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Prologue 

This book is an attempt at settling a debt I have with my students - past and present - and 
with myself. I have been doing research in transport economics since the seventies and I 
delivered my first formal basic course in the area in 1982, whose contents have evolved 
slowly but continuously without changing the structure. From the very beginning I was 
guided by the conviction that this was not a matter of teaching microeconomics with an 
application to transport; introducing time and space was unavoidable and that made a 
significant difference. This posed a challenge that translated into systematic work devoted 
to construct the basic aspects that I thought constituted the foundations of a body of 
knowledge that could be properly called Transport Economic Theory.  
 
I remember vividly the day when, twenty eight years ago as a student at MIT, the late Ann 
Friedlander gave me a pile of papers dealing with the theory of multiple products, asking 
me to read them and write a short essay on how I would apply this to transport. Matching 
what I read with my view of transport as a “flows production” activity was instantaneous. 
In essence, my answer was that this new theory was really the only way to properly 
understand transport product ion, as any transport firm produces a vector of origin-
destination flows and, therefore, concepts like economies of scope would help the analysis 
of network growth and shape in transport industries. My dear Professor, whose recent 
contribution had been the hedonic treatment of transport output, told me that although she 
could not see exactly what I meant, I had a Ph.D. thesis there. The chapter on transport 
production is the long run result of a research line that begun that day. I still have that 
handwritten essay. 
 
Many individuals have contributed to my enjoyment with Transport Economics. Tristán 
Gálvez introduced me to the world of flows in the ear ly seventies when I was a student at 
the University of Chile. By the end of the decade I was exposed to the microeconomics of 
discrete choices in a course taught by Dan McFadden at MIT; I loved the simplicity of the 
idea that allowed the introduction of quality with only a slight extension of consumer’s 
behavior theory. Later on this was the pillar on which I was able to develop a better 
understanding of the role of personal income and propose new measures of users’ benefits. 
My work on the microeconomics of demand received the permanent support of my friend 
and colleague Juan de Dios Ortúzar, from the Catholic University of Chile, whose faith 
applying my theories has played an important role in this story. Similar appreciation has 
always been explicitly shown by David Hensher from the University of Sydney in his many 
books and papers, by Huw Williams from Cardiff University, and by Ken Small from the 
University of California, Irvine.   

Many dear colleagues around the world, perhaps too many to mention, have contributed in 
different ways with their time and care to keep academic interaction alive and pleasurable. I 
want to explicitly acknowledge Hani Mahmassani, formerly at U. of Texas at Austin and 
now at the U. of Maryland, Yossi Sheffi and Nigel Wilson from MIT, Peter Mackie from 
the U. of Leeds, Pablo Coto-Millán from the U. of Cantabria, Eduardo Martínez-Budría 
from U. of La Laguna and José Holguín-Veras from RPI. My colleagues at the Transport 
Division of the University of Chile were always supportive of the work behind the book, 
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and I do thank Francisco Martínez, Marcela Munizaga, Cristián Cortés  and Leonardo Basso 
for their daily life patience.  
 
The final stages of the preparation of this book received the very important editorial help of 
former student Rodrigo Quijada with the assistance of present student Alejandro Tirachini. 
Rodrigo offered his help and took his duties as if this book was his; from discussions with 
him the structure, wording and general presentation of the chapters improved indeed.  
 
Neither research along these years nor this book have stolen time from my family, as 
nothing could have deprived me from the pleasures of making my children sleep, of playing, 
singing, studying and talking with them along their lives. This, of course, was induced by 
my own education with my parents Sergio and Elena. My sons Pedro (Santiago, 1977) and 
Francisco (Boston, 1980), and these many years with the woman I love, Momy, are the 
meaning of life to me. They have always been first priority. 
 
 
Sergio Jara-Díaz 
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Presentation 

The study of Transport is the study of movement, of displacements of individuals and 
things in both space and time.  But unlike the displacement of, for example, water particles 
in a piping system, the distinctive feature of Transport as an area of knowledge is the 
involvement of human will in the process.  On one hand, our "particles" have will; each one 
needs to go from some point to some other point in space-time, and this makes them no-
interchangeable. On the other hand, some elements of our "piping system" have will as 
well; they decide how many particles can go together, how frequently they can travel, or 

freight, are the users  of the transportation system, and those responsible for the moving 
elements of the piping system are the operators . 
 
Will means tastes, preferences, decision-making, objective pursuing, perceptions, 
rationality; all together. It means behavior. So in principle, if we are interested in analyzing 
the behavior of either transport users or operators, we can rely upon fairly well established 
theories of economic behavior. On the users’ side, individual demand for trips could be 
studied with the concepts of consumer theory, and freight demand could be looked at as 
part of firms’ decisions, either to bring inputs to the plant or to distribute output to markets, 
such that transport is an input to the complete production process. On the other side, the 
behavior of transport operators can be in most cases understood using the tools of the 
theory of the firm, although in this case the product is the vector of displacements itself. 
But despite being useful as forms to approach the problem, basic production and 
consumption theories do not explicitly account for the key dimensions in transportation 
processes: time and space. In fact, introducing them is nearly what it is all about to 
formulate a transport economic theory. And this is exactly the intention behind this book. 
 
Let us briefly point out some of the key issues that have to be included in a framework to 
understand and analyze transportation activities. First, for the operator to be able to produce 
movements, what is being moved has to be physically present; this is common to nearly all 
services and makes an obvious difference with respect to the production of goods in 
general, which does not require the consumer' presence. This has been sometimes referred 
to as the "non-storability" property of transportation processes.  Second, this same fact can 
be looked at from the users' viewpoint, which means that own time is needed to actually 
realize the product; again, this is common to all kinds of consumption, but here it is usually 
the single most important dimension of the "product". Thirdly, as each complete 
displacement in space-time is a different product, transportation firms usually generate a 
vector of products as opposed to a single (scalar) output; thus, the supply side of 
transportation services should be looked at as multioutput processes. Although it is true that 
most productive activities involve more than one product, here this characteristic is 
unavoidable when going into minimally relevant economic analysis.  Movements in 
different directions are different products, and simple descriptions like ton-kilometers only 
hide what is part of the essence of transportatio n analysis: origins, destinations, networks.   
 
Therefore, many characteristics make the economic analysis of transport systems operation 
very different from a straight application of the concepts contained in microeconomic 
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textbooks.  As explained, most (if not all) of these characteristics are not exclusive to the 
analysis of movements, but their simultaneous presence (plus others not mentioned here) 
make transport economics a somewhat specialized field as opposed to an area of 
application. And this is so accounting only for technical-analytical considerations, not yet 
including the social and/or political dimensions usually involved. 
 
The book is organized around four central topics: the transport firm itself; individual’s 
decision-making regarding travel; accounting users’ benefits from changes in the transport 
market; and optimal pricing, encompassing all the previous elements; a chapter has been 
devoted to each one of them. In Chapter 1, Transport Production, the basic theory of the 
firm is extended to account for time and space explicitly, showing the multiproduct nature 
of the transport firm. It is discussed how operator’s decisions about route structure, 
frequency, points served  and so on, plus their relation with network characteristics, 
determine input requirements to produce a desired output; simple cyclical systems help 
illustrating the concepts. Next, a basic supply-oriented microeconomic tool is introduced: 
the cost function.  Its evident multioutput nature is used to understand rigorously the 
meaning of scale, scope and complementarity in transportation operations. Building on this, 
traditional analysis like determining marginal costs or degree of scale economies –which 
are typically used to study the convenience of expanding production- are looked at here 
paying attention to the spatial dimension of transport production, unveiling along the way 
some mistakes that are still common in the analysis of transport cost structures and industry 
organization. 
 
In Chapter 2, Travel Demand and Value of Time, individuals’ behavior is explored starting 
from the traditional utility-maximization approach, but considering discrete-choice 
formulations that are able to handle the type of decisions people have to make when facing 
alternative modes of transport. Needless to say, the amount of time needed to be spent by 
using an alternative appears as a fundamental variable, just as important –or even more- 
than price is in traditional consumer modeling. All services require consumers to put in 
their time in order to provide the service in question, but in the case of transport time is 
undoubtedly at the center of the issue. Not only that, unlike time spent in a restaurant or at 
the movies, time spent in mandatory transport is normally undesired and even unpleasant, 
so people would gladly pay for reducing it as much as possible. As a consequence, this 
willingness-to-pay-to-reduce-travel-time, or more broadly, individuals’ valuation of their 
own time, is a key element in the transport field. However and despite its obvious 
importance, it is surprising to realize how slow the progress has been regarding our 
understanding of the way people manage their time in general. The role and evolution of 
time as a variable in consumer theory is discussed in this Chapter, which finishes with the 
presentation of a more complete model encompassing leisure, work, travel, and their 
values. 
 
Valuation of Users’ Benefits in Transport Systems constitutes Chapter 3, and there, as the 
name suggests, different measures to estimate users’ benefits arising from changes in the 
transport system –like those a new transport project would make- are presented and 
discussed. The simple and most widely used measures are shown and their limitations 
exposed, followed by less popular but rigorous measures derived directly, as opposed to the 
former, from the general microeconomic theory. The chapter also covers two other related 
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topics. First, an analysis is made about the link between benefits measures directly in the 
transport market and those one could measure in the markets that generated the transport 
demand in the first place. This means examining, for example, benefits from commercial 
activities produced by people who traveled for shopping. Second, the issue of aggregating 
benefits from different users for matters of determining benefits at a society level is 

transport projects that are financed by users directly and those undertaken with tax money.  
 
In the final chapter, Optimal Transport Pricing, a look is taken at different pricing strategies 
and their consequences. It starts presenting the desired case where price reflects economic 
efficiency, which helps illustrating that neither private transport nor public transport 
markets would produce such case if left alone, due to the presence of externalities. The 
necessary correction - from a regulatory point of view- that needs to be implemented for 
each case in order to reach efficiency is also presented. Next, alternative forms of pricing 
aiming at different goals other than economic efficiency are analyzed.  
 
Transport industries are certainly among the most interesting as a subject of study. The 
inherent spatial characteristic of this activity and its repercussions for firm cost structure 
analysis, the presence of externalities of significant magnitude, the fact that users do not 
want this product by itself but only as a mean to solve some other need, the unavoidable 
restriction faced by all individuals of having to organize their activities, travel among them, 
within a 24-hour time frame, and the rather public nature of this market, which forces 
national and regional authorities to design, evaluate and finance transport projects with 
social welfare in mind, make this field of knowledge a very special and challenging one. 
This book aims at providing a theoretical ground for its understanding.  
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1. Transport production and cost structure 

1.1. Introduction 
As transport activities mean movement of individuals and goods in both time and space, the 
analysis of transport productio n involves the assignment of resources to generate trips 
between several different points in space during various periods. As a conse quence, the 
microeconomic analysis of transport production is far from a simple extension of the 
traditional theory of the firm. In this chapter we present the underpinnings of a 
microeconomic theory of the transport firm, with particular emphasis on the nature of the 
technical relations between inputs and outputs (production or transformation function) and 
the use of the cost function as a tool to obtain valuable information for the design of 
transport policies as pricing and regulation. 

The chapter begins with the notion of transport production, including the definition of 
transport output, the role of space, the idea of operating rules, and the concept of scale, all 
of which are illustrated using simple cyclical systems. Then the cost function and its 
properties regarding the calculation of marginal costs, economies of scale and economies of 
scope, are presented and explained within the context of transport systems analysis. A 
synthesis of the empirical work using transport cost functions is then offered, with special 
emphasis on the adequate treatment of output in its specification, and on the difficulties 
with the prevailing approach to analyze industry structure. Improved procedures to 
calculate scale and spatial scope economies correctly when output aggregates are used are 
included, plus a discussion about the analysis of the industry structure considering such 
measures. 

1.2. Transport production 
1.2.1. Product and technology 
Basically, the production of goods and services can be synthetically described using the 
concepts of inputs, outputs and technology. Inputs have to be acquired by the firm in order 
to be combined - within the boundaries of process-specific rules – so as to produce outputs. 
For a given level of outputs, the firm has to choose type and amount of inputs, as well as a 
subset of combination rules. Technology defines all feasible input combinations. Formally, 
let X be the inputs vector (quantity/time unit) and Y the outputs vector. Then, 

Definition 1.1: Technology 
The technology T is defined by all (X ,Y )∈ T ⇔ Y can be produced from X. 

A transport process is the immediate effect of the action of transporting, i.e., moving some 
physical entity from a certain origin in space-time to a certain destination in space-time. We 
can associate this concept with that of “product” in an economic sense, with some 
reservations. To describe a product we refer to its qualitative characteristics, assigning a 
name for simplicity (e.g., oranges, shoes, etc.). To measure a product we need a physical 
unit of reference, and a quantity in terms of these physical units (e.g., 5 tons of oranges, or 
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1000 pairs of shoes). When we talk about a production process we need flow units, as 
opposed to stock units (e. g., 1000 pairs of shoes per week). 

But to measure a transport process we would need: a qualitative description of what is 
being transported, a physical unit of reference, quantity (flow) in terms of these units, and 
origin and  destination in space-time.  The need to explicitly establish origin and 
destination in space-time is the characteristic that distinguishes more clearly a 
transport product from the traditional concept. The transport firm has to use vehicles, 
terminals, rights-of-way, energy, labor, and so on, to produce movements - freight and/or 
passengers - from several origins to several destinations during different periods. Thus, the 
output of a transport process is a vector, 

ykt ∈ KxNxTY = { } R (1.1) ij 

where each component yij
kt represents the flow of type k moved from origin i to destination 

j (O-D pair ij) within period t, for example passengers from Paris to Frankfurt during a 
specific weekend (K, N and T are the number of flow types, the number of O-D pairs, and 
the number of time periods, respectively). 

Expression (1.1) is fairly general, including the possibility of a transport firm dealing with 
several flow types (persons, goods of different types), but it is quite important to stress that 
a transport firm produces multiple products mainly because of the presence of time 
and space (periods and origin-destination pairs), not by the handling of multiple flow 
types. The word “product” is used in this chapter to indicate a given flow type in a given 
period between a given O-D pair. Even if a firm only offers passenger service, it still will 
be offering multiple products. Moving passengers from New York to Buenos Aires for 
Christmas will usually involve different inputs combinations than doing it from Tokyo to 
Moscow in June; they are indeed two different products. Unlike the classical theory of the 
firm, a transport company participates in several markets simultaneously, each with its own 
demand curve and its own marginal costs, although the latter are usually interrelated. And 
note the spatial dimension –much more importantly than time- is the key aspect 
distinguishing the transport industry from other economic activities. 

Now, for a given set of flows in Y, the firm has to make several choices: number and 
capacity of vehicles (fleet size), design of the rights-of-way (location, flow capacity), 
design of terminals (location, loading-unloading capacity), vehicle frequencies, and so on. 
Some of these decisions involve choosing the characteristics of inputs, and some are related 
with their use, i.e. with the form in which inputs are combined to accommodate the flow 
vector. We will call these latter types of choices opera ting rules. Because transport 
production takes place on a network, a transport firm has to decide, as well, a service 
structure –i.e. the generic way in which vehicles will visit the nodes to produce the flows– 
and a link sequence . These two endogenous decisions define a route structure , which has 
to be chosen using exogenous spatial information, namely the O-D structure  of demand 
(defined by the vector Y), the location of the nodes and the physical network . Note that 
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the need to make a decision on a route structure is, in the end, a consequence of the spatial 
dimension of product. 

For a given type of transport firm (for example interurban buses) some of the decisions 
related with the acquisition of inputs are constrained, because of the existence of common 
infrastructure (for example the road system) or the rigidity of input markets (for example 
fleet size). On the other hand, decisions on operating rules are generally made within the 
boundaries of existing inputs. 

Example 1.1 
Consider an O-D system with three nodes, a single period and a single flow type, as in 
Figure 1.1.a, located on a physical network, as in Figure 1.1.b. For a given set of flows {yij}, 
the appropriate combination of inputs and operating rules would depend on many factors. 
Three possible service structures are shown in Figure 1.2 (Jara-Díaz, 2000). Structure (a) 
corresponds to a general cyclical system (Gálvez, 1978), structure (b) corresponds to three 
simple cyclical systems (direct service) and structure (c), where a distribution node is 
created, is known as hub-and-spoke and is very common in air transport (note that hub H 
may or may not coincide with an origin or destination node). Regarding vehicle assignment 
to fleets, which is part of the service structure, there is no choice but one fleet (one 
frequency) in case (a), three fleets in case (b) and one, two (with three alternatives) or three 
fleets in case (c). If a cyclical counter-clockwise system like the one in Figure 1.2.a was 
chosen, a possible route structure could be the one shown in Figure 1.3.

 1
y21

y31 y32

y12

y13 
y23 

3 3 

1 2
2 

(a) (b)

Figure 1.1. O-D structure and physical network
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1 2 

3 

1 2 

3 

1 2 

3 

H 

(a) (b) (c) 
Figure 1.2. Service structures 

1 2 

3 

Figure 1.3. Route structure 

Both service and route structures should be analyzed in parallel with vehicle size and 
frequency in order to make the most convenient choice. If this was either a road or a 
railway system, the physical structure of the road network would constrain the choice of 
routes and schedules. Moreover, for a given fleet size (including vehicle capacity), 
scheduling would be the only decision to make. 

The technical relation between inputs and outputs is summarized through the concept of a 
transformation or production function. Concisely, 

Definition 1.2: Transformation function 
F(X,Y) represents the transformation function if (X ,Y )∈ T ⇔ F( X ,Y ) ≥ 0 . Equality 
represents technical optimality (efficiency). 
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1.2.2. The simple cyclical system 
Let us apply these concepts using the simplest possible case, the two nodes system. 
Consider a single O-D pair, single product, single period (Gálvez, 1978; Jara-Díaz, 1982b) 
and let Y be the flow from O to D. Define 

B = fleet size 
K = capacity per vehicle 
k = load size per vehicle 
t(k) = travel time en route as a function of load size 
μ = loading & unloading speed 

Then Y/k vehicles per unit time are needed to satisfy demand and each vehicle takes 
tc=t(k)+2(k/μ)+t(0) units of time to complete a cycle (loading, moving, unloading and 
returning). Then Y/k equals B/tc  is equivalent to 

Y ≡ 
Bk (1.2) kt(k)+ 2 +t(0)
μ 

For a given B and μ, one can find the value of k that maximizes Y, k*. It can be easily 
proved that k* would be given by vehicle capacity K, provided the effect of k on travel time 
is small. Therefore, 

Y ≤ 
BK = h(B,K,μ ) (1.3) Kt(K)+ 2 +t(0)
μ 

where h(B,K, μ) is the production function which gives the maximum flow for a given set 
of inputs B, K and μ. Note that in this case the transformation function 
is F (B,K,μ ,Y ) = h(B,K,μ) − Y . The optimal combination of inputs for a given value of Y, 
would depend on the relative prices of vehicles and loading-unloading capacity. In this 
simple cyclical system, the input choice, their feasible combinations and the operating rule 
can be clearly distinguished. 

Thus, depending on the characteristics of the particular transport system, the transport firm 
could adjust inputs and operating rules according to the different levels of Y. This concept 
remains when Y is a vector. The simplest possible version of a multioutput transport firm is 
one serving a backhaul system with two nodes (1 and 2) and two flows (y12 and y21) of a 
single product during a single period (Gálvez, 1978; Jara-Díaz, 1982b): Let us assume for 
simplicity that the firm operates the same fleet to move both flows. Then vehicle frequency 
in both directions is the same and given by the maximum necessary, which in turn depends 
upon the relative flows; let us assume y12 ≥  y21. Then the technical optimum requires the 
vehicles in the 1 → 2 direction to be fully loaded, and frequency will be given by 
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f = y12 (1.4) 
K 

The load size in the opposite direction, k21, will be 

k 21 = y21 = y21 K          (1.5) 
f y12 

The fleet size needed, B, has to be equal to  f times cycle time tc which, under our 
simplifying assumption, is given by 

= t (K) + 2K + 2 y21 K +t ( k ) (1.6) tc 12 21 21μ μ y12 

Just for the sake of simplicity, let us see the case characterized by vehicle speed v 
independent of load size and potentially different route distances dij in each direction. Then, 
using equations (1.4) and (1.6), the equality B=f tc turns into 

BK = y12 
⎡
⎢
⎣ 

d
v
12 +2 K 

μ 
+ d

v
21 ⎤
⎥
⎦ 
+ 2 K 

μ 
y21 (1.7) 

y21 

μ B 
2 

y21=y12 

B K y12 
tc 

Figure 1.4. Production possibility frontier of the backhaul system. 

As this is valid for y12 ≥ y21, and there is a symmetric expression for y21 ≥  y12, the general 
result for the technical relation among flows and inputs is 

μB (d + d )μ ⎞ yij = 
2 
− ⎜⎛
⎝ 

12

2Kv
21 +1⎟

⎠ 
y ji ,∀ y ji ≥ yij (1.8) 
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Noting that the slope of yij = h(yji) is negative and less than –1, it is fairly simple to show 
that the graphical representation of the backhaul system in the output space looks like 
Figure 1.4. Equation (1.8) represents the production or transformation function of the 
system, and the shaded area in the figure represents all the vectors ( y12, y21) that can be 
produced with a given fleet B, and capacities μ and K, but only the boundary represents 
optimal usage. This boundary is the production possibility frontier, whose symmetry is 
derived from the assumption of load independence of speed. 

1.2.3. The three nodes system 
Let us consider now the three nodes system with a six flows O-D structure (see Figure 
1.1.a), with nodes connected by three links of length dij (Jara-Díaz and Basso, 2003). Note 
that for this simple physical network, the choice of a service structure is conveniently 
coincidental with the choice of a route structure because there is no decision on link 
sequence. We will keep the simplifying assumptions of the previous example, namely the 
sequential loading/unloading procedure and known values of K, μ and v. Let us begin with 
a general cyclical counter-clockwise structure (Figure 1.2.a), which implies the use of one 
fleet only. In this case, vehicle load size on each segment of the network k12, k23 and k31, are 
defined by 

k12 = 
y12 + y13 + y32 k 23 = 

y23 + y21 + y13 k31 =
y31 + y32 + y21           (1.9) 

f f f 

Assume arbitrarily that link 1–2 carries the largest load. This can be shown to be equivalent 
to y12+y13>y21+y31 and y12+y32>y21+y23. Efficiency implies fully loaded vehicles on that 
segment, such that k12=K. Thus, frequency will be 

f = y12 + y13 + y32                                                    (1.10) 
K 

which trivially determines load size on the other two segments according to (1.9). Then, 
cycle time is given by 

tc = 
d12 + d23 + d31 + 

2K + 
2K ⋅ ( y21 + y23 + y31) (1.11) 

v μ μ ( y12 + y13 + y32 ) 

The production possibility frontier of this route structure is obtained recalling that fleet size 
B is given by cycle time (equation (1.11)) multiplied by frequency (equation (1.10)), from 
which 

⎡ d + d + d 2K ⎤ 2KBK = ( y12 + y13 + y32) ⋅ ⎢
⎣ 

12 

v 
23 31 + 

μ ⎦
⎥ + 

μ 
( y21 + y23 + y31) (1.12) 
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with y12 + y13 > y21 + y31  and y12 + y32 > y21 + y23. 

Let us move to a second possible route structure, the one known as hub-and-spoke. A hub is 
a node that collects and distributes all flows, and usually coincides with one that is origin 
and destination. Let us assume arbitrarily that the hub is in node 2, and that only one fleet 
(i.e. one frequency) operates. Obviously, other hub -and-spoke structures and more than one 
fleet could be considered as well, like a two fleet operation, one in 1–2 and the other in 2–3. 
We have chosen to develop the one fleet structure because the others can be constructed 
adequately using the two nodes system, as shown below. With our assumption (see Figure 
1.5)  a vehicle loads flows y12 and y13 in node 1, unloads y12 in 2 and loads y23, then 
unloads y13 and y23 in 3, loading y32 and y31, goes back to 2 to unload y32 and load y21 in 
order to go back to 1 to unload and begin the cycle again.

 1  2 
k21

 3 

k32 

k12 

k23 

Figure 1.5. The hub-and-spoke route structure 

In this case, the four load sizes are given by 

k12 = 
y12 + y13 k32 =

y32 + y31 

f f                                     (1.13) 
k = 

y23 + y13 k = 
y31 + y21 

23 21f f 

Again we will assume total flow in link 1–2 is the largest, which makes k12 equal to K and 
the frequency of the hub-and-spoke system happens to be 

f = y12 + y13                                                              (1.14) 
K 

Replacing (1.14) in (1.13) the other three load sizes are obtained. Cycle time and fleet 
capacity are calculated as usual, which yields 

tc = 
d12 + d23 + d32 + d 21 + 

2K 
+ 

2K 
⋅ 
( y21 + y23 + y31 + y32)                         (1.15) 

v μ μ ( y12 + y13) 

BK = ( y12 + y13) ⋅ ⎢
⎣

⎡d12 + d23 + 
v

d32 + d21 + 
2 
μ
K 
⎦

⎤
⎥ + 

2 
μ 
K ( y21 + y23 + y31 + y32)               (1.16) 

For synthesis, the cyclical, backhaul and hub-and-spoke systems are illustrative of the idea 
of technical feasibility and optimality in transport production. Equations (1.3), (1.8), (1.12) 
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and (1.16) show clearly the relations between inputs and outputs. One of the most important 
conceptual points is the distinction between inputs, as fleet or loading-unloading capacities, 
and operating rules, as frequency, speed or vehicle load. 

Although roles and relations are clear in the systems examined so far, in more complex 
systems the technical relations cannot be obtained in such an explicit form. However, they 
can be envisaged as a sort of ‘specialized black box’ which includes a number of analytical 
relations dealing with networks, itineraries, routes, frequencies, and so on, trying to aim at 
the best possible use of resources. Yet this general idea helps understanding the kernel of 
transport production; changes in the flow vector Y potentially induce changes in input usage 
as well as in route structures and operating rules in general.  It may well be that some of the 
inputs cannot be adjusted, which means some other inputs will have to be changed in 
combination with different operating rules. A good example is the restructuring of routes 
and itineraries for a given fleet of buses facing a change in the passenger volumes in 
different O-D pairs. 

1.2.4. Scale economies 
To end this general idea of transport production, let us introduce an important technical 
concept that can be examined directly from the transformation function: the concept of 
scale economies, where the relevant question is by how much can output be expanded if all 
inputs are expanded in the same proportion. 

Definition 1.3: Degree of scale economies 
The (multioutput) degree of scale economies S is defined as the maximum proportional 
expansion of Y, λsY, after an expansion of the input vector X to λX (Panzar and Willig, 
1977). Analytically, 

F (λX,λ S Y )= 0  (1.17) 

A value of S greater, equal or smaller than one is called increasing, constant or 
decreasing returns to scale respectively. 

Two and three nodes systems can be viewed from the perspective of scale economies. In 
the single output case represented by equation (1.3), a local expansion of vehicle capacity 
(BK through K) and loading-unloading capacity (μ) would allow Y to be increased by the 
same proportion if speed was unrelated to K; note that in this example the right-of-way 
input is assumed to be exogenous to the firm. In the two-outputs case represented by Figure 
1.4 and equation (1.7), a similar expansion of inputs moves the production possibility 
frontier away from the origin. As the concept of scale economies is forced to deal with 
proportional expansions of output, it is clear that, again, (y12, y21) can be expanded by the 
same proportion as inputs (same condition as in the previous case). Note that in the three 
nodes case, equations (1.12) and (1.16) play a role that is similar to that of (1.7), which 
shows that the six outputs can be expanded by the same proportion. So in all these 
examples S takes the value of one; there are constant returns to scale. Note that in all 
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multiple output cases the ‘how much can output be expanded’ question becomes 
ambiguous, as nothing has been said about output combinations. 

1.3. Transport cost functions: the theory 
1.3.1. Basic definitions and properties 
Technical analysis is not enough to understand the choice of inputs combination by the 
firm. The question is which of the combinations in the technical frontier is the most 
convenient to produce a given output Y. The answer –be it for transport firms or any other-
is given by one of the most interesting tools in the microeconomics of production: the cost 
function, which requires input prices to be introduced in the picture. 

Definition 1.4: Cost function 
The cost function C(w,Y) gives the minimum expenditure necessary to produce output Y at 
given factor prices w. It corresponds to the solution of 

Min i i∑w x
X 

i 

subject to F(X,Y) = 0 (1.18) 

The solution for each input xi is a conditional demand function x*
i (w,Y) , which represents 

the optimal amount of input. Then the cost function is 

*C(w,Y) ≡ ∑wi xi (w,Y ) (1.19) 
i 

If some inputs xj are fixed at a level x j , then the short run cost function is defined as 
C(wv , X ,Y) , where X  is a vector containing fixed inputs and wv is a vector-containing 
variable input prices. The optimization process represented by equations (1.18) and (1.19) 
is exactly the same. 

Following, two well known concepts in microeconomic theory are defined within a 
multioutput context. 

Definition 1.5: Marginal cost 
The marginal cost specific to product i, mi , is defined as 

mi = ∂C(w,Y)  (1.20) 
∂ yi 

Definition 1.6: Cost elasticity 
The cost elasticity with respect to output i, η i , is 
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ηi 
yi ∂C (w,Y )= 

C(w,Y) ∂yi 
(1.21)  

Out of the many properties of the cost function, two are particularly relevant for a basic 
analysis and discussion of production in general and of transport in particular: 

Property 1.1: Shephard's lemma 
The deriva tive property or Shephard's lemma states that the derivative of the cost function 
C(w,Y) with respect to each factor input price wi equals the cost minimizing amount of xi, 
that is xi

*(w, Y). Analytically, 

*∂C(w,Y) ≡ xi (w,Y ) (1.22) 
∂ wi 

This is very helpful in estimating and interpreting a cost function, because the huge number 
of parameters to be estimated associated to the usage of flexible forms of the cost function, 
requires a very large number of observations for statistical confidence. The application of 
(1.22) generates additional equations involving subsets of the original parameters, which 
improves the efficiency of the estimates. 

Property 1.2: Scale Economies 
If S is defined as in (1.17) it can be calculated as (Panzar and Willig, 1977) 

S = C(Y) = 1 (1.23) 
∑ 

i 
yi ∂
∂C

y 
∑ 

i 
η i 

i 

where η i  is the cost elasticity with respect to output i (see appendix for a proof). In other 
words, the multioutput degree of scale economies S defined in (1.17) can be calculated 
from the cost function. Note that S is given by the ratio between average and marginal cost 
in the single output case. 

In the case of multiple outputs, the analysis of industry structure requires something more 
than the study of production scale. Additional information is required in terms of the 
convenience of producing two or more outputs together; scope economies: 

Definition 1.7: Degree of economies of scope 
The degree of economies of scope relative to a subset R, SCR , is defined as (Baumol et al., 
1982) 

1
SCR = 

C(Y)
[C(Y R )+C(Y M − R ) − C(Y)] (1.24) 
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where YR represents vector Y with yi = 0,∀i ∉R ⊂ M , with M being the set of all products 
(we have suppressed w for simplicity). Thus, a positive SCR -the existence of economies of 
scope- means that it is cheaper to produce Y with a single firm than having two firms, one 
producing the subset R and the other the subset M-R. Note that SCR lies, theoretically, in the 
interval [-1,1], as it represents the proportion of cost savings due to joint production. 

