniform arches with different ratios
of f /1 are presented in Tables A.39 and A.40.

Tables A.41 and A.42 serve for symmetric vibration of parabolic two-hinged
uniform arches with different ratios of f /1.

Studies have shown [Rab58] that for two-hinged arches with the same f/I,
the smallest frequency of vibration for circular and parabolic arches satisfy the
condition Wcire <Wparab- This happens because the length of parabolic arch is less
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1.249
i »
1.667

0.901
1.884

| 667

$
LN
W
o

Fig. 6.27 First and second forms of antisymmetrical vibration

than the length of the circular arch. For small values of f/I (= 0.1) we get
Ocire = (0.97 — 0.98)Wparab- If f/1=0.5, we get Weire = 0.69Wparan. Indeed, for
central angle 2o = m of a circular arch, we have ot =2.266/R>\/El/u=

antis

(9.064/12)\/EI ], while for parabolic arch P = 13.13/1\/EI/p.

6.8 Parabolic Two-Hinged Uniform Arch

This section shows vibration analysis of symmetrical two-hinged arch based on
Rabinovich’s method.

Since the arch is symmetric, the symmetrical and antisymmetrical vibrations are
considered separately.

A feature of this analysis is that for symmetrical vibrations, the equivalent half-
arch is a redundant structure.
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mp

y(=8/9

| 2 A A
e

Fig. 6.28 (a) Design diagram of the half-arch for symmetrical vibration; (b) primary system and
bending moment diagram due to X; = 1

6.8.1 Symmetrical Vibration

Design diagram of equivalent half-arch is shown in Fig. 6.28a. At point D on the
axis of symmetry is a constraint which prevents horizontal and angular
displacements. This structure is statically indeterminate of the first degree. Let
the primary unknown be moment X; at support D. Bending moment diagram in
primary system of the force method caused by X; = 1 is shown in Fig. 6.28b. This
diagram does not depend on the ratio f/I.

Canonical equation of the force method is d1;X; + A;p = 0. Unit displacement
is

EI&H :Z/Ml XMldS

2 2 2
_S1 5 \Y) 5 8 5 8
_3(9)+6[2X(9> +2><(9) +2><9><91
25 129 434

= mSl +ms2 +871S3.

For an arch with a ratio of f// = 0.5 [Rab58], we get

25 129 434
EIS, = (ﬁ X 0.324 4 52 % 0.236 + 0 X 0.178)1 = 0.31571.

For computation of the free term, the bending moment diagram in Fig. 6.18
should be used:
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E1A1P=Z/A7[l x Mpds,
1 5\ & 5 8 8 >
=M (—5) +o|2Ms( —5 ) +2Mc( —5 ) +Ms( —5 ) +Mc(
3 B( 9)%[ B( 9)+ C( 9>+ B< 9)+ C< 9”
S3 8
= (2Mc| —= ) + M (-1
+2 2w (—F) +el-)
1
= — 2 [(1051 4 1852)Mp + (215, +2553)Mc].

Expressions (6.24) for moments My and M caused by the all inertial forces
allow us to present the free term of canonical equation in terms of wg and w¢
2

2)
EIAp — — 214

(10 x 0.324 + 18 x 0.236) (0.4803w; + 0.1333wc)

Mj, (6.24)

+(21 x 0.236 + 25 - 0.176) (0.0514wp + 0.2253w(¢)
Mc, (6.24)
= —(0.07550wp + 0.05750w¢) @ ul*J.

Primary unknown becomes

A
X, =— 5—”’ = (0.2391wg + 0.1821w¢ ) w*ul).
11

The bending moments for a redundant structure is determined by the formula
M = M,X| + Mp.
At the joints B, C, and D,the bending moments are

5
M'y = | (04803w; +0.1333wc) — = (0239w +0.1821wc) | w?ul
Mp ~ X
M,

= (0.3475wp + 0.0321we )l 2,

8
M'c = [(0.0514wp +0.2253wc) — 5 (0.2391w +0.1821wc) | ol

= (=0.1611wg + 0.1821wc)w*uli,
M'p = —X; = —(0.2391wp + 0.1821w¢ )0 Wi
(6.30)
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Fig. 6.29 Bending moment
diagram due to Ps = 1

Frequency Vibration

The total vertical displacements of the joints B and D are

Joint B
Elwp = Elwg =) / MM, ds

A
= 5—4 (8S1 + 9S2) Mp +(6S2 + 253)MC + 2s3Mp |,

My

where M is a just constructed bending moment diagram (6.30) of the redundant
half-arch, and diagram M is shown in Fig. 6.19a.

Joint D
— A
EIW/D = Z/MM5dS = —5 [(2S1 + 352)M3 + (3S2 + 2S3)Mc + S3MD]7

where bending moment diagram M is shown in Fig. 6.29.

The remainder of the procedures is the same as in the case of three-hinged arch.
Substitution of s; for a given span-rise ratio, the moments My, M, and Mp into
formulas for displacements according to (6.30), and taking into account a kinematical
relationship wj, = —2wc allow us to construct the following expressions

Elwg = (o1wg + onawe) o ul* 22,
2EIwc = (0621WB + OCZQWC)CUZ/.LIZ;LZ.
We then introduce the dimensionless parameter 0 = EI/(w?*ui?/?) for fre-

quency of the free vibration. For determination of the generalized coordinates wg
and w¢, we get a system of linear homogeneous equations
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(OC]] — O)WB + A1pWe = 0,
o \wp + (0(22 + 20>Wc =0.

where, according to Rabinovich et al. [Rab58], we have a;; = 0.02351,a;, =
0.003692, a; = 0.02871, a; = —0.008745.

Nontrivial solution presents the frequency equation. Construction of the mode of
shape vibration, verification of the orthogonality condition, computation of the
internal forces according to the first and second modes should be done as in the
case of a three-hinged arch.

Tables A.41 and A.42 contain the frequencies of symmetric vibrations,
eigenfunctions, and bending moments for two-hinged arches according to the first
and second mode for different ratios f/I.

In order to form design diagram of the arch in the case of antisymmetrical
vibration, we need to introduce a constraint which prevents the vertical displace-
ment on the axis of entire arch. Such scheme had been considered previously for the
analysis of antisymmetrical vibration of a three-hinged arch. Therefore, frequencies
of free vibration, mode shape vibration, and internal forces for three-hinged and
two-hinged arches coincide (see Tables A.39 and A.40).

Extensive numerical material for different shapes of arches (catenary, cycloid,
spiral, parabola, etc.) are presented in [Rom72].

6.8.2 Advantages and Disadvantage of the Rabinovich’ Method

1. Rabinovich’ method provides effective dynamical analysis of arches. Effective-
ness of the method is based on two fundamental propositions. The first proposi-
tion is associated with a very simple construction of an approximate model of the
arch: the axis of the arch is replaced by a set of inscribed straight members with
the equal horizontal projection. The second proposition is based on algebraic
transformations over the fundamental relationships for displacements of the
joints of a hinged chain; the structure and parameters of this chain are deter-
mined by the model of the arch.

2. Effectiveness of the method can be traced on the analysis of the approximate
model of the arch, presented in Sect. 6.5. This model contains three masses and
has two degrees of freedom. Its six displacements in the directions of the inertial
forces can be represented as a linear combination of two independent kinematic
parameters. Therefore, it suffices to calculate only two displacements, while for
the calculation of others we can apply the kinematical relationships. This
procedure may also be simplified by considering two partial systems, each
with one degree of freedom.

3. Rabinovich’s method allows us to perform analysis of nonsymmetrical arches
with arbitrary distributed masses and arbitrary law of change of flexural stiffness
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along the axis of the arch. The method leads to approximate results because the
curvilinear axis of the arch is replaced by a set of chords.

4. Rabinovich’s method admits different versions of the definition of the
eigenvalues and eigenforms. Instead of two independent kinematic parameters
(displacement joints of a kinematical chain), it is possible to take two ordinates
of bending moments. Any version leads to the system of two linear homoge-
neous algebraic equations; they allow us to find the frequencies of free vibrations
and corresponding shapes of vibrations. Next advantage of the Rabinovich’s
method is the following: the method allows us to easily investigate the transient
vibration of the arch, to construct the dynamical bending moment diagram for
any type of excitations, and to calculate the dynamical coefficients. This proce-
dure is shown in the next chapter.

5. Construction of a Rabinovich’s model and algorithms for determining the
frequencies and mode shapes of vibrations are much easier, clearer, and more
efficient than those which discussed in the method of Smirnov. However,
limitation of the Rabinovich’s method is associated with only the shape of the
arch, which is parabolic, while Smirnoff’s method does not impose limitation on
the shape of the axis of an arch.

6. It should be mentioned that the Snitko method [Sni57] may be used for deter-
mining frequencies of free vibrations of arches. This method uses the concept of
kinematical chain. However, Snitko method is not tied to a parabolic arch and
the way of its approximation (as in the case of Rabinovich’s model). The method
consists of the following: constructing a kinematical chain of the arch and
deriving its kinematical relations; in the case of the parabolic arch as a special
case, we can use Rabinovich’s kinematical relationships. For computation of the
frequency of free vibration, it is necessary to construct expression for work done
by the inertial forces and the joint moments along the virtual displacements. The
concept of kinematical chain also may be applied for stability problems, as
shown in [Kar10].

6.9 Parabolic Nonuniform Hingeless Arch

Symmetrical parabolic arch with span / and rise fis shown in Fig. 6.30. Assume that
I, = Ic/cos p,, where ¢, is the angle between horizontal and the tangent to the axis
of the arch at the section with coordinate x; /c and /, are moment of inertia at the
crown and at section x away from crown, respectively.

Ic 4¢

Yy
Fig. 6.30 Design diagram of /

nonuniform symmetric arch I >
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Assume that the distributed mass m per unit length of the arch is constant. Area of
the cross section and radius of inertia at the crown are Ac and rc, respectively. The
formulas for frequencies of free vibration are as follows [Bon52b], [Uma72-73].

Antisymmetrical Vibration

In this case,

K [El

;=
2V m

(s7h),

where ki = 3.9266,k, = 7.0685, k3 = 10.210, ks = 13.352, ks = 16.494, ...,
ky=(4n+1/4)m.

Symmetrical Vibration

In this case,

4k [Elc , _,
O = \Ty )

Eigenvalues k; are the roots of the frequency equation
(coshk — fr)sink + (cosk — yr)sinhk = 0,

where

. 3 3
B = [—(1 —|—k—2> sinhk—i—z coshk],
1.33 3\ . 3
y = [(1 _k_z) smk+% cosk}7

12 . Ic
r == Ic = —
2 VA

The roots k; of the frequency equation are presented in Table A.45.
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6.10 Rayleigh-Ritz Method"

This section is devoted to numerical computation of frequency of vibration of the
arch by the Rayleigh—Ritz method. According to this method, we need to aply the
following procedure:

e Accept expressions for displacements, which satisfy the boundary conditions.

» Construct the expressions for strain and kinetic energies.

« By finding the extreme values of the two quantities, and equating them, we can
calculate the corresponding frequency of vibration [Tho81].

This method is especially effective in the cases of the nonuniform arches and
arches with nonuniform radius of curvature.

6.10.1 Circular Uniform Arch

Let us consider a circular uniform arch with arbitrary boundary conditions. Let R be
the radius of the arch and 2« be the central angle. Assume that the axial strain ¢ is
neglected. The strain and kinetic energy for bending vibration of arch may be

written as [Mau90]
EI [*(0u O\’
U=— —+—]d
R3/0 (&ﬁa&) @’

[ rou\?  [ov\?
T:Rm/0 l(5> + (E) ]dg@. (6.31)

where ¢ is the angle measured from the vertical axis of symmetry, £ and m are
Young’s modulus and a mass of the arch per unit length, # and v are tangential and
radial displacement components, respectively.

For a two-hinged arch, the following coordinate functions satisfy the geometric
conditions u = v = 0 at ¢ = +o [Den28], [Rom72]:

v = Asin (n_go) sin wt,
o
u= —Ag (1 + cos H) sin wt. (6.32)
n o

Substitution of these expressions into (6.31) leads to the following expressions
forUand T

_ EIA?
T 2R303

RA? o
_m 5 —2w2 (3% + *)cos’w 1.
T

(052 — nz)zsinzw t,

T

! This section was written in collaboration with Evgeniy Lebed.
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The Rayleigh—Ritz method states that [Tho81]
Umax = Imax- (6328.)

From (6.32a), follows Bolotin’s formula for smallest frequency vibration of the

circular arch [Bol64]
n [n? 1 [EI
=—(—=—1)—/— 6.33
? = R <oc2 ) m (6.33)
3

L
OCZ

Since axial strain ¢ is neglected, then according to (1.32), we get v = du/Jp and
(6.31) may be rewritten in terms of the tangential displacement only

1 [ El [*(0u &u\’
U=— [ Mdp=— —+—]d
By TR, <5¢+8¢3> “0’

| ou\ Pu\’
T:mR/O KE) + <—8<p8t) ‘|dg0.

If we adopt expressions for energy in the form of (6.31a), then we only need to
consider the expression for tangential displacement. Rayleigh—Ritz procedure
remains the same: we need to determine the strain and the kinetic energy of an
arch, calculate their extreme values and equate them according to (6.32a). It is then
easy to check that this procedure leads to (6.33).

If an arch has peculiarities, then (6.31) for strain and kinetic energy should be
modified. Such peculiarities include piecewise constant rigidity, variable radius of
curvature, elastic supports, the presence of lumped masses on the arch, etc.

(6.31a)

6.10.2 Circular Arch with Piecewise Constant Rigidity

In the case of a nonuniform arch, expressions for strain and kinetic energy for
bending vibration of the arch may be written as [Mau90]

E [~ ou  9v\>
U—W/_al(@(%‘*‘a—(pz) de,

T =§ /_ m(p) l(%)z + (%) 2] dep. (6.34)
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Fig. 6.31 Different shapes of the arch with a piecewise constant moment of inertia

Assume that an arch has a piecewise constant moment of inertia of the cross
section (), which is symmetrical with respect to the axis of symmetry. The
function /() describes the moment of inertia. We assume this function to be
piecewise constant with two jump discontinuities. In this case, the function /()
is defined as follows

_ S a0 [ <op/2,
I(e.p) = { L if | o|>ap/2. (6.35)

The variable p is fraction (in percent) of the portion of an axis of the arch with a
moment of inertia of a cross section equal to /,,,x. Correspondingly, the percentage
of the length of the axis of the arch with a moment of inertia of cross section of I ;,
is1 —p.

Let the mass m per unit length for portions with I,,,x and I, remain the same,
therefore, as before, we can use the expression for kinetic energy (6.31). In case of
antisymmetric vibration, we still use the assumed coordinate functions (6.32).

To evaluate the integral U, we use Romberg integration [Bur0O1]. Romberg
integration uses the composite trapezoidal rule to give preliminary approximation
to the integral and then applies Richardson extrapolation [Bur0O1] to improve the
approximations thus giving a high-order numerical approximation to the integral.
For the particular choice of (), Romberg integration produces approximations of
forth order accuracy.

For a particular example, we take an arch with the following parameters: radius
R = 180 (ft), central angle 2o = 30°, mass distribution m = 30 (Ib sz/ftz), and
E = 400 x 107 (Ib/ft?). Let Iy, = 1.4 (ft*) and I, = 3.0 (ft*). Some particular
functions /() for p = 25, 50, and 90% -are shown in Fig. 6.31.

The resulting smallest frequencies of vibration are shown in Fig. 6.32.

The extreme conditions (p = 0 and p = 100%) can be verified analytically by
Bolotin formula; @(Iy,) = 14.18 (1/sec) and @(Iyax) = 20.76 for the particular
choices of I, and Ii.«. As one can see from Fig. 6.32, the function wpy, (I(p)) is a
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Fig. 6.32 Smallest @i
frequencies of vibration as a
function of the percentage p 1
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monotonically increasing function. The values of this function at the end points can

be verified analytically.

Note that evaluating the integrals in (6.34) numerically allows us to consider a
whole new type of problems, namely, optimal design of arches. In this scope, two
such problems may be formulated as follows [Gri79], [Olh77]:

1. The volume—frequency problem: find a configuration of the cross-sectional area
A(x) along the arch for the minimum (or maximum) frequency , if the volume

of the arch V) is given.

2. The frequency—volume problem: Find a configuration of the cross-sectional area
A(x) along the arch for the minimum (or maximum) volume V of the arch is
known, and the frequency w = wy of the arch is given.

We note that with the use of (6.31a), we can easily derive Lamb’s equation for a
uniform circular arch. Indeed, the Hamilton principle [Ham35] states that

t
5/ (U — T)dt = 0.
to

For strain and kinetic energy given by (6.31a), we have

[ EGY 5(

'

(o,
2R* \Op

Pu

op?

-

The corresponding Euler-Lagrange equation exactly represents Lamb’s equa-

tion (6.6) [Rek73].
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6.11 Conclusion

This chapter presents the methods for the determination of the frequencies of free
vibration of circular and parabolic arches with different boundary conditions. In the
case of a circular uniform arch, analytical solution on the basis of the Lamb
equation is presented. The Rayleigh—Ritz method becomes an effective tool for
determining frequencies of free vibrations when the circular arch has a nonuniform
moment of inertia. For parabolic uniform arches, Rabinovich method is utilized.
Even if the exact analytical procedures are applied, the method leads to approxi-
mate result because the initial arch with distributed masses is replaced by a frame
with lumped masses.

It is worth-while to also note that the well-known Dunkerley approximate
formula [Bir68] [Kar10] and Bernshtein and Smirnov estimations [Bir68] allow
us to calculate the smallest frequency of vibration.

We also note the importance of numerical methods, which allow us to determine
the natural frequencies of arches with peculiarities (arches of different shapes, arches
with continuously and discontinuously varying cross-section, non-symmetrical
arches, arches with distributed and lumped masses, arches with elastic supports,
etc.) as well as to take into account the secondary effects. Numerous and varied
examples can be found in the works of Laura [Lau87], [Lau88], Romanelli [Rom72],
Filipich [Fil88], [Fil90], Rossi [Ros89], Lee [Lee89], De Rosa [DeR91], [Cha69],
[Den28], [Sak85], [Volter60], [Volter61a, b], [Wan72], [Wan73], [Wan75], [Was78],
[Wol71], and others. Validation and comparison of results which are obtained using
different numerical methods are presented by Gutierrez et al. [Gut89]. Out-of-plane
vibration of arches is presented in the works of [Bon50], [Suz78], [Iri82]. A large set
of the formulas for natural frequency and mode shapes of vibration of deformable
structures can be found in [Ble79], [Kar04].



Chapter 7
Forced Vibrations of Arches

This chapter is devoted to forced vibration analysis of arches and arched structures
subjected to disturbing loads. Different types of arches and theirs loading are
considered. Analytical methods of analysis are applied.

7.1 General

7.1.1 Types of Disturbing Loads

Forced vibrations of engineering structures are brought about by dynamic
(or disturbing) loads. These forces are functions of time. The nature of these
loads is diverse. Generally, disturbing forces may be of the following types:

1.

Immovable periodical loads produced by stationary units and mechanisms with
moving parts. These loads have a periodical, but not necessary a harmonic
(according to the law of sine or cosine) character and generally do not depend
on the elastic properties of the structure.

. Impulsive loads are produced by a blast, falling weights (pile drivers, hammers,

etc.), or collision of bodies. Impulsive loads are characterized by a very short
duration of their action and depend on the elastic properties of the structure
which is subjected to such loads.

. Moving loads act on structures by transference through wheels of a moving train

or truck moving across the deck. The availability of the rail joints on a railway
bridge or irregularities of the deck on a car bridge lead to appearance of inertial
forces. This type of moving loads takes into account dynamical effects,
and therefore, should be distinguished from moving loads, which has been

L.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration, 331
DOI 10.1007/978-1-4614-0469-9_7, © Springer Science+Business Media, LLC 2012
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studied in the sections “Influence lines” where the term “moving load” implies
only that position of the load is arbitrary, i.e., this is a static load, which may
have different positions along the structure.

. Seismic loads arise due to earthquakes. The reason for the presence of seismic

load on a structure is acceleration of the supports caused by acceleration of the
ground. This type of disturbance is called kinematical disturbance. The acceler-
ation of supports leads to the acceleration of the individual parts of the structure,
and as a result inertial forces act on these parts. Seismic forces which arise in the
individual elements of the structure are dependent on the type and the amount of
ground acceleration, distribution of the mass within the elements of the structure,
as well as their elastic properties [Clo75].

7.1.2 Classification of Forced Vibration

Forced vibration may be classified according to:

1.

The number of degrees of freedom of the structure (either lumped or distributed
parameters). From methodological point of view, structures with lumped
parameters are divided into those with one degree of freedom and structures
with two or more degrees of freedom.

. According to the type of relationship “P—y” (Table 6.1), the vibration is divided

into linear and nonlinear vibrations.

. Resisting forces which arise in the structure — these may be taken into account or

neglected.

. If forces which act on the structure are characterized by the preciseness of their

parameters, then the corresponding vibrations are called determinate vibrations.
There exists a series of dynamical loads which are characterized by the lack of
preciseness of their parameters. These include loads created by wind, loads which
arise on account of irregularities of the deck on car bridges, seismic loads, etc.
In all these cases, it is impossible to set factual parameters to these loads.
Such occurrences are called nondeterminate and the corresponding vibrations
are random vibrations [Bol84].

We will consider determinate in-plane bending vibration of arches neglecting

the secondary effects.

