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Preface

On June 22, 2015, four research teams consisting of 24 women in mathematics and
biology converged at the National Institute for Mathematics and Biological Synthe-
sis (NIMBioS) in Knoxville, Tennessee, to participate in a Research Collaboration
Workshop for Women in Mathematical Biology. The goal of the workshop was to
kick-start multidisciplinary research projects and form lifetime connections to other
women in STEM fields. This workshop was inspired by the highly successful 2013
Institute for Mathematics and its Applications (IMA) Special Workshop: WhAM! A
Research Collaboration Workshop for Women in Applied Mathematics: Dynamical
Systems with Applications to Biology and Medicine.

NIMBioS was an excellent venue to host this multidisciplinary workshop.
Consistent with the institute’s mission to trigger research in quantitative modeling
and analysis in the life sciences, NIMBioS hosted four research teams consisting of
women who are trained and working in both biology and mathematics departments.
Each group consisted of a senior faculty and a junior faculty from the fields of
mathematics, engineering, and the life sciences. These teams each mentored four
junior women who ranged from graduate students to assistant professors.

This special volume contains research articles contributed by the four research
teams. The topics include aerodynamics of spider ballooning; sleep, circadian
rhythms, and pain; blood flow regulation in the kidney; and the effects of antimi-
crobial therapy on gut microbiota and Clostridium difficile. Each topic includes
a review article and at least one research article. In addition, several papers are
included in this volume on topics inspired by the workshop. This work includes
contributions from junior researchers at the undergraduate, graduate, and postdoc-
toral levels on topics ranging from models of animal movement to the flow of blood
cells in the embryonic heart.
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vi Preface

We thank NIMBioS for its support, without which the workshop would not have
become such a resounding success. And it is indeed our hope this workshop and
this special volume will spark new ideas and new collaborations among female
mathematicians.

Durham, North Carolina, USA Anita T. Layton
Chapel Hill, North Carolina, USA Laura A. Miller
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The Modulation of Pain by Circadian and
Sleep-Dependent Processes: A Review
of the Experimental Evidence

Megan Hastings Hagenauer, Jennifer A. Crodelle, Sofia H. Piltz,
Natalia Toporikova, Paige Ferguson, and Victoria Booth

Abstract This proceedings paper is the first in a series of three papers developing
mathematical models for the complex relationship between pain and the sleep–
wake cycle. Here, we briefly review what is known about the relationship between
pain and the sleep–wake cycle in humans and laboratory rodents in an effort to
identify constraints for the models. While it is well accepted that sleep behavior
is regulated by a daily (circadian) timekeeping system and homeostatic sleep
drive, the joint modulation of these two primary biological processes on pain
sensitivity has not been considered. Under experimental conditions, pain sensitivity
varies across the 24 h day, with highest sensitivity occurring during the evening in
humans. Pain sensitivity is also modulated by sleep behavior, with pain sensitivity
increasing in response to the build-up of homeostatic sleep pressure following
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sleep deprivation or sleep disruption. To explore the interaction between these two
biological processes using modeling, we first compare the magnitude of their effects
across a variety of experimental pain studies in humans. To do this comparison,
we normalize the results from experimental pain studies relative to the range of
physiologically meaningful stimulation levels. Following this normalization, we
find that the estimated impact of the daily rhythm and of sleep deprivation on
experimental pain measurements is surprisingly consistent across different pain
modalities. We also review evidence documenting the impact of circadian rhythms
and sleep deprivation on the neural circuitry in the spinal cord underlying pain
sensation. The characterization of sleep-dependent and circadian influences on pain
sensitivity in this review paper is used to develop and constrain the mathematical
models introduced in the two companion articles.

MSC codes: 92B25, 92C20

1 Introduction: A Vicious Cycle

The experience of pain has a complex relationship with the sleep–wake cycle. Pain
serves two important purposes: to motivate individuals to escape and avoid physical
insult and to aid in healing by promoting the protection and immobilization of
injured body parts. This first purpose necessitates rapid response and arousal, two
processes that are suppressed by sleep, whereas the second purpose is closely tied
to the concept of rest. Thus pain makes us tired (promotes the homeostatic drive
to sleep), and increased sensitivity to pain during the night is coordinated with our
daily circadian rhythm to promote immobilization and healing during the rest period
[8]. However, the presence of pain is arousing and can inhibit our ability to initiate
and maintain sleep, especially the deeper recuperative stages of sleep [35]. When
sleep is disrupted or limited, the perception of pain further intensifies, healing is
delayed, and pathological processes promoting the development of chronic pain
can proceed unchecked [17]. Within clinical settings, this progression of events
can create a vicious cycle of inadequate pain management [35], which is further
complicated by similarly strong interdependencies between the sleep–wake cycle
and the effectiveness of most forms of analgesia [8, 17, 35].

The development and analysis of mathematical models of this vicious cycle can
lead to better understanding of the interactions between sleep and pain, which could
improve pain management. In this article, we review the experimental and clinical
evidence documenting the modulation of pain by sleep and circadian processes in
humans and animals and introduce a novel analysis of this data that is used to justify
and constrain the mathematical models introduced in the companion articles.



Circadian and Sleep-Dependent Modulation of Pain 3

2 What Is Pain?

“Pain is an unpleasant sensory and emotional experience associated with actual or
potential tissue damage, or described in terms of such damage” according to the
International Association for the Study of Pain [40]. Pain can be caused by different
types of actual or potential tissue damage, including adverse temperature conditions
(heat, cold), intense mechanical stimulation or pressure, electric shock, constricted
vasculature, or chemical irritation, as well as processes generated within the body,
such as inflammation and pathological nerve damage (neuropathy). Pain can be
derived experimentally or from natural conditions, and can occur on a variety of
time scales. Experimental studies of “acute” pain sensitivity typically induce brief
(“phasic”), localized, superficial pain to peripheral tissues. Such brief stimulation
actually consists of two sensations: a fast, sharp pain and a slower, dull pain.
Occasionally, experimental studies will induce longer duration (“tonic”) acute pain
that can last for hours [36]. Within clinical settings, chronic pain conditions can last
for months or years.

As there are different types of pain that can be felt, there are different ways
in which the body receives and processes pain signals. Sensory neurons (afferent
neurons) in the peripheral nervous system sense stimuli and send that information
to the spinal cord for processing. These neurons and their nerve fibers are specialized
for detecting innocuous or noxious stimuli. Non-painful touch sensations are
transmitted by Aˇ afferent fibers while there are two major classes of nociceptive
(pain-receptive) afferent fibers: Aı and C. Medium diameter Aı fibers mediate
localized, sharp, fast pain sensations, while small diameter C fibers mediate the
more diffuse and duller slow pain sensations [16]. The “fast pain” Aı fibers are
wrapped in a fatty sheath called myelin that allows for rapid transmission of signals,
at speed of 4–30 m/s. This is also true for the Aˇ fibers. In contrast, the “slow pain”
C fibers are not myelinated and, due to their small diameter, transmit signals at speed
of less than 2 m/s [36].

Different types of nerve fibers report to different areas in the spinal cord. In
general, sensory neurons have their cell bodies in the dorsal root ganglia, a cluster of
nerve cell bodies located in the spinal cord. Primary afferent fibers morphologically
differ from other nerve fibers in that their axons and dendrites, usually responsible
for sending and receiving signals, respectively, have equivalent biochemical make-
up and thus these neurons can send and receive signals through both their axons and
dendrites [3]. Signals in these afferent fibers are transmitted to the dorsal horn of the
spinal cord, an area that is responsible for receiving information from the sensory
neurons, processing it, and sending signals up to the brain. The dorsal horn contains
many populations of neurons, including excitatory and inhibitory interneurons. One
such population of neurons in the dorsal horn, called the Wide Dynamic Range
(WDR) neurons, receive direct inputs from the touch and nociceptive afferent fibers
as well as inputs from interneuron populations, and constitute the primary output
from the dorsal horn to the brain. As such, pain intensity is correlated with the firing
rate and the duration of firing of the WDR neurons.
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Since pain is both an unpleasant sensory and emotional experience, pain-
related input from the spinal cord engages multiple neural circuits in the brain,
including the brainstem, thalamus, and cortex. These circuits involve a wide range of
neurotransmitter systems, including the well-studied opioid system. Many of these
higher-level cognitive and emotional responses to pain exert their influence over
pain perception via descending projections to the dorsal horn of the spinal cord. This
“top-down” feedback on sensory processing can act to either inhibit or facilitate
pain sensation, essentially providing a “gate” for the transmission of nociceptive
information to the brain [39]. Thus, there is a tradition of modeling pain processing
by focusing exclusively on spinal cord circuitry.

3 The Relationship Between the Sleep Cycle and Pain
Sensitivity in Humans

The daily timing of sleep is widely accepted as an interaction between two
independent processes: a homeostatic drive to sleep, which builds up over the
course of wakefulness in a saturating manner and dissipates during sleep, and
a circadian timing system, which rhythmically influences the levels of sleep
drive required to initiate and maintain sleep [13]. When exploring the literature
documenting the relationship between sleep and pain, we found that the influences
of both circadian rhythms and homeostatic sleep drive were rarely measured within
the same experiment, despite ample evidence that both processes modulate pain
sensitivity [8, 17, 35]. Instead, experimental studies tended to fall into two broad
categories. In one variety of experiment, pain perception was measured across the
day (24 h) in subjects maintaining their normal sleep schedule. Therefore, the data
in these experiments should represent a combination of the influences of time-of-
day and a normal modest 16 h build-up of homeostatic sleep drive during waking
and 8 h dissipation of homeostatic sleep drive during sleep. In the other variety of
experiment, subjects were sleep deprived for 1–3 nights or had their sleep restricted
to less than a typical 8 h, and pain perception was recorded at various times. In these
experiments, there should be a large build-up of homeostatic sleep drive, the effects
of which may be more or less obvious at different times of day due to circadian
modulation. We review these two forms of data below and introduce a novel
analysis of the data that allows a comparison of results from these two categories
of experiments and from studies using different pain modalities. For the sake of
simplicity, we focus primarily on data derived from studies using pain modalities of
experimentally induced brief (acute/phasic), superficial pain to peripheral tissues.
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3.1 There Is a Daily Rhythm in Experimental Pain Sensitivity
in Humans

Pain sensitivity follows a daily cycle in many clinical conditions [8], but it is
currently unclear how much of that rhythmicity is derived from daily fluctuation in
the underlying causes driving the pain (for example, nocturnal release of oxytocin
induces contractions during labor) versus rhythmicity in the neural processing of
pain. Within the experimental pain literature, rhythmic influences on pain sensation
occur regardless of whether pain responses are measured subjectively or objectively
[6, 12, 14, 56], suggesting that the rhythmic modulation of pain responses occurs at
a basic physiological level. This rhythmic modulation of pain sensitivity increases
with pain intensity [14, 21, 32], so that the more intense the pain is overall, the
greater the change in the person’s sensitivity to the pain across the day. Rhythmic
influences on pain sensitivity are detectable in experiments involving a variety
of different kinds of painful stimuli, including cold, heat, current, pressure, and
ischemia (Tables 1 and 2). These stimuli are found to be most painful during hours of
the day when experimental subjects are likely to be tired—late afternoon, evening,
and night (Table 1).

To better characterize this rhythm, we constructed a prototypical “daily pain
sensitivity” function by drawing data from four high-quality experiments that
measured pain sensitivity at multiple time points around the 24 h day using diverse
testing procedures:

1. The threshold for nociceptive pain reflex in response to electrical current (n = 5,
[6]), an objective measure of pain sensitivity. In this study, measurements were
taken from the same subjects every 4 h within a consecutive 24 h laboratory
study (beginning at 13:00). The study states that subjects lived in “elementary
conditions of social synchronization (08:00–23:00)” and remained in bed during
night measurements.

2. The threshold for tooth pain in response to cold (n = 79, [48]), and the threshold
for tooth pain in response to electrical stimulation (n = 56, [48]). In this large
study, measurements were taken from the same subjects every 3 h across a 24 h
day. From the methods, it is unclear whether these measurements were completed
consecutively, but in a follow-up study in the same paper using a smaller sample
size they replicate their results using measurements taken at 24+ h intervals.
During the tests, the subjects maintained their normal living cycles.

3. The threshold for forearm pain in response to heat (n = 39, [50]). In this large
study, measurements were taken from the same subjects at 4 time points across
a 24 h day (8:00, 13:00, 18:00, 23:00). In women, this procedure was repeated
at 3 different points across their menstrual cycle (days 7, 15, and 23). During
the experiment, subjects maintained their normal daily routine (sleeping hours
24:00–7:00).
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For each study, we only had access to the summary data presented in the figures.
Using these data, we standardized the pain measurements by converting them
to percent of mean (or the mesor of the depicted rhythm). For ease of use, we
inverted measures of pain threshold to pain sensitivity so that low pain threshold
corresponded to high pain sensitivity. Thus, in our function, high measurement
values are associated with greater pain. Time was standardized in relation to either
scheduled or estimated morning wake time in order to organize the data in a manner
more akin to the “zeitgeber time” used in sleep and circadian literature.

Following these transformations, the data collectively formed a tight curve that
resembled a sinusoid. To produce a smoothed version of the curve for later use as
our model input, we used the loess function in R 3.2.1 (loess{stats}, R Core Team
2014), which is a form of local polynomial regression that resembles a “vertical
sliding window that moves across the horizontal scale axis of the scatterplot” [28].
The benefit of using loess() is that it does not assume a functional form for the
relationship between X and Y and therefore, to some degree, “allows the data to
speak for themselves” [28]. A traditional equation with coefficients is not produced.
There is a parameter (alpha, sometimes called span) that controls the degree of
smoothing via the width of the sliding window. The larger the alpha value, the
smoother the curve. If alpha is too small, overfitting is possible. We used the default
(alpha = 0.75). There is also a parameter (lambda) that specifies the degree of the
polynomial. We used lambda = 2, meaning that quadratic equations were used,
which can better capture “peaks” and “valleys” (local minima/maxima) in the data
[28]. Using this unbiased approach, we still found that the output curve strongly
resembled a simple sinusoid (R2loess = 0.64, Fig. 1).

We hypothesize that this best-fit curve represents an average daily rhythm in pain
sensitivity for humans and that the rhythm is affected by both homeostatic sleep
drive and a circadian rhythm in pain sensitivity. The curve has a sharp peak in pain
sensitivity occurring close to sleep onset (18 h following wake, or approximately
1am) and then decreases during the night. This is consistent with an effect of
homeostatic sleep drive on pain sensitivity, and fits previous demonstrations that
mental fatigue can decrease pain threshold (i.e., increase pain sensitivity) by 8–
10% [12]. The curve also has a distinct trough in pain sensitivity in the afternoon
(following 9 h of wake, or approximately 4 pm). This pattern does not fit what would
be expected due to an effect of homeostatic sleep drive and instead suggests the
influence of a circadian rhythm.

3.2 Homeostatic Sleep Drive Increases Pain Sensitivity in
Humans

Within the clinical literature, there are at least 14 studies demonstrating that the
experience and intensity of pain correlate with sleep duration or quality [17].
However, the causal nature of this relationship is best evaluated within controlled
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Fig. 1 Prototypical human “daily pain sensitivity” curve constructed from summarized data from
four high-quality experimental studies of pain responses [6, 48, 50]. Time was standardized in
relation to either scheduled or estimated morning wake time (time of wake = 0). Each point
represents the mean value for that time point as derived from the published figures in each study,
converted to a percent of the study’s overall mean (or the mesor of the depicted rhythm). For ease
of use, we inverted measures of pain threshold, so that low pain thresholds are presented in the
graph as high “pain sensitivity.” The smoothed curve was produced using an unbiased loess{stat}
regression in R

experiments, and these experimental results have been wide-ranging. Within human
experiments, sleep deprivation or restriction produced no effect on experimental
pain [15, 61], small 2–10% increases in pain [33, 44, 57], or much larger 18–
118% increases in pain [53, 59, 69]. The diversity of these effects may be due
to the variety of sleep protocols used (as suggested by [59]) or the cognitive
and emotional context accompanying each experiment (e.g., [61]). Even within a
particular protocol, the intensity or quality of experimental pain may determine the
impact of sleep deprivation, with one study observing increases in experimental pain
that ranged from 6 to 118% depending on the method used to inflict and measure
pain [59] (Table 3).

However, we noted that much of the variability in pain sensitivity across studies
could be accounted for by the method of normalization used to compare data. For
example, when using percentage change as our standardized unit, we can artificially
see a larger effect of sleep deprivation on cold pain threshold if the original units are
in degrees Celsius instead of in degrees Fahrenheit (Table 4).



10 M.H. Hagenauer et al.

Table 3 The estimated impact of sleep deprivation on experimental pain can vary greatly across
experimental pain measures within the same study [59]

Schuh-Hofer et al. [59] Control Total sleep dep Difference % Increase in pain

Cold pain threshold (ıC) 14.7 20.4 5.7 38.8

Heat pain threshold (ıC) 44.2 41.4 2.8 6.3

Pressure pain threshold (kPa) 446.6 376.6 70 18.6

Mechanical pain threshold (mN) 67.8 43.5 24.3 55.9

Mechanical pain sensitivity (NRS 0–100) 5.5 12 6.5 118.2

In this study, the responses of 14 healthy subjects to five different measurements of evoked pain
were assessed after a night of undisturbed sleep (control) and after a night of total sleep deprivation
(Total Sleep Dep). The change in response is measured as a percentage of the control response

Table 4 An example of why it is difficult to compare magnitude of effect across different units
for measuring pain [59]

Schuh-Hofer et al. [59] Control Total sleep dep % Increase in pain

Cold pain threshold (ıC) 14.7 20.4 38.8

Cold pain threshold (ıF) 58.5 68.7 17.6

Changes in the threshold temperature for evoked pain by cold stimulus to the hand was measured
after a night of undisturbed sleep (control) and after a night of total sleep deprivation (Total Sleep
Dep). When measured as a percentage of the control response, the same change in response is
computed as a larger percentage change when degrees Celsius are used compared to degrees
Fahrenheit

Similarly, across studies, the effect of sleep deprivation in percentage change
units was consistently larger on cold pain threshold than on heat pain threshold,
simply because the temperature values for cold pain threshold under the control
condition were lower, making the denominator in the percentage change equation
(i.e., (change from control threshold temperature) / (control threshold temperature))
smaller. Likewise, percentage change increases in subjective rating scales were
almost always exaggerated, since ratings from control subjects were often extremely
low, making the denominator in the percentage change equation diminutive.

The typical rationale for using percentage change units for comparing data of
different units is the idea that the biological impact of changes in the unit depends
on its initial values. For example, if a disease condition increases the number of
mRNA transcripts for a particular gene from 100 to 110, this is likely to matter more
biologically than an increase from 1000 to 1010. It is not clear that this logic holds
true for the units used in pain research (as indicated by the particularly irrational
examples above). What is likely to matter more biologically is the percentage of
the range of stimulation possible before tissue is genuinely damaged. For example,
in a heat threshold experiment, you would expect that pain sensation might reflect
a range of temperatures between physiological levels (37 ıC) and a level of heat
that rapidly causes damage (60 ıC) [77]. In that case, a drop in pain threshold
of 3ı would cover 13% of the full range of pain sensation possible ((3ı)/(60–
37 ıC) = 0.13). This is a much more interpretable value than simply saying that a
drop in pain threshold from 49 ı in controls to 46ı following sleep deprivation is a
6% change from the original pain threshold ((49–46ı)/49ı = 0.061).
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Table 5 Within a study, the estimated impact of sleep deprivation on experimental pain is quite
consistent if the data are normalized as a percentage of the full estimated range for painful
sensation in that modality [59]

Maximum pain Full range of

Observed Minimum pain (threshold for stimulation % Range of

Schuh-Hofer et al. [59] difference (no stimulation) tissue damage) (max–min) stimulation

Cold pain threshold (ıC) 5.7 37 -51 88 6.5

Heat pain threshold (ıC) 2.8 37 60 23 12.2

Pressure pain threshold
(kPa)

70 0 686 686 10.2

Mechanical pain thresh-
old (mN)

24.3 0 512 512 4.7

Mechanical pain sensi-
tivity (NRS 0–100)

6.5 0 100 100 6.5

The observed difference in response values between the control and total sleep deprivation
conditions, as listed in Table 3, was computed as a percentage of the full range of stimulation
response values

Using this logic, we found that the data documenting the impact of sleep
deprivation on experimental pain was much more consistent than it initially
appeared. For the different experimental pain measures used in the study of [59], we
determined minimum and maximum response values corresponding to the absence
of stimulation and the value when tissue damage would occur, respectively. The full
range of response values was computed as the difference between the maximum and
minimum response values. We then computed the observed difference in response
values between the control and total sleep deprivation conditions, as listed in
Table 3, as a percentage of the full range of stimulation. Computed in this way, all
experimental pain measures indicate that sleep deprivation increases pain by �5–
12% of the full range of painful stimulation (Table 5).

To apply this logic to multiple studies on the effects of sleep deprivation and
circadian modulation of pain, we estimated minimum and maximum stimulation
levels necessary to produce a full range of pain responses to a number of dif-
ferent experimental pain modalities, as well as typical pain thresholds (Table 6).
From these measurements, we computed the range of physiologically meaningful
stimulation as the difference between the maximum and minimum values, and the
range of painful stimulation as the difference between the maximum and pain
threshold values. We then normalized the results across studies by converting
changes in pain response values to percentage changes within the full range of
physiologically meaningful stimulation or percentage changes within the range of
painful stimulation. Following this normalization, the magnitudes of the effects of
sleep deprivation and daily rhythms were less variable across studies. This implied
that normalizing data based on percentage changes within the range of painful
stimulation was superior to using a simple percentage of the mean. (However,
please note that the data necessary to perform this improved normalization were
not available for all studies—for example, several studies used to construct Fig. 1.)
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Table 6 Determining the range of painful stimulation possible within human experimental pain
studies before the occurrence of tissue damage, as well as the typical threshold for pain sensation

Maximum Pain Range of

pain Full range of threshold as painful

Minimum (threshold meaningful Typical % of range stimulation

Type of pain pain (no for tissue stimulation pain of painful (max-

measurement stimulation) damage) (max–min) threshold stimulation threshold)

Cold (ıC)a 37 -51 88 12 28% 59

Heat (ıC)b 37 60 23 46 37% 15

Heat (mcal/cm2)c 0 2420 2420 871 36% 1540

Electric stimulation
of sural nerve (mA)d

0 40 40 12 30% 28

Pressure (kPa)e 0 686 686 447 65% 240

Mechanical (mN)f 0 512 512 68 13% 444

Tolerable pressure
duration (s)g

0 360 360 15 13% 345

Mechanical pain
sensitivity (NRS
0–100)h

0 100 100 1 1% 99

Laser heat VAS pain
ratings (0–100)i

0 100 100 1 1% 99

Electrical
stimulation pain
ratings (0–10)j

0 10 10 1 10% 9

Tourniquet pain
intensity ratings
(0–10)k

0 10 10 1 10% 9

Sources for computations:
ahttp://-www.ehs.neu.edu/laboratory_safety/fact_sheets/-cryogenic_liquids
bReference [77]
cReference [65]
dMaximum for Instrument, the typical mA eliciting nociceptive pain reflex by someone who is
under general anesthesia for surgery [72]
ePressure of about 100 lb/in2 (7 kg/cm2) is required to penetrate the epidermis (1 kg/cm2 = 98.07
kPa) [9]
fMaximum for Instrument [59]
gMaximum for Test, rated “Very strong pain” by all participants [21]
hReference [59]
iReference [69]
jReference [6]
kReference [32]

Using this improved normalization method, we also found that the magnitude of the
effects of sleep deprivation and daily rhythms were roughly equivalent (Table 7).
Specifically, we found that, on average, evoked pain responses, measured relative to
the range of painful stimulation, varied by approximately 14% due to daily rhythms
and by approximately 13% in response to sleep deprivation.

http://-www.ehs.neu.edu/laboratory_safety/fact_sheets/-cryogenic_liquids
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3.3 A Cross-Species Comparison: Circadian Rhythms and
Homeostatic Sleep Drive Influence Pain Sensitivity in
Laboratory Rodents

The vast majority of what is known regarding the influence of circadian rhythms and
sleep–wake cycles on pain processing circuitry comes from studies on laboratory
rodents. In order to properly compare these data with that of humans, it is important
to understand that the circadian and sleep systems of laboratory rodents differ from
humans in several fundamental ways. To begin with, laboratory mice and rats are
nocturnal, which means that most of their wakefulness occurs at night and most of
their sleep occurs during the day. They are also polyphasic sleepers, which means
that they sleep in short, multi-minute bouts, interrupted by waking, and rarely
exhibit consolidated wakefulness that extends beyond several hours. Despite their
unconsolidated wake and sleep, they still generally exhibit a progressive build-up of
homeostatic sleep drive across the nighttime active period, and dissipation during
the daytime rest period [70].

Similar to humans, there is clear evidence that pain sensation in laboratory
rodents is modulated by both time-of-day [11, 18, 30, 34, 43, 51, 55, 68, 78] and
sleep deprivation [27, 42, 71, 73–75]. Unlike humans, we can easily place laboratory
rodents into constant environmental conditions and thus be able to demonstrate with
certainty that the influence of time-of-day on pain sensation is due to an endogenous
circadian clock instead of simple passive responses to a rhythmic environment [51].
However, the timing of the daily peak in pain sensitivity varies in different strains
of inbred rodents by as much as 12 h [11], making it sometimes difficult to draw
generalized conclusions about the influence of circadian rhythms on pain sensitivity.
Another notable difference between humans and rodents is that the duration of sleep
deprivation necessary to observe an effect on pain responses is much smaller, since
rodents typically do not exhibit consolidated wakefulness on the scale of multiple
hours.

4 Circadian Rhythms and Homeostatic Sleep Drive
Modulate Pain Neural Circuitry

The neural location for the circadian modulation of pain begins at the most funda-
mental level of the pain circuitry: sensory afferent input into the spinal cord. Within
the dorsal root ganglia, which are the neural structures that contain the cell bodies for
the sensory afferent neurons, there is clear evidence for endogenous circadian rhyth-
micity. The dorsal root ganglia rhythmically express a full complement of clock
genes, which are the genes responsible for generating daily rhythmicity throughout
the body [78]. The dorsal root ganglia also demonstrate rhythmic expression of
genes necessary for synaptic transmission, including voltage-gated calcium channel
subunits [34] and NMDA glutamate receptor subunits [78]. However, since the
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dorsal root ganglia contain the cell bodies for a wide variety of afferent neurons,
it could be argued that measuring rhythmicity in the dorsal root ganglia as a whole
does not necessarily indicate that the nociceptors responsible for pain transmission
are rhythmic. Two pieces of evidence suggest otherwise. First, an estimated 82% of
afferents are nociceptors [16], thus it is likely that the majority of mRNA collected
from the dorsal root ganglia in these experiments represents mRNA from pain
transmitting cells. Second, researchers have discovered rhythmic expression of the
mRNA and protein for Substance P, a neurotransmitter important for pain-signaling
from C fibers [78]. Therefore, it is likely that the nociceptive afferent neurons
themselves are rhythmic. That said, the cell bodies for the non-nociceptive fibers
in the dorsal root ganglia probably also contain endogenous rhythmicity. In human
studies the influence of time-of-day on non-noxious mechanical sensitivity, which
is conveyed by Aˇ fibers, differs from that of painful stimuli, which is conveyed
by Aı and C fibers, with the rhythm in mechanical sensitivity peaking in the late
afternoon (15:00–18:00) and the rhythm in pain sensitivity peaking in the middle of
the night (between midnight and 03:00 [48]).

The top-down inhibition of pain processing in the dorsal horn also exhibits a
daily rhythm. In humans, placebos best alleviate pain in the early afternoon [48].
In laboratory rodents, there is a daily rhythm in the strength of stress-induced
analgesia and endogenous opioid-release, and this rhythm persists under constant
environmental conditions [51, 76]. Opioid receptors in the brainstem, which are
important for analgesia, exhibit a strong daily rhythm [68]. However, it is possible
that these daily rhythms in the top-down inhibition of pain do not represent direct
influences of the circadian clock, but instead are a response to the rhythmic build-
up and dissipation of homeostatic sleep drive across the day. In support of this
theory, there is strong evidence demonstrating that sleep deprivation influences
the highest levels of pain processing. Sleep deprivation is already well known to
disproportionately affect the energy and resource-needy cortex. Therefore, it is
unsurprising that sleep deprivation in humans eliminates distraction-based analgesia
[69] and decreases central pain modulation [10, 24]. Even top-down pain inhibition
originating from lower levels of the central nervous system is crippled by sleep
deprivation, including diffuse noxious inhibitory controls in humans [24, 61] and
stress-induced hyperalgesia in rodents [71]. Pharmacological manipulations that
mimic top-down pain inhibition, such as morphine, are ineffective following severe
sleep deprivation [42, 71].

Sleep deprivation can also alter more fundamental levels of pain processing in
the spinal cord, including neurotransmission via glutamate (mGLUR5, NMDA),
GABA, and NOS, as well as the passive spread of electric potential via astrocytic
gap junctions and the production of reactive oxygen species [73–75]. Despite these
effects, under conditions in which the top-down inhibition of pain is minimal, there
seems to be less evidence that homeostatic sleep drive influences pain processing.
For example, there is some evidence that sleep deprivation may not affect the
processing of fast pain (Aı input). Cortical responses to fast pain actually diminish
following sleep restriction [69], and, for faster reflexive behaviors (such as tail
withdrawal latency), sleep deprivation effects are sometimes not found [75]. Like-
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wise, homeostatic sleep drive does not seem to contribute much to the typical daily
rhythm in acute pain sensitivity in rodents. For example, experiments performed
in mice with a critical mutation in the essential clock gene Per2 show a complete
elimination of daily rhythms in acute pain under typical housing conditions [45, 78],
despite maintaining elevated nocturnal activity in response to the laboratory light–
dark cycle [62], and thus presumably also retaining a daily rhythm in the build-up
and dissipation of homeostatic sleep drive.

In the case of more severe or chronic pain, the influences of homeostatic
sleep drive on top-down inhibition may be more relevant. For example, Per2
mutant mice continued to exhibit daily rhythms in inflammatory pain in a manner
that matched a predicted build-up and dissipation of homeostatic sleep drive in
response to nocturnal behavioral patterns [78]. Both inflammatory and neuropathic
conditions are also characterized by a 8–12 h shift in the phasing of daily rhythms
in pain sensitivity [20, 34, 68, 78], which may represent an increased influence of
homeostatic drive on the top-down inhibition of pain when pain is extended over a
longer time scale.

5 Discussion

In summary, there is a substantial body of work documenting the effects of both
daily rhythms and sleep deprivation on acute pain sensitivity under experimental
conditions in humans and rodents. These results appear divergent at first glance,
but upon closer inspection seem to generally agree that peak acute/phasic pain
sensitivity in humans occurs during the evening. Our data analysis reveals that the
influence of both daily rhythms in pain sensitivity and 24 h of sleep deprivation
typically alter pain sensitivity under experimental conditions by 13–14% of the
full range of painful stimulation. Other studies suggest that the influence of daily
rhythms and sleep deprivation may increase with pain intensity. Where these effects
originate physiologically is a more recent source of discussion, but it is likely that
they represent the intersecting influence of homeostatic sleep drive and the circadian
timekeeping system on the central nervous system. There is clear evidence for
circadian effects at the level of the spinal cord and there are equally clear effects
for sleep-dependent modulation of the top-down inhibition of pain, although it
is possible that both processes influence all levels of the central nervous system.
Finally, the effect of circadian rhythms and homeostatic sleep pressure on pain
sensitivity may differ depending on the type of pain measured, with data clearly
indicating that slower C fiber input and tonic pain sensitivity are influenced by both
endogenous circadian rhythms and homeostatic sleep drive, whereas fast Aı input
and faster reflexive pain measures may be less susceptible.

In the companion articles, we introduce two mathematical models to investigate
the joint modulation of the circadian rhythm and homeostatic sleep drive on pain.
These models address pain at two different levels: at the organismal level as the
experience of pain sensitivity and at the neural level as the firing rates of pain
processing circuits in the spinal cord.
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The organismal-level model addresses a clear gap in our current knowledge:
the lack of experimental data measuring the dissociated influence of circadian
rhythms and homeostatic sleep drive on pain sensitivity in humans, as would be
obtained from a forced desynchrony or constant routine protocol. To address this
gap, we adapt the formalism of a classic mathematical model for the regulation
of sleep behavior by the circadian rhythm and homeostatic sleep drive, called the
Two Process model [13], to simulate the interaction of these two processes on pain
sensitivity. The data analysis presented here is used to define a generic “daily pain
sensitivity” function (Fig. 1), which we decompose into two independent circadian
and homeostatic components (Process C and Process S) using a range of potential
relative magnitudes constrained to produce results resembling the normalized data
in Table 7. Then we use this model to simulate the resultant changes in the daily
pain sensitivity rhythm in response to a variety of altered sleep schedules: sleep
deprivation, sleep restriction, and shift work.

The neural-level model is based on the circuitry in the dorsal horn of the spinal
cord consisting of synaptically coupled populations of excitatory and inhibitory
interneurons that process input signals in the primary afferent fibers and influence
the output signal of the WDR neurons. The temporal profile of inputs on the
different types of afferent fibers and excitability properties of the included neuronal
populations are constrained by experimental results. We validate the model by
replicating experimentally observed phenomena of A fiber inhibition of pain and
wind-up. We then use the model to investigate mechanisms for the observed phase
shift in circadian rhythmicity of pain that occurs with neuropathic pain conditions.

In conclusion, while experimental evidence indicates both circadian and sleep-
dependent effects on daily pain rhythms, dissecting their interactions that contribute
to changes in pain rhythms under varying normal or pathological conditions is
difficult experimentally. The mathematical models developed in this series of
papers provide frameworks to incorporate the known experimental results of these
effects and to investigate their potential interactions under different conditions. By
addressing both the behavioral and cellular levels, these models are useful tools to
identify how the primary biological processes of sleep, circadian rhythmicity, and
pain interact.
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Investigating Circadian Rhythmicity in Pain
Sensitivity Using a Neural Circuit Model for
Spinal Cord Processing of Pain

Jennifer A. Crodelle, Sofia H. Piltz, Victoria Booth,
and Megan Hastings Hagenauer

Abstract Primary processing of painful stimulation occurs in the dorsal horn of
the spinal cord. In this article, we introduce mathematical models of the neural
circuitry in the dorsal horn responsible for processing nerve fiber inputs from
noxious stimulation of peripheral tissues and generating the resultant pain signal.
The differential equation models describe the average firing rates of excitatory
and inhibitory interneuron populations, as well as the wide dynamic range (WDR)
neurons whose output correlates with the pain signal. The temporal profile of
inputs on the different afferent nerve fibers that signal noxious and innocuous
stimulation and the excitability properties of the included neuronal populations
are constrained by experimental results. We consider models for the spinal cord
circuit in isolation and when top-down inputs from higher brain areas that modulate
pain processing are included. We validate the models by replicating experimentally
observed phenomena of A fiber inhibition of pain and wind-up. We then use
the models to investigate mechanisms for the observed phase shift in circadian
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rhythmicity of pain that occurs with neuropathic pain conditions. Our results suggest
that changes in neuropathic pain rhythmicity can occur through dysregulation of
inhibition within the dorsal horn circuit.

MSC codes: 37C99, 37N25, 92B25, 92C20

1 The Neural Processing of Pain

The ability for an organism to detect pain is essential for its survival. It is intuitive
that the processing of pain must engage a wide variety of neural circuits ranging
from the spinal cord, up through the brainstem, thalamus, and cortex. Though this
is true, many of the higher-level cognitive and emotional influences re-converge at
the level of the spinal cord, to gate the input of nociceptive information entering
the dorsal horn. The dorsal horn serves as a processing center for incoming pain
signals, while the midbrain and cortex, as a whole referred to as descending or top-
down inhibition [21], serve as a modulator of the pain circuit in the dorsal horn. As
a result, there is a tradition of modeling pain processing by focusing exclusively on
spinal cord circuitry.

The neural circuit in the dorsal horn receives information about stimulation of
peripheral tissues from several types of primary afferent nerve fibers. Nerve fibers
called nociceptors detect painful stimuli and are only activated when a stimulus
exceeds a specific threshold. These afferents have their cell bodies in the dorsal root
ganglia, a cluster of nerve cell bodies located in the back of the spinal cord, and
their axons, or afferent fibers, reach to the dorsal horn [3].

There are two major classes of nociceptive fibers: medium diameter, myelinated,
fast conducting Aı fibers that mediate localized, fast pain, and small diameter,
unmyelinated, slow conducting C fibers that mediate diffused, slow pain. In
addition to the two nociceptive fibers, there are large diameter, myelinated, rapidly
conducting Aˇ fibers that respond to innocuous, mechanical stimulation [24].
The dorsal horn circuit is composed of many populations of neurons, including
excitatory and inhibitory interneurons, and the wide dynamic range (WDR) neurons,
or projection neurons. These WDR neurons respond to input from all fibers and
constitute the majority of the output from the dorsal horn circuit up to the brain.

In this article, we introduce a mathematical model of the pain processing
neural circuit in the dorsal horn. We are particularly interested in using the model
to investigate mechanisms for circadian and sleep-dependent modulation of pain
sensitivity. As reviewed in [9], pain sensitivity exhibits a daily rhythm with a
trough in the late afternoon and a peak sometime after midnight for humans.
There are several hypotheses for the source of this circadian rhythm, including the
sensory afferent fibers, and the top-down inhibition. Since the dorsal root ganglia
rhythmically express clock genes responsible for generating circadian rhythmicity
of other physiological processes [35], and the dorsal root ganglia contain the cell
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bodies for a wide variety of afferent neurons, we assume for our model that circadian
modulation occurs at the level of primary afferent input to the spinal cord. In the case
of more severe or chronic pain, the influences of homeostatic sleep drive on top-
down inhibition may be more relevant [35]. We aim to use our mathematical model
of the pain circuit in the dorsal horn to form hypotheses on where the modulation
might occur and how this placement can affect the firing behavior of the projection
neurons.

1.1 Previous Models of Pain Processing

There is a long history to understanding how the body perceives pain, including
many conflicting theories. Today’s main theory of pain, the gate control theory
of pain, was developed in 1965 by Ronald Melzack and Charles Patrick Wall
[19]. These researchers revolutionized the understanding of the pain pathway by
scrutinizing previous conceptual models of pain processing and developing a model
that accounts for the experimental evidence seen thus far. The gate control theory of
pain posits that the neural circuitry in the dorsal horn exhibits a gating mechanism
that is modulated by activity in the Aˇ and C afferent fibers [22]. The nociceptive
C fibers facilitate activity in the dorsal horn circuit, whereas the Aˇ fibers inhibit
activity. When the amount of painful stimuli (activity in C fibers) outweighs the
inhibition from the Aˇ fibers, the “gate opens” and activates the WDR neurons and,
thus, the experience of pain. Experimentalists have used this theory to frame their
investigations on the types of fibers that project to the spinal cord, as well as the role
of different neuron types in the dorsal horn.

Although the gate control theory of pain [19] is a simplification and not a
complete representation of the physiological underpinnings of pain [22], it has been
a productive starting point for several mathematical and computational models of
pain. These models in turn have given insight into the underlying mechanism of
pain. The gate control theory was shown to explain several observed phenomena
in pain and suggested a possible mechanistic explanation for rhythmic pain (i.e., a
sudden change in the input from fast or slow afferent fibers) [6]. Later in [5], the
authors considered an excitatory and inhibitory connection from the mid-brain to
the inhibitory interneurons and projection neurons, respectively, to be included in
the model developed in [6]. This generalization made it possible to take the effect of
N-methyl-D-aspartate (NMDA) receptors into account, and therefore, allowed for
the resulting model to successfully reproduce the “wind-up” mechanism [5] —that
is, an increased level of activity in a neuron that is being repeatedly stimulated [20].

Similarly to [5, 6], more recent models of pain have considered a modeling
framework at the level of a single neuron. These biophysically detailed models
of pain have been constructed by connecting compartmental models of individual
neurons in the dorsal horn according to the circuit architecture proposed by the
gate control theory [19]. In these models, the action potential firing of an individual
neuron is described by a Hodgkin–Huxley model of membrane current [13] with
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appropriate membrane dynamics and synaptic strengths based on experimental data.
This approach allows for a detailed representation of the geometry and biophysics
of each neuron connected to the other neurons via a network whose biophysical
behavior and characteristics are then calculated numerically [12]. Such a network
model has been previously constructed for the interaction between a deep dorsal
horn neuron and Aı fibers [17], for a wide dynamic range projection neuron [1],
and for the dorsal horn circuit between a projection, inhibitory, and excitatory
neuron [36]. All these models were validated by showing that they are able to
reproduce observed phenomena such as wind-up in the presence of nonzero calcium
conductances and NMDA [1, 17, 36]. In addition to wind-up, the model in [36]
exhibits also pain inhibition via a response to a stimulus in the A fibers, as has
been observed experimentally [34]. On the other end of the modeling spectrum,
Arle et al. [2] have constructed a very large-scale, physiologically accurate network
model of spinal cord neural circuitry that includes numerous known cell types,
their laminar distribution, and their modes of connectivity. In addition to simulating
pain signaling, the network accounts for the primary motor reflex responses. They
applied the model to investigate the mechanisms of pain relief through dorsal
column stimulation (DCS), a procedure used to treat neuropathic pain. Their results
identify limitations of gate control theory and propose alternate circuitry that more
accurately accounts for the effects on nociceptive and neuropathic pain of DCS.

In this work, we take a similar approach to the previous models of pain in terms
of the network architecture in the dorsal horn proposed by the gate control theory
[20]. However, instead of considering a detailed biophysical model of a single
neuron as in [1, 17, 36] or a large-scale network of individual neurons as in [2],
we construct equations to describe the population activity of projection, inhibitory,
and excitatory neurons in the dorsal horn. As a result, we work with average
firing rates of each of the three neuron populations according to the formalism
developed in [33]. Therefore, our modeling approach is similar to [6], but we give
our model predictions in terms of average firing rates of neuron populations instead
of potentials of individual cells.

Thus far, we have not encountered an average firing rate model for pain in the
literature. Our choice of modeling framework and dynamic variables is motivated
by our long-term aim to integrate a model for pain into an existing model for the
sleep–wake cycle constructed in terms of the average firing rate of sleep- and wake-
promoting neuron populations. Such a combined sleep–wake–pain model would
allow us to test existing hypotheses and ask several biologically motivated questions
from the model, for example, on the coupling between sleep, circadian rhythms, and
pain sensitivity [7], including the case of chronic pain which is not assessed by the
existing biophysical models of pain in [17, 36].
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2 Mathematical Model

In this section, we construct our model for the dorsal horn circuit. We choose a
firing rate model in which we describe the firing rate of the projection, inhibitory
interneuron, and excitatory interneuron populations in the dorsal horn circuit.
The following sections define equations of time evolution for the firing rate of
populations, as well as the response functions for each population, arrival times
for the afferent fibers, and connectivity between populations.

2.1 Equations of Time Evolution

In our model for pain processing, we focus on the dorsal horn and construct
equations for the average firing rate of three interconnected neuron populations in
the dorsal horn circuit. We assume that the input to our model is a stimulation of the
afferent fibers that has been pre-processed in the dorsal root ganglion. Based on this
model input, and on the connections between the neuron populations in the dorsal
horn, our model predicts the activity of the projection neurons that then proceeds to
the mid-brain (see Fig. 1).

In the dorsal horn circuit, the population of the wide dynamic range (i.e., neurons
that respond to both nociceptive and non-nociceptive stimuli) projection neurons
(W) is connected to the population of inhibitory interneurons (I) and excitatory
interneurons (E) (see Fig. 1). According to the formalism of the average firing rate
models, we follow [33] and assume that the rate of change of the average firing rate
in Hz (i.e., average number of spikes per unit time) of the projection, inhibitory,
and excitatory neuron populations, fW , fI , and fE, respectively, is determined by a
nonlinear response function (that we define in Sect. 2.2). These response functions
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Fig. 1 Diagram of our biophysical model for the dorsal horn circuit. For variable names and
default parameter values, see Table 1
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determine the average firing rate of a neuron population based on the external inputs
(i.e., stimulations of the afferent fibers pre-processed in the dorsal root ganglion) and
the firing rates of the presynaptic neuron populations (see Fig. 1). In the absence of
input from other neuron populations and afferent fibers, we assume the average
firing rate of the neuron population decays exponentially. These assumptions yield
the following equations for the average firing rate of each population:

dfW
dt

D W1.gABWfAB C gADWfAD C gCWfC C gEWfE � gIWfI/ � fW
�W

;

dfE
dt

D E1.gCEfC � gIEfI/ � fE
�E

; (1)

dfI
dt

D I1.gABIfAB/ � fI
�I

;

where �W , �E, and �I are the intrinsic timescales of the projection, excitatory, and
inhibitory neuron populations, respectively. Weight gNM denotes the strength of the
effect a change in an external input or presynaptic neuron population N has on
neuron population M. We indicate inhibitory synaptic input with a negative sign
and excitatory synaptic input with a positive sign. We define the step functions
of the external inputs, fAB, fAD, and fC, and the monotonically increasing firing
rate response functions W1, E1, and I1, in the following Sects. 2.1.1 and 2.2,
respectively. For a summary of all model variables and parameters, see Table 1.

Table 1 Summary of our model [in Eq. (1)] variables, parameters, and default parameter
values

Name Description Default value

gABW Weight of the synaptic connection from Aˇ fibers to W 0.6

gABI Weight of the synaptic connection from Aˇ fibers to I 0.6

gADW Weight of the synaptic connection from Aı fibers to W 0.3

gCE Weight of the synaptic connection from C fibers to E 0.6

gCW Weight of the synaptic connection from C fibers to W 0.4

gEW Weight of the synaptic connection from E to W 0.4

gIE Weight of the synaptic connection from I to E 0.05

gIW Weight of the synaptic connection from I to W 0.15

maxAB Amplitude of the Aˇ fiber model input 2

maxAD Amplitude of the Aı fiber model input 0.5

maxC Amplitude of the C fiber model input 1.5

maxE Maximum firing rate of E 60 Hz

maxI Maximum firing rate of I 80 Hz

maxW Maximum firing rate of W 50 Hz

�E Intrinsic timescale of E 20 ms

�I Intrinsic timescale of I 20 ms

�W Intrinsic timescale of W 1 ms
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2.1.1 Model Inputs from the Dorsal Root Ganglion

The three different types of afferent fibers not only have different sizes of diameter,
but they also differ at the level of myelination that provides insulation. As a result,
impulses are transmitted at different conductance speeds in the three afferent fibers.
To determine the pattern of nerve input from a painful stimulus to the spinal cord
(see Fig. 1a in [25]), we simulate the arrival of 1000 nerve impulses. The majority
(82%) of these fibers consist of slow C fibers (with an average conduction velocity
of 1:25 m/s and a standard deviation of 0:75 m/s), 9% as Aı fiber fibers (with an
average conduction velocity of 0:12 m/s and a standard deviation of 0:083 m/s), and
9% as Aˇ fibers (with an average conduction velocity of 0:024 m/s and standard
deviation of 0:013 m/s). We assume that the time of initiation of each of the nerve
pulses in each of these fibers in the periphery in response to painful stimulation is
roughly equivalent and that they need to travel 1 meter to reach the spinal cord (e.g.,
the length of a leg). We choose these proportions and conductance speeds based on
the literature [16, 24]. Our simulated data from fibers with different conductance
speeds reproduces the observed pattern [25] of a fast response to the Aˇ and Aı

fibers (i.e., first pain) followed by a slow response to the C fibers (i.e., second pain)
(see Fig. 2).

To generate a simplified model input similar to the simulated input in Fig. 2, we
use Heaviside step functions to represent how a stimulation (of the afferent Aˇ, Aı,
and C fibers) and its pre-processing in the dorsal root ganglion is received by the
dorsal horn circuit. Thus, the external inputs fAB, fAD, and fC to the model in Eq. (1)
are given by

fAB.t/ D maxABH.t � tONAB/H.tOFFAB � t/ ;

fAD.t/ D maxADH.t � tONAD/H.tOFFAD � t/ ; (2)

fC.t/ D maxCH.t � tONC /H.tOFFC � t/ ;

where maxAB, maxAD, and maxC are the amplitudes of the signals from Aˇ, Aı, and
C fibers, respectively; tONAB , tONAD , and tONC are the time points when an input from
Aˇ, Aı, and C fibers, respectively, is received by the dorsal horn circuit; tOFFAB ,
tOFFAD , and tOFFC are the time points when an input from Aˇ, Aı fiber, and C fibers,
respectively, has decayed; and H.x/ is a Heaviside step function

H.x/ D
8
<

:

0; if x < 0 ;
1
2
; if x D 0 ;

1; if x > 0 :

(3)

In Fig. 3, we show an example input that mimics the combined signal from the three
afferent fibers and that we use as an input to our model in Eq. (1).
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Fig. 2 Simulated post-stimulus histogram from three afferent fibers with different conductance
speeds reproduces a pattern observed in the action potential of projection neurons [25] where fast
pain response is composed of a response to stimuli in the Aˇ and Aı fibers followed by slow pain
response to stimuli in the C fibers

2.2 Firing Rate Response Functions

In our modeling framework, we assume a sigmoidal shape for the monotonically
increasing firing rate response functions W1, E1, and I1, and use hyperbolic
tangent functions to represent them

W1.c/ D maxW
1

2

�

1 C tanh

�
1

˛W
.c � ˇW/

��

;

E1.c/ D maxE
1

2

�

1 C tanh

�
1

˛W
.c � ˇW/

��

; (4)

I1.c/ D maxI
1

2

�

1 C tanh

�
1

˛W
.c � ˇW/

��

;

where maxW , maxE, and maxI are the maximum firing rates of the projection,
excitatory, and inhibitory neuron population, respectively. In Eq. (4), the shape of
the tanh-functions is determined by the input c at which the average firing rate of the
projection, excitatory, and inhibitory neuron population reaches half of its maximum
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Fig. 3 Simulated model input to the dorsal horn circuit from the afferent fibers after pre-
processing in the dorsal root ganglion

value, c D ˇW , c D ˇE, and c D ˇI , respectively. The slope of the transition from
non-firing to firing in the projection, excitatory, and inhibitory neuron population
is given by 1=˛W , 1=˛E, and 1=˛I , respectively. See Table 1 for default parameter
values. We choose the parameter values for the tanh-functions in such a way that the
input–output curve of the projection, excitatory, and inhibitory neuron population
agrees qualitatively with experimental observations (see Fig. 4). Hence, we assume
the inhibitory interneuron population has a nonzero resting firing rate, as has been
reported in [3, 21], and a higher maximum firing rate than that of the projection
and excitatory interneuron populations, as has been assumed in a biophysically
detailed model of the dorsal horn circuit [36]. In our model assumptions for the
response functions, we mimic the model predictions of [36] that agree with data
from experimental observations in [18, 26]. Thus, we assume that for a small input,
the excitatory interneuron population has a small average firing rate that, however,
reaches a higher maximum than that of the projection neuron population for a large
input (see Fig. 4).