If we want to know the cost of adding a subset R to its complement M-R of the total product 
Y, we have to calculate the incremental cost: 

Definition 1.8: Incremental cost 
The incremental cost relative to a subset R, ICR, is calculated as 

ICR = C(Y) – C(YM-R) (1.25) 

The concept of a natural monopoly within a multioutput framework is equivalent to the 
presence of subadditivity in the cost function. 

Definition 1.9: Subadditive cost function 
A cost function is said to be subadditive for a particular output vector Y when Y can be 
produced at a lower cost by a single firm than by any combination of smaller firms 
(Baumolet. al., 1982, p. 170). Therefore, a cost function is subadditive if 

i i i∑C (Y )≥ ( ) ∀ { } such that Y Y (1.26) C Y Y ∑ = 
i i 

Under this set of definitions and properties, it is very clear that both S>1 and SCR>0 favor 
subadditivity, but neither guarantees its presence by itself. 

Definition 1.10: Degree of scale economies for a subset R 
The degree of scale economies for a subset R is 

SR = ICR 

∂C (1.27) 
∑yi 
i∈R ∂ yi 

Property 1.3: Relation between Scale Economies and Scope 
Overall scale economies, scope and scale economies for a subset R ⊂M are related, since 

SR αR + SM −R (1 −αR )S = 
1− SCR (Y ) (1.28) 
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∑yi 
∂C 

with α = i∈R ∂ yi

R


∑yi 
∂C 
∂ yi∈M i 

Proof.

Replacing (1.25) in (1.24) we get


1 
SCR = 

C(Y) 
[C(Y) − ICR − ICM − R )] (1.29) 

From (1.23) 

C(Y) = S ∑yi ∂
∂C

yi 

(1.30) 
i 

Replacing this in (1.29) and using (1.27) and the definition of αR we get 

SCR = 
S
1 [S −αRSR −αM − RSM − R )] (1.31) 

Finally, noting that αM −R = 1−αR  we get (1.28). 

Property 1.3 means S would be a weighted average of SR and SM-R in the absence of 
economies of scope. If these exist, S is magnified. 

1.3.2. Scale and scope in transport production 
The preceding section, valid for all types of firms, is of course applicable to a transport one. 
With product defined as in equation (1.1) and the notion of scale synthesized in equation 
(1.17), scale analysis in transport should be conceptually clear: scale in transport refers to 
the behavior of costs as flows in all markets served by a firm expand proportionally. 
On the other hand, following the notion of scope introduced in equation (1.24), scope 
analysis in transport refers to the behavior of costs when flows are separated into two 
mutually exclusive subsets. In order to emphasize space, let us create an example using 
the O-D structure depicted in Figure 1.1 for one type of cargo. 

Example 1.2 
In Figure 1.1 and Figure 1.2 imagine that flows yij and yji are unbalanced, and that the sum 
of flows clockwise is approximately equal to the sum of flows counter-clockwise. It may 
well be that for relatively low volumes, a service structure like a), with complete vehicle 
cycles involving a homogeneous fleet, is the minimum cost answer. Imagine output 
expands proportionally as required by scale analysis; the firm could accommodate that 
expansion by increasing frequency (expanding fleet) and/or using larger vehicles. For 
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further expansions, the hub-and-spoke structure like b) could well become the best answer, 
making the hub a transfer point and including vehicles of different sizes. It might be the 
case that direct services like in c) happen to be the minimum cost structure for individually 
large enough flows. If there are scale advantages in loading-unloading activities and in 
vehicle size, it is very likely that through appropriate scheduling and rerouting, total cost 
will increase less than proportionally with increases in the flow vector, at least up to a 
certain scale. 

Regarding scope, Figure 1.1 again will prove very helpful. If the six flows are divided into 
subsets {y12, y23, y31} and {y21, y13, y32}, very possibly the sum of the costs of assigning each 
subset to a different firm will be greater than that cost of moving all six flows with one 
firm. The case is not that clear when the partition is {y12, y21},{y13, y31, y23, y32}. In general, 
the partition of the flow vector could be made in terms of flow type (for example 
passengers and freight), periods (for example weekends and weekdays) or O-D pairs, as we 
have done in the example. In this latter case we would talk about econo mies of spatial 
scope, when they exist. 

In order to provide a specific analytical case, let us use the simple backhaul system to 
obtain and analyze the corresponding cost function. To get total expenses in the production 
of a given vector Y, input prices have to be considered. Let g be vehicle fuel consumption 
per kilometer, ε  and θ the number of men required to operate a vehicle and a 
loading/unloading site respectively, w the wage rate, Pg the fuel price, PK and Pμ  the price 
per hour of a vehicle of capacity K and the price per hour of a loading/unloading site of 
capacity μ respectively (consider these either as rental prices or depreciation). To simplify 
matters, let g be independent of load size and speed, let ε  and θ  be independent of K and μ 
respectively, and consider the case of y12>y21. With these assumptions and variable 
definitions, vehicle expenses per hour including rent and operation (labor and fuel) are 
given by 

Pveh = PK + w ⋅ε + Pg ⋅ g ⋅ d12 + d21 y12                                        (1.32) 
B ⋅ K 

Regarding loading/unloading sites, the expense per hour PS and the number of sites needed 
NS are given respectively by 

PS = Pμ + wθ                                                             (1.33) 

NS = 2( y12 + y21)                                                         (1.34) 
μ 

Next, total expenses G can be calculated as the sum of the payments for the right-of-way 
C0, for the vehicles (B times Pveh), and for the loading/unloading sites (NS times PS). Thus, 
from equations (1.32), (1.33) and (1.34) we get 
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S 12 21GK ,μ ,v ( y12, y21) =C0 + [PK + wε ]⋅ B(K, μ, v,Y) + 
Pg ⋅ g ⋅(d12 + d21) y12 + 

2 ⋅ P ⋅( y + y )  (1.35) 
K μ 

Assuming vehicles and sites are available in a given size only, and that speed is 
exogenously determined by technical or legal facts, K, μ and v are fixed and the optimal 
fleet size B* for a given product Y is directly given by equation (1.7), which replaced in 
equation (1.35) yields the cost function, 

C( y12 , y21 ) = C0 + y12 (d12 + d21 )⋅Λ + (y12 + y21 )⋅ Ω                      (1.36) 

with Λ = ⎢
⎡ PK + wε + 

Pg g 
⎥
⎤ 

      and Ω = ⎢
⎡ 2 (PK + wε) + 

2PS 
⎥
⎤ 

⎣ vK K ⎦ ⎣μ μ ⎦ 

with a symmetric expression for y21 >y12 .1 This cost function is represented in Figure 1.6. 

Co 
y21 

C(y12,y21) 

y12 

Figure 1.6. Transport cost function of the backhaul system 

It is interesting to note that equation (1.36) includes a flow-distance term and a pure flow 
term. Following Jara-Díaz (1982b), the latter captures those expenses that occur while 
product is not in motion, i.e. those due to terminal operations (as is evident through Ω), 
while the flow-distance term captures en-route expenses (evidently reflected by Λ). This is 
graphically represented in Figure 1.6. Note that the flow-distance term is, in fact, the 
capacity of the transport system, as only the largest flow appears –i.e. the one that equals 

1 A complete analytical derivation of cost functions  for both the simple cyclical system and the backhaul 
system can be found in Jara-Díaz (1982b). 
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frequencymultiplied by vehicle capacity– and is multiplied by the total distance traveled by 
each vehicle. 

Although equation (1.36) has been obtained using highly simplifying assumptio ns, it repre­
sents a fairly transparent cost function for the simplest possible multioutput trans port 
system. Its importance becomes apparent when it is used to analyze scale, scope and 
aggregate output. If the degree of economies of scale is calculated using (1.23), it is quite 
easy to show that 

S = 
C( 

C
y12 

( y 
,
12 

y21

, y 
) 
21 

−
) 
C0 

∀(y12 , y21) (1.37) 

In particular, S=1 for C0 =0, which we can name the ‘truck’ case, as trucks (or buses) do 
not pay a fixed cost for road infrastructure. On the other hand, scope analysis can be done 
for the only partition possible in this case (i.e. assigning each of the flows in the backhaul 
system to differ ent firms). After elementary calculations we get 

C( y12 ,0)+ C(0, y21 ) − C( y12 , y21 ) = Co + y ji (d12 + d 21)⋅Λ ∀ yij ≥ y ji (1.38) 

which is positive even if Co is nil. This shows that, under the assumptions made, it is fleet 
utilization what causes the existence of economies of scope, that is, production of (y12, y21) 
is cheaper with one firm than with two or more firms producing orthogonal partitions of 
that output bundle. Thus, if Co=0, we have constant returns (a case for competition or 
deregulation) and economies of scope. The latter would cause incentives for merging if two 
firms are operating, each in one direction. The conclusion is that, as far as costs of 
production are concerned, competition would be desirable but each firm should operate 
serving both markets. 

1.3.3. The conditional and global cost functions: the role of flows and network 
As stated earlier, the decisions of a transport firm are three: quantity and characteristics of 
inputs, operating rules and route structure. Given the discrete nature of the latter decision, 
the underlying cost minimizing process can be seen as a sequence with two stages. First, 
for a given route structure  the firm optimizes inputs and operating rules. After 
establishing the production possibility frontier (technical optimality) input prices are 
considered and expenses are minimized. A conditional cost function, that gives the 
minimum cost necessary to produce a given output Y for given output prices and a known 
route structure, is obtained. In the second stage these conditional cost functions 
(corresponding to alternative route structures) are compared and the global cost function 
can be obtained by choosing the cost minimizing route structure. Note the two nodes 
system is insufficient to show the two stages optimization process completely, as the 
second stage is not applicable to this single route structure case. However, this case will 
prove very useful for the explanation of the three nodes system -where a choice on route 
structure indeed exists- and for the comparison of costs after a network expansion, as 
developed by Jara-Díaz and Basso (2003). 
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Let us derive the conditional cost function for the three nodes system, for two different 
service structures. In the case of a general cyclical counter-clockwise structure (Figure 
1.2.a), given K, μ and v, equation (1.12) is directly B*(Y). Just as we did with the two nodes 
system, the (conditional) cost function is obtained calculating expenses per vehicle-hour 
times B*, and adding loading-unloading sites expenses plus the right-of-way cost. Doing 
this and after some manipulation, we get 

(Y ) = C + (y + y + y ) (  d + d + d )⋅Λ + (y + y + y + y + y + y )⋅CCG 0 12 13 32 ⋅ 12 23 31 12 13 32 21 31 23 Ω 
(1.39) 

with y12 + y13 > y21 + y31 and  y12 + y32 > y21 + y23 . 

This is the cost function conditional on a cyclical route structure, with Λ and Ω defined as 
in equation (1.36). The similarity between this conditional cost function and the one 
obtained for the two nodes system equation (1.36) is evident. Note the obtained function 
reduces to that of the two nodes system if the four new flows are set to zero and d23+d31 
was defined as d21. 

Following the same procedure as in the previous case, we obtain the conditional cost 
function in the hub-and-spoke route structure, i.e. 

CHS (Y) = C0 + (y12 + y13 )  (  ⋅ d12 + d23 + d32 + d21 )⋅Λ+ (y12 + y13 + y32 + y21 + y31 + y23 )⋅Ω 
(1.40) 

whose terms have the same interpretation as the ones in equation (1.39). 

So far, we have obtained two conditional cost functions for the three nodes system. By 
simple analogy, the conditional functions for other three route structures can be obtained as 
well: the clockwise cyclical system and the hub-and-spoke systems with the hub in nodes 1 
or 3. Additionally, by adequately using the cost function for the two nodes system, we can 
derive conditional cost functions for other cases: the direct service with three fleets, each 
one serving a pair of nodes cyclically (1-2, 2-3 and 1-3), and the hub -and-spoke with two 
fleets, each one connecting a pair of nodes (with the hub at any of the three nodes). Note 
that in this latter case some flows will have to be loaded and unloaded twice (origin, 
destination and hub), which increases expenses compared with the other cases, but cycle 
times will be shorter. The examples developed and explained here are enough to illustrate 
that choosing a route structure is a key endogenous element, and to show that the minimum 
cost is associated with such choice. 

The second stage of the sequential optimization process is the search for the optimal route 
structure, i.e. the one that minimizes cost in the production of Y and defines the global cost 
function. This second stage requires the comparison of the conditional cost functions 
obtained in the first stage. Let us illustrate this process in the three nodes system 
considering yij=y (equal flows) and the network shown in Figure 1.7. 
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1  2 
1 

1 

3 

1 

Figure 1.7. Physical network 

Let us define the following notation for the alternative route structures : 

CG-123 : Cyclic counter-clockwise.

CG-132 : Cyclic clockwise.

3F : Direct Service; three fleets.

HS-i : Hub-and-spoke with the hub in node i; one fleet.

2F-i : Hub-and-spoke with the hub in node i; two fleets.


Using the conditional cost functions explicitly derived earlier and the definitions of the 

systems, the conditional cost function for each of nine route structures can be constructed 

and evaluated for the equilateral triangular network in Figure 1.7 and equal flows on each 

O-D pair. Omitting C0 for simplicity the results are


CCG-123 = CCG-132 = 9·y·Λ + 6·y·Ω 
CHS-1 = CHS-2 = CHS-3 = 8·y·Λ + 6·y·Ω (1.41) 

C3F = 6·y·Λ + 6·y·Ω 
C2F-1 = C2F-2 = C2F-3 = 8·y·Λ + 8·y·Ω 

Thus, it is optimum to serve the flows directly with three fleets, each one connecting a pair 
of nodes. Therefore, this is the global cost function for this particular network with equal 
distances and equal flows. It is worth noting that the hub-and-spoke structures with two 
fleets have larger costs than the ones with one fleet because of terminal operations, and that 
the cyclic systems have the largest en-route costs. 

The choice of a route structure is dependant on exogenous information, namely the O-D 
structure of demand (vector Y) and the network topology. Let us examine the effect of a 
variation of this exogenous information on the choice of an optimal route structure. First, 
let us see the effect of changes in O-D structure of demand, keeping the same physical 
network (flow effect). Consider the O-D structure represented in Figure 1.8. 
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Figure 1.8. New O-D structure of demand 

Now flows are asymmetric, which forces to identify the flows that generate the largest load 
size, as these are the ones multiplying Λ. With these new values for the components of Y, 
the (conditional) cost for each of the nine proposed route structures are: 

CCG-123 = 195·Λ + 110·Ω CHS-1 = 200·Λ + 110·Ω C2F-1 = 170·Λ + 160·Ω 
CCG-132 = 165·Λ + 110·Ω CHS-2 = 200·Λ + 110·Ω C2F-2 = 170·Λ + 150·Ω (1.42) 
C3F = 150·Λ + 110·Ω CHS-3 = 140·Λ + 110·Ω C2F-3 = 140·Λ + 130·Ω 

The new optimal route structure is the hub-and-spoke with one fleet and the hub located in 
node 3, CHS-3. This shows that a different O-D structure can generate a new optimal route 
structure on the same physical network (spatial distribution of nodes and link lengths). 

Let us change the network as shown in Figure 1.9, but keeping the O-D structure of Figure 
1.8 in order to examine the network effect.

 1  2

3
3 

1 

2 

Figure 1.9. New network: spatial distribution of nodes and link lengths 

The new conditional costs functions are: 

CCG-123 = 390·Λ + 110·Ω CHS-1 = 300·Λ + 110·Ω C2F-1 = 240·Λ + 160·Ω 
CCG-132 = 330·Λ + 110·Ω CHS-2 = 500·Λ + 110·Ω C2F-2 = 440·Λ + 150·Ω (1.43) 
C3F = 300·Λ + 110·Ω CHS-3 = 280·Λ + 110·Ω C2F-3 = 280·Λ + 130·Ω 

Unlike the previous cases, now the optimal route structure depends on the values of Λ and 
Ω. The HS-3 system (which was the best with the previous network) is still superior to both 
cyclic systems, to 3F, to the other hub-and-spoke systems and to the two fleet systems but 
2F-1. However, the hub-and-spoke system with two fleets and the hub in node 1 could be 
superior to HS-3 depending on the relative values of Λ and Ω, which are constants defined 
mostly by prices. Thus, the decision on the optimal route structure will depend, in this case, 
on how expensive are the loading/unloading activities relative to activities en-route, which 
is very reasonable. Note that a proportional growth of distances (links) would increase the 
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difference between expenses en-route of the two structures, keeping the difference between 
terminal expenses constant, which would increase the attractiveness of route structure 2F-1. 
This illustrates the network effect on the optimal route structure. 

Regarding scale analysis in the three nodes system, it is quite simple to show that for all the 
conditional cost functions the degree of economies of scale S is given by equa tion (1.37) 
due to linearity in flows. Then C0 = 0 implies constant returns and C0 > 0 generates 
increasing returns. 

The analysis of scope allows various possible orthogonal partitions of the six flows product 
vector (Figure 1.1.a). It is particularly interesting to analyze the case in which one node is 
added or subtracted from a firm service (network expansion or reduction). Let us consider 
the orthogonal partition YR = {y12, y21, 0, 0, 0, 0}, YM-R = {0, 0,  y13, y31,  y23, y32}, which 
allows the comparison between one firm serving all six flows against two firms, one 
serving the two flows between nodes 1 and 2 and the other serving the rest. Note C(Y)­
C(YR) is precisely the cost caused by the addition of node 3 to the network {1,2}, not 
necessarily equal to C(YM-R) unless SCR was nil. As seen, the value of the degree of 
economies of scope depends on the exogenous information (flows and ne twork) because 
the global cost function does. We will analyze the case depicted in Figure 1.8 with link 
lengths equal to one, with C0 = 0 in order to get rid of the fixed cost effect that influences 
(increases) both scale and scope. In this case, the global cost function for the firm serving 
all flows corresponds to that of the HS-3 structure, which yields C(Y)=140·Λ+110·Ω. On 
the other hand, the global cost function for the two flows system is given by equation 
(1.36), which yields C(YR) = 30·Λ + 20·Ω. For YM-R, the three nodes system analysis 
applies, with two flows set to zero. It can be shown that the optimal route structure could be 
either 2F-3 or HS-3, both with a cost C(YM-R) given by 120·Λ  + 90·Ω. Now we can 
calculate SCR from equation (1.24), which yields 

SCR = 
(30 Λ + 20 Ω) + (120 Λ + 90 Ω) − (140 Λ + 110 Ω) 

= 
10 ⋅ Λ > 0 (1.44) 

C(Y ) C(Y) 

This means that, even if C0=0, the six flows will be better served with one firm. Note that in 
this case savings occur due to expenses en-route, i.e. a single firm allows a better use of the 
fleet capacity than two firms (vehicle load is larger in average) by means of adjustments in 
the route structure. Note also this might not happen for other values of Y or for another 
physical network. The same applies to loading/unloading activities; in this particular case 
they are neither a source of economies nor diseconomies of scope because in the three 
optimal route structures every unit is loaded and unloaded once. Under other circumstances, 
a hub-and-spoke structure with two fleets might be optimal in producing Y, with loading 
and unloading activities being a source of diseconomies of spatial scope. 



31 Transport production and cost structure 

1.4. Transport cost functions: the empirical work 
1.4.1. Transport output and the estimation of cost functions 
The estimation of cost functions for different transport industries has been the preferred 
tool to analyze the role of the cost structure in the organization of the industry, as well as 
regulation, technical change, productivity, and so on. But obtaining an adequate 
representation of either C(w,Y) or C( w, X ,Y) -the long run and the short run cost functions 
respectively- is not a simple task. Evidently, the general idea is to construct a reliable 
statistical relation between expenses as the dependent variable, and output, input prices and 
fixed factors as explanatory variables. The statistical data is composed by a series of 
observations, each one relating production to cost. This series can be fed by: 
- the evolution of a single transport firm in time (time series); 

- the activity of many firms within a period (cross section); 
- observations of many firms during many periods (pool). 

The case of a time series is, conceptually speaking, the most transparent one because it 
refers to one firm, one O-D structure and one network; product (as defined in equation (1.1) 
is quite precise, as well as factors of production. 

Example 1.3 
Let us consider the case of a firm moving a single type of commodity (or passengers) 
among many points in space during homogeneous periods, and imagine potential 
observations that include services from two to six O-D pairs as depicted in Figure 1.10. If 
all observations were associated with an O-D system like (a), output would be a two-
dimensional vector. Output would be a six-dimensional vector if all observations were 
related with movements like those represented in (c). 

1 2 1 2 

3 

1 2 

3 

(a) (b) (c) 

Figure 1.10. Transport output in a three nodes system 

How to represent output if observations  included all three cases? The answer is 
straightforward: the output vector should have six components and some of them will be nil 
for observations including flows like in (a) or (b). Formally, denoting yij

n the actual flow in 
O-D pair ij for observation (period) n, 

y = {y12 , y21 , y13 , y31 , y23 , y32} 
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A a aY = {y , y ,0,0,0,0}12 21 
B b b b bY = {0,0,y , y , y , y }23 3213 31 

C c c c c c cY ={y ,y ,y , y ,y ,y }
12  21 13  31  23  32  

The case is very similar if observations correspond to transport firms operating on the same 
spatial setting. 

Observations  of firms serving different O-D pairs correspond, in fact, to different products. 
This does make a difference regarding other production processes observed through a 
cross-section, as the optimal combination of resources to produce a given amount of an 
output bundle (say shoes, bags and belts) at given input prices, is likely to be equal across 
firms if all of them have access to the same technology. But the optimal combination of 
vehicles, terminals and rights-of-way (by means of routes, frequencies and load sizes) will 
depend upon the characteristics of the underlying physical network and the actual 
configuration of each O-D system. Nevertheless, it is true that an external observer 
(transport analyst) should be able to obtain some information regarding cost structure from 
observations of different transport firms performing similar services on different spatial 
settings (for example interurban rail, urban transit, international flights, and so on). But this 
requires a careful analysis in order to make the correct inferences on policy and industry 
structure. 

Thus, transport output description within the context of the estimation of cost functions, 
implies a challenge at least in two dimensions. First, when output is well defined as a vector 
of O-D flows, the number of components is usually huge and certainly unmanageable in 
detail for statistical purposes. Second, cross-sectional observations usually involve different 
products in a spatial sense. How to aggregate flow components and how to introduce 
product equivalency or homogeneity across different systems, are indeed problems to solve 
(Jara-Díaz et al., 1991, 1992); neither, however, changes the strict definitions of scale and 
scope which are unambiguous with a well defined transport output. 

1.4.2. Functional form 
From 1970 to 2000, the empirical work on transport cost functions has experienced a series 
of improvements. Perhaps the most evident is the use of flexible forms for the functional 
specification of the function, with the translog form being the most popular (see 
Christensen et al., 1973). In order to understand analytically this form, it is useful to view 
first another flexible specification called the quadratic. Conceptually, the quadratic

0 0corresponds to a second order Taylor expansion of C(w,Y) around a point (w ,Y ), which is 
usually the mean of input prices ( wi ) and flows ( yi )  in the data set. Analytically, the 
stochastic expression for the quadratic-around -the-mean cost function is 
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n m 
C (w,Y) = A0 + ∑ Ai (wi − wi ) + ∑C j ( yi − yi ) 

i=1 i=1 
n n 

+1 ∑∑ Aij (wi − wi)(w j − w j )2 i=1 j=1 
(1.45) n m 

+ 
1
2 i=1 j=1

B (w − w )( y − y )∑∑ ij i j j j 

m n 
+1 ∑∑Cij ( yi − yi) ( y j − y j ) + ε ,

2 i=1 j=1 

where the system considers n inputs and m outputs; ε is an error tem. The translog form is 
analogous to equation (1.45) with C(w, Y), wi and yi (including deviation points) in logs. 
Both forms are flexible in the sense tha t no a priori functions are postulated either for 
technology or costs. 

Each of these flexible forms has its own advantages. The translog facilitates the analysis of 
the properties corresponding to the underlying technology, i.e. homogeneity, separability, 
scale economies and non-joint production, by means of relatively simple tests on the 
adequate set of parameter estimates.2 Its first order coefficients are the cost elasticities of 
output calculated at the mean, and their summation yields an estimate of the inverse of S as 
shown in equation (1.23). 

On the other hand, the plain quadratic form is extremely adequate to directly obtain 
marginal costs evaluated at the mean of observations, Ci  ,and the elements of the Hessian 
Cij, which are essential for analyzing subadditivity. In addition, equation (1.45) is well 
defined for zero output levels (while the translog is not); this not only represents an 
advantage for the estimation process, but also allows for the calculation of economies of 
scope, which involve output vectors with some zero components. Nevertheless, adequate 
transformations of output (for example Box-Cox) allow for nil values of output using the 
translog form as well. 

One of the shortcomings of flexible forms is the fairly high number of coefficients to be 
estimated, which requires a substantially larger number of observations for statistical 
relevance. However, the application of Sheppard’s Lemma to equation (1.45) generates as 
many additional equations as factor prices included, involving part of the coefficients from 
the original equation. Inputting some usually available information (factor usage, factor 
expenditure or factor cost share)3 the number of ‘observations’ can be multiplied, 

2 For a condensed overview of the technical analysis based upon the coefficients obtained from the translog 
specification of C(w, Y) , see Spady and Friedlaender (1978). 

∂C(w,Y) ∂C3 As Shephard’s Lemma states that = X i , this can be manipulated to obtain either w∂ wi 
i ∂ wi 

(factor expenditure) or w
C

i 

∂
∂C

wi 

 (factor share). This last form is particularly appropriate when using the 

translog form. 
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generating a system of equations which increases the parameter estimation efficiency. This 
problem is particularly relevant in transport analysis because the usually high dimension of 
Y is further magnified by squared and interaction terms. 

A widely used way to deal with the large number of variables when estimating cost 
functions is representing output by means of aggregates, a procedure that has its own 
problems, as we will see next. 

1.4.3. Output aggregates 
Since output is usually a vector of huge dimensions, the empirical literature shows a variety 
of aggregate output indices that, placed in groups of three or four, are used for the 
estimation of cost functions in an effort to capture the complexity of transport services. 

But aggregation over any dimension (commodity, time or space) involves loosing 
information associated with the transport processes generated by the system in reference. 
Clearly, spatial aggregation destroys information on the geographical context of the origin-
destination system in which a transport system operates. Aggregation of output over time 
may cause distortions when estimating cost functions if periods of distinctive mean flows 
are being averaged. Finally, commodity aggregation may affect cost estimation since the 
(minimum) cost of moving the same aggregate weight or volume will generally depend on 
the composition of that output. 

Despite these problems, even to date aggregates like passenger- (or ton-) kilometers (TK) 
are used as a basic or synthetic unit to describe transport output both in general and within 
the context of empirically estimated cost functions. Since the late seventies, its ambiguity 
began to be addressed, raising issues like network shape and fleet utilization. The usual 
critique to the TK aggregate is that it is different, both in terms of inputs and cost, to move 
n tons across m kilometers from moving m tons across n kilometers. But this is far from 
being the only problem. 

Example 1.4 
The simplified cost function of the backhaul system can be used to illustrate the limitations 
of the TK index as a representation of transport output. First we have to recognize that TK is 
indeed a function of the true output as defined in (1.1). In the backhaul system, 

TK = y12d12+ y21d 21 (1.46) 

On the other hand, equation (1.36) can be used to represent the combinations of y12 and y21 
that yield the same expenditure Ci. The resulting iso-cost locus can be shown in the output 
space as we have done in Figure 1.11, where cost increases with the distance from the 
origin. The popular ‘output’ TK can be shown in the same space using equation (1.46) as a 
straight line with a negative slope that depends on the relative value of d12 and d21. 
Evidently, all flow combinations within the straight line yield the same value for TK. We 
have represented as TKo the case of d12>d21; as the corresponding line intersects many iso­
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cost curves, TKo cannot be associated with a single minimum cost figure. If should be noted 
that this ambiguity remains even if both distances were equal (as represented by TK1). On 
the other hand, every pair (y12, y21) corresponds to a single cost value, unambiguously. 

C9 

C1 

TK1 

TKo 

y21 

y12 

Figure 1.11. Cost ambiguity of aggregate output 

In terms of scale analysis, an expansion of TK by λ corresponds to several possible flow 
combinations, as shown by equation (1.46). In terms of scope, the pairs (0,  y21) and (y12, 0) 
get reflected as y21 d21 and y12 d12 respectively when converted into TK units. Thus, scope 
‘turns’ into scale, provoking an extremely confusing panorama when trying to obtain 
conclusions on industry structure. 

The ambiguity of aggregate output is a key aspect in the analysis of industry structure in 
transport activities by means of a cost function. With an example we have shown that, even 
in a simple system like the backhaul service, an association between expenses C and output 
TK might yield completely erroneous conclusions. Even so, reported transport cost 
functions use a basic output aggregate (such as ton-kilometers or total passenger trips) 
together with other ‘output’ variables or, as called in the literature, ‘output characteristics’. 
These other aggregates aim at somehow control for the ambiguity of the single output 
index. Thus, seasonal and ‘traffic condition’ dummies are in fact trying to capture the effect 
of the implicit time aggregation on costs. Similarly, variables like traffic mix or insurance 
value try to grasp commodity aggregation. The first effort to somehow counterbalance 
spatial aggregation was the use of mean haul length as part of output description within a 
‘hedonic’ treatment (Spady and Friedlaender, 1978). Up to date, the literature on transport 
cost functions includes an enormous variety of output descrip tions. Unfortunately, this has 
not led yet to a universally accepted form of output treatment, mainly due to an implicit 
reluctance to try to understand transport technology, which is a fairly complex construct as 
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suggested at the beginning of the chapter. In order to clarify this, let us use the synthesis 
presented in Table 1.1, where we have included studies covering more than twenty years of 
evaluation. 4 

Table 1.1. Output description in transport cost functions 
MODE OUTPUT ATTRIBUTE 

Berechman (1983) bus REV 

Berechman (1987) 
Berechman and Giuliano (1984) 

bus 
VK, PAS 

Ying (1990) 
Ying et al. (1991) 

trucks 
RTK ALH, %LTL, AL, AS, IN 

Caves et al. (1984) 
Gillen et al. (1990) 
Windle (1991) 
Liu and Lynk (1999) 
Creel and Farell (2001) 

air 

RPK Scheduled services 
RTK Charter services ALH or ASL, LF, NC 

Daughety et al. (1985) 
Friedlaender and Bruce (1985) 
Kim (1987) (*) 
Spady and Friedlaender (1978) 
Wang and Friedlaender (1984) 

trucks 

TK 
ALH, AS, AL, %LTL, IN, CU 

Gagné (1990) trucks TK, N ALH, AS, CU, IN 

Caves et al. (1980, 1981, 1985) rail TK, PK ALH, ATL 
Filippini and Maggi (1992) 
Formby et. al. (1990) 
Keeler and Formby (1994) 
Tauchen et al. (1983) 
Koshal and Koshal (1989) 
Braeutigam et al. (1980) 
Keaton (1990) 

air 

bus 
trucks 
railways 

SK, VK, LCK LF, ALH, TD, NC 

Harmatuck (1981, 1985, 1991) trucks NTL, NLTL ALH, ASTL, ASLTL 

TK: ton-kilometers	 %LTL: percentage of less-than-truckload services 
PK: passenger-kilometers	  AL: average load 
PAS: passengers-trips	 AS: average shipment size 
RTK: revenue ton -kilometers	 IN: average cargo loss-and-damage insurance per dollar of cost 
RPK: revenue pax-kilometers	 LF: load factor 
REV: revenue per pax-kilometer	 CU: capacity utilization
VK: vehicle-kilometers	 TD: traffic density 
SK: seat-kilometers	 NC: network characteristics (for example points served, hub, 

etc.)
LCK: loaded car-kilometers  	 ALH: average length of haul (freight) 
NTL: number of truckload shipments 	 ATL: average trip length (passengers)
NLTL: number of less-than-truckload shipments 	 ASL: average stage length 
N:	 number of shipments ASTL: average shipment size (truckload)


ASLTL: average shipment size (less-than-truckload)


4 Note this is not intended as a review of techniques and results. The reader might want to look at two fairly 
complete studies: the period 1970-1980 is reviewed in detail in Jara-Díaz, 1982a; the period 1980-1996 is 
analyzed by Oum and Waters (1996). 
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From Table 1.1 we can verify that in addition to full aggregation of flows (for example 
passengers) or distance-weighted flows (for example ton-kilometers), the list of 
accompanying variables is varied: average load, average trip length, percentage of less-
than-truckload services, number of shipments, average shipment size, etcetera. It is 
important to note that these variables are sometimes called outputs, sometimes output 
characteristics, and sometimes quality dimensions. The most sophisticated variables 
appeared during the eighties, and they are related with network shape and size. And here 
we have a new source of confusion: network as in frastructure, (i.e. a fixed factor associated 
with the rights-of-way) and network as route structure, which is an endogenous, operating 
decision for many modes or transport systems (for example the cyclical system or the hub-
and-spoke in Figure 1.2; see Jara-Díaz and Basso, 2003). 