7.2 Structures with One Degree of Freedom

This section contains analysis of the forced vibration of the structure with one
degree of freedom; the structure is subjected to typical disturbing forces.
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7.2.1 Dugamel Integral

The forced undamped vibration of a system with a single degree of freedom,
subjected to an arbitrary disturbing force F(¢), is described by the equation

my + ky = F(t), (7.1)

where y is the displacement of the mass m, the stiffness coefficients is denoted as k.
General solution of this equation is

¥(¢) = yo cos wt+=2 sin wt+y (1). (7.2)
w

The first two terms in (7.2) describes free vibration of a mass m with its initial
position yq and initial velocity vy. These vibrations occur with the frequency of free
vibration w = y/k/m. Last term in (7.2), y*(¢), describes the forced vibration which
depends on the disturbing force F(¢). Equation (7.1) and its solution do not take into
account the resisting forces; due to the inevitable presence of various damping
forces in the structure, the free vibration rapidly disappears and only the purely
forces component remains.

Y = € /OtF(‘c) sin o(t — 7) dz. (7.3)

wm

Expression (7.3) is called Duhamel’s integral [Duh43] (convolution integral).
This formula allow us to determine the response of the linear system with a single
degree of freedom in the case of an arbitrary disturbing force F(¢). Formula (7.3)
is derived on the basis of the superposition of the responses of the system to a
sequence of impulses [Wea90]. The Handbooks [Har61], [Har88] contain forced
component (7.3) for a system with a single degree of freedom subjected to numer-
ous types of impact loads.

7.2.2 Application of the Duhamel Integral for a Bar Structure

Integral (7.3) may be presented in the form applicable for bar structure. Approxi-
mate analysis of a structure subjected to arbitrary loads (impact, harmonic, etc.)
is based on the following assumptions:

1. Vibration of the bar structure occurs as in a system with a single degree of
freedom.

2. The shape of vibration coincides with elastic line which corresponds to specific
equivalent static load.
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Assume that at moment ¢ = 0, the structure is subjected to load [Rab54a]

q(x, 1) = q(x) (1), (7.4)

where ¢(x) is any distributed function of x and (r) is arbitrary function of .
Assume that the structure has one degree of freedom and the mode of shape
vibration X(x) is an elastic curve which corresponds to a static load g(x). Since
1/(0)1’1’1) = (U(S]], then

Y (t) = wdyy /tF(r) sin w(t — 1) dt. (7.5)
0

This formula means that at any moment the displacement of the bar system is
determined by the static equivalent load

Feg=o / F(7)sin o(t — 1) dr. (7.6)
0

Taking into account (7.4), we can say that at any moment ¢ the displacement
at any point of a structure will be such as if the structure would be subjected to a
static load

Gstat = O q(x) /O[ga(r) sin o(t — 1) dt.

Now the displacements of the bar structure may be presented in terms of shape
X(x)

1) = o X(v) /O ' o(2) sin o(t — 7)dr. a7

7.2.3 Special Types of Disturbance Forces

Let us show an application of (7.7) for different excitations [Rab54a], [Har88].

Constant-Force Excitation

A weight of mass m is attached to the end of a vertical spring of stiffness k.
At moment ¢t = 0, a force F, suddenly is applied to the mass and then remains
constantly applied to the mass (Fig. 7.1a)
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Fig. 7.1 Constant force a
excitation and the
corresponding forced F(1)
response

Fy

Integral (7.3) becomes

. Fo ['. F,
y(t) = ﬁ A sinw(t — 1) dr :ﬁ(l —coswt) = yyu(l —coswit), (7.8)

where yg,, is the displacement of the mass caused by static load Fy, i.e.,

Fo k
Ystat = — and o =1/—.
k m

According to (7.8), the displacement of the mass occurs by harmonic law
with frequency w of the free vibration around position y = yg,. Dynamical effect
of such application of load, as shown in Fig. 7.1b, is twice as much as the static
one, i.e.,

Ymax = 2yslat(F0)-

For bar structure, expression (7.7) becomes

y(x, 1) = o X(x) /tw(r) sinw(t — 1)dt = X(x)(1 — coswt) = ygu (1 — cosw ),
0

v(x, 1) = dyEl);, ) _ wX(x)sin w1. (7.9)

The bar executes harmonic vibration around the static elastic curve X(x). For
any point on the bar, the maximum displacement is twice more than the static
displacement at the same point.

Pulse of Duration 7

The load ¢(x) is suddenly appeared at time ¢ = 0. This load remains constant
until the time ¢ = t and then suddenly disappeared (rectangular pulse). Assume
that the duration of load actions t and the period of free vibration T satisfy the
condition 7 < 0.25T. In this case, a maximum displacement occurs after the load
is disappeared.
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Table 7.1 Dynamical coefficient vs. parameter /T [Rab54a]
/T  0.01 0.02 0.05 0.10 0.167 0.20 0.30 0.40 0.50 >0.50
Hayn  0.0628  0.126 0313 0.618 1.000 1.175 1.617 1902 2.000 2.000

Within the interval ¢ < 7, the displacement is described by (7.9). For ¢ > 1,
it may be considered that the structure is subjected to actions of two loads ¢g(x) and
—q(x). This again allows us to apply solution (7.9)

Y, 1) =X(x)(1 —coswt) — X(x)[1 — cosw(t—1)]
= X(x) [cosw(t—1) — cosw].

This solution may be rewritten in the following form

y(x, 1) = 2X(x) sin% sin @ (t — %)

Thus, the structure executes vibration around unloaded state with frequency of
the free vibration @ and amplitude 2X(x) sin(w 7/2). Therefore,

V0, i = E2X(x) sin (%) (7.10)

and dynamical coefficient is

:}’max :y_max :2sinE’ (711)
Ystat X T

ludyn

where T is the period of free vibration. Thus, the effect of the short-term load
depends on the parameter /7. Maximum of the dynamical coefficient is equal to 2.
For t < T/6, dynamical coefficient is iy, < 1 (Table 7.1).

Impulse Excitation

A bar structure is subjected to a distributed load ¢(x). This load acts within a very
small time interval 7. Impulse of the elementary load ¢(x)dx is equal to

7 g(x)dx = s(x)dx, thus g(x) = s(x)/z.

According to (7.10), the maximum displacement becomes

sin(wt/2)

d
wt/2 an

Y0 = Y%, ) max.min = T2X(x) sin (%) = +X(x) w1

y=yosinwt.
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Since X(x) is an elastic curve, which corresponds to a static load g¢(x),
then X(x) wt is the elastic curve due to the static load w ¢(x) T = ® s(x). Thus,
the action of any distributed impulse s(x) is equivalent to a static distributed load
Geq(x) with the intensity at any point of a structure being

sin(wt/2) '

= (7.12)

Geq(x) = £ 0 s(x)

The unit of distributed impulse s(x) is (kNs/m). If impulse S(kNs) is applied at a
single point, then equivalent static force F, at the same point is

sin(w 7/2) '

F., =
o = 05 wt/2

(7.12a)

Since [(sina)/o) < 1 and lim,_ [(sina)/o] = 1, then for two impulses with
equal S but different 7, the impulse with smaller 7 is more dangerous. Therefore,

the instantaneous impulse is most dangerous. Equivalent load for this case is

Geq(x) = L0 s(x),
Fog=xwS.

With the decrease of time 1, effect of the constant force F trends to zero, but the
effect of constant impulse S trends to a maximum. In the first case, the impulse of a
force S = Ft, with decreasing of 7, trends to zero, while in the second case the
impulse S for any t retains its magnitude.

Equivalent static load depends not only on the values of the impulse, but also on
the properties of the structure. The greater the stiffness and the lighter the structure,
the greater is its frequency o, and thus the greater is the equivalent load.

Example 7.1. Determine the effect of instantaneous impulse s which acts on the
uniform simply supported beam. This impulse is uniformly distributed within
the entire span /. Parameters of the beam are: flexural rigidity E/, mass per unit
length p.

Solution. The frequency of the free vibration is @ = (n*/?)\/EI/p. Equivalent
static load on the beam is

2
n-s |EI
qeq = s = —12 ;7 (7.13)
so the reactions of the beam are
l n?s |EI
Rmax,min = qﬂ =ws=t—4/—.

2 R
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Bending moment and shear force are

2 n’s

Mmax.min = :l:qeg == 3
[ n’s
Qmax,min = :I:_q;q = :l:—zl

Displacement of the beam is

ymax -

5 gult 5% s
384 EI 384 \/EIu
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)

EI
u

EIl
o

Maximum normal stresses occur at the extreme fibers of the beam and are

M M s e

o,=t—e== e =

I Ar? 8

E
Al

where e is the distance from the neutral line to an extreme fiber of the beam, r is the
radius of inertia, and A is the area of the cross section of the beam.
Maximum shear stress occurs at the neutral line and is

ou s U
a4t
o bl 20 b

E
Ay’

where b is the width of the cross section at the neutral line and U is the first moment
of the cross-sectional area above (or below) of the neutral axis with respect to the
neutral axis.

Discussion [Rab54a]

Comparison of the static loading and impulsive excitation has fundamental
differences:

1.

Even if the entire beam presents a statically determinate structure, in the case of
impulsive excitation, the reactions and internal forces depend on the flexural
rigidity EI of the beam, while in case of static loading these parameters do not

depend on the rigidity EI.

. Increasing of flexural rigidity EI of a beam by »n times leads to decreasing of

displacement by 7 times for any static loading and by /n times at the impulsive

excitation.
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3. In the case of impulsive excitation, the expressions for the reactions, internal
forces, stresses, and displacements have a factor 1 / /i while in the case of static
loading, these expressions have a factor u. Indeed, the uniformly distributed load
q may be presented in term of the mass per unit length as ¢ = u g, where g is the
acceleration due to gravity.

4. The bending moment due to impulsive loading does not depend on the length of
the beam, while the shear force is inversely proportional to the length of the
beam. In the case of a simply supported beam of length I, subjected to
static, uniformly distributed load, the bending moment and shear are propor-
tional to /2 and /, respectively.

Note: on the basis of (7.1), detailed response of the structure subjected to
numerous types of different impact loads is presented in [Har88].

Harmonic Excitation

Such excitation of the bar system may be realized, particularly, by a harmonic
distributed load ¢(x,7) = g(x)cos@t or a concentrated force F(f) = Fycos0t,
where 6 is a frequency of an external excitation. Duhamel’s integral (7.7) leads to
the following result

t
y(x, 1) = a)X(x)/ cos 0t x sinw(t — t)dt
0

:Lx)(cosﬂt—coswt). (7.14)

1—(0/w)?

where X(x) is the elastic curve which satisfies the boundary conditions. Vibrations
(7.14) are combination of forced vibration with frequency 6 of disturbing force
(the fist term) and natural vibration with frequency w of free vibration (the second
term). Both vibrations have amplitude

__Xw
1—(0/w)?

In practice, due to the inevitable presence of various damping forces, the natural
vibrations with frequency w rapidly disappear. The steady-state forced vibration

y(x,t) = AcosOt

is a sustained periodic motion with an amplitude A and a frequency 6 of the
frequency of the disturbing force. The factor

1
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Fig 7.2 Dynamic coefficient piay, vs. A = 0/w; parameter h = 2n/w

is called the dynamical coefficient. This coefficient is the ratio of maximum
displacement of any point of the structure and displacement due to the amplitude
of the static load g(x). The factor w4y, vs. 4 =0/w is presented in Fig. 7.2;
for undamped vibration the parameter 2n/w is 0.0.

1. If 2 =0/w is almost unity, the amplitude of forced vibrations becomes very
large. This phenomenon is called resonance. Precise analysis shows that in this
case

t t
y(x,1) :X(x)% sinwt:X(x)%cos(wt—g). (7.14a)

The first term of (7.14) and formula (7.14a) shows the following: at resonance,
the displacement y(x,¢) and disturbing force ¢(x,t) = ¢(x)cos0¢ (or F(t) =
Focos01) have a phase shift 7/2. It means that the displacements become
extreme at the moments when disturbing force is zero.

2. If the frequency ratio 2 = 6/w is very large, the dynamical coefficient becomes
very small. This case is of special interest for the problem of the suppression of
the forced vibrations in structures.
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Damped forced vibration. Now let us consider the dynamical system with one
degree of freedom and take the resisting force into account. Assume that this force
is proportional to the first degree of the velocity, i.e., R = —fy (the minus sign
indicates that force R and velocity y are oppositely directed). Let c is a stiffness of a
system. The mass m is subjected to a disturbed harmonic force F(f) = Fysin# .
Forced vibration is described by the equation

F
Gomy oty =Pesindr, =L w=C p=fo
m m m
Duhamel’s integral should be presented in the modified form, which takes into
account the resisting force [Clo75].

Partial solution of this equation (forced vibration) is
Yy (t) = Asin(0 ¢t — p).

This is a steady-state forced vibration, a sustained periodic motion with an
amplitude A, and a frequency 6 which is equal to the frequency of the disturbing
force. The quantity y characterizes the phase shift of forced vibration with respect to
the disturbing force. It is easy to show that

do Ah
A= ,tany = ——,
L

(1= 22"+ m?

where dp = Fy/c is a static displacement of mass m caused by the load Fy;
the frequency ratio and a quantity characterizing the damping effect are

i han
w w

Thus, the amplitude and phase shift depend on two dimensionless parameters
/ and h. As before, the quantity A/dy presents the dynamic coefficient

KU 7é7 !
o (1= 22V + 1202

Graphs of dynamic coefficient and for phase shift for certain values of A are
given in Figs. 7.2 and 7.3 [Clo75].

1. If A=0/w < 1, then the phase shift is y < 90°, and amplitude of forced
vibration is A > do. However, if the frequency ratio 2 is very small (0 < o),
then the amplitude of forced vibration is approximately equal to the static
displacement of the mass m, i.e., A = ¢ and the phase shift is y = 0. Starting
approximately from 6/w = 0.25 the dynamical coefficients and the phase shift
rapidly increase. Note that an increase of the damping parameter 4 leads to a
decrease of dynamic coefficient and an increase of the phase shift.
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Fig. 7.3 Phase shift y, rad, vs. 1 = 0/w; parameter h = 2n/w

2.

At resonance (4 = 1), the amplitude of forced vibration and phase shift
are Ages = d9/2h and y,. = 1/2, respectively. In the case of damped forced
vibration, the displacement lags behind the disturbing force by 90°. As this
place, the maximum values of dynamic coefficients are shifted left from the
vertical line 4 = 1. The damping forces significantly decrease the amplitudes at
the resonance.

. If the frequency ratio is very large (0 > ), the dynamic coefficient is y14y, < 1,

i.e., the amplitude A of forced vibration is very small. For example, if
. =0/w=2.5, and h = 0, then A = 0.2J,.

. The smaller coefficient of resistance n (or dimensionless parameter /), the larger

the amplitude A of forced vibration.

. The phase angle smoothly changes from zero until 180°, with the change

occurring very rapidly in the resonance zone.

7.3 The Steady-State Vibrations of the Structure

with a Finite Number of Degrees of Freedom

When a structure is subjected to any type of an exciting force, the vibration of the
structure presents a combination of free and forced vibrations. Vibrations, which
are caused by the disturbing forces only, are called the steady-state vibrations.
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of a structure with a finite

Fig. 7.4 Harmonic excitation lP](t) lPk( 1)
number of degrees of freedom m ¥ S

The vibrations that occur in the structure, before it fully achieves a steady state,
are called transient vibrations. This paragraph considers only steady-state vibrations
of the arch, while the following paragraph considers transient vibrations.

If a structure with a finite number of degrees of freedom is subjected to a
harmonic load, then the reactions, internal forces, and displacements will also
change by a harmonic law. With this, their amplitudes will depend on the relation-
ship between the frequency of free vibration and frequency of the harmonic force.
If a structure is subjected to several harmonic loads, and all of them have the same
frequency and act in the same phase, then inertial forces and displacements
approach their respective extreme values simultaneously. Dynamic analysis
involves computation of the amplitudes for internal forces and displacements,
as well as testing the structure for possible resonance. The Force method in
canonical form may be applied for these purposes.

7.3.1 Application of the Force Method

Elastic structure with lumped masses my(k = 1, ..., n) is subjected to harmonic
forces Pi(t) = Py sin O¢ (Fig. 7.4).
Displacement of any mass m; at time ¢ is given by the formula

yi =0uX1 +0pXo + -+ 0uXi + - + 0iXy + Ap, (7.15)
where X; are inertial forces of the corresponding masses, d;1, 0i, ..., Oi, are
displacements in the directions of the force X; caused by unit forces
X1, X2, ..., Xu, Ajp is displacement in the direction of X; caused by amplitude
values of harmonic loads.

Displacement of mass m; and its acceleration for forced harmonic vibrations
occurs with the frequency of exciting force 6 according to the expressions

yi = A; sin 01‘7 y, = —A,‘02 sin 0t = —y,'92.

Since the inertial force for mass m; is X; = —m;y; = m,-y,-02, then
yi = X,»/(m,-@z). Now (7.15) may be rewritten in the form

0inXi +0pXs + -+ 0, X+ + 60Xy + Aip = 0, (7.16)

where 5; = 511 — 1/(1’11,‘02) .
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b P(1)

Fig. 7.5 (a) Design diagram of three-hinged arch with lumped masses and (b) modified design
diagram (all dimensions are in meters)

As a result, we get a set of equations to calculate the amplitudes of the inertial
forces X;.

01, X1 + 012X + -+ - 4+ 01,X, + A1p = 0,
021X1 + 05,X2 + -+ - 4 024X, + Agp = 0,

5;11X1 + 5n2X2 + -+ 5;,,Xn + AnP =0. (717)

Once the amplitudes of the inertial forces X; are calculated from (7.17), dynamic
bending moments are

M=MX,+MX,+---+M,X, + Mp. (7.18)

7.3.2 The Steady-State Vibrations of the Arch

Parabolic three-hinged uniform symmetric arch with three equal lumped masses
m; = my is subjected to harmonic excitation P(¢) = Py sin 0¢, Py = 2 kN as shown
in Fig. 7.5. The span and rise of the arch are / = 16 m, f = 0.25]/ = 4 m [Pro48].
Let us show an application of (7.17)—(7.18) for the computation of dynamic
bending moments for steady-state vibrations of the arch.

Free vibration of this structure has been considered in Sect. 6.2.3, Example 6.3.
Group unknowns X, and X3 and single unknowns X, and X, and corresponding unit
bending moment diagram are shown in Fig. 6.7c. Unit displacements and
frequencies of the antisymmetrical and symmetrical free vibrations are

5950 608 3801 B
11 = El ) 22 = El ) EI ) 44 — El 5 12 = 021 = El )
013=2031 =0, 0614=041 =0, 03=03 =0, 0y =204 =0.

EIl EIl
Oantisym = 0.221 /=, Ogym = 0.3041/—.
my my
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Fig. 7.6 Bending moment Py=2kN
diagram caused by the 1.0
amplitude of exciting force
H=11 A4 3.0 B H
-~
T R =15 M, TRB:O.S

Let the frequency of the harmonic excitation be 0 = k+/El/my, so k*El = 02m0,
where k is any number.
Therefore, main displacements become

2 21 2 11 1
=0 ——— =0 - =—(95-2), &h=06n——>s=—/(608——
R EI( k2>’ 2= 0 EI( k2)

21 2 11 1
S5 = Sna — — 0—-= 0, =04y ———=—1_152——.

BOR T R EI <380 kZ)’ MO EI( > k2>

Bending moment diagram caused by the amplitude force P, = 2 kN is shown in
Fig. 7.6.
Loading terms are

_ 1 2 1 2
EIAlp:Ml><Mp:§><5><1.25><§><3+§><4.123><1.25><§><3

—%xSx1‘25><§><1—%x4‘123x1.25x§x1:7.60.

M, x Mp 6.08 30.41 6.08
Ap=—= "0 = App=— A= —
P El El’ T R T TR

Equation (7.17) serve for the calculation of amplitudes of the inertial forces
X;. In our case, these equations fall down into two separate subsystem for
antisymmetrical and symmetrical vibrations.

Antisymmetrical vibrations

2
(38.0 — k—2>X3 +7.6X4 +30.41 =0,

1
7.60X5 4 <1.52 — k_2>X4 +6.08 = 0. (7.19)

Symmetrical vibrations
2
9.5 - 2 X, —7.6X,+76=0,

| (7.20)
—7.6X; + (6.08 - p)xz —6.08 = 0.
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Fig. 7.7 Three frequency k=0.221 k=0.304
intervals 0 } } k
First Second
resonance resonance

Table 7.2 Amplitude values of inertial forces X; for different parameters k, 0 = k+/EI /my

Type of

unknowns Unknowns 0.10 0.20 0.221 025 0.28 0.304 0.32 1.0  Equation

Symmetric X, 004 022 * 073 197 oo 4.10 435 (7.20)
X5 —0.07 —0.18 * —1.17 —3.15 o 6.55 5.32

Antisymmetric X3 019 197 co —3.56 —1.95 * —2.33 —0.81 (7.19)
X4 008 090 co —1.34 —0.74 * 1.58 —0.16

For resonance parameters k, the values of inertial forces (shown by asterisks) are not calculated
because two other inertial forces equal infinity

Two points, £k = 0.221 and 0.304, which correspond to the resonance
frequencies, are shown on a frequency axis. These frequencies partition the fre-
quency axis into three intervals (Fig. 7.7).

At k = 0.221, the determinant of system (7.19), for antisymmetrical vibration,
becomes

2
80— 76 ‘—2.949 7.6

17| 76  —1895
7.6 152 -

' = 55.88 — 57.76 = 0.

At k = 0.304, the determinant of system (7.20), for symmetrical vibration,
becomes

2
95— 16 ’—12.14 -6

1|7 | =76 —474
-6 608~

’ =57.55-57.75«0.

Therefore, at k = 0.221, the forces X5 = X4 = oo and at k = 0.304, the forces
X1 = X, = co. Amplitude values of inertial forces for different parameter k are
presented in Table 7.2.

Dynamical bending moment diagram for each parameter k may be constructed
by the formula

Magn = Mp + > MX;.