3 Model Validation

In this section, we set out to show that our model reproduces various experimental
observations such as pain inhibition, wind-up, and neuropathic phase changes.
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Fig. 4 Response functions of the projection (black), excitatory (red), and inhibitory (blue) neuron
populations for different constant inputs (on the x-axis). For parameter values, see Table 1

First, we show that our model reproduces the average firing rate pattern of
the populations of neurons in the dorsal horn when the three afferent fibers
differ in their conductance speeds. That is, as a response to the input from the
afferent fibers as shown in Fig. 2, the average firing rates of the projection and
interneuron populations [which are connected to each other as shown in Fig. 1
and whose dynamics are modeled as in Eq. (1)] are qualitatively similar to the
simulated histogram in Fig. 2 and also seen experimentally [e.g., see Fig. 1a in
[25] (see Fig. 5)]. In addition, the model captures the expected tonic firing rate
in the inhibitory neuron population [3, 21], as well as captures the low firing rate
of the excitatory neurons [18, 26] (see Fig. 4). We use the model output shown in
Fig. 5 as our point of comparison when choosing “default” values for the weights
gNN (see Table 1) representing the strength of the connections between the neuron
populations as shown in Fig. 1.

3.1 Pain Inhibition

It has been experimentally observed that stimulation of A fiber afferents can lead
to inhibition in some wide range projection neurons that typically follows from a
stimulation of the C fiber afferents [36]. This is related to the idea that when you
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Fig. 5 Firing rates for each population in response to the input from afferent fibers as described in
Fig. 3

stub your toe, you immediately apply pressure on the toe and feel some lessening
of pain. To capture this phenomenon in our model, we stimulate all three fibers
(stubbing of the toe) and then deliver a pulse to the Aˇ fiber a short time thereafter
(pressure applied to toe), shown in Fig. 6 by the red arrows. The arrival time of
the second pulse to the Aˇ fiber is increased by 10ms for each simulation, and the
response in the projection neurons is shown in blue. As can be seen in Fig. 6, the
timing of the second pulse gets closer to the arrival of the C fiber stimulation, and
there is a brief period of excitation followed by a longer period of inhibition, as seen
in experiments [34]. Thus, our model successfully captures this delayed inhibition
phenomenon.

3.2 Wind-Up

We aim to further validate our dorsal horn circuit model (1) by showing that it
reproduces wind-up —that is, increased (and frequency-dependent) excitability of
the neurons in the spinal cord because of repetitive stimulation of afferent C fibers
[20]. Wind-up serves as an important tool for studying the role the spinal cord plays
in sensing of pain, and it has been often used as an example phenomenon to validate



34 J.A. Crodelle et al.

0 0.05 0.1 0.15 0.2 0.25
0

50
Delayed Inhibition

0 0.05 0.1 0.15 0.2 0.25
0

50

0 0.05 0.1 0.15 0.2 0.25
0

50

0 0.05 0.1 0.15 0.2 0.25
0

50

0 0.05 0.1 0.15 0.2 0.25
Time (s)

0

50

F
iri

ng
 R

at
e 

(H
z)

Second A  pulse

Fig. 6 Pain inhibition phenomenon captured in the model. Response of the projection neuron
population to the initial fiber pulse stimulation (at t D 0) and the second pulse stimulation only to
Aˇ fibers (red arrow) for increasing in time between fiber stimulations

single neuron models of the dorsal horn (see [1, 17, 36], for example). However,
both the physiological meaning and the generation of wind-up remain unclear (see
[11] for a review).

There are several possible molecular mechanisms proposed for the generation
of wind-up (see Fig. 6 in [11]). Earlier work on single neuron models suggests
that wind-up is generated by a combination of long-lasting responses to NMDA
and calcium currents providing for cumulative depolarization [1]. Indeed, calcium
conductances and NMDA receptors of the projection/deep dorsal horn neurons are
included in all previous models of the dorsal horn [1, 17, 36]. In contrast to the
model in [1], wind-up can also be reproduced in the absence of synapses that express
gamma-Aminobutyric (GABA) from C fibers to the projection neuron [36]. The
study done in [17] emphasizes the effect (direct or via influencing the dependence
of the deep dorsal horn neurons on their intrinsic calcium currents) NMDA and
inhibitory conductances have on the extent of wind-up in the deep dorsal horn
neurons [17].

Experimental data on superficial and deep dorsal horn suggest that wind-up
is exhibited more by the deep than by the superficial dorsal horn neurons [28].
However, wind-up in the potential of the C fibers is observed in the superficial but
not in the deep dorsal horn [27]. Similarly to [1], we investigate whether wind-
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Fig. 7 (Left) Projection and (right) excitatory interneuron activity predicted by the model in (1)
and otherwise as shown in Table 1] when C fibers are stimulated repeatedly. We assume that
repeated stimulation of C fibers is experienced in the neurons upstream from the deep dorsal horn
and, thus, seen as an increase in the duration of the C fiber model input (see Fig. 3) to the dorsal
horn circuit (1). In other words, the model input from C fibers arrives to the dorsal horn circuit at
time tONC D 0:01s C n0:012s, where n D 0; 1; 2; 3; 4; 5 and n increasing from bottom to top panel

up of the wide dynamic range projection neurons in the dorsal horn circuit can be
explained by an increase in the C fiber response before the C-input reaches the
dorsal horn circuit. Thus, we assume wind-up occurs “upstream” from the dorsal
horn circuit described by our model in (1) and represent it as an increase in the
duration, and as a decrease in the arrival time, of the C fiber model input to the
dorsal horn circuit.

Increase in C fiber synaptic efficacy has been proposed as a possible generation
mechanism for wind-up in the literature [27] and suggested as one of the molecular
mechanisms underlying wind-up (see Fig. 6 in [11]). Similarly to [1], our model
predicts an increase in the activity of the projection neurons for an increase in the
width of the step input from C fibers (see Fig. 7, left). Furthermore, as in [1], our
model also predicts that wind-up in the excitatory interneurons (as a response to the
change in the C fiber model input) is similar to that seen in the projection neurons
(see Fig. 7, right). However, such behavior of the excitatory interneurons is not
well supported by experiments where wind-up is mostly observed in the projection
neurons [28]. Because wind-up in the excitatory interneurons had not been reported
by 2010, C fiber presynaptic facilitation was discarded as a possible mechanistic
explanation for wind-up in the modeling work done by [1]. Nonetheless, the
authors note that there is a possibility for underestimating the extent of wind-up in
interneurons because they are smaller in size than projection neurons and, there-
fore, more difficult to sample for electrophysiology experiments than projection
neurons [1].

We note here that the proposed mechanism we simulate in Fig. 7 involves
changing the profile of the model input (in Fig. 3) which leads to an obvious change
in the model output. We discuss implementations of dynamic wind-up mechanisms
in our conclusions in Sect. 5.
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3.3 Neuropathy

Following model creation, we next set out to determine whether changes in the
balance of excitation and inhibition within spinal cord pain circuitry could explain
changes in pain processing under pathological conditions. We were particularly
interested in the case of inflammation and neuropathic pain, in which non-noxious
mechanical stimuli become painful following peripheral nerve injury. Both nerve
injury and inflammation can cause a deregulation of chloride ion transporters in
the dorsal horn. Maintaining a low intracellular chloride concentration is important
for the functioning of inhibitory neurotransmission. Under typical conditions, the
neurotransmitter GABA produces an inhibitory postsynaptic response by binding
to the GABAA receptor, which allows negatively charged chloride ions to flow
into the postsynaptic neuron, thus producing hyperpolarization. Under neuropathic
or inflammatory conditions, intracellular chloride concentrations may stay semi-
permanently elevated, allowing chloride ions to flow out of the cell in response
to GABAA receptor activity, producing excitatory rather than inhibitory effects.
Several authors have hypothesized that this deregulation of spinal pain inhibition
could explain the development of pain sensation in response to non-noxious stimuli
under neuropathic conditions [10, 32].

Neuropathic conditions are characterized by an 8–12 h shift in the phasing of
daily rhythms in pain sensitivity [8, 15, 29, 35]. As an application of the model,
we investigate whether a large phase shift could be produced by a combination of
deregulated neural inhibition and differentially phased rhythmic afferent input from
Aˇ and C fibers [23], see [9].

Several inflammatory pain conditions, such as osteoarthritis and rheumatoid
arthritis, have been shown to exhibit circadian rhythm in pain, with the peak of pain
intensity being felt during the night; see Fig. 1 in [8]. Neuropathic pain occurs from
various conditions involving the brain, spinal cord, and nerves. It is distinguished
from inflammatory conditions, like arthritis, in that it often appears in body parts
that are otherwise normal under inspection and imaging, and is also characterized
by pain being evoked by a light touch. Experiments on pain in neuropathic patients
suggest that neuropathic pain has a circadian rhythm as well, having its peak in the
afternoon; see Fig. 2 in [8]. An afternoon peak in pain sensitivity is opposite of the
daily rhythm in pain sensitivity under normal conditions [9]. We use our model to
further investigate this phenomenon and propose that a possible mechanism for this
shift in rhythm is due to the interaction between the Aˇ and C fibers.

It has been seen experimentally that the A fiber activity can have an inhibitory
influence on C fibers, and that under neuropathic conditions, this inhibition can turn
to excitation [10, 31]. Using both of these experimentally observed results, as well
as the idea that the circadian rhythm comes into the dorsal horn at the level of the
fiber inputs, we show that we can get a change in phase of the firing rate of the
projection neurons with a change from inhibition (normal conditions) to excitation
(neuropathic conditions) in the influence from the A fibers to the C fibers. In order to
test our hypothesis that under neuropathy, response to acute phasic pain peaks in the
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Fig. 8 Diagram of our
biophysical model for the
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late afternoon when, under normal conditions, pain sensation reaches its minimum
value, we introduce two principal modifications to our model in Eq. (1). First, we
impose a circadian rhythm on the maximum amplitude of the model inputs from Aˇ

and C fibers (i.e., on parameters maxAB and maxC, respectively). Second, we assume
an amplitude modulation of the C fibers by the Aˇ fibers (see Fig. 8).

Our motivation for the second assumption comes from experimental data sug-
gesting that A fibers can decrease the activity of C nociceptors [31]. To represent
such an inhibitory effect of A fibers, we model the amplitude modulation between
the Aˇ and C fibers with a weight gAˇC, which under normal conditions is inhibitory
and gAˇC < 0, whereas under neuropathy, the inhibitory interneuron population
through Aˇ fibers has an excitatory effect on the C fibers and gAˇC > 0. By
simulating our modified model, we investigate whether the activity of the projection
neurons follows the circadian rhythm in C fibers under normal conditions and that
of the Aˇ fibers under neuropathic conditions.

Earlier work suggests circadian rhythmicity in both the touch and pain sensitivity
(see Figs. 1 and 2 in [23]). Namely, the pain sensitivity is at its lowest in the
early afternoon and at its highest in night, while the highest sensitivity for tactile
discrimination is reached in the late afternoon and the lowest in the late morning
[23]. These experimental observations motivate us to introduce a circadian rhythm
to the model input from Aˇ fibers that is in antiphase with the circadian rhythm
of the C fiber model inputs, while keeping the arrival times from the three afferent
fibers at their default values (see Fig. 3 and Table 1). Thus, in our modified model
for neuropathy, maxAB D 1:5.1Csin

�
�
4

t � �
�
/ and maxC D 1:3.1Csin

�
�
4

t
�
/C1:6

(see blue and red curves, respectively, in Fig. 9). In addition, because of the synaptic
connection from the inhibitory interneuron populations to C fibers, we compute the
effective maximum height of the C fiber model input as

maxCeff D maxC C gAˇCmaxAB ; (5)
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Fig. 9 (Circles) Integrated projection neuron activity predicted by the model in (1) under (top)
normal and (middle) neuropathic conditions, and (bottom) the different circadian rhythms of the
height of the afferent fiber model inputs. Under normal conditions, the interneuron population
I decreases the height of the model input from C fibers (see black solid curve in the bottom
panel), whereas under neuropathic conditions the connection between I and C fiber model input is
excitatory. As a result, the effective height of the C fiber model input (black dashed curve) is higher
than its baseline value (red curve). We calculate the activity of the projection neuron population
as the area under the C-response. Thus, for each zeitgeber time point (with the corresponding
maximum heights of the model inputs from Aˇ and C fibers shown in the bottom panel), we
simulate the neuropathy model for 0:4s and determine the integral under the projection neuron
response for t D Œ0:007s; 0:4s�

where gAˇC D �0:5 under normal conditions, and gAˇC D 1:5 under neuropathic
conditions. In order to assess the extent of experienced pain, we compute the
integral of the firing rate of the projection neurons to a stimulus in C fibers
(i.e., painful stimuli) using the trapezoidal method from t > 0:07s onward
(i.e., the C-response of W; see model output curve in Fig. 5). Indeed, our model
simulations suggest that inhibition turned excitation at the level of the fibers is
a possible mechanistic explanation for the flip in phase of pain sensitivity seen
under neuropathic conditions. Our model shows that under normal conditions, the
pain sensitivity rhythm follows the circadian rhythm of the C fibers (see top and
bottom panels in Fig. 9) but mimics the rhythm in the Aˇ fibers under neuropathic
conditions (see middle and bottom panels in Fig. 9).

We note here that under neuropathic conditions, the firing rate of the projection
neurons is at, or near, its maximum value throughout the day. While patients with
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neuropathic pain experience an increased level of pain throughout the day than those
without, it is unrealistic for the pain to be at, or near, its maximum all day. In the next
section, we propose an amended model in which we include top-down inhibition
from the mid-brain where this is not the case.

4 Model with Descending Control from the Mid-Brain

4.1 Introduction

In its current form, our biophysical model of the dorsal horn pain circuit includes
response functions for the three neuron populations that mimic empirical obser-
vations. Importantly, our model reproduces the phenomenon of pain inhibition in
which a brief mechanical stimulus applied after a painful stimulus can decrease the
activity of the projection neurons and, thereby, decrease the sensation of pain. Our
model also captures the phase shift in pain intensity for neuropathic pain; however,
the amplitude of the pain intensity under neuropathic conditions is very small, and
the firing rate of the projections neurons is basically at its maximum throughout the
day. In an attempt to both make the model more realistic and explain the neuropathic
phase flip, we introduce an amended model in which we consider communication
from the dorsal horn to the mid-brain (see Fig. 10). Influence from the mid-brain
to the dorsal horn plays an important role in modulating inhibition within the pain
circuit of the dorsal horn [5, 21, 35]. There are several descending pathways from
the brain down to the spinal cord that could affect the afferent fibers, the inhibitory
interneurons, and the projection neurons; see Fig. 2 in [21]. We choose to model
the inhibitory descending pathway, as done in [5]. The motivation for this added
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Fig. 10 Diagram of our biophysical model for the dorsal horn circuit including connections to and
from the mid-brain under (blue) neuropathic and (red) normal conditions
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mechanism is to enable the projection neurons to exhibit a more realistic phase flip
in pain sensitivity throughout the day under neuropathic conditions. We also aim to
include a mechanism for the effect of the homeostatic sleep drive on this top-down
inhibition. As shown in [14] and [30], the build-up of the homeostatic sleep drive
is reflected in the daily rhythm of the pro-inflammatory cytokines, whose increased
levels are associated with an increased firing rate of the WDR projection neurons.
We model this by assuming that the connection from the mid-brain to the dorsal horn
circuit is a function of the time spent awake, or the build-up of the homeostatic sleep
drive. We verify this amended model by showing that it can reproduce the same
phenomena as the earlier model, as well as show that this amended model can better
capture the observed change in phase of pain sensitivity rhythm for neuropathic
patients.

4.2 Amendments to Model

In our modified biophysical model for pain, we add a connection between the
projection neurons and the mid-brain as shown in Fig. 10 and a dimension to the
mathematical model in Eq. (1). Thus, the dynamics for the average firing rate of
neuron populations I and E remain as they are in Eq. (1), and the equations for
the projection neurons W and neuron population in the mid-brain (T) become as
follows:

dfW
dt

D W1.gABWfAB C gADWfAD C gCWfC C gEWfE � gIWfI � gTW.H/fT/ � fW
�W

;

dfT
dt

D T1.gWTfW/ � fT
�T

; (6)

where �T is the intrinsic timescale of the population T and weight gWT denotes the
strength of the effect a change in the W population has on the neuron population
T . To investigate the coupling between neuropathic pain and sleep deprivation,
we allow gWT , the strength of the effect of a change in the T population on the
W population, to depend on the homeostatic sleep drive H. Hence, we write the
weight of the connection from T to W as gTW.H/. As in the case of the other neuron
populations in Sect. 2.2, we assume a monotonically increasing firing rate response
function (with respect to input c) for the mid-brain population T:

T1.c/ D maxT
1

2

�

1 C tanh

�
1

˛T
.c � ˇT/

��

; (7)

where maxT is the maximum firing rate of the mid-brain population, c D ˇT is the
input at which the average firing rate of the mid-brain population reaches half of its
maximum value, and 1=˛T determines the slope of the transition from non-firing to
firing in mid-brain population.
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4.3 Model Validation

In regard to parameter values, we introduce a lag in the connection from the mid-
brain to the projection neurons, and choose �T D 0:05 ms, which is larger than the
intrinsic timescales of the other populations (see Table 1). We do this as a result
of the assumption that the signal must travel much further to interact with the mid-
brain than it would to other populations within the dorsal horn circuit. In addition,
we assume that the maximum amplitude and the slope of the response function of
T are smaller than those of the other neuron populations of the model and we pick
.maxT ; ˛T ; ˇT/ D .30; 0:75; 1:4/ (see Fig. 11). As in the beginning of Sect. 3, we
choose values for the weights gWT D 0:1 and gTW D 0:05 using the model output of
the average firing rates of the four neuron populations to the model input (shown in
Fig. 3) as our point of comparison (see Fig. 12).

The modified model including connections to and from the mid-brain can capture
the delayed inhibition response in the projection neurons from delayed stimulation
of the Aˇ fibers (see Fig. 13).

As concerns neuropathy, we use a similar approach as in Sect. 3.3 and consider
both (a) an inhibitory effect of the A fibers to the C fibers represented by amplitude
modulation of the C fibers by the Aˇ fibers as given in Eq. (5) and (b) circadian
rhythm in the C and Aˇ fibers. In addition, we use the amended model to investigate
the hypothesis that under neuropathy, time spent awake causes increased excitatory
input from the mid-brain to the dorsal horn circuit [14]. Thus, we assume that the
strength of the connection from the mid-brain population T to the projection neuron
population W given by the weight gTW (see Fig. 10) increases during wake and
decreases during sleep. Moreover, we assume that under normal conditions, the T
population inhibits the activity of the W population, while under neuropathy, the
connection from T to W is excitatory (see red and blue lines in Fig. 10). Thus,
under normal conditions, the weight gTW has a daily rhythm shown in red, and

Fig. 11 Response functions
of the projection (black),
excitatory (red), inhibitory
(blue), and mid-brain
(magenta) neuron populations
for different constant inputs
(on the x-axis)
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Fig. 12 Firing rates for each population (connected as described in Fig. 10) in response to the
input from afferent fibers as described in Fig. 3 including the amendments to the dorsal horn circuit
model given in Eq. (6)

under neuropathic conditions, it has the rhythm shown in blue in Fig. 14, where
negative values result in excitatory input from T to W because of our choice of
using a negative sign in front of gTW in Eq. (6).

With these abovementioned modifications to the model of the dorsal horn circuit,
our amended model reproduces a more pronounced flip in the phase of the W
population (see Fig. 15) than in the case of only amplitude modulation of the C
fibers through Aˇ fibers (see Fig. 9). We note as well that the W population does not
saturate to its maximum firing rate in Fig. 15 (right), as it did in the earlier model in
Fig. 9.

5 Conclusions and Future Work

We have constructed a biophysical model of the pain processing circuit in the dorsal
horn that represents the interactions between inhibitory and excitatory interneurons,
and WDR projection neurons. Our model considers the average firing rate of each
of these three neuron populations and therefore includes less biophysical detail than
previous circuit models consisting of single spiking neurons. However, our choice of
modeling framework is motivated by our ongoing work to incorporate this model for
the pain processing circuit with sleep–wake regulatory network models (see [4] for



Neural Circuit Model for Spinal Cord Pain Processing 43

0 0.05 0.1 0.15 0.2 0.25
0

20

45
Delayed Inhibition - Midbrain Model

0 0.05 0.1 0.15 0.2 0.25
0

20

45

0 0.05 0.1 0.15 0.2 0.25
0

20

45

0 0.05 0.1 0.15 0.2 0.25
0

20

45

0 0.05 0.1 0.15 0.2 0.25
Time (s)

0

20

45

F
iri

ng
 R

at
e 

(H
z)

Second A  pulse

Fig. 13 Pain inhibition phenomenon captured in the modified model including top-down inhibi-
tion. Response of the projection neuron population to the initial fiber pulse stimulation (at t D 0)
and the second pulse stimulation only to Aˇ fibers (red arrows) for increasing in time between
fiber stimulations

a review). Such an extended sleep–wake–pain model would allow us to test several
existing hypotheses on the effects of sleep-dependent and circadian modulation of
pain sensitivity. In addition, we have chosen to use a simplified modeling approach,
because it allows us to examine whether suggested mechanisms (i.e., rhythmicity in
afferent fibers and their interaction changing from inhibitory to excitatory under
neuropathic conditions) are capable of explaining observed rhythmicity in pain
before we incorporate more physiological details into our model.

Concerning the phenomenon of wind-up, we simulate it as an increase in the
synaptic efficacy of the C fibers before their input reaches the deep dorsal horn
circuit. This is an assumption that is supported by experimental evidence of wind-
up in the potential of the C fibers observed in the superficial but not in the deep
dorsal horn [27]. However, experimental data also suggest that wind-up is more
pronounced in the deep than in the superficial dorsal horn neurons [28]. Therefore,
our model assumption of wind-up occurring only upstream from the deep dorsal
horn is not widely supported by the data. Moreover, at the current stage, our model
incorporates no information on possible mechanistic explanations of wind-up. This
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Fig. 14 The strength of the connection from the mid-brain to the projection neuron population as
a function of hours after wake-up under (blue) neuropathic and (red) normal conditions. We note
that negative values of gTW result in excitatory input from T to W population; see Eq. (6)

is a limitation of the model as it restricts our ability to test existing hypotheses (see
Fig. 6 in [11]) and increase the current understanding of the generation of wind-up.

As concerns neuropathy, by taking into account both amplitude modulation of
the C fibers by the A fibers and normal inhibitory effect switching to excitatory
under neuropathic conditions, our model reproduces a change in the daily rhythm
seen in the activity of the WDR projection neurons and predicts a higher baseline
of pain under neuropathy than under normal conditions, both of which agree with
experimental evidence. In the case where a connection to, and from, the mid-brain is
included in the dorsal horn circuitry, the flip of the rhythm in the projection neurons
is more pronounced and does not evoke a response in the WDR neurons that is

I
Fig. 15 (continued) Integrated (circles, top 2 panels) and maximum (asterisks, bottom 2 panels)
projection neuron firing rates predicted by the amended equations of time evolution given in (6)
under normal (top and 4th panels) and neuropathic (2nd and bottom panels) conditions showing
predicted circadian modulation over 24 h. Circadian rhythmicity of responses is generated by the
different circadian rhythms in the amplitudes of the afferent fiber model inputs (middle panel).
Under normal conditions, the interneuron population I decreases the amplitude of the model
input from C fibers (red curve) leading to a reduced effective amplitude of C fiber input (black
solid curve). Under neuropathic conditions, the connection between I and C fiber model input is
excitatory resulting in a higher effective amplitude of the C fiber model input (black dashed curve).
We calculate the activity of the projection neuron population as the area under the C-response in
the same way as in Fig. 9
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at its maximum as in the case where there is no connection to the mid-brain. In
our ongoing work, we investigate the robustness of these abovementioned model
predictions for neuropathy, in particular as concerns the range of parameter values
that represent the strength of the connection between the WDR projection neurons
and the mid-brain.

We have incorporated neuropathy in an attempt to validate that our model can
replicate known circadian pain effects. It is important to note that a more biolog-
ically realistic model has been developed including large networks of individual
neurons [2]. Similarities between our model and the one proposed by Arle et al.
are the lack of connection from the Aˇ fibers to the inhibitory interneurons, but
a major difference is that their model has two distinct circuits for nociceptive and
neuropathic pain. We instead use the same circuit but propose different mechanisms
within the circuit that contribute to neuropathic pain (e.g., inhibition switching to
excitation under neuropathic conditions). We justify our use of a simplified model
by emphasizing that our motivation is in understanding the effect of circadian and
sleep-dependent processes on pain sensitivity and note that our model does capture
circadian effects in neuropathic pain patients.

In our ongoing work, we are constructing equations for the time evolution of the
average activity of each of the three afferent fiber populations. Such a generalization
would not only increase our ability to include possible mechanisms of wind-up but
also help in connecting models of pain and sleep together. That is, in the future
generalized model, a change in the homeostatic sleep drive (that is an output of the
sleep–wake model) could be directly fed into the pain circuit model by influencing
the sensitivity of the afferent fibers to external stimuli. This will allow us to more
thoroughly investigate several hypotheses on the coupling between sleep deprivation
and pain sensitivity.
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A Two-Process Model for Circadian and
Sleep-Dependent Modulation of Pain Sensitivity

Natalia Toporikova, Megan Hastings Hagenauer, Paige Ferguson,
and Victoria Booth

Abstract Pain sensitivity is strongly modulated by time of day and by prior sleep
behavior. These two factors, governed by the circadian rhythm and homeostatic
sleep drive, respectively, likewise dictate the timing and duration of sleep. The fields
of sleep and circadian research have identified much of the physiology underlying
the circadian rhythm and homeostatic sleep drive with mathematical modeling
playing an important role in understanding how these two processes interact to
affect sleep behavior. We hypothesize that the daily rhythm of pain sensitivity and
its sleep-dependent modulation reflect an interaction of the circadian rhythm and
homeostatic sleep drive. To investigate this hypothesis, we adapt the formalism of
a classic mathematical model for the regulation of sleep behavior by the circadian
rhythm and homeostatic sleep drive, called the Two-Process model, to simulate the
interaction of these two processes on pain sensitivity. To construct the model, we
utilize data from experimental reports on the daily rhythmicity of pain sensitivity in
humans to define a “daily pain sensitivity” function. We decompose this function
into two processes: a sleep-dependent process S.t/ that follows the homeostatic
sleep drive and a circadian process C.t/ that is dictated by the circadian rhythm.
By simulating different sleep schedules with the original Two-Process model, we
compute changes in the sleep-dependent process S.t/ that modulates pain sensitivity.
By combining S.t/ with the circadian process C.t/, our model predicts resultant
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changes in the daily pain sensitivity rhythm. We illustrate model predictions for
changes in pain sensitivity due to sleep deprivation, sleep restriction and shift work
schedules. We believe that this model may be a useful tool for pain management
by providing predictions of the variations in pain sensitivity due to changing sleep
schedules.

MSC codes: 39A23, 39A60, 92B25, 92C30

1 Introduction

Pain sensitivity is strongly modulated by time of day and by prior sleep behavior.
As reviewed in the preceding chapter [7], in humans highest sensitivity to painful
stimuli occurs during the night and lowest sensitivity occurs in the late afternoon.
Additionally, sleep deprivation increases pain sensitivity. Experimental studies of
pain sensitivity have only considered either time-of-day (circadian) effects or sleep-
dependent effects. However, it is well known that the effects of prior sleep behavior
and the circadian rhythmicity of sleep propensity interact to govern the timing and
duration of sleep. For example, sleep deprivation causes an increase in the drive for
sleep and can promote the occurrence of sleep during daytime hours. However, the
circadian rhythm acts to promote wakefulness during the day. The interaction of
these two processes, namely the homeostatic sleep drive and the circadian rhythm,
results in limited durations of daytime sleep episodes despite elevated sleep drive
levels which would prolong sleep if it occurred during the evening.

We hypothesize that the 24 h and sleep-dependent modulation of pain sensitivity
may likewise reflect a combined interaction of these two processes: circadian
rhythm and homeostatic sleep drive. As an example, consider a study on the
effects of sleep deprivation on pain sensitivity. If pain measurements are conducted
in the late afternoon, effects of sleep deprivation may be underestimated, while
they may be overestimated if measurements are taken during the night because of
circadian modulation of pain sensitivity. To investigate this hypothesis, we adapt
the formalism of a classic and influential mathematical model for the regulation of
sleep behavior by the circadian rhythm and homeostatic sleep drive, called the Two-
Process model [3], to model how the interaction of these two processes may affect
pain sensitivity.

2 Background: Two-Process Model for Circadian
Modulation of Sleep Timing

The original Two-Process model for sleep regulation was constructed to account
for the interaction of the homeostatic sleep drive and the circadian rhythm in the
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timing and duration of sleep [3]. While the physiology of the homeostatic sleep
drive has not been completely determined [6, 9, 12], a biological marker for it has
been identified as the power of low frequency, delta range (0:5 � 4 Hz) oscillations
in EEG recordings during human sleep in the non-rapid eye movement (nREM) or
slow wave stage of sleep. Specifically, at the initiation of a sleep episode, the power
of delta oscillations is high and decays roughly exponentially as sleep continues
through the night. These observations motivated modeling the homeostatic sleep
drive, Process S S .t/ in the model, as an exponential function that decreases during
sleep and increases during wake. The time constant for the decay during sleep was fit
to the decay in delta oscillation power observed in sleep EEG recordings. The time
constant for the increase of the homeostatic sleep drive during wake was constrained
to match the fit to data during sleep. Specifically, Process S increases exponentially
during wake with time constant �w D 18:2 h and decreases exponentially during
sleep with time constant �s D 4:2 h. In wake, S .t/ is governed by:

Sw.t/ D 1 C .Swo � 1/e
�.two�t/

�w (1)

where time t is in hours, Swo is set to the S value at the previous wake onset (wo),
and two is the time of the previous wake onset. In sleep, S .t/ is governed by:

Ss.t/ D Ssoe
.tso�t/

�s (2)

where Sso is set to the S value at the previous sleep onset (so) and tso is the time
of the previous sleep onset.

While more is known about the physiology of the circadian rhythm that mod-
ulates sleep timing [5, 10], the Two-Process model focuses on time-of-day effects
on sleep propensity to determine the equations for Process C C .t/. Experiments
measuring typical sleep latencies and durations across the day suggested that sleep
timing follows a skewed sinusoidal function such that sleep is minimal near midday
and is strongly promoted in the early morning hours [3]. This circadian rhythmicity
in sleep propensity is combined with Process S by Process C dictating the threshold
values at which Process S transitions from sleep to wake and vice versa. As such,
Process C consists of two sinusoidally varying functions Cw.t/ and Cs.t/ such that
Cw.t/ dictates the S .t/ values when the transition from wake to sleep should occur
and Cs.t/ dictates the S .t/ values at which sleep to wake transitions occur:

Cw.t/ D 0:67 C c.t/; (3)

Cs.t/ D 0:17 C c.t/; (4)

c.t/ D 0:12Œ0:97 sin.2�.t � t0/=24/ C 0:22 sin.4�.t � t0/=24/ C 0:07 sin.6�.t � t0/=24/

C0:03 sin.8�.t � t0/=24/ C 0:001 sin.8�.t � t0/=24/� (5)

where t0 sets the circadian phase at the initial time.
With these parameter values, the model generates a 24 h cycle of sleep–wake

behavior with 16 h in wake and 8 h in sleep (Fig. 1). We initialize t, c, and S so
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Fig. 1 Two-Process model predicting the timing and duration of sleep and wake episodes as
governed by the homeostatic sleep drive (Process S, S .t/, blue curve) whose levels for transitions
between wake and sleep are dictated by the circadian rhythm (Process C, green and red curves).
Wake occurs as Process S is increasing with sleep initiated when Process S intersects Cw.t/ (green
curve). Sleep (shaded regions) continues as Process S decreases until it intersects Cs.t/ (red curve)

that the model starts at t D 6 for 6 am at the beginning of a wake episode with the
following initial conditions: t D 6, t0 D 7:5, S = Swo D Cs.6/ and two D 6. With
these initial conditions, the model simulates a sleep schedule with wake onset at 6
am and sleep onset at 10pm. The wake state occurs during the interval that S .t/ is
increasing and the sleep state occurs when it is decreasing.

3 Two-Process Model for Pain Sensitivity

While there is strong experimental evidence that increased homeostatic sleep drive
that occurs due to sleep deprivation increases pain sensitivity (as reviewed in [7]),
the correlation between pain sensitivity and the homeostatic sleep drive under
normal sleep conditions has not been determined. To construct our model, we
assume that pain sensitivity exhibits increases and decreases throughout the 24 h day
that follow the increases and decreases of the homeostatic sleep drive. In particular,
we assume pain sensitivity increases with time spent awake even under normal
daily schedules of sleep–wake behavior. We implement the simplest form of this
assumption by assuming that sleep-dependent modulation of pain sensitivity follows
the exponential increase during wake and decrease during sleep of the homeostatic
sleep drive predicted by the original Two-Process Model. A consequence of this
primary assumption is the further assumption that the experimentally observed daily
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rhythm of pain sensitivity is the combined result of circadian and sleep-dependent
modulation. For our model, we develop an estimate of the sleep-dependent compo-
nent of this modulation by determining an appropriate scaling factor of Process S
from the original Two-Process Model. We then estimate the circadian modulation
of pain sensitivity by subtracting the estimated sleep-dependent component from
the experimentally observed daily rhythm of pain sensitivity. We assume that this
circadian modulatory component is not affected by sleep behavior. To implement the
model, we use the Two-Process model to compute variations of the sleep-dependent
modulatory component under different patterns of sleep behavior and combine it
with the circadian component to predict their combined effect on pain sensitivity
with changes in sleep behavior.

As discussed in the companion article [7], multiple studies report a consistent
daily rhythm of pain sensitivity that peaks during the night and is at a minimum
during the late afternoon. In order to quantify this rhythm, in [7] we constructed a
prototypical “daily pain sensitivity function” by normalizing data from four studies
that tested experimentally induced pain responses across 24 h. For each dataset, we
transformed time to relation to morning wake time and transformed units to percent
of the mean of the reported daily variation. Following these transformations, the data
collectively formed a tight, sinusoidal curve with a trough � 9 h after usual wake
onset and a peak � 2 h after usual sleep onset (see Fig. 1 in [7]). This constructed
curve provides the qualitative shape of the daily rhythm in pain sensitivity, but does
not accurately reflect the amplitude of the rhythm due to the units transformation.
In order to compare the amplitude of effects across different studies on the daily
fluctuation of pain sensitivity using different pain modalities, and additionally to
compare effects due to sleep deprivation, in [7] we identified new normalizations
for units of change in pain sensitivity. Namely, for the particular pain modality
used, we converted the observed changes in pain threshold to a percentage of the
range of physiologically meaningful stimulation values or to a percentage of the
range of painful stimulation values. Using these units for changes in pain sensitivity,
we found that the average amplitude (max - min) of the daily rhythm measured in
multiple pain modalities was 12–14% (see Table 6 in [7]). Thus, for our model,
we define the experimentally observed daily pain rhythm, Pobs.t/, as the “daily
pain sensitivity function” scaled so that its oscillation amplitude (peak - trough)
matches this average amplitude. The appropriate scaling parameters for the “daily
pain sensitivity function” were in the range Œ0:6; 0:7�. In the model, this curve is
assumed to be the combined result of circadian and sleep-dependent modulation
of pain sensitivity and will be decomposed into sleep-dependent and circadian
components, S.t/ and C.t/, respectively.

To explicitly define the model, let S.t/ represent the time-varying, sleep-
dependent modulation of pain sensitivity that follows the homeostatic sleep drive
as predicted by the Two-Process model:

S.t/ D �.S .t/ � S0min/; (6)
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where S .t/ is Process S (Eqs. (1) and (2)), S0min is the minimum value of S
under normal sleep–wake behavior, and � is an appropriate scaling factor. In this
way, during normal sleep–wake behavior predicted by the Two-Process Model, S.t/
varies between 0 at times of wake onset to a maximum value at times of sleep onset.
During other sleep patterns, such as sleep deprivation or restriction when the sleep
homeostatic drive may be elevated, increases in S.t/ are thus measured relative to
its minimum possible value. We define C.t/ as the circadian modulation of pain
sensitivity. Then the observed daily rhythm of pain sensitivity Pobs.t/ is defined as

Pobs.t/ D C.t/ C S.t/ D C.t/ C �.S .t/ � S0min/: (7)

As the physiological processes regulating circadian rhythms are believed to be
independent of the processes regulating sleep homeostasis, we assume that C.t/
and S.t/ are likewise regulated independently. Thus, under conditions of sleep
deprivation or restriction that do not change the circadian rhythm, we assume that
the circadian modulation of pain sensitivity C.t/ does not vary, while the sleep-
dependent component S.t/ would vary with variation in Process S. For example,
consider the scenario of 8 h sleep deprivation due to extending wake 8 h beyond
the normal sleep onset time of 10pm in the Two-Process Model. Let SSD8.t/ D
�.SSD8.t/�S0min/ be the modified sleep-dependent pain modulation where SSD8.t/
is Process S under this instance of 8 h sleep deprivation and S0min is the minimum
value of Process S under normal sleep–wake behavior. As in the original Two-
Process Model, this sleep disruption is assumed not to significantly affect circadian
rhythms, thus the predicted pain sensitivity in this scenario, PSD8.t/, is given by

PSD8.t/ D C0.t/ C SSD8.t/ D .Pobs.t/ � S0.t// C SSD8.t/ (8)

where S0.t/ D �.S0.t/ � S0min/ and S0.t/ is Process S under normal sleep–wake
behavior.

To identify an appropriate value for the scaling parameter � , we constrain the
model to replicate the change in pain sensitivity observed after one night of sleep
deprivation. Specifically, � is chosen so that S.t/ reaches values between 12–14
after 8 h of sleep deprivation as modeled with the Two-Process Model to reflect
the experimentally observed approximately 13% increase in evoked pain responses
measured relative to the range of painful stimulation (see Table 6 in [7]). This yields
values for � in the interval Œ18:1433; 21:1672�.

We now compute C0.t/ as given in Eq. (8) as

C0.t/ D Pobs.t/ � S0.t/ D Pobs.t/ � �.S0.t/ � S0min/; (9)

where S0min D 0:0953, the minimum value reached by S0.t/ under normal sleep
behavior.

In summary, our model for the predicted rhythm of pain sensitivity due to
circadian and sleep-dependent modulation under a specific sleep–wake behavior
pattern ˛, P˛.t/, is defined as
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P˛.t/ D C0.t/ C S˛.t/ D C0.t/ C �.S˛.t/ � S0min/; (10)

where S˛.t/ is Process S as simulated by the Two-Process model under sleep–
wake behavior pattern ˛ and S0min is its minimum under normal sleep–wake
behavior. We note that the range of scalings for Pobs.t/ (namely, Œ0:6; 0:7�) and �

(Œ18:1433; 21:1672�), reflecting the experimentally reported average effects of daily
rhythm and sleep deprivation on evoked pain responses, leads to a range of predicted
values for C0.t/, S˛.t/ and P˛.t/ which are indicated by the thickness of the curves
in the middle and bottom panels of Figs. 2, 3, and 4.

4 Model Predictions

To predict how sensitivity to pain was affected by sleep schedules, we applied our
model to three different simulations of disrupted sleep, namely sleep deprivation,
sleep restriction, and a shift work schedule. To simulate the effect of these sleep
schedule perturbations on the homeostatic sleep drive, we manually induced sleep
or wake transitions in the Two-Process model and ignored the state transition
thresholds dictated by Process C. At the end of the sleep perturbation protocol,
we re-initiated the Process C threshold crossing rules for sleep initiation and
termination.

4.1 Pain Sensitivity Under Sleep Deprivation

First, we tested the change in pain sensitivity due to a continuous sleep deprivation
protocol (Fig. 2). This numerical experiment simulated a common protocol in which
human subjects are kept awake for 12 h beyond their customary bed time. To obtain
the behavior of Process S in this protocol, S˛.t/ D SSD12.t/ in Eq. (10), we ran the
Two-Process model for 5 days during which the first 24 h simulated the customary
wake time at 6 am and sleep initiation at 10 pm. On day 2 of the simulation,
we initiated the continuous sleep deprivation protocol, by ignoring the threshold
crossing condition for Process C for 28 h. After 28 h, we re-initiated the rule for
sleep initiation when Process S is above CW , which resulted in immediate sleep
onset. For the remainder of the simulation, the Two-Process model followed its usual
evolution (Fig. 2, top panel).

During the sleep deprivation protocol, Process S continued to increase expo-
nentially beyond its usual values (top panel, blue curve), which drove an increase
in sleep-dependent modulation of pain, S˛.t/ D SSD12.t/ in Eq. (10) (middle
panel, cyan curve). When SSD12.t/ was added to the circadian modulation of
pain function, C0.t/ (middle panel, magenta curve), the resulting predicted pain
sensitivity function, P˛.t/ D PSD12.t/ in Eq. (10) (lower panel, red curve) showed
a large increase in sensitivity, compared to normal levels (lower panel, blue curve),
during the deprivation period which continued into the subsequent sleep episode. An
interesting prediction of the model is a reduction in pain sensitivity due to the sleep
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Fig. 2 Predicted pain sensitivity during a simulation of continuous sleep deprivation protocol for
28 h. Shaded regions represent sleep times. Top: Simulation of the Two-Process model with 12 h of
sleep deprivation initiated at the customary sleep onset time on day 2. Middle: The sleep-dependent
pain modulation (cyan curve) increased during the sleep deprivation protocol while the circadian
pain modulation was unperturbed (magenta curve). Bottom: Combining the sleep-dependent and
circadian pain modulation yielded the predicted daily rhythm in pain sensitivity (red curve) that
showed increases in sensitivity during the deprivation protocol and decreases the following day,
compared to the rhythm under the normal sleep schedule (blue curve). The thickness of the
curves in the middle and bottom panels indicates the range of values obtained due to the range
of scalings for Pobs.t/ and � (see Sect. 3). Vertical axis units for top: level of homeostatic sleep
drive normalized to be between 0 and 1; for middle and bottom: levels of sleep-dependent and
circadian pain modulation are set so that the normal daily pain rhythm (blue curve) has amplitude
12–14 with mean 0

deprivation. Right after awakening from the recovery sleep episode, pain sensitivity
was lower than under the normal sleep schedule. This occurs because of a phase
shift in the perturbed sleep-dependent pain modulation, whose minimum coincides
with the minimum of the circadian pain modulation. This reduction reversed as
the circadian modulation neared its peak because the model remains in waking
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Fig. 3 Predicted pain sensitivity during a simulation of sleep restriction to 4 h a night for 5
consecutive nights. Shaded regions represent sleep times. Top: Simulation of the Two-Process
model with sleep restricted to occur between 2 � 6 am for days 2 � 6. Middle: Sleep-dependent
pain modulation (cyan curve) remained elevated for days 2�6 while the circadian pain modulation
was unperturbed (magenta curve). Bottom: The predicted daily pain sensitivity (red curve) showed
non-uniform increases across the days when sleep was restricted, compared to levels under the
normal sleep schedule (blue curve). Vertical axis units are the same as in Fig. 2

beyond the normal sleep onset time, leading to an increase in sleep-dependent pain
modulation.

4.2 Pain Sensitivity Under Sleep Restriction

Another common sleep disruption that occurs in people’s daily lives and is induced
in experimental settings is sleep restriction during which the time allowed for sleep
is restricted over several consecutive days. We simulated a sleep restriction protocol
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in which sleep is allowed for only 4 h per night, during 2–6 am, for 5 consecutive
nights as might occur in a typical work week (Fig. 3). We simulated the Two-Process
model for 8 days where on days 2–6 sleep onset and wake onset were manually
induced for the sleep restriction protocol (top panel) to obtain S˛.t/ D SSR4.t/ (top
panel). Following Process S, the sleep-dependent pain modulation S˛.t/ D SSR4.t/
was elevated during days 2–6 (middle panel, cyan curve) predicting continuous
increased pain sensitivity over those days (bottom panel, red curve). The interaction
of the sleep-dependent and circadian pain modulation led to non-uniform increases
in pain sensitivity across the day. The smallest increase occurred during the evening
hours after 6 pm, but pain sensitivity increased significantly during the hours
between the customary sleep onset time of 10 pm and the allowed sleep onset
time of 2 am. During the allowed sleep episode, pain sensitivity decreased but
remained elevated at wake onset at an intermediate level. On day 7 when sleep
was allowed to occur normally, pain sensitivity decreased during the sleep episode
as the homeostatic sleep drive decayed to normal levels.

4.3 Pain Sensitivity Under Shift Work Schedules

Shift work and the resulting misalignment of sleep schedules with the circadian
rhythm have been associated with a myriad of adverse health conditions, including
increased rates of obesity, cardiac disease, and cancer [8, 18]. Additionally, shift
work has been correlated with increased rates of reported musculoskeletal and lower
back pain [1, 15, 17]. We simulated an 8 h shift work schedule between 11 pm and 7
am for 5 consecutive days as may occur for a typical shiftwork week (Fig. 4). Sleep
onset was assumed at 8 am to allow for commuting time between work and home.
We simulated the Two-Process model (top panel) for 8 days during which on day
2 sleep onset was suspended until 8 am on the morning of day 3. The duration of
sleep was allowed to be dictated by the model. Subsequent shifts were simulated by
again suspending sleep onset until 8 am on the morning of the following day. After
each shift, sleep behavior was allowed to resume as predicted by the model. This
simulation of the Two-Process model generated S˛.t/ D SSW.t/ from which the
sleep-dependent pain modulation S˛.t/ D SSW.t/ was computed (middle panel, cyan
curve). The predicted pain sensitivity (bottom panel, red curve) was significantly
elevated during the majority of time during the work shift and during the subsequent
sleep episode. A decrease in pain sensitivity occurred for a short duration upon
awakening due to a decrease in sleep-dependent pain modulation when the circadian
pain modulation was near its minimum.
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Fig. 4 Predicted pain sensitivity under simulated shift work schedule from 11 pm to 7 am for 5
consecutive days. Shaded regions represent sleep times. Top: Simulation of the Two-Process model
with sleep onset suspended until 8 am on days 3–7. Middle: Sleep-dependent pain modulation
(cyan curve) remained elevated for days 2–6 while the circadian pain modulation was unperturbed
(magenta curve). Bottom: The predicted pain sensitivity (red curve) showed significant increases
during the majority of the shift work hours and during sleep episodes, compared to levels under
the normal sleep schedule (blue curve). Vertical axis units are the same as in Fig. 2

5 Discussion

We have developed a mathematical model to investigate the combined influences
and interactions of the homeostatic sleep drive and the circadian rhythm on the
variation of pain sensitivity across the day. While experimental results indicate
that these two processes have strong effects on pain sensitivity, their combined
influences, especially under conditions of disrupted or limited sleep behavior, have
not been explored. The model adapts the formalism of a successful mathematical
model for the regulation of sleep behavior by the circadian rhythm and homeostatic



60 N. Toporikova et al.

sleep drive, called the Two-Process model [3]. Similar to the Two-Process model,
our model for pain sensitivity P.t/ assumes that the sensitivity level is independently
modulated by a circadian process C0.t/ and by a sleep-dependent process S.t/.
The effects of these two processes were derived from the experimentally observed
daily rhythm of pain, Pobs.t/, computed from multiple experimental results, by
applying the assumption that the sleep-dependent process S.t/ is driven by the
homeostatic sleep drive as predicted by the Two-Process model. The resulting
circadian modulation C0.t/ imparts a roughly sinusoidal modulation to P.t/ that
peaks during the early morning hours before customary awakening and has a trough
in the late afternoon hours (middle panels of Figs. 2, 3, and 4, magenta curves). The
sleep-dependent modulation S.t/ exponentially increases during wake and decreases
during sleep (cyan curves).

The strength of the model comes from the ability to predict how the daily cycle
of pain sensitivity will change due to changes in sleep behavior. The original Two-
Process model has been validated against many diverse disrupted sleep schedules,
such as sleep deprivation and sleep restriction. Our model incorporates these results
of the Two-Process model to predict the consequent variations in pain sensitivity,
as illustrated here for 12 h of sleep deprivation, 4 h sleep restriction, and shift work
schedules.

Another advantage of the model is the ability to quantitatively compare the
effects of different sleep schedules on pain sensitivity. For example, the simulated
shift work schedule shown in Fig. 4 results in 4.1 h of sleep on the 5 shift work
days, approximately 30 min more total sleep time as during the simulated restricted
sleep schedule shown in Fig. 3. Despite similar amounts of sleep during these
two schedules, there are large differences in the effect of these schedules on pain
sensitivity. The shift work schedule resulted in higher maximum pain sensitivity,
inducing an increase equal to 98:7% of the maximum amplitude of the daily
observed rhythm in pain sensitivity Pobs.t/, while the sleep restriction schedule
induced a 78:9% increase. The timing of this maximum also differed with it
occurring 2 h prior to sleep onset in the shift work schedule and at sleep onset
in the sleep restriction schedule. Thus, while the shift work schedule allows for
slightly more sleep, it results in higher peak pain sensitivity that may be more
apparent or debilitating since it occurs during active waking periods compared to
the sleep restriction schedule. However, the sleep restriction schedule results in
a larger portion of the waking period with increased pain sensitivity compared
to the shift work schedule. Under shift work, during approximately 70% of the
waking period there are negligible changes in pain sensitivity while under sleep
restriction pain sensitivity is increased throughout the entire waking period. This
type of quantitative comparison possible with the model would be especially useful
in evaluating potential sleep interventions, such as nap schedules, in alleviating pain
sensitivity increases.

Our model assumes that pain sensitivity is determined by the homeostatic sleep
drive. This assumption is based on findings from sleep deprivation experiments,
however additional experiments are needed to validate it. Sleep drive is believed
to be due to some structure that tracks or some substance that accumulates a
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“need to sleep” during prolonged wakefulness, and discharges this homeostatic
need during sleep. Several neuromodulators/neurotransmitters have been proposed
to serve a role of a homeostatic accumulator for the need to sleep, with adenosine
as a leading candidate [2, 14]. During prolonged wakefulness, adenosine levels
rise in some sleep-related areas of the brain [11]. Injection of adenosine causes
sleep in cats and rats [13, 14]. Hence, at least one mechanism for homeostatic
sleep drive might be an accumulation of adenosine that enhances the activity of
sleep-promoting brain areas and reduces activity in wake-promoting brain areas.
Therefore, a test of our modeling assumption that the homeostatic sleep drive
increases pain sensitivity would be to investigate changes in pain sensitivity in
animals injected with adenosine. If our assumption is correct, pain sensitivity will
increase after the adenosine injection.

Patients with chronic pain often suffer from insomnia and report pain as the
primary reason for their disrupted sleep. Our model assumes that the circadian
rhythm and homeostatic sleep drive determine daily cycles of pain sensitivity.
However, other physiological or cognitive factors surely affect responses to painful
stimuli. For example, the perception of painful stimuli might be affected by its
timing relative to wake onset. While cognitive functions are reduced for a short
time after waking from sleep, a phenomenon known as sleep inertia [16], this
cognitive state has interesting effects on the perception of pain. It has been shown
that sleep inertia has no effect on pain perception when subjects are awoken abruptly
from slow wave or non-rapid eye movement (non-REM) sleep but it reduces pain
perception when awoken abruptly from REM sleep [4]. While the reasons for this
difference are not known, these results suggest that patients who wake up in pain
either perceive accurately the pain they are experiencing, or at worst underestimate
the level of pain if woken from REM sleep.