The use of aggregates poses a relevant problem. Transport produc tion is a multioutput 
process where the concepts of scale and scope are very useful for the analysis of industry 
structure, provided they are properly applied. As seen, the degree of economies of scale 
reflects the behavior of cost as all flows (e.g. in every O -D pair) expand proportionally. The 
degree of economies of scope examines the convenience of partitioning transport services 
into two mutually exclusive subsets; depending on the type of partition, we refer to 
economies of spatial scope, commodity scope, or time scope, whenever the cost of 
producing the whole set is less than the sum of costs for the partition. Diseconomies of 
scope reflect the opposite. Within this context, the use of aggregates to describe transport 
output distorts the analysis of scale and reduces (and sometimes destroys) the possibility of 
analyzing scope. However, aggregation does provide a way to handle large number of 
variables, making it possible to estimate cost functions in practice. The question is, then, if 
we can use aggregates and yet find a way around their distorting nature. We will address 
this in what follows. 

1.4.4. Marginal costs, elasticities and scale from aggregates 
Whenever a cost function is specified in terms of one or more output aggregates, the analyst 
obtains a series of coefficients that can be given a microeconomic interpretation by simple 
association with properties like (1.21) or (1.23). If the function is a translog-around-the­
mean, first order coefficients are ‘output’ elasticities, and the inverse of their sum could be 
offered as an estimate of the degree of scale economies. This is a procedur e that has been 
frequently applied in the literature with some qualifications. Just as an example, Caves et 
al. (1980) included passenger-kilometers, ton-kilometers, average length of haul (freight) 
and average trip length (passengers) in their translog specification, and then calculated an 

~ estimate of the degree of scale economies, S , in various ways, always using the cost 
elasticities (obtained directly from the coefficients). Cost elasticities for ton and passenger-
kilometers were always used, but the average-distance elasticities were left out in one of the 
measures of S ~ and included in other. The reason offered was that ton or passenger-
kilometers might increase due to either more or longer trips. In fact, a coefficient of 0.5 on 
the elasticity of the average trip distance variables was suggested as a compromise. The 
thing is that an increase in the mean distance traveled necessarily requires that flows in the 
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more distant O-D pairs have to increase more than flows in the relatively closer ones, and 
this violates the condition for scale analysis which relates to proportional expansions of 
output. Failure to look at S properly is in fact the main cause of ambiguity in this example; 
S is related with proportional expansions within the vector of flows Y, and not directly to 
changes in ton- or passenger-kilometers. 

The fact that aggregates make the calculation of S obscure was highlighted by Gagné 
(1990) and by Ying (1992) who pointed out that aggregates are usually interrelated; for 
example ton-kilometers is equal to total flow times average length of haul, a fact that had 
not been taken into account when making calculations of S . It was not realized, however, 
that this arises because aggregates are a function of flows. This is a key observation that 
allows a rigorous analysis of the problem. 

n ~Let Y ~ ∈ℜ  be the vector of aggregates with components y j  (for example ton-kilometers, 
total flow, less-than-truckload movements, etc). Most of these ~ y j are implicit constructs 
from the components of Y. This is evident in the case of ton-kilometers (equation (1.46)) or 
total flow (for example total passengers in a period) which is simply the summation over all 

~ yi. Thus, if y j is an implicit function of Y, then an estimated C ~(w,Y~) is an implicit 
representation Ĉ  of C(w, Y) because (Jara-Díaz and Cortés, 1996) 

~ ~ ~ ~ C(w,Y) ≡ C[w,Y(Y)] ≡ Ĉ(w,Y) (1.47) 

~ ~ Assume C(w,Y) is a good representation of the cost minimizing process, i.e. it is the best 
econometric effort to capture the cost structure. Therefore, although C(Y) cannot be 

~ ~ estimated directly, the microeconomic properties of C(Y) can be recovered from C(w,Y) . In 
particular, marginal costs with respect to the components yi of Y can be obtained as 
(evaluated at any point) 

n∂Ĉ 
=∑ 

∂C ~ ∂~ y j 
(1.48) ∂yi j =1 ∂~ y j ∂yi 

and the elasticity of cost with respect to yi as 

n 

η̂i =
∂Ĉ yi = 

yi ∑ ∂C ~ ∂y ~ 
j 

(1.49) 
∂yi C C j=1 ∂y ~ 

j ∂yi 

or 

n 

η̂i =∑
∂~ y j yi ∂C ~ ~ y j 

   (1.50) 
j=1 ∂yi 

~ y j ∂~ y j C 
that is, 



39 Transport production and cost structure 

n 

η̂i =∑ε jiη~ 
j    (1.51) 

j=1 

where ε ji  is the elasticity of aggregate output ~y j with respect to yi , and η~ j is the elasticity 
~of C with respect to ~ y j , i.e. 

~ 
ε ji = 

∂
∂ 

~ y
yi

j 

~ y
yi

j 

      and η~ 
j = 
∂
∂ 

y ~ 
C ~ 

j C
y j (1.52) 

Then the correct calculation of an estimate Ŝ  for S can be obtained as 

⎡ ⎤
−1 ⎡ ⎤

−1 

Ŝ = ⎢∑η̂i ⎥ = ⎢∑α jη~ 
j ⎥ (1.53) 

⎣ i ⎦ ⎣ j ⎦ 
where 

α j = ∑ε ji (1.54) 
i 

Note that each “aggregate elasticity” is weighted by a term, which is the (local) degree of 
homogeneity with respect to Y -calculated explicitly in equation (1.54)- that involves all 
elasticities of the corresponding aggregate output ~ y with respect to each disaggregate 
component yi. In summary, the correct estimate is not necessarily equal to the inverse of the 

~ sum of the aggregate's elasticities, η j , unless the α j 's are all equal to one. 

~ The procedure to use C correctly rests upon the relation between the ~ y j 's and the y i 's. 
~ But, according to equation (1.53), this applies to all arguments of C which are functions of 

Y, no matter how they are called (i.e. characteristics, attributes or outputs). Thus, equation 
(1.54) provides a test for the inclusion of any aggregate elasticity in the calculation of Ŝ . 
Just as an example, we show here the coefficients α j  which correspond to a ton-kilometers 
variable (TK) and an average length of haul variable (ALH). 

Example 1.5 
Consider the most popular output aggregate, ton-kilometers or pax-kilometers, TK. The 
explicit function and the weight of this component is very direct, that is, 

TK = ∑ yi d i (1.55) 
i 

∂TK yi yiαTK = ∑ 
i 
εTK i =∑ 

i ∂yi TK 
=∑ 

i 
d i TK 

=1 (1.56) 
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where di, the distance traveled in O-D pair i, has been assumed to remain constant. This 

fully contributes to the calculation of Ŝ , if TK is included in C ~(Y ~)~

TK

Let us move to the average length of haul, which is 

ηresult tells us that . 

∑
yi d i 
i 

∑

ALH = (1.57) 

yi 
i 

Its α j corresponds to 

⎤⎡ 
∑
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In this case the conclusion is that the elasticity of ALH should not be used in the calculation 
of Ŝ  whenever O-D distances remain constant after O-D flows grow by the same 
proportion. Note that distances might not remain constant if a proportional expansion of 
flows induces a variation in the route structure. 
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These are simple cases to illustrate how to proceed with a C ~(w,Y ~) function. A fairly 
complete analysis of nearly all forms of output description and their role in the calculation 
of Ŝ  is contained in Jara-Díaz and Cortés (1996). It is relevant to note that the α j 's are not 
necessarily equal to either zero or one. Sometimes the value of the weight depends upon the 
particular manner in which each firm operates. Just to illustrate the point, consider the case 
of an output index that is in fact related with transport supply, like vehicle -kilometers. The 
relation between this index and the flow vector is dependent on the manner in which 
freque ncy and average load is adapted following an increase in the flows. It can be shown 
that a pure frequency adjustment makes α j =1 and a pure load adjustment (which has a 

0α j =0; most cases would be in between, making α ≤ 1limit) makes .j 

1.4.5. Economies of density and economies of network size 
In transport, the use of aggregates -that normally obviates the spatial dimension of product-
has provoked the need to make a distinction between economies of scale and economies of 
density, which have been associated to a varying or constant network size respectively. The 
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usual approach is based upon an estimated cost function C ~(Y ~; N ) where Y ~  is a vector of 
aggregated product descriptions (including the so-called attributes) and N is a variable 
representing the network (factor prices are suppressed for simplicity). Returns to density 
(RTD) and returns to scale (RTS) (Caves, Christensen and Swanson, 1981) are defined as 

1RTD = (1.60) ∑η~ 
j 

j∈J 

RTS =
∑ η 

1 
j + η N 

(1.61) ~ 
j∈ J 

where η~ j  is the elasticity of C ~(Y ~; N ) with respect to aggregate product j and ηN  is the 
elasticity with respect to N. J is the subset of aggregates considered in the calculation (my 
notation), which varies from study to study. They fulfill RTS < RTD since the network 
elasticity is positive (as obtained in all empirical studies). RTD assumes a constant network 
when output increases (increase in density), while RTS assumes that the network grows as 
well (increase in output through a network expansion) but keeping density constant. 

Increasing returns to scale (RTS > 1) suggest that both product and network size should be 
increased because serving larger networks would diminish average cost. Constant returns to 
scale together with increasing returns to density (RTD> 1) would indicate that traffic 
should be increased keeping network constant. This apparently straightforward analysis has 
nevertheless an evident limitation: as RTS < RTD a firm that has both optimal density and 
optimal network size cannot be described. Moreover, if network size was optimal (RTS = 
1) the firm must exhibit increasing returns to density. 

Most empirical studies of the airline industry (where the number of points served, PS, is the 
usual network variable), have reported the presence of increasing returns to density and 
constant returns to scale, as concluded by Caves, Christensen and Tretheway (1984), Kirby 
(1986), Gillen, Oum and Tretheway (1985, 1990), Oum and Zhang (1991), Kumbhakar 
(1992), Keeler and Formby (1994) and Baltagi, Griffin and Rich (1995), among others. 
These results indicate that, on costs grounds, it would be advantageous for firms to increase 
traffic densities on their networks, but it would be inconvenient to expand their networks. 
Observed industry behavior, however, was different: after deregulation –in the U.S. first 
and then in the rest of the world– the air industry has concentrated and the networks served 
have expanded through mergers, alliances and acquisitions. Thus, firms have tried to 
increase their network size, which seems to contradict constant returns to scale as 
previously defined. Two reactions emerged; on one hand, some authors have argued that 
network growth can be understood as an attempt to exploit economies of traffic density 
(e.g. Oum and Tretheway, 1990; Brueckner and Spiller, 1994). On the other hand, a series 
of re-examinations of the methods to calculate scale economies for all transport industries 
have been proposed in the literature (Gagné, 1990; Ying 1992; Xu et al., 1994; Oum and 
Zhang, 1997). 
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The method for the correct calculation of eco nomies of scale from aggregates presented in 
section 1.4.4 shows that, in a rigorous sense, it yields an improved version of what today is 
understood as economies of density in the transport economics literature, because network 
variations (changes in N) are not allowed. Scale in terms of the true product Y –from now ~ on referred as disaggregated scale– is in fact density in terms of Y . It should be added, 
though, that economies of density (RTD) is defined in the literature under the condition of 
an invariant route structure. As pointed out earlier in Example 1.5, this needs not be the 
case when a proportional expansion of true product induces a variation in the optimal route 
structure. Therefore, it is better to keep referring to RTD when the correct calculation is 
done assuming that routes do not vary, and to multiproduct scale economies S when 
routes are allow to be readjusted. The main practical implication is that the calculation of 
the α weights in S should account for the variation of distances with flows. Of course, when 
the optimal adjustment to a proportional increase in flows does not require a change in 
route structure, both concepts coincide. Note also that the method presented in section 1.4.4 
makes it unnecessary to define the J set a priori as all aggregates should be taken into 
account and the α’s will take care of the importance of each one in the calculation of S. 

What about RTS, the relevant index when analyzing network growth? In this direction, by~looking at Y  in terms of Y, economies of scale with variable network size, RTS  (scale in 
~ terms of Y and N) have been shown to be inadequate to study the costs effects of network 

expansions (Basso and Jara-Díaz, 2006). In essence, this happens because RTS imposes that 
the traffic density –roughly the average load per link– remains constant after the network ~expansion, a condition tha t looks reasonable when considering Y but has been shown to 
impose quite unreasonable relations among flows when considering Y. Then, we know how 
to detect the presence of economies of density/disaggregate scale, but we do not have a 
method to analyze the cost convenience of network expansions (or reductions) from cost 
functions estimated in terms of aggregated products. A new method, that replaces RTS in 
this task, is needed. 

Increasing network size is unambiguously associated with an increase in the number of 
products and, therefore, networks variables are related with economies of scope. 
Consequently, the correct approach is the calculation of economies of spatial scope (Basso 
and Jara-Díaz, 2005). This is particularly evident when N is represented by the number of 
points served, PS, because increasing PS implies increasing the number of O-D flows. Note 
also that learning the extent of economies of scope is of interest not only to assess the cost 
convenience of network expansions, but also because economies of scope and scale are 
related with subadditivity, that is, with the existence of natural monopoly. 

1.4.6. Spatial scope from aggregates 
Here we present an approach to calculate spatial scope from transport cost functions with 
aggregate output, also resting on the relation ~ yh ≡ ~ yh (Y ) . But, just as behind RTS lays a 
constant density imposition in order to control for the value of aggregated flows after a 
network expans ion, this method to calculate scope will impose a related condition on the 
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disaggregated flows. It not only allows to study the cost convenience (or inconvenience) of 
network growth, but also provides a way of incorporating the density explanation in a strict 
economic way by considering cost changes produced by both density and network size 
increases. 

The degree of economies of scope (SC) in a spatial sense deals with costs when O-D pairs 
are added. Thus, within the context of variable networks, spatial scope is useful to analyze 
whether a certain firm serving PSA nodes with PS A ⋅ (PS A −1)  potential O-D flows should 
expand its network to serve PSC nodes, adding PS C ⋅ (PS C −1) − PS A ⋅ (PS A −1) new flows, 
or whether these new flows should be served by a new firm (which would deal with PSB 

nodes). To be precise through an example, see Figure 1.10, where a firm serves two O-D 
pairs (scenario A). SC can be used to analyze the convenience of adding four new O-D 
pairs through the addition of the new node 3 (i.e. adopting scenario C). This analysis can be 

Bdone using the three vectors Y A = {y12 , y21,0,0,0,0}, Y = {0,0,y
13

, y
31 

, y23 , y32} and 

YC ={y
12

,y
21

,y
13

, y
31

,y
23

,y
32  
}. A positive value for SC would indicate incentives to add node 3, 

producing vector YC. Note the incremental cost of serving a new node is given by 
C AC(Y ) − C(Y ) , which will be different from C(Y B )  unless SC is nil5. 

Let us analyze the general case of network expansion. Even if the true (disaggregated) 
product vectors YA , YB and YC were unknown, SC could still be calculated correctly if the 
corresponding aggregates Y ~(Y A ) , Y ~(Y B ) and Y ~(Y D ) were known, and an estimated cost 
function C ~(Y ~, PS)  was available (Jara-Díaz, Cortés and Ponce, 2001). Analytically, SC 
could be calculated through 

~ ~ ~ ~ 
SCA = SCB = 

C (Y ~(Y A ), PS A )+ C 
~
(Y 
~
~

(
(Y 

C

B ), PSB )− C(Y (YC ), PSC ) 
                      (1.62) 

C (Y Y ), PSC ) 
where PSC = PS B > PSA  (as in the example of Figure 1.10). Note the arguments of 

~ ~
C (Y , PS ) in equation (1.62) are not evaluated at zero output levels, unlike C(⋅) in equation 


(1.24), allowing the use of translog cost functions directly for the calculation of scope 6.

This happens because the aggregate representations (like total passengers or ton-kilometers)

do not vanish when some of the O-D flows go to zero as in YA or YB .


In the absence of more information, some reasonable condition has to be imposed regarding 
the magnitude of the flows added after the network expansion, in order to assign values to 
the aggregates in both Y ~B and Y ~ C , given that one knows (Y ~ A ; PS A ) . This type of 
requirement is not new; the condition behind the calculation of RTS is density does not 
change, but this is imposed on the aggregates, not on the true flow vector Y, inducing 

5 For the graphical representation of the n-nodes case see Jara-Diaz et al. (2001).

6 Of course one has to maintain the assumption that the estimated cost function does a good job in describing 


costs, in spite of being specified with aggregate descriptions of product. In other words, 
C Y  � ( )  ≡ C Y Y� ( �( )) ≡ ˆ( )� C Y  
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unreasonable analytical restrictions on the new O-D flows (i.e. those behind Y B). If a 
condition is needed in order to asses the impacts of a network expansion on costs, it should 
be imposed on the true product, the flow vector Y, even if one is working with aggregates 
for econometric purposes. This will allow consistent and more reasonable inferences later 
on. This method proposes to calculate economies of spatial scope using equation (1.62), 
under the condition that the average O-D flow of each cargo type remains constant 
after the network expansion. Formally, we define the average origin-destination flow for 
cargo type k as 

∑∑ yijk 

AODk =
i j                                                          (1.63) 
NOD 

where yijk  represents the flow of type k between origin i and destination j and NOD is the 
total number of O-D pairs served. Note the numerator in equation (1.63) is total tons T if k 
indicates freight and total passengers P if k refers to persons. This means the two indices 
ought to be calculated if in the study in question freight and passenger services are 
provided. Holding this index (indices) constant when calculating economies of spatial 
scope through equation (1.63) will help the analytical estimation of the values of the 

~ ~ ~ components of both Y B and Y C . The idea is simple: calculate AODk
A from (Y A ; PS A ) , 

~ ~ and then estimate Y C and Y B with the help of AODk
C ≡ AODk

A . 

Some of the new O-D flows –which will be in average as large as the originals- will 
circulate in the original portion of the network, increasing density, provided they are not all 
directly served. This will be cost convenient if increasing returns to density are present. 
But, by calculating SC, the costs of the network expansion itself will be properly captured 
this time, as is evident from equation (1.62). It is not surprising that increasing returns to 
density favors the presence of economies of spatial scope even though they represent totally 
different ways of increasing output. After all, economies of density represent economies of 
scale in terms of the true product Y and is well-know that the presence of economies of 
scope favors economies of scale and vice versa because of a general theoretical property 
(equation (1.28)). It must be clear, however, that even in the presence of decreasing or 
constant returns to density/disaggregated scale, economies of spatial scope may exist (Jara-
Díaz and Basso, 2003)7. Finally, note that a proportional expansion of all flows in all O-D 
pairs (which is what lies behind the strict notion of scale), makes AOD and density (as 
understood in the literature) grow by the same proportion. Therefore, the relation between 
density and disaggregated scale remains intact with the proposed approach. 

7 This could happen because of the same alleged reasons why there might be increasing RTS , as for example 
shared use of airport and ground personnel, handling baggage transfers and passengers check-in (see for 
example Oum, Park and Zhang, 2000). Recall, however, that SC>0 and RTD=1 cannot be paralleled by 
RTS>1 and RTD=1 since RTS<RTD analytically (Basso and Jara-Diaz, 2003). 
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Example 1.6 
Let us illustrate this general approach with a specific –although popular– example. Let us 

~ consider an aggregated cost function C (TK , ALH , PS ) where TK represents ton-kilometers 
and ALH represents average length of haul, as defined in equations (1.55) and (1.57). We 

~ A Awould like to examine whether a certain firm with cost given by C (TK , ALH , PS A ), has 
cost incentives to connect new nodes (e.g. airports) assuming that the new O-D flows have, 
in average, the same magnitudes as those already served (constant AOD), or if it is better to 
have another firm serving them. The expanded network will have a size given by PSC, the 
incremental cost of serving the new flows is given by 
~ C C C ~ A AC (TK , ALH , PS )− C (TK , ALH , PS A ), and the cost of producing these new flows 

~ B Bwith a different firm is C (TK , ALH , PS B ). Then, replacing terms in (1.62), what should 
be calculated is 

~ A A A ~ B B B ~ C C CC (TK , ALH , PS )+ C (TK , ALH , PS )− C(TK , ALH , PS )SC A = 
C ~(TK C , ALH C , PS C ) (1.64) 

In (1.64), we only know TKA , ALHA and PSA, which represents the point where economies 
of spatial scope will be calculated. The value of PSC will depend on the size of the network 
increase that we would like to study, e.g. one or five nodes. As RTS is a local marginal 
measure, it is reasonable to consider a marginal change in network size, i.e. one node, 
which implies PSC = PSA +1. From this case, every network expansion can be analyzed 
incrementally. We will assume that the firm in scenarios A and C potentially serve all 
corresponding O-D pairs, which means 

NOD A = PS A ⋅( PS A −1)                                                   (1.65) 
NODC = PSC ⋅ (PSC −1) = PSA ⋅ (PSA +1)                                     (1.66) 

The average O-D flow before the expansion is given by 

AODA = T A 

                                                           (1.67) 
NOD A 

where TA is total tons moved by the firm, i.e. T A = ∑ yij
A . As ALH is the ratio between TK 

ij 

and T, equation (1.67) can be re-written as 

AOD A = 
TK A 

(1.68) 
ALH A ⋅ NOD A 

After the network expansion, the average O-D flow is given by 
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TK C 

AODC = C C                                                      (1.69) 
ALH ⋅ NOD 

Using the constant AOD condition, which implies equality between (1.68) and (1.69), and 
replacing equations (1.65) and (1.66), we get 

TKC = TK A ⋅ ALHC 

⋅ PS A +1                                                (1.70) 
ALH A PSA −1 

Equation (1.70) shows that assigning a value to TKC requires an estimate of the (potentia l) 
variation of the average length of haul after the addition of one node to the network, ALH C . 

Next, we need estimates for TKB and ALHB. The former can be estimated as 

TK B = ∑ yij
B ⋅ dij = ∑ yC

ij ⋅ dij −∑ yij
A ⋅ dij = TK C −TK A                            (1.71) 

ij ij ij 

This implies distances traveled by the original flows (scenario A) do not vary after the new 
node is added. As the route structure is an endogenous firm decision, distances could 
change if the route structure is changed. In this case some empirical relation has to be 
found. Two things should be noted. First, assuming distances traveled by the original flows 
do not change ensures that, after the network expansion, the incorporation of the new flows 
will increase the density on the original portion of the network, as long as the new O-D 
pairs are not served exclusively by direct services. Second, ALH may still change because 
the new flows do not need to travel, in average, the same distances as the original flows. On 
the other hand, the equality T B = T C − T A stands without discussion. 

Once TKB has been calculated, the respective average length of haul can be obtained from 

ALH B = TK B 

= 
TK B 

⇒ ALH B = 
TK B 

                            (1.72) 
T B T C − T A TK C TK A 

−
ALH C ALH A 

Note that equation (1.72) for ALH B is valid in general, irrespective of the alternative chosen 
to estimate ALHC. In particular, if ALHC = ALHA , then ALHB = ALH A . Finally, plugging 
the estimated values in equation (1.64) using the available cost function yields an estimate 
for the degree of spatial scope economies. 

Evidently, a different set of aggregated products in the cost function would require other 
sequence and specific calculations, e.g. the use of passenger-kilometers mean that PKC and 
PKB should be calculated from PKA taking into account average length of trip instead of 
average length of haul. Although a case by case analysis is necessary for other aggregates 
and attributes, the key aspect is to study analytically the behavior of each one under the 
constant average O-D flow condition. 
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The degree of economies of spatial scope calculated with the method proposed above has a 
main objective: to investigate whether there are cost advantages for the firms to expand 
their network size. This, in conjunction with the degree of economies of 
density/disaggregated scale, will allow a correct analysis of the industry structure taking 
into account both density (level of production) and network size. 

1.5. Synthesis 
The theory of transport production involves two key aspects: transport output, which is a 
vector of flows with several dimensions, and operating rules, i.e. the forms of input 
combinations to produce a flow vector. The main elements here are frequency, load size, 
route structure, and so on, which are operating decisions. On the other hand, fleet size, 
vehicle capacity, loading-unloading capacity, rights-of-way design, and so on are decisions 
related with input acquisition. Both types of decisions are related, but the former is taken 
within the boundaries of the latter. In this chapter we have emphasized that it is the spatial 
dimension of product what distinguishes transport production from other industries. 

A given network and set of O-D flows can be served in different ways, and using simple 
networks we have given examples of such service structures as cyclical systems and hub-
and-spoke, showing how key variables like fleet size change from one case to another, and 
how these results depend both on flow levels and network topology. For known input 
prices, the firm can find the optimal combination of inputs and operating rules for any 
service and route structure –the actual sequence of links followed by vehicles on the 
network– which is a discrete decision. This yields conditional cost functions, such that the 
transport cost function corresponds to the minimum among these. 

The important concepts of economies of scale and scope, which represent the behavior of 
costs under different forms of product expansion, have been presented here paying attention 
to their rigorous definitions, that is, explicitly considering the multiproduct nature of 
transport production and accordingly using the (true) vector of products in the calculations. 
Scale relates with proportional expansions of flows and scope deals with orthogonal 
partitions of those flows, which originates particular types of scope analysis; spatial scope 
deals with the relevant issue of network size and shape. 

But estimating scale and scope requires information about costs. In most cases, however, 
transport operations are too complex to be represented by detailed and direct relations 
between vehicles, travel times, loading/unloading times, etc, their prices and product, so we 
use estimated cost functions to understand these dependencies in a more abstract fashion. 
Despite being “black-boxes”, estimated cost functio ns are a necessary tool to synthetically 
represent the behavior of costs with respect to input prices and the flow vector. 

Estimating cost functions in transport has a problem of its own, namely, the large number 
of products and, consequently, of parameters involved in any meaningful flexible 
econometric specification. It has become customary to represent output through aggregate 
variables in an effort to reduce these requirements, thus generating functions expressed in 
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terms of passenger-kilometers and such. Although this strategy has proven to be successful 
for estimation purposes, answers to important questions such as the value of marginal costs, 
degree of scale economies and degree of scope economies, have become obscure. The old 
problem of loosing information due to aggregation, take us in this matter to misleading 
results. Fortunately, the aggregation problem can be worked around if one considers the 
specific formulation used to compute each aggregation, i.e., making explicit that costs 
really depend on the disaggregate variables, or in other words, recognizing aggregates are 
only an estimation device that should not change the true essence of the problem. 

Under the general discussion of aggregation and how to deal with it, the chapter paid 
special attention to Returns to Density (RTD) and Returns to Scale (RTS), two indices 
aimed at analyzing cost behavior under (aggregated) output expansions. Both have 
important problems of interpretation due to the ambiguity generated through aggregation. 
By expressing aggregates as a function of true output, we have shown that RTD –defined 
over a given transport network- corresponds to a limited form of scale in a strict sense. On 
the other hand, the potential advantages of expanding the served network has been analyzed 
in the literature by means of the RTS index, a scale-like construct that imposes flows and 
network to grow by the same proportion holding density constant, which has been shown to 
hide implicit inadequate relations among flows. This prevents a meaningful industry 
structure analysis regarding optimal network size, which requires the calculation of spatial 
scope instead. We have presented a method to do it. 

We have shown here that network expansions can be properly analyzed by looking at the 
true product and its translation into a vector of aggregates. This viewpoint has originated 
both the method to calculate spatial scope and the approach to calculate returns to 
density/scale correctly. This implies that a fairly complete and meaningful analysis of a 
transport industry structure can be performed from aggregated transport cost functions 
provided they are correctly interpreted. 
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Appendix: Calculation of the multiproduct degree of Scale Economies from a cost 
function. 

If 
F(X ,Y ) = 0 (A.1) 

defines optimal production of Y from X, then 

C(w,Y ) = ∑ wi ⋅ xi (A.2) 
i 

On the other hand, S is defined by 

F (λX ,λS Y ) ≡ 0 (A.3) 
This means that 

SC(w,λ Y )= ∑ w ⋅ λx (A.4)i i 
i 

Combining (A.2) and (A.4) 
SC(w,λ Y )≡ λ ⋅ C(w,Y ) (A.5) 

Deriving both sides of (A.5) with respect to yi 

∂C ∂C 
∂(λ y )λ

S ≡ λ
∂y 

(A.6)S 
i i 

Deriving both sides of (A.5) with respect to λ 

∂C S 1∑ ∂(λS y ) Sλ
− yi ≡ C(w,Y ) (A.7) 

i i 

∑
Replacing (A.6) into (A.7)


i
S 
∂
∂ 

y
C

i 

yi ≡ C(w,Y ) (A.8)


C (w,Y )S = (A.9)∂C yi∑ 
i ∂yi 
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2. Travel Demand and Value of Time 

2.1. Introduction 
When estimating travel demand, we may approach each individual’s decision-process as if 
it consisted of three parts: whether to travel at all, where and when to travel, and by what 
means. In practice, these give rise to the three classical transport model types, namely, 
generation, distribution and mode choice. What is noteworthy is that regardless of the 
specific functions one can propose for such modeling, it is common to all that time is 
assumed to be a very valuable resource; one which consumption individuals would be 
happy to diminish. In other words, models have to reflect the fact that individuals would 
rather be doing something else, either at home, at work, or somewhere else, than rid ing a 
bus or driving a car. 

The value of time, then, is paramount in transport modeling and is certainly behind the 
demand function we use, either explicitly or implicitly. Accordingly, it should come as no 
surprise that a rather important amount of effort in transport economics is devoted to 
determine this willingness to pay to reduce travel time underlying people’s decision 
processes. Viability of transport projects and services depend on it. 