Bending moment diagram for k£ = 0.20 and 1.0 are shown in Fig. 7.8; the index
of nodal points is shown by bold numbers.
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Fig. 7.8 Dynamic bending moment diagram

Dynamic coefficient at points 1 and 3 for k = 0.20 are 8.83/3.0 = 2.94 and
5.91/1.0 = 5.91, respectively.

Note: Nonlinear vibration of a shallow arch as a jump-system (Fig. 4.3) has been
considered in detail by Kazakevich [Kaz89]. In particularly, he described a period-
doubling for such system. Further details of this unique property is described in
[Stro94].

7.4 Transient Vibration of the Arch

Rabinovich’s method allows us to investigate the transient vibration of the arch and
for any type of exciting force to construct the dynamical bending moment diagram
without calculating displacements of the arch. The method is based on resolving the
bending moment diagram into mode shapes of vibration.

7.4.1 Procedure of Analysis

Let the arch be subjected to an arbitrary distributed and/or to concentrated time-
dependent loading.

To construct the dynamical bending moment diagram, the following procedure
is used [Rab58], [Sni66].

1. For the given arch, construct a parabolic polygon and determine its parameters
(parameters of polygon for six portions are presented in Table A.36).

2. Arbitrary dynamic loads on the arch should be presented as a set of concentrated
time-dependent forces, which are applied at the nodal points of the Rabinovich’s
model. These forces may be written in the form Pgf (), Pcf (¢), ... where f(¢) is a
certain time-dependent function, and Pg, P¢, ... may be treated as static loads at
the nodal points B, C,. ..

3. Resolve the arbitrary nodal loads into symmetrical and antisymmetrical
components. The following steps should be performed for each component of
load separately; for now let us consider symmetrical loading.

4. We initially consider the nodal forces as static (f(r) = 1). Construct the bending
moment diagram for symmetrical loading; this diagram is denoted M,
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5. Resolve bending moment diagram M*™" for symmetrical loading into two
components by the first and second mode of symmetrical vibrations. Ordinates
of these diagrams for three-hinged arch are presented in Tables A.37 and A.38;
for two-hinged arch in Tables A.41 and A.42.

6. Form the following equations for two nodal points B and C of the arch

kMg + koMpgy = M3™,
Mei + kaMey = ME™. (7.21)

and calculate coefficients k; and k,. For a two-hinged arch, either of the two
equations (7.21) may be replaced by the similar equation for point D at the
crown, namely, kyMp; + koMp, = M.

7. For any function f(¢), the dynamic bending moment for each point may be
presented as a sum of two diagrams

M(t) = kMo /0 f(o)sinw;(t —1)dr, i=1,2. (7.22)

where the first and second terms of (7.22) correspond to the first and second forms
of symmetrical vibrations.

Duhamel integrals in (7.22), for some loadings, are presented in Sect. 7.2.3.

The steps 1-7 and (7.22) allow us to construct the bending moment diagram as a
sum of two diagrams corresponding to the symmetrical modes of vibrations of the
arch. It is very important that in the case of any excitation f(¢), we do not need to
determine the displacements of the arch.

7.4.2 Impulsive Load

Parabolic symmetrical three-hinged uniform arch A—A’ of span / and rise /' = 0.2/ is
subjected to the impulsive excitation as shown in Fig. 7.9a; maximum ordinate at
crown D equals s(Ns/m). Let us calculate the dynamic bending moment at specified
points.

The span of the arch is divided into six equal portions. Ordinates at the specific
points are yg = //9 and yc = 8//45 (Fig. 7.9b) [Rab58], [Sni66].

Step 1. First of all we will consider the given load as static. Distributed load is
replaced by a set of the nodal forces. For this purpose, we will consider three simply
supported beams; the span of each beam is 2 = 1/6. General design diagram of each
beam of span 4 and corresponding reactions R; and R, are shown in Fig. 7.9b.
Specific forces for each nodal point of the arch are shown in Fig. 7.9¢c, with factor
k = sl/108.
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Fig. 7.9 (a) Design diagram of the arch subjected to impulsive excitation; (b) loading and
reactions for any portion of span Z; and (¢) loading of the arch by loads at the nodal points
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The factor k& becomes k =s//108. Vertical reactions of the arch are
R4 = Ry =27k. Bending moment at D for substitute beam is Mg = s? /12,
so the thrust of the arch becomes H = MY, /f = (s1/2.4)(kN).

Bending moments at joints B and C are

My = (Ry — 1)k x 2 — H x yg = —0.0062s/°,
ME = (Ry — 1)k x 24 — 6k x A — H x yc = —0.0031s*.

The bending moments at the nodal points B and C for the first and second mode
of vibrations, according to Tables A.37 and A.38, are

Mpy = 78.12E1/I*, Mp, = 253.96E1 /%,
Mci =5151EI/PP, Mc, = —348.62E1 /.

Equations (7.21) for nodal points B and C become

(78.12k; + 253.96k,)EI /I = —0.0062s/°,
(51.51k; — 348.62k,)EI /I = —0.0031s/°.
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Solution of these equations is

514

l4
ky = —7.314 x 10~ ky = —0.1914 x 10*52—[

Step 2. Dynamic bending moment at joint B is
t t
MO (1) = kMg | F(2) sin o (t — T)de + ksMpos / F(x) sinwa(t — 7)dr.
0 0

Duhamel integral for different types of loads is presented in [Har88]. Taking into
account Duhamel integral for a given impulsive loading, the last expression
becomes

ngn(f) = kiMp1 | sin ot + k,Mpyw; sin m;t.

According to Tables A.37 and A.38, the first and second frequency of symmet-

rical vibration are
» 4354 [EI oy — 138.73 |EI
1 — 12 1 ) 2 = 12 u .

Finally, for bending moment at point B, we need to use the maximum ordinate of
impulse s, thus, we get

El
MY (1) = —5(0.259 sin ;1 + 0.0674 sin ;1) | —(Nm).
\

Note that this expression contains the span / in the frequencies w; only.

Similarly we can calculate the dynamic bending moment at joint C. Finding the
extremes of these functions poses no difficulty. In the case of antisymmetrical
vibration of three-hinged arch, we need to use Tables A.39 and A.40. This proce-
dure is the same for other types of arches.

Let us consider another excitation. Assume that triangle impulse in Fig. 7.9a acts
within a short time t and after that vanishes. The maximum displacement occurs
after the disappearance of the load [Tho81], [Wea90]. As this takes place

—221{ smw,( %), i=1,2.

Similar expressions may be formed for any joint of the Rabinovich model in the
case of an antisymmetric vibration. Procedure for vibration analysis of the other
types of arches is the same.



Part IV
Special Arch Problems



Chapter 8
Special Statics Topics

This chapter contains two topics, which significantly extend the classic static
analysis of arches. They are the plastic analysis of arches and analysis of arched
structures with one-sided constraints.

These problems are nonlinear. The reason for their nonlinearity for both topics is
the same — some constraints are eliminated from the work of a structure. However,
the reasons for this elimination for both cases are different. In the case of plastic
analysis, this occurs because the bearing capability of these constrains become
exhausted. In the case of structures with one-sided constraints, we deal with
constraints which are unable to perceive the internal force of a certain sign.

In both cases, the design diagram of a structure, in the process of loading, is
undergoing change, i.e., we have a system with a variable structure. In such
problems, application of the superposition principle as well as general theorems
of elastic structures requires rigorous justification.

Analysis of such problems falls in the category of the most difficult problems in
structural mechanics.

8.1 Plastic Analysis of the Arches

In the previous chapters, we considered structures taking into account only elastic
properties of materials for all members of a structure. Analysis of a structure based
on elastic properties of material is called the elastic (or linear) analysis. Elastic
analysis does not allow us to find out the reserve of strength of the structure beyond
its elastic limit. Also this analysis cannot answer the question: what would happen
with the structure, if the stresses in its members will be larger than the proportional
limit? Therefore, a problem concerning to the actual strength of a structure cannot
be solved using elastic analysis. Plastic analysis allows us to use the reserves of
strength of material, which remains unused considering material of structure as
elastic. Therefore, plastic analysis allows us to define the limit load on the structure
and to design a more economical structure.

L.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration, 353
DOI 10.1007/978-1-4614-0469-9_8, © Springer Science+Business Media, LLC 2012
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Fig. 8.1 Typical stress—strain diagram for structural steel

Fundamental idea of the plastic analysis is discussed using the direct method.
Kinematical and statical methods of calculation of the limit loads are considered.
Detailed plastic analysis of the arches is presented.

8.1.1 Idealized Stress—Strain Diagrams

The typical stress—strain diagram for the specimen of structural steel is presented in
Fig. 8.1. Elastic analysis corresponds to the initial straight portion of the og—¢
diagram. If a specimen is loaded into the proportional limit (or below) and then
released, then material will unload along the loading path back to the origin.
So, there are no residual strains. This property of unloaded specimen to return to
its original dimensions is called elasticity, and material in this region is called the
linearly elastic. Within the elastic region, a relationship between stress and strain
obeys to Hooke’s law ¢ = Ek.

Let a specimen is loaded into the elastic limit. The stress at this point slightly
exceeds the proportional limit. From this point, the material unloads along the line
that is parallel to straight portion of the diagram and thus, the material has the very
small residual strain (Fig. 8.1).

Plastic behavior starts at the elastic limit. The region CD is referred as the
perfect plastic zone. In this region, the specimen continues to elongate without
any increase in stress. Above the yield plateau, starting from point D, the behavior
of the specimen is described by nonlinear relationships o—e¢. If the specimen will be
unloaded at point A (Fig. 8.2), then unloading line will be parallel to the load
straight line, so the specimen returns only partially to its original length. Total strain
of the specimen is ON, while the strain MN has been recovered elastically and the
strain OM remains as residual one [Cra00].

If the material remains within the elastic region, it can be loaded, unloaded,
and loaded again without significantly changing the behavior. However, when the
load is reapplied in a plastic region, the internal structure of material is altered,
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its properties change, and the material obeys to Hook’s law within the straight
line MA; it means that the proportional limit of the material has been increased. This
process is referred to as the strain-hardening.

For plastic analysis, we change the typical diagram by its idealized diagram.
Different idealized diagrams are considered in engineering practice [Bir68],
[Cra00]. Some of idealized models are presented in Table 8.1.

For further analysis, we will consider idealized elasto-plastic material and rigid-
plastic material. We starts from elasto-plastic material; corresponding diagram
is called Prandtl diagram. This diagram has two portions — linear “‘stress—strain” part
and the yield plateau. Elastic properties of material are holds up to yield point stress o,
The yield plateau shows that displacement of material can become indeterminate large
under the same stress. Idealized elasto-plastic material does not have effect of harden-
ing. This diagram may be applicable for a structural steel and for reinforced concrete.
Structural analysis on the basis of idealized diagram is referred as the plastic analysis.
The quantitative results of plastic analysis are much closer to the actual behavior of a
structure than the results obtained on the basis of elastic properties of material.

In case of statically determinate structure, yielding of any members leads to the
failure of the structure as a whole. Other situation occurs in case of statically
indeterminate structure. Assume that for all members of the structure, the Prandtl
diagram is applicable. On the first stage, when loads are small, behavior of all
members follows the first portion of the Prandtl diagram. Proportional increase of
all loads leads to the yielding in the most loaded member. It means that the degree
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of statical indeterminacy is decreased by one. The following proportional increase
of all loads leads to the following effect: the internal force in the yielding member
remains the same, while the forces in the other members will be increased.
This effect will be continues until the next member starts to yield. Finally,
the structure becomes statically determinate and yielding of any member of this
structure immediately leads to the failure of the structure, since the structure is
transformed into a mechanism. In general, if the structure has n redundant
constrains, then its failure occurs when the number of yielding member becomes
n + 1. It means that capability of a structure to carry out the increasing load
has been exhausted. This condition is called limit equilibrium condition. In this
condition, the limit loads and internal forces satisfy to equilibrium condition. The
following increase of a load is impossible. In this condition, the displacement of
the structure becomes undefined. While the linear portion of typical stress—strain
diagram leads to linear problems of structural analysis (elastic problems), the
Prandtl diagram leads to nonlinear problems of plastic behavior of structures.
Indeed, the design diagram of a structure is changed upon different levels of
loads. Transition from one design diagram to another happens abruptly.

Let us consider the plane bending of a beam with a rectangular (b X &) cross
section. In the elastic region of the stress—strain diagram, the normal stresses are
distributed within the height of a cross section of the beam linearly. The maximum
tensile and compressed stresses are located at the extreme fibers of the beam.
The stress o, corresponds to the yield plateau (Fig. 8.3a). Increasing of the load
leads to appearance and developing of the yield zone and decreasing of the “elastic
core” of the section of the beam. Figure 8.3b, ¢ corresponds to partially plastic bending
of a beam, which means that the middle part of the cross section is in elastic condition,
while the bottom and top parts of the beam are in plastic condition [Cra00].

Further increasing of load leads to complete plastic state (Fig. 8.3d), which
corresponds to the limit equilibrium, i.e., we are talking about the appearance of
so-called plastic hinge (Fig. 8.3d, ). It is obvious that all sections of the beam are in
different states. Defining the location of the plastic hinge is an additional problem
of plastic analysis. This problem will be considered below.
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Fig. 8.4 (a, b) Design diagram and distribution of internal forces according to elastic analysis

What is the difference between plastic and ideal hinge? First, the plastic hinge
disappears if the structure is unloaded, so the plastic hinge may be considered as
fully recoverable or one-sided hinge. Second, in the ideal hinge, the bending
moment equals to zero, while the plastic hinge is characterized by the appearance
of bending moment, which is equal to the limit (or plastic) moment of internal
forces F = a,(bh/2) (Fig. 8.3d). A bearing capability of a structure is characterized
by the plastic moment Mp = F(h/2) = o,(bh*/4).

Plastic analysis involves determination of limit load, which structure can resist
before full failure due to yielding of some elements. The limiting load does not depend
on settlements of supports, errors of fabrication, prestressed tension, and temperature
changes; this is the fundamental difference between plastic and elastic analysis. In the
following sections, we consider different methods of determining plastic loads.

8.1.2 Direct Method of Plastic Analysis

The fundamental concept of plastic analysis of a structure may be clearly presented
using the direct method [Karl0]. Let us consider the structure shown in Fig. 8.4a
subjected to load P at point K [Rzh82]. The horizontal rod is absolutely rigid. All
hangers have constant stiffness FA. The plastic analysis must be preceded by the
elastic analysis.

Elastic Analysis

This analysis should be performed on the basis of any appropriate method of
analysis of statically indeterminate structures. Omitting this analysis, which is
familiar for reader and presents no difficulties, the distribution of internal forces

in members 1-4 of the structure is as follows (Fig. 8.4b):

Ny =04P; N, =03P; N;=02P; and Ns=0.1P.

Plastic Analysis

Step 1. Increasing of load leads to the appearance of yield stresses. They are reached
in the most highly stressed member. In our case, this member is element 1.
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Let N; become equal to limit load, i.e., Ny = N,. Since N; = 0.4P, then it occurs
if external load would be equal to P = (N, /0.4) = 2.5N,. For this load P, the limit
tension will be reached in the first hanger. Internal forces in other members are
(Fig. 8.5).

Ny =0.3P = 0.3 x 2.5N, = 0.75N,; N3 = 0.5Ny; Ny = 0.25N,.

Step 2. If load P will be increased by the value AP,, then N; = N, remains without
changes. It means that additional load will be distributed between the three
members 24, i.e., the design diagram had been changed (Fig. 8.6). This structure
is statically indeterminate to the first degree. Elastic analysis of this structure due to
load AP, leads to the following internal forces

Nz = 0833AP27 1\73 = O333AP2, N4 = —0.167AP2.

As always, the most highly stressed member will reach the yield stress first.
Since first hanger is already in yield condition (and cannot resist any additional
load), the most highly stressed member due to load AP, is the second hanger.
The total limit load in this element equals

Ny = 0.75N,, + 0.833AP;.

In this formula, the first term corresponds to initially applied load P = 2.5N,
(Fig. 8.5), while the second term corresponds to additional load AP,. The limit
load for the second hanger is N, = N,. Thus, the equation

N, = 0.75N, + 0.833AP, =N,
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leads to the following value for the increment of load AP, = (0.25N,)/0.833
= 0.3N,. Thus, the value AP, = 0.3N, represents additional load, which is required
so that the second hanger reaches its yielding state. Therefore, if load

P =2.5N, + 0.3N, = 2.8N,,

then both members 1 and 2 reach their limit state. As this takes place (Fig. 8.7), the
internal forces in hangers 3 and 4 are the following

N3 = 0.5N, + 0.333 x 0.3N, = 0.6N,;
Ny = 0.25N, — 0.167 x 0.3N, = 0.20N,.

Step 3. Since internal forces in hangers 1 and 2 reached the limit values, then the
following increase of the load by the value AP; (Fig. 8.8) affects the members 3
and 4 only. Elastic analysis of this statically determinate structure leads to the
following internal forces in members 3 and 4: N3 = 2AP3 and Ny = —AP;.

Step 4. Similarly as above, the limit state for this case occurs if internal force
in hanger 3 reaches its limit value

N3 = 0.6Ny + 2AP3 = N,.
This equation leads to the following value for the increment of load

04N,

AP; = 0.2N,.
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The total value of external force (Fig. 8.9) is given as follows
P =2.5N, + AP, + AP3 = 2.5N; + 0.3N, + 0.2N, = 3.0N,.

The first term in this formula corresponds to limit load in the first member;
increment of the force by 0.3N, leads to the limit state in the second member.
The following increment of the force by 0.2V, leads to the limit state in the third
member. After that the load-carrying capacity of the structure is exhausted. From
the equilibrium equation for the entire structure, we can see that on this stage
N4 = 0 (Fig. 8.9).

All forces satisfy to equilibrium condition. Plastic behavior analysis leads to the
increment of the limit load by [(3 — 2.5)/2.5] 100% = 20%.

Plastic displacements. If internal force in some of the elements reached its limiting
value and the load continues to increase, then we cannot determine displacements
of the system using only elastic analysis. However, plastic analysis allows calcu-
lating displacements of a structure on each stage of loading. Let us show the graph
of displacement of the point application of force P (point K).

If load P = 2.5N,, then internal force in second element equals 0.75N,, (Fig. 8.5)
and vertical displacement of point K is Ax = 0.75N,!/EA.

If load P = 2.8N,, then internal force in second element equals N,, (Fig. 8.7) and
vertical displacement of point K is Ax = NyI/EA.

If load P = 3.0N,, then internal force in third element equals N, (Fig. 8.9) and
deflection of this element equals Ny//EA. Since internal force in fourth element
equals zero, its deflection is zero and required displacement Ax = 2N,//EA.
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Fig. 8.11 Arch mechanisms of failure

Corresponding P — Ag diagram is shown in Fig. 8.10; the factors //EA and N,
for horizontal and vertical axis, respectively. This diagram shows that P — Ag
relationship is nonlinear. This is typical for plastic analysis.

8.1.3 Mechanisms of Failure in Arches

We will consider in-plane failure of the arches. A fundamental difficulty of the
plastic analysis of the arches is determining the real form of their failure, i.e.,
determining location of the plastic hinges.

For a two-hinged arch, the different mechanisms of failure are shown in
Fig. 8.11a—c. In case of main form of failure, the arch exhibits the mechanism of
sideway displacement (Fig. 8.11a). Symmetric forms of failure are also possible
(Fig. 8.11b, c). However, such mechanisms may be realized if additional
constraints, which prevent sideway failure, are introduced into the structure.

For two-hinged arch with tie mechanism of failure can be characterized by the
appearance of the yield in the tie and one plastic hinge in the arch (Fig. 8.11d).

If a hingeless arch is subjected to load P at the crown (Fig. 8.11e), then the
mechanism of failure is characterized by the appearance of five plastic hinges
[Kl1e80]. Their locations (except at the supports) are initially unknown.

8.1.4 Limiting Plastic Analysis of Parabolic Arches

Two-hinged uniform parabolic arch is subjected to force P as shown in Fig. 8.12a.
Determine the limit load P and find the location of the plastic hinges, if / = 12 m,
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Fig. 8.12 Design diagram of the arch and mechanism of failure

f=3 m, and bearing capacity of all cross sections within the arch is
M, = 112.5 kN m

Solution. First, let us consider the behavior of structure subjected to given load and
the failure mechanism.

First stage. From the elastic analysis of the arch we know, that the maximum
moment occurs at the point of application of load P, i.e., at point E. Therefore, just
here will be located the first plastic hinge and the entire two-hinged arch is
transformed into three-hinged nonsymmetrical arch. The maximum possible bend-
ing moment at the point £ will be equal to the limit bending moment M, (Fig. 8.12b).

Second stage. Again, we will increase the load P. The second plastic hinge occurs
at point D with the maximum bending moment. However, the location of this point
is unknown yet. We note that on the arch, in addition to the two support hinges A
and B, two plastic hinges E and D are also added. The nature of these hinges is
different. Hinge at the support points are ideal ones, while two other hinges are
plastic ones and they are result of exhausted bearing capability of the beam.

The first plastic hinge with opening below occurs at point E. The bending
moment at this point for the reference beam is

b
Mo = th“T = Piimuvl = Piintt(1 — 1)l = Py % 0.75 % 0.25 x 12 = 2.25Pyin.

The bending moment at any section x caused by thrust H is

M,(H) = —Hy = H?—{x(! —Xx) :ng(l —x) = H#x(u —Xx)
x
:Hx(l _ E)' 8.1)
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At point E, we get

Mg(H) = H x 9<1 - 192> = 2.25H.

Finally, the bending moment at section E is
Mg = MY — Mg(H) = 2.25P;,, — 2.25H. (8.2)
For computation of the thrust H, the elastic analysis methods cannot be applied;
therefore, for now the thrust H remains unknown.