The model is phenomenological in nature; specific physiological mechanisms
underlying sleep-dependent and circadian modulation of pain are not explicitly
modeled. Instead, the pain sensitivity variable of the model has units of percent
change in sensitivity relative to the estimated range of painful stimulation for the
particular pain modality, and we’ve shifted it so that the mean sensitivity is zero.
This phenomenological form has the advantage that the model can be validated
against data for different modalities and measures of pain sensitivity. In this way,
we believe the model has the potential to be a useful tool for pain management
by providing predictions of the variations in pain sensitivity due to changing sleep
schedules. Future work will focus on identifying data sets for model validation.
The advent of activity monitoring devices, such as fitbit (fitbit.com), that can
continuously track sleep behavior, and wearables that can prompt users to easily
record pain sensitivity at multiple time points per day would provide the type of
continuous data on wake and sleep schedules and pain that would be ideal for further
developing our model.
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Introduction to Mathematical Modeling of Blood
Flow Control in the Kidney

Anita T. Layton and Aurélie Edwards

Abstract Besides its best known role in the excretion of metabolic wastes and
toxins, the kidney also plays an indispensable role in regulating the balance of water,
electrolytes, acid–base species, blood volume, and blood pressure. To properly
fulfill its functions, it is crucial for the kidney to exercise hemodynamic control. In
this review, we describe representative mathematical models that have been devel-
oped to better understand the kidney’s autoregulatory processes. In particular, we
consider mathematical models that simulate renal blood flow regulation by means
of key autoregulatory mechanisms: the myogenic response and tubuloglomerular
feedback. We discuss the extent to which these modeling efforts have expanded the
understanding of renal functions in health and diseases.

1 Introduction

The kidney is a major component of the excretory system. Its functions include
the removal of waste products from the bloodstream, the regulation of body water
and electrolyte balance, and the control of blood volume and blood pressure.
Impairment of kidney function is often associated with serious health conditions
such as diabetes, hypertension, and congestive heart failure.

The mammalian kidney can be divided into two regions: the outer zone, known
as the renal cortex, is where blood is filtered; the inner zone, known as the renal
medulla, is the region where the filtered fluid that will ultimately become urine is
concentrated. An average human kidney weighs < 0:2% of body weight. Despite
their small size, the kidneys receive a substantial fraction (20–25%) of the cardiac
output. Blood is delivered into the kidney through the renal artery, which, following
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successive branching, eventually gives rise to the afferent arterioles that supply the
glomeruli, i.e., the tufts of capillaries that filter plasma.

A kidney contains a large number of glomeruli, ranging from 30,000 to 40,000
in rats to �1 million in humans. Each glomerulus feeds into an associated nephron.
The nephrons are the functional units of the kidney that are responsible for the
transformation of the glomerular filtrate into urine. Structurally, a nephron is a long
tubule lined by a single layer of epithelial cells. Functionally, a nephron consists of
several segments each with distinct transport properties. As the filtrate flows through
the nephron segments, its composition changes through reabsorption and secretion
of fluid and solutes by the tubular epithelia. The composition of the final urine is
adjusted so that urinary excretion roughly matches daily intake.

Normal renal function requires that the glomerular filtration rate associated with
each individual nephron (called single-nephron glomerular filtration rate, SNGFR)
be kept within a narrow range. When SNGFR falls outside of that range, the tubular
flow rate in turn falls outside of the appropriate range; when the latter happens,
the ability of the nephron to operate properly may be compromised. Glomerular
hyperfiltration (i.e., SNGFR that is too high) may impose an excessive load on the
nephron and cause tubular damage if the elevated metabolic demand of any tubular
segment cannot be met. Glomerular hypofiltration (i.e., SNGFR that is too low) may
lead to back diffusion of waste products that need to be excreted. The stabilization of
SNGFR is known as renal autoregulation. One key function of renal autoregulation
(i.e., blood flow regulation) is to maintain a stable glomerular filtration rate in
spite of changes in systemic blood pressure (within about 80–180 mmHg). Another
important function of renal autoregulation is to protect the glomerular capillaries
from excessive intravascular pressure and shear stress.

We discuss below two major renal autoregulatory mechanisms: the myogenic
response and tubuloglomerular feedback. The two mechanisms respond to different
signals, but both act on the afferent arteriole. The goal of this review is to provide a
brief introduction to the articles in this volume which concern renal hemodynamics
[5, 27]. For a comprehensive review on renal hemodynamics, see [6]; for a review
on mathematical modeling of renal hemodynamics, see [26].

2 Myogenic Response

When blood pressure is elevated, the smooth muscles that form the afferent arteriole
respond by constricting. Conversely, when blood pressure is reduced, those smooth
muscles dilate. This phenomenon is known as the myogenic response, and is notably
the opposite of the passive response of a compliant tube. The afferent arteriole is not
unique in exhibiting the myogenic response; indeed, that response is found in nearly
all terminal vessels. That said, the reaction time and effectiveness of the myogenic
response differ among different vessels, and the response of the afferent arteriole is
distinguished by its ability to buffer large perturbations in pressure (up to 80 mmHg)
and its relatively short response time (as low as 10 s).
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Loutzenhiser et al. formulated a simple model of the renal myogenic response
[20, 30]. The radius of the model afferent arteriole, denoted r.t/, is given by

d

dt
r.t/ D 1

�
.r1.p/ � r.t// (1)

where the target radius r1 is determined by the arterial pressure p. The relationship
between r1 and p was chosen based on the observed vasoresponse of the afferent
arteriole, such that a higher p yields a smaller r1. The time constant � was chosen
to capture the observed kinetics of the afferent arteriole myogenic response.

By construction, the above simple phenomenological model reproduces the
observed kinetics and steady-state characteristics of the arteriolar vasoresponse;
see Fig. 1. A major drawback of that phenomenological approach, however, is that
the underlying intracellular mechanisms are not represented. Given this, Sgouralis
and co-workers developed mathematical models of the myogenic response of the
afferent arteriole that capture the dynamic processes within the vascular smooth
muscle cell [4, 24]. These models, which are based on a model for cerebral arterioles
in cat that was developed by Gonzalez-Fernandez and Ermentrout [8], represent
variations in the transmembrane electric potential difference (or membrane poten-
tial), transmembrane Ca2C and KC fluxes, and cytosolic [Ca2C] handling. Key
model equations are summarized below.

The rate of change of cytosolic [Ca2C] is given by

dŒCa2C�

dt
D
 

.Kd C ŒCa2C�/2

.Kd C ŒCa2C�/2 C KdBT

!
�
˛ICa � kCaŒCa2C�

�
(2)
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Fig. 1 Myogenic responses to a step pressure perturbation and to fast pressure oscillations. The
afferent arteriole constricts at elevated arterial pressure. Due to the asymmetries in the activation
times and rate constants induced by increasing/decreasing pressure, the afferent arteriole responds
to rapid oscillations with sustained vasoconstriction with a radius that is determined by peak rather
than mean pressure. Reproduced from [21]
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where ICa is the Ca2C influx from the extracellular space (see below) and ˛ is a
constant converting current to mass flux; kCa is a first-order rate constant for Ca2C
extrusion; Kd characterizes the reaction rates of the calcium-buffer system; and BT

is the total buffer concentration.
Calcium influx is mediated by voltage-gated membrane channels

ICa D gCam1 .v � vCa/ (3)

where gCa is the maximum whole-cell conductance for the calcium current, and m1
is the fraction of channels in the open state at equilibrium, which is a function of the
membrane potential (v)

m1.v/ D 1

2

�

1 C tanh

�
v � v1

v2

��

(4)

where v1 is the voltage at which half of the channels are open, and v2 determines
the spread of the distribution.

Transmembrane KC efflux is induced by the opening of potassium channels. The
model describes the rate of change of the fraction of KC channels in the open state,
denoted n, by first-order kinetics

dn

dt
D �n

�
n1.v; ŒCa2C�/ � n

�
(5)

with the fraction at equilibrium, n1, given by

n1.v; ŒCa2C�/ D 1

2

�

1 C tanh

�
v � v3

v4

��

(6)

where v3 is a function of [Ca2C], and v4 is a measure of the spread of the
distributions of n1.

The opening of Ca2C and KC channels depends on the membrane potential v

(Eqs. 4 and 6), which is in turn given by the sum of the transmembrane currents,
including the Ca2C, KC, and leak currents. In addition, Sgouralis and co-workers
[4, 24] represent the afferent arteriole’s myogenic response based on the hypothesis
that variations in hydrostatic pressure induce changes in the activity of non-selective
cation channels, resulting in a transmembrane current IMR. The rate of change of v

is given by

C
dv

dt
D �IL � IK � ICa C IMR (7)

where C denotes the capacitance of the cell membrane.
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Fig. 2 Spontaneous vasomotion of the afferent arteriole. (A) oscillations in Ca2C and KC currents
(denoted ICa and IK, respectively) and membrane potential v. (B) oscillations in the fraction of
Ca2C and KC channels in the open state at equilibrium (denoted m1 and n1, respectively).
(C and D) oscillations in cytosolic Ca2C concentration and arteriolar diameter. Reproduced
from [4]

Cytosolic [Ca2C] regulates the formation of crossbridges, which in turn deter-
mines muscle tone. Muscle tone, together with luminal pressure, gives rise to hoop
forces, the balance of which determines the luminal radius.

At the baseline pressure, the model [4] predicts that the smooth muscle cell
exhibits periodic oscillations in luminal radius even in the absence of external stim-
uli, i.e., spontaneous vasomotion. Those oscillations, shown in Fig. 2, are triggered
by a limit cycle developed between the membrane potential and ion channels. The
inward-directed Ca2C current depolarizes the cell, which results in an increase in
v that triggers the opening of KC channels [Eq. (6)]. The subsequent outward-
directed KC current re-polarizes the cell, thereby decreasing v. The fluctuations
in ICa modulate cytosolic [Ca2C], which in turn regulates muscle tone and results in
spontaneous vasomotion.

In the model, the afferent arteriole smooth muscle cell also exhibits the myogenic
response, the signaling pathway of which is described below. At elevated pressures,
IMR induces depolarization, which stimulates the opening of voltage-gated Ca2C
channels [Eq. (4)], leading to elevations in cytosolic [Ca2C], muscle tone, and
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Blood pressure

Membrane potential

Ca2+ channels opening

Cytosolic [Ca2+]

Vasoconstriction/Vasodilation

Fig. 3 Myogenic mechanism of the afferent arteriole. Pressure elevation (red) induces membrane
depolarization, which results in the opening of Ca2C channels and elevation of cytosolic [Ca2C].
Increased [Ca2C] stimulates the phosphorylation of crossbridges, which enhances muscle tone and
leads to vasoconstriction. Decreased pressure (light green) induces membrane hyperpolarization,
which, via the opposite signaling cascade, leads to vasodilation

vasoconstriction. Conversely, at lower pressures, IMR induces hyperpolarization,
which has the opposite effects and yields vasodilation. The events leading to the
myogenic response are summarized in Fig. 3.

Recently, Edwards and Layton developed a more comprehensive model of
intracellular Ca2C signaling within afferent arteriole smooth muscle cells to study
the mechanisms underlying the myogenic response [7]. In addition to account-
ing for the main transporters of NaC, KC, and Cl�, the model also represents
intracellular Ca2C dynamics, including Ca2C trafficking between the cytosol and
the sarcoplasmic reticulum, which involves the release of Ca2C by ryanodine
receptors (RyR) and inositol triphosphate receptors (IP3R). Indeed, the sarcoplasmic
reticulum is an important component of the smooth muscle cell that was neglected
in the earlier models [4, 24]. In addition, the model [7] represents the kinetics of
myosin light chain (MLC) phosphorylation and the mechanical behavior of the cell.
The contractile force (myogenic tone) depends on the fraction of MLC that are
phosphorylated. A large number of model equations are used to represent these
processes; interested readers are referred to [7], or to [5] in this volume which is an
extension of this model.

The highly detailed model [7] yields new insight into the emergence of sponta-
neous vasomotion. Model results suggest that the time-periodic oscillations stem
from the dynamic exchange of Ca2C between the cytosol and the sarcoplasmic
reticulum, coupled to the stimulation of Ca2C-activated potassium and chloride
channels, and the modulation of voltage-activated L-type channels. Blocking
sarco/endoplasmic reticulum Ca2C pumps, RyR, Ca2C-activated potassium and
chloride channels, or L-type channels abolishes these oscillations. These details
were not, and could not be, predicted by less comprehensive models, e.g., [4, 24].
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3 Tubuloglomerular Feedback

Tubuloglomerular feedback (TGF) is a negative feedback system in the kidney that
seeks to balance the reabsorptive capacity of the tubules with the filtered load. This
is achieved by adjusting SNGFR according to the Cl� concentration of the fluid
reaching the distal nephron. Distal fluid [Cl�] is sensed by a specialized cluster of
cells, known as the macula densa, that is located in the tubular wall in the region
where it comes in contact with the terminal part of the afferent arteriole that feeds
the glomerulus and nephron [11].

An important tubular segment for TGF function is the thick ascending limb
of the loop of Henle, which is immediately upstream of the macula densa. The
epithelial cells of the thick ascending limb vigorously pump NaC from the tubular
fluid into the surrounding interstitium by means of active transport; Cl� efflux
follows. Because the thick ascending limb walls are water impermeable, water does
not follow. As a result, the active reabsorption of NaC dilutes the tubular fluid; in
particular, tubular fluid [Cl�] decreases along the thick limb.

If SNGFR is elevated above its normal, baseline rate, then, taken in isolation,
tubular fluid flow in the thick ascending limb increases. The faster-flowing fluid
allows less time for the filtered NaCl to be reabsorbed. As a result, [Cl�] in the
tubular fluid alongside the macula densa is increased above its target value. This
concentration increase is viewed as an indication that the NaCl load delivered to the
thick ascending limb has exceeded its reabsorptive capacity. Consequently, TGF is
activated, which, through a sequence of signaling events, results in a constriction of
the afferent arteriole, a subsequent reduction in glomerular blood pressure, and thus
a reduction in SNGFR. Conversely, if SNGFR decreases below its baseline rate,
[Cl�] in the tubular fluid alongside the macula densa is decreased below its target
value, and TGF acts to increase SNGFR by signaling the afferent arteriole to dilate.
The resulting higher flow rate reduces transit time along the thick ascending limb
and raises tubular fluid [Cl�].

Some of the earliest dynamic models of TGF were developed by Holstein–
Rathlou and co-workers [2, 9, 10, 12]. A common feature of these models is the
representation of the afferent arteriole by a damped linear oscillator upon which
TGF acts as external forcing. Motivated by the observation that tubular fluid [Cl�],
the key signal for TGF, changes most substantially along the thick ascending limb
of the loop of Henle, Layton and co-workers developed a family of TGF models that
explicitly represent tubular transport [13–18, 22, 23] (unlike earlier models which
have a much simpler representation of nephron flow). This class of model represents
the conservation of Cl� along the thick ascending limb as

�r2 @

@t
ŒCl�� D �Q

@

@x
ŒCl�� � 2�r

�
VmaxŒCl��

KM C ŒCl��
C p .ŒCl�� � ŒCl��ext/

�

(8)

where ŒCl��ext is the interstitial fluid [Cl�], Q is volume flow, and r is tubular
radius. The chloride flux has two components: active transport, characterized by
Michaelis–Menten kinetics with parameters Vmax and KM , and passive diffusion,
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characterized by the permeability of the tubular wall to Cl�, p. Because the thick
ascending limb is water impermeable, fluid flow Q.t/ varies in time but not in space.
TGF activation is a function of [Cl�] at the macula densa (or, the end of the thick
ascending limb), denoted CMD. Specifically, TGF is incorporated by assuming a
sigmoidal relationship between Q.t/ and CMD of the form

Q.t/ D Q0

�
1 C K1 tanh

�
K2

�
Cop � CMD.t � �/

���
(9)

The TGF delay � represents the response time of the afferent arteriole; Cop denotes
the macula densa [Cl�] at the operating point (i.e., the “target” [Cl�]); K1 and K2

determine the maximum range of flow that is affected by TGF and the feedback loop
sensitivity.

Renal blood flow undergoes constant perturbations, by heart beats, breathing,
movements, etc. For some nephrons, a transient perturbation may decay into a
time-independent steady state; for others, a transient perturbation leads to sustained
limit-cycle oscillations. Numerical resolution of the model equations 8 and 9 may
yield qualitatively different solutions, depending on the bifurcation parameters: � ,
the TGF delay, and K1 and K2, which determine the TGF sensitivity (or gain).
Analysis and numerical simulations have suggested that, in general, for sufficiently
small feedback delay and gain, the system is in a stable equilibrium. Thus, for any
initial conditions, and for any transient perturbation of a steady-state solution, the
model solution converges to a time-independent steady state. An example is shown
in Fig. 4, panel B1. In contrast, for larger values of feedback delay and gain, the
only stable solution is a regular oscillation that converges to a limit cycle with some
frequency f . That frequency depends on the values of the feedback delay and gain.
See Fig. 4, panels C1 and D1. A bifurcation analysis of the dynamics of the TGF
model can be found in [14].

4 Applications

Together, the myogenic response and TGF maintain a generally stable SNGFR
and protect the glomerular capillaries from excessive intravascular pressure and
shear stress. Using an integrative model of renal hemodynamics that represents
both the myogenic response and TGF, Sgouralis and Layton assessed the individual
contributions of the two mechanisms to SNGFR regulation [25]. The integrative
model combines an afferent arteriole, a glomerulus, and a short loop of Henle. In
the model, the afferent arteriole reacts to perturbations in local luminal fluid pressure
(i.e., the myogenic response) and to deviations in tubular fluid [Cl�] near the macula
densa (i.e., TGF). In particular, the TGF response is modeled by adding a new
current, ITGF, to the membrane potential equation [Eq. (7)]. ITGF is chosen so that
it induces membrane depolarization, hence vasoconstriction, when macula densa
[Cl�] is elevated above it target value, and vice versa. The model predicts that a
stable SNGFR is maintained within a physiological range of perfusion pressures
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Fig. 4 Theoretical behavior of SNGFR following a transient perturbation, using different values
of feedback delay and gain. Response (B1) and power spectrum (B2) for stable solution (a
time-independent steady state). Stable single-frequency oscillation (C1) and corresponding power
spectrum (C2). Stable double-frequency oscillation and corresponding power spectrum (D2).
Reprinted from [19]

(80–180 mmHg). The contribution of TGF to overall autoregulation is significant
only within a narrow band of arterial pressure values (80–110 mmHg); outside of
that range, the contribution of TGF ceases to increase proportionally because of its
sigmoidal response.

The model in [25] was also applied to a pathophysiological condition, namely,
diabetes. The investigators conducted simulations to assess the extent to which
structural changes and functional impairments observed in diabetic rats cause
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glomerular hyperfiltration. To that end, model parameters were adjusted to simulate:
(1) dysfunctions in afferent arteriole voltage-gated Ca2C channels [3], Eq. (4), which
diminish the vasoconstrictive response, (2) proximal tubule hypertrophy [29], (3)
TGF resetting [28], i.e., changes in the macula densa operating point, Cop in Eq. (9),
and (4) an increase in the glomerular ultrafiltration coefficient [1]. With these
modifications, the model predicts hyperfiltration in diabetes, with a SNGFR that
is �60% above baseline value. Each of these changes tends to elevate SNGFR, and
from a clinical perspective, it is important to understand the relative contribution of
each change. Model simulations suggest that functional impairments in the afferent
arteriolar constrictive response are the most important factor.
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Modeling Autoregulation of the Afferent
Arteriole of the Rat Kidney

Maria-Veronica Ciocanel, Tracy L. Stepien, Aurélie Edwards,
and Anita T. Layton

Abstract One of the key autoregulatory mechanisms that control blood flow in the
kidney is the myogenic response. Subject to increased pressure, the renal afferent
arteriole responds with an increase in muscle tone and a decrease in diameter.
To investigate the myogenic response of an afferent arteriole segment of the rat
kidney, we extend a mathematical model of an afferent arteriole cell. For each cell,
we include detailed Ca2C signaling, transmembrane transport of major ions, the
kinetics of myosin light chain phosphorylation, as well as cellular contraction and
wall mechanics. To model an afferent arteriole segment, a number of cell models
are connected in series by gap junctions, which link the cytoplasm of neighboring
cells. Blood flow through the afferent arteriole is modeled using Poiseuille flow.
Simulation of an inflow pressure up-step leads to a decrease in the diameter for the
proximal part of the vessel (vasoconstriction) and to an increase in proximal vessel
diameter (vasodilation) for an inflow pressure down-step. Through its myogenic
response, the afferent arteriole segment model yields approximately stable outflow
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pressure for a physiological range of inflow pressures (100–160 mmHg), consistent
with experimental observations. The present model can be incorporated as a key
component into models of integrated renal hemodynamic regulation.

1 Introduction

In addition to waste excretion, the kidney is responsible for regulating the balance
of water, electrolytes, and acid–base species. To accomplish these tasks, the kidney
filters a portion of its blood supply into its functional units, the nephrons. Nephrons
are elongated tubules surrounded by a layer of epithelial cells. As the filtrate flows
through the nephron, its fluid and solutes are selectively reabsorbed or secreted,
depending on the animal’s physiological state. Consequently, the composition of
the tubular fluid changes significantly along the nephron, until it eventually emerges
as urine.

For the kidney to properly perform its functions, the rate of filtration into
the nephron must be maintained within a narrow range. Thus, blood flow in the
kidney is controlled by autoregulatory mechanisms. One of the key autoregulatory
mechanisms is the tubuloglomerular feedback system, a negative feedback loop
that seeks to balance the filtered load of sodium with the reabsorptive capacity
of the nephron (Eaton and Pooler [4], Schnermann and Briggs [14]). That goal
is accomplished by sensing alterations in tubular fluid chloride concentration at a
certain location (alongside the macula densa cells) and then adjusting the muscle
tension of the afferent arteriole, and thus renal blood flow and filtration rate,
appropriately.

Another key autoregulatory mechanism is the myogenic response, which is an
intrinsic property of the afferent arteriole. This mechanism induces a compensatory
vasoconstriction of the afferent arteriole when the vessel is presented with an
increase in transmural pressure.

The afferent arteriole thus plays a critical role in renal autoregulation. Edwards
and Layton [5] previously developed a very detailed mathematical model of Ca2C
signaling within an afferent arteriole smooth muscle cell of the rat kidney. The
model represents the transmembrane transport of major ions, intracellular Ca2C
dynamics, the kinetics of myosin light chain phosphorylation, and the mechanical
behavior of the cell. The goal of this study is to develop a multi-cell model of the
afferent arteriole by connecting a series of afferent arteriole smooth muscle cells
via gap junction coupling and to use the model to study the myogenic response of
the vessel. The present afferent arteriole model is intended to be employed as an
essential component in models of integrated renal hemodynamic regulation.
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2 Mathematical Model

In this section, we summarize the model of a single afferent arteriole smooth muscle
cell of the rat kidney, previously developed by Edwards and Layton [5], and then
extend this model to a segment of multiple smooth muscle cells that are connected
in series via gap junctions.

2.1 Single Cell Model

The main signaling pathways in a single afferent arteriole smooth muscle cell that
were considered in Edwards and Layton [5] are represented in Fig. 1.

Considering the KC, NaC, Cl�, and Ca2C channels, the net sum of the currents
flowing across the plasma membrane is

Inet D IK;b C IK;ir C IK;v C IK;Ca C INaK C INa;b C INa;Pres

C INCX C ICl;b C ICl;Ca C ICa;b C ICa;Pres C IPMCA C ICa;L; (1)
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Fig. 1 Representation of a single afferent arteriole smooth muscle cell. The contractile force of
the cell depends on the fraction of myosin light chains (MLC) that are phosphorylated. An increase
of luminal pressure results in an influx of cations into the cytosol via pressure-activated channels.
The ensuing depolarization leads to an increase in cytosolic Ca2C levels, which then enhances
the formation of the MLCK.CaM.Ca4 complex (the active form of myosin light chain kinase,
MLCK). Not shown in the diagram are the background currents and the inward- and delayed-
rectifier KC channels. MLCP myosin light chain phosphatase, CaM calmodulin, PMCA plasma
membrane Ca2C pump, NCX NaC/Ca2C exchanger, SERCA sarco/endoplasmic Ca2C pump, RyR
ryanodine receptor, IP3R inositol triphosphate (IP3) receptor
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Table 1 Electrochemical parameters of the cell (overall)

Parameter Value Unit Definition

Cm 5:5 � 10�6 �F Plasma membrane capacitance

ŒK�out 5.4 mM Extracellular KC concentration

ŒNa�out 140 mM Extracellular NaC concentration

ŒCl�out 120 mM Extracellular Cl� concentration

ŒCa�out 2 mM Extracellular Ca2C concentration

F 96,487 C/mol Faraday constant

R 8.341 J�mol�1�K�1 Ideal gas constant

T 298 K Temperature

volcyt 1 pl Volume of cytosol

volcyt;Ca 0.7 pl Volume of cytosol accessible to Ca2C

volSR 0.14 pl Volume of sarcoplasmic reticulum

Ggap=Cm 950 s�1 Ratio of gap junction coefficient-to-membrane

capacitance

and the transmembrane potential Vm is described by the differential equation

dVm

dt
D � Inet

Cm
; (2)

where Cm is the membrane capacitance. Parameter values and definitions are given
in Table 1.

The pressure-activated ion channels are assumed to predominately carry NaC
and be somewhat permeable to Ca2C but not to other ions. The currents across these
channels are

INa;Pres D GNa;Pres.Vm � ENa/; (3a)

ICa;Pres D GCa;Pres.Vm � ECa/; (3b)

where the conductances GNa;Pres and GCa;Pres depend on the luminal pressure P as

Gi;Pres D G0
i;Pres

�

1 C 1:75

�
P
NP1

� 1

��

1 C jP � NP2j
NP2

��

; (4)

for i D NaC, Ca2C, with NP1 � 100 mmHg and NP2 � 60 mmHg. Parameter values
for G0

Na;Pres and G0
Ca;Pres are given in Tables 4 and 6, respectively.

The remaining equations describing transmembrane ionic transport (including
ion and charge conservation equations, background currents, and KC, NaC, Cl�,
and Ca2C transport pathways), intracellular Ca2C dynamics (including Ca2C buffers
such as calmodulin), the kinetics of myosin light chain (MLC) phosphorylation, and
vessel mechanics for the single-cell model are described in the Appendix.
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Fig. 2 Representation of a segment of multiple afferent arteriole smooth muscle cells in series.
Each cell follows the dynamics of the single-cell model (as in Fig. 1), and the cells are connected
to their immediate neighbors via gap junctions. Blood flow through the afferent arteriole lumen is
described by Poiseuille flow (6)

2.2 Multi-Cell Model

To extend the afferent arteriole smooth muscle single-cell model of Edwards and
Layton [5] to an afferent arteriole segment containing multiple smooth muscle cells,
we assume that each cell follows the dynamics of the single-cell model as described
in the previous section and the Appendix and that all the cells are connected in series
via gap junctions. Gap junctions directly connect the cytoplasm of neighboring
cells and allow ions to pass through them, thus coupling the cells electrically. The
flow of ions carrying an electric charge causes an almost instantaneous diffusion of
electrical disturbance to a neighboring cell.

Hence, we modify Eq. (2) for the transmembrane potential of a single cell to a
segment of cells (see Fig. 2) where the electric charge of a given cell j may diffuse
between its nearest neighbors j C 1 and j � 1 such that

dVj
m

dt
D � Ij

net

Cm
� Ggap

Cm

��VjC1
m C 2Vj

m � Vj�1
m

�
; j D 1; : : : ; Ncell; (5)

where Ncell is the total number of cells and Ggap is the gap junction coefficient,
which denotes the strength of the coupling; we assume that Ggap=Cm D 950 s�1

(Sgouralis and Layton [15]). Per our convention, j D 1 is the first upstream cell
and j D Ncell is the last downstream cell. We impose the homogenous Neumann
boundary conditions at j D 1 and Ncell, such that V0

m D V1
m and VNcellC1

m D VNcell
m .

As blood flows through the segment of smooth muscle cells, the inflow and
outflow pressures vary from cell to cell. The luminal blood flow is assumed to be at
a quasi-steady state and is therefore described by Poiseuille flow

dP

dx
D �8�Q

�R4
; (6)

where P is the hydrostatic pressure, � is the dynamic viscosity of blood, Q is
the volumetric flow rate, and R is the luminal radius calculated from the diameter
equation (43).
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Once the radius R is determined, the hydrostatic pressure P for each cell is
updated. This, in turn, affects the pressure-activated ion channel conductances
GNa;Pres and GCa;Pres [Eq. (4)], which are modified as

Gi;Pres D max

�

0; G0
i;Pres

�

1 C 1:75

�
P � NP0

NP1

��

1 C maxf0; P � NP2g
NP2

��	

;

(7)
for i D NaC, Ca2C. In the above equation, NP1 � 100 mmHg and NP2 � 60 mmHg as
in Eq. (4), and NP0 is a reference pressure that decreases approximately linearly from
100 to 91.45 mmHg along the model afferent arteriole, but remains constant for
each individual cell subsegment. The added supremums in Eq. (7), as compared
to Eq. (4), are to ensure that the conductances are positive (which also leads to
numerical stability), that there is no positive contribution to the conductances when
pressure P goes below the lower bound NP2, and that there are no jumps in the
arteriole diameter. Both P and NP0 are vector pressures that vary along the afferent
arteriole, so that the myogenic response is activated at each numerical cell by the
corresponding pressure in the vector.

2.3 Numerical Method

To numerically solve the multi-cell model, we implement fractional splitting: the
single-cell model is solved for each cell separately in the first stage, and the diffusion
of electric charge between all cells is taken into account in the second stage.

Letting R represent the nonlinear reaction part of Eq. (5) (the first term) and
f i
j be the solution to the 51 ordinary differential equations (solved with ode15s in

MATLAB) of the single-cell model for cell j D 1; : : : ; Ncell at time step i with
fi D .f i

1; f i
2; : : : ; f i

Ncell
/, the first step in the splitting is

f� � fi

�t
D R.f�/; (8)

where f� D .f �
1 ; f �

2 ; : : : ; f �
Ncell

/ is the predicted solution that will be corrected by the
second step.

Let Of �
j be the portion of the solution f �

j that represents the transmembrane

potential Vm for cell j with Of� D .Of �
1 ; Of �

2 ; : : : ; Of �
Ncell

/. The linear diffusion part of
Eq. (5) (the second term) is solved with ode45 with no flux boundary conditions in
MATLAB and is

OfiC1 � Of�

�t
D Ggap

Cm
�OfiC1; (9)

where OfiC1 replaces the transmembrane potential portion of f� to obtain fiC1, the
solution at time step i C 1.
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Assuming that the inflow pressure applied to the first cell, P1, is constant
throughout time, the hydrostatic pressure for the other cells, Pj, j D 2; : : : ; Ncell,
is then updated from the Poiseuille flow (6), which is discretized such that

PiC1
j D PiC1

j�1 � 8�Q

�.Rj/4
�x; j D 2; : : : ; Ncell; (10)

where �x is the width of one numerical afferent arteriole smooth muscle cell
subsegment.

In the case where the inflow pressure is varied linearly between some times Ot1
and Ot2, then P1 is discretized as

PiC1
1 D Pi

1 � Op �t
Ot2 � Ot1 ; (11)

where Op determines the change in perfusion pressure that is applied to the first cell
from time Ot1 to Ot2.

3 Model Results

We apply our blood vessel model to an afferent arteriole of length � 240 �m. The
parameters we use for the single-cell model are given in Table 1 and the tables
in the Appendix. Additionally, the Poiseuille equation (6) parameters are given in
Table 2, where we assume that the volumetric flow rate Q is known a priori. The
model afferent arteriole is discretized into Ncell D 20 numerical cells, each of length
�x D 12 �m.

The base case corresponds to setting the inflow boundary pressure to 100 mmHg.
Figure 3 shows the oscillations in membrane potential Vm predicted by the model for
the first cell in our afferent arteriole segment. The mean value of the transmembrane
potential is �36 mV, which is a good approximation of the measured value of
�40 mV in the pressurized afferent arteriole. The cytosolic concentration of Ca2C in
this cell is shown in Fig. 4. This concentration oscillates between 220 and 320 nM,
similar to the range predicted by the single-cell model in Edwards and Layton [5].
The frequency of oscillations for both Vm and ŒCa2C� is about 0:15 per second. We
note that while we show results for the first upstream cell as defined in Eq. (5),
similar oscillations are predicted for the subsequent cells.

The diameter of the vessel at the location of the first cell also shows an oscillatory
time profile, which stabilizes to an average of 20:1 �m, as can be seen in Fig. 5. We
note that this value is only slightly smaller than the average luminal diameter of 20:5

�m predicted by the single-cell model in Edwards and Layton [5].

Table 2 Parameters for Poiseuille equation for blood flow through the afferent arteriole

Parameter Value Unit Definition

� 1:26 � 10�4 mmHg � s Dynamic viscosity of blood

Q 300 nL/min Volumetric flow rate
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Fig. 3 Predicted oscillations of the membrane potential Vm for the first cell in the afferent arteriole
at an inflow pressure of 100 mmHg
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Fig. 4 Predicted oscillations of the cytosolic concentration of Ca2C for the first cell in the afferent
arteriole at an inflow pressure of 100 mmHg
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Fig. 5 Predicted oscillations of the afferent arteriole diameter at the first cell coordinate at an
inflow pressure of 100 mmHg

We examined the effects of varying the inflow pressure on the afferent arteriole.
The left panels in Fig. 6 correspond to model simulations where the inflow pressure
starts at the reference value of 100 mmHg, then from 50 to 150 s we increase this
pressure linearly to 120 mmHg, and then keep it constant at this higher level for the
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Fig. 6 Time profiles of inflow pressure, Vm, cytosolic [Ca2C], and vessel diameter with a pressure
increase to 120 mmHg (left) and a pressure decrease to 90 mmHg (right). The red dotted vertical
lines point to the time interval when luminal pressure is linearly increased (left) or decreased (right)

remainder of the simulation. In a separate simulation, we follow a similar protocol
and decrease the luminal pressure linearly to 90 mmHg and then keep it constant at
this lower level to produce the panels on the right.

In the case of a pressure increase, we note that this change opens the pressure-
activated channels and triggers depolarization, thereby raising the transmembrane
potential Vm and, subsequently, the cytosolic concentration of Ca2C. In the pressure
down-step case, we observe a reduction in Vm, which elicits a decrease in cytosolic
[Ca2C] and leads to an oscillatory regime for this concentration. These observations
are similar to single-cell model results in Edwards and Layton [5], where luminal
pressure was sharply increased or reduced at a given time point.
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Fig. 7 Time-averaged luminal diameters along the blood vessel for base case inflow pressure
100 mmHg together with pressure increase to 120 mmHg (left) and pressure decrease to 90 mmHg
(right)

The last row of Fig. 6 shows that the diameter of the vessel at the coordinate of
the first cell oscillates around 20 �m before t D 50 s, as in Fig. 5. At t D 50 s, the
arteriole acts as a compliant tube and dilates as pressure increases and conversely
constricts as pressure decreases. This passive response was also observed in the
single-cell model of Edwards and Layton [5].

This effect is quickly replaced by the myogenic response, which leads to a
decrease in the vessel diameter (vasoconstriction) for the pressure up-step and an
increase in diameter (vasodilation) for the pressure down-step. The vessel diameter
stabilizes around 16 �m for the pressure up-step and stably oscillates around 22 �m
for the pressure down-step. The plots correspond to the first cell in the vessel for both
simulations, and a similar myogenic response controls the time profile of diameters
of all subsequent cells (results not shown).

The effects of base case pressure, pressure up-step, and pressure down-step
on all vessel cells are shown in Fig. 7. Each blue dot corresponds to the average
diameter at a given cell location over a time interval where the radius stabilizes
(either converges to a specific value or oscillates around it). The base case pressure
of 100 mmHg shows relatively constant diameters for the first (proximal) part of
the vessel and a decrease to 16.9 �m in the distal (latter) part of the segment. For
the increase in luminal pressure to 120 mmHg, our model predicts vasoconstriction
in the proximal part of the afferent arteriole segment, which is reflected in the left
panel of Fig. 7 by the low diameters at the level of the first cells. The myogenic
response stabilizes downstream pressure, thereby raising the radius in the distal
part of the afferent arteriole segment to 17.8 �m despite the pressure up-step.
Conversely, a pressure down-step elicits the expected vasodilation in the proximal
afferent arteriole segment, as shown in the right panel; its myogenic response yields
a distal afferent arteriole diameter that is smaller than the proximal afferent arteriole
diameter (16.5 �m at the end cell).

It is worth noting that the diameters in the distal part of the afferent arteriole
segment drop back to lower values in the case of the inflow pressure up-step (see left
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Fig. 8 Predicted myogenic response (blue) compared to perfect autoregulation (orange) and no
autoregulation (purple) of blood flow through the vessel for a range of luminal pressures

panel of Fig. 7). In order to understand this effect, we should note that the afferent
arteriole diameter represents a balance between the elastic force of the cell and
the myogenic response (see Eq. (43)). As we move along the afferent arteriole, the
luminal pressure decreases, so that the myogenic response is dominant and leads to
the increase in diameter for the pressure up-step case. Toward the end of the vessel,
the pressure becomes much lower, and thus, the elastic force (which is proportional
to pressure) leads to a decrease in the distal afferent arteriole diameter.

In order to further investigate the model afferent arteriole’s myogenic response,
we computed the outflow pressure and time- and space-averaged diameter of the
afferent arteriole given different constant inflow pressures. Figure 8 shows the
predicted outflow pressures at the level of the last afferent arteriole cell. Our results
suggest that there is a slow increase in the outflow pressure for reference inflow
pressures between 100 and 160 mmHg. This increase is substantially slower than
a slope 1 line that would represent no autoregulation and highlights the predicted
myogenic response of the afferent arteriole model. Note that the predicted outflow
pressure of about 80 mmHg for an inflow pressure of 160 mmHg is higher than
the 50 mmHg outflow pressure predicted in Sgouralis and Layton [15]. This higher
increase is likely due to the small length of the vessel modeled (240 �m), as well
as to the absence of tubuloglomerular feedback in the model. Our numerical cell,
chosen to be 12 �m in length for numerical stability, may also affect pressure
increases.

Similarly, Fig. 9 shows the space- and time-averaged afferent arteriole diameter
for different reference pressure inputs. As in Sgouralis and Layton [15], the
results point to vasodilation for small inflow pressures (85 mmHg) where the
mean diameter is around 20 �m, and vasoconstriction for large inflow pressures
(160 mmHg), where the mean diameter is lower, around 16:5 �m.
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Fig. 9 Predicted space- and time-averaged afferent arteriole diameter for a range of luminal
pressures

4 Discussion

We have developed a mathematical model of a segment of the afferent arteriole
of the rat kidney. The model represents detailed Ca2C trafficking in each of the
afferent arteriole smooth muscle cells, as well as the kinetics of myosin light chain
phosphorylation and the mechanical behavior of the cell. The multi-cell afferent
arteriole model is an extension of our published cell model [5], which represents the
Ca2C dynamics and vasoresponse of a single afferent arteriole smooth muscle cell.
The afferent arteriole segment model of this study was constructed by connecting 20
afferent arteriole cell models in series; each cell model is coupled to its neighbors
through gap junctions, which allow the representation of electric conduction along
the afferent arteriole. A fluid dynamics model was included to relate fluid pressure,
fluid flow, and vascular resistance.

The model predicts spontaneous vasomotion at physiological luminal pressures,
which arises from the dynamic exchange of Ca2C between the cytosol and the
sarcoplasmic reticulum, coupled to the stimulation of Ca2C-activated potassium
(KCa) and chloride (ClCa) channels, and the modulation of voltage-activated L-type
channels. These spontaneous oscillations of the afferent arteriole muscle tone result
in oscillations in fluid pressure and flow.

It is well known that the renal afferent arteriole exhibits the myogenic response,
wherein it reacts to an elevation in blood pressure with an increase in muscle tone
and a decrease in luminal diameter. The myogenic response is believed to stabilize
glomerular filtration and to protect the glomerulus from exceedingly high systolic
blood pressure, especially in hypertension. The model represents the myogenic
response by assuming that the response is initiated by pressure-induced changes
in the activity of nonselective cation channels. Through its myogenic response,
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the model afferent arteriole stabilizes, to a significant degree, outflow pressure for
a range of steady-state inflow pressures, from 100 to 160 mmHg (see Fig. 8). The
observed increase in outflow pressure is likely due to the dimension of the vessel
considered, as well as to the fact that tubuloglomerular feedback is not included in
this model.

With its representation of the myogenic response, the present afferent arteriole
segment model can be used as an essential component in models of integrated
renal hemodynamic regulation. By coupling a number of afferent arteriole segment
models, one can investigate how vasomotor responses propagate among a vascular
tree. Furthermore, as we have previously done using a simpler model of an
afferent arteriole segment (Sgouralis and Layton [16]), the present model could
be combined with a model of glomerular filtration (e.g., Deen et al. [3], Sgouralis
and Layton [16]) and a model of the tubuloglomerular feedback mechanism (e.g.,
Layton [12], Sgouralis and Layton [16]), which is another key renal autoregulatory
mechanism. The resulting integrative model of renal hemodynamics could then
serve to investigate the interactions between the myogenic and TGF mechanisms
in the context of renal autoregulation.

Appendix

This appendix contains the remaining equations besides the ones given in Sect. 2.1
for the afferent arteriole smooth muscle single-cell model of Edwards and Lay-
ton [5]. For further details and kinetic diagrams, refer to [5].

Transmembrane Ionic Transport

Ion and Charge Conservation Equations

The cytosolic concentrations of KC, NaC, Cl�, and Ca2C are determined by
considering the net sum of their respective fluxes into the cytosol (described in
subsequent sections) and integrating

dŒK�cyt

dt
D � .IK;b C IK;ir C IK;v C IK;Ca � 2INaK/

F � volcyt
; (12a)

dŒNa�cyt

dt
D � .INa;b C INa;Pres C 3INaK C 3INCX/

F � volcyt
C JNaCl

volcyt
; (12b)

dŒCl�cyt

dt
D ICl;b C ICl;Ca

F � volcyt
C JNaCl

volcyt
; (12c)
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dŒCa�cyt

dt
D �

�
ICa;b C ICa;Pres C IPMCA C ICa;L � 2INCX C ISERCA � IRyR � IIP3R

�

2F � volcyt;Ca

C Rcyt
CaM C Rcyt

Bf : (12d)

Parameter values and definitions are given in Table 1.
In the sarcoplasmic reticulum (SR),

dŒCa�SR

dt
D ISERCA � IRyR � IIP3R

2F � volSR
C RSR

Calseq: (13)

The reaction terms Rcyt
CaM, Rcyt

Bf , and RSR
Calseq account for the buffering of Ca2C

by calmodulin, other cytosolic buffers, and calsequestrin, respectively, and are
described in Eq. (35) below.

Background Currents

The background current of ion i, for i D KC; NaC; Cl�; Ca2C, is

Ii;b D Gi;b .Vm � Ei/ ; (14)

where the Nernst potential of ion i with valence zi is

Ei D RT

ziF
ln

�
Œi�out

Œi�cyt

�

: (15)

Parameter values and definitions are given in Table 1.

Potassium Transport Pathways

The potassium current across inward-rectifier (Kir) channels is determined as

IK;ir D GKirPKir

�
ŒK�out

ŒK�ref

�0:9

.Vm � EK/ ; (16a)

PKir D 1

1 C exp

�
Vm � VKir

sKir

� ; (16b)

where the exponential factor, 0.9, the potential of half-maximal activation, VKir,
and the slope, sKir, were obtained by fitting Kir currents in cerebral arterial smooth
muscle cells (Wu et al. [18]). Parameter values are given in Tables 1 and 3.
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Table 3 Parameters for
potassium currents

Parameter Value Unit

GK;b 0 nS

GKir 0.50 nS

ŒK�ref 5.0 mM

VKir �80/�65 mVa

sKir 20/5 mVa

GKv 9.83 nS

GKCa 5.0 nS

�Pf 0.5 mS

�Ps 11.5 mS
aValues for Vm below/above
�60 mV

The potassium current across delayed-rectifier (Kv) channels is given by

IK;v D GKv .PKv/2 .Vm � EK/ ; (17a)

PKv D 0:58PKv1 C 0:42PKv2; (17b)

dPKv1

dt
D

NPKv � PKv1

�Kv1
; (17c)

dPKv2

dt
D

NPKv � PKv2

�Kv2
; (17d)

NPKv D 1

1 C exp

�

�Vm C 1:77

14:52

� ; (17e)

�kv1 D 210:99 exp

"

�
�

Vm C 214:34

195:35

�2
#

� 20:59; (17f)

�kv2 D 821:39 exp

"

�
�

Vm C 31:59

27:46

�2
#

C 0:189; (17g)

where PKv1 and PKv2 are the two components of the channel activation process and
�Kv1 and �Kv2 are the respective time constants (in ms) (Yang et al. [19]). Variable
NPKv is voltage-dependent and represents the steady-state value of PKv1 and PKv2.

The potassium current across Ca2C-activated KC (KCa) channels is computed as

IK;Ca D GKCaPKCa .Vm � EK/ ; (18a)

PKCa D 0:65Pf C 0:35Ps; (18b)

dPf

dt
D

NPKCa � Pf

�Pf
; (18c)
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dPs

dt
D

NPKCa � Ps

�Ps
; (18d)

NPKCa D 1

1 C exp

�

�Vm � VKCa

21:70

� ; (18e)

VKCa D �45:0 log10

�
ŒCa�cyt

� � 63:55; (18f)

where Pf and Ps are the fast and slow components of the channel activation process,
respectively, and �Pf and �Ps are the corresponding time constants (Yang et al. [19]).
The steady-state open probability of the channels is given by NPKCa.

The ATP-dependent KC channels are not considered in the Edwards and Layton
model [5] since it assumed that their conductance is negligible in well-perfused and
oxygenated arterioles.

Sodium Transport Pathways

The current across NaC/KC-ATPase pumps is determined as

INaK D INaK;max

 
ŒK�out

ŒK�out C KK
m;NaK

!2  
ŒNa�cyt

ŒNa�cyt C KNa
m;NaK

!3

: (19)

The current across NaC/Ca2C (NCX) exchangers is given by

INCX DINCX;maxANCX

 
˚FŒNa�3cytŒCa�out � ˚RŒNa�3outŒCa�cyt

G.1 C ksat˚R/

!

; (20a)

ANCX D ŒCa�2cyt
�
KCa

m;NCX

�2 C ŒCa�2cyt

; (20b)

˚F D exp

�
	VmF

RT

�

; (20c)

˚R D exp

�
.	 � 1/VmF

RT

�

; (20d)

G DŒNa�3outŒCa�cyt C ŒNa�3cytŒCa�out C K3
mNaoŒCa�cyt

C KmCaoŒNa�3cyt C K3
mNaiŒCa�out

�
1 C ŒCa�cyt=KmCai

�

C KmCaiŒNa�3out



1 C ŒNa�3cyt=K3

mNai

�
(20e)
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(Shannon et al. [17]). The flux across NaCl cotransporters is computed as

JNaCl D JNaCl;max
.ENa � ECl/

4

.ENa � ECl/
4 C R4

NaCl

(21)

(Kneller et al. [11]). Parameter values are given in Tables 1 and 4.

Chloride Transport Pathways

The current across Ca2C-activated Cl� (ClCa) channels is

ICl;Ca D GClCaPClCa.Vm � ECl/; (22a)

dPClCa

dt
D

NPClCa � PClCa

�ClCa
; (22b)

NPClCa D ŒCa�3cyt

ŒCa�3cyt C K3
ClCa

; (22c)

where NPClCa is the steady-state open probability of the channel (Jacobson et al. [8]).
Parameter values are given in Table 5.

Table 4 Parameters for sodium currents

Parameter Value Unit

GNa;b 0.007 nS

G0
Na;Pres 0.020 nS

INaK;max 3.75 �A/�F

KK
m;NaK 1.5 mM

KNa
m;NaK 12 mM

INCX;max 1.5 �A/�F

KCa
m;NCX 0:125 � 10�3 mM

ksat 0.27 Dimensionless

Parameter Value Unit

Km;Nao 87.5 mM

Km;Cao 1.3 mM

Km;Nai 12.29 mM

Km;Cai 3:59 � 10�3 mM

	 0.35 Dimensionless

JNaCl;max 1:08 � 10�16 mM/s

RNaCl 87.825 mV

Table 5 Parameters for
chloride currents

Parameter Value Unit

GCl;b 0.007 nS

GClCa 0.80 nS

�ClCa 0.050 s

KClCa 140 mM
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Table 6 Parameters for calcium currents and buffers

Parameter Value Unit

GCa;b 0.007 nS

G0
Ca;Pres 0.020 nS

GCaL 2.75 nS

IPMCA;max 0.9 �A/�F

KCa
m;PMCA 170 � 10�6 mM

ISERCA;max 11.76 pA

KCa
m;SERCA 310 � 10�6 mM


RyR 12 s�1

Ka 3:7222 � 10�6 mM

Kb 6:3601 � 10�6 mM

Kc 0.0571 Dimensionless

k�

c 0.1 s�1


IP3R 12 s�1

KIP3
C

1.85 s�1

ŒIP3�ref 240 mM

˛4 0.5 Dimensionless

Parameter Value Unit

k4 1:1 � 10�3 mM

kIP3
�

1.0 s�1

a1 400 � 103 mM�1� s�1

a3 400 � 103 mM�1� s�1

a4 0:2 � 103 mM�1� s�1

a5 20 � 103 mM�1� s�1

d1 0:13 � 10�3 mM�1

d3 943:4 � 10�6 mM�1

d4 144:5 � 10�6 mM�1

d5 82:34 � 10�6 mM�1

KBf
on 103 mM�1� s�1

KBf
off 5 s�1

ŒBf�tot
cyt 0.50 mM

kCalseq
on 105 mM�1� s�1

kCalseq
off 65 s�1

ŒCalseq�tot
SR 0.14 mM

Calcium Transport Pathways

Calcium is exchanged between the cytosol and the extracellular space, and between
the cytosol and the SR, which acts as a storage compartment. Parameter values for
calcium currents and buffer reactions are given in Tables 1 and 6.

The current through plasma membrane Ca2C (PMCA) pumps is determined as

IPMCA D IPMCA;max

 
ŒCa�cyt

KCa
m;PMCA C ŒCa�cyt

!