Even though generation and distribution models may help estimating the value of time, it 
has become customary to use modal choice models for that purpose. With these popular 
models, such estimation is quite straightforwardly computed as the ratio of two parameters, 
an operation that is now common practice. However, mode choice models are just a 
specific form of modeling demand -people facing discrete choices-, and consequently we 
can, an we will in this chapter, explore the subject of discrete choice within the general 
framework of consumer’ behavior and utility maximization, and by doing so gain more 
insight into the formulation and interpretation of the results obtained from those model 
types. 

But we will go further than that. If we widen our perspective, it should be easy to see that a 
person’s problem of making a transport decision is actually a sub problem of the general 
issue of assigning time to activities. Working, spending time with friends, shopping, 
reading a book and commuting are all things that have to be carried out within a very fixed 
and restrictive time frame of twenty-four hours, so what people really do is organize their 
time according to preferences and restrictions. By fully understanding this process, the 
more precise nature of the value of time should emerge, so that should be our true goal. 
Understanding travel demand may indeed be as understanding life itself. 

2.2. Discrete choices in travel demand 
2.2.1. General approach 
One of the most common choices regarding travel at an individual level is that of mode 
choice in the morning trip to work or study. In Figure 2.1, four hypothetical alternatives for 
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such a trip are represented, each one characterized by its cost Ci (price) and travel time 
from origin to destination,  ti. Mode 1 is the fastest and most expensive and mode 4 is the 
slowest but cheapest. If the individual is observed to choose alternative 2, and nothing else 
mattered, it means that he or she is not willing to pay an extra amount C1-C2 to save t2-t1 
time units. On the other hand, such choice implies a willingness to pay of C2-C3 to save t3-t2 
time units. For short, that person “values” travel time more than (C2-C3)/(t3-t2) but less than 
(C1-C2)/(t2-t1). 

It can be shown that the above can be interpreted as the result of an individual choice 
commanded by the maximization of a utility function that values positively available time 
τ-ti and available money I–Ci, where τ is the period considered and I is personal income. 
This way, by choosing among modes the individual is trading time for purchasing power. 
To see this, consider a linear version of such a function, α(τ-ti) + β(I–Ci) which 
maximization in Figure 2.1 is equivalent to the minimization of α  ti+βCi. The three lines UA 
, UB and UC represent three utility levels such that utility increases towards the origin where 
ti and Ci are minimized (or τ-ti and I–Ci are maximized). This would yield to alternative 2 if 
the slope α/β  is in the range between (C1-C2)/(t2-t1) and (C2-C3)/(t3-t2). This is the simplest 
view of a discrete travel choice process, but it helps understanding why discrete choice 
models are the most popular type of travel demand models. Note that α/β is measured in 
monetary units per unit time. 

ci 

ti

.
. 

.

1
UA 
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Figure 2.1. Simple mode choice as utility maximization 

Choices between fast but expensive modes and slow but cheap ones are of usual occurrence 
not only in daily travel but in most occasions. For example, going from an airport to the 
city usually has three or four types of alternatives: a scheduled bus part of the urban system 
(as in Oslo and Buenos Aires), an express bus service (as the OrlyBus in Paris), a door-to­
door share minibus (as in Santiago, Chile) and taxicabs, listed from the cheapest to the most 
expensive. 
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Expanding on this simple view, in discrete choice models the individual chooses among 
several alternatives, which differ in cost and characteristics. The most important element in 
this approach is the formulation of a (alternative -specific) utility function, usually 
represented through a linear combination of cost and characteristics of each alternative, also 
including socio-economic variables for each group of individuals. This constitutes the 
deterministic part of utility, to which a random component is added; it is the probabilistic 
properties of such random term that generate the various models used in practice. In this 
Chapter, and in this book indeed, we will deal only with the deterministic part such that 
whenever we use the word utility we will be referring to the variables, form and properties 
of the non-random utility associated to each discrete alternative. Note the deterministic part 
alone poses several questions regarding model specification: functional form of the 
observable part, type and form of variables that should be used, and criteria to decide which 
group of individuals will be regarded as "alike". 

The choice of the word “utility” to describe the equation that represents the level of 
satisfaction associated to each alternative is not casual. It is borrowed from the terminology 
in microeconomics, which provides the foundations to understand the role of income, time, 
characteristics, preferences, etc. exposed in the next section. Two caveats should be made. 
First, the primary sources of utility will not be examined (i.e. the psychological 
mechanisms that make consumption or actions pleasurable). Secondly, and in order to 
avoid confusion, it is important to stress that what is typically called utility to describe an 
alternative in discrete choice models, is really a conditional indirect utility function that 
already includes other constraints faced by the individual (see Definition 2.1 below). 

2.2.2. The discrete choice framework: quality and income 
The traditional microeconomic framework for consumer's behavior is stated in terms of a 
bundle of continuous- in-nature goods X that are chosen by the individual in an attempt to 
obtain the maximum level of satisfaction U(X), within all possible bundles allowed by 
his/her purchasing power. After the formalization of Lancaster (1966), who introduced the 
notion of goods characteristics as the primary source of utility, the level of satisfaction 
could be stated in terms of those characteristics (flavor, nutrient, warmth, beauty); 
accordingly, the problem of choice can be understood properly accounting for the fact that 
characteristics can be obtained through the purchase of market goods, which in turn require 
money. 

There is a relevant type of consumer's decision which can be modeled with a slight 
modification of the preceding framework: discrete choices. Such a problem arises when the 
decision to acquire one unit of a certain generic good (e.g. a car, fruit or a trip) is followed 
by the choice of a specific type (e.g. a car model, a fruit type, a transport mode). Then the 
consumer can be viewed as choosing both the amount of continuous goods and one of the 
discrete alternatives (mode), each one described by a vector Qj containing its qualitative 
characteristics qkj, which directly affect utility. Formally (adapting from McFadden, 1981), 
an individual is assumed to behave as follows: 
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MaxU(X,Q	 )  (2.1) 
X , j j 

∑ Pi X i +c j ≤ I	 (2.2) 
i 

j ∈ M 

where U is utility, Pi and Xi are the price and quantity of good i respectively, cj is the cost of 
acquiring discrete alternative j, I is money income and M is the set of discrete alternatives. 

As the choice of j is discrete and of X is continuous, the problem can be seen as having two 
steps: 
- First, find the optimal consumption X conditional on the discrete choice j, which is a 

traditional consumer behavior problem with income given by I − c j , generating 
conditional demands X i (P,I - c j ,Q j ) . 

- Second, optimize over j, which is a discrete choice, obtaining the overall maximum. 

Definition 2.1: Conditional indirect utility function 
The conditional indirect utility function Vj represents the maximum utility the individual 
would reach if alternative j was chosen. 

As the first step yields conditional demands X i (P,I - c j ,Q j ) , then 
V j ≡ U [X (P, I − c j ,Q j ), Q j ] . Then the chosen alternative can be interpreted as that which 
fulfills V j >V i ∀i ≠ j , such that the unconditional utility function V is the maximum Vj. 
Note that this means that not necessarily all arguments in Vj will actually influence the 
discrete choice. We will call the portion of Vj that decides the result of the discrete 
comparison a truncated conditional indirect utility, U j ; also note that the truncation 
might come from the cancellation of either additive or multiplicative terms, or from both 
(see Example 2.1 below).  

Definition 2.2: Marginal utility of income 
The marginal utility of income is the variation (increase) in utility after an increase in 
income: 

MUI = ∂V  (2.3) 
∂I 

From Definition 2.1 and Definition 2.2 two properties follow: 

� MUI = ∂V = -
∂V j


∂I ∂c j


� The so-called modal utility in discrete travel choice models is in fact a truncated 
conditional indirect utility function. 
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Definition 2.3: Subjective value  of a characteristic 
The subjective value of alternative j’s characteristic k is the rate of substitution between 
quality and money at constant utility, and represents the willingness to pay to increase that 
quality in one unit, i.e. 

SVkj =
∂V/∂ qkj  (2.4) 
∂V/∂I 

Note travel time is also a mode’s quality, so we can define a Subjective Value of Travel 
Time Savings (SVTTS) in this same way. Note, however, that increasing quality means 
reducing transport time. We will return to this later. 

Example 2.1 
To illustrate the concept of truncated conditional indirect utility, let us represent Vj with a 
linear function, i.e. 

V j = α +∑β i Pi +∑γ k qkj + λ(I - c j ) (2.5) 
i k 

Which one is the largest value for Vj among all j ∈ M , will depend only on the 
characteristics in Qj and the cost cj (all other terms cancel out when comparing Vi and Vj). 
Thus, the relevant part of Vj for discrete choice modeling is 

U j = -λ c j +∑γ k qkj (2.6) 
k 

Equation (2.6) justifies the usual linear in cost and time (and other variables) specification 
of modal utility, so frequent in discrete travel choice models. According to equation (2.3), 
MUI is minus the coefficient of modal cost, λ , and SVkj is simply the ratio of the 
corresponding quality coefficient over MUI, γ k / λ . The attractive simplicity of this 
specification, though, is linked with an important limitation, as income vanishes from 
utility and therefore plays no role in travel behavior modeling. This is the case in 
McFadden's (1981) AIRUM model structure (Additive Income Random Utility 
Maximizing), which yields choice probabilities that are independent of current income. 
When the cost of the discrete good analyzed is small relative to income, such simplification 
is acceptable, but otherwise we would be ignoring the key role of income level in people’s 
decision-making, which is actually the case for transport among many socioeconomic 
groups, particularly in developing nations. 

A very simple extension of the usual linear utility model allows a much better 
understanding of the role of income (Jara-Díaz and Videla, 1989). For simplicity only, 
assume that the utility function U in (2.1) is separable in X and Qj. This implies that the 
level of satisfaction attained from consuming a bundle X is independent of modal 
characteristics, i.e. 
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∂2U = 0,∀i,∀j,k. (2.7) 
∂ xi ∂ q jk 

Under the separability assumption, we can write the utility function as 

U{X,Q j }= U 1(X)+U 2 (Q j ) (2.8) 

The optimization problem on X has a solution that is conditional on cj alone, yielding a set 
of functions X * (P, I − c j ) ; once they are replaced in U1(X), a partial indirect utility 
function is obtained, i.e. 

Max[U (X)/ PXT ≤ I -c ] ≡ V (P,I - c ) (2.9) 
X , j 1 j 1 j 

Thus the conditional indirect utility function is in fact 

V(P, I - c j ,Q j )= V 1(P, I - c j )+U 2 (Q j ) (2.10) 

The role of income involves V1 only. Assuming that prices of continuous goods are 
constant, V1 can be approximated by a Taylor expansion around (P,I), i.e. 

n 

V 1 (P,I - c j ) = V 1 (P,I) +∑ 
1

V 1i (P, I)(- c j )i + Rn+1 (2.11) 
i=1 i! 

where V i
1  denotes the i-th derivative of V1 with respect to I − c j evaluated at I, and Rn+1 

represents terms of order n+1 and higher. If a Taylor expansion to the order n is assumed to 
be sufficiently accurate, then Rn+1 is close to zero; therefore, V1

n  is a function of P only. 

Then, Vj is given by 
n-1 

V j = V 1(P,I)+ ∑ 
1

V1
i (P,I)(- c j )i + 1

V 1
n(P)(- c j )n +U 2(Q j ) (2.12) 

i=1 i! n! 

This shows that mode choice does depend on the level of individual income for n ≥ 2 , 
since at least one term of the form V i1(P, I) will appear. This means that comparing V(ci ,Qi) 
against V(cj,Qj) may yield a different result for different levels of income. In other words, if 
the best specification for Vj involves terms in cj of order two or higher, then income 
influences mode choice. 

From equation (2.12), the MUI can be calculated at an individual level as 

* n-1 

λ = ∂
∂ 
V
I 

= V1(P,I)+
i=1 i!

1
V i+1(P,I)(- c )i (2.13) 1 ∑ 1 d 
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where d stands for the chosen mode. 

Example 2.2 
This framework has been applied to a middle- low income corridor in Santiago, Chile (Jara-
Díaz and Videla, 1989). Modal utility was specified using linear and squared terms in cost 
for the whole sample; as the squared term came out significant, the sample was divided into 
four homogeneous income groups and mode choice models were estimated using the 
second order specification. Within each sub-sample, the squared cost term came significant 
only for the three poorest groups, and its level diminished with income, which meant that 
the influence of income on choice decreased as purchasing power increased. Equation 
(2.13) was then applied to calculate the MUI, which was found to diminish with income, as 
expected. Other applications can be found in Ortúzar and González (2002). 

2.2.3. The goods/leisure framework 
The preceding approach to model discrete choices is fairly general, i.e. it applies to most 
type of purchasing decisions when the choice has to be made among a family of goods with 
qualitative internal differences. The transport-specific dimensions enter the picture when 
variables like the components of travel time (in-vehicle, waiting and access times) are 
included in Qj (with a minus sign, as quality is defined as a positive aspect). An obvious 
alternative for modeling an activity like travel, in which the assignment of time is the basic 
dimension, is to include time in the framework from the beginning. 

The analysis of travel choices within the framework of consumer behavior explicitly 
including time was a rather natural extension of the early theoretical attempts to account for 
time as a "requisite" for goods consumption (reviewed in the next section). By 1970, 
Gronau adapted Becker's (1965) theory to model mode choice including both time and 
money constraints, showing that the (discrete) decision depended on something that now 
we would call modal utility, which was a weighted sum of cost and travel time (see Gronau, 
1986). 

One of the most popular microeconomic approaches specifically aimed at understanding 
mode choice, is the goods/leisure trade-off framework (Train and McFadden, 1978), where 
modal travel time ti and cost ci are included as variables that influence utility through the 
impact on goods consumption G and leisure time L. This can be summarized as follows, for 
the case of a single trip in a given O-D pair: 

Max U(G,L) (2.14) 
subject to 

G+ ci = wW + E (2.15) 
L+ W +ti =τ (2.16) 

i ∈ M 
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where 
W is working time 
w is wage rate 
E is income from other sources 
τ is total available time. 

By virtue of equations (2.15) and (2.16), working more (increasing W) means consuming 
more (larger G) and reducing leisure time (lower L), and vice versa. Thus, the trade-off 
between goods and leisure -the only two possible sources of wellbeing in this formulation-
is synthesized by W. 

As in the previous problem, represented by equations (2.1) and (2.2), this one can be solved 
in two steps, using W as a "pivot", replacing G and L as functions of W from (2.15) and 
(2.16) in (2.14). Then the optimal value for W can be found conditional on mode choice 
(i.e. on ci and ti), which yields a conditional demand for working time W* as a function of 
w, E-ci and τ - ti , that is, 

MaxU(G,L) = MaxU E − i − wW ,τ( c − ti −W ) (2.17) 

The optimal condition is 

∂U ∂U ∂G ∂U ∂L ∂U ∂U = + = w − = 0 (2.18) 
∂W ∂G ∂W ∂L ∂W ∂G ∂L 

⇒W * (E − ci , w,τ − ti ) = W *(w,ci ,ti )    (2.19)

 If this is replaced back in the utility function, a conditional indirect utility Vi is obtained. 

Vi = U [W * (c , w,t )] (2.20) i i 

Giving U a Cobb-Douglas form, i.e. U = K G1-β Lβ , using (2.18) we get   

∂U = (1 −β)KG −β Lβ w −βKG1−β Lβ−1 = 0 (2.21) 
∂W 

After some algebraic work the optimal W is found 

W * = (1− β )(τ − ti ) + βw−1(ci − E)    (2.22) 

Then, replacing in U, a specific form for Vi is obtained: 

V i = K(1 - β )1-β β β [ w1-β (τ - ti )+ w-β (E - ci )] (2.23) 
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Again, mode choice is decided by comparison among the Vi. This approach yields choices 
commanded by the maximum value of 

U i = −K ′ w1-β ti − K ′ w-β ci (2.24) 

where K ′ = K(1 - β )1-β β β 

Note that U i  in equation (2.24) corresponds to what we have called a truncated conditional 
indirect utility function after the cancellation of additive terms only, involving E and τ. 
Moreover, when β → 0 , then K’=K and choice is determined by - ci - w ti ; and when 

β → 1 , then K’=K and choice follows the maximum of - ci - t i . This provides a
w 

justification for the specification of cost divided by income in modal utility –sometimes 
used in practice- where income is in fact a proxy for the wage rate. 

Following Definition 2.3, and remembering travel time is a quality with a minus sign 
(increasing quality means reducing or saving travel time), we can obtain the subjective 
value of travel time savings from equation (2.23) as 

∂V/∂t jSVTTS = = w (2.25) 
∂V/∂ c j 

It is important to note that result (2.25) has general validity for model (2.14)-(2.16). From 
(2.20) and using (2.18) one can get 

∂Vi = − ∂U (2.26) 
∂ti ∂L 

∂Vi = − ∂U (2.27) 
∂ci ∂G 

and therefore 
∂U 

SVTTS = ∂L = w (2.28) 
∂U 

∂G 

Then, the goods/leisure framework always yields a value of time equal to the (marginal) 
wage rate given its endogenous income version. 

The preceding model includes a rather strong assumption, i.e. that the individual can choose 
working time freely at a predefined wage  rate. Nothing essential changes if a fixed working 
schedule and a fixed income are introduced in this framework, such that a model with 
exogenous income I is obtained: 
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Max U(G,L) (2.29) 
subject to 

G +ci = I (2.30) 
L+W +ti = τ (2.31) 
i ∈M 

Under this setting, the trade-off between goods and leisure no longer depends on assigning 
more or less time to work, but on choosing faster and more expensive modes, or slower and 
cheaper ones, which is exactly the case depicted in Figure 2.1. In this model, the 
conditional indirect utility function is directly obtained replacing G and L from the 
constraints into U, so if we describe utility with a Cobb-Douglas of the form 
U = K G1-β Lβ , then the conditional indirect utility is 

Vi = K (I − ci )
1−β (τ −W − t i ) 

β (2.32) 

Now, if the Cobb-Douglas specification is approximated to a second order through a Taylor 
expansion around (I,T-W), replacement of G and L plus a convenient rearrangement of 

K Iterms and simplifying by [ (τ − w)]1-β , yields a truncated conditional indirect utility 
function given by (Jara-Díaz, 1998)  

U i = -(1− β ⎡⎣ + β 
2 I T ⎤⎦ 

ci − β ⎣1+ 1− 
2 
β (SI − ST )⎤⎦ i) 1  (S − S ) ⎡ t (2.33) 

g 

where: 
I g = is an expenditure rate

τ − W 

SI =
ci  is the share of income spent in transport 
I 

ST =
ti is the share of free time spent in transport

τ -W 
(note that SI ≠ST always). 

The expression for the modal utility represented by equation (2.33) involves a number of 
novelties. First of all, if either SI or ST were significantly different from zero, then second 
order terms in travel cost, travel time or both, should be included in the specification. This 
is consistent with a previous observation regarding the role of income in mode choice 
captured by second order terms in cost (equation (2.12)), because (as should be recalled 
from the standard theory of consumer behavior) a large share of income in the consumption 
of a particular good is indicative of the presence of income effect. Secondly, if both SI and 
ST were negligible, a linear specification would be appropriate, keeping some resemblance 
with the previous version of U i  in equation (2.24) which involves the modal cost over the 
wage rate; in this fixed income case, though, cost is divided by an expenditure rate which 
represents the amount of money to be spent in a τ -W period (Jara-Díaz and Farah, 1987). 
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We have named these specifications the wage rate and expenditure rate models 
respectively. Note that a fixed working schedule across the population in a sample of fixed 
income travelers would provide a clear case for the cost over income specification. 

The generalized expenditure rate model represented by equation (2.33) helps clarifying an 
important point regarding the stratification of travelers for model estimation. Imagine that a 
traditional mode choice model with linear utility is specified with two variables: cost over 
income, and time; assume as well that individuals in the sample have similar preferences 
(i.e. same K and β ) but trips involve a variety of travel distances (or travel time). This 
means that individuals in the sample would have different values for ST and, therefore, 
different coefficients for cost and time according to equation (2.33). Therefore, different 
linear models should be estimated for individuals traveling short and long distances. In 
other words, the sample should be stratified according to distance. 

The form that acquires SVTTS in the expenditure rate model, i.e. if income is regarded as 
exogenous, is quite interesting. For the Cobb-Douglas form of direct utility, SVTTS, 
calculated as (2.4) (with a minus sign) and using (2.32) is given by 

SVTTS= β I - ci (2.34) 
1- β τ - W - ti 

which is nearly proportional to the expenditure rate when ci and ti are negligible compared 
to income and leisure time respectively. In fact, to a first order approximation, SVTTS is 
equal to gβ/(1 - β )  from the first part of equation (2.33). Note that, for a given income 
level, a person that works less has a lower value of time. This explains empirical results like 
those obtained by Bates and Roberts (1986) regarding the low SVTTS found for retired 
individuals. Also, note that SVTTS increases with ti, which means that the (marginal) 
subjective valuation of travel time increases with trip length. This is an important point as 
some claim that one additional minute in a short trip should be perceived as more valuable 
than one additional minute in a long one; this fallacy ignores the fact that what is valuable 
to an individual is leisur e time, which is the complement of ti. Thus, what matters is the 
importance of one minute relative to leisure, which diminishes as leisure increases or 
increases with travel time. It is important to note that this is the result usually obtained in 
empirical studies. 

The goods/leisure approach can be used to explore the presumptive relation between 
income and “pure” or unrestricted preferences, represented by the parameter β in direct 
utility. If second order effects are assumed negligible and the first order terms are 
conveniently manipulated when moving from equation (2.32) to equation (2.33), one 
obtains (Jara-Díaz, 1991) 

U i = -A g-β ci - B g1-β t i (2.35) 

which similarity with equation (2.24) is evident. Mode choice models can be estimated to 
obtain A, B and β for populations with different incomes, in order to examine possible 
monotonicity between the income level and the estimated β values, i.e. to verify if income 
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and taste are correlated, as some researchers believe. Do low income individuals dislike taxis 
or luxury cars? 

Finally, the appeal of the goods/leisure approach goes beyond its simplicity. It can be 
adapted to cases like interurban travel or vacation trips to a resort area. Imagine an 
individual that is self-employed and whose vacations are planned as a long run decision, 
including destination, duration, and travel mode. In this case the existence of earnings per 
unit time, and the endogenous decision regarding time spent out of work play a key role in 
the specification of utility; the resulting model will be similar to a wage rate model. On the 
other hand, if the individual has a pre-specified vacation period, the expenditure rate 
approach (properly adapted) could be used, making the vacation budget play the role of 
fixed income. 

2.2.4. Extensions 
In applied work, any version of the alternative-specific utility functions introduced here, 
includes ci divided by some form of income (e.g. wage rate, income itself or expenditure 
rate), all components of travel time, other (modal) characteristics, socio -economic indexes, 
etc. Each variable has a parameter such that MUI and SVj are easily calculated using 
equations (2.3) and (2.4) respectively. As discussed, SVTTS under the original version of 
the goods/leisure trade-off framework is equal to the wage rate, but this is rarely the result 
in empirical work, in which the ratio of the travel time coefficient over the cost/wage 
coefficient is usually less than one (a result theoretically supported by Gronau, 1986). This 
is related with the formulation of the trade-off model, in which the absolute perception of 
time is captured by the multiplier of the corresponding constraint, which is the same for all 
activities included in L, for work and for travel. Thus, the price of time is equal for all 
activities and equal to the wage rate. 

The case would be different if restrictions regarding time were identified beyond equation 
(2.16). One possibility is that of minimum time requirements, like those identified by 
Truong and Hensher (1985). On the other hand, a ratio significantly greater than one has 
also been obtained (Jara-Díaz and Ortúzar, 1989). In the latter case, an expenditure rate 
approach would accept such values as a possibility, as shown in equation (2.34), where 
β/(1- β )  can take any positive va lue as ß moves within the interval 0 ≤ β ≤ 1. Note β 
represents the importance of time in direct utility, which means that individuals with a large 
absolute perception of time could reveal a high SVTTS if the fixed income, fixed working 
schedule, is the relevant description of the working condition. 

So far, it seemed as if the main issue for the correct specification of (modal) utility was the 
role of income, its endogeneity or exogeneity, depending on whether paid working hours 
are decided or not by the individual (see also Viton, 1985). But this narrow approach can 
be challenged by other approaches where available time and how it is spent plays a key 
role, as described in the next section. 
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2.3. Time allocation: a framework for the analysis of time value 
2.3.1. Theories 
From a microeconomic viewpoint, modeling urban travel demand means introducing time 
and space in consumer theory. For a given location pattern, an individual has to choose 
what goods to buy and what activities to perform, potentially including leisure, work and 
transport. The role of time began to be discussed with special emphasis from 1965 to 1972 
in the economic literature. The traditional framework to model consumer behavior sees 
individuals as trying to achieve the highest level of satisfaction given the constraints faced. 
As the level of satisfaction was assumed to be dependent on the amount of goods consumed 
only, the natural constraint was that of a limited purchasing power. The need to understand 
the labor market made it mandatory to introduce time as an important element in that 
framework, as the consumer was assumed to face a choice between work and non-work 
time. When time is considered in consumer theory, there are three important aspects to take 
into account: first, how time enters the utility function; second, the need to inc lude a time 
constraint; and third, the need to identify the relations between time allocation and goods 
consumption. We will see here that each of these aspects plays an important role in the 
generation of money measures of time assignments. 

In what follows, the most important time allocation theories are shown and discussed. The 
analytical models are synthesized in Table 2.1. 

Becker (1965) 
In Becker's model, income is essentially an endogenously determined variable, as the 
individual decides how many hours W to work at a pre-specified wage rate w. If the utility 
function depends on consumption, and consumption means expenses, it is a natural step to 
consider that additional time can be assigned to work in order to increase income, but also 
that this process has a limit because consumption requires time. Becker took this step with a 
twist: he postulated the idea of “final goods” Zi as those which directly induced satisfaction, 
and he focused on market goods and preparation time as necessary inputs for Zi. His main 
idea was that work time was in fact total time in a period minus preparation-consumption 
time. Thus, consuming had a time cost, i.e. the cost of not earning money. This was the 
origin of a value of time equal to the individual wage rate, irrespective of the specific 
assignment of time to different types of activity. Note that, from this viewpoint, Train and 
McFadden’s goods/leisure trade-off model is nothing but the discrete counterpart of 
Becker’s. 

In modeling terms, in Becker’s theory time entered utility as a necessary input to prepare 
final goods, a time constraint was introduced and then replaced in the income constraint, 
and the relation between market goods and time was not mentioned at all, although a unit of 
final good Zi was said to require goods and time in fixed proportions. Perhaps his emphasis 
on the conversion of time into money through the wage rate, kept somewhat hidden the 
implicit fixed conversion coefficients that turned goods into time and vice versa. 
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Johnson (1966) 
Soon after Becker’s paper appeared, Johnson established that the reason behind a value of 
time equal to the wage rate was the absence of work time in the utility function. He showed 
that correcting this omission led to a value of time equal to the wage rate plus the subjective 
value of work (ratio between the marginal utility of work and the marginal utility of 
income). Johnson showed that this was equal to the value of leisure, and claimed that, in 
turn, it was equal to the va lue of travel time.  This, in fact, made sense, as a reduction in 
travel time could be assigned to either leisure, work or both, but both values should be 
adjusted until equality through the variation of working hours. But, as shown below, 
Johnson was missing something as well. 

Oort (1969) 
Oort mentioned that travel time should be included in utility as well, and a third term 
appeared in the SVTTS notion, namely, the value of the direct perception of travel time in 
utility. This was also intuitively attractive, as an exogenous reduction in travel time would 
not only increase leisure or work, but also diminish travel time itself, which might make it 
even more attractive if travel was not pleasurable directly. 

DeSerpa (1971) 
In spite of his notation, which actually obscured his results, DeSerpa made a relevant 
contribution to the value of time discussion by introducing explicitly a set of technical 
constraints relating time and goods. He postulated a utility function dependent on all goods 
and all time periods Ti (which he soon called “activities”), including work and travel. The 
technical constraints established that consumption of a given good required a minimum 
assignment of time. The model can be written as 

Max U = U ( X
1 
, ..., X

n 
, T

1
, ..., T

n 
)      (2.36) 

subject to: 
n 

∑ Pi X i = I f (2.37) 
i=1 
n 

∑Ti = τ (2.38) 
i=1 

Ti ≥ ai X i i = 1,...,n (2.39) 

The interpretation of the Lagrange multipliers in non- linear programming establishes that 
they correspond to the variation of the objective function evaluated at the optimum due to a 
marginal relaxation of the corresponding restriction. If we denote by λ , μ  and Kj the 
Lagrange multipliers of constraints (2.37) to (2.39), then λ is the marginal utility of income 
(MUI), μ is the marginal utility of time as a resource and Kj  is the variation of diminishing 
time required to consume the corresponding good. First order conditions are 
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) = 

U 
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∂U
−

∂Tj 

+ μ − K j = 0 (2.40) 

Ki (ai X i − Ti 0 (2.41) 
From (2.40) we obtain 

∂
K j μ Tj= − (2.42) 
λ λ λ 

Within this framework, DeSerpa defined three different concepts of time value. The first is 
the value of time as a resource, which is the value of extending the time period, 
equivalent to the ratio between the marginal utility of total time and the marginal utility of 
income, μ/λ.  The second is the value of assigning time to a specific activity (value of time 
as a commo dity), given by the rate of substitution between that activity and money in U, 
(∂U/∂Tj)/λ. The third concept is the value of saving time in activity i, defined as the ratio 
Ki/λ, where Ki is the multiplier of the corresponding new constraint. Equation (2.42) shows 
that this ratio is equal to the algebraic difference between the value of time assigned to an 
alternative use (the resource value) and the value of time as a commodity. 

Equation (2.41) is the base of one of his most interesting comments; he defined “leisure” as 
the sum of all activities which are assigned more time than strictly necessary according to 
the new set of constraints (Ti>aiXi). For these activities, the corresponding multiplier and 
the value of saving time (Ki/λ) is zero, necessarily. Therefore, the value of time  assigned to 
each of these activities is equal to μ/λ, the resource value of time or, what is now evident, 
to the value of leisure time. The intuition behind this is appealing: if the value of assigning 
time to two activities that are assigned more time than the minimum required was different, 
the individual would reassign time from the less valuable to the more valuable one until 
equality holds. 

DeSerpa defines the existence of “pure time goods”, i.e. those goods that can be described 
as the time assigned to its “consumption”, as is the case of variable work time (Tw), which 
can be introduced in (2.37) in the form of a good, with price Pj=-w, where w is the wage 
rate. This yields 

n 

∑ Pi X i = I f + wTw (2.43) 
i =1 

As Tw appears in two constraints, (2.38) and (2.43), the first order condition related to Tw is 

∂U− + μ −λw = 0 (2.44) 
∂Tw 

or 
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∂U
μ ∂Tw= w + (2.45) 
λ λ 

Equation (2.45) shows the individual assigns time until the value of leisure equals the wage 
rate plus the value of time assigned to work (value of marginal utility of work). In other 
words, the value of leisure activities should be equal to the total value of work; otherwise, a 
reassignment would take place. Introducing (2.45) in (2.42) we get 

∂U ∂U 
K j ∂T ∂T w −= w+ j (2.46) 
λ λ λ 

Equation (2.46) -originally obtained by Oort (1969) in a footnote- says the value of a 
reduction in the minimum necessary time assigned to a constrained activity (e.g. travel), is 
equal to the total value of work (equal to the value of leisure) minus the money value of 
(travel) time in U (value of travel time as a commodity).  The main corollary is evident: the 
value of a reduction in the time assigned to a constrained activity would be equal to the 
wage rate only if both work and travel do not affect utility directly8. Thus, Johnson and 
Becker results on the value of time are particular cases of results (2.45) and (2.46). 