The second plastic hinge with opening above occurs at point D. The bending
moment at point D for the reference beam is

MY = ng_l; = Piimu(1 — u) lx_l; = 0.25Pimp.
u u

The bending moment at point D caused by thrust H according to (8.1) is

x2
Mp(H) = Hyp = H(xD - ﬁ)

The bending moment at section D becomes

2

Mp = M), — Mp(H) = 0.25Pinxp — H(x - %) . (8.3)

The maximum bending moment occurs when dMp/dxp = 0.25P),—
H(1 — (xp/6)) = 0. Solution of this equation is

1.5P;;
xp = 6= = (8.4)
Substituting (8.4) into (8.3) yields
0.1875P;;
Mp = 1.5P;m — 3H — —y lim (8.5)

Taking into account the limit plastic moment M, we get
Mp™ = 2.25Pyi, — 2.25H = M, = 112.5.
Thus, we obtain the following relationships between thrust and limit load

H = Py — 50. (8.6)
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Fig. 8.13 Design diagram of
the hingeless arch,
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bending moment diagram in
plastic state
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Substitution of (8.6) into (8.5) and taking into account the limit plastic moment

Mlim = —112.5, we get a following algebraic equation with respect to Py
1.6875P;,, — 337.5Pym + 13,125 = 0.

This equation leads to the limit load
Plim 1= 147.14kN and Plim 2 = 52.86 kN.
The firstroot leads to the following results for thrust and location of the plastic hinge

1.5P1,‘m 1

1

H1 :Plim1_50297~14 (kN);XD1:6— =3.728 (m)

The second root Py, 2 leads to the xp, = —21.7(m) and should be discarded.

General expression for bending moment in plastic condition M = M° — Hy
is realized in Fig. 8.12c. Here M is a bending moment diagram for reference beam,
the term Hy = Hx[1 — (x/12)] for points E and D becomes 218.56 and 249.63,
respectively. In fact, this diagram presents the static method of plastic analysis [Kar10].

In case of nonsymmetrical loading of the hingeless arch, four plastic hinges
appear in the system (Fig. 8.13).

A bending moment diagram in plastic state is combined from four diagrams.
We construct the bending moment diagram a—d—b for substitute beam (M° diagram)
from the base line a—b. Bending moment diagrams a—a’'-b and a—b-b’" are diagrams
caused by plastic moments M, at the supports. Bending moment diagram due to
thrust is denoted as Hy diagram. Limit moments M, at the sections A-D have
alternating signs.
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8.2 Arched Structures with One-Sided Constraints

So far it has been assumed that all constraints of the structure are two-sided.
It means that if a constraint prevents displacements in some direction, then this
constraint also prevents displacements in the opposite direction. However, the one-
sided constraints often appear in design practice. The word “constraints” means not
only support constraints, but any member of a structure, for example, the diagonal
members of a truss.

A classic example of a structure with one-sided constraints is a beam on an
elastic foundation. The foundation acts back on the beam within the portion where
the beam touches the ground, and ceases to act on the beam in the zone where
the beam is separated from the ground. The zone of contact of the beam with the
foundation (or separation of beam from the ground) depends on the load value and
its location.

Analysis of structures with one-sided constraints falls into a category of the most
difficult problems in structural mechanics.

8.2.1 General Properties of Structures
with One-Sided Constraints

One-sided constraint, which perceives the internal force, is called an active one-
sided constraint. One-sided constraint which cannot resist the load is known as an
inactive one-sided constraint. Active one-sided constraint works, while inactive
one-sided constraint does not work. It is obvious that a one-sided constraint may be
active for some special location and value of a load and for other location and value
of a load the same one-sided constraint becomes inactive.

Assume that one-sided constraints are absent among absolutely required
constraints and is present only among the redundant constraints. It means that the
structure is geometrically unchangeable [Kar10].

Some properties of structures with one-sided constraints:

1. A structure with one-sided (even ideal-elastic) constraints is a nonlinear
structure.

2. As the load that acts on the structure changes, some constraints become inactive
(excluded from work) while others, previously inactive, become active (included
in work); therefore the principle of superposition is not applicable.

3. As a one-sided active constraint becomes inactive or as a one-sided inactive
constraint becomes active, the reciprocal works and reciprocal displacements
theorems can become invalid.

If a structure contains n one-sided constraints, then considering different
combinations of the members as active and inactive members, it is possible to
generate 2" different systems. For example, if n = 10, then the number of possible
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structures is 2" = 1,024 [Rab54a]. The main problem of analysis of structures with
one-sided constraints is to determine the constraints which are active (works) for a
given load [Pro48], [Rab50].

8.2.2 Criteria of the Working System

Assume that a system has n one-sided constraints, and under the given load
the one-sided redundant constraints Cy, C», ..., C,, are active, while constraints
Cu+1, Cys2,..., C, are inactive. If we assume that active constraints
Cy, Cy,..., C,, are two-sided, we can determine internal forces (reactions) in
these constraints by any method for analysis of redundant structures and after that
determine displacements along the inactive constraints C,11, Cpi, ..y Ch.
Assume that internal forces and deflections of the one-sided constraints in the
operating state are positive.

If forces in active (working) constraints C;, Cy,..., C, are positive, while
displacements along the inactive constraints C,.1, Cp42,..., C, are negative,
then the working system is chosen correctly. It means that forces and deflections
of the one-sided constraints correspond to the entire working system.

The first paper devoted to analysis of structures with one-sided constraints was
published in 1852. The author, D.I. Jourawsky, considered a truss with crossed
diagonals. He showed that wood diagonals can resist only compressive internal
forces, while the ends of the extended diagonals being dislodged from their original
positions, and cease to work in the entire structure as an element which can resist
internal forces [Tim53], [Ber57]. Some fundamental theorems related to analysis of
structures with one-sided constraints are presented in ref. [Rab50].

8.2.3 Analysis of Structures with One-Sided Constraints

Analysis of structures with one-sided constraints contains minimum of two steps.

In the first step, we assume that all constraints are two-sided. Then we analyze
the structure and mark those constraints, which are not be able to resist the given
load. For example, the hangers of the cable bridge are constraints with compressed
internal forces.

In the second step, we change the design diagram of the structure. For this, we
exclude the inactive constraints and perform new analysis of the structure, consid-
ering all remaining constraints as two-sided. After that we verify the criteria of the
working system. If this criteria is satisfied, then the analysis is finished. Otherwise
it is necessary to adopt a new working system and repeat the entire procedure.
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Fig. 8.14 Design diagram of arched structure and primary system

Herein lies the difficulty in analyzing systems with one-sided constraints: to this
day, it is impossible to chose the correct system that satisfies the criteria of the
working system without first performing the analysis described in Step 1.

The procedure for construction of influence lines for a system with one-sided
constraints becomes especially difficult.

Let us consider the arched structure which consists of the arch itself, a beam, and
the vertical poles. Each pole and beam are connected by means of simple hinges
(Fig. 8.14a). Therefore, the beam may be treated as a continuous beam on elastic
supports, and the structure in whole becomes statically indeterminate. Assume that
the poles can resist tensioned and compressed forces. Analysis of this structure may
be performed using the Force method.

The equation of the neutral line of the arch is y = y(x). Let /, f, and /; be the span
of the arch, rise, and length of the kth pole, respectively. The flexural stiffness of the
arch is E,l,, of beam it is E,/;, and axial stiffness of poles is EgAg. One version of
the primary system is shown in Fig. 8.14b.

Next we need to construct the internal force diagrams for primary system due to
the unit primary unknowns, as well as the diagram due to the external load. Unit and
loaded displacements are calculated using graph multiplication method. In doing so
we take into account the bending moments in the beam and arch as well as the axial
forces in the poles. For multiplication of diagrams along the arch, the length of the

arch is approximated by a set of the chords with length s = 1/(Ax)* + (Ay).

Canonical equations are

onXi+--+0uXs +Ap=0

541X1 + -+ (344X4 + A4p =0.

Solution of these equations are X;. Bending moment diagram for beam is
constructed immediately since the primary unknowns are bending moments at the
elastic supports. Bending moments for arch may be calculated by the formula M =
S MX; + MY. Axial forces in the poles may be constructed by the formula
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Fig. 8.15 Design diagram of arched structure without inactive constraints 2 and 4 and the primary
system

11 2l 3l
Py Py V Py P,

Fig. 8.16 Design diagram of arched structure with inclined hangers

N =Y_N.X;+ NS, where N; is axial forces in the ith unit state. This classic
procedure describes analysis of a structure with two-sided constraints.

Let for a given location of the force P, an elastic line of the beam is shown by a
dotted line (Fig. 8.14a). If we assume that the poles can resist only compressed
forces then the design diagram in Fig. 8.14a does not reflect a real behavior of the
structure. Therefore, the extended poles should be omitted from the following
analysis. Let the external force P be located over pole 3. In this case, it is obvious
that poles 2 and 4 has the positive internal forces. Design diagram which
corresponds to omitted extended constraints is shown in Fig. 8.15a. The primary
system is shown in Fig. 8.15b.

Now we need to perform analysis of structure in Fig. 8.15b, determine internal
forces in members 1, 3, and 5 and displacements along omitted constraints 2 and 4,
and finally, apply the criteria of the working system.

Another example of the arched structure with one-sided constraints is shown in
Fig. 8.16. The hangers are connected with the arch by simple hinges (except crown C)
and by multiple hinges with the horizontal part AB. Inclined hangers distribute the
forces in the arch better than the vertical hangers. The degree of redundancy of such
a structure equals to the number of joints on the horizontal part AB, which contains
two hangers (in our case, degree of redundancy equals to six).

It is easy to show that internal forces in the hangers which are concurrent in the
unloaded joint of the part AB are equal to zero. Indeed, equilibrium equation
>'Y = 0 for each unloaded joint shows that one of the two hangers is extended
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while other is compressed. A compressed hanger may be discarded, considering it
as a one-sided constraint. Then internal force in the second hanger turns out to
equals to zero, because the joint becomes a three-member unloaded joint.

Now let us consider the loaded joints of contour AB with two paired hangers;
such joints in Fig. 8.16a are denoted as 1, 2, 3. One force for each such joint is
considered as the primary unknown X;, X,, ... (Fig. 8.16b). Assuming that all
hungers are two-sided, form the canonical equations of the Force method and
determine all primary unknowns X;, X,, ... Given this, if all primary unknowns
X; and all internal forces S; turn out to be positive, then this means that the assumed
scheme is operational. If one or several internal forces turns out to be negative then
the corresponding one-sided constrains should be omitted from consideration.
As result, we obtain a new design diagram with a new number of primary
unknowns; eventually a set of calculations allow us to find the working system
for the entire design diagram.



Chapter 9
Special Stability and Dynamic Topics

This chapter contains two topics which extend the stability and vibration analysis of
the arches. They are the dynamical stability of arch and dynamic action of the
moving load on the arched structure.

The feature of these problems lies in the fact that dynamic loading of the arch in
both cases leads to an effect which can be treated as a loss of stability.

9.1 Dynamical Stability of Arches

Analysis of the elastic structures from the point of view of its dynamical stability is
considered to be an important problem of the theory of structures. This analysis
allows us to determine the parameters of a “structure-load” system which lead to the
intense vibration of the structure; such vibration can lead to its collapse. The task of
the engineer is to prevent such vibrations.

The problem of dynamical stability of an elastic structure is as follows: structure
is loaded in such a way that its stiffness changes. Therefore, such loading (and the
problem as a whole) often is called parametric excitation [New89].

The first analysis of dynamical stability of simply supported column was
performed by Beljaev (1924) [Smi47]. Later outstanding scientists Krylov and
Bogoliubov (1935), Chelomey (1939), Smirnov (1947), and many others devoted
theirs works to this problem. This problem has been investigated in great detail
by Bolotin [Bol64]. Dynamical stability of arches was investigated by Morgaevsky
[Mor61]. A detailed literature review on this issue is presented by Kazakevich
[Kaz09].

L.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration, 371
DOI 10.1007/978-1-4614-0469-9_9, © Springer Science+Business Media, LLC 2012
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the column subjected to axial

Fig. 9.1 Design diagram of l S0
harmonic force S(¢) A

9.1.1 Dynamical Stability of a Simply Supported Column

Let us consider a column which is subjected to the axial harmonic force S(¢); the
form of transversal vibration is shown in Fig. 9.1. This vibration of a structure is
called parametric vibration. The meaning of this term will become clear later.
At the certain frequency of excitation, the force in the system causes significant
increase of transversal vibrations. Such phenomena is called the dynamical loss
of stability.

The scheme in Fig. 9.1 allows us to show a fundamental difference of the
parametric vibration from pure forced vibration: if the vibrations of hinge A in
the axial direction occur with frequency 6 of the disturbing force S(f), then the
vibrations of mass m in the transversal direction occur with frequency ¢, = 0/2
[Smid7].

From Bernoulli-Euler theory, the transversal vibration of the beam with
distributed mass is described by the equation EI[(0*y)/0x*] + u[(8%y)/0¢*] =0,
where p is the mass per unit length of the beam. If we take into account the axial
force, the behavior of the beam is described by the equation

Oy &Py &y
EI 5+ 5055 + n%s = 0. ©.1)

If S = S(¢) = Spcos 01 [Now61], [New89], then (9.1) becomes

oty %y &Py
El 8x4+SOC0$0t8 2+u82

=0. 9.2)

This equation has a fundamental difference from the equation of forced
vibrations. Indeed, the disturbing force appears in the left-hand side of the equation
as the coefficient of the second derivative term. In this manner, the disturbing force
influences the parameters of the system, and therefore such excitation is called
parametric excitation.
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The transverse displacement of a beam depends on the axial coordinate x and
time ¢, i.e., y = y(x, t). A solution of differential equation (9.2) may be presented in
the form

y(x,1) = T(7) sin ”—ZX 9.3)
where T(¢) is some time-dependent function and sin(nx//) is a function which
satisfies the boundary condition of a simply supported beam.

Substitution of this expression into (9.2) leads to the equation [Fil70]

ernt 1>
H@ + EIZ_4 I:l - WS([)} T(r)=0
or
aer o, So
—> to |[1-—=cos0t|T(t) =0, 9.4)
dr cr

where @ = (n?/I?)\/El/pA and P, = (n°El)/I? are the frequency of transversal
vibration (assuming the axial force vanishes) and the Euler critical force for simply
supported beam, respectively. Equation (9.4) is an ordinary differential equation of
the second order. This equation describes the response of a linear dynamical
structure with time-varying stiffness. Indeed, this equation contains time-dependent
stiffness which depends on the parameters of structure itself (frequency w of
transversal vibration and the Euler critical force) as well as the parameters of
disturbing force (amplitude value Sy and frequency 0 of axial force).

Equation (9.4) takes its name from the first paper by Mathieu [Mat68]. Solution
of this equation have been studied extensively by Haupt [Haul9], Goldshtein
[Gol27], Strutt [Str32], McLachlan [Mcl47], and Stoker [Sto50].

9.1.2 Ince-Strutt Diagram

The main feature of Mathieu equation lies in the fact that depending on the
relationship between the parameters of the system and the disturbing force,
the solutions of the equation can be bounded or grow infinitely in time.

Let z = Ot. Substituting this change of variable into (9.4), we get

T o? So
@4’?{1 —[TECOSZ:|T—O



374 9 Special Stability and Dynamic Topics

o S

Stable j

ARV
)

0
2 0\ 2\ 4 6\ 8 9 10
/41 ~9/4 25/4

Fig. 9.2 Ince-Strutt diagram
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E—i—(v—wcosz)T:O, vV=— w:?i 9.5)

Solutions of this equation are a periodic functions with period n or 27. These
solutions are presented in v — y Ince—Strutt diagram [Inc25-27], [Str32] by solid
lines (Fig. 9.2). These lines divide the v — i/ plane into regions. The diagram in
Fig. 9.2 presents the stable and unstable regions of (9.5) as a function of parameters
v and ; this diagram is symmetric about the horizontal axis. Equation of solid lines
may be presented in terms of v and iy in algebraic form [Bol78]; this book also
contains the useful technical application of parametric excitations.

Stability region of solution to Mathieu equation is indicated by cross-hatched
area. Boundaries are unstable. If parameters of the system v and  turn out to be in
the unshaded region, the system exhibits vibrations which grow in time (parametric
resonance). If damping is present in the system, the stability region will be larger
than if no damping was present in the system.

9.1.3 Dynamical Stability of Circular Arch

Let us consider a circular two-hinged uniform arch which is subjected to a radial
load ¢() = go cos 0 ¢ (Fig. 9.3). The problem of dynamical stability of the arch we
will consider in a simplest formulation.
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Fig. 9.3 Design diagram of
the arch

Governing equation of vibration with respect to tangential displacement u of the
points on an axis of the arch (equation of dynamic stability) becomes [Chu52],
[Bir68], [Bol64]

u Pu  Pu  qR® (O*u @ mR* 0% (0u
Opt - 0p?

L:— 2— _ _ _ | — —
+ toz T EI 02 \ 9>

R R R u) =0, (9.6)

where

u is a tangential displacement of a point on the axis of the arch and m is mass per
unit length of the arch.

¢ (—x <@ <o) is the angle that determines location of the point on the
nondeformable axis of the arch. The boundary conditions for hinged ends are
u=0, Ou/dp=0, & u/op’®=0.

Two-Hinged Arch

Assume the approximate solution for two-hinged arch in the form
o Y
1) =—f()=(1 —),
u(t) = = ()= (1 + cos ™

where f(¢) depends on time. This expression satisfies all the boundary conditions.
Apply Bubnov—Galerkin procedure to (9.6)

/_ZL(] + cos%)dgo -0, 9.7)

where L is an operator in the left part of expression (9.6). As a result, we obtain

qR’

(e = =0

@+ 1™ 50+ 22 - 10)
EI

This equation may be rewritten as

F() +w2(1 - y)_f(t) =0 or f(1) +w2<1 i)f(t) =0, (9.7a)

mRw? Ger
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where

w_é(éz—l)i\/ﬁ ez
VEaRYe e
mR? (5375)2 EI T

Ger = 7 = 54_52 ﬁa é:&

Formulas for critical radial load and frequency of free vibration have been
obtained earlier; see (4.11) and (6.16a), respectively.
Since ¢ = go cos 0 ¢, then (9.7) becomes

qer

F) +w2<1 _ & cos@z)f(z) =0.

Dimensionless parameters of Ince-Strutt diagram are v = w?/ 0> and
V= (wz/gz)(%/%r)~

If disturbing harmonic load has a constant term ¢, i.e., ¢ = go + ¢q1 cos ¢,
then we get the following equation of parametric vibration

er o, 90 q1
s (. ; ) _
a2 +w ( mezy mez/coset f(r)=0

or

&er q0 4
— 1 ————cos0t|)f(t) =0.
dtz + @ QCI” qu cos f( )

This equation may also be easily presented in standard forms (9.4) and (9.5).

Arch with Fixed Ends
For hingeless arch u(p, 1) = >_.f(t) uj(¢),

uj() = 1 — ajcos 0 + b; cos k;0,

K2
a; = 2 i 1 seca; b= 21 sec kj,
j j

where k; are roots of the transcendental equation &; tan o = tan k;o.
Detailed solution of this problem, using Bubnov—Galerkin procedure, is
presented in [Guz61].
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9.2 Arched Structure Subjected to Moving Loads

This section is devoted to the analysis of structures subjected to moving loads.
So far the moving load was associated only with the position of a load and any
dynamical effects have not been taken into account; this fact is a fundamental
assumption of influence line concepts.

In Sect. 9.2.1, we consider different dynamic states of problems regarding moving
loads and discuss the important case of loading of the beam (quasi-static state).
In Sect. 9.2.2, following the Morgaevsky procedure, we consider quasi-static loading
of the arch.

9.2.1 Beam with a Traveling Load

Figure 9.4 presents the four possible design diagrams for dynamical analysis of the
beam subjected to a moving concentrated load. Parameters that are taken into
account (mass of moving load M and distributed mass of a beam m) are shown
in bold and thick solid lines. The scheme (a) does not take into account neither the
mass of the beam nor the mass of the load; therefore, the inertial forces are absent.
This case corresponds to static loading, and speed v only means that force P may be
located at any point; this case of loading is assumed for the construction of influence
lines. Case (b) takes into account only the mass of the moving load. Case (c)
corresponds to the motion of a massless force along the beam with distributed
mass per unit length. Case (d) takes into account the mass of the load and mass of
the beam. The difficulty in solving these dynamical problems increases from case
(b) to case (d).

Chester bridge (England) was designed by Robert Stephenson. The bridge
collapsed when a train was passing over it (May 24, 1847). This catastrophe led
scientists to focus on the problem of dynamic stresses arising in beams subjected to
moving loads. Solution of the classical problem in Fig. 9.4a was independently
solved by Winkler and Mohr in 1868. The problem in Fig. 9.4b was formulated
by Willis in 1849 [Tim53]; Stokes solved this problem (1849) and derived the
expression for dynamical coefficient u = 1 + MIv? /3 EI. The problem in Fig. 9.4c
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Fig. 9.5 Nonstationary loading of a beam by a moving distributed load

do, My

IEEIEEEAEEEE T EEE mald

X
EI my
- /

vy '

Fig. 9.6 Stationary loading of a beam by a moving load

was thoroughly examined by Kryloff [Kru05]. Problem in Fig. 9.4d was explored
by Schallenkamp [Sch37], Inglis [Ing34], and Bolotin [Bol64].

It is possible to have situations where a distributed load is moving. A beam is
subjected to a uniformly distributed load, with intensity go, which is moving along
the beam with a constant speed v; the mass of this load per unit length is m,. Assume
that the load covers only part of the beam, so the following cases of loading are
possible: load oncoming onto the beam (Fig. 9.5a), moving load within a beam
(Fig. 9.5b), or outgoing load from the beam (Fig. 9.5¢). In these cases, the vibration
of the beam takes on a nonstationary character; these vibrations are described by
partial differential equations with variable coefficients.