: (23)

The CaV1.2 model of Faber et al. [6] is used for the current across L-type Ca2C
channels. The voltage-dependent gating mode of the channel is considered, which
includes four closed states (c0, c1, c2, and c3), one open state (po), and fast (ivf) and
slow (ivs) inactivated states. The corresponding equations are

ICa;L D GCaLpo .Vm � ECa/ ; (24a)

dc0

dt
D ˇc1 � .4˛/c0; (24b)

dc1

dt
D .4˛/c0 C .2ˇ/c2 � .3˛ C ˇ/c1; (24c)

dc2

dt
D .3˛/c1 C .3ˇ/c3 � .2˛ C 2ˇ/c2; (24d)
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dc3

dt
D .2˛/c2 C .4ˇ/po C !fivf C !sivs � .˛ C 3ˇ C 	f C 	s/c3; (24e)

dpo

dt
D ˛c3 C �fivf C �sivs � .4ˇ C �f C �s/po; (24f)

divf

dt
D 	fc3 C �fpo C !sfivs � .!f C �f C !fs/ivf; (24g)

divs

dt
D 	sc3 C �spo C !fsivf � .!s C �s C !sf/ivs; (24h)

where

˛ D 0:925 exp.Vm=30/; ˇ D 0:390 exp.Vm=40/;

	f D 0:245 exp.Vm=10/; 	s D 0:005 exp.�Vm=40/;

�f D 0:020 exp.Vm=500/; �s D 0:030 exp.�Vm=280/;

�f D 0:035 exp.�Vm=300/; �s D 0:0011 exp.Vm=500/;

!f D .4ˇ�f	f/=.˛�f/; !s D .4ˇ�s	s/=.˛�s/;

!sf D .�s�f/=�f; !fs D �s:

T-type Ca2C channels are not considered in the Edwards and Layton [5] model.
The current across sarco/endoplasmic reticulum Ca2C (SERCA) pumps is

given by

ISERCA D ISERCA;max

 
ŒCa�2cyt

�
KCa

m;SERCA

�2 C ŒCa�2cyt

!

: (25)

The RyR model of Keizer and Levine [10] is used to determine the RyR-mediated
release current into the cytosol,

IRyR D vRyRPRyR
�
ŒCa�SR � ŒCa�cyt

�
.2F � volSR/ ; (26)

where vRyR is the RyR rate constant. The open probability of RyR (PRyR) is
calculated as

PRyR D
!


1 C �

ŒCa�cyt=Kb
�3
�

1 C �
Ka=ŒCa�cyt

�4 C �
ŒCa�cyt=Kb

�3 ; (27a)

d!

dt
D k�

c .!1 � !/

!1 ; (27b)

!1 D 1 C �
Ka=ŒCa�cyt

�4 C �
ŒCa�cyt=Kb

�3

1 C 1=Kc C �
Ka=ŒCa�cyt

�4 C �
ŒCa�cyt=Kb

�3 : (27c)
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The IP3R model of De Young and Keizer [2] is used to determine the IP3R-
mediated release current in the cytosol,

IIP3R D vIP3R.x110/3
�
ŒCa�SR � ŒCa�cyt

�
.2F � volSR/ ; (28)

where vIP3R is the IP3R rate constant and x110 is the fraction of receptors bound
by one activated Ca2C and one IP3, calculated as described below. The cytosolic
concentration of IP3 is calculated as

dŒIP3�cyt

dt
D kIP3C ŒIP3�ref

�
ŒCa�cyt C .1 � ˛4/k4

ŒCa�cyt C k4

�

� kIP3� ŒIP3�cyt; (29)

where kIP3C and kIP3� are the rate constants for IP3 formation and consumption,
respectively, ŒIP3�ref is a reference IP3 concentration, and ˛4 determines the strength
of the Ca2C feedback on IP3 production.

Three equivalent and independent IP3R subunits are assumed to be involved in
conduction, and each subunit has one IP3 binding site (denoted as site 1) and two
Ca2C binding sites, one for activation (site 2) and one for inhibition (site 3). The
fraction of receptors in state Si1i2i3 is denoted by xi1i2i3 , where ij equals 0 if the j-th
binding site is unoccupied or 1 if it is occupied. All three subunits must be in the
state S110 (corresponding to the binding of one IP3 and one activating Ca2C) for the
IP3R channel to be open. Assuming rapid equilibrium for IP3 binding,

a1ŒCa�cytx0k0 D b1x1k0; k D 0; 1; (30a)

a3ŒCa�cytx0k1 D b3x1k1; k D 0; 1: (30b)

Defining dk D bk=ak, the conservation equations for x0i2i3 are

dx000

dt
D �a4

�
ŒCa�cytx000 � d4x001

� � a5

�
ŒCa�cytx000 � d5x010

�
; (31a)

dx001

dt
D Ca4

�
ŒCa�cytx000 � d4x001

� � a5

�
ŒCa�cytx001 � d5x011

�
; (31b)

dx010

dt
D Ca5

�
ŒCa�cytx000 � d5x010

� � a4

�
ŒCa�cytx010 � d4x011

�
; (31c)

x011 D 1 � .x000 C x001 C x010 C x100 C x101 C x110 C x111/ : (31d)
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Intracellular Ca2C Dynamics

Calcium Buffers

Calcium buffering by cytosolic Ca2C-binding proteins other than calmodulin is
described as a first-order dynamic process,

dŒBf � Ca�cyt

dt
D kBf

onŒCa�cyt



ŒBf�tot

cyt � ŒBf � Ca�cyt

�
� kBf

offŒBf � Ca�cyt; (32)

where ŒBf�tot
cyt is the total concentration of Ca2C-binding proteins other than calmod-

ulin in the cytosol and ŒBf�Ca�cyt is the concentration of the calcium-bound sites of
these other buffering elements.

Calcium buffering by calsequestrin in the SR is described as

dŒCalseq � Ca�SR

dt
D kCalseq

on ŒCa�SR
�
ŒCalseq�tot

SR � ŒCalseq � Ca�SR
�

� kCalseq
off ŒCalseq � Ca�SR; (33)

where ŒCalseq�tot
SR is the total concentration of calsequestrin sites available for

Ca2C binding in the SR and ŒCalseq�Ca�SR is the concentration of Ca2C-bound
calsequestrin sites in that compartment. Parameter values are given in Table 6.

Kinetics of Myosin Light Chain Phosphorylation

CaM Activation of MLCK

Calmodulin (CaM) has four Ca2C binding sites, with two at the NH2 terminus
(low affinity) and two at the COOH terminus (high affinity). Binding of Ca2C to
those sites yields the CaM.Ca4 complex, and CaM.Ca4 binds to myosin light chain
kinase (MLCK) to form MLCK.CaM.Ca4, which is the active form of MLCK that
phosphorylates MLCs.

The scheme proposed by Fajmut et al. [7] is used to determine the kinetics of
formation of MLCK.CaM.Ca4. Subscripts N and C represent two binding sites each
for Ca2C at the NH2 and COOH terminus of CaM, respectively, and the subscript M
represents the CaM binding site occupied by MLCK. An underscore (_) denotes an
unoccupied site for each of these binding sites. For example, CaMNCM designates
MLCK.CaM.Ca4. The kinetic equations for the formation of MLCK are

dŒCaM�C��

dt
D ��kCaM�1 � kCaM

4 ŒCa�2 � kCaM
5 ŒMLCK�free

�
ŒCaM�C��

C kCaM
1 ŒCa�2ŒCaM���� C kCaM�4 ŒCaMNC�� C kCaM�5 ŒCaM�CM�;

(34a)
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dŒCaMN���

dt
D ��kCaM�2 � kCaM

3 ŒCa�2
�

ŒCaMN��� C kCaM
2 ŒCa�2ŒCaM����

C kCaM�3 ŒCaMNC��; (34b)

dŒCaMNC��

dt
D ��kCaM�3 � kCaM�4 � kCaM

7 ŒMLCK�free
�

ŒCaMNC��

C kCaM
3 ŒCa�2ŒCaMN��� C kCaM

4 ŒCa�2ŒCaM�C��

C kCaM�7 ŒCa�2ŒCaMNCM�; (34c)

dŒCaM�CM�

dt
D ��kCaM�5 � kCaM

6 ŒCa�2
�

ŒCaM�CM� C kCaM
5 ŒMLCK�freeŒCaM�C��

C kCaM�6 ŒCa�2ŒCaMNCM�; (34d)

dŒCaMNCM�

dt
D ��kCaM�6 � kCaM�7 ŒCa�2

�
ŒCaMNCM� C kCaM

6 ŒCa�2ŒCaM�CM�

C kCaM
7 ŒMLCK�freeŒCaMNC��; (34e)

ŒCaM�tot DŒCaM���� C ŒCaM�C�� C ŒCaMN��� C ŒCaMNC��;

C ŒCaM�CM� C ŒCaMNCM�; (34f)

ŒMLCK�tot DŒCaM�CM� C ŒCaMNCM� C ŒMLCK�free; (34g)

where the on- and off-rate constants are denoted by kCaM
i and kCaM�i , respectively,

ŒMLCK�free is the concentration of free (unbound) MLCK, ŒCaM�tot is the total
concentration of calmodulin, ŒMLCK�tot is the total concentration of MLCK, and
the subscript “cyt” that denotes the cytosolic compartment is omitted for simplicity.
Parameter values are given in Table 7.

The buffering terms in the Ca2C conservation equations (12d) and (13) are
given by

Rcyt
CaM D � 2

dŒCaMN���

dt
� 2

dŒCaM�C��

dt
� 2

dŒCaM�CM�

dt

� 4
dŒCaMNC��

dt
� 4

dŒCaMNCM�

dt
; (35a)

Rcyt
Bf D � dŒBf � Ca�cyt

dt
; (35b)

RSR
Calseq D � dŒCalseq � Ca�SR

dt
: (35c)
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Table 7 Parameters for MLCK and MLCP kinetics

Parameter Value Unit

kCaM
1 2:8 � 106 mM�1� s�1

kCaM
�1 6 s�1

kCaM
2 108 mM�1� s�1

kCaM
�2 800 s�1

kCaM
3 2:8 � 106 mM�1� s�1

kCaM
�3 6 s�1

kCaM
4 108 mM�1� s�1

kCaM
�4 800 s�1

kCaM
5 109 mM�1� s�1

kCaM
�5 20 s�1

kCaM
6 1:25 � 107 mM�1� s�1

kCaM
�6 5 s�1

kCaM
7 109 mM�1� s�1

Parameter Value Unit

kCaM
�7 1 s�1

ŒCaM�tot 10 � 10�3 mM

ŒMLCK�tot 2 � 10�3 mM

ŒMLCP�tot 2 � 10�3 mM

ŒRhoK� 30 � 10�6 mM

kcat=kMLCP
C

0:33 � 106 mM�1

kMyo
MLCK 0.537 s�1

kMyo
MLCP 1.62 s�1

kMyo
3 1.8 s�1

kMyo
4 0.1 s�1

kMyo
7 0.045 s�1

ŒMyo�tot 30 � 10�3 mM

Rho-Kinase Inhibition of MLCP

Myosin light chain phosphatase (MLCP) consists of three subunits, one of which,
MYPT1, can be phosphorylated by Rho kinase (RhoK). Rho-K-induced phospho-
rylation of MYPT1 inactivates MLCP, which promotes contraction. The cytosolic
concentration of active MLCP (denoted MLCP�) is given by

dŒMLCP��

dt
D kMLCPC

�
ŒMLCP�tot � ŒMLCP��

� � kMLCP� ŒMLCP��; (36)

where ŒMLCP�tot is the total concentration of MLCP in the cytosol and the
inactivation of MLCP by RHoK is given by

kMLCP� D kcatŒRhoK� (37)

(Mbikou et al. [13]). The concentration of RhoK, ŒRhoK�, is assumed to be fixed
at 30 nM (Kaneko-Kawano et al. [9]) except in the presence of specific inhibitors.
Parameter values are given in Table 7.

MLCK- and MLCP-Dependent Phosphorylation of Myosin

The contractile force of the vessels is determined by the fraction of myosin cross-
bridges that are phosphorylated. The four types of cross-bridges considered are free
cross-bridges (Myo), phosphorylated cross-bridges (MyoP), attached phosphory-
lated cycling cross-bridges (AMyoP), and attached dephosphorylated, non-cycling
cross-bridges (AMyo), and the corresponding equations for their concentrations are
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dŒMyo�

dt
D �kMyo

1 ŒMyo� C kMyo
2 ŒMyoP� C kMyo

7 ŒAMyo�; (38a)

dŒMyoP�

dt
D CkMyo

1 ŒMyo� � .kMyo
2 C kMyo

3 /ŒMyoP� C kMyo
4 ŒAMyoP�; (38b)

dŒAMyoP�

dt
D CkMyo

3 ŒMyoP� � .kMyo
4 C kMyo

5 /ŒAMyoP� C kMyo
6 ŒAMyo�; (38c)

ŒMyo�tot D ŒMyo� C ŒMyoP� C ŒAMyoP� C ŒAMyo�: (38d)

The rate constants kMyo
3 , kMyo

4 , and kMyo
7 are fixed (Yang et al. [19]). Parameter values

are given in Table 7.
The rate constants kMyo

1 and kMyo
6 represent the activity of MLCK and are assumed

to be proportional to the fraction of the fully activated form of the enzyme, while
the rate constants kMyo

2 and kMyo
5 represent the activity of MLCP. The corresponding

equations are

kMyo
1 D kMyo

6 D kMyo
MLCK

ŒCaMNCM�

ŒCaM�tot
; (39a)

kMyo
2 D kMyo

5 D kMyo
MLCP

ŒMLCP��

ŒMLCP�tot
; (39b)

where kMyo
MLCK and kMyo

MLCP are fixed.

Mechanical Behavior of Cell

The vasomotion of the afferent arteriole is affected by the variations in the number
of cross-bridges, which induce variations in the contractile force and thus alter the
diameter of the vessel. Edwards and Layton [5] implemented the model of Carlson
et al. [1] that represents vessel wall tension as the sum of a passive component and
an active myogenic component. The passive component, Tpass, is a function of the
vessel diameter, D,

Tpass D Cpass exp

�

C0
pass

�
D

D0

� 1

��

; (40)

where D0 is the reference vessel diameter.
The active myogenic component is the product of the maximal active tension

generated at a given vessel circumference, Tmax
act , given by

Tmax
act D Cact exp

"

�
�

D=D0 � C0
act

C00
act

�2
#

; (41)
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Table 8 Parameters for
smooth muscle cell
mechanics

Parameter Value Unit

Cpass 223 dyn/cm

C0

pass 20.2 Dimensionless

Cact 500 dyn/cm

C0

act 0.985 Dimensionless

C00

act 0.500 Dimensionless

D0 27.5 �m

Dc 20.0 �m

�d 1.71 s

and the fraction of myosin light chains that are phosphorylated, � . Therefore, the
total tension in the wall, Twall, is

Twall D Tpass C �Tmax
act : (42)

The change in vessel diameter depends on the difference between the tension
resulting from intravascular pressure p, Tpres D pD=2, and the tension generated in
the wall, Twall, so that

dD

dt
D 1

�d

Dc

Tc
.Tpres � Twall/; (43)

where Dc is a reference diameter, Tc is the tension at a pressure of 100 mmHg and
diameter Dc, and �d is a time constant. Parameter values are given in Table 8.
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Modeling Blood Flow and Oxygenation
in a Diabetic Rat Kidney

Ioannis Sgouralis and Anita T. Layton

Abstract We use a highly detailed mathematical model of renal hemodynamics and
solute transport to simulate medullary oxygenation in the kidney of a diabetic rat.
Model simulations suggest that alterations in renal hemodynamics, which include
diminished vasoconstrictive response of the afferent arteriole as a major factor, lead
to glomerular hyperfiltration in diabetes. The resulting higher filtered NaC load
increases the reabsorptive work of the nephron, but by itself does not significantly
elevate medullary oxygen consumption. The key explanation for diabetes-related
medullary hypoxia may be impaired renal metabolism. Tubular transport efficiency
is known to be reduced in diabetes, leading to increased medullary oxygen
consumption, despite relatively unchanged active NaC transport. The model predicts
that interstitial fluid oxygen tension of the inner stripe, which is a particularly
oxygen-poor region of the medulla, decreases by 18.6% in a diabetic kidney.

1 Introduction

Diabetes has become increasingly prevalent in the developed world. In 2012,
almost 30 million Americans, or �10% of the population, had diabetes. Diabetes
is one of the most common causes of end-stage renal diseases [12]. But despite
intense research, the underlying mechanisms remain incompletely understood. It is
generally believed that renal hypoxia is an important pathway in the development of
chronic kidney disease. Typically, renal hypoxia is caused by a mismatch between
changes in renal oxygen delivery and consumption [10]. Thus, to assess the degree
of hypoxia under a given set of circumstances, one would consider the balance
between renal oxygen delivery and consumption. Renal oxygen delivery is primarily
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determined by renal blood flow [10]. Renal oxygen consumption is mainly driven
by the metabolic work of tubular NaC reabsorption, which in turn is largely driven
by the filtered NaC load, and thus glomerular filtration rate (GFR) [11].

In diabetes, several pathophysiological processes lead to a significant increase in
renal oxygen consumption. First, intrarenal angiotensin II is elevated, which via
the activation of NADPH oxidase leads to increased oxidative stress [16]. This
results in increased mitochondrial uncoupling via UCP-2, which stimulates O�

2

formation but decreases transport efficiency and increases oxygen consumption.
Furthermore, proximal tubule reabsorption is enhanced in hyperglycemia due to
increased glomerular filtration of glucose [32]. In addition, tubular growth occurs
shortly after the onset of diabetes, leading to a further increase in proximal tubule
reabsorption and to glomerular hyperfiltration [31]. It is noteworthy that glomerular
hyperfiltration and kidney growth are both risk factors for the development of
diabetic nephropathy [31, 33]. Proximal tubule reabsorption is further enhanced in
hyperglycemia due to increased glomerular filtration of glucose, which increases
reabsorption of both glucose and NaC through the cotransporters SGLT2 and
SGLT1. Without a compensatory increase in oxygen delivery, these events may
result in intrarenal tissue hypoxia and the development of clinical hallmarks of
diabetic nephropathy.

The goal of this study is to use a detailed mathematical model of solute transport
and blood flow control to study intrarenal oxygenation in a diabetic rat kidney.

2 Mathematical Model

The model is based on two of our previously applied models that represent different
aspects of renal function: (1) A model of the medulla of the rat kidney that describes
the urine concentrating mechanism and oxygen transport; this model encompasses
the tubular and vascular architecture of both the outer and inner medullas [14].
(2) A model of the myogenic response and tubuloglomerular feedback in the afferent
arteriole that regulates renal blood flow [26]; the afferent arteriole is located in the
cortex. To connect these two components, the present model includes a proximal
tubule segment that exhibits pressure-dependent reabsorption of the filtered load,
and a cortical thick ascending limb segment that terminates at the site of macula
densa and provides the input signal for the tubuloglomerular feedback response [23].
Model structure is shown in Fig. 1.

The medullary component of the model represents loops of Henle, collecting
ducts, and vasa recta as rigid tubes. Two-thirds of the model loops of Henle are
“short loops” that are assumed to turn at the outer–inner medullary boundary, while
the other one-third, the “long loops,” turn at all depths of the inner medulla. The
model medullary collecting ducts extend from the corticomedullary boundary to
the papillary tip, and exhibit coalescence in the inner medulla. The vasa recta
terminate or originate at all depths of the medulla, and are assumed to peel off
and supply the capillary plexus. The model separates blood flow in the vasa recta
into two compartments—plasma and red blood cells (RBCs)—which are both also
represented by rigid tubes along the corticomedullary axis.
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Fig. 1 An overview of the vascular and tubular structure of the model. For simplicity, only one
short and one long loop of Henle are depicted. Reprinted from [23]

The model predicts fluid flows in the tubules and vessels, as well as concen-
trations of NaCl, urea, O2, NO, O�

2 , deoxy-hemoglobin (Hb), oxy-hemoglobin
(HbO2), and nitrosyl-heme (HbNO), in each tubule and vessel, as well as in the
interstitium. Model equations are based on transmural transport and conservation of
water and solutes. Below we summarize key components of the model that represent
conservation of water and solute and consumption of oxygen. Full model equations
can be found in [5, 9, 21].
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2.1 Renal Autoregulation

Here we describe how the model represents renal autoregulation. The key model
component is the afferent arteriole, which is located in the cortex. The afferent
arteriole exhibits autoregulatory responses mediated by two mechanisms: the myo-
genic response (MR) and tubuloglomerular feedback (TGF). Each model afferent
arteriole delivers blood to its associated glomerulus. Model equations that represent
glomerular filtration and post-glomerular blood flow can be found in [26].

The model afferent arteriole adopts our previously applied model of renal
autoregulation [25, 26]. The vessel is represented as a series of smooth muscle
cells, coupled via their gap junction. The model predicts arteriolar vasoresponses
by representing, for each smooth muscle cell, its membrane potential, Ca2C and
KC transmembrane fluxes, cytosolic Ca2C handling, and muscle mechanics. We
describe key model equations; for the full set of model equations see [25, 26].

For each smooth muscle cell, the rate of change of cytosolic [Ca2C] is given by

dŒCa2C�

dt
D
 

.Kd C ŒCa2C�/2

.Kd C ŒCa2C�/2 C KdBT

!
�
˛ICa � kCaŒCa2C�

�
(1)

where ICa is the Ca2C influx from the extracellular space (see below) and ˛ is a
constant converting charge to mass flux; kCa is a first-order rate constant for Ca2C
extrusion; Kd is the ratio of the forward and backward reaction rates of the calcium-
buffer system; and BT is the total buffer concentration.

Calcium influx is provided by voltage-gated membrane channels

ICa D gCam1 .v � vCa/ (2)

where gCa is the maximum whole-cell membrane conductance for the calcium
current, and m1 is the equilibrium distribution of open calcium channel states which
is a function of the membrane potential (v)

m1.v/ D 1

2

�

1 C tanh

�
v � v1

v2

��

(3)

where v1 is the voltage at which half of the channels are open, and v2 determines
the spread of the distribution.

For each afferent arteriole smooth muscle cell, the opening of Ca2C channels
(and that of KC channels, represented in the model but not described here) depends
on the membrane potential v [Eq. (3)], which is in turn given by the sum of the
transmembrane currents:

C
dv

dt
D �IL � IK � ICa C IMR C ITGF C Icoupling (4)
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Fig. 2 Afferent arteriole (AA) smooth muscle transmembrane currents mediating the myogenic
response (panel a) and tubuloglomerular feedback (panel b). The currents are normalized by
smooth muscle membrane capacitance C. Elevated arteriolar blood pressure (panel a) or variations
in macula densa (MD) [NaCl] (panel b) induce depolarization of the smooth muscles, leading to
changes in muscle tone

where C denotes the capacitance of the cell membrane. The transmembrane currents
include the leak current (IL), KC current (IK), Ca2C current (ICa), and gap-junction
current between adjacent smooth muscle cells (Icoupling).

The representation of the myogenic response is based on the hypothesis that
changes in luminal blood pressure induce changes in the activity of non-selective
cation channels, resulting in a transmembrane current IMR. IMR is chosen so that
an increase in luminal blood pressure results in membrane depolarization, Fig. 2a,
which increases intracellular [Ca2C], leading to enhanced cross-bridge formation
(see below) and vasoconstriction. Conversely, a decrease in pressure leads to
membrane polarization and vasodilation.

The TGF response is modeled by ITGF, which is a function of the macula
densa [NaCl] (i.e., tubular fluid [NaCl] at the outflow of the thick ascending
limbs). Deviation in macula densa [NaCl] from its operating point induces a TGF
response, Fig. 2b, such that an elevated macula densa [NaCl] results in membrane
depolarization and vasoconstriction, and vice versa. The TGF current is only applied
to the distal smooth muscle cells (i.e., those proximal to the glomerulus).

Cytosolic [Ca2C] determines the formation of crossbridges, which in turn
determines the muscle tone [6]. Muscle tone, together with luminal pressure, gives
rise to hoop forces, the balance of which determines the luminal radius; for details
see [26].

2.2 Solute Conservation

In the glomerulus, a fraction of the supplied blood is filtered through the capillaries
to feed the associated nephron. Along the nephron, water and solutes are reabsorbed
or secreted; as a result, tubular solute concentrations are adjusted. To predict solute
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concentrations and flows along the different segments of the nephron, the model
represents conservation of each solute k in each tubule or vas rectum, indexed i. At
steady state, solute conservation is given by

@

@x
.QiCi;k/ D 2�riJi;k C Ri;k (5)

where Qi denotes volume flow, Ci;k denotes the concentration of solute k, ri denotes
luminal radius, Ji;k denotes transmural solute fluxes, and Ri;k denotes reactions (set
to 0 for non-reactive solutes such as NaCl and urea). Components for NaC flux and
O2 consumption are given below. Full expressions for Ji;k and Ri;k can be found in
[5, 13, 14, 19].

2.3 Oxygen Consumption

Because the present study focuses on medullary oxygenation, we describe how
oxygen consumption is represented. The model considers two types of O2 con-
sumption: basal consumption and active consumption due to active NaC transport.
In the model, basal O2 consumption (i.e., for processes other than NaC transport)
is assumed to take place in the vascular endothelial cells, tubular epithelial cells,
and interstitial cells. The volumetric rate of basal O2 consumption in tubule or vas
rectum i is given by

Rbasal
i;O2

D Rbasal
max,O2

�
Ci;O2 .x/

KM, O2
C Ci;O2 .x/

�

; (6)

where Ci;O2 is the O2 concentration in tubule or vessel i, KM, O2
is the Michaelis

constant that depends on local NO concentration (see [14]), and Rbasal
max,O2

is the
maximal volumetric rate of O2 consumption. Here, Rbasal

max,O2
is taken to be 10 �M/s

[5]. Rbasal
i;O2

contributes to the reaction term Ri;O2 in Eq. (5).
In the proximal straight tubules, thick ascending limbs, and collecting ducts, NaC

is actively reabsorbed via basolateral NaC-KC-ATPase pumps, resulting in active
O2 consumption. The volumetric active NaC transport rate is modeled assuming
Michaelis–Menten kinetics

� active
i;Na D Vmax;i;Na

�
Ci;Na.x/

KM;Na C Ci;Na.x/

�

; (7)

where Ci;Na is the NaC concentration in tubule i, Vmax;i;Na is the maximal rate of
NaC transport, and KM;Na is the Michaelis constant (taken here to be 70 mM [15,
20]). When luminal PO2 drops below some critical level, the maximum rate of NaC
transport may become limited by O2 concentration. In addition, the model represents
the inhibition and stimulation of NaC transport by NO and O�

2 , respectively; i.e.,
Vmax;i;Na depends on local NO and O�

2 concentrations (see [14] for details). � active
i;Na

contributes to the flux term Ji;Na in Eq. (5).
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To relate active NaC transport to O2 consumption, we must define the TNa-
to-QO2 ratio (or, TQ ratio, where TNa denotes the moles of NaC transported,
and QO2 denotes the amount of O2 consumed). The stoichiometry of metabolic
reactions suggests that under maximal efficiency, the number of NaC moles actively
reabsorbed per mole of O2 consumed is 18. That is, the TQ ratio is 18 for active
transport. Under favorable thermodynamic conditions, additional moles of NaC
may be reabsorbed paracellularly, which would increase the TQ ratio; on the other
hand, unfavorable thermodynamic conditions would decrease the TQ ratio. In the
baseline (i.e., non-diabetic) model, TQ ratios are fixed at 18 for the thick ascending
limb and proximal straight tubule, and 12 for the collecting duct, based on tubular
epithelial transport simulations [24, 35]. We further assume that below some critical
PO2 (denoted Pi;c for tubule i), anaerobic metabolism maintains some fraction
(denoted FAN) of the energy required to actively transport NaC. The rate of active
O2 consumption in the epithelia of the proximal straight tubules, thick ascending
limbs, and collecting ducts is then given by

Ractive
i;O2

D 2�ri

Aepi
i

� active
i;Na

TQi

.Pi;O2 / (8)

where ri is the inner radius of tubule i. Racative
i;O2

contributes to the reaction term Ri;O2

in Eq. (5). TQi is the TQ ratio, � active
i;Na is the NaC active transport rate, and 
.Pi;O2 /

is the fraction of that rate that is supported by aerobic respiration, given by


.Pi;O2 / D
(

1; PO2 � Pi;c
PO2=Pi;c

FAN C.1�FAN /.PO2=Pi;c/
; PO2 < Pi;c

(9)

We assume that Pi;c D 10 mmHg [13] in all tubules. The value of FAN is taken to
be 0.5 in the outer medullary collecting duct [29, 36], 0.4 in the inner medullary
collecting duct [27], 0.1 in the thick ascending limb [1], and 0.14 in the proximal
straight tubule [8].

2.4 Modeling a Diabetic Kidney

Our previous models [14, 26] are formulated for a baseline, or non-diabetic, kidney.
To simulate a diabetic kidney, we incorporate the functional impairment in afferent
arteriole voltage-gated Ca2C channels (VGCC), observed in diabetic rats [4], which
is believed to diminish the vasoconstrictive response, thereby causing glomerular
hyperfiltration. Recall that the model represents the voltage-dependent distribution
of open Ca2C channel states using Eq. (3). In the baseline (i.e., non-diabetic) model
the voltage at which half of VGCC channels are open in the unimpaired state (v1) is
set to �22:5 mV. To represent VGCC impairment, we increase v1 to �21 mV.
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At the onset of diabetes, the proximal tubule is known to hypertrophize [30].
As a result, reabsorption along the proximal tubule increases, a process which
we simulate by increasing fractional proximal tubule water reabsorption to 0.81
(compare with baseline 0.67). Diabetes is also associated with TGF resetting
[28, 33], which we represent by lowering the operating macula densa [NaCl] from
their baseline values of 32 and 42 mM (short and long nephrons, respectively) to 25
and 33 mM, respectively. Finally, the ultrafiltration coefficients Kf of all nephrons
are increased by 20% from their baseline values [2].

To model impairment in metabolic efficiency in a diabetic kidney, the TQ ratio is
assumed to decrease by 20% in all tubules.

3 Model Results

3.1 Renal Autoregulation in Diabetes

To assess the model’s ability to stabilize SNGFR (single-nephron glomerular
filtration rate) in health and disease, we computed afferent arteriole blood flow and
SNGFR for a range of steady renal perfusion pressure, from 60 to 200 mmHg.
Simulations were conducted for the baseline model and for the diabetic model.
These results are shown in Fig. 3 for the short loop (solid curves) and for the longest
loop (i.e., the model loop of Henle that reaches to the papillary tip, dashed curves).

For the baseline model, SNGFR for both the short and long nephrons exhibits a
wide plateau (Fig. 3, blue curves), where it stays within 5% of the value obtained
for a reference perfusion pressure of 100 mmHg [7, 17]. The afferent arterioles
associated with the long nephrons are assumed to be slightly larger than those of the

Renal perfusion pressure (mmHg)
100 150 200

Renal perfusion pressure (mmHg)
100 150 200

A
A

 b
lo

od
 fl

ow
 (

nl
/m

in
)

0

100

200

300

400

500

600

A

Baseline short nephron
Baseline long nephron
Diabetic short nephron
Diabetic long nephron

S
N

G
F

R
 (

nl
/m

in
)

0

20

40

60

80

B

Fig. 3 Afferent arteriole blood flow (panel a) and SNGFR (panel b) associated with the short
and long nephrons (solid and dashed curves, respectively) for perfusion pressures ranging in 60–
200 mmHg. Results are shown for the baseline model (blue curves) and for the diabetes model (red
curves)
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short nephrons (baseline luminal diameter of 22 versus 20 �m at perfusion pressure
of 100 mmHg, [3]); thus, the long nephrons are predicted to have larger arteriolar
blood flow and SNGFR.

Autoregulation in the model diabetic kidney is predicted to be significantly
impaired. Unlike the baseline model, the autoregulation curves no longer exhibit
a plateau (compared blue and yellow curves in Fig. 3). Furthermore, the model
predicts hyperfiltration in diabetes, with a SNGFR of 47.72 and 57.31 nl/min for
the short and long nephrons, respectively, predicted for a perfusion pressure of
100 mmHg. These SNGFR are �60% above the corresponding baseline values (30
and 36 nl/min for the short and long nephrons, respectively).

Additional comparison between the two models is provided in Fig. 4. Owing
to the functional impairment in the VGCC in the afferent arteriole of a diabetic
kidney, the vascular smooth muscle intracellular [Ca2C] is predicted to be lower
in the diabetic model (panel a1), resulting in larger arteriolar luminal diameters
(panel a2) and higher arteriolar blood flows (panel a3). Together with the higher
glomerular filtration coefficients, SNGFR are predicted to be substantially higher
in the diabetic model (panel b1). However, with enhanced proximal reabsorption
induced by tubular hyperfiltration, thick ascending limb flow is predicted to be
lower in diabetes (panel b2), as is macula densa [NaCl] (panel b3), consistent with
experimental results by Vallon and Thomson [33, 34]. Similar trends are exhibited
by both the short and long nephrons.
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Fig. 4 Comparison of key model predictions for the baseline and diabetic models: (a1) afferent
arteriole smooth muscle intracellular [Ca2C]; (a2) afferent arteriole luminal radius; (a3) afferent
arteriolar blood flow; (b1) SNGFR; (b2) thick ascending limb (TAL) tubular fluid flow; (b3) tubular
fluid [NaCl] in thick limb outflow. Blue bars, short nephron; yellow bars, long nephron
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3.2 Renal Oxygenation in Diabetes

In diabetes the enhanced proximal tubular reabsorption results in reduced NaCl
delivery to the thick ascending limbs, which, taken in isolation, would result in
reduced oxygen consumption. However, other competing factors may increase
oxygen consumption. First, elevated oxidative stress (i.e., increased O�

2 production)
enhances thick ascending limb active NaC transport and thus oxygen consumption.
Furthermore, mitochondrial uncoupling decreases transport efficiency (represented
in the model as the 20% reduction in TQ ratios) and increases oxygen consumption.

To determine the prevailing effects that alter medullary oxygenation in diabetes,
we summarize key predictions of both models in Fig. 5. Medullary oxygen supply
is provided by descending vasa recta inflow, which is assumed to be unchanged in
early diabetes (panel a1). Enhanced proximal reabsorption reduces NaC delivery to
the thick ascending limbs; as a result, active NaC reabsorption by the ascending
limbs is slightly reduced (panel a2). Despite the reduced NaC reabsorption,
medullary O2 consumption increases due to the decreased transport efficiency (i.e.,
the reduced TQ ratio; see panel b1). The increased O2 consumption, which is

0

100

200

300

-13%

-8.3%

Baseline

Diabetes

A2 Short nephron
Long nephron

T
A

LO
2 

co
ns

um
pt

io
n 

(p
m

ol
/m

in
)

0

5

10

15

20

2.3%

11%

Baseline

Diabetes

B1

D
V

R
O

2 
su

pp
ly

 (
pm

ol
/m

in
)

0

10

20

30

40

50

0%

Baseline

Diabetes

A1

In
ne

r 
st

rip
e 

P
O

2 
(m

m
H

g)

4

5

6

7

8

-18%

Baseline

Diabetes

B2

T
A

L 
ac

tiv
e 

N
a+

 r
ea

bs
. (

pm
ol

/m
in

)
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not compensated by an increase in O2 supply, results in a significantly reduced
medullary PO2. In the inner stripe, which is a particularly O2-poor region, PO2

decreases �18.6%, from the baseline value of 6.45 to 5.25 mmHg in the diabetic
kidney.

4 Discussion

Changes in glomerular hemodynamics critically contribute to the pathophysiology
of diabetes. Carmines et al. [4] reported that depolarization-induced Ca2C influx
and the resulting increase in intracellular [Ca2C] are attenuated in the afferent
arteriole of diabetic rats. Combined with other pathophysiological changes, the
impaired afferent arteriole vasoresponse yields a substantially higher glomerular
hyperfiltration. The resulting larger filtered NaC load increases the reabsorptive
load of the nephron, and may have an impact on medullary oxygenation. However,
in early diabetes, the proximal tubule hypertrophies and its reabsorptive capacity
increases. The present model predicts that these competing factors result in a slightly
lower NaC flow into the medullary thick ascending limbs. Taken in isolation, a lower
NaC load should reduce thick limb transport work and oxygen consumption.

Besides changes in hemodynamics, metabolism is also altered in diabetes. Mito-
chondrial uncoupling via UCP-2 decreases transport efficiency. The model assumes
that the TQ ratio is reduced by 20% in the diabetic kidney. Consequently, the model
predicts that, even though active NaC transport is slightly reduced in diabetes,
medullary O2 consumption increases substantially, resulting in significantly lower
medullary PO2. This result suggests that alterations in metabolism may be an
important pathway in the development of intrarenal tissue hypoxia and diabetic
nephropathy.

Other pathophysiological mechanisms that are not represented in the present
model may also contribute to the alterations in glomerular hemodynamics that are
observed in diabetes mellitus. For instance, NOS-1 mediated NO production in
macula densa is elevated in diabetes [18], which lowers vascular resistance. Also,
findings by Leehey et al. [22] suggest that hyperglycemia activates the intrarenal
renin–angiotensin system, leading to stimulation of locally produced angiotensin
II, a potent vasoconstrictor. Elevated local angiotensin II may contribute to the
development of glomerular hypertension by preferentially constricting efferent
arterioles as compared to the afferent arterioles. The impacts of these processes
may be investigated in a future more comprehensive model of a diabetic kidney.
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Tracking the Distribution of a Solute Bolus
in the Rat Kidney

Anita T. Layton

Abstract The goal of this study is to develop a detailed mathematical model
that tracks filtered solutes in the rat kidney. A better understanding of intra-
renal solute distribution, and its cycling by way of countercurrent exchange and
preferential tubular interactions, may yield new insights into fundamental principles
of concentrating mechanism function. This is a complex problem, however, in
part because of the marked heterogeneity exhibited in the transport properties of
different nephron segments, and in the organization of tubules and vessels in the
renal medulla, which likely gives rise to preferential interactions among neighboring
tubules and vessels. The present model represents renal tubules in both the cortex
and the medulla, the medullary vasculature, and their spatial relationship. By
simulating the fate a marked bolus, we obtain the distribution of that solute as a
function of time. In addition, we characterize the residence time of a solute by
computing the portion of that solute remaining in the model kidney as a function
of time. Model simulations of an anti-diuretic rat kidney predict that, owing to the
different tubular transport properties to NaCl and urea, and to the more effective urea
cycling mechanism in the inner medulla, the residence time of urea is substantially
longer than that of NaCl. Simulation results also suggest that urea cycling is
disrupted in the diuretic state, resulting in a significantly shorter residence time for
urea.

1 Introduction

The kidney is an essential organ that serves a number of regulatory functions. The
most well-understood role of the kidney is probably its function as a filter, removing
metabolic wastes and toxins from blood and excreting them through the urine.
Nonetheless, that is by no means the kidney’s only crucial function. Through a
number of regulatory mechanisms, the kidney also helps maintain the body’s water
balance, electrolyte balance, and acid-base balance [4].
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For example, to maintain water balance, the kidneys of a mammal produce a
urine having an osmolality much higher than that of blood plasma during periods of
water deprivation [5]. In other words, disproportionally more water is reabsorbed
than solutes from the blood that has been filtered through the kidneys, thereby
allowing the kidneys to serve its excretory function while preserving body water.
This regulation of water balance is provided by the kidney’s urine concentrating
mechanism, which is localized in the innermost part of the kidney, known as the
renal medulla. The renal medulla is divided into the outer medulla and the inner
medulla. In the outer medulla, the concentrating mechanism is driven by active
NaCl transport from the thick ascending limbs of loops of Henle. This concentrating
effect, coupled with a countercurrent flow configuration of tubules and vessels,
generates an axial osmolality gradient along all structures in the outer medulla, from
the cortico-medullary boundary to the outer–inner medullary boundary. In contrast,
the underlying mechanism in the inner medulla remains one of the long-standing
mysteries in traditional physiology, despite much experimental and modeling effort.

Anatomic studies have revealed a highly structured organization of tubules and
vasa recta in the outer medulla of some mammalian kidneys [1, 7]. Tubules and
vessels are organized concentrically around vascular bundles, which are tightly
packed clusters of parallel vessels and tubules containing mostly vasa recta. The
countercurrent arrangement and proximity of the descending and ascending vasa
recta is believed to facilitate diffusion exchange among these vessels. Recent studies
of three-dimensional architecture of rat inner medulla have revealed transport and
structural properties that may impact solute transport and have implications for
the inner medullary urine concentrating mechanism in the mammalian kidney.
In particular, these studies have shown that clusters of collecting ducts form the
organizing motif through the initial 3–3.5 mm of the inner medulla [17–19]. Tubules
and vessels that occupy nearby positions likely interact preferentially.

Investigation of intra-renal solute distribution, and its cycling by way of counter-
current exchange and preferential tubular interactions, allows model predictions to
be compared with micropuncture data and with solute cycling paths inferred from
anatomy and permeability data. Thus, such investigation may yield new insights
into the fundamental principles of the urine concentrating mechanism and other
kidney functions. Models of the solute and water transport in the kidney have usually
been formulated as steady-state boundary-value problems involving differential
equations expressing mass conservation (e.g., [9, 10, 15, 22]). Traditionally, solute
and water cycling patterns have been predicted via an examination of steady-state
model solutions [9, 10, 15, 22]. In this study, we propose an alternative and more
powerful approach for examining intra-renal solute distribution and cycling: by
tracking the dynamic distribution of a marked bolus of solute. (This is similar to
tracer experiments in which a small amount of fluid containing a radioactive solute
is injected into a renal tubule or a group of tubules [3].)

The method is implemented in a dynamic formulation of a concentrating
mechanism model that represents renal tubules in both the cortex and the medulla
of a rat kidney [16]. By computing the fate of a solute originally belonging to a
marked bolus in the proximal tubule, we obtain the distribution of that solute as a
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function of time throughout the cortex and medulla. In addition, we characterize
the residence time of that solute in the model kidney by computing the portion
of that solute remaining in the model as a function of time. In the context of
the urine concentrating mechanism, the residence time provides a measure of the
kidney’s efficacy in trapping that solute. Residence time is also a useful measure in
pharmaceutical applications, as it yields a measure of the effects of a drug or toxin
on the kidney.

2 Mathematical Model

We implemented a time-dependent version of a rat kidney model [16] and extended
the model to track the distribution of a solute bolus. The model represents the tubular
and vascular architecture of the renal medulla, as well as the cortical thick ascending
limbs and distal tubules; see Fig. 1.

Model Structure The model medulla includes loops of Henle, a composite collect-
ing duct, and vasa recta. All nephron segments and vasa recta are represented as rigid
tubules. The model loops of Henle extend from the cortico-medullary boundary
to differing depths of the medulla (more below). The cortical nephron segments
connect the medullary thick ascending limbs to the medullary collecting duct, which
extends from the cortico-medullary boundary to the papillary tip; see Fig. 1.

Loops of Henle can be distinguished into short loops, which belong to superficial
nephrons and which account for 2/3 of the loop population, and long loops, which
are associated with the juxtamedullary nephrons. Short loops turn at the outer–inner
medullary boundary, whereas long loops turn throughout the inner medulla. Thus,
the medullary length of a long loop can be just over 2 mm (length of the outer
medulla), 7 mm (length of entire medulla), or somewhere in between. The loop
population decreases approximately exponentially in the inner medulla. To capture
that population distribution, the model represents a distributed loop that turns
continuously along the inner medulla. In that formulation, CDL;k.x; y; t/ denotes
the concentration of solute k at medullary level x and time t in a descending limb
that turns at y. The same notation is used for other variables. A population density
function wl.x/ is assigned for the loops [9]. The fraction of loops remaining at
medullary level x is given by

wl.x/ D
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:

1; 0 � x � LOM;
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(1)

where LOM and LIM are the lengths of the model outer and inner medulla, taken to
be 2 and 5 mm, respectively. a1 D 4:42, a2 D 8:016, a3 D 21:08, a4 D 304:8, and
a5 D 0:7782. The jump discontinuity of wl at x D LOM arises from the turning of
the short loops, which account for 2/3 of the loop population.
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Fig. 1 Schematic diagram of model configuration. DVR/AVR descending/ascending vasa recta,
cTAL cortical thick ascending limb, DT distal tubule, CD collecting duct. Solid arrows not
associated with a label indicate flow directions. Dashed arrows indicate countercurrent exchange
between vasa recta. Red arrows identify possible bolus injection sites. Figure modified from [16]

The medullary thick ascending limbs of the loops of Henle feed into the
cortical thick ascending limbs. The model represents one superficial and one
juxtamedullary cortical thick ascending limb, assumed to be contiguous with the
medullary thick ascending limbs of the short and long loops, respectively. Each
cortical think ascending limb is joined with a “distal tubule,” which represents the
distal convoluted tubule, connecting tubule, and cortical collecting duct. The distal
tubules empty into the outer-medullary collecting duct.

In the inner medulla, the collecting ducts undergo successive coalescences,
resulting in a decrease in the population of collecting ducts as a function of
increasing inner-medullary depth. We assume that the fraction of collecting ducts
remaining at a given medullary depth x is approximated by [13, 14]
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Descending and ascending vasa recta are represented in the medulla. Descending
vasa recta branch off into capillaries at every depth of the medulla, with a rate that
can be computed from the population functions specified in [15]. The descending
vasa recta branch off and empty their contents into “regions,” which represent
capillaries, and extra-tubular and extra-vascular structures like interstitial cells and
interstitial spaces (more below). No axial flow is assumed along the regions; instead,
any net fluid accumulation is drained by the model ascending vasa recta. One
ascending vas rectum is represented for each region.

Four interstitial regions are included in the model medulla to represent the
inhomogeneous distributions of renal tubules and vessels revealed in anatomic
studies of mammalian kidneys [1, 7]. That structural organization may give rise
to preferential interactions among tubules and vessels. In the outer medulla, tubules
and vessels are organized concentrically around vascular bundles, which are tightly
packed clusters of parallel vessels and tubules containing mostly of vasa recta. This
organization is particularly pronounced in the inner stripe and continues into the
initial inner medulla [17–19]. To represent this organization, we assume that at
any given medullary level each region is a well-mixed compartment with which
tubules and vasa recta interact. To specify the relative positions or distributions
of the tubules and vasa recta and to simulate the potential preferential interactions
among them, each tubule or vas rectum is assigned to a particular region [11, 12].
Tubules and vasa recta that are in contact with different regions are influenced by
differing interstitial environments.

The model represents three solutes that are believed to play a key role in the
mammalian urine concentrating mechanism: NaCl, urea, and a non-reabsorbable
solute that represents all solutes that are neither reabsorbed nor secreted along the
nephron. To track a NaCl or urea bolus, we further differentiate these solutes into
two classes: background and bolus. The background and bolus solutes have the same
transport properties.

Model Equations The steady-state version of key model equations can be found in
[12, 14, 15]. The present model differs from these previous studies in that (1) we
have adopted the dynamic formulation of those equations and (2) we have extended
these models, which simulate solute transport in the renal medulla, to include the
cortex. Model equations that describe the cortical segments are discussed below.
We also summarize key equations and highlight any modifications from published
models.

Water conservation in a tubule or vas rectum i (except the collecting ducts) is the
same as in the steady-state model:

@

@x
Fi;v D Ji;v (3)
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where Fi;v denotes volume flow and Ji;v is the transmural water flux. Solute
conservation is given by

Ai
@

@t
Ci;k C @

@x
.Fi;vCi;k/ D Ji;k (4)

where Ci;k is the concentration of solute k in the tubule or vas rectum, where k
may denote background or original NaCl (denoted o-NaCl), bolus NaCl (denoted b-
NaCl), background or original urea (denoted o-urea), bolus urea (denoted b-urea), or
non-reabsorbable; Ai is the luminal cross-sectional area; and Ji;k is the transepithelial
solute flux.

Water conservation for the collecting ducts takes into account their coalescences,
and is given by

@

@x
.wCDFCD;v/ D wCDJCD;v (5)

where FCD;v and JCD;v denote volume flow and water flux, respectively, associated
with a single collecting duct. Similarly, solute conservation is given by

ACD
@

@t
CCD;k C @

@x
.wCDFCD;vCCD;k/ D wCDJCD;k (6)

The transmural solute flux Ji;k into the loops of Henle and collecting ducts
comprises of a passive diffusion and an active transport components, i.e.,

Ji;k D Jpass
i;k C Jact

i;k (7)

Passive diffusion is characterized by transmural permeability and the interstitial
region that the tubule interacts with; for details see [9, 12]. Active transport,
represented only for NaCl, is characterized by Michaelis–Menten kinetics that takes
into account the competition between original and bolus NaCl:

Jact
i;NaCl D Vmax;NaClCi;NaCl

KM;NaCl C Ci;o-NaCl C Ci;b-NaCl
(8)

Given that many studies of interest to us (e.g., urine concentrating mecha-
nism) focus on solute distribution within the renal medulla, a relatively simple
representation of the cortex is employed. The model cortical thick ascending limb
is formulated similarly as its medullary counterpart. Because the cortex is well
perfused, the cortical interstitial fluid composition is assumed to be the same as
plasma. As previously noted, the distal convoluted tubule, connecting tubule, and
cortical collecting duct are represented collectively as one “distal tubule.” We
assume that a fixed fraction �v of the fluid entering the distal tubule is reabsorbed;
similarly, a fixed fraction �NaCl of the NaCl flow (both background and bolus NaCl)
into the distal tubule is also reabsorbed. The values of �v and �NaCl depend on the



Tracking the Distribution of a Solute Bolus in the Rat Kidney 121

hydration state of the animal. Water and solute fluxes are assumed to be constant
along each distal tubule but varying in time. Specifically, for the superficial distal
tubule (denoted by the subscript DT-SF),

JDT-SF;v.t/ D �vFcTAL-SF;v.xcTAL-SF; t/=LDT (9)

where the subscript cTAL-SF denotes superficial cortical thick ascending limb,
xcTAL-SF denotes the end of the superficial cortical thick ascending limb, and LDT

denotes the length of the distal tubule, taken to be 3 mm. Analogous expressions
can be obtained for the juxtamedullary distal tubule and for NaCl fluxes.

We assume that the bolus urea is not reabsorbed along the distal tubule, and
that the concentration of the background urea is adjusted to achieve a desired
tubular fluid osmolality, which is assumed to increase linearly from the osmolality
of cortical thick ascending limb outflow (allowed to be time varying) to plasma
osmolality assumed at the medullary collecting duct inflow (constant and known a
priori).

Boundary Conditions To complete the system, fluid flow and solute concentrations
must be specified for the descending limbs and descending vasa recta at the
cortico-medullary boundary, i.e., at x D xC-M. At each loop bend, the associated
descending and ascending limbs are assumed to be contiguous; thus, FDL;v.y; y; t/ D
�FAL;v.y; y; t/ (opposite flow directions) and CDL;k.y; y; t/ D CAL;k.y; y; t/ for each
k. Superficial medullary and cortical thick ascending limbs are assumed to be con-
tiguous; thus, FcTAL-SF;v.xC-M; t/ D FAL;v.xC-M; xOM-IM; t/ and CcTAL-SF;k.xC-M; t/ D
CAL;k.xC-M; xOM-IM; t/ for each k. The treatment for juxtamedullary thick ascending
limbs are more complicated, inasmuch as long loops have differing lengths and
thus differing composition and flow rates. Boundary flows for the juxtamedullary
cortical ascending limb are given by the aggregates of the juxtamedullary medullary
ascending limbs, i.e.,

FcTAL-JM;v.xC-M; t/ D 3

Z L

xOM-IM

w0
l.y/FAL;v.xC-M; y; t/ dy (10)

CcTAL-JM;k.xC-M; t/ D
3
R L

xOM-IM
w0

l.y/FAL;v.xC-M; y; t/CC-M;k.xC-M; y; t/ dy

FcTAL-JM;v.xC-M; t/
(11)

The factor 3 arises from the need to yield a per-tubule value for FcTAL-JM given that
R L

xOM-IM
w0

l.y/ dy D 1=3 (only 1/3 of all loops are juxtamedullary).
Each cortical ascending limb is assumed to be contiguous with the

corresponding distal tubule; i.e., FcTAL-SF;v.xcTAL-SF; t/ D FDT-SF;v.xcTAL-SF; t/ and
CcTAL-SF;k.xcTAL-JM; t/ D CDT-JM;v.xcTAL-JM; t/ for each k; analogous relations are
assumed for the juxtamedullary nephron segments.