Evans (1972) 
Evans was the first to formulate a model for consumer behavior in which utility depended 
only on time assigned to activities. Consequently, in essence, Evans introduced U(T) as an 
apparently simple departure from the classical goods consumption model; however, 
activities are costly because they require goods to be actually performed, and therefore 
market goods are inputs needed to develop activities and, in turn, goods are the source of 
the activity cost. If qij is the input of goods i at a certain rate per unit time which are 

required for an activity j, then ∑q Tij j is the amount of good i that has to be bought in 
j 

order to be able to do the activities contained in T, and P∑ q T  is the expenditure oni  ij  j  
j 

good i. Thus, the budget constraint is in fact related to QT where Q is the matrix containing 

the qij elements. This can be represented as ∑w T  , where wj is Pq . As activities will j j  ∑ i ij  
j i 

be interdependent in general, this is taken into account by Evans introducing a matrix J that 
represents links between activity times through the technical constraints J ′T ≤ 0 . 

The relation X=QT is the first explicit introduction of a transformation function that turns 
activities into goods (but not vice versa), which was implicitly expressed both in Becker’s 
model (the bkj coefficients in Table 2.1) and in DeSerpa’s (the ai coefficients). For Evans, 

8 Of course, there is always the chance that the marginal utilities of work and travel cancel out. 
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the amount of time to be assigned to each activity is the basic variable, the source of direct 
utility, and the original source of both expenses and income.  

Regarding value of time, Evans made some particularly sharp remarks (he did not seem to 
be aware of DeSerpa’s), beginning with the rejection of the implicit assumption of a zero 
marginal utility of work in Becker’s model. Second, he criticized Johnson (1966) because 
of the confusion between value of time and value of leisure, extending the critique to Oort 
(1969), who had compared a reduction in travel time with a day extension. Thirdly, and due 
to the explicit introduction of a family of constraints dealing with the interrelation among 
activities, Evans ended up finding the possibility of a zero value for the marginal utility of 
income for individuals that earn money faster than their capability to spend it; thus, their 
time constraint is binding and the income constraint is not, which means an infinite value of 
time as a resource and an infinite value of saving time (but, of course, a finite value for the 
time allocated to an activity, as it is the money value of its marginal utility). 

Small (1982) 
Small includes departure time as a variable, which influences utility, travel time and travel 
cost. The introduction of an institutional constraint that links departure time, working hours 
and the wage rate, generates a resource value of time that depends on the work schedule.  

Gronau (1986) 
It is worth mentioning the review on home economics made by Gronau, who in fact 
extended Becker by including work time  in utility.  His value of time as a resource ends up 
being the marginal wage rate plus the value of work, minus the value of work inputs.  
Gronau’s approach does not extend to the value of saving time in an activity, but the 
introduction of input goods value is indeed a contribution. It should be stressed that 
Gronau focuses on work at home. 

Jara-Díaz (2003) 
The technical relations between goods consumed and time devoted to activities was 
examined in detail in this article, showing that DeSerpa`s minimum time requirements for a 
given consumption bundle was just half of the picture. In fact, Q in Evans’ model generates 
a vector of goods necessary to undertake a given vector of activity times, which can be seen 
rigorously as minimum consumption requirements. Jara-Díaz made a case for the need to 
establish not one but two families of relations between goods consumption and time use. 
This conceptual structure can be established through two general functions: A(X,T)≥0, the 
Activity Possibility Function, and G(X,T)≥0, the Consumption Possibility Function, where 
equality defined the Activity Possibility Frontier for a given X in the former, and the 
Consumption Possibility Frontier for a given T in the latter. This was proposed as a new 
taxonomy for the technical constraints between goods and time. Their simplest 
representationcould be 

Ti ≥ f i ( X ) (2.47) 
X i ≥ gi (T) (2.48)  
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The first inequality states that goods consumption imposes minimum levels on activity 
duration, and the second states that activities impose minimum levels on goods 
consumption. Jara-Díaz showed that the introduction of these complete set of relations in a 
time assignment – goods consumption consumer behavior model would generate an 
additional term in the willingness to pay to reduce a constrained activity (e.g. the SVTTS), 
representing the marginal variation of the (mandatory) consumption structure. 

There are other microeconomic models dealing with time allocation and the value of time, 
like De Donnea (1971), Pollack and Wachter (1975), Michael and Becker (1973), or Dalvi 
(1978). In Table 2.1 we summarize what we consider the main contributions to the analysis 
of the value of time. 

Table 2.1: Value of time from the main time allocation approaches 
Author Model 2.3.1.1 Value of time 
Becker 
(1965) 
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Glossary 

iT : Time assigned to activity i 

W  : Time assigned to work 

L : Time assigned to leisure 

ti  : Time assigned to travel (mode i) 

t  : Exogenous travel time 

ci :Travel cost (mode i) 

c :Travel cost 

iZ : Final good i 

if  : Production function of commodity i 

Pi : Price of good i 

X i : Consumption of good i 

WP : Price of goods for work activity (nursery, travel, etc) 

WX : Consumption of goods associated with work activity 

wi  : Money reward of activity i 

wL  : Money reward of Leisure 

w  : Wage rate (work) 

G : Aggregate consumption in money units 

fI : Individual’s fixed income 

τ : Total time available 
U : Utility function 
F  : Function that accounts for the limitations imposed by the 

institutional setting within witch employment opportunities 
are encountered. 

S :Schedule time (a specific time of the day) 
μ : Multiplier of time restriction 

λ : Multiplier of income restriction 
ν : Multiplier of schedule restriction 

iK : Multiplier of minimum time requirement of activity i 

ijb : Minimum time requirement of activity i per unit of 

activity j 

ψ i : Multiplier of minimum consumption requirement of 
good i. 

ffi(X): Minimum time for activity i as a function of goods. 

g(T): Minimum consumption of good i as a function of 
activities. 
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2.3.2. Discussion 
As seen, time evolved in consumption theory from a secondary role to a central one in a 
short period. However, today the basic approach to model consumer behavior still rests on 
the idea of goods consumption as the primary source of direct utility. If one looks at Table 
2.1 trying to make a synthesis, there are some key issues to highlight. The first one is the 
relation between goods and time, the type of relation that was explicitly introduced by 
DeSerpa. Such a relation is fairly general in both Becker’s and Evans ’ models through aij
and bkj in the first one and Q in the second. All of these relations can be synthesized in a 
general framework which encompasses the ones found in the literature. The point is that 
both minimum time and minimum consumption technical requirements need to be 
established. 

The second issue to discuss is the presence (or absence) of working time W  (Tw in 
DeSerpa’s notation) in the direct utility function. Both DeSerpa and Evans include working 
hours as a direct source of utility, unlike Becker, who explicitly leaves W out. This is an 
important matter, as including working hours in utility would make Becker’s synthesis of 
income and time constraints into one a mistake, because W could not “disappear” from the 
constraints since the utility level would be affected. If no technical restrictions linking 
consumption and time are taken into account, the value of time would be equal for all 
activities because time is adjusted accordingly. And this leads to the third issue, which is 
more ample than specific minimum time requirements: the interrelation among activities. 
This is explicit in Evans’ model only, although DeSerpa introduces an idea which, as 
explained here, is somewhat related to the notion of a transformation function representing 
the relation between goods and time. This interrelation is the source of the relative 
importance of different activities from an analytical viewpoint; as this differential 
perception of activities is in fact observed, omitting such a constraint would yield to limited 
models. Note, however, that accounting for technical constraints (2.47) and (2.48) could 
also induce different valuation among leisure activities as shown in Jara-Díaz (2003). 

The approach each researcher took to view time and its relation to utility is relevant. For 
Becker, T is time to prepare the final commodities (which is the reason why W is left out of 
utility); for DeSerpa, T is consumption time; for Train and McFadden, the aggregate source 
of utility is leisure; Truong and Hensher include travel time in direct utility in the so-called 
DeSerpa model. As particularly emphasized by Evans, Bates (1987) and Gronau, including 
or not an activity time in direct utility plays a key role in the interpretation of a model. We 
concur. In ana lytical terms, the behavior represented by the corresponding first order 
conditions for optimality, might include or not a marginal utility of time assigned to the 
particular activity in question. If we are to judge the conceptual validity of these models, 
the basic question is whether the individual level of satisfaction can change only because of 
transfers among leisure, work and travel, through the time constraint with an impact on 
purchasing power, or also due to pleasure or displeasure generated directly by spending 
time in something. 

In this regard, it is a striking fact that Evans’ model can be stated in terms of activity times 
only. This is certainly noteworthy considering the fundamental approach of consume r 
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behavior theory, where emphasis is on goods. Can this model be converted into a goods 
consumption model? It appears to be possible, but only in special cases, when Q is 
invertible, according to the conversion of times T into goods X, T=Q-1X, but in the general 
case Q is not necessarily square, leave alone invertible. Even if the conversion is allowed, 
the two other constraints still remain: the total time constraint, and a set of linked-activity 
type constraints. The resulting commodity consumption model is, therefore, a different one. 
Yet, being transformable or not should not deviate our attention from Evans’ model key 
characteristic, that is, being time-oriented; Evans argues in favor of time devoted to 
activities as the basic quantifiable source of utility. 

Keeping the previous point on hold, we should make another important remark, now 
regarding goods/leisure and Becker ’s models, by realizing that both provide the same value 
of time: the wage rate. It should really be no surprise, as in both cases three conditions 
concur: income is endogenously determined by freely choosing working hours, these do not 
affect direct utility, and no constraints besides income and time budgets are included. So 
even though they look different and their utilities have different foundations, the two 
models are in fact conceptually the same. 

The preceding comment makes Gronau's extension of Becker’s work more relevant than 
originally assumed. By association, a generalized version of the goods/leisure model can be 
constructed, simply replacing W in equation (2.16) by WF+WV representing fixed and 
variable (endogenously decided) working hours respectively, and putting W=WV and E=I 
(fixed income) in equation (2.15). Such a model still would be lacking work in direct 
utility, but both the wage rate and expenditure rate specifications could be obtained as 
particular cases, using WV as pivot; if WV results with a positive va lue, the wage rate 
approach holds, and a zero value (corner solution) implies an expenditure rate model. Note 
that the endogeneity of marginal working hours is something that can be observed. 

These associations between Gronau’s, Becker’s and goods/leisure models, plus the remark 
on the activities-oriented nature of Evans’ model, should not be overlooked, as a common 
ground seems to dominate the picture: DeSerpa establishes that activities, including work, 
enter utility directly; Evans does the same; and Gronau generalizes Becker’s model by 
plugging a “work activity” in utility, but more broadly, defining utility in terms of a set of 
Zi’s, which eventually he defined as activities. It seems all roads lead to Rome. 

2.4. A unified travel-activities model 
2.4.1. The approach 
An appropriate view of individual behavior from a microeconomic perspective should rest 
on activities as the primary source of utility. This implies looking at goods as means 
necessary to actually realize a set of activities. Doing that requires the introduction of a 
conversion or transformation function turning activity times into goods and vice versa. A 
relation between activity times themselves seems to be necessary as well. This means that 
introducing time in a microeconomic framework goes beyond the addition of a time 
constraint. Moreover, time should not be seen as the number of minutes necessary to either 
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prepare a final good or consume a market commodity; it is the direct source of utility by 
means of being assigned to activities. 

Note that this apparently innocent change of perspective moves things in a different 
direction. First, the primary result of a consumer model would include “activity demand 
functions” (in addition to market demands for goods) and second, if a U(X,T) type of utility 
was taken as a correct formulation, an explanation should be given for the presence of X (as 
opposed to that of T). One possible explanation would be the qualitative content of a certain 
type of activity, i.e. the marginal utility of activity i could depend on the type and amount 
of goods used, making ∂2 U/∂T i ∂ X j  different from zero. Note this would depend solely on 
the degree of detail used to describe an activity (e.g. dinning poorly versus dinning 
abundantly). 

It seems that there has been an emphasis on keeping as arguments in utility only those 
elements which are believed to increase satisfaction (e.g. leisure, goods). Somehow the idea 
of non- leisure activities as direct arguments has been postponed, despite the previous 
examples and discussions. To test whether a variable should enter U, the problem can be 
restated as follows: if everything else is kept constant, would a change in that variable 
induce a change in satisfaction? Note that this is unrelated to feasibility, particularly 
regarding time. Remember that the marginal utility of available time (μ) measures the 
variation in utility if total time available increased. Although this is not feasible, the 
multiplier has a value. Then we can ask whether a change in utility would occur if some 
activity time increased, everything else kept constant. 

We find no reason for an arbitrarily asymmetric treatment of activities. Thus, all 
particularly identifiable activities should enter U, as separate entities, including work and 
travel time. On the other hand, the pleasure induced by the consumption of a certain good is 
always realized through some activity. Even if some goods are bought for the pleasure of 
acquiring, satisfaction is realized in the act of buying; if it is a piece of art, satisfaction is 
experienced by the act of admiring or by enhancing an action (either at work or at ease). 
However, the marginal utility of an activity indeed varies depending on the type and 
amount of goods consumed, e.g. having a more comfortable bed increases the satisfaction 
of sleeping as a grossly described activity, or eating tastier food increases the pleasure of 
eating, at a rate that depends on the amount eaten. In the end, everything suggests the 
appropriate specification for the direct utility function is U(T,X). 

2.4.2. The formulation 
After looking at the microeconomics of mode choice models and time allocation literature, 
a unified model can be proposed. In a general model encompassing activities and goods, 
four types of relations have to be taken into account. First, the source of individual 
satisfaction (utility) is primarily the time devoted to each activity, including all activities 
(sleep, eat, talk, travel, work, and so on), and the amount and type of goods consumed on 
each activity. Second, a budget constraint that accounts for all expenses and all types of 
income. Third, a time constraint accounting for total activity times limited by social and 
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biological cycles (days, weeks, months). Fourth, technical constraints establishing 
minimum goods consumption and minimum time assignments. A general model should 
look like 

Max U(T,X) 
Subject to: 

Income constraint 
Time constraint 
Technological constraints 

The following practical model accounts for all these dimensions in a complete though 
analytically workable framework. Let Ti be the time assigned to activity i and Xj the amount 
of good j consumed during period τ, with minima given by Ti

Min and Xj
Min, respectively. 

Define Tw as the time assigned to work, Pj as the price of good j, w as the wage rate, and If 
as the exogenous fixed income. If utility is given a generalized Cobb-Douglas form where 
Ω  is a positive constant and ηj and θi are the exponents associated with good j and activity 
i respectively, then consumer behavior can be seen as if time assignment and goods 
consumption was commanded by 

Max U = ΩTw 
θw ∏Ti 

θi ∏ X η 
j

j 
(2.49) 

i j 

subject to 
I f + wTw −∑ Pj X j ≥ 0 (2.50) 

j 

τ − Tw − ∑Ti = 0 (2.51) 
i 

Ti −Ti
Min. ≥ 0 ∀i (2.52) 

MinX j − X j ≥ 0 ∀j (2.53) 

with Lagrange multipliers λ , µ, κ i and ϕ i respectively. As explained earlier, μ / λ is the 
value of time as a resource or value of leisure. Although the technical constraints take the 
simplest possible form, they will prove to be quite important. 

At equilibrium, let F be the set of freely chosen activities, R the set of activities assigned 
the minimum required Tr

Min, K the set of freely chosen goods, and J the set of goods of 
which the minimum required Xj

Min is consumed. Define 

⎛ Min. ⎞ Min.Gf =⎜⎜∑Pj X j − I f ⎟⎟ and T f = ∑Tr (2.54) 
⎝ j∈J ⎠ r∈R 

The first order conditions for goods are: 

η
X
kU

k 

− λPk = 0 ∀k ∈ K    (2.55) 
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η jU 
+ϕ − λP = 0 ∀j ∈ J (2.56) 

Min. j jX j 

For activities other than work, 

− = ∀0 i F∈θ iU μ    (2.57) 
Ti 

θ Ur +κ − μ = 0 ∀r ∈ R (2.58) 
T Min. r 

r 

and for work, 
θ Uw + λw − μ = 0 (2.59) 
Tw 

Note that unconstrained activities (those that are freely assigned more time than the 
minimum) must have equal positive marginal utilities (all equal to µ), otherwise they would 
not be undertaken. Besides, every unpleasant activity will be assigned the exogenous 
minimum, because the sign of its marginal utility is the same irrespective of duration under 
this specification. This does not mean that an activity that is assigned the minimum time is 
necessarily unpleasant, because the optimal time assignment could be less than the 
exogenous minimum. First order conditions for all activities in F plus constraints (2.51) and 
(2.52) yield 

μ A

U 

= (τ − T − Tf ) (2.60)

w 

where A is the summation of the exponents over all unrestricted activities. Note that the 
denominator is simply the uncommitted time. Similarly, if B is the summation of the 
exponents over all unrestricted goods, first order conditions over all goods in K plus 
constraints (2.50) and (2.53) yield 

λ B 
U 

= (wT −G f ) (2.61) 
w 

Replacing (2.60) and (2.61) in (2.59) an equation is obtained for Tw 

θ B Aw 

T 
+w (wT −G )− (τ −T −T ) = 0 (2.62) 

w w f w f 

Define 
(A +θ ) (B +θ )

α ≡ 
2(A + B + 

w 

θ ) β ≡ 
2(A + B + 

w 

θ ) (2.63) 
w w 

( A B  θw ) 
∈ ρk ( + + w )

∀k K  (2.64) γ i ≡
θi ∀i F  ≡ ηk ∈ 

+ +  A B  θ 



75 Travel demand and value of time 

Note definitions (2.63) and (2.64) do nothing but normalize utility in equation (2.49), which 
keeps the results invariant, as it is a monotonic transformatio n of the objective function. 
Although it is usual to do it such that the sum over all exponents equals unity in a Cobb-
Douglas utility function, these definitions have a clearer interpretation. 

Equation (2.62) has two roots, but a straightforward analysis of the case where θw = 0 
shows that only one solution is valid, which is given by equation (2.65). 

* fTw = β(τ − Tf )+α 
G 

+ 
⎛
⎜⎜β (τ − Tf )+α 

G f ⎞
⎟⎟ 

2 

− (2α + 2β −1)(τ − Tf )
G f (2.65) 

w ⎝ w ⎠ w 

Using this result and equations (2.56), (2.59), (2.54) and (2.61) yield 

* γ i *T =
(1 2β ) (τ −Tw − T ) ∀ ∈  i F (2.66) i f− 

X * = 
Pk (1 

ρ
− 

k 

2α) (wT * − G ) ∀k ∈ K (2.67) k w f 

Equation (2.65) yields working hours assigned by the individual as a function of 
uncommitted time, uncommitted expenses, and the wage rate: the individual labor supply, 
which can be compared with equation (2.22) that corresponds to the very simple goods-
leisure view. Equations (2.66) and (2.67) correspond to the demand for time assigned to 
activities and for goods, respectively. Note equation (2.67) can be trivially expressed as 
expenditure in the k-th good by simply moving price to the left hand side. 

2.4.3. Estimation and values of time 
Equation (2.65) involves a and ß as parameters to be estimated. Equation (2.66) adds one 
parameter (γi) to be estimated for each freely chosen activity i. In the same way, equation 
(2.67) adds one parameter (ρk) for each goods consumption equation included. Because of 
the restrictions on consumption and time, only up to n-1 time assignment or good 
consumption models can be estimated (with n the cardinal of the corresponding set of 
unrestricted activities or goods), otherwise linear dependency would be introduced as the 
equations add up to total time or income available respectively. In many cases one does not 
know exactly which activities (or goods) are restricted, which is something that can be 
explored empirically . Although a and ß can be estimated using equation (2.65) only, they 
would be more efficiently estimated together with γi and ρk using equations (2.66) and 
(2.67). Note that, depending on the available information, one can choose to estimate the 
whole system of equations or a subset, as for example labor supply and activities. 

One of the advantages of the model system as derived here is that data can be 
accommodated to different degrees of aggregation in the variables, because adding 
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activities (or goods) does not change the structure of the model. This can be observed 
directly from the definition of both A and B, which can be associated with the exponents of 
leisure and a generalized good respectively in a fully aggregated goods- leisure-work­
restricted activities model. But the most interesting property of the model is the empirical 
estimation of the value of leisure and the value of assigning time to work. From equations 
(2.60) and (2.61) and the definitions of α  and β one gets the following expressions of the 
value of leisure: 

* * μ A (wTw − G ) 1 2β (wTw − G )f − f 

* *λ
= 

B (τ −T − T ) = 
1 2− α (τ −T −T ) (2.68) 

w f w f 

On the other hand, recalling that the marginal utility of work time is given by Uθ w /Tw and 
using equation (2.61) to solve for U, the value of time assigned to work happens to be given 
by 

∂U T∂ w = θw (wTw 
* −Gf ) = 

2α +2β −1 (wTw 
* − Gf ) (2.69) 

B T * 1 2α *λ − Tw w 

The definitions of A,  B and θ  provide intuition for these results, as the value of leisurew 

increases with the relative importance of leisure activities in utility and with what we called 
expenditure rate within the goods/leisure framework, defined after equation (2.33). 
Similarly, the value of work increases with its relative importance in utility and with the 
wage rate, as clearly seen in the case where Gf is nil. 

2.4.4. Discrete travel choices 
Let us see now how a discrete choice model can be obtained from this general model of 
activity time assignment and goods consumption. Just as is done in the goods-leisure 
model, the indirect utility function can be obtained by replacing the equations for optimal 
work (2.65), leisure activities (2.66) and consumption (2.67) in the direct utility function 
(2.49). As the problem is invariant to monotonic transformations of utility, we can 
normalize by taking root (A+B+θw). Using definitions (2.63), all this yields 
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~where Ω collects several constant terms and is better expressed as a function of the original 
parameters, i.e. 
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This expression for V represents the maximum achievable utility with a wage rate w, fixed 
expenses Gf  and time assigned to constrained activities Tf. Let one of these activities be 
travel, such that the individual has to chose among several alternatives, each one 
characterized by travel time ti and cost ci. In this case, expression (2.70) can be transformed 
trivially into a conditional indirect utility function Vi by simple considering ti and ci 
explicitly as part ofTf and Gf  respectively, i.e. 

Gf = Gf '+ci Tf = Tf '+ti	 (2.72) 

− 
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This way the resulting function Vi(ti, ci, w, Gf
’, Tf

’ ) is, by definition, the maximum utility 
achievable conditional in the i-th alternative, and can be estimated using known 
econometric procedures. The independent variables are: total time assigned to all 
constrained activities but travel, expenses in mandatory (restricted) goods but travel, the 
wage rate, and the cost and travel time of each discrete alternative. Note that when 
estimating simplified versions of Vi, say linear for each of several population segments, the 
variables w, Gf

’ and Tf
’ could be used to stratify properly. 

From the discrete model one can calculate the value of saving travel time in the usual way 
as the ratio between ∂Vi ∂ti and ∂Vi ∂ci evaluated in the chosen alternative e. By 
constructio n this is an estimate of κ i λ in the original problem. Then using equation (2.42) 
the value of time assigned to travel (i.e. the value of its marginal utility) can be obtained as 
the difference with the value of leisure estimated with equation (2.68), i.e. 

∂V 
∂U ∂T μ κ (1− 2β ) (wTw 

* − G f ) 
e 
∂te 

λ 
i =

λ
−

λ 
i = 

(1− 2α)(τ − T * − T ) − ∂Ve 
(2.74) 

w f ∂ce 

The system composed of equations (2.65), (2.66), (2.67) and (2.73) constitute a powerful 
approach to model work, activities, consumption and travel and to estimate all relevant 
components of the value of time. What is important is to recognize that the conditional 
indirect utility function that commands travel choice should be consistent with the 
equations representing labor supply, time assignment and consumption. Note that this 
approach to obtain a discrete travel choice model can be applied to as many restricted 
activities as wanted. 

2.4.5. Comments 
The proposed framework to understand travel behavior rests on DeSerpa’s view as a gross 
construct, and also on the goods/leisure version of the discrete choice approach, but 
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significantly departures from both. Accordingly, it should be no surprise that a wage rate 
type specification for modal utility is recovered when a mode choice decision is derived 
under the appropriate assumptions, provided that variable working hours exist. At this 
point, it seems fairly clear that the role of labor supply is highly relevant: if it is fixed 
(exogenous income, at least in the short run), what matters is the time available to spend the 
money, while if it is variable (endogenous income), marginal adjustments make the wage 
rate a key variable. Some additional properties of the travel model are: 

a)	 travel and activities time allocation are decisions that belong to the same class; 
b) the subjective value of each constrained activity can be different; 
c)	 if income is relatively small, choices in time space can be very limited because of 

the relations between goods and activities, which can make the time constraint 
irrelevant; 

d) if income is relatively large, a number of activities are open for consideration 
because the necessary goods and services could be acquired. This could make the 
income constraint irrelevant. 

An approach like the one presented here puts the emphasis on time allocation and, 
therefore, on the perception of time. Decisions on what to do within a time frame become 
the relevant phenomenon to investigate. Part of this deals with the analysis of labor supply 
(how much to work), but understanding individual time allocation as a whole requires a 
very deep look at human activities. Maybe analyzing travel decisions does not require 
understanding the profound motives behind the search for wealth, fame or power, but the 
influenc e of dominant social values is indeed relevant when studying the structure of daily 
activities. This makes it important the identification of socially induced activities, 
telecommunication, or the relations between prices and uses of goods (e.g. in additio n to 
the "do I have money?" question, add the "do I have extra time to use it?", or "what will I 
stop doing in order to use this?"). Thus, acquiring cable TV, having a compact disc player 
in the car or playing soccer with the neighbors, become something relevant to understand 
and model. On the other hand, there is a need to understand activity choice when income is 
small enough to rule out the acquisition of leisure goods (e.g. toys, gadgets) or the 
admission to leisure activities (e.g. movies, sports). This might have an impact on new 
types of segmentation, between those that still have money when the day ends, and those 
that still have day when they run out of money. Needless to say, the aggregate trends on 
social behavior, the role of technology and social values, or social idiosyncrasy, seem 
essential to understand travel. 

2.5. Synthesis 
Consumer theory essentially provides a framework to describe economic behavior. Within 
this framework, the concept of utility function has been instrumental to model demand for 
goods and services. Although travel demand has benefited from this framework, it seemed 
necessary to make a revision of the specific way in which the general framework has been 
adapted to understand and model transport users' behavior. Travel choices have been 
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examined from the perspective of consumer theory, in an attempt to unveil the specific role 
of the different elements taking part in users' decisions. 

Discrete choices, the goods/leisure approach, and time-related theories of behavior have 
been exposed and examined as contributors of a general framework for travel decisions. 
From this analysis on the microeconomic foundatio ns of models related to trip decisions, 
some issues have been clearly established. First it is the question about the sources of direct 
utility; starting from goods consumed and going through the concept of basic commodities, 
consumption time appeared as a necessary item to realize utility. After this modest 
beginning, time devoted to activities emerged as the basic source of satisfaction, and it is 
goods that should be looked at as means to an end. Once this is accepted, every single 
minute in a period should be considered. This means, among other things, that both 
working and travel times are variables that should enter utility just as all other activities.  
Time cannot be converted into money (through more work) without altering utility, which 
makes the fusion of income and time constraints a mistake. 

Clearly, the traditional time and budget constraints are not enough to complete the picture 
for individual behavior, as market goods and activity times are interrelated (as are activities 
themselves as well). The addition of a set of technical constraints is necessary to strengthen 
the fact that activities require goods and goods require time. It is a fact that no exp licit 
reference to a transformation function has been made so far within the context of time 
allocation models, although recent developments have attempted to formalize this, leading 
to improved versions of time values (Jara-Díaz, 2003). 

Discrete choice theory in the form of mode choice models facilitates the calculation of the 
subjective value of travel time as the marginal rate of substitution between travel cost and 
travel time (for different type of individuals and circumstances). This subjective value can 
incorporate various elements, depending on the complete effect of a travel time red uction 
on the individual. Synthetically, there are four important effects: the potential increase in 
purchasing power, the substitution for pleasurable activities, the direct (dis) satisfaction of 
work, and the direct (dis) satisfaction of the trip itself. 

It is somewhat surprising to realize that little discussion has taken place regarding the 
variables included in direct utility. In fact, goods and services seemed a reasonable choice 
until the recognition of a time constraint. The introduction of such a constraint implies 
relations between goods and activities that cannot be overlooked. Moreover, once this has 
been firmly established, identifying the assignment of time to activities as the basic source 
of satisfaction seems evident. Interestingly, this gives urban travel a different status. 
Activities related to personal care (eating, sleeping and other biological needs) consumes in 
average a little more than eleven hours daily. A normal working schedule would leave 
something like four hours for discretionary activities on a working day. In such context, 
time assigned to mandatory urban travel can consume a relevant part of this potentially 
uncommitted time, so understanding travel demand means understanding activities. In the 
home production literature, the role of travel has been highlighted already. "The shadow 
price of time affects customer's choice of the optimum combination of time and market 
inputs and the decision whether to participate in market work or not. The imputation of this 
shadow price is therefore based on the observation of choices where time is traded for 
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goods, and the choice concerning labor force participation. Unfortunately, most often in 
situations where goods are traded for time, the amount of time saved is unrecorded […] 
One of the few exceptions is the field of transportation"  (Gronau, 1986, pp. 292).  

Although a framework does not necessarily translate immediately into an operational 
model, implementation should be kept in mind. For example, an activity-travel model as the 
one proposed here yields conditional demands for goods, work and activities as 
intermediate results when modeling mode choice. All variables are potentially known, and 
a system of equations could be estimated, as done by Jara-Díaz and Guevara (2003). 
Undoubtedly, there has been a historical emphasis on market demand for goods, a bias that 
has blurred the activity-oriented approaches. Maybe the present universal trend towards the 
"I have no time" syndrome will reverse the situation. 
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3. Valuation of users' benefits in transport systems 

3.1. Introduction 
Other things being constant, cheaper, faster, safer or more comfortable forms of transport 
make people feel better off. But improving transport systems requires funding which could 
have been assigned to other important needs. Benefits of better transport are behind the 
former phenomenon; costs are behind the latter. This means happiness on one hand, 
resources on the other. We need to express a change in well-being in monetary terms, so we 
can compare that value with costs in order to determine if a project is worth the effort, and 
if so, rank it within a set of alternatives, which is a common and very important part of 
regional and urban planning processes. It is indeed as challenging as it sounds, but the only 
other option is to just fund and build the projects and then hope for the best, which does not 
sound very appealing. 