Let us consider the quasi-static loading of the beam by a traveling inertial load.
Such loading arises if a beam is fully covered by the traveling load (Fig. 9.6)
[Kar70].

The vibrations of the above beam are governed by the differential equation

oty

(9.8)
Intensity of the external load ¢ is the sum of the inertial forces of the elements of
the beam and inertial forces of the moving load

2 2
q= —Vno% + [QO —my %] . 9.9

Determine the inertial forces of the moving load. For this we need to calculate
the total derivative of the displacement with respect to time. It should be kept in
mind that an element of the load executes a complex motion. Indeed, we have two
frames of reference. One of them is a moving frame (vibrating beam) and another
we assumed is fixed (nonvibrating beam). The element of load performs the relative
motion with respect to the moving coordinate system; the transport motion is
performed by the moving frame together with the load with respect to fixed system,
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and absolute motion with respect to fixed coordinate system. Coordinate x of the
element of the load depends on time, i.e., x = vt. Therefore, projection of velocity
of the moving load onto the y-axis equals

dy dy Oy ox 0Oy Oy

a0 axor 01 ox”

Similarly, the vertical acceleration of the element of the moving load is

&y 0 (o, 9 (I
dr? 8t ot ot 8x

After rearrangement of each term we get

d <8y> _ Py N Oy ox %y N &y

1) "0 0wxdt 0L dox”

8yu Oy U+8y8xu_ %y U+572y02
Ox ) 0x  9x2 ot Ox0t @ Oxr

Thus, the vertical acceleration of the element of the moving load becomes

&’y Py Py 5Py
4y 2w 9y
202 ooV o

(9.10)

Here, the first term represents the transport acceleration, the second term
represents the supplementary or Coriolis acceleration, and third term is a normal
(relative) acceleration. It can be seen that intensity of the load ¢ depends on the
speed of the load. If we assume that Coriolis acceleration may be neglected
[Kar70], then substitution of (9.9) and (9.10) into (9.8) leads to the differential
equation

Mty (92 82 32

Assume that the solution of this equation may be presented in the form

X

y()@l‘) :f(t) SiHTa
where f(7) is an unknown time-depending function. This expression satisfies the
following boundary conditions y(0) = y(/) =0 and y"(0) =y"(I) = 0. Corres-
ponding derivatives are

o= 0() (7). G2 =r05) sn(7). G =sian 7).
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Bubnov—Galerkin procedure

! 84 0? Py %y X
Y Y . _
/ [ 8x4+m0 +mq<at2+v a—)—i—qo}manx—O

leads to the following ordinary differential equation with respect to the function f(¢)

F1) (mo + my) +£(0) {EI (%)2 - mqvﬂ G)Z — 0 %

The frequency of vibration squared is

o = g [ ]

If El(n/1)* — m,v? = 0, then the beam losses its stability. The critical speed is

[\ my

Notice that the loss of stability occurs even if the beam is not subjected to a
compressed load.

Formulation of the problem about dynamical influence of a moving load can be
complicated by taking into account various factors. Among them the axial com-
pressed force [New89], elastic foundation [Fil70], variable speed of the moving
load, one-sided constraints, etc.

9.2.2 Arch Subjected to Inertial Traveling Load:
Morgaevsky Solution

Design diagram of the arch with an over-arch construction is shown in Fig. 9.7.
Loaded contour may be within the rise of an arch, on the same level of the crown or
above the crown (as shown in Fig. 9.7). The uniform circular arch of radius R has a
central angle of 2a. The flexural stiffness of the arch and mass per unit length of the
arch are El, gy and my, respectively. The over-arch structure is loaded by the
uniformly distributed, moving load. The intensity of the moving load, its mass
per unit length, and speed are g, m,, and v, respectively. We consider a stationary
vibration of the arch, which occurs if the arch is zotally covered by the moving load.

A feature of this problem: the mass of the moving load is taken into account. It
means that a moving load is inertial.

The total load on the arch consists of two parts. They are the constant static load
q*(¢p) (the weight of the arch itself, weight of the over-arch structure, and weight of
the moving load) and disturbing load ¢'(¢,f), i.e., the total load is

q=q"(p) +4'(p1).
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Fig. 9.7 (a) Stationary uploading of the arch by the moving load; (b) moving axis; and
(c) displacement components

Assumptions

1. The moving load totally covers the entire span of the arch.

2. Only linear (geometrical and physical) vibrations of arch are considered.

3. The bend of the over-arch-structure is neglected, therefore, displacements of the
element of the moving load are equal to the displacements of u and w of
the element ds of an arc of the arch.

Notations

The moving axis x and z are directed along a radius of the arch and along a tangent
to the axis of the arch, respectively; the moving axis y is perpendicular to the x—z
plane of the arch (Fig. 9.7b). The tangential and radial displacements of any point of
the arch are denoted by u and w, respectively (Fig. 9.7c).

M;‘, O, N3 are bending moment in the plane of the arch, shear, and axial
forces due to constant static load ¢™(¢y).

M;, ', N! are the same internal forces due to the load ¢'(¢, 1).

my is the intensity of the distributed moment.

Morgaevsky equation. Stationary vibration of a circular arch subjected to
moving vertical inertial load is described by the Morgaevsky equation [Mor59],
[Mor60].

M. oM. R? 9 R? 9 & [ow
_ Yy oy = stagt ) Y ST 27 (2
e =552, "Ea, (NZMY) El 9p (Q ) MR 5 (&p ”)
Jq Pm
_p2 Xt —
R (_&P qz) —|—R((‘3 o +mv> 0.

This equation corresponds to the tracking load (Fig. 4.1a).
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Internal forces are

NS = —¢"R(ncos ¢ + sin’p),
0 = ¢"R(nsinp — 0.5sin2¢p),

where parameter 7 = H/(¢*R) is a dimensionless trust of the arch.

Assume that disturbing forces ¢, and ¢ are equal to the inertial forces of the
moving load on the displacements u and w; these distributed forces in projection
onto the moving axis x and z, taking into account the expressions for total
derivatives, are

. 0% (Ou v 0 (Ou v (®u  Ou

o= () oo 2 (5 4) o (G 5) =

—Hangasecga(@—i-uﬂ q.=-m [@cosw—ﬁ<@+u> sec<p].
D? P ‘" or R2 \9p2

These forces are applied on the level of the loaded contour. They are transferred
into the center of gravity of the cross section of the arch. If inertia of rotation is
neglected, then for distributed moment we get the following expression

my = R[q. cos p(1 — cos ) — ¢’ sinp(1 — cos )].

In the case of uniform motion, the velocity and acceleration of the element of the
moving load in direction u become

du_6u+08u dzu_82u+ . Ou +0262u
dt 9t Oxy’ dP 9P 010 xo ox3’

Similarly, we can determine the first and second total derivatives of displace-
ment w. As in the case of the beam, these formulas present the total velocity and
acceleration of a point (absolute velocity and acceleration) in the two systems of
coordinates, one of them is moving and second is conventionally stationary.

Tangential displacement which satisfy the boundary condition for
antisymmetrical vibration of the arch is

u(x, 1) :f(t)% (1 +cos§¢).

Bubnov—Galerkin procedure is

+o
/ L(p, 1) (1 4 cosnp)dp = 0.

o
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Table 9.1 Parameters u,, K, and C, for arch with central angle 2a

20 1l I K C,

45° 0.094 0.9781 63.10 61.161
90° 0.207 0.9242 16.22 13.930
120° 0.289 0.8770 8.293 7.724

If location of a loaded contour satisfies the condition f/3 < h < 2f/3, then the
distributed moments may be neglected, so R [((9°my)/0p*) 4+ my] = 0. In this case,
Bubnov—Galerkin procedure leads to the following ordinary differential equation of
the second order, with respect to the function f(¢)

(1 +@n1>f'(r) +w§(1 —&—U—zﬁicl)f(z) =0,
my 0

2

2_112(112—1) EI o _(q0+q1)R3

COO—274—, n=-—, Kq—4.
(n2+3) R*mg o EI

Coefficient K presents the stability coefficient for a uniform circular two-hinged
arch, subjected to a uniform vertical load within the entire span of the arch,
g = KEI / R3. This coefficient, as well as parameter C,, is presented in Table 9.1.

Expression for mg coincides with Bolotin’s formula (6.33) for first frequency of
the antisymmetric vibration of the uniform arch without external loading.

The frequency of antisymmetric vibration of the arch, taking into account the
mass and speed of the moving load, is

With the additional fixed (v = 0) distributed load ¢; at the loaded contour,
the frequency of antisymmetric vibration of the arch is

1-fe

(20
V1 (mg/mo) iy K

Condition w, = 0 leads to the formula for critical speed of the moving load

Rawy K, \ myg
Ver = —— 1—=2)=
\/Cl K mq

Wy=0 =

In this case, the in-plane vibration of the arch becomes unstable.
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Parameters u;, K, and C; for arch with central angle 2« are presented in Table 9.1
[Mor59], [Mor60].

If a loaded contour is located on the level of the crown, then the distributed
moments 7, cannot be neglected. Corresponding results are presented in [Mor60].

Dynamical action of moving loads on different structures, such as continuous
beams, arches, combined arched structures, plates, and shells are presented in
[Mor61], [Kol77], [Kar70], [Fil70], etc. Optimal parametric suppression of vibra-
tion of shells subjected to inertial moving loads is presented in [Kar89].



Chapter 10
Conclusion

To this day, when it comes down to analyzing arches for their strength, stability,
and vibration, the theory of arches is well developed and mature. On the other hand,
in some cases, real-world engineering requirements are unable to be satisfied with
the current theory of arches. These requirements are related to arch-like structures
becoming more and more complex, being subjected to different loading conditions,
and generally being exploited to a greater extent, and as a result exhibiting a
completely new pattern of behavior. We list several problems related to the theory
of arches that require extra careful attention from engineers and researchers.

1. As opposed to static problems, reference data for problems related to stability of
arches is scarcely available. Analytical solutions are only available for the
classical arches and for arches with a very simplistic loading scheme. In the
framework of classical analysis of arches that is presented in this book (Dinnik’s,
Smirnov’s and displacement methods), the peculiarities of arches (asymmetry,
skewness, complex ties, overarched structures, etc.) and their methods of loading
suffer from some serious, sometimes intractable drawbacks. It is these scenarios
where the finite element method becomes the only possible solution to tackle
these problems. There is a vast amount of literature available on the finite
element method, with some of the fundamental textbooks being Weaver and
Johnson [Wea84], Bathe [Bat96], to name a few.

2. To this day, analysis of the arches subjected to combined in-plane and out-of-
plane bending still awaits a solution. Such complex loading of arches leads to
warping torsion with inevitable appearances of bi-moments, and as a result,
additional stresses. It is very interesting to expand the warping torsion problems
of arches to the cases of stability and vibrations. These problems become very
important in the cases when external loads are only partial determined. The
general theory of warping torsion of straight bars was originally developed by
Vlasov [V1a40], [V1a59] and presented in detail by Feodosiev [Feo70], Urban
[Urb55], Tatur [Tat66], to name a few.

3. To this day, there are very few problems related to the synthesis of arches. These
problems can be formulated as optimization problems that must satisfy some

L.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration, 385
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predefined boundary conditions. In the most simplistic cases, these can be
formulated as purely static problems. However, in more complicated cases,
one must incorporate the dynamical characteristics, stability, and reliability
parameters into the model. One must pay special attention to the formulation
of certain optimization criteria and restrictions. Problems including arches that
must simultaneously satisfy several criteria are of great interest. The relevant
fields of optimization theory are well developed and quite mature, but their
applications to the theory of arches are scarcely present in the literature. Some
serious works related to mathematical optimization of deformable objects can be
found in Haug and Arora [Hau79]; Armand [Arm72]; Gill et al. [Gil81];
Rozvany [Roz76]; Troitskiy and Petukhov [Tro82]; Grinev and Filippov
[Gri79], to name a few. Several simplistic static problems related to optimizing
the shape of the arch may be found in Ju Gol’dshtein and Solomeshch [Gol80].

4. Structural failure can lead to significant monetary losses and even to the loss of
life. The designer of a structure must take into account the expected lifespan of a
structure and make the structure reliable enough so that it can withstand it’s
required loading tasks. Statistical analysis of reliability, stability, and vibrations
of arches becomes a very important problem. Analyzing structures by statistical
methods becomes especially important when ones must design structures that
are subjected to a type of loading that caries a probabilistic component (wind
gusts, snow, earthquakes, etc.). Considerable effort and progress has been made
on this subject by Clough and Penzien [Clo75]; Rzhanitsun [Rzh82]; Bolotin
[Bol84] to name a few.

5. It should be noted that among the most important problems of modern engineer-
ing is the problem of vibration protection, or more specifically, controlling
vibrations of deformable structures. A successful solution to this problem will
allow the engineer to lower the overall vibrations to a specified tolerance and
thus ensuring normal functionality of the structure. The results of passive
vibration protection can be significantly improved if one utilizes the theory of
optimal control of vibrations. There exist many scenarios where one must use a
probabilistic approach to solve the problem of vibration protection of arches.
Some of the fundamental works utilizing this approach are Athans and Falb
[Ath66]; Komkov [Kom72]; Pontryagin et. al. [Pon62]; Luzin and Kuznetsov
[Luz51], to name a few. A lot of these problems are very complex in nature and
require a combination of deterministic/probabilistic approaches, utilizing a wide
range of mathematical tools.

By all means, this short list is not an exhaustive description of all real-life
problems and approaches.



Appendix

Arches of Different Shapes. Equation of Neutral Line Tables A.1 and A.2

Table A.1 Equation of neutral line in terms of span / and arch rise f [Lee89]

Type of arch Notation Equation of neutral line

Parabolic y y— 4 (1= ¥
br x P

Circle
<ot
L.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration, 387
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Table A.2 Geometric relationships of the arches with different equations of the neutral line. The
radius of curvature is given by the functional relation R(x) = R cos” o where Ry is the radius of
curvature at o = 0 and 7 is an integer specified for a typical line [Rom72]

S/
-y R
/
I
! f
Curve Parameter n  Equation of the neutral line Ry Ry
Parabola —3 X2 2 tan o %tanz o
TN
Catenary —2 y =Ro(cosh x/Ry — 1) 25inh_l(tan o) 1/cos og — 1
Spiral -1 y = —Rg In cos x/Ry 20 — In cos o
Circle 0 y =Ry — + /Rg —x2 2 sin ag 1 —cos ap
i 1 — cos 20
Cyeletd 1 x= & arccos 4—} —1) x4y & -y |- @ %+ ESin 2% Lo
2 *\Ro "2 4

For an elliptic arch, the equations of neutral line are in standard form and the
radius of curvature are as follows:

¥ y? 5o 1+tan’a 32
b2:1, Rzab()

7_’_7
a? a?tan? o + b?

The instantaneous radius of curvature R, of an axis of any type of arch is
expressed in terms of polar coordinates p and « as follows:

2 /23/2 5
['0 +(,0)} ,_d_p s _dp

2 —pp 2 P T de?”
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Geometrical Parameters of Arches (Tables A.3-A.5)

24 6 8 10 20

Table A.3 Geometrical parameters of a parabolic arch; y = (4f /I)x(l — x),
tan o = (4f /%) (I — 2x)

# of section® X y tan o Section x X y tan o
0 0.00 0.00 4.00 0 0.000 0.00 4.00
1 0.05 0.19 3.60 1/8 0.125 0.438 3.00
2 0.10 0.36 3.20 1/6 0.167 0.556 2.667
3 0.15 0.51 2.80 1/4 0.250 0.750 2.00
4 0.20 0.64 2.40 3/8 0.375 0.938 1.00
5 0.25 0.75 2.00 1/2 0.500 1.000 0.00
6 0.30 0.84 1.60 5/8 0.625 0.938 —1.00
7 0.35 0.91 1.20 3/4 0.750 0.750 —2.00
8 0.40 0.96 0.80 5/6 0.833 0.556 —2.667
9 0.45 0.99 0.40 7/8 0.875 0438 -3.00
10 0.50 1.00 0.00 1.0 1.000 0.000 —4.00
Factor l [ f / / f f

1 1

#The total span is divided into 20 equal portions

Table A.4 Trigonometric functions of angle o for parabolic arch
X

f !
I

0.0 0.05 0.10 0.15 0.20 025 030 0.35 0.40 0.45 0.50
1/2 sino 0.894 0.874 0839 0.814 0.768 0.707 0.625 0515 0.371 0.196 0.0
coso 0447 0485 0.545 0581 0.640 0.707 0.781 0.857 0.928 0.981 1.00
1/3 sino 0.800 0.768 0.730 0.682 0.625 0.555 0470 0371 0.258 0.132 0.0
coso 0.600 0.640 0.684 0.731 0.781 0.832 0.882 0.928 0.966 0991 1.00
1/4 sinoe  0.707 0.669 0.625 0.574 0515 0447 0371 0287 0.196 0.100 0.0
cosa 0707 0.743 0.781 0.819 0.857 0.894 0928 0958 0.981 0995 1.00
1/5 sino 0.625 0.584 0539 0489 0433 0371 0305 0233 0.158 0.080 0.0
coso 0781 0.812 0.833 0.872 0901 0.928 0952 0972 0987 099 1.00
1/6 sinoe  0.555 0515 0470 0423 0371 0316 0258 0.196 0.132 0.067 0.0
coso 0.832 0857 0.882 0906 0.928 0949 0966 0.981 0991 0.997 1.00
177 sino 0496 0457 0416 0371 0324 0275 0223 0.168 0.113 0.057 0.0
coso 0.868 0.880 0.909 0928 0946 0.961 0975 0986 0.994 0998 1.00
1/8 sinoe 0447 0410 0371 0330 0287 0242 0.196 0.148 0.100 0.050 0.0
coso  0.894 0912 0.928 0944 0958 0.970 0981 0.989 0.995 0.999 1.00
1/10 sina 0371 0.339 0305 0270 0.233 0.196 0.158 0.119 0.080 0.040 0.0
coso 0928 0941 0952 0963 0972 0981 0987 0983 0.997 0999 1.00

112 sino 0316 0.287 0258 0.227 0.196 0.165 0.132 0.100 0.067 0.015 0.0
coso 0949 0958 0.966 0974 0981 0986 0991 0.995 0.998 0.999 1.00
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Table A.5 Geometrical parameters of a circular arch
X

f 1

1 o 00 010 020 030 040 050 s:/ R:l e:l

1/2 90° yof 00 0600 0.800 0916 0.980 1.000 1.5708 0.5000 0.000
sinoe 1.0 0.800 0.600 0.400 0.200 0.0
coso 0.0  0.600 0.800 0.916 0.980 1.000

1/2.383 80° yof 00 0535 0.765 0.902 0.976 1.000 1.4179 0.5077 0.0881
sinoe 0985 0.788 0.591 0.394 0.197 0.0
cosa 0.174 0.616 0.807 0.919 0.980 1.000

1/2.856 70° yof 00 0482 0.735 0.889 0.973 1.000 1.3001 0.5321 0.1820
sino 0940 0.752 0.564 0.376 0.188 0.0
cos o 0.342 0.659 0.826 0.927 0.982 1.000

1/3 72°22'48" yf 0.0 0471 0.728 0.885 0.972 1.000 1.2740 0.5417 0.2083
sinoe 0923 0.738 0.554 0.367 0.185 0.0
cos o 0.385 0.674 0.832 0.929 0.983 1.000

1/3.464 60° yof 0.0 0442 0.709 0.876 0.970 1.000 1.2092 0.5774 0.2887
sino 0.866 0.693 0.520 0.346 0.173 0.0
cos o 0.500 0.721 0.854 0.938 0.985 1.000

1/4 53°7'48" yif 0.0 0421 0.693 0.868 0.968 1.000 1.1591 0.6250 0.3750
sinoz 0.800 0.640 0.480 0.320 0.160 0.0
cos o 0.600 0.768 0.877 0.947 0.987 1.000

1/5 43°36'10" yf 0.0 0398 0.675 0.859 0.965 1.000 1.1033 0.7250 0.5250
sino 0.690 0.552 0.414 0.276 0.138 0.0
cos o 0.724 0.834 0.910 0.961 0.990 1.000

1/6 36°52'10" yf 0.0  0.386 0.665 0.854 0.964 1.000 1.0731 0.8333 0.6667
sinoo 0.600 0.480 0.360 0.240 0.120 0.0
cos o 0.800 0.877 0.933 0.971 0.993 1.000

1/7 32°53'27" yif 0.0 0379 0.658 0.850 0.963 1.000 1.0536 0.9464 0.8036
sinoo  0.528 0.423 0.317 0.211 0.106 0.0
cos o« 0.849 0.906 0.948 0.977 0.994 1.000

1/8 28°04'20" y;f 0.0  0.375 0.654 0.848 0.962 1.000 1.0411 1.0625 0.9375
sino  0.471 0.378 0.282 0.188 0.094 0.0
cos o 0.882 0.926 0.959 0.982 0.996 1.000

1/10 22°37'5" yif 0.0 0369 0.649 0.845 0.961 1.000 1.0265 1.3000 1.200
sinoo  0.385 0.308 0.231 0.154 0.077 0.0
cos o« 0.923 0.951 0973 0.988 0.997 1.000

Nomenclature: span /, rise f, radius R, central angle 20,

support; e =R — f

length of the arc s. Origin on the left



391

T [4
~ Loy — {500+ = |p_yd
A el 0 N\hv 2 (burs — )p_yb | 9 | uoneion jo o[Suy
[4 (4 T\« % AW
dus & — L soo—=—1 |b_yu dus & — + =) _yd ¢ — Y\ yp
A : e ﬂv o A : s N\hv 2 o‘m uis touse amv Pedl I rerxy
14 14 ¢ 4 e Uuo 31j © JO
. Y lsood— Cuts | o yd _yb pud 201y ®
(¢ 500 & — L u1s)“p_yquu O( 509 Az urs + Emv Pedl NA\( soo—p) ¢ b [epey syuawadedsIq
jusuIow
hyuu (&b urs — &) yd (dsoo—1)4b | ¢ Suipuog
0 o uis yd (dsoo—1)yp— | T 9010 TeIXY
9010§ ) UoT}OQS ®
0 (&) s00 — 1)yd Sduws yb | erpey Je S9010,]