To represent the merging of multiple connecting tubules into one cortical
collecting duct, the model assumes that on average 6.1 distal tubules converge into
one medullary collecting duct [6]. Two-thirds of these distal tubules are associated
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with superficial nephrons and the rest are juxtamedullary. With these assumptions,
collecting duct flows at the cortico-medullary boundary are given by:

FCD;v.xC-M; t/ D �6:1 �
�

2

3
FDT-SF;v.xC-M; t/ C 1

3
FDT-JM;v.xC-M; t/

�

(12)

CCD;k.xC-M; t/ D
�

2
3

FDT-SF;v.xC-M; t/CDT-SF;k.xC-M; t/ C 1
3

FDT-JM;v.xC-M; t/CDT-JM;k.xC-M; t/
�

FCD;v.xC-M; t/
(13)

The minus sign in (12) is needed because the model distal tubules and collecting
duct are assumed to have opposite flow directions.

Together with these boundary conditions and parameter values found in [15] and
Table 1, model equations can be solved to predict fluid flow, solute concentrations
(background and bolus) and transepithelial fluxes along each tubule and vessel at
every depth of the medulla, and the interstitial solute concentrations (background
and bolus) for each region, as functions of time.

3 Model Results

3.1 Steady-State Results

We first solved model equations to obtain steady-state solutions for two parameter
sets, one corresponding to a rat kidney in an anti-diuretic state, and another in a
mildly diuretic state. No bolus was represented in these steady-state simulations;
only background solute concentrations were computed. Table 1 highlights key
model parameters that differ between the two cases. Key results are displayed
graphically in Fig. 2, which shows [NaC] and [urea] profiles along the nephrons.

An adequate understanding of the steady-state solution is essential for inter-
preting the dynamic bolus distribution results below. Thus, we first describe the
steady-state solute concentration profiles and how they are generated. In the anti-
diuretic model, a generally increasing osmolality gradient is obtained along the

Table 1 Key differences in transport parameters between the anti-diuretic and diuretic models

Parameter Anti-diuretic Diuretic Unit

OMCD water permeability 463 23 �m/s

IMCD water permeability (initial) 750 125 �m/s

IMCD water permeability (terminal) 750 300 �m/s

IMCD urea permeability 110 46 �10�5 cm/s

DCT fractional water reabs. �v 83.5 63.3 %

DCT fractional urea reabs. �NaCl 89.0 67.8 %

Water and urea permeabilities based on [20]
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Fig. 2 Steady-state NaCl and urea tubular fluid concentration profiles, obtained using the anti-
diuretic model (top panels) and the mildly diuretic model (bottom panels). Solid and dashed lines
denote the descending and ascending limbs, respectively. Dashed-dotted lines denote ascending
flows. Note the different y-axis scaling in the urea concentration plots

cortico-medullary axis in most structures. In the outer medulla, that axial gradient is
generated by means of active NaC transport by the thick ascending limbs. The NaC
reabsorbed progressively reduces the [NaC] of the ascending limb luminal fluid, but
elevates the interstitial fluid osmolality. As a result, water is continuously withdrawn
from the tubular fluid of the water-permeable tubular segments and vessels, i.e., the
collecting duct, the proximal straight tubules, segments of the descending limbs, and
the descending vasa recta, thereby raising their fluid osmolality.

The concentrating mechanism in the rat inner medulla has yet to be fully
elucidated. The model assumes that the axial osmolality gradient is generated in
the inner medulla by means of the “solute-separation, solute-mixing” mechanism,
the details of which are described in [9]. Here we summarize key steps of that
mechanism. As a consequence of the concentrating mechanism in the outer medulla
(see above), the collecting duct delivers a fluid into the inner medulla that is rich in
urea. Thus, urea is reabsorbed from the collecting duct. Owing to the high collecting
duct water permeability, water reabsorption follows, thereby diluting the interstitial
fluid [NaC]. Urea then enters the segments of the descending limbs that have high
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urea permeability. Unlike the thick ascending limbs in the outer medulla, the thin
ascending limbs in the inner medulla do not have active NaC transport; instead,
those thin limbs are highly permeable to NaC. Thus, NaC is reabsorbed from the
thin ascending limbs, elevating the interstitial fluid [NaC] and osmolality. That
facilitates more water reabsorption from the collecting ducts, raising its tubular fluid
urea concentration and osmolality.

A major difference between the diuretic and anti-diuretic models is that in
diuresis water reabsorption is assumed to be much reduced along the cortical
collecting ducts; thus, collecting duct flow is substantially higher at the cortico-
medullary boundary in the diuretic model (14.7 versus 6.4 nl/min per collecting
duct). The high collecting duct flow imposes a large load on the concentrating
mechanism; i.e., a substantially larger amount of descending tubular fluid flow must
now be concentrated by the concentrating mechanism. As a result, the diuretic
model predicts a much more dilute urine with a osmolality of 435 mosmol/(kg
H2O), compared to 1192 mosmol/(kg H2O) in the anti-diuretic model. (For further
comparison, note that blood plasma has an osmolality of �300 mosmol/(kg H2O).)

3.2 Bolus Simulations in an Anti-Diuretic Kidney

We then simulated the injection of a NaCl bolus and a urea bolus into the proximal
straight tubules of an anti-diuretic kidney. Simulations were conducted separately
for superficial and juxtamedullary nephrons. The injections were applied at the
cortico-medullary boundary (x D xC-M) for 5 s. The composition of the bolus is
given by 16 mM of marked NaCl (bolus), 154 mM of unmarked NaCl (background),
1 mM of marked urea (bolus), 14 mM of unmarked urea (background), 0.1 mM of
the non-reabsorbable solute. (In the absence of a bolus, descending limb boundary
concentrations are set to be 160 mM NaCl, 15 mM urea, and 0.1 non-reabsorbable.)

Concentration Profiles Figure 3 shows the concentrations profiles of the NaCl
bolus, injected into a superficial proximal straight tubule, at selected times. The
bolus NaCl is rapidly pumped out of the thick ascending limb and carried by blood
flow out of the system. Bolus NaCl concentration in the collecting duct tubular fluid
is relatively low, with < 5% of the original NaCl bolus reaching the medullary
collecting duct.

The fate of a urea bolus injected into a superficial proximal straight tubule differs
significantly from that of NaCl. Because the short loop of Henle has low to moderate
urea permeability and no active urea transport, a much bigger fraction (�52%) of
the urea bolus reaches the outer-medullary collecting duct, and �50% reaches the
inner-medullary collecting duct. See Fig. 4 for urea bolus concentration profiles
at selected times. Urea permeability remains low along the initial segment of the
inner-medullary collecting duct (0:25 � 10�5 cm/s), but increases exponentially in
the terminal inner medulla to 110 � 10�5 cm/s. Thus, much of the urea bolus is
reabsorbed from the terminal inner-medullary collecting duct; it then enters the
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Fig. 3 Concentration profiles of a NaCl bolus injected into the superficial proximal straight tubule
of the anti-diuretic model. Blue, loop of Henle; green, cortical nephron segments; red, collecting
duct

descending and ascending limb segments of the long loops, which are highly urea
permeable. As we will see below, this “urea cycling” greatly increases the residence
time of urea within the medulla, especially in the inner medulla.

Figure 5 shows concentration profiles at selected times for a NaCl bolus injected
into a juxtamedullary proximal tubule at the cortico-medullary boundary. The
corresponding results for a urea bolus are shown in Fig. 6. Compared to the profiles
shown in Figs. 3 and 4 for the superficial nephron, here the bolus concentration
decreases rapidly along the long descending limb. This observation can be attributed
to the tortuosity of the juxtamedullary proximal straight tubule; in contrast, the
superficial proximal straight tubule is relatively straight. That tortuosity increases
the transit time of the bolus as well as the tubular transport area. Thus, much of
the NaCl is reabsorbed via active transport along the proximal straight tubule, with
< 4% remaining in the loops of Henle after 30 s. Indeed, the NaCl bolus barely
reaches the inner medulla.

Because the outer medullary segment of the long descending limb has low urea
permeability (0:25 � 10�5 cm/s) and does not actively reabsorb urea, tubular fluid
concentration of the urea bolus decreases much more slowly than the NaCl bolus.
The largest decrease in urea bolus concentration can be observed along the terminal
60% of the inner medullary segment of the descending limbs. For the longest loop
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Fig. 4 Concentration profiles of a urea bolus injected into the superficial proximal straight tubule
of the anti-diuretic model. Notations are analogous to Fig. 3

shown in Figs. 5 and 6 which reaches the papillary tip, that segment corresponds
to the terminal 3 mm of the descending limb. That nephron segment exhibits a
high urea permeability of 180 � 10�5 cm/s; as a result, the urea bolus is rapidly
reabsorbed.

Residence Times To quantify the residence time of a solute within the kidney, we
measure the fraction of a solute remaining in the medulla and the model cortical
segments, at a given time t. The amount of bolus solute remaining at time t is
given by the product of the luminal (or interstitial) cross-sectional area and solute
concentration, taken over all structures, then integrated axially along the medulla.
That is,

fk.t/ D
Z L

0
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�
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(14)

where ni denotes the number of structure i per loop of Henle. Ai denotes luminal
cross-sectional area, except for ARi, for Ri = R1, R2, R3, R4, which denotes
interstitial area in the renal medulla not occupied by tubules or vessels. R1 and
R2 correspond to the vascular bundles; R3 and R4 correspond to the interbundle
regions. We assume that the amount of bolus in the cortical interstitium is negligible,
due to the large blood supply in the cortex, which quickly washes out any bolus
reabsorbed. As previously noted, the model represents four ascending vasa recta
(denoted AVR), one for each region. The computation of the bolus found in the
ascending vasa recta is relatively simple, inasmuch as the model ascending vasa
recta neither terminate nor merge. On the other hand, the collecting duct population
decreases within the inner medulla. Thus, the collecting duct area-concentration
product is scaled by wCD, the number of collecting ducts remaining at x. A fraction
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tubule of the anti-diuretic model. Notations are analogous to Fig. 5

of the loops turn at level x, as do the descending vasa recta (DVR, which terminate
into capillaries instead of turning like the loops do). Thus, we compute Mi;k.x; t/,
which denotes the amount of solute at medullary level x, computed over all the
instances of structure i that reach beyond x. For example, if x is in the outer
medulla, then MDL;NaCl.x; t/ denotes the total amount of NaCl in all descending
limbs, because none of the loops turn within the outer medulla. If x is the mid-inner
medulla, then MDL;NaCl.x; t/ denotes the total amount of NaCl in the descending
limbs of the long loop that turn within the lower half of the inner medulla.
Specifically, MDL;k.x; t/ is given by

MDL;k.x; t/ D
Z L

x
w0

l.y/ADL.x; y/CDL;k.x; y; t/ dy (15)

MAL;k and MDVR;k are defined analogously.
We first consider the residence time of a NaCl bolus injected into a superficial

proximal straight tubule. Figure 7a shows the fraction of the bolus remaining within
the model kidney as a function of time. The half-life of the NaCl bolus is 124 s, or
�2 min. Initially, the majority of the bolus is found within the nephron (Fig. 7b),
but as the bolus NaCl is reabsorbed along the loops of Henle, a progressively larger
fraction of the remaining bolus is found in the interstitium (Fig. 7d). Much of the
NaCl bolus is found in the interstitial region where most of the thick ascending
limbs are found (R3).
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Intra-renal distribution of a urea bolus injected into a superficial proximal straight
tubule is exhibited in Fig. 8. The half-life of a urea bolus is markedly longer than
that of a NaCl bolus, 32.9 min compared to 2.1 min. That longer half-life can be
attributed, in large part, to the differing tubular transport properties with respect to
NaCl and urea. See discussion concerning the urea profile results in Fig. 4. Unlike
NaCl, urea is not actively reabsorbed along the nephron, which explains why a larger
fraction of the bolus reaches the distal tubule (47% of the urea bolus, compared
to 5.2% of the NaCl bolus). Upon reaching the medullary collecting duct, only a
minor fraction of the urea bolus is reabsorbed in the outer medulla or the initial
inner medulla, where the collecting duct segments have low urea permeabilities
(0:25�10�5 cm/s, see the plateau of the collecting duct curve in Fig. 8b). Collecting
duct urea permeability is assumed to be high in the terminal inner medulla; thus,
the urea bolus is rapidly reabsorbed instead of exiting the system in the urine.
Urea reabsorbed from the renal tubules, especially the collecting ducts, is trapped
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Fig. 8 Distribution of a urea bolus injected into the proximal straight tubule of a superficial
nephron in the anti-diuretic model. Notations are analogous to Fig. 7

within the inner medulla by its urea cycling system, via the countercurrent vascular
flows (the highly urea permeable descending and ascending vasa recta) or tubular
flows (descending and ascending thin limbs, also highly urea permeable). The
effectiveness of that urea cycling system is evidenced by the slow decrease in the
fraction of urea bolus remaining in the interstitial regions (Fig. 8d).

We then consider a NaCl bolus injected into the proximal straight tubule of a
juxtamedullary nephron. As previously noted, owing to its larger transport area, the
majority of the NaCl bolus is pumped out along the juxtamedullary proximal straight
tubule, and only a negligible fraction reaches the downstream nephron segments
(see Fig. 9b). The half-life of the NaCl bolus is 140 s or 2 1

3
min. As in the case for

the superficial nephron, a urea bolus has a substantially longer half-life (36 min,
see Fig. 10), owing, in part, to the more effective cycling mechanism in the inner
medulla.



Tracking the Distribution of a Solute Bolus in the Rat Kidney 131

0

0

1

2

3

4

0

10

20

30

40

20

40

60

80

100

0

20

40

60

80

100
A B

C D

%
 N

aC
I b

ol
us

 r
em

ai
ni

ng
%

 in
 v

as
a 

re
ct

a

%
 in

 r
eg

io
ns

%
 in

 tu
bu

le
s

Total bolus

DVR
AVR1
AVR2
AVR3
AVR4

LDL
LAL

DCT
CD

cTAL

R1
R2
R3
R4

0 0 50 100 1501000 2000 3000
time (s) time (s)

0 1000 2000 3000
time (s)

0 1000 2000 3000
time (s)

Fig. 9 Distribution of a NaCl bolus injected into the proximal straight tubule of a juxtamedullary
nephron in the anti-diuretic model. Notations are analogous to Fig. 7. LDL/LAL long descend-
ing/ascending limb

3.3 Bolus Simulations in a Mildly Diuretic Kidney

We repeated the bolus simulations for a mildly diuretic kidney. The distribution
of the NaCl bolus is similar to that in an anti-diuretic kidney (results not shown),
because that distribution is determined primarily by the active NaCl transport in the
outer medulla and cortex, which is assumed to be the same in the anti-diuretic and
diuretic kidneys. In contrast, marked differences can be found in the distribution of
a urea bolus. A comparison between the anti-diuretic and diuretic curves in Fig. 11
reveals a substantially shorter residence time of the urea bolus (injected into the
superficial proximal straight tubule) in a diuretic kidney, especially in the collecting
duct. That discrepancy arises because of the much faster collecting duct flow in the
mildly diuretic kidney (14.8 versus 6.4 nl/min at the cortico-medullary boundary),
owing to the assumption of low water permeability and thus much reduced water
reabsorption along the distal and connecting tubules (see Table 1). As a result, the
urea bolus reaches the terminal inner medullary collecting duct much faster in the
diuretic kidney. Furthermore, unlike the anti-diuretic kidney, that terminal segment
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nephron in the anti-diuretic model. Notations are analogous to Figs. 7 and 9

is assumed to have low urea permeability. Thus, instead of being reabsorbed, much
of the urea bolus quickly exits the system, resulting in much shorter half-lives of 256
and 425 s, or 4:25 and 7.08 min, for injections into superficial and juxtamedullary
proximal straight tubules, respectively, of the mildly diuretic kidney.

Danielson and Schmidt-Nielsen injected C14-labelled urea into the distal tubules
of rats, and measured its excretion and cumulative recovery rate [3]. We simulated
the injection of a urea bolus into the collecting duct at the cortico-medullary
boundary. The predicted excretion rate of the urea bolus is shown in Fig. 12. The
model predicts that a significant amount of the marked urea appears in the urine
about a minute after its injection, and that appears lasts about a minute. That
prediction is consistent with measurements reported by Danielson and Schmidt-
Nielsen [3].

4 Discussion

We have developed a model to predict the time-dependent distributions and
residence times of filtered solutes in a mathematical model of the rat urine
concentrating mechanism. Model simulations illustrate how the different tubular
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transport properties of NaCl and urea impact the two types of solute boluses.
Because NaCl is actively and briskly reabsorbed along some segments of the
nephron, a NaCl bolus leaves the kidney at a significantly faster rate than a urea
bolus. A large fraction of a bolus, NaCl or urea, does not traverse through the entire
nephron (which, of course, would have been the case where tubular permeabilities
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and active transport rate set to zero or some very low values). The model predicts
excretion rate of a marked urea bolus consistent with experiment observations [3].

Traditionally, models of solute and water transport in the kidney are formulated
as steady-state boundary-value problems involving differential equations expressing
mass conservation (e.g., [9, 10, 15, 22]). About a decade ago, our group published
the first urine concentrating mechanism model that focuses on dynamic solutions
[8]. That model was based on the simple “central core formulation,” and represented
a single nephron. A so-called central core model typically represents only renal
tubules explicitly, but not the vasa recta [21]. The renal tubules interact in a common
compartment called the central core, which represents all extra-tubular structures,
including the vasa recta, capillaries, interstitium, and interstitial spaces. Thus, unlike
the present model, the central core model [8] did not capture the countercurrent
vascular flows and their effects on solute cycling. Another important difference is
that the present model contains a much more realistic representation of the anatomy
of the rat kidney. In particular, loops of Henle with different lengths are represented.
In contrast, the earlier model represented only a single nephron [8] and thus could
not differentiate between boluses injected into the superficial versus juxtamedullary
nephrons.

The cycling, or trapping, of solutes by way of countercurrent exchange and
preferential tubular interactions is considered an important aspect of the mammalian
urine concentrating mechanism [20]. Because the vast majority of the concentrating
mechanism models are formulated for the steady state, solute cycling is usually
assessed in a model using the predicted steady-state transmural fluxes or solute
flows. The residence time of a bolus provides an alternative, and perhaps more
intuitive, measure of the ability of a concentrating mechanism to cycle or trap a
solute. Our results indicate that, compared to NaCl, urea is much more effectively
cycled within the medulla of an anti-diuretic kidney and has a substantially longer
residence time (see Figs. 7, 8, 9, and 10). That cycling mechanism is disrupted when
the animal becomes diuretic and renal tubular transport properties change (Fig. 11).

In addition to providing insights into the urine concentrating mechanism, a
better understanding of solute distribution can also help determine the effects of
drugs. For instance, it is well known that the hydration status of a patient is a key
determinant on the occurrence of contrast-induced acute kidney injury, which is the
most common cause of iatrogenic, drug-induced acute kidney injury in hospitals
[2]. However, the mechanism by which hydration prevents contrast-induced acute
kidney injury is unclear. By simulating and comparing the distribution of contrast
agent within the kidney in different hydration status may provide insights into that
mechanism.

In this study we have conducted simulations to track a bolus of NaCl or urea.
Extending the model to track other solute boluses is straightforward: additional
solutes (both background and boluses) need to be added to the model, and transport
properties of the nephrons and vessels to those solutes must be specified. Following
this procedure, the model can be used to determine the distribution of a contrast
agent and other drugs or toxins, and to assess their impacts on kidney function.
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Mathematical Modeling of the Effects of
Nutrient Competition and Bile Acid Metabolism
by the Gut Microbiota on Colonization
Resistance Against Clostridium difficile
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Abstract Clostridium difficile is the leading cause of infectious diarrhea in hos-
pitals and one of the most common healthcare associated infections. Antibiotics
alter the normal gut microbiota and facilitate the colonization of enteric pathogens
such as C. difficile. Our objective is to elucidate the role of bile acids and other
mechanisms in providing colonization resistance against C. difficile. We formulated
and analyzed differential equation models for microbial interactions in the gut and
bile acid dynamics, as well as a combined model including both mechanisms.
Our analysis indicates that bile acids do not prevent C. difficile colonization, but
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they regulate the onset of C. difficile colonization and growth after antibiotic
perturbation. These results have implications in the development of novel ways to
inhibit C. difficile infection.

1 Introduction

Clostridium difficile is an anaerobic, spore-forming, gram-positive bacillus first
isolated in 1935 [11]. C. difficile is the leading cause of infectious diarrhea in
hospitals. Symptoms associated with C. difficile infection (CDI) include diarrhea,
abdominal pain, and fever. In severe cases, CDI can cause colonic perforation,
peritonitis, and death. CDI is a growing public health problem; in 2011, 453,000
primary infections, 83,000 first recurrences, and 29,300 deaths were estimated in
the United States alone [20].

Antibiotic therapy is a strong and independent risk factor for CDI [28, 30].
Antibiotics alter the indigenous gut microbiota decreasing colonization resistance
against C. difficile [5, 32]. Colonization resistance is the ability of the indigenous
gut microbiota to prevent colonization of enteric pathogens [43]. The gut microbiota
provides colonization resistance against enteric pathogens in different ways, namely
by competing for nutrients or space, producing bacteriocins or inhibitors, and
stimulating the immune response [3, 31, 45]. Work from the past decade has started
to shed light on how antibiotics lead to a loss of colonization resistance against
C. difficile. Antibiotics alter the gut microbiota and metabolome; specifically, they
affect the composition and concentration of bile acids, carbohydrates, and amino
acids [2, 40, 41]. The gut microbiome and metabolic environment after antibiotics
favors C. difficile spore germination and outgrowth.

C. difficile spores are resistant to denaturation and are metabolically dormant,
allowing for transmission of the pathogen. Spores require specific bile acids for
maximal germination into a metabolically active vegetative cell, where it requires
amino acids and carbohydrates to grow to high cell density and produce toxins,
which mediate disease [14, 36, 46]. The bile acid pool in the body consists of pri-
mary bile acids that are made by the host liver, which are further biotransformed into
secondary bile acids by members of the gut microbiota [33]. Antibiotic alterations
in the gut microbiota result in a loss of the microbial derived secondary bile acid
deoxycholate (DCA), and an increase in the primary bile acid taurocholate (TCA),
which enhances C. difficile spore germination and growth [40, 41]. Secondary bile
acid DCA, which is present in the gut prior to antibiotic treatment, can inhibit the
growth of C. difficile [36, 41]. Gut microbiota mediated secondary bile acids in the
gut may play a role in colonization resistance against C. difficile.

Another possible mechanism of colonization resistance is competition for nutri-
ents by members of the gut microbiota. Members of the gut microbiota have
different metabolic requirements, and are able to compete for a variety of nutrients.
C. difficile requires amino acids (cysteine, isoleucine, leucine, proline, tryptophan,
and valine) and vitamins (biotin, pantothenate, and pyridoxine) for growth [6, 13].
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In addition to these nutrients, C. difficile is also able to ferment carbohydrates
including fructose, glucose, mannitol, mannose, melezitose, sorbitol, and sialic
acids [25, 34]. Bacteria that overlap in metabolic requirements from the same
Clostridium genus compete for similar nutrients in vivo, suppressing growth of
pathogenic C. difficile [19, 24]. After antibiotic treatment there may be a decrease in
bacteria that are able to compete against C. difficile, allowing the pathogen to grow
uninhibited.

Several mechanistic models of colonization resistance have been developed and
analyzed. Freter et al. [9] developed the first mathematical model of colonization
resistance against Escherichia coli in the gastrointestinal tract. The model describes
the population dynamics of two bacterial strains, the resident and invader. The
two strains compete for nutrients and adhesion sites. The model is composed of
four ordinary differential equations (ODEs) that track the overall resident strain
population and the invader strain in three adhesion sites and uses the Monod
functional form to model microbial growth. The model predicts that both strains can
co-exist if the metabolically less efficient strain (invader) has specific adhesion sites
for which it does not compete [9, 22]. Subsequent work expanded Freter’s work to
relax some of the underlying assumptions, such as perfect mixing or competition for
a single nutrient [4, 8]. For example, Coleman et al. [8] developed a model with 11
ODEs that represent five carbon sources, five indigenous microbiota groups, and one
enteric pathogen, Salmonella enterica. Overall, the earlier models of colonization
resistance considered different microbial groups depending on existent knowledge
of the importance and interactions of each group and focused predominantly on
nutrient competition.

In recent years, the availability of metagenomic high-throughput sequencing data
has stimulated the development of data-driven models that reevaluate colonization
resistance, particularly for C. difficile. Stein et al. [37] fitted a generalized Lotka–
Volterra model to the abundance of the ten most abundant genera and C. difficile
obtained from 16S rRNA high-throughput DNA sequencing data from a mouse
model studying the effect of clindamycin on C. difficile colonization. A subset
of four genera were identified as providing protection against C. difficile, but the
underlying mechanisms were not modeled. Steinway et al. [38] used the same data
to develop a Boolean dynamic model of the interactions among genera and used
genome-scale metabolic reconstruction to gain insight into the mechanisms behind
the interactions. No specific metabolic pathways were identified as an important
source of the interactions between the gut microbiota and C. difficile. Despite using
the same data, the studies differed on the bacterial genera that were deemed relevant
to colonization resistance against C. difficile. Metagenomic 16S rRNA data is high-
dimensional and sparse, and is reported as proportions, which may limit inference
from the data [42]. Other mathematical models of C. difficile focus on disease
transmission (e.g., [10, 17, 27]) or toxin production (e.g., [12]), but not colonization.

As the prevalence of antibiotic resistance rises, alternative treatment methods
are being sought. Given the natural ability of the (undisturbed) gut microbiota to
prevent C. difficile colonization, an obvious avenue for investigation is to consider
how to recreate this natural defense mechanism in a compromised host. To achieve
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this, the factors involved must be better understood. In this paper, we use current
knowledge of the mechanisms underlying interactions between key members of the
gut microbiota and C. difficile to develop and analyze mathematical models that
focus on colonization resistance. We use data from Theriot et al. [40] to model
the contribution of bile acid metabolism and competition by members of the gut
microbiota in both the pre-antibiotic treated gut, which is resistant to C. difficile,
and the post-antibiotic treated gut, which is susceptible to C. difficile, to evaluate
the role of both mechanisms. Prior to antibiotic treatment the murine gut microbiota
is dominated by two bacterial phyla, the Firmicutes (Lachnospiraceae family) and
Bacteroidetes (Porphyromonadaceae family). After antibiotic treatment there is a
shift in the murine gut microbiota to one that is dominated by members from the
Firmicutes phylum (Lactobacillaceae family), where C. difficile is able to colonize.
Similarly, prior to antibiotic treatment, the secondary bile acid DCA, which is
an inhibitor of C. difficile growth, is present in the murine gut. After antibiotic
treatment there is a loss of DCA and an increase in primary bile acid TCA in the
gut, which C. difficile spores can utilize for germination and outgrowth. Members
of the gut microbiota are important for the biotransformation of primary bile acids
into secondary bile acids, TCA to cholate (CA) to DCA.

In Sect. 2 we formulate mathematical models for microbial interactions in the gut
and bile acid dynamics, as well as a combined model including both mechanisms.
Parameter estimation is discussed in Sect. 3, followed by an exploration of model
dynamics in Sect. 4. We conclude with a discussion on the roles played by microbial
interaction and bile acids in preventing C. difficile from colonizing the gut and how
these could be manipulated for therapeutic benefit.

2 Model Development

To investigate the contributions of the two mechanisms described above to C.
difficile colonization resistance, we analyze three ODE models: a model describing
ecological interactions between groups of microbes in the gut, a model of the role
of bile acid dynamics in C. difficile germination and outgrowth, and a combined
model containing both mechanisms (see Fig. 1). We analyze the dynamics of each
of the three models separately. In all three models, we compare a pre-antibiotic
gut to a post-antibiotic gut by changing the initial conditions. Antibiotics are not
directly modeled; instead, initial conditions (presence of different microbial taxa)
differ in the pre-antibiotic and post-antibiotic gut, depending on the susceptibility of
the different microbial groups to antibiotics. As different antibiotics affect different
species, we limit our assumptions to the antibiotic cefoperazone, in line with the
data from Theriot et al. [40].

For simplicity, we have condensed the complex microbial community into four
functional groups, based on their effects on C. difficile and bile acid production. The
four groups modeled are:
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Fig. 1 Schematic of the models presented in this paper, representing the mechanisms of coloniza-
tion resistance against C. difficile provided by the gut microbiota. A. Microbial interaction model
between C. difficile vegetative cells, Lachnospiraceae, Lactobacillaceae, and other bacteria, which
primarily compete with Lactobacillaceae. B. Bile acid model showing the bacterial conversion
from primary bile acid taurocholate (TCA) to cholate (CA) to secondary bile acid deoxycholate
(DCA). The green lines represent positive interactions with C. difficile germination and growth
and the red represent negative interactions. The dashed lines represent the combined model. Note
that some Lactobacillaceae members also have the ability to convert TCA to CA, which has been
excluded from our model for simplicity

1. C. difficile vegetative cells, V , which are susceptible to the antibiotic cefopera-
zone;

2. Firmicutes phylum (primarily from the Lachnospiraceae family), Ln, which
convert the primary bile acid CA to the secondary bile acid DCA, are susceptible
to the antibiotic cefoperazone, and are thought to compete directly with C.
difficile;

3. Firmicutes phylum (primarily from the Lactobacillaceae family), Lt, which
do not affect bile acid metabolism, and are not susceptible to the antibiotic
cefoperazone;

4. All other bacteria, B, which are dominated by the Bacteroidetes phylum (pri-
marily from the Porphyromonadaceae family), are susceptible to the antibiotic
cefoperazone, and are able to convert the bile acid TCA to CA.

See Table 1 for a summary of microbial taxa and traits. Note that there is evidence
that DCA can also promote C. difficile germination, but at a much lower level than
either TCA or CA [40, 47] and we accordingly omit this interaction term from the
model.
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Table 1 Summary of the four microbial groups considered in this study

Susceptible to Likely competitor

Microbial group cefoperazone? for nutrients Interactions with bile acids

C. difficile (V) Yes Ln DCA inhibits growth;

CA and TCA promote germination

Lachnospiraceae (Ln) Yes V Converts CA to DCA

Lactobacillaceae (Lt) No B –

Other bacteria (B) Yes Lt Converts TCA to CA

2.1 Model of Microbial Interactions

We model interspecific interactions between each of the four microbial groups using
a four-species Lotka–Volterra interaction model [29]:

dV

dt
D rVV.1 C ˛VVV C ˛VLn Ln C ˛VLt Lt C ˛VBB/; (1)

dLn

dt
D rLn Ln.1 C ˛LnVV C ˛LnLn Ln C ˛LnLt Lt C ˛LnBB/; (2)

dLt

dt
D rLt Lt.1 C ˛LtVV C ˛LtLn Ln C ˛LtLt Lt C ˛LtBB/; (3)

dB

dt
D rBB.1 C ˛BVV C ˛BLn Ln C ˛BLt Lt C ˛BBB/: (4)

Note that in our model, some interactions between groups are facilitative
(positive) rather than competitive, and thus we refer to it as an “interaction” model
rather than a competition model. Here V is the density of C. difficile vegetative
cells, Ln is the density of Lachnospiraceae, Lt is the density of Lactobacillaceae,
and B is the density of all other gut bacteria. Within-group and between-group
interactions are described by the ˛ terms, where ˛ij gives the effect of group j
on the growth rate of group i. Each ˛ij may take a positive or negative value
depending on whether group i has a net positive or negative effect on the other
group (See Tables 2 and 6). Within-group competition is given by ˛ii, the effect of
group i on itself, and these values must always be negative. The intrinsic growth
rate ri is modified by the interaction of each group with all other groups, as
ri.1 C ˛iVV C ˛iLn Ln C ˛iLt Lt C ˛iBB/. See Table 3 for initial conditions in the
pre-antibiotic and post-antibiotic gut and Table 6 for the default parameter set.
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Table 2 Signs of interaction coefficients for the microbial interaction and full models

V Ln Lt B

V � � C �
Ln C � C �
Lt C � � �
B C C C �

The sign of each ˛ij, indicating the effect of microbial group j on microbial group i, is found in
cell i; j of the table. Negative values indicate a competitive effect, while positive values indicate a
facilitative effect. Note that for some groups, ˛ij is very close to zero (see Table 6 for exact values).
These were estimated from limited data and may be subject to change

Table 3 Initial conditions for numerical simulations of the microbial interactions model in the
pre-antibiotic and post-antibiotic gut

Scenario Term Definition Value

Pre-antibiotics V.0/ C. difficile vegetative cells 1 � 108

Ln.0/ Lachnospiraceae 1 � 108

Lt.0/ Lactobacillaceae 1 � 108

B.0/ Other bacteria 1 � 108

Post-antibiotics V.0/ C. difficile vegetative cells 100

Ln.0/ Lachnospiraceae 0

Lt.0/ Lactobacillaceae 100

B.0/ Other bacteria 0

Note that in the pre-antibiotic gut we have unrealistically high levels of C. difficile and
Lactobacillaceae to illustrate how a “healthy” gut could evolve purely from microbial interactions.
In the post-antibiotic simulations, we assume all Lachnospiraceae and other bacteria are wiped out
and a small number of C. difficile and Lactobacillaceae are introduced. The stability conditions of
this model (discussed in Sect. 4.1) mean that the initial conditions in each case can be very broad
to achieve the same steady states

2.2 Model of Bile Acid Interactions

Here we model a simplified system of the production and conversion of three
key bile acids that interact with C. difficile vegetative cells, V , and C. difficile
spores, S:

dV

dt
D g.T C C/S C rV

1 C bD2
.1 C ˛VVV/V; (5)

dT

dt
D h � ıTT � vTBT

MT C T
; (6)

dC

dt
D vTBT

MT C T
� ıCC � vCLnC

MC C C
; (7)



144 A. Fleming-Davies et al.

dD

dt
D vCLnC

MC C C
� ıDD; (8)

dS

dt
D �g.T C C/S: (9)

T , C, and D represent the bile acids TCA, CA, and DCA, respectively. In the model
of bile acid dynamics alone, vegetative C. difficile cells are the only one of the four
microbial groups explicitly modeled (Eq. 5). Spores germinate at a rate g.T C C/,
which is an increasing function of the bile acids TCA and CA. Growth of vegetative
cells of C. difficile is modeled as in the microbial interactions model (Eq. 1), but
including only intraspecific competition. In this model, however, the growth rate of
C. difficile vegetative cells is a decreasing function of the concentration of the bile
acid DCA.

The conversion between different bile acids (TCA to CA and CA to DCA) is
modeled using the Michaelis–Menten kinetics function, where the reaction rate
depends on the concentrations of the substrate and product. The parameters MT

and MC are the half-saturation values, the substrate concentrations at which the
corresponding reaction rates are half of the maximum corresponding reaction rates
given by vT and vC, respectively. Lachnospiraceae, Ln, convert the bile acid CA
to the bile acid DCA (Eq. 7), and other bacteria, B, convert the bile acid TCA to
the bile acid CA (Eq. 6). In the bile acid model, Ln and B population sizes are held
constant and not explicitly modeled. All bile acids are subject to natural degradation
and a source term for TCA is included. See Table 4 for initial conditions in the pre-
antibiotic and post-antibiotic gut.

2.3 Combined Model

In the combined model, growth of vegetative C. difficile cells, V , is modified by
interactions with other microbial taxa as well as by the concentration of the bile
acid DCA present in the gut:

dV

dt
D rVV

1 C bD2
.1 C ˛VVV C ˛VLn Ln C ˛VLt Lt C ˛VBB/ C g.T C C/S; (10)

dLn

dt
D rLn Ln.1 C ˛LnVV C ˛LnLn Ln C ˛LnLt Lt C ˛LnBB/; (11)

dLt

dt
D rLt Lt.1 C ˛LtVV C ˛LtLn Ln C ˛LtLt Lt C ˛LtBB/; (12)

dB

dt
D rBB.1 C ˛BVV C ˛BLn Ln C ˛BLt Lt C ˛BBB/; (13)
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Table 4 Initial conditions for numerical simulations of the bile acid model in the pre-antibiotic
and post-antibiotic gut

Scenario Term Definition Value

Pre-antibiotics V.0/ C. difficile vegetative cells 0

Ln Lachnospiraceae (assumed constant) 9:867 � 107

B Other bacteria (assumed constant) 1:3305 � 108

T.0/ Concentration of TCA 4 � 10�4

C.0/ Concentration of CA 5 � 10�3

D.0/ Concentration of DCA 0.1

S.0/ C. difficile spores 100

Post-antibiotics V.0/ C. difficile vegetative cells 0

Ln Lachnospiraceae (assumed constant) 0

B Other bacteria (assumed constant) 0

T.0/ Concentration of TCA 4 � 10�4

C.0/ Concentration of CA 5 � 10�3

D.0/ Concentration of DCA 0.1

S.0/ C. difficile spores 100

In the pre-antibiotic gut the values of Ln and B are taken to be their steady states in the pre-antibiotic
simulation of the microbial interaction model. The initial condition of DCA is chosen to be relevant
to C. difficile-growth-inhibiting concentrations. The initial number of spores is chosen to match
experimental work, e.g., [16]

dT

dt
D h � ıTT � vTBT

MT C T
; (14)

dC

dt
D vTBT

MT C T
� ıCC � vCLnC

MC C C
; (15)

dD

dt
D vCLnC

MC C C
� ıDD; (16)

dS

dt
D �g.T C C/S: (17)

As in the bile acid model, Lachnospiraceae bacteria, Ln, convert the bile acid CA to
the bile acid DCA, and other bacteria, B, convert the bile acid TCA to the bile acid
CA. However, here the populations of Ln and B are explicitly modeled (Eqs. 11
and 13, respectively), with growth rates affected by each group’s interactions
with other microbes as in the microbial interaction model. See Table 5 for initial
conditions in the pre-antibiotic and post-antibiotic gut and Table 6 for the default
parameter set.
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Table 5 Initial conditions for numerical simulations of the combined model in the pre-antibiotic
and post-antibiotic gut

Scenario Term Definition Value

Pre-antibiotics V.0/ C. difficile vegetative cells 0

Ln.0/ Lachnospiraceae 1 � 108

Lt.0/ Lactobacillaceae 1 � 108

B.0/ Other bacteria 1 � 108

T.0/ Concentration of TCA 4 � 10�4

C.0/ Concentration of CA 5 � 10�3

D.0/ Concentration of DCA 0.1

S.0/ C. difficile spores 100

Post-antibiotics V.0/ C. difficile vegetative cells 0

Ln.0/ Lachnospiraceae 0

Lt.0/ Lactobacillaceae 1

B.0/ Other bacteria 0

T.0/ Concentration of TCA 4 � 10�4

C.0/ Concentration of CA 5 � 10�3

D.0/ Concentration of DCA 0.1

S.0/ C. difficile spores 100

In both cases we start with a small number of C. difficile spores. In the pre-antibiotic case we start
with equal Lt; Ln, and B to see how the latter two outcompete Lt and V . In the post-antibiotic case
we assume both Ln and B are wiped out and Lt is introduced to the system

3 Parameter Estimation

We currently have insufficient data to reliably estimate the relatively high number
of model parameters. Furthermore, since we are collating many different microbial
taxa within each group, it would be unwise to speculate on the exact value of the
parameters. Instead we have used available data as follows to gauge initial estimates
where possible and focus on qualitative, rather than quantitative conclusions from
the model simulations. In addition, we performed sensitivity analysis for the
uncertain parameters.

Growth curves for C. difficile in brain heart infusion (BHI) media supplemented
with different concentrations of DCA [41], Lachnospiraceae in minimal media
(unpublished data) and Lactobacillaceae in MRS media [26] were used to estimate
the growth rates rV , rLn , and rLt by fitting a logistic function to the data up to the
points where the growth curves exhibited logistic growth. Optical density (OD)
measurements were scaled by 2 � 108 to account for the conversion from OD to
cell number. Data of C. difficile in BHI media were used to estimate growth rates
under different concentrations of DCA (Fig. 2a, for example); we then fit a nonlinear
function of the form a=.1 C bD2/ (Fig. 2b) to create a function that represents
inhibition of C. difficile growth by DCA. However, since Lachnospiraceae are
believed to be the main competitors for nutrients with C. difficile and our growth rate
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Fig. 2 (a) Logistic growth fit (solid line) to in vitro C. difficile growth data in BHI media with no
DCA (asterisks) [41] (estimated growth rate for this example 0.6839 h�1, and carrying capacity
6:554 � 107). Error bars signify standard deviation from the mean (from three repeats). (b)
Estimated in vitro growth rates of C. difficile at different concentrations of the bile acid DCA
(circles) were used to fit a function of the form a=.1C bD2/ describing the inhibition of C. difficile
vegetative growth by DCA (solid line). Data from Theriot et al. [41]

for the Lachnospiraceae was estimated from data extracted from minimal media, this
function was scaled so that in the absence of DCA it would equal the growth rate
of C. difficile estimated from another data set for C. difficile measured in minimal
media. Since the other bacterial group represents a collection of bacteria, we simply
used the same growth rate as that for the Lactobacillaceae as they use similar
resources (Table 1).

All microbial interaction coefficients ˛ij were summarized from data from Stein
et al. [37]. In order to simplify microbial interactions into just four groups, we
summed the terms ˛ij from Stein et al. across all taxa within each of our four
groups. Interaction coefficients ˛ij ranged from negative (competition) to positive
(facilitation). We chose not to specify signs of the interaction coefficients in the
model equations, as these depend on parameter values and are not based on known
mechanisms of ecological interactions between groups. The signs of the interaction
coefficients (and thus the direction of the effects) are summarized in Table 2.

In order for each group of bacteria to be able to achieve steady states of the
correct order of magnitude (based on the growth curves mentioned above) when
simulated in isolation from the other species, the ˛ij were each scaled by 2�10�8 to
maintain relative sizes and then rounded to one decimal place (notice that carrying
capacities are not included explicitly in the model). For the model to reproduce what
is seen in experimental work [40] (B and Ln dominating the pre-antibiotic gut and
Lt dominating initially in a post-antibiotic gut), three of the ˛ij were subsequently
modified (˛LnB; ˛LtV and ˛LtB), but kept within the range of the other ˛ij and their
positive or negative effects maintained.
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Enzyme kinetics parameters for CA and DCA production were chosen to produce
reasonable concentrations of TCA, CA, and DCA at steady state [33].

The default parameter set is used throughout the paper unless otherwise stated
and can be found in Table 6.

Table 6 Parameter values for the combined model, including both the microbial interaction
model (top section) and the bile acid model (lower section)

Parameter Definition Units Value

rV Growth rate of C. difficile vegetative cells h�1 0.332

rLn Growth rate of Lachnos h�1 0.711

rLt Growth rate of Lactos h�1 0.665

rB Growth rate of other bacteria h�1 0.665

˛VV Effect of V on V cells�1 h�1 �3 � 10�9

˛VLn Effect of Ln on V cells�1 h�1 �6 � 10�9

˛VLt Effect of Lt on V cells�1 h�1 1 � 10�9

˛VB Effect of B on V cells�1 h�1 �6 � 10�9

˛LnV Effect of V on Ln cells�1 h�1 8 � 10�9

˛LnLn Effect of Ln on Ln cells�1 h�1 �1 � 10�8

˛LnLt Effect of Lt on Ln cells�1 h�1 8 � 10�10

˛LnB Effect of B on Ln cells�1 h�1 �1 � 10�10

˛LtV Effect of V on Lt cells�1 h�1 2 � 10�10

˛LtLn Effect of Ln on Lt cells�1 h�1 �8 � 10�10

˛LtLt Effect of Lt on Lt cells�1 h�1 �5 � 10�9

˛LtB Effect of B on Lt cells�1 h�1 �1 � 10�8

˛BV Effect of V on B cells�1 h�1 8 � 10�9

˛BLn Effect of Ln on B cells�1 h�1 2 � 10�9

˛BLt Effect of Lt on B cells�1 h�1 9 � 10�10

˛BB Effect of B on B cells�1 h�1 �9 � 10�9

b Inhibition of C. difficile growth by DCA mM�2 4037

h Production of TCA mM h�1 0.01

g Germination rate of C. difficile spores h�1 mM�1 10

vT Production of CA from TCA mM cells�1 h�1 4 � 10�8

vC Production of DCA from CA mM cells�1 h�1 4 � 10�8

MT Half saturation of CA production mM 0.6325

MC Half saturation of DCA production mM 0.6325

ıT TCA decay rate h�1 0.1

ıC CA decay rate h�1 0.1

ıD DCA decay rate h�1 0.1

All interaction coefficients ˛ij are summarized from data from Stein et al. [37]. Growth rates were
fit to in vitro experimental data from Theriot et al. [41]. Enzyme kinetics parameters for CA and
DCA production were chosen to produce reasonable concentrations of TCA, CA, and DCA at
the steady state [33]
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4 Model Dynamics

4.1 Microbial Interaction Model Dynamics

Figure 3a depicts the pre-antibiotic gut simulation for the microbial interaction
model (Eqs. 1–4) and shows how the interactions between the different groups of
microbes can determine the make-up of the gut. C. difficile and Lactobacillaceae
cells are quickly forced to zero steady states by the growth of Lachnospiraceae and
the other bacteria, in agreement with [5, 41], where the dominant bacteria in a gut
that has not been exposed to antibiotics fall largely into these two groups.
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Fig. 3 Numerical solutions to the microbial interaction model (Eqs. 1–4). In (a) all four groups
begin at equal concentrations and the interactions between the groups force V and Lt into zero
steady states. Removing Ln and B in (b) enables C. difficile to establish colonization. Using the
steady states of V and Lt from (b) as initial conditions in (c), and re-introducing Ln and B through
Ln.0/ D B.0/ D 1 results in restoration of the pre-antibiotic gut microbiota
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It can be shown mathematically that this steady state (where V D Lt D 0 but
Ln and B co-exist) is locally stable under our parameter regime. To simulate the
post-antibiotic gut, where antibiotics are assumed to kill the Lachnospiraceae and
other bacteria, we must remove these two groups from the system entirely to avoid
returning to the pre-antibiotic steady state. Setting B.0/ D Ln.0/ D 0 and assuming
small numbers of V and Lt are present (Fig. 3b) enables the Lactobacillaceae
and C. difficile to co-exist. Lactobacillaceae dominates initially, but C. difficile
eventually grows to higher numbers, reaching levels where it could likely establish
colonization in the gut. Other bacteria inhibit the three remaining groups (see
Table 2). The Lachnospiraceae also inhibit all groups apart from other bacteria,
which they promote, hence reinforcing the dominance of other bacteria when
present. Therefore, removing these two groups essentially gives C. difficile and the
Lactobacillaceae the freedom to grow. The Lactobacillaceae have a higher growth
rate, so they emerge initially. Both C. difficile and the Lactobacillaceae promote each
other’s growth, but the Lactobacillaceae do this more strongly in our parameter set
(˛VLt > ˛LtV ), hence C. difficile will eventually take over and dominate the gut,
i.e., though the Lactobacillaceae have a higher growth rate than C. difficile, the
C. difficile bacteria can be considered to have a higher relative fitness under our
parameter set. This replicates the microbiome dynamics detected in [40] well.

In the absence of Ln and B, the model of microbial interactions is reduced to
a two-dimensional system with equations for V and Lt. For the V , Lt system, the
co-existence equilibrium is locally stable [29] if

˛VLt ˛LtV

˛VV˛LtLt

< 1:

The condition holds when intragroup competition dominates over the V; Lt cooper-
ative interaction; in this simple system with our parameter values, in the numerator
˛VLt and ˛LtV are both positive while in the denominator, ˛VV and ˛LtLt are
both negative. When considering the full microbial interactions model with four
equations, it is interesting to note that the equilibrium with Ln D B D 0 and V and
Lt positive is unstable. Thus re-introducing B and Ln into the model following C.
difficile colonization enables fast restoration of the gut to the pre-antibiotic stable
steady state (Fig. 3c). We note that in reality this would be unlikely to occur, at least
on this timescale, due to the host of post-colonization mechanisms employed by
C. difficile to establish infection that are not included in this model. Interestingly,
re-introducing either B or Ln without the other is not sufficient to restore the gut to
eradicate the C. difficile cells (Fig. 4). We note that these results are highly dependent
on the values of the interaction parameters and require further investigation once
more data is available for parameterization of the model.

Using our parameters, we investigated all the feasible equilibria (non-negative
components) for this system. Besides the two cases mentioned above, note that
there are also three other feasible, unstable equilibria with two components being
zero: Ln D Lt D 0; B D V D 0; B D Lt D 0, i.e., other bacteria and C. difficile
cells can co-exist, as can Lachnospiraceae and Lactobacillaceae or C. difficile and



Modeling Colonization Resistance Against Clostridium difficile 151

0 50 100
0

1

2

3

4

x 108 x 108

Time (hours)

B
Ln
Lt
V

(a)

0 50 100
0

1

2

3

4

Time (hours)

B
Ln
Lt
V

(b)

Fig. 4 The microbial interaction model with V.0/ and Lt.0/ taken to be the steady states of Fig. 3b
and (a) Ln.0/ D 1; B.0/ D 0 (b) Ln.0/ D 0; B.0/ D 1. In either of these scenarios co-existence
with C. difficile can occur

Lachnospiraceae. There is one feasible equilibrium with only one zero component:
when B D 0, there is an unstable equilibrium with the other three taxa able to survive
together. Equilibria with three zero components are not relevant here since they only
tell us that each of the microbial taxa can survive in isolation. Interestingly, there
is not a feasible equilibrium with four positive components: under our parameter
choice at least one microbial group will not be able to survive in the presence of the
others, matching what is seen in mouse models of C. difficile infection, e.g., [16, 40].
The full stability analysis therefore tells us that the only feasible and stable steady
state is that where other bacteria and Lachnospiraceae co-exist while suppressing C.
difficile and the Lactobacillaceae.