We will begin by presenting the simplest and most common measures to estimate user 
benefits, the Marshallian consumer’s surplus and its approximation, the Rule-of-the-Half 
(RH), including the necessary conditions demand functions must fulfill to use them and 
providing examples with entropy and Logit models. As will be shown, though, these 
measures are justified on purely intuitive grounds, a fact that raises a question about their 
validity. To examine this issue, we will search for a rigorous measure to valuate user 
benefits, starting from the very foundations of the neo-classical economic theory. Such 
analysis will show that there is not one, but two correct measures available, the Equivalent 
Variation (EV) and the Compensating Variation (CV), which actually do not match the 
results provided by the Marshall’s measure or RH unless some conditions are satisfied. 

What is interesting is that under certain conditions, the MarshallianSurplus and RH provide 
a reasonable approximation to EV and CV values, and that is a key finding for practical 
applications. Furthermore, the relationship between these four measures will prove useful 
to examine an issue that is normally neglected in developed countries but of high interest in 
developing ones, namely the role of household or personal income in benefits valuation. 

Once we have reviewed how to estimate transport user benefits, it will be necessary to 
address another question that typically arises in this topic: Are we really considering all 
benefits? Users may benefit from a transport project, but if so, we could rightfully wonder 
if other activities are also benefiting as a collateral effect. 

The chapter ends with the rather important matter of weighting and aggregating user 
benefits for public decision-making: We may have estimates for user benefits, but we know 
each person perceives its individual benefit differently because they value their time 
differently, as was already discussed in the previous chapter. So, establishing a project’s 
benefits necessarily implies combining these different individually perceived benefits in a 
specific way, which in time implies a particular view about how important the benefit of 
each particular person is to the whole of society. If tax money is going to finance a project, 
then it is of great importance to examine what kind of weights we are assigning to each 
individual or group. 
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3.2. Traditional approaches 
3.2.1. The Marshallian consumer's surplus 
Marshall (1920) defined consumer's surplus as 'the excess of the price which [the 
consumer] would be willing to pay rather than go without the thing, over that which he 
actually does pay'. So the concept was born in terms of one good and its price. The 
classical textbook drawing represents the Marshallian consumer's surplus (MCS) in the 
price-good (Pi, Xi) space as the area below the demand curve, above the actual price level. 
This is said to reflect the total willingness to pay minus actual payment. After a price 
variation, the change in MCS is graphically represented as the area bounded by the demand 
curve between the two price levels. Thus, we can define a measure of users' benefits in the 
following way: 

Definition 3.1: Marshallian consumers’ surplus variation 
If Pi varies from Pi0 to Pi

1, then the variation of Marshallian consumers’ surplus is given by 
Pi1 

ΔMCS = − ∫ X idP (3.1) i 
Pi0 

The definition is set in such a way that ΔMCS is positive for a price drop. Note equation 
(3.1) requires all other prices (and personal income ) to remain constant, since demand is 
known to depend on all those variables. 

Hotelling (1938) provided a generalization of this consumer's surplus measure to variations 
in more than one price, proposing a line integral, 

P1 

ΔMCS = − ∫∑ X (P, I )dPi (3.2) i 
P 0 i 

Equation (3.2) in principle is an operational measure that can be computed for practical 
purposes. It is stated in terms of market demands which are observable, and can be 
estimated and integrated. However, for the line integral (3.2) to have a unique value, market 
demands have to fulfill the following conditions (Green's theorem): 

∂
∂ 

X
Pj
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∂
∂ 

X
Pi

j i ≠ j (3.3) 

When this condition is not present, the value of ΔMCS depends on the path of integration 
from P0 to P1, which is an unfortunate result. 

Despite this limitation, Marshall’s measure has become the favorite choice to assess users’ 
benefits. That said, it is important to mention that it is common for practitioners not to 
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estimate ΔMCS directly, but to calculate an approximation of it instead; the so-called Rule-
of-a-Half.  

3.2.2. The rule-of-a-half 
The rule-of-a-half (RH) is the most widely used form of measuring users' benefits in 
transport projects and it was supported, at first, on a purely intuitive argument (Neuberger 
1971): Let T0 and T1 denote the number of trips between a given pair of zones (by a certain 
mode or alternative) in some initial and final situations, respectively. Let C0 and C1 be the 
corresponding unitary costs of those trips. It will be arbitrarily assumed that Cl<C0 and, 
therefore, T1>TO. The intuitive reasoning begins by dividing users in two classes: those who 
remain traveling between the two zones, before and after the cost reduction, and the 'new' 
users. Obviously, there will be T0 'old' users and (T1 - TO) new ones. 

It follows directly that old users' benefit is T0(C0 - Cl). Furthermore, a new user cannot 
perceive a benefit greater than (C0 - C1) nor less than zero. Then, if a linearity assumption is 
made for the individual benefit of new users, i.e. benefits are assumed to lie halfway 

1 0 1 0between these two extremes, the total benefit for them will be (T −T )⋅ 2 (C −C 1 ). So, 
the (Marshallian) consumers' surplus variation can be written as 

0 C 0 1 + 1 0 ) 1 ( 0 −C 1 ) (3.4) ΔMCS ≈ T ( −C ) (  T −T ⋅ 2 C 

which simplifies to the well-known expression of the RH for one pair of origin-destination 
(O-D) zones and one mode: 

ΔMCS ≈ 1
2 (T 0 + T 1 )(  C 0 − C1 ) (3.5) 

A graphical interpretation of this argument is given in Figure 3.1. Consumers' surplus is 
represented here by the area C0-A-C-B-Cl (joining points A and B through the demand 
curve), while RH quantifies the area C0-A-C’-B-Cl (joining A and B by a straight line). 
Obviously, the less curved the demand, the better the approximation obtained with RH. In 
other words, this figure tells us RH is a good measure of Marshallian user's benefit 
when dealing with marginal changes of costs. 

In order to obtain a more general expression, let Tijk be the number of trips from zone i to 
zone j by mode k, and let Cijk be the unitary cost of a trip from zone i to zone j by mode k. If 
n is the total number of zones and M the total number of modes available for users, it 
should be clear RH may be written as: 

1 n n M 
0 1 0 1ΔMCS  ≈ ∑∑∑(Tijk +Tijk ) (  Cijk −Cijk ) (3.6) 

2 i=1 j=1 k =1 
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where superscripts 0 and 1 refer to the initial and final situations9. 

Cost 
A 

C0 

C’ 

B 
C1 

C 

demand 

T0 T1 Trips 

Figure 3.1. Graphical interpretation of the rule-of-a-half for one mode and one O-D 
pair. 

Changes may occur in several interzonal costs, and in one or more modes, while demand 
for trips in a given mode between a given pair of zones depends, in general, on the 
perceived costs of the other modes that serve not only that O-D pair, but other pairs as well. 
For each mode and O-D pair, users can again be divided into two classes: those who remain 
traveling between the same origin and destination in the same mode, and those who modify 
their behavior responding to the change. For trips between origin i and destination j, users 

0 1 0 0of the first type will perceive benefits given by Tijk (Cijk − Cijk ) since Tijk  is the number of 
users that do not change their choice. The second part of the benefits is associated to those 
who do change. In order to simplify the explanation, consider the particular case of those 
users who travel from i to j by mode a before the change, and from i to h by mode b 

0afterwards. These users will appear twice in the expression (3.7), as part of both Tija  and 
1 C 0 1 ) (  0 1Tihb . Assuming for simplicity ( ihb −Cihb > C ija − Cija ), benefits for this type of users 

0 1 0 1cannot be larger than (Cihb − Cihb ), nor less than (Cija −C ija ). If benefits are assumed to lie 
halfway between these two extremes, it is easy to obtain expression (3.6) by simple 
addition of the two types of benefits for all O-D pairs and modes. This result can also be 
expressed in terms of flows and costs on links of the corresponding network, i.e. 

1 ⎡ M 
0 0 1 0 

M 
0 1 1 l ⎤

ΔMCS = 
2 ⎢∑∑(N kmC km + N C km )−∑∑(N lmClm + N lm Clm )⎥  (3.7) km
⎣k∈K m =1 l∈L m=1 ⎦ 

9 Strictly, the number of modes available for users of a certain socio economic group varies from one pair of 
origin destination zones to another. The expression must be: 

1 n n Mij 
0 1 0 1ΔMCS = ∑∑∑(Tijk + Tijk )(  Cijk − Cijk )2 i=1 j=1 k=1 

where Mij denotes the number of modes available for the group under analysis, for a trip from zone i to zone j. 
Nothing essential is lost with the simpler treatment given in the text. 
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where 

Nim= number of trips on link i by mode m,

Cim = cost of traveling along link i by mode m, 

K= set of links in the base network, 

L = set of links in the modified network, 

M= number of modes available for the group under analysis. 


A graphical analysis of expression (3.7) is somewhat complicated. Jara-Díaz and Friesz

(1982) developed a method to obtain modal demands from aggregated trip demand between 

a certain O-D pair, imposing the condition that perceived costs of all modes such that Tijm > 

0, are equal. They showed unambiguously how modal demand curves must shift, given a 

set of cost changes. The simple case of two substitutable modes between a certain O-D pair 

is illustrated in Figure 3.2, where a reduction in mode 1’s perceived costs takes place 

(aggregate and modal supply curves are omitted in this figure). 
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D = aggregate demand; Di
t = modal demand for mode i at time t.


Figure 3.2. Graphical interpretation of the rule-of-a-half for two competing modes. 


All of these developments and reasoning contribute to give a sounder theoretical base to 
RH, but it still retains most of the intuitive base of its beginnings. Williams (1976) brought 
strictness to the derivation. Starting from Hotelling's integral (3.2), Williams derived 
strictly the expression of the rule-of-a-half, clearly stating the assumptions behind it. In the 
one mode - several zones case, ΔMCS integrability conditions (3.3) may be expressed as: 

∂Tij ∂Tkl=    (3.8)  
∂Ckl ∂Cij 
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Provided such conditions hold, one can arbitrarily choose an integration path, because the 
value of Hotelling's integral would be path independent. A linear path from C0 to C1 can be 
parametrically defined as 

L( )σ = (lii (σ),..., lij (σ ),...,lnn (σ )) (3.9) 

lij (σ ) = Cij 
0 +σ (C1 

ij − Cij 
0 ) (3.10) 

0 0 0 0L(σ = 0)= (C11 ,...,Cij ,...Cnn )= C (3.11) 

1 1 1 1L(σ = 1)= (C11 ,...,Cij ,...Cnn )= C (3.12) 

Trip demand from zone i to zone j depends upon all interzonal costs, (C11,… ,Cnn) both 
before and after the cost changes: 

Tij =Tij (C11,..., Cij ,...C nn ) (3.13) 

Hotelling's integral can be written as:  
C1 n n 

ΔMCS  = −∫ 0 ∑∑Tij (C11,...,Cij ,...Cnn )dC  ij (3.14) 
C i=1 j=1 

or, changing variables, 

n n 

∫σ
σ = 

0

1 

∑∑ ij (lii σ lij σ),..., lnn ( ) ) dlij ( )σ 
ΔMCS = −  

= 
T ( ),..., ( σ dσ (3.15) 

i =1 j=1 dσ 

This becomes a summation of simple integrals. Calling Tij (L(σ ))= Tij (σ ) and considering 

that 
dl

d
ij 

σ 

(σ ) 
= Cij 

1 − Cij 
0 , it should be noted that equation (3.15) is an intermediate result that 

can be used to actually calculate any line integral representing ΔMCS  using a linear path 
for known demand functions, provided condition (3.8) hold. Expanding Tij (σ ) in a Taylor 
series around σ =0 , equation (3.15) becomes: 

n n 
0 1 σ =1 

⎡ dTij⎢ΔMCS = ∑∑(Cij −Cij )∫ Tij (σ = 0) +σ 
i=1 j=1 

σ=0 ⎢
⎣ 

dσ 

d 2T 
+ 2

1 σ 2
2 

ij 

dσσ=0 

⎤ 
+ ...⎥dσ (3.16) 

⎥ 
σ =0 ⎦ 

Neglecting terms of second and higher order, which account for curvature effects in Tij (σ ) , 

and approximating (dTij dσ )
σ =0 

by (Tij 
1 −Tij 

0 ) where Tij 
0 =Tij (σ = 0)  , the final result is 

obtained: 
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n n n n 
0 1 0 0 1 1 0ΔMCS =∑∑(C −C )T + 

1 ∑∑(C +C )(  T −T ) (3.17) 
i=1 j=1 

ij ij ij 2 i=1 j=1 
ij ij ij ij 

ΔMCS = 
2
1 

i= 

n 

1 j

n 

=1 
(T 0 +T 1 )(  C 0 − C 1 ) (3.18) ∑∑  ij ij ij ij 

Expression (3.18) is the rule-of-a-half for one mode of travel and several zones, deduced 
rigorously from Hotelling's integral. But it is important to recall that three assumptions 
were made: 

(a) integrability conditions hold; 
(b) series expansion of the function Tij (σ ) around σ = 0 , neglecting terms of second 
and higher order; and 

1 0(c) approximation (dTij dσ ) by (Tij −Tij )σ =0

These two latter conditions indicate explicitly what we have already mentioned, namely, 
RH is favored as a good approximation of Marshallian users' benefits in absence of second 
(or higher) order effects of fares on demand, and under small variations of fares or 
perceived users' costs. 

In summary, the rule-of-the-half can be seen as a simple and operational tool to assess 
Marshallian users' benefits. It can be applied even without knowledge about the underlying 
demand functions, since the only information required to perform the calculations is 
contained in the set of variables that describe market equilibrium with and without the 
project. But this property arises only as the nice face of the coin since first derivatives of 
market demands had to be assumed constant. Example 3.1 uses RH to approximate ΔMCS 
and also shows its limitations. 

The most important limitation of RH, however, is that it represents an approximation of the 
Marshallian surplus, a measure that although may seem right, is actually quite arbitrary 
when we take a second look at its definition: 'The excess of the price which [the consumer] 
would be willing to pay rather than go without the thing, over that which he actually does 
pay' might sound reasonable as a benefit measure, but certainly is purely a statement. How 
consistent is it with economic theory? 

If we are interested in a rigorous user benefit measure derived from the general economic 
theory of utility maximization, it would be far from evident that Marshall’s measure (and 
consequently the rule-of-the-half as well) should be the correct choice. To fully understand 
the limitations and biases hidden in ΔMCS  and RH, we must return to economics 
foundations. But first let us present some examples of ΔMCS  and RH. 

Example 3.1. Using RH to approximate ΔMCS 
Let us consider the demand function for car trips to work reported in Thomson (1974). The 
demand model is 
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T = 50118.72(C − 50)−1.66 (3.19) a a 

where Ca represents a cost (price) index that was created to take into account differences in 
distances and routes, in order to explain the total number of trips using car, Ta. 

From (3.1), the exact value of ΔMCS can be easily shown to be 

1 0ΔMCS = 75937 .46[(C − 50)−0.66 
− (C − 50)−0.66 ] (3.20) a a 

The demand model indicates that cost indices of 200, 100 and 80 generate approximately 
12, 76 and 177 car trips respectively. For a drop of Ca from, say, 200 to 100, equation 
(3.20) gives us 2962 units of benefits, while RH, through equation (3.6), yields 

RH = 1 (12.24 + 75.81)(200 −100 ) = 4402 [units of benefits] (3.21) 2 

which is clearly a gross overestimation of ΔMCS . However, when Ca drops from 100 to 80 
(which increases demand in a greater number) RH gives a figure of 2528; not bad if we 
consider the exact value of ΔMCS being 2303. Evidently, RH does not approximate 
ΔMCS correctly in the first case because demand function (3.19) is extremely convex at 
low ranges, but it does approximate well in the second case since the function is nearly a 
straight line in the medium range. In other words, the second case fulfils two important 
conditions for RH to be a good approximation of users' benefits: small curvature of demand 
and little variation of perceived cost. 

Example 3.2. ΔMCS for Logit: The Logsum formula 
Let Vi be mode i's utility, as in definition Definition 2.1.The usual treatment of discrete 
choice mode analysis assumes that Vi cannot be known with certainty, and should be 
expressed as the sum of a function Ui of observed variables as the cost Ci and other 
qualities {qji}, and a random error Ei. Therefore, the probability pb of choosing mode b is 

π b = P(U b + Eb >U i + Ei , ∀i ≠ b) (3.22) 

What is a probability at an individual level is a proportion of the population with similar 
characteristics and perceptions (i.e. with the same utility function), so if the size of that 
population is N, then demand for trips Ti equals Npi. Now let us take the popular Logit 
model to describe modal shares in this market –which is a particular choice for the 
probabilistic distribution of error terms-, which leads to 

exp( )
π i = 

M 

U i (3.23) 

∑ exp( )  U j 
j =1 
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Note that in this case, as in all modal split models, a given O-D pair is under analysis and 
welfare variations come from the change in individual modal choices following price 
and/or quality variations in one or more modes. Then, if one applies Williams' linear path 
procedure, checking integrability conditions should be made at a cross-mode level. Then it 
is quite easy to verify that for the typical Ui specification (i.e. linear in Ci and in each 
element of {qji}), 

∂
∂ 

C
Ti

j 

= −Nθπ iπ j = 
∂

∂ 

C
T 

i

j (3.24) 

where θ  is the coefficient of mode cost. Equation (3.24) means integrability conditions 
hold, so ΔMCS  has a unique value. Applying equation (3.15) and recalling that −θ  equals 
the marginal utility of income, λ, one gets (Williams, 1977; Sasaki, 1982) 

M 
C1 

ΔMCS = 
N ln ∑ expUi (3.25) 

C 0λ i=1 

The logarithm of the sum of utilities’ exponentials is known as the logsum formula, 
which appears as a fairly well- funded form of valuing users' benefits from Logit  modal 
choice models. We will return to this later in this chapter. 

Example 3.3. ΔMCS for Entropy models 
Transport demand models evolved enormously since the end of the sixties, particularly in 
urban studies. After a whole family of more or less ad hoc gravity type models, the idea of 
entropy acquired a respectable status as the most distinguished member of that family. The 
entropy approach appears to be a powerful method to overcome microscopic complexities 
when only aggregate data is available, although it is important to note that the entropy 
concept can be applied in a disaggregate framework as well (see Anas 1983). 

It is well known (see, for example, Wilson 1967) that the model is derived from 
maximizing 

= −∑F ijT ijTln (3.26) 
ij 

subject to ∑ 
ij 

ijijC T = C (3.27) 

ij > 0T (3.28)  

where Tij denote trips from zone i to j , Cij are the corresponding costs and C is the total 
cost. Depending on the available information, several constraints can be imposed to the 
maximization problem: 

∑Tij = Oi (3.29) 
j 
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∑Tij = D j (3.30) 
i 

If the general problem is solved, using all constraints (although non-negativity constraints 
prove to be unnecessary once constraints (3.29) and (3.30) are introduced), the solution in 
terms of Lagrangian multipliers (dual variables) takes the form: 

Tij = Oi D j exp− (α i + γ j +φCij ) (3.31) 

where φ , α i γ i{ } and { } are the Lagrangian multipliers associated with constraints (3.27), 
(3.29) and (3.30) respectively. It should be noted equation (3.31) looks like a demand 
function where trips depend on (the generalized) cost and φ  plays the role of a cost 
coefficient. It is easy to show that the dual of this problem may be written as the 
unconstrained minimization problem over the dual variables { } γ i and φ :α i , { }

Min Z =∑Oi D j exp− (α i + γ j + φC ij ) +∑α iOi +∑γ j D j + φC  (3.32) 
ij i j 

If it is assumed that φ does not depend on the interzonal trip costs {Cij}, as is usually done, 
first order conditions on the dual lead to: 

∂Z ∂C = −φTij + φ  (3.33) 
∂Cij ∂Cij 

where Tij is the primal solution expressed in terms of the dual variables, as in equation 
(3.31). From (3.33), Tij can be rewritten as 

∂C 1 ∂ZTij = − (3.34) 
∂Cij φ ∂Cij 

Deriving Tij with respect to an arbitrary Ckl : 

∂T 2 2 
ij =

∂ C 
−

1 ∂ Z (3.35) 
∂Ckl ∂C kl ∂Cij φ ∂C kl ∂Cij 

With the assumption made of ∂φ ∂Cij = 0, ∀i, j , integrability conditions, i.e. 
(∂T ∂C )= (∂T ∂Cij ), are satisfied, so that ΔMCS can be evaluated using Hotelling'sij kl kl 

line integral between two cost situations C0 and C1. Replacing Tij by equation (3.34) 

C1 ⎛ 1 ∂Z ∂C ⎞ ΔMCS = 
C 
∫

0 
∑

ij ⎝⎜
⎜ φ ∂Cij 

−
∂Cij ⎠⎟

⎟dC ij  (3.36) 
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C1 ⎛ 1 ∂Z ∂C ⎞ 
ΔMCS = ∫ 

0 

⎜⎜φ 
∑ 

ij ∂C 
dC ij −∑ 

ij ∂C 
dC ij ⎟⎟ (3.37) 

C ⎝ ij ij ⎠ 

Z1 C1 

ΔMCS = ∫ 
1 dZ − ∫ dC (3.38) 
φZ0 C0 

1 Z 1 0 − C 1 0 )ΔMCS = ( − Z ) (  − C (3.39) 
φ 

But optimum values of primal and dual problems must coincide, so (3.39) may also be 
expressed as (Williams, 1976) 

1 (F 1 − F 0 ) (  1 − C 0 ) (3.40) ΔMCS = − C
φ 

Expression (3.40) links the entropy concept with consumers' surplus, assuming that the dual 
variable φ  does not depend on costs {Cij}. Using equations (3.26) and (3.31) this result can 
be given an alternative expression linking ΔMCS with benefits in origins and destinations. 
Note the preceding result can be extended to a distribution-modal split framework, 
basically keeping the same ana lytical properties in relation to welfare measures. 

3.3. Back to the drawing board 
3.3.1. The neo-classical approach: Basics 
It is now time to depart from the intuitive grounds where Marshall’s measure and the rule-
of-a-half were born, and explore users’ benefits beginning at the foundations of the neo­
classical economic theory in order to determine rigorous measures to asses them. To do it, 
let us begin with a general formulation and some basic properties. 

Starting from the optimization problem that is assumed to represent consumers' behavior in 
the neoclassical theory (Problem A below), and using the (so-called) dual of this problem 
(Problem B below), three different ways of assigning money measures to variations of 
utility are derived given a general variation of the price vector.10 

The following notation will be used at an individual or household level: 

X = {Xi}, vector of goods and services consumed in a period. 
U= U(X), utility function. 

10 The mathematical properties and conditions that have to be fulfilled by the economic functions appearing in 
this section, are not listed unless strictly necessary for welfare analysis. For a full description of such 
properties, Varian (1978) and Malinvaud (1969) are good references. 
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P = {Pi}, vector of prices of goods and services. 
I = personal (or household) income. 

The following problem and its solution represent consumer behavior: 

Problem A 

( )MaxU X 
subject to: ∑ Pi X i ≤ I 

i 

X i ≥ 0 

Solution: X=X*(P,I), demand functions.

Optimum: U[X*(P, I)] = V(P, I), indirect utility function.


Problem A states that, given prices and income, a person searches for a bundle of goods and 

services which maximizes its utility as he or she perceives it. The amount the individual 

prefers depends on prices of all goods and income: a demand function. The maximum 

utility he or she can reach is the one which corresponds to the preferred bundle, thus 

indirectly dependant on prices and income. This indirect utility function will be shown 

extremely useful when defining welfare measures.


A second problem, which is said to be dual to A, leads to interesting results. 


Problem B 

Min ∑ Pi X i 
i 

subject to: U(X ) ≥U 
X i ≥ 0 

Solution: X = X c (P,U ) , compensated demand 
Optimum: PX c ( P,U ) = e(P,U ) , expenditure function. 

Here, utility level is given and the wanted bundle X is the one which requires the minimum 
expenditure. Optimal quantities now depend on prices and on the utility level previously set 
as minimally acceptable. Therefore, the minimal necessary expenditure is a function of 
prices and utility. 

The relation between Problems A and B is presented graphically in Figure 3.3. From this, it 
is clear that the inverse of U = V(P, I) in I is precisely I = e(P, U). 
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Figure 3.3. Utility maximization (a) and expenditure minimization (b) 

Property 3.1: Derivative of expenditure function 
Using a basic property of optimization problems, it can be shown that11 

e P U∂ ( , )  X i
c ( , )  (3.41) = P U  

∂Pi 

Property 3.2: Basic identities 
Identities (3.42) to (3.45) follow from Problems A and B. 

- The maximum utility an individ ual can reach with an income equal to the minimum 
necessary to reach a level U at given prices, is precisely U, i.e. 

V[P, e(P, U)] ≡ U  (3.42) 

- The minimum expenditure necessary to reach the maximum utility an individual can reach 
with an income equal to I, is precisely I, i.e. 

e[P,V (P, I )]≡ I (3.43) 

- The market demand with an income equal to the minimum necessary to reach a level U at 
given prices is equal to the compensated demand at the same level U, i.e. 

CX i [P, e(P,U )]≡ X i (P,U ) (3.44) 

- The compensated demand at the maximum utility an individual can reach with an income 
I, is equal to the market demand with the same income I, i.e. 

11 A non strict proof is given in Diamond and McFadden (1974), where other properties of the expenditure 
function are also explained. A strict derivation can be made applying the envelope theorem. 
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CX i [P,V (P, I )]≡ X i (P, I ) (3.45) 

On the other hand, differentiating both sides of identity (3.42) with respect to Pi yields 

∂V ∂V ∂e+ = 0 (3.46) 
∂Pi ∂I ∂Pi 

and using (3.41) and (3.45) we get, 

Property 3.3: Roy’s identity 
∂V ∂PiX i = − (3.47) 
∂V ∂I 

Now, differentiating both sides of identity (3.45) with respect to Pj yields 

∂X ∂X ∂e ∂X C 
i + i = i (3.48) 

∂Pj ∂I ∂Pj ∂Pj 

and using (3.41) and (3.45) again, the following equation emerges: 

Property 3.4: Slutsky Equation 
∂X i ∂X i

C ∂X i 

∂Pj 

=
∂Pj 

− X j (P, I ) 
∂I 

(3.49) 

This property provides the link between compensated demand s and market demands, 
showing that the effect of a price change on Marshallian demands has two components: the 
change in the compensated demand due to the price change (the substitution effect) and the 
change in the Marshallian demand due to an income change (the income effect). 

These are all the necessary tools we need to search for rigorous measures of users’ benefits. 

3.3.2. The compensating and equivalent variations 
If the set of prices changes from P0 to P1, the bundle of goods consumed changes from X0 

to  X1, and the level of utility varies from U0 to U1. Money spent is the same, but utility 
differs. How can the difference U1 – U0 be measured in monetary terms? Hicks (1956) gave 
two s trict answers to this question. 

Definition 3.2 : Equivalent variation 
The equivalent variation, EV, is defined as the change in income that provokes the same 
effect on utility as the price change. That is, 

U = V P1, I = V P0, I + EV (3.50) 1 ( ) ( ) 
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It is useful to show the relation between EV and demand. This can be done making use of 
the expenditure function. Taking the inverse in equation (3.50), 

1 0I ( , 1 ) and I + EV  = e P U( , ) (3.51) = e P U 1 

Therefore, 
0 1= , (EV  e P U( )− e P U  , )  (3.52) 1 1 

For U constant, the differential of e(P,U) is 

de(P,U ) = dPi (3.53) ∑ ∂
∂ 

P
e 

i i 

Finally, using equation (3.41) and noting (3.52) can be obtained integrating (3.53), we get 

P1 
cEV = − ∫∑ X (P,U1 )dPi  (3.54) i 

P0 i 

This shows EV can be interpreted graphically as the sum of areas to the left of compensated 
demands with utility held constant at the level of U1, as illustrated in Figure 3.4. 

Definition 3.3: Compensating variation 
The second Hicksian answer is the compensating variation, CV, which is the change in 
income that exactly offsets the effect of the price variation on utility, i.e. 

0 1 
0 V ( − (3.55) U = ( P , I ) = V P I CV  , ) 

such that CV is positive if prices diminish. 

Following the same procedure as before, 

0 1= e P U  and e P U  (3.56) I ( , 0 ) I − CV  = ( , 0 ) 

= e ( 0 , ) − ( 1 , 0 )CV  P U  0 e P U     (3.57) 

P1 
cCV = − ∫∑ X i (P,U 0 )dPi (3.58) 

P0 i 

As EV, graphically CV is also the sum of areas to the left of compensated demands, but at a 
different utility level (U0), as shown in Figure 3.4. This figure is helpful to see EV and CV 
have different values, a fact that may make us wonder which one should be preferred. The 
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literature offers a straightforward answer: either one is equally acceptable, as long as we 
choose a set of prices as reference (prices before or after the change) and then use our 
chosen measure consistently. 

Have we found what we were looking for? Both EV and CV are unambiguous income- like 
equivalents to utility changes and the problem seems to be solved. Unfortunately, it is not; 
at least, not exactly. Neither utility nor compensated demands can be observed. Thus, 
equations (3.50), (3.54), (3.55) or (3.58) seem only to be nice but useless constructions, 
unlikely to be of any help in practice. Whether this is true or not will be looked at next. 

3.3.3. Linking consumer’s surplus with equivalent and compensating variations 
It is interesting to note that EV, CV and ΔMCS are all expressed in the form of a line 
integral. But although ΔMCS integral depends on the integration path, that is not the case 
for EV and CV integrals, since at any level of utility, 

c∂X (P,U ) ∂(∂e ∂P ) ∂ 2 e ∂(∂e ∂Pj ) ∂X j
c (P,U )

i = i = = = (3.59) 
∂Pj ∂Pj ∂Pi ∂Pj ∂Pi ∂Pi 

which indicates the result is unique in each case. 

If only one price changes, EV, CV and ΔMCS  can be easily represented graphically as in 
Figure 3.4 (for a price reduction). From this, the Marshallian measure appears to be “in 
between” the Hicksian ones. This could be surprising if one recalls that, unlike the former, 
these latter are rigorous money equivalents of utility variation. 

Pi 
Xi

C(P,U0) Xi
C(P,U1) 

Pi
0 

F 

Pi
1 G 

H 

Xi(P,U) 

Xi 
Figure 3.4 : The relation between demand and money measures of utility variation after 

one price reduction. EV= F + G + H; CV= F; ΔMCS = F + G. 

Roy’s identity (see equation (3.47)) is very helpful to clarify the relation between 
Marshall’s measure and Hick’s measures: replacing it in equation (3.2) and assuming 
∂V ∂I is constant (constant marginal utility of income) and equal to λ , we get 
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P1 

V Pi 1 P1 

∂V 1 V
1 

∂ ∂ dP i = ∫ ∑ dP i = ∫ dV (3.60) ΔMCS = 
P 
∫ 

0 
∑ 

i ∂ ∂V I  λ P0 i ∂Pi  λV 0 

therefore, ΔMCS becomes 

ΔMCS = 
1 [V(P1, I) −V(P0 , I)] (3.61) 
λ 

This expression clearly shows that ΔMCS has a direct relation with utility variation. 
Undoubtedly, equation (3.61) provides ΔMCS  with a more solid defense than the pure 
intuition it was originally built from. Moreover, it is a relation that tolerates changes in all 
prices and is path independent, as EV and CV. However, equation (3.61) was generated 
assuming constancy of the marginal utility of income between P0 and P1. This is related 
with two assumptions that went nearly unnoticed when deriving ΔMCS  for both the 
entropy and Logit models: constancy of the generalized interzonal cost coefficient φ in 
equation (3.33) and linearity of modal utility in equation (3.24). In both cases, integrability 
conditions depended on that fact, something that is now connected with equation (3.61). 