Ieq Ie[NOIIO B JO WeIderp udiso

SJUQWIORSIP pUE $90I0J [UIIU]

[zLewn] (77/y = “p) speol panquusip 03 pajoalqns Jeq Jenoro Surpeo] sue[d-ur WLIOJTUN JO SJUSWAIE[SIP puE $20I0J [EUIAU] 9°Y J[qR],

(L'V pue 9'y s3[qe],) Jeq Je[ndar) Suipeo| due[J-u] WLIojIu() Jo SJUdWdIe[dsI(] pue $32.10, [eU.Id)U]

Appendix



Appendix

[zrewn] ‘[68N0X] [SLe0y] ul pajuasaid aIe Jeq JB[NOIID 931-paxy Surpeo] sue[d-JO-1no WIOJIUN JO SJUSWAIR[ASIP pUE SO0I0J [BUIAU] :DI0N

(o = ggg (L uis — &)fpy = T (4 soo—1)py =150 | 9 | uonejo1jo o[Suy
14 C C [4 £ — 1z
{ -+ =4 = —v Y =
(¢ uts — )py = £ T (g uis + {g v ¢ J(tsoo—p) ¢ ¢ S [eIXy
C £ 14 AV
L G y=u V. Qg oy
(4 500 — 1)‘py = €l [(dsoo—7p) ¢ ¢ lgus (L vl ¢ ¥ [epey | pud va1y ® Jo sjuswadedsip 1mupn
I (hsodo -1y A urs y € juowow Jurpuag
0 & s00 o urs— z Q010 [eIXY
0 & urs hsoo | 1 Q010§ [RIpRY & uonOIs © 18 $9010 JIU[)

Ieq IR[NOIIO B JO WeIZeIp udiso

sjuowade]dsIp pue s9010J [eUIIU]

(1a/y = “p) speo| parenuaouod 0) pa3oalqns Jeq Je[noId Surpeo] oued-ur ULIOIUN JO SHUSWIAJB[SIP puL $O0I0J [BUINU] /'Y I[qBL

392



Appendix

393

Three-Hinged Parabolic Arch. Bending Moments, Reactions, and Thrust Due
to Force P (Tables A.8 and A.9)

Table A.8 Bending moments (factor P/) [Uma72]

y =4fx(l —)c)l2

/

Section u=0.10 u=0.15 u=020 u=025 u=030 u=035 u=040 u=045 u=050

1 0.036
2 0.072
3 0.060
4 0.048
5 0.043
6 0.028
7 0.020
8 0.012
9 0.006
10(C) 0.000
11 —0.005
12 —0.008
13 —0.011
14 —0.012
15 —0.013
16 —0.012
17 —0.011
18 —0.008
19 —0.005

0.029
0.058
0.090
0.072
0.057
0.042
0.030
0.018
0.009
0.000
—0.006
—0.012
—0.015
—0.018
—0.018
—0.018
—0.015
—0.012
—0.007

0.021
0.044
0.069
0.096
0.075
0.056
0.039
0.024
0.011
0.000
0.009
—0.016
—0.021
—0.024
—0.025
—0.024
—0.021
—0.016
—0.009

0.014
0.030
0.049
0.070
0.094
0.070
0.047
0.030
0.014
0.000
0.011
—0.020
—0.026
—0.030
—0.031
—0.030
—0.026
—0.020
—0.011

0.006
0.016
0.028
0.044
0.062
0.084
0.058
0.036
0.016
0.000
—0.014
—0.021
—0.032
—0.036
—0.038
—0.036
—0.032
—0.024
—0.014

0.000
0.002
0.009
0.018
0.032
0.048
0.069
0.042
0.020
0.000
—0.015
—0.028
—0.036
—0.042
—0.043
—0.042
—0.036
—0.028
—0.015

—0.008
—0.012
—0.012
—0.008
0.000
0.012
0.028
0.048
0.022
0.000
—0.018
—0.032
—0.042
—0.048
—0.050
—0.048
—0.042
—0.032
—0.018

—0.015  —0.023
—0.026  —0.040
—0.032  —0.053
—0.034  —0.060
—0.031  —0.063
—0.024  —0.060
—0.012  —0.053

0.004  —0.040

0.025 —0.023

0.000 0.000
—0.023  —0.023
—0.036  —0.040
—0.047  —0.053
—0.054  —0.060
—0.056  —0.063
—0.054  —0.060
—0.017  —0.053
—0.036  —0.040
—0.020  —0.023

1.

2.

This table may be used for

the construction of influence lines for bending
moment. Two position of load P = 1 should be considered.

If load P is located on the left part of the arch (# < 0.5), then ordinates of IL are
taken from the table immediately.
If load P is located on the right part of the arch (u > 0.5), then we need to take the
ordinates for symmetrical section: for section 5 we use ordinates of section 15.

Table A.9 Reactions (factor P) and thrust (factor Pl/f)

u=010 u=015 u=020 u=025 u=030 u=035 u=040 u=045 u=0.50

Reactions

R, 0.900
Ry 0.100
H 0.050

0.850
0.150
0.075

0.800
0.200
0.100

0.750
0.250
0.125

0.700
0.300
0.150

0.650
0.350
0.175

0.600
0.400
0.200

0.550 0.500
0.450 0.500
0.225 0.250
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Symmetrical Three-Hinged Arch of any Shape. Reactions, Thrust, and
Bending Moments Due to Different Vertical Loads (Table A.10)

My = M}, — Hyy,
Qr = Q] cos ¢ — H sin ¢,
Ny = —Qg sin ¢, — H cos ¢,

/
Xk Xk
€=7, €'=7= 1-¢,
n=2
f
Table A.10 Special cases of loading [Uma72]
Loading Ry Rp H M,
P P Pl Pl
1 - - — —(2¢ -
2 2 7 %-m

Pul Pul /v
2 PooPu Sl (2;¢ - n)
12
3 gl ql ql? % [4(6-&) -]
2 2 8f M, = 0 if arch shape
is a quadratic parabola
3ql ql qP ql? 2
4 K g W E[S(é—c)—%—n]
5 5ql ql Q_lz ﬁ ’ 13 _ 3\
2% 24 ¥f M peas(e - -er ) )
q! q! q?  qP 3 3
6 1 1 q 9t r g3 3\ _
" 4 4 2 4 Pé“‘(é c 5+é) "7]
parabola
qa a g qP 2 2
! 6 6 ay 4gBE-E(1-2w+28) —)

MY and QY represent the bending moment and shear force at the section  for the reference beam
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Three-Hinged Parabolic Arch. Bending Moments, Reactions, and Thrust
Due to A One-side Distributed Load ¢ Within Some Portion of the Arch
(Tables A.11 and A.12)

, 1
YA _ul, y = 4fx(l - x)
[T C [

Table A.11 Bending moments (factor ql2) [Uma72]
Section #u =0.10 u =015 u =020 =025 u =030 ©u =035 u =040 v =045 u =0.50 u = 1.00

1 0.0030  0.0046  0.0069 0.0170  0.0071  0.0073  0.0072  0.0065  0.0056 0.00
2 0.0036  0.0069 0.0094 0.0112 0.0122 0.0127 0.0126  0.0115 0.0100 0.00
3 0.0030  0.0065 0.0105 0.0136 0.0153 0.0163 0.0164 0.0151 0.0131 0.00
4 0.0026  0.0052 0.0094 0.0138 0.0163 0.0180 0.0184  0.0172  0.0150 0.00
5 0.0019  0.0041 0.0075 0.0115 0.0152 0.0177 0.0188 0.0177  0.0156 0.00
6 0.0014  0.0030  0.0056  0.0085 0.0122 0.0157 0.0174 0.0169  0.0150 0.00
7 0.0010  0.0021  0.0039  0.0059 0.0084 0.0115 0.0144 0.0145 0.0131 0.00
8 0.0006  0.0012  0.0024  0.0035 0.0049 0.0074 0.0096 0.0106  0.0100 0.00
9 0.0003  0.0006 0.0011  0.0016 ~ 0.0025 0.0033 0.0044 0.0051 0.0056 0.00
10(C) 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 0.00
11 —0.0002 —0.0005 —0.0009 —0.0015 —0.0022 —0.0028 —0.0036 —0.0050 —0.0056 0.00
12 —0.0004 —0.0010 —0.0016 —0.0027 —0.0041 —0.0054 —0.0064 —0.0086 —0.0100 0.00
13 —0.0005 —0.0012 —0.0021 —0.0034 —0.0051 —0.0068 —0.0084 —0.0110 —0.0131 0.00
14 —0.0006 —0.0014 —0.0024 —0.0039 —0.0058 —0.0077 —0.0096 —0.0125 —0.0150 0.00
15 —0.0006 —0.0018 —0.0025 —0.0040 —0.0060 —0.0080 —0.0100 —0.0130 —0.0156 0.00
16 —0.0006 —0.0014 —0.0024 —0.0038 —0.0057 —0.0076 —0.0096 —0.0124 —0.0150 0.00
17 —0.0005 —0.0012 —0.0021 —0.0033 —0.0049 —0.0066 —0.0084 0.0108 —0.0131 0.00
18 —0.0004 —0.0009 -0.0016 —0.0026 —0.0038 —0.0051 —0.0064 —0.0083 —0.0100 0.00
19 —0.0002 —0.0005 —0.0009 —0.0014 —0.0021 —-0.0028 —0.0036 —0.0046 —0.0056 0.00

Table A.12 Vertical reactions R (factor ¢/) and thrust H (factor g* /)

u=005u=010 u=0.15u=020 u=025u=030 u=0.35u=040 u =045 u=0.50 u = 1.00
R4 0.049 0.095 0.139 0.180 0.219 0.255 0.289 0.320 0.349 0.375 0.500
Ry 0.001 0.005 0.011 0.020 0.031 0.045 0.061 0.080 0.101 0.125 0.500
H 0.0006 0.0025 0.0056 0.0100 0.0156 0.0230 0.0310 0.0400 0.0510 0.0625 0.1250
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Example 1. The parabolic arch is subjected to distributed loads ¢, and ¢,. Calculate
the reactions and bending moment at section 3.
The principle of superposition and symmetry property of an arch are used.

0Ly 1y
C

¢, I D 9,

Reaction R4 = 0.320¢;! + 0.045¢,!
12

Thrust H = (0.0400¢; + 0.023¢) (}7

Bending moment M3 = 0.0164¢, /> — 0.0049¢,

Example 2. The parabolic arch is subjected to distributed loads g. Calculate the
reactions and bending moment at section 3.

The given load may be considered as resulting from two loads: distributed load ¢
with parameter # = 0.5 (load within the entire left part of the arch) and distributed
load g; = g with parameter u = 0.2 and directed upward. Principle of superposi-
tion leads to the following results.

Reaction Ry = 0.375q — 0.180¢,1 = 0.19541
Thrust H = (0.0625¢ — 0.010¢:)(2/f) = 0.0525(¢12/f)
Bending moment M3 = 0.0131¢/> — 0.0105¢,/> = 0.0026¢*
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Three-Hinged Parabolic Arch. Bending Moments, Reactions,
and Thrust Due to Symmetrical Distributed Load ¢ Within Some Portion
of the Arch y = 4fx(I — x)(1/P%) (Tables A.13-A.15)

Table A.13 Bending moments (factor ¢/?); for loading 2 use parameter u in brackets and change
signs for moments [Uma72]

u=045 u=040 u=035 u=030 u=025 u=020 u=015 wu=010 u=0.05
Sections  (0.05) (0.10) (0.15) (0.20) (0.25) (0.30) (0.35) (0.40) (0.45)

1 —0.0009 —-0.0028 —0.0041 —0.0060 —0.0056 —0.0050 —0.0045 —0.0036 —0.0019
2 —0.0008 —0.0032 —0.0061 —0.0078 —0.0086 —0.0084 —0.0076 —0.0062 —0.0032
3 —0.0006 —0.0025 —0.0053 —0.0084 —0.0103 —0.0104 —0.0097 —0.0080 —0.0043
4 —0.0004 —0.0020 —0.0038 —0.0070 —0.0088 —0.0106 —0.0104 —0.0088 —0.0048
5 -0.0002 -0.0013  —0.0023 —0.0050  —0.0075 —0.0092 —0.0097 —0.0088  —0.0047
6 —0.0002 —0.0008 —0.0016 —0.0032 —0.0046 —0.0064 —0.0087 —0.0078 —0.0044
7 —0.0002 —-0.0005 —0.0009 —0.0018 —0.0025 —0.0033 —0.0047 —0.0060 —0.0035
8 0.0000 —0.0002 —0.0002 —0.0008 —0.0008 —0.0008 —0.0020 —0.0032 —0.0020
9 0.0000 —0.0001  —0.0001 —-0.0002  —0.0001 —0.0003 —0.0005 —0.0008 —0.0001

Table A.14 Loading 1: Reactions R (factor ¢/) and thrust H (factor ql? /)
u=045 u=040 u=035 u=030 u=025 u=020 u=0.15 u=0.10 u=0.05

Ri=Rp 045 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05
H 0.1283 0.1200 0.1138 0.1050 0.0938 0.0790 0.0630 0.0450 0.0230

Table A.15 Loading 2: Reactions R (factor ¢/) and thrust H (factor qlz/f)
u=005 u=010 u=015 u=020 u=025 u=030 u=035 u=040 u=045

Ry =Rp 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
H 0.0012 0.0050 0.0112 0.0200 0.0312 0.0460 0.0620 0.0800 0.1020

Two-Hinged Parabolic Nonuniform Symmetric Arch. Bending Moments,
Reactions, and Thrust Due to Different Loads (Tables A.16-A.18)

Notation

Ic, Ac — the moment of inertia and cross-sectional area of the arch at the crown C
E, E, — the modulus of elasticity of the material of the arch and tie
A — cross-sectional area of the tie
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Coefficient £ takes into account the axial force in the arch (Tables A.16 and A.17).

a Arch without tie b Arch with tie

] w‘f)
.
Tie B
25

IR

IRB

_ Elc
~ EA

1
y:4fx(l—x)l—2, Iy cos p, =1Ic, f

The formulae in Tables A.16 and A.17 may also be used for uniform arches
[Uma72].

Table A.16 Reactions, thrust, and bending moments [Uma72]
Loading Reactions and moments Loading Reactions and moments

e =
Hngfk(u 2u +u)

Me = = Sk(u -2 + )]

1
Ry = —
B =54l

H= g %k(l —6u” +4u’)

Relative horizontal Ry=Rzp=0 Uniform change Ry=Rz=0
displacement 15 Elc of temperature 15 El¢
of supports H= 5 ﬁkA by £° H= N kaw
Mc = —Hf Mc = —Hf

o is thermal coefficient




Appendix

Table A.17 Coefficient k

399

Type of the arch

Axial force influence
on the arch and tie

Axial force influence
only on the tie

Arch without tie i 1 'V*E Icn k=1,v=0
T+ 8 Acf?
Arch with tie k 1L 15 Ien EAC_"_1 1 oy 7E£
" T8 A \EAw RS
Coefficients n depend on the ratio f// (Table A.18).
Table A.18 Coefficient n
I3 1/4 1/5 1/7 1/8 1/9 1/10 1/15 1/20
n 06960 07852 0.8434 08812 09110 09306 09424 09521 0.9706  0.9888

Two-Hinged Symmetric Parabolic Nonuniform Arch. Bending Moments,
Reactions, and Thrust Due to A Single Force P (Tables A.19-A.21)

1
y=4fx(l—x) 5
It cos o, =Ic

Bending moment at
any section of the arch

M, =M — Hyk

Coefficient k should be
taken from Table A.17.

Table A.19 Bending moments M° for simply supported beam (factor P/) [Uma72]

Section u=0.10 u=0.15 u=020 u=025 ©u=030 u=035 u=040 u=045 u=050

1 0.0450 0.0425
2 0.0900 0.0850
3 0.0850 0.1275
4 0.0800 0.1200
5 0.0750 0.1125
6 0.0700 0.1050
7 0.0650 0.0975
8 0.0600 0.0900
9 0.0550 0.0825
10(C)  0.0500 0.0750
11 0.0450 0.0675
12 0.0400 0.0600
13 0.0350 0.0525
14 0.0300 0.0450
15 0.0250 0.0375
16 0.0200 0.0300
17 0.0150 0.0225
18 0.0100 0.0150
19 0.0050 0.0075

0.0400
0.0800
0.1200
0.1600
0.1500
0.1400
0.1300
0.1200
0.1100
0.1000
0.0900
0.0800
0.0700
0.0600
0.0500
0.0400
0.0300
0.0200
0.0100

0.0375
0.0750
0.1125
0.1500
0.1875
0.1750
0.1625
0.1500
0.1375
0.1250
0.1125
0.1000
0.0875
0.0750
0.0625
0.0500
0.0375
0.0250
0.0125

0.0350 0.0325 0.0300
0.0700 0.0650 0.0600
0.1050 0.0975 0.0900
0.1400 0.1300 0.1200
0.1750 0.1625 0.1500
0.2100 0.1950 0.1800
0.1950 0.2275 0.2100
0.1800 0.2100 0.2400
0.1650 0.1925 0.2200
0.1500 0.1750 0.2000
0.1350 0.1575 0.1800
0.1200 0.1400 0.1600
0.1050 0.1225 0.1400
0.0900 0.1050 0.1200
0.0750 0.0875 0.1000
0.0600 0.0700 0.0800
0.0450 0.0525 0.0600
0.0300 0.0350 0.0400
0.0150 0.0175 0.0200

0.0275
0.0550
0.0825
0.1100
0.1375
0.1650
0.1925
0.2200
0.2475
0.2250
0.2025
0.1800
0.1575
0.1350
0.1125
0.0900
0.0675
0.0450
0.0225

0.0250
0.0500
0.0750
0.1000
0.1250
0.1500
0.1750
0.2000
0.2250
0.2500
0.2250
0.2000
0.1750
0.1500
0.1250
0.1000
0.0750
0.0500
0.0250
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Table A.20 Complex Hy (factor Pl)

Section u=0.10 =015 ©u=020 u=025 u=030 u=035 u=040 u=045 u=0.50
0.0117 0.0171 0.0220  0.0264  0.0302  0.0332  0.0353 0.0367 0.0371
0.0221 0.0324 0.0418 0.0501 0.0572 0.0628 0.0670 0.0695 0.0703
0.0313 0.0458 0.0592 0.0710 0.0810 0.0890 0.0949 0.0984 0.0996
0.0392 0.0575 0.0742 0.0891 0.1016 0.1117 0.1190 0.1235 0.1250
0.0460  0.0674  0.0870  0.1044  0.1191 0.1309 0.1395 0.1447 0.1465
0.0516  0.0755 0.0974  0.1169 0.1334  0.1466  0.1562  0.1621 0.1641
0.0558 0.0818 0.1056  0.1266 0.1445 0.1589 0.1693 0.1756  0.1777
0.0589 0.0863 0.1114 0.1336 0.1525 0.1676 0.1786 0.1853 0.1875
0.0607 0.0890  0.1148 0.1378 0.1572  0.1728 0.1842  0.1911 0.1934
10(C)  0.0613 0.0899 0.1160 0.1392 0.1588 0.1746 0.1860 0.1930 0.1953

O 0 NN R W N =

Table A.21 Reactions (factor P) and thrust (factor PI/f)
Reactions u =0.10 u=0.15 u=020 u=025 u=030 u=035 u=040 u=045 u=0.50

Ry 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50
Rp 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
H 0.0613  0.0898  0.1160  0.1392  0.1588  0.1146  0.1860  0.1930  0.1953

Example. Two-hinged symmetrical parabolic nonuniform arch with tie is
subjected to load P at u = 0.30. Parameters of the arch are the following:
I cos ¢, = Ic, the length [ and rise f, f /| = 1/6. Parameters of the tie are E, and
A;. Calculate the bending moments at sections 4 and 16, taking into account the
influence of the axial force on the arch and tie. Required bending moments are

M, = 0.140P] — 0.1016Plk
M6 = 0.060P! — 0.1016PIk,

where k= 1/(1+.v;), vi = (15/8)(Icn/Acf?)(EAc/EAn + 1), (Table A.17),
and n = 0.8812 (Table A.18).

Two-Hinged Parabolic Symmetric Nonuniform Arch. Bending Moments,
Reactions, and Thrust Due to Partial Distributed Load ¢ (Tables A.22—-A.24)

A ul | Loading 1 1
‘ c =4fx(l —x)=
¢ o y=/(x) y = 4fx( )12
Ty - B x Ii cos ¢, =Ic

—;1 CEEA4L A F YA E - b —
H 2 4 6 8 101214 1618 H .