4.2 Bile Acid Model Dynamics

Considering the effect of metabolites on C. difficile in isolation enables us to track
the effect of bile acids on the germination of spores and outgrowth of vegetative
C. difficile cells. Solving Eqs. (5)–(9) numerically in Fig. 5 allows us to compare
the pre-antibiotic gut microbiota (where B and Ln are present and can catalyze
the conversion of TCA to CA and CA to DCA, respectively) to the post-antibiotic
gut microbiota metabolism where neither B nor Ln are present. Spore germination,
triggered largely by TCA, occurs much faster in the post-antibiotic model but
outgrowth of vegetative cells does occur in both cases. Indeed, V reaches the
same steady state under both conditions, but in the pre-antibiotic case (Fig. 5, solid
line) this level is attained over the unrealistic timescale of 2000 h (simulation not
illustrated over that timescale). Over the 5 days simulated, while vegetative C.
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Fig. 5 Numerical simulations to the bile acid model (Eqs. 5–9) in the pre-antibiotic regime (B and
Ln taken to be the steady states of the pre-antibiotic microbial interaction model, solid line) and
post-antibiotic (B D Ln D 0, dashed line). Note that V is plotted on a log-scale for clarity. Initial
conditions are taken from Table 4

difficile cells are present in the pre-antibiotic model, they don’t reach what might
be deemed significant levels for colonization. Conversely, in the post-antibiotic
model (Fig. 5, dashed line) these levels are reached within 4 days (which is a
feasible timeframe). Bile acids alone, therefore, cannot represent the full long-term
mechanisms of colonization resistance in the pre-antibiotic state. Another factor,
whether that is microbial interactions or the immune response, say, must also play a
part. However, given that experimental evidence does suggest that bile acids are
involved in protecting the gut from colonization (e.g., through inhibition of C.
difficile growth [36, 41]), we can explore the model further to elucidate this role.

The sensitivity analysis in Sect. 4.2.1 below suggests further investigation into
the degradation rate of DCA, ıD. At sufficiently high levels, DCA inhibits growth of
C. difficile (Fig. 2b). Therefore, the rate at which it degrades out of the system once
antibiotics have cleared the gut of Lachnospiraceae bacteria, preventing more DCA
from being produced, will be instrumental in determining vegetative C. difficile
dynamics. Since DCA will always eventually degrade out of the system in the
absence of Lachnospiraceae, ıD does not affect final C. difficile numbers; however,
the timing of the onset of colonization is affected, occurring earlier with faster
degradation of DCA (see Fig. 6). This model therefore suggests that bile acids
may be more important in delaying colonization than in ultimately preventing it.
Of course, we must consider that there are likely to be additional factors besides
those included in this model that could also affect DCA levels over time.
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and varying the degradation rate of DCA, ıD (default value is ıD D 0:1). Lowering the value of ıD

delays the onset of colonization

4.2.1 Sensitivity Analysis on Bile Acid Model

To assess the effect of specific bile acid model parameters on C. difficile dynamics,
we performed a sensitivity analysis on the model following [21] with a model
output of maximum C. difficile vegetative cells after either 6, 48, or 120 h. Model
parameters were varied uniformly over the ranges shown in Table 7 using Latin
Hypercube Sampling. Methods and code from [15] and [21] were used to calculate
partial rank correlation coefficients (PRCCs). PRCC values and their corresponding
p-values are reported in Table 7.

After 6 h, maximum C. difficile levels are most sensitive to the decay rate of
DCA (ıD, see Fig. 6), the intrinsic growth rate of C. difficile (rV ), and the coefficient
b, which determines the strength of inhibition of the growth rate of C. difficile by
DCA. Although the PRCCs for g, h, and ˛VV are also statistically significant (p <

0:0001), their values are low indicating they do not have a large effect on maximum
C. difficile levels.

As time since introduction of spores increases, maximum C. difficile levels
become more sensitive to ˛VV and less sensitive to rV and ıD. By 120 h, C. difficile
cells have either reached or grown close to carrying capacity. At this time maximum
C. difficile levels are most sensitive to ˛VV and rV , parameters that determine the
value of this carrying capacity. The PRCC for ıD is still significant but decreases
from 0:8858 to 0:1138. This is not surprising as the decay rate of DCA has a
large effect on the rate of growth of C. difficile, affecting when carrying capacity
is reached but not the value of the carrying capacity itself (Fig. 6).

4.3 Combined Model Dynamics

Figure 7 depicts the numerical solution to the combined microbial interaction and
bile acid model, i.e., Eqs. (10)–(17). We see the results of the microbial interaction
model reproduced in the sense that for the pre-antibiotic case Lachnospiraceae and
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Table 7 Partial Rank Correlation Coefficient (PRCC) and p-values from a global sensitivity
analysis of the bile acid model with N D 5000 (number of model runs)

After 6 h After 48 h After 120 h

Parameter Range PRCC p-value PRCC p-value PRCC p-value

ıD .10�4; 1/ 0.8858 <0.0001 0.3326 <0.0001 0.1138 <0.0001

rV .0:1; 1/ 0.8407 <0.0001 0.7576 <0.0001 0.4986 <0.0001

b .103; 104/ �0.4280 <0.0001 �0.0244 0.0854 �0.0141 0.3185

g .0:1; 100/ 0.1031 <0.0001 0.0034 0.8077 �0.0180 0.2035

h .10�4; 1/ 0.0853 <0.0001 0.0080 0.5708 �0.0196 0.1656

˛VV .�10�8; �10�10/ 0.0305 <0.0001 0.5127 <0.0001 0.7979 <0.0001

vC .10�10; 0:1/ 0.0189 0.1812 0.0070 0.6216 �0.0108 0.4471

ıT .10�4; 1/ �0.0169 0.2316 �0.0172 0.2236 0.0149 0.2913

Ln .0; 1010/ �0.0163 0.2485 �0.0089 0.5288 �0.0049 0.7300

MT .0:01; 1/ 0.0157 0.2678 0.0010 0.9421 �0.0129 0.3626

B .0; 1010/ �.0142 0.3159 0.0168 0.2370 0.0241 0.0885

vT .10�10; 0:1/ �0.0125 0.3786 �0.0007 0.9609 0.0099 0.4837

MC .0:01; 1/ 0.0109 0.4405 0.0152 0.2828 0.0017 0.9070

ıC .10�4; 1/ 0.0104 0.4644 �0.0003 0.9834 0.0125 0.3770

Output is maximum C. difficile vegetative cells after 6, 48, and 120 h. Statistically significant
PRCCs (p < 0:0001) are bolded

other bacteria co-exist, with the situation reversed in the post-antibiotic model. The
system achieves near identical steady states to the microbial interaction model and
here we are not seeing the role for bile acids in the loss of colonization resistance in
the post-antibiotic simulation. However, drawing on our investigations in Sect. 4.2,
we simulate the combined model with varying values of ıD, the degradation rate
of DCA (Fig. 8), and again see that this secondary bile acid may play a crucial
role in the onset of colonization in the post-antibiotic case. Thus it is possible
that each of the two colonization-resistance mechanisms we have modeled have
their own purpose: following disruption of the microbiome by antibiotics, bile
acids could effectively delay the onset of colonization, providing a window of
opportunity for microbial competition to restore the flora to a C. difficile-resistant
state. We demonstrate this in Fig. 9. Note that, as in the microbial interaction model,
restoration would occur even if B and Ln are re-introduced when V is at colonization-
indicative levels because we have not included any post-colonization mechanisms
in the current model formulation that could prevent this occurring. Nevertheless,
we include this simulation for illustrative purposes. As in the microbial interaction
model, both Ln and B must be introduced to restore the gut, i.e., neither one can
achieve this in isolation.

A possible therapy to prevent C. difficile infection therefore could be to manipu-
late DCA production by maintaining it in a sufficiently high state to delay the onset
of colonization for long enough for the pre-antibiotic flora to restore itself.
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Fig. 8 Numerical solution to
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4.3.1 Sensitivity Analysis on Combined Model

To assess the effect of the parameters in the combined model, we again performed
a global sensitivity analysis with a model output of maximum C. difficile vegetative
cells. We looked at this output at 6, 48, and 120 h after the introduction of C. difficile
spores into a post-antibiotic gut, using the initial conditions in Table 5. Parameter
ranges, PRCCs, and corresponding p-values can be found in Table 8. The interaction
coefficients ˛ij were held constant at their values in Table 6 and were not included
in the sensitivity analysis.
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Fig. 9 Numerical simulation of the combined model under post-antibiotic conditions (i.e., B.0/ D
Ln.0/ D 0) but where B and Ln are re-introduced to the gut at time t D 24 (i.e., B.24/ D Ln.24/ D
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in the long term). The addition of microbial interactions enables the gut to inhibit C. difficile
vegetative cell growth sufficiently to prevent colonization and eradicate the pathogen from the
gut (over a longer timescale than shown here). Solid lines are used to illustrate t � 24 and dotted
for t > 24

We find that after 6 h, maximum C. difficile vegetative cells are most sensitive
to the same five parameters as in the bile acid model (ıD, rV , b, g, and h), with
PRCCs of similar magnitude. After 48 h, the growth rate of C. difficile vegetative
cells (rV ) still has the highest PRCC. However, the next highest PRCC is the growth
rate of Lactobacillaceae (rLt). Increasing rLt allows Lactobacillaceae to grow to high
levels more quickly, where they are able to have a positive impact on the growth
of C. difficile vegetative cells (since ˛VLt > 0). Sensitivity to the growth rate of
Lactobacillaceae increases with time since introduction of C. difficile spores, and at
120 h rLT has the highest PRCC.

5 Discussion

Earlier models of colonization resistance explicitly addressed two mechanisms:
competition for a single nutrient and competition for adhesion sites [9]. Recent
research has identified numerous mechanisms by which resident gut microbiota can
inhibit pathogens including: (1) competition for nutrients, (2) indirect inhibition
mediated by the host immune system, (3) metabolic exclusion by short chain fatty
acids, (4) direct inhibition by bacteriocins, and (5) inhibition by bile acids [18, 39].
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Table 8 Partial Rank Correlation Coefficient (PRCC) and p-values from a global sensitivity
analysis of combined model under post-antibiotic conditions with N = 5000 (number of model
runs)

After 6 h After 48 h After 120 h

Parameter Range PRCC p-value PRCC p-value PRCC p-value

ıD .10�4; 1/ 0:9252 < 0:0001 0:4701 < 0:0001 0:1882 < 0:0001

rV .0:1; 0:8/ 0:8253 < 0:0001 0:8065 < 0:0001 0:6467 < 0:0001

b .103; 104/ �0:4944 < 0:0001 �0:0675 < 0:0001 �0:0207 0:1439

g .0:1; 100/ 0:0832 < 0:0001 0:0026 0:8570 �0:0201 0:1552

h .10�4; 1/ 0:0766 < 0:0001 0:0183 0:1967 0:0200 0:1581

ıT .10�4; 1/ �0:0277 0:0502 �0:0154 0:2762 �0:0274 0:0534

MC .0:01; 1/ �0:0127 0:3704 �0:0055 0:6987 0:0162 0:2539

ıC .10�4; 1/ �0:0108 0:4457 �0:0016 0:9109 �0:0015 0:9158

rB .0:1; 0:8/ �0:0067 0:6349 0:0116 0:4110 0:0052 0:7142

vC .10�10; 0:1/ �0:0047 0:7425 �0:0163 0:2498 0:0039 0:7835

rLt .0:1; 0:8/ 0:0038 0:7864 0:4869 < 0:0001 0:7003 < 0:0001

MT .0:01; 1/ 0:0032 0:8208 �0:0003 0:9815 0:0037 0:7955

rLn .0:1; 0:8/ �0:0022 0:8751 �0:0003 0:9847 0:0209 0:1391

vT .10�10; 0:1/ �0:0007 0:9629 �0:0150 0:2909 �0:0321 0:0235

Output is maximum C. difficile vegetative cells after 6, 48, and 120 h. Statistically significant PRCCs
(p < 0:0001) are bolded

In particular, bile acids interact with C. difficile in a complex way. In our paper,
we model the interactions between bile acids and C. difficile explicitly, whereas
we model the remaining mechanisms in an aggregate way using Lotka–Volterra
equations as our main objective is to elucidate how bile acids influence colonization
resistance against C. difficile.

The microbial interaction model suggests that C. difficile cannot colonize
the gut in the presence of resident microbiota represented in the model by the
Lachnospiraceae (Ln) and other bacteria (B). The steady state in which C. difficile
vegetative cells (V) and Lactobacillaceae (Lt) are absent and Ln and B co-exist is
shown to be stable. For the post-antibiotic scenario, both groups (B and Ln) are
necessary to suppress C. difficile colonization. Re-introducing either B or Ln alone
is not sufficient to eliminate C. difficile. Therefore, perturbations that extensively
reduce one or both bacterial populations can compromise colonization resistance.

These results align with the findings in both mouse and human studies looking
at the interaction between the gut microbiota, antibiotics, and C. difficile infection
(CDI). Prior to antibiotics the indigenous gut microbiota provides colonization
resistance against C. difficile and it is not until perturbation by antibiotics that the
microbial community allows for C. difficile colonization [32, 40]. The loss of gut
bacterial diversity and members from the Lachnospiraceae and Ruminococcaceae
families is associated with antibiotic use and C. difficile colonization [41]. Restora-
tion of both is associated with resistance against C. difficile [40, 41]. Members of
the Lachnospiraceae family include many anaerobic Clostridia, which overlap in
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metabolic niche with C. difficile, potentially providing competition for nutrients
in the gut after antibiotics. Mono-colonization with Lachnospiraceae strains in a
germfree mouse ameliorated disease from CDI but did not eliminate C. difficile
[16]. More recently, C. scindens and non-toxigenic C. difficile, both Clostridia, were
able to decrease disease in an antibiotic treated CDI mouse model, although the
precise mechanism is still unknown [7, 23]. There is also evidence of this in human
studies, where a loss in bacterial diversity and members from the Lachnospiraceae
and Ruminococcaceae families are associated with CDI [1, 35].

The analysis of the bile acid and combined models indicates that bile acids
do not prevent C. difficile colonization, but they regulate the onset of C. difficile
colonization and growth after antibiotic perturbation. This effect on the timing of
colonization was particularly sensitive to DCA decay rate (ıD) and the inhibition
rate of C. difficile growth by DCA (b). In our models, the degradation of DCA was
assumed to be first order kinetics, depending only on DCA concentration and ıD was
assumed constant and identical in both the pre- and post-antibiotic scenarios. It is
plausible that DCA degradation dynamics are more complex. Model outcomes were
also sensitive to the growth rate of C. difficile vegetative cells (rV ). Nevertheless, this
opens up the possibility of somehow promoting DCA production to delay the onset
of colonization and buy time for the pre-antibiotic microflora to be restored. We
can test this experimentally in the future by treating antibiotic treated mice that are
susceptible to C. difficile colonization with DCA orally. We can then challenge mice
with C. difficile and define the level of colonization with and without the addition of
DCA. We can also define the gut microbiota in these mice to measure the restoration
of the gut microbiota after antibiotic treatment with and without the addition of
DCA.

Similar to the combined model, it is evident that the production of secondary bile
acids, such as DCA, by the gut microbiota is important for colonization resistance
against C. difficile, reviewed here [47]. Secondary bile acids like DCA inhibit C.
difficile growth in vitro and are also associated with resistance against C. difficile
in mouse models [7, 36, 40]. More recently, patients with recurrent C. difficile that
receive a fecal microbial transplant (FMT) show restoration of their fecal secondary
bile acids, suggesting that microbial derived secondary bile acids could play an
important role in the process of clearing CDI in humans as well [44]. However,
the complex interactions between the microbiota, DCA, and other bile acids in the
gut need further investigation including studying kinetics, flux, and degradation
dynamics over time in a gut that is healthy, antibiotic treated, and C. difficile
colonized. Our model provides an early step in achieving this goal.

Our model can be expanded and refined in several ways. First, our model focuses
on C. difficile colonization. However, once C. difficile reaches a high density in the
gut, it produces toxins A and B, which cause gut damage. To address infection,
the model should include the effects of toxins and the associated host response.
Second, the effects of antibiotics on the gut microbiota were addressed in the model
by modifying the initial conditions. Antibiotic perturbation in the gut microbiota
could be included explicitly. Finally, microbial interactions were modeled using the
Lotka–Volterra equations, but nutrients and other interactions could be addressed
in the model more explicitly by incorporating nutrient and other intermediate
metabolites.
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Revisiting the Physics of Spider Ballooning

Kimberly S. Sheldon, Longhua Zhao, Angela Chuang,
Iordanka N. Panayotova, Laura A. Miller, and Lydia Bourouiba

Abstract Spiders use a unique type of aerial dispersal called “ballooning” to move
from one location to another. In order to balloon, a spider must first release one
or more flexible, elastic, silk draglines from its spinnerets. Once enough force is
generated on the dragline(s), the spider becomes airborne. This “take-off” stage of
ballooning is followed by the “flight” stage and finally the “settling” stage when
spiders land in a new location. Though the ecology of spider ballooning is well
understood, little is known about the physical mechanisms. This is in part due
to the significant challenge of describing the relevant physics for spiders that are
ballooning across large distances. One difficulty, for example, is that properties
of both the spider, such as body size and shape, and the silk dragline(s) can
vary among species and individuals. In addition, the relevant physics may differ
among the three stages of ballooning. Finally, models must take into account the
interaction between the flexible dragline and air, and resolving this multi–scale,
fluid–structure interaction can be particularly difficult. Here, we review the literature
on spider ballooning, including the relevant physics, meteorological conditions that
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favor ballooning, and previous mechanical models used to describe ballooning. We
then highlight challenges and open questions relevant to future modeling of spider
ballooning.

1 Ecology of Spider Dispersal

Dispersal, or the movement of individuals from their birth location to a new location
[10], is a critical stage in the life cycle of many species. The benefits of dispersal
include reduced competition for resources (e.g., reproductive mates and food) and
inbreeding avoidance [11, 30, 48], which may ultimately lead to greater survival and
reproduction.

Given the importance of dispersal for reproductive success, species have evolved
a variety of mechanisms to move to new locations. One such mechanism that can
be observed in spiders (Araneae) is a type of aerial dispersal called “ballooning”
[5, 16]. To become airborne via ballooning, a spider first climbs to a high point and
initiates a “tiptoe” posture in which it stands on the ends of its tarsi and elevates its
abdomen (Fig. 1). The spider then releases one or more silk lines, or draglines, from
its spinnerets [38]. With enough force on the dragline(s), the spider is lifted and
becomes airborne [36, 38]. This “take-off” stage is followed by the “flight” stage
in which individuals can travel as high as 5 km above ground [15] and as far as
3200 km in distance [23]. Finally, a spider reaches the “settling” stage when it lands
in a new location.

Because adult spiders can have hundreds of spiderlings—or young spiders—
from a single reproductive event, ballooning allows spiderlings to avoid competition
and cannibalism from siblings and conspecific adults [44]. Though some species
of spider are known to balloon at any time of year and any phenological stage
[45], other species balloon only during specific time periods and clearly defined
stages [13]. Regardless of when they disperse, ballooning spiders rarely have a mass
greater than 100 mg [38, 46] (but see [34] for exception), which suggests constraints
on body size for aerial dispersal. In addition, wind speeds for take-off appear to
always be below 3 m/s [44].

Despite all we know about ballooning and its importance in the ecology and
evolution of spiders, the physical mechanisms related to this unique type of dispersal
are still poorly understood. Generating a model for spider ballooning seems simple
in practice, but it is a complex problem given the variety of parameters involved.
Ballooning is used by a host of species that come in different shapes and sizes.
Both inertial and viscous forces in the surrounding air are important. Models must
also consider dragline properties, including number of threads, length, elasticity,
electrostatics, and compliance as well as constraints on wind speed [44] and spider
mass [38, 46]. After incorporating all of the various parameters, one is left with
a host of possible regimes, and different regimes could dominate during the three
stages of spider ballooning (i.e., take-off, flight, and settling).
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Fig. 1 Prior to ballooning, spiders display a tiptoe behavior which involves standing on the ends
of the tarsi, angling the abdomen upward, and releasing one or more silk draglines from spinnerets.
© Sarah Rose

Here, we review the existing literature on the physics of this fascinating mode
of ecological dispersal and identify areas for future research. We first examine the
relevant physics related to ballooning. We then discuss previous analytic models that
researchers have used to parse out the dominant regimes. Finally, we highlight the
remaining questions surrounding spider ballooning and how future research might
address these questions.

2 Relevant Physics

2.1 The Physical Parameter Space

The parameters relevant to models of spider ballooning can be broadly characterized
as those relating to individual morphology, dragline characteristics, and ambient
environmental conditions. Individual morphology can be a constraining factor in
flight [27], where mass determines the amount of vertical drag force required to lift
off and sustain flight. Due to upper limits in dragline tensile strength and ambient air
velocity, larger masses may completely preclude take-off for individuals [38, 42].
This can partially explain why ballooning as a dispersal mechanism is typically
observed in younger instars and smaller taxa [3].

Body length and shape influence the amount of drag generated to sustain flight.
Despite the large variation in body shapes among spider taxa that balloon (Fig. 2), all
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Fig. 2 Spiders may display unique body shapes that cannot be realistically modeled as a sphere,
including spiders in the genera (clockwise from the top left) Cyrtarachne, Poltys, Gasteracantha,
and Ariamnes. Photo credit to Yung Yi Tsai, Fisher Chen, Robert Tsai, Sun Jong Liu

previous work on spider ballooning has used a spherical shape to model the spider
[27, 31, 32]. Post-release posturing of the legs may have additional implications for
terminal velocities [38], but the effects of a spider’s eight legs on drag and flight
speed have thus far been ignored.

The physical characteristics of the dragline act together with the body to
create surfaces for aerodynamic drag to be generated. Dragline mass is generally
considered negligible in models since it is minuscule compared to the spider’s body
mass. This is true even in cases where an individual may release two or more
dragline threads, as has been observed across multiple ballooning taxa [14, 34].
Unlike mass, dragline length has been shown to be important in take-off dynamics
and in decreasing terminal velocity [2, 37], but its influence during flight and on
dispersal distance has been debated [31]. Because silk can flex and extend [31],
distortion and bending during flight can decrease the effective length of the dragline.
Interestingly, however, observations of entangled draglines during ballooning have
not been reported.

Dragline flexibility influences the spider’s movement through space. Since the
dragline bends and adapts to flow structures in the air, it subjects the attached
spider to variations in flow profiles. Thus, factors that influence dragline flexibility,
including elasticity, stiffness, bending rigidity, and flexural rigidity, should be
included in models.
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Another important characteristic to consider when modeling ballooning is the
electrostatic properties of silk [28]. Electrically charged silk may explain how a
long, single dragline can avoid becoming entangled during flight. In cases where
dozens of silken threads are released together, electrostatic repulsion in individual
strands may similarly prevent mass entanglement [34]. Electrostatic forces are
speculated to act independently from adjective and aerodynamic forces on the
spider, thus providing additional lift [19].

Lastly, environmental conditions play a substantial role in spider take-off,
flight, and landing. Meteorological conditions seem to affect the initiation of
tiptoe behavior; multiple field observations suggest that spiders balloon during
daylight hours, under sunny and clear skies, and at wind speeds less than 3 m/s
[13, 22, 27, 38, 44]. Wind speed has strong implications for take-off velocities
and distance traveled. Horizontal wind velocity is directly related to the horizontal
velocity that ballooning spiders attain [27, 37], whereas vertical wind velocity
and the resulting drag generated counteracts the falling speed of the body. Given
the small spatial scales in which ballooning spiders operate, minor variations in
meteorological conditions can subject individuals to frequent changes in velocity
and direction [38].

2.2 Relevant Dimensionless Parameters

Several dimensionless parameters are relevant to models of spider ballooning and
can be obtained through scale analysis, which describes fluid flow behavior. Scaling
estimates the magnitudes of various forces acting on a body and governing fluid
motion. Thus, scale analysis can be used to understand the meteorological state of
the atmosphere that favors the initiation and maintenance of spider ballooning.

Initiation of the spider ballooning, or the take-off, could be aided by the presence
of thermals. Thermals are parcels of hot air that develop as a result of convection
when cold air sinks and hot air rises as shown in Fig. 3. The atmospheric conditions

Fig. 3 The development of a
thermal, with the rise of hot,
lighter air initiating
convection
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that favor thermal formation can be established by examining the Richardson
number, which characterizes the relationship between buoyancy and shear forces
and is defined by

Ri D N2



d NU
dz

�2
D �

�
g

�0

� d N�
dz



d NU
dz

�2
; (1)

where g is the gravitational constant, N� is the mean pressure, NU is the mean
horizontal wind velocity, z denotes the vertical coordinate direction, and N is the
Brunt–Vaisala frequency or buoyancy frequency. The Richardson number quantifies
the ratio of buoyancy-generated to shear-generated instability in the flow field [40].

Observational studies of aerial dispersal of spiders show a strong correlation
between the number of spiders caught during dispersal and the Richardson number
[42, 43]. The number of spiders caught in traps was significantly larger when the
Richardson number was negative, which characterizes strong, unstable stratification
and/or weak horizontal wind shear typical of calm, sunny days [21, 43]. This number
could be used to describe the overall general conditions of take-off, though it does
not relate to the properties of take-off or flight of the spider itself.

Another important dimensionless number relevant to spider ballooning is the
Reynolds number. As an object moves through the air, aerodynamic forces between
the object and the air are generated. The magnitude of forces depends on the shape,
speed, and mass of the object, as well as properties of the fluid, specifically the
viscosity, or stickiness, and the density. The Reynolds number relates the inertial
forces to the viscous forces and is defined as

Re D �UL

�
; (2)

where � and � are the density and the dynamics viscosity of the surrounding media
(air), respectively, U is the characteristic velocity, and L is the characteristic length,
which could be either the spider’s body length or the length of the dragline [29].
The Reynolds number is used to characterize different flow regimes. Re < 2000

is typical for laminar flows, and Re > 4000 characterizes turbulent flows [29].
For spider ballooning, values of ReD < 10 (where D is the spider’s body length)
indicate that the stimulus prompting the ballooning activity is too weak. In contrast,
for values of ReD > 200, it seems that the motion of the wind is too vigorous for the
spiders to safely conduct aerial dispersal [27].

A third important dimensionless parameter used to analyze aerodynamic forces
is the Froude number. Defined as the ratio of the inertial force to the gravitational
force, it is used to quantify the effect of gravity on the moving object. The Froude
number is described as Fr D Up

gL
, where U is the wind velocity or the velocity

of free fall, L is the characteristic length of the moving object, and, in the case of
spiders, L is the diameter of the body. The Froude number has been used in studies
of both terrestrial and aquatic locomotion to account for the effect of gravity on



Revisiting the Physics of Spider Ballooning 169

movement of arthropods and mammals [4]. It has not, however, been used in relation
to spider ballooning. One of the goals of our future research is to use this parameter
to evaluate the significance of gravity on the dynamics of spider ballooning.

The last dimensionless number that is important for models of spider ballooning
is the Strouhal number (St), which is defined as St D fL

U ; where f is the frequency
of vortex shedding (found numerically or experimentally), L is the length of the
dragline, and U is the velocity of air relative to the velocity of the dragline (found as
a sum of free fall velocity and wind speed). The Strouhal number is frequently used
to describe the tail or wing kinematics of swimming or flying animals because it is
known to govern a well-defined series of vortex growth and shedding regimes for
airfoils undergoing pitching and heaving motions [25, 39]. Propulsion efficiency is
high under a narrow range of Strouhal numbers and usually peaks within the interval
0:2 < St < 0:4 [39]. The Strouhal number has not been used in analyses of spider
ballooning dynamics. One of our future goals is to evaluate the Strouhal number for
the passive locomotion of spider ballooning both numerically and experimentally.

3 Meteorological Conditions Favoring Spider Ballooning

Small, negative Richardson numbers are found on calm, sunny days when unstable
stratification and/or weak horizontal wind shears dominate. Such meteorological
conditions are known to be favorable for spider ballooning and occur close to the
Earth’s surface in the early morning or late afternoon when temperature convection,
or temperature inversion, happens naturally in the atmosphere [1]. The vertical
movement of warmer air up and cooler air down results in static instabilities in
the atmosphere and leads to the formation of a vertical, turbulent layer filled with
vortices, called thermals, that can be used as a lifting force by ballooning spiders.

Greenstone [22] focused on defining meteorological variables related to the
production and maintenance of thermals and used them to predict the number of
ballooning spiders. The author showed that clear sky meteorological conditions,
which are necessary for thermal production, were present in only 82% of spider bal-
looning observations. This suggests that another source of uplift for ballooning that
can generate vertical velocity may be present. A continuously stratified atmosphere
can destabilize if the Richardson number is less than 0.25 (i.e., 0 < Ri < 0:25).
Kelvin–Helmholtz instability can take place as shown in Fig. 4 and vortices that
grow in amplitude can lead to turbulence and vertical mixing as well [12]. However,
a recent study showed that the timing of spider ballooning is not purely dominated
by convection as some horizontal shear is also present [32].

The Kelvin–Helmholtz instability is only one particular type of instability that
can affect spider ballooning. A zone with a wind shear, or a sudden change in the
wind’s speed or direction, is a well-known source of turbulence. The shearing, which
can be horizontal, vertical, or both, creates forces that produce eddies along the
mixing zone. The formed eddies may range in diameter from a couple of meters to
several hundred meters [1]. Shear layers are a major cause of turbulence and, if they
are formed high in the atmosphere, can often produce clear-air turbulence.
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Fig. 4 Kelvin-Helmholtz shear instability resulting in the formation of turbulent eddies and
mixing

Shear layers can also be found near the Earth’s surface, where turbulent whirling
eddies are formed due to the roughness of the ground. As wind blows over a
landscape full of obstacles such as trees and mountains, it breaks into irregular air
motions known as wind gusts or turbulent eddies. The size and shape of these eddies
depend on the dimensions of obstacles and the wind speed and can influence the air
flow for hundreds of meters above the surface [1].

Another source of eddies are orographic perturbations, which occur when strong
winds blow perpendicular to mountain ranges. Air flowing over the top of a
mountain produces perturbations when it reaches the other side. The associated
updrafts and downdrafts formed on the leeward side of the mountain may extend
to heights from 2 to 20 times the height of the mountain peaks [1]. All of the
meteorological scenarios summarized above may produce turbulence and/or eddies
and may serve as a driving force for spider lift and subsequent dispersal.

4 Previous Mechanical Models for Ballooning

4.1 Humphrey’s Take-Off Model

The first analytical model for spider ballooning was built by Humphrey [27] who
studied the phenomenon with a simple fluid mechanical model (see Fig. 5a). In
Humphrey’s model, the spider was represented as a solid sphere. Attached to the
solid sphere was a rigid, inextensible, cylindrical rod that was used to approximate
a silk dragline, thus producing a “lollipop” appearance. The rod was considered to
be massless relative to the spider.
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�
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m0 = m
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(a) Humphrey’s model (b) Reynolds et al.’s model

Fig. 5 Schematic of previous mechanical models of spider ballooning. In (a) Humphrey repre-
sented the spider as a solid sphere (m) attached to a rigid, inextensible, cylindrical, slender rod (`)
that approximates a dragline. The rod is considered to be massless relative to the sphere. In (b)
Reynolds et al. represented the spider as a mass point m0 attached to a flexible dragline made of
a chain of N springs with spring constant K. The mass of the dragline is distributed on the nodes
along the chain

For the lollipop model, the governing equation of the model was a balance of
inertia, buoyancy, frictional and pressure forces:

�sVs
dU
dt

D ���Vs
d.U � V/

dt
� ˛jU � Vj.U � V/

C.� � �s/Vsg C �Vs
dV
dt

C B.t/; (3)

where �s and Vs are the sphere’s density and volume, respectively, ˛ and U are the
sphere-rod drag coefficient and velocity, respectively, V is the fluid (air) velocity, �

is the density of fluid (i.e., air), � is the coefficient of added mass (0.5 for a sphere),
g is the gravity vector, and B.t/ is the Basset term. Both added fluid mass and Basset
force are due to the unsteadiness of the problem and the author ended up neglecting
the Basset force in the simulation. Equation (3) was modified from previous research
[6, 26] in which ˛ was not specified for a sphere-rod system. A range of Reynolds
numbers was defined based on wind velocity, spider length, and mass. For the drag
coefficients for silk, slender bodies in low Reynolds number regimes were taken
from Happel and Brenner [24]. The equations for the drag coefficient for the sphere
were empirical correlations reported by Clift et al. [6]. However, the drag expression
used to obtain the vertical take-off velocity of the spider was that of the turbulent
regime:

mg D Cd d `
1

2
.Vz/

2
min ; (4)
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where m is the mass of the spider, g is the acceleration due to gravity, Cd is
the filament drag coefficient, d is the filament diameter, ` is the filament length,
and .Vz/min is the minimum vertical component of air velocity required to initiate
ballooning. In this model, drag determines environmental conditions necessary for
take-off and is highly dependent on the dragline length. Numerical simulations
were used to examine the spider-filament free fall in a quiescent environment and
in sinusoidally oscillating vertical wind with average background wind vertical
velocity of NVz D 0. The minimum vertical wind required to initiate ballooning
and the distance travelled over time were reported as relations of spider mass and
dragline length.

Humphrey’s results were supported by empirical investigations of drag on spiders
and their silk by Suter [36–38]. However, the physical properties and dimensions
in Humphrey’s model were not validated. In particular, the numerical simulation
of the system of Ordinary Differential Equations (Eq. (1.3) in Humphries 1987)
for the simple lollipop model suggested that spiders with short silk draglines in
strong winds travel faster and farther than the same sized spider with a long dragline
in weaker winds. This contradicts the observation that spiders usually balloon in
<3 m/s winds. Finally, Humphrey’s lollipop model suggested that a group of small
spiders on a silk dragline would travel faster and farther than a single spider of
equivalent mass on the same dragline and in the same wind conditions.

4.2 Reynolds et al.’s Passive Dispersal Model

Instead of the rigid rod used in Humphrey’s model [27], Reynolds et al. [31, 32]
modeled the silk dragline as a chain of springs and spheres that resist stretching
but not bending (Fig. 5b). Passive dispersal of the flexible silk filament was then
modeled in turbulent flow that approximated the atmospheric boundary layer.
Similar to Humphrey’s work [27], take-off dynamics were not described. The
Reynolds et al. model [31] described the force Fi acting on each node i D 0; N
as follows:

Fi D mi�
�1
s .ui � vi/ C K.pi;i�1si;i�1 C pi;iC1si;iC1/ C m0gıi;0; (5)

where u is the local air velocity, m0 is the spider mass, v0 is the velocity located at
node i D 0, mi and vi are mass and velocities at nodes i D 1; � � � ; N along the chain,
and K is the spring constant. si;j are differences between the spring lengths to the
fixed rest lengths from node i to node j. pi;iC1 are unit vectors orientated along the
segment joining the i node and the i C 1 node. �s is the aerodynamic response time
of the dragline, and ıi;0 is the Kronecker delta. This model reflects the assumption
of massless spring and that gravity only acts on the node i D 0 (i.e., the body of the
spider).

In a subsequent Reynolds et al. paper [32], the simplistic model of turbulence
used in the first Reynolds et al. simulation [31] was extended to a Lagrangian
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stochastic model. Lagrangian stochastic models for the velocity (u) and position
(x) are in the following form

dui

dt
D ai.x; u; t/ C

p
C0�

d�i

dt
; (6)

dx
dt

D u;

where the indices i D 1; 2; 3 denote Cartesian directions, C0 D 5 is the Kol-
mogorov’s Lagrangian velocity structure constant, � is the mean rate of dissipation
of turbulent kinetic energy divided by the density of air, � is the Wiener white noise,
and ai is a solution of the Fokker–Plank equation. This approach considered a simple
model of turbulence.

Contrary to Humphrey’s results [27], Reynolds found that the length of a dragline
did not affect dispersal distance [31]. With the flexible dragline model, the condition
for maximum dispersal distance was found to be a gradient Richardson number of
approximately �3:2 [32]. This model showed that dispersal over several hundred
kilometers was possible. However, based on the flexible dragline model, silk could
become entangled (Fig. 6). Interestingly, experimental studies report that the silk
dragline does not become entangled or clump in this manner once the spider is in
flight [34].

4.3 Thomas et al.’s Diffusion Model

Instead of using a turbulence model that approximates the atmospheric boundary
layer [32], Thomas et al. [41] built a one-dimensional diffusion model,

Fig. 6 The entanglement of the silk dragline predicted by Reynolds et al. model [31]. This figure
was redrawn from [31] with permission
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@n

@t
D Ds

@2n

@x2
; (7)

to capture evolution of the spatial and temporal number of ballooning spiders n.x; t/.
The solution to the diffusion Eq. (7) is [7]

n.x; t/ D n0

2
Erfc

 
x

2
p

Ds.t/t

!

; (8)

where n0 is the initial number of spiders at position x0, n is the number of spiders
at position x at time t, Ds.t/ is the diffusion coefficient of the species s at time t, and
Erfc is the complementary error function. Based on the distribution of spiders in
space and time, Thomas and colleagues estimated considerable horizontal distance
traveled by the ballooning spider on the order of up to 90 km in 8h [42].

4.4 Models Incorporating Electrostatics

Electrical charging of the spider’s dragline is believed to create electrostatic
repulsion both within and among the silk filaments [28], allowing filaments to
avoid the type of entanglement shown in Fig. 6. Researchers have suggested that,
combined with aerodynamic force, the negative surface charge density of the Earth
may play a role in spider ballooning. Though meteorological conditions are often
believed to be the dominant driver in the take-off stage of spider ballooning, Gorham
[19] conjectured that the electrostatic field is a necessary condition for take-off. In
Gorham [19], an exponential approximate model for the atmospheric electric field
is assumed to be

E.h/ D E0e�˛h .Vm�1/;

where h is height, ˛ is the exponential rate for the exponential fit to the electric
field (i.e., ˛ D 3:0 � 10�4 m�1), and E0 is the electric field at h = 0 (i.e.,
E0 D �120 Vm�1). Assuming a constant acceleration for a single dragline in a
pure electrostatic field, the charge required for take-off is computed as

Qaccel D m.anet C g/=E0 	 100 .nC/; (9)

where m is the mass of the spider and an initial net vertical acceleration is in the
range of anet D 3 � 6 ms�2. The author concluded that spiders use electrostatic
forces only to lift them into the air [19]. Electrostatics may account for some
unexplained ballooning phenomena, such as high velocity ballooning in conditions
of little or no wind or the observation made by Charles Darwin that spiders were
ballooning from his ship, The Beagle, in horizontal movements [8, 19]. However, the
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role of electrostatics may not be significant since empirical research has shown that
spiders are using rising thermals on hot days without wind [34] and, thus, thermal
currents could provide all the necessary lift for ballooning.

5 Challenges, Open Questions, and Needs

Describing the relevant physics for models of spiders that are ballooning across large
distances in turbulent flows presents significant challenges. The material properties
of spider silk are complex and can vary among species, individuals, and even within
the same organism [17, 20]. The interaction between the flexible dragline and air
must be taken into consideration, and resolving this fluid–structure interaction can
be particularly difficult.

Spider ballooning is also an inherently multiscale problem. When zooming into
the flow around an individual spider, turbulence can be handled explicitly using
direct numerical simulation. When considering dozens of organisms within large-
scale geophysical flows, it is necessary to use turbulence models such as Reynolds
averaged Navier–Stokes equations (RANS) [18, 47] or large eddy simulations [9,
33, 35]. Both methods average out either the entire or the sub-grid flow structure
for computational efficiency. However, the details of the flow near the spider and
the dragline are critical to resolving the silk’s reconfiguration. The development
of new multiscale methods, such as hybrid direct numerical simulation / RANS
models, may be required to resolve both the viscous flow near the dragline and the
atmospheric turbulent flows.

In addition to resolving the flow near the elastic dragline, there are challenges
to modeling the atmospheric processes relevant to spider ballooning. The vertical
ascent and descent of the spider is likely sensitive to short-term turbulent variability.
Mathematical models that average velocities across relatively large distances and
over long time intervals may not be appropriate since these simplifications can
effectively smooth strong nonlinearities relevant to take-off and flight. On the other
hand, resolving such details can quickly make numerical simulations that describe
long distance ballooning intractable. As an example, for some ballooning events, it
may be desirable to simulate a meteorological pressure system for which the relevant
length scale of the pressure system would be on the order of tens to hundreds of
kilometers. In contrast, the relevant length scale of the smallest vortices or eddies
may be on the order of one millimeter and the relevant length scale of the spider
itself may be on the order of hundreds of microns.

In terms of temporal resolution, ballooning events may take place over the time
scale of days, while transient flows that affect ballooning may occur on the scale
of milliseconds. Brute force simulation of such a problem would require on the
order of 1024 spatial grid points and 108 time steps. Highly efficient, adaptive, and
parallelized algorithms that can refine spatial and temporal scales are required to
handle this challenge. Scaling laws evaluating the relevant and dominant features
required for such modeling would also be critical.
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There are a variety of ways in which detailed fluid–structure interaction modeling
could help us understand the dynamics of the silk dragline and the ballooning
behavior of spiders. Predictive multiscale and multiphysics models could allow us
to determine if spiders prefer to take off in certain conditions such as updrafts or
within rolling eddies. These models may also help us understand other aspects of
ballooning such as turbulence sensing during the tiptoeing behavior and how flow
structures may be utilized to enable very long distance dispersal.

In addition to improved numerical methods and mathematical models describing
spider ballooning, additional experimental data are needed to guide and validate
such models. Wind tunnel studies could be used to examine not only the desired
wind speed for takeoff but also the desired wind direction and/or turbulent profile.
Spatial and temporal resolution of dispersal patterns could be used to validate
models that couple the elastic dynamics of the dragline with complicated flow
structures. Visualization of the dynamics of the silk dragline in the air could aid
in the selection of the appropriate dragline model.

By combining modeling and experimental approaches, a host of possible ques-
tions could be explored, including:

• Is elasticity of the dragline (both in terms of resistance to bending and stretching)
important for take-off and flight in turbulent regime?

• Is there an optimal dragline length or wind flow profile for take-off, flight, and
settling?

• Why do we see such a narrow range of body sizes in ballooning spiders?
• Why is there a maximum wind speed for take-off?

Addressing such questions would help shed light on an interesting ecological
mystery surrounding dispersal that has implications for species distributions, inva-
sion biology, and impacts of climate change.
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Flying Spiders: Simulating and Modeling
the Dynamics of Ballooning
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Abstract Spiders use a type of aerial dispersal called “ballooning” to move from
one location to another. In order to balloon, a spider releases a silk dragline from its
spinnerets and when the movement of air relative to the dragline generates enough
force, the spider takes flight. We have developed and implemented a model for
spider ballooning to identify the crucial physical phenomena driving this unique
mode of dispersal. Mathematically, the model is described as a fully coupled fluid–
structure interaction problem of a flexible dragline moving through a viscous,
incompressible fluid. The immersed boundary method has been used to solve this
complex multi-scale problem. Specifically, we used an adaptive and distributed-
memory parallel implementation of immersed boundary method (IBAMR). Based
on the nondimensional numbers characterizing the surrounding flow, we represent
the spider as a point mass attached to a massless, flexible dragline. In this paper,
we explored three critical stages for ballooning, takeoff, flight, and settling in two
dimensions. To explore flight and settling, we numerically simulate the spider in
free fall in a quiescent flow. To model takeoff, we initially tether the spider-dragline
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system and then release it in two types of flows. Based on our simulations, we can
conclude that the dynamics of ballooning is significantly influenced by the spider
mass and the length of the dragline. Dragline properties such as the bending modulus
also play important roles. While the spider-dragline is in flight, the instability of the
atmosphere allows the spider to remain airborne for long periods of time. In other
words, large dispersal distances are possible with appropriate wind conditions.

1 Introduction

Dispersal is the nonreturning movement of organisms away from their birth sites
[25], often triggered by density and habitat-dependent factors [5, 9]. These factors
play a role in the initiation and frequency of activities such as foraging, choosing
nest sites, searching for mates, and avoiding predation, competition, and inbreeding
[6]. Dispersal traits and mechanisms are thus wide and varied across taxa, even for
organisms that disperse passively through air or water currents [19].

Spiders (Arachnida: Araneae) represent one taxon that undergoes a specialized
form of passive dispersal. Besides walking from site to site, most spiders also engage
in a type of aerial dispersal known as ballooning [2]. This begins with a distinctive
“tiptoe” behavior where an individual straightens its legs, balancing on the tips of its
tarsi. After tiptoeing, the spider raises its abdomen, releasing a silken dragline in the
air (Fig. 1). Wind then allows for drag-induced lift of the whole body. Once airborne,
individuals have little control over the direction and distance of displacement; rather,
they join other floating life forms collectively known as “aerial plankton” [10],
which are subject to air currents.

Spiders have long been observed to balloon to distances as far as 3200 km
[12] and heights of up to 5 km [10]. The extreme heights and distances achieved
from a seemingly simple mechanism have generated interest in the flight physics
of these arachnid aeronauts. This intriguing behavior is apparently constrained by
body mass (<100 mg) and wind speed (<3 m/s). The complex interactions of the
physical characteristics of the spider’s morphology, silk dragline properties, and
meteorological conditions have also motivated the identification of the dominant
regimes during takeoff, flight, and settling. Since ballooning spiders are very small
and cannot be easily tracked, conventional measures of dispersal are difficult. This
has motivated theoretical work in determining the physics and resulting distributions
of ballooning spiders.

Early models of spider ballooning primarily focused on the factors that are
important for flight as well as the distances that can be achieved (see [27] for
a review of previous models). Humphrey [15] developed the first simple force
balance model where the physical properties of the spider and its attached dragline
were simplified to a massive sphere (spider) and a massless, rigid rod (dragline).
Described as a “lollipop system,” this model evaluates the possible relationships
between spider mass, dragline length, and dispersal distance during initial takeoff.
The results were used to define a region of physical parameters that mechanically
support ballooning based on wind velocity and spider mass, although dragline length
also played a role in travel speed and distance [15].
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Fig. 1 Tiptoe behavior in which a spider stands on tarsi, raises the abdomen, and releases a
dragline (indicated by arrow) in order to initiate ballooning. Photo copyright belongs to Sarah
Rose

Subsequent models were built on this system by considering the dragline as
a series of spheres and springs. This approach allowed more realistic properties
to be included in the spider-dragline system such as flexibility and extensibility
of the dragline [22]. Using a set of Lagrangian stochastic models to capture the
turbulence in the air, simulations of ballooning were able to predict reasonable
dispersal distances in the presence and absence of wind shear conditions [23].

Statistical approaches, empirical measurements, and simulations have also fur-
thered our understanding of ballooning dynamics. Suter [30] measured spiders in
free fall in statistical models that related the body mass and dragline lengths to their
terminal velocities. The potential importance of body posturing was also noted, as
it could account for deviations from the expected values of terminal velocity. In
other words, spiders can possibly posture their legs and body in a way that impacts
their fallout [31]. However, it is unlikely that their decision to balloon is based on
accurate meteorological predictions, as shown in models that relate their probability
of dispersal with mass, silk length, and local wind velocity variation. Thomas et
al. used numerical simulations to understand the temporal and spatial dynamics
through diffusion models [32]. These were subsequently used to understand feasible
dispersal distances under a simple atmospheric model [33].

These earlier models illustrate the various methods that have been utilized to
understand different aspects of the spider ballooning process but many simplifying
assumptions are made regarding the fluid–structure interaction. In this study, we
investigate the dominant physical regimes of passive aerial dispersal in spiders, with
a particular focus on the fluid dynamics of their flight. We consider the physical
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parameter space that influences all stages of ballooning, including takeoff, transport,
and landing. We use a numerical approach to model the complex interaction of
the coupled spider-dragline system and its movement through various air-flow
conditions. Like earlier studies, this model includes the spider body mass and a
flexible dragline. We go beyond previous work by resolving the full aeroelasticity
problem of a flexible dragline moving through a viscous fluid. We also directly
simulate a variety of background air-flow profiles.

In the next section, we describe the numerical method for solving the fully
coupled fluid–structure interaction problem of a flexible dragline immersed in a
viscous fluid. In Sect. 2.2, we discuss our model of the spider–flow interaction and
then consider the validity of our model in various scenarios: free fall in quiescent
flow and nonquiescent flows. We then discuss the dynamics of ballooning in Sect. 3
in various flow conditions. Lastly, we summarize our findings in Sect. 4.

2 Methods

2.1 Immersed Boundary Method

Our goal is to mathematically model a flexible dragline that is both deformed by the
air and also moves the air. In other words, we wish to consider the fully coupled
fluid–structure interaction. We used the immersed boundary method to model this
fully coupled fluid–structure interaction problem [18, 20, 21]. After over 30 years of
application to problems in biological fluid dynamics, the immersed boundary (IB)
method represents a relatively straightforward and standard approach for studying
problems in animal locomotion including insect flight [17], lamprey swimming [34],
and jellyfish swimming [14].

The basic idea behind the immersed boundary method is that the equations of
fluid motion are solved on a (typically Cartesian) grid using an Eulerian frame of
reference. The equations describing the immersed elastic boundary are solved on a
curvilinear mesh defined using a Lagrangian frame of reference. The collection of
Lagrangian nodes on which the equations describing the immersed elastic boundary
are solved move independently of the fluid grid. The immersed boundary is moved
at the local fluid velocity, and the elastic forces are spread to the fluid through
regularized discrete delta functions.

The following equations describing the immersed boundary method are given in
two dimensions, but the extension to three dimensions is mathematically straight-
forward, though efficient implementation in three dimensions is challenging. More
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details may be found in Peskin [21]. The Navier–Stokes equations are used to
describe a viscous incompressible fluid (such as air at low Re) as follows:

�.ut.x; t/ C u.x; t/ � ru.x; t// D rp.x; t/ C �r2u.x; t/ C F.x; t/; (1)

r�u.x; t/ D 0; (2)

where u.x; t/ is the fluid velocity, p.x; t/ is the pressure, F.x; t/ is the force per unit
area applied to the fluid by the immersed boundary, � is the density of the fluid, and
� is the dynamic viscosity of the fluid. The independent variables are the time t and
the position x.

The interaction equations between the fluid and the boundary are given by the
following integral transforms with delta function kernels:

F.x; t/ D
Z

f.r; t/ı .x � X.r; t// dr; (3)

Xt.r; t/ D U.X.r; t// D
Z

u.x; t/ı .x � X.r; t// dx; (4)

where f.r; t/ is the force per unit length applied by the boundary to the fluid as
a function of Lagrangian position and time, ı.x/ is a delta function, X.r; t/ gives
the Cartesian coordinates at time t of the material point labeled by the Lagrangian
parameter r. Equation (3) applies force from the boundary to the fluid grid, and
Eq. (4) evaluates the local fluid velocity at the boundary.

In order to tether the boundary points to a fixed location, a penalty force is applied
that is proportional to the distance between the boundary and the desired location of
target points. This force is given by:

f.r; t/ D �targ .Y.r; t/ � X.r; t// ; (5)

where f.r; t/ is the force per unit length, �targ is a stiffness coefficient, and Y.r; t/
is the prescribed position of the target boundary. The deviations from the target
position can be controlled by the parameter �targ.

The flexible dragline used in the following simulations resists stretching and
bending. To model the resistance to stretching, we insert elastic links connecting
adjacent boundary points that act as linear springs. Let boundary points m and n have
the corresponding position coordinates Xm and Xn, and let these points be connected
by elastic link w. The stretching energy function for this link is then given by:

ES.Xm; Xn/ D 1

2
�s.jjXm � Xnjj � lw/2; (6)

where lw is the resting length of the spring and �s is its stiffness coefficient. Note that
ES is equal to zero when the distance between the points equals the resting length.