In this sense, then, ΔMCS is less strict than EV and CV as a money measure of ordinal 
preferences12. Willig (1976) set bounds to the difference (percentage) between ΔMCS and 
each of the 'sane' measures EV and CV, showing that the relative error is given by 
ηΔMCS 2I , where η is the income elasticity of demand. This shows that ΔMCS may be 
a good approximation of a rigorous benefit measure, provided price variations are 
small and the consumption of the corresponding goods and services are relatively 
insensitive to income level. This should be no surprise, as equations (3.2), (3.54) and 
(3.58) are identical in form but relate to different demand concepts, and the Slutsky 
equation (3.49) shows that the absence of income effect makes the effect of prices on 
Hicksianand Marshallian demands equal. 

So EV and CV are linked with ΔMCS . And the latter can be seen, under certain conditions, 
as a proxy for the former. Yet, EV and CV do not have a simple, straight forward form one 
can use to estimate them, at least not as easily as it is with ΔMCS , so in many occasions it 
is reasonable to settle for ΔMCS , understanding its limitations. If one is interested in EV 
and CV, however, then some additional work will be necessary. A possibility is to use 
estimated market demands and then use Roy's identity as a differential equation to find an 
indirect utility function V, a procedure proposed by Hausman (1981). Once V (or part of it) 
has been found, the expenditure function can be obtained, from which CV and EV can be 
derived. Another very interesting possibility is exploiting the Slutskyequation; a procedure 
we will explore soon. First, let us take a look at CV and EV when it is not prices that 
change, but qualities of certain goods, like transport mode’s characteristics. 

12 For a good discussion on the relation among money measures of utility, ordinality and cardinality of 
preferences, see Morey (1984). 
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3.3.4. Users’ benefits from qualitative changes 
A variation in utility can occur not only because of a price change but also due to quality 
variations. This justifies the expansion of the concept behind CV (or EV) to include such 
changes. This is particularly useful within the framework of discrete choices where 
qualitative dimensions of alternatives are explicitly used in the indirect utility function, as 
seen in Chapter 2. 

Assuming the marginal utility of income λ  to be independent of prices and qualities of 
modes, and assuming transport expenses to be unimportant in the total consumer's budget 
(negligible income effect), as is typically made, Small and Rosen (1981) carefully showed 
that CV after a change of transport prices or qualities which induce individual welfare 
changes from U i 

0 to U i 
1 , is given by 

M 

CV  = 
N U 

∫
1 

∑π i (U1,...UM )dU  i (3.62) λ U 0 i=1 

In the case of the Logit formulation, this result gives us a generalized version of the logsum 
formula already presented, i.e. 

N M 
U1 

(3.63) CV = ln ∑ exp Ui U 0λ i=1 

That this is a consistent measure of welfare can also be seen from its property as the 
expected maximum utility at any given level of a utility tree. Then the logsum acts as the 
representative utility or composite cost when moving one level up in the (hierarchical) 
Logit formulation. That makes it very easy to extend the result to a framework of 
mode-destination choice (Williams, 1977; Sasaki, 1982). 

Now, starting from equation (3.62) we can deduce another interesting result obtained by 
Jara-Díaz(1990). Choosing a linear path of integration and letting 

U i =U i 
0 + θ (U i 

1 −U i 
0 ) (3.64) 

then U i ( ) =U i , U i ( ) =U i and dU i = Δ i , where ΔU i =U i −U i0 0 1 1 U dθ 1 0 . Changing 
variables we get: 

CV = 
N 
λ 

1

0 i

M 

=1 

π θ U θ 
N 
λ i

M 

=1 

1

0 

( ),... θ dθU ( ),... ( ) ΔU d θ = ΔU π U θ U ( ) ∫∑ i [ 1 M ] i ∑ i ∫ i [ 1 M ] (3.65) 

The line integral has been reduced to a sum of simple integrals. If we further assume 
linearity of π i between the 0 and 1 states, ∀i , we finally get the compact form 
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N M 1 M 

CV = ∑ΔU iπ i = ∑ΔU iTi (3.66) 
λ i =1 λ i=1 

with π i defined as 2
1 (πi 

0 + π i 
1 ) ; Ti = Nπ i is the expected number of mode i's users. 

Let us now turn our attention to the arguments of Ui, which we will define as 

Ci : user money cost of a trip by mode i, as before,

qhi : mode i’s quality dimension h (e.g., minus travel time).


Then a local variation in utility, ΔU i , can be expressed in terms of local variations of cost 
and quality ( ΔCi and Δqhi  respectively), i.e. 

ΔUi =
∂U i ΔCi +∑ ∂Ui Δqhi  (3.67) 
∂Ci h ∂qhi  

Replacing (3.67) in (3.66) we obtain 

CV =∑ ∂Ui 

λ 

/∂Ci ΔCi T +∑∑ ∂U i 

λ 

/ ∂qhi ΔqhiT (3.68) i i 
i i h 

Here we have to recall some basic definitions and microeconomic properties of discrete 
choice theory (Chapter 2). First of all, the marginal utility of income is equal to minus the 
partial derivative of the (conditional indirect) utility function with respect to cost 
(Definition 2.2), i.e. 

∂U i ∂Ci- =1    (3.69) 
λ 

On the other hand, the implicit trade-off between cost and quality dimension h at a constant 
level of utility is the subjective value of h, SVh (Definition 2.3) 

∂U i ∂qhiSVh =    (3.70) 
λ 

Replacing (3.69) and (3.70) in equation (3.68) and after elementary manipulations, we 
finally obtain the main result: 

CV = −∑ΔCiTi +∑ SVh ∑Ti Δqhi (3.71) 
i h i 

Equation (3.71) shows the welfare measure (3.62) is approximately equal to the 
rule-of-a-half measure after a price change, plus a series of terms induced by quality 
variations, each one weighted by its corresponding subjective value. So this may be seen as 
a generalized version of the rule-of-a-half, where benefits come not only from changes in 
prices but in modes’ characteristics as well. Note that this result coincides with the 
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approximation of ΔMCS given in equation (3.18) when there are no quality changes. This 
should be no surprise as λ  has been assumed constant, which was the cond ition for ΔMCS 
to be a right measure of welfare change (equation (3.61)). 

Do note that result (3.71) can be obtained if Ci in equation (3.18) is defined as the money 
cost plus the “costs” imposed by the mode’s qualities (i.e. their values multiplied by their 
associated subjective values). With Ci built that way, “cost” would then be interpreted as a 
more general description of the mode’s advantages/disadvantages; a generalized cost of 
mode i. And therefore, our result (3.71) is not only a more complete version of the rule-of­
a-half, but can be seen as a consequence of sophisticating the concept of “cost”. 

3.3.5. Income effect in the estimation of users’ benefits 
To finish our journey across user benefit measures, we should pay some attention now to an 
assumption we had to make a few times: considering marginal utility of income as a 
constant within the range of price (and/or quality) changes. Normally that is considered a 
reasonable assumption for developed countries, but it is certainly not so in developing ones, 
where expenses in transport are a rather important fraction of many socio -economic groups’ 
budget. 

What happens if we choose not to ignore this “income effect”? Following the expression 
for the compensating variation found in (3.57), the expenditure function e(P1,U0) can be 
approximated through a second order Taylor expansion from e(P0,U0), that is, 

ΔP + 1 ∂2e( P,U0 )1 0e( P ,U0) ≅ e( P ,U0 ) +∑ ∂e( 
∂ 

P
P 
,U 0) ΔPi ΔPj    (3.72) 2i ∑∑  ∂P∂Pi i P0 

i j i j P0 

where ΔPi = Pi 
1 − Pi 

0 . Using the derivative property (3.41), we get from equations (3.57) 
and (3.72), 

P i 2 ∑∑  
∂X C (P,U )

CV ≅ −∑ X i
C (P,U 0 ) ΔP − 1 j 0 ΔPi ΔPj (3.73) 

0 i j ∂Pii P0 

Solving the Slutsky equation (3.49) for ∂X j
C ∂Pi , replacing in (3.73) and noting that 

X iC (P 0 ,U 0 ) = X i (P 0 , I 0 )  (from (3.45) with U V (P, I ) ), we get 

ΔPΔPj − 2
1 ∑∑  

∂X j (P
0 , I) 

Xi (P0, I 0 )ΔPi ΔPj 
 (3.74) CV ≅−∑Xi (P0, I 0 )ΔPi − 2

1 ∑∑
∂X j (P, I 0 ) 

i∂P ∂Ii i j i P0
i j I0 

Equation (3.74) is an approximation of the compensating variation after a price change, 
expressed only in terms of market demands, including income effect. Unlike compensated 

= 
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demands, market demands can be estimated and used to calculate CV. In this derivation, 
Slutsky equation plays a key role, since it provides the link between the (unobserved) 
compensated demands and the (observed) market demands. 

Now we will show that the expression obtained for CV can be readily interpreted in terms 
of more traditional measures. To see this, the generalization of the Marshallianconsumers’ 
surplus variation shown in (3.2) will be considered, which would yield an exact measure of 
welfare if there were no income effect: It can be shown, by a simple expansion of demand 
about the initial price vector, that the first two terms of equation (3.74) represent an 
approximation of ΔMCS provided that second order effects of prices on demand are 
negligible and the Jacobian matrix of the vector of market demands, evaluated at P0, is 
symmetrical (for a proof see Jara-Díaz and Videla , 1990). Thus, the approximated measure 
of CV has two components: the traditional welfare measure that would be used if income 
effect were not taken into account, and an income-induced we1fare impact (IWI) given by 
the last terms in equation  (3.74), that is, 

CV ≈ ΔMCS − 2 ∑∑
∂X j (P 0 , I )

1 X i (P 0 , I 0 )ΔPi ΔPj = ΔMCS + IWI  (3.75) 
i j ∂I 

I 0

It should be noted that a similar result can be obtained for the equivalent variation EV, by 
simply expanding the expenditure function around (P1,U1). Note that IWI increases with the 
income elasticity of demand of those goods having a price change. 

For synthesis, an intuitive measure like ΔMCS can be given a microeconomic foundation 
under conditions that are not too demanding, namely constancy of the marginal utility of 
income within the range of price variation. And if these conditions are not met, then the 
right measures, CV and EV, can be calculated using market demands. 

3.4. Derived nature of transport demand and economic benefits 
When viewing transport markets within the framework described in the preceding sections, 
the role of transport demand as the basis for the valuation of users' benefits becomes 
obvious: it succinctly provides the information on users' behavior, captured from actual 
observations which can be manipulated and converted into some monetary measure of 
utility. However, price variations in transport markets induce changes in supply and/or 
demand in several other economic activities. This is particularly clear when transport is 
viewed as a factor of production, i.e. as a service necessary both to bring inputs to and to 
deliver outputs from a particular plant. In the urban case this is also true, from a similar 
viewpoint, for trips with very different purposes: work, study, shopping, entertainment, etc. 
Then a fundamental question arises: is it necessary to add potential benefits induced by 
improvements in the transport system on other economic activities? Answers to this 
question have been given from different viewpoints in the literature. It is worth reviewing a 
couple of them. 
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Mishan (1976, pp. 79) warns against double counting when calculating benefits due to, for 
instance, the construction of a new railroad. “...if this new railroad so reduces the time and 
increases the convenience of travel as to offer new job opportunities to a number of men, 
we ought not to include the measure of these new rents (a measure of the increase in their 
welfare from switching to the new jobs) as additional benefits. For such benefits are 
already subsumed in the (potential) consumers' surplus of the new railroad. Such a 
measure of consumers' surplus (approximated, say, by an estimate of the potential demand 
schedule for train journeys per annum) reveals the maximum sum each person will pay for 
a number of train journeys. And in determining this maximum sum, he will take into 
account the rents of the new jobs and, indeed, all other incidental utilities and disutilities 
accruing to him from the new railroad service”. 

Similarly, Mohring (1976) analyses the cost reduction achievable by substituting transport 
for manufacturing inputs, following a reduction in unit transport cost. He shows that a 
consumers' surplus type measure in the firm's transport demand schedule accounts for all 
benefits accruing to the firm. In fact, Mohring's is a particular case of the general problem 
regarding the relation between factor and final goods markets treated by Carlton (1979) 
and, in a very strict form, by Jacobsen (1979). 

In short, it appears that adding other benefits related to changes in the transport market 
would lead to double counting, so transport users’ benefits should be the only measure to 
compute. The reason is simple: demanding transport only reflects a demand for something 
else; transport is simply a mean to overcome distance, a mean by which consumer and 
supplier -of whatever good or service we are analyzing- can find each other on the same 
spot. Consequently, the magnitude and shape of transport demand is basically an extension 
of the demand for other product/service, meaning the benefits one can measure in the 
transport market are no other than the benefits of consuming such product/service. 
Transport demand is derived from other demands. 

This can be shown formally. Let us define two locations where an aggregate commodity is 
produced and consumed in a competitive environment, where Qi is the  amount of aggregate 
commodity produced at i and pi is the price of aggregate commodity at i. The following 
relations are assumed: 

Q = D ( p ) (demand at i) (3.76) i i i 

Q = S ( p ) (supply at i) (3.77) i i i 

Further, let us assume that the equilibrium price p1
0 at market 1 is greater than at the market 

2, p2
0. With prices lower than p1

0, consumers at 1 demand more than producers are willing 
to sell; the excess demand is given by 

1( ) = 1( )  ( )− S p1   (3.78) ED p1 D p1 1 

Similarly, with prices greater than p2
0 , producers at market 2 are willing to sell more than 

consumers want to buy; the excess supply is given by 
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( )  ( )  ( )222222 pDpSpES −=  (3.79) 

Figure 3.5 (top) shows Di, Si, ED1 and ES2. 
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Figure 3.5: Derivation of Transport Demand 

On the other hand, if a quantity T is produced in excess at market 2 and sold at market 1, 
then it has to hold that 

T ES  ( p ) = ( p ) (3.80) = 2 2 ED  1 1 

If this amount T is brought from market 2 to 1, buyers would be paying prices p1
*<p1

0 and 
p2

*>p2
0  at markets 1 and 2, respectively, such that 
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p ∗ = ED  −1 (T )    (3.81) 1 1 

and 
p2 

∗ = ES  −1 (T )    (3.82) 2 

which are also represented in Figure 3.5. 

Thus, the willingness to pay for T units produced at market 2 and consumed at market 1 is 
p1*, or p2* plus the transport fare. In other words, the willingness to pay, t, for the 
movement of T units from 2 to 1 is given by 

t = p ∗ − p ∗ = ED  −1 (T )− ES  −1 (T ) = t T  ( )   (3.83) 1 2 1 2 

which represents the transport demand, shown in Figure 3.5 (bottom). 

Let us assume that transport supply is such that equilibrium takes place at T=Te and  t=te. 
Transport consumers’ surplus TCS is then given by 

eTCS = ∫0 

T
t T dT ( )  − t T e e  (3.84) 

graphically represented in Figure 3.6 (top). Then, following equation (3.83), TCS is also 
given by 

TCS = 
e ED −1 T dT − 

e ES −1 T dT − p1 − p1 T∫
T 

1 ( )  ∫
T 

2 ( )  ( 1 2 ) e (3.85) 
0 0 

which can be rewritten as 

e ⎤ ⎡  eT −1 1 1 T −1TCS = ⎡ ED T dT −p T + p T − ES T dT ⎤ 
⎣∫0 1 ( )  1 e ⎥ ⎢  2 e ∫0 2 ( )  ⎦⎢ ⎦ ⎣  ⎥  

or 
0 1 
1 2TCS = ∫p

p 

1 ED1 ( )p1 dp1 + ∫p
p 

0 ES 2 ( )  p 2 dp 2 (3.86) 
1 2 

represented by areas A and B, respectively, in Figure 3.6 (bottom). Finally, recalling 
equations (3.78) and (3.79) 

0 0 1 1 

∫
p1 D ( )  + 

p 

1

1 S1 ( )  1 + ∫
p2 S p2 dp − 

p 

0

2 D2 ( )  dpTCS = − 1 1 p1 dp1 ∫ p1 dp 0 2 ( )  2 ∫ p2 2 (3.87) 
p1 p1 p2 p2 
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Figure 3.6: Surplus Equivalences 

Thus, noting that Si is the marginal cost curve of the industry if competition is assumed, 
TCS equals the algebraic sum of the variation in consumers’ surplus (positive) and industry 
profits (negative) in market 1, plus the increase in profit in market 2 and the reduction in 
consumers’ surplus in the same market. These net values are represented by the shaded 
quasi triangles regarding the local supply and demand curves in Figure 3.6 (bottom). 
Therefore, under competition, transport consumers’ surplus summarizes the welfare 
effects on consumers and producers of both markets. This property continues to hold for 
variations in the transport market equilibrium due to, for instance, improvements in the link 
between markets 1 and 2. Jara-Díaz (1986) extended the analysis to monopolistic 
environments in related markets, showing that in this case transport consumers' surplus fails 
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to reflect accurately the net sum of gains and losses of all producers and consumers, but can 
be considered an approximation whose precision depends on the degree of monopoly power 
at each location. 

Note that our conclusion covers the land market as well; increased value of real state 
generated by a new transport project does not need to be accounted for separately, as it is 
already measured in transport demand. 

3.5. Social benefits from transport projects 
It does matter who pays for transport projects. If they are financed by users directly, then 
willingness to pay will determine which projects will be materialized and which will be 
postponed, while users’ benefits measures like the ones we have seen can help us study 
changes in users’ well being. But if projects are financed with tax money, things are not 
exactly the same. It should be clear from our analysis, both in this chapter and the 
preceding one, that what is behind transport demand –and therefore behind willingness to 
pay and users’ benefits- is each individual’s subjective perception of the value of his/her 
own time, own comfort, own safety, and so on. Such very personal valuation, however, 
may not be equal to the importance society as a whole gives to that person’s well being. In 
other words, society’s willingness to pay to improve someone’s mobility conditions may 
differ from what he or she is willing to pay for such improvement. 

Society has its own budget and its own priorities, and clearly total welfare is not necessarily 
the simple sum of all users’ benefits. The fact that perceptions about the value of travel 
time savings and other variables vary among different groups in society, makes it evident 
that simply summing different groups’ benefits –which is a particular form of aggregation-
will lead to the overrepresentation of certain individuals; those whose valuation of their 
own time and comfort is higher (due to their low marginal utility of income, for example). 
Such situation may of course be acceptable and desirable if public policy is defined in such 
way, but certainly other forms of aggregation, reflecting other types of public preferences, 
are possible. 

The following analysis focuses on the specific attribute of travel time, given its importance 
in the transport field, but it must be stressed that other attributes, and not only from the 
transport industry, can be looked at in an analogous way. 

We should start then by introducing the Social Price of Time (SPT), which opposes the 
personal version of the Subjective Value of Travel Time Savings (SVTTS) and represents 
the value society gives to a member’s time. What can be said about the way society sees 
this variable? From the point of view of a society as a whole, reductions of an individual’s 
travel time can be looked at positively for various reasons. One is the potential increase in 
actual wealth if such reductions translate into more work. Other is the increase in well­
being, as this includes individual utility directly, which increases indeed as travel 
conditions improve. Under the approach that regards time as a productive resource only, the 
social price of time would be the value of the individual’s marginal product of labor, if 



107 Valuation of user’s benefits in transport systems 

travel time reductions induce an equivalent amount of additional work. And if working time 
is unaltered by travel time changes, then SPT would be nil; this would be the case in 
pleasure trips or trips made during the leisure period, i.e. out of the (fixed) work schedule. 
But under the approach that views time as an element that influences individual utility, all 
gains should be accounted for, because they mean an increase in social welfare irrespective 
of changes in wealth. 

In a perfectly competitive labor market, the wage rate would represent the value of the 
marginal productivity of labor. If we look at the original version of the goods- leisure model 
(in which neither work time nor travel time are in the direct utility function), then SVTTS is 
exactly given by the wage rate (see section 2.2.3). Thus, if this rate truly represents 
marginal productivity, then the subjective value of travel time would be equal to the social 
price and both would be equal to w, under the production approach. But under the welfare 
approach this would be different. 

Following Pearce and Nash (1981), a social utility or welfare function can be used to 
represent the implicit preferences in the domain of public decisions. Such a function Ws has 
each person’s utility level as arguments, and therefore it represents the way in which 
society takes into account individual (or group) welfare. Then 

Ws = Ws (U 1,...U q ,...U n ) (3.88) 

If dBq is the money equivalent of person q’s variation in utility (consumer’s surplus) due to 
a project, then social welfare would change by 

dWs =∑ 
dWs ∂U q dBq   (3.89) 

q dU q ∂I 

Following Gálvez and Jara-Díaz (1989), from equation (3.71) consumer’s surplus variation 
for one individual after a travel time reduction Δtq is approximately given by 

dB = SVTTS Δt   (3.90) q q q 

As ∂U ∂I is the marginal utility of income λq, thenq 

dW = Ω λ SVTTS Δt   (3.91) s ∑ q q  q q  
q 

where Ωq is the social weight ∂W ∂U q . A factor λs is needed to convert dWs into money. 
The tax system provides a socially-accepted equivalence between: 

s 
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- the total welfare loss of those who pay taxes, 

dW =∑ dWs ∂U q dTq (3.92) s 
q dU q ∂Tq 

where Tq is the tax paid by individual q 

-and the total bill collected  
dT = ∑ dTq    (3.93) 

q 

Definition 3.4: Social utility of money 
The social utility of money is defined as 

dWSλS ≡    (3.94) 
dT 

using (3.92) 
dWs 

∂U q dTqλ s =∑ 
q dU q ∂Tq dT 

=∑
q 
Ω q λqθ q (3.95) 

with θ = dT dT , the marginal tax proportion paid by individual q.q q 

For non-discriminating social weights Ωq , a social utility of money can be calculated as a 
weighted average of individual marginal utilities of income, using marginal tax proportions 
as weights. Irrespective of which social factor λs we use to convert W into money, the term 
that multiplies Δtq in (3.91) modified by λs is the SPT of individual q under the welfare 
approach. 

Definition 3.5: Social price of time 
The social price of time is defined as 

λ
SPT q = Ω q 

q SVTTSq    (3.96) 
λs 

Then, even if SVTTSq=wq, the SPTq would not be given by the wage rate within this 
framework. Note that for SPTq to be equal to SVTTSq, the social weight attached to 
individual (or group) q should be inversely related with λq, or directly related with income, 

SPT q = SVTTSq ⇒Ω  q 

λq =1⇒∂WS = λS (3.97) 
λ ∂U λs q q 

This reveals the highly regressive assumptions behind the acceptance of the subjective 
value as the social price of time: since people with higher income have lower marginal 
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utility of income, the wealthier the person, the more important his/her time is valued by 
society when analyzing transport projects. 

If we choose to impose ( ∂W ∂U q )=1, ∀q , i.e. all groups or all individuals have the sames 

social weight, then the social price of time is 
λ

SPT = q SVTTS (3.98) q qλs 

The SVTTS is usually calculated from travel choice models as seen in Chapter 2, such that it 
is always equal to the marginal utility of travel time ∂Vi ∂ti divided by the marginal utility 
of cost, and this latter is identically equal to minus the marginal utility of income in discrete 
choice models. Replacing this in equation (3.98) we get the most synthetic form for the 
social price of time under the welfare approach with non-discriminating social weights, 
which is 

SPTq =
∂Vi ∂ti q . (3.99) 

λs 

Note that using SPT does not mean imposing a single value of time for the whole 
population, as it depends on the perception of travel time and not on its private value, 
which can differ across groups. Therefore, whether a single or several social values of time 
should be used becomes essentially an empirical matter, which is quite an unbiased 
approach. 

This result shows how relevant are the elements that determine the marginal utility of travel 
time as discussed in Chapter 2, i.e. the perception of goods, leisure, work and travel time as 
arguments in direct utility. If people’s own valuation of their time is used to determine what 
projects society should prioritize, tax money will go proportionally more to high income 
groups. If a social framework is used instead, the subjective value of time should never be 
used to evaluate social projects. 

In summary, behind the derivation of a social price of time lies a correction of consumer’s 
surplus in order to turn it into a social value given a viewpoint of how individual welfares 
should be aggregated to determine society’s welfare. And this is something that can be 
applied to any qualitative change that affects individual utility. Therefore, equation (3.99) 
can be extended to calculate social values of important aspects as pollution, safety, etc. (see 
Jara-Díazet al. 2000, 2006). 

3.6. Synthesis 
Improving transport systems induces conditions which are perceived as more satisfactory 
by users; they indeed constitute a benefit. It poses the problem of turning the subjective 
perception of that improvement into monetary units, for proper comparison with costs. In 
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this chapter, the operational approaches to solve this problem have been presented, 
emphasizing their economic foundations in an effort to provide an integrating view of them. 

Individuals' perceptions are observed through transport demand, which relates travel needs 
to the characteristics of transport systems. It has been shown that the information behind 
demand is sufficient to account for all benefits accruing to the different agents in those 
markets which are affected by changes in transport conditions. The relation between both 
market and compensated demand s and the valuation of consumers' benefits has been 
strictly established; however, the most widely used tool to assess users' benefits, the 
rule-of-a-half, does not use the analytical form of demand, requiring only the initial and 
final states. The intuitively motivated rule-of-a-half is shown to be, even under its most 
general expression, an approximation to the least rigorous but most popular form of welfare 
measure: the Marshallian consumers' surplus. A departure from RH leads to more rigorous 
forms of users' benefits, which consider demand models explicitly in their derivation, thus 
including the information provided by the different elements involved in transport demand. 
Furthermore, explicit derivation of such rigorous welfare measures allows a better 
interpretation of benefits in terms of demand parameters and their underlying meaning. 
From this viewpoint, benefit measures have been obtained for the so-called direct demand 
models, the family of entropy models, and the family of discrete choice models. 

By showing that transport demand derives from the economic environment, it has been 
proved that user’s benefits do capture the impact of transport improvements in those 
competitive markets that generate transport demand. When competition does not prevail in 
production, this equivalence weakens with monopoly power. 

There is one aspect which cannot be regarded as further sophistication of available 
approaches, but as a systematically omitted element: the role of income. The usual excuse 
to relegate income to a secondary place has been the presumably low relevance of transport 
in individuals’ budgets; the fact is the observed structure of household expenditure in wide 
socio-economic groups in developing nations does not support such an assumption. As seen 
here, income elasticity does play a role in the analysis of welfare changes within the 
Hicksian framework, particularly in the quality of proposed approximations of market 
demands as compensated ones. We have derived an approximation of the Compensating 
Variation (CV) in terms of market demands, where careful use of the Slutsky equation plays 
an important part. Viewed in this way, CV has been interpreted as a sum of the traditional 
Marshallian welfare measure plus an income- induced welfare impact (IWI), which 
represents the contribution of the income effect to the valuation of users' benefits. 

Finally, aggregation of individuals’ benefits for project evaluation will always include 
explicit or implicit judgments, since the (money equivalent of) utility of several individuals 
or groups have to be added. How important is the welfare of one individual relative to 
another is an area that falls in the boundary of ideology and politics. Here we have shown 
that the simple addition of the ΔMCS hides a preference for high income groups. A proper 
social price calculat ion for travel time savings has been presented, which can be extended 
to other qualitative aspects of travel. 
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4. Optimal Transport Pricing 

4.1. Introduction 
The fare of a transport service influences its number of users. Or in a more general case, if 
there is a set of transport modes we can see as alternatives, then all modes prices will play a 
role determining the number of users each mode will receive. Although prices could be 
seen only as a result of market equilibrium, fares do play a role in users’ behavior ­
something we have seen in Chapter 2- and therefore we may ask what types of outcomes 
arise from different pricing strategies. 

On the other hand, if prices are not seen as a by-product of market equilibrium, but as a tool 
to influence behavior from a regulatory perspective or simply as a control variable able to 
generate an outcome deemed desirable -which may be the case of public companies for 
example- then the question about optimal pricing becomes even more interesting. In such 
scenario it is worth asking how different the resulting social benefit is compared to the 
market case, or if the resulting fares are even able to cover firm’s costs. Is the predefined 
objective financially viable? What is the role of demand’s elasticity to price? What are the 
consequences in terms of other key variables such as patronage? 

The fact that people normally do have alternative transport modes to choose from, clearly 
adds more complexity to this whole pricing issue, yet allows new relevant questions: if we 
can set the fare of only one mode, can that decision have an impact on the entire market 
such that we could correct the problems of economic inefficiency generated by other 
modes? 

This chapter covers these topics, starting the analysis with the simple view of transport as a 
single-product industry, to examine then the more realistic multi-product case, for which 
applications are presented using the popular Logit model. The single-product case is 
nevertheless useful to discuss optimal pricing differences between private and public 
transport. In this Chapter the role of costs, demand and users’ benefits emerge in an 
integrated fashion. 

4.2. Optimal pricing in the single output case 
Changes in prices lead to demand variations, which in turn have an impact on transport 
costs. Inversely put, costs depend on demand level, and demand depends on prices. In time, 
changes in these three variables imply changes on other relevant figures, namely, consumer 
benefits, patronage, and transport firms’ revenues and profits. If we denote prices by P, 
demand by Y(P) and transport costs by C(Y), we can summarize these basic ideas as in 
Figure 4.1, where subscripts refer to different modes. 
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Figure 4.1. Effects of fare modifications. 

The concept of an “optimal price” can only be developed once we define what is desirable 
and that is normally a policy decision, either of private or public origin. In what follows, 
four possible criteria for defining “desirable” will be considered –namely, maximization of 
users’ benefits, firms’ profits, social benefits and patronage- and their associated optimal 
prices will be derived.  

a) Maximize users’ benefits (consumers’ viewpoint) 

The objective function is to maximize the Marshallian Consumers’ Surplus (MCS), as 
defined in the previous chapter. A simple graphical analysis shows that the maximum of 
this function is reached when P=0, that is, when Y=Y 1 in Figure 4.2. 

Max MCS P P  1 = 0⇒ =  
(4.1) 

Y Y1 =Y (0)= 

b) Maximize profit (private operator’s viewpoint) 

The profit p of a private operator is the total revenue R, minus the total cost C, i.e. 

π = R −C = P(Y )Y −C(Y )    (4.2) 
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Maxπ⇒ 
dπ = 0	    (4.3) 
dY


( ( )  ) dC Y
⇔	
d  P Y Y  

− 
( )  = 0 (4.4) 

dY dY 

( )  − m Y  ( )  (4.5) ⇔	 r Y  = 0 

d P Y Y( dP	 dC Y where ( )  = 
( )  )

= P +Y  is the marginal revenue and ( )  =
( )  is ther Y 	 m Y

dY dY	 dY 
marginal cost. Replacing these in equation (4.5) one gets 

P m  1( −	 ) = − = 
1 (4.6)  

P	 dY P η 
dP Y 

where η is the price elasticity of demand. This is represented by point (Y2, P2) in Figure 4.2. 

c) 	 Maximize social benefits (economic efficiency viewpoint) 

This case consists of maximizing the total benefit of the system, including users and 
operators; i.e. maximizing social benefits.  