. Bending moment at

Ryl l TR 5 any section of the arch

M, = M° — Hyk

Coefficient k should be
taken from Table A.17.
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Table A.22 Bending moments M? for simply supported beam (factor g/> x 10~2) [Uma72]
Section u=0.10 u=0.15 u=020 u=025 ©u=030 u=035 u=040 u=045 u=050

1 0.3500 0.5688 0.7750  0.9688 1.1500 1.3188 1.4750 1.6188 1.7500
2 0.4500 0.8875 1.300 1.6875 2.0500 2.3875 2.7000 2.9875 3.2500
3 0.4250 0.9563 1.5750 2.1563 2.7000 3.2063 3.6750 4.0063 4.5000
4 0.4000 0.9000 1.6000 2.3750 3.1000 3.7750  4.4000 4.9750 5.5000
5 0.3750 0.8438 1.5000 2.3238 3.2500  4.0938 4.8750 5.5938 6.2500
6 0.3500 0.7875 1.4000 2.1875 3.1500  4.1625 5.1000 5.9625 6.7500
7 0.3250 0.7313 1.3000 2.0313 2.9250 3.9813 5.0750 6.0813 7.0000
8 0.3000 0.6750 1.2000 1.8750 2.7000 3.6750  4.8000 5.9500 7.0000
9 0.2750 0.6188 1.1000 1.7188 2.4750 3.3688 4.4000 5.5688 6.7500
10(C)  0.2500 0.5625 1.0000 1.5625 2.2500 3.0625 4.0000 5.0625 6.2500
11 0.2250 0.5063 0.9000 1.4063 2.0250 2.7563 3.6000 4.5563 5.6250
12 0.2000 0.4500 0.8000 1.2500 1.8000 2.4500 3.2000 4.0500 5.0000
13 0.1750 0.3938 0.7000 1.0938 1.5750 2.1438 2.8000 3.5438 4.3750
14 0.1500 0.3375 0.6000  0.9375 1.3500 1.8375 2.4000 3.0375 3.7500
15 0.1250 0.2813 0.5000  0.7813 1.1250 1.5313 2.0000 2.5313 3.1250
16 0.1000 0.2250 0.4000  0.6250 0.9000 1.2250 1.6000 2.0250 2.5000
17 0.0750 0.1688 0.3000  0.4688 0.6750 0.9188 1.2000 1.5188 1.8750
18 0.0500 0.1125 0.2000  0.3125 0.4500 0.6125 0.8000 1.0125 1.2500
19 0.0250 0.0563 0.1000  0.1563 0.2250 0.3063 0.4000 0.5063 0.6250

Table A.23 Complex Hy (factor gI* x 1072%)
Section u=0.10 u=0.15 ©u=020 u=025 u=030 u=035 u=040 u=045 u=0.50

1 0.0588 0.1309 0.2288 0.3510 0.4921 0.6507 0.8216 1.0027 1.1875
2 0.1114 0.2478 0.4334 0.6650 0.9323 1.2329 1.5566 1.8998 2.2500
3 0.1579 0.3510 0.6140  0.9421 1.3208 1.7467 2.2052 2.6914 3.1875
4 0.1981 0.4405 0.7706 1.1822 1.6574 2.1919 2.7674 3.3775 4.0000
5 0.2321 0.5162 0.9030 1.3854 1.9423 2.5686 3.2430 3.9580 4.6875
6 0.2600 0.5781 1.0114 1.5516 2.1754 2.8769 3.6322 4.4330 5.2500
7 0.2817 0.6263 1.0956 1.6809 2.3567 3.1166 3.9348 4.8024 5.6875
8 0.2971 0.6607 1.1558 1.7733 2.4862 3.2878 4.1510 5.0663 6.0000
9 0.3064 0.6813 1.1920 1.8287 2.5639 3.3906  4.2808 5.2246 6.1875

10(C)  0.3095 0.6882 1.2040 1.8472 2.5898 3.4248 4.3240 5.2773 6.2500

Table A.24 Reactions (factor ¢/) and thrust (factor (q/?/f) x 1072)

Reactions u =0.10 u=0.15 u=020 u=025 u=030 u=035 u=040 u=045 u=0.50
Ry 0.095 0.139 0.180 0.219 0.255 0.289 0.320 0.349 0.375
Rp 0.005 0.011 0.020 0.031 0.045 0.061 0.080 0.101 0.125

H 0.3095 0.6882 1.2040 1.8472 2.5898 3.4248 4.3240 5.2273 6.250
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Two-Hinged Parabolic Symmetric Nonuniform arch. Bending Moments,
Reactions, and Thrust Due to Partial Distributed Load ¢ (Tables A.25-A.27)

y

Loading 2

’
FHEAL A

4

——>

|a:ul |

A-pb{4-tFH
6 8101214161

Iy cos p, = Ic

y = 4l — )~

/

Bending moment at any
section of the arch

M, = M° — Hyk

Coefficient k should be
taken from Table A.17.

Table A.25 Bending moments M" for simply supported beam (factor g/2 x 10-2) [Uma72]

Section u=0.10 u=0.15 u=020 u=025 u=030 u=035 u=040 u=045 u=050

1 0.2750 0.4313 0.6000 0.7813 0.9750 1.1813 1.4000 1.6313 1.7500
2 0.5500 0.8625 1.2000 1.5625 1.9500 2.3625 2.8000 3.1388 3.2500
3 0.8250 1.2938 1.8000 2.3438 2.9250 3.5438 4.1750 4.3938 4.5000
4 1.1000 1.7250 2.4000 3.1250 3.9000 4.6000 5.1000 5.4000 5.5000
5 1.3750 2.1568 3.0000 3.9263 4.7500 5.4063 5.8750 6.1564 6.2500
6 1.6500 2.5875 3.6000 4.6625 5.3500 5.9625 6.4000 6.6625 6.7500
7 1.9250 3.0188 4.0750 4.9688 5.7000 6.2688 6.6750 6.9188 7.0000
8 2.2000 3.3250 4.3000 5.1250 5.8000 6.3250 6.7000 6.9250 7.0000
9 2.3500 3.4438 4.2750 5.0313 5.6500 6.1313 6.4750 6.6813 6.7500
10(C)  2.2500 3.1875 4.0000 4.6875 5.2500 5.6875 6.0000 6.1875 6.2500
11 2.0250 2.8688 3.6000 4.2188 4.7000 5.1188 5.4000 5.5688 5.6250
12 1.8000 2.5500 3.2000 3.7500 4.2000 4.5500 4.8000 4.9500 5.0000
13 1.5750 2.2313 2.8000 3.2813 3.6750 3.9813 4.2000 4.3313 4.3750
14 1.3500 1.9125 2.4000 2.8125 3.1500 3.4125 3.6000 3.7125 3.7500
15 1.1250 1.5938 2.0000 2.3438 2.6250 2.8438 3.0000 3.0938 3.1250
16 0.9000 1.2750 1.6000 1.8750 2.1000 2.2750 2.4000 2.4750 2.5000
17 0.6750 0.9563 1.2000 1.4063 1.5750 1.7063 1.8000 1.8563 1.8750
18 0.4500 0.6375 0.8000 0.9375 1.0500 1.1375 1.2000 1.2375 1.2500
19 0.2250 0.3188 0.4000 0.4688 0.5250 0.5688 0.6000 0.6188 0.6250
Table A.26 Complex Hy (factor gI* x 1072)

Section u=0.10 u=0.15 ©u=020 u=025 u=030 u=035 u=040 u=045 u=0.50
| 03659 05368  0.6955 08365 09587 10567 11287 11727 L1875
2 0.6934 1.0175 1.3177 1.5850 1.8166 2.0022 2.1386 2.2220 2.2500
3 0.9823 1.4408 1.8667 2.2454 2.5735 2.8365 3.0297 3.1478 3.1875
4 1.2326 1.8081 2.3426 2.8178 3.2294 3.5595 3.8019 3.9501 4.0000
5 1.4445 2.1189 2.7452 3.3021 3.7845 4.1713 4.4554 4.6291 4.6875
6 1.6178 2.3731 3.0746 3.6984 4.2386 4.6719 4.9900 5.1845 5.2500
7 1.7527 2.5709 3.3308 4.0066 4.5919 5.0612 5.4059 5.6166 6.6875
8 1.8490 2.7121 3.5138 4.2267 4.8442 5.3393 5.7029 5.9252 6.0000
9 1.9067 2.7969 3.6237 4.3588 4.9955 5.5062 5.8811 6.1104 6.1875
10(C) 1.9260 2.8252 3.6603 4.4028 5.0460 5.5618 5.9405 6.1721 6.2500
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Table A.27 Reactions (factor ¢/) and thrust (factor (q/?/f) x 1072)
Reactions # =0.10 ©=0.15 u=020 ©u=0.25 u=030 u=035 u=040 u=045 u=0.50

Ry 0.055 0.086 0.120 0.156 0.195 0.236 0.280 0.326 0.375
Rp 0.045 0.064 0.080 0.094 0.105 0.114 0.120 0.124 0.125
H 1.9260  2.8252  3.6603  4.4028  5.0460  5.5618  5.9405 6.1721 6.250

Two-Hinged Circle Uniform Arch. Bending Moments and Thrust Due
to Single Force P (EI = const) (Table A.28)

l 2 f PR

=\ |/R?2—|[=— —R - R=L 4

y (2 X) +f; 213 %
Bending moment, shear, and axial force

M, = Mg — Hy, Mg see Table A.19.

Ox = O cos ¢ — H sin
Ny = —QQ sin ¢, — H cos ¢,

Table A.28 Thrust (factor Pk), coefficient k should be taken from Table A.17 [Uma72]
flloray u=0.10 u=015 ©u=020 u=025 u=030 u=035 u=040 u=045 u=0.50

1/2 0.1146  0.1623 0.2037  0.2387  0.2673 02896  0.3055  0.3151 0.3182
80° 0.1428  0.2023 0.2539 02976 03333 03610 0.3809  0.3928  0.3967
70° 0.1768 02504 03142 03682 04124 04468 04714  0.4861 0.4910
1/3 0.1861 0.2636  0.3308 03877  0.4341 04692 04962 05117  0.5169
60° 02195 03110  0.3902  0.4573 05122 0.5549  0.5854  0.6037  0.6097
1/4 0.2541 0.3600  0.4517  0.5924 05929  0.6407  0.6776  0.6988  0.7059
1/5 03256 04612  0.5787  0.6783 0.7592  0.8209  0.8681 0.8952  0.9043
1/6 0.3911 0.5541 0.6953 08149 09125  0.9862 1.0429 1.0755 1.0865
1/7 0.4595  0.6510  0.8169  0.9574 1.0721 1.1587 1.2254 1.2636 1.2765
1/8 05272  0.7468  0.9371 1.0983 1.2299 1.3292 1.4057 1.4497 1.4644

1/10 0.6682  0.9466 1.1878 1.3921 1.5588 1.6847 1.7817 1.8374 1.8561
1/12 0.7950 1.1261 1.4131 1.6562 1.8546  2.0044  2.1197 2.2871 2.2082

Formulas for internal forces for hingeless circular uniform arches loaded normal
to the plane of curvature are presented in [Uma72-73], [You89], [Roa75].

Two-Hinged Circular Symmetric Uniform Arch. Bending Moments,
Reactions, and Thrust Due to Partial Distributed Load ¢ (Tables A.29-A.30)

Vi, Loading 1 Loading 2 b:ul; |
Ho=ul : frrrm 9
¢ [ circle
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The shape equation is y =

/
RZ_ <2—X

2
) —R+f;, R=

f

12
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The bending moment, shear, and axial forces at any section of the arch are

M, = M° — Hy,

O =
Ny =

Qg cos ¢, — H sin ¢,
—0Y sin ¢, — H cos ;.

Tables A.29 and A.30 contains thrust H for two cases of loading. If arch ratio
f < /6 then for a thrust H, the factor k£ should be included (Table A.17).

Table A.29 Loading 1: Thrust (factor g/) [Uma72]

flloray u=0.10 u=015 ©u=020 u=025 u=030 u=035 u=040 u=045 u=050
172 0.0059 0.0128 0.0220 0.0330 0.0457 0.0596 0.0744 0.0899 0.1061
80° 0.0074 0.0160 0.0274 0.0412 0.0571 0.0734 0.0920 0.1120 0.1322
70° 0.0091 0.0198 0.0339 0.0510 0.0705 0.0919 0.1149 0.1388 0.1636
1/3 0.0096 0.0208 0.0356 0.0536 0.0741 0.0957 0.1208 0.1460 0.1718
60° 0.0113 0.0246 00422 0.0634 0.0877 0.1144 0.1429 0.1727 0.2032
1/4 0.0131 0.0284 0.0487 0.0732 0.1012 0.1321 0.1640 0.1984 0.2346
1/5 0.0167 0.0364 0.0624 0.0928 0.1297 0.1692 0.2114 0.2555 0.3006
1/6 0.0201 0.0437 0.0749 0.1127 0.1558 0.2033 0.2540 0.3069 0.3611
1/7 0.0236 0.0514 0.0880 0.1324 0.1831 0.2389 0.2985 0.3607 0.4243
1/8 0.0271 0.0589 0.1010 0.1519 0.2100 0.2740 0.3423 0.4137 0.4867
1/10 0.0343 0.0747 0.1280 0.1925 0.2662 0.3473 0.4339 0.5244 0.6169
1/12 0.0409 0.0889 0.1523 0.2290 0.3168 0.4132 0.5163 0.6239 0.7339
Table A.30 Loading 2: Thrust (factor gl)

flloray u=0.10 u=015 ¥u=020 u=025 u=030 u=035 u=040 u=045 u=050
1/2 0.0317 0.0465 0.0604 0.0731 0.0841 0.0933 0.1002 0.1046 0.1061
80° 0.0402 0.0588 0.0751 0.0910 0.1048 0.1162 0.1248 0.1303 0.1322
70° 0.0487 0.0717 0.0931 0.1126 0.1297 0.1438 0.1545 0.1613 0.1636
1/3 00510 0.0761 0.0977 0.1182 0.1362 0.1510 0.1622 0.1693 0.1718
60° 0.0603 0.0888 0.1155 0.1398 0.1610 0.1786 0.1919 0.2003 0.2032
1/4 0.0706 0.1025 0.1334 0.1614 0.1859 0.2062 0.2215 0.2313 0.2346
1/5 0.0892 0.1314 0.1709 0.2078 0.2382 0.2642 0.2839 0.2963 0.3006
1/6 0.1071 0.1578 0.2053 0.2484 0.2862 0.3174 0.3410 0.3559 0.3611
1/7 0.1258 0.1854 0.2412 0.2919 0.3363 0.3729 0.4007 0.4182 0.4243
1/8 0.1444 0.2127 0.2767 0.3348 0.3857 0.4278 0.4596 0.4798 0.4867
1/10 0.1830 0.2696 0.3507 0.4244 0.4889 0.5422 0.5826 0.6081 0.6169
1/12 0.2176 0.3207 0.4171 0.5049 0.5816 0.6450 0.6930 0.7234 0.7339

Example. The arch is loaded by a uniformly distributed load g across the entire
span . The central angle of the arch is 120°. The thrust of the arch equals
H =2 x 0.2032¢gl = 0.4064¢l. Bending moment at C is Mc = gI* /8 — 0.40644lf .
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Hingeless Parabolic Nonuniform Arch. Influence Lines for Reactions,

Ic/cos ¢,

Thrust, and Bending Moments at Support and Crown; I,

[Uma72], [Kar10] (Table A.32)
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Table A.33 Reactions of uniform beams subjected to compressed load and unit settlement
of support, v = 1(~ /P /EI), i = EI/1, EC — elastic curve [Bol64], [Smi84], [Kar10]

Pinned-clamped beam

Clamped-clamped beam

2
3
.U
sinv A
Pinned-pinned beam | Clamped-free beam
_P
i P I e < P
4 P
M ;o e—P
ivz L—>|

M =iviano[ [T TTr
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Table A.33a Special functions for stability analysis [Smi47], [Bol64]

Functions Form 1 Form 2 Maclaurin series
©1(v) v? tan v 1 vsinv v ot
3(tan v — v) 3sinv—1v cos v 15 525
0] v(tan v — v) 1 v sinv—1v* cos v o1t N
8 tan D(tang _ ;) 42 —2cos v—v sin 30 25200
v v(v — sin v 1 v(v —sin v v? o 130t
903() ( U)U 52 2( ) 14—+ .
4 sin u(tanz - E) —2cosv—vsinv 60 25200
v 2 i 2 4
04() o (E) 1 _ vsino LA
62sinvb —v —vcosv 60 84000
7, (v) v? 1 v’ cosv % v n
3(tan v — v) 3sinv—vcosv 5 525
v 3 2 4
m2(v) m(3) 1 vldeosv) o 2 v
122 sinv —v — v cos v 10 8400
v v ) 2 T
sin v sin v sin v l+g+%+”'
v v v cos -
tan v tan v sin v e TR
3 45
v tan v v tan v v sin v 040 vt
cos v R

Numerical values of these functions in terms of dimensionless parameter v, 0<v<2m, may be
found in [Smi47], [Kar10]

Critical Loads for Circular and Parabolic Arches with Different
Boundary Conditions (Tables A.34-A.35)

Table A.34 Critical parameter K for circular arch subjected to uniform radial load g. Critical load
ger = K(EI/R®), EI = const, 20 is a central angle [Sni66]

Coefficient K
o° (half
of a Two-hinged arch Hingeless arch
central Three-hinged First Second One-hinged First Second
angle) arch form form arch form form
15 107 143 320 162 294 484
30 27.1 35 79.2 40.2 73.3 120
45 12.0 15 34.7 17.9 324 532
60 6.75 8 19.1 10.2 18.1 29.7
75 4.32 4.76 11.9 11.6 18.8

90 3.0 3.0 8.0 4.61 8.0 12.9
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Table A.35 Critical parameters K, K; for parabolic symmetrical arch subjected to vertical
uniform load ¢ within the entire span, EI = const, span /, rise f [Sni66]

Critical load (first form) g, = K% Critical thrust H., = K 1%

Coefficient K Coefficient K

Three- Two- One- Three- Two- One-
f/! hinged hinged hinged  Hingeless | f/I hinged hinged hinged  Hingeless
0.1 225 28.5 33.8 60.7 0.1 28.1 35.6 422 75.8
0.2 39.6 454 59.0 101.0 0.2 24.8 28.4 36.8 63.0
0.3 473 46.5 84.0 115.0 0.3 19.7 194 33.0 48.0
04 49.2 43.9 96.0 111.0 04 154 13.5 30.0 34.7
0.5 43.0 38.4 87.0 97.4 0.5 11.5 9.6 23.0 24.4
0.6 38.0 30.5 80.0 83.8 0.6 79 6.4 16.8 17.5
0.8 28.8 20.0 63.0 59.1 0.8 4.5 3.1 9.7 9.2
1.0 22.1 14.1 48.0 43.7 1.0 238 1.8 6.0 5.5

Table A.36 Parameters of parabolic polygon (k = 6) [Rab58]
f

Ratio 7
Parameters 0.1 0.2 0.3 0.4 0.5 Factor
VB 0.0556 0.1111 0.1667 0.2222 0.2778 l
ye 0.0889 0.1778 0.2667 0.3556 0.4444 [
Vb 0.1000 0.2000 0.3000 0.4000 0.5000 [
tan f3, 0.3333 0.6667 1.0000 1.3333 1.6667
tan f3, 0.2000 0.4000 0.6000 0.8000 1.0000
tan f33 0.0667 0.1333 0.2000 0.2667 0.3333
s1 0.1757 0.2003 0.2357 0.2778 0.3240 [
S 0.1700 0.1795 0.1944 0.2134 0.2360 /
53 0.1670 0.1681 0.1700 0.1725 0.1760 l
mg 0.1728 0.1899 0.2150 0.2456 0.2800 wl
me 0.1685 0.1738 0.1822 0.1930 0.2060 ul
mp 0.0835 0.0840 0.0850 0.0863 0.0830 ul

Nomenclature: Span /, rise f, mg, mc, mp are lumped masses at joints B, C, D (Figs. 6.15 and 6.16),
EI = const, u is mass per unit length



410

Three-Hinged Parabolic Uniform Arch. Frequencies, Displacements,

Bending Moments (Tables A.37 and A.38)

Appendix

Table A.37 The first mode of symmetrical vibration [Rab58] (Span /, rise f, EI = const)

Ratio f /1
Parameters 0.1 0.2 0.3 0.4 0.5 Factor
Frequency o, 48.58 43.54 36.82 29.98 23.98 1 [Er
.

Displacements W 1.0 1.0 1.0 1.0 1.0

Wi 0.131 0.096 0.057 0.023 —0.003

wh —2.262 -2.192 —2.114 —2.046 —1.994

uy 0.333 0.667 1.000 1.333 1.667

ug 0.160 0.305 0.434 0.552 0.664

up, 0.0 0.0 0.0 0.0 0.0
Bending moments ~ Mjp 82.28 78.12 71.94 65.30 58.80 EI/P?

Mc  60.63 51.51 41.47 32.88 26.46 EI/P
Table A.38 The second mode of symmetrical vibration [Rab58]

Ratio f /1
Parameters 0.1 0.2 0.3 0.4 0.5 Factor
Frequency w, 154.16 138.73 121.25 105.25 91.18 1 [Er
.

Displacements wy 1.0 1.0 1.0 1.0 1.0

we  —1417 —1.616 —1.967 —2.768 —3.041

wp  0.832 1.231 1.935 2.935 4.088

U 0.333 0.667 1.000 1.333 1.667

U —0.150 —0.379 —0.780 —1.441 —2.377

up 0.0 0.0 0.0 0.0 0.0
Bending moments Mz  254.80 253.96 258.26 294.46 287.80 EI/P

Mc  —313.60 —348.62 —408.14 —551.22 —566.50 EI/I?
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Three-Hinged and Two-Hinged Parabolic Uniform Arches. Frequencies,
Displacements, Bending Moments (Tables A.39 and A.40)

Table A.39 The first mode of antisymmetrical vibration [Rab58] (Span /, rise f, EI = const, u is
mass per unit length)

Ratio f /1
Parameters 0.1 0.2 0.3 0.4 0.5 Factor
Frequency 36.72 28.60 22.51 17.52 13.13 1 eI
2\
Displacements Wy 1.0 1.0 1.0 1.0 1.0
Wi 0.923 0.963 0.922 0.677 0.874
wh 0.0 0.0 0.0 0.0 0.0

Uy 0.333 0.667 1.000 1.333 1.667
U 0.318 0.652 0.953 1.075 1.541
up 0.256 0.524 0.769 0.894 1.249
Bending moments Mpg 42.976 40.307 37.974 34.90 31.173 EI/P
Mc 40.539 37.512 31.585 26.48 23.774 EI/P?