The dragline also has a small resistance to bending. We assume zero preferred
curvature (the dragline wants to be straight). The bending energy is then given by:

Eb D 1

2
�b

Z

j@X.s; t/

@s
j2ds; (7)



184 L. Zhao et al.

where �b is the bending stiffness. We discretize the bending energy with zero
preferred curvature as follows:

Eb D 1

2
�b

X

i

jDsDsXj2�s D 1

2
�b

N�1X

iD2

jXiC1 � 2Xi C Xi�1j2
�s2

�s; (8)

The total elastic energy is calculated as the sum of the stretching and bending
energies for each immersed boundary point. For example, a dragline is made up
of a string of N immersed boundary points arranged in the order so that each pair
of consecutive points is joined by a linear spring that resists stretching and each
consecutive triplet resists bending. This results in the following equation for the
total elastic energy:

E.X1; X2; : : : XN ; t/ D
N�1X

iD1

ES.Xi; XiC1/ C
N�1X

iD2

EB.Xi�1; Xi; XiC1/: (9)

The elastic force at point m is then calculated using the derivatives of the elastic
energy as follows:

Fm.X1; X2; : : : XN ; t/ D �@E.X1; X2; : : : XN ; t/

@Xm
: (10)

Values of the constants �s and �b must be chosen to specify reasonable energies and
forces associated with the dragline and are selected to be within the range of what
is observed for spiders. Mass was added to the spider using the penalty immersed
boundary method [16]. The boundary points that are assigned a mass are anchored
with linear springs to “ghost” massive particles. The linear springs have zero resting
lengths, and the spring stiffness coefficients are chosen such that the boundary point
moves with the massive particle within some tolerance. The massive particles do not
interact with the fluid (the boundary points that they are connected to do) and simply
move according to Newton’s laws. With a stiffness spring connecting the mass
point and the boundary point, an energetic penalty is imposed when the position
of the Lagrangian immersed boundary point deviates from that of the mass. Similar
to Eq. (5), the energetic penalty is introduced into the system by a large value of
the penalty stiffness �s between the point of spider and the point of dragline it is
attached to.

To perform direct numerical simulations, we used an adaptive and parallelized
version of the immersed boundary method, IBAMR [13]. IBAMR is a C++
framework that provides discretization and solver infrastructure for PDEs on block-
structured locally refined Eulerian grids [3, 4] and on Lagrangian (structural)
meshes, as well as infrastructure for coupling Eulerian and Lagrangian representa-
tions. The adaptive method used four grid levels to discretize the Eulerian equations
with a refinement ratio of four between levels. Regions of fluid that contained
the immersed boundary or vorticity magnitude above 0.125 s�1 were discretized
at the highest refinement. The effective resolution of the finest level of the grid
corresponded to that of a uniform 5122 discretization.
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2.2 Spider Model

In previous mechanical models [15, 22], the spider body was modeled as a sphere
(see [27] for a review of previous models). However, the detailed aerodynamics
of the viscous fluid interacting with the spider-dragline system were not resolved.
Based on an analysis of the relevant dimensionless numbers, which are outlined
below in Sect. 2.2.2, we neglect the drag acting on the spider itself and focus on
the dragline. We do consider the mass of the spider which is represented as a point
mass tethered to the dragline. The dragline is modeled as a massless beam that
resists bending and stretching. The governing equations are similar to Eqs. (1)–(2)
as following:

�.ut.x; t/ C u.x; t/ � ru.x; t// D rp.x; t/ C �r2u.x; t/ C mg C F.x; t/; (11)

r�u.x; t/ D 0; (12)

where mg is the gravity force due to the point mass of the spider and F is the force
that the dragline applies to the fluid.

For the numerical discretization of the elastic dragline, the dragline is represented
as discrete Lagrangian points connected by springs that resist bending and stretching
with stiffnesses �s and �b, respectively. Note that the relevant elasticity Eqs. (5)–
(7) represent a very different system from the chain of springs in Reynolds et al.’s
model [22]. In Reynolds et al.’s model, the dragline is defined by spring modulus
K only, i.e., �s in our model. Their dragline can freely bend in any direction, which
may result in unrealistic entanglement. In our model, the bending modulus limits the
bending of the dragline. Our model may still, however, result in some entanglements
due to the fluid–structure interaction. Note that we do not include electrostatic forces
in our model which may further limit the degree of entanglement.

The spider-dragline system is then immersed in air with appropriate boundary
conditions for different scenarios (e.g., no slip for settling in a quiescent fluid,
Dirichlet for prescribed background flow, and mixed for cavity flow). In this fluid–
structure interaction system, the flow field is obtained by numerically solving the
full Navier–Stokes Eqs. (11)–(12). The spider-dragline is moved at the local fluid
velocity (4).

2.2.1 Numerical and Physical Parameters Used for Simulation

Due to the computational challenges associated with immersed boundary simula-
tions in three dimensions, we consider only a two-dimensional representation of the
spider-dragline system in this initial study. Note that in two dimensions, the spider is
actually a sheet, and the point mass representing the spider is with units of mass per
length (M=L) converted from the three-dimensional mass. As a rough approximation
of the relationship between the actual mass of a real spider and the two-dimensional
idealization, one could divide the mass of a spider by its diameter to obtain the mass
per unit length used in the simulations.

Parameters used for the simulation are summarized in Table 1.
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Table 1 Parameters used in the numerical simulations

Physical parameters Values in literature Values in simulation

Elasticity (Spring modulus) n/a 20 (N/m)

Bending modulus n/a 10�5 � 5 � 10�4 (N�m)

Dragline length [2, 22] 0 � 2.3 (m) 0.05 � 0.2 (m)

Dragline diameter [26] 20–100 (nm) Line

Dragline density [29] 1.1 � 1.4 g/cm3 Massless

Spider diameter [8, 24] 1 � 5 (mm) Pointwise

Spider mass [8, 30] 0:09 � 84:70 (mg) 2 � 800 (mg/m)

Air mass density [1] 1:165 (kg/m3) 1.177 (kg/m3)

Air dynamic viscosity [1] 1:86 � 10�5 (N�s/m2) 1:846 � 10�5 (N�s/m2)

Note the difference in the units of stiffness and mass since the simulations are in two dimensions
rather than three dimensions for actual spiders. The physical properties of the air are at
temperature 30 ıC [1]

2.2.2 Dimensionless Parameters

Dimensionless parameters are important to characterize the properties of the fluid
and its interaction with the organism. The first dimensionless parameter we consider
is the Reynolds number (Re), which is computed as the ratio of inertial forces over
viscous forces. Re is given as �LU

�
, where � is the density of the fluid, � is the

dynamic viscosity of the fluid, L is a characteristic length that is chosen based on
the application, and U is a characteristic velocity. Re is often used to characterize
different flow regimes. When Re is low (Re << 103), the flow is in the laminar
regime. When Re << 1, viscous forces are dominant, the flow is reversible, and
the fluid motion is smooth. For Re >> 1, the flow is dominated by inertial forces.
Flows at Re > 2300 (for the case of pipe flow) are typically, but not necessarily,
turbulent and tend to produce chaotic eddies, vortices, and other flow instabilities.

There are several ways that one can choose the characteristic length for the
calculation of Re. In Humphrey’s model [15], the Reynolds number is defined as
ReD D �DjVj

�
, where D is the diameter of spider and jVj is the modulus of the wind

velocity. In our simulations, we choose U as the velocity of the spider relative to
the air. The characteristic length L could be chosen as the dragline length ` (Re`),
the radius of the dragline d (Red), or the spider body diameter D (ReD), respectively.
Keeping the same characteristic velocity, Re varies with ratios from 1 to 104 for
different choices of characteristic length L, using the radius of the dragline d and
the length of dragline `.

Another important dimensionless parameter is the Richardson number Ri. It is
defined as the ratio of density gradient over the flow gradient. Ri is used as the
threshold parameter for convective instability, which is an environment factor that
may be important in the decision to balloon. Thomas et al. [33] reported that the
number of airborne spiders was significantly correlated with Richardson numbers.
In our study, we explore the dynamics of airborne spiders and neglect the influence
of temperature. Winds are specified as the boundary and initial conditions. Besides
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temperature, we also neglect the effect of electrostatics in the model. Because
electrostatic forces can prevent sticking, coiling, and entanglement of the dragline,
and because Gorham [11] reported that the effects of electrostatic forces could be
substantial for distances traveled, we plan to include electrostatic forces in our future
work.

The last dimensionless number considered is the Strouhal number (St),
defined as:

St D L

U�
:

Here, � is the relaxation characteristic time scale or the inverse of disturbance
frequency f . St represents a measure that relates oscillation frequency to fluid
velocity. For the case of spider ballooning, the oscillations in fluid velocity are due
to alternate vortex shedding from the end of the dragline. Note that for St << 1,
oscillations of the fluid have a minimal impact on the dynamics. At intermediate
Strouhal numbers 0:1 < St < 1, oscillation is characterized by the buildup
and rapidly subsequent shedding of vortices [28]. Such vortex shedding could
be important to spider ballooning since large forces are generated during vortex
separation. Such peaks in force may impact takeoff and flight trajectories.

2.2.3 Boundary and Flow Conditions

The background flows are driven in the simulations using Dirichlet boundary
conditions. In the quiescent fluid simulations, where we study the free fall of spiders,
zero initial and boundary velocities are used. For various background flows, we
specify the wind velocity on the boundary of the domain. The velocities are initially
zero everywhere, and the flow velocities at the boundaries are increased until the
target background velocity is reached. For the cases of cavity flow, the bottom
and sides of the domain are fixed at zero velocity. The top boundary condition is
continuous functions in time with zero initial value. Details about the boundary
conditions are provided in Sect. 3 with the results.

3 Results

To identify the crucial physical properties for spider ballooning, we solve the fully
coupled fluid–structure interaction problem using the immersed boundary method.
The numerical simulations are performed with IBAMR (revision 3803) [13] for a
single massive spider attached to a flexible, massless dragline. We first consider
the spider-dragline system free-falling in a quiescent fluid. We then numerically
simulate the free movement of the spider-dragline in uniform background flow and
in cavity flow (to approximate the conditions of an eddy). To reveal the dynamics of
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takeoff, we tether the spider-dragline system in both uniform and cavity flows and
release it after a certain time period. In the quiescent fluid simulations, the bottom
boundary of the computational domain is modeled as ground without penetration.
In the simulations with uniform background flow, the boundary conditions are set to
the prescribed target velocity. In the cavity flow simulations, the bottom and sides of
the domain have zero velocity boundary conditions, and the top is set to a uniform
velocity.

3.1 Free Fall in a Quiescent Fluid

The spider-dragline system is immersed in quiescent air. Due to gravity, the spider-
dragline system free-falls and generates air flow around it. The vorticity

! D r � u

of a two-dimensional flow is always perpendicular to the two-dimensional plane
and describes the local rotating motion. Therefore, we consider it a scalar field
and visualize the flow by its vorticity. Figure 2 shows four snapshots of vorticity
during the free fall in a quiescent fluid. Except for the mass of the spider, all
other parameters and initial and boundary conditions are set to the same values
for these figures. The mass per unit length is set to M D 2 � 10�6 , 2 � 10�5,
4 � 10�5, and 2 � 10�4 kg/m, respectively. The other key parameters are dragline
length ` D 0:1 m, beam bending stiffness constant �b D 5:0 � 10�15 N�m, spring
stiffness coefficient �s D 20 N/m, and the initial position of the dragline’s middle
point .x0; y0/ D .0; 0:15/.

As the mass of the spider increases, the spider-dragline system falls faster
to the ground. The spider-dragline system falls slowly with the smallest mass
(M D 2 � 10�6 kg/m), and the vorticity is plotted at time t D 8 s in Fig. 2a.
For the larger masses, the vorticity is plotted before the spider-dragline system
reaches the ground (Fig. 2b-c). Note that red indicates clockwise vorticity and blue
indicates counterclockwise vorticity. In the case of the smallest mass, we observe
smooth, streaming flow. For the larger masses, M D 4 � 10�5 and 2 � 10�4 kg/m,
vortices are alternately shed from the end of the dragline. For the intermediate case,
M D 2 � 10�5 kg/m, the vorticity generated by the dragline induces oscillations of
the dragline. These phenomena are consistent with the Reynolds number computed
using the average settling velocity as the characteristic velocity and the length of
the dragline as the characteristic length. For these four simulations, the Reynolds
numbers Re` are about 146, 960, 1450, and 3320, respectively.

To reveal more of the dynamics during the spider-dragline free fall in a quiescent
air, Fig. 3 shows the vertical velocity dy=dt of the bottom point of the dragline (the
location of the point mass) vs. time. Figure 3a compares the four simulations in
which the masses per unit length are varied. For M D 2 � 10�6 kg/m (Fig. 3b),
the system falls slowly and continues to accelerate during the entire length of
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Fig. 2 Vorticity (s�1) of the flow generated by the spider-dragline system during free fall in a
quiescent fluid with the spider’s mass per unit length set to M D 2 � 10�6, 2 � 10�5, 4 � 10�5,
and 2�10�4 kg/m, respectively. The other parameters are held constant for this set of simulations:
string length ` D 0:1 m, beam bending stiffness �b D 5 � 10�15 N�m, spring stiffness coefficient
�s D 20 N/m, and initial position of the middle point .x0; y0/ D .0; 0:15/. Vorticity plots in
this paper are generated by VisIt [7]. (a) M D 2 � 10�6 kg/m. (b) M D 2 � 10�5 kg/m.
(c) M D 4 � 10�5 kg/m. (d) M D 2 � 10�4 kg/m
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Fig. 3 Vertical velocity (m/s) of the bottom point of the dragline where the spider mass is located.
Results are shown for (a) the comparison for spiders with masses per unit length of M D 2�10�6,
2�10�5, 4�10�5, and 2�10�4 kg/m, and (b) longer period for spiders with M D 2�10�6 kg/m.
Except for M D 2 � 10�6 kg/m, the curves end when the spider-dragline reaches the ground

the simulation (t � 8 s). For the other three masses, vortices develop behind the
dragline, the terminal velocities are quickly reached, and the spiders reach the
ground before t D 3 s. After the spider approaches the ground, the vertical velocity
of the dragline is almost zero, except when it waves back and forth horizontally.

Since the dragline velocity sets the effective Re of the system, we report the
average terminal velocities (or settling speeds) for the different cases as illustrated
in Figs. 4 and 5. The average settling speed is computed as the average speed of
the middle of the dragline before the spider-dragline system reaches the ground.
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Fig. 4 The average settling velocity (m/s) vs. the spider mass per unit length (kg/m) with the
masses set to M D 2 � 10�6 � 8 � 10�4 kg/m. The spider-dragline system free-falls in the
quiescent air with the dragline length fixed at ` D 0:1 m, spring stiffness coefficient set to �s D
20 N/m, bending modulus fixed at �b D 5 � 10�15 N�m, and initial position of the middle point set
to .x0; y0/ D .0; 0:15/

Figure 4 shows the average settling speed for different masses per unit length with
a fixed dragline length ` D 0:1 m. From these results, we see that settling velocity
monotonically increases as the mass of the spider increases. Figure 5 shows the
average settling speed for different dragline lengths with a fixed spider mass per
unit length of M D 2 � 10�4 kg/m. The shorter the dragline, the larger the average
settling velocity of the spider-dragline. With a linear least square fit, the relation
between the settling velocity vs. the dragline length is dy

dt D 0:682 � 1:536`. The
settling velocity as a function of the spider mass is nonlinear. Using a power fit, we
find that dy

dt D 34:5
p

m � 2 � 10�6.
Recall that in Humphrey’s model [15], the dragline is rigid. In the study by

Reynolds el al. [22, 23], the silk dragline is described as a line of springs joined
at nodes. Those springs themselves are stretchable. At the nodes, the dragline can
freely bend in any direction. To more accurately model the dragline, we introduced
resistance to bending that is proportional to the bending stiffness modulus, �b, as
given in Eq. (7). Figure 6 shows the horizontal drift that results from only changing
the bending modulus �b. We observe that there is no pattern between the direction
and magnitude of the horizontal shift and the bending moduli. The direction of the
shift depends upon the side on which the first vortex separates from the dragline,
highlighting the complicated interaction of the elastic dragline and the fluid.

For all subsequent simulations in Sects. 3.2–3.3, we keep the dragline length
fixed at ` D 0:1 m, the bending stiffness set to �b D 5 � 10�15 N�m, and the spring
stiffness coefficient set to �s D 20 N/m. To directly compare the results between
different scenarios, we set all other physical parameters to the values used in Fig. 2.
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Fig. 5 The average settling velocity vs. the dragline length ` (m) varied from 0:075 � 0:2 with
the spider mass per unit length set to M D 2 � 10�4 kg/m. The spider-dragline free-falls in the
quiescent air with other parameters fixed to the same values as shown in Fig. 4

Fig. 6 Horizontal shift x (m)
as a function of the beam
bending stiffness modulus �b

(N�m) when the
spider-dragline free-falls in
quiescent fluid. Spider mass
M D 2 � 10�4 kg/m, dragline
length ` D 0:1 m, and spring
stiffness coefficient
�s D 20 N/m
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3.2 Free Fall with Background Flows

As spider ballooning is greatly influenced by local meteorological conditions, we
simulate spider free fall with two different types of background flows. The first is a
uniform background wind and the second is a cavity flow driven by a horizontal
velocity at the top of the domain. Note that cavity flow is used to approximate
the behavior of a spider ballooning in an eddy. Recall from the free fall results
in quiescent air, a spider with a shorter dragline falls faster. In this section, we keep
the dragline fixed at ` D 0:1 m. Extrapolating from the study in quiescent air, we
can predict that spiders with longer draglines in background flow will also fall more
slowly and stay suspended in air for longer periods of time.
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Fig. 7 Vorticity generated by the spider-dragline system free-falling in a uniform background
wind with U D V D 0:008 m/s, where the prescribed boundary conditions are set to u.x; t/ D
ŒU; V�T . The mass per unit length of the spider is M D 2�10�6 kg/m. (a) t D 1:25 s. (b) t D 3:25 s

3.2.1 Uniform Background Flows

The vorticity fields in Fig. 7 show the case when the spider-dragline system free-falls
in a 45ı uniform wind with a constant velocity ŒU; V� D Œ0:008; 0:008�T m/s, where
the boundary condition for the simulation was set to u.x; t/ D ŒU; V�T . The mass
per unit length of the spider was set to M D 2 � 10�6 kg/m. Compared to falling
in quiescent air, these vorticity plots show slight asymmetry due to the background
wind. The vortex developed on the left (upwind direction) side of the dragline has
a larger area than on the left side of the dragline as Fig. 7a, but the bottom of
the dragline is continually deforming as vorticity grows near the curved tip (seen
Fig. 8b). For this set of parameters, the spider-dragline mostly moves with the air.

The profiles in Fig. 8 show the positions of the dragline when the spider-dragline
system free-falls in the background winds, which are in the same direction (45ı)
but with different strengths. The time increment dt between each dragline is 0.25.
The velocities of the uniform wind are ŒU; V�T D Œ0:01; 0:01�T , Œ0:008; 0:008�T , and
Œ0:005; 0:005�T m/s, respectively. Note that for these simulations, the spider-dragline
system has a spider mass per unit length set to M D 2�10�6 kg/m, a dragline length
fixed at ` D 0:1 m, beam bending stiffness constant set to �b D 5 � 10�15 N�m,
and spring stiffness coefficient set to �s D 20 N/m. The initial position of the
dragline is the dotted line in the figures. With a stronger background wind, advection
dominates. The spider-dragline system goes with the flow with little deformation.
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Fig. 8 Positions of the dragline at different snapshots in time with the time increment dt D 0:25 s
between each dragline. The spider-dragline falls in the background wind .U; V/ with different
strengths. The black dotted line is the initial position. (a) U D V D 0:005 m/s, (b) U D V D
0:008 m/s, and (c) U D V D 0:01 m/s. The spider mass per unit length is set to M D 2�10�6 kg/m

In particular, we observe no entanglement as was reported in Reynolds et al. [22].
Compared to the wind speeds observed for tiptoeing behavior, for example, 1.7–
2.6 m/s for Pardose purbckenisis [24], the background wind in our study is much
weaker. For stronger winds, the spider-dragline system would advect out of the
computational domain in a very short period with a similar profile as Fig. 8c. When
the background wind is weaker, small deformations appear at the tip of the dragline
where the spider is attached, likely due to shearing and the formation of vorticity.
Note that the bending modulus is very small relative to the strength of the wind, and
the dragline behaves as an extremely flexible line.

Changing the angle of the wind relative to the horizontal and keeping its
magnitude constant, we demonstrate the sequence positions of the dragline in Fig. 9.
The time increment between each dragline is the same as in Fig. 8, i.e., dt D 0:25 s.
The spider mass per unit length is set to M D 2 � 10�6 kg/m, and the initial position
of the middle point is fixed at .x0; y0/ D .�0:2; �0:15/. The direction of the wind
has a significant effect on the trajectory of the ballooning spider. The horizontal
component determines the distance it travels along the landscape, and the vertical
component combined with the mass of the spider determines whether the spider will
land or fly up. With a vertical wind (Fig. 9d), horizontal movement is negligible.
Figure 9a presents the situation in which the spider-dragline systems free-fall in a
weak horizontal breeze.
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Fig. 9 Profiles of draglines in wind with fixed magnitudes of velocity but different directions:
(a) horizontal wind, (b) 30ı, (c) 60ı, and (d) vertical wind. The black dotted line indicates the
initial position. For the vertical wind case (d), only the initial and the end positions in that time
period were plotted as there is almost no horizontal movement. Wind strength is fixed at jUj D
0:008

p
2 m/s. Note that Fig. 8c shows a 45ı wind of the same magnitude

Fig. 10 Vorticity (s�1) snapshots of the flow generated by the spider-dragline system with a 45ı

background wind, .U; V/ D .0:2; 0:2/ m/s, at different times. The spider mass M D 4�10�5 kg/m.
(a) t D 0:25 s. (b) t D 0:75 s. (c) t D 1:25 s. (d) t D 2:25 s

With a different spider mass M D 4 � 10�5 kg/m, Figs. 10 and 11 provide more
details for the flow field and the dragline when the spider-dragline system free-falls
in the 45ı uniform wind, .U; V/ D .0:2; 0:2/ m/s. Other parameters are matched
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Fig. 11 Positions of the dragline at different times during the simulation. The time increment dt
between draglines is 0.1 s. The dotted line indicates the initial position. The spider-dragline is
flying from the left to the right with the flow. The spider mass is set to M D 4 � 10�5 kg/m
and the uniform background wind blows 45ı with respect to the horizontal and with .U; V/ D
.0:2; 0:2/ m/s

to those reported in Figs. 7, 8 and 9: the dragline length is set to ` D 0:1 m, the
bending stiffness is set to �b D 5 � 10�15 N�m, the spring stiffness is �s D 20 N/m,
and the initial position of the middle point is given by .x0; y0/ D .�0:2; �0:15/. As
seen in Fig. 2c, the mass per unit length of the spider is sufficient to strongly shear
the fluid, resulting in vortex shedding from the tip of the dragline. The magnitude
of the resulting vorticity is stronger than for the case of a uniform background
wind. Figure 11 shows the profiles of the dragline during the flight. The time
increment dt between draglines is 0.1. The spider-dragline system moves up due to
the background wind and then moves down as the effect of the gravity decelerates
the system and produces negative settling velocities. Deformation of the dragline
initially occurs toward the top of the dragline as vortices are shed. Eventually, the
whole dragline is twisted and later the top of the dragline straightens while the
bottom is curved.

In Fig. 12, the spider’s mass per unit length is set to M D 2 � 10�5 kg/m. Two
snapshots of the vorticity field are shown for free fall in a 45ı background wind
with jUj D 0:2 m/s. Initially the flow relative to the dragline system is smooth,
and eventually vortices develop and are shed from the tip. These vortices induce
deformations in the dragline. After some time, the dragline and spider get entangled.
These dynamics are distinct from the case of free fall in a quiescent fluid.

Figure 13 shows the profiles of the dragline with winds in three different
directions, i.e., 30ı, 45ı, and 60ı. The strength of the wind is fixed at jUj D 0:2 s.
The green line is the initial position for all three cases. The time increment dt
between draglines is 0.15 s. After the spiders are advected about 0.1–0.2 m, the
spider and dragline become entangled, resulting in a stable configuration. It is
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Fig. 12 Snapshots of vorticity (s�1) of the flow during free fall of the spider-dragline with
background wind set to jUj D 0:2 m/s at 45ı from horizontal. The spider’s mass per unit length is
set to M D 2�10�5 kg/m. The dragline-spider system is shown in pink. (a) t D 0:25 s. (b) t D 2 s

possible that this entanglement effectively generates a large surface area that also
acts to generate sufficient drag to keep the spiders afloat. By varying the direction
of the wind, we change the horizontal and vertical velocity components but keep the
same strength of the wind. With a large vertical component (60ı wind, blue profiles
in Fig. 13), the spider-dragline system keeps rising in the air, while its horizontal
shift is decreased compared with the other directions (red and black profiles). In the
intermediate case (45ı shown in red), the spider-dragline system advects beyond
the computational domain. With the smallest vertical component (30ı in Fig. 13),
the spider-dragline system descends and will drop to the ground eventually, unless
the wind direction or speed is changed.

Figure 14 shows the vertical velocity profile for the dragline’s tip, where the
spider is attached, when the spider-dragline free-falls in uniform winds of the same
strength (jUj D 0:2 m/s) but different directions. The spider mass per unit length
was fixed at M D 2 � 10�5 kg/m. Initially, the spider moves with the background
flow. Due to gravity, the spider-dragline system begins to decelerate. The movement
of the spider against the background flow causes shearing, vortex formation, and
eventual oscillations in the vertical velocity. The black curve for the 30ı wind
ends earlier than the other two curves since the spider-dragline system has left the
Œ�0:3; 0:3� � Œ�0:3; 0:3� computational domain.
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Fig. 14 Vertical velocity vs. time of the spider-dragline system in winds of the same magnitude
(jUj D 0:2 m/s) but from different directions

3.2.2 Free Fall in a Cavity Flow

In Sect. 3.2.1, we considered spider ballooning with a uniform background wind.
The relevant meteorological conditions for ballooning are not, however, always as
simple as uniform flow. To explore the spider ballooning in nonuniform flow, we
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simulate the spider-dragline system free fall in a “lid-driven” square cavity flow.
Such flows roughly approximate the conditions of ballooning with an eddy.

The no-slip velocity boundary condition (U D V D 0) was applied on the bottom
and sides of the domain. On the top of the domain, the velocity was set to U ¤ 0

and V D 0. This models a moving lid in a box, which forms an eddy. To avoid the
discontinuity for the initial condition, we set the velocity at the top boundary of the
domain to a hyperbolic tangent function given by U D 3 tanh.100t/ m/s. With this
boundary condition, results for the two different spider masses per unit length are
considered, M D 2 � 10�5 kg/m and 4 � 10�5 kg/m.

Figure 15 shows vorticity snapshots of the spider-dragline system in a cavity
flow. The time values for these vorticity plots are t = 0.6, 0.65, 1, 1.5, 2.2, 2.5, 3,
3.5, and 4 s, respectively. The flow velocity in the domain is initially set to zero. The

Fig. 15 Vorticity (s�1) snapshots of the spider-dragline system in a cavity flow with background
velocity U D 3 tanh.100t/ m/s at the top of the domain and the spider mass per unit length is set
to M D 2 � 10�5 kg/m. (a) t D 0:6 s. (b) t D 0:65 s. (c) t D 1 s. (d) t D 1:5 s. (e) t D 2:2 s. (f)
t D 2:5 s. (g) t D 3 s. (h) t D 3:5 s. (i) t D 4 s
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Fig. 16 Dragline vs. time in the cavity flow U D 3 tanh.100t/ m/s. The colormap is of the dragline
changes from red to blue during the time. (a) The spider mass per unit length is M D 2�10�5 kg/m
and the time increment dt between draglines is 0.1 s; (b) the spider mass per unit length is M D
4 � 10�5 kg/m and the time increment dt is 0.25 s

spider begins to fall as the flow develops. Notice that vortices develop in the upper
right corner of the domain due to the velocity at the top. As the cavity flow develops,
the spider-dragline system interacts with these vortices in complicated ways.

Figure 16 shows temporal snapshots of the dragline for spiders with masses per
unit length of M D 2 � 10�5 kg/m and M D 4 � 10�5 kg/m. The initial positions
are the same for both simulations. The time increment dt between draglines is 0.1 s
for Fig. 16a; while dt D 0:25 s for Fig. 16b. More frames are plotted to show the
dynamics in Fig. 16a. The lighter spider, Fig. 16a, settles slowly and eventually
interacts with the vortices developed in the cavity flow. During this interaction,
the spider-dragline system becomes entangled. For the heavier spider with mass
per length set to M D 4 � 10�5 kg/m, the situation is simple: The spider settles
before the cavity flow develops. Note that more frames are shown in the plot for
M D 2 � 10�5 kg/m than for M D 4 � 10�5 kg/m in Fig. 16b since the snapshots
end when the spider hits the ground.

Figure 17 shows the vertical velocity of the bottom point of the dragline vs. time,
which corresponds to the dragline profiles shown in Fig. 16. The heavy spider with
M D 4�10�5 kg/m, shown as the blue curve, has a large downward vertical velocity
until it hits the ground around t D 2 s. Recall that it falls to the ground before the
cavity flow develops, and no upward motion is observed. For the lighter spider with
mass per unit length set to M D 2 � 10�5 kg/m, the vertical velocity oscillates
from positive to negative. Positive velocity can be attributed to the interaction of the
spider-dragline with the background vortices due to cavity flow.
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Fig. 17 Vertical velocity (m/s) of the end of the dragline attached to the spider vs. time (s) for
free fall in the cavity flow. Spiders with masses per unit length of M D 2 � 10�5 kg/m and
M D 4 � 10�5 kg/m are shown. (a) t D 0:3 s. (b) t D 0:6 s (before release). (c) t D 1:04 s
(after release). (d) t D 1:2 s

By comparing the dragline dynamics with different background winds, we have
found that the details of the air movement are important for determining the amount
of time the spider spends in the air and the distances traveled. Not only the strength
but also the direction and local dynamics of the wind are critical. However, when a
spider initiates the climb to a tiptoe position, what are the important signals available
to control the subsequent takeoff? To explore this question, we simulate the spider-
dragline tethered in the flow to simulate tiptoeing. We then release the spider to
examine the dynamics of takeoff.

3.3 Dynamics of Takeoff

Herein, we identify the mechanical factors of takeoff associated with spider bal-
looning by simulating the spider-dragline system tethered in the flow and released.
Beside the flow field and the dynamics of the dragline, the force acting on the tether
is analyzed. Note that the spider mass per unit length is fixed at M D 2 � 10�5 kg/m
for the subsequent simulations.
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Fig. 18 Vorticity (s�1) snapshots showing the dynamics of a tethered spider-dragline that is
released in a 45ı wind with strength jUj D 1 m/s. The spider is released at t D 1 s. Here,
M D 2 � 10�5 kg/m. The pink curve is the dragline

3.3.1 Takeoff in Uniform Winds

Four snapshots in time of the vorticity of the flow are shown in Fig. 18. At the
earliest time, t D 0:3 s (in Fig. 18a), the dragline gradually tilts and aligns with
the background wind profile. Subsequently, flapping and shedding of alternately
spinning vortices begins as shown in Fig. 18b at t = 0.6 s. Once release occurs
(as shown in Fig. 18c-d at t D 1.04–1.2 s), the spider and dragline entangle and
move with the background wind. More deformations are created by the vortex in
the surrounding air as seen in Fig. 18d at t D 1.2 s.

Figure 19 shows the force per unit length (N/m) acting on the spider when it is
tethered (t < 1) with different wind directions. The strength of the wind is fixed at
jUj D 1 m/s. As the dragline is massless in our model, the comparison confirmed
that the tether force is of a similar magnitude. At the beginning of simulation, the
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Fig. 19 Force per unit length (N/m) acting on the tether vs. time (s) in a uniform wind moving in
two directions (45ı and 60ı)

forces per unit length increase as the draglines align with the uniform background
and are slightly stretched. Around t D 0:15 � 0:2 s, vortex shedding begins and the
forces per unit length begin to oscillate. This is interesting since laboratory studies
show that the length of time spent attempting to takeoff is a factor for whether or
not to balloon [35]. This may be correlated to the alignment of the dragline with the
wind and the dynamical forces experienced by the spider.

In order to visualize the spider-dragline system in the flow, Fig. 20 shows
successive positions of the dragline at selective time points representative of the
typical stages of tethering, release, and free flight. The blue line shows the dragline
in a uniform wind that is directed 45ı from the horizontal, and the red lines show the
draglines in a wind directed 60ı from the horizontal. The green line shows the initial
position for the spider-dragline system. Dashed or dotted lines show the profiles of
the dragline while the spider is tethered at position .�0:75; �0:75/ and for t � 1 s.
During the tether (t � 1), the time increment between draglines is dt D 0:15 s for
both background winds. After the release (t > 1 s), the draglines are plotted at t D
2.25, 2.8, 2.9, 3, 3.1, 3.2, and 3.3 s in the 45ı wind, and t D 2.15, 2.85, 3.05, 3.2,
and 3.35 s in the 60ı wind. These selective stages demonstrate the dynamics of the
spider-dragline but the draglines are not overlapped for visualization purpose.
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Fig. 20 Snapshots of the dragline at different instances in time for a 45ı and a 60ı background
wind. The spider is released at t D 1 s. For both cases, the mass per unit length of the spider is set
to M D 2 � 10�5 kg/m. The green line is the initial position. During the tether (t � 1), the time
increment between draglines is dt D 0:15 s for both background winds. After the release (t > 1 s),
the draglines are plotted at t D 2:25, 2.8, 2.9, 3, 3.1, 3.2, and 3.3 s in the 45ı wind, and t D 2:15,
2.85, 3.05, 3.2, and 3.35 s in the 60ı wind

3.3.2 Takeoff in a Cavity Flow

To further study the dynamics of takeoff, we also simulated the spider-dragline
in nonuniform wind, i.e., cavity flow. The setup for cavity flow was the same
as performed in Sect. 3.2.2: the flow starts at rest; the horizontal velocity on
the top of the domain is set to U D 3 tanh.100t/ m/s and the velocities on
the other three boundaries are all set to zero; and eddies are formed within the
computational domain. For the spider-dragline system, the dragline was initially
positioned vertically above the spider. At the beginning of the simulation, the spider
was tethered at the center of the domain and was then released in the flow at t = 2 s.
The spider mass per unit length in all cases was set to M D 2 � 10�5 kg/m.

Figures 21 and 22 show eight representative snapshots of the vorticity field with
the dragline colored in pink. Figure 21 shows four snapshots of the vorticity field
during the tether (t � 2 s). Figure 22 shows four snapshots after release (t > 2 s).
While the spider-dragline system is tethered, the dragline waves around and interacts
with the flow. The dragline sometime breaks up the vortices developed due to the
background cavity flow, and the dragline itself sheds vortices in an alternate pattern,
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Fig. 21 Vorticity (s�1) snapshots showing the spider-dragline system in the cavity flow. The
spider-dragline is tethered for t � 2 s and released at t D 2 s. The dragline is shown in pink.
(a) t D 0:8 s. (b) t D 1:2 s. (c) t D 1:6 s. (d) t D 2 s

as seen in Fig. 21d. Once the spider-dragline system is released, it free-falls and is
advected in the cavity flow, which is dominated by the large eddies moving around
the domain.

Figures 23 and 24 show the profiles of dragline during tether and release,
respectively. Initially, the dragline is positioned vertically as shown by the green
straight line near the center of the domain. From the profiles of the dragline at
different instances in time during the tether (Fig. 23), we see that the dragline is
swirled by the cavity flow due to the nonzero velocity imposed on the top boundary
of the domain. Once the spider-dragline is released from the tether as shown in
Fig. 24, it mostly moves with the cavity flow though there are some effects due to
gravity. For a longer time simulation, we have observed that the spider continues to
be advected round and round the large eddy produced by the cavity flow.

Figure 25 shows the force per unit length acting on tether during t � 2 s. When
t < 1 s, the force is negligible. The massive spider is fixed and the massless dragline
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Fig. 22 Vorticity (s�1) at various times in the cavity flow (continued). The spider-dragline is
tethered for t � 2 s and released at t D 2 s. (a) t D 2:4 s. (b) t D 2:8 s. (c) t D 3:2 s. (d)
t D 4 s

does not move in a nearly “quiescent” fluid. The fluid motion produced by the
nonzero velocity imposed at the top of the domain generates vortices as shown in
Fig. 21a. After t > 1 s, the interaction between the dragline and the flow is intense.
Near t D 1:2 s, a vortex with positive vorticity directly reaches the spider. The force
is dramatically increased at that time. The instability of the flow field causes large
variations in the tether force. When spiders in the tiptoe position can sense this flow
force acting on them, they might utilize the force as a signal for further unsteady
fluid motion and eventually takeoff given some threshold.

4 Conclusions

By numerically solving the fully coupled fluid–structure interaction problem of a
flexible dragline in a viscous fluid, we have revealed new phenomena that cannot
be captured by simpler models that neglect how the presence of the dragline affects
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Fig. 23 Temporal snapshots showing the position of the spider-dragline while it is tethered. The
spider is tethered for t � 2 s. The green line displays the initial position of the dragline, and
the dragline deforms as the cavity flow develops. The time increment is dt D 0:1 s between two
successive draglines

Fig. 24 Temporal snapshots
showing the position of the
dragline after release
(t > 2 s). The rainbow colors
correspond to advancement in
time, with the black line
showing the position at the
end of the simulation. The
time increment is dt D 0:1 s
as Fig. 23
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the motion of the air. Our results show that for Re > 103, strong vortex shedding
occurs at the end of the dragline, resulting in oscillations of the dragline itself and
some horizontal movement of the spider as it falls through a quiescent fluid. Strong
vortex shedding is also present before takeoff, which may generate higher transient
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Fig. 25 Force per unit length (N/m) acting on the point where the spider is tethered vs. time (s).
The spider is released at t D 2 s. The large forces beginning after t D 1 s are due to vortices
produced by the cavity flow interacting with the dragline

forces to lift the spider into the air. It is also possible that the spiders can sense
the vortex shedding frequency and use it to inform whether or not to take off since
shedding frequency will vary directly with wind speed. This information could also
be used to determine how much longer to make the dragline since the dynamics of
the oscillations will also depend upon dragline length.

Our results show that for the parameters considered, the settling velocity varies
linearly with the length of the dragline and nonlinearly with the mass of the spider.
At the settling velocity, the gravitational force, Mg, balances the drag. Drag varies
linearly with length and linearly with velocity for Re << 1 and quadratically for
Re >> 1. For the set of parameters considered, the observed linear relationship
suggests a lower Re scaling between force and velocity. When varying the mass of
the spider and keeping the length of the dragline constant, a nonlinear relationship
is observed between force and velocity since the gravitational force and drag are
balanced. This suggests that the larger masses and resulting higher settling velocities
push the system to a higher Re scaling.

Direct comparison of settling velocities resulting from the two-dimensional
simulations and those of actual three-dimensional spiders is not straightforward. In
a two-dimensional simulation, we are essentially modeling an infinitely long sheet
which will have higher drag than a one-dimensional line. The mass of the spider
must be scaled accordingly, but the relationship between the drag produced by a
one-dimensional string and a two-dimensional sheet across intermediate Reynolds
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numbers in unsteady flow is not obvious. As a crude estimate, we divide the mass of
an actual spider by the diameter of the spider to obtain a mass per unit length. The
resulting settling velocities are within the range of those observed for actual spiders
[30, 31].

Interestingly, in many simulations, the dragline bends at the tip where the spider
is attached. This is perhaps not surprising given the strong vorticity that forms at this
leading tip and the low resistance to bending of the dragline. It is not clear if such
strong bending would occur in three dimensions or in the presence of electrostatic
forces. Similarly, the entire dragline becomes “entangled” in cases where the flow
is unsteady. This is particularly true for the movement of the spider within a cavity
and also within a crosswind. The tangling of the dragline was also predicted by
Reynolds et al. [23]. It is not clear if this phenomenon occurs during actual spider
ballooning.

Complex transport dynamics are observed in updrafts and eddies. When eddies
are present in the background flow, the dragline may quickly become entangled.
It is also possible in these cases for the spider to swirl through the air and remain
suspended in the air column as in Fig. 24. In uniform background flows, strong
vortex shedding from the tip of the dragline can result in tangling of the dragline
after takeoff. Depending upon the entanglement pattern, the dragline may effectively
act as a bluff body with finite width, potentially increasing the drag coefficient and
lowering the settling velocity.

A natural next step for this work is to move into three dimensions. As mentioned
above, the two-dimensional simulations essentially represent a sheet that is infinitely
long in the direction moving into and out of the two-dimensional plane. It is likely
that the interactions of a sheet with a fluid and its dynamics would be rather different
from a one-dimensional dragline. This extension would also allow us to consider
multiple draglines that are used by some species of spider for ballooning.
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On the Dynamic Suction Pumping of Blood Cells
in Tubular Hearts

Nicholas A. Battista, Andrea N. Lane, and Laura A. Miller

Abstract Around the third week after gestation in embryonic development, the
human heart consists only of a valveless tube, unlike a fully developed adult heart,
which is multi-chambered. At this stage in development, the heart valves have not
formed and so net flow of blood through the heart must be driven by a different
mechanism. It is hypothesized that there are two possible mechanisms that drive
blood flow at this stage—Liebau pumping (dynamic suction pumping (DSP) or
valveless pumping) and peristaltic pumping. We implement the immersed boundary
method (IBM) with adaptive mesh refinement (IBAMR) to numerically study the
effect of hematocrit on the circulation around a valveless tube. Both peristalsis
and DSP are considered. In the case of DSP, the heart and circulatory system
is simplified as a flexible tube attached to a relatively rigid racetrack. For some
Womersley number (Wo) regimes, there is significant net flow around the racetrack.
We find that the addition of flexible blood cells does not significantly affect flow
rates within the tube for Wo � 10, except in the case for Wo 	 1:5 where we
see a decrease in average flow with increasing volume fraction. On the other hand,
peristalsis consistently drives blood around the racetrack for all Wo and for all
hematocrit considered.

1 Introduction

The Liebau pump (dynamic suction pump), first described in 1954 [37], was studied
as a novel way to pump water. It has not been until the past 20 years that scientists
started looking at the pump as a valveless pumping mechanism in many biological
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systems and biomedical applications, including microelectromechanical (MEM)
systems and micro-fluidic devices. Direct applications of such pumps include tissue
engineering, implantable microelectrodes, and drug delivery [10, 29, 30, 37].

With extensive industrial applications, dynamic suction pumping (DSP) has
proven to be a suitable means of transport for fluids and other materials in a valveless
system, for scales of Wo > 1 [6]. DSP can be most simply described by an isolated
region of actuation, located asymmetrically along a flexible tube with stiffer ends.
Flexibility of the tube is required to allow passive elastic traveling waves, which
augment bulk transport throughout the system. The rigid ends of the tube cause
reflections of the elastic waves, which when coupled with an asymmetric actuation
point, can promote unidirectional flow. DSP is illustrated in Fig. 1.

Due to a coupling between the system’s geometry, material properties of the tube
wall, and pumping mechanics, there is a complex, nonlinear relationship between
volumetric flow rate and pumping frequency [6, 9, 20]. Analytic models of DSP
have been developed to address this relationship [2, 4, 9, 35, 43, 49]. Most models
use simplifications such as the inviscid assumption, long wave approximation,
small contraction amplitude, and one-dimensional flow. Furthermore, no analytical
model has described flow reversals, which can occur with changes in the pumping
frequency. Relaxing many of these assumptions, physical experiments have been
performed to better understand DSP [9, 19, 20, 37], as well as in silico investigations
[3, 5, 6, 24, 25]. Most of these experimental and computational studies focus on the
“high” Wo regime (Wo 
 1).

rigid elastic section

a

b

c

d

e

f

contraction

bidirectional wave

ift

rigid
reflection at ift

reflection at oft

reflected wave

oft

Fig. 1 Schematic diagram illustrating dynamic suction pumping (DSP) [50]. (a) The flexible tube
is at rest. (b) Active contraction of the tube in a noncentral location along the tube. (c) Contraction
induces an elastic passive bidirectional wave to propagate along the tube. (d) Wave reflects off
rigid portion of the tube on side nearest to contraction point. (e) The reflected wave travels down
the tube. (f) The waves reflect off the rigid section at the far side of the tube. Notice that the
reflected wave amplitude is smaller than the reflected wave off the other end
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The vertebrate embryonic heart is a valveless tube, similar to those in various
invertebrates, such as urochordates and cephalochordates [27, 47]. Historically, the
pumping mechanism in these hearts has been described as peristalsis [27, 50]. More
recently, DSP has been proposed as a novel cardiac pumping mechanism for the
vertebrate embryonic heart by Kenner et al. in [26] and was later declared the main
pumping mechanism in vertebrate embryonic hearts by Fourhar et al. in [14]. Debate
over which is the actual pumping mechanism of the embryonic heart continues
today, with the possibility that the mechanism may vary between species or may
be some hybrid of both mechanisms [34, 53].

Although the size of the blood cells during the tubular heart stage is on the same
order of magnitude as the tube itself, previous work with numerical, analytical,
and physical have not considered their presence. Given their size (d 	 4 �m) and
volume fraction (hematocrit) that ranges from 0% to 40%, it is likely that the blood
cells are having some effect on the flow. When the first coordinated myocardial
contractions begin to drive blood flow, the embryonic blood lacks blood cells.
However, as the heart tube stage progresses, the hematocrit (the volume fraction
of blood cells) becomes present, as seen in Fig. 2, and increases linearly during
development [1]. Hematocrit may play a role in the distribution of forces along the
endothelial lining that contribute to the shaping and growth of the heart.

The purpose of this paper is to explore the performance of DSP and peristalsis
when blood cells are added to the flow. In particular, a central goal is to quantify
the relationship between the magnitude of flow and the hematocrit in tubular hearts
over a range of Womersley numbers, Wo. While the vertebrate tubular heart is on the
order of tens of microns (Wo < 1) [6], the tubular hearts of many invertebrates span
from tens to hundreds of microns (Wo < 1), e.g., sea squirts, to salps hearts on the
order of millimeters (Wo > 1) [27]. These ranges of Wo naturally lend themselves to
numerical study via the immersed boundary method (IBM). The particular geometry
for the computational models will be based upon experimental data from zebrafish,
Danio rerio, embryonic tubular hearts.

Fig. 2 The embryonic heart
tube of a zebrafish 30 hpf
courtesy of [32]. Spherical
blood cells are seen within
the tubular heart. The heart
tube is roughly 5 blood cells
thick in diameter
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2 The Immersed Boundary Method

The IBM is a numerical method developed to solve viscous incompressible fluid
dynamic problems with an immersed elastic structure [41, 45]. Since its develop-
ment in the 1970s by Charles Peskin [44], it has been applied to a wide spectrum of
biomathematical models, ranging from blood flow through the heart [44, 45], aquatic
locomotion [21], and insect flight [23, 38, 39] to plant biomechanics [40, 55].

The power of this method is that it can be used to describe flow around
complicated time-dependent geometries using a regular Cartesian discretization of
the fluid domain. The elastic fibers describing the structure are discretized on a
moving curvilinear mesh defined in the Lagrangian frame. The fluid and elastic
fibers constitute a coupled system, in which the structure moves at the local fluid
velocity and the structure applies a singular force of delta-layered thickness to the
fluid.

We used an adaptive and parallelized version of the immersed boundary method,
immersed boundary method with adaptive mesh refinement (IBAMR) [16, 18].
IBAMR is a C++ framework that provides discretization and solver infrastructure
for partial differential equations on block-structured locally refined Eulerian grids
[7, 8] and on Lagrangian (structural) meshes. Adaptive mesh refinement (AMR)
allows for better resolved dynamics between the fibers and the fluid by increasing
grid resolution in areas of the domain that contain an immersed structure or where
the vorticity exceeds some threshold. AMR also improves computational efficiency
by decreasing grid resolution in areas of the domain that do not require a high level
of resolution. The AMR does not occur in every time-step, but rather every n time-
steps for efficiency, where n is given as input for the code. IBAMR also includes
infrastructure for coupling Eulerian and Lagrangian representations of the fluid and
structure, respectively.

The Eulerian grid on which the Navier–Stokes equations were solved was locally
refined near the immersed boundaries and regions of vorticity with a threshold of
j!j > 0:20. This Cartesian grid was organized as a hierarchy of four nested grid
levels, and the finest grid was assigned a spatial step size of dx D D=1024, where D
is the length of the domain. The ratio of the spatial step size on each grid relative to
the next coarsest grid was 1:4. The temporal resolution was varied to ensure stability.
Each Lagrangian point of the immersed structure was chosen to be D

2048
apart, that

is, twice the resolution of the finest fluid grid.

2.1 Equations of the Immersed Boundary Method

Assume that the immersed boundary is described on a curvilinear, Lagrangian mesh,
S, that is free to move. The fluid is described on a fixed Cartesian, Eulerian grid,
˝, that has periodic boundary conditions. Given the size of the domain and the
localization of the flow to the tube, the boundary conditions do not significantly
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affect the fluid motion. The governing equations for the fluid, the Navier–Stokes
equations, are given by:

�

�
@u
@t

.x; t/ C u.x; t/ � ru.x; t/

�

D �rp.x; t/ C ��u.x; t/ C f.x; t/ (1)

r � u.x; t/ D 0: (2)

Equations (1) and (2) are the Navier–Stokes equations written in Eulerian form,
where Eq. (1) is the conservation of momentum for a fluid and Eq. (2) is the
conservation of mass, i.e., incompressibility condition. The two constant parameters
in these equations are the fluid density, �, and the dynamic viscosity of the fluid,
�. The fluid velocity, u.x; t/, pressure, p.x; t/, and body force, f.x; t/, are unknown
spatial time-dependent functions of the Eulerian coordinate, x, and time, t. The body
force describes the transfer of momentum onto the fluid due to the restoring forces
arising from deformations of the elastic structure. It is this term, f.x; t/, that is unique
to the particular model being studied.

The material properties of the structure may be modeled to resist to bending,
stretching, and displacement from a tethered position. Other forces that have
been modeled include the action of virtual muscles, electrostatic (contact) forces,
molecular bonds, and other external forces [13, 36, 45, 52]. The immersed structure
may deform due to bending forces and/or stretching and compression forces. In this
paper, elastic forces are calculated as beams that may undergo large deformations
and Hookean springs, i.e.,

Fbeam D �kbeam
@4

@s4



X.s; t/ � XB.s/

�
(3)

Fspring D �kspring

�

1 � RL

jjXS � XMjj
�

� .XM � XS/ ; (4)

Equation (3) is the beam equation, which describes forces arising from bending of
the elastic structure. Equation (4) describes the force generated from stretching and
compression of the structure. The parameters, kbeam and kspring, are the stiffness
coefficients of the beam and spring, respectively, and RL is the resting length of
the Hookean spring. The variables XM and XS give the positions in Cartesian
coordinates of the master and slave nodes in the spring formulations, respectively,
XB.s/ describes the deviation from the preferred curvature of the structure. In all
simulations, XB.s/ D 0 along the straight portion of the tube.