SB = π +ΔMCS = P(Y ) − C(Y ) + ΔMCS	 (4.7) 

Max SB = π + ΔMCS ⇒ 
d (π + ΔMCS ) = 0	 (4.8) 

dY 

dP dP ( )  +Y − ( )  Y	 (4.9) ⇔ P Y  m Y  − =0
dY dY 

3 3⇔ P Y( )  = m Y( )	 (4.10) 

3 3 3Not surprisingly, the optimal fare is P = ( )  = m Y  ) , meaning the optimal pricingP Y  ( 
should match marginal cost, which is a rather known result when seeking economic 

3 3efficiency. The solution can be graphically represented by point ( , ) in Figure 4.2. Note P Y  
P3 < P2 and Y 3 > Y 2 . 
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Figure 4.2. Optimal prices for different objectives in the single output case 

This optimal social fare (equal to marginal cost) may or may not cover production costs. 
This is a central point for transport firms, as a subsidy could be necessary for financial 
viability. Clearly, to cover costs we need price to be at least equal to the average cost AC 
(we charge each person what moving an average person costs), so if price is set equal to 
marginal cost as derived above, the only question will be if average costs are above or 
below marginal costs, which in time means asking about the firm’s degree of scale 
economies. Analytically, the condition π ≥ 0  translates into: 

P = m ≥ AC ⇔ 
AC ≤ 1⇔ S ≤ 1 (4.11) 
m 

where S is the degree of scale economies according to equation (1.23). In other words, if 
the firm operates in the decreasing returns to scale range, the social optimum is financially 
viable. What if there are increasing returns to scale, thus making the system unable to 
finance itself, but yet the service is deemed necessary? Two alternatives: a subsidy or, if not 
feasible, a price such that costs are covered while keeping welfare as high as possible. The 
latter corresponds to the solution of 

Max SB = (π + MCS ) 
subject to π ≥ 0 (4.12) 

The solution, known as second best because economic efficiency is not reached, is quite 
simple in the single output case. As suggested by equation (4.11), the solution is P=AC, 
which is represented by point (Y4, P4) in Figure 4.2. 
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d) Maximize patronage 

This is equivalent to case a); as costs are not covered and demand decrease with price 
monotonically, maximizing patronage subject to a budget constraint yields price equal to 
average cost. 

It should be recalled that the social benefit, which is the sum of users’ benefits and firms’ 
profits, also corresponds to the total willingness to pay by users (WP) minus the total cost. 
This, which will be used in the next section, is graphically shown in Figure 4.3. 

$/Y 

Y=D(P) m 

A 
P 

B 

C 

Y Y 

A=Consumer’s surplus; B=Firms’ profits; C=Production Costs;

A+B+C=Willingness to pay 


Figure 4.3. Social benefits as willingness to pay minus production costs, or as consumer 

surplus plus firms’ profits 

4.3. Extension to transport systems 
4.3.1. A general optimal price 
The key issue when translating the general results from the previous section to the transport 
industry is realizing that firms do not provide all economic resources to produce the final 
good (transport) because passengers have to put in their time. Unlike other industries, 
accounting for all economic resources (total cost) in order to find an optimal pricing 
scheme leads to acknowledging that a rather important and valuable resource, 
individuals’ time, is provided by consumers themselves and no t by firms. 

That said one may nevertheless suspect that an optimal fare still would depend only on 
firms’ costs like in any other market, because even though consumers are providing their 
precious time as a “production input”, they are simultaneously and instantly “paying” for it 
as their time is consumed along the journey. Although there is some truth in this thought, 
we shall see it is not entirely correct. 

To start our analysis, total costs will be divided in two groups: those provided by the 
operators, as vehicles, fuel, terminals or labor, and those provided by the users, namely 
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their time, usually divided into waiting, access and in-vehicle time. Total cost (CT) can be 
written as 

CT = Cop + CU (4.13) 

where Cop and CU are the operators’ and users’ total costs, respectively. CU is of course 
users’ total time multiplied by the value of time (or the sum of access, waiting and in-
vehicle times multiplied by their respective time valuations), and consequently the cost of 
each user is CU/Y, where Y is the demand level (number of users). In other words, a user’s 
cost is the users’ average cost, ACU. 

As for demand Y, it obviously depends on ACU, but it is also sensitive to the fare P that 
users are required to pay in money. Then, we can use the concept of generalized cost 
introduced in the previous chapter, defining 

GC = P + ACU (4.14) 

and seeing Y as a function of GC. 

We will concentrate our analysis in social optimal pricing, i.e. maximizing economic 
efficiency, since that is the world’s currently preferred view when examining markets, but 
it should be clear the analysis could also be made with other optimal criteria with no 
difficulties. Maximizing social benefits becomes, then: 

Max SB = π +ΔMCS = WP − C = ∫ 
Y 

GC (u)du − [Cop (Y) + CU (Y)]  (4.15) 
Y 

0 

where GC in the integral is the inverse demand function. The first order condition for (4.15) 
is 

∂ SB = GC Y ( (4.16) ( *)− mop Y *)− mU (Y *) = 0
∂ Y 

where mop and mU are the operators’ and users’ marginal costs, respectively. Using (4.14) 
and given that the total marginal cost (mT) is the sum of mop and mU, the optimal fare is 

P* m Y= ( *) − AC  (Y *) (4.17) T U 

This equation states that the user has to pay (in money) the difference between total 
marginal cost and users’ average cost. It is important to realize this difference is 
reflecting the fact that the user is already “paying” for part of the costs -the time he or she 
spends traveling- and that is why the actual required payment only accounts for all other 
costs the journey implies. 
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Note now that by writing users’ marginal cost as 

( U ) U 
U U 

d Y AC  dAC m  AC  Y
dY dY 
⋅ 

= = + (4.18) 

then the total marginal cost can be written as 

mT = mop  + AC  U + Y dACU (4.19) 
dY 

and replacing in (4.17) we get an alternative expression for the optimal fare (Jansson, 
1979): 

* dACUP* = m + Y (4.20) op Y * dY Y * 

The value and the concept is obviously the same as in (4.17), but this expression is more 
revealing. It says the user has to pay for the increase his or her trip is causing to the 
transport operator’s cost, plus the increase that trip is causing to users’ average cost, 
multiplied by the demand level. The former was expected; the latter is the interesting one. 

Basically, the second term in (4.20) is saying a user has to pay for the time 
consumption variation he or she is inducing on everybody else. If this trip by this new 
user makes everybody else consume more time, which is the case when the derivative is 
positive, then for economic efficiency a payment -additional to operator’s marginal cost- is 
required. Conversely, if the new trip makes everyone else consume less time traveling, the 
new user should be “rewarded” paying less than operator’s marginal cost. 

We are here evidently in front of a negative or positive externality depending on the 
effect of new users over the remaining users. And it is the presence of this externality 
that explains why our intuition was only partially correct above when we started: time as an 
economic resource, or even better, as a “production input” in this industry, provided not by 
firms but by consumer themselves, does make a difference because even though each user 
is simultaneously and instantly providing and consuming its own time in this process, at the 
same time is demanding an increase or decrease of other economic resources, namely, other 
individuals’ time. Unless that change in demanded resources is paid or rewarded for, the 
market will not be socially efficient. 

4.3.2. Particular case 1: Private transport 
In the private transport case, the user and the operator are the same person, so the first term 
in expression (4.20), the operators’ marginal cost, simply represents the expenses –fuel, 
lubricants and spare parts basically- a driver has to face to get his/her vehicle running, plus 
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the cost of the associated infrastructure. This term is of course positive and can be safely 
assumed to be equal to the average operator’s cost. 

As for the second term, since it is part of our common experience, it is probably 
unnecessary to exhibit the vast body of evidence showing that the increase of new users in 
the case of the private transport market implies an increase of users’ average cost in the 
presence of congestion. New car drivers do make everyone else consume more time 
traveling, so the derivative in expression (4.20) is positive, meaning the externality is 
negative, and therefore users should pay for causing it. 

Each new car driver experiences congestion, including the extra delay he or she is 
generating, but this driver does not perceive the additional time consumption the rest of car 
drivers experience as a result of this new vehicle entering the system. The new driver 
perceives the average cost ACU but not (the higher) social marginal cost. 

A graphical view of this situation is shown in Figure 4.4, where the role of implementing a 
charge P* equal to (4.20) or (4.17), a “congestion charge ”, can also be seen: the increase of 
the mode’s cost (the mode’s generalized cost) due to this charge provokes Y1-Y2 number of 
users decide to stop traveling by car to avoid the payment (perhaps shifting to public 
transport), and that improves speeds reducing travel times. By construction the new total 
number of users, Y2, matches the optimal number of drivers this market (road) should have 
for economic efficiency purposes. Congestion charging is, clearly, a tool to induce a 
specific behavior for the sake of efficiency / social benefits. 

$ 
Y 

demand 
m 

P* 

AC 

Y2 Y1 Y 

Figure 4.4. Optimal pricing in the private transport market 

4.3.3. Particular case 2: Public transport 
It is less obvious what happens with expression (4.20) in the case of (scheduled) public 
transport. We do have now two different agents as in our general analysis, operators and 
users. What is the effect of an extra user? 

Let us examine separately the components of total cost, Cop and CU, and their behavior as 
demand grows, starting by the former. Operators incur in operational and capital costs. 



119 Optimal transport pricing 

Operational costs include energy, crew, maintenance and administration, and capital costs 
involve infrastructure and rolling stock. How do they look like in total? Engineering cost 
studies have found that average operator costs decrease with demand (Meyer et al., 
1965; Boyd et al., 1978; Allport, 1981) meaning there are economies of scale. That should 
be easy to see: fixed infrastructure such as terminals, stations, railways, power lines, etc, 
need not to grow proportionally to demand. Vehicles as well, although in lesser degree, do 
not need either to grow at the same pace as demand does. 

Let us turn now our attention to CU (users’ time) and how it changes with growing demand. 
We should analyze separately its three different parts; access, waiting and in-vehicle time: 

� In-vehicle time: the quickest response from operators to increasing demand is 
improving frequency, which is the simplest measure to take (within certain limits). 
But higher frequencies lead to more vehicle interactions (congestion), thus 
increasing in-vehicle time. Not only that, additional passengers also make boarding 
and alighting time grow, which increases in-vehicle time as well. 

� Waiting time : clearly, if demand grows and operators respond increasing frequency, 
waiting times diminish. 

� Access time: if routes can be adapted, increasing demand will lead to reduced 
access times, as operators will be able to expand routes to reach these new 
customers. 

In summary, when demand increases, users’ in-vehicle time grows due to both vehicle 
congestion and passengers boarding/alighting; waiting time always diminishes; and access 
time decreases only if routes can be adapted. A general conclusion for CU may seem 
elusive, and it may even seem that the answer can change from one public transport mode 
to another, since route adaptation feasibility, for example, is clearly quite different with 
buses or trains. But this qualitative analysis actually yields a common scheme for the 
relation between users’ cost and demand. On one hand, bus-like modes have higher 
probability of congestion, but at the same time they are the most flexible regarding routes 
expansion. On the other hand, the rigid rail-based modes have little (tram) or no 
(underground) congestion likelihood, while route adaptation involves serious effort. So, 
with bus- like modes a demand growth makes in-vehicle and access times vary with 
opposite signs, while with rail modes both changes are low or negligible. Therefore, it is the 
waiting time that prevails, and that means a decreasing average users’ cost function 
(ACU) with demand in all cases. That is, ∂ACU/∂Y is negative and reflects the positive 
externality an extra user generates: a new passenger pushes the system to increase 
frequency and/or coverage, thus benefiting all other users. 

The conclusion is that the sum of the operators’ and users’ costs yields a total cost that 
grows less than proportional with demand, as found by Boyd et al. (1978) and Allport 
(1981) in their engineering cost studies. This means total average cost decreases with 
demand, which implies the public transport case presents scale economies, as opposed to 
the private transport case, and consequently public transport passengers are not required to 
pay for externalities as car drivers are.  
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Now, since ∂ACU/∂Y is negative, from expression (4.20) we see the optimal public transport 
fare must be lower than operators’ marginal cost. Operators’ costs are clearly not covered 
under this situation, which can be seen subtracting operators’ average cost from both sides 
of (4.17): 

P* − ACop (Y *) = mT (Y *) − ACT (Y *)	 (4.21) 

As ACT is larger than mT, operators’ average cost is larger than P*. Expenses are not 
covered and a subsidy per passenger s*, equal to the difference between ACop and P* is 
necessary. Expression (4.21) indicates this optimal subsidy is equal to the difference 
between ACT and mT as well, which is shown in Figure 4.5. 

$ demand 
Y 

Y* 

{P*

 }s * ACT

mT 

ACU 

Y 
Figure 4.5. Optimal fare and subsidy in public transport. 

So, summarizing private and public transport cases, if economic efficiency is desired, car 
drivers must be charged to account for the increased times they impose on other car drivers, 
while scheduled public transport fares should be lower than operators ’ marginal cost, 
accompanied by a subsidy to the firms to make them financially viable. However, it should 
be clear the analysis made here has assumed sharply separated markets between private 
vehicles and public transport. Although that can be true given a physically divided network 
(as a subway is separated from cars’ roadways, for example), we know in most cases 
private and public transport do share infrastructure -roads- and therefore both solutions 
(optimal prices) are related. 

The next section deals with the issue of competing modes either efficiently or inefficiently 
priced, but nevertheless it is important to state here two things about modes that share 
infrastructure that should be evident from our recent conclusions: 

� The possible congestion caused by public transport vehicles to users of other modes 
is subject to a congestion charge  as any other vehicle, and should be included in the 
calculation of the optimal fare.  

� The negative externality cars produce increases when sharing the road with public 
transport vehicles, as each new driver imposes delays on far more people. 
Consequently, the magnitude of the congestion charge increases as well. 
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4.4. Optimal fares with multiple outputs 
4.4.1. General solutions 
As transport firms produce several outputs, the multiple output case is much more 
interesting and realistic in the transport industry. In order to simplify the analytical 
treatment, let us study the n output case with independent demands and a linear cost 
function, which is represented by 

yi = Di (Pi )	 (4.22) 
n 

C( y1 , y2 ,..., yn ) = F +∑mi yi	 (4.23) 
i=1 

Note that choosing mi to name the parameter multiplying output yi in the cost function is not 
casual; mi is obviously the marginal cost with respect to yi so this way we can keep our 
notation consistent. Deriving optimal prices for different optimality criteria now follows. 

a) Maximize users’ benefit 

This case has a trivial solution, i.e. Pi = 0 , ∀ ∈i {1,..., n} 

b) Maximize profit 

The firm’s viewpoint has a solution analogous to the single output case. The objective 
function is 

n n 

π = R −C =∑Pj y j − F −∑m j y j	 (4.24) 
j =1 j=1 

First order conditions (FOC) are 

∂π = yi + Pi 
dyi − mi 

dyi = 0 (4.25) 
∂Pi dPi dPi 

(P − m ) −1 1 ⇔	 i

Pi 

i = dyi Pi 
=
η 

(4.26) 
i 

dPi yi 

c) Maximize social benefits 

Just as in the single output case, the solution extends to Pi = mi i {1,..., n} . However,∀ ∈  

revenue and profit are, respectively, 



122 Transport Economic Theory 

n n 

R =∑Pi y i =∑mi yi (4.27) 
i=1 i=1 

π = R −C = −F (4.28) 

Therefore, costs are not covered. The problem can be restated by imposing a budget 
constraint as follows 

n y j n 

Max SB = π + ΔMCS =WP −C = ∑ ∫Pjdy j − F −∑m j y j (4.29) 
j=1 0 j =1 

n n 

Subject to ∑Pj y j ≥ F +∑m j y j (4.30) 
j=1 j =1 

The Lagrange function is 

n y j n ⎛ n n ⎞
L =∑ ∫ Pjdy j − F −∑m j y j + λ⎜⎜∑Pj y j − F −∑m j y j ⎟⎟ (4.31) 

j =1 0 j =1 ⎝ j =1 j =1 ⎠ 

where λ is the Lagrange multiplier associated to the budget restriction. Then, FOC are 

∂L = Pi 
∂yi − mi 

∂yi + λ ⎛⎜ yi + Pi 
∂yi −mi 

∂yi ⎞⎟ = 0 (4.32) 
∂Pi ∂Pi ∂Pi ⎝ ∂Pi ∂Pi ⎠ 

(m − P ) ∂yi (1+ λ ) = λ y (4.33) i i i∂Pi 

and from this one gets 

i i(P m− )
=

λ 1 ∀ i∈{1,..., n} (4.34) 
Pi 1+ λ η i 

Equation (4.34) is known as Ramsey’s rule or Inverse Elasticity Rule (IER). Note that if 
the multiplierλ  is nil, then Pi = mi , which is an obvious result because λ = 0 means the 
budget constraint is inactive, that is, costs are covered when prices equal marginal costs. As 
in the single output case, there will be a non-zero λ  when increasing scale eco nomies are 
present, and it will equal zero otherwise, because increasing returns imply costs larger than 
revenue. 
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d) Maximize patronage 

The solution of the unrestricted problem is, trivially, Pi=0 ∀ ∈i {1,..., n} . For the system to 
be financially viable, a constraint has to be imposed, which leads to formalizing the 
problem as follows: 

n 

Max ∑ y j (4.35) 
j=1 

subject to π ≥ 0 (4.36) 

The Lagrange function is 

n ⎛ n n ⎞
L =∑ y j +λ⎜⎜∑Pj y j − F −∑m j y j ⎟⎟ (4.37) 

j =1 ⎝ j=1 j=1 ⎠ 

where λ  is again the Lagrange multiplier associated to costs coverage. Then FOC with 
respect to Pi are 

∂L ∂yi +λ
⎛

y P  ∂yi −m ∂yi ⎞ =0 (4.38) 
∂Pi 

=
∂Pi 

⎜
⎝ 

i + i ∂Pi 
i ∂Pi 

⎟
⎠ 

∂yi 
⎣⎡λ (mi − Pi )− 1⎦⎤ = λ yi (4.39) 

∂Pi 

And we get 

P mi i( − )
= 

1 
− 

1 (4.40) 
λPiPi η i 

e) Maximize social benefits in a market with competing modes, covering costs 

This is an interesting case. What if there are several modes competing for the passengers in 
a single O-D pair, we are interested in maximizing social benefits, but we control the fare 
of only one mode? Let k be a mode which competes with other n-1 modes, each facing a 
cost function Cj(yj) and each having a fare Pj. The problem formulation, where our only 
control variable is mode k’s fare, Pk , is: 

Pk 

Max −∑ ∫ y j dPj +∑Pj y j −∑C j ( y j ) (4.41) 
Pk j Pk 

0 j j 

subject to P y ≥ C ( )y (4.42) k k k k 

The Lagrange function is 



124 Transport Economic Theory 

Pk 

L = −∑ ∫ y j dPj +∑Pj y j −∑C j ( y j ) + λ(Pk yk − Ck ( yk )) (4.43) 
j Pk 

0 j j 

where λ  is the Lagrange multiplier associated to (4.42). Then, the FOC with respect to Pk 
is 

∂L =∑Pj 

∂yj −∑∂C j ∂y j +λ ⎜
⎛ Pk 

∂yk + yk −
∂Ck ∂yk ⎟

⎞ = 0 (4.44) 
∂Pk j ∂Pk j ∂yj ∂Pk ⎝ ∂Pk ∂yk ∂Pk ⎠ 

After some algebraic work we get 

P m( k − k ) = 
λ 1 + 

1 P m  
∂y j∑( j − j ) (4.45) 

Pk 1+λ η k yk (1  +λ  η  ) k j k  ∂Pk≠ 

Two comments are worth making about this expression. First, if all other modes (other than 
k) have fares equal to their marginal costs, then (4.45) becomes Ramsey’s rule, meaning 
mode k’s fare can be set as if there were no other modes intervening. That is interesting, yet 
not surprising, because the result reflects the fact that the rest of the modes in the market 
behave competitively: total social benefits will be as high as mode k’s financial constraint 
allows it. On the other hand, under the unfortunate case when all Pj are greater than the 
respective mj, that is, when all the remaining modes are using fares larger (smaller) than 
socially efficient, then (4.45) leads to a value larger (smaller) than Ramsey’s value because 
all price derivatives are positive for the competing modes. And this is very interesting 
because what mode k’s fare will be doing is attempting to correct the market’s efficiency 
problem. In general, expression (4.45) can be understood as a Ramsey rule plus a correcting 
term that reflects the efficiency situation of the rest of the market. 

It is also worth mentioning that when the financial constraint is either inactive or ignored, 
i.e. when λ = 0 , equation (4.45) collapses to the simpler expression (4.46). The comment in 
the previous paragraph remains valid but with reference to marginal cost pricing rather than 
Ramsey’s. 

k(P m− k ) = 
1 ∑( j − j )

∂y j (4.46) P m  
Pk yk ηk j k  ∂Pk≠ 

4.4.2. Applications using the Logit model 
Consider n modes competing in several O-D pairs, with a total demand of Ni users on each. 
Let Yk = {yki } be the flow vector for mode k, and Ski be mode k’s share in pair i. Cost 
functions are represented by Ck(Yk) and the decision variable under control by the transport 
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operator is the vector of fares P ={P }. It will be assumed that (∂y ∂Pkj )= 0 ∀i ≠ j , i.e.k ki ki 

a fare variation in any pair j does not influence the demand in pair i. 

We will use the well known Logit model to describe demand in each market, that is, 

exp ( )
Ski = n 

Vki (4.47) 
∑ exp ( )Vli 
l=1 

And a linear specification for the indirect utility function will be considered: 

Vli =α li +∑σ jiqlji + β i Pli (4.48) 
j 

where ali, s ji and ßi are constants, and qlji are qualities of mode k in pair i, such as (-)travel 
or (-) waiting time. 

Given the chosen model flow vectors are yki = Ni Ski and the following expressions hold. 
∂yki = 0 ∀ ≠  i m  (4.49) 
∂Pkm 

∂yki N β S 1−= i i ki  ( Ski  ) (4.50) 
∂Pki


∂yli = −N S S  β (4.51)

∂P i i li  ki  

ki 

ηki = βiPki (1− Ski ) (4.52) 

These properties of the the Logit formulation will be used next to apply various pricing 
results developed earlier. 

a) Max Profit 

Our general result (4.26) becomes now 
1Pki = mki + (1 − Ski ) 

(4.53) 
βi 

As Ski is a function of Pki, this is a fixed-point equation for the optimal fare, to be computed 
iteratively. Note each component of Yk generates an independent problem. Consider also 
that equation (4.53) is equivalent to make marginal revenue match marginal cost, which 
solution in the single product case is point 2 shown in Figure 4.2. The importance of βi 

(which reflects demand sensitivity to price ) is clear in (4.53); the more reactive the 
population to fares, the closest it should be to marginal costs in order to maximize profits. 
Typical values of βi , however, yield fares much higher than the marginal cost. 
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b) Max social benefits (unconstrained) 

Applying (4.46) and using the appropriate analytical properties exposed above, Pki is given 
by 

Pki = mki +∑(Pli − mli )
Sli (4.54) 

l ≠k 1− Ski 

Our result this time needs not to be computed iteratively as in the previous case because the 
right hand term does not depend on Pki . That can be seen noting that 

∑=− liki SS1 (4.55) 
≠kl 

and therefore, 

− ki 

li 

S 
S 

1 
( )  

∑ ( )∑ 
== 

ri 

li 

ri 

li 

V 
V 

S 
S 

exp 
exp 

(4.56) 

≠kr ≠kr 

which is an expression not dependent on Pki. 

Equation (4.54) shows that, in general, the social optimal fare differs from marginal cost by 
an amount given by the weighted sum of differences between other modes’ prices and 
marginal costs. Weights are all positive and add up to 1, so this is more a combination of 
those differences, with each element proportionally important to a monotonic 
transformation of its market participation. 

Note also that under congested conditions, if automobiles are one of the competing modes 
and they are not subject to a congestion charge, then its associated Pli-mli will be negative 
because Pli will be equal to car drivers’ average cost. In consequence, the presence of cars 
as an alternative will push optimal fares of all other modes downwards. In other words, 
setting one mode’s price at marginal cost is good only if all other alternatives are also 
priced as such. 

c) Max social benefits covering costs (second best) 

As there are competing modes and cost coverage is intended, the solution comes from 
equation (4.45), which for our Logit model takes the form 

Pki = mki + (1 + λ )( 
1
1 − Ski ) ⎢

⎢
⎡ λ + (P − m )S 

⎤ 
(4.57) ∑ li li li ⎥ 

⎣ l≠k ⎥⎦β i 

If λ = 0 , i.e. costs are covered, (4.57) collapses into our previous result, (4.54). If λ > 0 , 
the budget constraint provides the extra equation to solve the system in prices and λ . In 
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general, optimal price in markets where users exhibit a high sensitivity to fares ( ) will 
be closer to marginal cost. 

β i 

On the other hand, if the set of available modes presents prices equal to marginal costs, then 
equation (4.57) would turn into 

θPki = mki + (1 − S ki ) 
(4.58) 

β i 

where θ = λ (1 + λ) . This last equation is the aforementioned inverse elasticity rule, which 
indicates that the proportion in which prices deviate from marginal costs should follow the 
inverse of its price elasticity of demand. As λ ≥ 0 , θ  lies between 0 and 1, i.e. optimal 
prices lie between the marginal cost and the profit maximizing fare. 

d) Maximize patronage covering costs 

The solution we found for the general case, equation (4.40), becomes in this case 

Pki = mki − 
1 +

(1
1 
− Ski  ) (4.59) 

λ βi 

or 

Pki = 0 if  mki − 
1 + 

1 < 0 (4.60) 
λ (1− Ski  )βi 

When the covering costs condition is active, the Lagrange multiplier λ is positive and, as 
expected, optimal fares are lower than the ones found for the max profit case. The resulting 
fare structure tends to discriminate in favor of more fare-sensitive users and those who have 
a lower marginal cost. In practice, the solutions from equations (4.59) and (4.60) can 
generate very large disparities among users. Imposing a minimum fare equal to marginal 
cost would diminish this effect while imposing a reasonable floor equal to the value of the 
extra resources needed to carry an extra passenger. 

4.4.3. Role of individuals’ sensitivity to price and quality 
It can be seen that only in the unconstrained max social benefit case the solution does not 
depend on people’s sensitivity to price, β . This variable plays a clear role in the remaining 
scenarios, so for example in the max profit case a lower sensitivity to price allows 
increasing the fare to levels much higher than marginal cost because demand decreases less 
than proportionally. A warning is needed here regarding the value of β interacting with the 
mode shares in practice, as in estimated models the value of β (1 − S) could be very small 
for public transport modes in O-D pairs where users are either captive or have expensive 
alternatives only, usually low income areas. 
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But more generally, what is the role of the sensitivity to service level? In order to answer 
this question, equation (4.53) will be used to assess the effect of travel time over the 
maximum profit fares. Omitting the market index, we can define 

g(Pk , t k ) = Pk − mk − [1− S 
1 
(Pk , tk )] 

(4.61) 
β 

where tk is the travel time, whose influence over Pk can be assessed from the implicit 
function g(Pk, tk). It is easy to show that 

dPk ∂g ∂tk σ = − = − Sk < 0 (4.62) 
dtk ∂g ∂Pk β 

where σ < 0 is the coefficient of travel time in the demand model. Then, lower travel time 
(better service level) implies a higher profit maximizing price, as expected. Even more, this 
effect grows with the subjective value of time, σ β . A similar conclusion is found in the 
max patronage case given by equation (4.59). On the other hand, as can be seen from 
equation (4.57), the best social fare of mode k does not depend on its own service level 
unless the cost constraint is active. In others words, those markets where users perceive 
time as more valuable allow higher fares when discrimination is possible. 

4.5. Synthesis and discussion 
It has been shown that optimal pricing in transport systems requires different levels of 
information, depending on the objective pursued and constraints considered. The first best 
fare only needs good estimations of marginal costs associated to the different services 
provided. Note that the multiproduct approach depicted in Chapter 1 is of great help here. 

The simplest case incorporating demand information besides costs is profit maximization, 
as the fare for each transport service (market) can be calculated independently from 
equation (4.53), provided demands for different services are not interrelated and marginal 
costs associated to a flow yi do not depend on others flows. In this case, knowing the 
coefficients of utility in a Logit model allows the calculation of optimal price using 
equation (4.53), which is a numerically simple fixed-point problem.  

On the other extreme, setting the fare for the max social benefit case needs more 
information, because calculation requires knowing, potentially, prices, marginal costs and 
demands for all the markets and modes (equation (4.54)). The case is even more difficult if 
a budget constraint is imposed (equation (4.57)). Unfortunately, the interdependence of 
marginal costs among different O-D pairs for different modes constitutes a serious problem. 
Think for example about congestion where buses and cars interact, or a frequency variation 
in a bus line induced by changes in the flows somewhere else in the network. Yet, the 
particular case in which other modes are priced at marginal cost (or this condition is 
assumed as a simplification) can be solved numerically in a relatively simple manner. 
Following equation (4.58), one can note that for a given value of θ , a series of independent 
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fixed-point equations are obtained, from which fares can be calculated and the budget 
constraint can be verified. This generates an obvious procedure to calculate the optimal 
prices, by simply changing the value of θ  in the appropriate direction between 0 and 1. 

In terms of information requirements, patronage maximization fares from equation (4.59) 
seem to be no more demanding than the max welfare case from equation (4.58), as λ  could 
be simply added to the marginal cost. However, there are two additional difficulties: there 
is no upper bound for λ  and the corner solution represented by equation (4.60) does 
introduce the need to verify more than the budget constraint. 

Additionally, from the examples exposed, it can be seen that: 
- Fares which maximize profit are, naturally, the largest; they can reach levels much higher 
than marginal cost. 
- Max patronage fares covering costs tend to benefit groups who make less trips and those 
more sensitive to price; if both conditions are present simultaneously, the benefit for the 
community is substantial and the individual damage on the remaining users is lower. 
- Unilaterally optimal modal fares under a policy of max social benefit depend on several 
factors, so it is difficult to generalize a rule. These fares receive an influence from the 
differences between fares and marginal costs in the other modes, which can be positive or 
negative. 

Finally, it is important to mention that optimal fares shown in this chapter, particularly 
those calculated for a mode competing with others, may require a sophisticated 
implementation strategy, meaning the response by the competition must be taken into 
account. In other words, in the real world setting the fare for one mode at a given 
magnitude, will normally force the remaining modes to change theirs as well in an attempt 
to neutralize potential customers losses. If such reactions occur, the implemented optimal 
fare will automatically become obsolete (it will no longer be optimal), as this fare depends 
on the competing modes’ prices. Game theory or other similar approaches may be useful in 
these situations because they provide a way to model agents’ reactions and counter-
reactions, allowing us to anticipate the expected equilibrium of the system, and therefore 
determining the right fare to implement to reach our goal. The key here is to see that what 
matters is not the magnitude of a price by itself, but its relative magnitude with respect to 
the remaining modes’ prices. It is the price structure, at the end, which is optimal or not. 
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