Table A.40 The second mode of antisymmetrical vibration [Rab58]

Ratio f /1
Parameters 0.1 0.2 0.3 0.4 0.5 Factor
Frequency w, 147.42 131.67 108.22 92.22 74.56 1 [Er
2\ w

Displacements wy 1.0 1.0 1.0 1.0 1.0

wy  —1.294 —1.554 -1.762 —-2.112 —2.351

wp 0.0 0.0 0.0 0.0 0.0

up 0333 0.667 1.000 1.333 1.667

U —0.0925 —0.355 —0.657 —1.156 —1.684

up, —0.0172 —0.148 —0.305 —0.593 —0.901

Bending moments Mz 22491 234.87 221.40 224.62 204.65 EI/P
Me —23762 27089 —281.80 —317.22 -307.64 EI/P
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Two-Hinged Parabolic Uniform Arches. Frequencies, Displacements,
Bending Moments (Tables A.41 and A.42)

Appendix

Table A.41 The first mode of symmetrical vibration [Rab58] (span /, rise f, EI = const, u is mass

per unit length)

Ratio f /1
Parameters 0.1 0.2 0.3 0.4 0.5 Factor
Frequency 82.84 72.26 59.25 47.14 37.23 1 eI
i
Displacements Wy 1.0 1.0 1.0 1.0 1.0
W —0.223 —0.255 —0.289 —-0.316  —0.335
wp  —1.554 —1.490 —1.422 —-1.368 —1.329
Uy 0.333 0.667 1.000 1.333 1.667
ug 0.0887 0.165 0.267 0.281 0.331
up 0.0 0.0 0.0 0.0 0.0
Bending moments My  128.12 118.36 107.08 95.54 85.32 EI/P
Mc —4.232 —12.44 —20.070 —25.00 —27.53 EI/P
Mp —13394 —11930 —104.19 -92.19 8330 EI/P
Table A.42 The second mode of symmetrical vibration [Rab58]
Ratio f /1
Parameters 0.1 0.2 0.3 0.4 0.5 Factor
Frequency w, 196.14 183.83 168.65 152.94 136.83 1 [Er
2\ w
Displacements wy 1.0 1.0 1.0 1.0 1.0
we  —2379  -2857  —3.799 —5.166 —6.848
wp  2.658 3.714 5.598 8.332 11.696
up  0.333 0.667 1.000 1.333 1.667
u. —0332 -0876 —1.879 —3.599 —6.181
up 0.0 0.0 0.0 0.0 0.0
Bending moments Mg  321.85 341.31 380.22 436.62 498.57 EI/P
Mc  —660.37 —794.14 —1024.03 —1329.35 —1659.89 EI/P
Mp 82255 1043.65 1428.34 1964.85 2575.90 EI/P
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Circular Uniform Arches with Different Boundary Conditions. Frequencies
of Free Vibration (Tables A.43-A.44)

w; = (ki/R*03)\/EI/m, oy is a central angle, § = oo/, EI is a const, m is mass per
unit length.

Table A.43 Parameter k; for two-hinged arch [Uma72,73]
Mode of vibration Shape of vibration Parameter k;

First anti-symmetrical 4n? — o}

V1407567

First symmetrical 9n2 — o

V1 +0.165242

Second anti-symmetrical = N 167% — ocg

V1+0.187542

Table A.44 Parameter k; for hingeless arch

Mode of vibration Shape of vibration Parameter k;

3,803.2 — 92.10103 + o}
1+ 0.0605422

First anti-symmetrical

First symmetrical

14,620 — 197.8402 4 o}
1+0.0122742

39,942 — 343.1603 + o}
1+ 0.0214802

Second anti-symmetrical L \/

Parabolic Nonuniform Hingeless Arch

Frequency of symmetrical vibration w; = (4k?/I?)\/Elc/m(s™"); Elc is the flex-
ural rigidity at crown, I, = I, sec ¢, span [, rise f, r., is the radius of inertia of the
cross-section at the crown, m is the mass per unit length [Bon52b], [Uma72-73].

Table A.45 Paramters £ for first and second frequencies of symmetrical vibration

f/"cr ky k> f/rcr ky k>

2 2.55 5.51 12 4.44 5.67
4 2.93 5.52 14 4.69 5.75
6 3.36 5.54 16 4.88 5.89
8 3.76 5.57 18 4.99 6.26

10 4.12 5.61 20 5.05 9.00
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Pressure Curve

Curve of pressure (funicular polygon) allows us to obtain comprehensive informa-
tion about functionality of the three-hinged arch. Construction of the curve of
pressure starts from construction of the force polygon.

Force Polygon

Three-hinged arch ACB is subjected to forces P; (i = 1,2, 3) as shown in Fig. A.la
(supports are not shown). Polygon P,—P,—P3—Rg—R, in Fig. A.1b presents force
polygon. Construction of this polygon is based on the principle of superposition.
Initially, we consider forces P1—P; on the left-hand side of the arch. Their resultant
is R; corresponding reaction B, passes through a hinge C. Intersection point of R
and B, (point K;) defines the direction of reaction A;. Considering the polygon
P,—P>,—-B1-A; (or R—B;—A) we obtain reactions B; and A;.

Force polygon P;—A,-B, defines the vectors A, and B,. The vector A, is
translated to the initial point of the vector A;; this vector is shown by dotted line.
Initial point of vector A, defines the point K (Fig. A.1b). Both vectors A,—A; give us
the total reaction R,. Similarly, the vector B, is translated to the end point of the
vector B,. Thus, we get the total reaction Rg. Intersection point of the vectors R,
and Ry is point K. The forces R4—P—P,—P3—Rp define a closed polygon.

Next we connect the point K with the vertices of the force polygon. These lines
are denoted as R4, 1-2 (between forces P; and P,), 2-3, and Rp. It is obvious that
resultant of the forces R4 and P, is presented by the vector 1-2, and resultant of the
forces R4, Py, and P, is presented by the vector 2-3.

Line of Pressure

The first ray a (Fig. A.1a) passes through support hinge A parallel to reaction Ry,
the next ray 1-2 between forces P, and P, is parallel to the corresponding vector
1-2 of the force polygon. The last ray b is parallel to the reaction Rp. A ray between
the forces P, and P; pass through the hinge C. This polygon is called the polygon of
pressure; in the case of distributed load the pressure polygon becomes the curve of
pressure.

Any line of the polygon of pressure represents the direction of the resultant of all forces
which act to the left (or to the right) of the section under consideration. The magnitude of
this resultant is determined from the force polygon in the scale of forces P;.

Pressure polygon provides a very clear picture of the functionality of the arch.
Figure A.la shows that the pressure polygon (or the resultant of all the one-sided
forces) for the left part of the arch is placed above of the center line of the arch. It
means that the curvature within the left-hand part of the arch will decrease.
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Fig. A.1 (a) Pressure polygon; (b) force polygon; (c) internal forces at the section n of the arch;

(d, e) pressure polygon in the case of vertical forces
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The force polygon and pressure polygon allow us to determine all the internal
forces in the any section of the arch. The bending moment at any section n equals
Rr, where R is a resultant and r is an arm of the resultant about the center of gravity
of the cross section (Fig. A.1c). Given this, resultant of the one-sided forces is taken
from the force polygon, while the arm is taken from the pressure polygon. In order
to determine the axial and shear forces at any section n, we need to resolve the
resultant, which acts in this section into two components; one of them is parallel to
the tangent at section #n and other is perpendicular to the tangent.

Construction of the pressure polygon in the case of an arch which is subjected to
vertical forces only is shown in Fig. A.1d. The following procedure may be
recommended [Rab60], [Dar89].

1. Determine the location of the resultant R; of all external forces (without
reactions) which act on the left part of the arch. A funicular polygon a—f—y
with arbitrary center O; may be used for this purpose.

2. The resultant R, of all external forces (without reactions) which act on the right

part of the arch R, = P5,

. Determine reactions R, and Ry caused by resultants R and R,.

4. Construct the force polygon and pressure polygon.

(O8]

Since all external forces lie on one vertical (Fig. A.le), then the total reactions
R, and Ry have the same horizontal projection H, which is a thrust of the arch.

It can be shown that in the case of the parallel forces all the vertical segments y
between the central line of the arch and pressure polygon (Fig. A.1d) in the constant
scale for all arch comprise the bending moment diagram; this diagram is
constructed on the compressed fibers. The closer the pressure polygon is to the
center line of the arch, the smaller the eccentricity of the compressed force about
neutral axis of the arch. In the case of an optimal shape of the arch, the axial line
coincides with a pressure curve. In this case the bending moments are zero.
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A
Arched structures, 55, 56, 70, 101, 103112,
131, 185, 197, 212, 217-218, 253, 254,
274,331, 365-369, 371, 377-384
Arches shapes
catenary, 67, 322, 386, 387
circular, 51, 60-64, 89, 90, 92, 113-117,
157, 181, 183-187, 192, 194, 197, 198,
201-224, 229-231, 234, 237, 239-241,
244, 286, 291-293, 318, 326-329,
374-377, 380, 381, 389, 429
geometry parameters, 387
parabolic, 65, 89, 94, 99, 115, 116, 121,
126, 133, 134, 138, 147, 148, 165, 167,
172-178, 191, 223-229, 231, 239, 242,
243, 246, 249, 251, 252, 265, 269,
293-324, 329, 361-364, 388, 393, 396,
398, 401, 402, 429
Arches special types
elastic supports, 153-156, 212-218, 223,
255, 329
multispan, 55, 103-105
skew, 89, 98-103, 255
Arches types
hingeless, 5, 47, 125, 127-128, 130, 139,
141, 143-150, 152-153, 162, 164-166,
172-1717, 183-185, 191, 192, 199,
204-207, 210, 213, 216, 218, 223-226,
246-251, 289-293, 323-324, 361, 364,
376, 421, 426430, 434, 435
one-hinged, 5, 125, 142, 207, 225, 226, 429
three-hinge, 55-124, 129, 130, 139, 140,
158, 168, 188, 206-207, 224-226, 264,
282, 283, 297, 301-318, 321, 322, 344,
348, 350, 362, 393, 396, 398, 402, 429,
431, 432, 435

two-hinged, 39, 51, 125-126, 128, 129,
133-139, 150-152, 157, 159,
162-164, 166-170, 172, 183,
188-191, 199, 202-204, 206213,
216, 218, 220-229, 237, 239-246,
251, 252, 254, 259-264, 280,
289-293, 300, 312, 317-323, 325, 348,
361, 362, 374-376, 383, 406, 409, 413,
417, 421, 423, 429, 432434
Arch mechanisms of failure, 361, 364
Arch with tie
combined, 265
elevated, 56, 57, 89-94, 159, 251, 265
simple, 89-94

B

Betti theorem, 4243

Bolotin solution, 269, 371, 378, 440

Boussinesq equation, 4654, 187, 201-207,
213, 234

Bresse method, 259

Bubnov—Galerkin procedure, 211, 219-220,
223, 375, 376, 380, 382, 383

C
Cauchy—Clebsch conditions, 7
Change of temperature, 3, 10, 15-18, 125, 129,
130, 162-166, 357, 407
Chebushev formula, 55, 104
Constraint
introduced, 218, 256, 257, 259-261, 302,
312, 313
one-sided, 353, 365-369, 380
twosided, 269, 365, 366, 368
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Core moments, 86—89
Coriolis acceleration, 379
Criteria of working system, 366-369
Critical
load, 83-85, 197-199, 201-203,
205-213, 215-218, 220-226,
228, 230, 231, 233, 234, 239,
240, 242, 245, 246, 255-260,
264, 429, 430
position of load, 83, 84, 198
speed of moving load, 380, 383
Curve pressure, 86, 435-437

D
Damped forced vibration, 271, 341-342
Degree of
static indeterminacy, 128, 355-356
Demidovich solution, 287-291
Differential relationships between
displacements and strains, 36, 3941
internal forces, 36-39
Dinnik equation, 223-225
Direct method, 354, 357-361
Displacement computation
Castigliano theorem, 5, 10, 11
elastic load method, 5, 26-35, 234
graph multiplication method, 5, 18-24, 112
initial parameters method, 5-9
Maxwell Mohr integral, 5, 18, 112, 117,
121, 160, 1871
statically indeterminate structures, 3, 131,
162, 188
Displacement method
canonical equations, 234, 246,
249, 250, 255-257, 259, 264,
319, 369
conception, 234, 247, 265
primary system and primary unknowns,
129, 135, 150, 152, 155, 162, 166,
218, 257, 259
Duality theorem, 246249
Duhamel integral
application for a bar structure, 333-334
Dummy load, 5, 10-12
Dynamical coefficient, 323, 336, 340,
341, 377
Dynamical stability
arch, 371-377
beam, 372, 373
Dynamic effect of moving load
Dynamic loads, 269, 332, 347, 371

Index

E
Elastic center, 140-145, 148, 152, 153, 155,
156, 164, 173
Elastic foundation, 153, 251, 365, 380
Elastic load method
expanded formula, 30-35
matrix form, 234-237
Errors of fabrication, 3, 117-121, 125,
129, 357
Euler critical force, 373

F
Fictitious beam, 30-35, 68, 78-81, 234,
248, 249
Forced vibration, 269, 271-272,
331-350, 372
Force method
canonical equations, 128—-133, 141, 160,
166, 167, 170, 173, 184, 186, 193,
249, 319, 369
degree of redundancy, 128
primary system and primary unknowns, 128
Force polygon, 435437
Forms of the loss of stability, 198-202,
205-210, 212-214, 218-220, 222,
224,226, 228, 237, 239, 242, 243,
246, 259, 265
Frequencies of free vibration
circular arch, 286, 291-293, 326, 329
hingeless arch, 289-290, 323-324
parabolic arch, 293-318
three-hinged arch, 283, 300-318, 321, 322
two-hinged arch, 280, 289-293, 300, 312,
317-323, 325
Frequency equation, 276-277, 279, 284,
287-291, 306, 316, 322, 324

G

Generalized coordinates and forces, 121, 273

Graph multiplication method, 3, 5, 18-24, 32,
112, 131, 367

Group unknowns, 259, 265, 283, 344

H

Hamilton principle, 328

Hinge
multiple, 216, 252, 368
plastic, 356, 357, 361-364
simple, 56, 104, 367, 368
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I

Ince—Strutt diagram, 373-374, 376

Influence lines
application, 71, 81-85, 104
connecting line, 76, 103, 108
definition, 179
direct/indirect load application, 71, 72, 76
properties, 74—75

Influence lines construction
analytical, 69-75
fictitious reference beam, 78-81
nil points, 75-78

Influence lines for
core moments, 86—-89
internal forces, 57, 68-85
reactions, 55, 68—85

Initial parameters method, 5-9, 41

J
Jakobi matrix, 235

K
Kern. See Core
Kinematical analysis
geometrically unchangeable structures,
104, 107-109
Kirchhoff equations, 37, 224

L

Lamb equation, 4142, 200, 201, 207-211,
286, 328, 329

Limit equilibrium condition, 356

Load unfavorable position, 82—85

Lokshin equation, 224

Loss of stability, 164, 197-202, 204-215,
218-220, 222, 224, 226, 228-231, 237,
239, 242, 243, 246, 249, 252, 259, 264,
265, 371, 380

M
Material
elasto-plastic, 355
rigid-plastic, 355
Mathieu equation, 373, 374
Matrix form, 121-124, 234-239, 253, 276
Maxwell-Mohr integral, 5, 10-20, 28, 29, 112,
117, 121, 160, 167, 187, 274
Maxwell theorem, 4344
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Mode shape of vibration, 272, 273, 277-285,
299, 306-310, 316-318, 322, 323, 329,
347
Moment influence matrix, 121, 122, 237-239,
251, 253, 254
Morgaevsky equation, 381-384
Moving load problems
Inglis—Bolotin, 378
Krylov, 371
Schallenkamp, 378
WillisStokes, 377
Multispan arches, 55, 103—105

N
Nil points method, 75-78, 87, 98, 100, 104

(0]
Optimal arches, 328, 437
Out-of-plane loading, 41, 194

P
Parabolic polygon, 289, 294-300, 347, 430
Phase shift, 340-342
Plastic analysis
direct method, 354, 357-361
mechanisms of failure, 361
plastic displacements, 360
Plastic hinge, 356, 357, 361-364
Prandtl diagram, 355, 356
Pressure polygon, 139, 436, 437
Primary system
displacement method, 129, 135, 150, 152,
155, 162, 166, 218, 257, 259
force method, 128, 132, 265, 319
Primary unknown
displacement method, 259
force method, 128-133, 157, 166, 167, 193,
249, 369
group unknowns, 259

Q
Quasi-static loading, 377, 378

R

Rabinovich method, 293-301, 318, 322-323,
329, 347

Rational shape, 63—68
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Rayleigh—Ritz method, 325-329
Rayleigh theorem, 4446
Reciprocal theorems
displacements, 24, 4245, 131, 152, 365
displacements and reactions, 45-46
reactions, 44—45
works, 42-45, 365
Redundant arches, 39, 68, 125-194, 321
Reference beam, 55, 57-61, 6365, 69-72,
74,75, 90, 91, 93, 95, 99, 113, 120,
158, 160, 362-364
Resonance, 340, 342, 343, 346, 374
Rigidity
axial, 165, 202, 257, 326
flexural, 8, 22, 34, 152, 177, 202, 208,
212, 216, 229-231, 255, 257, 278,
280, 337, 338, 435
shear, 212, 338

S
Settlement of supports, 3-5, 117-121, 125,
150-153, 156, 357, 429
Shallow (gentle) arch, 161-162
Shape of the arch, 63—68, 98, 125, 162, 229,
234, 323, 437, 440
Shrinkage, 24, 125, 162, 166, 182—-184
Shtaerman’s equation, 227, 228
Sidesway frame, 258, 259, 273
Simpson rule, 20-24, 188, 190, 300
Smirnov method, 233-239, 245, 246, 249,
252, 265, 323, 439
Snitko method, 323
Special loading of the arch
quasi-static loading, 377, 378
uniform radial harmonic load, 376
Stability
circular arch, 41, 197, 198, 201-223,
229-231, 374-377
parabolic arch, 223-229, 231
Stability equation
critical load, 201, 210, 212, 257, 264
Leites form, 257
Stability of
arch with elastic supports, 212-218, 255
hingeless arch, 199, 204-207, 210, 213,
216, 218, 223-226, 229
three-hinged arch, 206-207,
224-226
two-hinged arch, 199, 202-204,
206-213, 216, 218, 220-228,
374-376, 383
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State
actual, 13, 19-23, 25, 31, 113
unit, 11, 13, 17-25, 28-32, 113-115,
118, 120, 134-137, 139, 188-190,
248, 249, 260-262, 278, 280, 283,
300, 304, 315, 368
Statically indeterminate arches
circular, 148-149
displacement computation, 131, 162, 188
hingeless, 127-128
parabolic, 133-138
two-hinged, 126-127, 133, 188
Stiffness matrix, 233, 234, 248, 260, 265
Strain—hardening, 355
Stress—strain diagram, 354-357
Substituted
beam, 57, 349, 364
frame, 255, 256, 259, 260, 265
Superposition principle, 52, 82, 132, 365, 401,
435
Symmetrical structure, 140141, 190, 255

T
Temperature changes, 3, 10, 15-18, 125, 129,
130, 162166, 357, 407
Thermal expansion coefficient, 16, 162, 164,
166
Thrust, 55-60, 64, 65, 67-69, 71, 72, 74,
82, 90, 94-96, 98-103, 107114,
120, 127, 137, 147, 150, 151,
158-162, 164, 165, 167-169, 171,
172, 175, 179, 189, 191, 193, 211,
226, 227, 244, 245, 249, 255, 259,
264, 349, 362-364, 393-428, 430, 437
Trapezoid rule, 20-22, 188, 327
Types of arches, 55, 162, 197, 207, 220, 224,
229, 233, 239, 269, 331, 350
Types of loads
gravity, 198, 224
hydrostatic, 198, 213
moving, 52, 55, 82-84, 86, 89, 94, 98,
102-105, 107, 109, 121-125, 167, 170,
171, 181, 270, 331, 332, 371, 377-384
radial, 37, 38, 41, 44, 47, 50, 68, 181-185,
200-212, 217-224, 230-231, 237, 239,
240, 376, 429
tracking, 198, 222
Typical excitations
harmonic excitation, 339-345
impulse excitation, 336-338
pulse of duration (1), 335-336
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U
Undamped forced vibration, 272, 333
Unit bending moment diagrams
displacement method, 257
force method, 173
Unit displacements, 24, 43-45, 129-132,
135-137, 139, 142, 144-146, 149,
151, 152, 155-157, 160, 161, 163,
164, 166-168, 170, 185, 189-191,
194, 250, 256, 274-276, 278, 281,
283, 319, 344, 367, 392
Unit reactions, 44, 45, 153, 218, 256, 260, 261
Unit states
displacement method, 248, 249, 260-262
force method, 134—135, 188
Unknowns
antisymmetric, 142, 148, 164, 174, 176,
183, 184, 186, 260
displacement method, 218, 249, 250, 256,
257, 259, 260
force method, 128-133, 141, 157, 160, 166,
167, 170, 173, 184, 193, 319, 369
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group, 259, 265, 283, 344
symmetrical, 142, 176, 261

\%
Vereshchagin rule, 5, 18-20, 22, 115,
188, 300
Vibration of
arch with elastic supports, 329
circular arch, 286-293, 325-328, 381
hingeless arch, 289-290, 292, 293, 300,
323-324
parabolic arch, 299, 317, 329
three-hinged arch, 300, 317, 350
two-hinged arch, 280, 289-292, 300, 312,
317, 318, 322, 348
Vibration of an arch
forced, 271-272, 331-350
free, 269-329
steadystate, 339, 343-347
transient, 323, 343, 347-350
Virtual displacements principle, 118, 120
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