A target point formulation can be used to tether the structure or subset thereof
in place, holding the Lagrangian mesh in a preferred position that may be time
dependent. An immersed boundary point with position X.s; t/ that is tethered to a
target point with position Y.s; t/ undergoes a penalty force that is proportional to
the displacement between them. The force that results is given by the equation for a
linear spring with zero resting length,

Ftarget D ��target .X.s; t/ � Y.s; t// ; (5)



216 N.A. Battista et al.

where ktarget is the stiffness coefficient of the target point springs. ktarget can be varied
to control the deviation allowed between the actual location of the boundary and its
preferred position. The total deformation force that will be applied to the fluid is a
sum of the above forces,

F.s; t/ D Fspring C Fbeam C Ftarget (6)

Once the total force from Eq. (6) has been calculated, it needs to be spread from
the Lagrangian frame to the Eulerian grid. This is achieved through an integral
transform with a delta function kernel,

f.x; t/ D
Z

F.s; t/ı.x � X.s; t//ds: (7)

Similarly, to interpolate the local fluid velocity onto the Lagrangian mesh, the same
delta function transform is used,

U.s; t/ D @X
@t

.s; t/ D
Z

u.x; t/ı.x � X.s; t//dx: (8)

Equations (7) and (8) describe the coupling between the immersed boundary and
the fluid, e.g., the communication between the Lagrangian framework and Eulerian
framework. The delta functions in these equations make up the heart of the IBM,
as they are used to spread and interpolate dynamic quantities between the fluid grid
and elastic structure, e.g., forces and velocity. The quantity X.s; t/ gives the position
in Cartesian coordinates of the elastic structure at local material point, s, and time
t. In approximating these integral transforms, a discretized and regularized delta
function, ıh.x/ [45], is used,

ıh.x/ D 1

h2
�

 x

h

�
�

 y

h

�
; (9)

where �.r/ is defined as

�.r/ D
8
<

:

1
4

�
1 C cos

�
�r
2

�
 jrj � 2

0 otherwise:

(10)

2.2 Numerical Algorithm

As stated above, we impose periodic boundary conditions on the rectangular
domain. To solve Eqs. (1), (2), (7), and (8), we need to update the velocity, pressure,
position of the boundary, and force acting on the boundary at time n C 1 using data
from time n. IBM does this in the following steps [45], with an additional step (4b)
for IBAMR [15, 17]:
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Step 1:
Find the force density, Fn, on the immersed boundary, from the current boundary
configuration, Xn.

Step 2:
Use Eq. (7) to spread this boundary force from the curvilinear mesh to nearby
fluid lattice points.

Step 3:
Solve the Navier–Stokes equations, Eqs. (1) and (2), on the Eulerian domain.
In doing so, we are updating unC1 and pnC1 from un and fn. Note: because of
the periodic boundary conditions on our computational domain, we can easily
use the Fast Fourier Transform (FFT) [11, 46], to solve for these updates at an
accelerated rate.

Step 4:

4a. Update the material positions, XnC1, using the local fluid velocities, UnC1,
using unC1 and Eq. (8).

4b. Refine Eulerian grid in areas of the domain that contain an immersed
structure or where the vorticity exceeds a predetermined threshold, if on a
selected time-step for AMR.

The above steps outline the process used by the IBM to update the positions and
velocities of both the fluid and elastic structure. We note that since we are using
IBAMR additional steps are used for AMR. A more detailed discussion of IBM and
IBAMR is found in [45] and [16], respectively.

2.3 Model Geometry

We numerically model a 2D closed racetrack where the walls of the tube are
modeled as 1D fibers. The closed tube is composed of two straight portions, of equal
length, connected by two half circles, of equal inner and equal outer radii. The tube,
or racetrack, has uniform diameter throughout. The geometry of the racetrack is
given in Fig. 3.

This study goes beyond previous work [5, 6, 25] through the addition of
deformable blood cells, composed of springs connecting adjacent and opposite side
Lagrangian nodes. The blood cells are modeled circular, in agreement with in vivo
imaging illustrating their spherical geometry in embryonic blood [32], rather than
biconcave [12].

All of the mock blood cells in our simulations have the same radii. The diameter
of the blood cells was set to d=5 [31]. The flexible cells were modeled via attaching
springs between adjacent Lagrangian points for each cell, i.e., beams and target
points are not used. The geometry of the heart tube with mock blood cells is
illustrated in Fig. 3 with all parameter values listed in Table 1. It is important to
note that everywhere within our rectangular domain, the fluid has constant density
� and viscosity �, even within our elastic structures.
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(a)

(b)

Flexible

Rigid

Flexible

d

y

x

L

LA

ri

R1 R2

ro

LS Rigid

Fig. 3 (a) The racetrack geometry, which is held rigid except for the bottom of the tube which
is flexible. It also includes flexible blood cells, here illustrating the initial position for a volume
fraction of 15%. (b) The geometrical features of the racetrack

2.3.1 Dynamic Suction Pumping Model

In the DSP model, the straight portion on the bottom of the racetrack geometry is
flexible, e.g., it is composed of beams and springs and is not tethered to target points.
All other sides of the tube are held nearly rigid in a fixed position using target points,
as well as springs and beams. There are also springs attached over a finite actuation
region from the inner to outer boundary in the bottom elastic section of the tube.
These springs are used to actuate the tube, modeling DSP. We model the action of
“muscles” with linear springs, whose resting lengths change in time. These springs
are attached between the inner and outer Lagrangian boundaries of the heart tube.
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Table 1 Geometric parameters used in the numerical experiments

Parameter Value

d 1

R1 D ro 3.75

R2 D ri 2.75

L 7.5

LA 0.9375

LS 0.75

rC 0.1

d is the diameter of the tube, R1 and ro give the outer radius (or distance from the centerline) of the
tube, R2 and ri give the inner radius (or distance from the centerline) of the tube, L is the length of
the flexible section for DSP and contractile wave section for peristalsis, LA is the length of straight
tube before the actuation section for DSP, LS is the size of the actuation section for DSP, and rC is
the radii of a blood cell

Resistance to stretching is included in the tethered portion of the tube and
in the sections with preferred motion to reduce high frequency oscillations in
the boundary. Small bending resistance is added to the simulations to: (1) better
approximate heart tubes that have some resistance to bending, (2) reduce high
frequency oscillations in the tethered portion of the tube, (3) smooth the transition
from the flexible portion of the tube to the tethered portion, e.g., smooth the
connection points, and (4) eliminate any kinks in the elastic section of the
tube.

Rather than attaching these muscles between all points within this region, we
choose a region that is 10% of the length of the flat portion, LS D L=10, which is
also translated at a distance of LA D L=8 along the tube from the beginning of the flat
portion from the left. This model was selected since traditional DSP only assumes
an off-center region of active contraction. The resting lengths of these springs were
changed according to:

RL.s; t/ D d


1 � 8:5

10

ˇ
ˇ
ˇ sin.2:3� t/

ˇ
ˇ
ˇ

�
(11)

2.3.2 Peristalsis Model

A prescribed motion of the actuation region along the bottom straight portion of
the tube is used to drive peristalsis. To permit volume conservation in the closed
racetrack, the top straight section of the racetrack is modeled using springs and
beams and is allowed to expand. The reasons for using both springs and beams,
which allow for stretching and bending, respectively, here are the same as in the
DSP model.
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The rest of the racetrack geometry composed of target points is held nearly rigid,
similarly to Sect. 2.3.1. There are also springs connecting the outer and inner layer
of the top of the tube for additional support. The peristaltic wave of contraction is
prescribed by interpolating between multiple positions as described below.

Phase 1 is defined by the position of the relaxed, straight tube. Phase 2 is defined
as a fully pinched tube at the initial position of contraction. Phase 3 is defined
as a full pinched tube at the end of the peristaltic wave. The initial contraction
(pinching) of the tube was prescribed by interpolating between Phase 1 and Phase 2.
Similarly, the contractile release was performed by interpolating back between
Phase 3 and Phase 1. This is illustrated in Fig. 4. The traveling wave of contraction
was performed by translating the pinch along the length of the contractile section of
the tube.

The motion of the actual immersed boundary is driven by changing the position
of the target points, which are tethered to each immersed boundary point along the
racetrack. The times of each phase (contraction, translation, and relaxation) are seen
in Table 2, where T is the period of one complete peristaltic wave. The following
function was used to induce the traveling peristaltic wave between Phases 2 and 3,

Xtarget D
(

˙QA.x � xL.t//2.xR.t/ � x/2 exp � .x�xC.t//2

.0:5w/2 � Ro=i; x 2 ŒxL.t/; xR.t/�

0 elsewhere
;

(12)

Fig. 4 Interpolation phases for the traveling contraction wave along the bottom portion of the
racetrack geometry. From Phase 1 (straight red tube) to Phase 2, the tube gets pinched on the left
side. From Phase 2 to Phase 3, the occlusive pinch travels down the tube at speed c. From Phase 3,
the pinch is released and goes back to the straight tube (in red)
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Table 2 Table of temporal
parameters for the prescribed
peristaltic wave

Parameter Time

T 0:435

T1 0:025 � T

T2 0:95 � T

T3 0:025 � T

T is the nondimensional period. T1 and
T3 gives the nondimensional period for the
initial pinching and release of the tube. T3

gives the nondimensional translation time
of the peristaltic wave

and

xL.t/ D xi
L C c.t � T1/;

xC.t/ D xi
C C c.t � T1/;

xR.t/ D xi
R C c.t � T1/;

c D �2xi
C

T2

;

QA D 850:0;

where xi
L; xi

C; and xi
R are the left-most, center, and right-most points associated with

the first pinch. These points are illustrated in Fig. 4. The parameters c and QA are the
wave speed and amplitude, respectively. ˙QA and Ro=i correspond to the bottom and
the top wall of the tube, respectively.

2.3.3 Determining Biologically Relevant Parameter Values

To determine the lower range of Wo within the heart tube, we take characteristic
values for zebrafish embryonic hearts between 26 and 30 hpf and match our
nondimensionless model parameters accordingly. The characteristic frequency, fzf ,
was measured in vivo, and the characteristic length, Lzf , was taken as the diameter
of the heart tube. The Wo was then calculated as:

Wo D Lzf

s
2� � fzf � �zf

�zf
D 0:15; (13)

where fzf D 2:2 s�1 [33], �zf D 1025 kg/m3 [50], �zf D 0:0015 kg/(m s) [42], and
Lzf D 0:05 mm [6]. The occlusion ratio is assumed to be occ D 0:85 [31]. We

take the characteristic velocity to be Vpump D fzf � occ � Lzf

2
D 0:047 mm/s. The

dimensionless frequency may then be calculated as:

Qf D Lzf

Vpump
� fzf D 2:3: (14)
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For the mathematical model, the parameter values were chosen to keep the
dimensionless frequency fixed at fsim D 2:3, and hence we get the dimensionless
pumping velocity of Vsim D fsim � occ � d

2
D 0:978:

The Wo was varied by changing the dynamic viscosity, �. For the simulations,
the Wosim is calculated using a characteristic length of d, the width of the tube, and
dimensionless density of � D 1000. The simulations were performed for Wosim D
f0:2; 0:4; 0:6; 0:8; 0:9; 1:0; 1:5; 2; : : : ; 9; 10; 15; 20; 30g. Note that the higher end of
these values describes a fully inertial regime which may be outside of what is found
in nature. The stiffness of the target tethering points was chosen to minimize the
deformations of the boundary, i.e., to keep it rigid, and was directly correlated to
Wo. The motivation for the wide range of Wo considered is that we want to compare
parameter values relevant to other types of tubular hearts, such as salps, tunicates,
and insects. We also want to compare our results to the Wo range considered in
most previous DSP studies (typically, Wo > 1). The other mechanical parameters
were chosen to allow deformation and reexpansion of the heart tube on relevant
timescales. Our parameter choices are given in Table 3, where they have been
nondimensionalized, using the following relations for springs (and target points)
and beams, respectively,

Qkspring=target D kspring=target

� � d � V2
sim

(15)

Qkbeam D kbeam

� � V2
sim � d3

: (16)

Note that:

• The top portion of the tube in the peristaltic cases is allowed to be flexible to
conserve volume (e.g., this section expands as the tube compresses). This is not
necessary in the case of DSP because the lower portion of the tube is flexible and
can expand to conserve volume.

• In the case of peristalsis, the entire motion of the boundary is moved with a
preferred motion (with the exception of the top which simply expands to conserve
volume). In this setup, the elastic forces only serve to minimize deviations from
that preferred motion and to reduce high frequency oscillations. As long as the
actual motion is sufficiently close to the preferred motion, the parameters chosen
do not alter the results.

• In the case of DSP, the stretching stiffness of the bottom, untethered portion of
the tube, is a primary factor that influences the average velocity. We selected
this value to give reasonable bulk flow at higher Wo. In future studies, we will
characterize how this stiffness affects average flow.

All of the reported values have been nondimensionalized according to Eq. (15),
(16). The viscosity may be used to change the Wo without affecting the dimen-
sionless stiffnesses. In other words, viscosity can be used to vary the Wo without
significantly effecting the dynamics of the structure. Note that the Wo considered
fall within the range of many biological pumps, see [50].
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Table 3 Table of mechanical parameters used in the computational model

Mechanical parameters Symbol DSP value Peristalsis value

Stretching stiffness of the tube Qkstube 1:3e7 3:3e6

Stretching stiffness of springs across tube Qksbtwn 2:3e3 6:5e2

Stretching stiffness of target points Qktarget 1:3e5 1:3e5

Bending coefficient of the tube Qkbeam 3:3e2 3:3e10

Stretching stiffness of blood cells Qkscell 2:8e5 2:8e5

Note that Qksbtwn gives the stiffness coefficient of the actuating springs in the DSP model, while it
describes the stiffness coefficients of springs connecting the outer and inner layer of the top of the
tube in the peristalsis model. Qkstube is the stretching stiffness between adjacent points along the tube
while Qksbtwn gives the stretching stiffness between opposite points along a cross-section of the tube.
Qktarget is the tethering stiffness of target points, Qkbeam gives the bending stiffness between adjacent
points along the tube, and Qkscell gives the stretching stiffness between points making up the blood
cells

3 Results

In this paper, we present simulations of DSP and peristalsis within a closed racetrack
containing flexible blood cells of varying volume fractions but uniform geometry.
The simulations were run for a range of Womersley number, Wo 2 Œ0:1; 30�, and
hematocrit, VF D f0%; 5%; 10%; 15%; 20%; 25%g. Examples of the locations of
the blood cells and boundaries at different points in time are seen in Fig. 5.

3.1 Dynamic Suction Pumping Results

Figure 5 shows snapshots from simulations of DSP at five different Womersley
numbers, Wo D f0:2; 2:0; 6:0; 10:0; 20:0g, where volume fraction is held constant
at VF D 15%. The images were taken after at 11:5; 22:5; 33:5; and 44:5 heartbeats.
In the cases of Wo D 0:2 thru Wo D 2:0, there is no significant net transport for the
mock blood cells as evidenced by the negligible movement of the blood cells (note
the color coding of blood cells in each quadrant). There is, however, clear transport
when Wo � 6:0. Moreover, in the cases when Wo � 6:0, the blood cells begin to
clump together, rather than move uniformly throughout the tube.

Keeping the volume fraction constant, we compared the spatially averaged
velocity across a cross-section in the center of the top of the tube, for three different
Womersley numbers, Wo 2 f0:2; 2:0; 6:0; 10:0; 20:0g. Note that deformations of
this section of the tube are negligible such that the average velocity is directly
proportional to the volumetric flow rate. Figure 6 illustrates this for the case of
VF D 15%. From the figure, it is evident that the lower Wo case induces less net
flow than the other two higher Wo cases. However, we can also deduce that the
direction of flow is a nonlinear function of Wo. Note that for Wo D 10:0, flow is
moving in the opposite direction to that of the Wo D 20:0 case.
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Fig. 5 A comparison of simulations with different Womersley number, Wo D
f0:2; 2:0; 6:0; 10:0; 20:0g, but same amount of blood cells, VF D 15%. The images were
taken after at 11:5; 22:5; 33:5; and 44:5 heartbeats during the simulations. In the case of Wo D 0:2

and Wo D 2:0, there is no visual transport for the mock blood cells; however, there is clear
transport when Wo � 6:0. Moreover, in the cases when Wo � 6:0, the hematocrit begins to clump
together, rather than move uniformly throughout the tube

This study has considered two orders of magnitude in Wo. Given that Wo scales
like the square root of the Re, note that our study spans four orders of magnitude
in Re. For the range of Wo considered, higher volume fractions result only in flow
in the negative direction. It would be interesting to see if this is the case for all Wo.
Future studies will consider a larger and more detailed range of Wo to better resolve
the changes in flow direction.

Moreover, an example comparison of the spatially averaged velocity vs. time
for three different volume fractions, VF D f5%; 15%; 25%g, for three specific
Womersley numbers, Wo D f0:2; 2:0; 6:0g, is shown in Fig. 7. Figure 7a,b shows
the similarity of the waveforms illustrating little effect of blood cells on bulk flow
patterns, for all three selected Wo. Figure 7c–e gives the spatially averaged velocities
(in diameters/heartbeat) vs. time over the course of the simulation. Time is given in
number of heartbeats. In the Wo D 0:2 case, the average velocities asymptotically
increase until they reach a periodic cycle. It is clear that the maximal flow rates in
both the Wo D 0:2 and Wo D 2:0 cases are multiple orders of magnitude below one
diameter/heartbeat. These are well below the experimentally observed velocity of
�0:9 diameters/heartbeat recorded in zebrafish [14].
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Fig. 6 A comparison of the spatially averaged velocity vs. time over the course of the simulation,
for five cases with uniform hematocrit (VF D 15%), but varying Womersley number, Wo D
f0:2; 2; 6; 10; 20g. The average velocity was spatially computed across a cross-section in the center
of the top of the tube. As Wo increases, the amplitude of oscillations in average velocity also
increases. In the biologically relevant case, Wo D 0:2, there are slight oscillations; however, bulk
net flow is insignificant

Fig. 7 A comparison of the spatially averaged velocity vs. time over the course of the simulation,
for varying hematocrit, VF D f5%; 15%; 25%g, for three different Womersley numbers, Wo D 0:2

(a,c), Wo D 2:0 (d), and Wo D 6:0 (b,e). The average velocity was spatially computed across a
cross-section in the center of the top of the tube. (a,b) illustrate how similar the waveforms are for
varying volume fractions of Wo, 0:2 and 6:0, respectively. (c,d,e) give the average velocities, in
diameters/heartbeat, over the course of the simulation, in heartbeats
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Fig. 8 (a) shows the spatially and temporally averaged velocity for each simulation vs. Womersley
number for a hematocrit range of Œ0%; 25%�. (b) shows the spatially and temporally averaged
magnitude of velocity vs. Wo for a hematocrit range of Œ0%; 25%�

To quantify the effect of blood cells further, spatially and temporally averaged
velocities for various Wo and hematocrits were compared. This is illustrated in
Fig. 8. From Fig. 10a, it is clear that flow rates are a nonlinear function of Wo.
The case with zero hematocrit is in agreement with previous results reported in
[6]. Moreover, the addition of hematocrit does not significantly perturb flow rates
for Wo . 10, as seen in Fig. 10b, except for the case where Wo D 1:5. In the case
of Wo D 1:5, the addition of hematocrit affects flow rates; however, absolute bulk
flow rates are minimal over the range of Wo considered. Furthermore, for Wo & 10,
the addition of hematocrit affects flow rates in a nonlinear fashion.

3.2 Peristalsis Results

Figure 9 shows snapshots from simulations for two different Womersley numbers,
Wo D f0:2; 2:0g, where hematocrit is held constant at VF D 15%. The images were
taken after 1:5; 2:5; 3:5, and 4:5 heart beats during the simulations. It is clear from
both simulations that there is significant bulk flow throughout the tube. Moreover,
significant mixing is observed in both cases. Note that although the top portion of
the racetrack is elastic, it has a relatively high bending rigidity. The top of the tube
expands just enough to compensate for the volume of the bottom of the tube that is
lost due to the presence of the peristaltic wave.

The volume fraction was kept constant, at VF D 15%, in Fig. 10a to explore
the effect of scaling on bulk flow for Wo D 0:2; 2:0; 20:0. The spatially averaged
velocity across the top of the tube, given in diameters/heartbeat, is similar between
all three cases of Wo. Furthermore the direction of flow is consistent in all cases,
with bulk flow moving counterclockwise around the tube, with a sharp decrease in
velocity, showing flow going in the opposite direction, at the end of each heartbeat.
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Fig. 9 A comparison of simulations for two different Womersley numbers, Wo D f0:2; 2:0g, but
same hematocrit, VF D 15%. The images were taken after at 1:5; 2:5; 3:5, and 4:5 heartbeats
during the simulations. It is clear that there is significant mixing of the blood cells with peristalsis,
as the colored sections begin to mix

Figure 10b and c illustrates the effect of varying hematocrit for simulations with
Wo D 0:2 and Wo D 20, respectively. In both cases, the waveforms look similar,
suggesting that the addition of blood cells does not significantly affect bulk flow
rates. However, we note that the sharp decrease in velocity at the end of the heartbeat
is more pronounced in the Wo D 0:2 case, than in the Wo D 20 case.

4 Conclusions

In this paper, two-dimensional immersed boundary simulations were used to model
DSP and peristalsis for a single actuation frequency over a range of Womersley
numbers and hematocrits relevant to valveless, tubular hearts. When strong net
flow was generated in the tube at higher Wo, blood cells clumped together and
did not flow uniformly throughout the tube. The spatially and temporally averaged
velocities across a cross-section along the top of the tube showed a nonlinear
relationship between net flow rates and Wo for DSP. The effect of hematocrit on
the net flow rate was significant for Wo & 10 and was nonlinear. In particular, the
varying levels of hematocrit changed the direction of flow for DSP for Wo on the
order of 10. The addition of blood cells did not enhance the weak net flows produced
for Wo < 1. These results highlight the complex dynamics governing DSP.

For DSP at low Wo and for the range of tube material properties considered here,
the fluid is nearly reversible. This reversibility may explain in part why there is little
net flow in the tube for the case of DSP (a reversible motion) at VF D 0. This result
is in agreement with [5, 6]. Previous studies have shown enhanced fluid transport
and animal locomotion in non-Newtonian fluids at low Re and Wo [28]. Since the
addition of blood cells in a Newtonian fluid makes the bulk fluid effectively non-
Newtonian, it is possible that the addition of blood cells could make the flow in
tubular hearts irreversible. For the parameters considered here, any such effect was
negligible.
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Fig. 10 A comparison of the spatially averaged velocity vs. time over the course of the simulation,
for hematocrit, VF D 15%, for three different Womersley numbers, Wo D 0:2; 2; 20 is shown in
(a). The spatially averaged velocity was computed across a cross-section in the center of the top
of the tube, given in diameters/heartbeat. (b) and (c) give the spatially averaged velocities for
Wo D 0:2 and Wo D 20, respectively, for three volume fractions, VF D 5%; 15%; 25%

For the case of peristalsis, flow was consistently driven around the racetrack for
all Wo and for all hematocrits. Similar to DSP, the addition of hematocrit did not
significantly change net flow rates at low Wo. Unlike the case of DSP, the addition
of hematocrit also did not significantly alter the velocity waveform or the net flow
at higher Wo.

Although the bulk transport of fluid was not significantly changed, the addition
of blood cells may affect the shear stresses experienced by the cardiac cells and the
amount of mixing within the heart tube. The peristalsis simulations show enhanced
mixing as compared to that of DSP at the same Wo and VF. Furthermore, for
Wo D 0:2; 2, peristalsis was able achieve similar levels of blood cell mixing at
an order of magnitude faster than the DSP simulation at Wo D 20. These results are
important when considering the role that fluid mixing and shear stress may play in
cardiogenesis.
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Experimental evidence has shown that blood flow, and more specifically hemo-
dynamic forces, is essential for proper heart morphogenesis [22]. Furthermore,
it is evident that there is a strongly coupled relationship between the underlying
hemodynamics, cardiac electrophysiology, and activation of some genetic regula-
tory networks. For example, hemodynamics is thought to regulate the development
of the pacemakers and the conduction of action potentials in the heart [48, 51].
Since there is direct feedback between the underlying electrophysiology and the
flow induced by muscle contraction, changes in traveling action potentials will affect
the hemodynamic forces felt at the endothelial layer, e.g., shear stress and pressure.
These changes may then result in changes in gene expression via epigenetic
signaling mechanisms, e.g., mechanotransduction. However, the exact pipelines that
contribute to mechanotransduction are not completely understood [54].
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Movement Behavior Among Interacting Species

Anne Talkington

Abstract Migrating species are affected by their interactions with one another,
the biotic environment, and the abiotic environment. The ability to understand
and predict their patterns of movement is of particular interest for purposes of
conservation, development planning, and resource management. Researchers have
made attempts to model the direction in which they move, and the extent of their
movement. However, current models focus on a specific factor that influences the
movement within ecosystems, such as climate or land use. The complexity of
the organism’s interactions and instinctual drive is often simplified. I present a
framework for a matrix-based model that expands on previous models and allows
the researcher to describe how an organism interacts with its biotic and abiotic
environment, in as much detail as the research demands. This model can describe
the strength of an organism’s attraction to a particular place, or the relative speed
at which it will migrate there. The matrix modeling framework is generalized to
be applicable to any species; yet, it can be tailored to the biology and ecology
of specific organisms. It predicts the movement of organisms along a gradient on
the physical landscape, based on their needs, within a given time. Understanding
changing behavioral influences on individuals is a significant step in making an
educated decision regarding human intervention in a natural migration pattern.

1 Introduction

For the purposes of modeling discussed in this paper, we consider migration as
an organism’s movement from one place to another. Migration can be a singular
movement event, such as a range shift in response to changing environmental
conditions, or a repeated movement event, such as the seasonal migration of
a species as part of its circannual rhythm. An organism’s biotic environment
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Fig. 1 The variety of species that an organism may interact with. This example simplifies an
ecosystem to the network of relationships between an organism (O), a mutualist (M), and a predator
(P), three possible types of interactions. The attractive or repulsive nature of interaction between
the species is indicated by the + and � signs. This graphic focuses on the relationship between the
predator and the organism, and the relationship between the predator and mutualist (dotted lines)
is weaker and less direct

encompasses factors, including symbiotic species, that could affect an organism’s
movement patterns [3, 5, 9]. These species may be mutualistic, predatory, or
parasitic and may include members of the selected organism’s own species (Fig. 1).
The organism’s abiotic environment encompasses factors such as food, climate,
soil quality, terrain, proximity to a preferred or unsuitable ecosystem, or habitable
space [1, 12]. Species may migrate according to seasonal or annual changes in these
ecosystem factors, in order to live in their most suitable niche at any given time.
More permanent changes, such as habitat encroachment or global warming, may
influence the viability of the ecosystem and eventually necessitate species range
shift, another context of migration [5].

Migration is a primary area of ecological interest because of its implications for
potential species interactions, conservation, and resource management. Modeling
or projecting migration patterns offers the potential to predict the migrations,
and intervene if appropriate [5]. Historically, research in migration modeling has
focused on particular environmental factors that affect the strength of an organism’s
attraction to a place, or its motivation to move. Several studies have encompassed
either abiotic or biotic factors, but not both [1, 2, 12]. Barbet-Massin and Virkkala
discuss the importance of simple climatic and topological models, building up
to consideration of land use and vegetation [1, 12]. Bestley conducted research
on the behavioral motivations behind migration, suggesting a common goal or
instinct to find a specific environmental condition, as in the motivation behind
herd-like migration patterns and the apparent cohesiveness that results from such
migrations [2]. More comprehensive studies of species distribution focus on species
interactions and interdependence. For example, Jaeschke suggests a layering,
feedback method that determines the range of one species as dependent on the range
of another [6]. Kissling presents a matrix method for species interaction distribution
modeling (SIDM) [9]. These interactions can affect and are affected by migration.
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However, questions about examining the interactions dynamically, and the relative
complexity or flexibility of the models, are largely unaddressed, and the authors
acknowledge that more investigation is needed [3, 6, 9].

Linear models address an array of abiotic contributors to migration at different
states in a Markov chain, which can then be evaluated to produce the probabilistic
evolution of movement patterns. Jonsen considers both a hidden Markov and
Bayesian framework [7]. However, the states in models such as Jonsen’s do not
discuss interactions between species as a contributing factor to an organism’s
decision to move. Rather, behavioral inference is treated as an output. The model
I am proposing accounts for an organism’s interactions with other organisms
occupying the environment, as well as aspects of the physical landscape.

Migration models that focus on a general approach cannot be specifically applied
to one organism in particular because of the individual variables that affect the
patterns of each. Models that analyze one particular species cannot be generalized
to other species because of their dependence and construction on a selected number
of individualized variables, often gathered empirically and deemed significant. I
am proposing a matrix-based migration model, based on movements due to species
interactions, that can be tailored to the level of detail required for ecological studies.
This model is flexible, so it can be made specific to a focal species but also
generalizable across species and timescales. The model can be evaluated as time
progresses, by tracking organisms’ movement or motion in a broad sense across the
landscape of environmental characteristic and physical space. It also introduces a
behavioral aspect which has not been addressed in previous studies. The variety of
applications of the model are subsequently illustrated in three case studies, including
the response of salamanders to deforestation, the seasonal migration of white sharks,
and the response of perch to an overflowing river as they make their way to breeding
grounds. This model has the potential for broad use in ecological research.

2 Methods

A system of matrices was developed to describe the abundance and relative sig-
nificance of the biotic and abiotic components affecting an organism’s movement.
An organism would be more strongly affected (attracted or repelled) by factors
occurring in greater amounts or carrying a higher weighting factor of relative
importance (see Fig. 2). Refer to Table 1 for a guide to abbreviations used in the
matrices as I describe the process of setting up a sample of the model.

As illustrated in Fig. 2, this organism’s instinctual attention was shown to be
divided between the components of a particular ecosystem that rendered it a suitable
(positive) or unsuitable (negative) migration destination. Weightings were assigned
to each factor (biotic and abiotic, named in the row headings) with a positive
or negative value, where the absolute value represented strength or proportion of
interaction, and the sign served as an indicator. The weightings were normalized
so that the sum of the absolute values of the entries down each of the columns
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Fig. 2 A general example of the matrix organization for an ecosystem, analyzed for a general
system of focal organisms, a mutualistic species, and a predatory species

Table 1 Key abbreviations
in the matrix model

Abbreviation Interpretation

O Organism

M Mutualist

P Predator

F Food

S Space

W Biotic weightings

a Biotic amounts

X Abiotic weightings

b Abiotic amounts

N Net biotic motion

M Net abiotic motion

S Scaled biotic motion

T Total motion and migration indices

(here Organism, Mutualist, or Predator) totaled 1. In biotic weighting matrices, a
lone organism could not affect itself. A 0 in the matrix indicated complete lack of
interaction. However, it was possible for a group of organisms to affect one another.
Thus, when more than one organism of a selected group or species was analyzed
(and the system was being analyzed as a whole rather than a single organism and its
mutualistic cohorts), a nonzero number was entered in the respective element of the
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biotic weighting matrix. This value for intraspecific interactions could be positive,
to represent grouping or cohesion, or negative, to represent territoriality. A 1 in one
entry of the matrix would indicate that no other factor affects the organism. Rele-
vance in the relative weighting system was determined by proximity to a resource
or a desperate drive to obtain the resource. For example, the 0.3 at the intersection
of row M and column O in the biotic weighting matrix of Fig. 2 indicated that
30% of this particular organism’s instinctual attention was given to the mutualist.
They interacted positively and attracted one another. By contrast, the �0:3 at the
intersection of row P and column O indicated that 30% of the mutualist’s attention
was given to its predator, which repelled the organism and drove it in the opposite
direction. The relationship between the organism and the mutualist or predator may
have been more meaningful to one group than another, if the degree of interaction
or dependence was greater. Thus, the intersection element of row M and column O
may not necessarily be the same as the intersection of row O and column M.

The biotic “amounts” vectors were absolute and represent the number of
organisms of a particular group or species. The biotic groups could be simplified
as “lone organism,” “other organisms of the same species,” “all organisms of one
species,” “mutualistic species,” or “predatory species.” In Fig. 2, the O, M, and P
columns each represent a group by this definition, though the scope of this model
is not limited to OMP systems. Abiotic amounts were quantified relatively because
the abiotic factors could have ranged from food supply, to water temperature, to
amount of precipitation. They were therefore marked on a scale of prevalence from
1 (barely present) to 100 (very prevalent) in the environment, for consistency of
units. In the sample system illustrated in Fig. 2, I have analyzed 1 organism, and
populations of 2 mutualists (of one species) and 2 predators (of one species). I
considered the food and available space in the ecosystem, here denoted as F and S, as
my abiotic components of choice. This system was small and did not contain a large
food supply (values of 5 and 3, respectively). However, positive weighting values
in the abiotic table indicated that the quality of the food and the space available
were still attractive to its members. Factors that limited or depended on one another
were grouped into one column, determined by the limiting factor. (For example, the
organisms may have needed shelter as well as space, but their instinct to migrate
to a particular location was exclusively dependent on available space, regardless of
the amount of shelter in the habitat. Thus, “space” was deemed a category in this
example.) The designation of categories is left to the discretion of the researcher in
each application of the model.

The effect of each biotic or abiotic factor on an organism or group’s overall
movement was determined through matrix multiplication, which multiplied the
amount or prevalence of a variable by its relative importance. Each “amounts”
row vector (a and b) multiplied its respective “weightings” matrix (W and X).
The sum of the weighted values developed an index of biotic movement and an
index of abiotic movement, represented as net movement values. Each column in
the movement vectors (N and M) coincided with an organism, group, or species
(the same biotic groups, or columns, initially defined in the amounts matrix) and
was interpreted as the amount that each group would be driven to move based
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Fig. 3 Example of biotic and abiotic scaling. The scaling factors greater than 1 for each column
reveal that species interactions are enhanced by a favorable external environment

on biotic and abiotic factors, respectively. Under the normalized scaling system,
these “affinity units” represent drive as a property of the organism’s behavioral
preferences, or the strength of an organism’s attraction to a new point. Continuing
the OMP example, the organism in Fig. 3 would be driven 1.6 affinity units due to
abiotic environmental factors, whereas the mutualist would be assigned 1.4 units,
and the predator would be driven 1.3 units.

The biotic movement values were each multiplied by an abiotic scaling factor
to account for enhanced or diminished interaction behavior, which is dependent on
the particular set of abiotic factors in the system, as illustrated in Fig. 3. Physical
characteristics of a particular environment could influence an organism’s migra-
tional behavior both directly, through habitat attractors and deterrents (measured by
net abiotic motion), and indirectly, through its impact on the social and behavioral
components of biotic motion (accounted for by abiotic scaling). For example, a
temperate climate might encourage activity for some organisms while discouraging
those who prefer it drier/wetter, or hotter/colder. Referring to the sample system
provided serves to clarify the need for and implementation of these scaling factors.
In this OMP system, the mutualist’s scaling was a factor of 4. Each mutualist’s
motion was multiplied by a factor of 4 for each ˙1 it responded to the environment
(net abiotic motion), indicating greater awareness of, response to, and interaction
with the other species in the system given its environmental conditions. This means
that in this particular environment, its drive to move based on biotic interactions was
amplified by a factor of 4 times its drive to move based on the abiotic environment.
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Its scaled biotic motion was thus .1:4 � 4/ � 0:3 D 1:68. The same math applies
in the columns representing the organism and the predator, accounting for biotic
interactions enhanced by environmental sensitivity. Here, the predator’s scaling was
a factor of 5, so its scaled biotic motion was .1:3 � 5/ � 0:8 D 5:2. The O column
was less interesting than the M and P columns mathematically because of its factor
of 0 in the net biotic motion entry. Had this been a nonzero value, it would have been
multiplied by 3.2, or 1:6 � 2. However, the calculation was informative nonetheless
because it illustrated that regardless of its environmental response, no degree of
environmental acuteness can create a biotic interaction that did not initially exist.

The scaled biotic movement vector S was comparable to the net abiotic move-
ment vector M, and the sum of the two vectors represented the total overall
movement for each organism in the system .T D S C M/. In Fig. 3, the mutualist
experienced a total of 1:4 C 1:68 D 3:08 units of drive affinity. Again, each of
the columns coincided with the associated organism, species, or group in question.
The elements could be interpreted as the strength of attraction to a region, or as the
speed of migration in a specified direction (Figs. 4, 5). Directed movement described
the “push” away from the less-than-ideal conditions in the current environment,
and destination attraction reflected a “pull” toward the ideal niche. Numbers with a
larger magnitude relative to the other entries in T indicated a greater attraction.

Fig. 4 Conceptual interpretation of migration analysis. The matrix method accounting for species
interactions can be used to determine the extent of a population’s movement in a specified direction
(top left), or to determine the population’s attraction to one particular location (top right). Together,
the two measurements illustrate the overall migration in the ecosystem, as shown for the OMP
system (bottom). The thickness and length of the arrows represent the strength of attraction to a
place, or the drive to migrate there
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AB C

C

AB

Fig. 5 Intuitive spatial illustration of the model. An organism at point A will evaluate the biotic
and abiotic conditions at its current state as well as points B and C. The organism will then decide
where to move based on its affinity to the different points. This can be represented linearly, or on a
grid over a two-dimensional surface

3 Metrics of System Motion

Refer to Table 2 for a guide to abbreviations used in the matrices as I describe the
process of analyzing the model.

The dynamic of the system was the sum of all movement elements, for all
organisms (d D summed elements of T; in the OMP example: 1:6 C 3:08 C 6:5 D
11:18). The average movement could be interpreted in terms of three indices: group
average movement, individual average movement, and weighted average movement.
Group average movement represented migration simply as a system of groups or
species, each of which carried equal weight in the environment. Thus, it was defined
as the dynamic of the system divided by the number of biotic groups (g D d=length
of a; for OMP: a dynamic of 11:18=3 groups). Individual average movement focused
on the contribution of each individual to the dynamic. The number of organisms
in each group was more important than the group to which each belonged. The
organisms interacted and moved together on the individual level, and each one
contributed both to the total overall dynamic and the element of the dynamic
attributed to its group or species. Individual average movement was thus defined as
the dynamic of the system, divided by the total number of organisms in the system
(sum of the entries in the biotic “amounts” matrix, or i D d=summed elements
of a). For OMP, this value was obtained from 11:18=.1 C 2 C 2/. Weighted average
movement analyzed the system from a center of mass perspective. This index
accounted for both the number of individual organisms and the relative impact of
the group or species to which each belonged. Thus, the weighted average index was
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Table 2 Abbreviations
describing metrics of system
motion

Abbreviation Interpretation

d Dynamic of the system

g Group average movement

i Individual average movement

w Weighted average movement

determined by multiplying each entry in the total overall movement matrix by the
number of organisms in the associated column, taking the sum across all columns,
and dividing by the total number of organisms .w D .a1T1 C a2T2 C � � � /=summed
elements of a, where ak is the kth element of the vector a, or more succinctly:
a � T=summed elements of a). The value for the OMP case is determined by the
following calculation: .1 � 1:6 C 2 � 3:08 C 2 � 6:5/=.1 C 2 C 2/. The indices were
systematically calculated through a program in Mathematica software.

The indices can be summarized as follows:

• Dynamic of the System: sum of all movement elements
• Group Average Movement: dynamic, divided by the number of groups (columns)
• Individual Average Movement: dynamic, divided by the number of individuals

(organisms of all species)
• Weighted Average Movement: sum of all total movement vectors multiplied by

the number of organisms in a column, divided by the total number of organisms

4 Case Studies

The following three case studies, based on past ecological research, represent
applications that highlight specific points of interest in the development and
interpretation of the new migration model, and interesting results we can derive by
constructing and implementing our theoretical framework around the real system.
Each case represents a different element in which the matrix method is useful
for analyzing the ecosystem. Case 1, salamanders, explicates an individual–group
relationship. Case 2, Pacific white sharks, utilizes the method with respect to two
groups, or a “split population.” Finally, Case 3 uses golden perch to illustrate
the difference between the three migration indices and the usefulness of each to
answer particular research questions. The analyses are scenarios derived from the
published literature, rather than explicitly taken from previously obtained data, but
illustrate the potential of the model if more data were known. The initial input values
come from applied knowledge of the dynamics in species interactions. Running the
model confirms the expected behavior in each situation; indeed, the results map
qualitatively onto conclusions drawn about the species in question.



242 A. Talkington

Fig. 6 Illustrated
interpretation of the
salamander case study. The
lone salamander (represented
by the triangle) at point A is
attracted to the safety of the
forest vs. exposure in the
field, and the larger group of
salamanders at point C. Upon
evaluating its options, such as
the habitat at point B or
elsewhere in the surrounding
grid, it is not attracted to the
open space or greater distance
from the group and is driven
to move toward (has the
greatest affinity for) point C
in this instant

A

C

B Field

Forest

4.1 Case 1: Salamanders

Rittenhouse and Semlitsch have conducted research pertaining to salamander
populations (Ambystoma maculatum) in the context of deforestation [11]. Here,
we are considering seasonal migration for the purpose of breeding. This particular
example, taken from a situation in their work, illustrates an outside, lone salamander
who is attracted to the group and a part of the physical environment (Fig. 6).
According to the findings of Zamudio and Wieczorek, this grouping or clustering
is a realistic scenario [13]. Specifically, the salamander prefers the safety away
from the boundary of its ideal habitat. This is represented by biotic weightings
of 0.5 toward other salamanders, and abiotic weightings of 0.25 to the forest with
a complementary weighting of �0:25 away from the edge. The abiotic amounts
in this matrix reflect the size of the system, where there is more “safe” area
(given as 100 units of space or squares on a grid) than boundary “unsafe” zone
(given as 50 units of space). The focal salamander will exhibit strong tendencies
to migrate toward the larger central group, quickly (total motion index of 81.25).
The salamanders in a larger cluster, however, will stay generally where they are
(total motion index of 19.38). They will accept the salamander into their breeding
group, but the lone will migrate to the group before the group moves to the loner.
Their directed movement analysis (Fig. 7) reveals the group’s minimal preference to
any particular location. Rather, they are strongly attracted to one another and their
environment, and pursuing their instinct to come together as one group. Their low
overall movement value indicates stirring around the group’s center, represented as
the mean.

When the matrices are analyzed and indices are reinterpreted to represent
attraction to the current location of the main group, all of the salamanders exhibit
high overall totals (Fig. 8). The difference in overall movement values suggests that
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Fig. 7 Matrix analysis of salamander population. The input values for the matrix elements reflect
relative speed, strength, and amount of movement toward a particular location

the salamanders will prefer migrating in one direction, but only to an extent. As
an organism or population comes closer to its goal, it will have less need to go
as far or as fast to reach the preferred condition. At this stage in their migration,
the organisms tend to have more affinity for staying in a particular habitat with
the desired relevant resources, and coexisting with the other organisms nearby.
They have less affinity for the biotic and abiotic factors beyond this environment,
which become less relevant or less favorable as they wander past their ideal.
Thus, the organisms express less desire to migrate further. This phenomenon of
picking a habitat destination is explored as a series of time steps with changing
destinations. When migrating organisms overshoot their ideal, the matrix “amount”
and “weighting” values in the next time step evaluation reflect deterrents along their
migration path. These values are considered relative to one another, and normalized
at each step so that the column sum remains 1. As a result, the model can illustrate
that wandering salamanders will be drawn back to the balance of their ideal location.
The two analyses complement one another: if organisms are not attracted elsewhere,
then they will tend to stay in their current location. Once the organisms are in their
ideal location, they will not be attracted elsewhere.
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Fig. 8 Matrix analysis of salamander population. The input values for the matrix elements reflect
attraction to the immediate surroundings of the primary group

4.2 Case 2: White Sharks

The matrix method is also applicable in studies of migratory populations, to describe
movement that recurs temporally (Fig. 9). The principal motivation behind the
movement remains the same. The migration patterns of white sharks in the Pacific
Ocean (Carcharodon carcharias) illustrate an example of a “split group” [4, 8].
The model simplifies the scenario, with proximity to the coastline, coastal traffic,
and water temperature as primary variables (Fig. 10). The biotic set was divided
into two specific groups: sharks near the coast of the western USA, and sharks
near the center of the ocean. The sharks’ preferred location depends on season. In
general, the model shows that the white sharks will distinctly prefer one extreme
over another. They will convene and remain in this location for the duration of
several months. The groups, though they are represented as balanced in the model,
will not “meet in the middle” (represented by a mean movement of 0, preserving
the existing population center) because the environment is not as favorable as one
extreme or the other. The biotic factors determine that the sharks will gather and
potentially compete for prime territory as more sharks arrive. The abiotic factors
determine where they will gather.

The destination attraction analysis yielded results that were similar for both
groups because the white sharks share common instincts; the only differences were
environmental. The ocean sharks are seasonally attracted toward the inland sharks,
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Fig. 9 Illustrated
interpretation of the white
shark case study. The sharks
on the grid will have greater
affinity for a coastal habitat
(with A as the ultimate
destination, an affinity
maximum) or the open ocean
(with B as the ultimate
destination, an affinity
maximum), according to the
season AB

CoastOcean

Seasonal ocean migration

Seasonal inland migration

Fig. 10 Matrix analysis of Pacific white shark population. The groups of organisms represent the
division between two extreme preferred locations, each more likely to be habited seasonally. This
analysis describes two evenly split groups that intuitively come together near the shore or in the
middle of the ocean, depending on the preference for the current half the year
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but further migration would be detrimental for the inland sharks. Their instinct to
remain in their current habitat is represented by the low and cancelling relevance
values of the abiotic factors as they travel outside this location. If the sharks travel
too far, the amounts and relevance of the abiotic factors will force them to turn
around and thus “meet” the immigrating ocean sharks. The amount of correction in
the amount and relevance values corresponds to the amount the white sharks stray
from their ideal course.

4.3 Case 3: Golden Perch

A migratory analysis of the fish populations of the Murray–Darling River System in
Australia signifies the importance of distinguishing between the average movement
indices of the migration model [10]. The model yields a projection of migration
in response to flood conditions. It generally tells the story of one golden perch
(Macquaria ambigua) in a crowd where the trend is upstream migration for the
physically capable fish (Fig. 11).

Analyzing the averages gives a distinct picture of the migration interactions
occurring on a smaller scale within the system. The individual average assumes
that the movement in the system is an aggregate measurement, and that each
perch is only contributing a small part to the dynamic. By this analysis, the fish
exhibit relatively weak attraction along the stream and are not particularly directed,
individually or as a group. By contrast, the group and weighted averages yield
similar, considerably higher values (Fig. 12). They represent each group member as
moving or being attracted by the full value calculated in the appropriate column of
the overall total matrix. The disparity between the two index results is caused by the
factor of size difference in biotic groups, as accounted for in the weighted average.

Fig. 11 Illustrated
interpretation of the golden
perch case study. The lone
perch (open triangle) exhibits
grouping behavior with the
larger school of fish (filled
triangles), while all fish
instinctually swim upstream,
shown here from point A to
point B AB
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Fig. 12 Matrix analysis of population of perch in the Murray–Darling River. The summary indices
each measure a different element of the population dynamics, on an individual or a group level.
The researcher can determine which index is most reasonable for each particular study

Each index addresses a different question. The details of the input elements reveal
that the perch have some instinct to stay together, but physical capability and desire
to obtain shared resources results in the common migration.

5 Discussion

The matrices in the migration model allow for a system of organization with as
much detail as the researcher finds necessary or knows. The basic Organism–
Mutualist–Predator and Food–Space structure can be condensed, or expanded
with more categories and subcategories to thoroughly describe the ecosystem and
its connection to the human system. This flexibility allows the model to apply
specifically to any species from its general form, at any level of biotic or abiotic
complexity, for any duration of time. The decision between destination attraction
versus directed movement analysis, as well as the index of choice, has been
developed as a metric to be used as relevant to the specific ecological research in
question. The matrix entries allow various environmental factors to be compared
with one another and accounted for through a general units system. In applying
the model to real-world scenarios, I have demonstrated its ability to contribute to
the knowledge we can obtain about a system through previous models, such as
interaction matrices and layered feedback loops [6, 9].
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Fig. 13 Preliminary work on an individual-based model (IBM) visualization of the landscape
presented by the matrix model. Over time, the organisms concentrate at the peak according to
the affinity gradient. (a) Initial distribution of organisms. The x and y axes represent physical
coordinates. The z axis represents the normalized initial population. (b) Organisms find a “peak”
in the fitness landscape, and are most likely to move to this point in the physical landscape, thus
creating a “peak” in population. After several iterations, the concentration of organisms at the peak
continues to increase and may stabilize at a dynamic equilibrium

Its applicability could be further explored through programming an individual-
based model (IBM), to visualize the implications suggested by this method and
facilitate calculations over several time iterations. Spatially, if I consider the result
of directed movement and destination attraction as a trajectory through a vector
field, the entries in the total attraction vector T would physically represent individual
movement vectors toward the equilibrium niche, and dictate the path traced and
updated in the IBM. IBM would overlay the physical space with a grid of affinities,
and enable researchers to better understand more complex systems over a longer
duration of time using this model. The visualization in Fig. 13 presents the potential
for an IBM approach.

The elements of the movement vector T account for the amount of attraction
in one time-step, or iteration. Running the model over multiple iterations involves
advancing the state of the system by the given vectors and reevaluating the matrices.
Each endpoint becomes a new beginning point with each step in the model. The
weighting factors update based on the organism’s biological needs (e.g., fish require
a certain amount of water at a certain temperature), the difference between its current
state and its ideal state, the environmental factors in close proximity to the organism
(e.g., a nearby predator will occupy the majority of an organism’s attention), and
any external changes that influence the system (e.g., the introduction of a pollution
agent or the barrier of a new development plan). The conditions for an “ideal niche”
form a fitness gradient that overlays the physical space along which the species
move. Over time, I can see a trajectory form from the movement vectors along
this gradient, outlining the path of migration toward the niche. In this interpretation
of the ecosystem space, the niche is considered the equilibrium, minimum, or
steady-state point of this system. If an organism “overshoots” its ideal location in



Modeling Movement Behavior 249

one time step, the next time step would result in a vector pointing back to the niche.
The gradients formed by directed movement (push away from current location)
and destination attraction (pull toward another location) analysis should result in
a consistent picture.

The primary limitation of the model is currently the availability of behavioral
knowledge on a wide range of species. Even so, the model in its present state can be
used to answer interesting, if more theoretical, questions. For example, it is possible
to explore the relative importance of different factors in determining the trajectory
of an organism’s potential migratory path, or to examine the number and location of
the niches that form as potential endpoints, given an initial distribution of resources
across a landscape.

6 Conclusions

The development of this new model provides an opportunity to reanalyze ecological
research and data. The matrices highlight the relative impact of each biotic or
abiotic factor, and the effect of changing one detail of the ecosystem. This model
demonstrates that interactions are critical in assessing migration, and different
levels of interaction contribute to different migration tendencies. Depending on an
organism’s needs, such conditions and interactions can change over time.

This method can be applied to reevaluate environmental phenomena and the
consequences of the human role in the ecosystem, in the context of behavioral
tendencies [4]. We can trace human intervention through the network of species
interactions and interdependence. With the ability to evaluate the outcome of a
future course of action, we can thus become more aware of the successes and
shortcomings of conservation efforts. The migration model facilitates efforts and
progress in migration research.
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